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ABSTRACT

This thesis focuses on experimental studies of strongly correlated
fermionic superfluids in the crossover from a Bose-Einstein conden-
sate (BEC) of molecules to a Bardeen-Cooper-Schrieffer (BCS) su-
perfluid of weakly bound Cooper pairs. In the first part of the the-
sis we prepare homogeneous 3D ultracold Fermi gases and probe the
full momentum-resolved low-energy excitation spectrum with Bragg
spectroscopy. This allows us to directly observe the smooth cross-
over from a bosonic to a fermionic superfluid that takes place in the
BEC-BCS crossover. Furthermore, we use the excitation spectra to ex-
tract key quantities of the many-body system, the speed of sound and
the pairing gap, which provide quantitative benchmarks for theoret-
ical predictions. In subsequent experiments, we study Fermi gases
with a strong vertical confinement to probe the excitation spectrum
of 2D Fermi gases, allowing us to compare the stability of 2D and 3D
fermionic superfluids.

In the second part of the thesis we present the creation of spin-
imbalanced ultracold Fermi gases in box potentials. They are close
to the 2D regime (kBT ≪ ℏωz, μ ≈ ℏωz) and we achieve temperatures
about a factor of 2 lower than in previous works for 2D harmonically
trapped gases for spin-imbalances smaller than P = 0.2. We experi-
mentally observe that the gases are locally imbalanced with a nearly
constant imbalance over the entire cloud. We do not observe any ex-
perimental indication of phase separation predicted by most theoreti-
cal works, which expect a first-order phase transition at very low tem-
peratures resulting in formation of balanced domains and domains
hosting the majority excess.





ZUSAMMENFASSUNG

Diese Arbeit konzentriert sich auf experimentelle Studien von stark
korrelierten fermionischen Suprafluiden im Übergang von einem
Bose-Einstein-Kondensat (BEC) von Molekülen zu einem Bardeen-
Cooper-Schrieffer (BCS) Suprafluid von schwach gebundenenCooper-
Paaren. Im ersten Teil der Arbeit präparieren wir homogene 3D ul-
trakalte Fermigase und untersuchen das vollständig impulsaufgelö-
ste niederenergetischeAnregungsspektrummit Bragg-Spektroskopie.
Dies ermöglicht es uns, den graduellen Übergang von einem bosoni-
schen zu einem fermionischen Suprafluid, der im BEC-BCS-Übergang
stattfindet, direkt zu beobachten. Darüber hinaus verwenden wir die
Anregungsspektren, um wichtige Größen des Vielteilchensystems,
die Schallgeschwindigkeit und die Energielücke, zu extrahieren und
diese mit theoretischen Vorhersagen quantitativ zu vergleichen. In
anschließenden Experimenten untersuchen wir Fermigase mit einer
starken vertikalen Einschließung, um das Anregungsspektrum von
2D Fermigasen zu untersuchen. Dies ermöglicht es uns, die Stabili-
tät von 2D und 3D fermionischen Suprafluiden zu vergleichen.

Im zweiten Teil der Arbeit präsentieren wir die Erzeugung von
spin-unausgeglichenen ultrakalten Fermigasen in Boxpotentialen. Sie
befinden sich nahe dem 2D-Regime (kBT ≪ ℏωz, μ ≈ ℏωz), und
wir erreichen Temperaturen, die um den Faktor 2 niedriger sind als
in früheren Arbeiten mit 2D harmonisch eingeschlossenen Gasen für
Spin-Ungleichgewichte kleiner als P = 0.2. Wir beobachten expe-
rimentell, dass die Gase lokal unausgeglichen sind und das Spin-
Ungleichgewicht über die gesamte Wolke nahezu konstant bleibt.
Wir beobachten keine experimentellen Hinweise auf eine Phasentren-
nung, die von den meisten theoretischen Arbeiten vorhergesagt wird.
Diese erwarten einen Phasenübergang erster Ordnung bei sehr nied-
rigen Temperaturen, der zur Bildung von ausgeglichenen Domänen
und Domänen, die den Überschuss beherbergen, führt.
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1 INTRODUCTION

When studying systems of many quantum particles, it is intriguing
that adding more particles can lead to emergent phases with sponta-
neously broken symmetries which simplify the description of many-
body systems [1]. Prominent examples are ferromagnetism or super-
fluidity: In ferromagnets the ground state spontaneously breaks the
rotational spin symmetry and the new order parameter emerging is
themacroscopicmagnetization. In fermionic superfluids the fermions
form a macroscopic wavefunction ψ, serving as the new order param-
eter. The fixed phase ϕ of the order parameter ψ ∝ Δe−iϕ breaks the
U(1) symmetry.

Spontaneous symmetry breaking can show striking experimental
consequences such as amacroscopic magnetic moment or an abruptly
vanishing viscosity. We would also like to understand why this hap-
pens. For that microscopic theories are needed. Bardeen, Cooper, and
Schrieffer (BCS) put forward amicroscopicmechanism explaining su-
perfluidity: a weak attractive interaction leads to correlations between
fermions with opposite momentum and spin, resulting in the forma-
tion of so-called Cooper pairs [2]. These Cooper pairs, in turn, form a
new macroscopic quantum state which is protected by a pairing gap.

The power of this microscopic theory is that it quantitatively pre-
dicts the emergent property of the broken symmetry phase, the value
of the pairing gap, which turns out to be the amplitude of the order
parameter, Δ. The gap protects the system against Cooper pair break-
ing and from external perturbations and thus allows for dissipation-
less flow of the fluid around an impurity moving slower than a critical
velocity [3].

However, for strongly correlated many-body systems, solving the
microscopic theory exactly becomes excessively hard and often im-
possible because of the large Hilbert space. In some cases, this can
make it extremely challenging to even find the qualitative nature of the
ground state (e.g. high-temperature superconductors), and in other
cases it only leads to quantitative errors with respect to approximate
theories.

For s-wave superfluids in the strongly correlated regime, several
open questions remain, which we will address in this thesis. One
concerns the size of the pairing gap for strongly correlated superflu-
ids, where advanced theories are available, but further experimental
input is needed. Another open question raised by the field of high-
temperature superconductors is the effect of enhanced quantum fluc-
tuations on the pairing gap in two-dimensional (2D) systems. Fur-
thermore, the introduction of spin-imbalance in 2D Fermi gases gives
rise to numerous qualitative questions regarding the phase diagram.
These concern the stability of predicted phases, the order of phase
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transitions between them, and the potential existence of exotic phases
with spatially varying order parameters.

In recent years, a new approach used to address such questions is
the concept of quantum simulations [4]. These try to solve complex
problems in physics using well-controlled quantum systems and ide-
ally should provide qualitative and quantitative answers to the raised
questions.

In this thesis, we perform quantum simulations using ultracold
Fermi gases [5–7]. These gases consist of neutral fermionic atoms
that interact via contact interactions, which can be controlled using
Feshbach resonances [8]. This allows us to realize superfluids in
the BEC-BCS crossover [9–11]. The crossover is characterized by
a transition from the bosonic limit, where fermions form weakly
interacting bosonic pairs, to the fermionic limit, where they form
Cooper pairs. Within the crossover region, the fermions create a
strongly correlated many-body system.

In the first part of this thesis, we prepare homogeneous 3D Fermi
gases in the BEC-BCS crossover and measure their excitation spec-
trum. For that, we probe the systemswith a two-photon process called
Bragg spectroscopy. We observe both collective and single-particle ex-
citations, showing how the superfluid is protected by a pairing gap
and how a collective mode emerges. When the interaction strength is
changed, the excitation spectrum reveals very clearly how a repulsive
Bose gas transforms into an attractive Fermi gas. Furthermore, we ex-
tract quantitative values for the speed of sound and the pairing gap in
the strongly interacting regime, allowing for a benchmark to theories.

In a next step, we study the effect of reduced dimensionality by
preparing homogeneous 2D Fermi gases in the BEC-BCS crossover
and probe their excitation spectrum. This allows us to extract the crit-
ical velocity, the speed of sound, and the superfluid gap. We compare
the pairing gap of the 2D Fermi gases to the 3D counterpart and ob-
serve very comparable values of the gap for similar interactions, sug-
gesting that the impact of the interaction strength is more significant
than the influence of dimensionality.

In the second part of this thesis, we study spin-imbalanced 2D
Fermi gases. If a spin-imbalance is introduced, the underlying pairing
mechanism in BCS theory, Cooper pairing, is challenged, which can
trigger a phase transition into the normal phase ormore exotic phases.
We prepare spin-imbalanced Fermi gases close to the 2D regime in
a box potential at significantly lower temperatures than previously
achieved. Interestingly, we do not see a phase separation, indicating
that no first-order transition is present at the achieved temperatures
and spin imbalances. These experiments are accompanied by an
in-depth discussion of the theoretical phase diagram for 2D spin-
imbalanced Fermi gases.



Part I

BALANCED FERMI GASES





2 THEORY OF THE BEC-BCS CROSSOVER

After the discovery of superconductivity in 1911 [12], explaining the
phenomenon by finding a microscopic theory proved to be very diffi-
cult. One reason were that electrons are fermions, which do not allow
for condensation into a single-particle state, thereby excluding simple
Bose-Einstein condensation. In 1957, however, Bardeen, Cooper, and
Schrieffer (BCS) [2] formulated a theory which was ground-breaking
for explaining superconductivity in various materials. They showed
that pairing in momentum space of electrons with opposite momen-
tum into so-called Cooper pairs is the central mechanism to form a
macroscopically occupied quantum state. This state is protected in
energy, allowing for a dissipationless flow of electrons. In the limit of
weak attractive interactions between the fermions, the corresponding
size of the Cooper pairs is much larger than the interparticle spacing.

Figure 2.1: Visualization of the cross-
over from a BCS gas of large Cooper
pairs (top) to a BEC of tightly bound
dimers (bottom).

However, if the attractive interaction becomes stronger, these pairs
transform into tightly bound dimers that can form a Bose-Einstein
condensate (BEC) (Fig. 2.1). Fascinatingly, the crossover from BCS
to BEC is already included in the BCS theory [13, 14].

In this thesis, we study a phenomenon closely related to super-
conductivity, superfluidity, where the dissipationless flow of neutral
atoms instead of electrons can occur, and we examine the BEC-BCS
crossover. For that we use fermionic lithium atoms, tune their attrac-
tive interaction using a Feshbach resonance, and probe the excitation
spectrum.

In this chapter, we first discuss how two-body interactions can be
tuned using a Feshbach resonance. Then, we progress to the many-
body problem and review the mean-field BEC-BCS theory with a
particular emphasis on the excitation spectrum. In a next step, we
discuss possible methods for probing the system and extracting the
excitation spectrum. Lastly, we review previous measurements of the
excitation spectrum for both BECs and Fermi gases.

2.1 Tuning interactions

For ultracold Fermi gases, pairwise interactions between atoms reduce
to contact interactions in the s-wave channel. The reason for this is that
the spatial extent of the interatomic vanderWaals interaction potential
becomes much smaller than the de-Broglie wavelength λdB and the
interparticle distance which follows the inverse Fermi wavevector
k−1
F . For Fermi gases s-wave scattering between particles in the same

spin state is excluded because the relative pair wavefunction must be
antisymmetric. Thus, interactions are only possible between different
spin states.
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Figure 2.2: The ground state 2S1/2 of
6Li splits into six hyperfine states. They
are labeled in ascending energy from |1⟩
to |6⟩. For large fields, the coupling to
the electron spin mj = ±1/2 dominates,
resulting in two triplets of high- and
low-field seeking states.

The interaction strength can be parameterized by a single param-
eter, the scattering length a [5]. Its sign is positive (negative) for a
repulsive (attractive) interaction.

Experimentally, the scattering length of a spin mixture can be
changed using a Feshbach resonance [8]. It is based on themechanism
that two atoms collide in an entrance channel at an energy that
becomes resonant with a molecular bound state in a closed channel.
By applying an external magnetic field, the energy of these two
channels can be tuned with respect to each other. If the energy of the
closed channel is above the entrance channel, the fermions interact
attractively. If both channels become resonant, the scattering length
diverges to a → −∞, marking the unitary point. Below the unitary
point a two-body bound state enters the system such that bosonic
dimers form. These dimers, in turn, interact repulsively with a > 0.

In this way, the Feshbach resonance smoothly tunes the inverse
scattering length η = (kFa)−1 from η ≫ 0 (weakly repulsive) to η ≪ 0
(weakly attractive), allowing the crossover from a BEC of molecules
to a fermionic BCS state. To first approximation, the resonance of the
scattering length follows the expression [8]

a = abg (1 − ΔB
B − B0

) , (2.1)

where abg is the background scattering length, ΔB the width of the
resonance and B0 the resonance position.

In our experiment, we use the broad Feshbach resonance of 6Li be-
tween the lowest two hyperfine states (see Fig. 2.2). For the experi-
ments in the first part of this thesis, we prepare 50 % of the atoms in
the lowest hyperfine state |1⟩ and 50 % of the atoms in state |2⟩. The
scattering lengths between the lowest three hyperfine states were pre-
cisely measured in Ref. [15] (Fig. 2.3) and resulted in abg = 1582(1)a0,
B0 = 832.18(8)G and ΔB = 262.3(3)G for the interaction between |1⟩
and |2⟩.
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Figure 2.3: The scattering length a
quantifies the interaction strength be-
tween the lowest three hyperfine state.
The sign determines if the interaction is
repulsive (positive) or attractive (nega-
tive). In this thesis, wewill usemixtures
of hyperfine states |1⟩ and |2⟩ which has
a broad resonance atB = 832G. Amore
narrow pole at B = 543G is not visible
in the data. The scattering lengths are
taken from [15].

2.2 Many-body ground state

After discussing two-body interactions, we address the many-body
problem, where N fermions are equally distributed into two hyperfine
states denoted in the following with spin up (↑) and spin down (↓).
For that we review the wavefunction of the many-body system in the
mean-field BEC-BCS crossover at T = 0.

If both spin states do not interact, we can obtain the ground state
by minimizing the total kinetic energy. The many-body wavefunction
Ψ = Ψ(r1, ..., rN) is then created using second quantization by popu-
lating the vacuum |0⟩with fermions of both spin states up to the Fermi
wavevector kF,

|ΨF⟩ = ∏
|k|<kF,|k′|<kF

c†
k,↑c†

k′,↓ |0⟩ , (2.2)

where c†
k,↑ and c†

k,↓ are the creation operators of fermions with mo-
mentum k and spin up and spin down, respectively. If we introduce
an interaction between both spin states, this wavefunction does not
coincide with the ground-state wavefunction anymore. If we assume
a contact interaction and thus a momentum independent interaction,
the Hamiltonian is

Ĥ = ∑
k,σ={↑,↓}

ϵkc†
k,σck,σ + V ∑

k,k′,q
c†
k+q,↑c†

−k,↓ck′+q,↓c−k′,↑, (2.3)

where the first term contains the kinetic energy ϵk = ℏ2k2
2m , and the

second term the contact interaction1 parameterized by its strengthV <
1 Weuse here the definitionwhere V has
units of energy. There is also a definition
used, for example, in Ref. [6] where the
interaction strength scales with the vol-
ume of the system Ω, then the factor V
is replaced by V/Ω.

0. Reading the interaction term from right to left, a spin-up fermion
withmomentum−k′ and a spin-down fermionwithmomentum k′+q
scatter into a spin-up fermion with momentum k + q and spin-down
fermion with momentum −k.

In order to find the BCS ground state, wewill nowperform a drastic
simplification: We only take scattering events with center-of-mass
momentum q = 0 into account2. This approximation retains the most

2 Although this is not obvious, this ap-
proximation turns out to be a mean-
field approximation, setting fluctuations
in the Cooper pair number and pairing
gap to zero.
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relevant scattering processes, i.e. all the scattering processes that occur
between particles on the Fermi surface. These processes have by far
the highest phase space since even when including interactions most
states inside (outside) the Fermi surface are occupied (empty). This
so-called reduced Hamiltonian is given by

Ĥ = ∑
k,σ={↑,↓}

ϵkc†
k,σck,σ + V ∑

k,k′
c†
k,↑c†

−k,↓ck′,↓c−k′,↑. (2.4)

As it turns out, the exact ground state of this simplified Hamilto-
nian can be found by starting with the BCS ansatz

|ΨBCS⟩ = ∏
k

(uk + vkc†
k,↑c†

−k,↓ |0⟩ . (2.5)

It contains for each momentum k a superposition of creating two
particles of opposite spin and opposite momentum (k↑ and −k↓) or
not creating such a (k↑, −k↓) pair at all. Both scenarios are weighted
by the variational parameters vk and uk, respectively. The solution
for these parameters describing the ground state can be found in the
grand canonical ensemble, where the chemical potential μ is fixed, by
minimizing the free energy H − μN of the system. One obtains [2]

uk = √1
2 (1 + ξk

Ek

), (2.6)

vk = √1
2 (1 − ξk

Ek

), (2.7)

where we introduce the equations ξk = ϵk − μ and

Ek = √ξ2
k + Δ2, (2.8)

Δ = −V ∑
k

ukvk, (2.9)

with the chemical potential μ and the parameter Δ. Later, we will see
that the quantity Ek we just introduced corresponds to the energy to
create a single particle excitation (e.g. pair breaking). The minimum
of Ek, the parameter Δ, is therefore the excitation gap3.3 Which is also called pairing gap or su-

perfluid gap. Fascinatingly, the solutions given for uk and vk (Eq. 2.6 and Eq. 2.7)
are valid throughout the BEC-BCS crossover. Only two parameters,
the gap Δ and the chemical potential μ, change with the strength of
the interaction V, which in turn can be parameterized by the inverse
s-wave scattering length4 1/(kFa). For a given interaction strength,4 For that Eq. 94 in [6] must be used.
solutions for Δ and μ can be found by solving a set of two equations,
the number and the gap equation, in a self-consistent way [16] which
can be done numerically using elliptic integrals [17].

The solutions for the gap and the chemical potential are plotted
in Fig. 2.4. In the BCS limit, the chemical potential approaches the
chemical potential of a non-interacting Fermi gas μ = EF and the
gap Δ the limiting value ΔBCS = 8 exp(−π2/(kF|a|)). The gap here
corresponds to the minimal energy required to break a Cooper pair
(see Sect. 2.3.1).
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Figure 2.4: Behavior of the chemical
potential μ (black solid line) and the
gap Δ (blue solid line) in the mean-
field description of the BEC-BCS cross-
over. The chemical potential smoothly
connects the two-body binding energy
−EB/2 (black dashed line) in the BEC
limit to the Fermi energy EF in the BEC
limit. We can remove the binding en-
ergy to obtain a reduced chemical po-
tential μ̃ (red dashed) that corresponds
to the energy needed to add a paired
fermion. The gap approaches the limit
ΔBCS (green dashed line) in the BCS
regime. In the BEC limit the quantity
Δ2/(2|μ|) (gray solid line) converges
to the mean-field shift of a fermion in-
teracting with the bath of dimers (gray
dashed line).

In the BEC limit, repulsively interacting dimers with two-body
binding energy5 EB = ℏ2/(ma2) = 2EF/(kFa)2 form. The chemical 5 Throughout this thesis we define two-

body binding energies to be positive.potential approaches6 μ = −EB/2 + gn/2 where g characterizes the
6 Each dimer contains two fermions re-
sulting in factors 1/2.

bosonic interaction strength. The energy scale given by the gap Δ
has no physical meaning in the BEC limit, but rather the combination
Δ2/(2|μ|) which is the energy required to add an unpaired fermion to
the system of dimers [6]. The energy required to add a paired fermion7 7 To do that we have to add a second

fermion paired to the first fermion at the
same time. Therefore, it is also useful to
consider the bosonic chemical potential
which gives the energy required to add
a whole dimer. It is twice the reduced
chemical potential, μd = 2μ̃.

is given by the reduced chemical potential

μ̃ = μ + EB/2,

where we remove the binding energy such that only the contribution
from interactions between the dimers remain (red line in Fig. 2.4).
The reduced chemical potential smoothly connects the BEC limit with
weak repulsive interactions between dimers (μ̃ ≈ gn/2) to the BCS
limit with weak attractive interactions between fermions (μ̃ ≈ EF).

Equipped with solutions for the gap and the chemical potential
throughout the crossover, we now look at the BCS wavefunction in
more detail (Fig. 2.5). We plot the quantity v2

k which corresponds to
the probability of having a (k↑, −k↓) pair and the quantity u2

k which
is the probability of not having such a pair. Hence, the number of pairs
is N = ∑k v2

k. In addition, the fermionic momentum distribution of
both spin states follows nk = v2

k.
In the BCS limit (Fig. 2.5 d), the momentum distribution nk resem-

bles a Fermi-Dirac distribution broadened by δk ∼ Δ/EF ⋅ kF at the
Fermi surface. We will show now that this broadening is essential to
achieve condensation, a macroscopic occupation of a single-particle
state. This is required to have off-diagonal long-range order and thus
superfluidity [18].

The broadening of the momentum distribution is caused by the
superposition of the absence and the occurrence of (k ↑, −k ↓) pairs
around the Fermi surface. This superposition can be quantified by
the correlation function ψk = ukvk (red curve in Fig. 2.5 d). The
available phase space due to this superposition allows a (k ↑, −k ↓)
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Figure 2.5: Behavior of the particle oc-
cupation nk = v2

k and hole occupa-
tion u2

k in the BEC-BCS crossover (a-
d). In the BEC limit (a), the parti-
cle occupation number becomes very
small signaling the formation of deeply
bound molecules. Here, the correlation
wavefunctionψk responsible for Cooper
pair formation (red) and the fermionic
pair wavefunction φk of bound dimers
(blue) collapse. Towards the BCS
limit (d) Pauli blocking becomes im-
portant and the occupation number be-
low kF approaches unity. Around kF
both holes and particles are part of
the ground state in a momentum range
δk ∼ Δ/EF ⋅ kF. Here, pairs can scatter
and form Cooper pairs marked by the
peak of the correlationwavefunctionψk.

pair to interact by scattering into a (k′ ↑, −k′ ↓) pair (Fig. 2.6). These
(k ↑, −k ↓) pairs, which can scatter at the Fermi surface, are Cooper
pairs. However, the (k ↑, −k ↓) pairs deep within the Fermi sea
cannot scatter because all states are fully occupied such that they do
not contribute to Cooper pairing.

Figure 2.6: At the Fermi surface, a (k ↑
, −k ↓) pair can scattering into a (k′ ↑
, −k′ ↓) pair.

The Cooper pairs are described by a macroscopically occupied
single-particle state. This state is given by the two-particle correla-
tion we obtain when summing over all correlations in momentum
space8 [19, 20],

8 This single-particle wavefunction is the
complex order parameter [19] and re-
lated to the excitation gap by Δ = −V ⋅
ψ(r = 0) (cf. Eq. 2.9.)

ψ(r ≡ r1 − r2) = ⟨ΨBCS| Ψ†
↑(r1)Ψ↓(r2) |ΨBCS⟩

= ∑
k

⟨ΨBCS| ck,↑c−k,↓ |ΨBCS⟩ eik⋅r = ∑
k

ψkeik⋅r.

(2.10)

The number of Cooper pairs is given by N0 = ∑
k

ψ2
k [21] which

corresponds to the area under the red curve in Fig. 2.5 d.
Towards the BEC regime, the extent of the correlation function in

the momentum space becomes broader and this total area increases
(Fig. 2.5 c-a). Therefore, the number of Cooper pairs increases which
we can quantify by normalizing it with the total number of (k↑, −k↓)
pairs to obtain the condensate fraction [5, 22, 23],

λ = N0
N = 1

N ∑
k

|ψk|2 = 1
N ∑

k

u2
kv2

k.

The condensate fraction is λ ∼ Δ/EF in the BCS regime and increases
to 1 in the BEC regime (Fig. 2.7).

Figure 2.7: The condensate fraction in
the BEC-BCS crossover approaches λ =
1 in the BEC limit and λ = 3πe−2Δ/EF
in the BCS limit [22].

An complementary explanation why the condensate fraction ap-
proaches 1 in the BEC regime is that the system crosses over to a
bosonic condensate where all fermions form dimers. To form local
pairs, the fermions paired in real space have to occupy a large region
inmomentum space. Thus, the occupation number v2

k ismuch smaller
than 1 and is distributed over awidemomentum range (see Fig. 2.5 a).
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The condensed dimers can be described with a bosonic creation oper-
ator

b†
0 = ∑

k

φkc†
k,↑c†

−k,↓, (2.11)

where the fermionic creation operators are weighted by the Fourier
transform φk of the fermionic pair wavefunction9 [13], which differs 9 Expressed in the variational parame-

ters we used above, one obtains φk =
vk/uk [6].

from the correlation function ψk. We see in Fig. 2.5 a that ψk and φk
collapse, which shows that the correlations that create Cooper pairs
evolve into the momentum distribution of fermions bound within
dimers.

With that, we now have a good understanding of how the ground
state crosses from a BCS state to a BEC of dimers. However, the
truly interesting region lies in between, where the system cannot be
clearly regarded as a fermionic or bosonic system: In this crossover
regime, the mean-field theory presented here neglects strong many-
body correlations between pairs of fermions [10] such that it yields
quantitatively incorrect results, as we will see for the pairing gap Δ in
Chap. 3. The so-called unitary point10 located at 1/(kFa) = 0 falls into 10 For detailed reviews please refer to

[24] and Chap. 5 in [9].this regime and we would like to briefly discuss it.
At this point the two-body binding energy of the dimers becomes

zero and the positive s-wave scattering length diverges. Therefore, the
scattering length disappears from the many-body problem, and only
the interparticle distance sets the relevant length scale. By expressing
everything in Fermi units, e.g. Fermi energy or Fermi wavevector, the
properties of the many-body system become universal and apply also
to other unitary limited systems, e.g. dilute neutron matter which has
a scattering lengthwhich is about 10 times larger than the interparticle
distance, such that 1/kFa = 0.04 [25].

The name unitarity or unitary limit comes from the fact that, in gen-
eral, the scatteringmatrix (Smatrix)must be unitary to conserve prob-
ability during a scattering event. The unitarity of the S matrix results
in an upper limit of the s-wave scattering cross section of σ = λ2

dB/π,
which is reached in the unitary limit [26]. Its strong interactions com-
bined with its universality make the unitary Fermi gas an interesting
system to study [27–34]. The first studies concentrated on universal
thermodynamic quantities [27, 28], which revealed a sudden change
in the specific heat at the transition temperature from the normal to
superfluid phase, analogous to the lambda peak observed in 4He.
In later studies, the density-density response [29], contact parameter
[31], collective modes [32–34], and the highly spin-imbalanced case
[30] were investigated.

2.3 Excitations at the mean-field level

After this brief discussion of the ground state, we will now address
possible many-body excitations of the BCS state. There are two kinds
of excitations: Excitations of single atoms and collective excitations in
which multiple atoms are involved.
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2.3.1 Single-particle excitations

In a non-interacting Fermi gas single-particle excitations are given by
hole excitations ck,{↓,↑} formomenta k < kF where a fermion inside the
Fermi sea is removed from the system and particle excitations c†

k,{↓,↑}
for momenta k > kF where a fermion is added to the system. When
inspecting the BCSground state (Eq.2.5), wenotice that these hole and
particle excitations are already partly present at allmomentaweighted
by uk and vk. Therefore, the BCS ground state is not the vacuum
state with respect to these excitations, i.e. ck,{↓,↑} |ΨBCS⟩ ≠ 0 ∀k and
c†

k,{↓,↑} |ΨBCS⟩ ≠ 0 ∀k.
Instead, we will derive new single-particle excitations γ as linear

combinations of c and c† which are orthogonal to the BCS ground
state. To do that, we transform the Hamiltonian in Eq. 2.4 such that
it only contains diagonal terms γ†γ. If this is the case, the excitation
number is conserved over time, i.e. the excitations are long-lived.
However, this transformation is not possible because the interaction
term contains four single-particle operators of the form c†c†cc.

Here, a mean-field approximation comes to our rescue: We have
seen above that the BCS ground state consists of pairs of states (k ↑
, −k ↓) that are occupied or unoccupied such that there is a finite
expectation value ψk = ⟨ck,↑c−k,↓⟩ [6]. We now perform the mean-
field approximation by taking four operators and replacing two of
them with these expectation values. This results in the mean-field
Hamiltonian

ĤMF = ∑
k,σ={↑,↓}

ξkc†
k,σck,σ+V ∑

k,k′
c†
k,↑c†

−k,↓ψk′ + ψk′ck′,↓c−k′,↑ − ψk′ψk,

which only contains terms with two single-particle operators.
Now we can diagonalize the Hamiltonian into

ĤMF = ∑
k

Ek (γ†
k,↑γk,↑ + γ†

k,↓γk,↓) + const.

by using the Bogoliubov transformation [35, 36]

γ†
k,↑ = ukc†

k,↑ − vkc−k,↓, (2.12)

γ−k,↓ = vkc†
k,↑ + ukc−k,↓, (2.13)

and the excitation energy

Ek = √ξ2
k + Δ2. (2.14)

Similarly to the ground state, which is created by a superposition
of fermionic excitations, these excitations are also superpositions of
fermionic excitations weighted by the same parameters uk and vk that
are also found in the definition of the ground state in Eq. 2.5.11 We11 The creation operators of these

excitations are superpositions of
fermionic creation and annihilation
operators. Such an excitation that does
not conserve the number of fermions
is allowed because we are in the grand
canonical ensemble and can remove or
add fermions from a reservoir.

can recover the bare fermionic hole and particle excitation if we take
the non-interacting limit by setting uk = 0, vk = 1 for k < kF and
uk = 1, vk = 0 for k > kF. As the BCS ground state does not contain
excitations, we obtain

γk,↑ |ΨBCS⟩ = γ−k,↓ |ΨBCS⟩ = 0.
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Figure 2.8: Single-particle excitation en-
ergyEk in the BEC-BCS crossover. (a-b)
In the BEC limit the gap in the excitation
energy is located at k = 0 and given by
√μ2 + Δ2. (c-d) Between (kFa)−1 = 1
and (kFa)−1 the chemical becomes pos-
itive. From here on, the minimum is Δ
and located at finite momentum kμ =
√2mμ/ℏ2 which approaches kF in the
BCS limit.

Thus, the BCS ground state forms the vacuum state for these excita-
tions. In addition, the operatorsγ†

k,↑ andγ†
−k,↓ obey the fermionic com-

mutator relations. Because of that, these single-particle excitations are
also called quasiparticles.

Both spin-up and spin-downquasiparticles have a spin-independent
eigenenergy given by E(k) (Eq. 2.14) which we already used above in
the definition of the parameters uk and vk. As shown in Fig.2.8, the
minimal excitation energy for single-particle excitation is Δ in the BCS
limit. These excitations are located at k = kF. Towards the BEC limit,
the minimal energy increases as the gap Δ increases and the location
of the corresponding excitationmoves to a smaller momentum. When
μ becomes smaller than zero at 1/(kFa) = 0.55, the minimum in the
excitation energy is located at k = 0 and has the value √μ2 + Δ2. In
this regime, the excitations correspond to the removal of one fermion
from an interacting molecule.

The single-particle excitations derived so far were very successful
in the 1950s in describing various quantities and observations in
superconductors [37]. But one problem remained: For the description
of the Meissner effect observed in superconductors the derivation
turned out to be not gauge-invariant [37, 38]. This problemwas solved
by Anderson [39] by also considering collective modes in the system,
which correspond to density oscillations.

In a superconductor, the collective excitations are pushed to large
energies due to the Coulomb repulsion between the electrons. This
is the reason why just considering single-particle excitation is still
sufficient for the derivation of observables in a BCS superconductor
because the single-particle excitations are the lowest-lying excitations
of the system. However, in a neutral superfluid Coulomb repulsion
is missing, and collective excitations already appear at low energy,
which make them relevant for our system such that we will discuss
them now.
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2.3.2 Collective excitations

Up to this point, we neglected in the interaction term any scattering
events with nonzero center-of-mass momentum q (see Eq.2.3 and
Eq.2.4). Therefore, we did not encounter any collective excitations
because they arise due to interactions between fermionic pairs with
nonzero center-of-mass momentum.

If we relax this restriction by also including fermionic pairs with
nonzero momentum, solving the resulting equations becomes more
difficult but it can be done using either a dynamic BCS model [40]
or, equivalently, a random phase approximation (RPA) [39, 41, 42].
The result of these calculations is, at low momentum, a gapless
excitation throughout the crossover, whose energy scales linearlywith
momentum, a sound wave. We show the slope of this excitation, the
speed of sound, in the BEC-BCS crossover in Fig. 2.9. We will now
look at the general mechanism resulting in a Bogoliubov-Anderson
phonon in a superfluid [39] and discuss the Bogoliubov mode in the
BEC limit [43].

Figure 2.9: The speed of sound increases
over the BEC-BCS crossover as the gas
becomes more fermionic. In the BCS
regime, it approaches the weakly inter-
acting limit vF/

√
3. Taken from QMC

calcuations [44].

In a superfluid, the Bogoliubov-Anderson phonon arises because
the superfluid order parameter ψ ∝ Δe−iϕ spontaneously breaks the
U(1) symmetry of the underlyingHamiltonian, resulting in aNambu-
Goldstone mode [45]. The Hamiltonian is symmetric with respect
to the phase of the order parameter, and the energy of the ground
state is independent of the phase. Below the critical temperature,
the rise of an order parameter with a specific phase spontaneously
breaks this symmetry, leading to a gapless Nambu-Goldstone mode
corresponding to phase fluctuations of the order parameter. TheIn the BEC-BCS crossover, the gapless

Nambu-Goldstone mode is not a pure
phase fluctuation but a superposition of
a fluctuation in the phase and ampli-
tude of the order parameter. Further-
more, for positive μ, an additional col-
lective mode, the amplitudemode exists
with a minimal energy of 2Δ. In this
mode the amplitude of the order param-
eter oscillates. This mode is expected to
reside within the single-particle contin-
uum [46] and is not visible in our mea-
surements, probably because of strong
damping into single-particle excitations.
Therefore, we do not discuss the ampli-
tude mode in this theses and refer to the
excellent review by Pekker and Varma
[47] instead.

Nambu-Goldstone mode forms the phononic excitation in the BCS
regime. It persists when one crosses over into a BEC, which also has
a nonzero order parameter. However, its slope, which corresponds to
the speed of sound, decreases when the gas becomes less fermionic
and therefore less stiff (see Fig. 2.9).

In the BEC limit, the sound excitation corresponds to the Bogoli-
ubovmode of a weakly-interacting Bose gas [43]. It arises because the
dimers with mass md = 2m and chemical potential μd have a repul-
sive dimer-dimer contact interactionwith the s-wave scattering length
ad = 0.6a12 [48]. Due to the repulsive interaction, collective excita-
tions emerge at low momentum, which are superpositions of the pair
creation and annihilation operators, b† and b introduced in Eq. 2.11.
These superpositions are again given by a Bogoliubov transformation

αk = uk,Bbk + vk,Bb†
k (2.15)

α†
k = uk,Bb†

k + vk,Bbk (2.16)
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Figure 2.10: The excitations of a repul-
sive Bose gas follow the Bogoliubov dis-
persion (solid line, Eq. 2.17). At the in-
verse healing length ξ−1, it transforms
from a linear dispersion (dashed line)
into a free particle dispersion shifted by
the chemical potential (dashed dotted
line)

with the variational parameters

uk,B = 1 + ζ−1/2
k

2ζ−1/4
k

,

vk,B = 1 − ζ−1/2
k

2ζ−1/4
k

and definitions

ζk = 1 + 2μd/ϵk,d,

ϵk,d = ℏ2k2

2md
.

The eigenenergies of these excitations are given by the Bogoliubov
dispersion

EBog.,k = √ϵk,d (ϵk,d + 2μd), (2.17)

shown in Fig. 2.10. For momenta below the inverse healing length,
k ≪ ξ−1 = √mdμd/ℏ, the dispersion relation becomes linear,
EBog.,k → ℏk√μd/md. This linear part of the dispersion relation is
a sound mode with a speed of sound vs = √μd/md. For wavelengths
k ≫ ξ−1, the dispersion approaches a quadratic free-particle disper-
sion of free molecules shifted by the chemical potential, EBog.,k →
ϵk,d + μd.

In summary, we expect collective excitations throughout the BEC-
BCS crossover, from which we can extract the speed of sound. In
addition, we expect single-particle excitations, which also contain
valuable information about the system, for instance, the pairing gap
Δ. Therefore, it would be intriguing to measure the energy of these
excitations by perturbing the system, which we discuss next.
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2.4 Probing methods

The two measurement techniques relevant for us are radio frequency
(RF) spectroscopy and Bragg spectroscopy12. The main difference12 For a detailed review of spectroscopic

measurements in ultracold gases we re-
fer the reader to the excellent review by
C. Vale and M. Zwierlein [49].

between both is that RF spectroscopy perturbs the system by coupling
fermions in one hyperfine state to a third hyperfine state while Bragg
spectroscopy conserves the hyperfine state. In the following, we give
a summary of RF spectroscopy. Then, we discuss the technique used
in this thesis, Bragg spectroscopy.

2.4.1 RF spectroscopy

The basic idea of RF spectroscopy is to measure the energy needed to
transfer an atom from one hyperfine states to a third hyperfine state
using a radio frequency field. In the following, we will summarize
how RF spectroscopy is suited to measure the excitation spectrum of
the many-body system. For that, we briefly repeat the derivation of
the RF spectrumpresented in Sec. 4.7.2 in [6] and summarize themost
relevant measurements.

We start with a balanced two-spin mixture with particles in two
hyperfine states |1⟩ and |2⟩ from which some particles shall be excited
into a third state |3⟩. Assuming that the third state does not interact
with the other two hyperfine states and using the fact that RF photons
carry a negligible momentum13 the RF coupling from one hyperfine13 For a typical RF frequency

ν = 100MHz the wavevector is
k = 0.3 × 10−6 µm ≈ 1 × 10−7kF.

state (we choose |2⟩) to a third state |3⟩ with a Rabi frequency ωR is
described by the operator

V̂ = ℏωR
2 ∑

k
c†

k,3ck,2 + c†
k,2ck,3.

Without interactions the energy required for these excitations is given
by the bare hyperfine splitting ΔE = ℏω23 between states |2⟩ and |3⟩.
In amany-body system, interactions can shift the resonance frequency
of theRFphoton. In particular, ifwe take the BCS ground state derived
in Sec. 2.2, the resonant RF energy to excite a fermion in |2⟩ with
momentum k into state |3⟩ is shifted. The reason is that the energy
cost to remove a fermion in |2⟩ is given by14 Ek − μ while the energy14 The chemical potential must be sub-

tracted because the spin state of the
fermion is changed.

cost15 to add a fermion in state |3⟩ is given by the kinetic energy ϵk.

15 We neglect shifts due to interactions of
state 3 with state 2 and 1.

The resonant energy is, therefore, given by

ℏΩk = ℏω23 + (Ek − μ) + ϵk. (2.18)

Inserting the expression for Ek from Eq. 2.8 the energy to excite a
particle with respect to the bare transition has a minimum at k = 0.
We obtain a threshold energy of [6]

ℏωth − ℏω23 = √μ2 + Δ2 − μ =
⎧{{
⎨{{⎩

Δ2
2EF

in the BCS limit,
0.31EF at the unitary point,
EB = ℏ2

ma2 in the BEC limit.
(2.19)
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We see here that the threshold energy scales with the binding energy
in the BEC limit and with Δ2/EF in the BCS limit. Thus, RF spec-
troscopy allows for a precise measurement of the binding energy by
measuring the shift of the bare transition due to interactions. This was
used to determine the exact location of the broad Feshbach resonance
in lithium-6 using a low-density system [15].

However, for larger densities, final-state interactions of atoms in
|3⟩ with atoms in state |1⟩ or |2⟩ must be considered. In the first RF
measurements it was assumed that these effects are just mean-field
shifts which should cancel out in the crossover [50–52]. As it turned
out, this is not the case for a mixture of 1-2 in the crossover regime
because the final interaction strengths between 2-3 and 1-3 are very
large, which allows the transition of a bound molecule to another
bound molecule instead of dissociation into free particles [53].

This can be mitigated by using a 1-3 mixture instead to create a
unitary Fermi gas. Here, the scattering lengths with the third state
|2⟩ (a23 and a12) are so weak that no final bound state competes with
the dissociation into free particles. By measuring the dissociation
spectrum of a 1-3 mixture the fermionic pair size could be extracted,
which shows a smooth crossover over the crossover [53]. However,
the onset of these measurements does not reveal the pairing gap Δ
directly, but measures the dissociation threshold in Eq. 2.19.

To measure the pairing gap directly, a different method called
quasiparticle spectroscopy can be used [54]. Here, not a balanced
but a slightly spin-imbalanced system is probed, where more spin-up
than spin-down atoms are present. The state of such an imbalanced
system is given by the balanced BCS state plus excess fermions. These
excess fermions correspond to quasiparticle excitations γ†

↑,k around
the minimum of the BCS dispersion Ek (Eq. 2.8) gapped with respect
to the paired particles by Δ (Fig. 2.11 a).

Figure 2.11: Quasiparticle spectroscopy
for measuring the pairing gap. (a) A
slight spin-imbalance adds excitations
at the minimum of the BCS dispersion
(gray shaded area) that are gapped by
Δ from the paired condensate. (b)
The RF spectrum (red dotted) shows a
quasiparticle peak at negative frequen-
cies and a broad dissociation spectrum
at positive frequencies. AHartreemean-
field shift U moves both features to-
wards higher frequencies (solid blue
line). Adapted from [54].

When spin-up atoms are transferred from this spin-imbalanced
gas to a third state, the dissociation spectrum of the paired atoms
and a second quasiparticle peak from the excess fermions is detected
(Fig. 2.11 b). With respect to the bare transition ω↑3 the dissociation
spectrum starts at √μ2 + Δ2 − μ (Eq. 2.19) while the quasiparticle
peak is located at −Δ. Therefore, the pairing gap can be extracted
from both features if the chemical potential is obtained from a dif-
ferent measurement or calculation16. Using that, a pairing gap Δ was

16 In addition, both peaks are shifted
with respect to the bare transition by a
Hartreemean-field shift, but this cancels
out.

extracted for four different interaction strengths in the BEC-BCS cross-
over ((kFa)−1 = 0.99−(−0.25)) [54]. In particular, at unitarity, a large
pairing gap of Δ = 0.44 EF was measured.

In the spectra discussed so far the excitation energy was not mea-
sured in a momentum resolved way. To achieve that, we recall that
a particle ejected from the many-body system is projected to a free-
particle state with unchanged momentum because the momentum
added by the RF photon is negligible. The momentum distribution
of the atoms transferred to the third state can be obtained by a time
of flight (ToF) measurement. This technique is called angle-resolved
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photoemission spectroscopy (ARPES) and is a well-established prob-
ing technique for solid state systems [55, 56].

When the free-particle dispersion of the third state and the chemical
potential of the many-body system are taken into account, it can
measure a part of the single-particle spectral function. In the BEC-BCS
mean-field theory, the full single-particle spectral function is given by

A(k, ω) = v2
kδ(ω + Ek) + u2

kδ(ω − Ek).

Figure 2.12: ARPES measurement of a
Fermi gas at 1/(kFa) ≈ 0.15 below the
critical temperature. The color scale in-
dicates the fraction of atoms coupled to
the third state. The spectrum differs
from the quadratic free particle disper-
sion (black line). The white dots indi-
cate the centers of a Gaussian fit to each
trace, the white line a fit with a BCS dis-
persion. Adapted from [57].

The first branch describes the ejection of particles from and the sec-
ond term injection into themany-body system. The weighting with v2

k
and u2

k ensures occupation or vacancy, respectively. We see here that a
measurement of A(k, ω) gives us direct access to the single-particle ex-
citation spectrum Ek. Compared to the parabolic excitation spectrum
of a noninteracting Fermi gas, the excitation spectrum Ek is gapped
and shows a characteristic backbending for k ≳ kF. In fact, measure-
ments of the occupied part of the single-particle spectral function in
a unitary Fermi gas showed backbending for large momenta [57, 58]
(Fig. 2.12). Interestingly, these experiments also observed backbend-
ing above Tc which could be associated with a pseudogap. However,
this interpretation should be treated with caution. It could also be
caused by the universal 1/k4 tail [59] in the momentum distribution
due to contact interaction [60]. Therefore, this backbending is not di-
rect evidence of a gapped excitation spectrum.

We see that ARPES can give many insights into the excitation
spectrum, but there are some difficulties. One challenge of ARPES
is that the momentum resolution can be limited by interactions of the
third state with the remaining system during the time of flight. The
second challenge comes from the fact that only the occupied part of
the excitation spectrum is probed. However, for low temperatures
and small excitation gaps, the occupation of states where the single-
particle excitation energy shows backbending becomes small. For
example, for an interaction energy 1/(kFa) = −1, in the region
where the excitation energyE(k) shows backbending (see Fig. 2.8) the
occupation number v2

k decreases rapidly (see Fig. 2.5). The technique
wewant to discuss next, optical Bragg spectroscopy, circumvents these
two disadvantages by not using a third spin state at all and allowing
for occupation of higher momentum states.

2.4.2 Bragg spectroscopy

Figure 2.13: (a) Bragg spectroscopy
uses two light fields with energy ℏω1
andℏω2 andmomentaℏk1 andℏk2. (b)
These beams can stimulate a two-photon
process in which the energy difference
ΔE = ℏ(ω1 − ω2) and the momentum
differenceℏq = ℏ(k1−k2) are absorbed,
exciting the atom from the state |k⟩ into
the state |k + q⟩.

The basic principle of Bragg spectroscopy is to perturb themany-body
systemwith a moving periodic potential, which can be created by two
crossed laser beams (Fig. 2.13 a). The perturbation can be understood
as a two-photon transition. First, a photon from the first light field
with energy ℏω1 and momentum ℏk1 is absorbed, transferring one
atom to a virtual state. Then, the second light field with frequency
ω2 and wavevector k2 induces a stimulated emission of a photon with
energy ℏω2 and momentum ℏk2, transferring the atom to an excited
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state. Thus, the total energy and momentum of the excited state are

ΔE = ℏ(ω1 − ω2) ≡ ℏω, (2.20)

ℏq = ℏ(k1 − k2). (2.21)

Bragg spectroscopy allows us to probe the inelastic scattering rate
of a many-body system. As we will derive below, it gives access to the
dynamic structure factor S(q, ω), which is the Fourier transform of the
density-density correlation function [61],

S(q, ω) = 1
2π ∫ dt eiωt ∫ dr∫ dr 1

N ⟨ρ(r, 0)ρ(r, t)⟩ .

By expressing the density operator ρ(r, t) in the basis of excited states
|n⟩ with eigenenergies En we obtain17 [61] 17 We show the T = 0 result and denote

the ground state as |0⟩.
S(q, ω) = ∑

n
∣⟨n| δ ̂ρ†(q) |0⟩∣2 δ(ω − (En − E0)/ℏ) (2.22)

with the Fourier transform of the density fluctuation operator

δ ̂ρ†(q) = ∑
k,σ

c†
k+q,σck,σ (2.23)

This operator contains the two-photon process of Bragg spectroscopy:
Annihilation of a fermion atmomentum k (ck,σ) and creation fermion
at momentum k + q (c†

k+q,σ). This process is only allowed if it has an
overlap with an excitation of the system and it can thus give insights
in both single-particle and collective excitations. In the following, we
start historically by addressing the elastic Bragg scattering of X-rays.
Then we discuss inelastic Bragg scattering used in this thesis.

ELASTIC SCATTERING
In 1912, both Nobel Prize winners, William Lawrence Bragg, and his
father, William Henry Bragg, studied the reflection of X-rays from
crystalline lattices [62]. They discovered that reflection occurs only
at specific angles of the incident beam. This happens because of
constructive interference of light waves scattered from parallel lattice
planes. The incoming wavevector ki and the reflected wavevector kr
have to satisfy the Laue equations Δk = kr − ki = G where Δk is
themomentum transferred by the crystal andmust match a reciprocal
lattice vector18 G. In addition to momentum conservation, we can 18 A reciprocal lattice vector has the

length |G| = 2π
d n where d is the dis-

tance between two adjacent crystal lat-
tice planes and n an integer.

consider the scattering process to be elastic because the crystal is not
moving. Therefore, the energy and thus the wavelength of the light is
conserved, yielding a second equation, |kr| = |ki|. Combining both,
we can derive Bragg’s law

2d sin θ = nλ. (2.24)

Under angles θ that satisfy this condition, light scattered from the
crystal planes interferes constructively. This gives rise to well-defined
diffraction orders, which are used, for instance, in crystallography to
determine the crystal structure using X-ray diffraction. Interestingly,
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Figure 2.14: (a) Sketch of Bragg
scattering of an electromagnetic wave
by a crystalline structure (b) and
Bragg scattering of a matter wave by a
standing-wave potential created with
two counter-propagating laser beams.

Bragg scattering in a solid can also be understood in a particle picture:
the incoming photon is scattered by a crystal phononwithmomentum
ℏG.

Following this perspective, in 1933, Kapitza and Dirac proposed
an experiment in which electrons and photons change their role
[63]. Instead of light waves being scattered by a periodic electron
distribution in a crystal, they had the idea that matter waves, more
specifically electrons, could also be reflected by a periodic light field.
This periodic light field is created by two counter-propagating light
fields with wavevector kL = 2π/λL.

To derive Bragg’s law for this new situation one can describe the
incoming particle as a matter wave. Its wavelength is the de Broglie
wavelength λdB = h/p where p is the momentum of the particle.1919 Here, we approximate the particle

with a plane wave. A real particle corre-
sponds to amovingwave packet of finite
extent. Still, its Fourier transform will
peak at the wavevector 2π/λdB.

Instead of being scattered by a phonon with momentum ℏG, the
momentum of the incoming particle changes due to the scattering
of two photons20 with total momentum 2ℏkL or multiples thereof.

20 For electrons, the absorption of one
photon is not allowed, but stimu-
lated Compton scattering involving
two-photons is.

Therefore, the Laue condition becomes

Δk = kr − ki = 2nkL (2.25)

yielding the Bragg condition21
21 This result is obtained by replacing
|G| = 2π

d n → 2n 2π
λL

in Eq. 2.24. λL sin θ = nλdB. (2.26)

Both cases, scattering of a light wave from a crystal and scattering
of a matter wave from a standing-wave potential, are compared in
Fig. 2.14.

To create a detectable scattering probability for the Kapitza-Dirac
experiment high light intensities are required, which made the exper-
iment unfeasible at the time of its proposal. Only more than 50 years
later, the invention of the lasermade it possible to observe theKapitza-
Dirac process by scattering sodium atoms [64] or electrons [65] in a
standing wave laser field.

INEALASTIC SCATTERING
For cold atoms, Bragg scattering was first performed in a Bose con-
densate in 1999 [66, 67]. In this experiment, in contrast to the previ-
ous discussion, the atoms do not move but are stationary. Instead, the
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scattering potential is moving through the cloud of atoms, providing
a specific energy to the system. This makes the process inelastic. Only
if an excitation at the energy andmomentum provided by the lattice is
available, so if Eq. 2.20 and Eq. 2.21 are fulfilled, scattering can occur.
These two equations take over the role the Bragg condition had in the
elastic scattering process.

Themoving lattice potential22 is created by detuning the frequency

22 This experiment can be mapped to the
experiment envisioned by Kapitza and
Dirac by going into a frame of reference
moving with the running lattice poten-
tial. Here, the lattice potential is station-
ary. Atoms enter the periodic potential
when the light field is switched on, mov-
ing with velocity −v, are scattered and
gain momentum, and leave the periodic
potentialwhen the light field is switched
off.

of both laser beams with respect to each other resulting in a velocity
v = ΔνλL/2, where Δν = ω/2π is the relative detuning. The mo-
mentum gain can be detected by measuring the density distribution
after ToF. An example using a 87Rb condensate, is shown in Fig. 2.15.
The density distribution shows two clouds, an unscattered and scat-
tered condensate. Revisiting the connection to x-ray scattering, the
left (black) denser condensate corresponds to the transmitted ray,
whereas the right (gray) less dense condensate is the reflected beam.

Figure 2.15: Absorption image of a 87Rb
BEC after applying a resonant Bragg
pulse and time of flight of 38ms. The
condensate is split into two: Most atoms
are not scattered (black region) , while
the scattered atoms moved towards the
right (grey region). Adapted from [68].

We will now calculate the scattering rate of this inelastic process
and its connection to the dynamic structure factor S(q, ω). We assume
that both laser beams are far-detuned such that the coupling to both
spin states is the same. In addition, they have a small frequency
detuning ω with respect to each other and a wavevector difference q.
The perturbation caused by both beams can then be expressed by the
Hamiltonian [69]

ĤB(q, ω) = ℏΩB
2 ∑

k,σ
[c†

k+q,σck,σe−iωt + ck+q,σc†
k,σeiωt] (2.27)

= ℏΩB
2 (δ ̂ρ†(q)e−iωt + δ ̂ρ(q)eiωt) (2.28)

with the two-photon Rabi frequency23 ΩB, the fermionic creation and
23 The two-photon Rabi frequency is
given by [70] ΩB = ℏ Γ2

4Δ
√I1I2

Isat with the
linewidth of the atomic transition Γ, the
commondetuningΔ, and the intensities
of both laser beams I1 and I2 normalized
by the saturation intensity Isat.

annihilation operators c†
k,σ and ck,σ, and the Fourier transform of the

density fluctuation operator δ ̂ρ†(q) (Eq. 2.23). The probability per
particle to excite the many-body system from its ground state |0⟩ to
an excited state |n⟩ due to this perturbation depends on the matrix
element

⟨n| ĤB(q, ω) |0⟩ = ℏΩB
2 ⟨n| δ ̂ρ†(q)e−iωt + δ ̂ρ(q)eiωt |0⟩ .

With Fermi’s golden rule we obtain the scattering rate

Γ|0⟩→|n⟩ = 2π
ℏ (ℏΩB)2 ∣⟨n| δ ̂ρ†(q) |0⟩∣2 δ(ℏω − (En − E0)) (2.29)

with the eigenenergies E0 and En.
To calculate the transition rate24 for an excitation of the many-body

24 The transition rate is the probability
per unit time and particle that the tran-
sition happens.

system from its ground state |0⟩ to any excited state by transferring the
momentum ℏq and energy ℏω we sum over all possible excited states
n and obtain25

25 Starting from Eq. 2.29 we add the sum
over all excited states |n⟩ and use the
scaling property of the Dirac delta func-
tion δ(αx) = δ(x)/α. We can check
the physical dimension of the scattering
rate. The scattering rate has the unit 1/s
as it is given as the product of the square
of the Rabi rate (Hz2), the matrix ele-
ment (1) and the Dirac Delta function
(1/Hz). Thus, the dynamic structure
factor defined in Eq.2.22 has dimensions
of time.

Γ(q, ω) = 2πΩ2
B ∑

n
∣⟨n| δ ̂ρ†(q) |0⟩∣2 δ(ω − (En − E0)/ℏ). (2.30)

Here we note that the properties of both laser beams are contained in
the Rabi rate. The excitation spectrum, however, is contained in the
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sum, which we identify with the dynamic structure factor in Eq. 2.22
to obtain the simple relation

Γ(q, ω) = 2πΩ2
BS(q, ω). (2.31)

Thus, the momentum and energy dependency of the scattering rate
are solely given by the dynamic structure factor S(q, ω).

In this treatment, we have assumed that the system is in the ground
state and no excitations are present. This is not true at finite tempera-
ture, where thermal excitations are present in the unperturbed system.
As described in detail in [71], this effect can be accounted for by de-
tailed balancing. The temperature dependence of the density-density
response one measures with the Bragg beam is then given by

χ″(q, ω) ∝ (1 − e− ℏω
kBT ) S(q, ω).

However, these effects are small in systems where the temperatures
are T ≈ 0.1TF and the excitation gap Δ is of the order EF. Therefore,
we will use the approximation χ″(q, ω) ≈ S(q, ω) throughout this
thesis. As discussed in more detail in [16], finite temperatures could
have an effect on S(q, ω) itself, for instance, the value of the excitation
gap Δ, the speed of sound, or the broadening of the collective mode.
However, for systems close to T = 0, these quantities are expected to
have a weak temperature dependence.

2.5 Dynamic structure factor of a BEC

In the following, we start the discussion of measured dynamic struc-
ture factors by considering repulsively interacting bosons forming a
BEC.

Figure 2.16: Dispersion relation of a
BEC measured using Bragg spectros-
copy. The points are fitted maxima
of the dynamic structure factor. They
agree perfectly with the expected Bo-
goliubov dispersion (black line) while
disagreeing with the free particle dis-
persion (dashed line). Adapted from
[68].

As discussed in detail in [67], the dynamic structure factor of a BEC
is

S(q, ω) = N0(uq,B − vq,B)2δ(ω − EBog.,q/ℏ), (2.32)

with the Bogoliubov dispersion EBog.,q (Eq. 2.17) and the factors uq,B
and vq,B from the Bogoliubov transformation (Eq. 2.15 and Eq. 2.16).
We notice that the dynamic structure factor is only nonzero if ℏω =
EBog.,q. The reason is that only transitions from the macroscopically
occupied ground state to an excited state are allowed while higher
momentum states in the ground state, which will be present due to
quantum depletion and temperature, are neglected. Furthermore,
there is a suppression at small momenta due to the coherence factor
(uq,B − vq,B).

The momentum-dependent dynamic structure factor was mea-
sured by Steinhauer et al. by repeating the measurement shown in
Fig. 2.15 for different values of q and ω [68]. For these measurements,
a change in frequency detuning is easy to achieve experimentally us-
ing RF electronics. However, a variation of the wave vector difference
q = k2 −k1 is technically more difficult. This is achieved by adjusting
the angle between both beams, which can be challenging, as access
through the vacuum chamber is required for a range of angles.
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In the experiment, they observed for each momentum slice a nar-
rowpeak at a specific frequency. By extracting themaximum response
they obtain the dispersion relation shown in Fig. 2.16. The dispersion
relation is linear up to the characteristic momentum given by the in-
verse healing length ξ−1 as the gas can be excited collectively, and
transforms into a free particle excitation at large momentum. Thus, it
matches perfectly the Bogoliubov dispersion of a repulsive Bose gas.

2.6 Dynamic structure factor of a Fermi gas

After briefly covering Bragg spectroscopy of an interacting Bose gas,
we now continue with interacting Fermi gases. Also here, collective
excitations contribute to the dynamic structure factor. In addition,
single-particle excitations derived in Sect. 2.3.1 have to be considered.
Therefore, we first discuss the contribution of single-particle excita-
tions before reviewing the experimental results.

2.6.1 Contribution of single-particle excitations

We start our discussion with the dynamic structure factor of a non-
interacting Fermi gas. Then we will derive the dynamic structure
factor of the BCS state.

The ground state26 |ΨF⟩ of a non-interacting Fermi gas has two 26 We set the energy of the ground state
to E0 = 0.kinds of single-particle excitations:

1. For k < kF, a fermion can be removed from the Fermi gas to create a
hole excitation |hk⟩ = ck |ΨF⟩. The excitation energy is given by the
kinetic energy to lift a particle to the Fermi surface, Eh(k) = EF −ϵk
with ϵk = ℏ2k2/(2m), visualized in Fig. 2.17.

2. For k > kF, a fermion can be added to the Fermi gas to create a
particle excitation |pk⟩ = c†

k |ΨF⟩ with an excitation energy Ep(k) =
ϵk − EF.

We summarize the energies of both excitations to E(k) = |ϵk − EF|.
Figure 2.17: Energy of particle and hole
excitations in a non-interacting Fermi
gas.In order to calculate the dynamic structure factor, we consider

first which kinds of excitations are created by the density fluctuation
operator

δ ̂ρ†(q) = ∑
k,σ

c†
k+q,σck,σ.

Apparently, it can create two excitations: A hole excitation is created
if the state at k is occupied and a particle excitation is created if the
state k + q is not occupied. We denote this excited state by |n⟩ =
|pk+q,σhk,σ⟩. The density fluctuation operator applied to the ground
state of the non-interacting Fermi gas is thus

δ ̂ρ†(q) |ΨF⟩ = ∑
k,σ

c†
k+q,σck,σ |ΨF⟩ (2.33)

= ∑
k,σ

√nF(k) ⋅ (1 − nF(k + q)) |pk+q,σhk,σ⟩ ,
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Figure 2.18: (a) Dynamical structure
factor S(q, ω) of a 3D non-interacting
Fermi gas for excitations with momen-
tum ℏq = ℏq ⋅ ex and energy E = ℏω.
The structure factor is centered around
the recoil energy Er = ℏ2q2/(2m) but is
broadened due to the extent of the Fermi
sea, aswe illustrate for the red and green
points. (b) For a momentum transfer of
q = 2kF, the largest energy transfer (red
arrow) can occur if a fermion is moved
from the Fermi surface at kx = kF to
kx = 3kF. This corresponds to a hole
excitation (dashed line) at kx = kF and
particle excitation at kx = 3kF. (c) No
energy transfer is required, if the mo-
mentum of a fermion at the Fermi sur-
face is flipped from kx = −kF to kx =
kF.
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where the square root ensures occupation at k and vacancy at k + q.
Both excitations together preserve the number of particles because

a fermion is removed atmomentum k and placed at a newmomentum
k + q. The summed energy of one hole and one particle excitation is
En = E(k) + E(k + q) = ϵk+q − ϵk which is just the kinetic energy
required to increase the momentum of a fermion by ℏq.

Inserting Eq. 2.33 into the dynamic structure factor (Eq. 2.22),

S(q, ω) = ∑
n

∣⟨n| δ ̂ρ†(q) |ΨF⟩∣2 δ(ω − (En − E0)/ℏ)

we notice that the sum over the excited states ⟨n| is only nonzero for
excited states ⟨n| = ⟨pk+q,σhk,σ| such that we obtain

S(q, ω) = ∑
k,σ

nF(k) ⋅ (1 − nF(k + q)) δ (ω − (ϵk+q − ϵk) /ℏ) . (2.34)

Only terms where the factor in the front of the Dirac delta function
is nonzero contribute to the dynamic structure factor. For a T = 0
Fermi gas, this can be visualized graphically by a crescent-shaped area
resulting from two shifted Fermi surfaces (Fig. 2.19). By restricting
the k-space to values allowed by the overlap of both Fermi surfaces
and the Dirac delta function, we can calculate the dynamic structure
factor (Fig. 2.18).

Figure 2.19: The factor in Eq. 2.34 en-
sures that a fermion within the Fermi
sea (blue) is moved outside the Fermi
sea. For given momentum ℏq, the con-
tributingmomentum space is a crescent-
shaped area which fulfills nF(k)(1 −
nF(k + q)) > 0.

The extent of the Fermi distribution in momentum-space results in
a spread-out region of allowed excitation energies for a specific mo-
mentum. The processes behind the minimum and maximum excita-
tion energy are illustrated as an example for a momentum transfer of
q = 2kF (Fig. 2.18 b-c). For a given momentum q the dynamic struc-
ture factor achieves its maximum value when the number of possible
excitations is the largest. This maximum is located at the recoil energy
ER(q) = ℏ2q2/(2m) for momenta q > kF.

As a next step, we will take interactions into account by repeating
the evaluation using the single-particle excitations of the BCS ground
state |ΨBCS⟩. The single-particle excitations given by γ†

k,↑ and γ−k,↓
(Eq. 2.12 andEq. 2.13)with excitation energiesEk (Eq. 2.14) constitute
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Figure 2.20: (a) Dynamic structure fac-
tor of a 3D Fermi gas at (kFa)−1 = −1
(μ = 0.95 EF, Δ = 0.21 EF) for exci-
tations with momentum ℏq = ℏq ⋅ ex
and energy E = ℏω. The dynamic struc-
ture factor has an excitation gap of 2Δ.
The region of possible excitations has a
similar shape in the q, ω-plane as the
non-interacting Fermi gas (Fig.2.18) but
is blurred along the edge at lowmomen-
tum. (b) For the green point in (a),
we illustrate both underlying excitations
by plotting −Ek for the hole excitation
(dashed line) and Ek for the particle ex-
citation (solid line). The total momen-
tum and energy required for both ex-
citations is illustrated by the green ar-
row. First, a hole excitation at kx = −kF
at cost Δ, then a particle excitation at
kx = kF at cost Δ is created, break-
ing in total two Cooper pairs. (c) At
smaller momentum transfer, e.g. q = kF
(red dot in a), pair-breaking excitations
at 2Δ can occur for fermionswith an ini-
tial momentum along one other spatial
directions (e.g. y-axis). The red arrow
indicates how two excitations with a to-
tal momentum of q = kF and energy of
E = 2Δ can be realized. Hole excitation
are visualized by −Ek(kx, ky, kz = 0)
(gray mesh) and particle excitations by
Ek(kx, ky, kz = 0) (blue mesh).

the well-defined single-particle excitations of the BCS state. They
are the analogues to the particle and hole excitations in the non-
interacting Fermi gas. We express the fermionic operators in δ ̂ρ†(q)
in terms of these operators27,

27 We assume q ≠ 0 here. The q =
0 case results in so-called excited-pair
excitations γ†

k,↑γ†
−k,↓ |ΨBCS⟩, which are

located at the same energy as two single-
particle excitations (2Ek) but contain
similar to the ground state a coherent
superposition ∝ (vk − ukc†

k,↑c†
−k,↓) of

the absence and the occurrence of a (k↑
, −k↓) pair [6].

c†
k+q,↑ck,↑ |ΨBCS⟩ = (uk+qγ†

k+q,↑ + vk+qγ−k−q,↓)(ukγk,↑ + vkγ†
−k,↓) |ΨBCS⟩

= uk+qvkγ†
k+q,↑γ†

−k,↓ |ΨBCS⟩

wherewe used the fact that the BCS ground state does not contain any
single-particle excitations at T = 0, e.g. γk,↑ |ΨBCS⟩ = 0. The excited
state |e⟩ = γ†

k+q,↑γ†
−k,↓ |ΨBCS⟩ contains two single-particle excitations

with a total energy of E = Ek+q + Ek. Similarly to the noninteracting
case, the sum over excited states ⟨n| in the dynamic structure factor is
only nonzero if ⟨n| = ⟨e| = ⟨ΨBCS| γ−k,↓γk+q,↑. This removes again the
sum over n such that we obtain the dynamic structure factor

S(q, ω) = ∑
k

u2
k+qv2

kδ(ω − (Ek + Ek+q)/ℏ)

= ∑
k

(1 − nk+q)nkδ(ω − (Ek + Ek+q)/ℏ),

with the fermionic occupation number

nk = v2
k = 1

2 (1 − ξk

Ek

) .

We see similar to the non-interacting Fermi gas that a fermion can
promoted to a larger momentum only if its initial state at momentum
k is occupied and the final state at momentum k + q is vacant.

The new insight is that the energy Ek + Ek+q of the excited state is
the sumof two single-particle excitations. Each of these single-particle
excitations requires a minimal energy of Δ because we break Cooper
pairs: When removing a spin-up particle at momentum k we break
a Cooper pair because an unpaired spin-down particle at momentum
−k is left over. Similarly, by adding it back to the system, we create an
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unpaired spin-up particle at momentum k + q that breaks a second
Cooper pair [6].

If we want to evaluate the dynamic structure factor, we encounter
two challenges compared to the non-interacting case. One reason is
that solving the energy condition imposed by the Dirac delta function
is more complicated; another reason is that the fermionic occupation
number is smeared out at the Fermi surface. Therefore, the region
in k-space constructed graphically for the non-interacting case is not
sharp anymore. Due to these complications, we evaluate the sum over
k for a set of (q, ω)-pairs numerically (Fig. 2.20).

Compared to the non-interacting case, the area of a nonzero dy-
namic structure factor does not have a sharp edge at low momentum
but is smeared out. This is the result of the blurred occupation num-
ber. In addition, the minimal energy required to create a two-particle
excitation is now lifted from 0 to 2Δ because this is theminimal energy
to create two pair-breaking excitations.

2.6.2 Contribution from collective excitations

Figure 2.21: Calculation of the dynamic
structure factor of a unitary Fermi gas
using the random phase approximation.
Similar to the previous calculations, a
continuum of single-particle excitations
exists which is gapped by 2Δ ≈ ϵF.
In addition, a collective sound mode
exists in at low energy. When it ap-
proaches the continuum of excitations,
it is pushed down before merging with
the continuum. Adapted from [72].

To include collective excitations in the dynamic structure factor, a
randomphase approximation (RPA) technique can be usedwhich has
been done in [72] using a density functional. The resulting dynamic
structure factor at unitarity is shown in Fig. 2.21. These calculations
also show a continuum of single-particle excitations gapped by 2Δ. In
addition, they capture the collective mode at low energy. If the energy
of the collective mode is well below the single-particle gap, it remains
linear. However, for larger energies, it is pushed down beforemerging
with the continuum [40].

2.6.3 Bragg spectroscopy of Fermi gases

Experiments using Bragg spectroscopy were first proposed for Fermi
gases in [73] and performed in the Vale group [74]. Similar to the ex-
perimentswith bosons, the dynamic structure factorwasmeasured by
determining the amount of scattered atoms after ToF. In the early ex-
periments, the focus was on Bragg spectroscopy at large momentum.
The dynamic structure factor at high momentum contains valuable
information on the properties of the short-range interaction potential,
allowing studies of Tan’s contact [59] over the BEC-BCS crossover [75,
76]. In following experiments, the Vale group investigated the low-

At high momentum, also the spin-spin
dynamic structure factor was studied
[77]. For these measurements, Bragg
beams that have a coupling of opposite
sign to both spin states are used. This
makes these studies technically very
challenging, because spontaneous emis-
sion must be minimized. Therefore,
short pulses must be used, which result
in a large uncertainty ofω due to Fourier
broadening, so a delicate balance must
be found.

momentum excitation spectrum in the BEC-BCS crossover [78] by us-
ing a crossing angle of both laser beams which is smaller compared
to their previous experiments. The measured spectra for a fixed mo-
mentum q ≈ kF/2 are shown in Fig. 2.22.

They observe both modes predicted by theory (Fig. 2.21). In the
BEC regime, a well-defined collective mode is present which persists
well into the crossover regime. In the crossover regime, in addition, a
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Figure 2.22: Dynamic structure factor
S(q ≈ kF/2, ω) over the BEC-BCS cross-
over (left to right). The red and blue
points are experimental data. Two dis-
tinct kinds of excitations, a collective
mode (blue Gaussian fit) and contin-
uum of pair breaking excitations (red
fit) are observed. Adapted from [78].

gapped continuum of pair-breaking excitations appears and becomes
more pronounced on the BCS side of the crossover.

Both contain valuable information about the many-body system:
The collective mode tells us how fast density waves propagate and
dissipate in the system. Its peak positionwas used to extract the speed
of sound over the crossover28. The pair-breaking continuum, on the 28 Here, the fact that the collective mode

was taken at finite momentum and not
in the q → 0 limit was considered and
a correction based on theoretical input
was applied.

other hand, contains information about how well pairs are protected.
The fact that the onset of the pair-breaking continuum is at 2Δ allowed
them to extract the pairing gap Δ at unitarity and slightly into the
BCS regime ((kFa)−1 = 0 to (kFa)−1 = −0.2). The challenge for
these measurements was that the coupling to the broad pair-breaking
continuum is not as strong as the coupling to the collective mode (see
Fig. 2.22) which they overcame by increasing the intensity of both
Bragg beams.

In the next chapter, we will extend these results by performing
Bragg spectroscopy over a large momentum range of q = 0.2kF − 2kF
for homogeneous Fermi gases in the BEC-BCS crossover.





3 EXCITATION SPECTRUM OF ULTRACOLD 3D FERMI GASES

In this chapter I present the excitation spectra of ultracold homogeneous
3D Fermi gases measured with momentum-resolved Bragg spectroscopy.
These measurements uncover the evolution of single-particle and collective
excitations in the BEC-BCS crossover. Furthermore, we can extract the speed
of sound from the collective mode, while the shifting onset of the single-
particle pair-breaking continuum reveals the evolution of the superfluid gap
throughout the BEC-BCS crossover. Finally, we compare current state-of-
the-art theories with our measurement of the gap. These results are published
in [79]

H. Biss, L. Sobirey, N. Luick, M. Bohlen, J. J. Kinnunen, G. Bruun, T. Lompe,
and H. Moritz,
Physical Review Letters, 128(10), 100401 (2022)

Parts of this chapter are reproduced from this publication with modifications.
Together with the creation of imbalanced Fermi gases presented in part II these
results constitute the main result of this thesis.

In this chapter, we prepare a homogeneous 3D Fermi gas in a box
potential (Sect. 3.1) and implement Bragg spectroscopy (Sect. 3.2).
Thenwe performmeasurements of the excitation spectrum (Sect. 3.3),
analyze the behavior of the collective mode (Sect. 3.4) and extract the
superfluid gap from the pair-breaking continuum (Sect. 3.5).

3.1 Preparing homogeneous 3D Fermi gases

0.5 1 1.5 2 2.5 3

Figure 3.1: Three-dimensional homo-
geneous Fermi gas trapped in a box
potential. The upper panel depicts the
column density n(x, y) = ∫ n(x, y, z)dz
retrieved from absorption imaging
through the microscope objective along
z. The circular interference pattern on
the lower right is probably caused by a
dust grain in the optical path and does
not correspond to a density fluctuation.
The lower panel shows the density
n(y, z) = ∫ n(x, y, z)dx from one side
(in arbitrary units).

For ourmeasurement, weprepare anultracold Fermi gaswith a homo-
geneous density distribution such that all many-body parameters, e.g.
chemical potential, are constant throughout the trapped gas. There-
fore, elaborated reconstructions of local parameters, such as an inverse
Abel transformation, are not required. Furthermore, measurements
of dynamics that depend on density and extend spatially, e.g. sound
propagation, benefit greatly from the fact that the density is constant.
In recent years, these advantages have led to an increased use of ho-
mogeneous bosonic and fermionic gases [80].

In the experiment, we prepare an ultracold Fermi gas using a well-
established cooling scheme29. In short, lithium-6 atoms are laser

29 The preparation scheme up to the box
trap is the same as described in [81].

cooled and trapped with a combination of a Zeeman slower and a
magneto-optical trap. Then, the atoms are transferred into a resonator-
enhanced dipole trap for evaporate cooling before they are moved
with a transport dipole trap into a flat glass cell which allows close
access with microscope objectives. Here, a further transfer into an
oblate red-detuned dipole trap occurs.
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Then, as a final step, we transfer the gas into a box potential
resulting in a homogeneous gas (Fig. 3.1). We use a combination of
repulsive optical potentials, where we follow a similar approach to
Refs. [82, 83]. For vertical confinement, we use two endcaps, which
are formed by two blue-detuned elliptical beams (for the optical setup
see Fig. 3.2).

We confine the gas along the two remaining directions with a blue-
detuned ringpotential, which is projected onto the atomsusing a high-
resolutionmicroscope30. As the diameter of the ringpotential changes30 The optical setup to create this ring

potential uses a combination of three
axicons described in detail in [85].

slightly over the vertical extent of the box, the density distribution of
the gas deviates fromaperfect cylinder andhas the formof a truncated
cone (see Fig. 3.1). Its diameter increases from the bottom to the top
by 15% and is on average d = 50 μm.

DENSITY CALIBRATION
To measure the 3D density we first determine the 2D column density
n2D with high intensity absorption imaging along the z-direction
calibrated as described in [86]. In the next step, we average over
the central region where the vertical distribution is not cut off by
the truncated cone and divide it by the box height b to obtain the
three-dimensional density ñ3D = n2D/b. We obtain the box height
b = 43 μm by imaging the gas from the side and taking the full
width at half maximum of its vertical extent. The calibration of the
auxiliary imaging system used for this purpose is explained in detail
in AppendixA.

However, it turns out, despite careful calibration, that the recon-
structed 3D density is systematically too low. We attribute this to tech-

Figure 3.2: Optical setup to create two
elliptical beams with a small vertical
waist (dark green) and large horizon-
tal waist (bright green) used as upper
and lower endcaps for the box potential.
Both endcap beams are created using
a polarizing beam splitter (PBS) and a
λ/4−waveplates, which allows individ-
ual vertical displacement using a small
angular displacements Δθ. The draw-
ing is adapted from [84].
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nical errors such as imperfect polarization and off-resonant light in the
imaging beam, as well as systematic effects such as multiple scatter-
ing of photons in the optically dense sample. Therefore, we calibrate
the density using a system with a known equation of state (EOS), a
unitary Fermi gas, which is described in Appendix B.

The calibration yields a constant density per spin state of n3D ≈
0.4/μm3, which corresponds to a Fermi energy of EF ≈ h×7 kHz, and
a total atom number per spin state of N = n3D ⋅ V = n3D ⋅ πd2/4 ⋅ b =
3.4 × 104. The curvature of the magnetic offset field leads to a small
inhomogeneity of the box potential, which is of the order of 100Hz ≈
0.02 EF.

TEMPERATURE OF THE GAS
The temperature of homogeneous Fermi gases in the BEC-BCS cross-
over is challenging to measure when homogeneity and strong interac-
tions are combined, since the density of state of a gas with low T/TF
and strong interactions is a priori not known. Oneway tomitigate this
is to create a low-density regionwhereT/TF is large and the density of
state can be approximated by a Boltzmann distribution. Another ap-
proach is to measure the momentum distribution with time of flight.
However, strong interactions result in a large scattering rate during
the flight time, which hinders free expansion.

We measure the absolute entropy and temperature of the homo-
geneous gas at unitarity using a technique based on measuring the
total energy developed in Ref. [30]. It is based on performing an
isoenergetic expansion of the homogeneous gas into a harmonic trap
and using the equation of state to determine the total energy E from
the density distribution of the expanded system. We obtain a value
of E/E0 = 0.43 ± 0.02 with the total energy of a non-interacting
Fermi gas E0 = 3/5NEF. This energy corresponds according to the
equation of state measured in Ref. [28] to an entropy per particle of
S/NkB = 0.29 ± 0.09 and a temperature of T = 0.128(8) TF. Thus, our
gas is below the critical temperature Tc = 0.17 TF of a unitary Fermi
gas [28].

After determining the temperate at unitarity, we ramp themagnetic
field slowly to tune the interaction strength. While this changes the
temperature of the gas, in a homogeneous system, the entropy per
particle S/N remains constant if the change is adiabatic31.

31 We will show that the ramps are adi-
abatic at the end of the next section
(Fig. 3.6).

3.2 Implementation of Bragg spectroscopy

To measure the excitation spectrum we employ Bragg spectroscopy,
which uses a moving lattice to perturb the system. We create the
optical lattice by projecting two intersecting laser beams with a high-
resolutionmicroscope objective onto the atoms (Fig. 3.3). We use red-
detuned light at a wavelength λ = 780nm in order to suppress single-
photon scattering. However, a stimulated scattering process can occur



40

Figure 3.3: Sketch of the Bragg setup.
First, a collimated 780nm laser beam
(solid red line) is split up using a
polarizing beam splitter (PBS) into
two beams which are passed individ-
ually through accousto-optic modula-
tors (AOM). The first refracted orders,
shifted in frequency by ν1,RF and ν2,RF,
respectively, are then reflected from
mirrors mounted on translation stages.
This allows for the tuning of the dis-
tance d between both beams (compare
solid and dashed yellow line). In the
last step, both beams pass a microscope
objective that crosses them at an angle
α = d/f, where f denotes the effective
focal length of the microscope objective,
and focuses them down to a waist of ∼
20 μm. This results in a periodic inter-
ference pattern at the atom position (see
also Fig. 3.4).

where a photon is absorbed fromone beamand remitted into the other
beam.

To define the energy transferred ΔE = ℏω two acousto-optic
modulators are used to set a small frequency difference ω = 2π ×
Δν between both beams. The transferred momentum is changed
by adjusting the angle between both beams. In detail, we use two
motorized translation stages to set the distance d between both beams
in front of the microscope objective. This, in turn, determines the
crossing angle of the beams α = d/f at the atom position. During the
two-photon process first a photon with momentum ℏk1 is absorbed
and then a photon with momentum ℏk2 is emitted, where k1 and k2
are the wavevectors of both intersecting beams. Therefore, the total
momentum transfer is ℏq = ℏ(k1 − k2). Since the system is isotropic,
we can restrict our discussion to the absolute value of the wavevector
difference q = |q|. It is given by

q ≡ |q| = |k1 − k2| = 2kl sin(α/2) = 2kl sin( d
2f ),

where we introduced the wave vector of the incident light kl = 2π/λ.
For the case α = π we recover the well-known case of two counter-
propagating beamswhich results in a latticewith twice the periodicity
of both incident beams, q = 2kl.

In our setup, only small crossing angles are realized. Therefore we
can use a small-angle approximation and obtain the simple relation

q = klα = kl
d
f . (3.1)

We extract the magnitude of the wave vector q directly from images
of the interference pattern at the atom position. The achievable values
are shown in Fig. 3.4.
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Figure 3.4: By varying the distance be-
tween both Bragg beams before entering
the microscope objective in the range of
d = 2.5mm to 20.5mm wavevectors q
in the range of q = 0.8µm to 6.3µm−1

can be accessed. The insets show the im-
aged interference pattern covering a re-
gion of 46 × 46µm2 used to determine
the wave vector q. The small rotation of
the interference pattern when changing
the distance does not influence the mea-
surements as the probed systems are
isotropic.

Figure 3.5: Energy measurement of a
unitary Fermi gas in a box potential. The
total energy, normalized by the energy
of a non-interacting Fermi gas E0 (blue
dots), increases linearlywith the heating
time. Here, the gas is transferred into a
hybrid trap to determine the total energy
from in situ images using the known
equation of state. The response (red dia-
monds) utilizing the condensate peak in
the BEC regime as a thermometer shows
a similar linear behavior and can be used
as an alternative to measure the heating
rate.

We now use the Bragg lattice at a given energy ℏω and momentum
ℏq to perturb the gas. The probability per unit time and particle to
excite the many-body system from its ground state |0⟩ by transferring
the momentum ℏq and energy ℏω is given by Fermi’s golden rule (Eq.
2.31)

Γ(q, ω) = 2πΩ2
RS(q, ω),

where S(q, ω) denotes the dynamic structure factor. As each excitation
adds an energy ΔE = ℏω to the system, the perturbation leads to a
heating rate dE/dt which is directly related to the dynamic structure
factor S(q, ω) by [87]

dE
dt = ℏωΓ(q, ω) = 2πℏωΩ2

RS(q, ω). (3.2)

In our experiment, we use two different methods to measure the
amount of energy that was deposited by the Bragg lattice. On unitar-
ity, we can follow the procedure described abovewhere we release the
gas into a harmonic potential and use the known equation of state to
calculate the total energy from the resulting density distribution. The
results for Bragg pulses of different lengths are shown in Fig. 3.5. We
observe that the energy increases linearly with the length of the Bragg
pulse, which is in excellent agreement with the prediction from linear
response theory.

However, this method has a rather low signal-to-noise ratio and is
quite sensitive to offsets in the density measurements. Therefore, we
instead use the change of the condensate fraction in the BEC regime
to determine the effect of the Bragg lattice on the system.

To do this, we measure the height of the condensate peak A(q, ω)
using matter wave imaging [81] and define the response

r(q, ω) = A0
A(q, ω) − 1, (3.3)

where A0 is the height of the condensate peak when no energy is
deposited by the lattice (ω = 0). Similarly to the measurements of the
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total energy onunitarity, the response scales linearlywith the length of
the Bragg pulse Δt (Fig. 3.6). This means that r is proportional to the
total energy ΔE deposited by the Bragg pulse, which gives us access
to the heating rate,

dE
dt ≈ ΔE

Δt ∝ r
Δt. (3.4)

We insert this relation into the left-hand side of Eq. 3.2 and solve for
S(q, ω) to obtain the final relation to calculate the dynamic structure
factor from our measurements,

S(q, ω) ∝ r(q, ω)
ω Δt . (3.5)

One notable difference of our experiments compared to the major-
ity of other Bragg spectroscopy experiments in ultracold gases is that
we use a much weaker probe (V = h⋅ (300−600)Hz = 0.04−0.09EF)
for much longer times (Δt = 15 − 400ms). Consequently, the Fourier
width of the Bragg pulse does not affect the frequency resolution of
our measurements.

Figure 3.6: Response of the gas af-
ter ramping to different interaction
strengths in the BEC-BCS crossover. It
varies by less then 4%. Using the rela-
tionship found in Fig. 3.6, this suggests
a variation of the entropy per particle
S/N by about 0.07 kB.

With the response established as a good proxy for measuring the
added temperature, we verify that our interaction ramps do not cause
large amounts of technical heating, so we can change the interaction
strength 1/(kFa) adiabatically. We prepare our system at the unitary
point and ramp to different interaction strengths, where we hold
the system, and finally ramp to the BEC regime to measure the
response. We find a variation of less than than 4% (Fig. 3.6). As
the peak height scales with the entropy per particle this measurement
allows us to estimate the variation in S/N of less than 0.07kB for our
measurements32.32 We use the relation between the peak

height and E/E0 from Fig. 3.5 and
S/N = 0.29
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Figure 3.7: Measurement of the dy-
namic structure factor S(q, ω) of a uni-
tary Fermi gas. At low energy and mo-
mentum transfer, the Goldstone mode
of the superfluidmanifests itself as a lin-
ear phononic mode with a slope that
corresponds to the speed of sound vs.
For larger energy andmomentum trans-
fers, pair-breaking excitations occur as
a broad continuum, with a clear onset
at an energy corresponding to twice the
pairing gap Δ of the system. For com-
parison, the expected value of 2Δ on
unitarity [88] is shown as a red dashed
line, a numerical QRPA calculation of
the center of the Goldstone mode is
shown as a red solid line.

3.3 Measuring the excitation spectrum

We now proceed to measure the excitation spectrum of our system
using Bragg spectroscopy. For our first measurement, we prepare
a gas at the unitary point where the scattering length diverges and
1/(kFa) = 0. At this point, the only relevant length scale in the system
is the inverse Fermi momentum 1/kF and the system becomes scale-
invariant [9, 89]. The gas is also very strongly interacting, with a
collision rate that is comparable to the inverse Fermi time EF/h of the
system.

Our measurement of the dynamic structure factor of the unitary
Fermi gas is shown in Fig. 3.7. Two distinct types of excitations are im-
mediately visible. First, there is a narrow, well-defined mode whose
energy is approximately proportional to its momentum, which we
identify as the sound mode of the Fermi gas. For very low energies,
where collisions have time to restore local thermal equilibrium, it can
be understood in terms of hydrodynamics [90]whereas for higher fre-
quencies or weaker coupling strengths it is a Goldstone mode [32, 78]
that is driven by phase fluctuations of the superfluid order parameter.

The second type of excitations are single-particle excitations in
which a single fermion receives the total momentum and energy of
the excitation. These excitations appear as a broad continuum in
our spectra, as a fermion inside the Fermi sea can be excited to a
continuum of unoccupied states at a larger energies. However, as
the fermions are paired, this requires an energy of at least twice
the pairing gap Δ, resulting in a well-defined onset of the so-called
pair-breaking continuum. The overall behavior of our measured
dynamic structure factors is in excellent agreement with theoretical
expectations33 [40]. 33 See also the RPA calculations in

Fig. 2.21 on p. 34 and Fig. 3.13 on p. 50.While in the limits of small or large momentum transfer, the re-
sponse of the system can be clearly identified as either a collective or
single-particle excitation, there is a range of intermediate momenta
where this is not as straightforward. In particular, as the collective
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Figure 3.8: Evolution of the excita-
tion spectrum in the BEC-BCS crossover.
Note that the y-axes are scaled differ-
ently. (a) In the deep BEC regime, the
excitation spectrum follows the Bogoli-
ubov dispersion of an interacting Bose
gas, with a linear sound mode at low
momenta and a quadratic dispersion of
single-molecule excitations at high mo-
menta. (b,c) When moving into the
crossover regime, the compressibility of
the system decreases, and consequently
the linear branch has a steeper slope
and persists to higher momenta. At the
same time, the high-momentum part of
the dispersion shows a strongly reduced
curvature and starts to broaden, which
indicates the transition to pair-breaking
excitations. (d) At the unitary point,
there is already a strong pair-breaking
continuum, which becomes even more
pronouncedwhen going further into the
BCS regime (e,f). Note that the in-
creased noise at small energy transfers
in the spectra is an artifact of dividing
a very small heating rate dE/dt by a
small frequencyω to obtain the dynamic
structure factor S(q, ω) ∝ ω−1 dE/dt
(see Eq. 3.5).

mode approaches the pair-breaking continuum, it no longer follows
the linear slope given by the speed of sound and instead starts to bend
down. This behavior is reminiscent of an avoided crossing with the
onset of the pair-breaking continuum, and indicates the existence of
a coupling between the Goldstone mode and the excitation of single
particles from the superfluid via pair breaking. Such a coupling has
been predicted by theory [40, 72, 78, 91], but had not been observed
yet in experiments.

After examining the general structure of the excitation spectrum,
we now proceed to measure the dynamic structure factor at interac-
tion strengths ranging from the deep BEC to the BCS regime. The
results are presented in Fig. 3.8 and clearly show the evolution of the
superfluid throughout the BEC-BCS crossover.

Our first observation is that the collective mode is present through-
out the entire BEC-BCS crossover. This is a direct consequence of the
fact that the presence of a well-defined Goldstone mode is a funda-
mental feature of any neutral superfluid [32, 39, 78].

In contrast, the nature of the single-particle excitations changes
completely in the crossover. On the BCS side of the resonance
(Fig. 3.8 e,f), the pairs are large and weakly bound and we observe
a broad continuum of pair-breaking excitations. This continuum be-
comes less pronounced as the pairs become more tightly bound in
the crossover regime and completely disappears from our spectra in
the BEC regime (Fig. 3.8 a,b). This is caused by the pairs turning into
deeply bound molecules, which are only broken at very high energy
and momentum transfers. Consequently, when going towards the
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Figure 3.9: Measurements of the col-
lective mode on the BEC (a) and BCS
(b) side of the resonance. The black
dots show the fitted center of the col-
lective mode for each momentum slice,
the black line is a fit according to the
equation ω = vsq(1 + ζq2). (c) Speed
of sound vs across the BEC-BCS cross-
over (blue dots) extracted from the fit
to the collective mode. We find good
agreement with a previous measure-
ment of the speed of sound performed
via fixed-momentum Bragg spectros-
copy [78] (light blue stars), a mea-
surement of the Bertsch parameter at
unitarity [28] (orange diamond) and a
quantumMonte Carlo calculation of the
equation of state [44] (dashed line). (d)
Prefactor ζ of the q3 correction to the
collective mode. In the BEC regime,
the dispersion bends upwards and ζ >
0. When moving towards the crossover
regime, the value of ζ decreases until it
changes sign at an interaction strength
of 1/kFa ≈ 0.2. For interaction param-
eters 1/kFa ≲ 0.2, the collective mode
bends down and ζ < 0. The statistical
uncertainties of the data points shown in
(c) and (d) are smaller than the marker
size.

BEC regime, pair breaking is gradually replaced by a different single-
particle excitation where a single unbroken molecule is ejected from
the condensate.

Our measurements directly show the evolution from a BCS su-
perfluid of weakly bound Cooper pairs to a BEC of deeply bound
molecules. Furthermore, the measured spectra agree well with the
dynamic structure factor calculated by our collaborators J. Kinnunen
and G. Bruun using a quasiparticle random-phase approximation34 34 This method is in detail described in

the supplementarymaterials of Ref. [78](QRPA) shown in Fig. 3.13 on p. 50.
In the following, we discuss the properties of the collective mode

and the pair-breaking continuum in more detail and extract the speed
of sound and the pairing gap over the crossover.

3.4 The collective mode

First, we consider the behavior of the collective mode. We extract its
dispersion relation from Bragg measurements at low momentum by
determining for eachmomentum ℏq the frequencywith themaximum
response and fitting thesemaximawith the expression ω(q) = vsq(1+
ζq2) following [92–94] (Fig. 3.9 a,b).

The first dominant contribution in the dispersion relation is linear
in q. It is a collective density oscillation, namely, a sound wave. For

We note that if all quantities are ex-
pressed in Fermi units, a factor vFkF

ωF
= 2

must be consideredwhen converting the
slope of the collective mode to the speed
of sound expressed in vF because

ω
ωF

= vs
q

ωF
= vFkF

ωF

vs
vF

q
kF

= 2 vs
vF

q
kF

.

larger momenta, the next-to-leading contribution is a q3-dependency
which has important consequences for the dampingprocesses allowed
in the system and has been the subject of theoretical discussion [95,
96].
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The fitted parameters show an increase of the speed of sound
(Fig. 3.9 c) towards the BCS regime. This is expected because towards
the BCS regime, the Fermi pressure becomesmore relevant andmakes
the gas stiffer and the gas therefore less compressible. The extracted
speed of sound agrees with previous results using fixed-momentum
Bragg spectroscopy [78] and the speed of sound at unitarity from the
Bertsch parameter, cs = √ξ/3 vF. Furthermore, the results agree with
the prediction of quantum Monte Carlo (QMC) calculations35.35 The extraction of the speed of sound

from QMC calculations is explained in
detail in AppendixC.

For the second extracted quantity, the curvature ζ of the dispersion,
we find that the dispersion is convex (ζ > 0) in the BEC regime,
but when going towards the resonance ζ smoothly decreases until
it changes sign at an interaction strength of 1/kFa ≈ 0.2 and the
dispersion becomes concave (ζ < 0). At unitarity, we obtain a value
of ζ = −0.085(8)/k2

F, which is in very good agreement with [92, 94].

3.5 The pair-breaking continuum and the pairing gap

In this section, we will first discuss the properties of the pair-breaking
continuum and then extract the size of the pairing gap in the BEC-BCS
crossover.

The measured continuum shows a clear dependence on both the
energy and momentum transfer (see e.g. Fig. 3.8 e). On the energy
axis, there is a sharp threshold of the continuum at a well defined
energy, whereas the momentum axis shows a more gradual onset
of pair-breaking excitations. Both of these observations are directly
related to important properties of the pairs.

The suppression of excitations at low momentum and resulting
existence of an onset on the momentum axis can be understood by
comparing the wavelength of the excitation to the size of the pairs [97,
98]. If the size of the pairs is large compared to the wavelength of the
excitation, a single particle can be excited and the pair can be broken.
However, if the pair is smaller than the wavelength of the Bragg
lattice, the excitation exerts almost no differential force on the atoms
and they are preferentially excited as an unbroken pair. Therefore,
as the size of the pairs changes in the BEC-BCS crossover, the onset
of the continuum changes with the interaction strength. In the BCS
regime, the pairs are large and we observe a broad pair-breaking
continuum (Fig. 3.8 f). Going through the crossover, the pairs become
more tightly bound and the onset of the continuum correspondingly
moves to higher momenta, until we reach the deep BEC regime of
tightly boundmolecules, where pair-breaking excitations are strongly
suppressed and no continuum is visible36(Fig. 3.8 a). In this regime,36 This behaviour can be utilized to ex-

tract the pair size from the inverse of the
momentum onset [16].

the gas has essentially become a strongly interacting Bose gas andpair-
breaking excitations only occur at very high momenta and energies.

The threshold on the energy axis is caused by the existence of
the pairing gap Δ, which describes the energy cost associated with
breaking a Cooper pair. The systems we consider in the following
have a positive chemical potential. Therefore, we expect that the onset
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Figure 3.10: (a) Heating rate S(q, ω) ω
on the BCS side of the resonance
(1/kFa = −0.44) measured at a fixed
momentum transfer of ℏq = 1.5ℏkF.
The onset of the pair-breaking contin-
uum is clearly visible; the red line shows
a fit of a lineshape from QRPA cal-
culations used to extract the value of
the pairing gap Δ (blue squares in
panel (c)). (b) Close to resonance,
we perform measurements at low mo-
mentum to separate the onset of the
pair-breaking continuum from the col-
lective mode. The resulting onset deter-
mined from a bilinear fit (red) is shown
in panel (c) as blue dots. (c) Pair-
ing gap Δ across the BEC-BCS cross-
over. The error bars denote the 1σ
confidence interval of the fit and are
(mostly) smaller than the symbol size.
Our data is in good agreement with pre-
vious measurements (orange diamonds
[54], blue stars [78]). When compar-
ing to theory, we find excellent agree-
ment with self-consistent T-matrix cal-
culations [88] close to resonance and
in the BEC regime (black solid line),
but towards the BCS regime calculations
including Gor’kov-Melik-Barkhudarov
corrections [99] (light blue line) are
closer to our data.of the pair-breaking continuum is at a momentum-independent37

37 This expectation is supported by the
QRPA calculations (see Fig. 3.13 f,h) and
is in excellent agreement with our mea-
surements in the BCS regime.

energy transfer of ω = 2Δ for momenta q < 2kμ = 2√2mμ/ℏ2 [40].
This allows us to extract the pairing gap Δ in the crossover, which

wewill do in the following. The challenge is to effectively separate the
onset of the pair-breaking continuum from the collective mode.

In the BCS regime, we performBragg spectroscopy at fixedmomen-
tum transfers of q = 1.5 − 1.7 kF where the collective mode merged
already into the continuum and fit38 the response r(ω) with a line- 38 For the fit the detuning ω/ωF and re-

sponse r of the line-shape is rescaled
such that the lowest least square devia-
tion to the data is reached.

shape from QRPA calculations convoluted with a Gaussian kernel of
width σωωF = 0.02 (Fig. 3.10a.). The fitted gap is obtained by scaling
the value of the gap used as input for the QRPA calculation with the
optimal rescaling of the detuning axis from the fit.

This method works well in the BCS regime, but in the crossover the
onset of the continuum is masked by the Goldstone mode because it
does not merge into the continuum at low momenta (see Fig. 3.8 c,d).
In this regime, we therefore employ themethod developed in Ref. [78]
and separate the pair-breaking excitations from the Goldstone mode
by strong driving at low momentum transfer (Fig. 3.10 b). As this
strongly saturates the Goldstone mode, these spectra are not well
described by the QRPA calculation which assumes the system to be
in the linear response regime. For these data points we therefore
determine the onset of the pair-breaking mode from the transition
point of a phenomenological bilinear fit (Fig. 3.10 b). We estimate that the systematic uncer-

tainty for the pairing gap arising from
the different fit functions used for the
two methods is 0.03 EF (AppendixD).

The gaps determined by our fits to the excitation spectra are shown

The systematic uncertainties on the ex-
tracted pairing gaps are discussed in
AppendixD.

in Fig. 3.10 c. We find excellent agreement with previous experiments
performed in the BEC and crossover regimes [54, 78]. Next, we com-
pare our data to T-matrix calculations that self-consistently include
strong-pairing correlations (black line in Fig. 3.10 c [88]). Taking the
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zero-temperature result, this theory is in excellent agreementwith our
data in the BEC and crossover regimes, but lies significantly above our
measurements in the BCS regime.

When comparing our data to finite-entropy T-matrix calculations
(Fig. 3.11), we find that our data is compatible with an entropy per
particle of S/N ≈ 0.1 kB in the crossover and BEC regimes. However,
in the BCS regime an entropy per particle on the order of 0.3 kB is
required for data and theory to match. This difference is significantly
larger than the variation of S/N of about 0.07 kB we estimate for our
experiments. Thus, while the reduction of the gap could in principle
be explained by finite-temperature effects, the results of the T-matrix
calculation are inconsistent with our experimental observation that
the system remains at almost constant entropywhile ramping through
the BEC-BCS crossover.

Another possible explanation could be that the size of the gap is
influenced by particle-hole fluctuations. These fluctuations are not
expected to be important at unitarity, but lead to the famous Gor’kov-
Melik-Barkhudarov (GMB) correction [100, 101] in the BCS limit. This
effect is taken into account in a recent strong coupling calculation [99],
which is in good agreement with our data in the BCS regime, but
lies significantly above our measurements on the BEC side of the
resonance (blue line in Fig. 3.10). Interestingly, the smaller pairing
gap in the BCS regime is also predicted by zero-temperature quantum
Monte Carlo (QMC) calculations (Fig. 3.12).

We can conclude that neither the T-matrix calculations [88] nor
the approach that takes into account particle hole fluctuations [99]
are fully consistent with our data throughout the crossover. The
explanation for this could lie on both the theoretical and experimental
sides of the problem, and further work will be needed in both areas to
resolve this question.

Figure 3.11: Measurement of the pairing
gap in the BEC-BCS crossover in com-
parison to finite temperature T-matrix
calculations (dashed and dashed-dotted
black lines). While the measured gap
and zero-temperature theory are in ex-
cellent agreement in the crossover and
BEC regimes, in the BCS regime calcu-
lations for a finite entropy per particle
of S/N = 0.3kB are much closer the
data. This is inconsistent with our ob-
servations suggesting a nearly constant
entropy of the gas throughout the BEC-
BCS crossover.
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Figure 3.12: Measurement of the pair-
ing gap in the BEC-BCS crossover in
comparison to various zero-temperature
QMC results [102–105].

CONCLUSION
We have presented momentum and energy-resolved measurements
of the excitation spectrum of a homogeneous ultracold Fermi gas.
These measurements directly reveal the transformation from tightly
bound molecules to weakly bound Cooper pairs that takes place in
the BEC-BCS crossover. Moreover, this realization of a quantum
simulator of a strongly correlated system allows us to determine
essential parameters of the many-body system. The evolution of the
collective mode allows extraction of the speed of sound and the onset
of the pair breaking continuum the extraction of the pairing gap in the
BEC-BCS crossover. The values found can be used to benchmark our
theoretical understanding and calculations.

This setup is also ideally suited to study Fermi gases, where on top
of the interaction strength other parameters are altered, for instance
the dimensionality or the spin-balance. Both scenarios wewill discuss
in the following chapters.
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Figure 3.13: Comparison of the measured excitation spectra (left column) with spectra calculated using the quasiparticle random-
phase approximation (right column). While the qualitative evolution of both the pair-breaking continuum and the collective mode
agrees, there are some notable differences. On the BEC side, the collective mode is much narrower in the theoretical spectra. This
can be a result of both finite temperature and instrumental broadening of the measurements, which could for example be caused
by residual inhomogeneities of the gas. As the spectra are normalized, the sharper collective mode in the theoretical spectra makes
the continuum appear weaker, which is particularly notable for the unitary system. However, despite this effect and the broadening
present in the experimental data, important qualitative features such as the downbending of the collective mode and the overall shape
of the continuum are still clearly visible in both the theoretical and experimental spectrum. In the BCS regime, there is excellent
agreement between the experimental result and QRPA theory, with the only significant difference being the slightly different onset
of the pair-breaking continuum. This, however, is expected as the theoretical pairing gaps from self-consistent T-matrix theory [88]
which were used as inputs for the QRPA calculation are higher than our measurements in the BCS regime (see Fig. 3.10).



4 TWO-DIMENSIONAL FERMI GASES

In the following chapters, we study 2D Fermi gases. Their lack of
true long-range order due to the larger influence of fluctuation [106]
establishes two dimensions as the marginal number of dimensions for
the existence of superfluidity [107]. In this chapter, we discuss how a
quasi-long-range order is restored through the BKT mechanism [107,
108]. Then, we explore scattering physics in quasi-2D systems and
apply it to the BEC-BCS crossover allowing us to study 2D strongly
interacting fermionic superfluids in the next chapters.

4.1 The BKT phase transition

In three dimensions, most phase transitions arise when a new long-
range order occurs. In particular, the emergence of long-range phase
coherence gives rise to the superfluid phase. For that we have to
consider the first-order correlation function [109]

g1(r) = ⟨ψ†(r)ψ(0)⟩

where ψ(r) is a bosonic creation operator39. If long-range phase 39 For a fermionic BCS superfluid,
the operator ψ(r) is the two-point
pair correlation function defined in
Eq. 2.10 [19].

coherence exists, g1(r) acquires a finite value for r → ∞. In this
case, the phase of the order parameter remains correlated throughout
the whole system. This gives rise to superfluidity: If the phase is
perturbed at one point in the fluid, the phase difference with respect
to any other position in the fluid is well defined and a superfluid flow
will emerge trying to cancel the phase difference.

However, for 1D and 2D systems with short-range interaction the
Mermin-Wagner theorem tells us that for the physically relevant case
of finite temperatures no true long-range order is supported because
the first-order correlation function always tends to zero for r → ∞
[106, 110]. The reason is that, for lower dimensions, phase fluctuations
are favored, sincemore phase space is available for thermal excitations
at low energy.

There are two kinds of excitation to consider, phonons and free
vortices. While low-energy phonons manifest themselves in long-
wavelength phase fluctuations, the effect of free vortices is detrimen-
tal: Around an isolated single vortex, the phase winds by 2π. This has
a global effect and results in an exponential decay of the first-order
correlation, which destroys any long-range phase coherence.

In 2D, there is a mechanism to keep vortices from perturbing the
phase foundbyBerenzinskii [108] andKousterlitz andThouless [107],
the BKT transition. If the temperature is lowered below a critical
temperature TBKT vortices start to pair into vortex-antivortex pairs.
These perturb the phase only locally because the superposition of the
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phase windings −2π and 2π neutralizes the effect of each individual
vortex at larger distances.

Figure 4.1: Change of the first-order cor-
relation for a 2D Fermi gas with inter-
action strength ln(kFa2D) ∼ 0.5 from
an algebraic to an exponential decay for
increasing temperatures given in t =
T/T0

BEC where T0
BEC is the condensa-

tion temperature of an ideal 2D Bose
gas. Adapted from [111].

Thus, for T < TBKT only the long-range phase fluctuations of
thermally excited phonons remain. They just create an algebraic decay
of the phase coherence [109]

g1(r) ∝ (1
r )

η

where the exponent is given by the superfluid density ns and the de-
Broglie wavelength λ via η = 1

nsλ2 . The change from exponential to
algebraic decay has been observed experimentally in 2D Fermi gases
(Fig. 4.1).

For T < TBKT the superfluid density is always40 ns ≥ 4/λ2.40 The reason is that the superfluid den-
sity jumps from ns = 0 to ns = 4/λ2

when TBKT is crossed from above.
Therefore, the exponent of the algebraic decay η < 1/4, which
results in a slow decay of the first-order correlation function. Still,
g1 approaches zero for large distances, which is in agreement with
the Mermin-Wagner theorem. However, the slow decay allows for
quasi-condensation in finite-size systems. In these systems, there is a
maximum distance r = L that two particles can be apart, and the first-
order correlation ∼ g1(L) remains finite throughout the entire system.

4.2 Scattering in two dimensions

In this section, we discuss the scattering problem in pure 2D systems,For a detailed review of scattering in 2D
and the 2D BEC-BCS crossover, please
see Refs. [112, 113].

where a third dimension is absent, and in quasi-2D systems, where
the gas is tightly confined along the third dimension. The objective is
to establish a relationship between the scattering processes in theses
systems which allows us to compare experimental results from quasi-
2D systems to theoretical predictions of pure 2D systems.

PURE 2D SCATTERING
First, we consider a pure 2D system and two atoms (in different
hyperfine states) with an attractive contact interaction. The two-body
scattering amplitude is given by [113]

f(k, EB) = 4π
ln(−EB,2D/E(k)) , (4.1)

where E(k) = ℏ2k2/(2mr) is the energy of the scattering particles
with reduced mass mr = m/2 and EB,2D the binding energy41 of the41 We define the binding energy to be

positive. bound state between both atoms. In 2D, this bound state exists for
any arbitrarilyweak attractive interaction between two fermions [114].
Its binding energy can be expressed in terms of a two-dimensional
scattering length a2D,

EB,2D = ℏ2

ma2
2D

. (4.2)

This allows us to rewrite the scattering amplitude to

f(k, a2D) = 4π
−2 ln(ka2D) + iπ , (4.3)
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Figure 4.2: (a) Inverse 3D scattering
length lz/a3D for a vertical trapping fre-
quency of ωz = 2π × 10 kHz from the
BEC regime (low magnetic field) to the
BCS regime (high magnetic field) (b)
Quasi-2D scattering length in the low-
momentum approximation klz ≪ 1
(dashed, Eq. 4.6). If scattering at mo-
menta comparable to l−1

z occurs, the
scattering length becomes density de-
pendent (Eq. 4.7). The solid line shows
the scattering length for a density of
n2D = 0.7µm−2, which corresponds to
EF/ℏωz = 0.74. (c) Resulting 2D inter-
action parameters using kF = 3.0µm−1

corresponding to n2D = 0.7µm−2.

where an analytical continuation of the logarithmwas used in order to
deal with its negative argument. For a fermionic gas, scattering events
can only occur close to the Fermi surface where k = kF, thus ln(kFa2D)
is commonly used to parametrize the interaction in 2D. Alternatively,
the binding energy normalized by the Fermi energy, EB/EF, can be
used as a parametrization for the interaction strength. As we will see
in the following, this equivalence between both parametrizations does
not exist in quasi-2D.

QUASI-2D SCATTERING
In our 3D world, we cannot create a pure 2D system as the third di-
mension cannot be removed. However, we can add a strong confine-
ment along one spatial direction to freeze out the movement which
results in a quasi-2D system.

For a non-interacting Fermi gas, we obtain a quasi-2D systemwhen
the separation of the ground state to any excited state along the
confiningdirection is so large that all fermions occupy only the ground
state and their degrees of freedom are distributed along the other
two spatial dimensions. For a harmonic confinement with trapping
frequency ωz, this happens when the Fermi energy is EF < ℏωz. At
finite temperature and with interactions, we in addition take care to
keep the thermodynamic energy scales42, the chemical potential μ and 42 It is a topic of debate if the criterion

μ < ℏωz is sufficient in the strongly
interacting regime to remain in the 2D
regime, see discussion in Chap. 9 in
Ref. [113] and the summary on p. 33
in Ref. [115] regarding the experiments
performed in Ref. [116].

the temperature kBT, below ℏωz.
The s-wave scattering process we want to consider is inherently

three-dimensional, so the question arises of how the 3D scattering
length can be related to the 2D scattering length (Eq. 4.3). This
questionwas addressed by Petrov and Shlyapnikov [117]who derived
the quasi-2D scattering amplitude

fquasi,2D(k, a3D, lz) = 4π√
2πlz/a3D + w(k2l2z/2) , (4.4)

where the harmonic oscillator length lz = √ℏ/(mωz) and the
complex function w(x) were defined. The function w(x) contains
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the momentum-dependent contributions to the scattering amplitude
given by

w(x) = lim
N−>∞

(2√N
π log( N

e2 ) −
N

∑
j=0

(2j − 1)!!
(2j)!! log(j − x − i0)) .

This function simplifies in the low momentum limit klz → 0 to

w0 ≡ lim
klz→0

w(k2l2z/2) = −ln (2π
A

k2l2z
2 ) + iπ

with A ≈ 0.915 which results in

fquasi,2D,0(k, a3D, lz) = 4π√
2πlz/a3D − ln( 2π

A
k2l2z

2 ) + iπ
(4.5)

By equating the pure 2D scattering amplitude (Eq. 4.3) with this
simplifiedquasi-2D scattering amplitude (Eq. 4.5)we obtain a relation
between the 2D scattering length and the 3D scattering length,

a2D,0 = lz√ π
Ae−√ π

2 lz/a3D . (4.6)

The inverse 3D scattering length, the 2D scattering length, and the
resulting 2D interaction parameter are computed for a vertical trap-
ping frequency of ωz = 2π × 10 kHz and density of n2D = 0.7µm−2

in Fig. 4.2. While the interaction parameter 1/(kFa3D) depends on the
scattering length and the density, the resulting interaction parameter
ln(kFa2D,0) also depends on the strength of the vertical confinement.

The low-momentum limit that we used to simplify w(x) is appli-
cable if two particles with relative momentum k ≪ l−1

z would scat-
ter. However, this limit is difficult to reach experimentally, as the mo-
menta k ∼ kF ∝ √n2D are close to the achievable l−1

z ∝ ωz. Therefore,
we follow the approach in Ref. [118] and consider as the character-
istic energy of two scattering particles the chemical potential43. This43 In the BEC-BCS crossover, we use the

reduced chemical potential μ̃ = μ −
EB/2 from the QMC calculations in
Ref. [119], which smoothly connects the
BEC limit (μ̃ ∼ gn) and the BCS limit
(μ̃ ∼ EF).

results in a characteristic wavelength of k = kμ = √μ/(2m) yield-
ing x = k2l2z/2 = μ

ℏωz
. By equating the pure 2D scattering amplitude

(Eq. 4.3) with the quasi-2D scattering amplitude (Eq. 4.4) we obtain
the scattering length

a2D = a2D,0e− 1
2 Δw( μ

ℏωz ), (4.7)

where Δw(x) = w(x) − w0(x) is the difference of the w-function with
respect to its klz → 0 limit used to derive a2D,0 (Eq.4.6). As we
see in Fig. 4.2, considering the term − 1

2 Δw(x) in Eq. 4.7 reduces the
interaction parameter ln(kFa2D) by up to ∼ 0.5 in the BCS regime.

Similar to a pure 2D system, a bound state exists for arbitrarilyweak
attractive interactions in a quasi-2D system. These bound pairs ex-
ist throughout the 3D Feshbach resonance and interact repulsively,
which explains the positive scattering length in Eq. 4.7 for both posi-
tive and negative a3D. In the BCS regime, the binding energy of these
confinement induced pairs follows Eq.4.2with a2D fromEq. 4.6. In the
regime, where pairs can exist also in 3D (a3D > 0, EB,3D = ℏ2

2ma2
3D
) and
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Figure 4.3: Confinement induced bind-
ing energy EB,quasi−2D in a vertical con-
finement of ωz = 2π × 10 kHz through-
out the BEC-BCS crossover (black solid,
Eq. 4.8). In the BCS limit, it agrees
with EB,2D (red dashed, Eq. 4.2) as the
pairs are purely 2D. As the pairs be-
come smaller, the third dimension be-
comes important and the binding en-
ergy crosses over into the 3D binding en-
ergy shifted by ℏωz/2 (green dashed).

the pair size ∼ a3D becomes comparable to lz, the pairs do not notice
the 2D confinement and the confinement-induced bound state crosses
over into a 3D bound state with a binding energy of EB,3D + ℏωz/2,
where the last term is a shift in energy due to the 2D confinement.
The binding energy covering both limits and the crossover regime can
be obtained by numerically solving the integral equation [5]

lz
a3D

= F (EB,quasi−2D
ℏωz

) (4.8)

for EB,quasi−2D where the function on the right side is defined by

F(x) = ∫
∞

0

du√
4πu3 (1 − e−xu

√[1 − e−2u] /(2x)
) .

The resulting binding energy is shown in Fig. 4.3.
We see here that the universal relation44 between the binding 44 See Eq. 4.2 and Eq. 4.3 in the pure 2D

system.energy and scattering amplitude does not exist in a quasi-2D system
because the binding energy is subject to a 2D to 3D crossover when
approaching the BEC regime.

This gives rise to the question which quantity should be used to
parametrize the interaction strength. If the scattering physics in a
quasi-2D system shall be connected with the scattering physics in a
pure 2D system, the scattering length in Eq. 4.7 is the correct choice
because its derivation involved the comparison of both scattering am-
plitudes. The other possible choice, taking the confinement induced
binding energy from Eq. 4.8 and assuming that it represents the bind-
ing energy in a pure 2D system, so setting EB = EB,quasi−2D and solv-
ing for a2D on the LHS does not work, as was also shown in [120].

Thus, if we want to compare experimental results from a quasi-2D
system with theoretical calculations for a pure 2D system we have to
use the definition of the scattering length in Eq. 4.7. After creating
a connection to the pure 2D system, we could use as an alternative
representation of the interaction strength the binding energy in the
pure 2D system by inserting a2D (Eq. 4.7) into EB,2D (Eq. 4.2). This
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Figure 4.4: Mean-field chemical poten-
tial (black) andgap (red) in the 2DBEC-
BCS crossover as a function of the bind-
ing energy EB/EF (a) or 2D interaction
parameter ln(kFa2D) (b). In the BCS
limit μ ∼ EF the gap decreases expo-
nentially. In the BEC limit, the chemical
potential approaches μ ∼ −EB/2.

binding energy, however, is not the binding energy in the quasi-2D
system (EB,quasi−2D), it merely is the binding energy of a pure 2D
system with the same scattering amplitude.

4.3 The 2D BEC-BCS crossover

After covering two-body interactions in 2D, we will now turn our
attention to the many-body problem and discuss very shortly the 2D
BEC-BCS crossover on a mean-field level, which was first considered
by Mohit Randeria et al. in 1989 [121, 122].

In 2D, the gap and number equation in the mean-field BEC-BCS
theory are much simpler than in 3D, where integrals to evaluated
numerically remained. Solving the gap and number equations self-
consistently, two simple analytical results are obtained for the gap and
the chemical potential,

μ = EF − EB,2D
2 , (4.9)

Δ = √2EB,2DEF, (4.10)

where we use the binding energy EB,2D to parametrize the crossover
in a pure 2D system. Both are are plotted in Fig. 4.4.

The BCS limit is reached for EB ≪ EF where the chemical potential
μ = EF and the gap4545 We insert Eq. 4.2 in Eq. 4.10
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Δ = EF
2

kFa2D
= 2EFe−η

approaches zero as a2D → ∞ or η = ln(kFa2D) → ∞. At EB/EF =
2 and ln(kFa2D) = 0 the fermionic chemical potential μ becomes
negative and the system becomes more bosonic. The BEC limit is
reached forEB ≫ EF or ln(kFa2D) → −∞. Here, the chemical potential
approaches46 μ ∼ −EB/2. 46 On the mean-field level in 2D, the

BEC-BCS theory does not contain any
dimer-dimer interactions and the re-
duced chemical potential μ̃ = μ + EB/2
stays at EF instead of decreasing to μ̃ ∼
gn/2 as in 3D. We discuss this ques-
tion and the limitations of the 2D mean-
field BEC-BCS crossover in more detail
in Sect. 10.2.

In the next chapter, we will investigate the excitation spectrum of
2D Fermi gases modeling the 2D BEC-BCS crossover we introduced
here.





5 SPECTROSCOPY IN 2D FERMI GASES

In this chapter, I summarize two studies on the excitation spectrum showing
sound propagation and superfluidity in the 2D BEC-BCS crossover. For that,
I give a summary of the measurement of the speed of sound published in [123]

M. Bohlen, L. Sobirey, N. Luick, H. Biss, T. Enss, T. Lompe, and H. Moritz,
Physical Review Letters, 124(24), 240403 (2020).

and the critical velocity published in [124]

L. Sobirey, N. Luick, M. Bohlen, H. Biss, H. Moritz, and T. Lompe,
Science, 372(6544), 844–846 (2021).

Parts of this chapter are reproduced from these publications with some modi-
fications. For a detailed discussion of these results, I would like to refer to the
respective PhD theses of the lead authors Markus Bohlen [125] and Lennart
Sobirey [16]. I contributed to the development of the experimental Bragg
setup, the execution of the experiments, and the interpretation of our results.

5.1 Sound propagation in a 2D Fermi gas

As we discussed in Chap. 2 a superfluid features long-lived collective
excitations which manifest in sound waves. The goal of the first
experiment is to excite these long-wavelength excitations by creating
a propagating sound wave. For that, the 2D Fermi gas is loaded into
a repulsive box potential which has a rectangular form of dimensions
lx × ly = 30 × 40µm (Fig. 5.1).

Figure 5.1: Averaged density distribu-
tion of the Fermi gas trapped in a box
potential used to study sound propaga-
tion.

To excite a sound wave in the box, we imprint a relative phase
between the lower and upper halves of the system by illuminating
one half with a spatially homogeneous optical potential for a short
duration which is smaller than the respective Fermi time, τ < h/EF.

We then observe the change in density by imaging the density
distribution after different hold times using in situ absorption imaging
(Fig. 5.2). This reveals that a sound wave travels back and forth
between two sides of the box. Apparently, the phase imprinting
creates a superposition of phononic excitations that form a wave
package, which is reflected by the repulsive box potential.

In order to measure the speed of sound, we use the circumstance
that the soundwave is moving back and forth with a periodicity given
by the time it takes for the sound wave to cover twice the length of
the box. Thus, we expect an oscillation frequency of f = c/(2lx)
where c is the speed of sound. We take the relative particle imbalance
defined as Δn/n = 2(nt − nb)/(nt + nb) with densities nt and nb in the
top and bottom halves of the box to extract this oscillation frequency.
This quantity is then fitted with a damped sinusoidal of the form
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Figure 5.2: The upper panel shows
the propagation of a sound wave in
a box potential. Here, the density
profiles are averaged along the y axis
that is perpendicular to the propaga-
tion direction (x axis) and normalized
to the average density within the box.
The quantity shown is n(x, t)/n(t) =
∑y n(x, y, t)/ ∑x,y n(x, y, t). We see a
density wave propagating through the
box and being reflected at the upper and
lower box boundaries. The lower panel
shows the relative density imbalance be-
tween the upper and lower sides of the
box for the same data set and a damped
sinusoidal fit (solid line) to the data.

Figure 5.3: The speed of sound across
the BEC-BCS crossover increases as the
gas becomes stiffer due to a higher Fermi
pressure. It approaches its theoretical
limits in the BEC (grey dashed) andBCS
(grey dotted) regimes, respectively. In
the BEC regime, it is given by cB =
√μ/md = √gn/(2m) arising from a
repulsive interaction strength g between
dimers of mass md = 2m. On the BCS
side, the speed of sound approaches
the universal value of c = vF/

√
d of

a weakly-attractive Fermi gas with the
number of spatial dimensionsd = 2 and
Fermi velocity vF = ℏkF/m.

A(t) = A0 cos (2πft + ϕ) exp(−Γt/2) + b to extract the frequency f
and the damping Γ (Fig. 5.2). The sound speed can then be easily
obtained47 as c = 2lxf .47 We ensured that the extracted speed

of sound is independent of the box size
lx. Therefore, edge effects are negligible.

As a next step, we probe the speed of sound as a function of
the 2D interaction strength by performing the same measurements
at different magnetic fields. We plot the speed of sound extracted
from the oscillation frequencies as a function of the 2D interaction
parameter in Fig. 5.3. First, we observe that in both the BEC and BCS
regime the theoretical limits are approached. The second observation
is that the speed of sound increases from the BEC regime to the BCS
regime, which is expected since the compressibility of a Fermi gas
is much lower than that of a weakly repulsive Bose gas. In the BCS
regime, the gas is thus stiffer with respect to density fluctuations, and
sound waves propagate faster than in the BEC regime48.48 This fact can be used to extract the

compressibility ∂n/∂μ of the system
through the BEC-BCS crossover and
compare it to independent measure-
ment of the equation of state μ(n) and
theoretical predictions, wherewewould
like to refer the reader to the original
publication and Markus Bohlen’s thesis
[123, 125].

The second quantity that we extract from the oscillation is the
damping of the sound wave. Damping is caused by collisions of
particleswith themediumof other particles. In the strongly correlated
system we study, the mean free path of particles is much smaller
than the oscillation wavelength. Therefore, we are in the so-called
hydrodynamic regime. Here, diffusive currents of the longitudinal
momentum , the transverse momentum49 cause a dampening of the49 These diffusive currents result from a

finite bulk viscosity, shear viscosity, and
heat conductivity.

soundwave. The damping can be expressed in a scale-invariant sound
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Figure 5.4: Sound diffusion coefficient
in the BEC-BCS crossover. In the
strongly correlated regime, the diffusion
coefficient reaches a minimum which
agrees well with the universal quan-
tum bound for diffusion at ℏ/m (dashed
line).

diffusion Ds = Γ/k2
0 where k0 is the strongest wave component in the

propagating wave package given by k0 = 2π/(2lx) = π/lx.
We see in Fig. 5.4 that the sound diffusion coefficient reaches a

minimum in the strongly correlated regime around ln(kFa) = 0. The
value corresponds to the so-called quantum limit Ds ∼ ℏ/m that we
can obtain by a simple scaling argument using the kinetic theory of
gases: Here, the diffusivity is given by the mean free path lmfp and the
velocity v through the relation Ds ∼ vlmfp. In the strongly interacting
regime, the mean free path lmfp is on the order of the interparticle
distance n−1/2 while the velocity is on the order of the Fermi velocity
v ∼ vf ∼ ℏn1/2/m. Thus, these measurements show that quantum-
limited transport occurs in the strongly correlated regime of the 2D
BEC-BCS crossover.

5.2 Critical velocity of a 2D Fermi gas

0 1 2

Figure 5.5: Density distribution of the
2D Fermi gas used to study the critical
velocity.

In the following experiment, we show that low-temperature 2D Fermi
gases are superfluid in the BEC-BCS crossover. According to the
two-fluid model, superfluids have a superfluid fraction that has zero
viscosity and can flow along a surface without experiencing any
friction. One manifestation is that when a superfluid contained in a
ring potential is set into rotation, it can flow forever without being
damped by friction [126]. This is analogous to an electric current in
a superconducting ring which persists indefinitely. These metastable
currents have been observed in neutral superfluids of bosons [127–
129] and, very recently, fermions [130, 131]. The metastable flow does
not experience any drag as long as its velocity with respect to the
container wall is less than a critical velocity50.

50 To be more detailed, in the two-fluid
model, only the superfluid fraction does
not experience any drag below a critical
velocity. However, the normal compo-
nent does experience drag at any veloc-
ity. But if the system is rotated, the flow
of the normal component will quickly
decay, leaving only the superfluid frac-
tion to persist.

This critical velocity is given by the Landau criterion vc = minp ϵ(p)/p
where ϵ(p) is the dispersion relation of the gas [3]. Below this critical
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Figure 5.6: (A) The periodic Bragg po-
tential (red) is moved through the gas
at variable velocities v trapped in repul-
sive optical ring potential (blue). (B)
This sketch of the excitation spectrum
in the BEC regime shows that we probe
the excitation spectrum at one specific
momentum p0 = ℏk0 (red vertical
line) whereas in Landau’s gedankenex-
periment a stirrer moving with veloc-
ity v probes the excitation spectrum at
all momenta p and corresponding en-
ergies ϵ(p) = vp. (C) The response
r(v) of a 2D Fermi gas at an interac-
tion strength of ln(kFa2D) = −0.8 to
the Bragg lattice with wavevector k0 ≈
0.15 kF. We observe that no dissipation
occurs at low lattice velocities, but there
is a sharp increase in the response above
a critical velocity vc. The fact that Bragg
lattice probes the system at a constant
wavevector results in a decrease of the
response at high lattice velocities. The
critical velocity is extracted by a fit (red
solid line) to the expression r(v) = A ⋅
max(0, v2 − v2

c ) [137].

velocity, any perturbations within the fluid or from the container wall
cannot create excitations in the superfluid. This holds if we change
the frame of reference: A stationary superfluid cannot be excited by
an impurity moving through it with a velocity v < vc. Instead, the
superfluid flows around the impurity without friction51. This pheno-51 The normal fraction of the superfluid

could give rise to a background of exci-
tations at velocities v < vc. We do not
observe such a background.

menon can be used to measure the critical velocity in BECs and Fermi
gases with a moving optical stirrer[132–136].

However, a measurement of the critical velocity and the evidence
of superfluidity of a 2D Fermi gas in the BEC-BCS crossover are still
missing. To address this, we create an impurity using our Bragg lattice
setup, as described in Sect. 3.2. The frequency detuning Δω between
the two laser beams causes the optical lattice to move at a constant
speed v = Δω/k0, where k0 = 2π/L with the spacing L between two
maxima of the periodic potential.

To measure the critical velocity in our system, we move the optical
lattice through the gas at different velocities and observe the response
of the system by ramping it to the BEC side. As in the 3D measure-
ments, we measure the energy deposited by the potential using the
relative the reduction in the condensate peak height. A typical mea-
surement of the response (Eq. 3.3) of the system as a function of the
lattice velocity is shown in Fig 5.6C. We observe that the gas remains
unaffected until a critical velocity is reached, at which point a sharp
onset of dissipation occurs.

Unlike previous experiments [132–135], we observe that the re-
sponse decreases again at higher velocities. This is caused by the fact
that the optical lattice is not a point-like stirrer, but probes the sys-
tem at a specific momentum ℏk0, whereas the impurity in Landau’s
gedankenexperiment can excite the system at all momenta. Therefore,
amoving optical latticewith varying velocity probes the dispersion re-
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Figure 5.7: (A) In the BEC regime,
the response r(v) of a gas to excitations
with varying lattice wavevector k0 and
velocity v shows a well-defined mode.
For small wavevectors, phonons are ex-
cited peaked around a constant veloci-
tiy which corresponds to the sound ve-
locity vs. This corresponds to the linear
part of the Bogoliubov dispersion. For
larger wavevectors, the peak in the re-
sponsemoves to linearly to higher veloc-
ities because we enter the quadratic part
of the Bogoliubov excitation spectrum
where single-particle excitations are cre-
ated. (B) In the BCS regime, we observe
a continuum of excitations with a mini-
mum of the onset velocity at k0 = 2 kF.
Here, pair-breaking excitations gapped
in frequency by 2Δ/ℏ are created result-
ing in a critical velocity vc = 2Δ/ℏ

2 kF
. In

both regimes, the heating rate is negligi-
ble for excitations that move slower than
the critical velocity (red dashed lines,
taken from Fig. 5.8C). To enhance the
visibility of weaker excitations, each col-
umn in both panels has been linearly
rescaled to range from 0 to 1.

lation of the gas on a vertical line of constant momentum p = ℏk0 as
visualized in Fig. 5.6 B.

Our Bragg setup, however, allows us to change the momentum
ℏk0 in a large range. We use it to measure the response r(v, k0)
of the system as a function of the lattice velocity v and the lattice
wavevector k0. Our measurements in the BEC and BCS regime are All measurements presented here probe

superfluids at the lowest possible tem-
peratures we can reach. If we heat up
the system it is expected that the critical
temperature becomes zero as the tem-
perature approaches the critical temper-
ature. This allows for the measurement
of the critical entropy over the 2D BEC-
BCS crossover which is discussed in [16,
138].

depicted in Fig. 5.7. Compared to the measurements of the dynamic
structure factor in Chap. 3 and in Chap. 6, we chose to plot here
the response r(v, k0) instead of the dynamic structure factor because
we are interested in the lowest possible velocity below which no
excitations are present. Both are related by r(v, k0) = ωS(k0, ω)|ω=k0v.

The resulting responses in the BEC and BCS regime show the dif-
ference in the excitation spectra of bosonic and fermionic superfluids.
In bosonic superfluids, the lowest velocity at which excitations can be
created is at small wavevectors. Here, the obstacle moving close to
the speed of sound creates phononic excitations. In BCS superfluids,
phononic excitations at low k0 can still be created, but the lowest onset
velocity is found at k0 ≈ 2 kF because here pair-breaking excitations
gapped in frequency by ω = 2Δ/ℏ can be excited at corresponding
lower velocity vc = 2Δ/ℏ

2 kF
. In both regimes, we clearly observe a critical

velocity belowwhich no excitations are created, which gives evidence
of superfluidity.
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Figure 5.8: (A,B) Measurement of the
response of a 2D Fermi gas by a mov-
ing lattice with wavevectors k0 ≈ 0.3 kF
(A) and k0 ≈ 2 kF (B) at different in-
teraction strengths. In the BEC regime
(ln(kFa2D) < −1), we observe a well
defined excitation that corresponds to a
sound mode for k0 ≈ 0.3 kF and sin-
gle particle excitations for k0 ≈ 2 kF.
When going to the BCS side of the cross-
over, the peak broadens into a contin-
uum of pair breaking excitations. To
enhance the visibility of weaker exci-
tations, each column has been linearly
rescaled to range from 0 to 1. (C)
We determine the critical velocity as a
function of interaction strength as the
lower of the two onset velocities ob-
tained from the data shown in (A,B). In
the BEC regime, the critical velocity is
limited by excitations at small wavevec-
tors (blue dots), whereas in the cross-
over the lowest onset velocities occur
at 2 kF (red diamonds). We find that
the 2D Fermi gas is superfluid through-
out the 2D BEC-BCS crossover with the
highest critical velocities found in the
crossover regime at ln(kFa2D) ≈ 0.
For comparison, we show the speed of
sound vs (grey squares) discussed in
the previous chapter, the grey line is a
guide to the eye. The error bars de-
note the 1σ confidence intervals of the
fit and are smaller than the symbol size
for most data points.

After establishing that our system is superfluid in the BEC and BCS
limits, we study the evolution of the critical velocity in the crossover
between these regimes. To take into account both the phononic and
pair-breaking excitations shown in Fig. 5.7A and B, we measure the
interaction dependence of the response r(v) at two different lattice
wavevectors of k0 ≈ 0.3 kF and k0 ≈ 2 kF. The results are shown in
Fig. 5.8A and B. For a lattice wavevector of k0 ≈ 0.3 kF, we clearly
observe the presence of a well-defined sound mode with an onset
velocity that increases as a function of interaction strength. In the
crossover region (ln(kFa2D) ≈ 0.5), the peak smoothly broadens into
a continuum as pair breaking becomes the dominant excitation in the
system. For k0 ≈ 2 kF, the excitations are free particle excitations of
dimers on the BEC side and transform into pair-breaking excitations
on the BCS side of the resonance. We fit the onset velocities for both
data sets and use the smaller of the two values as the critical velocity
of the system (Fig. 5.8C).

The measured critical velocities scale with the speed of sound on
the BEC side of the resonance, measured in the previous section.
They show a maximum in the crossover and decrease again as pair
breaking becomes dominant in the BCS regime. We observe that
the measured critical velocities become compatible with vc = 0 at
ln(kFa2D) ≈ 2.3, indicating that the phase transition to the normal state
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has been crossed. Remarkably, the maximum of vc at an interaction
strength of ln(kFa2D) ≈ 0 indicates that fermionic 2D superfluids
are most stable in the strongly correlated crossover regime. This is
in agreement with measurements of the critical temperature in the
2D BEC-BCS crossover [139] and similar to the behavior of three-
dimensional Fermi gases [134, 135].





6 COMPARING 2D AND 3D SUPERFLUIDS

After establishing superfluidity of 2D Fermi gases in the last chapter, this
chapter is dedicated to a long-lasting question: What is the influence of
reduced dimensionality on superfluidity? To answer this question, I will use
the results of the pairing gap obtained in Chap. 3 and compare them with
similar measurements in 2D Fermi gases. The following chapter is based on
the publication [138]

L. Sobirey, H. Biss, N. Luick, M. Bohlen, H. Moritz, and T. Lompe,
Physical Review Letters, 129(8), 083601 (2022).

A detailed analysis including a comparison with the pairing gaps in solid-
statematerials can be found in the PhD thesis of the lead author on this project,
Lennart Sobirey [16]. I contributed to the execution of the experiments pre-
sented in the following and the interpretation of our results.

Since 1987, manymaterials belonging to the class of high-TC super-
conductors have been discovered, which have higher critical temper-
atures and stronger interactions than conventional BCS superconduc-
tors [140, 141]. This is intriguing because in two dimensions, where
thermal and quantum fluctuations play a more important role, less
robust long-range order is expected [106]. In superconductors, the
dimensionality of these systems cannot be changed without altering
other properties as well, so it is difficult to extract what role the re-
duced dimensionality has on their stability [142].

Therefore, we use our ultracold Fermi gases as a model system to
perform a quantitative comparison between 2D and 3D superfluids
by comparing their pairing gaps. The gap is well suited for this
purpose since it directly determines both the critical velocity and the
critical temperature of a fermionic superfluid, and thus constitutes an
excellent measure of its stability. For that, we will first discuss the
measurement of the dynamic structure factor of 2D Fermi gases and
the extraction of the pairing gap.

6.1 Dynamic structure factor in 2D Fermi gases

In order to determine the pairing gap, we use momentum resolved
Bragg spectroscopy to measure the dynamic structure factor S(q, ω)
of the superfluid in the two-dimensional BEC-BCS crossover.

The results of these measurements are shown in Fig. 6.1. Similar to
the 3D measurements, we observe two different types of excitations:
The first are collective excitations of the superfluid, which are visible
as a linear sound mode at low momentum transfers (q ≪ kF). Its
slope is in excellent agreement with measurements of the speed of
sound discussed in Chap. 5.1 (red lines in Fig. 6.1). The second type
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Figure 6.1: Measurements of the dy-
namic structure factor S(q, ω) taken
at different values of the 2D interac-
tion parameter ln(kFa2D) in the BEC-
BCS crossover. For strong attractive
interactions ((a), the system consists
of tightly bound molecules which are
excited as unbroken pairs, and con-
sequently S(q, ω) shows the Bogoli-
ubov dispersion of an interacting Bose
gas. Moving into the crossover regime
((b),(c),(d)), the pairs become more
weakly bound and pair-breaking exci-
tations begin to appear at higher mo-
menta. These excitations become more
pronounced as we approach the BCS
limit where the system shows the ex-
pected broad pair-breaking continuum
((e),(f)). In addition to these pair-
breaking excitations, it is also possible
to excite sound waves in the superfluid.
These appear in our spectra as a lin-
ear mode at low momenta, with a slope
that corresponds to the speed of sound
in the system and is in excellent agree-
ment with the measurement discussed
in Chap. 5.1 (red lines). The behavior
observed in ((c)-(h)) closely resembles
our results obtained in 3D Fermi gases.

of excitations are single-particle excitations. These are clearly visible
for BCS superfluids with weak attractive interactions (Fig. 6.1 (e),(f)),
where a pronounced continuumof pair-breaking excitations is visible.

As the interparticle attraction increases towards the BEC regime,
the size of the pairing gap grows, causing the onset of the pair-
breaking continuum to move to higher energies. Similar to the 3D re-
sults, the onset of the pair-breaking continuummoves towards higher
momenta as the pairs are transformed from weakly bound Cooper
pairs to tightly bound molecules. This trend continues into the BEC
regime, where the molecules are so tightly bound that pair-breaking
excitations become completely suppressed. The excitation spectrum
follows here the Bogoliubov dispersion relation of a superfluid Bose
gas (see Fig. 6.1 (a)).

Overall, compared to our measurements of 3D Fermi gases, the
measured excitation spectra are qualitatively very similar. However,
smaller qualitative differences can be observed: Compared to the 3D
measurements, the Bogolibuv mode shows a stronger broadening in
the BEC regime, where the reason is unknown to us. In addition, the
suppression of the pair-breaking continuum at low momentum due
to the presence of the collective mode is weaker in 2D.

6.2 The pairing gap in 2D Fermi gases

To determine the pairing gap Δ from our measurements, we deter-
mine the onset energy of the pair-breaking continuum. Although the
onset is partially masked by the presence of the Goldstone mode, it is
nevertheless possible to extract the gap by using two different meth-
ods.

Figure 6.2: Measuring both the collec-
tive mode and pair breaking excitations
at fixed momentum transfer. Here, we
use strong driving to reveal the onset
of the suppressed pair-breaking excita-
tions at 2Δgap (dotted red line).

The first method, already used for the 3D system, measures the on-
set of the pair-breaking continuum at low momentum where collec-
tive excitations are well separated from the continuum (Fig. 6.2). We
identify the onset frequencyωonset with 2Δgap, wherewe introduce the
excitation gap Δgap whose relation with the pairing gap Δ we explain
below.



COMpARING 2D AND 3D SupERFLuIDS 69

Figure 6.4: Upper panel: Measured
excitation gap Δgap as a function of
the interaction strength. For sys-
tems with a positive chemical poten-
tial (ln(kFa2D) > 0.3), we can di-
rectly identify the excitation gap with
the pairing gap Δ. For the four leftmost
points the excitation gap corresponds to
√μ2 + Δ2. The different symbols dis-
tinguish results obtained using the ap-
proaches using either the peak of S(ω)
(blue dots) or the strong driving at low
q (light blue diamonds). The contri-
bution EB of the two-body bound state
to the gap is shown as a solid line. In
the BCS regime the data is in agreement
with themean-field BEC-BCSprediction
(red line), but deviates in the strongly
correlated crossover regime. Lower
panel: In order to isolate the many-body
contribution, we subtract the binding
energy and plot Δgap − EB/2, This al-
lows us to compare our measurements
with quantumMonte-Carlo calculations
(gray triangles, [144, 145]) which show
compared to the mean-field prediction
better agreement in the crossover, but
still deviate from the measurements in
the BEC regime.

In regions where both modes are not well separated, we use a sec-
ondmethod, inwhichwe first integrate the full dynamic structure fac-
tor S(q, ω) over themomentumaxis to obtain S(ω), which describes the
probability of creating an excitation of energy ℏω for any momentum
ℏq. The resulting line shape of S(ω) is expected to be qualitatively sim-
ilar to the observed Raman response of s-wave BCS superconductors
[143] which shows a sharp peak at 2Δgap followed by a slower decay.
This peak is expected to be broadeneddue to density inhomogeneities.
In addition, due to the presence of the collective mode in our neutral
superfluid at low energy, an additional background appears at all fre-
quencies. Therefore, we fit a phenomenological line shape of a linear
increase followed by a Gaussian decay and identify the intersection
point as 2Δgap (Fig. 6.3).

Figure 6.3: Dynamic structure factor
S(ω) obtained by integrating S(q, ω)
over the momentum axis. A phe-
nomenological lineshape (solid red
line) is fitted to extract the peak posi-
tion which is located at 2Δgap (dotted
red line).

The resulting values of the excitation gap Δgap are plotted in
Fig. 6.4. For positive chemical potentials52 (ln(kFa2D) ≥ 0.3) we 52 We obtain the threshold by taking the

reduced chemical potential μ + EB/2
from QMC calculations [119] and sub-
tracting the confinement induced bind-
ing energy from Eq. 4.8.

can directly identify the excitation gap Δgap with the pairing gap
Δ. For negative chemical potentials, which affect the four leftmost
measurements presented in Fig. 6.4, excitation gap is not given by
Δgap = Δ but Δgap = √μ2 + Δ2. We have chosen here to plot the
raw measured excitation gap Δgap rather than extracting the order
parameter Δ using a chemical potential from an external theory.

In addition, we plot the confinement-induced binding energy EB
of the bare two-body bound state (black line) in Fig. 6.4. For smaller
attractive interactions in the BCS regime, the two-body binding energy
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Figure 6.5: We compare the gaps of
fermionic superfluids with different di-
mensionality by plotting both measured
pairing gaps Δ/EF of quasi-2D (blue
circles) and 3D (red stars) Fermi gases
as a function of the chemical potential
μ/EF taken from QMC calculations [44,
119]. The measurements of the gap col-
lapse onto a single curve. This is un-
expected because the mean-field predic-
tions have a qualitatively different be-
havior in 3D (orange dashed line) and
2D (blue dashed line). The second un-
expected observation is that the 2D data
is also well-described by the T-matrix
calculations performed for a 3D Fermi
gas (red line [88]).

is negligible, and the gap is entirely due to many-body effects. When
the crossover regime is entered, the bare two-body binding energy
starts to contribute significantly to the observed excitation gap. To
separate these two contributions to the gap, we subtract the known
value of the two-body binding energy from our measurements. As
can be seen in Fig. 6.4, the remaining many-body contribution Δ −
EB/2 grows with increasing interactions in the BCS regime, reaches a
maximum in the crossover regime, and then decreases again towards
the BEC side of the resonance. Here, the contribution of the two-body
bound state begins to dominate as the gas becomes a BEC of deeply
bound molecules.

When comparing these results with theory, we find that they
agree excellently with mean-field theory (Eq. 4.10) in the BCS regime,
which is remarkable because the observed gap Δ ≈ 0.3 EF has
considerable size. However, in the strongly correlated crossover
region (ln(kFa2D) ≈ 1) the gap starts to deviate from the mean-field
result. This is not surprising because for negative chemical potentials
(in mean-field for ln(kFa2D) < 0), the mean-field excitation gap is

Δgap = √μ2 + Δ2 = EF + EB
2 .

resulting in a constant many body contribution of Δgap − EB
2 = EF.

Here, Quantum Monte Carlo (QMC) simulations [144–146] agree
better with our data in the crossover, but still predict higher values
of Δgap − EB/2 in the BEC regime.

6.3 Comparing pairing gaps in 2D and 3D Fermi gases

Next, we will compare the pairing gaps between 2D and 3D fermionic
superfluids. To perform such a comparison, we need to find a suitable
parametrization of the interaction strength, since the dimensionless
interaction parameters ln(kFa2D) and 1/kFa3D that we used up to now
cannot be directly compared.
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Weparametrize the interaction strengthwith the normalized chem-
ical potential μ/EF of the fermions. This choice is motivated by the
fact that the chemical potential is a basic thermodynamic quantity
that is defined independently of dimensionality and has well-known
and monotonous relations to the 2D and 3D interaction parameters
ln(kFa2D) and 1/kFa3D [28, 44, 118, 119]. Therefore, we can make
our comparison by plotting the pairing gap Δ/EF as a function of the
chemical potential μ/EF for two- and three-dimensional systems. The
results are shown in Fig. 6.5.

Remarkably, we find thatwithin the accuracy of ourmeasurements,
the results for Δ/EF obtained for quasi-2D and 3D Fermi gases col-
lapse onto a single curve. This suggests that for strongly interacting
Fermi gases, the gap follows a single universal function f(μ/EF) =
Δ/EF of the interaction strength that is independent of the dimension-
ality of the system. The function f(μ/EF) appears to be well described
by T-matrix calculations for 3D Fermi gases [88], but qualitatively dis-
agrees with theoretical predictions for 2D Fermi gases. This discrep-
ancy between our measurements and theoretical predictions for two-
dimensional systems is unlikely to result from finite-temperature ef-
fects or excitations along the tightly confined axis: Temperature ef-
fects are not expected to significantly affect the gap or the chemical
potential, as our system is well below the critical temperature, and
excitations in the third direction would be expected to affect only the
data in the BCS regime where the chemical potential is still smaller
than but becomes comparable to ℏωz. Consequently, our measure-
ments imply that, for a given coupling strength, there is no inherent
difference in the stability of fermionic superfluidity between two- and
three-dimensional quantum gases.

As we perform our experiments in an ideal model system, it is
natural to ask how these apply tomore complexmaterialswith 2D and
3D geometries. For this, wewould like to point the reader to the thesis
of Lennart Sobirey [16], where a comparison to solid state materials
is performed. These comparisons strongly suggest that, matching the
conclusion drawn here, it is not the dimensionality but rather strong
interactions resulting in small pair sizes that are key to achieving large
excitation gaps.





Part II

IMBALANCED FERMI GASES





7 SPIN-IMBALANCED SUPERFLUIDS IN TWO DIMENSIONS

Figure 7.1: (a) In a superconductor
without an external magnetic field the
dispersion curves of both spin states are
equal. This results in a balancedmixture
of both spin states for a given chemical
potential, which makes Cooper pairing
at the same momentum possible. (b) In
an external magnetic field, both disper-
sion curves are shifted with respect to
each other. This can result in an imbal-
anced spin mixture where both spin up
and down fermions have different Fermi
wavevectors. Here, Cooper pairing may
occur by allowing Cooper pairs with
non-zero momentum ℏq [147, 148].
Adapted from [149].

7.1 Superfluidity with spin-imbalance

The Cooper pairing mechanism, which forms the basis for fermionic
s-wave superfluidity and superconductivity, critically relies on the
availability of another fermion of opposite spin to pair with for each
fermion. This raises the question of what happens when the number
of fermions in both spin states is imbalanced so that the Fermi surfaces
of both spin states do not overlap anymore in momentum space. In a
superconductor, the spin composition of electrons can be influenced
by applying an external magnetic field which energetically favors one
spin state. Chandrasekhar and Clogston (CC) predicted that the BCS
state at zero temperature remains unpolarized until a criticalmagnetic
field, called the CC or Pauli limit, is reached [150, 151]. Here, the
energy gain of electrons flipping their spin exceeds the gain due to
Cooper pairing, and the system performs a first-order transition into
a spin-imbalanced normal phase.

However, as pointed out by Fulde and Ferrell (FF) [147] as well as
by Larkin and Ovchinnikov (LO) [148], superfluidity can even exist
above this limit when allowing for Cooper pairs which have a finite
center-of-mass momentum ℏq (Fig. 7.1). The resulting FFLO states
are striking because they have an order parameter that varies spatially
with periodicity δx = 2π/q.

In general, phases beyond the CC limit are not easy to explore
in superconductors because the magnetic field necessary to induce
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a spin-imbalance also couples to the orbital motion of the charged
electron, giving rise to a more stringent limit than the CC limit, the
so-called orbital limit [152]. This effect is absent in two-dimensional
layered superconductors, where the orbital effect is suppressed if the
magnetic field is parallel to the two-dimensional superconducting
planes. In these systems, several signatures for FFLO states have
been observed53, e.g. the upturn of the critical field beyond the Pauli

53 For a full review of FFLO signatures
in layered superconductors we recom-
mend Ref. [153].

limit [154, 155], the detection of spin-polarized quasiparticles [156],
and a spatial sinusoidal modulation of the spin density in nuclear
magnetic resonance measurements [157], but a direct evidence is still
missing [153].

Another way to avoid orbital effects is to utilize ultracold neutral
Fermi gases where the preparation process can be tailored to yield a
precisely controlled spin imbalance which is maintained due to small
relaxation rates between spin states. An overview over the existing
experimental studies of spin of spin-imbalanced Fermi gases in three
and two dimensions is given in the following sections.

7.2 Studies of 3D spin-imbalanced Fermi gases

Figure 7.2: Phase separation of a spin-
imbalanced Fermi gas in an harmonic
trap. The local density of majority (red)
and minority (blue) atoms shows that
the system is balanced in the center, and
the excess majority atoms are pushed to
the outer part of the trap. Here, a mea-
surement below the tricritical tempera-
ture is shown, where the local polariza-
tion shown in the lowest panel jumps at
the vertical dashed line. This proves that
a certain range of local polarizations is
not allowed and a first-order transition
occurs. Adapted from [158].

In the year 2006, the first imbalanced Fermi gases were realized in the
groups ofWolfgangKetterle (MIT) [52, 54, 158–165] and RandyHulet
(Rice) [166, 167]. Their findings were that an imbalanced Fermi gas
trapped in a three-dimensional harmonic potential undergoes phase
separation into an almost balanced superfluid central phase and a
normal imbalanced outer shell (Fig. 7.2, [158, 162, 166, 167]). For
temperatures below a tricritical point, the local polarization jumps at
the transition from the central superfluid phase to the outer normal
phase. Thus, there exists a region of forbidden polarizations which is
characteristic for a first-order transition, analogous to the first-order
transition in 3He-4He mixtures (see Fig. 7.3b).

In addition, they could demonstrate that the central phase is su-
perfluid by inducing vortices and that superfluidity vanishes in ac-
cordance with the CC limit (Fig. 7.4, [159]).Figure 7.3: (a) Finite-temperature phase

diagram of a unitary Fermi gas. At fi-
nite temperature, excess fermions can
mix with the superfluid paired phase
(blue area). Above a certain polariza-
tion, superfluidity breaks down and the
system becomes normal (green). Inter-
estingly, below a tricritical point a for-
bidden region (yellow) opens up where
excess fermions are not miscible and
phase separation has to occur, charac-
teristic for a first-order transition. (b)
The qualitative similar behavior is also
found in bosonic superfluid 4He. Here,
for a low fraction x of fermionic 3He the
system stays superfluid while it breaks
down above a certain temperature de-
pendent 3He concentration. Similarly to
the unitary Fermi gas, below a tricritical
line, the superfluid to normal transition
becomes first order and region where
phase separation occurs opens up.

(a) Phase-diagram of the spin-
imbalanced unitary Fermi gas. Adapted
from [158].

(b) Phase-diagram of a 3He −4 He mix-
ture. The pressure axis does not exist in
a). Adapted from [168, 169].
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Figure 7.4: Observation of superfluidity
in a 3D Fermi gaswith a spin-imbalance.
In both the BEC and the BCS regime,
systems with decreasing imbalances are
prepared from the left to the right. Be-
low a certain imbalance, a regular vor-
tex lattice becomes visible in the central
part of the cloud proofing superfluidity.
Adapted from [159].

The exciting realization of imbalanced Fermi gases spurred a mul-
titude of further experiments. Some of them focused on the normal
polarized state, for instance studies of the normal ground state [52]
as well as the Fermi polaron and its transition to a molecule in the
BEC regime [165]. In addition, the normal to superfluid transition
driven by imbalance rather than temperature was studied [160]. As
discussed in Sect. 2.4.1, a small imbalance can also be used to create
quasiparticle excitations on top of a balanced gas to study the pair-
ing gap using RF spectroscopy [54]. Another important study done
in the group of C. Salomon measured the equation of state of an im-
balanced Fermi gas [170]. In this work, the pressure as a function of
the interaction strength and the chemical potential of both spin com-
ponents was extracted. In particular, they could benchmark quantita-
tive results from the balanced core against many-body theories for a
balanced gas in the BEC-BCS crossover, including the 3D QMC calcu-
lations [44] used in the previous chapter.

The FFLO state could not be observed in these experiments with
ultracold 3D gases. This is not surprising as in three dimensions the
FFLO phase is only predicted to exist in a small area of the phase
diagram and at very low temperatures T/TF < 0.05 [171]. These
issues may be of less importance in lower dimensions, where the
FFLO phase is expected to be more stable due to a larger overlap of
both Fermi surfaces. According to [172], 2D systems are particularly
promising candidates for the observation of FFLO phases whereas in
1D the competition by other phases, namely, charge densitywaves and
spin density waves, is stronger. This is, however, debated as it has
for instance been shown that the role of dimensionality becomes less
important for strong interactions [173].

7.3 Studies of 2D spin-imbalanced Fermi gases

So far, two studies of two-dimensional imbalanced Fermi gases have
been reported [174, 175]. In the first experiment [174] from the group
of J.E. Thomas (North Carolina), quasi-2D Fermi gases were realized
by loading multiple layers of a 1D optical lattice and confining the
gas in the radial direction with a harmonic potential. Interestingly,
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Figure 7.5: Phase separation of an 2D
spin-imbalanced Fermi gas at 780G in
a harmonic trap for global polarizations
P = 0.25, 0.55, 0.75 (a-c). The yellow,
red and blue lines show the radial den-
sity of the majority, minority and their
difference, respectively. The lower row
shows the corresponding radial density
after 3ms ToF and a double Gaussian fit
to the data. Adapted from [175].

the experimental results show a qualitatively similar behavior to that
of 3D imbalanced Fermi gases. In the BEC regime, the found that
the excess atoms are pushed out of the central region resulting in
a balanced center. In the BCS regime, the balanced region shrinks
to a central point such that the imbalance increases continuously for
increasing radii. In this regime, they found reasonable agreement
with a 2D polaron model.

The second experiment [175] from the group of Waseem Bakr
(Princeton) realized an imbalanced Fermi gas in a single layer of a
1D optical lattice. Consistent with the results in the Thomas group,
they observed that in the case of low global imbalances, the central re-
gion has an imbalance of zero. Towards larger radii, the imbalance in-
creases continuously (Fig. 7.5). In addition, they observed a bimodal
structure after a short time of flight for systems in the BEC regime and
interpreted this as first evidence for pair condensation in the central
region. Interestingly, this indication for pair condensation also ap-
peared when the central region was slightly imbalanced. However,
as mentioned in Ref. [11], it should be noted that although pair con-
densation is expected, a bimodal structure has also been observed in
weakly repulsive 2D Bose gases that were not condensed [176] and
2D Fermi gases that were above the critical temperature [139].

Currently, several open questions remain. The first question con-
cerns the order of the transition from the balanced central to the outer
imbalanced region. If the central balanced region is superfluid, this
phase should transition at a specific radius into a normal phase as
the superfluid phase cannot support a particular imbalance anymore.
If this phase transition is of first order, a jump in the local imbal-
ance should occur at this radius. Although it is predicted in two-
dimensional mean-field theory at zero temperature, there are no in-
dications of such a jump and, thus, experimental evidences of a first-
order transition are missing so far. It is unclear whether the first-order
transition is absent due to increased quantum fluctuations in 2D or
whether the temperatures T/TF = 0.1 [175] reached so far were too
high, as these are close to the critical temperatures of a balanced two-
dimensional Fermi gas in the crossover regime measured in [139].
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One difficulty in these measurements is to reliably detect the jump
of polarization after radial averaging at a specific radius. We can
revisit this question in a different potential, a box potential. Here, the
absence of a harmonic confinement does not favor the formation of
a central balanced core. Instead, if a first-order transition is present,
one expects at a spontaneous formation of superfluid domains with a
small imbalance and normal domains, which contain all remaining
excess fermions. This separation into domains could be observed
directly with in situ imaging. If the phase transition is of second order,
no formation of domains occurs. Instead, we would observe for all
imbalances a homogeneous density distribution. This homogeneous
gaswould be depending on the imbalance either superfluid or normal.

The nature of the phase brings us to the second remaining question.
Up to now it has been unclear whether the central region observed
in imbalanced 2D Fermi gases is superfluid. Bragg spectroscopy
introduced in the first part of my thesis should give us a direct way
to measure the critical velocity in different imbalanced phases. If we
find a first-order transition, a nucleation point, whichwe can addwith
aweak harmonic confinement in our trap, will nucleate the superfluid
phase in the central part of the trap such that we can probe this region
andnot the normal phasewith a Bragg lattice. If a first-order transition
is missing, this is not needed, and we can probe the imbalanced gas,
which has a constant density and imbalance throughout the box trap.

In the following chapters, wewill show imbalanced quasi-2D Fermi
gases which show no signs of a first-order transition but indications
that they are superfluid.





8 PREPARING A SPIN-IMBALANCED 2D FERMI GAS

8.1 Overview of the preparation

In this chapter, the preparation of an imbalanced two-dimensional
Fermi gas is described. This preparation is challenging as we have
to remove particles from one spin state. This produces holes deep in
the Fermi sea, which requires substantial extra cooling afterwards. An
additional challenge arises around the question of when and how to
make the transition to a 2D system. Reaching an imbalanced Fermi
gas in 2D hence requires considerable experimental finesse, yet the
effort has allowed us to create imbalanced Fermi gases close to the 2D
regime (kBT ≪ ℏωz, μ ≈ ℏωz) which are at least a factor of 2 colder
than previously reported.

Figure 8.1: Preparation scheme for a
spin-imbalanced Fermi gas. Three dif-
ferent spin states, the lowest three hy-
perfine states |1⟩ (blue), |2⟩ (red) and
|3⟩ (yellow) are depicted as dots.

In short, the preparation scheme is sketched in Fig. 8.1. It consists
of the following steps:

a) We start in an attractive oblate dipole trap (the squeeze trap) with
a balanced 2D gas with N1 = N2, where N1 and N2 denote the
number of fermions in the lowest two spin states.

b) Then, the balanced gas is transferred into a single minimum of a
repulsive 1D lattice (the accordion trap) in order to enter the 2D
regime. To create an imbalance, the gas is first adiabatically ramped
into the deep BCS regime to reduce interactions.

c) Here, a partial transfer of atoms from the 2nd to the 3rd lowest
hyperfine state is performed,

d) followed by a removal of atoms in the third state with resonant
light. The removal heats up the remaining atoms considerably,
since holes in the second lowest spin states are introduced at all
energies. In addition, the ejection procedure itself imparts some
momentum to the remaining atoms.

e) Hence, an additional evaporation step is performed in the final box
potential.

Figure 8.2: Temperatures obtained for
different imbalances P after the last
evaporation step.

The removal of some atoms results in a lower number of minority
atoms N2 than majority atoms N1, which yields a finite global polar-
ization defined by

P = N1 − N2
N1 + N2

, (8.1)

such that P = 1 corresponds to a fully polarized gas and P = 0
to a balanced gas. With the preparation scheme sketched above, we
achieve temperatures of T/TF = 0.05 ± 0.01 for global polarizations
of P = 0.17 ± 0.06 in the BEC regime (Fig. 8.2). These temperatures
are significantly lower than the T ∼ 0.1TF reported previously [175]
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and nearly as cold as the coldest balanced 2D systems reported with
T ∼ 0.03TF [177]. For larger polarizations, the temperature starts to
increase because more momentum is added to the remaining atoms
during the ejection scheme and the evaporation becomes less efficient
as fewer particles remain in the trap.

The following is a detailed discussion of the preparation scheme for
the reader interested in the technical details. The important question
of whether the imbalanced homogeneous systems we prepare are
superfluid will be discussed in the next chapter 9.

8.2 Detailed discussion of the preparation

8.2.1 Step 0: Creating a balanced 2D Fermi gas

We will begin discussing the preparation scheme by starting with
evaporative cooling in the squeeze trap, followed by the transfer into
the 2D trap. During these steps, the number of atoms in both the
lowest and second lowest hyperfine states remains equal, resulting in
a balanced mixture.

After the MOT phase and first evaporative cooling in a resonator
enhanced dipole trap, the atoms are transferred to the science cell
using a transport trap. In the science cell, the magnetic field is ramped
from 0 to 870G and an evaporation from 5W to 200mW is performed
within 1 s. Then, the atoms are loaded in 100ms into the squeeze trap
at 1W. In the following, the magnetic field is ramped in 300ms to the
BEC regime at 750G. Here, the squeeze trap is then evaporated in 1 s
to a power of 25mW still retaining a relatively high atom number for
further evaporation. During the evaporation a well-defined spilling
threshold is created by adding a vertical potential gradient via a
magnetic field gradient. While this first evaporation to a rather low
trap depth already resulting in quantum degenerate gas is in principle
not strictly required, it is necessary to reduce the strong initial relative
particle number fluctuations of well over 20 % to below 5 %.

Next, the balanced cloud of atoms is transferred to the 2D trap
in several steps. In the first step, the gas is loaded into the radially
confining repulsive ring trap. To decrease the cloud size such that
the cloud fits into the ring, the squeeze trap is slightly compressed
by increasing it from 25mW to 50mW in 200ms before turning on
the ring potential in 50ms up to a value of 11mW. Then, the field is
ramped adiabatically to 832G in 200ms. Now, the adiabatic transfer
into the final vertical confinement, the accordion lattice, happens in
four steps:

1. First, the accordion lattice is set to a large lattice constant of 20µm
and the power is increased from 0 to 250mW in 300ms. This power
is a trade off between two requirements: First, the potential barrier
between two lattice minima should be high enough to suppress
tunneling to the adjacent layers. We found experimentally that this
requires powers above 200mW. The second requirement is that the
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transfer is adiabatic. Here, a shallow lattice with lower potential
gradients helps as it reduces the necessary timescales needed for
an adiabatic transfer.

2. After the accordion lattice is turned on, the squeeze trap is turned
off linearly in 300ms, releasing the atoms into one layer of the large
accordion lattice.

3. Then, by moving a galvo mirror, the accordion lattice constant
is reduced continuously from 20µm to 3µm in 200ms which
compresses the gas adiabatically. We found that releasing the
atoms from the squeeze trap before the final compression of the
accordion lattice is crucial for an adiabatic transfer. A potential
cause for this may be a slight vertical misalignment between the
attractive squeeze trapmaximum and the targetedminimum of the
compressed accordion trap, resulting in a vertical oscillation of the
gas, even when the transfer is relatively slow.

4. In a final step, the accordion power is ramped up from 250mW to
500mW in 50ms to reach a vertical trapping frequency of 9 kHz.

Using an accordion lattice has the advantage that the initial load-
ing can start at a large lattice constant of 20µm. Therefore, it is always
guaranteed that the atoms are loaded into a single layer, even if there
is a slight vertical misalignment of the squeeze trap with respect to
the vertical lattice minimum. The vertical lattice used in previous ex-
periments had a static lattice constant of 3µm and required regular
alignment with respect to the squeeze trap to avoid occupation of ad-
jacent layers. The accordion lattice setup is described in Appendix F.

8.2.2 Techniques to create an imbalance in a 2D Fermi gas

By loading the gas into a single vertical layer we prepared a quasi-2D
Fermi gas with a balanced mixture of the lowest two hyperfine states
|1⟩ and |2⟩. To increase readability we will use the numbers 1,2, and
3 in the following to refer to the states |1⟩, |2⟩, and |3⟩. In the next
step, we will remove some atoms in one hyperfine state to create an
imbalanced gas.

For that, we will discuss the following two techniques54: 54 Another possible way to remove one
spin state is a spin-selective dipole trap.
This can be done with light closely de-
tuned to the D1 and D2 transition to in-
duce an electric dipole moment of op-
posite sign for both spin states. How-
ever, the small fine structure splitting of
6Li and the corresponding large spon-
taneous scattering rates of these closely
detuned traps make this method im-
practical.

1. Spin-selective magnetic trapping. Here, a static difference of the
magnetic dipole moment of both spin states is combined with a
magnetic gradient, which allows to spill only atomshaving one spin
from the trap. This method requires the two spin states to have
substantially different magnetic moment, which is only the case for
fields well below 100G, i.e. well below the fields at which broad
Feshbach resonances exist. Particularly at B ≈ 27G, the magnetic
moment of the state 2 becomes zero. Here, amagnetic field gradient
allows one to just spill atoms in state 1. This method has been used
in the Princeton group studying imbalanced 2D Fermi-Hubbard
systems55 [178].

55 In that work, the final magnetic field
was always below the broad Feshbach
resonance such that the Fermi gas is al-
ways in the upper branch of the Fesh-
bach resonance and no bosonic dimers
are formed.



84

Figure 8.3: (a) According to the Breit-
Rabi equation (Appendix E, Eq. E.2),
the ground state 2S1/2 of 6Li splits into
six hyperfine states. They are labeled in
ascending energy from |1⟩ to |6⟩. For
large fields the coupling to the elec-
tron spin mj = ±1/2 dominates result-
ing in two triplets of high- and low-
field seeking states. (b) We restrict our
self to high-field seekers. For a radio-
frequency transfer, the magnetic field
must be varied with a frequency corre-
sponding to the energy difference be-
tween states (|1⟩-|2⟩) or (|2⟩-|3⟩).

2. Ejection of one spin state with resonant light. In this method,
one spin state is removed with light resonant with the D1 or D2
transition.

The second method, ejection of one spin state with resonant light,
was first used in the study of the 2D bulk system in the Princeton
group [175]. We follow this method with some modifications56 (as

56 In Ref. [175] the RF transfer and the
subsequent removal of atoms in state
3 was done at the zero crossing of the
1-2 scattering length at 537G. Then
the magnetic field was ramped to large
fields∼ 800G for evaporation and the fi-
nal experiment. When the Feshbach res-
onance is approached frombelow allmi-
nority atoms will start to pair up with
majority atoms to populate the Feshbach
molecule branch at lower energy. The
corresponding binding energy is trans-
ferred to kinetic energy in 3-body col-
lisions. Most of this resulting heat was
probably removed by the final evapora-
tion step. When ramping down from
a cold system at 832G, the zero cross-
ing of the 1-2 scattering length at 537G
cannot be accessed because all atoms
are lost due to the decay of Feshbach
molecules into lower lying vibrational
states.

in Ref. [174]). In this method detrimental effects one has to consider
are off-resonant scattering from the other spin state and the possibility
that an atom absorbs photons yet does not leave the trap but rather
heats up the remaining atoms. Therefore, the atoms to be removed
are first transferred to spin state 3, such that the ejection light pulse is
off-resonant with state 1 and 2. Here, starting with an initial balanced
mix of state 1 and 2 evaporated at 832G, the magnetic field is ramped
to B ∼ 1000G to decrease the scattering length between all three spin
states. At this field, an RF transfer from 2 to 3 is performed and all
atoms in state 3 are ejected using resonant light.

This scheme, as we shall see, has the unfortunate disadvantage that
at high magnetic fields no zero crossing of the scattering length exists
such that the spin states are always interacting, making removal of one
spin state without heating by momentum transfer to the others more
difficult. However, the practical advantages are that we can use the
stable atom number after the efficient evaporation in the squeeze trap
at high magnetic fields57. An additional advantage is that no heating

57 We will remove the in-vacuum res-
onator from the preparation chain in
the future and load atoms directly from
the MOT into a deep transport trap cre-
ated with a 200W 1064nm laser. This
will eliminate the evaporation in the
resonator-enhanced dipole trapwhich is
a dominant source to the particle num-
ber instabilities and allow us to imple-
ment preparation schemes using spin-
selective magnetic trapping.

can occur due to the formation of Feshbach molecules because we do
not ramp a cold gas from low magnetic fields to the broad Feshbach
resonance.
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Figure 8.4: Rabi oscillations of state 2
and 3 with a Rabi rate of ΩR = 2π ⋅
1.2MHz. We observe here a slow de-
crease of all densities involved. Particu-
larly, we observe that the density in state
1 which does not participate in the Rabi
oscillation goes down. The likely reason
for that are three-body losses.

8.2.3 Step 1: Radio-frequency transfer

In this section, wewill discuss the first step of the imbalance procedure
in detail, the RF transfer of atoms from state 2 to state 3.

After preparing the 2Dgaswith a balanced 1-2mixturewe ramp the
magnetic field to 1000G in 250ms tominimize the interaction strength
between 3-1 and 3-2 during and after the resonant pulse. Here, all
pair-wise 3D scattering lengths are negative (see Fig. 2.3) such that
in 3D no bound states and in quasi-2D only shallow confinement
induced bound states exist. At the same time, we ramp the ring
potential from 11mW to 17mW to avoid spilling atoms when the
chemical potential and temperature increases during the creation of
the spin-imbalance. For the RF transfer, we place a one-loop coil close
to the atom position to rapidly vary the magnetic field B. Positioning
it as close as possible to the atom position is crucial, as measurements
with a pick-up coil showed a reduction in intensity I ∝ B2 of about
5 dB every 1 cm.

In order to transfer atoms from state 2 to 3 at 1000G, we induce
Rabi oscillations between state 2 and 3 by turning on the RF of58 58 We compensate for small variations

in the magnetic field by optimizing the
frequency for maximum transfer at a
short pulse length.

νRF = 80.9MHz (see Fig. 8.3 in Appendix E). Here, atoms in state 1
do not participate in the Rabi oscillation because the 1-2 transition is
far detuned (νRF = 76.5MHz). As long as the RF is turned on, the
Rabi oscillation creates a two-component mixture of atoms in state 1
and atoms in a time-varying superposition of state 2 and 3.

To characterize the temporal behavior, decoherence and possible
loss mechanisms, we vary the time the RF stays on and immediately
image atoms in state 1,2, and 3 afterwards (Fig. 8.4). As expected, we
observe a Rabi oscillation between state 2 and 3 with a Rabi rate59 of 59 As discussed further below, we later

increase the Rabi rate to ΩR = 5.5 kHz.ΩR = 2π ⋅ 1.2 kHz. In addition, we observe that the number of atoms
in state 1 and the total number of atoms in state 2 and 3 decreases with
a lifetime of τ = 9ms.

As will see next, the likely reason for these losses are inelastic
collisions where two atoms form a deep dimer while providing the
excess energy to a third atom. In principle, this process is not allowed
for a two-component mixture because the three-body collision has to
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Figure 8.5: Measurement of the
three-body recombination of a three-
component mixture shows a lifetime
of 1ms. The solid lines are fits of an
expontial decay.

involve at least two identical fermions which is not possible for s-wave
scattering. Thus, the observed losses hints to a slow decoherence ofThe three-body recombination rate

can be enhanced due to Efimov reso-
nances which are discussed in detail in
Ref. [179]

the coherent 2+3 superposition into states 2 and 3, creating effectively
a three-component mixture which allows for inelastic collisions. In
order to characterize the time scale of these inelastic collisions, we
prepare a three-componentmixture by applying an RF pulse of length
t ≈ Ω−1

R π/2, which creates a three-component mixture with relative
densities n1 ∶ n2 ∶ n3 ≈ 60 % ∶ 22 % ∶ 18 %. Then, after turning off the RF,
we wait for a varying time to observe the in situ losses due to three-
body recombination by imaging all three states (Fig. 8.5). For all three
states, we observe a lifetime of approximately 1ms.

The heating from three-body losses can be neglected when the
amount of atoms which decohere during the RF pulse is small, which
is the case if the RF pulse length is significantly smaller than the
lifetime of 1ms. This is not the case for the Rabi oscillations shown
in Fig. 8.4, but by optimizing the RF coupling to the coil we could
increase the Rabi rate to ΩR = 2π ⋅ 5.5 kHz, which allows for a π/2
pulse in ∼ 100µs.

However, we encountered instabilities in the ratio of transferred
atoms when using a Rabi pulse, possibly due to a experimental fluc-
tuations of the pulse length. Instead, we found that a Landau-Zener
transition [180] is more stable. A Landau-Zener transition works by
detuning the RF frequency continuously over a range 2πΔf ≫ ΩR cen-
tered on the resonance between both hyperfine states. If the sweep of
the RF frequency is performed sufficiently slowly, this allows for an
adiabatic transfer of all state 2 atoms to state 3 atoms. Thus, we can
achieve the same effect as if we would apply a resonant π-pulse. If
instead a fast sweep is performed, a diabatic passage occurs and all
atoms stay in their hyperfine state 2. Thus, by varying the sweep rate
ω̇ of the RF frequency the fraction of atoms transferred from 2 to 3 is
given by the probability for an adiabatic transfer6060 Where ΩR = 2πνR and ω̇ = 2πν̇.

PLZ = 1 − exp(−2πΩ2
R

ω̇ ). (8.2)
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Figure 8.6: Resulting population of
atoms after a narrow Landau-Zener
(LZ) sweep from 2 to 3. After the LZ
sweep, atoms in state 3 where ejected
as discussed in the next section and are
therefore not shown here. The pop-
ulation in state 2 show here an oscil-
latory behavior because the condition
2πΔf/ΩR ≫ 1 is not fulfilled, which
results in so called coherent Landau-
Zener oscillations. Sweep rates between
80MHz/s and 90MHz/s allow for a
quick and stable transfer of atoms from
state 2 to 3.

In the experiment, we see that the range of sweep rates between
80MHz/s and 90MHz/s allows us to quickly transfer a varying
fraction of atoms from state 2 to state 3 (Fig. 8.6). The transfer in this
range happens during a sweep time of less than 200µs and is therefore
sufficiently short to avoid three-body losses. Thus, we have found a
reliable way to transfer a varying number of atoms from state 2 to state
3. In Sect. 8.2.4, we will remove all atoms transferred to state 3 with a
resonant light pulse.

For completeness, the complex dynamics observed in Fig. 8.6 are
discussed inmore detail below. In short, it originates from the fact that
we perform frequency sweeps over a frequency range Δf too narrow
for Eq. 8.2 to hold. Themotivation behind the narrow frequency range
is to limit the sweep time and associated losses. Due to the narrow
sweep state 2 does not follow the drive adiabatically to state 3 but
coherent oscillations between state 2 and 3 occur.

The sweep time is reduced to address the situation where atoms in
state 2 are only partially transferred to state 3, resulting in a three-body
mixture already present during the sweep. This three-bodymixture is
susceptible to three-body losses, making it crucial to keep the sweep
time short. Unfortunately, with our experimentally achievable Rabi
rate a proper Landau-Zener transition where the relative frequency
range obeys 2πΔf/ΩR ≫ 1 and the transition rate ω̇ is much smaller
than Ω2

R is too slow to avoid three-body losses. Therefore, we restrict
the frequency sweep to a narrow frequency range of just Δf = 16 kHz.

The remaining atoms in state 2 and 1 after such a transfer are shown
in Fig. 8.6. The oscillations61 observed in Fig. 8.6 occur because the 61 Later measurements revealed that the

dynamics shown here are still oscilla-
tory for sweep rates above 100MHz/s

condition 2πΔf/ΩR ≫ 1 necessary for the Landau-Zener formula to be
valid, is not fulfilled for 2πΔf/ΩR ≈ 3. Instead, we see here coherent
driving during the frequency sweep causing a so called coherent
Landau-Zener oscillations [181].
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Figure 8.7: Characterization of an 2µs
ejection pulse resonant with state 3. For
each panel, a different initial mixture
was prepared using an RF pulse: (a)
balanced 1-3 mixture, (b) 1,2,3 mixture
with ratios 50 % ∶ 25 % ∶ 25 %, (c) bal-
anced 1-2 mixture .

8.2.4 Step 2: Ejection of the third state

In this section, we discuss in detail the removal of all atoms in state
3 with a resonant light pulse. This step is done immediately after
the RF transfer from state 2 to state 3 in order to avoid heating and
losses due to three-body recombination. We are using the same beam
used for absorption imaging but tune the light frequency such that it
is resonant with state 3.

To find out how much light intensity we need to remove all atoms
in state 3, we prepare a two-component 1-3 mixture (Fig. 8.7 a) using
an RF transfer. Then atoms in state 3 are ejected with varying light
intensities for a pulse length of 2µs followed by a magnetic field
ramp time of 200ms before imaging state 1 or 3. The intensities are
normalized by the saturation intensity

Isat = πhcΓ
3λ3 . (8.3)
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Weobserve that intensities of I ≳ 0.2Isat seem to be sufficient to remove
all atoms in state 3.

As discussed further below, we find in the measurements per-
formed in Fig. 8.7 b and Fig. 8.7 c that it is optimal to select an intensity
of I = 0.3 Isat. This intensity is high enough to remove all atoms in state
3 fast enough to minimize collisions with state 1 and 2 atoms and it is
small enough such that off-resonant scattering with 1 and 2 does not
lead to strong losses.

We start the more in-depth discussion, by characterizing what hap-
pens after a partial transfer by preparing a 1-2-3 mixture62 using an 62 The initial density ratios in this mea-

surement are 50 % ∶ 25 % ∶ 25 %.appropriately chosen RF transfer (Fig. 8.7 b). As in the first measure-
ment, we apply the ejection pulse resonant with state 3 with varying
intensities. We see that regardless of the intensity, all atoms in state 3
are gone. This is expected for intensities I ≳ 0.2 Isat where all atoms
in state 3 are directly removed by the ejection pulse. To understand
what happens for low intensities I ≲ 0.2 Isat, we have to consider the
observed losses in state 1 and 2. Apparently, atoms in state 3 are lost
due to three-body recombination with atoms in state 1 and 2 during
the 200ms ramp time before imaging.

There are two additional effects alongside three-body recombina-
tion, namely, off-resonant scattering at large intensities and interac-
tion effects at low intensities, which we will discuss in the following.
We can investigate off-resonant scattering exclusively by preparing a
1-2 mixture and keeping the ejection pulse still resonant with the now
unoccupied state 3 (Fig. 8.7 c). We observe that the density in both
state 1 and state 2 starts to decrease at I ≳ 0.1 Isat (Fig. 8.7 c). The rela-
tive loss of atoms in state 2 and state 1 is 25% at I = Isat. Theoretically,
the expected off-resonant scattering rate follows63 63 For Δ ≫ Γ the equation can be sim-

plified to ΓSC = 3πc2
2ℏω3

0
(γ/Δ)2 I(r) [182]

ΓSC = Γ
2

I/Isat
1 + I/Isat + ( 2Δ

Γ )2 (8.4)

for a detuning Δ, natural linewidth Γ, and intensity I normalized by
the saturation intensity (Eq. 8.3). By inserting Γ/Δ = 6MHz/80MHz
we obtain a scattering rate of Γ = 0.026µs−1 at I = Isat for state 2.
Thus, the resulting losses due to spontaneous scattering should only
amount to 5% (1%) for state 2 (1) within the 2µs pulse time. The
exact reasons for the significantly larger losses observed both in state
2 and especially, in state 1, are unknown. One possible explanation,
a broader laser linewidth, was excluded by beating the laser with a
second laser and observing a linewidth below 1MHz. We suspect that
a broad spectral underground may be the cause for the unexpected
losses.

To shed light on the second effect, i.e. heating and subsequent loss
of state 1 and 2 atoms caused by collisions with the accelerating state
3 atoms, we revisit the measurement with a balanced 1-3 mixture
shown in Fig. 8.7 a. Here, we would naively expect that state 1 is
only effected by off-resonant scattering which we observed in the 1-2
mixture (Fig. 8.7 c). However, quite surprisingly, the number of atoms
in state 1 follows the number of atoms in state 3 for low intensities.
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Only above a threshold intensity of I ∼ 0.1 Isat, the state 1 density
decouples from atoms in state 3.

We explain the decrease of atoms in state 1, which is strongest
around I ∼ 0.06 Isat, by the fact that the scattering length a13 is still
large at 1000G resulting in a strong interaction between the ejected
state 3 and state 1. Here, one possible explanation is that atoms in
state 3, after absorbing a photon, may transfer some momentum to
atoms in state 1, causing them to leave the trap instead. The same
behavior should be true for the interaction between 2 and 3 because
the scattering length between these has a similar amplitude.

Figure 8.8: Zoomed-in plot of Fig. 8.6.
The coherent Landau-Zener sweep is
combined with the ejection pulse to pre-
pare systems ranging from full polar-
ized (left) to a balanced system (right).

With all these effects in mind, we have to choose an intensity for
the ejection pulse whichminimizes the discussed losses. The heuristic
approachweuse is quite simple. We choose the intensitywhich results
in the largest number of remaining atoms in state 1 and 2, which
is I = 0.3 Isat (Fig. 8.7 b). This will yield the highest density and
thereforemost efficient evaporation in the next step. In conclusion, we
can combine now the coherent Landau-Zener sweep with the ejection
of atoms in state 3 to prepare systems stretching from a balanced gas
to a fully state-1-polarized gas (Fig. 8.8).

8.2.5 Step 3: Final evaporation

Figure 8.9: a) Sketch of 2D Fermi dis-
tribution in state 1. b) Sketch of the
2D Fermi distribution in state 2 after
a momentum independent removal of
some fermions using radio frequency.
c) This leads to a uniform decrease in
the occupation number n(k) (dashed
lines) which causes after thermalization
a broadening of both Fermi distributions
(solid lines).

After creating the particle imbalance using the RF sweep and ejection
pulse in the last two sections, we face one problem: Initially, we started
with a cold balanced system where in the T = 0 non-interacting limit
all states up to the Fermi momentum are filled. With the RF transfer,
however, we removed some atoms in state 2 independent of their
momentum. Therefore, the momentum distribution in state 2 now
contains many holes, even deep within the Fermi sea (Fig. 8.9). If we
just let the system thermalize, the momentum distribution will again
approach a Fermi-Dirac distribution but with a significantly increased
temperature. On top of this effect, we expect additional heating due
to the two effects discussed above, i.e. the off-resonant scattering from
the ejection pulse and the momentum transfer from ejected state 3
atoms.

Therefore, we perform a final evaporation by reducing the height
of the radial ring potential. To increase the evaporation efficiency,
we increase the atom density by shrinking the diameter of the ring
confinement. For that, we utilize the fact that the ring diameter tapers
towards the top (see 3D box in Fig.3.1) and adjust the trap position
vertically by moving the upper microscope objective responsible for
projection the ring potential onto the atoms.

For the final evaporationwe study a systempreparedwith an initial
spin-imbalanced of P ≈ 0.2 (Fig. 8.10).

We ramp the magnetic field in 200ms from 1000G created by the
Feshbach coils to 832G created by the Helmholtz coils in order to
increase interactions and remove the residual underlying harmonic
potential caused by the Feshbach coils. Thus, only the antitrapping of
ωr ∼ 2πi ⋅ 24Hz from the accordion lattice remains and evaporated
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Figure 8.10: Characterization of the fi-
nal ring evaporation starting with a po-
larization of P = 0.17 ± 0.09. (a) The
evaporation leads immediately to a loss
of atoms in state 1. (b) This balances the
gas and results in P = (N1 −N2)/(N1 +
N2) = 0. (c) At the same time, the evap-
oration reduces the absolute tempera-
ture TBEC measured in the BEC regime.
While the loss of particles lowers the
Fermi temperature of the corresponding
balanced system TF, (d) shows that the
normalized temperature is still reduced
by the evaporation.

atoms do not accumulate outside the ring potential but leave the
system.

Then, we reduce the ring potential within 1 s from 17mW to a
varying power to perform forced evaporation (Fig. 8.10). We see that
the evaporation removes more atoms in state 1 because the chemical
potential of state 1 is higher than of state 2 (Fig. 8.10 a). This results in a
tendency to balance the gas (Fig. 8.10 b). Tomeasure the temperature,
we perform matter-wave imaging by ramping the system into the
BEC regime and performing a ToF measurement. This technique,
explained in more detail in the next chapter, is based on performing
a Boltzmann fit to high momentum tail of the dimers to obtain a
temperature in the BEC regime TBEC (Fig. 8.10 c).

If we divide this temperature in the BEC regime by the Fermi tem-
perate corresponding to the Fermi energy of the balanced system
with the same number of fermions we obtain a normalized tempera-
ture64 of TBEC/TF = 0.04 ± 0.01 at polarizations of P = 0.17 ± 0.06 64 In later experiments which are dis-

cussed in the next chapter, the temper-
ature increases slightly to TBEC/TF =
0.05 ± 0.01.

(Fig. 8.10 d). We observe that the polarization decreases for lower
evaporation powers as excess majority atoms are spilled preferably.
Thus, the system is balanced for evaporation powers below 10mW.
While the normalized temperature, TBEC/TF, is reduced by about 50 %
from 15mW to 10mW, we choose a rather high evaporation depth of
15mW in order to minimize the loss in polarization. After preparing
these spin-imbalanced systems we proceed now to next the section,
wherewe analyze the density profile, themomentumdistribution and
the excitation spectrum of these gases in more detail.





9 STUDY OF SPIN-IMBALANCED 2D FERMI GASES

In this section, we discuss the experimental results obtained using
the imbalanced Fermi gases as prepared in the last chapter. We first
study the density profiles and the momentum distribution of the
imbalanced gas trapped in a box potential. Then, we discuss the
excitation spectrum obtained using Bragg spectroscopy. In chapter 10,
we discuss how these results could match the theoretical predictions.

9.1 Density profiles and momentum distribution

The preparation method discussed in the last chapter allows us to
prepare a cold (TBEC/TF < 0.1) imbalanced system for a global
polarization of up to P ≈ 0.25 (Fig. 9.1).

We examine exemplary density profiles in Fig. 9.2 a for a gas with a
global polarization65 of P = 0.17 ± 0.06 and TBEC/TF = 0.05 ± 0.01 at 65 The corresponding particle ratio is

N1 ∶ N2 = 41.5 % ∶ 58.5 %.a Feshbach field of B = 832G, which would correspond to the unitary
point in 3D. For each spin state we average over ∼ 20 realizations and
determine the total polarization using the average density in both spin
states. Most of the given error in the polarization comes from a 5 %
single-shot density fluctuation and could be eliminated in the future
by imaging both spin states in one realization simultaneously. The
3D unitary point corresponds to an effective 2D interaction strength
(Eq. 4.7) of ln(kFa2D) = 0.6 at our densities. Surprisingly, the density
distribution of both state 1 and state 2 is homogeneous and we do not
see any formation of domains. Consequently, the local polarization
p = (n1 − n2)/(n1 + n2) is nonzero and almost constant throughout
the system (Fig. 9.2 b).

Figure 9.1: Overview of imbalanced
Fermi gases after final evaporation. The
x-axis shows the final polarizationwhile
the y-axis shows the temperature mea-
sured in the BEC regime. It is normal-
ized by the Fermi temperature TF cor-
responding to the non-interacting bal-
anced system with the same number of
atoms.
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Figure 9.2: (a) Density distribution of
spin-imbalanced Fermi gas with a po-
larization of P = 0.17 ± 0.06 imaged
at 832G of the majority (left), minority
(center) and the difference (right). The
observed density distribution is flat and
does not show any sign of phase sepa-
ration. (b) The radial average shows a
slight increase in the center of the trap.
(c) A ToFmeasurement of the same sys-
tem at 750G does not shows a bimodal
distribution. A Gaussian fit to the high
momentum distribution of the minority
results in a temperature of TBEC = 36 ±
3nK.
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The 2D densities averaged over the ring are n1 = 1.55µm−2, n2 =
1.1 µm−2 which corresponds to a 2D Fermi energy

EF = ℏ22π
2m ntotal = ℏ24π

2m
n1 + n2

2 = h ⋅ 14 kHz (9.1)

in the limit of a noninteracting Fermi gas. If we compare this with
the vertical trapping frequency of νz = 9 kHz we notice that the
noninteracting Fermi gas populates both the ground state and the first
excited state66. Thus, we are not strictly in the 2D limit EF < ℏωz, but66 This reduces the Fermi energy of the

non-interacting gas by18% compared to
the 2D Fermi energy (Eq. 9.1) we use in
our analysis.

in the 2D to 3D crossover, where the occupation of the ground state
and the first excited state has an effect on the density of states.

To obtain insight into the temperature of the gas, we ramp the same
system adiabatically to the BEC regime at B = 750G (ln(kFa2D) =
−1.7) and perform matter wave imaging to project the momentum
distribution onto the density distribution [81]. To do this, we let the
gas evolve for a time of flight (ToF) of t = T/4 in the remaining
magnetic harmonic potential with a radial trapping frequency of ωr =
2π⋅27.3Hz before performing absorption imaging of either state 1 or 2.
In the BEC regime, all minority atoms in state 2 form bosonic dimers
with a corresponding atom in state 1. The excess majority atoms in
state 1 remain unbound fermions. Thus, the momentum distribution
of state 2 atoms directly reflects the momentum distribution of all
dimers.

The ToF measurement reveals a bimodal structure for both state
1 and state 2 (Fig. 9.2 c). We perform a Boltzmann fit to the high-
momentum wing of state 2, which should exclusively consist of
dimers with mass md = 2m, and extract a temperature of TBEC =
36 ± 3nK. If we divide this temperature by the Fermi temperate cor-
responding to the Fermi energy of the balanced systemwith the same
number of fermions (Eq. 9.1), TF = EF/kB = 670nK, we obtain a nor-
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1 Figure 9.3: (a) Bragg spectroscopy of
an imbalanced Fermi gas with EF,1 =
h ⋅ 12.2 kHz, EF,2 = h ⋅ 9.7 kHz and P =
0.11 ± 0.06. At low momentum, a lin-
ear soundmode is visible, whichmerges
at larger momenta into a continuum of
excitations. (b) A slice at low momen-
tum shows a clear gap in the excitation
spectrum at low energies. (c) At large
momenta, the situation is not conclusive
because the signal-to-noise ratio of the
data is not that good. There trace shown
here in particular, does not show the ab-
sence of excitations at low momentum,
while at other momenta (see a)) there
appears to be a pairing gap.

malized temperature of TBEC/TF = 0.05 ± 0.01. This temperature is
significantly lower than the temperatureT/TF = 0.10±0.03measured
for 2D imbalanced gases in the BEC regime (730 − 780G) prepared in
Ref. [175].

Balanced quasi-2DFermi gases showed an increase67 of the temper- 67 Interestingly, Ref. [118] reports a de-
crease of the absolute temperature from
the BEC to the BCS regime (Table II in
Ref. [118]). However, this decrease can
be attributed to a decrease in the total
number of atoms and thus TF (Table IV
in Ref. [118]), resulting in an effective
increase of T/TF in this experiment as
well.

ature by a factor 2when the interaction strengthwas changed adiabat-
ically from ln(kFa2D) ≈ −3.5 to ln(kFa2D) ≈ 0.5 (Fig S3 in Ref. [139]).
The corresponding temperature of our gas at 832G (ln(kFa2D) = 0.6)
should therefore be T/TF ≈ 0.1 ± 0.02, which is below the critical
temperature of Tc ≈ 0.14 TF at this interaction strength for a balanced
gas68.

68 We take here the interpolated value
of the critical temperatures measured at
interaction strengths ln(kFa2D) = 0.2
and ln(kFa2D) = 0.79 in Ref. [139].

Therefore, the question arises of whether the gas is superfluid. To
obtain these insights, we employ Bragg spectroscopy to find out if the
excitation spectrum shows a pairing gap.

9.2 Excitation spectrum

In Fig. 9.3 awe show the excitation spectrum for an imbalanced system
with P = 0.11 ± 0.06. Similarly to the spectra for balanced systems
discussed in this thesis, the excitation spectrum features a linear sound
mode at low momenta and a broad continuum of excitations at high
momenta. At lowmomenta, a gap in the excitation spectrum is clearly
visible which corresponds to a nonzero critical velocity (Fig. 9.3 b).
At high momentum, this is not so clear because the signal-to-noise
ratio deteriorates. There are momentum traces, which show a gap
in the excitation spectrum, but there are also traces, for example, the
one shown in Fig. 9.3 c in which excitations appear at all energies.
Thus, it is not clear whether the gas has an excitation gap at large
momenta. While the narrow sound mode and the excitation gap at
low momentum seem to indicate that the system is in a superfluid
state, the low-lying excitations observed at large momenta results in a
Landau critical velocity of zero.
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Some of these gapless excitations at largemomentamay arise due to
presence of unbound fermions. For that we have to consider that for a
balanced gas at T = 0 no gapless excitations69 are present at finite69 Even at finite temperature T ≪ Δ/kB

the number of thermal excitations is
very small due to an exponentially sup-
pression of ∼ e−kBT/Δ.

momentum and the Landau criterion is fulfilled when all possible
excitations of the system are considered.

However, in the finite-temperature imbalanced Sarmaphase, which
we will discuss in the next chapter in Sect. 10.4, excess fermions exist
in the gas in the form of quasiparticle excitations. These quasiparticle
excitations themselves are not gapped, resulting in a Landau critical
velocity of zero if excitations of these quasiparticles are also taken into
account.

Nevertheless, the total system might be superfluid because the
paired fraction will resist any phase change70. In this case, measure-70 Or alternatively, if the whole system is

set into rotation, where the relative ve-
locity to the trap walls is smaller than
a critical velocity, the normal fraction
dampen, a part of the total density, will
dampen out while the superfluid frac-
tion, the remaining density, will rotate
frictionless.

ments of the excitation spectrum with a higher signal-to-noise ratio
might be useful to differentiate excitations from the paired and un-
paired part of the system. Alternatively, measurements of the phase
stiffness could be performed by observing a vortex lattice when rotat-
ing the gas.

In summary, a part of the observed excitations could be explained
by gapless excitations of unpaired fermions which coexist with paired
fermions.



10 CLASSIFICATION OF THE OBSERVED IMBALANCED PHASE

Figure 10.1: Overview of the phase di-
agram for 2D imbalanced Fermi gases
with spin imbalance P. (a) First we
consider the zero-temperature scenario.
The interaction strength is parameter-
ized by the binding energy EB/EF, such
that the BCS regime is on the left and
the BEC regime on the right. At P = 0,
a balanced superfluid is present at all
interaction strengths. If an imbalance
is introduced, a phase-separated state
with balanced superfluid domains im-
mersed in an imbalanced normal phase
occurs (light green). Above a critical
polarization, these domains ceases to
exist and the complete gas is normal
(red). In between, a superfluid with
a spatially oscillating order parameter,
an FFLO phase, might be present (dark
green). Deep in the BEC regime, no
phase separation occurs because excess
fermions are tolerated by the conden-
sate of dimers (gray). (b) In the BCS
regime, the finite-temperature phase di-
agram reveals another phase: An im-
balanced superfluid with constant order
parameter (purple). Here, the BCS state
tolerates excess fermions in the form of
quasiparticle excitations.

In the previous chapter, we observed a homogeneous imbalanced
Fermi gas close to the quasi-2D regime, which exhibits signs of super-
fluidity. This triggers the question how a superfluid phase can sup-
port a particle imbalance. To answer thatwediscuss in detail the phase
diagram of 2D imbalanced Fermi gases in this chapter.

To give an overview of the discussion we summarize the T = 0
phase diagram in Fig. 10.1 a. In the BCS regime, the superfluid phase
with a constant order parameter can only exist in a balanced state.
As soon as some imbalance is introduced, the balanced superfluid
state breaks down, and a first-order transition to an imbalanced
normal gas occurs. In a box potential where the spin imbalance
P = (N1 − N2)/(N1 + N2) is fixed, the first-order transition manifests
itself in a phase-separated state, where balanced superfluid regions
are surrounded by an imbalanced normal gas. Above a critical
polarization, these superfluid regions vanish and the full gas becomes
normal. Around this critical polarization, an intermediate phase, a
superfluid with a spatial oscillating order parameter (FFLO) might
be present.

In the BEC regime, the situation differs because imbalanced Fermi
gases map here to a Bose-Fermi mixture as all minority atoms bind
with an equal amount of majority atoms to form dimers. These
dimers condense, and deep in the BEC regime, the bosonic condensate
can tolerate an arbitrary amount of the remaining majority fermions,
resulting in a magnetized superfluid.

As we will find out, we can rule out the two superfluid phases
which support a homogeneous imbalance at T = 0, the FFLO phase
in the BCS regime and the magnetized superfluid in the BEC regime,
for the interaction strengths and imbalances in our experiments.
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Therefore, we discuss in Sect. 10.4 the finite-temperature phase di-
agram sketched in Fig. 10.1 b. Finite temperature allows for a new
phase, an imbalanced superfluid state with a constant order param-
eter. The mechanism is here that a superfluid can support some im-
balance in the form of thermal quasiparticle excitations. This is a likely
candidate for the observed phase but there are no calculations avail-
able for our exact experimental parameters to perform a quantitative
comparison.

Thus, if the abovephase diagrams represent the nature of our quasi-
2D system we can have two possible scenarios: We prepared either a
superfluidwith an imbalancewhere no phase separation occurs or the
system is in the imbalanced normal phase.

In the following, we will discuss the mean-field theory of 2D im-
balanced Fermi gases in detail. Then, we discuss as one beyondmean-
field effect the magnetized superfluid in the BEC regime, address the
FFLO phase, and discuss the effect of finite temperature.

10.1 Mean-field phases

A spin imbalance can generally be realized in two ways. The first is
to impose a spin imbalance, as we do in this thesis. The second is to
alter the chemical potential of both spin states with respect to each
other using an external magnetic field. The system will automatically
imbalance itself if spin flips are energetically allowed.

Following Ref. [183] wewill start with the second scenario which is
described by the grand canonical ensemble, where the mean chemical
potential μ = (μ↑ + μ↓)/2 and the chemical potential difference h =
(μ↑ − μ↓)/2, called Zeeman field, are both fixed. We will progress in
a two-step process to the first scenario, described by the canonical
ensemble with fixed number of atoms in both spin states.

GRAND CANONICAL ENSEMBLE (FIXED μ AND h)
We start in the grand canonical ensemble with fixed μ and h. Here,
BCSmean-field theory atT = 0 allows one towrite down an analytical
expression for the grand potential Ω(μ, h, Δ, EB) which can be found
in Eq. 6 in Ref. [184]. The goal is to find the stable phases in the grand
canonical ensemble for a given chemical potential μ and Zeeman field
h. The stable phases correspond to minima of the grand potential Ω.

Figure 10.2: a) For a second-order phase
transition, the grand potential Ω(|Δ|) as
a function of the order parameter Δ has
one localminimumat the transitionZee-
man field hc. b) A first-order transition
occurs if the potential has two local min-
ima at the transition Zeeman field.

The grand potential Ω has two minima, one at an order parameter
Δ(μ) = √2EBEF(μ) = √EB(EB + 2μ) corresponding to the unpolar-
ized superfluid phase (SF) and one at Δ = 0 corresponding to the po-
larized normal phase (N). Both are separated by a local maximum in
the grand potential (Fig. 10.2 b). Therefore, the normal to superfluid
transition is of first order because the system transitions from one lo-
cal minimum to another local minimum, which results in a sudden
change of the order parameter from 0 to a finite value.

Starting with the superfluid phase, the local minimum correspond-
ing to this phase can only exist as long as the Zeeman field h is smaller
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Figure 10.3: Phase diagram in the grand
canonical ensemble. (a) The superfluid
phase with a nonzero order parameter
Δ can exist as long as the Zeeman field
h is smaller than the excitation gap (blue
area, Eq. 10.1). (b) The normal phase
is divided into three regions: A par-
tially polarized phase (PP) where both
spin states are present, a fully polar-
ized Fermi gas (FP), and vacuum with-
out any particles. The grand canoni-
cal potential of the normal phase is less
than that of the superfluid phase for
h > hc,SF−N (Eq. 10.5, blue dashed). (c)
We obtain the complete phase diagram
by choosing the phase that minimizes
the grand canonical potential, the super-
fluid phase from (a) for h < hc,SF−N
and the normal phases from (b) for h >
hc,SF−N. The dashed arrow indicates ex-
emplary different phases which can be
encountered in a harmonic trap when
going from the center to the outside: A
central balanced superfluid phase that is
surrounded by a normal fully polarized
shell.

than the excitation gap for quasiparticle excitations [183],

h < hSF,max(μ) = √Δ(μ)2 + μ2Θ(−μ) (10.1)

where the heaviside function Θ(x) accounts for the larger excitation
gap for negative chemical potentials. The area h < hSF,max is depicted
in Fig. 10.3 a. The total density ntotal = n↑ + n↓ and the magnetization
m = n↑ − n↓ of the superfluid phase, can be derived by considering
the grand potential [183],

ΩSF(μ) = − m
ℏ22π (μ + EB

2 )
2

, (10.2)

which depends only on the chemical potential. We take the derivative
of the grand potential with respect to the chemical potential and field
h, respectively, which yields

nSF,total = m
πℏ2 EF(μ) = m

πℏ2 (μ + EB
2 ) ,

mSF = 0.

We see here that the superfluid phase is balanced because the grand
potential does not depend on h.

Figure 10.4: In the presence of a Zee-
man field h, the BCS single-particle exci-
tations split up into two excitations, de-
pending if a spin-up (blue line) or spin-
down particle (red line) is added to the
system [185]. (a) For h < Δ the system
stays in the BCS state. (b) Forh > Δ, the
excitations for the spin-up particles have
a negative energy and become occupied.
This breaks the BCS state but allows for
the unstable Sarma superfluid. In this
phase extra spin-up fermion are placed
around the Fermi surface. (c) Thus, its
momentum distribution (blue and red)
is fully polarized around the Fermi sur-
face, deviating from the BCS momen-
tum distribution (orange dashed).

There also exists a nonzero solution of the gap equation if h is
larger than the gap in the excitation spectrum (h > hSF,max) which
corresponds to so-called Sarma superfluid or breached pair phase
[185–187]. In this phase, majority atoms are placed at the Fermi
surface by creating quasiparticle excitations with energy below h
(Fig. 10.4). This allows for a superfluid with a finite magnetization.
However, at T = 0, this phase corresponds to the local maximum of
the grand potential in-between the minima of the balanced superfluid
and normal phase, and is therefore not stable.

The normal phase does not have any critical Zeeman field, because
the grand potential has a stationary point at Δ = 0 for any h and μ.
The value of the grand potential at this stationary point is [183]

ΩN(μ, h) = − m
ℏ24π [(μ − h)2Θ(μ − h) + (μ + h)2Θ(μ + h)] . (10.3)
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The role of the different terms becomes clear if we calculate the total
density and magnetization taking again the derivative with respect to
μ and h, respectively,

nN,total = m
πℏ2 μΘ(μ − h) + m

2πℏ2 (μ + h)Θ(h − μ),

mN = m
πℏ2 hΘ(μ − h) + m

2πℏ2 (μ + h)Θ(h − μ).

The heaviside functions divide the phase diagram into three normal
phases (Fig. 10.3 b): For μ < −h the density is nN,total = 0 and the
ground state is the vacuum. For −h < μ < h, only the last term is
nonzero. In this phase only spin-up fermions are present; the system
is fully polarized. The remaining region (μ > h) in the parameter
space is a partially polarized normal state71, with a polarization of71 We group the balanced normal state

(h = 0) into the a partially polarized
normal phase. For this case we get as ex-
pected nN,total = μ m/(πℏ2) and mN =
0

PPP(h) = mN/nN,total = h/μ = h/EF. (10.4)

To construct the full phase diagram, we determine if for a given set
of (μ, h) either the normal phase or the superfluid phase is the ground
state, i.e. has the lowest grand potential. For thatwe find the line in the
(μ,h)-parameter space where ΩSF(μ, h) = ΩN(μ, h), which separates
both phases. Solving this equation72 gives us a critical field [183]72 We note here for later consideration

that this condition is equivalent to hav-
ing the same pressure in both phases be-
cause of 𝒫(μ, h, Δ) = −Ω(μ, h, Δ). hc(μ) = √EB (μ + EB

4 )Θ(μ − h0) + [(
√

2 − 1)μ + EB√
2

] Θ(h0 − μ),
(10.5)

where h0 = (
√

2 + 1)EB/2 separates between the partially (μ > h0)
and fully polarized normal phase (μ < h0). This line is plotted both
in Fig. 10.3 a and Fig. 10.3 b.

We assemble the final phase diagram by taking into account the
superfluid phase for h < hc(μ) and the normal phases for h > hc(μ)
(Fig. 10.3 c). The phase diagram has four phases: The vacuum, the
fully polarized phase, the partially polarized phase, and the balanced
superfluid phase.

This phase diagram allows us, as is done in Sec. VI in [183] in detail,
to predict the radii at which phase transitions occur for an imbalanced
gas in a harmonic trap. Here, the number of particles N1 and N2
instead of μ and h are fixed but the locally varying chemical potential
allows us to consider the trap as a collection of grand canonical
ensembles that can exchange particles with each other. Therefore,
the total number of trapped particles N1 and N1 can be related to
a spatially varying chemical potential μ(r) = μ0 − mω2r2/2 and a
constant Zeeman field h throughout the trap. The observed phases
in the harmonic trap then simply lie on a line with h = const and
μ = μ(r), as indicated by an arrow in Fig. 10.3 c. The center of the
trap corresponds to the rightmost point of the arrow. Here, the gas
is balanced and in the superfluid phase. An increasing radius in the
harmonic trap corresponds to a decreasing local chemical potential.
Thus, we enter above a certain radius a region where the gas becomes
normal and fully polarized. Further out, the beginning of the vacuum
phase marks the outer rim of the trapped gas. In general, the excess
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majority atoms are always located in the outer normal shell(s) because
the superfluid phase does not tolerate any imbalance. Thus, the
magnetization jumps from 0 to a finite value at the radius where
the superfluid to normal transition occurs. This is characteristic of
a first-order phase transition and, as discussed in Sect. 7.2, has been
experimentally observed in 3D imbalanced Fermi gases [162].

SEMIGRAND CANONICAL ENSEMBLE WITH FIXED ntotal AND h
To obtain the phase diagram where both the density and the particle
imbalance are fixed, we now consider as a first step a system where
the total atoms density ntotal is constant instead of its conjugate vari-
able, the chemical potential μ. The second variable, the Zeeman field
h remains for now as an external parameter. To construct the phase
diagram, we minimize a new thermodynamic potential, the free en-
ergy, of both the superfluid and normal phase. Then, we discuss how
a third phase, a phase-separated state, arises. Finally, we construct the
phase diagram of all three phases.

The system considered here with constant atom density and fixed
Zeeman field h is very particular, as we remove the external reservoir
that has a defined chemical potential μ the gas could use to exchange
particles. Thus, with respect to the conjugate pair (μ, ntotal)we go from
a grand canonical ensemble to a canonical ensemble.

On the other hand, we still allow the system to flip spins and settle
on a magnetization m = n1 − n2 as it prefers because of the fixed
Zeeman field h. The fixed Zeeman field h can be understood as a
reservoir, which the system can use to exchange a spin-down particle
with a spin-up particle at a cost h. Thus, with regard to the conjugate
pair (h, m) the system is still in a grand canonical ensemble. Therefore,
this type of system is also called semigrand canonical ensemble [188].

To obtain the phase diagram for this ensemble the free energy
defined by

ℱ(ntotal, h) = μntotal − 𝒫(μ, h) (10.6)

must be minimized. For that, we first have to express the chemical
potential for the superfluid and the normal phase in terms of the den-
sity ntotal. For convenience, we use in the following the Fermi energy
instead, which depends on the total density by EF = ℏ22πntotal/(2m).
One obtains a chemical potential of

μSF(EF) = EF − EB
2

for the superfluid phase, and

μN(EF) = EFΘ(EF − h) + (2EF − h)Θ(h − EF)

for the normal phase [183]. If we insert these relations into the
definition of the free energy (Eq. 10.6) and use the grand potential
of the superfluid (Eq. 10.2) and normal phase (Eq. 10.3), respectively,
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Figure 10.5: (a) In the semigrand canon-
ical ensemble the free energy of the gas
is minimized. Here, we show the free
energy for a fixed Zeeman field h =
1.1 EB and varying total densities. If
only the superfluid and normal phases
were possible, the transition from the
superfluid to the normal phase would
occur in this example at EF,c = 1.21 EB.
However, around this critical Fermi en-
ergy there exists a third phasewhich has
a lower free energy: A phase-separated
state in which a part of the total volume
is superfluid and another part is normal.
(b) In a phase transition from a homoge-
neous normal phase to a homogeneous
superfluid phase, the chemical potential
would jump from the red star to the blue
star, which indicates that these phases
are unstable towards a phase-separated
state. The chemical potential of this state
can be constructed with a Maxwell con-
struction, where we construct its chem-
ical potential graphically by finding a
horizontal line such that the red and
blue areas are equal. (c) The volume
fraction of the superfluid phase contin-
uously increases in the phase-separated
state. It approaches 1 when the phase-
separated state smoothly transitions into
the superfluid phase.

we get [183]

ℱSF(EF) = ℏ2

2πm (E2
F − E2

B) ,

ℱN(EF, h) = ℏ2

2πm [(E2
F − h2)Θ(EF − h) + 2(E2

F − h)Θ(h − EF)] .

If these two phases, the homogeneous superfluid and the homoge-
neous normal phase, were the only possible phases, a first-order tran-
sition would occur if both free energies are equal at a critical Fermi
energy of

EF,c(h) = h2

EB
Θ(h − EB) + (2h − EB)Θ(EB − h),

or equivalently73, at a critical Zeeman field73 We solve EF,c(hc) = EF for hc.

hc(EF) = √EBEFΘ(EF − EB) + 1
2(EF + EB)Θ(EB − EF).

The latter expression is the CC limit or Pauli limit. For the range EB <
EF, it agreeswith the 3D result in the BCS limit, hc = √EBEF = Δ/

√
2.

The free energy of both phases are plotted in Fig. 10.5 a exemplary for
a constant h/EB = 1.1 demonstrating that a phase transition should
occur at a critical Fermi energy EF,c = 1.21EB.

However, there is a third phase, the phase-separated state, in ad-
dition to the two previously mentioned phases. For that we examine
the chemical potential of the normal and superfluid phase at the tran-
sition point EF = EF,c (Fig. 10.5 b). We notice that there is a jump from
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μN(EF,c) to a smaller μSF(EF,c). At this point, the derivative ∂μ/∂n is
negative, which means that it is favorable for both phases to increase
their density to decrease the total energy. Therefore, the system is
unstable towards phase separation. This results in a phase-separated
state where a part of the total volume is in the superfluid phase and
another part in the normal phase.

The condition for phase separation is that the pressure of the
superfluid and the normal phase are the same,

𝒫SF(μPS) = 𝒫N(μPS, h).

This condition can be solved analytically to find a constant74 chemical 74 It is constant with respect to EF, it
however depends on the second inde-
pendent parameter h.potential [183],

μPS(h) = ( h2

EB
− EB

4 ) Θ(h − h0) +
√

2h − EB
2 − √(2)

Θ(h0 − h).

Alternatively, the chemical potential of the phase-separated state can
be found using aMaxwell construction (Fig. 10.5 b). In this technique,
the value of the chemical potential in the phase-separated state is
found by constructing a horizontal line in the plot of μ vs. ntotal such
that the red and blue area in Fig. 10.5 b become equal.

The phase separation creates a smooth transition from a fully nor-
mal to a fully superfluid gas as shown in Fig. 10.5 c. For an incereas-
ing total density, a larger and larger part of the system becomes su-
perfluid until the superfluid phase is reached. We confirm that the
phase-separated state is indeed the ground state by plotting its free
energy in Fig. 10.5 a, which is given by

ℱPS(EF, h) = μPS(h)ntotal(EF) − 𝒫(h)

where 𝒫(h) = 𝒫SF(μPS(h)). We also show in Fig. 10.5 a the free en-
ergy of the Sarma phase. Its free energy
is greater than that of all other phases
demonstrating that it is a metastable
state in the semigrand canonical as well.

With all three possible phases discussed, we can now construct the
phase diagram for fixed EF and h. In the experiment, commonly not
the density (and thus Fermi energy) but the binding energy EB is
varied to change the interaction strength. Therefore, we use h/EF and
η = EB/EF as the axes for the phase diagram.

For the phase diagram, we need to find two critical Zeeman fields
hc1 and hc2 that separate the different phases. The first one separates
the superfluid phase and the phase-separated state. A transition
from one phase to the other occurs when both chemical potentials are
equal μPS(h, EB) = μSF(EF, EB). This condition can be solved for h to
obtain the critical field hc1(η). The second critical field hc2(η) marks
the transition the phase-separated state to the normal phase and can
be obtained by solving μPS(h, EB) = μN(h, EF) for h. The explicit
definition for both critical fields can be found in Eq. 22 in Ref. [183].

Using both critical fields we construct the resulting phase diagram
in Fig. 10.6 a. The balanced superfluid phase exists at low Zeeman
fields h. Its critical field hc1 decreases for decreasing binding energies
because the excitation gap protecting the superfluid state becomes
smaller. Above this critical field, two phase-separated states exist.
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Figure 10.6: (a) Phase diagram for
the semi-grand canonical ensemblewith
fixed h and ntotal. We encode these
two degrees of freedom in the param-
eters h/EF and η = EB/EF. In this
ensemble, in between the critical fields
hc1 and hc2, two new phase-separated
states appear. These have spatially sep-
arated normal and superfluid phases.
The color scale shows the global polar-
ization of the respective phases. The
critical field hc would mark the transi-
tion from the superfluid to the normal
phase if phase separation would not oc-
cur. (b) Phase diagram for the canoni-
cal ensemble with fixed global polariza-
tion P = (N1 −N2)/(N1 +N2) and total
density ntotal. It can be obtained by scal-
ing the y-axis of the semigrand canoni-
cal phase diagramaccording to its global
polarization. The superfluid and fully
polarized phases are reduced to a line
at P = 0 and P = 1, respectively. For
P > Pc all superfluid domains disap-
pear. The black star indicates our exper-
imental parameters.

0 0.5 1

For low binding energies, superfluid domains coexist with partially
polarized normal domains (SF−NPP)while at larger binding energies,
superfluiddomains coexistwith fully polarizednormal domains (SF−
NFP). Above the critical field hc2 the system transitions into the
partially polarized (NPP) and fully polarized phase (NFP).

Fig. 10.6 a shows in addition the global polarization in a color scale.
In the superfluid phase, which extends up to h = hc1, the global
polarization is zero. In the phase-separated state (hc1 < h < hc2),
the global polarization increases continously and follows [183]

PPS(h) = 2h2 − h2
c1

EFE2
B

Θ(h − h0) +
(
√

2 + 1)2 (h − hc1(η))
EF

Θ(h0 − h).
(10.7)

The polarization of the partially polarized phase follows Eq. 10.4.

CANONICAL ENSEMBLE WITH FIXED ntotal AND IMBALANCE P
As the last step, we now exchange the second parameter, the Zeeman
field h with its conjugate variable, the particle imbalance P = (N1 −
N2)/(N2 + N1). This ensemble describes the imbalanced gas with a
fixed number of particles in both spin states N1 and N2 prepared in
our experiment. In the following, we derive the phase diagram, which
is a fast process as it only requires rescaling the y-axis of the previous
phase diagram. Finally, we discuss that a phase-separated state with
a partially-polarized normal and superfluid phase is predicted for the
imbalanced gas prepared and analyzed in the last chapter.

The free energy of the canonical ensemble is

ℱ(ntotal, P, Δ) = μntotal − hP − 𝒫,

whichwewould have tominimize repating the procedurewe followed
for the previous statistical ensembles. However, this is not necessary,
since there exists a well-defined and unambiguous relationship be-
tween the imbalance P and Zeeman field h/EF for a given interaction
strength η = EB/EF (Eq. 10.7 and color scale in Fig. 10.6 a).
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Thus, the number of phases does not change when going from the
semigrand canonical to the canonical ensemble and we can simply
obtain the phase diagram by mapping the Zeeman field h to the
particle imbalance P in a η-dependent way. The resulting phase
diagram is shown in Fig. 10.6 b.

We find that the superfluid and fully polarized phases are reduced
to lines at P = 0 and P = 1 in this ensemble. In between, the phase-
separated states SF−NPP and SF−NFP dominate the phase diagram.
The critical field hc2, where the phase-separated state transitions
into the normal partially-polarized phase in the semigrand canonical
ensemble, is mapped to a critical imbalance defined by [183]

PC = PPS(h = hc2) = √η (1 + η
4)Θ(η2 − η) + Θ(η − η2),

which is depicted as a red line in Fig. 10.6 b.
This phase diagram allows us to make a comparison with the

experimental data of our quasi-2D system. We consider the system
with densities n1 = 1.55µm−2, n2 = 1.1 µm−2, and global polarization
P = 0.17 ± 0.06, which we have examined in Sect. 9.1. Its effective 2D
interaction strength is η = ln(kFa2D) = 0.6 which corresponds using
Eq. 4.2 to a binding energy of

EB
EF

= 2
a2
2Dk2

F
= 2e−2η = 0.6

The corresponding point in the phase diagram lieswithin the SF−NPP
separated state (black star in Fig. 10.6 b).

In our experiment, we do not observe phase separation, but a ho-
mogeneous polarization throughout the cloud, which shows indica-
tions of superfluidity. Apparently, the T = 0 mean-field description
of the 2DBEC-BCS crossover cannot explain an imbalanced superfluid
phase but predicts phase separation instead. Therefore, we discuss in
the following the limitations of this approach, namely beyond mean-
field effects, more exotic phases, and the neglect of finite temperatures.

10.2 Beyond mean-field in the BEC regime

If we compare the 2D mean-field imbalanced phase diagram to a 3D
mean-field phase diagram (inset of Fig. 10.7), we notice a qualitative
difference. In 3D mean-field theory, a phase where excess fermions
can mix with the condensate of bosonic dimers is predicted in the
BEC regime, which is called magnetized superfluid (SFM). This phase
is a Fermi-Bose mixture75, where the excess majority fermions coexist 75 The fact, that this is a Bose-Fermi mix-

ture has been used in [164] to exper-
imentally verify the dimer-dimer and
dimer-atom scattering length, add =
0.6a and aad = 1.18a in a 3D gas.

with the bosonic superfluid. It would be a candidate for the phases

Despite the absence of a Fermi surface
of the minority species, this system can
be understood as the BEC limit of the
Sarma phase [183, 187].

we observe because it is locally imbalanced but superfluid. In the
following, we discuss why it is missing in the mean field phase
diagram and derive its location in the phase diagram by considering
dimer-atom and dimer-dimer interactions. We will find that this
phase is located deep within the BEC regime at large binding energies
and cannot explain an imbalanced superfluid in the crossover regime.
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Figure 10.7: Mean-field phase diagram
of a 3D spin-imbalanced Fermi gas at
T = 0 in the semigrand canonical en-
semble. In the BEC regime, a phase
where excess fermions can enter the
bosonic superfluid phase is possible, a
magnetized superfluid (SFM). This phase
is absent in the 2D mean-field phase di-
agram. The inset shows the phase di-
agram in the canonical ensemble with
fixed polarization P = m/n. Adapted
from [171].

The absence of the magnetized superfluid phase in 2D mean-field
theory is related to the greater importance of beyondmean-field terms
in the 2D BEC limit. Even for balanced gases, we notice that for
instance the reduced chemical potential76 does not approach zero in76 Similarly, the speed of sound does

not approach zero as the dimer-dimer
repulsion becomes weaker but is con-
stant vs = vF/

√
2, which contradicts

the experimental evidence presented in
Sec. 5.1.

the BEC regime but stays constant, μ̃ = μ + EB/2 = EF − EB/2 +
EB/2 = EF. On the contrary, in 3D, mean-field theory predicts
that the reduced chemical potential approaches zero in the BEC limit
which shows that it is adequate to describe the BEC-BCS crossover
qualitatively (see Fig. 2.4 on p. 17).

Mean-field theory fails in the 2D BEC limit because any dimer-
dimer or atom-dimer interactions are absent [146]. The underlying
reason for this is that fluctuations play a greater role in lower dimen-
sions [189, 190]. In lower dimensions, particles have fewer neighbors
they interactwith and therefore the interaction does not average out as
much. Hence, considering just the average interaction is less reliable
and, therefore, results in a complete neglect of any dimer-dimer and
atom-dimer interactions in 2D. For balanced 2D gases, these issues
have been resolved by extending the theory beyond the mean field
level by considering pair fluctuations in the number equation [190,
191].

For imbalanced 2D gases, we extend the phase diagram by manu-
ally taking the dimer-dimer and dimer-atom interaction into account
following Ref. [184]. For that we consider the energy of a Fermi-
Bose mixture, where the bosonic density equals the minority density,
nB = n↓, and the fermionic density the excess density nF,exc. = n↑ − n↓.
The total energy77 of the Fermi-Bose mixture is given by

77 As an approximationwe use here a ex-
pression for the total energy which does
not take higher orders in both coupling
constant gBF and gBB into account. This
approximation slightly underestimates
the total energy in the crossover regime.
Thus, the resulting critical binding en-
ergy is only approximately correct.

E = α
2 n2

F,exc. + gBBn2
B

2 + gBFnBnF,exc., (10.8)
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with α = 2πℏ2/m and the dimer-dimer interaction strength [112]

gBB = ℏ2

md

−4π
log(k2

Fa2
dd) − log(4π) (10.9)

with md = 2m and dimer-atom interaction strength [146]

gBF = ℏ2

mμ

−2π
log(k2

Fa2
ad) − log(4π) (10.10)

with the reduced mass mμ = 2
3 m. We use the relations add = 0.55 a2D

[146, 192] and aad = 1.26 a2D [193] for the dimer-dimer and dimer-
atom scattering length, respectively. Here, a2D is the atom-atom
scattering length introduced in chapter 4.

The phase, in which bosons and fermions coexist, the miscible
phase, is more stable than the phase-separated state if the energy is a
minimum with respect to both densities nF,exc. and nB. The necessary
condition for that is that thematrixHi,j = ∂2E/∂ni∂ni with i, j ∈ {B,F}
has a positive determinant [184]. This condition is

αgBB − g2
BF > 0 → αgBB > g2

BF. (10.11)

Figure 10.8: The miscibility condition
gBBα > g2

BF for a Bose-Fermi mix-
ture consisting out of dimers and excess
fermions is only fulfilled for EB/EF >
7.28.

Taking these insights from Ref. [184] we can now extend the phase
diagram. The identity k2

Fa2
2D = 2EF/EB allows us to express both

gBB and gBF in terms of EB/EF. If we plot both the LHS and RHS
of the inequality (Eq. 10.11) we find that the miscible phase becomes
unstable towards phase separation for EB/EF < 7.28 (Fig. 10.8).

The condition for a miscible Bose-Fermi mixture in 2D (Eq. 10.11)
does not depend on the density of the excess fermions nF,exc. and
thus not on the polarization P. The consequence that as soon as the
condition EB/EF > 7.28 is reached an arbitrary number of excess
fermions are miscible in the superfluid dimer phase. This results in
a straight vertical line in the P vs. EB/EF phase diagram (Fig. 10.9).

This behavior differs from the situation in 3D, where in a certain
interaction range the magnetized superfluid has a critical polarization
which is smaller than one (see red line in the inset of Fig. 10.7).

Figure 10.9: Canonical phase diagram
taking account the magnetized super-
fluid phase at large binding energies
EB/EF > 7.28.
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Figure 10.10: Mean-field phase diagram
for an imbalanced 2D Fermi gas includ-
ing the FF phase.

The reason for that is that if we did the analogue derivation of the
miscibility condition for a 3D Bose-Fermi mixture a dependence on
nF,exc. would remain due to the n2/3 scaling of the Fermi energy in 3D.

In conclusion, we see here that the absence of the magnetized
superfluid in the mean-field calculations is not an intrinsic property
of 2D but shows us how crucial beyond-mean-field terms are in two
dimensions [184]. We notice that the critical binding energy required
for themiscible phase is much larger than the effective binding energy
in our experiment. We can thus exclude a Bose-Fermi mixture as a
possible explanation for the observed phase.

10.3 Exotic phases

In our search for possible phases we have taken up to now the
superfluid, normal, and Sarma phases into consideration but ignored
other more exotic phases. Some of them belong to the family of FFLO
phases [172, 194, 195] that have in common that the order parameter
has a spatial periodicity. In the following, we review the mean-
field phase diagram where the phase proposed by Fulde and Ferrel
(FF)[147] has been taken into account. Its order parameter has the
form

Δ(x) = Δ0 exp(iq ⋅ x),

where the wavevector q = kF,↑ − kF,↓ can be interpreted as the center-
of-mass momentum of the Cooper pairs. We find that this phase
replaces the partially polarized phase in some parts of the phase
diagram, resulting in a pure FF phase at large imbalances and a phase-
separated state SF − FF, where both the superfluid and FF phase
coexist.

The mean-field calculations for a 2D imbalanced Fermi gas were
done in Ref. [196]. In the semigrand canonical ensemble, where both
EF and h are fixed, the FF to PP transition happens at a critical Zeeman
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field of
hFF = √2EF − EB. (10.12)

This translates to a critical polarization PFF = hFF/EF in the canonical
ensemble, where the Fermi energy EF and polarization P are fixed.

The resulting phase diagrams for the semigrand and canonical en-
semble are shown in Fig. 10.10. The FF state exists for small binding en-
ergies in a horn shaped area where previously the partially polarized
phase was located78. The transition to the partially polarized phase is 78 There is a small intrusion into the su-

perfluid phase we do not consider here.of second order [197, 198] such that no phase-separated NPP − FFLO
state occurs. The transition between the SF and FF phase is, however,
of first order [197, 198] resulting in a SF − FF phase-separated state.

Larkin and Ovchinnikov (LO) proposed a second ansatz in which
the order parameter consists of two opposite plane waves and follows
Δ(x) = Δ0 cos(q ⋅ x). This ansatz and higher plane-wave FFLO states
result in states with a slightly lower total energy than the FF state
but are more complicated to calculate [194]. They occupy a similar
region as the FF state in the phase diagram79. Interestingly, in this 79 See Fig. 7 in Ref. [194]
phase, the order parameter crosses zero with periodicity δx = 2π/q.
At these zero crossings, the effective repulsion of the paired atoms is
not as strong, such that the excess majority atoms accumulate at these
nodal lines. This would correspond, to a periodicity of δx = 9µm
for a polarization of P = 0.17 which is above the resolution of our
imaging setup. However, we do not see any sign of such a density
accumulation in the absorption images of state 1.

In general, the FFLO state is challenged by effects beyond the mean
field which arise at finite temperature. A study of the effect of finite
temperature in 2Don FFLO states showed that phase fluctuations have
a strong effect on the stability of the FFLO state, resulting in very low
critical temperatures [198]. Along similar lines, another recent study
suggests that pairing fluctuations lead to an instability of any FFLO
states in three and two dimensions [199].

The FFLO theory can be extended to non-exclusive or communal
pairing between majority and minority atoms, resulting in a state
that has condensate fraction peaks at multiple momenta [200]. In
addition, various other interesting phases have been predicted for
2D imbalanced Fermi gases, which we do not discuss here. These
include the existence of the Sarma phase if phase fluctuations are
taken into account in the BCS regime at T = 0 [201] and triplet
p-wave pairing which is driven by the Kohn-Luttinger mechanism
where minority fermions experience an effective attractive interaction
due to the polarization of background majority atoms [113].

10.4 Finite temperature phases

In this section, we discuss the effect of finite temperature on the phase
diagram. We point out that in 3D, finite temperature allows for a BCS
state with a finite imbalance which crosses over into a stable finite-
temperature realization of the Sarma phase. Then, we review finite-
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temperature calculations done in the 2D BCS limit, which show a
similar behavior making it plausible that we prepared an imbalanced
finite-temperature superfluid.

Figure 10.11: The phase diagram of the
3D unitary Fermi gas. At zero temper-
ature, a first-order transition results in a
forbidden region (FR)where phase sep-
aration occurs. Here, the BCS state does
not tolerate any imbalance. For finite
temperatures, however, the BCS state
crosses over into a gapless Sarma phase
(S), which happens at the line h = Δ
(dashed line within bright gray area).
Adapted from Chap. 13 in [9].

To start, we revisit the experimental evidence in 3D. Here, studies
of spin-imbalanced unitary Fermi gases (Fig. 10.11, see also Fig. 7.3a)
showed that the central superfluid core in a harmonic trap can toler-
ate a finite polarization before a first-order80 transition to the outer

80 For temperatures above the tricritical
point, the transition occurs also at a fi-
nite imbalance but becomes second or-
der.

normal shell occurs. The reason for the tolerance of an imbalance is
that at finite temperature the balanced superfluid coexists with ther-
mal excitations. These thermal quasiparticle excitations can be spin-
imbalanced and thus carry some excess majority atoms [162, 171].

For large imbalances P the corresponding value of the Zeeman
field h of the system can become larger than the excitation gap Δ
such that the condition h < Δ for the BCS state is not fulfilled. At
T = 0 a possible but unstable phase for Δ > h is the Sarma phase,
which is visualized in Fig. 10.4 on p. 99. The Sarma phase contains
a population of quasiparticle excitations in the ground state at the
Fermi surface. At finite temperature, the Sarma phase can become
stable such that a transition into the this phase can happen at h =
Δ. This is indicated by the dashed line in the bright gray area in
Fig. 10.11. The quasiparticle excitations present in the Sarma phase
can be further excited at arbitrarily low energies, resulting in a gapless
superfluid [185].

The transition between the imbalanced BCS phase and the Sarma
phase is a crossover because the Fermi surfaces in both phases are
smoothened out due to temperature [185]. Since it is a crossover
where both phases are superfluid but support an imbalance we can
refer to both as an imbalanced finite-temperature superfluid with a
constant order parameter.

For 2D spin-imbalanced Fermi gases, finite temperature calcula-
tions were done in Ref. [202] using a Gaussian pair fluctuation ap-
proach81. These calculations are shown in Fig. 10.12. We see in the in-81 This is a path-integral calculation

which takes phase fluctuations into ac-
count. For more details on this ap-
proach we can recommend Chap. 16 in
Ref. [203].

set that the superfluid phase can tolerate a spin-imbalance to a certain
degree at finite temperatures (blue region). The available calculations
extend up to amaximumbinding energyEB/EF = 0.1. At this binding
energy the polarization of the superfluid phase reaches a maximum
of P ≈ 0.07 at T ≈ 0.07 TF. We expect that the highest possible polar-
ization increases towards larger binding energies because this phase
must smoothly connect to the T = 0 magnetized superfluid phase
(SFm) discussed in Sect. 10.2, which supports polarizations P in the
range [0, 1).

Our experimental data are taken at an interaction strength of
EB/EF = 0.6, which is larger than the maximum binding energy of
EB/EF = 0.1 in these calculations. The overall trend towards larger
binding energies makes it plausible that the P = 0.17 gas could be
an imbalanced finite-temperature superfluid where the finite temper-
ature of T = 0.05 TF might be responsible for the absence of phase
separation. However, as we do not know the exact critical polariza-
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Figure 10.12: Finite-temperature Phase-
diagram of a imbalanced 2D phase-
diagram. If we fix for instance the inter-
action strength to EB/EF = 0.01 (up-
per panel), we find at T = 0 that a
finite imbalance P = δn/n results in
a phase-separated state (as in 3D, see
Fig. 10.6 b). In the balanced limit (P =
δn/n = 0), the gas transitions atTBKT ≈
0.06TF into a normal state where pairs
are present but not coherent. If we al-
low both finite temperatures and finite
imbalance, we see that the superfluid
state can persist up to an imbalance of
P = 0.04 at T ≈ 0.04TF. The three-
dimensional plot (lower panel) shows
that both the maximum temperature
and maximum polarization of the su-
perfluid state increases for with EB/EF.
Adapted from [202].

tion at our interaction strength, we cannot exclude that our system is
predicted to be in the imbalanced normal phase.

OPEN QUESTIONS
The discussion in this chapter gives rise to many open questions
which can be addressed in the future. On the experimental side, a
fully conclusive check of whether the gas is superfluid is missing. In
addition, the phase diagrams indicate that larger polarizations might
be required to observe a first-order transition. Furthermore, it would
be advantageous to increase the vertical confinement to bring the gas
fully into the 2D regime.

On the theory side, calculations covering beyondmean-field effects
at finite temperature in 2D and possibly in the 2D to 3D crossover
at strong interactions would be very helpful. Here, it is an open
question whether the confinement-induced bound state that exists for
all interaction strengths in 2D is properly included. This confinement-
induced bound state also exists in 1D, where this has been taken
into account for imbalanced Fermi gases [204]. They found that
atoms tend to form zero-momentum confinement-induced bound
states which compete with the FFLO phase. This suggests that this
bound state should also be taken into account in 2D and its effect on
the phase diagram should be studied. However, we are not aware of
any 2D calculations that have addressed this aspect.





CONCLUSION

In this thesis, I have presented studies of the excitation spectra of
ultracold 2D and 3D fermionic superfluids trapped in box potentials.

The first main result of this thesis are measurements of the exci-
tation spectrum of a 3D Fermi gas in the BEC-BCS crossover. We
measured the low-energy excitation spectrum with full energy and
momentum resolution using Bragg spectroscopy. We obtain compre-
hensive spectra that reveal single-particle and collective modes which
offer us unprecedented insights into the many-body physics of the
Fermi gas for varying interaction strengths and show how the char-
acter of the superfluid changes from bosonic to fermionic through-
out the BEC-BCS crossover. One prominent feature are the collec-
tive sound modes. They continuously evolve from the bosonic limit,
where they correspond to the well-known Bogoliubov excitations, to
the fermionic limit, featuring an increasing slope and hence increasing
speed of sound and a change of curvature.

In between both limits, we examine the unitary Fermi gas, which
has been intensively studied because of its universal nature. Here, our
spectra show how the collective mode merges into the second promi-
nent feature of the excitation spectrum, the pair-breaking continuum.
This pair-breaking continuum is gapped, showing directly how the
ground state is protected against low-energy single-particle excita-
tions. We confirm previous measurements of the pairing gap around
the unitary point and extend them into the BCS regime. In this fash-
ion, we provide quantitative measurements of an important quantity
of themany-body system across the BEC-BCS crossover, whichwe use
to benchmark theoretical calculations. We find excellent agreement
with self-consistent T-matrix calculations in the BEC and crossover
regime, but calculations taking particle-hole correlations into account
agree better with our results in the BCS regime. Thus, our measure-
ments show that the theoretical understanding is not fully conclusive
yet and highlight potentials for further theoretical investigations.

A major focus of this thesis is on superfluidity in gases confined
to two dimensions, where the motion in the third spatial dimension
is frozen out. In two dimensions, quantum fluctuations play a more
significant role compared to three dimensions, leading to a break-
down of long-range order. Quasi-long range order and hence super-
fluidity is only restored through the Berezinskii-Kosterlitz-Thouless
(BKT) mechanism. I present studies performed in close collaboration
with the lead PhD student on that project, Lennart Sobirey, in which
we use Bragg spectroscopy to examine the critical velocity and the
full excitation spectrum. Using the results from the first part, these
measurements allow for a direct comparison of the pairing gap be-
tween two-dimensional and three-dimensional superfluids. Surpris-
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ingly, we find that it is not dimensionality but rather strong interac-
tions that seem to play a crucial role in achieving a large pairing gap.

The second major outcome of my thesis involves the preparation of
a cold imbalanced Fermi gas in a box trap close to the 2D regime. Ulra-
cold spin-imbalanced Fermi gases are of fundamental interest as they
enable to study superfluidity in novel regimes which are hardly ac-
cessible in condensed matter systems. Control of the spin-imbalance
represents an additional parameter to study the transition from the
normal to the superfluid state as well as the stability and nature of
the ermerging superfluid. In two-dimensional systems there are fun-
damental open questions concering the order of the phase transition
from normal to the superfluid state and more importantly, the nature
of the superfluid ground state. One key question is whether phases
with spatially varying order parameters such as the elusive FFLO state
can exist. Creating a spin-imbalance presents a significant challenge,
as our imbalancing procedure leads to heating, and subsequent evap-
oration tends to balance the gas again. Despite these difficulties, we
achieved the preparation of a cold spin-imbalanced gas close to the 2D
regime.

Interestingly, the gas does not show any signs of phase separation,
ruling out a first-order transition at the achieved temperatures and
spin imbalances in stark contrast to the expected zero-temperature
phase diagrams theoretically predicted. Themeasurement of the exci-
tation spectrum indicates a nonzero critical velocity at small momenta
but is not fully conclusive at large momenta. To classify the observed
imbalance phase, we discuss the phase diagram of 2D imbalanced
Fermi gases in the BEC-BCS crossover in detail. This analysis reveals
that the prepared gas could be either in a finite-temperature super-
fluid phase with a constant order parameter, which allows for excess
fermions in the form of thermal excitations, or that it could be in a
normal imbalanced phase. In addition to its significance for the ex-
perimental findings presented, the comprehensive discussion of the
phase diagrams serves as an overview for future research on 2D im-
balanced Fermi gases.

Outlook

The experimental apparatus used in this thesis is very flexible, allow-
ing one to study many exciting topics in the future. Various optical
potentials can be used to confine gases vertically (endcaps, static lat-
tice, accordion lattice) and radially (DMDs, axicons) and to probe the
gas dynamically (phase imprints, Bragg spectroscopy). In addition, a
recent upgrade of the apparatus in the course of this thesis allows us
to quickly install new optomechanical elements in the vicinity of the
glass cell. In the following, I will give an outlook on selected fascinat-
ing topics that can be explored in the future.

Spin-spin structure factor. In this thesis we used Bragg spectroscopy
tomeasure the response to a density perturbation. One can also study
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the response to a spin-selective perturbation to measure the spin dy-
namic structure factor, which has been done at large momentum and
energy [77]. However, a low-momentum and low-energy measure-
ment of the spin dynamic structure factor is still missing. The key ad-
vantage of studying the response to a spin-dependent potential is that
this perturbationwould not couple to the collectivemode, so that only
the coupling to pair-breaking excitations should remain [46, 205].
This would simplify the extraction of the pairing gap at low momen-
tumas it signal is not obscured by the collective soundmodepresent in
our measurements of the density dynamic structure factor. This par-
ticularly affects systems where the detection of heating is more dif-
ficult due to a smaller condensate fraction, for example in balanced
gases close to Tc or in spin-imbalanced gases. However, the small de-
tuning required to imprint a spin-selective potential results in a large
scattering rate making this method difficult to implement [70]. Here,
an alternative method presented in Ref. [206] could be realized that
creates a spin-dependent potential with light frequencies between the
D1- and D2-lines, resulting in larger detunings and, therefore, smaller
scattering rates.

2D-3D crossover. With the new accordion lattice installed during
this thesis both the intensity and crossing angle of the lattice beams
can be controlled. Therefore, the confinement strength and tunneling
probability between adjacent layers can be tuned independently. This
opens the way to study the crossover from two to three dimensions
[207, 208] allowing us to measure the pairing gap, the behavior
of collective modes, and to perform comparisons with theoretical
predictions of the 2D-3D crossover [209].

RF dressing While developing the scheme to prepare imbalanced
Fermi gases, we noticed that it might be possible to create long-lived
two-component superfluids where one component is an RF-dressed
state consisting of a coherent superposition of two hyperfine states.
This could open the way to control the interaction strength using RF
dressing [210] similar to experiments performed with bosons [211,
212]. If this technique can be established as an alternative way to
tune the interaction strength, it would allow for a wide range of
new experiments. As an example, a magnetic gradient could be
used to locally change the effective detuning, resulting in a local
change of the effective interaction strength. This would allow the
realization of a spatial BEC-BCS crossover, which has been theorized
for superconducting p-n junctions [213] and recently been observed
in FeSe monolayers [214]. The interesting difference to previous
experiments is that in this proposed in-situ realization of the BEC-BCS
crossover the whole system is thermalized and at the same absolute
temperatureT. Thus, thermodynamic quantities, such as the chemical
potential, could be extracted for varying interaction strengths but at a
constant temperature.

Imbalanced Fermi gases Building and further improving on our
preparation of imbalanced Fermi gases close to the 2D regime at un-
precedently low temperatures, it is very tempting to investigate ex-
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otic FFLO phases with spatial varying order parameter. These phases
break the translational symmetry such that a second collective mode
arises, which is gapless at q = 2qFFLO = 2(kF,↑ − kF,↓) [215]. This
mode is predicted to be coupled to both a density- and spin-dependent
Bragg perturbation and thus should be visible in measurements of
both the spin and density structure factor [215]. As the existence of
FFLOphases is predicted only at very low temperatures, one could use
these signatures of mode softening to study precursors of the FFLO
state, where the energy of excitations is not gapless, but already re-
duced compared to the balanced case [195]. Another exciting avenue
is to try to stabilize the FFLO state or the precursor state by increasing
the nesting effect with an external static lattice [195].

For these experiments, different preparation schemes can be ex-
plored, e.g. schemes where one spin state is spilled with a magnetic
gradient at lowfields orwith a narrowp-wave resonance of one partic-
ular spin state. This will allow us to increase the polarization for low
temperatures, and this will open the way to observe phase separation
and to map out the entire phase diagram.

Overall, we see that there are a variety of exciting topics that can
be explored in the future using both balanced and imbalanced Fermi
gases.



A CALIBRATION OF AUXILIARY IMAGING SYSTEM

In order to reconstruct the 3D density of the gas loaded into the box
potential from a 2D column density we need to determine the box
height. For that, we perform absorption imaging from the side. In the
following, we will calibrate the magnification of this imaging system
using the Kapitza-Dirac effect. It consists of two measurements. In
the first measurement, the static vertical 1D lattice used in Chap. 3 to
create a 2D gas is projected through the imaging system to measure
its periodicity dpx on the camera in units of pixel. The relationship to
the periodicity at the atom position is given by

d =
spx
M dpx, (A.1)

where M denotes the magnification of the imaging system and spx =
7.5µm/px the camera pixel size.

Figure A.1: A Kapitza-Dirac measure-
ment is used to calibrate the magni-
fication of the auxiliary imaging sys-
tem. The density distributions, inte-
grated along the x-axis, are shown for
various time of flights after momentum
has been imprinted along the z-axis.

In a second measurement, atoms trapped in one layer of the 1D
lattice are subjected to a short pulse of the same lattice. If the pulse
is sufficiently strong, we enter the Kapitza-Dirac regime, resulting
in the imprinting of momenta pz = ±n 2ℏklatt. = ±n 2ℏ 2π/(2d) on
the atoms, where n denotes integers. These different classes can be
distinguished after time of flight, as depicted in Fig.A.1. The velocity
from the class of atoms with momentum 2ℏklatt. in units of pixels can
be measured and follows

vpx = M
spx

v = M
spx

2ℏklatt.
md

= M
spx

ℏ2π
dmd

. (A.2)

We obtain the final magnification by substituting Eq.A.1 into Eq.A.2
and solving for the magnification,

M = spx (
vpxdpxmd

2πℏ )
1/2

= 6.85 ± 0.03,

which corresponds to an effective pixel size

spx/M = (1.0950 ± 0.0005) µmpx .

This value is in agreement with the effective pixel size of

(1.14 ± 0.17) µmpx

obtained from a cross-calibrationwith themain imaging system using
the diameter of the box along the y-axis as a reference accessible from
both imaging directions (see Fig. 3.1).

A third method involves the slight vertical anticonfinement of the
magnetic field generated by the Feshbach coils: The saddle position
of the magnetic field can be changed by creating an additional vertical
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magnetic gradient with the set of coils that is normally used to
compensate for the effect of gravity. Here, the saddle movement at
the atom position for a given current through these coils is accurately
known from the current required for this compensation. Meanwhile,
its change on the camera can be determined from time of flight
measurements as the atoms roll off the anticonfinement potential
along the z-axis. The obtained pixel size is (1.07 ± 0.13)µm/pxwhich
is in agreement with the results of the previous two methods.

Using the effective pixel size of the Kapitza-Dirac calibration, we
can determine the vertical extension of the gas in the box potential.
First, we take the absorption image of the 3D gas from the side
(lower panel in Fig. 3.1) and integrate along the x-axis to obtain the
distribution n(z). We then take the full width at half maximum of the
integrated density to obtain a height of bpx = 39px that corresponds
according to the calibration to b = 43 μm .



B DENSITY CALIBRATION

We calibrate the density measurement in the 3D Box presented in
Chap. 3 using a system with a known equation of state (EOS), a
unitary Fermi gas. We prepare a unitary Fermi gas with a similar
number of atoms but in a hybrid trap, where the endcaps are left
in place but the radial ring confinement is turned off. Instead, the
atoms are held along the radial direction by a weak magnetic trap
that provides a harmonic confinement V(r) = mω2

r r2/2 with ωr =
2π ⋅ 29.8 Hz. The resulting density distribution is shown in Fig. B.1.

In this configuration, the local density n(r) of the gas follows the
harmonic confinement and decreases towards higher radii r since the
local chemical potential decreases according to the local density ap-
proximation as μ(r) = μ(r = 0) − V(r). In the central region of
the cloud, the local Fermi temperature TF(r) is high enough that
T/TF(r) ≪ 1, and the local chemical potential is in good approxima-
tion given by

μ(r) = ξEF(r),

with the local Fermi energy

EF(r) = ℏ2 (6π2n(r))2/3

2m

and the Bertsch parameter ξ = 0.370(9) [15, 28].
For our calibration, we perform a linear fit of the local Fermi

energy ẼF ∝ ñ2/3 for small radii and determine the central chemical
potential μ0 from its crossing with the x-axis (Fig. B.1). We compare
the chemical potential with the central Fermi energy EF, which is the
crossing of the fit with the y-axis. We obtain μ0 = h × 1.23 kHz and
ẼF = h × 2.68 kHz. Their ratio deviates from the Bertsch parameter.
Therefore, we introduce a correction factor for the density n3D = αñ3D

Figure B.1: Density calibration using a
unitary Fermi gas in a hybrid trapwhere
the vertical confinement by the endcaps
is kept on but the radial confinement
is turned off. The left panel shows the
density distribution. In the right panel,
we shot the radial average of the local
Fermi energy EF(ñ(r)) ∝ n(r)2/3 in
dependence on the local potential height
V(r) (blue dots). A linear fit in the
central region (solid orange) allows us
to extract the chemical potential and to
determine a correction factor α for the
density (see text).
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such that EF = α2/3ẼF. We find

α = ( μ0
ξẼF

)
3/2

= 1.38(7)(5),

where the first parenthesis gives our error in the determination of
the linear fit and the second parenthesis denotes the error due to the
uncertainty of the Bertsch parameter82.

82 These uncertainties in the density
propagate to relative systematic uncer-
tainties of 4% and 3% in the Fermi en-
ergy.



C SPEED OF SOUND FROM QMC CALCULATIONS

In the following, we extract the speed of sound from quantumMonte
Carlo (QMC) calculations [44] which is shown in in Fig. 3.9 c as a
dashed line. The QMC calculations provide us for a given interaction
strength η = (kFa3D)−1 with the total energy E(η) of the T = 0 ground
state. In Ref. [44] the total energy also includes the binding energy of
the dimers and approaches E(η) ∼ −NEB/2 in the BEC limit. We are
here, however, interested in the collective behavior of the dimers and
therefore substract the two-body binding energy to obtain

Ẽ(η) = E(η) + NEB/2 = f(η)EFG (C.1)

where EFG = 3
5 NEF is the total energy of the non-interacting Fermi

gas. This quantity is plotted in Fig. 2 of Ref. [44] and reproduced in
Fig. C.1 a. The function f(η) is a continuous function which goes from
0 in BEC limit to 1 in the non-interacting BCS limit and is obtained
by fitting an empirical parametrization f(η) = a ⋅ arctan(b ⋅ η) + c
to the numerical values of the QMC calculation83. Compared to the 83 We obtain for our parametrization

a = 0.302, b = 2.9 and c = 0.45.parametrization in Ref. [216] we use here one continuous function
throughout the crossover in order to have a properly defined deriva-
tive ∂f/∂η at the unitary point.

To derive the speed of sound, we first calculate the reduced chemi-
cal potential μ̃ = μ + EB/2 by taking the derivative with respect to the
particle number,

μ̃ = ∂Ẽ
∂N = ∂ (fEFG)

∂N = ∂f
∂η

∂η
∂NEFG + f ∂EFG

∂N = EF (−f′ η
5 + f) , (C.2)

Figure C.1: Derivation of the speed of
sound from the QMC equation of state.
(a) Empirical fit (solid line) to the re-
duced total energy Ẽ from QMC calcu-
lations (dots [44]). (b) By taking the
derivative a reduced chemical potential
μ̃ (dashed line) can be calculated. (c)
A second derivative yields the speed of
sound (dashed dotted line).
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where we introduced the abbreviation f′ = ∂f/∂η and used the
relations

∂η
∂N = − η

3N
∂EFG
∂N = EF.

As we see in Fig. C.1 b, the reduced chemical potential μ̃ smoothly
connects the BEC limit where μ̃ ∼ gn/2 to the BCS limit where μ̃ ∼ EF.

In a second step, we derive the chemical potential with respect to
the density to obtain the inverse compressibility

∂μ̃
∂n = EF

n (2
3f − 2

5f′η + 1
15f″η2) ≡ EF

n fκ, (C.3)

where we introduced the inverse compressibility scaling function fκ.
The speed of sound is then given by

c = √ n
m

∂μ
∂n = √ n

m
EFfκ

n = vF√fκ
2 , (C.4)

which is plotted in Fig. C.1 c.



D SYSTEMATIC UNCERTAINTIES ON THE PAIRING GAP

Here, we summarize the different sources of systematic uncertainties
and their influence on the measured pairing gaps in Chap. 3.

The gap determination should not depend on the momentum for
q < 2kμ = 2√2mμ/ℏ2 and experimentally we observe an upper limit
of 5% for the q-dependence of Δ/EF, where data was available.

The choice of a fit function for the onset of the pair-breaking contin-
uum introduces a systematic uncertainty. If we apply the bilinear fit
to themeasurements in the BCS regimewhere the fit of QRPA calcula-
tions is also applicable, we find that the values of the gap determined
from the transition point are shifted systematically down by 0.03 EF.
However, as the absolute value of the gap increases towards the cross-
over regime, the relative difference between both methods decreases.
This difference between both fits can be understood as an estimate of
the systematic error introduced by the choice of a fit function, namely,
a systematic uncertainty of 0.03 EF for Δ.

The uncertainties of the density calibrationdiscussed above, namely
the confidence interval for the fit to dEF(r)/dV(r) and the error of the
literature value for the Bertsch parameter [15], result in uncertainties
for Δ/EF of 4% and 3%, respectively. An additional systematic error
arises due to the non-zero curvature of the magnetic offset field which
affects the homogeneity of the sample. It can be estimated by compar-
ing the potential inhomogeneity to the chemical potential of the gas.
The resulting error for Δ/EF is 0.02 EF/μ which translates to an rela-
tive uncertainty of the gap of ∼ 15% throughout the crossover.

Furthermore, we can use the theoretical prediction for the entropy-
dependence of the gap from Ref. [88] to estimate the influence of
entropy uncertainties discussed in the next section. Both the entropy
measurement uncertainty of 0.09 NkB and the entropy variation of
0.07 NkB across the BEC-BCS crossover correspond to an systematic
uncertainty of approximately 0.02 EF on Δ.





E MAGNETIC FIELD DEPENDENCE OF THE GROUND STATE

To obtain the RF frequencies required for a transfer fromone hyperfine
state we discuss here briefly how the ground state 2S1/2 splits up into
six hyperfine states in an external magnetic fieldB. The energy shift of
a hyperfine state |F, mF⟩ with total angular momentum F = {3/2, 1/2}
and the corresponding magnetic quantum number |mF| ≤ F is given
by the Breit-Rabi equation [217, 218],

ΔE = − hνHF
2(2I + 1) + μBgImFB + hνHF(F − I)√1 + 2mFx

I + 1
2

+ x2

(E.1)

with x = (gJ − gI)μB
hνHF

B, (E.2)

the hyperfine splitting νHF = 228.205 26MHz, nuclear spin I = 1, Bohr
magneton μB, and Landé g-factors gj = 2.00232 and gI = −0.000448.
For the stretched state where |mF| = I + 1/2 = 3/2, the last term is
replaced by

hνHF(F − I) (1 + sgn(mF)x) ,
where sgn is the sign operator. Fig. 8.3 a shows how the ground state
splits up into three high-field and three low-field seeking states, which
are numbered in ascending order. The energy difference between state
1 and 2, and state 2 and 3, is shown in Fig. 8.3 b for varying magnetic
fields.





F THE ACCORDION LATTICE

During this thesis, we installed a so-called accordion lattice in the
experiment. This new 1D optical lattice has compared to the lattice
previously used to create 2D Fermi gases an adjustable lattice spacing.
Such a lattice allows us to vary the vertical confinement continuously
while keeping the atoms in the trap. It has been implemented for 1D
and 2D lattices before [219–223].

Similar to the Bragg setup presented in Chap. 3.2, the underlying
idea is to change the periodicity of a 1D lattice by adjusting the
crossing angle of two interfering beams. A detailed discussion of
the setup including beam shaping, treatment of the polarization,
alignment and full characterization can be found in the thesis of Jonas
Faltinath [84]. In short, we create an interference pattern by creating
two blue-detuned 532 nm laser beams of variable spatial displacement
with respect to each other and sending them through a common lens.

To achieve that, we use a mirror mounted on a galvo motor84 84 We use the Thorlabs GVS301 which
allows rotation angles of ±12.5° with an
accuracy of 15µrad.

and convert the angle offset into a spatial offset with an f = 50mm
placed 50mm behind the galvo mirror (Fig. F.1). The galvo mirror
and the collimating lens are installed in a common mount to simplify
alignment and to create a compact setup. Then, the displaced beam is
split up into two parallel beams by using a custom polarizing beam
splitter85 rotated by 45°. The resulting co-propagating beams are 85 We use an 1 inch polarizing cube from

Altechna with a coating that minimizes
the reflection for a 45° entrance angle.

passed through a focusing lens in front of the glass cell, which crosses
both beams in the focal plane and creates a 1D lattice at the atom
position.

By changing the control voltage of the galvomotor, the deflection of
the beam and thus the displacement after the cube can be varied. This
varies the final crossing angle at the atom position, thereby changing

Figure F.1: In the accordion setup a galvo mirror deflects the incoming beam which is collimitated by a 50mm lens. Then, the beam is
split into two using a custom polarizing beam splitter rotated by 45°. Both co-propagating beams are finally focussed onto the atoms,
resulting in a 1D lattice. This setup allows to change the lattice constant continuously from 20µm to 2.3µm by changing the deflection
angle of the galvo mirror. Adapted from [84].
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Figure F.2: Interference pattern for dif-
ferent lattice constants when scanning
from small lattice constants (bottom,
small galvo deflection angle) to large lat-
tice constants (top, large galvo deflec-
tion angle) in a test setup. For each
lattice constant, a sum over the trivial
axis of the interference pattern is taken,
and shown as a row. The stability of
the central maximum of the interference
pattern demonstrates that the relative
phase between both beams stays almost
constant when changing the lattice con-
stant. In the experiment, we choose
a minimum next to the central maxi-
mum to confine the atom cloud verti-
cally. Adapted from [84].

the lattice spacing. Here we note, that a smaller galvo deflection angle
corresponds to a larger crossing angle at the atomposition because the
cube transforms a small displacement into a large displacement and
vice versa (see Fig.F.1).

Figure F.3: Trapping frequencies of the
accordion lattice for increasing galvo
control voltages. These correspond to
decreasing galvo deflection angles and
increasing crossing angles at the atom
position. Thesemeasurements are taken
for a total beam power of 500mW and a
gas at 832G.

Before installing the accordion lattice in the experiment, we char-
acterized the interference pattern in a test setup which showed that
lattice constants in the range of 2.3µm to 20µm can be achieved
(Fig. F.2). After installation in the experiment, we use parametric
heating to verify that the trapping frequency can be varied using
the galvo control voltage while keeping the beam power constant
(Fig. F.3).

With this setup the loading from the squeeze trap can take place at
a large lattice constant such that spilling into adjacent layers does not
occur, thereby simplifying the atom transfer. In addition, the accor-
dion lattice allows for a simple check if a single layer is loaded by in-
creasing the lattice constant and performing absorption imaging from
the side. This complements the kick-and-probe technique developed
previously to resolve if one or two sites are loaded in a constant 1D
lattice [81].

In addition to simplify loading a balanced 2D system, the accordion
trap can confine clouds with large vertical extent, e.g. imbalanced
gases in the squeeze trap, into a single layer. Furthermore, it enables
us to study the effect of different confinementswhile keeping the beam
power high, thus suppressing the tunneling rate between adjacent
layers.
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