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Summary.
In the definition of 3-dimensional topological field theories of state-sum type, the evaluation of
certain graphs on spheres that surround vertices of a triangulation is a crucial ingredient. For the
definition of a topological field theory on manifolds with stratifications, such an evaluation has
been known only for specific geometric configurations. For general configurations, an extruded
graph on a sphere has to be evaluated to a scalar.

In this thesis, we define such an evaluation for extruded graphs labeled by spherical fusion
categories and traced bimodule categories over them. We prove that this evaluation is invariant
under a set of local moves, which makes the evaluation explicitly computable. We show that the
definition specializes to known evaluation procedures in specific situations. The results pave the
way towards a construction of topological field theories on stratified manifolds.

Zusammenfassung.
Die Evaluation bestimmter Graphen auf Sphären, die die Vertizes einer Triangulierung um-
schließen, ist ein wesentlicher Bestandteil der Definition von dreidimensionalen topologischen
Feldtheorien, die auf Zustandssummen basieren. Eine solche Evaluation, die für die Definition
einer topologischen Feldtheorie auf stratifizierten Mannigfaltigkeiten geeignet ist, ist bislang
nur für spezielle geometrische Konfigurationen bekannt. Um allgemeinere Konfigurationen
einzuschließen, muss ein extrudierter Graph auf der Sphäre evaluiert werden können.

In dieser Dissertation definieren wir eine solche Evaluation für extrudierte Graphen, die
mit sphärischen Fusionskategorien und Bimodulkategorien mit Spur beschriftet sind. Wir
beweisen, dass die Evaluation unter einem Satz lokaler Transformationen invariant bleibt, was
die Evaluation explizit berechenbar macht. Wir zeigen außerdem, dass sich die Definition in
Spezialfällen auf bekannte Evaluationsvorschriften spezialisiert. Diese Ergebnisse ebnen den Weg
für die Konstruktion einer topologischen Feldtheorie auf stratifizierten Mannigfaltigkeiten.
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1 Introduction

The idea to associate to topological or geometric objects algebraic invariants pervades many fields
of mathematics, ranging from differential geometry to algebraic topology. In quantum topology,
the notion of a topological field theory has received much attention: it assigns invariants not
only to manifolds, but also to (extended) cobordisms, thus ensuring locality of the manifold
invariants, which take values in a field K.

The modern notion of state-sum models on 3-manifolds dates back to the Ponzano-Regge
model [PR68] of 3-dimensional quantum gravity. This theory is prone to divergence issues as
the "sum" refers to a sum over isomorphism classes of irreducible SU(2)-representations – which
there are infinitely many of. In what can be described as a regularization of the model, Turaev
and Viro [TV92] took the quantum group Uqsl(2) instead of SU(2) as the input datum for their
construction. Nowadays, one often uses a category instead of a Hopf algebra as the algebraic
ingredient for the construction of a state-sum model. More concretely, Barrett and Westbury
[BW96] showed that a spherical fusion category is the appropriate structure for this purpose.

A spherical fusion category is, in particular, a K-linear monoidal category. Fusion is a finiteness
and semisimplicity property for K-linear monoidal categories, while spherical refers to a structure
that ensures particularly well-behaved dualities. These qualities of spherical fusion categories are
essential for the definition of a state-sum invariant, which we now recall, loosely following the
formulation of [TV17].

State-sums are defined not for closed 3-manifolds, but for closed 3-manifolds with an embedded
auxiliary substructure, which for the moment the reader might imagine as a triangulation. In
a second step, it has to be proven that the value of the state-sum does not depend on the
choice of triangulation – only then is it an invariant of 3-manifolds. Given a spherical fusion
category A and a 3-manifold M with triangulation, one assigns to each face of the triangulation
a simple object of A to label it with. These simple objects are the "states" over which a sum
will be performed. The sum will be finite because A is a fusion category, which implies that up
to isomorphism, A only has finitely many simple objects. Now consider a small, ball-shaped
neighborhood around a vertex v of the triangulation of M . The boundary of the neighborhood
is a 2-sphere which intersects the edges and faces adjacent to v. This intersection is a graph on a
sphere, whose edges stem from the faces of the triangulation, and whose vertices stem from the
edges of the triangulation. The egdes of the graph inherit a labeling with simple objects of A
from the faces. To such a graph on a sphere, the graphical calculus of a spherical category assigns
a linear form on a finite-dimensional vector space associated with the graph. The vector space in
question is a tensor product over hom-spaces: one for each vertex of the graph. Having obtained
a linear form for each vertex of the triangulation, a vector is needed on which the linear forms
can be evaluated. Indeed, a natural choice for such a vector exists due to the semisimplicity of
A, which is again part of the fusion property. This defines a scalar for each labeling of faces by
simple objects on A. The state-sum is defined as the sum of the scalars for all choices of labels,
adjusted by some weighting and normalization factors.

A feature of state-sum invariants of manifolds is that they are local: The construction can not
only be defined for manifolds, but for cobordisms, making it a topological field theory (TFT).
This means in particular that the state-sum invariant of a given manifold can be computed by
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cutting the manifold into pieces, and performing the state-sum for each piece. For the state sum
models of interest in this thesis, it is believed that this construction be iterated so that they even
define a fully extended TFT.

Defect Structures. In state-sum models with defects, one considers an invariant not for
manifolds, but stratified manifolds, which might in particular have boundaries. We refer to the
stratification as a defect structure, in which each stratum is a defect – a substructure embedded
in a manifold, labeled with additional algebraic data. An invariant of manifolds with defects
provides a geometric tool to study the algebraic data which label the defects.

State-sums for manifolds with (framed) 1-dimensional defects (or defect lines) are well-
understood [BK10], even when they, together with 0-dimensional defects, form a network
of defect lines in the manifold [TV10; TV17]. A first example of a 2-dimensional defect is the
boundary of a compact 3-manifold. It is possible to define a state-sum for compact 3-manifolds
with boundary and defect lines [FS22]. Defect lines are then embedded either in the boundary
or in the interior of the 3-manifold, and their algebraic labels are distinct. If we consider the
state-sum with respect to a spherical fusion category A, then boundary defect lines have to be
labeled by objects of A (or a Morita equivalent spherical fusion category), while interior defect
lines are labeled by objects of the Drinfeld center Z(A).

Such a structure may seem contrived, but there are relevant examples: The Frobenius-Schur
indicator is a classical quantity from representation theory, which assigns a number to a complex
representation of a finite group, and is, among other qualities, capable of detecting whether an
irreducible representation is (a) a complexification of a real representation, can (b) be obtained
by restriction of scalars from a quaternionic representation, or is (c) not self-dual. A modern
generalization of the Frobenius-Schur indicator takes as input datum a pair (a, x), where a ∈ A
is an object of a spherical fusion category, and x ∈ Z(A) is an object of its Drinfeld Center. This
Frobenius-Schur indicator can be obtained as the state-sum for a solid torus, with an x-labeled
defect loop embedded in its interior and a configuration of a-labeled defect lines embedded on
the boundary, revolving around the torus [FS22]. Moreover, this description allows for reasoning
about the indicator, as some of its properties can be understood in geometric terms. State-sums
for other manifolds with defects have been associated with representation-theoretic quantities in
[Meu22].

A state-sum invariant for closed 3-manifolds with an embedded defect structure consisting of
2-, 1-, and 0-dimensional cells has been developed by Meusburger [Meu22] under the requirement
that the defect structure as a whole forms a 2-manifold. This thesis aims to develop some of the
tools that are necessary for a further generalization eliminating this restriction. If we want to
propose a state-sum construction for 3-manifolds with defects in all codimensions, there are two
important questions to be answered.

1. Which types of algebraic data should label the defects of various dimension?

2. How do we evaluate at vertices?

The first question has essentially been answered in the literature. The point of the thesis is to
provide a solution to the second question. We present the following answers:
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1. The algebraic labeling of the defect structure is composed of:

3-cells Spherical fusion categories.

2-cells
(Defect surfaces)

Finite semisimple bimodule categories over the spherical fu-
sion categories that label the adjacent 3-cells. The bimodule
categories are equipped with the additional structure of a
bimodule trace, which is equivalent to a pivotal structure.

1-cells
(Defect lines)

Objects in the relative Deligne product over all bimodule
categories that label the adjacent 2-cells. In the case of a
defect line is adjacent to precisely two 2-cells, these objects
may be described as bimodule functors between the bimodule
categories that label the 2-cells.

0-cells
(Vertices)

Linear forms on the block space of the vertex, which is a
vector space assigned to the vertex that takes into account
the geometry of its neighborhood, as well as all the algebraic
labels for the adjacent defect strata of higher dimension.

That bimodule categories are suitable labels for defect surfaces has been observed for some
time [KK12; FSV13]. Bimodule traces as additional structures on bimodule categories
originate in [Sch13b]; they equip the higher Morita category of spherical fusion categories
and traced bimodule categories with duals [Sch13a]. Traced module categories have been
used as labels for boundaries in state-sum models implicitly, see e.g. [LFHSV21], and
defect surfaces labeled with traced bimodule categories appear in [Meu22]. The labeling
of defect lines with bimodule functors is in agreement with [Meu22]. It is established
[FSS22] that objects in the relative Deligne product are the appropriate generalization
for the labels of defect lines with more than two adjacent defect surfaces. The labeling of
vertices by linear forms on block spaces is new to this thesis. In other approaches, bimodule
natural transformations [Meu22] or morphisms in a Drinfeld center [TV17] are used to label
0-dimensional defects. Block spaces in our sense were introduced in [FSS22] and can be
thought of as generalized, symmetric versions of vector spaces of natural transformations.

2. Sufficiently small closed ball neighborhoods of a vertex have the structure of an extruded
graph, as illustrated, for instance, in (3.44). Extruded graphs can be evaluated to a scalar
without the need to resort to projections or a pre-determined set of local moves.

Having provided a definition for how extruded graphs are to be evaluated, we owe a convincing
argument for why our proposition is a good, or even the correct evaluation procedure for the
purpose of building a state-sum model. The following main results of the thesis substantiate this
claim:

(a) Loop graphs as depicted in (3.61) evaluate to traces, as would be expected in a graphical
calculus. This is the content of Theorem 3.28.

(b) We specify a set of local moves which any reasonable evaluation should be invariant under.
We prove this invariance property for our evaluation procedure in Theorem 4.4.
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(c) Our method of evaluation is the unique evaluation procedure which satisfies (a) and (b), as
shown in Theorem 4.5.

(d) The evaluation of extruded graphs specializes to the ordinary graphical calculus of a
spherical fusion category. This statement is made precise in Theorem 5.12.

Let us now shed some light into the two "black boxes" that appeared in the discussion so far:
The block space associated to a vertex, and the evaluation procedure for extruded graphs.

Block spaces and pre-block spaces. To this end, we need to gain a better understanding
of the neighborhood of a vertex v in a defect structure. We can describe it as follows: The
surface of a small ball neighborhood is a sphere, and the intersection of the surface with the
surrounding defect structure is a graph on the sphere. The edges of this graph inherit a labeling
by bimodule categories from the defect surfaces. To differentiate the graph’s vertices from the
vertices of the defect structure, such as v, we refer to the former as nodes. Within the interior of
the neighborhood, there are defect lines that connect the vertex v radially with the nodes. These
lines are also labeled by algebraic data, namely objects in relative Deligne products. To this
graph on a sphere, along with its associated algebraic labels, we need to assign a vector space.
There is a natural candidate for such a vector space: the block space constructed in [FSS22]. It
can be seen as a result of this thesis that this block space is an appropriate space of labels for
the vertices of a defect structure.

Recall from [FSS22] that the block space is defined as a subspace of a larger vector space
known as the pre-block space, which is a common construction in state-sum models. Roughly
speaking, the pre-block space is a hom-space in a large Deligne product, whose arguments are
the objects that label the defect lines adjacent to v, but without balancings. We can think of
the pre-block space as storing information about which adjacent defect lines are linked by a
defect surface. The block space is a subspace of the pre-block space, consisting of those vectors
that satisfy a set of conditions, one for each of the 3-cells adjacent to v. These conditions are
expressed through an equalizer diagram into which in particular the balancings of the objects
labeling the defect lines enter, and the block space is defined as its equalizer in Section 3.2.

Extruded Graphs. In a state-sum model without defects, the neighborhood of a vertex in
a triangulation defines a graph. A choice of objects (state-sum variables) for edge labels and
morphisms for vertex labels turns this graph into a string diagram on the sphere.

Similarly, the neighborhood of a vertex v in a defect structure, as described earlier, needs
additional algebraic labels to constitute an extruded graph as pictured in (3.44). The graph on
the boundary sphere of the neighborhood has edges labeled by bimodule categories. A secondary
label is needed for each of the edges: a choice of object in the corresponding bimodule category.
To each node (vertex of this graph), we associate a vector space, which is a hom-space that
couples the objects labeling the adjacent edges to the object in the relative Deligne product which
labels the adjacent defect line. Each node must be labeled with a vector from the corresponding
vector space. Lastly, recall that the vertex v is labeled with a linear form on the block space. All
of these data combined endow the neighborhood of v with the structure of an extruded graph,
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which, through our evaluation procedure, yields a scalar invariant. The notion of an extruded
graph will be made precise in Section 3.1.

The Evaluation. The evaluation of extruded graphs can be seen as an extension of the
graphical calculus on spheres. Usually, a graphical calculus is defined by first choosing a
projection of the diagram in question. For instance, string diagrams for braided categories are
embedded in 3-dimensional space, but to be able to evaluate them, they have to be projected
onto a standard plane. It is then a theorem that the evaluation does not differentiate between
different choices of projection; see [JS91, Thm. 3.5] for one formulation of this statement. While
working with string diagrams for braided categories in this way is manageable, the projection-
based approach has disadvantages. In the case of extruded graphs, the combinatorics involved
in transforming one choice of projection into another are unknown to us. For us, defining a
projection-based evaluation is therefore neither feasible nor desired.

Indeed, the evaluation procedure for extruded graphs we present in Section 3.3 is defined
without resorting to projections. It involves three steps. In the first step, the labels of the nodes
are used to define a vector in the pre-block space. From this vector, a corresponding vector in
the block space is then constructed. Finally, in the third step, the linear form that labels the
vertex v is evaluated on the obtained element of the block space. The first and third steps of
the evaluation procedure are relatively tame. It is the second step which is most significant.
It involves a distinguished linear map from the pre-block space to the block space, which was,
however, only a subspace by definition. The key insight needed here is that in the semisimple
setting, the spherical structure on the involved fusion categories exhibits the equalizer from the
definition of the block space as a split equalizer. This means that the block space is not merely a
subspace of the pre-block space, but a retract. Consequently, any vector in the pre-block space
comes with a distinguished projection provided by the spherical structures into the block space,
as is required in the second step of the evaluation procedure.

Local Moves. Since we defined the evaluation without choosing any projection, it evidently
provides a well-defined quantity associated to the extruded graph. No theorem is necessary that
ensures the independence of a projection. This feature comes with a drawback: It is hard to use
the definition we give to directly compute the evaluation of an extruded graph. We address this
problem by providing tools for practical calculations in Section 4. Namely, we introduce a set of
local moves for extruded graphs, which leave the evaluation invariant. Evaluating an extruded
graph using local moves is then a process of gradually simplifying the extruded graph, until it is
of a standard form, called a loop graph. We show that loop graphs, pictured in (3.61), evaluate
to a trace.

The set of local moves includes generalizations of standard moves for string diagrams. We
briefly mention two of them: A strand connecting two vertices of a string diagram, can be
contracted into a single vertex. The new vertex needs a to be labeled with a morphism, which
is obtained by composing the labels of the old vertices. We call the corresponding move on
extruded graphs the C-move. It also consists of a topological transformation, in which two nodes
are replaced by one, and an algebraic prescription detailed in Section 2.16 to obtain the label of
the new node from the two labels of the nodes that have been contracted. In string diagrams for
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monoidal categories, the juxtaposition of strands represents the monoidal product of the objects
that label them. As a consequence, a pair of parallel strands can always be replaced with a single
strand labeled with a monoidal product. The EF-move for extruded graphs is similar, though a
relative Deligne product has to be taken instead of a monoidal product.

That the corresponding local moves for string diagrams leave the evaluation invariant follows
immediately from the projection-based definition. We prove the invariance of the evaluation
under these moves and others for extruded graphs, which is a main result of the thesis.

Relation to other known evaluations. Specific extruded graphs can be reduced to string
diagrams in a spherical fusion category A on the surface of a ball, with additional strands, labeled
by objects in the Drinfeld center Z(A), pointing radially inwards towards the center of the ball.
This type of diagram is encountered in state-sum models with at most 1-dimensional defect
structure [BK10; TV17]. In Section 5.2, we show that the evaluation of such specific extruded
graphs reproduces the usual, projection-based evaluation of these diagrams.

In the state-sum model with defects introduced in [Meu22], yet another class of diagrams
appeared, called polygon diagrams. Like extruded graphs, polygon diagrams involve a labeling of
edges by objects of different traced bimodule categories. They are, however, planar in nature.
This is appropriate for the model: because the defect structure in [Meu22] is required to be
a 2-manifold, graphs on the surface of a ball neighborhood of a vertex in the defect structure
come with a distinguished plane on which they can be projected. Some extruded graphs can
be compared to polygon diagrams. In these cases, the respective evaluations agree as well, see
Section 5.3.

Towards defining a state-sum. Having developed a theory of extruded graphs, and shown
that their evaluation specializes to known evaluation procedures, we are in a position to propose
a state-sum model with defects in Section 5.4, though proving the independence of triangulation
remains beyond the scope of this thesis. Looking forward, it seems likely that extruded graphs
can be used to further simplify the definition of state-sum models. This is because while the
extruded graphs we considered so far are of spherical shape, higher-genus extruded graphs can
be considered as well. It is then feasible, as outlined in Remark 5.15, that the state-sum of a
triangulated 3-manifold with defects can be computed as from the evaluation of a single extruded
graph, whose topology is a tubular neighborhood of the 1-skeleton of the triangulation. This has,
however, to be relegated to future work.
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2 Algebraic Preliminaries

Before we can introduce extruded graphs, the objects of interest in this thesis, in Section 3, we
need to develop some algebraic machinery that is necessary to work with them. Some of this
section is spent fixing notation, and recalling standard concepts, such as bimodule categories,
categorical centers and the relative Deligne product. Lesser-known structures which are reviewed
include bimodule traces in Section 2.7. More importantly though, we lay out some specific
algebraic tools that are necessary to work with extruded graphs, such as the piecewise module
coend in Section 2.17.

Throughout this paper, let us fix an algebraically closed field K of characteristic 0. We will
mainly work with K-linear categories, using standard terminology that can be found in [EGNO15].
When not stated otherwise, all linear categories are also assumed finite and semisimple.

The following notational conventions serve to shorten and clarify the presentation:

• Given any category C with objects x, y ∈ C, we denote hom-sets by angled brackets:

⟨x, y⟩ := C⟨x, y⟩ := HomC(x, y). (2.1)

• Lowercase bold letters (x,y, . . . ) are used for objects that are necessarily simple. In a finite
semisimple category C, the notation ∑

x∈C
· · · (2.2)

stands for a sum over the set of isomorphism classes of simple objects of C, with x assuming
the value of a representative for each class in the sum.

• We denote the opposed category to any category C by an overline:

C := Cop. (2.3)

If x y z
g f are objects and morphisms in C, then we also denote the corre-

sponding objects and morphism in C by an overline:

z y x.
f g (2.4)

Using this overline-notation, the relation between composition in C and composition in C
can be written out concisely as

f ◦ g = g ◦ f. (2.5)

• If X and Y are linear categories, we frequently consider the Deligne product X ⊠Y. We
treat the Deligne product as strictly associative and use tacitly that the equivalence
X ⊠Y ∼= Y ⊠X is symmetric. In practice this means that we can identify any two orderings
of a multiple Deligne product via a distinguished equivalence: Let X1, . . . ,Xn be linear
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categories, and let σ be a permutation of {1, . . . , n}. By the universal property of the
Deligne product, the functor

X1 × · · · × Xn → Xσ(1) ⊠ · · ·⊠Xσ(n)

(x1, . . . , xn) 7→ xσ(1) ⊠ · · ·⊠xσ(n)
(2.6)

defines an equivalence X1 ⊠ · · ·⊠Xn
∼= Xσ(1) ⊠ · · ·⊠Xσ(n). If throughout this work the

ordering of a Deligne product is changed, it will always be via this equivalence.

2.1 Calabi-Yau Categories

A linear category C equipped with a trace TrC, that is, a collection of maps TrC : C⟨x, x⟩ → K
for each object x ∈ C satisfying

• Symmetry: TrC(f ◦ g) = TrC(g ◦ f), and

• Non-Degeneracy: The assignment f 7→ TrC(f ◦−) defines an isomorphism C⟨x, y⟩ ∼= C⟨y, x⟩∗

for each f : x → y in C,

is called a Calabi-Yau Category. For any object x ∈ C, the scalar dx := TrC(idx) is called the
dimension of x. This notion can, for example, be found in [Cos04] or [Sch13b].

Lemma 2.1 ([Sch13b, Prop. 5.2]). The trace of a (finite semisimple) Calabi-Yau category C is
determined by its dimension vector (dx), that is, the finite list of dimensions dx of (representatives
of) simple objects x ∈ C. The entries of the dimension vector are non-zero, dx ̸= 0. Conversely,
any list of non-zero scalars for each isomorphism class of simple objects defines a trace.

The "squared norm"
DC :=

∑
x

d2
x (2.7)

of the dimension vector is called the dimension of the Calabi-Yau category C. If C and D are
two Calabi-Yau categories, then the Deligne product C ⊠D is a Calabi-Yau category with trace

TrC ⊠D(f ⊗ g) := TrC(f) TrD(g) (2.8)

for endomorphisms f in C and g in D. This product category’s dimension is the product of the
dimensions of the factors:

DC ⊠D =
∑

z∈C ⊠D
d2

z =
∑
x∈C
y∈D

d2
x⊠y =

∑
x∈C
y∈D

d2
xd2

y = DCDD. (2.9)

2.2 Monoidal Categories

We treat all monoidal categories as strict, in that we do not pay attention to the bracketing of
monoidal products, and do not make associators and unitors explicit. With the exception of the
tensor product of vector spaces, we never use any symbol to denote monoidal products; instead
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we simply write ab for the monoidal product of the objects a and b. Reversing the product of a
monoidal category A leads to another monoidal category, denoted Arev.

Most of the monoidal categories we consider are pivotal. In this case as well, we make use of
the appropriate coherence theorem [NS07, Thm. 2.2] and treat the pivotal structure as strict.
We will therefore not distinguish between left and right dualities, and denote by a∗ the dual of
an object a in a pivotal category. We occasionally make use of the fact that a pivotal structure
on a category A gives rise to a distinguished moinoidal equivalence

A ∼= A. (2.10)

We denote the evaluation and coevaluation maps by

eva : a a∗ → 1 and acoev : 1 → a∗ a. (2.11)

Instead of distinguishing between left and right evaluation and coevaluation, we stick to this
convention and use

eva∗ : a∗ a → 1 and a∗coev : 1 → a a∗ (2.12)

for the other duality. The position of the subscript and superscript a is intentional, as will be
clarified in Section 2.6.

A pivotal fusion category A is in two ways a Calabi-Yau category, as both the left and the
right pivotal trace is a trace in the sense of Calabi-Yau categories. If the two traces agree, the
category A is called spherical, and it carries the structure of a Calabi-Yau category in a canonical
way.

2.3 Diagrammatic Notations

In some situations, especially when working with pivotal categories, we allow ourselves to
represent morphisms in the diagrammatic notation of string diagrams. These are always read
bottom-to-top: for example, given morphisms f : x⊗ y∗ → z, g : y → w∗ in a pivotal category
A, we might write

(z ⊗ g) ◦ (f ⊗ y) ◦ (x⊗ ycoev) =
f

gz
w

yx

. (2.13)

For generalities on string diagrams, we refer to [TV17].

Remark 2.2. Given that the aim of this paper is to define a formalism that could be called a
graphical calculus, which moreover is closely related to string diagram notations, all graphical
calculations should be done with care. First of all, we emphasize that the extruded graphs,
which are our main subjects, to be introduced in Section 3, are distinct from string diagrams and
only specialize to the known graphical calculus in some cases, which are laid out in Section 5.
Secondly, all diagrammatic notation in this work is meant to illustrate algebraic expressions for
the convenience of the reader, and a direct translation into such algebraic expressions is possible
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at all times. In stark contrast to extruded graphs that will be examined thoroughly, we do not
treat string diagrams and related notation as mathematical objects, but solely as a means to
improve the legibility of (sometimes lengthy) formulae.

String diagrams in which all strands are labeled by objects and all coupons are labeled by
appropriate morphisms represent a morphism. However, if we leave a coupon empty, we can
take the string diagram to represent a linear map from the hom-space associated with the empty
coupon to the hom-space in which the fully labeled string diagram evaluate to a morphism.
When taking on this perspective, we emphasize the emptiness of the empty coupon by drawing it
as a doubly outlined rectangle, as in the following example, in which both sides of the equation
describe a linear map ⟨x⊗ y∗, z⟩ → ⟨x, z ⊗ w∗⟩:

gz
w

yx

=
(
f 7→ (z ⊗ g) ◦ (f ⊗ y) ◦ (x⊗ ycoev)

)
. (2.14)

For reasons that will become apparent in Section 2.9, we refer to such diagrams with an empty
box as functorial diagrams (for the hom-functor). Functorial diagrams may seem very similar
to string diagrams, but note that their composition operations are quite different: while string
diagrams are composed by vertical concatenation, functorial diagrams are composed by inserting
the pre-composed diagram into the empty box of the post-composed diagram, as illustrated
below.

gz
w

yx

=
z w

yx

◦
gz

w

y

yx

(2.15)

Later, in Sections 2.8 and 2.9, we will see more general functorial diagrams, of which those
presented here are only a particular case.

2.4 Hom-Space Contractions

For a finite-dimensional vector space V , we denote the image of idV under the identification
⟨V, V ⟩ ∼= V ⊗ V ∗ by ⋆ ∈ V ⊗ V ∗. We frequently use a form of Sweedler notation whenever we
need to write ⋆ in ⊗-factorized form: ⋆ = ⋆(V ) ⊗ ⋆(V ∗) ∈ V ⊗ V ∗. For computational purposes, it
is useful to recall that an explicit ⊗-factorized form of ⋆ is given as follows: Pick a basis (φα) of
V and denote the dual basis of V ∗ by (φ∗

α). Then ⋆ = ∑
α φα ⊗ φ∗

α.
In most cases we will encounter, V will be some hom-space V = C⟨x, y⟩ of a Calabi-Yau

category C. It then makes sense to consider the image of ⋆ under the isomorphism C⟨x, y⟩ ⊗
C⟨x, y⟩∗ ∼= C⟨x, y⟩ ⊗ C⟨y, x⟩. We denote this image by ⋆ as well, and its Sweedler components by
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⋆ = ⋆⟨x, y⟩ ⊗ ⋆⟨y, x⟩. When using graphical notation, we write

⋆ =
y

x

⊗
x

y

. (2.16)

A useful and well-known relation which is best expressed in this notation is the following
equation, whose left-hand side is sometimes referred to as a resolution of the identity of an object
x in a Calabi-Yau category C:

∑
x

dx ⋆⟨x, x⟩ ◦⋆⟨x,x⟩ =
∑

x
dx

x

x

x = idx. (2.17)

The notation can also be used to conveniently express the multiplicity dim ⟨x, x⟩ of a simple
object x in an object x in a Calabi-Yau category C:

dim ⟨x, x⟩ = TrC(⋆⟨x, x⟩ ◦ ⋆⟨x,x⟩). (2.18)

2.5 Ends and Coends

Quantum dimensions are hard to keep track of and their appearance in equations can sometimes
seem mysterious. In this section and the following, we aim to systematize our treatment with
the following observation: Quantum dimensions appear whenever an isomorphism between an
end and a coend is expressed in components. To make the meaning of this credo precise, we first
establish in this section that we distinguish between ends and coends even in the semisimple
case, and that a Calabi-Yau structure establishes an isomorphism between the two. Next, in
Section 2.6, we develop a calculus of components of morphisms between ends and coends, which
is a necessary tool later on.

In order to fix notation, we briefly recall the notions of an end and a coend. Let X and
Y be arbitrary categories. An end of a functor S : X × X → Y is an object

∫
x S(x, x) ∈ Y,

together with structure morphisms x′τ :
∫
x S(x, x) → S(x′, x′) for all x′ ∈ X that form a dinatural

transformation (meaning that for every f : x′ → x′′, S(f, x′′) ◦ x′′τ = S(x′, f) ◦ x′τ), satisfying the
universal property that morphisms y →

∫
x S(x, x) are in bijection with dinatural transformations

y ⇒ S for any object y ∈ Y . The notion of a coend
∫ x S(x, x) is dual, and we denote its structure

morphisms by σx′ : S(x′, x′) →
∫ x S(x, x).

In case the category X is a (finite and semisimple) Calabi-Yau category and Y is abelian,
ends and coends can be understood explicitly as products or coproducts over a complete set of
representatives of simple objects x of X : There are canonical morphisms

∫
x S(x, x) →

∏
x S(x,x)

and
∫ x S(x, x) →

∐
x S(x,x), defined using the universal property of the product and the

coproduct. ∫
x S(x, x) ∏

x S(x,x)
∫ x S(x, x) ∐

x S(x,x)

S(y,y) S(y,y)

yτ
σy (2.19)
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These morphisms, which are the unique dashed arrows that make the diagrams (2.19) commute
for all simple objects y ∈ X , are isomorphisms. In order to prove this, one shows that if X
is Calabi-Yau, then any dinatural transformation η : y → S can be reconstructed from its
components xη : y → S(x,x) on simple objects x ∈ X . This follows from the next lemma.

Lemma 2.3. The components xη of a dinatural transformation η : y → S for general objects
x ∈ X can be given in terms of the components xη of η for simple objects x ∈ X :

xη =
∑

x
dx S(⋆⟨x,x⟩, ⋆⟨x, x⟩) ◦ xη. (2.20)

Dually, for a dinatural transformation ϵ : S → y, the following formula holds:

ϵx =
∑

x
dx ϵ

x ◦ S(⋆⟨x, x⟩, ⋆⟨x,x⟩). (2.21)

Proof. The computation is straightforward. In the first step, a resolution of the identity, see
(2.17), is inserted:

xη
(2.17)=

∑
x

dxS(⋆⟨x, x⟩ ◦ ⋆⟨x,x⟩, x) ◦ xη

=
∑

x
dxS(⋆⟨x,x⟩, x) ◦ S(⋆⟨x, x⟩, x) ◦ xη

=
∑

x
dxS(⋆⟨x,x⟩, x) ◦ S(x, ⋆⟨x, x⟩) ◦ xη

=
∑

x
dxS(⋆⟨x,x⟩, ⋆⟨x, x⟩) ◦ xη.

(2.22)

The second equality uses the (contravariant) functoriality of S, and the third equality follows
from the dinaturality of η.

The equation (2.21) is proved similarly.

Of course, in any abelian category, the coproduct and the product can both be identified
with the direct sum. In a Calabi-Yau category X , the two isomorphisms in (2.19) can be thus
be composed to produce an isomorphism

∫
x S(x, x) ∼=

∫ x S(x, x). However, it turns out that
a modified version of this isomorphism is more natural to consider. We refer to this modified
version ΘX as the isomorphism between the end and the coend induced by the trace on X .

ΘX :
∫
x∈X

S(x, x)
∼=−→
∫ x∈X

S(x, x). (2.23)

Here and going forward, we talk about ΘX as an isomorphism – but really, it is a family of
isomorphisms for each functor S. We suppress this in the notation.

Unlike the isomorphism obtained from (2.19), ΘX carries information about the trace structure
on X . It is defined as the composition

ΘX :=
∑

y
dy σ

y ◦ yτ, (2.24)
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meaning that the following diagram commutes.∫
x S(x, x)

∫ x S(x, x)

∏
x S(x,x) ∐

x S(x,x)

⊕
x S(x,x) ⊕

x S(x,x)

ΘX

∼=

∼=

∼=

⊕
x dxidS(x,x)

∼=

(2.25)

Later, in Lemma 2.21, we will see a conceptual reason for why the isomorphism ΘX as defined in
(2.24) is more relevant than other choices of isomorphism.

2.6 Computing with Components

We continue by establishing some notational conventions for the components of morphisms
between ends and coends. This will be necessary for some practical computations later on.

Let X and Y be abelian, and S be a functor as above. Due to the respective universal
properties, it is natural to consider morphisms into ends and out of coends. Given a morphism

f : x →
∫
i
S(i, i) (2.26)

from any object x into an end, we call the family of morphisms

jf := jτ ◦ f : x → S(j, j) (2.27)

obtained by post-composition with the structure map of the end the components of f . This
family is dinatural.

Conversely, given a dinatural family

jf : x → S(j, j), (2.28)

we write for the unique morphism to end implied by the universal property∫
i
fj : x →

∫
i
S(i, i). (2.29)

A dual definition holds for the coend: Given a morphism

g :
∫ i

S(i, i) → y, (2.30)

we call the morphisms
gj := g ◦ σj : S(j, j) → y (2.31)

the components of g, which form a dinatural family. Similarly, any dinatural family gj : S(j, j) → y
assembles into a unique morphism ∫

i
gi. (2.32)
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out of the coend. Let us now require the category X to be equipped with a Calabi-Yau structure.
Using the canonical isomorphism ΘX to identify the end and the coend, the morphisms f and g
can be composed. We thus define

g • f := g ◦ ΘX ◦ f. (2.33)

Moreover, we introduce rules for raising and lowering indices:
jf := dj jf and gj := dj gj . (2.34)

Using this notation, we find that

g • f =
∑

x
dx g

x ◦ xf =
∑

x
gx ◦ xf =

∑
x
gx ◦ xf, (2.35)

where the sum runs over representatives of simple objects of the finite semisimple category X . A
takeaway from equation (2.35) is that whenever we encounter an expression where a sum over
simple objects x is involved, we should expect both instances of x in the expression to be raised,
both to be lowered, or else for a dimension dx to be involved.

Remark 2.4. For a non-simple object j, the dimension dj might be zero. Thus, the raising and
lowering operations from (2.34) do not, in general, have inverses. This is not a problem when
the object j is simple.

Morphisms jf with raised indices and gj with lowered indices are to be viewed as the components
of maps into coends and out of ends, respectively. We sometimes refer to such morphisms as
atypical morphisms. For instance, let there be maps

h : x →
∫ i

S(i, i) and k :
∫
i
S(i, i) → y. (2.36)

By the (atypical) components of h and k, we mean the morphisms
jh := dj jτ ◦ Θ−1

X ◦ h : x → S(j, j) and kj := dj k ◦ Θ−1
X ◦ σj : S(j, j) → y. (2.37)

Since the morphisms h and k are determined by their components, we allow ourselves to write

h =
∫ i

jh and k =
∫ i

kj . (2.38)

Remark 2.5 (Atypical dinaturality). The atypical components jh from (2.37) form a family of
morphisms satisfying a property that is similar to a dinaturality condition: Given a morphism
α : i → j in X , we find

di S(j, α) ◦ jh = dj S(α, i) ◦ ih. (2.39)
One can check that families jh of morphisms satisfying this atypical dinaturality condition are in
canonical bijection with maps h : x →

∫ i S(i, i).
While for our purposes, it would suffice to consider components of atypical morpisms (and

even regular morphisms as in (2.30)) only for simple objects, this justifies why we do not need to
make such a restriction.
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The definitions (2.37) are chosen such that

g ◦ h =
∑

x
gx ◦ xh and k ◦ f =

∑
x
kx ◦ xf (2.40)

hold.
An example for notation using raised and lowered indices are the evaluation and coevaluation

morphisms eva and acoev for objects a ∈ A in a pivotal category. These morphism form dinatural
transformations − ⊗ (−)∗ → 1 and 1 → (−)∗ ⊗ −, respectively, and thus form the components
of morphisms

ev :=
∫
a

eva :
∫
a
aa∗ → 1 and coev :=

∫
a
acoev : 1 →

∫ a

a∗a. (2.41)

The identity morphism id :
∫
x S(x, x) →

∫
x S(x, x) of any end is typical in that it is a morphism

into an end, and atypical in that it is also a morphims out of an end. Its components xid are the
end’s structure morphisms

xid = xτ. (2.42)
Using the formula for atypical components (2.37), we get

xidy = xτy = dx xτ ◦ Θ−1
X ◦ σy. (2.43)

For simple objects x,y, it can be read from the diagram (2.25) that the formula (2.43) becomes

xidy = xτy = δx,y idS(x,x). (2.44)

The same result holds for the structure morphisms of a coend:
xσy = xτy = δx,y idS(x,x). (2.45)

Of course, equation (2.43) also describes the components of the inverse to the isomorphism ΘX ,
which was defined in Section 2.5:

x(Θ−1
X )y = xτ ◦ Θ−1

X ◦ σy = δx,y
dx

idS(x,x). (2.46)

We learned from Lemma 2.3 how structure maps for general objects are expressed in terms of
structure maps for simple objects. Applying this to (2.46), it is easy to show that for general
objects x, y ∈ X , we the components of Θ−1

X take the form

x(Θ−1
X )y = xτ ◦ Θ−1

X ◦ σy = S(⋆⟨x, y⟩, ⋆⟨y, x⟩). (2.47)

The isomorphism ΘX , which is used in the definition of atypical components, is itself an
atypical morphism in two ways: It is a morphism out of an end and into a coend. Its components
are given as follows, for simple objects x,y ∈ X :

y(ΘX )x = y
(∑

z
dz σ

z ◦ zτ

)
x

=
∑

z
dz

yσz ◦ zτx =
∑

z
dz δy,zδz,x idS(x,x)

= dx δy,x idS(x,x).

(2.48)
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2.7 Traced Bimodule Categories

Keeping in mind that a (linear) monoidal category is the categorification of a ring, it is natural to
also consider the categorification of the notion of a module over a ring, which is called a module
category. Given a monoidal category A, one can consider left A-module categories M. This is a
category equipped with an action functor A × M → M, denoted (a,m) 7→ am, together with
coherence data and axioms. For details, we refer to [EGNO15].

We are interested only in so-called exact module categories over finite tensor categories: A
finite left A-module category M is called exact iff the object Pm ∈ M is projective for any
projective object P ∈ A and any object m ∈ M. If A is a fusion category – which is the setting
throughout this work – then the exact module categories over A are precisely the finite semisimple
module categories. From here on, we assume all module categories to be exact by default.

There are the obvious related notions of right module categories and bimodule categories.
A left A-module category can be equivalently described as a right Arev-module category. An
A-B-bimodule category is the same as a left A⊠Brev-module category. Lastly, every linear
category can be canonically equipped with the structure of a left or right vect-module category.
Hence, a left A-module category can also be seen as an A-vect-bimodule category.

We will make tacit use of these identifications throughout the thesis. To keep in mind which
type of module category a particular category is, we sometimes write, for instance AMB = M
for an A-B-bimodule category, and similar for left and right module categories.

For every fusion category A, we can consider the regular bimodule category AAA, whose action
functors are given by the monoidal product.

The bimodule categories we consider have internal hom-objects with respect to each action.
This means that given objects m,n in a bimodule category AMB, there are objects A[m, n] ∈ A
and B[m, n] ∈ B for which there are isomorphisms

A
〈
a, A[m, n]

〉 ∼= M⟨am, n⟩ , B
〈
b, A[m, n]

〉 ∼= M⟨bm, n⟩ . (2.49)

Pivotal structures on monoidal categories are important to us, and one reason for this is that
they lead to a unique module structure on the opposite of a module category: For a bimodule
category AMB over pivotal categories A and B, the opposite category M is canonically a
B-A-bimodule category, with actions defined by bma := a∗mb∗. Without the pivotal structures,
different choices of dualities will lead to different action functors on M.

If a bimodule category AMB over pivotal categories A and B also carries the structure of a
Calabi-Yau category, it is natural to impose the following consistency condition: Let a ∈ A, b ∈ B,
and m ∈ M be objects, and let f : amb → amb be an endomorphism in M. The morphism

ptr(f) := (eva∗
m evb) ◦ (a∗ f b∗) ◦ (acoevm b∗coev), (2.50)

which is an endomorphism of m, is called the partial trace of f with respect to a and b. The
consistency condition between the Calabi-Yau structure and the module actions on M mentioned
above is

TrM(f) = TrM(ptr(f)). (2.51)
In order to illustrate equations such as (2.51), we can make use of a type of string diagram found
in [Sch13b]. These diagrams represent morphisms in (bi-)module categories and are read from
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bottom to top. In pictures, the trace compatibility condition (2.51) assumes the form

TrM


f

a m b

a m b


= TrM


fa b

m

m


︸ ︷︷ ︸
ptr(f)

. (2.52)

Traces on module categories over pivotal fusion categories that satisfy (2.51) were first consid-
ered in [Sch13b] and are called (bi-)module traces. We refer to a bimodule category equipped
with a bimodule trace as a traced bimodule category. The following lemma, which is easy to
verify, shows how the property to admit a bimodule trace is related to the property of sphericity
for pivotal fusion categories.

Lemma 2.6. Let A be a pivotal fusion category. The following statements are equivalent.

1. A is a spherical fusion category.

2. The regular bimodule category AAA admits a bimodule trace.

If either statement is true, then the bimodule trace on AAA is unique up to a normalization
factor. If in addition, the bimodule trace is normalized such that the dimension of the monoidal
unit is 1, then the bimodule trace is equal to the (left or right) pivotal trace.

Remark 2.7. In light of Lemma 2.6, the name "spherical bimodule category" would also seem
to make sense for traced bimodule categories. We chose our terminology for the following reason.

As explained in [DSS20, Sec. 3.5], there are two notions of sphericity one can consider for
pivotal tensor categories. A pivotal tensor category C can be spherical, meaning that the pivotal
structure squares to the Radford isomorphism – or it can be trace spherical, meaning that the
left and right pivotal traces are equal. If C is semi-simple, these notions of sphericity coincide,
but otherwise, they are independent properties.

The concept of sphericity can be generalized to module categories [FGJS22] – there, too,
the notion of a Radford isomorphism [FSS20a] and that of a pivotal structure [Sch15; Shi20]
exist. On a semisimple bimodule category, pivotal structures and bimodule traces are equivalent
structures. Sphericality is in this case an additional normalization condition on the bimodule
trace, which we have no desire to impose.

Remark 2.8. Given two A-module categories M and N , the product category M × N can be
equipped with the structure of an A-module category by simultaneous action on the components,
which is denoted M⊞N . This module category is called the direct sum of M and N . A module
category M is called indecomposable if the existence of an equivalence of module categories
M ∼= N ⊞ K implies that either N or K is equivalent to M, with the other being trivial. The
structure of a bimodule trace on an indecomposable bimodule category is, if it exists, unique up
to a scalar [Sch13b, Prop. 4.4]. The question whether or not a (bi-)module category admits a
bimodule trace can be stated as an eigenvalue problem [Sch13b, Prop. 5.4, Prop. 5.7].
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A module trace also provides a relation between the (pivotal) dimension of an internal hom
object, and the dimensions of the objects in the module category:

Lemma 2.9. Given a left A-module category M over a spherical fusion category A with a
module trace, the following equality holds for simple objects m,n ∈ M:

dA[m,n] = DA
DM

dmdn. (2.53)

Proof. Following [Sch13b, Sec. 5], we call the square matrix Q with entries

Qnm := dA[m,n] (2.54)

for (representatives of isoclasses of) simple objects m,n ∈ M the dimension matrix of M. From
[Sch13b, Prop. 5.7], we know that Q is of rank 1 with only non-zero entries. This implies that Q
is of the form Qnm = ξnζm for non-zero scalars ξn, ζm ∈ K.

Moreover, the module trace on M causes the dual of the internal hom to behave much like the
dual of the hom-space:

A[m, n]∗ = A[n, m] (2.55)

for all objects m,n ∈ M. This is easy to check using the Yoneda lemma; for a ∈ A, we have:〈
a, A[n, m]

〉 ∼= ⟨an, m⟩ ∼= ⟨m, an⟩∗ ∼=
〈
a∗m, n

〉∗
∼=
〈
a∗, A[m, n]

〉∗ ∼=
〈

A[m, n], a∗〉 ∼=
〈
a, A[m, n]∗

〉
.

(2.56)

Due to (2.55), the dimension matrix Q is symmetric, which means that ξm = ζm for all simple
representatives m ∈ M.

The dimension vector is an eigenvector of the dimension matrix Q with eigenvalue DA, see
[Sch13b, Prop. 5.4]: ∑

m
Qnmdm =

∑
m
ξnξmdm = DAdn. (2.57)

As ξn and DA are non-zero, this is equivalent to the following:∑
m ξmdm

DA
= dn
ξn

=: λ, (2.58)

where we introduced a non-zero scalar λ that does not depend on n. Substituting ξm = dm
λ , we

find ∑
m dmdm
λDA

= λ, and hence DM
DA

= λ2. (2.59)

Finally, we obtain the statement of the lemma:

dA[m,n] = Qnm = ξnξm = dndm
λ2 = DA

DM
dmdn. (2.60)
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In Section 2.4, we reviewed how traces exhibit hom-spaces as the duals of other hom-spaces,
and introduced ⋆-notation as a shorthand for working with elements of a pair of dual bases. The
calculus of ⋆-notation in dual hom-spaces behaves nicely with respect to the module structure if
the duality comes from a module trace. More, precisely, the following lemma holds.

Lemma 2.10. Let M be a left A-module category over a spherical fusion category A with a
module trace. Let there be objects m, n ∈ M and a ∈ A, and let (φα) denote a basis of the
hom-space M⟨m, an⟩. As in Section 2.4, we denote the elements of the dual base by φ∗

α ∈ ⟨an, m⟩.
Then the α-indexed families of morphisms

(eva∗
n) ◦ (a∗φα) and (a∗φ∗

α) ◦ (acoev n) (2.61)

form dual bases of the hom-sets ⟨a∗m, n⟩ and ⟨n, a∗m⟩, respectively.
Using the ⋆-notation introduced in Section 2.4, this statement can be expressed as the equality

⋆⟨a∗m,n⟩ ⊗ ⋆⟨n, a∗m⟩ =
(
(eva∗

n) ◦ (a∗⋆⟨m,an⟩)
)

⊗
(
(a∗⋆⟨an,m⟩) ◦ (acoev n)

)
, (2.62)

or graphically as

a

n

m
⊗

a m

n
=

a

m

n
⊗

a m

n
. (2.63)

Proof. We merely need to show that the duality relation

TrM
(
(eva∗

n) ◦ (a∗φα) ◦ (a∗φ∗
α̃) ◦ (acoev n)

)
= δα,α̃ (2.64)

holds. Using the compatibility (2.51) of the module trace with the partial trace, it is easy to see
that the duality relation (2.64) is inherited from the duality relation of the original dual bases
φα, φ∗

α:

TrM
(
(eva∗

n) ◦ (a∗φα) ◦ (a∗φ∗
α̃) ◦ (acoev n)

)
(2.50)= TrM

(
ptr(φα ◦ φ∗

α̃)
)

(2.51)= TrM
(
φα ◦ φ∗

α̃

)
= δα,α̃.

(2.65)

2.8 Centers of Bimodule Categories

Let AMA be an A-A-bimodule category. The linear category ZA(M) is called the center of
M and has as objects pairs z = (m, brz), where m ∈ M is an object of M and brz, called the
balancing of z, is a family of isomorphisms brza : am → ma for each object a ∈ A, satisfying
the conditions brzab = (brza b) ◦ (a brzb) and brz1 = idm. Morphisms f : z → z′ = (m′, brz′) are
morphisms f : m → m′ satisfying the condition that brz′

a ◦ (a f) = (f a) ◦ brza. We denote the
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forgetful functor z 7→ m, which forgets the balancing, by U : ZA(M) → M. If M is the regular
bimodule category AAA, the center ZA(A) is the more widely known Drinfeld center of A (as a
linear category).

We frequently use a particular pair of morphisms (e.g. in Lemma 2.23 below)

brevza : ama∗ → m and acobrevz : m → a∗ma, (2.66)

called braided evaluation and braided coevaluation for objects z = (m,brz) ∈ ZA(M) and a ∈ A.
They can be defined in two equivalent ways, which are the left- and right-hand sides of the
equations below.

brevza := (m eva) ◦ (brza a∗) = (evam) ◦ (a (brza∗)−1), (2.67)

acobrevz := ((brza∗)−1 a) ◦ (m acoev) = (a∗ brza) ◦ (acoevm). (2.68)

In diagrammatic notation, we represent the braided evaluation and coevaluation as

brevza =
z

a and acobrevz =
z

a , (2.69)

where we introduced the convention that objects of the center are drawn as red lines. We also
use the label z as opposed to m, because we make use of the balancing as well. In practice, this
means that black lines and red lines can cross in all diagrams we consider. Unlike for a braided
monoidal category, there are no over- and undercrossings that need to be distinguished.

Remark 2.11. Any linear category X can be seen as a vect-vect-bimodule category. With
respect to these vect-actions, every object x ∈ X admits a balancing, and all balancings are
isomorphic. Hence, there is an equivalence of categories X ∼= Zvect(X ).

Remark 2.12. An alternative model for the center is given by the category of bimodule
functors and bimodule natural transformations FunA|A(A,M): There is a canonical equivalence
of catgories

FunA|A(A,M) ∼= ZA(M). (2.70)

The center of a module category can also be characterized by a universal property, which needs
the notion of a balanced functor. A functor F : M → X , equipped with a family of isomorphisms
γa,m : F (am) → F (ma), natural in a ∈ A and m ∈ M, which moreover satisfies γab,m =
γb,ma◦γa,bm, is called a balanced functor. Balanced functors form a category Funbal(M,X ), whose
morphisms are balanced natural transformations, i.e. those natural transformations η : F ⇒ G
which are compatible with the balancings γF and γG of F and G in that γGa,m ◦ ηam = ηma ◦ γFa,m.
Up to equivalence, the center ZA(M) is the unique category such that there is an equivalence of
functor categories

Funbal(M,X ) ∼= Fun(ZA(M),X ). (2.71)
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2.9 Balanced Functors and Functorial Diagrams

Let M be a (left) module category over any monoidal category A, and let N be a right A-module
category. The category N ⊠M is an A-A-bimodule category. The balanced functors out of
categories of this form are of particular interest to us. We usually denote the balancing of a
functor F : N ⊠M → X into a category X as baln,a,m : F (na,m) → F (n, am).

The prototypical example of such a balanced functor is the Hom-functor of a module category
M over a rigid monoidal category A: Let N = M, which is a right A-module category with
action ma := a∗m, where a∗ here denotes the right dual. Then the evaluation morphism defines
isomorphisms 〈

ma, m′
〉

=
〈
a∗m, m′

〉
∼=
〈
m, am′

〉
, (2.72)

which assemble into a balancing. The hom-functor of a bimodule category is even bi-balanced:
If N is a B-A-bimodule category and M is an A-B-bimodule category, then a functor

F : BNA ⊠AMB → X (2.73)

as above, with one balancing for the A-actions, and one balancing for the B-actions, is called a
bi-balanced functor iff the left and right balancings commute, meaning that

F (bna,m)

F (na,mb) F (bn, am)

F (n, amb)

balBna,b,m balAbn,a,m

balAn,a,mb balBn,b,am

(2.74)

commutes for all objects a ∈ A, b ∈ B, n ∈ N and m ∈ M. This is equivalent to F being equipped
with a single balancing between the right A⊠Brev-action on N and the left A⊠Brev-action on
M.

Another notion of bi-balanced functor also plays a role for us. Consider a functor

G : ANA ⊠ BMB → X , (2.75)

where N is an A-A-bimodule category, and M is a B-B-bimodule category, which is equipped
with two balancings, one for M and one for N , which are once more required to commute. If
A = B, a functor can be bi-balanced either in the sense of (2.73), or in the sense of (2.75). The
term "bi-balanced" functor is therefore ambiguous in this case. We say that a functor

F : ANA ⊠AMA → X (2.76)

is connected bi-balanced if it is equipped with balancings between N and M as in (2.73), and
disconnected bi-balanced if it is equipped with one balancing for N and one balancing for M as
in (2.75).
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Balanced functors, and especially bi-balanced functors, admit well-behaved functorial diagrams,
which we will now discuss. We will see that these specialize to the functorial diagrams in
Section 2.3 for the choice of the hom-functor as bi-balanced functor.

Given any functor F : X → Z, and a string diagram

f

g
= g ◦ f, (2.77)

we write the following for the morphism F (g ◦ f) in Z:

f

F

g

:= F

 f

g


. (2.78)

Of course, the term g ◦ f may be replaced with any string diagram in X . In the same spirit, let
S : Y × X → Z, and let h be a morphism in Y. We then write

f

h

S

g

:= S


h,

f

g


= S(h, g ◦ f). (2.79)

So far, this notation of functorial diagrams on the left-hand sides of (2.78) and (2.79) bears no
advantage over what is written on the right-hand side of these equations. This changes when we
consider balanced functors. Let AM and AN be left module categories over a pivotal category A.
Given objects a ∈ A, m ∈ M, and n ∈ N , we draw the following functorial diagram to represent
the balancing of a balanced functor S : N × M → X :

a S

m

n

:= baln,a,m : S(a∗n,m) → S(n, am). (2.80)

This notation allows us to represent morphisms in X built from
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• morphisms in the 2-image of S, that is, morphisms of the form S(f, g) where f and g are
morphisms in N and M, respectively; and

• the balancing isomorphisms of S, and their inverses.

For (connected) bi-balanced functors, bending around strands is allowed both on the left
and on the right-hand side of functorial diagrams. To illustrate this, let M and N be A-B-
bimodule categories, and as illustrated in the following picture, which represents a morphism
S(a∗n,mb∗) → S(nb,m′)

a S b

m

m'

n

f

= S(f, nb) ◦ balright −1
n,b,am ◦ balleft

n,a,mb. (2.81)

If we consider the special case where N = M = B = AAA is the regular bimodule category,
and X = vect, we can choose S to be the hom-functor of A, which is a bi-balanced functor.
Functorial diagrams such as (2.81) then specialize to the functorial diagrams we encountered
in Section 2.3, with the modification that the previously empty double-box is now labeled with
the name of a functor, in this case Hom. The reason why functorial diagrams really specialize
to the diagrams from Section 2.3 for the hom-functor is that "bending around strands" as in
(2.80) encodes the hom-functor’s balancing, which is defined using a coevaluation; on the other
hand, the coevaluation is also represented by bending around a strand in the functorial diagrams
from Section 2.3, which are derived from string diagrams. The hom-functor of a module category
M over A also comes with a linear map

〈
m, m′〉 →

〈
am, am′〉 for each triple of objects a ∈ A,

m,m′ ∈ M, which is part of the data of module action functor. If A is a rigid and pivotal, this
linear map can be expressed using the balancing of the hom-functor, together with either an
evaluation or a coevaluation. This is true of any balanced functor S : N × M → X over a pivotal
category A: The two expressions

balan,a,m ◦ S(acoevn,m) = a S

m

n

= bal−1
n,a∗,am ◦ S(n, eva∗

m). (2.82)

are equal.
Of course, functorial diagrams can be composed, and the composition operation is the same

we already encountered in (2.15): inserting the pre-composed diagram into the double-box of
the post-composed diagram. In this way, functorial diagrams are similar to other approaches to
graphical calculi, such as the "corollas" appearing, for example, in [FSY23, for the composition
see Ex. 2.14].

We leave it to the reader to convince themself that the evaluation of functorial diagrams is
well-defined and that isotopic diagrams evaluate to equal morphisms. In any case, Remark 2.2
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applies: Functorial diagrams throughout this work are meant as illustrations that can, at any
point, be translated into standard notation. This is why we refrain from a more rigorous
formalization of these diagrams.

2.10 (Split) Equalizers of Bi-Balanced Functors

Let now ANA and AMA be A-A-bimodule categories. Recall from Section 2.9 that in this case
we need to distinguish between connected and disconnected bi-balanced functors S : N ×M → X .
In this section, we will always mean connected bi-balanced functors We will encounter situations
in which a bi-balanced functor S is fed arguments from the centers x ∈ ZA(N ) and y ∈ ZA(M):
Expressions of the form S(U(x), U(y)) appear. These objects of X have a distinguished subobject,
namely the limit of the diagram

∫
a S(aU(x), aU(y))

S(U(x), U(y))

∫
a S(U(x)a, U(y)a)

a

y

x

S

a

y

x

S

. (2.83)

The diagonal arrows in this diagram are to be understood as follows: Being morphisms into ends,
they are determined by their components for objects a ∈ A. These components are given by the
functorial diagrams that label the arrows; they were discussed in (2.82). This limit of (2.83) can
equivalently be expressed as the equalizer

eq S(U(x), U(y))
∫
a S(aU(x), U(y)a)

f=
a

y

x
S

g= a

y

x

S

, (2.84)

which is why we refer to eq as the equalizer of the (connected) bi-balanced functor S on x and y,
or just as the equalizer of S.

Example 2.13. If M = N and S : M × M → vect is the hom-functor, then the equalizer of S
on x, y ∈ ZA(M) is the hom-space of the center ZA(M)⟨x, y⟩.
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Remark 2.14. A bi-balanced natural transformation η : S ⇒ S′ from S to another bi-balanced
functor S′ defines a morphism of diagrams between the (2.83) and the diagram obtained from
(2.83) by replacing S with S′. Therefore, η defines a morphism from the equalizer of S to the
equalizer of S′, for any given pair of objects x ∈ ZA(N ), y ∈ ZA(M).

In the finite semisimple context which we are interested in, meaning that A is a spherical
fusion category and M and N are exact, hence semisimple, bimodule categories, and S is linear,
hence exact in both arguments, equalizers of bi-balanced functors come with important additional
structure: Let us recall the concept of a split equalizer.

Definition 2.15. Let u, v, w be objects of any category X . A split equalizer is a diagram of the
form

u v we f
g

r
t

, (2.85)

where t ◦ f = idv, t ◦ g = e ◦ r, f ◦ e = g ◦ e, and r ◦ e = idu. In particular, r and t are retracts of
e and f , respectively.

A contractible pair is a pair of parallel morphisms f, g : v → w, together with a morphism
t : w → v, such that an equalizer of f and g exists, t ◦ f = idv, and f ◦ t ◦ g = g ◦ t ◦ g.

The following result is well-known, see [Mac71, §VI.6, Exc. 2].

Lemma 2.16. Split equalizers are in one-to-one correspondence to contractible pairs with a
choice of equalizer.

Proof. Given a split equalizer, e is automatically an equalizer of f and g: Take any morphism
h : q → v such that f ◦ h = g ◦ h, and assume there is some k : q → u such that h = e ◦ k. Then
r ◦ h = r ◦ e ◦ k = k, so if any morphism k exists, it must be equal to r ◦ h. It remains to check
that h factors through u via r ◦ h, which is the case:

e ◦ r ◦ h = t ◦ g ◦ h = t ◦ f ◦ h = h. (2.86)

Moreover, the condition

f ◦ t ◦ g = f ◦ e ◦ r = g ◦ e ◦ r = g ◦ t ◦ g (2.87)

is satisfied. It follows that (f, g), together with t, is a contractible pair.
Conversely, let (f, g), together with t, be a contractible pair, and define (u, e) to be an equalizer

of f and g. We denote by h the endomorphism h = t ◦ g : v → v. By the universal property
of the equalizer, there is a unique morphism r : v → u such that e ◦ r = h. We now have all
morphisms that appear in the diagram (2.85). To conclude that they form a split equalizer, we
need to check the rules of composition. The first condition, t ◦ f = idv, is also a condition for
contractible pairs, and thus still holds. The second condition, t ◦ g = h = e ◦ r was imposed when
we defined r. The third condition, f ◦ e = g ◦ e, holds because e is an equalizer. For the last
condition, we compute

e ◦ r ◦ e = t ◦ g ◦ e = t ◦ f ◦ e = e, (2.88)
and deduce that r ◦ e = idu, because e, being an equalizer, is monic.
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Notice that the endomorphism h is an idempotent, and its image is u. The next statement is
the reason why we are interested in split equalizers.

Lemma 2.17. Let A be a spherical fusion category, and let M and N be exact A-A-bimodule
categories. Let S : N × M → X be a bi-balanced functor into a linear category X . Then the
pivotal structure on A determines a distinguished splitting of the equalizer of S from (2.83).
Hence, the equalizer of S is exhibited not only as a subobject, but as a retract.

Proof. We call the top and bottom arrows of the equalizer diagram (2.83) f and g, respectively.
By Lemma 2.16, we only need to build a morphism t :

∫
a S(aU(x), U(y)a) → S(U(x), U(y)) using

the pivotal structure of A, such that (f, g, t) form a contractible pair. Notice that as a morphism
out of an end, t is an atypical morphism in the sense of Section 2.6. We therefore first define a
morphism t̃ :

∫ a S(aU(x), U(y)a) → S(U(x), U(y)), given on components by

t̃a :=
a

y

x
S

. (2.89)

The map t is then obtained by precomposing t̃ with the isomorphism ΘA, which turns the end
into a coend, and normalizing:

t := 1
DA

t̃ ◦ ΘA. (2.90)

This is the point where the pivotality of A enters, as ΘA depends on this structure.
We start proving that (f, g, t) is a contractible pair by showing that t is a retraction of f . We

calculate

t ◦ f = 1
DA

t̃ ◦ ΘA ◦ f(2.33)= 1
DA

t̃ • f(2.35)= 1
DA

∑
a

da t̃
a ◦ af

= 1
DA

∑
a

da

y

x
Sa = idS(U(x),U(y)).

(2.91)

To complete the proof, we need to check that the other condition, f ◦ t ◦ g = g ◦ t ◦ g, holds.
To this end, we abbreviate h := t ◦ g and find, by a calculation similar to (2.91),

h = 1
DA

∑
a

da

y

x

S a , (2.92)
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which is an endomorphism of S(U(x), U(y)). Since 1
DA

is a global factor in the following
computation, we omit it. On components, we obtain:

bf ◦ h =
∑

a
da

y

x

Sb a =
∑
a,c

dadc

y

x

S

b

b

c a

=
∑
a,c

dadc

y

x

S

b

b

ac =
∑

c
dc b

y

x

Sc = bg ◦ h.

(2.93)

Hence, f ◦ h = g ◦ h, and the proof is complete.

Remark 2.18. Lemma 2.17 is an example for how pivotal dimensions in equations such as (2.92)
arise from the isomorphism ΘA between an end and a coend – in this case, expressed by the
operation •. This conceptual source of quantum dimensions is a motivation for the introduction
of ΘA in the first place. In fact, throughout the remainder of this paper, quantum dimensions
will never be introduced into equations ad hoc, but will always stem from an identification of
end and coend via ΘA.

The retract structure of the equalizer of a bi-balanced functor is preserved by bi-balanced
natural transformations. In order to prove this, we need the following, elementary lemma.

Lemma 2.19. Let X be a category, and let

x yι

π

and x′ y′
ι′

π′

(2.94)

be retracts in X . Denote the corresponding idempotents by h = ι ◦π and h′ = ι′ ◦π′. A morphism
φ : y → y′ which satisfies

y y

y′ y′

h

φ φ

h′

(2.95)

is a morphism of retracts, meaning that

x y

x′ y′

ι

ψ φ

ι′

and
y x

y′ x′

π

φ ψ

π′

(2.96)

commute for ψ = π′ ◦ φ ◦ ι. Conversely, any pair of morphisms (φ,ψ) which satisfies (2.96) also
satisfies (2.95), and ψ = π′ ◦ φ ◦ ι holds.
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We can now return to considering equalizers of bi-balanced functors.

Lemma 2.20. Let η : S → S′ be a bi-balanced natural transformation of bi-balanced functors
S, S′ : N ×M → X , where M and N are A-A-bimodule categories for a spherical fusion category
A. Denote by r : S(U(x), U(y)) → eq and r′ : S(U(x), U(y)) → eq′ the retractions into the
equalizers of S and S′ on x ∈ ZA(N ) and y ∈ ZA(M) from Lemma 2.17. Then η defines a
morphism of retracts in that

S(U(x), U(y)) eq

S′(U(x), U(y)) eq′

r

ηU(x),U(y) ψ

r′

(2.97)

commutes for ψ = π′ ◦ ηU(x),U(y) ◦ ι.

Proof. It is straightforward to verify that

S(U(x), U(y)) S(U(x), U(y))

S′(U(x), U(y)) S′(U(x), U(y))

h

ηU(x),U(y) ηU(x),U(y)

h′

(2.98)

commutes if η is a bi-balanced natural transformation, using the idempotent h from (2.92). The
claim then follows from Lemma 2.19.

2.11 Shifting Actions under (Co-)Ends

Ends end coends of functors on module categories come with a structure that looks like, but
is not quite, a balancing. Let M be a left module category over a pivotal category A, and let
S : M × M → X be a bilinear functor. We may define isomorphisms

βa :
∫
m
S(m, am) →

∫
m
S(a∗m,m) and β̃a :

∫ m

S(m, am) →
∫ m

S(a∗m,m) (2.99)

for each a ∈ A via universal properties, such that the following squares commute:

∫
m S(m, am)

∫
m S(a∗m,m)

∫m S(m, am)
∫m S(a∗m,m)

S(a∗n, aa∗n) S(a∗n, n) S(n, an) S(a∗an, an)

βa

a∗nτ nτ

β̃a

S(a∗n,evan)
σn

S(eva∗
n,an)

σan . (2.100)

Lemma 2.21. Assume that M carries the structure of a module trace, such that a distinguished
isomorphism ΘM exists. Then the maps βa and β̃a are related in that the following diagram
commutes: ∫

m S(m, am)
∫
m S(a∗m,m)

∫m S(m, am)
∫m S(a∗m,m)

βa

ΘM ΘM

β̃a

. (2.101)
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Proof. The diagram (2.101) compares two morphisms from an end into a coend. To show that
they are equal, we compare their (atypical) components, as introduced in Section 2.6. It suffices
to check the simple components. Let therefore n,k ∈ M be simple objects. Our goal is to prove
that

k(ΘM ◦ βa)n = k(β̃a ◦ ΘM)n. (2.102)
Using the definition of atypical components (2.37), we find that the respective terms are equal to

k(ΘM ◦ βa)n = dndk kτ ◦ Θ−1
M ◦ ΘM ◦ βa ◦ Θ−1

M ◦ σn

= dndk kτ ◦ βa ◦ Θ−1
M ◦ σn

k(β̃a ◦ ΘM)n = dndk kτ ◦ Θ−1
M ◦ β̃a ◦ ΘM ◦ Θ−1

M ◦ σn

= dndk kτ ◦ Θ−1
M ◦ β̃a ◦ σn.

(2.103)

If we raise and lower all indices involved according to the rules (2.34), we can drop the dimension
factors from the equations. In the next step, we use the definition of β and β̃ as given in (2.100).

k(ΘM ◦ βa)n = kτ ◦ βa ◦ Θ−1
M ◦ σn

= S(a∗k, eva k) ◦ a∗kτ ◦ Θ−1
M ◦ σn

k(β̃a ◦ ΘM)n = kτ ◦ Θ−1
M ◦ β̃a ◦ σn

= kτ ◦ Θ−1
M ◦ σan ◦ S(eva∗ n, an).

(2.104)

At this point, we make use of Lemma 2.3, which gives us explicit forms of the structure morphisms
a∗kτ and σan in terms of structure morphisms for simple objects.

k(ΘM ◦ βa)n = S(a∗k, eva k) ◦

∑
i

di S(⋆⟨a∗k, i⟩, a ⋆⟨i, a∗k⟩) ◦ iτ

 ◦ Θ−1
M ◦ σn

=
∑

i
di S

(
⋆⟨a∗k, i⟩, (eva k) ◦ (a ⋆⟨i, a∗k⟩)

)
◦ iτ ◦ Θ−1

M ◦ σn

(2.46)=
∑

i
di S

(
⋆⟨a∗k, i⟩, (eva k) ◦ (a ⋆⟨i, a∗k⟩)

) δn,i
di

= S
(
⋆⟨a∗k,n⟩, (eva k) ◦ (a ⋆⟨n, a∗k⟩)

)
k(β̃a ◦ ΘM)n = kτ ◦ Θ−1

M ◦

∑
i

di σ
i ◦ S(a∗ ⋆⟨i, an⟩, ⋆⟨an, i⟩)

 ◦ S(eva∗ n, an)

=
∑

i
di kτ ◦ Θ−1

M ◦ σi ◦ S
(
(eva∗ n) ◦ (a∗ ⋆⟨i, an⟩), ⋆⟨an, i⟩

)
(2.46)=

∑
i

di
δk,i
di

S
(
(eva∗ n) ◦ (a∗ ⋆⟨i, an⟩), ⋆⟨an, i⟩

)
= S

(
(eva∗ n) ◦ (a∗ ⋆⟨k, an⟩), ⋆⟨an,k⟩

)
.

(2.105)

It follows from Lemma 2.10 that these expressions are equal, as long as the trace on M is a
module trace.
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By recognizing that k(ΘM ◦ βa)n = k(βa)n and k(β̃a ◦ ΘM)n = k(β̃a)
n, we see that the proof

of Lemma 2.21 provided us with the useful simple components of the morphism β:

k(βa)n = S(a∗k, evak) ◦
∑

i
di S(⋆⟨a∗k, i⟩, a ⋆⟨i, a∗k⟩)

δin
dn

= S(⋆⟨a∗k,n⟩, (evak) ◦ (a⋆⟨n, a∗k⟩)).
(2.106)

Moreover, Lemma 2.21 showed that k(βa)n = k(β̃a)
n, also for non-simple objects n and k. This

justifies some abuse of notation: From here on, we denote both βa and β̃a by βa.
The morphisms βa are of interest to us for some particular choices of S, which we now discuss.

A calculation involving Lemma 2.3 reveals that the (2.106) holds also for non-simple objects n
and k.

• For S = −⊠−, the morphisms βa are isomorphisms, and form balancings for the objects∫
mm⊠m and

∫mm⊠m of M⊠M. Their components are given by

k(βa)n = ⋆⟨a∗k, n⟩ ⊠
(
(evak) ◦ (a ⋆⟨n, a∗k⟩)

)
=
(
(eva∗

n) ◦ (a∗⋆⟨k, an⟩)
)
⊠ ⋆⟨an, k⟩. (2.107)

• Let A be a spherical fusion category, let ANA be an A-A-bimodule category, fix m ∈ N
and set Sm := −m (−)∗ as a functor AA × AA → ANA. The morphisms βa associated
with Sm again assemble into balancings. We can thus define functors , : N → ZA(N ),
called (left and right) induction functors via

(m) := (
∫ a

ama∗, β) and (m) := (
∫
a
ama∗, β). (2.108)

The components of the balancings are given by

c(βa)b = ⋆⟨a∗c, b⟩m
(
(evac) ◦ (a ⋆⟨b, a∗c⟩)

)
=
(
(eva∗

b) ◦ (a∗⋆⟨c, ab⟩)
)
m ⋆⟨ab, c⟩ . (2.109)

The left and right induction functors are left and right adjoint to the forgetful functor
U : ZA(N ) → N :

⊣ U ⊣ . (2.110)

In our setting, where the spherical structure on A defines an isomorphism between the
end and the coend, there is a natural isomorphism ∼= , and the adjunctions (2.110)
become Frobenius.
The adjunctions (2.110) are witnessed by isomorphisms

adjm,x : N
〈
m, U(x)

〉
→ ZA(N )

〈
(m), x

〉
(2.111)

and
adjm,x : N

〈
U(x), m

〉
→ ZA(N )

〈
x, (m)

〉
, (2.112)
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natural in m ∈ N and x ∈ ZA(N ). For morphisms f : m → U(x), g : U(x) → m,
f ′ : (m) → x and g′ : x → (m), these adjunction isomorphisms are given explicitly by
the following expressions.

adjm,x(f) =
∫
a

brevxa ◦ (a f a∗) and (adjm,x)−1(f ′) = f ′ ◦ σ1; (2.113)

adjm,x(g) =
∫
a
(a g a∗) ◦ a∗cobrevx and (adjm,x)−1(g′) = 1τ ◦ g′. (2.114)

Remark 2.22. Via the chain of isomorphisms

N
〈
a−, U(x)

〉 ∼= N
〈
−, aU(x)

〉 ∼= N
〈
−, U(x)a

〉 ∼= N
〈
−a, U(x)

〉
, (2.115)

N
〈
−a, U(x)

〉
is a balanced functor in the sense of Section 2.8. Similarly, the induction functor

is balanced, with the balancing given by the morphism β. The adjunction (2.111) defines a
balanced natural isomorphism

N
〈
−, U(x)

〉 ∼= ZA(N )
〈

(−), x
〉
. (2.116)

By the universal property (2.71) of the center, the linear functor ZA(N )⟨−, x⟩ is the essentially
unique functor F : ZA(N ) → vect in that a balanced natural isomorphism N

〈
−, U(x)

〉 ∼= F ◦
exists. A similar statement holds for the other adjunction.

Lemma 2.23. Given an A-A-bimodule category M, the inclusion of the hom-space

ZA(M)⟨x, y⟩ ↪→ M
〈
U(x), U(y)

〉
(2.117)

has, for a given spherical structure on A, a canonical retraction r : M
〈
U(x), U(y)

〉
→ ZA(M)⟨x, y⟩,

given by

r(f) = 1
DA

∑
a

da brevya ◦ (a f a∗) ◦ a∗cobrevx = 1
DA

∑
a

da

y

x

f a , (2.118)

or in different notation,

r(f) = 1
DA

brevy • (f) ◦ (−)∗cobrevx

= 1
DA

brevy ◦ (f) • (−)∗cobrevx,
(2.119)

where by (−)∗cobrevx, we mean the morphism U(x) →
∫
a aU(x)a∗ with components a∗cobrevx.

This generalizes [BK10, Lem. 2.2], and is a direct corollary of Lemma 2.17: The connected
bi-balanced functor in this case is the hom-functor in M, as discussed in Example 2.13. Given
f : m → U(y) and g : U(x) → m for some m ∈ M as in (2.114), the retration r from Lemma 2.23
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of the composition f ◦ g can also be expressed in terms of the adjunction isomorphisms (2.112)
and (2.111):

r(f ◦ g) = 1
DA

adjm,y(f) • adjm,x(g). (2.120)

Lemma 2.23 can be used to investigate the center of a traced bimodule category. Explicitly,
we will see the following:

Lemma 2.24. Let A be a spherical fusion category, and let M be a traced A-A-bimodule category.
The center ZA(M) can be equipped with the structure of a Calabi-Yau category, whose trace
function is defined, for an endomorphism f : x → x in ZA(M), by

TrZA(M)(f) := 1
DA

TrM(f). (2.121)

Of course, the normalization factor 1
DA

in (2.121) is a convention. The reason for this
particular choice will be made clear by Remark 2.29. Before we prove Lemma 2.24, we need
some intermediate results. First, observe that the retraction r from Lemma 2.23, composed with
the inclusion (2.117), defines an idempotent h : M

〈
U(x), U(y)

〉
→ M

〈
U(x), U(y)

〉
, which also

appeared in Lemma 2.17. This idempotent leaves the trace invariant:

Lemma 2.25. Let x ∈ ZA(M) and let f be an endomorphism of U(x) in M. Then

TrM(f) = TrM(h(f)). (2.122)

Proof. The proof is a direct calculation:

TrM(h(f)) = 1
DA

∑
a

da TrM


x

x

f a

 = 1
DA

∑
a

da TrM


x

x
f a



= 1
DA

∑
a

da TrM


x

x
f

a

 = TrM(f).

(2.123)

The first equality is (2.118), the second uses the symmetry of the trace, and the third uses the
compatibility of the bimodule trace on M with the pivotal structure on A.

It is an even more straightforward observation that, for objects x, y, z ∈ ZA(M), a morphism
f : y → z in ZA(M), and a morphism g : U(x) → U(y) in M, the equality

f ◦ r(g) = r(f ◦ g) (2.124)

holds. Now we are in a position to prove the lemma.
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Proof of Lemma 2.24. It is clear that the candidate TrZA(M) for the trace function defined in
(2.121) inherits the symmetry property from the trace TrM on M. It remains to check whether
it is also non-degenerate. To this end, let f : y → z be a morphism as before. We need to check
that if for every g ∈ ZA(M)⟨z, y⟩, we have TrZA(M)(f ◦ g̃) = 0, then f = 0. As the normalization
factor 1

DA
in the definition of TrZA(M) is not relevant for the validity of the statement, the

condition ∀g̃ ∈ ⟨z, y⟩ ,TrZA(M)(f ◦ g̃) = 0 is equivalent to:

∀g̃ ∈ ⟨z, y⟩ ,TrM(f ◦ g̃) = 0 (2.125)

Since r is surjective, there is some g ∈ M
〈
U(z), U(y)

〉
such that g̃ = r(g). Hence, (2.125) is

equivalent to ∀g ∈
〈
U(z), U(y)

〉
,TrM(f ◦ r(g)) = 0. Moreover, from (2.124) and Lemma 2.25,

we know that
TrM(f ◦ r(g)) = TrM(r(f ◦ g)) = TrM(f ◦ g). (2.126)

Thus, the statement we want to prove is that ∀g ∈
〈
U(z), U(y)

〉
,TrM(f ◦ g) = 0 implies f = 0.

This is true by the non-degeneracy of the trace on M.

2.12 Relative Deligne Products and Schaumann’s Tricategory.

Traced bimodule categories over spherical fusion categories organize into a tricategory BiModTr,
as shown in [Sch13a, Thm. 4.10.3]. The objects of BiModTr are spherical fusion categories.
1-morphisms between objects A and B are traced A-B-bimodule categories. 2-morphisms are
bimodule functors, and 3-morphisms are bimodule natural transformations. In order to define
the composition of 1-morphisms, a way to combine a traced A-B-bimodule category AMB with
a traced B-C-bimodule category BNC to obtain a traced A-C-bimodule category is needed. This
is afforded by the relative Deligne product. For us, it is convenient to realize it as the center of
the B-B-bimodule category MB ⊠ BN :

M□
B

N := ZB(MB ⊠ BN ). (2.127)

In notation, we sometimes omit the spherical fusion category B when there is no ambiguity,
simply writing

M□N := M□
B

N . (2.128)

Remark 2.26. Recall that balanced functors and balanced natural transformations form a
category Funbal(M⊠N ,Y). The universal property of the center (2.71) specializes to this case:
There is an equivalence of categories

Funbal(M⊠N ,Y) ∼= Fun(M□N ,Y). (2.129)

Indeed, one usually defines the relative Deligne product by the universal property that for each
linear category Y, an equivalence (2.129) exists.

The category M□N still caries a left A-action inherited from M and a right C-action inherited
from N , and is indeed an A-C-bimodule category. This defines the composition of 1-morphisms
in the tricategory BiModTr.

40



Moreover, the tricategory BiModTr admits a 3-trace in the sense of [FSS17, Defn. 5.1]. For
us, the 3-trace is the assignment AMA 7→ ZA(M) of a bimodule category to its center. Given
bimodule categories AMB and BNA, there is a canonical equivalence

ZA(M□
B

N ) ∼= ZB(N □
A

M). (2.130)

We also use "dangling product" notation for this category, as in

M□N□ := ZA(M□
B

N ). (2.131)

Remark 2.27. By Remark 2.11, the relative Deligne product specializes to the ordinary Deligne
product in the case that B = vect, i.e.

M □
vect

N ∼= M⊠N . (2.132)

Recall the induction functors and from (2.110). We denote

m n := (m⊠n) and m n := (m⊠n). (2.133)

The dangling product notation from (2.131) can be used here as well: We may write m n for
an object in M□N□. As a composition, the relative Deligne product is associative (in the sense
that it comes with an appropriately coherent set of equivalences witnessing associativity) and
unital. We slightly abuse notation by treating the relative Deligne product as if it were strictly
associative: we do not pay attention to bracketing and make no explicit use of associators.

We do, however, pay closer attention to the equivalences witnessing unitality. To understand
them, first note that the identity 1-morphism A → A is the regular bimodule category AAA.
Unitality requires an equivalence of A-B-bimodule categories

AA□MB ∼= AMB (2.134)

for every A-B-bimodule category M. This equivalence is given, on objects of the form a m ∈
A□M, by

a m 7→ am ∈ M, (2.135)

with pseudo-inverse
n 7→ 1 n ∈ A□M, (2.136)

for n ∈ N .
In order for the composition in the tricategory BiModTr to be well-defined, there needs to be

a canonical way to define a bimodule trace on M□N , constructed from the bimodule traces on
M and N . A construction of a trace on M□N is provided by Lemma 2.24, but we do not yet
know whether this trace respects the bimodule structure. On the other hand, a bimodule trace
for M□N is constructed in [Sch13a, Prop. 4.10.1]. The next lemma shows that these traces are
indeed equal, making calculations involving the trace on the relative Deligne product easy to
perform.
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Lemma 2.28. The bimodule trace on M□
B

N defined in [Sch13a, Prop. 4.10.1] is the trace
for the center of a traced bimodule category defined in Lemma 2.24. In particular, it has the
following property: For endomorphisms f : m → m in M and g : n → n in N ,

TrM□N (f g) = TrM□N (f g) = TrM(f)TrN (g). (2.137)

In particular,
d
m n

= d
m n

= dm dn. (2.138)

Proof. The bimodule trace on M□N is defined by a balanced natural isomorphism

M□N ⟨x, y⟩ ∼= M□N ⟨y, x⟩∗ , (2.139)

natural in the objects x, y ∈ M□N . As outlined in the proof of [Sch13a, Prop. 4.10.1], it suffices
to specify this isomorphism for y = m n for some objects m ∈ M, n ∈ N , in which case it is
given by the following composition:

⟨x, m n⟩ h

〈
U(x), m⊠n

〉
(adjm⊠n,x)−1(h)

〈
m⊠n, U(x)

〉∗ TrM⊠N

(
(adjm⊠n,x)−1(h) ◦ −

)

⟨m n, x⟩∗ TrM⊠N

(
(adjm⊠n,x)−1(h) ◦ (adjm⊠n,x)−1(−)

)

⟨m n, x⟩∗ TrM⊠N

(
(adjm⊠n,x)−1(h) ◦ (adjm⊠n,x)−1(− ◦ Θ−1

B )
)

(adj
m ⊠ n,x

)−1

Trace on M⊠N

(adj
m ⊠ n,x

)−1

ΘB

(2.140)

The isomorphism (2.140) defines a pairing (−,−) between the vector spaces ⟨x, m n⟩ and
⟨m n, x⟩, which is related to the bimodule trace on M□N by

TrM□N (k ◦ h) = (h, k) (2.141)

for h : x → m n and k : m n → x. Let q : x → x be an endomorphism of x ∈ M□N . Using
the retraction r from Lemma 2.23, we know that

q = r(q)(2.120)= 1
DB

adjU(x),x(q) • adjU(x),x(idU(x)). (2.142)

This allows us to write q as the composition q = k ◦ h with

k = 1
DB

adjU(x),x(q) ◦ ΘB and h = adjU(x),x. (2.143)
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In making these choices for k and h, we have set m⊠n = U(x). In general, U(x) will not
factorize so nicely, but instead be a direct sum U(x) = ⊕

i∈I mi⊠ni over a finite set I. Since all
functors involved are linear, this does not cause a problem, and we ignore the subtlety.

We can now calculate

TrM□N (q) = TrM□N (k ◦ h)

= TrM⊠N

(
(adjm⊠n,x)−1(h)︸ ︷︷ ︸

idU(x)

◦ (adjm⊠n,x)−1(k ◦ Θ−1
B )︸ ︷︷ ︸

1
DB

q

)

= 1
DB

TrM⊠N (q) .

(2.144)

This is indeed the formula (2.121) for the trace of the center of a bimodule category.

Remark 2.29. The unitor equivalence

A□A ∼= A (2.145)

from (2.134) for a spherical fusion category A is an equivalences between two traced bimodule
categories. Lemma 2.28 implies that this equivalence preserves the trace. This compatibility is
the reason for the normalization factor 1

DA
in the definition (2.121) of the Calabi-Yau structure

for the center of a traced bimodule category.

Remark 2.30 (Sweedler notation for forgetful functors.). Due to its definition as a center (2.127),
the relative Deligne product M□

B
N comes with a forgetful functor U : M□

B
N → M⊠N . We

will often use a form of Sweedler notation for this functor, writing

U(x) = x(M) ⊠x(N ) (2.146)

for x ∈ M□N . Some care has to be applied when using this notation for more than two factors.
Let x ∈ M□

B
N □

C
K. There are now three forgetful functors: UB forgets only the B-balancing,

UC forgets only the C-balancing, and U forgets both. We denote UC(x) = x(M□N ) ⊠x(K), but
really, we mean by this a sum of ⊠-factorized terms

UC(x) = x(M□N ) ⊠x(K) =
⊕
i∈I

x(M□N ,i) ⊠x(K,i), (2.147)

where I is a finite indexing set. If we encounter a term such as "M□N
〈
y, x(M□N )

〉
⊗ F (x(K))",

with x ∈ M□N and F : K → X some linear functor, we should read it as

M□N
〈
y, x(M□N )

〉
⊗ F (x(K)) :=

⊕
i∈I

M□N
〈
y, x(M□N ,i)

〉
⊗ F (x(K,i)). (2.148)

More frequently, however, we are presented with a factorized expression for U(x), rather than
UC(x):

U(x) = x(M) ⊠x(N ) ⊠x(K) =
⊕
j∈J

x(M,j) ⊠x(N ,j) ⊠x(K,j). (2.149)
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It is tempting to replace x(M□N ) with (x(M) ⊠x(N ),balB) in (2.148), writing it as an object
with a B-balancing. However, we run into a problem: Inserting this expression into our running
example leads to

M□N
〈
y, (x(M) ⊠x(N ),balB)

〉
⊗ F (x(K))

?=
⊕
j∈J

M□N
〈
y, (x(M,j) ⊠x(N ,j),balBj )

〉
⊗ F (x(K,j)).

(2.150)
This is not a well-defined term because (x(M,j) ⊠x(N ,j), balBj ) is not in general an object in
M□N – while the components balBj of the balancing balB exist, they are not balancings of the
objects x(M,j) ⊠x(N ,j), since they may not be isomorphisms.

This type of Sweedler notation can be used, for example, in the following context: Let AM
be a left module category over a spherical fusion category A and let x ∈ M□M. The vector
space M

〈
x(M), x(M)

〉
– by which we really mean the direct sum ⊕

i∈I M
〈
x(M,i), x(M,i)

〉
for

some decomposition U(x) ∼=
⊕

i∈I x(M,i) ⊠x(M,i) – has a distinguished subspace. To see this,
note that the functor A⊠A → vect defined by M

〈
x(M)−, −x(M)

〉
is connected bi-balanced:

One balancing comes from the hom-functor, and one comes from the balancing of x. We can
thus consider the equalizer of this connected bi-balanced functor at 1 and 1 in the sense of
Section 2.10, which is a subspace of M

〈
x(M), x(M)

〉
denoted as A

M⟨x⟩ If x has the property that
its image U(x) ∈ M⊠M factorizes, i.e. U(x) = n⊠m for some objects m,n ∈ M, we write

A
M⟨n, m⟩ := A

M⟨x⟩ . (2.151)

In this case, the balancing of x can be expressed as an (a ∈ A)-indexed collection of isomorphisms

bal(M,a) ⊗ bal(M,a) : na⊠m → n⊠ am. (2.152)

The vector space A
M⟨n, m⟩ is then the subspace of M⟨n, m⟩ which consists of those morphisms

f : n → m that satisfy
a f = bal(M,a) ◦ (eva f) ◦ (a bal(M,a)). (2.153)

We allow ourselves to write
A
M

〈
x(M), x(M)

〉
:= A

M⟨x⟩ . (2.154)

even if U(x) does not ⊠-factorize. As an immediate corollary of Lemma 2.17, we obtain

Lemma 2.31. The pivotal structure on A defines a distinguished surjection

r : M
〈
x(M), x(M)

〉
→ A

M

〈
x(M), x(M)

〉
, (2.155)

which exhibits the subspace as a retract.
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2.13 Eilenberg-Watts-Equivalences.

It is well-known [ENOM10, Prop. 3.5] that an alternative model for the relative Deligne product
is given by a category of module functors:

M□N ∼= FunB(M,N ). (2.156)

Taking Remark 2.27 into account, we find that (2.156) specializes, for linear categories X and Y ,
to

X ⊠Y ∼= Fun(X ,Y). (2.157)
We continue by making explicit two distinct equivalences witnessing (2.157), in the form given in
[FSS20a, Def. 3.1].

EW : x⊠ y 7→ ⟨−, x⟩∗ ⊗ y

coEW : x⊠ y 7→ ⟨x, −⟩ ⊗ y.
(2.158)

Respective pseudo-inverses are given by

ẼW : F 7→
∫
x
x⊠F (x)

coẼW : F 7→
∫ x

x⊠F (x).
(2.159)

We call the functors defined in (2.158) and (2.159) the Eilenberg-Watts equivalences. The fact
that they are indeed equivalences is proved in [FSS20a, Thm. 3.2].

Remark 2.32. Recall that there is a canonical equivalence of categories X ⊠Y ∼= Y ⊠X . An
object x⊠ y ∈ X ⊠Y thus defines an object x⊠ y = y⊠x ∈ Y ⊠X , which the Eilenberg-Watts
equivalences (2.158) turn into functors X → Y and functors Y → X , respectively. These functors
are related insofar as EW(x⊠ y) : Y → X is left adjoint to coEW(x⊠ y) : X → Y.

Suppose now that we have a right B-module category M and a left B-module category N
instead of linear categories X and Y. Then the balancings on an object m⊠n ∈ M⊠N are in
bijection with structures of module functors on the linear functor EW(m⊠n). This fact is the
main insight needed to prove that there exist module Eilenberg-Watts equivalences EWm, coEWm :
M□N → FunB(M,N ) witnessing (2.156), together with pseudo-inverses ẼWm, coẼWm, such
that the following diagrams commute [FSS20b, Prop. 4.1]:

M□N FunB(M,N ) FunB(M,N ) M□N

M⊠N Fun(M,N ) Fun(M,N ) M⊠N

M□N FunB(M,N ) FunB(M,N ) M□N

M⊠N Fun(M,N ) Fun(M,N ) M⊠N

EWm

U U

ẼWm

U U

EW ẼW

coEWm

U U

coẼWm

U U

coEW coẼW

. (2.160)
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Here, U denotes both the forgetful functor from the relative Deligne product to the Deligne
product and the functor which forgets a module functor’s module structure.

2.14 Silent and Cosilent Objects

In the above setting, let M = N and consider the identity functor idN , as well as the identity
functor with the standard structure of a module functor, also denoted by idN . The images of
idN under the various Eilenberg-Watts equivalences are important enough to deserve their own
names and notation. In accordance with [FSS22, Sec. 5.19], we call the objects

IN := ẼW(idN ) =
∫
n
n⊠n ∈ N ⊠N ,

IN := coẼW(idN ) =
∫ n

n⊠n ∈ N ⊠N ,

I◦N := ẼWm(idN ) =
(∫

n
n⊠n, β

)
∈ N□N ,

I◦N := coẼWm(idN ) =
(∫ n

n⊠n, β

)
∈ N□N

(2.161)

silent (IN and I◦N ) and cosilent (IN and I◦N ) objects. We remark that U(I◦N ) = IN and U(I◦N ) = IN ,
and that we may consider IX and IX for arbitrary linear categories X , not just module categories.

One can show that the balancings β appearing in the definition of I◦N and I◦N in (2.161) are
indeed the ones we already considered in (2.107). We will later use the components of the
morphisms brevI◦M

a and acobrevI◦M
, which can be easily calculated from (2.107) and (2.67) and

are given by

k(brevI◦M
a)n = ⋆⟨k, an⟩ ⊠ ⋆⟨an, k⟩ : an⊠ an → k⊠ k, (2.162)

k(acobrevI◦M
)n = ⋆⟨a∗k, n⟩ ⊠ ⋆⟨n, a∗k⟩ : n⊠n → a∗k⊠ a∗k. (2.163)

Lemma 2.33. On a linear category X , Calabi-Yau structures are in bijection with isomorphisms

IX ∼= IX . (2.164)

On a module category AM over a pivotal fusion category A, module traces are in bijection with
isomorphisms

I◦M∼=I◦M . (2.165)

Proof. We know from Section 2.5 how to construct an isomorphism ΘX : IX → IX from a
Calabi-Yau structure on X . The assignment dx := (x(ΘX )x) is the inverse to this construction.

That the module traces are those traces which lead to an isomorphism ΘM which is compatible
with the balancing β on I◦M and I◦M was shown in Lemma 2.21.

Remark 2.34. Let X be a Calabi-Yau category. It is easy to see that

dIX = dIX = DX . (2.166)
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If M is a traced left module category over a spherical fusion category A, then by Lemma 2.28,

dI◦M
= dI◦M = DM

DA
. (2.167)

Recall that under the module Eilenberg-Watts equivalences, the silent and cosilent objects I◦M
and I◦M correspond to the identity module functor idM ∈ FunA(M,M). If M is irreducible,
then FunA(M,M) is a spherical fusion category with respect to a canonical pivotal structure
that does not depend on the choice of trace on M [Sch13b, Prop. 5.10]. Therefore, the monoidal
unit idM has pivotal dimension 1.

This shows that in general, the module Eilenberg-Watts equivalences do not preserve traces. At
several points, categorical dimension factors will be present in our equations, whose appearance
is rooted in this fact.

2.15 Generalized Yoneda Lemmas for Balanced Functors

For a linear functor F : X → Y between linear categories, the following natural isomorphisms
are known as generalized Yoneda Lemmas.∫

x
⟨−, x⟩∗ ⊗ F (x) ∼= F (2.168)∫ x

⟨x, −⟩ ⊗ F (x) ∼= F. (2.169)

A proof of these well-known identities is written up in [FSS20a, Prop. 2.7], see also [Rie14,
Cor. 1.4.5 and Exc. 1.4.6]. Explicitly, the isomorphism (2.169) is given by the unique dashed
morphism such that the following diagram commutes for all objects x ∈ X .

∫ x 〈x, x′〉⊗ F (x) F (x′)

〈
x, x′〉⊗ F (x) .

σx

(f .̇x→x′) 7→F (f)
(2.170)

Here the diagonal arrow denotes the image of the map
〈
x, x′〉 →

〈
F (x), F (x′)

〉
, (f : x →

x′) 7→ F (f) under the isomorphism〈〈
x, x′

〉
,
〈
F (x), F (x′)

〉〉
∼=
〈〈
x, x′

〉
⊗ F (x), F (x′)

〉
. (2.171)

It is straightforward to check that the isomorphisms (2.168) and (2.169) are also natural in F .
We will now show that the isomorphisms (2.168) and (2.169) are well-behaved when F is a

balanced functor. For this to make sense, let AMA be an A-A-bimodule category for a spherical
fusion category A. In the above situation, we replace X with M, and consider a balanced functor
(see Section 2.8) F : M → Y . The functor

∫m ⟨m, −⟩ ⊗F (m) has a balancing which is given, for
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objects n ∈ M, a ∈ A, by the chain of isomorphisms∫ m

⟨m, an⟩ ⊗ F (m) ∼=
∫ m 〈

a∗m, n
〉

⊗ F (m) ∼=
∫ m

⟨m, n⟩ ⊗ F (am) ∼=
∫ m

⟨m, n⟩ ⊗ F (ma)

∼=
∫ m 〈

ma∗, n
〉

⊗ F (m) ∼=
∫ m

⟨m, na⟩ ⊗ F (m).
(2.172)

Into this balancing, the (left and right) balancings of the hom-functor enters, as well as the
isomorphisms β from (2.99) and the balancing of F .
Lemma 2.35. For a balanced functor F : M → Y, the isomorphisms∫ m

⟨m, −⟩ ⊗ F (m) ∼= F and
∫
m

⟨−, m⟩∗ ⊗ F (m) (2.173)

from (2.169) and (2.168) form balanced natural isomorphisms.
Proof. We only prove the coend-version of the statement. We need to show that the outer paths
around the following diagram commute:∫m ⟨m, an⟩ ⊗ F (m) F (an)∫m ⟨a∗m, n⟩ ⊗ F (m)∫m ⟨m, n⟩ ⊗ F (am) F (an)∫m ⟨m, n⟩ ⊗ F (ma) F (na)∫m ⟨ma∗, n⟩ ⊗ F (m)∫m ⟨m, na⟩ ⊗ F (m) F (na)

∼=

∼=
(a) id

∼= ∼=

∼= ∼=∼=

∼=
id

∼= ∼=

(2.174)

The middle square in (2.174) is a naturality diagram with respect to the isomorphism of functors
F (a−) ∼= F (−a). The top and bottom cells are similar, so we only consider the top cell (a) in
more detail. The cell (a) in (2.174) is also present in the next diagram. We can deduce that (a)
commutes if the outer paths around (2.175) commute for all objects k ∈ M.

⟨k, an⟩ ⊗ F (k) ∫m ⟨m, an⟩ ⊗ F (m) F (an)

⟨a∗k, n⟩ ⊗ F (k)
∫m ⟨a∗m, n⟩ ⊗ F (m)∫m ⟨m, n⟩ ⊗ F (am) F (an)

⟨a∗k, n⟩ ⊗ F (aa∗k)

bal⊗F (k)

(f .̇k→an)7→F (f)

(2.170)
σk

∼=

∼=
(a) idσk

⟨a∗k, n⟩⊗F (acoev k)
(2.99)

∼= ∼=

σa∗k

(g.̇a∗k→n)7→F (ag)

(2.170)

(2.175)
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In (2.175), bal denotes the balancing of the hom-functor ⟨k, an⟩ ∼= ⟨a∗k, n⟩. In order to verify
that the outer paths around (2.175) commute, we need to compose morphisms expressed in terms
of the identification (2.171). Let us quickly observe how this is done in a decontextualization
of our situation: let V,W be finite-dimensional vector spaces, and let x, y, z be objects in a
linear category Y. Let f : V → W be a linear map, g : x → y be a morphism, and denote
by (w ∈ W ) 7→ (hw : y → z) another morphism W ⊗ y → z using the notational convention
introduced in (2.171). Then the diagram

V ⊗ x

W ⊗ y z

f⊗g (v∈V )7→(hf(v)◦g)

(w∈W )7→(hw .̇y→z)

(2.176)

commutes. Applied to our situation, the diagram reads

⟨k, an⟩ ⊗ F (k)

⟨a∗k, n⟩ ⊗ F (aa∗k) F (an)

bal⊗F (acoev k) (f .̇k→an)7→(F (a bal(f))◦F (acoev k))

(g.̇a∗k→n)7→F (ag)

. (2.177)

If we can show that F (abal(f))◦F (acoev k) = F (f), then the diagram (2.177) is equivalent to the
boundary of (2.175), and the proof is done. Using the zig-zag identity (abal(f)) ◦ (acoev k) = f ,
we calculate

F (a bal(f)) ◦ F (acoev k) = F
(
(abal(f)) ◦ (acoev k)

)
= F (f). (2.178)

This shows that the cell (a) in (2.174) commutes. Commutativity of the bottom cell of (2.174)
is proved in the same way.

Corollary 2.36. For a left A-module category M, there is a balanced natural isomorphism

sil : M⟨−, −⟩ ∼= M⊠M

〈
−⊠−, IM

〉
. (2.179)

involving the cosilent object IM from (2.161).

Proof. Apply Lemma 2.35 to the functor F = M⟨−, −⟩, which is balanced with respect to the
bimodule structure on M⊠M, to obtain

M
〈
m, m′

〉
∼=
∫ k

M
〈
k, m′

〉
⊗M⟨m, k⟩ ∼=

∫ k

M

〈
m′, k

〉
⊗M⟨m, k⟩ ∼=

∫ k

M⊠M

〈
m′ ⊠m, k⊠ k

〉
.

(2.180)
Then, use exactness to pull the coend inside the argument of the hom-functor.

Explicitly, sil is given on a morphism f : m → m′ and in components for simple n ∈ M by

nsil(f) = dn ⋆⟨n,m′⟩ ⊠(⋆⟨m′,n⟩ ◦ f) (2.181)
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with inverse
sil−1(g) =

∑
n

(ng)(M) ◦ (ng)(M). (2.182)

For the special case f = idm, combining (2.181) with (2.21) reveals that

sil(idm) = σm : m⊠m →
∫ k

k⊠ k. (2.183)

If M is equipped with a module trace, then sil−1 can be applied to the isomorphism ΘM :
IM → IM. More precisely, sil−1 is given, on simple components (ΘM)k of ΘM, by

sil−1((ΘM)k)(2.182)=
∑

n
(n(ΘM)k)(M) ◦ (n(ΘM)k)(M)

(2.48)=
∑

n
δk,ndnidn = dkidk.

(2.184)

The image of ΘM under sil−1 is thus∫ k

sil−1((ΘM)k) =
∫ k

dk idk ∈
∫ k

⟨k, k⟩ . (2.185)

Remark 2.37. Suppose that m′ ⊠m ∈ M⊠M is equipped with a balancing bala : m′a⊠m ∼=
m′ ⊠ am for a ∈ A. Then the functor

M
〈
−m′, −m

〉
: A⊠A → vect (2.186)

is even (connected) bi-balanced. The equalizer of this bi-balanced functor was already consid-
ered in (2.151) and is denoted A

M
〈
m′, m

〉
. The isomorphism sil defines a bi-balanced natural

isomorphism

M
〈
−m′, −m

〉
∼= M⊠M

〈
m′ − ⊠−m, IM

〉
∼= M⊠M

〈
m′ ⊠−m, −IM

〉
. (2.187)

The equalizer of the bi-balanced functor M⊠M

〈
m′ ⊠−m, −IM

〉
is the hom-space of the relative

Deligne product M□M

〈
(m′ ⊠m,bal), I◦M

〉
; we saw this already in Example 2.13. By Lemma 2.20,

the bi-balanced natural isomorphism (2.187) defines a morphism of retracts, meaning that

M
〈
m′, m

〉
M⊠M

〈
m′ ⊠m, −IM

〉

A
M
〈
m′, m

〉
M□M

〈
(m′ ⊠m, bal), I◦M

〉
sil

r r (2.188)

commutes, where the left vertical label is the retraction from Lemma 2.31, and the right vertical
arrow is the retraction from Lemma 2.23.
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2.16 Contraction Operations

The identification of relative Deligne products with (bi)module functors via the Eilenberg-Watts
endows relative Deligne products with composition operations, which we now aim to understand.

Consider two A-B-bimodule categories M and N , and a B-A-bimodule category K. Let there
be objects

x ∈ K□M□ and y ∈ M□N□. (2.189)

Under the Eilenberg-Watts equivalences from Section 2.13, the objects x and y correspond to
composable bimodule functors

coEWm(x) : K → M and coEWm(y) : M → N . (2.190)

By the contraction of x and y, we mean the object

x •M y := coẼWm
(
coEWm(y) ◦ coEWm(x)

)
∈ K□N□. (2.191)

Making the definition of x•My explicit in terms of an unbalanced object in K⊠N and balancings,
we find that

U(x •M y) = M
〈
y(M), x(M)

〉
⊗ x(K) ⊠ y(N ). (2.192)

The balancings are obtained from the balancings of x and y, together with the balancing of the
hom-functor.

In the case M = N , we can choose y to be the cosilent object y =I◦M∈ M□M□. It follows
directly from the definition (2.191) that there is a distinguished isomorphism

x•M I◦M∼= x. (2.193)

In other words, the cosilent object I◦M acts as a unit for contraction. The contraction operation
also inherits associativity and functoriality structures from the composition of bimodule functors.

Building on this contraction for objects, we introduce another notion of contraction, this
time for morphisms. With x and y as above, consider objects m ∈ M, n ∈ N and k ∈ K, and
morphisms

f : k⊠m → U(x) and g : m⊠n → U(y). (2.194)

The morphism
g ◦m f : k⊠n → U(x •M y) (2.195)

into the contraction U(x •M y) from (2.192) is defined as follows. Note that the vector f ⊗ g
inhabits the vector space

f ⊗ g ∈
〈
k⊠m⊠m⊠n, x(K) ⊠x(M) ⊠ y(M) ⊠ y(N )

〉
. (2.196)
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On this vector space, consider the linear map〈
k⊠m⊠m⊠n, x(K) ⊠x(M) ⊠ y(M) ⊠ y(N )

〉
∼=
〈
k, x(K)

〉
⊗
〈
m, x(M)

〉
⊗
〈
m, y(M)

〉
⊗
〈
n, y(N )

〉
∼=
〈
k, x(K)

〉
⊗
〈
m, x(M)

〉
⊗
〈
y(M), m

〉
⊗
〈
n, y(N )

〉
compose−−−−−→

〈
k, x(K)

〉
⊗
〈
y(M), x(M)

〉
⊗
〈
n, y(N )

〉
∼=
〈
k⊠n, M

〈
y(M), x(M)

〉
⊗ x(K) ⊠ y(N )

〉
=
〈
k⊠n, U(x •M y)

〉
.

(2.197)

The contraction g ◦m f is obtained as the image of f ⊗ g under the map (2.197).

Remark 2.38. One can verify in a direct calculation using the explicit form (2.181) of the
isomorphism sil that in the case y =I◦M and g = sil(g̃) for some morphism g̃ : n → m, the
pushforward of the contraction sil(g̃) ◦m f under the isomorphism (2.193) is given by

f ◦ (k⊠ g̃). (2.198)

If in addition, x =I◦M is also cosilent, and f = sil(f̃) for some f̃ : m → k, then

g ◦m f = sil(f̃ ◦ g̃) (2.199)

Remark 2.39. Let K = M = N = A be the regular bimodule category. In this case, the
objects x and y in the relative Deligne products become bimodule endofunctors of A under
the Eilenberg-Watts equivalence coEWm. But the category of bimodule endofunctors of A is
isomorphic to the Drinfeld center ZA(A) as a monoidal category. Thus, if we abuse notation and
denote the corresponding objects in ZA(A) also by x, y, the contraction x •A y is, as an object in
ZA(A), given by the monoidal product x⊗ y.

The morphisms (2.194) have as targets U(x) and U(y). Since the forgetful functor U has a
left adjoint , see (2.108), f and g can equivalently be expressed as living in the hom-spaces

f ∈ A□A□⟨a b , x⟩ and g ∈ A□A□

〈
b c , x

〉
, (2.200)

with a, b, c ∈ A taking on the roles of k, m and n in (2.194). Passing through the equivalence
A□A□ ∼= ZA(A), the objects a b and b c get mapped to a∗b and b∗c , respectively.
Passing back through the same adjunction, now only applied to one balancing, we find images
of f and g in the hom-spaces A

〈
a∗b, U(x)

〉
and A

〈
b∗c, U(y)

〉
. In the same way, the contraction

g ◦b f can be seen as a morphism in the hom-space A
〈
a∗c, U(x⊗ y)

〉
. A calculation reveals that

this morphism, by abuse of notation also denoted g ◦b f , is given by

g ◦b f = (f ⊗ g) ◦ (a∗
bcoev c). (2.201)

Remark 2.40. It is natural to extend the contraction operation to the case where the bimodule
category K is not present, meaning a contraction operation of

x ∈ M□ and y ∈ M□N□. (2.202)
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Such a one-sided contraction operation is defined, again for objects and for morphisms, in the
obvious way: We have

U(x •M y) = M
〈
y(M), U(x)

〉
⊗ y(N ) (2.203)

and
g ◦m f = (f ◦ g(M)) ⊗ g(N ) : n → U(x •M y) (2.204)

for f : m → U(x) and g : m⊠n → U(y).

2.17 Module (Co-)Ends

The notion of a module coend is important to us, because it is used in the definition of the
modular functor from [FSS22], on which we build.

Let F : M⊠M → Y be a balanced functor. There are two morphisms

∫m F (m, am)
∫m F (a∗m,m) (2.205)

we can consider: One is induced by the balancing of F , and the other is the morphism β defined
in (2.99), using the coend, but not the balancing. It makes sense to compare these morphisms.
Specifically, we would like to compare the two related morphisms ρ and β, which we now introduce.
β is defined using universal properties such that the following diagram commutes:

∫m F (m,m)
∫
a

∫m F (am, am)

F (m,m)

F (aa∗m, aa∗m)
∫m F (am, am)

β

aτ

σm

F (evam,a∗ coevm)
σa∗m

. (2.206)

Similarly, ρ is unique in that the following diagram commutes.

∫m F (m,m)
∫
a

∫m F (am, am)

F (m,m)

F (a∗am,m) F (am, am)
∫m F (am, am)

ρ

aτ

σm

F (eva∗
m,m)

ρa,m,m

balFam,a,m
σm

. (2.207)

Here, the arrow ρa,m,m is defined as the composition balFam,a,m ◦ F (eva∗
m,m).

We thus introduce a type of coend which does not see the difference between the two morphisms.
The following notion is a minor modification of the module (co-)ends introduced in [BM21].
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Definition 2.41. Let (F,balF ) : M⊠M → Y be a balanced functor. The module coend∮m F (m,m) of F is the equalizer of the diagram

∮m F (m,m)
∫m F (m,m)

∫
a

∫m F (am, am),ι
ρ

β
(2.208)

where the arrows ρ and β are given by (2.207) and (2.206).

Remark 2.42. In the case that F is the hom-functor M⟨−, −⟩, the balancing coaction ⟨m, m⟩ →
⟨am, am⟩ is the linear map given by f 7→ idaf for f : m → m. This is an easy to check consequence
of both the definition of the balancing of the hom-functor.

In some particular situations (3.26), we will need to consider module coends of disconnected
bi-balanced, rather than balanced functors. This is also possible:

Definition 2.43. Let M be an A-A-bimodule category, and let F : M⊠M → Y be a
disconnected bi-balanced functor. Consider the morphism λ :

∫m F (m,m) →
∫
a

∫m F (am, am),
which is given by the following chain of compositions of morphisms, which are constructed using
the disconnected bi-balanced structure and the morphism β as defined in (2.99).∫ m

F (m,m) →
∫
a

∫ m

F (a∗am,m) →
∫
a

∫ m

F (ama∗,m)

→
∫
a

∫ m

F (am,ma) →
∫
a

∫ m

F (am, am).
(2.209)

The module coend of F is the equalizer of λ and the morphism β which was defined in (2.206).

Our goal is to show that in our setting, the module coend, which is by definition a subobject
of the regular coend, is also canonically a quotient of the regular coend, meaning there is a
morphism

∫m F (m,m) →
∮m F (m,m). To this end, we formulate the problem in such a way that

Lemma 2.17 can be applied. Observe that if F is either balanced or disconnected bi-balanced,

S :=
∫ m

F (−m,−m) : A × A → Y (2.210)

is a connected bi-balanced functor: The left balancing is inherited from the balancing (or
disconnected bi-balancing) of F , while the right balancing comes from the coend over m. The
equalizer (2.208) (or the one from Definition 2.43) is the equalizer of the connected bi-balanced
functor S on the object 1 ∈ ZA(A) in both arguments, as defined in (2.83). Thus, Lemma 2.17
implies that the equalizer (2.208) splits, as long as A is a spherical fusion category. Moreover,
Lemma 2.17 provides us with the structural data of the split equalizer: Consider the map t̃,
which is unique such that the following diagram commutes:∫ a ∫m F (am, am)

∫m F (m,m)

F (am, am)

t̃

σaσm

σam
. (2.211)

The following endomorphism of
∫m F (m,m) – which was denoted by h = t ◦ g in the proof of

Lemma 2.16 – will play a greater role later on and thus deserves a name.
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Definition 2.44. The balancing idempotent hF :
∫m F (m,m) →

∫m F (m,m) is defined as the
composition

hF := 1
DA

t̃•ρ if F is balanced, and hF := 1
DA

t̃•λ if F is disconnected bi-balanced, (2.212)

using the operation • defined in (2.33) to mediate between the end and the coend over a:

hF .̇
∫m F (m,m)

∫
a

∫m F (am, am)
∫ a ∫m F (am, am)

∫m F (m,m).
ρ or λ ΘA/DA t̃

(2.213)

That hF is indeed an idempotent is evident from Definition 2.15. Hence we have proved:

Theorem 2.45. Let F : M⊠M → Y be a balanced or disconnected bi-balanced functor. The
balancing idempotent hF from Definition 2.44 factors through the module coend, i.e. there
exists a unique dashed arrow πF , called the balancing projector, such that the following diagram
commutes. ∫m F (m,m)

∫m F (m,m)

∮m F (m,m)

hF

πF
ι

(2.214)

This balancing projector πF is a retraction of the inclusion ι :
∮m F (m,m) →

∫m F (m,m).
Moreover, the balancing idempotent hF really is an idempotent, the balancing projector πF

really is an epimorphism, and hence the module coend
∮m F (m,m) is the image of the balancing

idempotent hF .

Remark 2.46 (Module ends and module natural transformations). In complete analogy, it is
possible to define a module end

∮
m F (m,m) as a subobject of the regular end

∫
m F (m,m). This

notion of module end is the one which appears in [BM21]. (Note, however, that the module
coend from Definition 2.41 is different from the module coend in [BM21] in that it is a subobject,
not a quotient, of the regular coend.)

Given A-module categories M,N , and module functors F,G : M → N , the space of natural
transformations can be written as an end:

Nat(F,G) ∼=
∫
m

〈
F (m), G(m)

〉
. (2.215)

Similarly, the subspace of module natural transformations is isomorphic to a module end [BM21,
Prop. 4.1]:

NatA(F,G) ∼=
∮
m

〈
F (m), G(m)

〉
. (2.216)

The end-version of Theorem 2.45 provides an explicit retraction

Nat(F,G) ↠ NatA(F,G), (2.217)

determined by the pivotal structure on A.
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We will encounter functors defined on a Deligne product with many factors, and with several
independent balancings. This notion deserves a formalization. To this end, let BN be another
module category over a spherical fusion category B. Recall that A⊠B is again a spherical fusion
category, and that M⊠N can be considered as a module category over A⊠B.

Definition 2.47. We say that F : M⊠M⊠N ⊠N → Y is a piecewise balanced functor if it is
equipped with

• a balancing or disconnected bi-balancing for the functor F (−⊠−⊠ IN ) : M⊠M → Y,
and

• a balancing or a disconnected bi-balancing for the functor F (IM ⊠−⊠−) : N ⊠N → Y,

such that balancing idempotents hA and hB for the functors F (−⊠−⊠ IN ) and F (IM ⊠−⊠−),
which are both endomorphisms of

∫m ∫ n F (m,m, n, n), commute. Their composition

h := hA ◦ hB = hB ◦ hA (2.218)

is called the balancing idempotent of F . The piecewise module coend
∮M,N F is the unique object

such that the following diagram is a pullback square:

∮M,N F
∮m∈M ∫ n∈N F (m,m, n, n)

∮ n∈N ∫m∈M F (m,m, n, n)
∫m∈M ∫ n∈N F (m,m, n, n)

. (2.219)

Remark 2.48. Recall that A⊠B is again a spherical fusion category, and that M⊠N can
be considered as a module category over A⊠B. There is a notion of multi-balanced functor
F : M⊠M⊠N ⊠N → Y, which is a balanced functor with respect to the A⊠B-module
structure. Every multi-balanced functor is a piecewise balanced functor, but the converse does
not hold true. A functor which is piecewise balanced, but not multi-balanced, is given in
Section 3.2, see Remark 3.8.

Proposition 2.49. For a multi-balanced functor, the module coend (with respect to the A⊠B-
action) agrees with the piecewise module coend.

Sketch of Proof. We need to construct dashed arrows and show that the diagram

∮ µ∈M⊠N F (µ, µ)
∮m∈M ∫ n∈N F (m,m, n, n)

∮ n∈N ∫m∈M F (m,m, n, n)
∫m∈M ∫ n∈N F (m,m, n, n)

(2.220)

is a pullback square. In order to construct the dashed arrows, note that a morphism
∮ µ∈M⊠N →∮m∈M ∫ n∈N F (m,m, n, n) is, by the universal property of the equalizer from Definition 2.41,

in bijection with morphisms
∮ µ∈M⊠N →

∫m∈M ∫ n∈N F (m,m, n, n) satisfying the equalizing
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property. Such a morphism is obtained the structure of
∮ µ∈M⊠N as an equalizer. In this way,

the horizontal dashed arrow (and similarly the vertical dashed arrow) in (2.220) are defined.
To see that (2.220) is indeed a pullback square, we first note that a cone over the solid part

of the diagram (2.220) is a morphism f : y →
∫m∈M ∫ n∈N F (m,m, n, n) which factors over

both
∮m∈M ∫ n∈N F (m,m, n, n) and

∮ n∈N ∫m∈M F (m,m, n, n). This means that f satisfies two
equalizing conditions. It can be shown that these two equalizing conditions (for the A-action on
M and the B-action on N , respectively) are equivalent to the single equalizing condition for the
A⊠B-action on M⊠N . Thus, a cone over the solid part of (2.220) is the same as a cone over
the equalizer diagram∫ µ∈M⊠N F (µ, µ)

∫
α∈A⊠B

∫ µ∈M⊠N F (αµ, αµ). (2.221)

Hence, the pullback of the former diagram is isomorphic to the equalizer of the latter, which by
definition is the module coend of F with respect to the A⊠B-action.

Proposition 2.50. The balancing idempotent

h := hA ◦ hB = hB ◦ hA (2.222)

is again an idempotent whose image is the piecewise module coend
∮M,N F .

Proof. Proving that h is an idempotent is easy:

h ◦ h = (hA ◦ hB) ◦ (hB ◦ hA) = hA ◦ hB ◦ hA = hA ◦ hA ◦ hB = hA ◦ hB = h. (2.223)

It remains to show that the image of h is the piecewise module coend. We can use the universal
property of the pullback to see that h factors over the piecewise module coend. For a unique
dashed arrow π in the diagram below to exist, the outer paths of the diagram (2.224) have to
commute. They do, due to the commutativity of hA and hB.∫m ∫ n F (m,m, n, n)

∮M,N F
∮m∈M ∫ n∈N F (m,m, n, n)

∮ n∈N ∫m∈M F (m,m, n, n)
∫m∈M ∫ n∈N F (m,m, n, n)

πA◦hB

πB◦hA

π

ι̃B

ι̃A ιA

ιB

(2.224)
We show that π is surjective by proving that π ◦ ι = id, where ι = ιB ◦ ι̃A = ιA ◦ ι̃B. Consider the
diagram∮M,N F

∮M,N F
∮m∈M ∫ n∈N F (m,m, n, n)

∮ n∈N ∫m∈M F (m,m, n, n)
∫m∈M ∫ n∈N F (m,m, n, n)

f

g

h

ι̃B

ι̃A ιA

ιB

. (2.225)
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If we can find morphisms f and g, such that ιA ◦ f = ιB ◦ g, then there exists a unique dashed
arrow h such that ι̃B ◦ h = f and ι̃A ◦ h = g. The choices f = ι̃B and g = ι̃A are valid, and in
this case, h = id. Our aim is to show

ι̃B ◦ π ◦ ι = ι̃B and ι̃A ◦ π ◦ ι = ι̃A, (2.226)

and to deduce by uniqueness of h that id = h = π ◦ ι. We proceed to check this by a direct
calculation, in which we underline those terms that will be modified in the next step.

ι̃B ◦ π ◦ ι = πA ◦ hB ◦ ι = πA ◦ ιB ◦ πB ◦ ι = πA ◦ ιB ◦ πB ◦ ιB ◦ ι̃A
= πA ◦ ιB ◦ ι̃A = πA ◦ ιA ◦ ι̃B = ι̃B.

(2.227)

The other equation in (2.226) is proved in the same way.

Definition 2.51. The corestriction of the idempotent h from Proposition 2.50 onto its image is
denoted

π :
∫ m ∫ n

F (m,m, n, n) →
∮ M,N

F, (2.228)

and is called the piecewise balancing projector of F .

3 Extruded Graphs and their Evaluation

3.1 Defect Manifolds and Extruded Graphs

The evaluation procedure that will be constructed in Section 3.3 is defined on a particular class
of cylinders over decorated surfaces called extruded graphs, that we now introduce. They are
similar to the labeled defect surfaces considered in [FSS22]. We distinguish between the following
types of surfaces with additional structure.

Surface.

(3.1)

By a surface, we always mean a smooth, oriented, compact 2-manifold, possibly with boundary.

Node Surface.

(3.2)
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A surface Σ with a finite number of embedded disks in its interior Int(Σ) and a finite number
of embedded intervals on its boundary ∂Σ is called a node surface, and the embedded disks
and intervals are called nodes. The node surface (3.2) has three nodes: two disks, and one interval.

(Fine) Unlabeled Defect Surface.

(3.3)

A node surface Σ is called an unlabeled defect surface if it is endowed with finitely many embedded
disjoint intervals, called defect lines, that must meet the following criteria:

• The end points of each defect line must lie on the boundary of a disk-shaped node or in an
interval node.

• The interior of the defect lines must be disjoint from the disk and interval nodes.

• Each disk node must be adjacent to at least one defect line.

• The boundary ∂Σ of Σ is covered entirely by interval nodes and defect lines.

The connected components of the complement of defect lines and disk and interval nodes in σ
are called domains. In addition to these requirements, we only consider fine unlabeled defect
surfaces, which means that all domains are disks.

Defect 1-Manifold.

(3.4)

The interval nodes and the boundary of the disk nodes of an unlabeled defect surface are examples
of defect 1-manifolds: These are compact, smooth, oriented 1-manifolds, possibly with boundary
(i.e. a disjoint union of finitely many closed intervals and circles), with finitely many marked
points, meaning a set of distinguished points on the 1-manifold, each equipped with a sign. The
boundary of any defect 1-manifold must consist of marked points. In case the defect 1-manifold
is obtained from an unlabeled defect surface, the marked points are given by the end points of
defect lines, with signs depending on whether the defect line starts (−) or ends (+) at a point.
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Extruded Defect Surface.

(3.5)

To each defect surface Σ, we assign an extruded defect surface, which topologically is given by the
cylinder Σ × [0, 1]. We identify the original defect surface with one of the boundary components,
called the coat: Σ ∼= Σ × {0}. The other boundary component Σ × {1} is called the core. If i is a
disk or interval node in Σ, then the cylinder i× [0, 1] ⊂ Σ × [0, 1] stretching from the coat to the
core is called a ray. In pictures such as (3.5), the coat is always drawn in green, and the core is
always gray, while the rays are red. We usually only draw the coat and the core, and not the
entire 3-manifold Σ × [0, 1].

This structure is only mildly 3-dimensional, as the topology is entirely determined by the
defect surface Σ. This justifies the name extruded defect surface.

Labeled Defect Surface.

5

(3.6)

We consider the following labeling of defect surfaces by algebraic data:

Level 1 To each of the (two-dimensional) domains, we assign a spherical fusion category A,B, . . .

Level 2 To each defect line adjacent to a domain labeled by A on the left and a domain labeled by
B on the right, we assign a traced A-B-bimodule category M. In case the defect line lies
on the boundary of the surface, there is only one adjacent domain, and the algebraic label
is a one-sided (left or right) module category, depending on the orientation.

In the example (3.6), there is only one domain, labeled by A. Hence, all bimodule categories are
A-A-bimodule categories, with the exception of M1, which labels a defect line on the boundary
and is thus merely a right traced A-module category.
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Labeled Defect 1-Manifold.

(3.7)

Defect 1-Manifolds can also be labeled by the same algebraic data: Each segment between
marked points is assigned a spherical fusion category, and the marked points themselves are
labeled by spherical bimodule categories. The interval nodes and the boundaries of the disk
nodes of a labeled defect surface naturally carry the structure of labeled defect 1-manifolds. Then
the orientation of a connected labeled defect 1-manifold L defines a (cyclic or linear) order of
marked points, and hence a (cyclically or linearly) composable string (M1,M2, . . . ) of bimodule
categories. If the sign of the marked point is negative, we use the opposite bimodule category
Mi instead. We call the relative Deligne product

TR(L) := M1□M2□ · · · (3.8)

the ray category of L. Similarly, the regular Deligne product

TN(L) := M1 ⊠M2 ⊠ · · · (3.9)

is called the node category of L. Recall from Section 2.12 that there is a forgetful functor
U : TR(L) → TN(L) with adjoints , : TN(L) → TR(L) between ray and node categories.

Extruded Graph.

x zy

f

5

g
h

(3.10)

The complete labeling of an extruded defect surface requires two more layers of algebraic data.
Level 3 To each defect line labeled by a bimodule category M on the coat, we assign in addition

an object m ∈ M.
To each ray, which is the cylinder over a (disk or interval) node L, we assign an object in
the ray category x ∈ TR(L).
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Level 4 The choices of objects from the third level of labels permit us to associate a vector space
to each node L. Let (m1 ∈ M1,m2 ∈ M2, . . . ) be the list of objects that label the defect
lines adjacent to L, and let x ∈ TR(L) denote the ray label. We call the vector space

Nx(m1,m2, . . . ) := TN(L)
〈
m1 ⊠m2 ⊠ · · · , U(x)

〉
(3.11)

the node space for the node L. Here, U denotes the forgetful functor TR(L) → TN(L),
which forgets the balancings that come with the relative Deligne product. The notion of
node spaces allows us to define the first part of the fourth level of labels:
To each node, we assign a vector f in the node space, called a node label.
Finally, it is possible to construct, for each labeled defect surface Σ, a functor which assigns
a vector space to a choice of ray labels for Σ. This functor is called the block functor, and
its value for a specific choice of ray labels is called a block space T. The construction of
the block functor has been the subject of [FSS22], and it will be briefly summarized in
Section 3.2. We can now state the last part of the fourth level of labels:
To the core, we assign a vector φ in the linear dual of the block space T ∗.

An extruded defect surface with all four layers of labels is called an extruded graph.

Remark 3.1. There are some differences between the definitions, the conventions, and the
terminology in this paper and those in [FSS22]. First and foremost, all manifolds we consider
carry less structure: they are only oriented, as opposed to 2-framed. The counterpart to this loss
in topological structure is additional algebraic structure: The tensor categories considered in
[FSS22] are only rigid, whereas we here require them to be equipped with a spherical structure.
We also need a spherical structure on the bimodule categories.

Furthermore, all categories we consider are semisimple. While it is open whether non-semisimply
labeled extruded graphs can be evaluated in a way similar to the one we will define in Section 3.3,
we cannot expect to construct a 3-dimensional state-sum model with defects from non-semisimple
data [BDSPV15, Appendix], which is our motivation for considering extruded graphs.

As a matter of perspective, we here chose to consider disk nodes and not circular boundary
components. The reason for this is that we sometimes wish to consider the underlying surface of
a defect surface, a concept which does not appear in [FSS22]. Another minor point is that we
disallow circular defect lines: all defect lines must start and end at a node.

Taking these points into account, a labeled defect surface corresponds to a labeled defect
surface in the terminology of [FSS22], and similarly for a labeled defect 1-manifold.

Remark 3.2 (The 2-dimensional Character of Extruded Graphs). We have introduced extruded
graphs as a 3-dimensional structure. However, the third dimension is distinguished and carries
no real information: being the cylinder over a defect surface, it is topologically completely
determined by the defect surface. The ray labels could equivalently be associated with the nodes,
and there is also no necessity to assign the datum of the core label to the core geometrically, and
not just to the extruded graph as a whole.

From this perspective, extruded graphs can be viewed as 2-dimensional objects: labeled defect
surfaces in the sense of (3.6) with an additional choice of object in the appropriate bimodule

62



category for each defect line, two labels for each node: an object in the associated ray category
and a node label, and an additional choice of core label, which is part of the datum of an extruded
graph, but not associated with a particular topological component.

Remark 3.3 (The 3-dimensional Character of Extruded Graphs). Despite the 2-dimensional
picture from Remark 3.2 being sufficient to develop the theory of extruded graphs, let us now
highlight why it is natural to view them as inherently 3-dimensional objects. Extruded graphs
are related a class of diagrams that are associated with a tricategory, as described by [Hum12]
and [BMS12], and several others. These diagrams, which we call 3-diagrams, generalize the
graphical calculus of string diagrams to tricategories. A 3-diagram in a given tricategory T is a
stratification of the standard cube [0, 1]3, in which the 3-strata are labeled by objects of T , the
2-strata (surfaces) are labeled by 1-morphisms, 1-strata (lines) by 2-morphisms, and 0-strata
(vertices) by 3-morphisms of T . 3-diagrams evaluate to 3-morphisms of T . If we choose for
T the tricategory BiModTr from Section 2.12, we find that 3-diagrams have 3-strata labeled
by spherical fusion categories, surfaces labeled by traced bimodule categories, lines labeled by
bimodule functors, and vertices labeled by bimodule natural transformations.

For comparison, consider now the following alternative description of an extruded graph on the
sphere S2. An extruded graph Σ on S2 consists of the standard closed 3-ball B ⊂ R3 of radius 1
with a stratification obtained as follows: There exists an oriented graph Γ on the surface of B
such that the 2-strata of B are given by

• connected components of ∂B \ Γ; these 2-strata lie on the surface of B; or

• for a given edge e of Γ, the radial sweep of e, meaning the surface {λp ∈ B ⊂ R3 : p ∈
e, λ ∈ (0, 1)}.

Moreover, the 1-strata are

• edges of Γ, and

• for a given vertex v of Γ, the oriented straight line from v to the center 0 ∈ B of B.

The 0-strata are

• vertices of Γ, and

• the point 0 ∈ B.

Let us view the "outside region" R3 \B as a 3-stratum of B. In addition, B has one 3-stratum
per connected component of ∂B \ Γ.

Inspired by the labeling prescription for 3-diagrams in BiModTr, we define how the different
strata of B are to be labeled. We will label n-dimensional strata with (3−n)-morphisms BiModTr.
Hence, for each 3-stratum, we pick a spherical fusion category. We only restrict the label of
the outside region: Here, we pick the spherical fusion category vect. The 2-strata are labeled,
according to their orientation, by a traced bimodule category, with actions from the spherical
fusion categories that label the adjacent 3-strata. We leave this choice arbitrary for the 2-strata
in the interior of B, but for the connected components of ∂B \Γ, i.e. the 2-strata on the boundary
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of B, we fix the A-vect-bimodule category AAvect, where A is the spherical fusion category that
labels the 3-stratum in the interior of B which is adjacent to the 2-stratum in question. Each
1-stratum has a cyclically ordered set of composable bimodule categories associated with it, that
label the adjacent 2-strata. The relative Deligne product over this cyclic string of bimodule
categories is a linear category, from which we pick an object that labels the 1-stratum. The
relative Deligne product can be realized as a category of bimodule functors, but we do not make
this explicit here. For 1-strata in the interior of B – recall that these are radial lines – the
associated category is just the ray category for the corresponding ray, after making the obvious
identification of 3-strata with domains and interior 1-strata with rays. Let us now consider
1-strata on the boundary of B. These are the edges of Γ. They each have three adjacent 2-strata
and three adjacent 3-strata. One of these 3-strata is the outside region labeled by vect, and the
other two are labeled by spherical fusion categories A and B. Out of the adjacent 2-strata, one
lies in the interior of B and is labeled by a traced bimodule category AMB, while the other
two lie on the boundary ∂B. We know that their labels are AAvect and BBvect. The category
associated with the 1-stratum is therefore A□

A
M□

B
B □

vect
, where the opposite of A appears when

taking orientations into account. Using that the center of a vect-vect-bimodule category is just
the category itself, and that A and B are units for the relative Deligne product, as seen in (2.134),
the associated category simplifies to

A□
A

M□
B

B □
vect

∼= A□
A

M□
B

B ∼= M. (3.12)

Hence, a 1-stratum on the boundary of B, whose adjacent internal 2-stratum is labeled by a
bimodule category M, is labeled by an object m ∈ M. Recall that this is also the appropriate
choice of label for a defect line in an extruded graph.

So far, we have recovered the labeling prescription for domains, defect lines and rays of an
extruded graph from another perspective. But crucially, while we previously treated defect lines
and rays as entirely different things, we now saw that they can both be viewed as objects of
the same type (1-strata), and that their respective labeling stems from a single, generalizing
prescription. To arrive at this perspective, it was necessary to treat the extruded graph (or the
stratified ball B) as a 3-dimensional object, and to source the labels of n-dimensional strata from
the set of (3 − n)-morphisms of the labeling tricategory BiModTr. The labeling prescription can
be extended to 0-strata, unifying both nodes and the core of an extruded graph on S2. One
can then see that the vector spaces of node labels and the vector space of core labels can be
described in a consistent way using a small neighborhood of the respective 0-strata. We will not
continue to make this explicit.

Instead, let us briefly make the connection to 3-diagrams for tricategories. If the tricategory T
has sufficiently well-behaved dualities, one can consider and evaluate non-progressive 3-diagrams
[BMS12, Sec. 6.1]. In particular, a choice of embedding B ↪→ [0, 1]3 into the standard cube
defines a non-progressive 3-diagram, which evaluates to a particular 3-morphism in BiModTr:
A bimodule natural endomorphism of the identity functor of the vect-vect-bimodule category
vect – or in other words, a scalar in K. It is expected, though at this time unproven, that the
evaluation of non-progressive 3-diagrams is invariant under isotopies. For us, this would mean
that the scalar associated to B is independent of the choice of embedding B ↪→ [0, 1]3. Currently,
isotopy invariance is only known for a subclass of non-progressive 3-diagrams called surface
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diagrams, in which the 2-skeleton of the stratification is a manifold [BMS12, Thm. 6.8]. A
3-diagram obtained from B is not a surface diagram. Part of the difficulty in proving a more
general invariance theorem lies in how 0-strata of 3-diagrams are labeled by 3-morphisms in a
tricategory. A 3-morphism has as source and target 2-morphisms, or more generally, linearly
ordered compositions of 2-morphisms. The 1-strata adjacent to a 0-stratum, which are labeled by
2-morphisms, do not, in general, come with a linear order or a grouping into source and target
1-strata. In order to label the 0-stratum by a 3-morphism, choices for these orderings have to be
made. Working with the combinatorics of how a 3-morphism should transform when a different
choice of ordering is made appears difficult. Note that in the special case of surface diagrams,
there is at least a cyclic order on the adjacent 1-strata of a 0-stratum, as they all embed into a
surface.

For extruded graphs, this problem is resolved by the use of block spaces (to be defined in
Section 3.2) for the core labels – they can be thought of as symmetric versions of hom-spaces
for 3-morphisms. The technicalities of labels for 0-strata aside, we expect a close relationship
between the scalar obtained from the evaluation of the 3-diagram B ↪→ [0, 1]3 and the evaluation
of the corresponding extruded graph – the latter will be defined in Section 3.3 in a manifestly
isotopy invariant way. As discussed in Remark 5.18, we also expect that extruded graphs can be
used to define the evaluation of 3-diagrams in BiModTr in a manifestly isotopy invariant way.

These considerations justify why we introduced extruded graphs as 3-dimensional entities. Even
if the third dimension is superfluous in defining extruded graphs, it is helpful in understanding
them.

Remark 3.4 (The (2+ϵ)-dimensional Character of Extruded Graphs). The definition of extruded
graphs that we gave can be thought of as a compromise between the strictly 2-dimensional
description proposed in Remark 3.2 and the fully 3-dimensional description outlined in Remark 3.3.
Indeed, there is a very concrete reason why extruded graphs are not quite 2-dimensional and
not quite 3-dimensional. Our main motivation for considering extruded graphs is a state-sum
model with surface defects, which is outlined in Section 5.4. In this model, 3-manifolds are
considered which are stratified and labeled by algebraic data in a way very similar to how the
cube [0, 1]3 is stratified and labeled to become a 3-diagram in BiModTr, as just discussed in
Remark 3.3. Ball neighborhoods of the 0-strata carry the structure of extruded graphs – but not
all neighborhoods, only infinitesimal neighborhoods. "Infinitesimal" is here to be understood in a
topological sense and means "regular in that all adjacent 1- and 2-strata intersect the boundary
of the neighborhood transversally, and small enough in that it is homeomorphic to all of its
regular ball sub-neighborhoods". When viewing this state-sum model as a source of extruded
graphs, it is clear why they can be described in a purely 2-dimensional manner, despite being
naturally 3-dimensional objects: The third dimension is purposefully chosen so small that nothing
interesting happens in it.

3.2 The Modular State-Sum Functor

The state-sum modular functor described in [FSS22] is crucial to the understanding of extruded
graphs, and the labels of the core in particular. We briefly review an alteration of the modular
functor, namely the oriented/spherical version as opposed to the framed/rigid version. Being a
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symmetric monoidal functor between bicategories, the modular functor consists of several pieces
of data. One of these pieces of data is the block space T mentioned in the definition of extruded
graphs, which is a vector space assigned to a labeled defect surface Σ together with a choice of
ray labels.
Remark 3.5. We do not need to explicitly construct an oriented/spherical version of the modular
functor from [FSS22], since we only need block spaces. Moreover, we only consider fine defect
surfaces, for which block spaces are easier to define. In fact, moving to an oriented/spherical
setting simplifies the construction in [FSS22] where the role of the framing was to control powers
of the double dual (which in our situation is trivialized by the pivotal structure). Nevertheless, it
is useful to think of the block space as a component of a larger structure, the modular functor,
cf. [FSS22, Rem. 5.28].

We now fix a labeled defect surface Σ, a choice of ray labelings x⊠ y⊠ · · · ∈ TR(Σ), and
proceed to recall the definition of the associated block space T = T(x⊠ y⊠ · · · ). TR(Σ) here
denotes the Deligne product over the ray categories for all nodes L (intervals and disks) in Σ:

TR(Σ) := ⊠
L
TR(L). (3.13)

To this end, we first introduce the node space functor for a node L of Σ:

Nx(L) := TN(L)
〈
−, U(x)

〉
: TN(L) → vect. (3.14)

Note that the values of this functor are the node spaces mentioned above. There is a (total) node
space functor associated to the surface Σ:

Nx,y,... :=
⊗
L

Nx(L) : ⊠
L
TN(L) = TN → vect. (3.15)

The Deligne product ⊠
L
TN(L) = TN denotes the (total) node category for the surface Σ. As each

defect line starts and ends at a node, the associated bimodule category M appears precisely
twice in the total node category, once as M and once as M. Thus the terms of the node category
TN can be rearranged as follows:

⊠
L
TN(L) = TN = ⊠

M
M⊠M, (3.16)

where now M runs over defect lines of Σ. Recall from (2.161) that there is a silent object

IM =
∫
m
m⊠m ∈ M⊠M. (3.17)

The Deligne product over all of these objects IM provides us with a distinguished object in the
total node category:

⊠
M

IM ∼= I(⊠M M) ∈ TN. (3.18)

Following [FSS22], we define the pre-block space as the value of the total node functor on this
object (using the Sweedler-like notation for the forgetful functor U from (2.146)):

Tp := Nx,y,...(I(⊠M M)) = TN

〈∫
m

∫
n
m⊠m⊠n⊠n⊠ · · · , x(M) ⊠ y(M) ⊠ z(N ) ⊠x(N ) ⊠ · · ·

〉
.

(3.19)
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Remark 3.6. By Corollary 2.36, the pre-block space is isomorphic to the tensor product of
hom-spaces

Tp ∼=
〈
y(M), x(M)

〉
⊗
〈
x(N ), z(N )

〉
⊗ · · · . (3.20)

The block space T from [FSS22], which we work towards defining, is obtained as a subspace
of the pre-block space Tp. It consists of those vectors satisfying a condition that we will now
describe. It can be thought of as a flatness condition, see [FSS22, p. 5].

We pick a domain labeled by a spherical fusion category A. Assume that one of the defect
lines adjacent to A is labeled by a spherical bimodule category M, and only one of the two
domains adjacent to the defect line is A. Without loss of generality, we take M to be a left
A-module. We denote the labels of the other defect lines adjacent to A by N , K, L, . . . , and
rays by x, y, z, . . . .

x

z

y

(3.21)

Consider the functor SM : M⊠M → vect, given by

SM(m,m′) := Nx,y,...(m⊠m′ ⊠ IN ⊠ IK ⊠ IL ⊠ · · · ). (3.22)

A comparison of (3.19) and (3.22) reveals that the pre-block space Tp is obtained from SM as

Tp = SM(IM). (3.23)

We now equip SM with the structure of a balanced functor, using the explicit form of the
pre-block space given in (3.19). The balancing on SM is obtained as a composition of the
balancings for the silent objects IN , IK, IL, . . . , the A-balancings of the ray labels x, y, z, . . . ,
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and the balancings of the hom-functors which appear in the definition of SM (3.22).

SM(am,m′) =
∫ nkl 〈k⊠ am⊠ · · · , U(x)

〉
⊗
〈
m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈k⊠m⊠ · · · , U(x) a
〉

⊗
〈
m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈k⊠m⊠ · · · , a U(x)
〉

⊗
〈
m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈a∗ k⊠m⊠ · · · , U(x)
〉

⊗
〈
m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ al⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
a∗n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
m′ ⊠n⊠ · · · , aU(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ nkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
a∗m′ ⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · · = SM(m, a∗m′).

Hom-balancing

balancing of x

Hom-balancing

several balancings

several balancings

several balancings

Hom-balancing

(3.24)
The balancing for SM defined in (3.24) is called "holonomy" in [FSS22, Sec. 4.11]. As we will
here consider several morphisms related to the idea of a holonomy operation, we refer to the
balancing of SM as the holonomy balancing holm,a,m′ . It can be pictured as "walking around the
boundary" of the domain A with an object a ∈ A:

x

z

y

. (3.25)

Balanced functors SM, SN , and similar can be constructed for each defect line adjacent to A,
as long as those defect lines separate A from a different domain, or lie on the boundary of the
defect surface. It may be the case, however, that a defect line has the domain A as its left- and
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right-adjacent domain, as in the example (3.26).

x y

(3.26)

M is then an A-A-bimodule category. In this case, SM is a disconnected bi-balanced functor
(see Section 2.8), whose balancings are defined in a way that is very similar to the holonomy
balancing from (3.24), by walking an element a ∈ A along the two paths pictured in (3.26).

The module coend is defined for both balanced (Definition 2.41) and disconnected bi-balanced
functors (Definition 2.43), and we use it to define the block spaces. For this to be consistent, we
need the result [FSS22, Lem. 4.22], which in our language assumes the following form:

Proposition 3.7. There are canonical isomorphisms∮ m∈M
SM(m,m) ∼=

∮ n∈N
SN (n, n) (3.27)

between module coends for each pair of defect lines (M,N ) adjacent to A.

In order to define block spaces, we need to consider all domains simultaneously. For each
domain A, B, C, . . . , choose a defect line M adjacent to A, N adjacent to B, K adjacent to C,
and so on. Similar to the functor SM for the single domain A, we can construct a piecewise
balanced functor (see Definition 2.47)

SM,N ,K,... : M⊠M⊠N ⊠N ⊠K⊠K⊠ · · · → vect (3.28)

such that
SM,N ,K,...(IM ⊠ IN ⊠ IK ⊠ · · · ) = Tp. (3.29)

Remark 3.8. SM,N ,K,... is a piecewise balanced functor, but not, in general, a multi-balanced
functor. This motivates Definition 2.47.

Definition 3.9. For a labeled defect surface with a fixed choice of ray labels, the associated
block space is the vector space given by the piecewise module coend

T := lim
M,N ,K,...

∮ M,N ,K,···
SM,N ,K,.... (3.30)

The limit is to be understood in terms of Proposition 3.7, which ensures that between every two
module coends we consider, there is a canonical isomorphism.

69



When unraveling Definition 3.9, one can see that it agrees with the original definition of the
block functor [FSS22, Def. 4.21]. Note that the block space T is by definition a sub-vector space
of the pre-block space Tp.

Example 3.10. This example is a special case of [FSS22, Ex. 4.35]. Let A and B be spherical
fusion categories, and let M be an A-B-bimodule category and N be a B-A-bimodule category.
Consider as a labeled defect surface the sphere with two nodes and two defect lines connecting
the nodes, such that each node has an incoming and an outgoing defect line attached. We label
the domains by A and B, and the defect lines by M and N , accordingly. We pick ray labels
x ∈ M□N□ and y ∈ N□M□ in the ray categories associated to the nodes. The pre-block space
for this defect surface is the space of natural transformations

Tp ∼= N ⊠M
〈
U(x), U(y)

〉 ∼= Fun(M,N )
〈
EW(Ux), EW(U(y))

〉
= Nat(EW(U(x)),EW(U(y)).

(3.31)
Note that the functor EW(U(x)) can be expressed, according to Remark 2.32, as the left adjoint
of coEW(U(x)). Furthermore, the block space is given by the subspace of bimodule natural
transformations

T ∼= N□M□⟨x, y⟩ ∼= FunA|B(M,N )
〈
EWm(x), EWm(y)

〉
= Natm(EWm(U(x)),EWm(U(y))).

(3.32)

Remark 3.11. It is sometimes (e.g. in the formulation of the move of invariance G that will be
introduced in Section 4) convenient to consider formal linear combinations of extruded graphs,
that is, objects of the form ∑N

i=0 λiΣi, where Σi are extruded graphs and λi ∈ K.
In the same spirit, we allow ourselves to consider extruded graphs in which not every node

is labeled by a vector in the respective node-space, but which rather comes with a choice of
vector f in the total node space Nx,y,... from (3.15). The ordinary node-by-node labeling can be
recovered if this vector is a pure tensor f = fx ⊗ fy ⊗ · · · . Then fx, fy, . . . are the labels for the
individual nodes.

Remark 3.12. The concepts of (pre-)block spaces, node spaces and similar, which were reviewed
in this section, apply to labeled defect surfaces. In the following, we will also use them for
extruded graphs, where "the pre-block space of an extruded graph" strictly means "the pre-block
space of the coat of an extruded graph", and analogously for other concepts.

Remark 3.13. The block space of a framed defect surface that is not fine has been expressed,
in the case of the framed modular functor, as a limit over all framed fine refinements in [FSS22,
Def. 5.24]. A fine refinement of a non-fine framed defect surface Σ is a fine defect surface,
whose defect structure (nodes and defect lines) can be thought of as a subdivision of the framed
defect structure of Σ. A similar construction can be expected to exist for the oriented state-sum
modular functor on surfaces that are not fine, but has not been worked out to our knowledge.
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3.3 Definition of the Evaluation

We are now in a position to introduce the main concept of this article: The definition of an
evaluation procedure |−|, which associates a scalar |Σ| ∈ K to an extruded graph Σ.

The idea for how the evaluation procedure will be defined in Definition 3.17 is as follows.
While the block space is naturally a subspace of the pre-block space, the evaluation procedure
requires more structure, namely, a retraction

π : Tp → T, (3.33)

which exhibits the block space as a direct summand of the pre-block space. From the fourth-level
labeling on the coat of Σ, that is, from the node labels, we can construct a vector ν ∈ Tp in the
pre-block space. On the other hand, the fourth-level labeling on the core, that is, the core label
φ, is by definition a vector in the dual of the block space φ ∈ T∗. Using the pairing of T and T∗,
the retraction π allows us to obtain a scalar from ν and φ:

|Σ| := (π(ν), φ) = φ(π(ν)). (3.34)

Another perspective would be to use the pairing of Tp and Tp∗, and the dual π∗ : T∗ → Tp∗ of
the retraction π:

|Σ| := (ν, π∗(φ)). (3.35)

Of course, these two definitions agree.

We proceed to define the retraction π mentioned in (3.33). The fact that our fusion categories
carry a pivotal structure (in contrast to [FSS22]) enters crucially into the definition of π.

Definition 3.14. Let Σ be a fine labeled defect surface, and let A be a spherical fusion category
which labels a domain of Σ. Let M be a module category which labels a defect line adjacent
to A. Without loss of generality, assume that M is a left A-module category. The holonomy
idempotent for A starting at M is the balancing idempotent for the functor SM from (3.22)
defined in Definition 2.44. Explicitly, for a domain A as in the picture (3.21), it is the linear map

hA : Tp → Tp (3.36)
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given by the following composition:

Tp =
∫mnkl 〈k⊠m⊠ · · · , U(x)

〉
⊗
〈
m⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫
a

∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
aa∗m⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
aa∗m⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠ am⊠ · · · , U(x)
〉

⊗
〈
am⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , U(x) a
〉

⊗
〈
am⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , a U(x)
〉

⊗
〈
am⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈a∗ k⊠m⊠ · · · , U(x)
〉

⊗
〈
am⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
am⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ al⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
am⊠n⊠ · · · , U(y)

〉
⊗
〈
a∗n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
am⊠n⊠ · · · , aU(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫ a ∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
a∗am⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · ·

∫mnkl 〈k⊠m⊠ · · · , U(x)
〉

⊗
〈
m⊠n⊠ · · · , U(y)

〉
⊗
〈
n⊠ l⊠ · · · , U(z)

〉
⊗ · · · = Tp.

D−1
A ev

ΘA

balancing of I◦M

Hom-balancing

balancing of x

Hom-balancing

several balancings

several balancings

several balancings

Hom-balancing

coev

(3.37)

Proposition 3.15. For any two defect lines M, N adjacent to A, the holonomy idempotents
for A starting at M and N respectively are equal.

The proof of Proposition 3.15 is similar to the proof of [FSS22, Lem. 4.22]. In fact, one can
also define holonomy idempotents starting next to the ray labels U(x), U(y), . . . . All of these
choices lead to the same morphism.

In accordance with Proposition 3.15, we call hA simply the holonomy idempotent for A, and
no longer mention a starting point.
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Definition 3.16. The holonomy idempotent of a labeled defect surface Σ is given by the
composition

h := hA ◦ hB ◦ · · · (3.38)
of holonomy idempotents for each domain of Σ. Proposition 2.50 ensures that the order of terms
in this composition does not matter.

By Proposition 2.50, the image of h is the block space

im(h) = T. (3.39)

We denote the corestriction of the holonomy idempotent h onto its image by π:

Tp Tp

T

h

π (3.40)

Definition 3.17 (Evaluation). Let Σ be an extruded graph with defect labels m ∈ M, n ∈ N , . . . ,
ray labels x, y, . . . , node labels f, g, . . . , and core label φ. Consider the following composition.

Nx,y,...(m⊠m,n⊠n, . . . ) f ⊗ g ⊗ · · ·

structure map of the end

Tp = Nx,y,...(IM, IN , . . . ) Nx,y,...(m,n,...τ)(f ⊗ g ⊗ · · · )

T π
(
Nx,y,...(m,n,...τ)(f ⊗ g ⊗ · · · )

)

core label

K (φ ◦ π)
(
Nx,y,...(m,n,...τ)(f ⊗ g ⊗ · · · )

)

Nx,y,...(m,n,...τ)

π

φ

(3.41)

We define the evaluation |Σ| of Σ to be the image of the node labels f, g, . . . under the composition
(3.41), i.e.

|Σ| := (φ ◦ π)
(
Nx,y,...(m,n,...τ)(f ⊗ g ⊗ · · · )

)
. (3.42)

Remark 3.18. It is sometimes convenient to consider extruded graphs either without node
labels or without a core label. In the former case, it is clear that the evaluation of extruded
graphs still yields a linear form on the total node space. To an extruded graph without core
label we can still assign a vector in its block space, by simply not performing the last step in the
evaluation procedure, for which a core label would be needed.
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Remark 3.19. Definition 3.17 extends to linear combinations of extruded graphs as mentioned
in Remark 3.11 in the obvious way: ∣∣∣∣∣∣

N∑
i=0

λiΣi

∣∣∣∣∣∣ :=
N∑
i=0

λi |Σi| . (3.43)

Moreover, it is immediate from Definition 3.17 that extruded graphs with not individual node
labels, but a total node label, as discussed in Remark 3.11, can also be evaluated.
Remark 3.20. Our construction supposes that all (bi-)module categories are equipped with a
trace. However, the trace structure is never used in the definition of the evaluation procedure.
We will see in Remark 3.26 that the evaluation of extruded graphs becomes zero when module
categories are involved that do not admit a module trace, and that traces provide distinguished
choices for core labels.
Example 3.21 (Generalized 6j symbols). A homeomorphism between the surface of a tetrahedron
and the sphere S2 defines a graph with 4 vertices and 6 edges on the sphere. Let us consider
an extruded graph Σ on S2, whose nodes and defect lines are obtained from the vertices and
edges of the tetrahedron (after picking an orientation for each edge). The domains of Σ are
labeled by arbitrary spherical fusion categories, and the defect lines by arbitrary traced bimodule
categories. The object labels for the defect lines, as well as the ray labels, are all simple objects
in the respective categories, and the core label is chosen arbitrarily. The evaluation of extruded
graphs from Definition 3.17 defines a linear form on the total nodespace of Σ. This linear form is
called a generalized 6j-symbol, a terminology which will be justified by Corollary 5.11, and, in a
different sense, in Section 5.3.
Remark 3.22. A state-sum modular functor defined on non-fine defect surfaces as mentioned
in Remark 3.13 would allow to evaluate also non-fine extruded graphs. Such a construction is
beyond the scope of this work.

3.4 Lasso Graphs

As a first exercise, we explicitly compute the invariant for one of the simplest possible types of
extruded graphs: A lasso graph Q, whose underlying surface is the sphere S2. We will later see
(Theorem 4.5) that any extruded graph on the sphere can be transformed – using the moves
from Section 4 – into this lasso graph. A lasso graph is an extended graph Q: Its coat is a sphere
with a single node and a single circular defect line starting and ending at the node.

Q =
xf . (3.44)
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There are four levels of algebraic labels to be specified:

• On the coat, the two hemispheres forming the connected components of the complement of
the defect line are labeled by spherical fusion categories A and B.

• The defect line is labeled by a spherical bimodule category AMB. Note that this implies
that the ray category associated to the single node is the balanced category TR = M□

B
M□

A
,

which contains a silent object I◦M, as described in Section 2.14. In contrast, the node
category is given by the (unbalanced) category TN = M⊠M.

• The defect line carries an additional subordinate label: A choice of an object m ∈ M.
Moreover, we label the ray attached to the node by an object x ∈ TR. These choices
determine the node space to be the hom-space Nx(m⊠m) = TN

〈
m⊠m, U(x)

〉
.

• We label the node by a vector f ∈ Nx(m⊠m). Moreover, we will see in (3.51) below that
the block space for this defect surface is given by the vector space TR⟨I◦M, x⟩. Hence, the
core label φ is a linear form φ : ⟨I◦M, x⟩ → K.

This completes the four levels of labels that determine the extruded graph Q. Our goal is to
compute the scalar |Q| using Definition 3.17.

To this end, we remark that the pre-block space of Q is given by

Tp = Nx(IM) = TN
〈
IM, U(x)

〉
.

Recall the retraction r : TN
〈
IM, U(x)

〉
→ TR⟨I◦M, x⟩ between the hom-spaces, which we con-

structed algebraically in Lemma 2.23. We will show that the holonomy idempotent h is equal
to the idempotent from which r is constructed; this is the crucial ingredient to the proof of
Lemma 3.23 below. Then, we can deduce that the block space is the image of r, namely the
hom-space TR⟨I◦M, x⟩ of the ray category. The retraction r will, in this case, be equal to the
projection π from the pre-block space into the block space. To simplify the presentation, we here
specialize to B = vect. In essence, M is now just a left A-module category. On the topological
level, vect-labeled domains can be removed entirely, so we are left with a disk with a single
boundary node as our defect surface.

The computation for the more general case where B is not necessarily vect does not provide
additional insight. With this in mind, we can state the following:

Lemma 3.23. With Q a lasso graph with the labeling described above, the evaluation |Q| ∈ K as
defined in Definition 3.17 is given by

|Q| = (φ ◦ r) (f ◦ mτ) . (3.45)

Moreover, we provide the following explicit description of the (atypical) components r (f ◦ mτ)n :
n⊠n → U(x) in the sense of Section 2.6 for later use. They are given by the sum with respect
to simple objects a ∈ A over the compositions

n⊠n a∗m⊠a∗m = a∗m⊠ma a∗ U(x) a U(x),
⋆⟨n, a∗m⟩ ⊠ ⋆⟨a∗m, n⟩

a∗fa
dadn
DA

brevx
a∗

(3.46)
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or equivalently as:

r (f ◦ mτ)n =
∑

a

dadn
DA

brevxa∗ ◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩). (3.47)

Proof. Using that Nx(mτ)(f) = f ◦ mτ , the general formula (3.42) for the evaluation procedure
simplifies to

|Q| = (φ ◦ π) (f ◦ mτ) . (3.48)

Comparison between (3.45) and (3.48) makes clear that if the projector π coincides with the
retraction r from Lemma 2.23, (3.45) follows. Thus, the projector π, and to this end, the
holonomy idempotent h, is to be computed.

Starting with an element g ∈ Tp = TN
〈
IM, U(x)

〉
, we calculate its image h(g) under the

holonomy idempotent h. Since h is a composition of several maps, the calculation is broken
down into intermediate steps. The morphisms composing to h are given vertically in the leftmost
column of (3.49). The middle column contains the images of g under the partial compositions of
the morphisms. In particular, the bottom-most entry is equal to h(g). The entries of the right
column give the entries of the middle column in graphical notation. Moreover, in the middle and
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right columns, we use the notation for maps between ends and coends from Section 2.6.〈
IM, U(x)

〉
g

∫
a

〈
aa∗IM, U(x)

〉 ∫
a

1
DA

evag =
∫
a

1
DA g

x

a

∫ a 〈aa∗IM, U(x)
〉 ∫ a da

DA
evag =

∫ a da
DA g

x

a

∫ a 〈aIMa∗, U(x)
〉 ∫ a da

DA
(evag) ◦ (a β−1

a∗ )
=
∫ a da

DA
g ◦ brevI◦M

a =
∫ a da

DA g

x

a

∫ a 〈aIM, U(x)a
〉 ∫ a da

DA
(ga) ◦ (brevI◦M

a a) ◦ (aIM acoev)
zig−zag=

∫ a da
DA

(ga) ◦ βa
=
∫ a da

DA g

x

a

∫ a 〈aIM, aU(x)
〉 ∫ a da

DA
(brxa)−1 ◦ (ga) ◦ βa =

∫ a da
DA g

x

a

∫ a 〈a∗aIM, U(x)
〉 ∫ a da

DA
(eva∗

U(x)) ◦ (a∗ (brxa)−1) ◦ (a∗ga) ◦ (a∗ βa)
=
∫ a da

DA
brevxa

∗ ◦ (a∗ga) ◦ (a∗ βa)
=
∫ a da

DA g

x

a

〈
IM, U(x)

〉 ∑
a

da
DA

brevxa∗ ◦ (a∗ga) ◦ (a∗ βa) ◦ (acoev IM)
= ∑

a
da
DA

brevxa∗ ◦ (a∗ga) ◦ acobrevI◦M
.

= ∑
a

da
DA ag

x

.

1
DA

evaluation

ΘA

balancing of I◦M

Hom-balancing

balancing of x

Hom-balancing

coevaluation

(3.49)
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From the bottom-most row, we can read off the expression for h, and conclude, using the graphical
notation of functorial diagrams from Section 2.3,

h =
∑

a

da
DA

brevxa∗ ◦ (a∗ − a) ◦ acobrevI◦M
=
∑

a

da
DA

a

x

. (3.50)

Comparing with Lemma 2.23, we recognize that the expression (3.50) for h coincides with the
retraction r, which projects onto the subspace

im(h) = TR⟨I◦M, x⟩ TN
〈
IM, U(x)

〉
π=r

h .

This confirms that the block space is given by

T = TR⟨I◦M, x⟩ , (3.51)

in agreement with [FSS22, Example 4.33], and consequently shows that the projector π is equal
to the retraction r from Lemma 2.23. We have thus proven (3.45).

Turning to the second part of the lemma, we continue our calculation in order to obtain
the explicit components (3.47), we recall from (2.163) that the components of acobrevI◦M

for
n, k ∈ M take the form

k(acobrevI◦M
)n = ⋆⟨n, a∗k⟩ ⊠ ⋆⟨a∗k, n⟩ : n⊠n → a∗k⊠ ka. (3.52)

This allows us to give an explicit description of the components π(g)n of π(g) = h(g) = r(g).

π(g)n =
∑

a

da
DA

brevxa∗ ◦ (a∗ga) ◦ (acobrevI◦M
)
n

=
∑
a,k

da
DA

brevxa∗ ◦ (a∗gka) ◦ k(acobrevI◦M
)
n

=
∑
a,k

dadn
DA

brevxa∗ ◦ (a∗gka) ◦ k(acobrevI◦M
)n

(3.52)=
∑
a,k

dadn
DA

brevxa∗ ◦ (a∗gka) ◦ (⋆⟨n,a∗k⟩ ⊠ ⋆⟨a∗k, n⟩).

(3.53)

Working towards (3.47), we are interested in substituting f ◦ mτ for g in the above expressions.
To get started, we rewrite the term f ◦ mτ :

f ◦ mτ
(2.20)=

∑
k

dkf ◦ (⋆⟨k,m⟩ ⊠m) ◦ (⋆⟨m,k⟩ ⊠m) ◦ kτ

=
∑

k
dkf ◦ (⋆⟨k,m⟩ ⊠ ⋆⟨m,k⟩) ◦ kτ.

(3.54)
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From the last line, we can tell that the simple components (f ◦ mτ)k involve the term k′τk, for
which we have found an explicit formula in (2.45). Hence, the simple component (f ◦ mτ)k is
given by

(f ◦ mτ)k = dkf ◦ (⋆⟨k,m⟩ ⊠ ⋆⟨m,k⟩). (3.55)

Combining (3.55) with (3.53), we obtain

π (f ◦ mτ)n =
∑
a,k

dadndk
DA

brevxa∗ ◦
(

a∗
(
f ◦ (⋆⟨k,m⟩ ⊠ ⋆⟨m,k⟩)

)
a
)

◦ (⋆⟨k,a∗n⟩ ⊠ ⋆⟨a∗n,k⟩)

=
∑

a

dadn
DA

brevxa∗ ◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩).

(3.56)

Using that π = r, we have obtained (3.47).

Remark 3.24. These calculations, involving dimension factors such as dk look like they make
use of the bimodule trace on M. However, recall from Remark 3.20 that the trace structure does
not enter into the definition of the evaluation procedure. In fact, the computation is independent
of the choice of trace, and the same result can be obtained by equipping M with an auxiliary
Calabi-Yau structure.

Remark 3.25. The contents of Lemma 3.23 generalize to the case where B is not necessarily
vect. In particular, the general formula for the holonomy idempotent h is given by

h(g) =
∑
a,b

dadb
DADB

brevxa∗ ⊠b∗ ◦ ((a∗ ⊠b∗)g(a⊠b)) ◦ a ⊠bcobrevI◦M
. (3.57)

To continue the discussion of the evaluation of lasso graphs, we first restrict ourselves to a
subset of lasso graphs called loop graphs. This is the content of the next section. We will later see
(in Section 4, using the move SV) that understanding the evaluation of loop graphs is sufficient
to understand the evaluation of all lasso graphs. Indeed, we give a concrete formula for the
evaluation of lasso graphs in Proposition 5.13.

3.5 Loop Graphs

Loop graphs form a subset of lasso graphs: they are characterized by special ray- and core labels.
Let us use that the ray category M□M□ of a lasso graph O has a cosilent object I◦M, and
specialize to the particular case x =I◦M when the ray label is cosilent. For this ray label, the
block space for lasso graphs from (3.51) becomes the vector space

T =
〈
I◦M, I◦M

〉
. (3.58)

An invertible map in this homomorphism space is given by the canonical isomorphism ΘM
between the end and the coend induced by the module trace on M, see Lemma 2.33. For the
core label, we choose

φ = Θ∗
M := DADB TrM□M(Θ−1

M ◦ −), (3.59)
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which is a linear form on T. For us, if is important that the value of Θ∗
M on ΘM is

Θ∗
M(ΘM) = DADB TrM□M□(Θ−1

M ◦ ΘM) = DADB dI◦M

(2.167)= DM. (3.60)

A lasso graph with these choices for x and φ is called a loop graph.

Remark 3.26. In this example, we see clearly: If the category M does not admit a bimodule
trace, then the block space T is trivial, and consequently, the evaluation is zero. On the other
hand, once a bimodule trace is chosen, we have a canonical choice for a non-zero core label. This
is why we require all bimodule categories to be equipped with a bimodule trace, even though
this is not strictly necessary in order to define the evaluation, see Remark 3.20.

O = f . (3.61)

Note that due to this choice, the node space takes the form Nx(m) =
〈
m⊠m, IM

〉
, which

by Corollary 2.36 is canonically isomorphic to the endomorphism space ⟨m, m⟩. We can thus
identify the node label f with an endomorphism f ′ = sil−1(f) of the object m ∈ M:

f ∈
〈
m⊠m, IM

〉
∼= ⟨m, m⟩ ∋ f ′. (3.62)

Remark 3.27. The idea here is that I◦M and our choice of φ can be interpreted as transparent
labels for the ray and the core, respectively. Without a core and a ray, the graph now only
consists of an m-labeled loop drawn on a sphere, with a vertex labeled by a morphism f ′ : m → m.
This illustrates, in a special case, how specific extruded graphs can be identified with string
diagrams on the sphere, which are ubiquitous in descriptions of Turaev-Viro state-sum models
[TV17]. Since our construction should in this sense specialize to the ordinary graphical calculus
for spherical categories (we will prove this in Theorem 5.12), we expect to obtain the scalar
TrM(f ′) from the evaluation. As we will see in Theorem 3.28, this is true.

The following result, stating that the evaluation of loop graphs gives, up to normalization, a
trace, will be central as the last step of any practical application of the evaluation procedure.

Theorem 3.28. Let O be a loop graph as in (3.61), that is, an extruded graph whose coat is a
sphere with a single node and a single defect line, labeled by some object m ∈ AMB starting and
ending at the node, whose ray is labeled by the cosilent object I◦M and whose core label is φ = Θ∗

M.
Let the node of O be labeled by a vector f = sil(f ′), for a given endomorphism f ′ : m → m.
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Then the evaluation of O as introduced in Definition 3.17 reduces essentially to the trace of f ′:

|O| = TrM(f ′), (3.63)

an expression involving the trace on M provided by the spherical structure on M.

Proof. We again restrict ourselves, without loss of generality, to the case B = vect. The vector
π (f ◦ mτ) we computed in Lemma 3.23 is now a map I◦M→I◦M. As such, it has components

k(π (f ◦ mτ)
)
n

: n⊠n → k⊠ k. (3.64)

We proceed to calculate these components, starting from the expression we obtained in (3.56).

k(π (f ◦ mτ)
)
n

(3.56)=
∑

a

dadn
DA

k
(
brevI◦M

a∗) ◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

=
∑

a

dadn
DA

(k⊠ k eva∗) ◦
(
k(βa∗) a

)
◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

=
∑
a,l

dadn
DA

(k⊠ k eva∗) ◦
(
k(βa∗)l a

)
◦
(
a∗ (lf)a

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

=
∑
a,l

dadndk
DA

(k⊠ k eva∗) ◦
(
k(βa∗)l a

)
◦
(
a∗ (lf)a

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

(2.107)=
∑
a,l

dadndk
DA

(k⊠ k eva∗) ◦
(
⋆⟨a∗ l, k⟩ ⊠

(
(⋆⟨k,a∗l⟩a∗) ◦ a∗coev

)
a
)

◦
(
a∗ (lf)a

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

zig-zag=
∑
a,l

dadndk
DA

(
⋆⟨a∗ l, k⟩ ⊠ ⋆⟨k,a∗l⟩

)
◦
(
a∗ (lf)a

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩).

(3.65)

Writing f : m⊠m → IM in (3.65) in ⊠-factorized form, we obtain

k(π (f ◦ mτ)
)
n =

∑
a,l

dadndk
DA

(
⋆⟨a∗ l, k⟩ ◦

(
a∗ (lf)(1)

)
◦ ⋆⟨n,a∗m⟩

)
⊠
(
⋆⟨k,a∗l⟩ ◦

(
(lf)(2) a

)
◦ ⋆⟨a∗m,n⟩)

)
.

(3.66)
The next step is to pass this expression through the isomorphism sil, defined in (2.179), which
here takes the form 〈

IM, IM
〉

=
〈∫

n
n⊠n,

∫ k

k⊠ k

〉
sil∼=
∫ k

⟨k, k⟩ . (3.67)

We denote the image of π (f ◦ mτ) in
∫ k ⟨k, k⟩ under the isomorphism (3.67) by θ. It is, according

to (2.182), given by the composition of the two Deligne factors in (3.66), leading to

θ =
∫ k ∑

a,l,n

dadndk
DA

⋆⟨a∗ l, k⟩ ◦
(
a∗ (lf)(1)

)
◦ ⋆⟨n,a∗m⟩ ◦ ⋆⟨a∗m,n⟩ ◦

(
a∗ (lf)(2)

)
◦ ⋆⟨k,a∗l⟩. (3.68)
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We here used notation from Section 2.6: the integral symbol stands for the assembly of components
into a single morphism. By (2.17), the composition factor ∑n dn ⋆⟨n,a∗m⟩ ◦⋆⟨a∗m,n⟩ is a resolution
of the identity, hence equal to the identity on a∗m, so the expression (3.68) simplifies to

θ =
∫ k∑

a,l

dadk
DA

⋆⟨a∗ l, k⟩ ◦
(
a∗ (lf)(1)

)
◦
(
a∗ (lf)(2)

)
◦ ⋆⟨k,a∗l⟩. (3.69)

Let us introduce a set of scalars we call the l-isotypical traces of f ′ = sil−1(f) : m → m, for
simple objects l ∈ M:

f ′
(l) := TrM

(
(lf)(1) ◦ (lf)(2)

)
∈ K. (3.70)

Clearly, the following relation holds, due to the endomorphism space of l being one-dimensional:

f ′
(l)

dl
idl = (lf)(1) ◦ (lf)(2). (3.71)

On the other hand, we can compute the trace of f ′ from the scalars f ′
(l) as follows, using first

the explicit form for sil−1 from (2.182).

TrM(f ′) =
∑

l
TrM

(
(lf)(2) ◦ (lf)(1)

)
=
∑

l
TrM

(
(lf)(1) ◦ (lf)(2)

)(3.70)=
∑

l
f ′

(l). (3.72)

Keeping these results in mind, we make another auxiliary calculation. We will show that the
following equality holds. ∑

a
da ⋆⟨a∗ l, k⟩ ◦⋆⟨k,a∗l⟩ = DA

DM
dlidk. (3.73)

This is seen as follows. First, note that we may assume k to be simple. By Schur’s lemma, it
suffices to take the trace on both sides of (3.73), and prove that equation. We then calculate:∑

a
daTrM

(
⋆⟨a∗ l,k⟩ ◦ ⋆⟨k,a∗l⟩

)
(2.18)=

∑
a

da dim
〈
k, a∗l

〉
[Sch13b, Prop. 5.6(i)]= dA[k, l]

Lemma 2.9= DA
DM

dldk.

(3.74)

Returning to the main calculation, we simplify the morphism (3.69) to:

θ
(3.71)=

∫ k∑
a,l

1
DA

dadk
dl

f ′
(l) ⋆⟨a∗ l, k⟩ ◦⋆⟨k,a∗l⟩

(3.73)=
∫ k∑

l

1
DM

dk f ′
(l) idk

(3.72)= TrM(f ′)
DM

∫ k

dk idk.

(3.75)
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Since by (2.185) the image of ΘM : IM → IM under the isomorphism (3.67) is
∫ k dk idk, and

using that the core label φ = Θ∗
M maps ΘM to DM, as was observed in (3.60), we obtain

|O| = φ
(
π (f ◦ mτ)

)
= TrM(f ′). (3.76)

The result (3.76) also holds true in the case where B is not necessarily vect.

Remark 3.29. The normalization of the core label Θ∗
M of a loop graph is chosen so that the

evaluation of loop graphs can be expressed as a trace. Recall from Remark 2.34 that we expect
categorical dimensions to appear especially when working with silent and cosilent objects.
Example 3.30. As an explicit example, we consider the fusion categories A = vectG of vector
spaces graded by a finite group G, and B = vect. Recall that vectG has one simple object g
for every group element g ∈ G. As explained in [EGNO15, Ex. 7.4.10], the indecomposable
semisimple module categories over vectG are classified by conjugacy classes of pairs (H,Ψ),
where H ⊂ G is a subgroup and Ψ ∈ H2(H,K×) is a cohomoly class. The module category
corresponding to such a pair is the linear category vectH\G, equipped with a left vectG-action.
The pivotal structures on vectG are in bijection with characters κ ∈ Grp

〈
G, K×

〉
, and a module

trace on vectH\G exists iff κ|H = 1 [Sch13b, Ex. 3.13]. Moreover, such a module trace is unique
up to rescaling, and can be normalized by setting de = 1. Using Theorem 3.28, we can evaluate
a loop graph as in (3.61) with labels A = vectG, B = vect, and M = vectH\G, with a suitable
choice of pivotal structure κ and any endomorphism f in vectH\G.

To get even more specific, let us work over K = C, choose G = Z4 and H = 2Z2, such that
M = vectZ4/2Z2 = vectZ2 as a linear category, and fix the trivial cocycle Ψ = 1 for the module
category structure. There are four characters of Z4, which map 1 ∈ Z4 to the four roots of unity,
and hence define four pivotal structures on vectZ4 . Out of these four characters, only two survive
the condition κ|H = 1; these are defined by κ+ = 1 and κ−(1) = −1. Each of these two pivotal
structures on vectZ4 induces a normalized module trace on vectZ2 : the usual trace, where d0 = 1
and d1 = 1, and the super trace, for which we have d0 = 1 and d1 = −1.

Let now V0, V1 be finite-dimensional vector spaces, and pick endomorphisms f0 and f1, respec-
tively. The loop graph

O = (3.77)

is evaluated, depending on the choice of character κ+ or κ−, to |O| = Tr(f0) + Tr(f1), or to
|O| = Tr(f0) − Tr(f1), using the ordinary trace for endomorphisms of vector spaces.

4 Moves of Invariance
Whereas Section 3 was concerned with defining an evaluation procedure for extruded graphs, we
will now justify that our construction can actually be seen as a graphical calculus. This term
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here means that the evaluation behaves nicely under certain transformations of topological and
algebraic data, which we call moves. Moreover, we will see that our construction contains as a
special case the usual graphical calculus for spherical fusion categories. In addition, the moves
presented in this section form a toolset that makes the abstractly defined evaluation procedure
easily computable.

4.1 Overview of Moves

By a move, we mean:

• A pair of extruded graphs (ΣT ,ΣT
′). We view ΣT as the extruded graph before the move

is performed, and ΣT
′ as the extruded graph after the move, even though all moves can be

reversed.

• Within ΣT and ΣT
′, there are regions Σ ⊂ ΣT and Σ′ ⊂ ΣT

′ such that ΣT \ Σ = ΣT
′ \ Σ′.

The boundaries of these regions cross defect lines of ΣT and ΣT
′ only perpendicularly.

• We call a move an invariance or a move of invariance iff |ΣT | =
∣∣∣ΣT

′
∣∣∣.

When discussing moves throughout this section, we only ever make the regions Σ and Σ′ explicit,
and do not put assumptions on the total defect surfaces ΣT and ΣT

′. The so-obtained moves are
highly local.

We now aim to define the set of moves that we consider. Foundational to any move is a local
change the topology of an extruded graph. In the first step, we show that the topological changes
prompt canonical choices of post-move labels of all four levels of algebraic data, with the single
exception being the core label. The transformation of the core label is postponed. On the lowest
level of labelings (node labels), the relabeling amounts to a linear map between node spaces

ψ : Nx(m) → Nx′(m′).

Here, m and x stand for a collection of pre-move defect and ray labels, and m′ and x′ stand for
their counterparts after the move.

We distinguish between elementary moves and composite moves. They differ by the way in
which we prove that they are invariances: For the former, we must show the invariance property
using the definition of the evaluation procedure |−|, while for the latter, the invariance property
is obvious once we show that they are combinations of elementary moves.

We will consider the following elementary moves:

84



OR – Orientation Reversal One of the most basic changes one can make to an extruded
graph is the flipping of a defect line’s orientation.

x

y
g

f

OR−−→

x

y
g

f

(4.1)

In the OR-move, a defect line labeled by an object m in an A-B-bimodule category M is replaced
by a defect line with opposite orientation. This new defect line needs a B-A-bimodule category
for a label. For this we choose M, and as the post-move object label we take m ∈ M. Note that
M is unambiguously defined only because A and B are equipped with pivotal structures.

We denote the node labels of the nodes adjacent to the M-labeled defect line by f and g,
and the adjacent ray labels by x and y. In the definition of ray categories, a distinction is
made between incoming and outgoing defect lines at a certain node. This determines whether
the bimodule category that labels the defect line is used, or its opposite. Due to this, the
ray categories (and the node categories) before and after the move are identical – up to the
identification M ∼= M, which becomes an equality for strict pivotal structures on A and B.
Hence, there is a canonical identification of the node spaces before and after the move, defining
the map

ψ : Nx,y(m) → N′
x,y(m).

Remark 4.1. When comparing the OR-move to the corresponding move in the ordinary
graphical calculus for tensor categories, one notices that a pivotal structure is required to flip
the direction of a strand. This is because the dual of an object provides the correct label for
the reversed strand. While we do work with pivotal bimodule categories (due to the trace), the
pivotal structure is not used at this point.

The requirement of a pivotal structure in the oriented graphical calculus of tensor categories
comes from the fact that all strands are labeled by the objects of a single tensor category
C. Strands labeled by objects of the opposite C, which would resulted from the OR-move as
presented here, are not allowed. In order to obtain the analogous move of string diagrams
for tensor categories, our OR-move needs to be combined with an equivalence C ∼= C; and a
distinguished equivalence of this type is provided precisely by a pivotal structure on C. This is
described in more detail in Lemma 5.5.

The proof that the move OR is a move of invariance is the content of Section 4.2.2.

C – Contraction The contraction move allows us to transform two nodes, connected by a
defect line, into a single node, thereby dissolving the defect line. It specializes to the composition
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of morphisms.

g

f

C−→ (4.2)

The step C takes place inside a disk-shaped region Σ with two nodes on a defect surface. We
refer to the nodes by their labels f and g. There are three defect lines inside Σ: The first one
enters the region and ends at f , the second connects f to g (in this direction), and the third
starts at g and leaves the region. The defect lines split Σ into two domains, labeled by spherical
fusion categories A and B, respectively. Accordingly, the three defect lines are labeled by objects
k, m and l in spherical A-B-bimodule categories K, M and L. These categories determine the
node categories at the nodes f and g, namely TR(f) = K□M□ and TR(g) = M□L□. We
choose objects x ∈ TR(f) and y ∈ TR(g) to label the rays. This finally pins down the relevant
hom-spaces for f and g: f ∈

〈
k⊠m, U(x)

〉
and g ∈

〈
m⊠ l, U(y)

〉
.

After the move, Σ is replaced by the similar region Σ′ which only has one node labeled by
g ◦m f , with two attached defect lines, one coming into the region labeled by k ∈ K, and one
leaving the region, labeled by l ∈ L. The single ray is labeled by the object x •M y in the ray
category TR ′ = K□L□. This justifies the label for the node, since g ◦m f ∈

〈
k⊠ l, x •M y

〉
.

The linear map between node spaces is thus given by

ψ : g ⊗ f 7→ g ◦m f. (4.3)

There is also a "one-sided" version of the C-move, where the L-labeled defect line (or alterna-
tively, the K-labeled defect line) is not present:

g

f

C−→ (4.4)
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As was mentioned in Remark 2.40, the contraction operations for objects and morphisms are
well-defined even in this case, so that we get ray and node labels. Note however that a move
without K and L does not exist, as this would result in a node without any defect lines, which is
not allowed.

The proof that the move C is a move of invariance is the content of Section 4.2.3.

Remark 4.2. A special case we are interested in is that where M = L = K and x = y =I◦M.
Recall from (2.193) that the cosilent object behaves as a unit for the contraction operation:
I◦M •M I◦M∼=I◦M. The node space

NI◦M
,I◦M(k,m,lτ) =

∫ ij 〈
m⊠ l, i⊠ i

〉
⊗
〈
k⊠m, j⊠ j

〉
is now canonically isomorphic, via the isomorphism sil from Corollary 2.36, to

NI◦M
,I◦M(k,m,lτ) ∼= ⟨m, l⟩ ⊗ ⟨k, m⟩ .

Similarly, for the post-move node space, we have

NI◦M(k, l) =
∫ n 〈

k⊠ l, n⊠n
〉

∼= ⟨k, l⟩ .

In Remark 2.38, we have seen that under these isomorphisms, the map g ⊗ f 7→ g ◦m f becomes
g̃ ⊗ f̃ 7→ g̃ ◦ f̃ . Hence, the C-move specializes to the composition of morphisms when the rays
are transparent (that is, labeled by I◦M).

EF – Edge Fusion The edge fusion move allows use to merge parallel defect lines which share
start and end nodes. In the ordinary graphical calculus for spherical fusion categories, this move
conveys the statement that drawing parallel lines amounts to taking monoidal products.

f

g

EF−−→

y'

x'

(4.5)

The region Σ is disk-shaped and contains two defect lines, running in parallel between the only
two nodes that lie partially in Σ. In contrast, the post-move region Σ′ features just a single
defect line connecting the node segments. The three domains of Σ are labeled by spherical
fusion categories A, B and C, and the defect lines are labeled by objects in bimodule categories
m ∈ AMB and n ∈ BNC , respectively. This means the node f attached to the start of the defect
lines is assigned a ray category of the form TR(f) = · · ·□N□M□ · · · , while the other node g is
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assigned TR(g) = · · ·□M□N□ · · · . We pick corresponding labels for the rays x ∈ TR(f) and
y ∈ TR(g).

The single defect line in the region Σ′ is labeled by the A-C-bimodule category M□N . As
the object label for the single defect line, we choose the relative Deligne product m n. The
ray categories associated with the nodes are canonically equivalent to those of the pre-move
surface Σ, allowing us to use the same objects x and y for the rays of Σ′. Note, however, that the
forgetful functor U ′ : TR ′ → TN′ is not identified with U : TR → TN under these equivalences:
U ′ does not forget the B-balancing, while U does.

Hence, there are adjunctions
〈
n⊠m⊠ · · · , U(x)

〉 ∼=
〈
m n⊠ · · · , U ′(x)

〉
and 〈

m⊠n⊠ · · · , U(y)
〉 ∼=

〈
m n⊠ · · · , U ′(y)

〉
.

We saw in Section 2 below (2.110) that the spherical structure on B defines an isomorphism
ΘB : m n ∼= m n. The map ψ : Nx,y(m,n) → N′

x,y(m n) between node spaces is given by
the composition

Nx,y(m,n) =
〈
n⊠m⊠ · · · , U(x)

〉
⊗
〈
m⊠n⊠ · · · , U(y)

〉
∼=
〈
m n⊠ · · · , U ′(x)

〉
⊗
〈
m n⊠ · · · , U ′(y)

〉
1

DB
ΘB

−−−−→
〈
m n⊠ · · · , U ′(x)

〉
⊗
〈
m n⊠ · · · , U ′(y)

〉
= N′

x,y(m n).

(4.6)

With this, we know the complete set of labels after the move.
The proof that the move EF is a move of invariance is the content of Section 4.2.4.

SV – Subside Vertex The SV-move allows us to transform a lasso graph into a loop graph.
These types of extruded graphs on the sphere were discussed in Sections 3.4 and 3.5, but until
now, we only fully understand the evaluation of loop graphs (see Theorem 3.28). Combining this
result with the SV-move, we will also be able to evaluate arbitrary lasso graphs.

To a given lasso graph with labels as in (4.7), we need to assign a loop graph with a node label
f ′ depending on f and φ.

f x
SV−−→ f' (4.7)
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Recall from Section 3.4 that the block space of a lasso graph with labels as in (4.7) is given by
the hom-space T = ⟨I◦M, x⟩ in the ray category TR. Consequently, the core label φ is a vector in
the dual space

φ ∈ ⟨I◦M, x⟩∗ . (4.8)
As discussed in Section 2.12, the ray category TR = M□M□ inherits the structure of a Calabi-
Yau category form the spherical bimodule category M. This means (see Section 2.1) there is an
isomorphism

⟨x, I◦M⟩ ∼= ⟨I◦M, x⟩∗ , (4.9)
given by ρ 7→ TrTR(ρ ◦ −). We use this to translate the core label into a morphism φ̃ : x →I◦M
such that

φ(ρ) = TrTR(φ̃ ◦ ρ). (4.10)
Recall that the node label f is a morphism f : m⊠m → U(x). We define the node label

f ′ : m⊠m → IM for the loop graph after the SV-move to be the composition

f ′ := 1
DADB

ΘM ◦ φ̃ ◦ f. (4.11)

This completes the description of the SV-move.
The proof that the move SV is a move of invariance is the content of Section 4.2.5.

Fun – Functoriality Given a bimodule equivalence F : AMB
∼=−→ ANB, we can replace a

defect line labeled by m ∈ AMB with a defect line labeled by F (m) ∈ ANB. F also induces new
ray- and node labels. Let us write

U(x) = x(R) ⊠x(M) and U(y) = y(M) ⊠ y(R) (4.12)
for the ray labels x and y. That F is a bimodule functor ensures that the objects

x(R) ⊠F (x(M)) and F (y(M))⊠ y(R) (4.13)
have balancings, together with which they form appropriate post-move ray labels that we denote,
in a slight abuse of notation, by F (x) and F (y). The total node spaces before and after the move
are of the form

· · · ⊗ M
〈
m, x(M)

〉
⊗ M

〈
m, y(M)

〉
⊗ · · · and

· · · ⊗ N
〈
F (m), F (x(M))

〉
⊗ N

〈
F (m), F (y(M))

〉
⊗ · · · .

(4.14)

Clearly, F defines a linear map between these two spaces, which provides new node labels
F (f), F (g).

x y

gf Fun−−→

F(x) F(y)

F(g)F(f) (4.15)

The proof that the move Fun is a move of invariance is the content of Section 4.2.6.
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G – Hypothesized: Glue Boundaries / Factorization This move is only hypothesized,
and we will not prove that it is an invariance of the evaluation. Nevertheless, it is conceptually
relevant in pointing out how the generality of extruded graphs, in particular the possibility to
consider surfaces of higher genus, could be used in practical ways, see Remark 5.15.

The G-move is a move between an extruded graph as on the left-hand side of (4.16) and a
linear combination of extruded graphs (discussed in Remark 3.11) as on the right-hand side of
the picture (4.16).

G−→
∑

x

(4.16)

The coat of the region Σ is topologically an annulus: it is the mantle of a cylinder, with several
(but at least one) defect lines going from one cap to the other. Applying the G-move to an
extruded graph at a region Σ amounts to cutting the cylinder into two segments, each containing
a node. As mentioned, the result is a linear combination of extruded graphs. Accordingly, we
write the resulting region Σ′ as a linear combination

Σ′ =
∑

x∈M□N□K□

Σx
′. (4.17)

Here, x runs over a set of representatives of simple objects in the relative Deligne product of the
cyclically ordered bimodule categories appearing in Σ. Topologically, all of the Σx

′ are equal;
they only differ in their algebraic labeling. As can be seen on the right-hand side in (4.16), the
G-move, in the process of cutting the cylinder Σ, adds two new nodes, whose node spaces are in
duality. These nodes are present in each of the Σx

′, therein denoted Lx and Lx, and are assigned
ray categories TR(Lx) = M□N□K□ and TR(Lx) = K□N□M□, respectively. The rays of the
region Σx

′ are labeled by x and x, which are objects in these ray categories.
As was justified in Remark 3.11, we equip the nodes Lx and Lx not with individual node labels,

but with a vector in the tensor product of node spaces Nx(Lx)(m⊠n⊠ k) and Nx(Lx)(m⊠n⊠ k):

⋆⟨m⊠n⊠ k, U(x)⟩ ⊗ ⋆⟨U(x),m⊠n⊠ k⟩ ∈ Nx(Lx)(m⊠n⊠ k) ⊗ Nx(Lx)(m⊠n⊠ k). (4.18)
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Note that this is not a pure vector, but an instance of the kind of Sweedler notation introduced
in Section 2.4. We will not provide a proof that this move is an invariance.

In addition to these elementary moves, we will show the following composite moves to be
invariances:

DV – Dissolve Vertex A node with precisely two adjacent defect lines, one ingoing and one
outgoing, both labeled by the same object m ∈ M, which moreover has an attached ray labeled
by I◦M, may be labeled with the vector sil(idm) = σm. (This equality was shown in (2.183).) If
this is indeed the node label, the node can be removed, such that only a continuous, m-labeled
defect line remains.

DV−−→ (4.19)

The proof that the move DV is a move of invariance is the content of Section 4.3.1.

L – Loop Move A loop attached to a node can be removed. Note that this is only possible
when at least one other defect line is attached to the node, as otherwise, the move would result
in a node without defect lines, which is not allowed.

x

f
C−→

x'

f' (4.20)

The ray label x′ is given by the contraction x′ =I◦M •M□Mx. Beware that in general, x and
x′ live in non-equivalent ray categories – the cosilent object I◦M is a unit with respect to the
contraction •M, not •M□M. Concretely, if U(x) = x(M□M) ⊠x(R), where x(R) is a rest term, we
have

U(x′) = M□M

〈
x(M□M), I◦M

〉
⊗ x(R) ∼= A

M

〈
x(M), x(M)

〉
⊗ x(R). (4.21)
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The last isomorphism involves the subspace A
M

〈
x(M), x(M)

〉
of the hom-space introduced in

Lemma 2.31. The isomorphism

sil−1 : M⊠M

〈
x(M) ⊠x(M), I◦M

〉
∼= M

〈
x(M), x(M)

〉
(4.22)

from (2.181) restricts to the subspaces involved in (4.21). Thus, we can specify the post-move
node label f ′ as a morphism f ′ : n → A

M

〈
x(M), x(M)

〉
⊗ x(R), where n stands for the labels of

the other defect lines attached to the node. Let us write f = f(M) ⊗ f(M) ⊗ f(R), where

f(M) : x(M) → m, f(M) : m → x(M), and f(R) : n → x(R). (4.23)

Then f ′ is given as
f ′ := r(f(M) ◦ f(M)) ⊗ f(R), (4.24)

where r : M
〈
x(M), x(M)

〉
→ A

M

〈
x(M), x(M)

〉
is the retraction from (2.155).

The proof that the move L is a move of invariance is the content of Section 4.3.2.

DE – Dissolve Edge An edge which is transparent – that is, labeled by the regular bimodule
category A, and moreover labeled by the monoidal unit 1 ∈ A, can be removed (or inserted)
between two nodes as shown in (4.25).

g

f

C−→

g'

f'

(4.25)

More precisely, let x′ ∈ ZA(M) and y′ ∈ ZA(N ) be objects in the centers of the A-A-bimodule
categories M and N . As such, x′ and y′ are appropriate ray labels for the rays of the post-
move region Σ′. Before the move, the rays of the region Σ must be labeled with objects in
the ray categories A□M□ = ZA(A□M) and N□A□ = ZA(N□A). We denote the (partial)
forgetful functors ZA(A□M) → A□M and ZA(N□A) → N□A by Ũ . The equivalence of
bimodule categories N ∼= N□A from (2.134) extends to an equivalence of linear categories
ZA(N ) ∼= ZA(N□A) because ZA(−) is a 2-functor from bimodule categories to linear categories
[FSS17, Prop. 3.7]. The ray label y in the region Σ is the image of y′ under this equivalence,
and x is defined similarly. The precise form (2.136) of the equivalence shows that

Ũ(x) = 1 U(x′) and Ũ(y) = U(y′) 1, (4.26)
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and applying the complete forgetful functors, we find using (2.108) that

U(x) =
∫
a
a⊠ aU(x′) and U(y) =

∫
a
U(y′)a∗ ⊠ a. (4.27)

On the fourth level of labels in the region Σ′, the node labels

f ′ : m → U(x′) and g′ : n → U(y′) (4.28)

are used to define the node labels f : 1⊠m →
∫
a a⊠ aU(x′), g : n⊠1 →

∫
a U(y′)a∗ ⊠ a of Σ.

It suffices to give the simple components af , ag of f and g. Due to Schur’s lemma, all simple
components except for 1f and 1g are zero. Thus setting

1f := id1⊠ f ′ and 1g := g′ ⊠ id1 (4.29)

defines f and g. Moreover, this shows that the associations f ′ 7→ f and g′ 7→ g define isomorphisms
between the node spaces of Σ′ and Σ.

The proof that the move DE is a move of invariance is the content of Section 4.3.3.

IH – Internal Hom-Move Commonly in graphical notations, internal hom objects of a
module category AM are drawn as two parallel lines of opposite orientation, labeled by objects
m,n ∈ M, which together represent the object A[m, n] in A, as introduced in (2.49). In
emphasize that the two lines labeled by m and n combine into a single object, they are, in
pictures, held together by "clasps and bubbles" [BS11] or form "zippers" [Sch13b].

Within extruded graphs, parallel lines labeled by objects in module categories may appear, but
they do not represent internal hom objects. The IH-move shows that nevertheless, there is no
risk of misinterpretation, because replacing such a pair of parallel defect lines with a single defect
line labeled by an internal hom object is a move of invariance. In particular, clasps-and-bubbles
and zippers are not needed in extruded graphs.

Given a traced bimodule category AMB with objects m,n ∈ M, the IH-move locally looks as
in (4.30). The labels are discussed in the following.

x y

IH−−→ (4.30)

On the left-hand side of (4.30), x and y are ray labels in the appropriate ray categories for the
nodes – only part of the nodes are shown, and only parts of the ray labels are relevant for the
move: those belonging to the defect lines labeled by M. We thus write

U ′(x) = x(R) ⊠x(M□M) and U ′(y) = y(M□M) ⊠ y(R), (4.31)
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where U ′ forgets all balancings except for the balancing between M and M. Similarly, the node
spaces are given by a tensor product of vector spaces, where each tensorand corresponds to a
defect line, so it is possible to give the node labels in factorized form, where

f : m⊠n → U(x(M□M)) and g : n⊠m → U(y(M□M)) (4.32)

belong to the defect lines pictured, and fR, gR belong to the other defect lines.
After the move, on the right-hand side of (4.30), the two M-labeled defect lines have merged

into a single defect line labeled by the regular bimodule category AAA. The object label for the
defect line is the internal hom object A[n, m]. The internal hom of M with respect to the left
acting category A extends to a A-A-bimodule functor A[−] : AM□

B
MA → AAA [Sch13a, Eq.

6.14]. The bimodule nature of this functor ensures that the objects

x(R) ⊠A[x(M□M)] and A[y(M□M)]⊠ y(R) (4.33)

come equipped with balancings and thus define objects in the ray categories. These balanced
objects are, by abuse of notation, labeled A[x] and A[y] in (4.30).

By the adjunction (2.111), the morphisms f and g correspond to morphisms f̃ : n m →
x(M□M) and g̃ : m n → y(M□M). To these morphisms, the functor A[−] can be applied. This
is what is meant by the notation A[f̃ ],A[g̃] in (4.30).

Remark 4.3. Recall from Remark 3.20 that the structure of a bimodule trace is not necessary in
order to define the evaluation of extruded graphs. It is, however, necessary for the validity of the
IH-move. To see this, note that the symmetry of the move implies another move, which differs
from IH in that the orientation of the defect line on the right-hand side of (4.30) is reversed,
and the roles of m and n are exchanged. Combining these two moves amounts to the statement
that the dual of A[n, m] is A[m, n]. Such an isomorphism, subject to coherence conditions, is
just a bimodule trace on M [Sch15, Cor. 5.26].

The proof that the move IH is a move of invariance is the content of Section 4.3.4.
With the list of elementary and composite moves complete, we are ready to formulate the next

theorem, which states that the moves leave the evaluation invariant.

Theorem 4.4. The moves C, EF, DE, DV, SV, Fun, and IH defined above are moves of
invariance for the evaluation |−| of extruded graphs from Definition 3.17.

The proof of Theorem 4.4 is the content of Sections 4.2 and 4.3. But first, let us note that
Theorem 4.4 implies the following uniqueness result:

Theorem 4.5. The evaluation procedure |−| defined in Definition 3.17 is the unique map from
the set of extruded graphs on the sphere S2 to K such that loop graphs are evaluated to traces as
in Theorem 3.28, and which is invariant under the moves OR, C, EF, and SV.

Proof. We consider any evaluation procedure
∣∣|−|

∣∣ which evaluates loop graphs as in Theorem 3.28
and for which the moves OR, C, EF, and SV are moves of invariance. We then show that∣∣|Σ|

∣∣ = |Σ| for an extruded graph Σ on S2.
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The network of n defect lines and k nodes on the coat of Σ form a connected graph with n
edges and k vertices. Any connected graph has a spanning tree, that is, a subgraph without
cycles which contains all vertices of the original graph [Hat01, Prop. 1A.1]. We pick such a
spanning tree, and in it an edge. Note that this edge is not a loop. We may thus apply the
contraction move C to the corresponding defect line in Σ, obtaining an extruded graph Σ′ with
(n− 1) defect lines and (k− 1) nodes. Since C is by assumption a move of invariance with respect
to the evaluation procedure

∣∣|−|
∣∣, we find

∣∣|Σ|
∣∣ =

∣∣∣∣∣Σ′∣∣∣∣∣. This step is repeated until we arrive at
an extruded graph Σ1 with only a single node, which still satisfies∣∣|Σ|

∣∣ =
∣∣|Σ1|

∣∣ . (4.34)

As depicted in (4.35) below, the defect lines of Σ1, all starting and ending at the unique node,
form a bouquet of circles embedded on S2, which remains the underlying surface of Σ1.

Σ1 = (4.35)

There is at least one contractible defect line in Σ1. To see this, pick a point p ∈ S2 away from
the defect lines. Each defect line defines two subsets of the sphere: The connected components of
the complement of the defect line and the node. The point p must lie in one of these connected
subsets; we call the subset which does not contain p the region associated with the defect line.
We say that a defect line M encloses another defect line N iff the region associated with N is a
subset of the region associated with M. It is clear that the set of defect lines with the relation
"being enclosed" form a finite partially ordered set. As such, it has a minimal element, which is a
contractible defect line.

We pick a contractible defect line, and apply the loop move L, erasing the defect line. This step
is repeated until only one defect line is left. As we will see below (Section 4.3.2), the L-move can
be realized as a composition of C, OR, and EF-moves. Thus, the evaluation

∣∣|−|
∣∣ is invariant

under L.
The resulting extruded graph is a lasso graph Q, and still, the evaluation

∣∣|−|
∣∣ remains

unchanged:
∣∣|Σ|

∣∣ =
∣∣|Q|

∣∣. Finally, using that the SV-move is an invariance of the evaluation∣∣|−|
∣∣, we transform the lasso graph into a loop graph O such that

∣∣|Σ|
∣∣ =

∣∣|O|
∣∣.

However, we also assumed that loop graphs are evaluated under
∣∣|−|

∣∣ according to Theorem 3.28.
This means that the alternative evaluation and the evaluation |−| defined in Section 3 agree on
loop graphs. We thus find ∣∣|Σ|

∣∣ =
∣∣|O|

∣∣ = |O| = |Σ| . (4.36)
Hence,

∣∣|−|
∣∣ = |−| as a function on extruded graphs on the sphere.
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4.2 Elementary Moves

This is the first of two sections that comprise the proof of Theorem 4.4. For some moves, we have
to prove the invariance property by directly using Definition 3.17, the definition of the evaluation
procedure. These moves are called elementary. Other moves can be obtained as compositions of
elementary moves, and we will treat them in Section 4.3.

4.2.1 Proof Strategy for Elementary Moves

The discussion of most of the elementary moves in the subsequent sections follows a general
pattern, which we outline here.

Recall that the definitions of the various moves at the beginning of Section 4 involved a linear
map between node spaces

ψ : Nx(m) → Nx′(m′), (4.37)
which describes the change in node labels. Note that here, m and x stand for a collection of
defect and ray labels before the move, and m′ and x′ stand for their counterparts after the move.

In order to show that a move is an invariance, we consider the diagram (4.38) below. Some
arrows that appear therein are yet to be defined.

Nx(m) Tp T

K

Nx′(m′) Tp′ T′

Nx(mτ)

ψ

π

Ψp

φ

Ψ

Nx′ (m′τ) π′

φ′

(4.38)

We first explain how the commutativity of the outer paths implies that we have a move of
invariance at hand. By Definition 3.17, the composition on the upper edge of (4.38) is the
evaluation procedure before the move, and the bottom path is the evaluation procedure after the
move, using the post-move labels obtained from pre-move labels via the map ψ. Thus, if the
outer paths in this diagram are the same maps, the move is an invariance.

We will deduce the commutativity of the outer paths in (4.38) from the commutativity of the
cells. To this end, we now discuss the arrows Ψp and Ψ.

Since Tp is a coend with structure morphisms Nx(mτ), there is a unique linear map Ψp : Tp →
Tp′ such that the left square in (4.38) commutes. For each particular move, we will see that by
a corresponding result of [FSS22], the linear map Ψp between pre-block spaces restricts to an
isomorphism Ψ of the block spaces:

T Tp

T′ Tp′.

Ψ Ψp (4.39)

This isomorphism Ψ provides a post-move label φ′ for the core, such that φ′ = φ ◦ (Ψ)−1, hence
the triangular cell on the right side of (4.38) commutes as well.
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The last step in order to show that the move we consider is an invariance is to check the
commutativity of the middle square in (4.38). The meaning of this square is that the map Ψp,
which restricts to Ψ on the subspace T ⊂ Tp, also descends to the quotient T. This condition
will have to be checked for each move individually. To this end, we note the following lemma,
which is just a reiteration of Lemma 2.19.

Lemma 4.6. The commutativity of the diagram

Tp Tp

Tp′ Tp′

h

Ψp Ψp

h′

, (4.40)

involving the holonomy idempotents h, h′ instead of the projectors π, π′ implies the commutativity
of the middle square in (4.38).

Thus, when proving that a move is an invariance, our task is to check that (4.40) commutes.

Remark 4.7. In light of Remark 3.5, it should be noted that using results of [FSS22] to deduce
the existence of a map Ψ which satisfies (4.39) is not necessary and only serves a comparative
reason. Indeed, by Lemma 2.19, the commutativity of (4.40) implies the existence of a unique
map Ψ which makes both (4.39) and the middle cell in (4.38) commute.

We now turn to the study of individual moves, aiming to prove Theorem 4.4.

4.2.2 OR – Orientation Reversal

The OR-move is easily seen to be an invariance.

x

y
g

f

OR−−→

x

y
g

f

(4.41)

In the introductory discussion in Section 4, we have already seen that the node spaces before
and after the move can be identified, and we can indeed view them as equal without loss of
generality, by assuming that the acting categories A and B are strictly pivotal. Consequently,
also the pre-block spaces are equal. Explicitly, using (3.20), they are of the form

Tp = M
〈
y(M), x(M)

〉
⊗ · · · = M

〈
x

(M)
, y(M)

〉
⊗ · · · = Tp′. (4.42)
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That this identification of pre-block spaces restrict to an isomorphism of block spaces was
observed in [FSS22, Prop. 4.24].

We must now show that the diagram (4.40) commutes. Unraveling the definition of the two
holonomy idempotents h for Σ and h′ for Σ′ reveals that h = h′. This is because in the holonomy
balancing (3.24), say for the domain A, the balancing

M
〈
a∗y(M), x(M)

〉
⊗ · · · ∼= M

〈
y(M), ax(M)

〉
⊗ · · · (4.43)

appears as a composition factor. This balancing is the same for both Tp and Tp′. A similar
statement hold for the domain B

4.2.3 C – Contraction

The second move for which we show the invariance property is the contraction move, which, as
described in Section 4.1, allows us to transform two nodes, connected by a defect line, into a
single node, thereby dissolving the defect line.

The map Ψp between pre-block spaces is constructed from the map ψ : g ⊗ f 7→ g ◦m f using
the universal coend property of pre-block spaces:

Nx,y(k,m, l) Tp

Nx•My(k, l) Tp′

Nx,y(k,m,lτ)

ψ Ψp

Nx•My(k,lτ)

(4.44)

The fact that Ψp restricts to a map Ψ between block spaces as in (4.39) is the content of [FSS22,
Lemma 4.39].

Following the general proof strategy outlined in Section 4.2.1, we now need to check that all
cells of the diagram (4.38), which here takes the form

Nx,y(k,m, l) Tp T

K

Nx•My(k, l) Tp′ T′

Nx,y(k,m,lτ)

ψ

π

Ψp

φ

Ψ

Nx•My(k,lτ) π′

φ′

(4.45)

commute for the move C.
As mentioned in Section 4.2.1, the left square in (4.45) commutes by construction, see (4.44).

In order to check the commutativity of the middle square in (4.38), we need to prove that the
two composition factors of the holonomy operations h and h′ corresponding to the paths from k
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to l agree. These paths are labeled as (1) and (2) in the picture (4.46) below.

g

f

C−→ (4.46)

As we learned in Lemma 4.6, it is indeed sufficient to check this for the idempotent holonomy
operations, as in (4.40). We perform the check only for the holonomy with respect to the domain
A; the argument for the B-holonomy is similar. Specifically, the following diagram (4.47) needs
to commute, in which the left vertical column composes to the path (1) in the picture (4.46),
and the right vertical column composes to the path (2). For convenience, only the relevant parts
of the pre-block functors are written out: there coends over the variables l and k are omitted in
(4.47). ∫ n 〈n⊠ la, U(y)

〉
⊗
〈
k⊠n, U(x)

〉 〈
k⊠ la, U(x •M y)

〉
∫ n 〈n⊠ l, U(y)a∗

〉
⊗
〈
k⊠n, U(x)

〉 〈
k⊠ l, U(x •M y)a∗

〉
∫ n 〈n⊠ l, a∗U(y)

〉
⊗
〈
k⊠n, U(x)

〉
∫ n 〈an⊠ l, U(y)

〉
⊗
〈
k⊠n, U(x)

〉
∫ n 〈n⊠ l, U(y)

〉
⊗
〈
k⊠na, U(x)

〉
∫ n 〈n⊠ l, U(y)

〉
⊗
〈
k⊠n, U(x)a∗〉

∫ n 〈n⊠ l, U(y)
〉

⊗
〈
k⊠n, a∗U(x)

〉 〈
k⊠ l, a∗U(x •M y)

〉
∫ n 〈n⊠ l, U(y)

〉
⊗
〈
ak⊠n, U(x)

〉 〈
ak⊠ l, U(x •M y)

〉

Ψp

(4.47)

In the above diagram, the commutativity of the top and bottom squares is trivial. The large
cell commutes by definition of x •M y, as can be seen by unraveling the definition (2.191) of the
contraction operation.

The proof for the one-sided case is completely analogous, only that here, only a single domain is
adjacent to the (m ∈ M)-labeled defect line, and hence the following paths need to be compared
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for the holonomy operation:

g

f

C−→ (4.48)

This completes the proof that the move C is an invariance.

4.2.4 EF – Edge Fusion

As described in Section 4.1, the edge fusion move allows use to merge parallel defect lines which
share start and end nodes. We proceed to show that EF is a move of invariance, following the
proof strategy outlined in Section 4.2.1.

Accordingly, the map Ψp : Tp → Tp′ between pre-block spaces is constructed from ψ using
the universal coend property of pre-block spaces. This means that Ψp is unique such that the
left square in (4.38) commutes. That the map Ψp restricts to an isomorphism Ψ between block
spaces has been proven in [FSS22, Theorem 4.43].

We are left to show that the square (4.40) (which is the outer square in (4.49) below) commutes
for the move EF. This implies, by Lemma 4.6, that EF is an invariance. To this end, we note that
the holonomy idempotent on Σ factorizes into commuting idempotents h = hRest ◦ hB, where hB
is the holonomy idempotent with respect to the B-labeled domain in Σ. Thus, hB ◦h = hRest ◦hB.
The square (4.40) assumes, with a subdivision, the following form.

Tp Tp

Tp Tp

Tp′ Tp′

h

hB

Ψp Ψp
hB

hRest

h′

c
c

(4.49)

We have to find an injective map c such that all smaller cells in (4.49) which involve c commute,
and show that the remaining small cell at the top of (4.49) commutes. This then implies
commutativity of the outer square. For convenience, we reproduce the picture (4.5) illustrating
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the regions Σ and Σ′.

f

g

EF−−→

y'

x'

(4.50)

As a map out of the coend

Tp′ =
∫ k∈M□N 〈

k⊠ · · · , U ′(x)
〉

⊗
〈
k⊠ · · · , U ′(y)

〉
, (4.51)

c is given by its components ck, which are the composition

ck :
〈
k⊠ · · · , U ′(x)

〉
⊗
〈
k⊠ · · · , U ′(y)

〉
U−−−−−−−−−−−→

forget B-balancing

〈
k(N ) ⊠ k(M) ⊠ · · · , U(x)

〉
⊗
〈
k(M) ⊠ k(N ) ⊠ · · · , U(y)

〉
σ

k(M)σ
k(N )

−−−−−−−−−−−−−−−−→
coend structure morphisms

∫ q∈M ∫ r∈N 〈
r⊠ q⊠ · · · , U(x)

〉
⊗
〈
q⊠ r⊠ · · · , U(y)

〉
= Tp.

(4.52)

Here we used the form of Sweedler notation for the forgetful functor from (2.146), writing
U(k) = k(M) ⊠ k(N ). To see that c : Tp′ → Tp is injective, note that under the isomorphisms
Tp′ ∼=

〈
x(M□N ), y(M□N )

〉
⊗· · · and Tp ∼=

〈
x(M) ⊠x(N ), y(M) ⊠ y(N )

〉
⊗· · · , that we encountered

in Remark 3.6, the map c corresponds to the subspace inclusion, meaning that the following
diagram commutes:

Tp′
〈
x(M□N ), y(M□N )

〉
⊗ · · ·

Tp
〈
x(M) ⊠x(N ), y(M) ⊠ y(N )

〉
⊗ · · ·

c

∼=

subspace inclusion

∼=

(4.53)

This can be checked explicitly, using the form of the isomorphism sil from Section 2.15. Thus c
is monic, and the outer square in the diagram (4.49) commutes if all the cells commute.

Commutativity of the top square in (4.49) is easily seen. To verify that the bottom square
commutes, recall that the holonomy idempotents h′ and hRest are defined as a composition of
individual holonomy idempotents for each domain except for B – these domains can be identified
across Σ and Σ′. On the other hand, the linear map c affects only the algebraic data associated
with the domain B. It thus commutes with the holonomy idempotents for the other domains.

This leaves us with the relevant parts of the diagram (4.49): the triangles on the left and the
right, which happen to be equal. Hence, we check whether

c ◦ Ψp = hB. (4.54)
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For computing purposes, we are interested in the components qrck of c (recall from (4.52) that
c is a map into a double coend), for simple objects k ∈ M□N , q ∈ M and r ∈ N . They are,
according to (2.37), given by:

qrck(2.37)= dqdr qrτ ◦ Θ−1
M⊠N ◦ ck

(4.52)= dqdr qrτ ◦ Θ−1
M⊠N ◦ σU(k) ◦ U

(2.47)= dqdr

〈
⋆⟨k(N ), r⟩ ⊠ ⋆⟨k(M),q⟩ ⊠ · · · , U(x)

〉
⊗
〈
⋆⟨q,k(M)⟩ ⊠ ⋆⟨r,k(N )⟩ ⊠ · · · , U(y)

〉
◦ U

(4.55)

Moreover, we would like to write out the components k(Ψp)ij for simple objects i ∈ M, j ∈ N and
k ∈ M□N , using the definition of ψ from (4.6). To this end, recall the isomorphisms adji⊠ j,U ′(x)

and adji⊠ j,U ′(y) from (2.112) and (2.111) witnessing the induction adjunctions (2.110). We again
use (2.37) to obtain the k-components of Ψp. This leads to the following.

k(Ψp)ij = dk kτ ◦ Θ−1
M□N ◦ σi j ◦

(
id ⊗ ΘB

DB

)
◦ (adji⊠ j,U ′(x) ⊗ adji⊠ j,U ′(y))

(2.47)= dk

〈
⋆〈i j,k

〉⊠ · · · , U ′(x)
〉

⊗
〈
⋆〈k, i j

〉⊠ · · · , U ′(y)
〉

◦
(

id ⊗ ΘB
DB

)
◦ (adji⊠ j,U ′(x) ⊗ adji⊠ j,U ′(y))

(4.56)

Knowing the components of c and of Ψp, we write out the composition c ◦ Ψp in components:

qr(c ◦ Ψp)ij(2.40)=
∑

k

qrck ◦ k(Ψp)ij

=
∑

k
dqdrdk

〈
⋆⟨k(N ), r⟩ ⊠ ⋆⟨k(M),q⟩ ⊠ · · · , U(x)

〉
⊗
〈
⋆⟨q,k(M)⟩ ⊠ ⋆⟨r,k(N )⟩ ⊠ · · · , U(y)

〉
◦ U ◦

〈
⋆〈i j,k

〉⊠ · · · , U ′(x)
〉

⊗
〈
⋆〈k, i j

〉⊠ · · · , U ′(y)
〉

◦
(

id ⊗ ΘB
DB

)
◦ (adji⊠ j,U ′(x) ⊗ adji⊠ j,U ′(y)).

(4.57)

According to (2.114) and (2.113), on vectors

α =
∫ i ∫ j

ijα(1) ⊗ ijα(2) ∈
∫ i ∫ j 〈

j⊠ i⊠ · · · , U(x)
〉

⊗
〈
i⊠ j⊠ · · · , U(y)

〉
= Tp, (4.58)

we have

(adji⊠ j,U ′(x) ⊗ adji⊠ j,U ′(y))(ijα(1) ⊗ ijα(2))

=
(∫ a∈B

acobrevx ◦ a(ijα(1))a∗
)

⊗
(∫

b∈B
brevyb ◦ b(ijα(2))b∗

)
.

(4.59)
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Making the substitution (4.59) in (4.57), we obtain

qr(c ◦ Ψp)(α) =
∑
ij

qr(c ◦ Ψp)ij(ijα(1) ⊗ ijα(2))

=
∑
kij

dqdrdk
DB

(∫ a∈B
acobrevx ◦ a(ijα(1))a∗ ◦ ⋆〈i j,k

〉 ◦ (⋆⟨k(N ), r⟩ ⊠ ⋆⟨k(M),q⟩)
)

⊗
(∫ b∈B

dbbrevyb ◦ b(ijα(2))b∗ ◦ ⋆〈k, i j
〉 ◦ (⋆⟨q,k(M)⟩ ⊠ ⋆⟨r,k(N )⟩)

)
.

(4.60)

The expression (4.60) describes the simple components qr(c ◦ Ψp)(α) of a vector (c◦ Ψp)(α) ∈ Tp.
In order to prove (4.54), we wish to compare this to the vector hB(α) ∈ Tp. It is, however, again
more convenient to pass both of these vectors through the isomorphism (3.20). For (c ◦ Ψp)(α),
this has the effect of composing the tensor factors in (4.60), and to sum over simple objects q
and r. We thus obtain:

∑
krqij

dqdrdk
DB

(∫ b∈B
dbbrevyb ◦ b(ijα(2))b∗

)
◦ ⋆〈k, i j

〉 ◦ (⋆⟨q,k(M)⟩ ⊠ ⋆⟨r,k(N )⟩)

◦ (⋆⟨k(M),q⟩ ⊠ ⋆⟨k(N ), r⟩) ◦ ⋆〈i j,k
〉 ◦
(∫ a∈B

a(ijα(1))a∗ ◦ acobrevx
)

(2.17)=
∑
kij

dk
DB

(∫ b∈B
dbbrevyb ◦ b(ijα(2))b∗

)
◦ ⋆〈k, i j

〉
◦ ⋆〈i j,k

〉 ◦
(∫ a∈B

a(ijα(1))a∗ ◦ acobrevx
)

(2.17)=
∑
ij

1
DB

(∫ b∈B
dbbrevyb ◦ b(ijα(2))b∗

)
◦
(∫ a∈B

a(ijα(1))a∗ ◦ acobrevx
)

(2.40)=
∑
bij

db
DB

brevyb ◦ b(ijα(2))b∗ ◦ b(ijα(1))b∗ ◦ bcobrevx

=
∑
bij

db
DB

brevyb ◦ b(ijα(2) ◦ ijα(1))b∗ ◦ bcobrevx

(2.179)=
∑

b

db
DB

brevyb ◦ b sil−1(α) b∗ ◦ bcobrevx.

(4.61)

We here denoted the isomorphism (3.20) by sil, as introduced in (2.179).

In order to compare this expression to the holonomy idempotent hB, we use that under the
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isomorphism (3.20), hB becomes the following, writing α̃ for sil−1(α):

Tp ∼=
〈
x(M) ⊠x(N ), y(M) ⊠ y(N )

〉
⊗ · · · α̃

∫
b

〈
x(M) ⊠ bb∗x(N ), y(M) ⊠ y(N )

〉
⊗ · · · 1

DB

∫
b α̃ ◦ (evb U(x))

∫ b 〈x(M) ⊠ bb∗x(N ), y(M) ⊠ y(N )
〉

⊗ · · ·
∫ b db

DB
α̃ ◦ (evb U(x))

∫ b 〈x(M)b
∗ ⊠ bx(N ), y(M) ⊠ y(N )

〉
⊗ · · ·

∫ b db
DB

α̃ ◦ (evb U(x)) ◦ (bbrxb∗
−1)

=
∫ b db

DB
α̃ ◦ (brevxb)

∫ b 〈x(M) ⊠ bx(N ), y(M)b⊠ y(N )
〉

⊗ · · ·
∫ b db

DB
(α̃b) ◦ (brevxbb) ◦ (bU(x) bcoev)

=
∫ b db

DB
(α̃b) ◦ (brxb )

∫ b 〈x(M) ⊠ bx(N ), y(M) ⊠ by(N )
〉

⊗ · · ·
∫ b db

DB
(bryb

−1) ◦ (α̃b) ◦ (brxb )

∫ b 〈x(M) ⊠ b∗bx(N ), y(M) ⊠ y(N )
〉

⊗ · · ·
∫ b db

DB
(evb∗

U(y)) ◦ (bryb
−1) ◦ (b∗α̃b) ◦ (b∗ brxb )

=
∫ b db

DB
(brevyb

∗) ◦ (b∗α̃b) ◦ (b∗brxb )

〈
x(M) ⊠x(N ), y(M) ⊠ y(N )

〉
⊗ · · · ∼= Tp

∑
b

db
DB

(brevyb∗) ◦ (b∗α̃b) ◦ (b∗brxb) ◦ (bcoevU(x))
= ∑

b
db
DB

(brevyb∗) ◦ (b∗α̃b) ◦ (bcobrevx).
(4.62)

This expression is equal to the result of the calculation (4.61), proving that (c ◦ Ψp)(α) = hB(α)
for all α ∈ Tp. Thus the outer paths in the diagram (4.49) commute, and the move is invariant.

4.2.5 SV – Subside Vertex

Recall the illustration of the SV-move from (4.7):

f x
SV−−→ f' (4.63)
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We denote the lasso graph on the left-hand side of (4.63) by Q, and the loop graph on the
right-hand side by O. From Lemma 3.23, we know that

|Q| = φ
(
r(f ◦ mτ)

)
. (4.64)

Writing the linear form φ in terms of a trace, as in (4.10), we obtain

|Q| = TrTR
(
φ̃ ◦ r(f ◦ mτ)

)
. (4.65)

This can be written out further using the second result (3.47) of Lemma 3.23.

|Q| = TrTR

(∫ n∑
a

dadn
DA

φ̃ ◦ brevxa∗ ◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

)
. (4.66)

We now turn our attention to the loop graph O on the right-hand side of (4.63). The idea is
to view O as a lasso graph, and to apply the same reasoning to it as we did to Q. Recall that
the core label of O, Θ∗

M, was defined in (3.59) using the isomorphism

Θ̃∗
M := DADB Θ−1

M (4.67)

as Θ∗
M := TrTR(Θ̃∗

M ◦ −). Invoking Lemma 3.23 and the definition (4.11) of the node label
f ′ = 1

DADB
ΘM ◦ φ̃ ◦ f , we obtain the following formula the evaluation of the loop graph:

|O| = TrTR

(
Θ̃∗

M ◦ r(f ′ ◦ mτ)
)

= 1
DADB

TrTR

(
Θ̃∗

M ◦ r(ΘM ◦ φ̃ ◦ f ◦ mτ)
)
. (4.68)

More explicitly, using (3.47), this becomes

|O| = 1
DADB

TrTR

(∫ n∑
a

dadn
DA

Θ̃∗
M ◦ brevI◦M

a∗ ◦
(
a∗ΘMa

)
◦
(
a∗φ̃a

)
◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

)

= 1
DADB

TrTR

(∫ n∑
a

dadn
DA

Θ̃∗
M ◦ ΘM ◦ brevI◦M

a∗ ◦
(
a∗φ̃a

)
◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

)
(4.67)= TrTR

(∫ n∑
a

dadn
DA

brevI◦M
a∗ ◦

(
a∗φ̃a

)
◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

)

= TrTR

(∫ n∑
a

dadn
DA

φ̃ ◦ brevxa∗ ◦
(
a∗fa

)
◦ (⋆⟨n,a∗m⟩ ⊠ ⋆⟨a∗m,n⟩)

)
.

(4.69)

In the second and the last identity, we used that ΘM and φ̃ are morphisms of balanced objects,
which allowed us to commute them with the brev -morphism. Comparison with (4.66) shows that
|Q| = |O|, hence the move SV is an invariance of the evaluation.

105



4.2.6 Fun – Functoriality

In the usual way, the morphism between node spaces defines a morphism Ψp between pre-block
spaces:

〈
m, x(M)

〉
⊗
〈
m, y(M)

〉 〈
F (m), F (x(M))

〉
⊗
〈
F (m), F (y(M))

〉

∫ n 〈n, x(M)
〉

⊗
〈
n, y(M)

〉 ∫ n 〈n, F (x(M))
〉

⊗
〈
n, F (y(M))

〉
F

σm σF (m)

Ψp

(4.70)

Because F is an equivalence, Ψp is an isomorphism. Verifying that the square (4.40) commutes
is straightforward and similar to how the other moves were proved.

4.3 Composite Moves

This section is the second and final part of the proof of Theorem 4.4. The remaining moves do
not have to be proved by explicitly using the definition of the evaluation procedure, but can be
obtained as compositions of moves we already know to be invariances.

4.3.1 DV – Dissolve Vertex

We begin by redrawing the picture (4.19) in a slightly larger region, this time involving another
node labeled by f , adjacent to the upper m-labeled defect line. This is only possible if the two
m-labeled defect lines featured on the left-hand side of (4.19) are indeed different, i.e. they do
not form a loop. But if they did form a loop, then the extruded graph on the right-hand side
of (4.19) would feature a loop without a node, which is not allowed in extruded graphs. Hence,
another node f must exist.

f

DV−−→

x
f

(4.71)

The DV-move can be viewed as a C-move: On the left-hand side of (4.71), one can contract
the upper (or equivalently the lower) m-labeled defect line; this eliminates the middle node. We
need to check that the changes in the labels reflect the changes prescribed by the move C. For
the ray label x, this amounts to verifying that there is an isomorphism

x ∼=I◦M •Mx, (4.72)
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and for the node label f , we need to show that under this isomorphism, the following assignment
is made:

f 7→ sil(idM) ◦m f. (4.73)

This follows from Remark 2.38.

4.3.2 L – Loop Move

The L-move is obtained as the following composition of moves. The ray- and node labels are
described in detail below.

x

DV−1
−−−−→

OR, EF−−−−−→ (1) (2) C−→

(4.74)

First, we apply an inverse DV-move to the loop, which splits it into two M-labeled defect lines
and creates a new node, with cosilent ray and node label σm : m⊠m →

∫ k∈M k⊠ k. Next, we
flip the orientation of one of the M-labeled defect lines using the OR-move, so that both point
away from the f -labeled node. The EF-move then merges the two defect lines into one, labeled
by m m ∈ M□

A
M. This leaves the nodes (1) and (2) in (4.74) with labels obtained by passing

through the appropriate adjunctions, as explained in (4.6). Explicitly, the node (1) has the label

adj
m⊠m,I◦M(σm) ◦ ΘA : m m →I◦M, (4.75)

while the node (2) is labeled by( 1
DA

adjm⊠m,x(M□M)
(f(M) ⊗ f(M))

)
⊗ f(R) : m m → x(M□M) ⊠x(R). (4.76)

In the last step, we use the (one-sided version of the) C-move to absorb node (1) into node (2).
This results in the ray label x′ =I◦M •M□Mx as described in (4.21). The newly obtained node’s
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label is given, according to (4.4), by the contraction of the node labels (4.75) and (4.76) in the
sense of (2.204). Working this out, we obtain the expression( 1

DA
adj

m⊠m,I◦M(σm) ◦ ΘA ◦ adjm⊠m,x(M□M)
(f(M) ⊗ f(M))

)
⊗ f(R) (4.77)

for the node label, which we recognize from (2.120) to be equal to

r
(
σm ◦ (f(M) ⊗ f(M))

)
⊗ f(R), (4.78)

where r : M⊠M

〈
x(M) ⊠x(M), IM

〉
→ M□M

〈
x(M□M), I◦M

〉
denotes the retraction from Lemma 2.23.

Using that
sil−1(σm ◦ (f(M) ⊗ f(M)) = f(M) ◦ f(M) : x(M) → x(M), (4.79)

and that by Remark 2.37, the retraction r from Lemma 2.23 gets mapped, under the isomorphism
sil−1, to the retraction r from Lemma 2.31 in the sense that

M⊠M

〈
x(M) ⊠x(M), IM

〉
M
〈
x(M), x(M)

〉

M□M

〈
x(M□M), I◦M

〉
A
M

〈
x(M), x(M)

〉r

sil−1

r (4.80)

commutes, we can deduce that the node label, as a map

n → A
M

〈
x(M), x(M)

〉
⊗ x(R), (4.81)

is given by f ′ = r(f(M) ◦ f(M)), as stated in (4.24).

4.3.3 DE – Dissolve Edge

Recall the illustration of the DE-move from (4.25):

g

f

DE−−→

g'

f'

(4.82)

As a first step, we remark that the (1 ∈ A)-labeled defect line in the left-hand side of (4.82) is
adjacent to two domains – the left and right A-labeled domains are indeed distinct. This is the
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case because otherwise, the move would produce a non-contractible domain on the right-hand
side of (4.82), which is not allowed in extruded graphs.

We focus on one of the domains adjacent to the (1 ∈ A)-labeled defect line; let us pick the
right one. A possibility for how this domain may look like is illustrated below.

g
y w

x z

f k

h

(4.83)

We are interested in the counterclockwise neighbor of the (1 ∈ A)-labeled defect line adjacent to
the node g: in (4.83), this is the defect line labeled by l ∈ L. This defect line is also adjacent to
the A-labeled domain we selected for our argument. It may or may not be a loop.

If it is a loop, then it encircles some area, as highlighted in (4.84) below.

y
g

(4.84)

The contents of this area can be absorbed into the node currently labeled by g through a sequence
of moves – this is very similar to the proof of Theorem 4.5. Then, once the loop is contractible,
we apply the move L, dissolving the defect line in the process.

If the (l ∈ L)-labeled defect line is not a loop, then we apply the contraction move C. In any
case, the A-labeled domain now has one adjacent defect line less. We repeat this procedure until

109



only one other defect line is left. We assume that it is labeled by j ∈ J .

x

f

g h k

(4.85)

In the configuration we have now reached (4.85), we can once more apply the C-move to the
(j ∈ J )-labeled defect line. This results in a loop labeled by 1 ∈ A as depicted in (4.86).

g f

(4.86)

We recall the ray and node labels of (4.86). The image of the ray label y •L · · · •J x under the
forgetful functor can be written as

U(y •L · · · •J x) = V (x(J ), y(L)) ⊗ y(N ) ⊠ y(A) ⊠x(A) ⊠x(M) ⊠ · · · , (4.87)

where V (x(J ), y(L)) is some vector space, built from the hom-spaces that appear in the definition
(2.197) of the contraction, that is equipped with a balancing

V (x(J )a, y(L)) ∼= V (x(J ), ay(L)), a ∈ A. (4.88)

Recall from (4.27) that we assumed, without loss of generality, the following for the node labels
x and y:

x(A) ⊠x(M) =
∫
a
a⊠ a x′

(M) and y(N ) ⊠ y(A) =
∫
a
y′

(N ) a
∗ ⊠ a. (4.89)

The node label in (4.86) is given by the morphism

K ⊗ n ⊠ 1 ⊠ 1 ⊠ m ⊠ · · ·

V (x(J ), y(L)) ⊗
∫
a

∫
b y′

(N ) a
∗ ⊠ a ⊠ b ⊠ b x′

(M) ⊠ · · ·

v g(N ) g(A) f(A) f(M) (4.90)
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for an appropriate vector v ∈ V (x(J ), y(L)) obtained from the various other node labels h, k, . . . ,
that we do not need to specify in more detail. With these data in mind, we apply the L-move
in order to eliminate the (1 ∈ A)-labeled loop. The resulting extruded graph has the following
topology; the ray- and node labels are specified below.

(4.91)

The ray label of (4.91) is given by I◦A •A□A(y •L · · · •J x). The appearance of the silent object as
opposed to the cosilent object is explained as follows. Compared to (4.20), the loop we consider
in (4.86) has opposite orientation. Thus, A, not A, takes on the role of the bimodule category
M from (4.20) that labels the loop. We then use that I◦A=I◦A. Importantly, this identification
between an end and a coend is only a formal switch of perspective between a category and its
opposite, and does not involve the isomorphism ΘA obtained from the pivotal structure. We
know from (4.21) that without balancings, this objects can be expressed as

U(I◦A •A□A(y •L · · · •J x)) = A□A

〈
(y •L · · · •J x)(A□A), I◦A

〉
⊗ y(N ) ⊠x(M) ⊠ · · ·

∼= A□A

〈
(y •L · · · •J x)(A□A), 1 1

〉
⊗ y(N ) ⊠x(M) ⊠ · · ·

∼= A⊠A

〈
x(A) ⊠ y(A), 1⊠1

〉
⊗ y(N ) ⊠x(M) ⊠ · · ·

∼=
∫
a,b
V (x(J ), y(L)) ⊗ A⊠A

〈
b⊠ a, 1⊠1

〉
⊗ y′

(N ) a
∗ ⊠ b x′

(M) ⊠ · · ·

∼= V (x(J ), y(L)) ⊗ y′
(N ) ⊠x′

(M) ⊠ · · ·

(4.92)

To get from the first to the second line in (4.92), we used that the silent object of a tensor
category can be expressed using the induction functor from (2.108). Then, in the third line,
we applied the adjunction (2.112). At this point, we can use our knowledge about the object
U(y •L · · · •J x) from (4.89). We could not have plugged in (4.89) earlier, because we do not have
an explicit description of the term (y •L · · · •J x)(A□A) – the warning expressed in Remark 2.30
applies here. Finally, the last step in (4.92) is performed using the Yoneda lemma in the form
(2.169).

Part of the data of the node label for (4.91) is, according to (4.24), the morphism

r
(
(g ◦l · · · ◦j f)(A⊠A)

)
∈ A□A

〈
(y •L · · · •J x)(A□A), I◦A

〉
, (4.93)

where r denotes the retraction from Lemma 2.23. An explicit calculation reveals that in our case,
the image of this vector pushed through the first two isomorphisms in (4.92) is given by

f(A) ⊗ g(A) ∈ A⊠A

〈
x(A) ⊠ y(A), 1⊠1

〉
. (4.94)
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This implies that the node label of (4.91) is given by

K ⊗ n ⊠ m ⊠ · · ·

V (x(J ), y(L)) ⊗ y′
(N ) ⊠ x′

(M) ⊠ · · ·

v g′
(N ) f ′

(M) , (4.95)

where f ′ and g′ are as in (4.28).
At this point, we take a step back and consider the post-move region, redrawn in our situation

here:

g'
y w

x z

f' k

h

(4.96)

All the moves we applied to get from (4.83) to (4.91) can, in the exact same way, be applied to
(4.96); except that now, we do not need to apply the L-move, because the (1 ∈ A)-labeled defect
line was never present. It is easy to verify that under this sequence of moves, the region (4.96)
transforms into the same region (4.91) we obtained before, with the same ray- and node labels
that we just computed. This means we have succeeded in writing the move DE as a composition
of elementary moves.

4.3.4 IH – Internal Hom-Move

Applying the OR-move and the EF-move to the left-hand side of (4.30) results in a single defect
line:

x y

(4.97)

We now apply the move C to both (4.97) and the right-hand side of (4.30) and compare the
resulting extruded graphs, which we call Σ and Σ′, respectively.
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The label of the, now unique, ray in Σ, the contracted version of (4.97), is given by x •M□M y.
Recall from (2.192) that

U(x •M□M y) = M□M

〈
y(M□M), x(M□M)

〉
⊗ x(R) ⊠ y(R). (4.98)

The node of Σ is labeled by fR ⊗ (g ◦m n f) ⊗ gR.
On the other hand, after applying C to the right-hand side of (4.30), we are left with Σ′,

which contains a single ray labeled by A[x] •B A[y], with node label fR ⊗ (A[g̃] ◦A[n,m] A[f̃ ]) ⊗ gR.
Note that the underlying labeled defect surfaces of Σ and Σ′ are equal: both only consist of
a single ray, whose ray categories are the same. The linear map M□M

〈
y(M□M), x(M□M)

〉
→

A
〈

A[y(M□M)], A[x(M□M)]
〉

that comes with the functoriality of A[−] defines a morphism
U(x •M□M y) → U(A[x] •B A[y]) which respects the balancings, and thus is a morphism between
the ray labels η : x •M□M y → A[x] •B A[y]. As the block spaces for different ray labels on a
given labeled defect surface assemble into a functor, the map η between two ray labels defines a
map between block spaces T(η) : T → T′. In order to construct a post-move core label φ′ from
the label φ of the core of Σ, we use use a retraction of the linear map T (η). The existence of
such a retraction is inherited from the fact that

A[−] : M□M

〈
y(M□M), x(M□M)

〉
→ A

〈
A[y(M□M)], A[x(M□M)]

〉
(4.99)

admits a retraction γ, which can be constructed as follows. Note that a morphism t : y(M□M) →
x(M□M) is a morphism of unbalanced objects t : y(M) ⊠ y(M) → x(M) ⊠x(M) that satisfies a
property. The simple objects of the Deligne product M⊠M are of the form m⊠n, where m
and n are simples in M, which is why the collection of morphisms

t̃m,n,j,i := ⋆〈
x(M) ⊠x(M),m⊠n

〉
,i

◦ t ◦ ⋆〈
m⊠n, y(M) ⊠ y(M)

〉
,j

(4.100)

uniquely determines the morphism t. As endomorphisms of simple objects, the t̃m,n,j,i are
multiples of the identity, and thus correspond to scalars

tm,n,j,i = 1
dmdn

TrM⊠M(t̃m,n,j,i), (4.101)

which can be thought of as the matrix elements of t.
These matrix elements can be recovered from A[t] by observing that if t̃m,n,j,i is a multiple of

the identity, then so is

A[t̃m,n,j,i] = A[⋆〈
x(M) ⊠x(M),m⊠n

〉
,i
] ◦ A[t] ◦ A[⋆〈

m⊠n, y(M) ⊠ y(M)

〉
,j

]. (4.102)

We thus find

tm,n,j,i = 1
dA[n,m]

A[⋆〈
x(M) ⊠x(M),m⊠n

〉
,i
] ◦ A[t] ◦ A[⋆〈

m⊠n, y(M) ⊠ y(M)

〉
,j

], (4.103)
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and deduce that a retraction to A[−] can, in terms of matrix elements, be defined for a morphism
u : A[y(M□M)] → A[x(M□M)] by

γ(u)m,n,j,i = 1
dA[n,m]

A[⋆〈
x(M) ⊠x(M),m⊠n

〉
,i
] ◦ u ◦ A[⋆〈

m⊠n, y(M) ⊠ y(M)

〉
,j

]. (4.104)

The retraction γ induces a retraction γ̃ : T′ → T of T(η), which allows us to define φ′ := φ ◦ γ̃
for the post-move core label. This implies that the move is an invariance.

Remark 4.8. The morphism γ can be defined in a more conceptual way, but showing that it is
a retraction is then more tedious. This involves noting that the right adjoint of A[−] denoted by
coev in [Sch13a, Lem. 6.2.2] is also a left adjoint. Then γ is defined as the composition

A
〈

A[y(M□M)], A[x(M□M)]
〉

→ A
〈
coev(A[y(M□M)]), coev(A[x(M□M)])

〉
→ M□M

〈
y(M□M), x(M□M)

〉 (4.105)

using the unit and counit of the adjunctions.

This completes the proof of Theorem 4.4.

5 Towards a Turaev-Viro TFT with Defects
The main motivation for the notion of an extruded graph, together with the evaluation procedure
defined in Section 3, is that they are a critical ingredient in the definition of a state-sum model
with defects in all codimensions, whose union is not necessarily a manifold. While the definition
of such a state-sum model (or, more precisely, its independence of auxiliary data) beyond the
sketch provided in Section 5.4 exceeds the scope of this work, we demonstrate in this section that
in a special case, the evaluation of extruded graphs reduces to a known evaluation procedure
used for the definition of known state-sum models.

The special case we are interested in are extruded graphs whose underlying surfaces are spheres,
with a restriction on the algebraic labels: All domains are labeled by the same spherical fusion
category A, and all edges are labeled by the regular bimodule category AAA. We do not restrict
labels of the third and fourth level: the object labels on the defect lines, ray labels and node
labels. We call extruded graphs of this type monochromatic.

This restriction of algebraic data to a single spherical fusion category A and no non-trivial
bimodule categories fits into the context of the Turaev-Viro state-sum model on A as described
in [BK10; TV17]. This is a 3-dimensional TFT defined on a cobordism category in which the
cobordisms are decorated with embedded ribbons, labeled by objects of the Drinfeld center
ZA(A). In order to define the TFT, a scalar must be assigned to what we will call a spiked
ball in Definition 5.1: a closed 3-ball with ZA(A)-labeled lines embedded in the interior and an
A-labeled graph on the boundary. This evaluation procedure involves, as a first step, projecting
the interior lines onto the surface of the ball, such that we obtain a graph on S2 with strands
labeled either by objects of A or ZA(A), with crossings allowed between strands of different
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types. Such a combined graph Γ is called a knotted A-net in S2 in the language of [TV17], and
the associated invariant is denoted FA(Γ) ∈ K.

After recalling some necessary background in Section 5.1, the goal of Section 5.2 is to first show
how the evaluation of extruded graphs introduced in this paper can be used to define another
evaluation procedure for spiked balls. Then, we will show that both evaluation procedures
produce the same numerical invariant. This fact will serve as justification that extruded graphs,
together with their evaluation procedure, are the correct generalization of spiked balls needed
when defining a state-sum model with defects in all codimensions. In Section 5.3, we will briefly
see that extruded graphs and their evaluation are closely related to yet another type of diagram
used in a state-sum model with defects: The polygon diagrams introduced by Meusburger [Meu22].
We end with an outlook on how a Turaev-Viro-type TFT could be defined using the theory of
extruded graphs in Section 5.4.

5.1 The Lego-Teichmüller Game

In order to understand the block spaces for monochromatic extruded graphs, we need to recall
some details of the so-called Lego-Teichmüller Game (LTG) from [MS89; BK00]. Let S be a
compact oriented surface of genus 0, possibly with boundary (hence a sphere with a finite number
of holes), together with a choice of distinguished point on each boundary component. Such a
surface is called an extended surface (of genus 0, the only case we consider here) [BK00]. A
marking on an extended surface is a graph M ⊂ S embedded in S of the following form: M
has a unique vertex in the interior of S, its other vertices are the distinguished points on the
boundary of S. M has one edge for each boundary component of S, connecting the distinguished
point on that boundary component to the unique vertex in the interior of S. In addition, one of
the edges of the marking M is distinguished; in the picture (5.1), which illustrates an example
for an extended surface with a marking, this edge is drawn as an arrow.

(5.1)

Given a (finite, semisimple) ribbon category C (that is, a braided tensor category with duals and
a twist, see [EGNO15, Sec. 8.10]), let us label each boundary component of a marked extended
surface with n boundary components (n ≥ 0) with an object ci ∈ C (1 ≤ i ≤ n). The marking
graph on the extended surface provides a cyclic order on the boundary components (and hence
on the objects ci), which together with the distinguished edge becomes even a linear order in
the obvious way: The boundary component adjacent to the distinguished edge of the marking
is set as the first element in the order, and from hereon, we order the other edges, progressing
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in clockwise cyclic fashion around the distinguished vertex of the marking. To such a marked
extended surface (S,M) with labels (c•), we assign the vector space

τ(S,M, c•) := C⟨1, c1 ⊗ · · · ⊗ cn⟩ . (5.2)

Of course, a different marking M ′ on S can result in a different order for the objects (c•). The
orders for the markings M and M ′ are related by a permutation σ, such that

τ(S,M ′, c•) = C
〈
1, cσ(1) ⊗ · · · ⊗ cσ(n)

〉
. (5.3)

Using the braiding for C, one can construct many different isomorphisms between the vector
spaces τ(S,M, c•) and τ(S,M ′, c•). In order to construct a vector space that is independent of
the choice of marking, however, a clique is needed. (Recall that a clique is a category with a
unique isomorphism between any two objects.) While the set of vector spaces associated with
different markings is not suitable as the set of objects for this clique, the set of markings itself is:
The morphisms between markings are given by a set of moves between markings, taken up to
relations between the moves. The fact that markings and moves-up-to-relations form a clique is
proved in [BK00, Thm. 4.9], and was previously stated in [MS89]. As such, we may define the
vector space

τ(S, c•) := lim
M
τ(S,M, c•). (5.4)

Since τ(S, c•) is defined using only the combinatorial structure of the markings on S, it does not
depend on the extended surface S beyond its isomorphism class. We therefore denote

τn(c•) := τ(S, c•) (5.5)

for any extended surface S with n boundary components and an unordered set of n objects of C
labeling the boundary components c•. The vector spaces τn(c•) are called conformal blocks.

5.2 Relating Extruded Graphs to Knotted Nets

We define the notion of a spiked ball mentioned in the beginning of this section.

Definition 5.1. A spiked ball R colored by a spherical fusion category A consists of a solid
closed 3-ball R with embedded structure as follows: On the boundary ∂R of the 3-ball, which is a
2-sphere, a string diagram (an A-colored graph in the sense of [TV17, Sec. 12.2.1]) is embedded,
with strands labeled by objects of A. Attached to some of the vertices are spikes: straight lines
that stretch from a vertex on the boundary to the point r ∈ R in the center of the ball. The
spikes are labeled by objects of the Drinfeld center ZA(A), and vertices that have attached
spikes are called spiked vertices. As usual, we only consider fine spiked balls, meaning that the
complement of the string diagram on the boundary is a disjoint union of disks.

On the boundary of R, the spiked vertices are labeled by vectors in spaces that can be thought
of as cyclically symmetric hom-spaces. They are constructed as follows. Attached to a spiked
vertex v is a spike, labeled by an object x ∈ ZA(A). The adjacent edges on the boundary of R
come with a cyclic order, and each with an orientation and an object ai ∈ A. For a given choice
of a first edge in this cyclic order, we associate the hom-space

A
〈
a1 ⊗ · · · an−1 ⊗ an, U(x)

〉
(5.6)
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if there are n many edges pointing towards the vertex. If an edge is pointing away from the
vertex, the dual a∗

i of the corresponding object ai is taken in its place. Using a combination
of evaluation, coevaluation, and pivotality for A, and the half-braiding for x, the covariant
arguments in the hom-functor (5.6) can be cyclically permuted in the standard way, meaning
there are canonical isomorphisms〈

a1 ⊗ · · · an−1 ⊗ an, U(x)
〉 ∼=

〈
an ⊗ a1 ⊗ · · · an−1, U(x)

〉
. (5.7)

These isomorphisms are well understood, see e.g. [NS10]. Together with the permuted hom-spaces,
they form a clique, and so we define

H(x, a•) := lim
σ

〈
aσ(1) ⊗ · · · ⊗ aσ(n), U(x)

〉
, (5.8)

where σ runs over cyclic permutations. This is the vector space associated to the spiked vertex v.
For a non-spiked vertex w, we replace x by the monoidal unit 1 ∈ ZA(A) in this construction.
The vector spaces for non-spiked vertices are called multiplicity modules in [TV17, Sec. 12.1.3],
and we will carry this name over to the more general spaces (5.8) for spiked vertices as well.
(There is a difference between our convention and the one used in [TV17, Sec. 12.1.3]: The
contravariant and the covariant arguments in the hom-functor (5.6) are exchanged.)

Finally, the central point r ∈ R where all the spikes meet, is labeled by a vector in the dual
of the vector space τk(x•)∗ from (5.5), if there are k many spikes labeled by a collection x• of
objects of ZA(A).

The following picture is an illustration of a spiked ball:

r

(5.9)

In (5.9), the string diagram on ∂R is black, and the spikes are drawn in red. They point to the
center r of the 3-ball.

Remark 5.2. Usually, to evaluate a diagram involving strands labeled by objects in a ribbon
category such as ZA(A) embedded into 3-dimensional space, these strands need to have ribbon
structure, or equivalently, a framing. This is unnecessary in spiked balls because the spikes are
straight lines pointing to the center of R. They can be equipped with a standard framing.

We would like to be able to identify spiked balls and monochromatic extruded graphs.

Observation 5.3. Let Σ be a monochromatic extruded graph on the sphere, meaning that all
domains are labeled by the same spherical fusion category A, and all defect lines are labeled by
the regular bimodule category AAA. Spiked balls and monochromatic extruded graphs have the
same types of labels:
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1. There is a distinguished set of equivalences between the ray category for any ray of Σ and
the center ZA(A): The ray category associated to any node L (with n > 0 adjacent defect
lines) of a monochromatic extruded graph is of the form

TR(L) = Aϵ1□Aϵ2□ · · ·□Aϵn□, (5.10)

where ϵi ∈ {+,−} are signs used to denote the opposed categories A = A−, A = A+,
depending on the orientation of the adjacent defect lines. The pivotal structure on the
category A furnishes an equivalence A ∼= A, which provides a distinguished equivalence

TR(L) ∼= A□A□ · · ·□A□. (5.11)

As mentioned in Section 2.12, the expression (5.11) is a 3-trace over a composition of
1-morphisms in a tricategory. As such, several structure morphisms can be used to obtain
equivalences TR(L) ∼= ZA(A). It follows from the coherence theorem for 3-traces [FSS17,
Prop. 5.4] that there is a distinguished natural isomorphism between any two of these
equivalences, such that the equivalences, together with the natural isomorphisms, form a
clique.
In order to avoid making explicit choices, we denote by

µL : TR(L) ∼= ZA(A) (5.12)

the limit of the clique of equivalences associated to the ray adjacent to a node L.

2. Let L be a node in Σ with adjacent ray labeled by x ∈ TR(L), and adjacent defect lines
labeled, in clockwise order, by objects a1, . . . , an ∈ A. Let us construct an isomorphism
between the associated node space N(L) is and the multiplicity module H(µL(x), a•) from
(5.8).
As we saw in (5.11), the ray category is of the form

TR(L) ∼= A1□A2□ · · ·□An□. (5.13)

for n adjacent defect lines. In (5.13), we introduced subscripts for the various instances of
A = A1 = · · · = An in order to keep track of which tensorand corresponds to which adjacent
defect line. We continue to explicitly describe a sub-clique of the clique of equivalences
TR(L) ∼= ZA(A) from part (1) of the observation. Given a relative Deligne product of k
copies of A, which is linearly ordered in the sense that one tensorand is chosen as the
starting point, we consider the equivalence

A1□ · · ·□Ak−1□An□ → A1□ · · ·□A□, (5.14)

obtained by applying the unitor e : Ak−1□An → A from (2.134) to the right-most two
tensorands. (Recall that we do not take the relative Deligne product’s associators into
account.). Successively composing instances of the equivalence (5.14) produces n distinct
equivalences e1, . . . , en : TR(L) → ZA(A), one for each choice of starting point.
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We denote the ray label by x ∈ TR(L). Recall that the nodespace is, in this case, given by

N(L) = TN(L)
〈
a1 ⊠ · · ·⊠ an, U(x)

〉
, (5.15)

where U denotes the forgetful functor A□n → A⊠n, which forgets all n balancings. De-
pending on the signs ϵi from (5.10), some of the ai should be replaced by their duals a∗

i ,
but we do not make this explicit in order not to overload notation. For our purposes, it is
useful to consider the nodespace as a hom-space in the ray category rather than the node
category, by passing through the adjunction (2.111):

N(L) ∼= TR(L)⟨a1 · · · an , x⟩ . (5.16)

In this form, it is clear that each equivalence e1, . . . , en provides an isomorphism N(L) ∼=
ZA(A)

〈
ei(a1 · · · an ), ei(x)

〉
. Since we know from (2.135) that

ei(a1 · · · an ) = ai · · · ana1 · · · ai−1 ∈ ZA(A), (5.17)

we can once more use the adjunction (2.111), this time in reverse direction, to find an
isomorphism

N(L) ∼= A
〈
ai · · · ana1 · · · ai−1, U(ei(x))

〉
. (5.18)

Here, the functor U : ZA(A) → A only forgets one balancing (namely, the half-braiding).
If we combine the isomorphism (5.18) with the structure isomorphism of the limit (5.8),
we obtain an isomorphism

N(L) ∼= H(µL(x), a•). (5.19)

A priori, this isomorphism is dependent on the choice of linear order we made on the set of
adjacent defect lines. We will see in Proposition 5.4 that any such choice leads to the same
isomorphism (5.19).

We will compare block spaces of monochromatic extruded graphs to the vector spaces τn(c•)
from (5.5) for spiked balls later, in Observation 5.6

Proposition 5.4. The isomorphism N(L) ∼= H(µL(x), a•) between the nodespace of a monochro-
matic extruded graph’s node L and the multiplicity module H(µL(x), a•) from (5.19) is independent
of the choice of linear order imposed on the set of defect lines adjacent to L.

Proof. The isomorphisms (5.18) turn the set of hom-spaces A
〈
ai · · · ana1 · · · ai−1, U(ei(x))

〉
into

a clique, whose limit is the nodespace N(L). The canonical isomorphisms ei(x) ∼= µL(x), denoted
by νi, furnish isomorphisms between the hom-spaces

A
〈
ai · · · ana1 · · · ai−1, U(ei(x))

〉 ∼= A
〈
ai · · · ana1 · · · ai−1, U(µL(x))

〉
(5.20)

The latter hom-spaces appeared in (5.8): Together with the morphisms (5.7), they also form a
clique, whose limit is the multiplicity module H(µL(x), a•). In order to deduce that the limits of
these two cliques are related by a canonical isomorphism

N(L) ∼= H(µL(x), a•), (5.21)
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we need to show that the set of isomorphisms (5.20) between objects of the cliques assemble into
an isomorphism of cliques. Explicitly, this means that the diagram

A
〈
ai · · · ana1 · · · ai−1, U(ei(x))

〉
A
〈
ai · · · ana1 · · · ai−1, U(µL(x))

〉

N(L)

A
〈
aj · · · ana1 · · · aj−1, U(ej(x))

〉
A
〈
aj · · · ana1 · · · aj−1, U(µL(x))

〉

νi◦−

(5.7)

(5.18)

(5.18)
νj◦−

(5.22)

needs to commute for all i, j ∈ {1, . . . , n}. It suffices to check this for the case i = 1, j = 2. For
the proof, we consider the following diagram, which is described in detail below.

N(L) ∼= ⟨a1 a2 · · · an , x⟩

⟨a1a2 · · · an 1 · · · 1 , x⟩ ⟨1 a2 · · · ana1 · · · 1 , x⟩

〈
a2 · · · ana1 , e1(x)

〉
〈
a1a2 · · · an , e1(x)

〉 〈
a2 · · · ana1 , e2(x)

〉
〈
a2 · · · ana1 , e1(x)

〉
〈
a1a2 · · · an, U(e1(x))

〉 〈
a2 · · · ana1, U(e2(x))

〉
〈
a2 · · · ana1, U(e1(x))

〉
〈
a1a2 · · · an, U(µL(x))

〉 〈
a2 · · · ana1, U(µL(x))

〉

−◦bal1 −◦bal2

−◦bal

e1

(a) e1

e2

−◦η1□a2·a1···

(b)−◦e1(bal)

−◦e1(bal)

adj

ηx◦−

adj

adj

(c) (d)

(5.7)

ν1◦−
U(ηx)◦−

ν2◦−

ν1◦−(e)
(5.7)

(5.23)

Let us first discuss the morphisms that appear in the top triangle of the diagram (5.23). Recall
that the functor − − is balanced. From this balancing, we can construct an isomorphism

a1 a2 · · · an ∼= a1 a2 · · · an−1an 1 ∼= . . .
∼= a1 a2 · · · an · · · 1 ∼= a1a2 · · · an 1 · · · 1 ,

(5.24)

whose inverse we denote by bal1. Similarly, bal2 is the inverse of the isomorphism

a1 a2 · · · an ∼= 1 a2 · · · ana1 ∼= . . . ∼= 1 a2 · · · ana1 · · · 1 . (5.25)
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We define bal := bal1 ◦ bal−1
2 – this makes the topmost triangle of (5.23) commute – and remark

that explicitly, bal is given by the composition

1 a2 · · · ana1 · · · 1 ∼= a2 · · · an a1 · · · 1 ∼= a2 · · · an 1 a1 · · · 1

∼= a2 · · · an 1 · · · a1 ∼= a1a2 · · · an 1 · · · 1 .
(5.26)

In other words, the term a2 · · · an gets balanced using just one balancing from left to right, while
a1 passes through all the other balancings in right-to-left direction.

With this at hand, we now explain why the commutativity of the outer paths of (5.23) is
equivalent to the commutativity of (5.22): The isomorphism (5.18) appearing in (5.22) is equal
to the composition adj ◦ ei. Moreover, we have ei = ei ◦ (− ◦ bali). This is because the
equivalences ei are constructed from the unitors (5.14), which map all balancings to the identity
morphism (or, more precisely, to associators, which we assume to be the identity for A). Thus,
the first three arrows around the left and right side compose to instances of the morphism (5.18)
for i = 1 and i = 2, respectively. So, proving that the boundary of (5.23) commutes implies the
commutativity of (5.22).

We continue to inspect the cells of the diagram from top to bottom, and show that each one
commutes. The commutativity of the cell (a) is a consequence of the functoriality of e1. New
morphisms labeled η appear in the cell (b); η is the canonical natural isomorphism η : e2 → e1,
which is part of the clique from part (1) of the observation. Commutativity of (b) is an instance
of the naturality of η. In order to see that the triangle to the left of (b) commutes, we observe
that its vertical arrow is equal to the identity. The images of e1 and e2 of a -factorized object,
such as a1 · · · an , differ only by a different bracketing of the terms. The isomorphism
η relates these bracketings via associators, which we have assumed to be the identity. Thus,
η
1 a2···ana1 ··· 1

= id, and the triangle commutes.
The cell (c) commutes because adj :

〈
− , e1(x)

〉
→
〈
−, U(e1(x))

〉
is an isomorphism of

balanced functors, as mentioned in Remark 2.22. On the other hand, the cell (d) is just an
instance of the naturality of adj .

The cell (e) commutes because ν1 is an isomorphism in the center of A. Finally, the triangle in
the bottom right of the diagram commutes because νi are the structure morphisms of the limit
µL(x) of a clique in which ηx is a morphism.

We have now seen that all cells of the diagram (5.23), and hence its boundary, commute. This
completes the proof of the proposition.

Observation 5.3, together with Proposition 5.4 provides us with an understanding of monochro-
matic ray- and node labels. In order to describe monochromatic core labels, we first need to
understand how moves of invariance work for monochromatic extruded graphs. In the following,
we already allow ourselves to consider monochromatic extruded graphs whose rays are labeled by
objects in ZA(A) and whose nodes are labeled by vectors in the appropriate multiplicity modules.

Lemma 5.5 (Monochromatic moves.). The moves of invariance for extruded graphs from Sec-
tion 4 can be expressed using the alternative system of labeling rays and nodes from Observation 5.3.
We list some of them here:
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• The ordinary OR-move flips the direction of a defect line, thereby changing the bimodule
category M that labels it to its opposite M. The OR-move is thus not a move within
the class of monochromatic extruded graphs, because it results in defect lines labeled by A,
which is not allowed. When we speak of the monochromatic OR-move, we really mean the
composition of the OR-move applied to an A-labeled defect line with an instance of the
Fun-move using the distinguished equivalence A ∼= A that comes with the pivotal structure
on A. Concretely, the monochromatic OR-move replaces an (a ∈ A)-labeled defect line
with a defect line with opposite orientation, labeled by a∗ ∈ A.

• The monochromatic C-move takes the following form, where we label rays by objects
x, y ∈ ZA(A), and nodes by vectors in the appropriate multiplicity modules, as justified by
Observation 5.3.

x y

f
a

g →

x y

fg (5.27)

Here, the node label on the right-hand side of (5.27) is obtained as follows. The multiplicity
modules H(x, · · · , a∗) and H(y, a, · · · ) which are isomorphic to the respective node labels,
come with structure isomorphisms

H(x, · · · , a∗) ∼=
〈
· · · a∗, U(x)

〉
and H(y, a, · · · ) ∼=

〈
a · · · , U(y)

〉
. (5.28)

We denote the images of f and g under these isomorphisms by f ′ and g′. By a form of
generalized composition, these morphisms combine into the morphism

f' g'
a

yx
∈
〈
· · · · · · , U(x⊗ y)

〉
. (5.29)

Again, the hom-space
〈
· · · · · · , U(x⊗ y)

〉
is isomorphic to the multiplicity module H(x⊗

y, · · · · · · ). The node label g ◦a f is defined as the image of the morphism (5.29) under this
isomorphism.

• There is a monochromatic EF-move, which takes two parallel defect lines, labeled by a, b ∈ A,
and fuses them into a single defect line, labeled by ab ∈ A, with the node labels changing in
the obvious way.

• The monochromatic DV-move removes a node with a (1 ∈ ZA(A))-labeled ray with one
incoming and one outgoing defect line, both labeled by (a ∈ A), and node label eva ∈ ⟨aa∗, 1⟩.
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• The loop move L can also easily be expressed in the monochromatic case: Assume that
the node with an (a ∈ A)-labeled loop is labeled by a vector f in the multiplicity module
H(x, a, a∗, · · · ). By the usual yoga, we obtain a morphism f ′ from f in one of the concrete
hom-spaces used to construct the multiplicity module. In order to perform the move L and
remove the loop, f ′ needs to be replaced with the morphism

f'

a

x

∈
〈
· · · , U(x)

〉
. (5.30)

This morphism in turn defines a vector in the multiplicity module for the node without the
loop. The ray label is left unchanged by this move.

Sketch of proof. There is nothing to be proved for the OR-move. The monochromatic EF-move
is similarly obtained as a composition of the usual EF-move with the Fun-move for the unitor
equivalence e : A□A → A. For the other two moves, we need to check that switching from
monochromatic labels to ordinary labels in the extruded graph, then performing the ordinary
move, and then switching to monochromatic labels again, results in the change claimed by the
lemma.

Concerning the monochromatic C-move, this amounts to verifying that the contraction
operation on objects specializes to the monoidal product in ZA(A) in the monochromatic case,
and that the contraction operation for morphisms specializes to the generalized composition
described in (5.29). This was discussed in Remark 2.39.

The monochromatc DV and L-move can, as in the non-monochromatic case, be expressed
as a composition of monochromatic OR, EF and C-moves. One can check explicitly that this
result in the moves as claimed.

With this at hand, we are in a position to relate the block spaces of monochromatic extruded
graphs to the vector spaces from (5.5).

Observation 5.6. Let Σ be a monochromatic extruded graph on the sphere, as in Observation 5.3.
Note that by cutting out the nodes from the coat of Σ, we obtain an extended surface. A marking
M on this extended surface is said to be a marking on the extruded graph σ iff the marking is
attached to the nodes away from the defect lines, the intersections between the defect lines and
the marking are transversal, and the distinguished vertex of M does not lie on a defect line. Let
us construct, for each marking M on Σ an isomorphism tM : T ∼= τ(Σ,M, x•).

To this end, we describe how the marking M on Σ defines a sequence of moves on Σ. Crucially,
each move in this sequence comes with an isomorphism between the block spaces before and
after the move. Our goal is to obtain an extruded graph ΣM in this way, whose block space is
related to τ(Σ,M, x•) via a distinguished isomorphism.

When drawing pictures, we illustrate the extruded graph Σ by the following example, but keep
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the argument general.

Σ =

x

(5.31)

The first step is to apply a sequence of DV- and DE-moves to Σ, adding transparent defect lines
and nodes in the following way: Recall that the marking M possesses a distinguished vertex. In
the location of that vertex, we add a new node to Σ, which we call the core node. To the original
nodes of Σ, we will from now on refer as main nodes.

We would like to add, for each edge of the marking M , a corresponding transparent defect
line to Σ. To this end, we add a transparent node using the DV-move on the pre-existing defect
lines wherever there would be a crossing between an edge of the marking and such new defect
lines. We refer to these new nodes as braiding nodes. Now, we can add the new defect lines – as
transparent lines, at first – using the DE-move between main nodes, braiding nodes, and the
core node, retracing the edges of the marking. Accordingly, we call these defect lines marking
lines. Note that the edges of the marking are segmented by the crossings. Each of these segments
becomes an individual marking line.

Finally, we use the DV-move on every newly created marking line, adding another transparent
node called a domain node. The resulting extruded graph ΣM of this procedure is illustrated in
(5.32), where we introduced the convention of drawing braiding nodes in a diamond shape and
domain nodes in a star shape.

ΣM =

x

main nodes

domain nodes

braiding
nodes

core
node

(5.32)
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Recall how in the proof of Theorem 4.5, we used a choice of spanning tree for a extruded graph
to sequentially contract all nodes into a single node using the C-move. We now recognize that
the marking lines, together with all types of nodes, form a spanning tree for ΣM . In addition,
this spanning tree comes with a linear order on its marking lines, inherited from the order on the
edges of the marking: Starting with the first edge of the marking, we enumerate the marking
lines from the main node to the core node. We then proceed with the second edge of the marking,
and so on. In this order, we apply the C-move to all marking lines, contracting them in the
process, until we are left with an extruded graph Σ1 with only a single node, as is done in the
proof of Theorem 4.5. Unlike there, however, we here did not make any arbitrary choices in the
moves that lead to Σ1.

From the monochromatic C-move described in Lemma 5.5, we know that the ray label for the
ray of Σ1 is given by x1 ⊗ · · · ⊗xk, if x1, . . . , xk ∈ ZA(A) are the ray labels for the main nodes, in
the linear order defined by the marking M . In the same fashion as in the proof of Theorem 4.5,
the monochromatic L-move can be applied repeatedly to turn Σ1 into a lasso graph ΣQ. The ray
label is not changed by this sequence of moves, so we end up with a lasso graph whose ray is
labeled with x1 ⊗ · · · ⊗ xk ∈ ZA(A). The general results on lasso graphs from Section 3.4 provide
us with a description of the block space for ΣQ:

T(ΣQ) ∼= A□A□

〈
I◦A, e

−1(x1 ⊗ · · · ⊗ xk)
〉

= A□A□

〈
(1 1, β), e−1(x1 ⊗ · · · ⊗ xk)

〉
∼= ZA(A)

〈
e(1 1, β), x1 ⊗ · · · ⊗ xk

〉
∼= ZA(A)⟨1, x1 ⊗ · · · ⊗ xk⟩ = τ(Σ,M, x•).

(5.33)

Here, e denotes the unitor equivalence e : A□A□ ∼= ZA(A), and β denotes the balancing of the
object 1 1 ∈ AA□AA with respect to the indicated bimodule structure. The last equality is the
definition (5.2) of τ(Σ,M, x•). The chain of morphisms (5.33), composed with the isomorphism

T = T(Σ) ∼= T(Σ1) ∼= T(ΣQ) (5.34)

obtained from the moves, defines the isomorphisms tM : T ∼= τ(Σ,M, x•) mentioned at the start
of the proof.

It should be noted that this statement is really not about extruded graphs, but about the
block block space of a monochromatic labeled defect sphere. We expect that different choices of
markings M,M ′ lead to the same isomorphism tM = tM ′ , but for now this remains a conjecture.

Definition 5.7. Let R be a spiked ball. By a marking M on R, we mean a marking on the
extended surface obtained from the surface ∂R ∼= S2 of R by cutting out the vertices, which
intersects the edges on the boundary of R only transversely.

If M is a marking on R, then a monochromatic extruded graph ΣR on S2 can be constructed
from (R,M) as follows. First, we modify R slightly: We add spikes labeled by the monoidal unit
1 ∈ ZA(A) until all vertices are spiked. This changes neither the multiplicity modules for the
vertices, nor vector space τn for the point r in the center of R (up to more than a canonical
isomorphism). The construction of the extruded graph ΣR from the spiked ball R then amounts
only to a change in vocabulary: Vertices become nodes, edges become defect lines, spikes become
rays and the point r ∈ R becomes the core. Observation 5.3 and Observation 5.6 then ensure that
the algebraic labels can be transferred from the spiked ball to the extruded graph accordingly.
We call ΣR the extruded graph associated to the spiked ball R with marking M .
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At most, the core label of ΣR depend on the choice of marking.
Recall from [TV17, Sec. 15.3] that a (colored) knotted net in S2 is a string diagram drawn on

the sphere, where some strands are labeled by objects of A and others by objects of the Drinfeld
center ZA(A), as depicted, for example, in [TV17, Ex. 15.3.4]. The strands labeled by objects of
the Drinfeld center are allowed to cross other strands at isolated points away from the coupons.
We only consider knotted nets where all crossings are between one strand labeled by an object
in the Drinfeld center, and one strand labeled by an object in A. For these types of crossings,
there is no distinction between over- and under-braidings. Both circular coupons (or equivalently,
vertices), which are labeled by vectors in multiplicity modules, and rectangular coupons with
distinguished inputs and outputs, labeled by appropriate morphisms, are allowed. The following
picture gives an example of a knotted net:

r
(5.35)

Definition 5.8. A knotted net Γ is said to be a projection of a spiked ball R iff it can be
obtained from R as follows:

• The edges and vertices of R are strands and (circular) coupons of Γ.

• There is one additional coupon in Γ, called the central coupon. For each spike in R, labeled
by an object x ∈ ZA(A), there is a strand in Γ, labeled by x as well, starting at the output
of the central coupon and ending at the coupon corresponding to the vertex which the
spike was attached to. We call these strands spike-strands. Spike-strands are allowed to
cross other strands, but not other spike-strands or themselves.

• The spiked vertices in R are labeled by vectors in multiplicity modules H(x, a•) whose
cliques consist of hom-spaces of the form

〈
U(x), a1 · · · aiai+1 · · · an

〉
. In contrast, the circular

coupons of Γ are labeled, after passing through multiplicity modules H(1, {a•, U(x)∗}), by
hom-spaces of the form

〈
1, a1 · · · ai U(x)∗ ai+1 · · · an

〉
. The position of U(x)∗ within the

tensor product is determined by the location where the corresponding spike-strand attaches
to the coupon; this is arbitrary. There is an isomorphism

H(x, a•) ∼=
〈
U(x), ai+1 · · · ana1 · · · ai

〉 ∼=
〈
1, U(x)∗ ai+1 · · · ana1 · · · ai

〉 ∼= H(1, {a•, U(x)∗})
(5.36)

for each spiked vertex of R. We require that the labels of the spiked vertices of R are
related to the labels of the circular coupons of Γ via these isomorphisms.

• The sphere underlying Γ, with the coupons that stem from spiked vertices in R cut out, is
an extended surface. The central coupon and the spike-strands form a marking for this
extended surface, with an appropriate labeling (x•) of strands by objects xi ∈ ZA(A), as in
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Section 5.1. More precisely, to obtain a marked extended surface with labels, we label the
boundary components (of coupons attached to a spike-strand) by the object in the Drinfeld
center ZA(A) that labels the adjacent spike-strand, and we collapse the rectangular central
coupon to a point. Since all spike-strands are attached to the output of the central coupon,
they are linearly ordered, and we select the left-most spike-strand as the distinguished edge
for the marking.
Recall that the central point r ∈ R is labeled by a vector in the space τk(x•) from (5.5),
if there are k many spikes. The marking we just introduced provides us with a canonical
isomorphism

τk(x•) ∼= ZA(A)⟨1, x1 · · ·xn⟩ , (5.37)
where the xi are ordered according to the way the spike-strands are attached to the central
coupon. We fix the label of the central coupon by requiring that this isomorphism relate
the vector labeling the central point r ∈ R to the label of the central coupon.

Note that there are, in general, multiple knotted nets ΓR which are projections of R. Only
when the spiked ball has no spikes can we speak of the projection ΓR. As an example, consider
that the knotted net (5.35) is a projection of the spiked ball (5.9). It is clear that a marking on
a spiked ball R in the sense of Definition 5.7 defines a projection of R.
Remark 5.9. The concept of a spiked ball does not appear in [TV17]. In a sense, it is avoided
there by formulating the theory in such a way that wherever a spiked ball would appear (e.g. in
[TV17, Fig. 13.1, Sec. 15.5.1]), a canonical projection exists. This projection is then defined,
skipping over the auxiliary notion of a spiked ball, which fits nevertheless quite natural into the
theory.

Schematically, the relation between spiked balls, knotted nets, extruded graphs and their
respective evaluations is as depicted in the following diagram, where the dotted arrows are defined
for a choice of marking M for each spiked ball.

{spiked balls R}

{knotted nets ΓR} {extruded graphs ΣR}

K

projection for marking M associated to (R,M)

evaluation FA evaluation |−|

(5.38)

The main result of this section is that the diagram (5.38) commutes for all choices of markings.
This is first shown in Proposition 5.10 for spiked balls without spikes, and then, in Theorem 5.12,
for general spiked balls. Indeed, projections and associated extruded graphs do not depend on a
marking M for spiked balls without spikes, which is why no marking appears in the formulation
of
Proposition 5.10 (Evaluating Spiked Balls without Spikes). The evaluation of the extruded
graph ΣR associated to a spiked ball R without spikes is equal to the invariant of the knotted net
ΓR, which is the projection of R,

|ΣR| = FA(ΓR). (5.39)
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Proof. We know that by Theorem 4.5, the extruded graph ΣR can be evaluated using only
the moves OR, C, EF and SV, as well as the formula for the evaluation of loop graphs from
Theorem 3.28. Since the core label of ΣR was transparent from the beginning (as the original
spiked ball R is concentrated on the surface), we can even do without the SV-move. Analogous
moves hold for knotted nets as well: The move C is translated to the move R7 from [TV17, Sec.
15.4.6]. Similar moves to OR and EF for knotted nets are also obvious. We can thus apply a
chain of these moves to the extruded graph ΣR and to the knotted net ΓR simultaneously, until
we obtain, as in the proof of Theorem 4.5, a loop graph ΣR

′, and a knotted net ΓR′ with a single
coupon and a single strand. Their labels are still in correspondence: the defect line of ΣR

′ is
labeled by the same object as the strand of ΓR′, and the node label of ΣR

′ is the same as the
coupon label of ΓR′, after passing through the isomorphism for node spaces of monochromatic
extruded graphs from Proposition 5.4. Since the moves used are invariances, the respective
evaluations remain unchanged:

|ΣR| =
∣∣∣ΣR

′
∣∣∣ , FA(ΓR) = FA(ΓR′). (5.40)

The evaluation of loop graphs is discussed in Theorem 3.28, and the analogous result for knotted
nets is found in [TV17, Ex. 15.4.2]. The respective evaluations agree.

Corollary 5.11. Extruded graphs, in particular the generalized 6j-symbols described in Exam-
ple 3.21, actually generalize the known 6j-symbols for spherical fusion categories.

Theorem 5.12 (Evaluating Spiked Balls). Let R be a spiked ball, and let M be a marking on R
in the sense of Definition 5.7. The evaluation of the extruded graph ΣR associated to (R,M) as
defined in Definition 3.17 is equal to the invariant of the knotted net ΓR which is a projection of
R obtained from the marking M :

|ΣR| = FA(ΓR). (5.41)

Proof. Let us first dress up the knotted net ΓR to a knotted net ΓR′ which leaves the invariant
FA(ΓR) = FA(ΓR′) unchanged: We replace every crossing by a coupon labeled by an appropriate
braiding morphism, see [TV17, Fig. 15.4]. Moreover, we assume that all vertices of R are spiked
vertices. This is not a restriction: Adding transparent spikes labeled by 1 ∈ ZA(A) to non-spiked
vertices does not change the associated extruded graph. It does change which knotted nets are
projections of R, but only up to transparent strands, which have no effect on the evaluation.

The idea is to apply moves of invariance to the extruded graph ΣR until it becomes an
extruded graph ΣR

′ whose rays are transparent, and which resembles the knotted net ΓR′ in the
following sense: there exists a spiked ball R′ without spikes such that ΣR

′ is the extruded graph
associated to R′ and such that ΓR′ is the projection of R′. The situation can be summarized
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diagrammatically:

spiked ball R
with marking M

knotted net ΓR
spiked ball R′

without spikes extruded graph ΣR

knotted net ΓR′ extruded graph ΣR
′

FA(ΓR′) =
∣∣∣ΣR

′
∣∣∣

projection using M associated to (R,M)

dress up
the projection associated to

moves

evaluation FA evaluation |−|

(5.42)

The equality FA(ΓR′) =
∣∣∣ΣR

′
∣∣∣ at the bottom of of (5.42) holds by Proposition 5.10. Because

the extruded graphs ΣR and ΣR
′ are related by moves of invariance, they evaluate to the

same scalar
∣∣∣ΣR

′
∣∣∣ = |ΣR|. Similarly, we will construct the knotted net ΓR′ in such a way that

FA(ΓR) = FA(ΓR′) holds. Combining these equalities, we find:

FA(ΓR) = FA(ΓR′) =
∣∣∣ΣR

′
∣∣∣ = |ΣR| , (5.43)

which proves the theorem. Hence, we have to give a sequence of moves that transform ΣR into
ΣR

′. This is done in the remainder of this proof.
The marking M of the spiked ball R serves also as a marking for the extruded graph ΣR, in

the meaning discussed in Observation 5.6. We further follow Observation 5.6, by applying the
chain of moves introduced there to ΣR, using the marking M to transform it into the subdivided
form (5.32). Recall that in this new extruded graph, we distinguish several types of nodes and
defect lines, such as main nodes, braiding nodes, domain nodes, and the core node, as well as
marking lines.

The next goal is to modify this subdivided graph such that all rays are transparent, except for
the ray connecting the core node with the core. Note that from each of the main nodes, there is
a path to the core node formed by a chain of marking lines. Using a sequence of moves specified
below, it is possible to "reroute" the ray of a main node node through this chain of marking
lines and the core node, resulting in an extruded graph as depicted in (5.44). When comparing
(5.44) to (5.32), note that previously, the ray connecting the chosen main node with the core
was labeled by x. Now, in (5.44), this ray is labeled transparently, while the ray connecting the
core node to the core carries the label x. The marking lines on the path from the core node to
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the main node are now labeled by U(x).

x

U(x) U(x)U(x)

(5.44)

The moves needed to perform this rerouting of the x-labeled ray can all be seen to be invariances
by applying the monochromatic C-move from Lemma 5.5 to both sides. We proceed to specify
them.

First, we need to redirect the ray (labeled by x in the illustrations) of the main node that we
consider through the first domain node encountered in the chain of marking lines leading to the
core node. This leaves the main node with a transparent ray label. In the following pictures, note
that we work with monochromatic labels for the rays and nodes, in the sense of Observation 5.3.
In particular, the node labels are describes using morphisms in any of the concrete hom-spaces
(5.6) that realize the multiplicity module; which one we choose is clear from the context.

x

f

main
node

domain
node

towards core node

→

x

f
U(x)

(5.45)

Continuing along the chain of marking lines, the next node is either the core node or a braiding
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node. For the case of a braiding node, the following move is used.

x

U(x) a

a

a

→

x

U(x) U(x) a

a

a

(5.46)

Behind every braiding node, in the direction towards the core node, there will be another domain
node. The right-most braiding node in (5.46) is the same as the left-most node in (5.47). The
node labels seem different, but we only chose to represent them in different instances of the
hom-spaces (5.6). These hom-spaces are related by the isomorphism (5.7), which is the source of
the half-braiding that appears in (5.47). Using different hom-spaces is necessary when checking
that the respective moves (5.46) and (5.47) are invariances using the monochromatic C-move.

x

U(x)
a

a

a →

x

U(x) U(x)
a

a

a
(5.47)

Finally, after repeating the moves (5.46) and (5.47) for some time, the last segment in the chain
of marking lines involves a domain node and the core node. When completing this chain of moves
for the first chain of marking lines, the core node’s ray will be labeled by y = 1 ∈ ZA(A), but
after that, the core node may have a non-trivial ray label y.

x y

U(x) U(y)
y →

U(x) U(x) U(y)

x y

x y (5.48)

After applying the rerouting procedure to all main nodes, we are left with an extruded graph
ΣR

′ of the following form, in which all rays are transparent, except for the ray attached to the
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core node.

ΣR
′ = (5.49)

The final change we would like to make is to raise the core data to the surface: By a generalized
version of the SV-move, we can obtain an extruded graph where all rays are transparent, and
where the core label is transparent, with the information that was previously stored in the
core now being moved to the core node, and thus onto the coat. This is possible because the
multiplicity module for the core node is isomorphic to the dual of the vector space τk from (5.5),
which is the space of core labels.

It is clear that the extruded graph we obtained in this way and the knotted net ΓR (after
changing crossings to braidings, as mentioned before) are similar in the following sense: There
is a spiked ball R′ without spikes, such that ΓR is the projection of R′, and such that the
newly-constructed extruded graph is associated to R′. Hence, we may invoke Proposition 5.10,
which completes the proof of Theorem 5.12.

5.3 Relation to Polygon Diagrams

In recent work by Meusburger [Meu22], so-called polygon diagrams were introduced in order to
define a state-sum model with surface defects. In this section, we will briefly discuss how polygon
diagrams and extruded graphs are related. We will see that polygon diagrams roughly correspond
to extruded graphs on the sphere, whose only non-transparent defect lines are arranged in a
circle.

Let A and B be spherical fusion categories, and consider a finite set of A-B-bimodule categories
M1, . . . ,Mk. We consider an extruded graph Σ on the sphere, which has k many nodes, equipeed
with a cyclic order and connected with k many defect lines according to the order. We call the
string of defect lines the equator of the extruded graph, and note that it splits the surface into two
hemispheres, labeled by the spherical fusion categories A and B. Let us call the interior of these
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two regions the monochromatic regions of Σ, because we allow for networks of monochromatic
defect lines and nodes in the two hemispheres, which may connect to the nodes on the equator.
The ray categories of the equatorial nodes are equivalent to categories of bimodule functors
via the Eilenberg-Watts equivalences from Section 2.13. The ray categories for the nodes in
the monochromatic areas are all equivalent to Drinfeld center of either A or B as a result of
Proposition 5.4. We require all of them to be labeled by the monoidal unit 1. Then the block
space of Σ is known to be the space of bimodule natural transformations between (compositions
of) the bimodule functors that label the equatorial rays; see Example 3.10 for two equatorial
nodes or [FSS22, Ex. 4.35] for the general case.

Let us now consider a polygon diagram as in [Meu22, Ex. 4.4]. From this, we can define an
extruded graph of the form just described: The boundary of the polygon diagram becomes the
equator. Recall that there are three overlaid graphs in interior of the polygon diagram: one for
each acting category (solid black or gray lines in [Meu22]) and one (dashed lines in [Meu22])
labeled by functors. The sub-diagrams of the acting categories we project onto the corresponding
hemispheres – they become the monochromatic parts of the extruded graph –, and the lines
labeled by bimodule functors become the rays of the equatorial nodes. We restrict ourselves to
only those polygon diagrams where all functor-labeled lines meet in a single vertex labeled by a
(bimodule) natural transformation ν. If this is the case, then ν is an appropriate core label for
the extruded graph.

Without going into much detail, we describe why evaluation of this extruded graph obtained
from a polygon diagram is equal to evaluation of the polygon diagram itself, as defined in [Meu22,
Def. 2.13]. This is similar to the proof of Theorem 5.12: we transform, in parallel, the extruded
graph and the polygon diagram in question into an extruded graph (polygon diagram) with
only a single node (vertex on the boundary of the polygon diagram) and a single ray (dashed
line attached to the vertex). Each step of this transformation leaves the evaluation of both the
extruded graph and the polygon diagram invariant. What we have obtained is a lasso graph.
Having reduced the comparison between extruded graphs and polygon diagrams to this special
case, the next result now shows that lasso graphs are indeed evaluated just like the corresponding
polygon diagrams.

Proposition 5.13. Let Q be a lasso graph as in (3.44), with the defect line labeled by an
object m ∈ AMB. Let F : M → M be a bimodule endofunctor of M, pick a bimodule natural
transformation ν : F → idM, and a morphism f : m → F (m).

From these data we construct ray, core, and node labels for Q as follows. For the ray label, we
choose x := coẼWm(F ), using the equivalence coẼWm from Section 2.13. Concerning the core
label, note that there is a chain of isomorphisms

NatA|B(F, idM) = FunA|B(M,M)⟨F, idM⟩ ∼=
〈
x, I◦M

〉
∼= ⟨x, I◦M⟩ ∼= ⟨I◦M, x⟩∗ ∼= T∗. (5.50)

The first equality is trivial, the second isomorphism is obtained by applying the functor coẼWm,
the third isomorphism is post-composition with the isomorphism Θ−1

M :I◦M→I◦M, then we used
(4.9), and finally, we recalled the explicit form of the block space of a lasso graph from (3.4).
Let φ ∈ T∗ denote the image of ν under this chain of isomorphisms; this is the core label for
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Q. From the Yoneda lemma (2.169), we obtain a natural isomorphism Y between two functors
Fun(M,M) → vect:

YG :
〈
m⊠m, coẼW(G)

〉
∼=
〈
m, G(m)

〉
. (5.51)

We define the node label f̃ : m⊠m → U(x) as f̃ := DADB Y
−1
F (f).

We now claim: The evaluation |Q| of the lasso graph Q with the specified labels is given by the
scalar

|Q| = TrM (νm ◦ f) ∈ K. (5.52)

Proof. By applying the SV-move to Q and then using Theorem 3.28, we know that

|Q| = TrM
(
sil−1(φ′ ◦ Y −1

F (f))
)
, (5.53)

where φ′ ∈
〈
x, I◦M

〉
is the image of the core label φ under the appropriate isomorphism

T∗ ∼=
〈
x, I◦M

〉
, which is part of the chain of isomorphisms (5.50). In terms of the natural

transformation ν, we have φ′ = coẼWm(ν). Recognizing that sil−1 = YidM , we draw the
following naturality diagram for Y ;〈

m⊠m, coẼW(F )
〉 〈

m, F (m)
〉

〈
m⊠m, coẼW(idM)

〉
⟨m, m⟩

YF〈
m⊠m, coẼW(ν)

〉
=φ′◦− νm◦−

YidM

(5.54)

Comparing the images of Y −1
F (f) : m⊠m → coẼW(F ) under the two paths around the diagram

(5.54), we find
sil−1(φ′ ◦ Y −1

F (f)) = YidM(φ′ ◦ f̃) = νm ◦ YF (f̃) = νm ◦ f. (5.55)

Thus, the trace of the left-hand side of (5.55) is equal to the trace of the right-hand side, and
the proof is done.

In particular, we find that our generalized 6j-symbols from Example 3.21 are a further
generalization of what are called generalized 6j-symbols in [Meu22, Sec. 4.3]. To explain the
appearance of the factor DADB in the definition of the node label f̃ , recall from Remark 2.34
that we expect categorical dimensions to appear when keeping track of how traces change under
the Eilenberg-Watts equivalences.

5.4 State-sums with Defects

We are now in a position to sketch the construction of a state-sum model with defects in all
dimensions. Since we are only laying out an idea, we have little aspiration to rigor in this section,
and some terminology is left imprecise. The following is inspired by the construction of Turaev
and Virelizier as laid out in [TV17].

Let Σ and Σ′ be labeled defect surfaces as introduced in Section 3.1. We consider a 3-cobordism
(M,D) with defects from Σ to Σ′, that is:
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• an oriented 3-manifold M with boundary ∂M ,

• an orientation-preserving embedding of Σop ⨿ Σ into ∂M ; the image of this embedding is
called the gluing boundary ∂gM , and its complement in ∂M is called the free boundary,

• an oriented stratified 2-polyhedron D, see [TV17, Sec. 11.1.2], embedded in M , called the
defect structure. It should respect the geometry of the cobordism:

– The free boundary of M is a subset of D.
– No interior of any 2-cells of D intersects the gluing boundary.
– If the interior of an edge of D intersects the gluing boundary, then it is contained in it.

Moreover, the defect structure is labeled by the following algebraic data:
– The connected components of M \ D, called the domains, are labeled by spherical

fusion categories, and
– the 2-cells of D are labeled by appropriate traced bimodule categories; 2-cells of D

that lie in the free boundary are accordingly labeled by one-sided module categories.
– The orientation of each edge of D, together with the orientation of M , endows the

set of adjacent (germs of) 2-cells with a cyclic order. We associate to the edge the
balanced Deligne product of the bimodule categories that label the adjacent 2-cells
using this cyclic order; note that this category is defined in a similar way as ray
categories (3.8).1 Each internal edge of D – meaning it is not contained in the gluing
boundary – is labeled by an object from the associated category.

– Observe that there always exists a neighborhood U of any internal (meaning v ̸⊂ ∂gM)
vertex v of D which carries the structure of an extruded defect surface (i.e. an extruded
graph without labels): The intersection of the 2-cells of D with the neighborhood’s
boundary ∂U are the defect lines, and the intersection of the edges of D with U are
the rays of the extruded defect surface. Since the labels for the edges of D are suitable
labels for the rays of the extruded defect lines, there is a block space Tv associated
with the core. We thus label the internal vertex v by a linear form φ : Tv → K.

Notice that edges and vertices of D on the gluing boundary are not labeled. These fulfill a
different role from the internal edges and vertices: The intersection of D with the gluing
boundary equips the gluing boundary with the structure of a labeled defect surface. We
require that this structure equals the one defined by the embedding of Σ and Σ′.

In the following, when we speak of "the cobordism M", we really mean the pair (M,D).
A state-sum TFT τ associates vector spaces to the defect surfaces Σ and Σ′ and a linear

map between these vector spaces to the defect 3-cobordism M . In order to state the definition
however, we need to refine the defect structure D of M into a skeleton – this essentially means
to add 2-cells labeled by regular bimodule categories, edges labeled by silent objects and vertices

1The orientation of the edge, together with the orientation of M , also defines an orientation on each germ of
each adjacent 2-cell. This orientation can be equal or opposite to the chosen orientation on the 2-cell. If the
orientations are different, then we consider the opposite bimodule category in the relative Deligne product
associated to the edge instead.
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labeled by canonical vectors to D, thereby obtaining another defect structure D̃. We suppose
that D̃ is sufficiently fine in a sense we will not make precise here – certainly, we require that
all domains of D̃ are open balls. Since the refinement also affects the footprint of the defect
structure on the gluing boundary, the newly obtained 3-cobordism M̃ has as source and target
defect surfaces Σ̃ and Σ̃′, which are refinements of Σ and Σ′ in the sense of [FSS22, Defn. 5.15].

As an intermediate step, we construct a pre-state-sum τp for sufficiently fine defect surfaces
and defect 3-cobordisms, such as Σ̃, Σ̃′, and M̃ . To the source component of the gluing boundary
Σ̃, we assign the pre-block space τp(Σ̃) = Tp(Σ̃), and similarly for the target defect surface.
Because the embedding of Σ̃ into ∂M̃ is orientation-reversing, the vector space associated with
the gluing boundary of ∂M̃ is

τp(∂gM̃) = Tp(Σ̃)∗ ⊗ Tp(Σ̃′) ∼= vect
〈
Tp(Σ̃), Tp(Σ̃′)

〉
. (5.56)

By a coloring of a 2-cell of D̃, we mean the choice of a (representative of an isomorphism class of
a) simple object in the bimodule category with which the 2-cell is labeled. A choice of coloring
for each 2-cell is called a coloring c of D̃. For a given coloring c of D̃, we now consider around
each internal vertex v of D̃ again a neighborhood Γv, which carries the structure of an extruded
defect surface, with ray and core labels. In addition now, the coloring c provides Γv with object
labels for the defect lines, so that Γv has well-defined node spaces. In the same way, the defect
coloring determines labels for the defect lines of the gluing boundary. The tensor product over
the total node spaces for all internal vertices v of D̃, and the node spaces of the incoming and
outgoing defect surfaces Σ̃ and Σ̃′, is of particular importance to us:

N := N(Σ̃)∗ ⊗ N(Σ̃′) ⊗
⊗
v

N(Γv), (5.57)

where N(Γv) is the total nodespace of Γv as introduced in (3.15). The unordered tensor product
(5.57) can be organized in another way, namely by edges instead of vertices. Either both end
points of an internal edge e are internal vertices v0 and v1, or one end point is an internal vertex
v0, and the other lies on the gluing boundary. In any case, an internal edge defines two nodes:
either a node n0 of Γv0 and a node n1 of Γv1 , or a node n0 of Γv0 and a node n1 of the defect
surface ∂gM̃ . We define the node space of an internal edge e as Ne := N(n1) ⊗ N(n2). This allows
us to write the total node space N arranged by internal edges:

N =
⊗
e

Ne. (5.58)

Let n0, n1 be the nodes associated to an internal edge e. Unraveling of the definition of the
nodespaces N(n0) and N(n1) as hom-spaces (3.14) reveals that the bimodule traces on the labels
for the 2-cells of D̃ exhibit N(n1) as the dual of N(n0). This shows that the nodespace of an
internal edge e can be expressed as

Ne
∼= N(n0) ⊗ N(n0)∗ ∼= N(n1)∗ ⊗ N(n1), (5.59)

and that there is a distinguished vector ⋆e ∈ Ne, which is obtained as a sum over elements of
dual bases in either of the two expressions for Ne in (5.59), as explained in Section 2.4. Because
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the nodespace N can be built from the nodespaces of internal edges (5.58), the distinguished
vectors ⋆e in the nodespaces of internal edges assemble into a distinguished vector

⋆ := ⊗e⋆e ∈ N (5.60)

of the nodespace N.
On the other hand, the evaluation |−| of extruded graphs from Definition 3.17 gives a linear

form |Γv| : N(Γv) → K for every internal vertex v. This allows us to identify a distinguished
vector

∣∣∣M̃, c
∣∣∣ in the nodespace associated to the gluing boundary, which is the image of ⋆ under

the following map

⋆ ∈
⊗
e

Ne
(5.58)= N(5.57)= N(Σ̃)∗ ⊗ N(Σ̃′) ⊗

⊗
v

N(Γv)
id⊗id⊗

⊗
v
|Γv |

−−−−−−−−−→ N(Σ̃)∗ ⊗ N(Σ̃′). (5.61)

So far, we have fixed a coloring c. In the next step, we will have to take the sum over all
possible colorings, so we have to keep track of the way that the node spaces and the distinguished
vector depend on c. Indeed, while

∣∣∣M̃, c
∣∣∣ depends on c as a whole, the nodespaces N(Σ̃) and

N(Σ̃′) only depend on the coloring of those 2-cells of D̃ that are adjacent to the respective gluing
boundary components. We denote these sub-colorings of c by cΣ̃ and cΣ̃′ , and add the dependence
on the coloring as an index to the nodespaces:∣∣∣M̃, c

∣∣∣ ∈ NcΣ̃
(Σ̃)∗ ⊗ NcΣ̃′ (Σ̃′). (5.62)

Observe that since a coloring assigns simple objects as labels for the defect lines of Σ̃ and Σ̃′, the
direct sum over the node spaces for all colorings is just the pre-block space:

Tp(Σ̃) =
⊕
cΣ̃

NcΣ̃
(Σ̃) and Tp(Σ̃′) =

⊕
cΣ̃′

NcΣ̃′ (Σ̃′). (5.63)

Let us define a vector

t(M̃) :=
( ∏

domains d
not adj. to Σ̃′

1
DAd

) ⊕
cΣ̃, cΣ̃′

1
dim1(cΣ̃′)

∑
cint

dim(c)
∣∣∣M̃, c

∣∣∣ ∈ Tp(Σ̃)∗ ⊗ Tp(Σ̃′), (5.64)

where:

• The product over d runs over domains of M̃ that are not adjacent to the target component
of the gluing boundary Σ̃′.

• Ad denotes the spherical fusion category that labels the domain d.

• cΣ̃ and cΣ̃′ run over colorings for the 2-cells of D̃ adjacent to either part of the gluing
boundary, while cint runs over colorings of the 2-cells that are not adjacent to any gluing
boundary. Together, they form a coloring c = cΣ̃ ⊔ cint ⊔ cΣ̃′ of D̃.
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• Recall that 2-cells of D̃ are labeled by traced bimodule categories, so that the objects a
coloring assings to a 2-cell have a dimension. As in [TV17, Eq. 13.1], the dimension dim(c)
of a coloring c is the product of the dimensions of the objects c(f) that c assigns to each
2-cell f of D̃, exponentially weighted by the Euler characteristic χ(f) of f :

dim(c) :=
∏

2-cells f
dχ(f)
c(f) . (5.65)

• The contractible dimension dim1(cΣ̃′) is defined analogously, except that the Euler charac-
teristic is not taken into account:

dim1(cΣ̃′) :=
∏

2-cells f
adjacent to Σ̃′

dc(f). (5.66)

Since the dimensions of simple objects in a traced bimodule category are invertible, so is
dim1(cΣ̃′).

The vector t(M̃) from (5.64) corresponds, in the usual way, to a linear map τp(M̃) : Tp(Σ̃) →
Tp(Σ̃′). We conjecture that τp is functorial in the sense that, given another sufficiently refined
defect 3-cobordism Ñ : Σ̃′ → Σ̃′′, the linear map τp(M̃ ⊔Σ̃′ Ñ), which is associated to the defect
3-cobordism M̃ ⊔Σ̃′ Ñ obtained by gluing M̃ and Ñ along Σ̃′, is equal to the composition

τp(M̃ ⊔Σ̃′ Ñ) = τp(Ñ) ◦ τp(M̃). (5.67)

The functoriality property (5.67) would generalize the known statement for the monochromatic
case without free boundaries [TV17, Lem. 13.3], and in the presence of monochromatic free
boundaries [Far20, Lem. 4.3.4]. The dimensions and normalization factors in (5.64) are chosen
such that we expect these proofs to extend to (5.67).

Let us now suppose that M̃1 and M̃2 are two refinements of M̃ , which are both defect 3-
cobordisms M̃1, M̃2 : Σ̃ → Σ̃′ between the refinements Σ̃, Σ̃′ of Σ and Σ′. Then we obtain
two linear maps τp(M̃1), τp(M̃2) : Tp(Σ̃) → Tp(Σ̃′), with common source and target. In the
monochromatic case, [TV17, Thm. 15.8] states that these maps are equal. We expect the same
independence of the refinement to remain valid in our case:

τp(M̃1) = τp(M̃2). (5.68)

If this is true, it immediately follows from the functoriality property (5.67) that the linear map
τp(Σ̃ × [0, 1]) : Tp(Σ̃) → Tp(Σ̃) assigned to the cylinder over Σ̃ is an idempotent. We set

τ(Σ̃) := im τp(Σ̃ × [0, 1]). (5.69)

and define τ(M̃) : τ(Σ̃) → τ(Σ̃′) as the restriction of τp(M̃) : Tp(Σ̃) → Tp(Σ̃′) to these subspaces.
The assumed independence of the internal refinement (5.68) ensures that there is a distinguished
isomorphism τ(Σ̃1) ∼= τ(Σ̃2) between the vector spaces associated to a pair of refinements Σ̃1,
Σ̃2 of a defect surface Σ, and that the these isomorphisms, considered for all refinements of Σ,
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assemble into a clique. This makes it possible to extend the construction of τ to defect surfaces
Σ which may not be sufficiently fine:

τ(Σ) := lim
refinements Σ̃ of Σ

τ(Σ̃). (5.70)

Moreover, we obtain a well-defined linear map τ(M) : τ(Σ) → τ(Σ′) for a defect 3-cobordism
M : Σ → Σ′.

This sketch of the construction of a topological field theory τ with defects is a natural extension
of the definition of the Graph TQFT from [TV17]. Of course, much work is left to be done for
the definition of τ to become well-defined: We have not made the category of defect 3-cobordisms
precise enough: how which topologies exactly are allowed for the defect structures? Another
vague term is that of refinement – it is unclear when a defect structure is sufficiently fine. Once
these questions are answered, several theorems have to be proved. Namely, the functoriality
property (5.67) has to be shown, along with the independence of τp of the internal refinement
(5.68). The latter property in particular appears challenging, and the proof of the corresponding
statement in the monochromatic case [TV17, Thm. 15.8] is extensive. Notwithstanding these
challenges, the results of the present thesis have brought us closer to giving a full definition of the
state-sum model with defects τ . The evaluation of extruded graphs introduced in Definition 3.17
was prominently used in (5.61), and Theorem 5.12 ensures that our proposed evaluation at
vertices specializes to the usual evaluation at vertices in the monochromatic case, as described in
[TV17, Sec. 15.5.1].

Considering the state-sum model with defects τ also prompts questions on the relationship
of τ to other TFT-like models. Given that the modular functor from [FSS22] was heavily used
in the definition of extruded graphs, and that both it and τ use the same pre-block spaces as
intermediate data for their definition, it is natural to expect a close connection. We therefore
formulate

Conjecture 5.14. The linear map τp(Σ̃ × [0, 1]) : Tp(Σ̃) → Tp(Σ̃) is equal to the holonomy
idempotent h from Definition 3.16, and thus its image is equal to the block space

τ(Σ̃) = T(Σ̃). (5.71)

To finalize this outlook, we end with a few remarks on further implications of extruded graphs
and the state-sum model with defects.

Remark 5.15. The possibility to consider extruded graphs on higher-genus surfaces allows for
the definition of another TFT η that assigns block spaces to defect surfaces. On a sufficiently
refined defect 3-cobordism M : Σ → Σ′, it is defined as follows. First, choose core labels α, β for
the defect surfaces Σ, Σ′ and fix a coloring c for the defect structure of M . This turns Σ and Σ′

into extruded graphs, possibly of higher genus. They, together with the extruded graphs Γv for
internal vertices v that we encountered in (5.57), have nodes which come in pairs determined
by the edges of the defect structure. The two nodes of a pair are in such a duality as needed
to apply the hypothesized move G. We would like to perform G on all such pairs. This is
almost possible, with a caveat: Extruded graphs do not allow closed defect loops without a node.
This is remedied by inserting a transparent vertex using DV whenever such a closed loop would
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appear. We obtain an extruded graph Γc this way, which is still dependent on the coloring c.
The association α⊗ β 7→ |Γc| is a map T (Σ) ⊗ T (Σ′)∗ → K, which corresponds to a linear map
ηc(M) : T (Σ) → T (Σ′). While different choices for the order in which the several instances of the
moves G and DV were applied may result in different extruded graphs Γc, the fact that these
moves are by Theorem 4.4 invariances implies that ηc(M) is well-defined. Finally we define

η(M) :=
( ∏

domains d
not adj. to Σ′

1
DAd

) ∑
c

dim(c)
dim1(cΣ′) ηc(M) : T (Σ) → T (Σ′). (5.72)

We refrain from showing here that η is functorial. If we assume Conjecture 5.14, then τ and η
can be directly compared. We expect them to be equal,

η(M) = τ(M), (5.73)

which would imply that there exists a description of state-sum models (5.72) which uses the
evaluation of a tubular neighborhood of the 1-skeleton of the defect structure of a 3-cobordism
M , considered as an extruded graph.

Remark 5.16. A different description of a 3-dimensional state-sum TFT with defects in all
codimensions was given in [Meu22]. This construction is indeed independent of the chosen
triangulation. However, it is also more restrictive than our proposed model in that the defect
structure is required to form a 2-manifold. In particular, no defect lines with more than two
adjacent defect surfaces are allowed.

This makes it working with bimodule functors as opposed to objects in relative Deligne
products as labels for defect lines manageable. Moreover, since vertices (0-dimensional defects)
lie embedded in a surface, the adjacent defect lines are cyclically ordered. For this reason,
polygon diagrams, as opposed to more general extruded graphs, are sufficient to describe their
neighborhoods.

Another difference between to our proposed model is that the TFT from [Meu22] is based
on a formulation of state-sum models that can be thought of as Poincaré-dual to our approach:
Instead of a skeleton as an auxiliary structure, a triangulation (or a polytope complex in the
sense of [BK10]) is used. In transitioning from a skeleton to a triangulation, the n-dimensional
components of the skeleton become (3 − n)-dimensional cells of the triangulation. This means
we no longer evaluate at vertices, but at 3-cells; Edges, instead of faces, now have to be labeled
by state-sum variables, and so on.

Crucially, however, this Poincaré-dualization should only be applied to the auxiliary structure
of a skeleton – and not to the defect structure of a cobordism. This highlights a difference
between the two models. In the formulation of [Meu22], defect structures and triangulations have
to be treated as separate types of objects: The defect structure is part of the data of a cobordism,
whereas a triangulation is auxiliary and serves only a technical purpose in the definition of the
model. In our formulation, on the other hand, we expect to be able to view a skeleton as a
sufficiently refined kind of defect structure. Defect structures and the auxiliary structures used to
define the model are, fundamentally, of the same type. The auxiliary part of the defect structure
is then the monochromatic substructure. This prompts the question: Do defect structures which
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only differ by some monochromatic substructure evaluate to equal linear maps under a state-sum
TFT? This relates to the next remark.

Remark 5.17. In our formulation of the state-sum model τ , the defect structure is taken as
a rigid input datum, and there is no relation between different defect structures on a given
3-manifold. However, there are physical and mathematical reasons why we should consider
defect structures related if they cannot be distinguished by τ . More precisely, τ defines an
equivalence relation on the set of cobordisms M : Σ → Σ′, generated by those local moves on
defect structures that leave τ(M) invariant. Investigating the equivalence classes of cobordisms
brings challenges for future work, such as answering the question: Can we give an explicit
description of a generating set (comprising of local moves of defect structures) for this equivalence
relation?

Remark 5.18. We already remarked on the close relation between extruded graphs and a
graphical calculus for tricategories in Remark 3.3. There, we explained how extruded graphs
could be viewed as 3-diagrams, and how the evaluation of extruded graphs could be obtained
from the evaluation of 3-diagrams. Let us now reverse this reasoning, and try to find a way to
use the evaluation of extruded graphs to define an evaluation of 3-diagrams by means of the
proposed state-sum TFT τ , assuming Conjecture 5.14.

To this end, consider a defect 3-cobordism M whose underlying 3-manifold is a closed ball
with a finite number of open balls removed from its interior. Declare the boundary sphere Σ′

of the closed ball to be the target component of the 3-cobordism, and the remaining boundary
(spheres Σ1, . . . ,Σn in the interior) to be the source defect surface. Now pick a vector φi ∈ T (Σi)
for each connected component of the source defect surface. The defect 3-cobordism M , together
with the φi, can be viewed as a kind of 3-diagram, which unlike the 3-diagrams considered in
[BMS12] is not embedded in the standard cube [0, 1]3, but in some closed ball. Instead of vertices,
M has ball-shaped holes, which is an irrelevant difference. The labeling of the vertices on the
other hand is a real difference: Without the ambient ("blackboard") framing of the standard
cube, we cannot hope to assign 3-morphisms from concrete hom-spaces to vertices (or boundary
components). Rather, we have to use the block space, which we think of as a symmetric version
of the 3-morphism hom-spaces.

For the same reason, our version of a 3-diagram cannot be evaluated to a 3-morphism, but
defines instead a vector in the block space for the target defect surface Σ′ of M . Indeed, the
TFT associates to M a linear map (we assume Conjecture 5.14)

T(M) : T(Σ1) ⊗ · · · ⊗ T(Σn) → T(Σ′). (5.74)

We declare T(M)(φ1 ⊗ · · · ⊗ φn) ∈ T(Σ′) to be the evaluation of the 3-diagram (M,φ•). This
evaluation is clearly isotopy invariant.

Let M ′ be the manifold obtained from M by collapsing the source defect surfaces into individual
points. M ′ is topologically a closed ball. We expect that a homeomorphism M ′ ∼= [0, 1]3, which
satisfies several non-singularity conditions, defines isomorphisms between each block space
involved and a concrete hom-space, and thus defines a 3-diagram in the sense of [BMS12]. The
evaluation of this 3-diagram can then be compared to the evaluation of (M,φ•) in our sense. It
seems likely that they are equal or differ only by a normalization factor. If this is true, then the
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evaluation of extruded graphs, which is essential in the definition of the TFT, facilitates the
definition of an isotopy invariant evaluation of non-framed 3-diagrams in BiModTr.
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