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Zusammenfassung

Die An- oder Abwesenheit schwacher primordialer Magnetfelder in den Leerräumen
zwischen Galaxienhaufen ist ein emp�ndlicher Test für die Physik des frühen Uni-
versums. Bisher konnten durch Beobachtungen nur Grenzwerte für die Stärke und
Kohärenzlänge dieser Felder festgelegt werden. Eine indirekte Methode zur Festle-
gung unterer Grenzwerte für die Stärke dieser Felder und damit zum Nachweis ihrer
Anwesenheit ist die Unterdrückung des sekundären Gammastrahlen�usses von weit
entfernten VHE-Gammastrahlenquellen. TeV-Gammastrahlen induzieren elektroma-
gnetische Kaskaden aufgrund von Paarbildungswechselwirkungen mit Photonen, die
das extragalaktische Hintergrundlicht bilden und den gemessene Fluss bei hohen
Energien reduzieren. Die Kaskaden-Elektronen und -Positronen erzeugen einen se-
kundären Gammastrahlen�uss mit niedrigerer Energie. Die experimentelle Nichtbe-
obachtung dieser sekundären Flusskomponente kann durch die Ablenkung der gela-
denen Elektronen und Positronen in den Magnetfeldern erklärt werden. Eine alter-
native Erklärung, die in der Literatur kontrovers diskutiert wurde, ist der Ein�uss
von Plasmainstabilitäten auf den gesamten neutralen Strahl, der aus Elektronen und
Positronen besteht, die sich durch ein Hintergrundplasma, das intergalaktische Me-
dium, ausbreiten. Diese Instabilitäten könnten dem Strahl Energie entziehen, ohne
eine sekundäre Gammastrahlenkomponente zu erzeugen, oder Teilchen ablenken, oh-
ne dass ein äuÿeres Magnetfeld vorhanden ist.
Moderne Beschleuniger können Strahlen erzeugen, die die Untersuchung der rele-
vanten Instabilitätsprozesse in einer Laborumgebung ermöglichen. Trotz des groÿen
Unterschieds der Skalen kann es möglich sein, mithilfe von Skalierungsbeziehungen,
die abgeleitet werden müssen, zu extrapolieren. In dieser Arbeit untersuchen wir die
Instabilitätsmechanismen mithilfe von Particle-in-Cell-Simulationen. Wir stellen fest,
dass die Instabilität zum Aufbau eines strukturierten elektrischen Feldes führt, das
dem Strahl Energie entziehen kann, indem es das Hintergrundmedium erhitzt, oder
die Strahlteilchen durch einen Impulsdi�usionsprozess ablenkt, der mit einer Fokker-
Planck-Gleichung modelliert werden kann. Die Veränderung der Impulsverteilung
des Strahls könnte in einem Laborexperiment als leicht zugängliche experimentelle
Nachweiÿgröÿe dienen. Wir stellen fest, dass der Instabilitätsmechanismus sowohl in
neutralen Paarstrahlen als auch in experimentell leichter handhabbaren reinen Elek-
tronenstrahlen auftritt.





Abstract

The presence or non-presence of weak primordial magnetic �elds in the voids between
galaxy clusters is a sensitive probe for the physics of the early universe. Currently
observations have only been able to set limits for the strength and coherence length
of these �elds. An indirect method for setting lower limits on the strength of these
�elds, and thus prove their presence, is the suppression of the secondary gamma
ray �ux from far away VHE gamma ray sources. TeV gamma rays induce electro-
magnetic cascades due to pair production interactions with photons that constitute
the extragalactic background light reducing the received �ux at high energies. The
cascade electrons and positrons produce a secondary �ux of gamma rays at lower
energies. The experimental non-observation of this secondary �ux component can
be explained by the de�ection of the charged electrons and positrons in the magnetic
�elds. An alternative explanation that has been controversially discussed in the liter-
ature is the in�uence of plasma instabilities on the overall neutral beam consisting of
electrons and positrons propagating through a background plasma, the intergalactic
medium. These instabilities could drain energy from the beam without producing
a secondary gamma ray component or de�ect particles without the presence of an
external magnetic �eld.
Modern accelerators can produce beams that allow the study of the relevant instabil-
ity processes in a laboratory environment. Despite the vast di�erence of scales it can
be possible to extrapolate using scaling relationships that have to be derived. In this
work we study the instability mechanisms using particle-in-cell simulations. We �nd
that the instability leads to the build up of a structured electric �eld that can drain
energy from the beam by heating the background medium or de�ect the beam par-
ticles by a momentum di�usion process that can be modeled using a Fokker-Planck
equation. The changing of the beam momentum distribution could serve as an easily
accessible experimental probe in a laboratory experiment. Lastly we �nd that the
instability mechanism takes place in both neutral pair beams and experimentally
more easily handleable pure electron beams.
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1 | Introduction

The empty voids between galaxy clusters are a rich laboratory for physics. These voids are
far more than just empty space, they contain a very dilute plasma known as the intergalactic
medium (IGM), the entire di�use electromagnetic radiation called the extragalactic background
light (EBL) and possibly very weak, large scale magnetic �elds (IGMF) that could be remnants
of new physics in the early universe [55, 15]. It is of course not possible to probe these magnetic
�elds with in situ measurements, rather one has to apply indirect probes. So far these searches
have only returned limits on the strength and coherence length of the IGMF. One innovative
method to measure the strength of the magnetic �elds has been dubbed the gamma ray window
[15] and uses gamma rays, that is extremely high energy radiation, emitted from some of the
most violent and energetic environment in our universe: The jets of blazars and gamma ray
bursts. These objects are so bright, that their gamma ray emission can be measured from earth
using modern telescopes. On their way to us these gamma rays spent many million years passing
through the voids and they are so energetic that they can interact with the photon background
to produce cascades of electrons and positrons [23, 58], attenuating the received signal earth at
the highest energies [77]. The cascade electrons and positrons can up-scatter low energy photons
and produce a secondary �ux of gamma rays with lower energies. However the electrons and
positrons are charged particles and thus susceptible to being de�ected in the IGMF. If the IGMF
is strong enough it can suppress the secondary gamma ray �ux [82, 85, 118], produce a halo of
extended emission around the point-like source [43, 17, 58, 6, 83] or produce a time delay that
could take the form of a gamma ray echo for variable gamma ray source [78, 52, 83, 56]. So far
no secondary gamma ray �ux has been measured establishing a lower bound on the strength of
the magnetic �elds.
An alternative explanation for these observations has been investigated in the form of plasma
instabilities [95, 94, 121, 131, 36, 41, 16, 37, 89]: The electrons and positrons in the cascades
form a very dilute and highly relativistic beam of plasma that penetrates another background
plasma, the IGM. These kinds of con�gurations have been known to be notoriously prone to
unstable behavior of various kinds [34, 30, 33, 31, 32, 35]. A feedback loop between the beam
plasma and the background plasma mediated by electromagnetic �elds could drain energy from
the pair beam without producing a secondary gamma ray �ux or modulate the beam in a way
that mimics the de�ection in an incoherent magnetic �eld. If the plasma instabilities are actually
the dominant process has been widely discussed in the literature with mixed results.
The unstable behavior of neutral pair beams has been studied with various analytical and numer-
ical approaches, but performing a dedicated laboratory experiment that mimics the astrophysical
pair beam at vastly reduced scale could improve our understanding of the mechanisms involved.
The production of suitable pair beams with high energy and density by hitting a high density
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CHAPTER 1. INTRODUCTION

target with an electron beam from a Laser Wake�eld Accelerator (LWFA) [59] has already been
demonstrated [98, 127, 100, 99, 101]. Nevertheless we need to stress that most conventional
beam optic elements are not suitable to handle beams containing both negatively and positively
charged particles. In this thesis we want to outline methods for performing such an experiment.
They key challenges will be producing a beam that is suitable for driving the instability su�-
ciently long to produce a detectable signal and �nding methods to quantitatively measure the
unstable behavior.
We will start in chapter 2 with an excursion into the �eld of gamma ray astronomy, where will
trace gamma rays from their source across the universe until their observation and explain the
relevant physics along the way. In chapter 3 we will take a close look at plasma instabilities,
introduce relevant quantities and give analytical description of their behavior. Another key point
will be the derivation of an analytical model based on the Fokker-Planck equation that describes
the feedback of the plasma instability on the momentum distribution of the particle beam. The
following chapter 4 is focused entirely on the Particle-in-Cell (PIC) approach, a very powerful
numerical method in plasma physics.
In chapter 5 we will use the PIC simulations to study the unstable behavior of cold pair beams
in an idealized scenario of a beam that is in�nitely large, neutral and propagating through a
perfectly homogeneous background medium without any external �elds. In chapter 6 we will use
the results of the previous chapter to comment on the in�uence of plasma instabilities on the
astrophysical observations. In chapter 7 we will take a look at e�ects that go beyond the ideal-
ized scenario and may become relevant in either astrophysics or a laboratory experiment. This
includes the e�ects of a �nite size particle beam, a non-neutral pair beam or an external magnetic
�eld. In chapter 8 we will draw conclusions on how to set up a laboratory experiment. Lastly
in chapter 9 we will present an alternative experimental scenario where the unstable behavior of
an electron beam is investigated, that could still probe the relevant unstable behavior.
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2 | Gamma Rays

This chapter will give an overview of the physics that are relevant for understanding the gamma
ray portal for measuring the intergalactic magnetic �eld (IGMF). Starting from the production
of gamma rays in far distance sources we will trace their path to earth including interactions
with photons from the extragalactic background light (EBL), the electromagnetic cascades that
are induced by these interactions and the production of secondary photons via interactions
with the cosmic microwave background (CMB). Furthermore we will also introduce the IGMF
and its possible in�uence on cascade leptons. At the end we will discuss the extragalactic
gamma-ray background (EGRB) and how to measure gamma rays using space- and earth-bound
observatories.

2.1 Gamma Rays from Blazars

Gamma Rays are a form of very high energy electromagnetic radiation. They are photons that
carry more energy and have a shorter wavelength than even X-rays. Typically photons with
energies above 100 keV are called gammma rays. Gamma rays with energies between 100MeV
and 100GeV are often called high energy (HE) gamma rays, where those with energies above
100GeV are often called very high energy (VHE) gamma rays [51]. Due to their high energy these
photons can only be produced in the most energetic processes in the universe. Typical environ-
ments are gamma ray bursts (GRB) or the jets of active galactic nuclei (AGN) for extragalactic
sources [28]. They can also be produced by galactic sources like Supernova Remnants (SNR),
Pulsar Wind Nebulae (PWN), X-Ray Binaries or Pulsars, but galactic sources are too close for
signi�cant attenuation and as a consequence also cascade emission and are not considered here
for this reason.
AGN are the compact regions found in the center of a minority of galaxies. The uni�ed AGN
model (�gure 2.1) explains classes of objects that appear very di�erent to an observer as AGNs
with or without a jet that are observed from di�erent angles [22]. In the center of an AGN is a
supermassive black hole that accretes material from their surrounding environment and produces
intense radiation as a result. Consequently the black hole is surrounded by an accretion disk
followed by a dust torus further out. Some AGNs produce a jet, a highly relativistic out�ow
of plasma. The highly boosted jet environment signi�cantly enhances the observed �ux and
shortens time variability to an observer [28]. The exact mechanism for the formation of a jet is
still not very well understood.
Blazars are a subclass of radio-loud AGN with a jet that is directly pointing at the observer. They
are know to be sources of electromagnetic radiation across the entire electromagnetic spectrum
from radio waves all the way to VHE gamma rays. In the VHE band the spectrum is generally

3



CHAPTER 2. GAMMA RAYS

assumed to be a power-law with a cuto� above some maximum energy. The spectral energy
density of the blazar Markarian 421, one of the closest blazars to earth at a redshift of z = 0.03,
is shown in �gure 2.2 to span at least 18 orders of magnitude with two distinct peaks. The double
hump structure is very typical for the emission of a blazars. The lower energy peak of the SED,
in the radio to optical range, is caused by synchrotron emission from relativistic electrons and
positrons in the jet. The exact origin of the high energy peak, in the X-ray to VHE gamma ray
range, is not understood yet, but two mechanisms are generally proposed. In the leptonic model
the photons from the low energy population are up-scattered by inverse-Compton interactions
with the same population of relativistic leptons (the total process is then often summarized as
synchrotron-self-compton). In the hadronic model the emission of high energy photons is ex-
plained by photo-pion processes caused by high energy hadrons interacting with the background
environment [64]. A mixture of the leptonic and hadronic models could also be viable. Only the
hadronic model would also produce a signi�cant �ux of high energy neutrinos from the source.
Measuring the neutrino �ux would illuminate the exact process that leads to the second hump.
A recent measurement by IceCube indicates that blazars do produce high energy neutrinos [1].

Blazars have been observed to show variability of their �ux in all wavebands on timescales
of from minutes to years [28]. This variability can also go hand in hand with a change of the
spectral index of the VHE emission. The short-time variability indicates that the emission region
is very small due to reasons of causality.

Figure 2.1: Sketch of uni�ed AGN scheme, where the class of object observed depends on the viewing
angle, the emission strength and if the AGN produces a jet (Image source: [22]).

4



CHAPTER 2. GAMMA RAYS

Figure 2.2: Spectral Energy Distribution (SED) of Markarian 421 measured in multiwavelength cam-
paign between MJD 54850 and MJD 54983. Some measurements where corrected for propagation e�ects
and background contributions (Image source: [3]). The typical double hump structure is visible.

2.2 Extragalactic Background Light (EBL)

The extragalactic background light (EBL) covers the entire di�use radiation emitted by all
sources outside of the Milky Way. The EBL refers to the entire electromagnetic spectrum (see
�gure 2.3) from radio to gamma rays, however sometimes the term is used to only refer to the part
of the spectrum from ultraviolet to infrared [45]. The most prominent and also well-understood
part of the spectrum is the microwave peak associated with the cosmic microwave background
discussed in more detail in section 2.3.
The EBL is of great interest to the �eld of gamma ray astronomy because highly energetic photons
can interact with the low energy photons that make up the EBL to produce e+e− pairs. This leads
to an attenuation of the gamma ray �ux at the highest energies [63, 61, 65]. The dominant range
of the EBL for this process is the ultraviolet to infrared [65]. In this range spanning from 10−3 eV
to 10 eV in energy, or 0.1µm to 1000µm in wavelength, the EBL is dominated by starlight. The
spectrum follows a double hump structure with one peak at 1µm due to direct starlight and
one at 100µm due to reemission from dust [61]. Unfortunately direct measurements of the EBL
in this regime are di�cult due to foreground contributions in our own galaxy [45]. A lower limit
on the EBL can be provided by galaxy count surveys [63, 61, 65]. Indirect measurements that
use the suppression of the gamma ray �ux deliver the best measurements of this part of the
EBL, however they su�er from large uncertainties on the intrinsic spectra of gamma ray sources
[61, 65].
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Figure 2.3: The intensity of the EBL as a function of wavelength across the entire electromagnetic
radiation spectrum from radio to gamma rays summarizing multiple measurements (Image source: [45]).

2.3 Cosmic Microwave Background (CMB)

The matter in the early, hot universe forms a fully ionized primordial plasma. Photons were
tightly coupled to the electrons in this plasma. At temperatures well below the ionization energy
of hydrogen (13.6 eV) the electrons and protons recombined. The ionization fraction of the
universe rapidly decreased and it became transparent to photons.

p+ + e− ⇌ H + γ (2.1)

The transition is however not instantaneous, rather the backreaction of (2.1) becomes ine�cient
for temperatures below the ionization energy. The exact redshift of recombination zrec has
to be calculated using the Saha-equation for the freeze-out of the ionization fraction yielding
zrec ∼ 1100 [108].
The formerly tightly coupled photons form a relic called the Cosmic Microwave Background
(CMB) [39, 54]. They form a perfect blackbody that has been redshifted since the time of
recombination and has a temperature of T = 2.725K today. As a perfect blackbody the density
and spectrum of the CMB are determined alone by the temperature and are thus precisely known
[72]. Since the temperature of the CMB is the temperature of the primordial plasma at the time
of decoupling redshifted to today, the CMB traces the density perturbations of the universe at
the time of decoupling. Figure 2.4 show the temperature �uctuations of the CMB (without the
dipole) measured by the Planck satellite [92]. The �uctuations are of the order of 100µK. The
power spectrum (two-point-correlation function) of these temperature �uctuations are a sensitive
probe for the evolution of the early universe [39, 54, 92].
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Figure 2.4: Map of the CMB �uctuations (after subtraction of Monopole and Dipole) (Image source:
[92]).

2.4 Pair Cascades

Gamma rays propagating through the universe can interact with background photon �elds to
produce pairs of electrons and positrons (2.2). These electrons and positrons can then interact
with the background photon �eld and up-scatter photons via inverse compton scattering (ICS)
to high energies (2.3). If these photons are energetic enough they can again produce an e+e−

pair.

γ + γbg → e+ + e− (2.2)

e± + γbg → e± + γ (2.3)

These processes continue until the photons are no longer energetic enough to produce pairs,
leading to an excess of secondary or cascade emission in the HE band. The mean free path of
this process depends both on the energy of the gamma ray and the di�erential energy density
of the photon �eld. The center of mass energy of the two photon system needs to exceed the
combined mass of electron and positron, leading to a threshold energy Eth for the gamma ray as
a function of the background photon energy Ebg given by (2.4).

Eth =
m2

e

Ebg
(2.4)

For a background photon with Ebg = 1 eV this leads to a threshold of Eth ∼ 260GeV. Figure
2.5 shows the associated mean free path of a gamma ray as function of energy and labels the
energy band of the EBL that is most signi�cant for pair production. Gamma rays in the VHE
band typically have mean free paths of the order of 100Mpc where they dominantly interact
with photons in the optical and near infrared band [15]. One of the most dominant uncertainties
in the modeling of electromagnetic cascades is the density of the EBL in this energy band. For
gamma rays above ∼ 100TeV the universe becomes highly opaque because pair production on
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the much denser CMB becomes kinetmatically possible. The mean free path of ICS for electrons
and positrons of the same energy band is much shorter on the order of 30 kpc [15]. This is in
part the case because ICS has no energy threshold and thus is always possible with the much
denser CMB.
At the highest energies higher order process like double pair production (2.5) and triplet pair
production (2.6) serve as corrections to the evolution of the cascade.

γ + γbg → e+ + e− + e+ + e− (2.5)

e± + γbg → e± + e+ + e− (2.6)

The pair production process itself produces particle with a small amount of transverse momentum
with respect to the orientation of the incident gamma ray, leading to a small increase emission
opening angle. More importantly the charged electrons and positrons can be de�ected in mag-
netic �elds that could permeate the entire universe. These de�ections can alter the observation
of a gamma ray source in three ways:

1. They can reduce the secondary gamma ray �ux within the point spread function of a
detector, reducing the measured �ux in the HE band.

2. They can lead to a halo of extended HE emission around a source.

3. They can increase the time of �ight and thus delay the secondary gamma ray emission.
This becomes only relevant if the emission of a source it not constant over long time scales.

Neronov & Semikoz [84] derived analytical approximations for the angular size of the secondary
halo θ and the time delay ∆t under the assumptions that the individual de�ections are small
and the pairs are produced closer to the source than to Earth. The result strongly depends on
the hierarchy of coherence length of the magnetic �eld λB and the ICS mean free path λICS. If
λB ≪ λICS then the electron or positron crosses many independent domains of the magnetic �eld
before up-scattering a secondary photon, whereas if λB ≫ λICS it only experiences one domain
of the magnetic �eld.

θ =

0.07◦(1 + z)−
1
2

(
τθ
10

)−1 ( E
0.1TeV

)− 3
4
(

B
10−14 G

) (
λB
1 kpc

) 1
2

λB ≪ λICS

0.5◦(1 + z)−2
(
τθ
10

)−1 ( E
0.1TeV

)−1 ( B
10−14 G

)
λB ≫ λICS

(2.7)

Here B is the strength of the magnetic �eld, E is the energy of the cascade photons when they
are observed, z is the redshift of the source and τθ is the ratio of the angular diameter distance
between observer and source and the pair production mean free path.

∆t =

7 · 105 s
(
1− τ−1

θ

)
(1 + z)−5κ

(
E

0.1TeV

)− 5
2
(

B
10−18 G

)2
λB ≪ λICS

1 · 104 s
(
1− τ−1

θ

)
(1 + z)−2κ

(
E

0.1TeV

)−2 ( B
10−14 G

)2 ( λB
1 kpc

)
λB ≫ λICS

(2.8)

Here κ is a model-speci�c parameter that normalizes the EBL and is of order 1. To observe the
time delay the source needs to show variability on time scales smaller than ∆t, either in the form
a �aring behavior or a gradual change in the �ux state.
Another e�ect that could severely alter the evolution of the electromagnetic cascades are plasma
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instabilities. The electrons and positrons form a neutral plasma beam that propagates through
a background plasma, the intergalactic medium (IGM). Beam instabilities are a feedback loop
between the beam and the background plasma that build up electromagnetic �elds and drain
energy from the beam. We will give a more in-depth overview of the physics of plasma instabil-
ities in chapter 3. If the cooling of the beam due the plasma instabilities is more e�cient than
the inverse compton cooling the secondary gamma ray �ux is suppressed. This would render any
limits derived for the IGMF strength moot.
The e�ect of plasma instabilities on the electromagnetic cascade has been a topic of great de-
bate. There is no consensus if they signi�cantly in�uence their evolution or even which kind of
instable behavior would be relevant. In particular the oblique [121, 95, 40, 36, 109, 117, 103]
instability as well as non-linear landau damping [42, 120, 80] have been suggested, although there
is disagreement on whether these processes would be faster than the inverse compton cooling.
Another point of dispute is whether the reactive or kinetic regime of instability growth is appli-
cable [104, 29, 80, 40]. Some authors suggest that the instabilities would saturate before they
can drain a signi�cant amount of energy from the beam [89]. Other authors have suggested that
even if the instability dominates the system under idealized conditions the inhomogeneity of the
background medium [106, 107] or magnetic �elds [9] could suppress the instability growth. It
has also been suggested that the instability could lead to signi�cant heating of the background
plasma [41, 109]. Simulations of cascade evolution including the e�ect of various models of
plasma instabilities have been performed showing that under some circumstances the observed
suppression of the cascade contribution in the HE band could be explained by these instabilities
[131, 16, 102].
Electromagnetic cascades may also be induced by cosmic rays which could be accelerated by
the same sources that emit VHE gamma rays. Further corrections to the cascade process could
occur due to gravitational lensing, Lorentz invariance violation or kinetic mixing with axion-like-
particles (ALPs) [15].
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Figure 2.5: The mean free path λPP of high energy photons for the pair production process γγ → e+e−

as a function of the gamma ray energy. The universe becomes highly opaque to gamma rays with energies
above 100TeV (Image source: [48]).

2.5 Intergalactic Magnetic Fields (IGMF)

The Intergalactic Magnetic Fields (IGMF) are large scale magnetic �elds that permeate the uni-
verse. Inside galaxies and galaxy cluster the magnetic �eld is of the order of Microgauss [55].
These measurements are based on Faraday rotation and synchrotron emission [96]. Galaxies
form clusters that are connected via �laments where magnetic �elds are of the order of 0.1 nG
to 10 nG [15]. Gamma rays from blazars travel over enormous distances and thus pair cascades
probe the magnetic �eld on distances much larger than the size of galaxy clusters or even galaxy
�laments. The volume �lling factor of the magnetic �elds of galaxies as well as �laments are
small and the evolution of cascades is entirely governed by the as of today unknown �elds in the
voids.
Stochastic magnetic �elds can be characterized by their strength, more precisely their root mean
square value, B and their coherence length LB. The coherence length describes the average size
of structures in the magnetic �eld. The strength and coherence length is intimately linked to
the question of the �elds origin. While the exact origin is still unknown the possible scenarios
can broadly be divided into two groups: Cosmological scenarios were strong seed �elds where
created in the early universe that later decayed into the magnetic �eld today. In cosmological
scenarios the magnetic �eld is also called a Primordial Magnetic Field (PMF). And astrophysical
scenarios where weak seed �elds where produced due to local e�ects and then later ampli�ed by
dynamo or compression mechanisms [15, 55].
Independent of the �eld strength constraints on the coherence length can be derived from causal-
ity (Hubble radius) and the evolution of the magnetic �elds (magnetic di�usion) to set an upper
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and a lower limit respectively [15]. Further limits on the �eld strength (as a function of the
coherence length) can be set from Zeeman splitting, Faraday rotation or CMB measurements. In
the case of cosmological PMFs one can also derive stringent limits on their current strength and
coherence length from limits on their generation and calculating their time evolution with freely
decaying MHD (early magnetic dissipation) [20]. An overview of these bounds can be found in
�gure 2.6.
One of the most promising probes of the IGMF in the galactic voids is the de�ection of electrons
and positrons in cascades. These de�ections can lead to multiple phenomena that can be used
to measure or constrain the IGMF. A popular choice for studying the e�ect of cascade emission
are extreme blazars with a hard spectrum, where the intrinsic �ux in the HE band is smaller
relative to the cascade contribution that depends on the VHE �ux. Neronov & Vovk [85] used
the outright suppression of the secondary emission from four blazar sources to constrain the

IGMF to B ≥ 3 · 10−16G for coherence lengths above Mpc and improving with λ
− 1

2
B for smaller

coherence lengths. In a further work Taylor, Vovk & Neronov [118] used three blazar sources
to constrain B ≥ 10−15G for λB > 1Mpc for a constant source and B ≥ 10−17G for the same
coherence length if the source is variable and the suppression of the �ux is due time delay. These
constraints are also shown in �gure 2.6. The suppression of the GeV cascade �ux is shown for
one source in �gure 2.7. The MAGIC collaboration uses the non-observation of pair echos from
a variable blazar source [78] to constrain the magnetic �eld strength B > 1.8 · 10−17G for long
correlation lengths and B > 10−14G for an IGMF with cosmological origin. Current gamma ray
space telescopes are not capable of measuring the time delayed signal from GRBs but this could
be a feasible method to set similar bounds in the future [56].
The secondary gamma ray emission would take on the form of an extended gamma ray halo
in the presence of a magnetic �eld. Even if this halo is too weak to be detected for individual
sources it could be detected by stacking multiple sources, increasing the signi�cance [38, 119].
The angular structure of the halo would give insight on the coherence length and helicity of the
IGMF but is also a�ected by the angle under which the jet is observed [17, 15].

11



CHAPTER 2. GAMMA RAYS

Figure 2.6: Constraints on the IGMF (Image source: [118]). Upper limits due Zeeman e�ect, Faraday
rotation measurements and CMB measurements. Magnetic di�usion and the Hubble radius give a lower
and upper limit on the coherence length. The orange shaded area refers to freely decaying MHD in the
early universe (only for PMFs). Extended emission & time delay refer to blazar measurements.

Figure 2.7: SED of 1ES 0229+200 under the assumption of a hard intrinsic spectrum measured by
Fermi-LAT and HESS (data points). The di�erent lines give the combined intrinsic spectrum and cascade
contribution under the assumption of di�erent �eld strengths (Image source: [126]).
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2.6 Extragalactic Gamma-Ray Background (EGRB)

The gamma ray sky can be divided into resolved point sources and di�use emission from galactic
and extragalactic sources. The di�use emission from extragalactic sources makes up the extra-
galactic gamma ray-background (EGRB). The exact origin of the EGRB is as of yet unknown,
but unresolved point sources likely contribute signi�cantly. The VHE emission from these sources
would also produce pair cascades that contribute to the EGRB at lower energies [124, 73, 71].
The electrons and positrons of these cascades could likewise be de�ected in the IGMF or undergo
unstable behavior. De�ection in magnetic �elds or due to instabilities could increase the �ux
that is not resolved as point sources increasing the EGRB, while energy loss due to instability
growth would reduce the secondary gamma ray �ux and thus the EGRB.
Below TeV energies the largest contribution to the gamma ray �ux can be attributed to galactic
di�use emission. This emission is mostly con�ned to the galactic disk where gamma rays are pro-
duced by cosmic rays interacting with the interstellar medium and cosmic ray electrons upscatter
interstellar radiation �elds [49]. An additional source of galactic contribution are the Fermi Bub-
bles, two extended bubble-like structures above and below the galactic center with a signi�cantly
harder gamma ray spectrum than the di�use emission from the galactic disk [115, 116, 53]. These
foreground contributions as well as contributions from resolved sources have to be subtracted
from the measured �ux to determine the EGRB.
Fermi-LAT observations [5] show that the EGRB follows a power law with a spectral index of
2.32± 0.02 and a cuto� energy of (279± 52)GeV with a total �ux above 100MeV of (7.2± 0.6) ·
10−6 cm−2s−1sr−1.

2.7 Gamma Ray Detection

For photons with energies above the optical waveband Earth's atmosphere becomes opaque. This
motivates the use of space based telescopes to study X-rays and gamma rays. The e�ective area
of these telescopes is given by the size of the instrument, which usually falls in the order of
m2. For the highest energies the gamma ray �ux decreases very rapidly and the e�ective area
of space based telescopes is not enough to make meaningful measurements. At these energies
ground based telescopes with far larger e�ective area have to be used. These telescopes do not
measure the gamma rays themself, but the extensive air showers (EAS), electromagnetic cascades
that are induced by interactions of the photon with air molecules. The energy window of space
based and ground based observations roughly follow the energy bands of HE and VHE gamma
rays respectively, although there is some overlap in the energy ranges. Figure 2.8 compares the
sensitivity, that the is the minimum �ux that can be distinguished from the background at a
given signi�cance for a certain observation time, for di�erent instruments.
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Figure 2.8: Sensitivity to detect a source with 5σ signi�cance as a function of energy for di�erent
gamma ray telescopes for speci�c observation times (Image source: [64]). For Fermi-LAT the reduced
background for sources outside the galactic disk increase the sensitivity. In dashed grey lines the �ux of
the crab nebula is given for comparison.

2.7.1 Space Based Observations

Space based gamma ray telescopes measure gamma rays in the HE energy band. In contrast
to lower energy bands of electromagnetic radiation (X-ray, optical, radio, etc.) they can not be
focused and have to be detected through their particle-like interactions. Space based gamma
ray telescopes are particle detectors that consist of a tracker and calorimeter where gamma rays
produce e+e− pairs that have their arrival direction reconstructed with the tracker and their
energy measured with the calorimeter [49, 51]. Charged cosmic rays are a very large background
to the measurement of the gamma ray �ux and have to be suppressed using an anti-coincidence
detector. Only e+e− pairs that are produced well inside the detector volume are considered as
gamma ray induced.
The currently most advanced space based gamma ray telescope is Fermi-LAT [4, 2], launched in
2008, with an energy range of 20MeV to 300GeV and an e�ective area of 0.65m2 above 1GeV
[64]. The angular resolution, also called point-spread function (PSF), reaches 0.8◦ above 1GeV
and is better than 0.2◦ above 10GeV. The energy resolution is better than 10%. The �eld of
view (FoV) is 2.4 sr at 1GeV and the instrument achieves an e�ective live time of 75% [64]. This
allows the monitoring of the entire sky for many thousands of hours over the course of the entire
mission.

2.7.2 Ground Based Observations

Ground based gamma ray telescopes do not observe the incident gamma ray itself, but the EAS
that develops when a high energy photon hits the atmosphere. These air showers can be detected
by two complementary techniques: surface arrays and imaging air-cherenkov telescopes. Both
techniques su�er systematic uncertainties from the atmospheric conditions and need to employ

14



CHAPTER 2. GAMMA RAYS

sophisticated methods to suppress the overwhelming cosmic ray background.
The �rst method is using a surface array (SA) of particle detectors, like water-cherenkov tanks,
at high altitudes to directly measure the air shower particles. This technique has the advantage
of a large �eld of view and a high duty cycle, continuously monitoring the entire sky above
[64]. One of the leading SAs is the HAWC (High-Altitude Water Cherenkov) Observatory [113],
located at an altitude of 4100 near the Sierra Negra volcano and it consists of 300 water tanks
each equipped with four upward facing PMTs (Photomultiplier Tubes) located at the bottom
measuring the cherenkov light of air shower particles that traverse the tank volume. The e�ective
area amounts to 22,000m2 [113].
The second method is using a an imaging air-cherenkov telescope (IACT). IACTs observe the
Cherenkov light emitted by the high energy particles in the air shower with a camera that is
located in the focal point of a large, usually segmented, mirror [64]. A particle shower that
reaches its maximum at 10 km above the surface and emits cherenkov light at an angle of 1◦

illuminates an area with radius of 120m on the ground [110], leading to an e�ective area of
105m even though the telescopes themself are much smaller. The camera is able to resolve the
air shower over many pixels and with su�cient time resolution to essential take a video of the
air shower as it develops in the sky. The total light measured by an IACT is well-correlated
with the energy of the incident particle. The shape of the air shower image as well as the timing
information is enough to determine the origin of the incident gamma ray on the sky even with
a single telescope. Their high sensitivity and angular resolution comes at the cost of a small
FoV only allowing to observe a single source at a time. Furthermore they can only be operated
during dark, cloudless nights severely reducing their duty cycle. Modern IACTs are operated as
an array of at least two telescope that observe the same air shower from di�erent positions to
improve the rejection of background, the angular resolution and the energy resolution.
The currently most advanced IACTs are Magic [10, 46] on La Palma, Spain, Veritas in Arizona,
USA [70, 129] and Hess in Khomas, Namibia [8, 24, 87]. In the near future CTA (Cherenkov
Telescope Array) [67] spread over two sites on La Palma, Spain and near Paranal, Chile will
become operational as the next generation of IACTs. It will consist of over 100 telescopes of
three di�erent sizes to achieve ten times higher sensitivity than current generation IACTs [81, 81].
The performance of SAs and IACTs is generally dependent on the energy of the incident gamma
ray and the zenith angle of the observation. For this reason we can only give a very general
overview of the performance of current day instruments. The threshold energy of IACTs is at
tens of GeV, whereas for SAs it is at the TeV level. IACTs achieve a better energy resolution
of ∼ 15% than SAs of ∼ 40%. The biggest di�erence is the much higher sensitivity of IACTs,
reaching roughly 1% of the Crab nebula �ux in 25 hours of direct observation time, whereas SAs
need 5 years of total observation time to reach similar sensitivity [110].
If the incident particle of an air shower is a photon or a lepton then the air shower will exclusively
consist of leptons and photons (electromagnetic shower), whereas a hadron as primary particle
will induce a hadronic cascade. These cascades develop very di�erently and can be distinguished
by both SAs and IACTs based on the lateral distribution of particles. Generally the rejection of
background improves at higher energies [110]. An additional method of background rejection for
a known source is the comparison with the measured �ux from an o�-source region taken under
the same observation circumstances.
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3 | Plasma Instabilities

Plasma instabilities refer to an unstable behavior in a plasma. They occur when multiple plasma
components, di�erent species of particles and �elds, interact. This can lead to self-reinforcing
�uctuations of properties like the plasma density, the plasma temperature or electromagnetic
�elds. In many applications of plasma physics like fusion devices these instabilities can lead to
critical failure and have to be suppressed. In this work we are particularly interested in beam
instabilities of neutral electron positron pair beams. There are many di�erent classes of beam
instabilities. For example the two-stream instability occurs when two di�erent plasma beams
with di�erent velocity distributions �ow past each other leading to the growth of electromagnetic
waves. Another example, the Weibel instability occurs when plasma beam propagates through
a magnetic �eld, inducing �uctuations that lead to the growth of magnetic �laments.
Of course within the scope of this thesis we can not give a full overview of the physics of plasmas,
which is why we defer to a number of excellent books written about this topic [90, 88, 86, 74, 44].

3.1 Plasmas

A plasma is a fourth state of matter similar to gases, that is de�ned by a sizable presence
of free electrons or ions, making the plasma electrically conductive. The key property of a
plasma are long range, collective e�ects governed by electromagnetic �elds, rather than direct
particle-particle interactions. A plasma where particle-particle interactions play no role, typical
for low-density plasma like the IGM, is called collisionless. The collective e�ects govern the
response of a plasma to a small perturbation which lead to oscillations of the �elds and charge
density with a de�ned frequency that only depends on the density n of the plasma: the plasma
frequency ωp. For this chapter we will use SI units [25] unless otherwise speci�ed.

ωp =

√
ne2

meϵ0
(3.1)

A plasma is opaque to electromagnetic radiation with frequency below its plasma frequency and
can only penetrate up to the depth of the plasma skin depth c

ωp
. Since the individual particles

that constitute a plasma are free to move around and react to electric �elds they can redistribute
themselves to screen out any electric �elds on length scales larger than the Debye length λD.

λD =
vth
ωp

=

√
ϵ0kBT

nee2
(3.2)
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Magnetic �elds on the other hand are not screened in a plasma, rather the particles react by
gyrating around the magnetic �eld lines with the gyrofrequency ωg.

ωg =
|e|B
me

(3.3)

The microphysics of a collisionless plasma can be completely described using the four Maxwell
equations for the evolution of the �elds and the Lorentz force for the evolution of the particles.

∇ · E⃗ =
ρ

ϵ0
(3.4)

∇ · B⃗ = 0 (3.5)

∇× E⃗ = −∂B⃗

∂t
(3.6)

∇× B⃗ = µ0

(
j⃗ + ϵ0

∂E⃗

∂t

)
(3.7)

The Maxwell equations can be used to derive the continuity equation.

∂ρ

∂t
+∇ · j⃗ = 0 (3.8)

Together with the acceleration due to the Lorentz force the description of the microphysics of a
collisionless plasma is complete.

a⃗ =
q

m

(
E⃗ + v⃗ × B⃗

)
(3.9)

For any realistic scenario it is of course unfeasible to follow the individual trajectories of all
particles. Instead the Valsov equation uses the conservation of phasespace density f = f(r,p, t)
to treat the evolution of a collisionless plasma.

d

dt
f(r,p, t) =

∂f

∂t
+

dr

dt

∂f

∂r
+

dp

dt

∂f

∂p

=
∂f

∂t
+ v · ∇f − q

(
E+

v

c
×B

) ∂f

∂p
= 0

(3.10)

The evolution of the �eld E and B is then still described by the Maxwell equations and the
quantities ρ and j can be calculate from the phasespace density.

ρ = qn = q

∫
dpf (3.11)

j = q

∫
dpvf (3.12)

In the case of a plasma consisting out of multiple species of particles (e.g electrons and positrons
or electrons and protons), each species has to be treated with a separate Vlasov equation, while
ρ and j are calculate from the sum of the individual contributions.
To study the unstable behavior of a plasma one can assume an equilibrium state and investigate
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the in�uence of a small perturbation in the form of a plane wave. f0, E0 and B0 denote the
equilibrium state, f1, E1 and B1 the amplitude of the perturbation.

f(r,p, t) = f0(r,p, t) + f1 exp (ik · r− iωt) (3.13)

E(r, t) = E0(r, t) +E1 exp (ik · r− iωt) (3.14)

B(r, t) = B0(r, t) +B1 exp (ik · r− iωt) (3.15)

This Ansatz can be inserted into the Valsov and Maxwell equations and solved for the dispersion
relation ω(k). If the imaginary part of ω is positive the perturbation with wavevector k grows
exponentially and the mode is unstable. Conversely if the imaginay part is negative then a
mode is damped even if there is another source of excitation. For a given equilibrium state the
calculation can be quite involved and is often only possible using approximation or numerical
methods. For a number of beam plasma con�gurations the solutions have been calculated in the
literature [34, 30, 33, 31, 32, 35]. How quickly an unstable mode grows is determined by the
growth rate δ. If multiple unstable modes exists the system is dominated by the mode with the
highest growth rate.

δ(k) = Im(ω(k)) (3.16)

An unstable mode continues to grow exponentially in amplitude until the linear theory is no
longer a valid description, because the phasespace density and/or the �elds are too di�erent
from their original equilibrium state. At this point non-linear physics become relevant, which
usually results in the saturation of the unstable mode at a �nite amplitude.

3.2 Plasma Beam Instabilities

We are interested in the unstable behavior of a relativistic particle beam that consists of electrons
and positrons with equal momentum distribution propagating through a much denser, neutral
background medium that consists of electrons and protons. Furthermore we make the simplifying
assumption that the background medium is unmagnetized. This leads to the vanishing �eld
equilibrium where E0 = B0 = 0. The most simple assumption for the equilibrium phasespace
density would be a monokinetic, or cold, plasma. There the momentum spread of the beam and
background medium is negligibly small.

f0,b(p) = αδ(px)δ(py)δ(βγme − pz) (3.17)

f0,bg(p) = δ(px)δ(py)δ(pz) (3.18)

The solution in this scenario are multiple competing classes of instabilities de�ned by di�erent
wavevectors where maximum growth of the instability occurs [35]. We note that often the liter-
ature discusses the analog case of counterpropagating electron beams instead of copropagating
beams of electrons and positrons, however their instable behavior in the absence of an external
magnetic �eld is the same. In this scenario the entire system can be described by two parame-
ters. The Lorentz boost γ of the pair beam and the density ratio α of the beam plasma to the
background medium. Since we are interested in the physics of dilute, relativistic beams we can
assume α ≪ 1 and γ ≫ 1.
The Two-Stream instability is an electrostatic instability, that means only electric �eld modes
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are excited, where the unstable modes are parallel to the beam momentum. The Filamentation
instability is an electromagnetic instability, that means both electric and magnetic �eld modes
are excited, where the unstable modes are perpendicular to the beam momentum. The Oblique
instability is another electrostatic mode where the unstable modes are oblique to the beam
momentum. While the growth rates of all modes in�uence the total evolution of the system,
especially during and after the transition to the non-linear regime, the most important in�uence
is the mode with the highest growth rate. For di�erent modes the growth rate of the dominant
mode has been calculated in [35].

δTwo−Stream =

√
3

2
4
3

α
1
3

γ
ωp (3.19)

δFilamentation = β

√
α

γ
ωp (3.20)

δOblique =

√
3

2
4
3

(
α

γ

) 1
3

ωp (3.21)

In �gure 3.1 the growth rates of the fastest growing mode of these three instabilities are shown
for example parameters. For a dilute and relativistic beam the oblique instability will always
dominate. Figure 3.2 shows the maximum growth rate of the oblique instability for a wide range
of parameters.
The electrostatic oblique modes are Langmuir waves that are excited by the Cherenkov e�ect [29].
Langmuir waves are electrostatic waves in an unmagnetized plasma with a dispersion relation
ω(k) that is only mildly dependent on k through the electron thermal velocity vth.

ω2 = ω2
p + 3k2v2th (3.22)

The Cherenkov e�ect gives a direct relationship between the frequency and wavevector of a mode
and the velocity of the particles that cause the excitation.

ω − k · v = 0 (3.23)

For a cold and relativistic beam v∥ ∼ c and v⊥ ≪ v∥. In a cold background medium the electron
thermal velocity will be negligible and ω is not a function of k. Thus the spectrum of excited
modes will be a narrow range around k∥ ∼ ωp

c and a wide range in k⊥.
These results have been derived for a negligible beam velocity spread. This regime is sometimes
also called the reactive regime. When the velocity spread becomes too large the results are no
longer valid and new calculations for this kinetic regime have to be derived. The condition for
reactive regime applies to each individual mode and relates the velocity spread and the growth
rate [29]. Thus it is also possible to achieve a hybrid regime, where the velocity spread leads to
some modes which are reactive while others are kinetic.

|k ·∆v| < |δ(k)| (3.24)

For a highly relativistic beam even a large longitudinal momentum spread will lead to a very small
velocity spread in this direction. If the instable modes have a signi�cant transversal component,
which is the case for the oblique instability, then the left hand side of 3.24 will be dominated
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by transversal velocity spread. Furthermore the wavevector will be of the order of k ∼ ωp

c . The
condition simpli�es to

∆p⊥
p

<
δ

ωp
(3.25)

Figure 3.1: Comparison of the growth rate of the respective fastest growing mode as a function of the
density ratio α (left) and the Lorentz boost γ (right) for the Two-Stream, Filamentation and Oblique
instability.

Figure 3.2: Growth rate of the fastest growing mode of the Oblique instability as function of α and γ.

3.3 Analytical Treatments

If the beam does no longer satisfy the conditions for the reactive regime, but nevertheless is
highly relativistic and the angular spread as well as the total energy spread are small an analytical
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formula for the growth rate can be derived [29].

δ(k) = − α

2k3

µ+∫
µ−

dµ

∞∫
1

dpp
2f(p, µ) + (µ− k∥)

∂f
∂µ(p, µ)√

(µ+ − µ)(µ− µ−)
(3.26)

Here µ is the angle relative to the bulk beam momentum and p is the normalized beam momentum
(Lorentz factor). The wavevector k is expressed in units of

ωp

c . The limits of the µ integral are
given as a function of the wavevector k.

µ± =
k∥ ± k⊥

√
k2 − 1

k2
(3.27)

The excited modes are again found in a region around k∥ ∼ ωp

c , where the width of the region
increases with k⊥. For k∥

c
ωp

> 1 the growth rate is positive, whereas for k∥
c
ωp

< 1 the modes are
damped.
Each excited mode is closely associate to a speci�c particle velocity via (3.23). The particles
of this velocity can gain or lose energy by interacting with this �eld mode. If the slope of the
momentum distribution in this point is positive ( ∂f∂p > 0) then there are more particles that can
lose energy by exciting this mode than there are particles that could gain energy by damping this
mode. If the slope of the momentum distribution on the other hand is negative ( ∂f∂p < 0) then
the particles that can damp a speci�c mode outnumber the particle that can excite it. This gives
us the condition that for instability growth, an inversion of the momentum distribution needs
to be present. Figure 3.3 sketches how di�erent regions of the momentum distribution lead to
growth and damping respectively.
Beyond excitation and damping modes can also interact via scattering with other waves or
particles. Wave-particle scattering can alter the momentum of individual particles. The total
e�ect on the ensemble of all beam particles can be described by a momentum di�usion process
[29]. Particles can lose and gain energy in all directions. This especially means that a subset
of particles can overall gain energy due to the instability mechanism. The di�usion constant is
proportional to the mode averaged energy density of the electric �eld.
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Figure 3.3: Sketch of the e�ect of the slope of the momentum distribution ∂f
∂p∥

on the instable behavior.

A positive slope leads to instability growth, whereas a negative slope leads to damping. For di�erent
particle velocities di�erent modes are excited or damped.

3.4 Numerical Treatments

While the fundamental equations that describe the evolution of a plasma are quite simple an-
alytical treatments can only provide useful solutions for a very limited number of problems.
To solve these equations for arbitrarily complex problems a number of numerical methods have
been developed based on kinetic and/or �uid description of plasmas. In Magnetohydrodynamic
(MHD) codes the plasma is described as a �uid by combining electrodynamics with �uid dynam-
ics. MHD is usually applied to large scale physical problems. In kinetic approaches either the
Valsov equation is directly discretized and solved numerically (Valsov code) or the phasespace
distribution is sampled by numerical particles which are then evolved according to the Maxwell
and Lorentz equations. For the particle approach the Particle-In-Cell (PIC) method has become
very popular where �elds are discretized on a grid to speed up the calculations. Due to the �nite
number of numerical particles that sample the phasespace distribution particle approaches are
usually much more noisy than Vlasov approaches, which typically are numerically much more
expensive in multiple dimensions. For some problems it can be useful to take a hybrid approach
where some species are treated using a �uid approach while others are treated using a kinetic,
usually a particle type, approach. The kinetic methods were originally developed for collisionless
plasmas, however there are methods to include the e�ects of collisions and other particle e�ects
in both the Vlasov as well as the PIC method.
The beam plasma instabilities we investigate in this work are based on perturbations of the
momentum distribution of the beam particle, making it necessary to use a kinetic simulation ap-
proach, in our case the PIC method, which will be discussed in more depth in the next chapter.

3.5 Momentum Di�usion Model with Fokker-Planck Equation

Previously we have only considered the e�ect of the beam plasma system on the electromagnetic
�elds. However a beam instability is characterized by the self-reinforcing back reactions between
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�elds and beam plasma. Here we will describe two e�ects of the instability on the beam. First
of all due to energy and momentum conservation the beam has to lose energy and momentum
when �elds are build up. This will lead to a bulk loss of energy and a bulk loss of momentum in
beam direction (opposite direction of unstable modes). Secondly the build up of electric �elds
leads to wave-particle interactions that behave like di�usion in momentum space.
The evolution of the beam momentum distribution can be described by the Fokker-Planck (col-
lisionless Boltzmann) equation.

∂f(p, t)

∂t
= − ∂

∂p

(
V⃗ (t)f(p, t)

)
+

∂

∂p
D(t)

∂

∂p
f(p, t) (3.28)

Here V⃗ (t) is called the drift term and describes the bulk momentum loss and D(t) is the di�usion
tensor and describes the di�usion of momentum. The di�usion tensor is a function of the spectral
�eld energy density and the drift term is a function of the time derivative of the �eld energy
density. During the linear growth phase both grow exponentially with time.
We will leave the exact determination of the drift term and di�usion tensor aside for now and
simply assume that they are known functions of time only and that the di�usion tensor is
diagonal. Under these assumptions the Fokker-Planck equation can be solved analytically. For
convenience's sake we will only consider a one-dimensional Fokker-Planck equation but our result
will generalize to two and three dimensions under assumption that the momentum distribution
factorizes.

∂f

∂t
= −V (t)

∂f

∂p
+D(t)

∂2f

∂p2
(3.29)

We will use the Ansatz of a Gaussian momentum distribution with a time-dependent mean µ(t)
and standard deviation σ(t).

f(p, τ) =
1√

2πσ(τ)
exp

(
−(p− µ(τ))2

2σ(τ)2

)
(3.30)

Inserting the Gaussian distribution will yield[
p− µ

σ2

](
∂µ

∂t
− V (t)

)
=

[
(p− µ)2

σ2
− 1

](
D(t)

σ2
− 1

σ

∂σ

∂t

)
(3.31)

Since the solution of this equation has to be independent of p, it can only be solved if the terms
in the round brackets both vanish. This means that the equation can be reduced to two rather
simple di�erential equations describing the evolution of µ(t) and σ(t) respectively.

∂µ

∂t
= V (t) (3.32)

σ
∂σ

∂t
= D(t) (3.33)

We can give a general solution for these equations.

µ(t) = µ(t = 0) +

∫ t

0
dt′V (t′) (3.34)

σ(t) =

√
σ(t = 0)2 + 2

∫ t

0
dt′D(t′) (3.35)
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We have already remarked that the di�usion term is proportional to the �eld energy density
and that the drift term is proportional to its derivative. During the linear growth phase the
�eld energy density is given by two terms: the initial �eld (noise) due to for example thermal
�uctuation which is constant with time and the exponentially growing �eld due to the instability.

W (t) = W0 +W1 exp (2δt) (3.36)

W0 and W1 are simple (undetermined) constants that both depend on the initial noise of the
system and δ is the growth rate of the instability amplitude. The energy density grows with 2δ
since it is given by the square of the �eld amplitude.

V (t) ∝ ∂W (t)

∂t
⇒ V (t) = 2δV1 exp (2δt) (3.37)

D(t) ∝ W (t) ⇒ D(t) = D0 +D1 exp (2δt) (3.38)

Here we use the undetermined constants V1, D0 and D1. Since the drift term is an energy sink
V1 < 0. The explicit evolution of µ(t) and σ(t) during the linear growth phase is thus

µ(t) = µ(t = 0)− V1 exp (2δt) (3.39)

σ(t) =

√
σ(t = 0)2 + 2D0t+

D1

δ
exp (2δt) (3.40)

The same equations (with di�erent parameters) can be used to describe further dimensions. We
can thus conclude that once the exponential growth of the instability dominates the system the
momentum distribution shifts exponentially with rate 2δ and widens exponentially with rate δ.
Notably for σ(t) there can be an intermediate period where the evolution is governed by the
initial noise and thus the width of the momentum distribution grows with the square root of
time before eventually the exponential growth overtakes.
However we know that the instability growth does not continue forever and has to stop after
some time tfinal when the �eld energy saturates at W (tfinal). When the �eld saturates the drift
term vanishes which implies that µ(t) is constant and the di�usion term takes on a constant
value leading to σ(t) ∝

√
t.

In the most general case the saturation will not be instantaneous but �eld energy density will
smoothly transition from exponential growth to a constant value. We model this transition by
introducing the parameter κ and replacing δt in the argument of the exponential with an updated
expression.

δt → − logκ

(
κ−δt + κ−δtfinal

)
= − log

(
κ−δt + κ−δtfinal

)
log κ

(3.41)

This new expression is linear in δt for t ≪ tfinal and takes on the value δtfinal for t ≫ tfinal. For
κ → ∞ the transition is instantaneous. We can use this expression to calculate the evolution
of µ and σ into the saturation regime. However this implies that the energy drain from the
beam becomes zero in the non-linear regime when the �eld energy density does not continue
to grow. In the non-linear regime it is still possible to transfer energy from the beam to the
background plasma with the �elds as an intermediate. We can extend this energy transfer by
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explicitly assuming a drift term that is proportional to 2δW (t). In the case of an exponentially
growing �eld energy density this is equivalent to using the derivative.

∆µ(t) = −2δV1

∫ t

0
dt′
(
κ−δt′ + κ−δtfinal

)− 2
log κ

(3.42)

σ(t) =

√
σ(t = 0)2 + 2D0t+ 2D1

∫ t

0
dt′ (κ−δt′ + κ−δtfinal)

− 2
log κ (3.43)

Unfortunately we can not derive the free parameters (V1, D0, D1, tfinal, κ) except the growth
rate from �rst principle. Nevertheless we can use this model to interpret simulation results.
Qualitatively we can deduce that for t ≫ tfinal ∆µ grows linearly with time and σ grows with
the square root of time.
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The Particle-in-Cell method has proven itself as one of the state of the art methods for kinetic
simulations of plasmas. The name PIC already implies the two key ideas behind this method:

1. Physical particles are represented by a reduced number of numerical macroparticles that
sample the phasespace and are evolved following the equation of motion

2. The electric and magnetic �elds are represented on a grid and are evolved following the
Maxwell equations

The evolution of both �elds and particles are discretized in time. Since the �elds and the
particles exists in two very di�erent spatial domains (discrete vs. continuous) interpolation
schemes have to be applied at every time step to calculate the charge and current densities from
the particles and to calculate the Lorentz force acting on each particle from the �elds. This
additional computational cost for interpolation and calculating the �elds comes at the bene�t
that the total computation time for evolving the particles scales linearly with the number of
particles, whereas directly calculating the Coulomb force between all pairs of particles would
scale quadratic with time.
In this chapter we give an overview of PIC method and explain how the simulations have to be
set up to study the unstable behavior of relativistic beams. First we describe the PIC method
in general and then we will focus on the speci�cs of the PIC code we use in this work: EPOCH.

4.1 PIC Simulations in General

The PIC method can be used to simulate plasma physics in one, two or three spatial dimensions.
It is possible to simulate the full three dimensions of momentum and all three directional compo-
nents of the electric and magnetic �elds while still simulating only one or two spatial dimensions.
In three dimensions the numerical scheme most closely resembles the actual physics, whereas in
one or two dimensions some physical phenomena can not be reproduced. Nevertheless running
simulations in one or two dimension can be computationally much cheaper and is su�cient for
some problems. For the beam instabilities we want to investigate it is enough to resolve two
spatial dimensions, one of which should be parallel to the beam direction.

4.1.1 Simulation Box

The simulation box is the spatial environment the particles and �elds exists in. While it is possible
to perform the PIC method in an arbitrary geometry we will focus on Cartesian dimensions
leading to a simulation box and a grid that are both rectangular. The grid spacing does not
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need to be equally spaced in all directions, it could even be unevenly spaced, however we will
assume that it is evenly spaced. Then the simulation box and the grid is de�ned by two numbers
per dimension: the length of the simulation box Li and the number of grid cells Ni. The size
of a cell Li

Ni
de�nes the smallest scale that can be resolved. The plasma wavelength c

ωp
gives

the fundamental length scale of our problem and thus Li
Ni

≪ c
ωp

is necessary to capture the full
physics.
Furthermore the simulation box size and grid spacing also de�nes the modes that can be resolved.

max(ki) = Ni
π

Li
(4.1)

∆ki =
π

Li
(4.2)

The simulation needs to capture the maximum mode as well as resolve the structure su�ciently.
For the oblique instability the relevant modes are found in a narrow region around k∥ ∼ ωp

c and
wide range in k⊥. The condition to resolve the plasma wavelength with many grid cells thus
also already ensures that the maximum wavevector we can resolve is large enough. We gain the
additional requirement that the simulation box has to be long enough to resolve the resonance
region.
The simulation box has two boundaries per dimension. The boundary conditions describe how
�elds and particles behave at these boundaries and have to be tailored to the physical problem.
For each boundary we can choose a separate boundary condition from a wide variety of options:

� periodic: Fields and particles reaching the edge of the simulation box are wrapped around
to the opposing boundary

� open: Fields and particles that propagate through the boundary simply leave the simula-
tion

� re�ect: Particles are re�ected at the boundary and �elds are clamped to zero (Dirichlet
boundary conditions)

� conduct: Particles are re�ected at the boundary and �elds are treated with perfectly
conducting boundary conditions (tangential component of electric �eld is zero)

Of particular interest for simulating large scale astrophysical phenomena are periodic boundary
conditions, that essential replicate an in�nitely extended system. When simulating relativistic
plasma beams without periodic boundary conditions in beam direction special considerations
have to be taken. Particles traveling with almost the speed of light will traverse the entire
simulation domain in time t = L

c . For simulations that want to track the beam over a long
period of time this means that also the simulation box has to be increasingly long leading to
a high computational cost. A useful alternative is to use a moving simulation box that tracks
the beam. by continuously shifting the grid as well as feeding new background particles into the
simulation domain at one boundary while dropping particles that exit at the opposing boundary.
The Maxwell equations relate the time derivative of the electric �eld to the rotation of the
magnetic �eld and vice versa. To make the computations of the rotation easier often a staggered
Yee lattice [133] is employed where the charge density ρ is de�ned on the grid points, the electric
�eld E and current density j are de�ned on the center of the edges of a grid cell and the magnetic
�eld B is de�ned in the center of the grid cell surfaces (see �gure 4.2 for a sketch of the Yee
lattice)
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4.1.2 Particle Loading

At the beginning of the simulation the macroparticles that sample the phasespace distribution of
the physical particles have to be initialized. A plasma can contain multiple species of particles.
For each species we have to de�ne the charge and mass of the physical particles, the phasespace
distribution and the number of macroparticles used to sample the phasespace distribution. Each
macroparticle is then randomly placed in the simulation box leading to approximately uniform
density of macroparticles. For each macroparticle the momentum is determined from the phas-
espace distribution either by a simple acceptance-rejection method or in the case of a few special
momentum distributions (like a Maxwellian or a Maxwell-Jüttner) by transformation from uni-
form random variables. Then each particle is given a weight that states how many physical
particles are represented by a macroparticle.
It can be useful to declare a species of particles immobile, excepting them from the particle push
and reducing the computational e�ort for a time step. This can make sense when one species of
particle is much heavier than the others leading to dynamics on longer time scales and smaller
length scales that might not be of interest or not resolved by the simulation to begin with.

4.1.3 Particle Shape / Interpolation Schemes

The computational particles exists on continuous space while the derived quantities ρ and j exist
on a discretized grid. It is necessary to give the macroparticles a shape to deposite the charge
and current onto the grid. The shape of the particle is determined by a shape function S(r− r′),
where r is the position of a grid point and r′ is the position of the particle. Some authors
distinguish between the particle shape and the weighting function, where the weighting function
S(r− r′) is the result of convolving the particle shape with a zeroth order b-spline. The charge
and current densities can then be calculated by summing over all particles Np of all species.

ρ(r) =

Np∑
i

qiS(r− r′i) (4.3)

j(r) =

Np∑
i

qiviS(r− r′i) (4.4)

qi and vi are the charge and velocity of particle i respectively. However directly calculating both
ρ and j will only approximately satisfy the continuity equation (3.8). To satisfy the continuity
equation exactly more elaborate density decomposition schemes have to be used that spread the
current density of a single particle over all grid cells traversed during a time step [125, 60].
We will only consider shape functions that factorize for higher dimensions.

S(r− r′) =

Ndim∏
j

S(rj − r′j) (4.5)

The simplest shape function one could imagine is depositing the entire charge and current density
of each particle onto the nearest grid point. This form is called a tophat. This shape function
is also numerically cheap, however more extended shape functions that spread the charge and
current density of each particle on multiple grid points produce smoother charge and current
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densities and thus reduce the numerical noise due to a �nite number of particles. Usually higher
order b-splines are used as shape functions. The tophat is a b-spline of order 0. The b-spline bl of
order l can be expressed as a convolution of lower order b-splines or using piecewise polynomial
functions [112]. B-splines are a good choice for the particle shape because they are symmetric
and have compact support. Compact support means that their value is di�erent from zero only
for a small domain and keeps the computational e�ort low, because only a small number of grid
cells near the particle have to be considered for charge and current deposition.

bl(x) =

∞∫
−∞

dx′bl−1(x
′)b0(x− x′) (4.6)

b0(x) =

{
1, for |x| < 1

2

0, else
(4.7)

b1(x) =

{
1− |x| , for |x| < 1

0, else
(4.8)

b2(x) =


3
4 − x2, for |x| < 1

2
1
2

(
3
2 − |x|

)2
, for |x| < 3

2

0, else

(4.9)

b3(x) =


1
2 |x|

3 − x2 + 2
3 , for |x| < 1

4
3

(
1− 1

2 |x|
)3

, for |x| < 2

0, else

(4.10)

Here x is the distance between a particle and a grid point normalized to the grid spacing. The
b-splines of zeroth to third order are plotted in �gure 4.1. It is easy to see that for higher order
b-splines the particle's charge and current are spread over more grid points. If one distinguishes
the particle shape and the particle weighting function then in the case of b-splines the weighting
function for a particle with shape bl is given by the next higher order b-spline bl+1.
When we want to calculate the Lorentz force that acts upon a particle at a given position on
continuous space from the discrete �elds we need to again employ an interpolation scheme. For
reasons of energy conservation it should be the same scheme employed to deposit the particle
charge and current onto the grid [93].

E(r) =

Ndim∑
i

Ncell∑
j

S(r− rij)E(rij) (4.11)

B(r) =

Ndim∑
i

Ncell∑
j

S(r− rij)B(rij) (4.12)

Here rij is the position of the j-th grid point in the i-th dimension.
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Figure 4.1: B-splines bl of order l. For higher orders the particles charge and current are deposited on
more grid points. x is the distance between a particle and a grid point normalized to the grid spacing.

4.1.4 Field Solver

The �eld has to be evolved according to Maxwell's equations. Often a �nite-di�erence time-
domain (FDTD) method is used to discretize (3.6) and (3.7) in combination with a staggered
Yee lattice [18]. The other two Maxwell equations (3.4) and (3.5) are initial conditions. In the
case of a neutral beam propagating through a neutral plasma they are ful�lled if both �elds
initially vanish. Since E and B are de�ned on a staggered Yee lattice calculating the centered
second-order accurate derivatives is easy. If we want to calculate the update of B in position
(i + 1

2 , j +
1
2 , k) we need to calculate ∇× E at this position for which we need the derivatives

of E in this location. As an example we give the derivative
∂Ey

∂x .

(
∂Ey

∂x

)
i+ 1

2
,j+ 1

2
,k

=
(Ey)i+1,j+ 1

2
,k − (Ey)i,j+ 1

2
,k

∆x
(4.13)

Here ∆x, ∆y, ∆z are the grid spacing in the respective direction and ∆t is the time step (see next
section). It is also possible to include more grid points in the calculation to achieve higher order
accurate derivatives [94]. As an example we give the fourth and sixth order accurate derivatives
∂Ey

∂x which take the �eld value at four and six positions respectively.
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(
∂Ey

∂x

)
i+ 1

2
,j+ 1

2
,k

=
1

24∆x

(
− (Ey)i+2,j+ 1

2
,k + 27 (Ey)i+1,j+ 1

2
,k

− 27 (Ey)i,j+ 1
2
,k + (Ey)i−1,j+ 1

2
,k

) (4.14)

(
∂Ey

∂x

)
i+ 1

2
,j+ 1

2
,k

=
1

64∆x

(
3

10
(Ey)i+3,j+ 1

2
,k −

25

6
(Ey)i+2,j+ 1

2
,k + 75 (Ey)i+1,j+ 1

2
,k

− 75 (Ey)i,j+ 1
2
,k +

25

6
(Ey)i−1,j+ 1

2
,k −

3

10
(Ey)i−2,j+ 1

2
,k

) (4.15)

To update the �elds En and Bn a modi�ed leapfrog scheme is used that calculates the electric

and magnetic �elds at half time steps En+ 1
2 and Bn+ 1

2 . The �elds at half steps are then used to
update the particles position rn and momentum pn by a full time step and calculate the updated
current density jn+1, which is then used to update the �elds to the full time step En+1 and Bn+1.

En+ 1
2 = En +

∆t

2

(
c2∇×Bn − jn

ϵ0

)
(4.16)

Bn+ 1
2 = Bn − ∆t

2

(
∇×En+ 1

2

)
(4.17)

Bn+1 = Bn+ 1
2 − ∆t

2

(
∇×En+ 1

2

)
(4.18)

En+1 = En+ 1
2 +

∆t

2

(
c2∇×Bn+1 − jn+1

ϵ0

)
(4.19)

Figure 4.2: Scheme of a Yee lattice where for each simulation cell the charge density ρ is de�ned on
the corners, the current density j and the electric �eld E are de�ned on the center of the edges and the
magnetic �eld B is de�ned in the center of the surfaces [21].
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4.1.5 Time Step

The time step ∆t is the discretization length in time. The computational e�ort necessary to
run the simulation for a given time is anti-proportional to the length of a time step. Thus it is
advisable to choose the time step as large as possible. One upper limit on the time step is given
by the time scale of the problem one wants to study. For example the time step should be smaller
than the plasma frequency in the case of beam instabilities. However the grid spacing already
gives an upper limit on the time step called the Courant-Friedrichs-Lewy (CFL) criterion. When
advancing the �elds in time the �eld values from neighboring positions are taken into account.
This essentially propagates information through the grid. Information may not travel faster than
the speed of light. In one dimension with second order derivatives this leads to the condition

c∆t ≤ ∆x (4.20)

In three dimension with second order derivatives the expression becomes

c∆t ≤ 1√
∆x−2 +∆y−2 +∆z−2

(4.21)

The CFL criterion directly ensures that any plasma oscillation that is spatially resolved is also
temporally resolved. If higher order accurate derivatives are used to calculate the �eld update
then information can travel further than one grid cell in one time step. This leads to a numerical
dispersion relation where the phase velocity of modes becomes larger. This increase in phase
velocity has to be compensated by the CFL criterion. For fourth and sixth order accurate
derivatives the CFL criterion in three dimensions becomes

c∆t ≤ 6

7

1√
∆x−2 +∆y−2 +∆z−2

(4.22)

c∆t ≤ 120

149

1√
∆x−2 +∆y−2 +∆z−2

(4.23)

4.1.6 Particle Pusher

The particle pusher solves the equation of motion to update the position r
n+ 1

2
i and momentum

pn
i of the i-th particle using the Lorentz force from the �elds at half time to achieve second order

accuracy. A leapfrog scheme calculates the position at half time and the momenta at full time.

pn+1
i = pn

i + qi∆t

[
En+ 1

2

(
r
n+ 1

2
i

)
+ vn+

1
2 ×Bn+ 1

2

(
r
n+ 1

2
i

)]
(4.24)

The velocity vi can be calculate from the momentum. The velocity at half time can be calculated
by averaging the previous and next velocity.

pi = γimivi =

√( pi

mic

)2

+ 1

mivi (4.25)

The electric �eld accelerates particle while the magnetic �eld only reorients the momentum. The
most common scheme for particle pushing by Boris [27] separates the two e�ects by �rst applying
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half of the acceleration due the electric �eld, computing the rotation due to the magnetic �eld
and then applying the other half of the acceleration. A more advanced scheme by Higuera and
Cray [68] uses a di�erent method to average the velocities to achieve higher accuracy for highly
relativistic particles.
The leapfrog scheme for calculating the position update can be separated into two steps to also
calculate the position at full time rn+1

i for the calculation of the current density jn+1.

r
n+ 3

2
i = rn+1

i +
∆t

2
vn+1
i = r

n+ 1
2

i +∆tvn+1
i (4.26)

4.1.7 Current Smoothing

To reduce numerical noise in the form of high wavenumber modes in the current j smoothing or
�ltering schemes can be used. The current at a given position is averaged with the currents at
neighboring positions at a distance s [123] to produce the �ltered current jf . The parameter α
gives the strength of the damping e�ect. Applying the same �lter multiple times with the same
or di�erent strides can damp the noise on di�erent length scales at the same time. Here we give
the �lter for one, two and three dimensions explicitly.

jfi = αji + (1− α)
ji+s + ji−s

2
(4.27)

jfi,j = αji,j + (1− α)
ji+s,j + ji,j+s + ji−s,j + ji,j−s

4
(4.28)

jfi,j,k = αji,j,k + (1− α)
ji+s,j,k + ji,j+s,k + ji,j,k+s + ji−s,j,k + ji,j−s,k + ji,j,k−s

6
(4.29)

The exact choice in the stride and the number of applications has to be carefully tuned to the
problem as too much �ltering will produce unphysical results, while too little �ltering will not
reduce the noise.

4.1.8 Output

Storing the position and momentum of all particles as well as the the �eld values for the entire
grid for a single time step can already be quite memory intensive. Thus it is generally not
possible to save the entire evolution of the particle population or the �elds for every time step
and more sophisticated approaches have to be used. We will call a quantity of data that is saved
at a single time step or averaged over a range of time steps an observable. An example would
be the z-component of the magnetic �eld at time ti or the position of all particles of a species at
time tj .
The simplest method to reduce the amount of data that has to be saved is to only write an
observable at a select few number of time steps. This could be in regular intervals of ∆tobs ≫ ∆t
or at a given number of prede�ned time steps t1, t2, et cetera. This can also take the form of only
starting to save an observable in regular intervals after a start time tstart. However it can be even
more e�cient to construct observables that take up less memory. The simplest observables take
the form of only a single number and can thus be saved as often as one would like. An example
would be the total energy density of a �eld or the total kinetic energy density of a species of
particles. This essentially means to average a quantity over the entire simulation domain. In the
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case of particle attributes, like the momentum or simply the number, one can average over each
grid cell to produce an observable which takes as much storage as saving a �eld. Another way to
average particle quantities is to save their individual data into a histogram. This can also take
the form of only averaging over a subset of particles.
A subset of particles is a fraction of the population of a given particle species that can either
be chosen randomly or according to some condition. Choosing a random subset can reduce the
size of an observable that saves the individual particle attributes at the cost of incurring more
noise. It can also be used to only save or only average of particles that ful�ll a certain condition,
like inhabiting a certain region of interest. A subset that tracks the same particles over multiple
time steps is called a persistent subset.

4.2 PIC Simulations with EPOCH

The PIC method has been implemented in a large number of numerical codes. In this thesis
we use EPOCH [18], speci�cally the version 4.17.9, a fully electromagnetic, multi-dimensional,
relativistic implementation of the PIC method written in Fortran and parallelized with MPI.
The code can be con�gured using a combination of a con�guration �le called input deck and
compiler �ags. A commented example input deck used for simulations discussed in this thesis
can be found in appendix C.
EPOCH is available in three separate versions (EPOCH1D, EPOCH2D, EPOCH3D) that allow
for the simulation in one, two and three spatial dimensions respectively, while momentum is
always resolved in three dimensions. The three versions are only di�erent in this regard and
behave the same in all other ways.
EPOCH includes many advanced features like lasers, particle collisions, QED and radiative
corrections, ionization and more. These features were not used in this work and will not be
discussed here.

4.2.1 Compiler Flags

At compile time a number of �ags can be used to con�gure the code. Many advanced features
can be disabled to reduce the computational e�ort. Two important options that have to be set
at compile time are the particle shape and the particle pusher. EPOCH implements both the
particle pusher developed by Boris [27] as well as the one developed by Higuera & Cray [68].
Furthermore EPOCH implements tophat, triangle and third order b-spline as particle shape,
leading to a particle weighting function that is a b-spline of �rst, second or fourth order.

4.2.2 Deck variables

The input deck is a text �le that allows for simple con�guration of the simulation setup. In
the input deck it is possible to de�ne constants that allow for simple parameterization of the
simulation setup that allows for easy running of an ensemble of simulation. When reading the
input deck the code can also parse a limited amount of mathematical expressions.
The con�guration options in the input deck include:

� The size of the simulation box as well as the number of grid cells in each dimension.
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� The runtime of the simulation can be speci�ed either as number of steps or as a simulation
time.

� A moving simulation window can be speci�ed. The simulation window can move at any
speci�ed speed and if desired the movement only starts after a speci�ed time.

� The �eld solver which can be chosen from Yee's method with second, fourth or sixth
order accurate derivatives or other methods with second order derivatives that optimize
the dispersion relation under some constraint (usually along a speci�c axis).

� The CFL criterion is automatically calculated for the given �eld solver and simulation grid.
It is possible to designate a multiplier between 0 and 1 that reduces the time step even
further.

� Strided current �ltering can be applied by specifying the strides and the number of appli-
cations after each time step.

� For each particle species the density as a function of position and the momentum distri-
bution can be speci�ed. For thermal particle populations it is also possible to only specify
the temperature instead of the entire momentum distribution.

� Outputs can be written in regular intervals, which can be individually chosen for each
observable. All observables taken at a time step are written into the same output �le in
SDF (Self-Describing File) format.

4.3 Units

The EPOCH uses SI units [25] internally. However the fundamental time and length scales of the
phenomena we want to investigate are given by the electron plasma frequency. For a laboratory
plasma with a density of n = 1016 cm−3 this plasma frequency is of the order of Terahertz,
whereas for an astrophysical plasma with a density of n = 10−7 cm−3 the plasma frequency is
of the order of Hertz. To make our simulations independent of this choice of the background
density we normalize all timescales with respect to the plasma frequency and all length scales
with respect to the plasma wavelength. We neglect the in�uence of the dilute pair beam on
the total density of the system and only include the density of the background plasma in this
transformation.

t → tωp (4.30)

x → x
ωp

c
(4.31)

Furthermore we also choose to express energies, particle momenta and temperatures in units of
energy, with the bene�t that for electrons with mass me = 511 keV the Lorentz boost can be
approximately taken as twice the energy in MeV. This de�nes a set of units we call the "plasma
units".

ωp = c = kB = 1 (4.32)

The bene�t of being able to directly compare di�erent density regimes in plasma units makes it
necessary to transform to a di�erent set of units if one wants to make predictions for a speci�c
environment.
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5 | Cold Beam

In this chapter we will take an in depth look at the instabilities of an idealized, cold e+e− beam
propagating through an idealized background plasma. A cold beam in this scenario means that
the momentum spread is negligible at the start of the simulation. We will assume that the beam
and background plasma are in�nitely extended and completely homogeneous (up to numerical
shot noise). Furthermore the beam shall be perfectly neutral (currentless) and propagate absent
any external electromagnetic �elds.
The unstable behavior of this system will lead to the build up of electromagnetic �elds. But
beyond that a number of additional e�ects can be found, namely the feedback of the instability
on the momentum distribution of the beam and the heating of the background plasma. We will
be able to show that the instability functions as an energy loss mechanism for the beam, but
maybe much more important it also "heats" the beam by increasing its momentum spread.
A number of key parameters with explanations can be found in table D.1.

5.1 Overview of the Simulation Setup

We use EPOCH2D [18] to simulate the cold beam propagating through a background plasma
in two Cartesian spatial dimensions to reduce the computational load compared to a full 3D
simulation and choose that one dimension should be aligned with the bulk momentum of the
beam. This way we can capture the full physics of the longitudinal and the transversal direc-
tion. Nevertheless we also performed full 3D simulations at lower resolution to crosscheck this
claim. The boundary conditions of the simulation box are chosen as periodic to mimic an in-
�nitely large system. The size of the simulation box and the number of grid points have to be
chosen su�ciently large to resolve the unstable modes. Here the dimension of the longitudinal
direction is L∥,box = 500 c

ωp
and transversal direction is L⊥,box = 50 c

ωp
and for both directions

each plasma skindepth is resolved with 8 grid cells. This leads to a maximum wavenumber of
kmax = πNcell

Lbox
= 8π

ωp

c in each direction and the resolution of modes of ∆k∥ = πL−1
∥,box = π

500
c
ωp

and ∆k⊥ = πL−1
⊥,box = π

50
c
ωp

respectively.
In the simulations of a neutral beam we use four kinds of particles: Beam electrons and beam
positrons with a cold momentum distribution, meaning a low momentum spread, namely a Gaus-
sian with a standard deviation σ∥ = σ⊥ = 0.5 keV and a mean value µ that is equivalent to a
particle with Lorentz boost γ. Additionally background electrons and background protons with
a thermal distribution with a temperature of T = 200 eV · (γ − 1)α. This de�nition leads to
a �xed ratio of beam energy to background energy of ϵ = me

3
2
200 eV

≈ 1700. The mass ratio of

protons to electrons takes the physical value (mp = 1836me) and protons are immobile (i.e. the
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particle pushing is not applied to them) to reduce computational e�ort. Per grid cell and per
species the momentum distribution is sampled with 25 particles, amounting to a total of 4 · 107
particle per species.
The density of the background plasma is nominally set to a value of nbg = 1016 cm−3, however
since all relevant quantities are expressed in relation to the plasma frequency this choice does
not change the physics. As a point of reference we choose the beam to background density ratio
α = 10−3 and the Lorentz boost γ = 5 when varying the other quantity.
During the simulation we use a 6th order Yee-Maxwell solver to update the electric and mag-
netic �elds, a third-order b-spline for depositing charge and current density onto the grid and
calculating the force acting on individual particles and the particle pusher by Higuera & Cray
[68] to evolve the particle position. Additionally we use strided current �ltering with smoothing
steps of size 1, 2, 3, 4 and apply this smoothing �ve times before each particle pushing phase.
During the simulation runs we save the energy density of the electromagnetic �elds and the ki-
netic energy densities of the di�erent particle species every plasm period ω−1

p . The more memory
intensive observables of the full electric and magnetic �elds and the binned momentum distri-
butions of the di�erent particles species are only saved in intervals of 5ω−1

p initially. After the
time 500ω−1

p the �elds and momentum distributions are sampled more coarsely with an interval
of 50ω−1

p .
An overview of the simulation parameters can also be found in table 5.1. The simulation param-
eters have to be carefully tuned to achieve sensible simulation results. Considerations regarding
the numerical convergence can be found in appendix A.

5.2 Energy Density

The key feature of a beam instability is the excitation of electromagnetic �eld modes. The
excitation of a mode takes the form of exponential growth of the amplitude and thus also the
energy density of a mode. Usually only a small subset of modes experience signi�cant instability
growth. In the case of a cold pair beam we expect the purely electrostatic oblique instability
meaning that the instability growth happens for the amplitude of the electric �eld parallel to
the wavevector k for modes at an oblique angle with respect to the beam direction. However
since the instable modes can experience a growth of energy by many orders of magnitude they
can usually dominate the energy density of the entire system. This means that after undergoing
some time needed to overcome the original energy density of the system (e.g. due to thermal
noise or shot noise) the entire energy density grows exponentially.
Due to energy conservation we know that the energy gain of the unstable modes must go hand in
hand with energy loss of the pair beam. The energy loss of the beam does not directly translate
into the net energy gain of the unstable modes because the modes can dissipate energy to larger
scales and they can lose energy by heating the background plasma. Usually dissipation only
becomes relevant once the exponential growth of the modes has stopped. On the other hand
we �nd that for a dilute beam and a cold background plasma the �eld energy density and the
background plasma energy density are in equipartition. This suggests that the energy loss of
the beam and the energy density of the background plasma energy density will both also grow
exponentially with the same rate as the instable modes.
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Table 5.1: Overview of the default PIC Simulation settings for the simulation runs.

Settings of the PIC Simulation

Number of Dimensions 2 (x beam direction, y transverse)

Boundary conditions in x periodic
Boundary conditions in y periodic
Box Length Lx,box (L∥,box) 500 c

ωp

Box Width Ly,box (L⊥,box) 50 c
ωp

Number of Cells Nx 4000
Number of Cells Ny 400
Number of particles per cell Np (per species) 25
Timestep ∆t 0.95 CFL-Criteriona ≈ 0.068ω−1

p

Maxwell Solver Yee
Field Order 6
Particle Pusher Higuera & Cray
Particle Shape Function Third Order B-Spline
Current Smoothing 5-fold (1-2-3-4 steps)

Background particles Electrons & immobile Protons
Initial Background temperature T (γ − 1)α· 200 eV
Beam particles Electrons & Positrons

Distribution Function f(p;µ, σx, σy) ∝ exp
(
− (px−µ)2

2σ2
x

+
p2y+p2z
2σ2

y

)
µ [MeV] 0.511

√
γ2 − 1

σx [keV] (alias ∆px) 0.5
σy [keV] (alias ∆py) 0.5

α 0.001 for γ scan
γ 5 for α scan
Total time T 5000ω−1

p

aThe CFL criterion depends on the grid spacing and the �eld order. For sixth order �eld interpolation it is
120
149

∆x∆y√
∆x2+∆y2

c−1
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5.2.1 Total Energy Density

The most straight-forward observable1 of the instability is the growth of the total energy density.
Figures 5.1 and 5.2 show the evolution of the total energy density for several simulation runs
with varying α and γ. The energy density is normalized to the kinetic energy of the beam. In all
simulation runs we �nd that the energy density starts at a constant noise level. The initial noise
level is the same in all simulation runs since the ratio of beam energy density to background
energy density ϵ is kept constant by adjusting the background medium temperature. After some
time an exponential growth phase sets in until a saturation level is reached.
We can already make some remarks on how the instability evolution is in�uenced by the major
parameters α and γ. For smaller α the growth of the instability is slower, initial noise phase lasts
longer and the saturation occurs at a later time and at a lower level. Similarly for simulation
runs with larger γ we also �nd slower instability growth that leads to a longer initial noise phase,
later saturation and a lower saturation level.
We �nd that for a background density of nbg = 1016 cm−3 the saturation level of the instability
is reached after propagating a distance of the order of centimeters. This would be feasible
to reproduce in a laboratory environment. We note that the distance scales with

√
nbg and

performing the experiment with the same dimensionless parameters but a higher background
density leads to saturation over even shorter distances.

Figure 5.1: The energy density of the combined electric and magnetic �elds across all modes and
all directional components normalized to the initial energy density of the pair beam as a function of
time (bottom axis) and propagation distance (top axis). Each simulation run has a density contrast of
α = 10−3 and varying Lorentz boost γ. For each simulation run the start and end point of the linear
growth phase, as determined by �t to (5.5), is indicated by cross and the linear growth rate is indicated
by a dashed line.

1Here we mean a numerical observable that is accessible to us in a simulation run. The energy density of the
�elds is not a direct observable of a physical experiment.
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Figure 5.2: The energy density of the combined electric and magnetic �elds across all modes and all
directional components normalized to the initial energy density of the pair beam as a function of time
(bottom axis) and propagation distance (top axis). Each simulation run has a Lorentz boost of γ = 5
and varying density contrast α. For each simulation run the start and end point of the linear growth
phase, as determined by �t to (5.5), is indicated by cross and the linear growth rate is indicated by a
dashed line.

5.2.2 Mode Constrained Energy Density

While we showed that the total energy density can already exhibit signi�cant instability growth
we know that this is driven by only a subset of modes that undergo instability growth. On the
other hand a large fraction of the initial noise level is due to the initial excitation of modes that
do not experience signi�cant growth. We can reduce the initial noise level by only considering
the energy density of the modes which have large growth rates. To this end we only consider
the energy density of modes around k∥ ∼ c

ωp
in a range we determined from the Fourier maps

discussed in section 5.3. The resulting evolution of the energy density is shown �gures 5.3 and
5.4.
We �nd that this reduces the initial noise by roughly two order of magnitude. For large γ and
small α the unstable modes are con�ned to a smaller region in Fourier space. In these cases the
initial noise in �gures 5.3 and 5.4 is thus even smaller. Additionally the exponential growth of the
instability sets in at earlier times since the energy density of the instability needs to overcome a
smaller initial noise level. However we also �nd that the behavior at late times remains una�ected
compared to the total energy density. Most importantly the instability grows with roughly the
same rate and saturates at the same time and level.
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Figure 5.3: The energy density of the electric �eld modes, constrained to a region around k∥ ∼ c
ωp

where

signi�cant instability growth is expected, as a function of time and normalized to the initial beam energy.
Each simulation run has a density contrast of α = 10−3 and varying Lorentz boost γ. For each simulation
run the start and end point of the linear growth phase, as determined by �t to (5.5), is indicated by cross
and the linear growth rate is indicated by a dashed line.

Figure 5.4: The energy density of the electric �eld modes, constrained to a region around k∥ ∼ c
ωp

where

signi�cant instability growth is expected, as a function of time and normalized to the initial beam energy.
Each simulation run has a Lorentz boost of γ = 5 and varying density contrast α. For each simulation
run the start and end point of the linear growth phase, as determined by �t to (5.5), is indicated by cross
and the linear growth rate is indicated by a dashed line.
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5.2.3 Beam Energy Loss

An observable that is not spoiled at early times by the initial thermal and shot noise is the energy
loss of the beam which should undergo exponential growth with the same rate as the �eld energy
density. In �gures 5.5 and 5.6 we can see that the exponential growth of the energy loss starts
almost immediately at simulation start but otherwise proceeds with roughly the same rate as
the growth of the �eld energy density.
We �nd that for low γ and high α the beam can lose as much as 10% of it is energy due to the
instability, however for larger γ and smaller α the energy loss is reduced. For an astrophysical
pair beam this low saturation level could mean that the suppression of the secondary gamma ray
�ux would be small.

Figure 5.5: The energy loss of the pair beam normalized to the initial beam energy as a function of time.
Each simulation run has a density contrast of α = 10−3 and varying Lorentz boost γ. For each simulation
run the start and end point of the linear growth phase, as determined by �t to (5.5), is indicated by cross
and the linear growth rate is indicated by a dashed line.
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Figure 5.6: The energy loss of the pair beam normalized to the initial beam energy as a function of time.
Each simulation run has a Lorentz boost of γ = 5 and varying density contrast α. For each simulation
run the start and end point of the linear growth phase, as determined by �t to (5.5), is indicated by cross
and the linear growth rate is indicated by a dashed line.

5.2.4 Energy Budget

For a relativistic beam propagating through a cold background medium almost the total energy
of the system is concentrated in the beam. The instability is a mechanism for the beam to
lose energy to the electromagnetic �elds, which in turn can heat the background plasma. An
important question is how this energy allocation changes due to the instability.
Figures 5.7 and 5.8 show the energy budget of di�erent simulation runs. We can see that in
the limit of a very dilute beam the energy of the �elds and background plasma are roughly in
equipartition. For less dilute beams the energy of background plasma can exceed the energy
of the �elds by multiple orders of magnitude. This means that is not just a matter of the
number density ratio α, but also a matter of the energy density ratio. This suggests that a more
appropriate condition for a dilute beam would be αγ ≪ 1. This is a stronger condition than
α ≪ 1. Nevertheless even for the combination of γ = 5 and α = 10−3 (see �gure 5.7 on the left)
the condition αγ ≪ is satis�ed but we still observe that the beam is not dilute enough for the
energy of �eld and background plasma to reach equipartition.
We also �nd that most of the energy transfer happens after the end of the linear growth phase
when the system continues to evolve non-linearly for some time. Critically the beam only looses
as sizable fraction of its energy in the case of a low-energy, high density beam. With a larger
Lorentz boost γ and a lower density ratio α the fraction of the beam energy that is lost via the
instability reduces.
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Figure 5.7: The allocation of the (fractional) energy on the beam plasma, the �elds and the background
plasma as a function of time. On the left a simulation run with γ = 2 is shown, on the right a simulation
run with γ = 150. In both cases α = 10−3. The end of linear growth phase is indicated by a dashed
vertical line.

Figure 5.8: The allocation of the (fractional) energy on the beam plasma, the �elds and the background
plasma as a function of time. On the left a simulation run with α = 10−1 is shown, on the right a
simulation run with α = 10−5. In both cases γ = 5. The end of linear growth phase is indicated by a
dashed vertical line.

5.3 Fourier Maps

The growth rate is a characteristic of an individual �eld mode. Some modes experience very fast
growth leading to very high amplitude whereas many other modes experience little to no growth
or even damping. To determine the growth rate of each individual mode we employ the Fourier
transformation of the �elds. Let Ẽi be the Fourier transform of the electric �eld component Ei.
The power of mode is then given by the square of Fourier amplitude.

Ẽi = F (Ei) (5.1)

P (Ei) = |F (Ei)|2 (5.2)

For electrostatic modes the amplitude of the excited �eld modes is parallel to the wavevector
k Then we can calculate the power in an electrostatic mode P (E ∥ k) by transforming the
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individual �eld components and adding them weighted by the wavevector.

dP (E ∥ k)
dk

=

[
cos

(
arctan

(
k⊥
k∥

)) ∣∣∣∣∣dẼ∥
(
k∥, k⊥

)
dk

∣∣∣∣∣
+sin

(
arctan

(
k⊥
k∥

)) ∣∣∣∣∣dẼ⊥
(
k∥, k⊥

)
dk

∣∣∣∣∣
]2 (5.3)

Here electric �elds are give in units of
ωpcme

e . For each dimension the Fourier transform adds a

factor of c
ωp

and thus the two-dimensional Fourier transform of the electric �eld is given by c3me
ωpe

.

The power of each mode is then given in units of
(
c3me
ωpe

)2
.

The power of a given mode is proportional to its energy density and thus also grows exponentially
during the linear growth phase. This can also be observed in �gures 5.9 and 5.10 showing the
di�erential power spectrum. We �nd that the most dominant modes are located in a narrow
region around k∥ ∼ c

ω while existing in a wide range of k⊥. Interestingly at the beginning of the
instability growth the most dominant modes can be found at an oblique angle with k⊥ > k∥, but
during the non-linear phase of the instability modes with smaller k⊥ become more dominant.
We will see that the momentum distribution widens during the linear growth phase. This will
transition the instable behavior of the beam from the reactive into the kinetic regime suppressing
the instability growth. According to (3.24) modes with larger k⊥ transition more quickly into
the kinetic regime. This indicates that the saturation of the instability we observe is caused by
the widening of the momentum distribution.
We can determine the growth rate of each individual mode by �tting a linear slope to the log-
arithm of the power against time. We use the saturation time as determined by the �t to the
total energy density to determine the �t interval for the exponential growth. We only consider
time steps between the start of the simulation and the middle of the linear growth phase.
A comparison of the growth rate maps for di�erent α and γ can be found in �gures 5.11 and 5.12.
Here we �nd that not only the growth rate of the fastest growing mode is reduced with higher
Lorentz boost γ and lower density contrast α, but also the spectral width becomes narrower.
Since the phase space of the instable modes is intimately related to the energy they carry we
can speculate that this leads to the lower saturation level of these scenarios and ultimately less
energy drain from the beam.
We calculate the width of the resonance for the constrained energy density by taking the full

width half maximum (FWHM) in k∥ of the growth rate δ
(
k∥, k̂⊥

)
for a speci�c k̂⊥, which is the

k⊥ of the fastest growing mode. This is the region of Fourier space that we considered for the
mode constrained energy density.
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Figure 5.9: The di�erential power spectrum for a simulation run with γ = 5 and α = 10−3 at three
di�erent time steps. The modes with signi�cant growth can be found at k∥ ∼ c

ω . From the left to the
middle plot the power of the dominant mode grows by two decades. From the middle to right plot the
instability has saturated and the power does not continue to grow.

Figure 5.10: The di�erential power spectrum for a simulation run with γ = 5 and α = 10−4 at three
di�erent time steps. The modes with signi�cant growth can be found at k∥ ∼ c

ω . From the left to the
middle plot the power of the dominant mode grows by two decades. From the middle to right plot the
instability has saturated and the power does not continue to grow.

Figure 5.11: Map of the growth rate as a function of wavevector for each mode for two simulation runs.
On the left the Lorentz boost γ = 2 is lower than on the right where γ = 25. In both cases the density
contrast α = 10−3 is the same. For a higher Lorentz boost the maximum growth rate is lower and also
the width of the resonance is much smaller.

47



CHAPTER 5. COLD BEAM

Figure 5.12: Map of the growth rate as a function of wavevector for each mode for two simulation runs.
On the left the density contrast α = 10−1 is lower than on the right where α = 10−5. In both cases the
Lorentz boost γ = 5 is the same. For a lower density ratio the maximum growth rate is lower and also
the width of the resonance is much smaller.

5.4 Growthrate

In the previous section we have described multiple scenarios for quantifying the exponential
growth of a beam instability. First of all there is an ambiguity when de�ning the growth rate
between the amplitude of a mode and its energy. The energy of a mode is calculated from the
square of the amplitude introducing a factor of 2 in the rate. Here we will always express the
rate with respect to the �eld amplitude. When calculated from the energy density we will divide
by 2 to make the rates comparable.
The most obvious de�nition of the growth rate is the di�erential growth rate of each individual
mode. If one is interested in the evolution of the entire system one can consider the growth rate
of the fastest growing, most dominant mode δmax.
The evolution of the �eld in its entirety is given by the integrated growth rate δint which is
calculated by mode-averaging the di�erential growth rate. Thus the integrated growth rate is
necessarily smaller than the maximum growth rate. Directly related to the energy gain of the
�elds is the energy loss of the beam. In the limit of a dilute beam, where �eld energy and back-
ground plasma energy are in equipartition, the loss rate δloss should be equal to the integrated
growth rate.
Between the integrated and the maximum growth rate we can consider many growth rates
achieved by mode averaging only in di�erent constrained regions of phase space around the
most dominant modes. This gives us the constraint growth rate δconstraint.
All of these de�nitions of the growth rate should only deviate slightly from another and follow
an approximate hierarchy:

δloss ≈ δint ≲ δconstraint ≲ δmax (5.4)
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In all cases the growth rate can be extracted without further assumptions from simulation data
by �tting a ramp function (5.5) to the time evolution of the logarithm of the quantity in question.

log u(t; c) =


c0 if t < c1

c2 if t > c3
c2 − c0
c3 − c1

(t− c1) + c0 otherwise

(5.5)

Here c0 is the initial noise level (if applicable), c1 is the time the instability emerges from the
background noise, c2 is the saturation level and c3 is the saturation time of the instability growth.
The growth rate is given by δ = c2−c0

c3−c1
. This ramp function-�t can be applied to the total energy

density, constraint energy density, the amplitude of individual modes and other quantities that
undergo a phase of exponential growth between two more or less constant phases like the mean
and width of the beam momentum distribution.
We performed this �t for the di�erent de�nitions of the growth rate and show the results as a
function of α and γ in �gure 5.13. We �nd that the de�nitions of the growth rate only deviate
slightly from each other and that our prediction of the hierarchy is ful�lled with δmax always
being the highest rate. In the �gures 5.1 to 5.6 we indicated the �tted linear growth phase by a
dashed line, as well as the time of emergence and the time of saturation by a cross.

Figure 5.13: The di�erent de�nitions of the growth rates compared for simulation runs with various α
and γ choices. For all runs on the left the density contrast is kept at a constant value of α = 10−3. For
all runs on the right the Lorentz boost is kept at a constant value of γ = 5.

5.4.1 Scaling Relationships

An important factor of laboratory astrophysics is scaling relationships to connect the laboratory
system to the much di�erent astrophysical environment. There the energy of the beam particles
will be much higher and their density ratio with respect to the background medium much smaller
than in the laboratory system. Furthermore the distances and time scales will be many orders
of magnitude larger than in the laboratory.
The scaling of time and distances is trivial since all quantities are expressed with respect to the
plasma frequency and the plasma skin depth. For α and γ we �nd that the growth rate follows
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a power-law and con�rms to theory calculations for the oblique growth rate.

δ ∝ α0.34

γ0.34
≈
(
α

γ

) 1
3

(5.6)

The scaling with α and γ as well as the �tted power laws are shown in �gure 5.14 for the integrated
growth rate. The scaling of other de�nitions of the growth rate follow the same behavior.

Figure 5.14: The integrated growth rate as a function of Lorentz boost (left) and the density contrast
(right). Both follow a power-law. The spectral index has been �tted to be 0.34 for the α scaling and
−0.34 for the γ scaling.

5.5 Beam Momentum Distribution

The beam instability is a self-reinforcing e�ect of small perturbations of the beam's homogeneity,
where small changes in charge density or momentum distribution lead to a net charge or current
that produces electromagnetic �elds which in turn act on the beam in a way that reinforces these
perturbations. So far we have mostly considered the e�ect of the beam on the �elds, but hand
in hand with �eld growth we should �nd a back reaction of the �elds on the beam. This can for
example come in the form of the bulk energy loss or a heating of the beam.
In the �gures 5.15 to 5.18 we have plotted the evolution of the momentum distribution for a
number of simulation con�gurations. For easier visibility we only show the momentum distri-
bution after some broadening has occurred. Initially the momentum distribution is cold, almost
equivalent to a Delta-function, with longitudinal and transversal width of σ∥ = σ⊥ = 0.5 keV.
In all cases we �nd that instability leads to signi�cant broadening of the momentum distribution
in both directions. Furthermore also the peak of the p∥ distribution shifts to lower momentum.
The mean of the p⊥ remains at 0. This e�ect does not continue inde�nitely but at late times the
distribution function settles into a �nal state. We can broadly say that the momentum distribu-
tion function remains Gaussian during most its evolution in the linear growth phase. However
especially at late times large deviations from a Gaussian distribution are possible. Comparing
the �gures we also �nd that a larger Lorentz boost γ and a larger density ratio α lead to more
pronounced shift and broadening of the momentum distribution.
A Gaussian distribution is well de�ned with only two numbers: the mean µ and the standard
deviation σ. Since the momentum distribution of the beam particles closely resembles a Gaussian
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we will use the �rst and second momentum of these distributions to describe them. When run-
ning the simulation we write an output �le with the binned momentum distribution every 5ω−1

p

until a total simulation time of 500ω−1
p , then we continue to write with an interval of 50ω−1

p .
Using the binned momentum distribution, we calculate the mean and standard deviation. Due
to the binning this can lead to a minor inaccuracy especially when considering the shifting of the
mean value which does not start from a �nite value to begin with. For the quantities calculated
from the full distribution of pi we will use the names Mean(pi) for the mean and Std(pi) for the
standard deviation to indicate that they are values extracted from the simulation. In section
3.5 we already derived a model for the evolution of a Gaussian momentum distribution under
exponential growth of the �eld energy density with the Fokker-Planck equation. We showed that
the evolution can be fully described by the evolution of the mean and standard deviation.
For symmetry reasons the mean of p⊥ should not shift from 0 beyond minor �uctuations. We
are left with three quantities that evolve due to the instability growth: Mean(p∥), Std(p∥) and
Std(p⊥). However instead of the mean we will consider the shift of the mean ∆Mean

(
p∥
)
which

is constructed to grow exponentially like the energy density. For each quantity the evolution
depends on α and γ.

∆Mean
(
p∥, t

)
= Mean

(
p∥, t = 0

)
−Mean

(
p∥, t

)
(5.7)

The evolution of ∆Mean(p∥) is shown in �gures 5.19 and 5.20 for varying γ and α respectively.
We �nd the typical exponential growth associated with the instability. As expected from earlier
analytic considerations the slope of the exponential growth is the same as for the energy density
of electromagnetic �elds, namely 2δ. At very early times the quantity is dominated by numeric
inaccuracy because the mean is calculated from a binned momentum distribution. The evolution
of the mean momentum shift was further analyzed by �tting the model derived from the Fokker-
Planck equation, which describes the evolution during the linear regime and the early non-linear
regime very well. The very late evolution after twice the saturation time is excluded. The �t
parameters for each simulation run can be found in table ??.
Similarly the evolution of Std(p∥) and Std(p⊥) is shown in �gure 5.21 to 5.24. Here we �nd a
more complex behavior starting from the initial value (here 500 eV) and eventually reaching an
exponential growth regime with the slope of the �eld amplitude. Again the model derived from
the Fokker-Planck equation was �tted with success. The �t parameters for each simulation run
have been listed in tables 5.3 and 5.4. The smoothness parameter κ de�nes how quickly the
transition from the linear regime with exponential growth to the saturation regime takes place.
For κ → ∞ the saturation is instantaneous and consequently for smaller κ the transition takes
longer. For ∆Mean

(
p∥
)
and Std

(
p∥
)
we �nd no clear dependency of κ with respect to α and γ

and κ takes on a value roughly between 1 and 50. In the case of Std(p⊥), where the �t shows the
best agreement with the simulation data, we �nd that the �t prefers larger κ and thus a faster
transition for larger γ and larger α. This is perhaps remarkable since a larger γ leads to a longer
saturation time, but a larger α on the other hands leads to a shorter saturation time. Instead of
the time scale of the instability, the smoothness of the transition seems to follow the behavior of
the saturation level, with a higher saturation being associated with a smoother transition.
The model derived from the Fokker-Planck equation also describe the evolution of the momentum
distribution into the non-linear regime and we have shown that for some time after saturation
that is at least as long as the duration of the linear growth phase this description holds true. After
tfinal the mean continues to shift linearly with time and the standard deviation grows with the
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square root of time. At saturation time the drift term V (t) and di�usion constant D(t) take on
their maximum value and the momentum distribution can still change very strongly. At very late
times the model does not hold true anymore since the electric �eld evolves independently, mostly
by shifting energy to more long-ranged modes that do not contribute to the di�usion constant.
At this point V (t) and D(t) decrease again and the evolution of the momentum distribution
essential halts.

Figure 5.15: The beam momentum distribution for a simulation run with γ = 2 and α = 10−3 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The right plot shows the transversal momentum distribution. In both cases all other
momentum directions were integrated over.

Figure 5.16: The beam momentum distribution for a simulation run with γ = 150 and α = 10−3 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The right plot shows the transversal momentum distribution. In both cases all other
momentum directions were integrated over.
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Figure 5.17: The beam momentum distribution for a simulation run with γ = 5 and α = 10−1 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The right plot shows the transversal momentum distribution. In both cases all other
momentum directions were integrated over.

Figure 5.18: The beam momentum distribution for a simulation run with γ = 5 and α = 10−5 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The right plot shows the transversal momentum distribution. In both cases all other
momentum directions were integrated over.
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Figure 5.19: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown for

runs with varying Lorentz boost γ and α = 10−3. The mean value is calculated at regular intervals of 5ω−1
p until

a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for early times the shift of the mean momentum
is dominated by numeric e�ects (�nite binning) and not shown here. Furthermore for late times, after 2tfinal
(�tted value), data points are not shown either since the �t to the model does not describe the evolution very
well anymore. In dashed lines a �t of (3.42) to the data is shown. The �t parameters are listed in table 5.2.

Figure 5.20: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown for

runs with varying density ratio α and γ = 5. The mean value is calculated at regular intervals of 5ω−1
p until a

time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for early times the shift of the mean momentum
is dominated by numeric e�ects (�nite binning) and not shown here. Furthermore for late times, after 2tfinal
(�tted value), data points are not shown either since the �t to the model does not describe the evolution very
well anymore. In dashed lines a �t of (3.42) to the data is shown. The �t parameters are listed in table 5.2.
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Table 5.2: The �t parameters (δ, V1, tfinal, κ) of (3.42) for ∆Mean(p∥) from simulation runs with
various values for α and γ. The derived quantity Λ is the value of ∆Mean(p∥) at time tfinal. The quantity

(γme)
−1

Λ estimates the relative energy loss of the pair beam.

γ α δ [ωp] V1 [MeV] tfinal [ω
−1
p ] κ Λ [MeV] (γme)

−1 Λ

2 0.001 6.03 · 10−2 2.07 · 10−10 146 4.04 5.61 · 10−3 6.33 · 10−3

5 0.001 4.09 · 10−2 1.06 · 10−9 197 10.9 8.41 · 10−3 3.35 · 10−3

10 0.001 3.15 · 10−2 2.38 · 10−9 249 33.7 1.39 · 10−2 2.74 · 10−3

15 0.001 2.81 · 10−2 2.11 · 10−9 287 11.5 1.66 · 10−2 2.16 · 10−3

20 0.001 2.55 · 10−2 2.79 · 10−9 313 33.8 2.13 · 10−2 2.08 · 10−3

25 0.001 2.46 · 10−2 2.06 · 10−9 332 15.8 2.16 · 10−2 1.69 · 10−3

50 0.001 1.89 · 10−2 4.58 · 10−9 425 19.3 3.70 · 10−2 1.44 · 10−3

75 0.001 1.64 · 10−2 5.63 · 10−9 490 33.3 4.51 · 10−2 1.17 · 10−3

100 0.001 1.47 · 10−2 9.25 · 10−9 544 17.7 6.55 · 10−2 1.28 · 10−3

150 0.001 1.38 · 10−2 4.82 · 10−9 604 9.39 6.31 · 10−2 8.22 · 10−4

5 0.1 0.187 2.26 · 10−8 38.2 13.0 2.76 · 10−2 1.10 · 10−2

5 0.05 0.150 1.18 · 10−8 49.3 14.6 2.53 · 10−2 1.01 · 10−2

5 0.01 8.55 · 10−2 5.63 · 10−9 88.8 26.6 1.85 · 10−2 7.36 · 10−3

5 0.005 6.90 · 10−2 3.16 · 10−9 112 14.7 1.48 · 10−2 5.89 · 10−3

5 0.001 3.93 · 10−2 1.85 · 10−9 198 37.2 9.65 · 10−3 3.85 · 10−3

5 0.0005 3.17 · 10−2 1.28 · 10−9 249 29.9 7.89 · 10−3 3.15 · 10−3

5 0.0001 1.95 · 10−2 3.52 · 10−10 423 11.7 3.90 · 10−3 1.56 · 10−3

5 0.00005 1.49 · 10−2 3.41 · 10−10 545 13.5 3.09 · 10−3 1.23 · 10−3

5 0.00001 8.83 · 10−3 1.89 · 10−10 921 14.1 1.74 · 10−3 6.94 · 10−4
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Figure 5.21: The evolution of the width of the longitudinal momentum Std
(
p∥
)
is shown for runs with

varying Lorentz boost γ and α = 10−3. The standard deviation is calculated at regular intervals of 5ω−1
p

until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late times, after 2tfinal (�tted
value), data points are not shown since the �t to the model does not describe the evolution very well
anymore. In dashed lines a �t of (3.43) to the data is shown. The �t parameters are listed in table 5.3.

Figure 5.22: The evolution of the width of the longitudinal momentum Std
(
p∥
)
is shown for runs with

varying density ratio α and γ = 5.. The standard deviation is calculated at regular intervals of 5ω−1
p

until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late times, after 2tfinal (�tted
value), data points are not shown since the �t to the model does not describe the evolution very well
anymore. In dashed lines a �t of (3.43) to the data is shown. The �t parameters are listed in table 5.3.
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Table 5.3: The �t parameters (δ, D0, D1, tfinal and κ) of (3.43) for Std(p∥) from simulation runs with
various values for α and γ. The derived quantity Λ is the value of Std(p∥) at time tfinal.

γ α δ [ωp] D0 [MeV2ωp] D1 [MeV2ωp] tfinal [ω
−1
p ] κ Λ [MeV]

2 0.001 5.46 · 10−2 3.16 · 10−11 1.28 · 10−12 164 8.83 3.34 · 10−2

5 0.001 4.08 · 10−2 7.63 · 10−11 2.19 · 10−12 241 2.10 6.91 · 10−2

10 0.001 3.24 · 10−2 1.09 · 10−10 3.95 · 10−12 293 2.60 8.87 · 10−2

15 0.001 2.77 · 10−2 1.69 · 10−10 6.88 · 10−12 336 3.08 0.118
20 0.001 2.57 · 10−2 1.44 · 10−10 7.81 · 10−12 360 3.57 0.131
25 0.001 2.38 · 10−2 1.63 · 10−10 1.07 · 10−11 390 3.30 0.160
50 0.001 1.86 · 10−2 2.57 · 10−10 2.32 · 10−11 498 4.52 0.285
75 0.001 1.61 · 10−2 4.30 · 10−10 2.78 · 10−11 584 3.68 0.360
100 0.001 1.48 · 10−2 5.35 · 10−10 4.18 · 10−11 637 3.27 0.464
150 0.001 1.30 · 10−2 8.76 · 10−10 5.75 · 10−11 717 3.10 0.510

5 0.1 0.162 1.48 · 10−8 1.85 · 10−9 46.2 48.5 0.182
5 0.05 0.142 6.16 · 10−9 4.11 · 10−10 58.5 4.47 0.164
5 0.01 8.61 · 10−2 9.69 · 10−10 4.24 · 10−11 106 2.49 0.129
5 0.005 6.91 · 10−2 4.29 · 10−10 1.77 · 10−11 136 2.33 0.109
5 0.001 4.07 · 10−2 6.97 · 10−11 2.44 · 10−12 238 2.16 6.64 · 10−2

5 0.0005 3.25 · 10−2 3.67 · 10−11 1.28 · 10−12 290 2.63 4.87 · 10−2

5 0.0001 1.92 · 10−2 5.69 · 10−12 1.81 · 10−13 499 3.26 3.03 · 10−2

5 0.00005 1.51 · 10−2 4.73 · 10−12 7.28 · 10−14 654 2.27 2.38 · 10−2

5 0.00001 9.00 · 10−3 8.63 · 10−13 1.40 · 10−14 1.09 · 103 2.21 1.16 · 10−2
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Figure 5.23: The evolution of the width of the transversal momentum Std (p⊥) is shown for runs with
varying Lorentz boost γ and α = 10−3. The standard deviation is calculated at regular intervals of 5ω−1

p

until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late times, after 2tfinal (�tted
value), data points are not shown since the �t to the model does not describe the evolution very well
anymore. In dashed lines a �t of (3.43) to the data is shown. The �t parameters are listed in table 5.4.

Figure 5.24: The evolution of the width of the transversal momentum Std (p⊥) is shown for runs with
varying density ratio α and γ = 5.. The standard deviation is calculated at regular intervals of 5ω−1

p

until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late times, after 2tfinal (�tted
value), data points are not shown since the �t to the model does not describe the evolution very well
anymore. In dashed lines a �t of (3.43) to the data is shown. The �t parameters are listed in table 5.4.
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Table 5.4: The �t parameters (δ, D0, D1, tfinal and κ) of (3.43) for Std(p⊥) from simulation runs with
various values for α and γ. The derived quantity Λ is the value of Std(p⊥) at time tfinal.

γ α δ [ωp] D0 [MeV2ωp] D1 [MeV2ωp] tfinal [ω
−1
p ] κ Λ [MeV]

2 0.001 5.55 · 10−2 3.99 · 10−11 4.15 · 10−12 139 1.19 · 10−24 1.97 · 10−2

5 0.001 4.11 · 10−2 1.06 · 10−10 1.14 · 10−11 190 2.26 · 10−2 3.86 · 10−2

10 0.001 3.27 · 10−2 2.16 · 10−10 2.16 · 10−11 241 2.97 · 10−2 6.36 · 10−2

15 0.001 2.85 · 10−2 3.53 · 10−10 3.04 · 10−11 278 7.13 · 10−2 8.21 · 10−2

20 0.001 2.62 · 10−2 4.71 · 10−10 3.99 · 10−11 303 3.96 · 10−2 9.94 · 10−2

25 0.001 2.44 · 10−2 6.26 · 10−10 5.10 · 10−11 324 4.52 · 10−2 0.113
50 0.001 1.94 · 10−2 1.35 · 10−9 9.21 · 10−11 413 8.56 · 10−2 0.184
75 0.001 1.69 · 10−2 2.10 · 10−9 1.16 · 10−10 478 9.84 · 10−2 0.233
100 0.001 1.55 · 10−2 2.96 · 10−9 1.68 · 10−10 522 0.176 0.275
150 0.001 1.36 · 10−2 4.62 · 10−9 2.33 · 10−10 598 0.146 0.363

5 0.1 0.182 1.13 · 10−8 4.97 · 10−9 37.4 3.11 · 1041 0.148
5 0.05 0.148 7.94 · 10−9 1.78 · 10−9 47.4 1.50 · 1041 0.124
5 0.01 8.84 · 10−2 1.77 · 10−9 1.95 · 10−10 84.3 1.44 · 104 7.95 · 10−2

5 0.005 7.03 · 10−2 8.51 · 10−10 8.64 · 10−11 107 152 6.40 · 10−2

5 0.001 4.09 · 10−2 1.13 · 10−10 1.30 · 10−11 189 86.2 3.97 · 10−2

5 0.0005 3.26 · 10−2 5.48 · 10−11 6.32 · 10−12 239 216 3.26 · 10−2

5 0.0001 1.90 · 10−2 7.91 · 10−12 1.12 · 10−12 414 51.2 1.93 · 10−2

5 0.00005 1.49 · 10−2 4.34 · 10−12 5.21 · 10−13 532 29.7 1.51 · 10−2

5 0.00001 8.75 · 10−3 7.37 · 10−13 1.14 · 10−13 897 25.7 8.59 · 10−3

5.5.1 Scaling Relationships

In order to apply the simulations to astrophysical environment with very di�erent scales or
transfer insight from a laboratory experiment to the astrophysical environment it is important
to understand how the investigated quantities can be scaled. The most important parameters
here are the density contrast α and the Lorentz boost γ. The astrophysical values can not be
replicated in a laboratory environment or simulated with reasonable computational e�ort.
In �gures 5.25, 5.26 and 5.27 the scaling of the growth rate and the saturation level of the linear
regime are shown to follow power-laws with respect to α and γ. For the evolution of the mean
longitudinal momentum we already accounted for the fact that it grows with twice the growth
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rate of the �eld amplitude. We can summarize the scaling relationships as follows:

δ∆Mean(p∥) ∝
α0.33

γ0.34
(5.8)

Λ∆Mean(p∥) ∝ α0.31γ0.61 (5.9)

δStd(p∥) ∝
α0.32

γ0.34
(5.10)

ΛStd(p∥) ∝ α0.30γ0.65 (5.11)

δStd(p⊥) ∝
α0.33

γ0.33
(5.12)

ΛStd(p⊥) ∝ α0.31γ0.67 (5.13)

More generally we �nd that all growth rates and saturation levels can be approximately described
with a single scaling law each.

δ ∝
(
α

γ

) 1
3

(5.14)

Λ ∝ α
1
3γ

2
3 = γδ (5.15)

In summary the growth of the �eld amplitude and energy density happens at the same time and
with the same rates as the change of the momentum distribution. This con�rms our model of
the �eld growth due to the instability driving the change of the momentum distribution. Thus
measuring the changed momentum distribution is in a sense equal to measuring the electric �eld.
Furthermore the saturation of the instability seems to be intimately linked to heating of the
beam momentum distribution. As a consequence it is su�cient to measure the saturation level
of the momentum distribution change to infer the growth rate of �eld amplitude.
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Figure 5.25: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the shift
of mean parallel momentum ∆Mean(p∥) with γ (top) and α (bottom). In all cases the scaling is well
described by a power-law. For each simulation the growth rate and the saturation level are extracted by
�tting (3.42).

Figure 5.26: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the width of
parallel momentum Std(p∥) with γ (top) and α (bottom). In all cases the scaling is well described by a
power-law. For each simulation the growth rate and the saturation level are extracted by �tting (3.43).
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Figure 5.27: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the width of
transversal momentum Std(p⊥) with γ (top) and α (bottom). In all cases the scaling is well described
by a power-law. For each simulation the growth rate and the saturation level are extracted by �tting
(3.43).

5.6 2D Correlations

In the previous sections we considered the change of the momentum distribution as separate
drift and di�usion processes that lead to a shifting and broadening Gaussian distribution. Most
notable the behavior of di�erent momentum dimensions did not a�ect each other leading to no
correlation between p∥ and p⊥. But we already saw that even in a single dimension there can be
deviation from a purely Gaussian shape from around the time of saturation onwards.
In �gures 5.28 and 5.29 the two dimensional momentum distribution is shown for various simu-
lation runs at di�erent points in time. One needs to pay attention that because of the di�erent
growth rates the linear growth phase ends at di�erent times for di�erent parameters. However
we can see that at the end of the linear growth phase, when non-linear e�ects start to play a
role, signi�cant correlations between longitudinal and transversal momentum become apparent.
Namely particles with high transversal momentum are more likely to have lower longitudinal
momentum leading to a curved crescent or boomerang shape. This shape does not persist in-
de�nitely though as at very late times we �nd a signi�cantly more broadening but also a more
symmetrical shape again.
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Figure 5.28: The two-dimensional momentum distribution at di�erent simulation times (100ω−1
p on the

left, 300ω−1
p in the middle and 500ω−1

p on the right) for simulation runs with varying γ and α = 10−3.
Beyond the broadening in longitudinal and transversal direction we can observe a correlation between
the two momentum directions at intermediate times (around saturation time), where particles with high
transversal momentum have lower longitudinal momentum. Overall this leads to a curved shape (like a
boomerang).
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Figure 5.29: The two-dimensional momentum distribution at di�erent simulation times (100ω−1
p on the

left, 300ω−1
p in the middle and 500ω−1

p on the right) for simulation runs with varying α and γ = 5.
Beyond the broadening in longitudinal and transversal direction we can observe a correlation between
the two momentum directions at intermediate times (around saturation time), where particles with high
transversal momentum have lower longitudinal momentum. Overall this leads to a curved shape (like a
boomerang).

5.6.1 Opening Angle

If one is interested in how the change of the momentum distribution a�ects the astrophysical
gamma ray �ux measured by a telescope the most interesting quantity is not the increase in width
or the change of the mean but the change of the opening angle. In general both the increase of the
transversal momentum spread and the decrease of the mean longitudinal momentum will lead to
an increased opening angle with respect to the beam axis (the direction where mean transversal
momentum is zero). We can estimate the opening angle θ only using these two quantities:

⟨θ⟩ = Std (p⊥)

Mean
(
p∥
) =

Std (p⊥)

βγme −∆Mean
(
p∥
) ≈ Std (p⊥)

γme
(5.16)
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The last approximation assumes that the beam is highly relativistic and dilute. It is only used
for the following analytical estimate of the scaling:

δ⟨θ⟩ ∝ δStd (p⊥) ∝
(
α

γ

) 1
3

(5.17)

Λ⟨θ⟩ ∝ γ−1ΛStd (p⊥) ∝ γ−1γδStd (p⊥) = δStd (p⊥) ∝
(
α

γ

) 1
3

(5.18)

The factor of γ does not feature into the growth rate since dividing by a constant in logarithmic
scale will only give an o�set. Treating the evolution of the mean value of longitudinal momentum
will give a (relatively) stronger contribution at low Lorentz boost leading to a stronger reduction
with higher Lorentz boost on the saturation expected here. Figures 5.30 and 5.31 show the
evolution of the opening angle with time. It undergoes a similar evolution to the transverse
momentum and can be described with the same analytical model (3.43). Figure 5.32 shows the
extracted rates for evolution of the opening angle and they closely con�rm to the scaling we
predicted.

Figure 5.30: The evolution of the beam opening angle ⟨θ⟩ is shown for runs with varying Lorentz boost
γ and α = 10−3. The opening angle is calculated from the Mean(p∥) and Std(p⊥) at regular intervals of
5ω−1

p until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late times, after 3tfinal
(�tted value), data points are not shown either since the �t to the model does not describe the evolution
very well anymore. In dashed lines a �t of (3.43) to the data, where the opening angle is substituted for
the width of the momentum distribution, is shown.
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Figure 5.31: The evolution of the beam opening angle ⟨θ⟩ is shown for runs with varying density ratio
α and γ = 5. The opening angle is calculated from the Mean(p∥) and Std(p⊥) at regular intervals of
5ω−1

p until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late times, after 3tfinal
(�tted value), data points are not shown either since the �t to the model does not describe the evolution
very well anymore. In dashed lines a �t of (3.43) to the data, where the opening angle is substituted for
the width of the momentum distribution, is shown.
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Figure 5.32: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the opening
angle ⟨θ⟩ with γ (top) and α (bottom). In all cases the scaling is well described by a power-law. For
each simulation the growth rate and the saturation level are extracted by �tting (3.43) as shown in �gures
5.30 and 5.31.

5.7 Background Momentum Distribution

The instable behavior of the neutral pair beam leads to the drain of energy and momentum into
an electric �eld which in turn can transfer energy into the background plasma. In �gures 5.7 and
5.8 we can see that in some cases almost all of the energy ends up in the background plasma.
In the case of very dilute beam we will roughly achieve equipartition between the �elds and the
background plasma.
The transfer of energy can either take the form of heating the background plasma by increasing
the momentum spread isotropically without transferring bulk momentum (which means that the
plasma is still at rest with respect to the laboratory frame) or by transferring bulk momentum
accelerating the background plasma collectively in the direction of the beam. In the �rst case
the entire loss of longitudinal momentum would have to be transfered to the electric �eld.
Figures 5.35 and 5.34 show the evolution of the mean and width of the longitudinal momentum
distribution for the background plasma electrons overlaid for di�erent combinations of α and γ.
We �nd that even in cases where the beam is not very dilute the transfer of bulk momentum is
small compared to the widening of the momentum distribution indicating that the background
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plasma gains energy in the form of heat. If the beam is very dilute, meaning αγ ≪ 1, there is
no transfer of bulk momentum beyond machine precision even though the background plasma
experiences heating.
The heating process of the background plasma takes a similar form to the momentum widening
of the beam during the instability. In the beginning the width of the momentum distribution
remains at its initial value for some time until an exponential rise sets in, which is followed by
a saturation regime. The �gures 5.35, 5.36, 5.38 and 5.39 show the evolution of Std

(
p∥
)
and

Std(p⊥) for the background plasma electrons. We can use the same model (3.43) to describes
the heating process. We �nd that growth rate and the saturation level roughly follow the same
scaling (see �gures 5.37 and 5.40) as for the beam momentum distribution. However the "coupling
constants" D0 and D1 are di�erent. This is likely because of the di�erence in density between
the beam and the background plasma. This also leads to �nal saturation level that is much
smaller and thus signi�cantly less heating than in the beam. We do not observe any e�ect of the
initial �uctuations leading to a square root di�usion regime.

Figure 5.33: The evolution of the mean and width of the longitudinal momentum distribution for two
runs with α = 10−3 and γ = 10 (left) and γ = 150 (right). The dashed vertical line shows the �tted
saturation time tfinal. The change in mean momentum is small compared to the increase in width. The
strength of widening is only slightly correlated with γ, whereas the transfer of bulk momentum is roughly
proportional to γ.
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Figure 5.34: The evolution of the mean and width of the longitudinal momentum distribution for two
runs with γ = 5 and α = 10−2 (left) and α = 5 · 10−5 (right). The dashed vertical line shows the �tted
saturation time tfinal. The change in mean momentum is small compared to the increase in width. The
strength of widening is only slightly correlated with γ, whereas the transfer of bulk momentum is roughly
proportional to γ.

Figure 5.35: The evolution of the width of the longitudinal momentum Std
(
p∥
)
of the background

plasma is shown for runs with varying Lorentz boost γ and α = 10−3. The standard deviation is
calculated at regular intervals of 5ω−1

p until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p .
However for late times, after 2tfinal (�tted value), data points are not shown since the �t to the model
does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown.
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Figure 5.36: The evolution of the width of the longitudinal momentum Std
(
p∥
)
of the background

plasma is shown for runs with varying density contrast α and γ = 5. The standard deviation is calculated
at regular intervals of 5ω−1

p until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late
times, after 2tfinal (�tted value), data points are not shown since the �t to the model does not describe
the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown.
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Figure 5.37: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the background
plasma longitudinal momentum width Std(p∥) with γ (top) and α (bottom). In all cases the scaling is
well described by a power-law. For each simulation the growth rate and the saturation level are extracted
by �tting (3.43) as shown in �gures 5.35 and 5.36.
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Figure 5.38: The evolution of the width of the transversal momentum Std (p⊥) of the background plasma
is shown for runs with varying Lorentz boost γ and α = 10−3. The standard deviation is calculated at
regular intervals of 5ω−1

p until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late
times, after 2tfinal (�tted value), data points are not shown since the �t to the model does not describe
the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown.

Figure 5.39: The evolution of the width of the transversal momentum Std (p⊥) of the background
plasma is shown for runs with varying density contrast α and γ = 5. The standard deviation is calculated
at regular intervals of 5ω−1

p until a time of 500ω−1
p and afterwards at intervals of 50ω−1

p . However for late
times, after 2tfinal (�tted value), data points are not shown since the �t to the model does not describe
the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown.
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Figure 5.40: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the background
plasma transversal momentum width Std(p⊥) with γ (top) and α (bottom). In all cases the scaling is
well described by a power-law. For each simulation the growth rate and the saturation level are extracted
by �tting (3.43) as shown in �gures 5.38 and 5.39.

5.8 Initial Noise

At the start of a simulation run the particles of each species are randomly placed in the simulation
box with a momentum randomly drawn from a prede�ned momentum distribution (thermal in
the case of background species and shifted Gaussian in the case of beam species) leading to
an almost uniform initial number density of each species of particles and current densities that
cancel each other almost perfectly2. In the limit of in�nite particles the initial charge and
current density at each grid point of the simulation box would vanish exactly. The �nite number
of simulation particles leads to deviations from a homogeneous initial state. This noise produces
a small charge and current density at each grid point leading to an initial electromagnetic �eld.
The initial �eld serves the important purpose of seeding the instability. Without these initial
�uctuations the pair beam system would be stable. The initial noise can further in�uence the
evolution of the system in signi�cant ways. One example we saw was the broadening of the beam
momentum distribution due to di�usion caused by the initial �elds.

2In the case of background species this is because of the isotropy of the sampled momentum distribution and
in the case of beam species this is because positrons and electrons have the same momentum distribution
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Since this noise is caused by the �nite number of particles it follows Poisson statistics (shot noise).
The �uctuations in charge density and current density thus scale inversely with the square root
of the number of particles. From the Maxwell equations we can easily deduce that a square root
dependence of the charge and current densities lead to a square root dependence of the �eld
amplitude. Since the energy density of a �eld scales with the square of the �eld amplitude we
can deduce that the energy density of the noise scales inversely with the number of simulation
particles (see �gure 5.41). It is important to note that each simulation particle stands for a vast
number of physical particles and thus the initial noise in a simulation is most likely severely
overestimated compared to a real physical system.
The initial thermal motion of the background particles contributes to the noise as the current
produced a charged particle is proportional to its velocity. We can adjust the thermal velocity by
changing the energy density ratio of beam to background plasma ϵ. Larger epsilon for constant
α & γ corresponds to a colder background. The (mean) thermal velocity scales with the square
root of the energy. Since the current density scales linearly with the velocity and the energy
density of the noise scales inversely with the square of the current density, we can conclude that
the initial noise due to the thermal motion scales inversely with ϵ. In �gure 5.41 we can in fact
see this scaling of the total noise with ϵ. From the scaling with ϵ being almost exactly linear we
can conclude that almost the entire initial noise in our PIC simulations is caused by the thermal
motion of the background plasma. We note however that this does not necessarily translate to
the physical world. One important di�erence would be that we use an equal number of macro
particles for each species, meaning that the background plasma and the beam have the same
relative �uctuation. In the physical world the dilute beam consist of far fewer particles than the
much denser background plasma leading to larger �uctuations in the beam.

Figure 5.41: The energy density of the initial electromagnetic �eld noise as a function of the number
of simulation particles per simulation cell (left) and as a function of the energy density ratio ϵ (rigth).
ϵ is inversely proportional to the thermal energy of the plasma.

5.9 Cold Beam in 3D

The 2D simulations studied in this chapter should in principle be able to capture all relevant
physical e�ects while requiring orders of magnitude less computational e�ort than 3D simulations
at comparable resolution. Nevertheless we performed 3D simulations with reduced resolution to
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con�rm that no qualitative di�erence exist. An overview of the simulation result can be found
in appendix B.
In principle the 2D simulations resolve momentum in three dimensions, however the third di-
mension, which is orthogonal to the simulation plane and also orthogonal to the beam direction,
is completely una�ected by the instability and shows no broadening. This is most likely because
the instable �eld modes have no component in this direction because the electromagnetic �elds
are only resolved in two spatial dimensions. We can con�rm that in three spatial dimensions the
momentum distribution evolves as expected in all three dimensions.
Even thought the 3D simulations where performed at reduced resolution, maybe most impor-
tantly the number of particles per cell was drastically reduced, one can still reduce the observed
noise by averaging over the new dimension. For example when calculating the 2D growth rate
maps, we calculate the growth rate for each mode resolved in a two dimensional plane. In a
3D simulation where the third dimension is resolved with N cells, we produce N independent
realizations of this 2D plane, a noise reduction that is equivalent to increasing the number of
particles per cell by a factor of N .
Additionally we can study the spectral growth rate in the plane orthogonal to the beam direction
(�gures 5.42 and 5.43). Here we �nd the most dominant modes in a ring centered around the
origin with a radius of roughly π

ωp

c . Neither the radius nor the width of the ring seem to be
strongly a�ected by the choice of the Lorentz boost γ or the density ratio α. Since the most
dominant modes in parallel to the beam direction can be found for k∥ ≈ ωp

c we can conclude the
most dominant modes can be found at an oblique angle of roughly 72◦.

θ = arctan

(
k⊥,max

k∥,max

)
≈ arctan (π) ≈ 72◦ (5.19)

Figure 5.42: Spectral growth rate map of the transverse plane, where ky and kz are two components of
the wave vector that are orthogonal to the direction of the beam. Shown are two simulation runs with
α = 10−3 and γ = 2 (left) and γ = 25 (right) respectively.
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Figure 5.43: Spectral growth rate map of the transverse plane, where ky and kz are two components of
the wave vector that are orthogonal to the direction of the beam. Shown are two simulation runs with
γ = 5 and α = 0.1 (left) and α = 10−4 (right) respectively.
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In this chapter we want to comment on the impact of plasma instabilities on the phenomenology
of TeV blazars. As a �rst step we need to match the physical characteristics of TeV blazars to the
dimensionless parameters α and γ. The parameter γ describes the Lorentz boost of the beam
electrons and positrons, which can be trivially calculated from their energy for an individual
particle. For a spectrum of energies the exact choice of γ is not as obvious1 but as an order of
magnitude estimate for TeV blazars γ = 106 − 107 is a safe choice, implying that the electrons
and positrons are also at TeV energies.
The density ratio α is not as straight forward to model. One ingredient is of course the density
of the IGM, which is known to be nIGM ∼ 10−7 cm−3 [15]. Here we neglected the evolution
with redshift or the e�ect of density perturbations. The density of the background medium will
be orders of magnitude larger than the dilute particle beam and set the fundamental time and
length scales for the plasma.

ωp,IGM ≈ 20 s−1 (6.1)

λp,IGM =
2πc

ωp
≈ 3.6 · 10−9 pc (6.2)

We note that the condition for plasma-like behavior, namely that the size of the system exceeds
λp, is easily ful�lled.
The electrons and positrons of the beam are produced via pair-production from TeV photons
emitted by the blazar and photons from the EBL. It is easy to convince ourself that the density
depends on the luminosity L of the blazar and the energy E of the photons as well as the precise
spectrum of the EBL. A second in�uence on the beam density are the cooling mechanisms. The
best understood cooling mechanism is ICS on the CMB. [36] estimates the beam density by
assuming a balance between pair injection and cooling due to ICS. This derives an upper bound
for the beam density, since a more e�cient cooling mechanism (for example due to plasma
instabilities) would reduce the beam density.

nb ≈ 3.7 · 10−22

(
1 + z

2

)3ξ−4( L

1045 erg
s

)(
E

TeV

)
cm−3 (6.3)

⇒ α =
nb

nIGM
≈ 3.7 · 10−15

(
1 + z

2

)3ξ−4( L

1045 erg
s

)(
E

TeV

)
(6.4)

1But since the momentum inversion is a key requirement for driving the instability in the �rst place a good
suggestion would be to use the γ value that corresponds to the peak of the spectrum.
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The term ξ is associated with the mean free path of VHE gamma rays which depends on the
EBL and can be inferred to be ξ = 4.5 for z < 1 and ξ = 0 for z > 1. For a typical TeV gamma
ray emitter2 the redshift is z < 0.5, the luminosity is L = 1041 − 1047 erg

s and the energy is
E = 1 − 10TeV. This implies an upper bound for the density ratio α = 10−22 − 10−13. We
note that the beam density is inversely proportional to the cooling rate. If an alternative cooling
mechanism should be dominant that is for example one order of magnitude more e�cient, then
the beam density would likewise be reduced by an order of magnitude.
In order to drive the instability the beam particles need to experience many instability growth
cycles before they are lost from the beam due to ICS cooling. This sets the condition that the
growth rate of the instability has to be much larger than the ICS cooling time [36, 94], which can
be calculated with the Thompson cross section σT and the energy density of the CMB uCMB,
which can be inferred from the CMB temperature.

δICS =
4σTuCMB

3mec
γ ≈ 1.4 · 10−20 (1 + z)4 γ s−1 (6.5)

We compare this with the maximum growth rate of the oblique mode for a cold beam (3.21).

δoblique ≈ 7.8

(
α

γ

) 1
3

s−1 (6.6)

⇒ δoblique
δICS

= 5.6 · 1020 (1 + z)−4 α
1
3

γ
4
3

(6.7)

In �gure 6.1 we plot (6.7) assuming a nearby source with z ≪ 1. Even for very unfavorable
values of α and γ the instability growth rate is still many orders of magnitude larger than the
ICS cooling rate. We can safely conclude that the instability growth will not be suppressed by
ICS.
The instability is described by an exponential growth of the energy density of the electric �eld
modes until a saturation regime is reached. If the saturation regime is reached over distances
shorter than the distance between source and observer, we can use relationships we derived
for the saturation levels to make inferences. From the 2D PIC simulations we can derive the
saturation time tfinal as a function of α and γ, as well as the distance the particles propagated
until saturation dfinal. We use the the values of tfinal listed in table 5.4 and assume the inverse
scaling of oblique growth rate to �t the numerical value of the pre-factor.

tfinal =
522

20

( γ

100

) 1
3
( α

10−3

)− 1
3
s = 56

(γ
α

) 1
3
s (6.8)

dfinal = ctfinal = 5.5 · 10−7
(γ
α

) 1
3
pc (6.9)

The saturation length dfinal is plotted in �gure 6.2 as a function of the parameters α and γ.
Under any realistic circumstances dfinal is small compared to the distance from the source to the
observer.
The instability grows from an initial noise level until the saturation level is reached. The satura-
tion level is not sensitive to the initial noise and neither is the growth rate. As a consequence the

2A non-comprehensive list of known TeV gamma ray sources can be found in [36].
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time until saturation increases when the initial noise decreases. This e�ect has to be considered
when scaling the saturation time to astrophysical parameters. Since the beam is extremely dilute
(αγ ≪ 1) we assume that the entire initial noise can be attributed to the background plasma.
In section 5.8 we have shown how the initial noise then scales with ϵ and the number of (macro)
particles. The temperature of the background plasma in galactic voids is usually taken to be
TIGM ∼ 104K [16].
We express the saturation time tfinal for arbitrary ϵ and Np with respect to a reference time tfinal,0
with speci�c ϵ0 and Np,0 taken from the 2D PIC simulations, like (6.8).

u(t) = u(t = 0;Np, ϵ) exp (2δt) (6.10)

⇒ t =
1

2δ
log

(
u(t)

u(t = 0;Np, ϵ
)

)
(6.11)

⇒ tfinal = tfinal,0 +
1

2δ
log

(
Npϵ

Np,0ϵ0

)
(6.12)

For the PIC simulation we �nd that the instability saturates after approximately ∼ 10 e-folding
times. Decreasing the initial noise by a factor of e2 increases the saturation time by one growth
period. Even for substantive di�erences in the initial noise the impact on the saturation time
will not be large enough to change to overall picture of the instability saturating over very short
distances.

Figure 6.1: The ratio of the oblique instability growth rate δoblique and the ICS cooling rate δICS given
in (6.7) assuming a source redshift z ≪ 1. Only if the ratio is signi�cantly larger than 1 can instability
growth occur.
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Figure 6.2: The distance a pair beam propagates until the instability reaches saturation. Relative to
the distance between an earth and even the closest blazars this distance is extremely small. The e�ect of
the di�erent initial noise has not been taken into account here.

6.1 Instability Cooling

The growth of the �eld energy density with a rate δ will necessarily lead to the decay of the
beam energy with the same rate. Consequently the instability cooling will be the dominating
energy loss mechanism if δoblique ≫ δICS. Since the cooling via the instability does not produce
gamma rays the secondary �ux would be suppressed without the need for an external magnetic
�eld. In this case also no extended gamma ray halo or time delayed gamma ray signal would be
produced.
However in section 5.2.4 we showed that for a highly relativistic, very dilute particle beam the
oblique instability saturates after only draining a minuscule fraction of the beam's energy. If we
assume that the astrophysical pair beam also saturates at this level the ICS cooling would still
be the dominant energy loss mechanism. Whether the astrophysical pair beam shows the same
saturation behavior depends on the exact mechanism that leads to the stop of the instability
growth.
Should the instability be indeed the dominating energy loss mechanism the beam density would
need to be adjusted accordingly to re�ect the faster loss of beam particles shifting α to smaller
values.

6.2 Gamma Ray Halos

The de�ection of electrons and positrons in the cascade due to IGMF has been suggested to
produce a gamma ray halo that could be used to constrain the IGMF [15, 43, 17, 58, 6, 83].
Similarly the transversal heating of the beam due to plasma instabilities also de�ects beam
particles and could lead to a gamma ray halo. We estimate the de�ection angle of the instability
by scaling the saturation level Λ⟨θ⟩ from the 2D PIC simulations (section 5.6.1) to astrophysical
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parameters. We note that this angle is not the size of the gamma ray halo, which would need to
be calculated from this angle in a source dependent way (see for example [15]).

Λ⟨θ⟩ = 0.5

(
α

γ

) 1
3

rad (6.13)

The intrinsic opening angle of the pair beam is given by γ−1. If the de�ection of the beam does
not clear this threshold and then it will not be observable even with perfect instrument. This
necessarily sets a lower bound on the beam density ratio to produce a pair halo e�ect.

α ≳
10

γ2
(6.14)

Even for a high Lorentz boost value of γ = 107 the density ratio would need to be larger than
α > 10−13, which we derived as an upper bound for the possible beam density ratios. At least
by the end of the linear growth regime the opening angle of the beam would not increase enough
to produce a halo.
If one were to observe gamma ray pair halos and would want to establish if they are produced
by magnetic �elds or plasma instabilities in a way that is independent on the modeling of the
instability growth process, one could investigate the size of halo as a function of the beam
density ratio α. Magnetic �elds act on each individual particles and thus a denser beam would
not produce a di�erent halo, but plasma instabilities are the product of collective behavior and
thus very sensitive to the beam density ratio with regard to their growth rates and saturation
levels. In the case of a very coherent magnetic �eld the angular shape of the halo could also be
used to distinguish these two possible explanations [38, 119].

6.3 Variable Sources

TeV gamma ray emitters are know to show variability on the time scale of seconds for GRBs
and much longer time scales for blazars. For variable sources it has been suggested that the
same de�ections that lead to a secondary gamma ray halo would also lead to a time delay of the
secondary gamma ray contribution, as they travel a longer path than the primary gamma rays.
This would lead to a gamma ray echo which could be used to constrain the IGMF [15, 78, 52,
83, 56]. De�ections due to the plasma instabilities would lead to the same time delay e�ect and
produce a gamma ray echo. However as we calculated for the gamma ray halo the de�ections
due to oblique plasma instability saturate at too small values to outright produce a signi�cant
e�ect.
One important di�erence between the de�ection in the magnetic �eld and de�ection in the plasma
instability induced electric �eld is that the electric �elds need some time to grow in the case of a
variable beam. In section 7.1.1 we will perform PIC simulation of pair beams with �nite length
and �nd that the particles at the front of the beam experience little to no de�ection and the full
de�ection is only experienced by particles after at least one growth cycle given by the inverse
growth rate δ−1. Since only part of the secondary gamma ray signal would be delayed, the
observation might be more precisely described as a gamma ray afterglow instead of a gamma
ray echo. Furthermore this sets a bound on the length of the emission τemission of the primary
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gamma ray signal required to induce instability related e�ects.

τemission ≫ δ−1
oblique = 0.13

(γ
α

) 1
3
s (6.15)

In �gure 6.3 we show the inverse growth rate as a function of α and γ. For typical blazar
parameters the emission time would need to be at least of the order of weeks to produce a
signi�cant e�ect. This does not consider the contribution to instability growth due to a previous
low-�ux state.
Likewise for a GRB that shows variability on the time scale of usually less than 100 seconds
this sets a lower bound on the beam density (and thus the luminosity of the GRB). We assume
τemission ≈ 100 s.

τemission ≈ 100 s ≫ 0.13
(γ
α

) 1
3
s (6.16)

⇒ α ≳
γ

109
(6.17)

For a typical γ = 106 − 107 this would yield a beam density ratio of α = 10−3 − 10−2 which
would require GRB luminosities on the order of L = 1056 − 1058 erg

s . This means that GRBs are
too short to be a�ected by plasma instabilities.

Figure 6.3: The inverse growth rate of the oblique instability as a function of γ and α. Only when the
emission time τemission exceeds this value can a signi�cant instability e�ect on the gamma ray signal be
observed.

6.4 Saturation of a Replenishing Beam

So far we considered the e�ect of the oblique plasma instability by extrapolating the saturation
levels we found in 2D PIC simulations to astrophysical scales. However as described in (3.42)
and (3.43) the evolution of the beam momentum distribution does not stop when the �elds
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saturate. In fact after saturation the e�ect of the energy drain and the momentum di�usion is
the strongest and can continue inde�nitely. In the 2D PIC simulation the feedback of the �elds
on the beam leads to a growth of the transversal momentum spread until the beam becomes too
hot and the instability growth stops. Then the electric �eld still continues to evolve, mainly in
the form of transferring energy to modes with longer wavelengths. This leads to the reduction of
the di�usion and drift terms and eventually the evolution of the momentum distribution stops.
In the astrophysical scenario however the beam is constantly fed new, cold particles via pair
production of the primary gamma rays on the EBL. These new, cold particles can continue to
drive the instability and eventually an equilibrium will be reached where the di�usion and drift
term take on a constant value. We will try to estimate this constant value by assuming this
equilibrium will be reached at the saturation level of our PIC simulations where D1 and V1 take
on their maximum values henceforth called Dmax and Vmax.

Dmax = 6.6 · 10−3γ1.1α0.93MeV2ωp (6.18)

2δVmax = 0.74γ0.28α0.62MeVωp (6.19)

It is not at all clear that the equilibrium between dissipation of the �elds and new growth would
be reached at this level. Since the injection of new pairs is determined by the mean free path of
TeV gamma rays and the relevant scale for the evolution of the electric �elds in a plasma is λp,
which is much shorter, it is likely that our values for Dmax, Vmax only give a vague upper limit.
Using the value for the drift term we can derive an energy loss time τloss (or rather an upper
limit).

τloss =
E

−dE
dt

=
γme

2δVmax
= 0.7

γ0.72

α0.62
ω−1
p (6.20)

In �gure 6.4 we compare this rate with the loss rate due to ICS. For reasonable parameters it is
possible for energy loss due to the instability in the saturation regime to be the dominant energy
loss mechanism.
Since the saturation length of the oblique instability is so short, one can try to model the
entire e�ect of the instability always assuming the saturation level and taking D(t) = Dmax and
V (t) = Vmax to be constants. These two constants would be enough to model the feedback of the
collective e�ects on the beam particles. Using state of the art cosmic ray propagation codes like
CRPropa [13, 14] one can simulate the full impact of the instabilities on the blazar spectrum, the
development of gamma ray halos and gamma ray echos/afterglows. Nevertheless we stress that
it would take further studies of the plasma instabilities in the context of a beam that replenishes
itself constantly with new, cold beam particles, to give robust estimates of the energy loss and
di�usion rates.
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Figure 6.4: Comparison of the energy loss rate τ−1
loss in the saturation regime with the Inverse Compton

rate δICS. The dashed line indicates where the rates are equal.
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7 | Beyond the Cold Beam

In chapter 5 we took an in-depth look at an idealized pair beam undergoing unstable behavior.
We found that beyond draining energy from the pair beam into the electric �eld and heating
the background plasma, momentum di�usion also leads to heating of the beam. In this chapter
we will look beyond this idealized scenario by considering key e�ects that violate the idealized
scenario. Namely we will consider pair beams that are not in�nitely extended but have a �nite
length and/or width. We will consider scenarios where the beam momentum distribution can
not be considered cold anymore and scenarios where the neutrality of the pair beam is violated
and thus the beam carries a current. Furthermore we will consider changing the energy density
hierarchy of beam plasma and background plasma to understand how the behavior of a laboratory
system is related to the astrophysical system.
we will also consider introducing an inhomogeneous background medium and external magnetic
�elds. These two e�ects are in general quite complex and we will only address scenarios where
the coherence length of density perturbations and magnetic �elds is large.
In all of these scenarios one key question we would like to address is quantifying the limit where
the behavior of the idealized pair beam is recovered (if it exists).

7.1 Finite Extension

Previously we used periodic boundary conditions to simulate a beam that is in�nitely extended
in length and width. In a laboratory experiment the particle beam will necessarily have a �nite
length and width. This means that the density of beam particles tapers o� from the center of
the beam outwards. This changes the scenario radically. Not only is the density ratio α now
a function of the position within the beam, but also the energy density of each mode and thus
the e�ect on the momentum distribution is a function of position. We postulate that in the
limit of very high length or width we should approximately recover the behavior of the in�nitely
extended system.
To investigate the e�ect of �nite size we will consider the e�ect of length and width separately.
We will use open boundary conditions with a Gaussian density pro�le while keeping the periodic
boundary conditions with a constant density pro�le in the other direction. The length L∥ or
width L⊥ will be de�ned as the standard deviation of the Gaussian density pro�le, that is the
central interval that contains 68% of the beam particles. The density ratio α will be de�ned as
the ratio between the peak beam density and the background density.
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7.1.1 Finite Length

We consider beam of variable length L∥ with a Gaussian density pro�le in a simulation box
with length 500 c

ωp
and open boundary conditions in longitudinal direction. Figure 7.1 shows the

evolution of the total �eld energy density for simulation runs with varying beam length. Since
the energy density is normalized to the total initial beam energy, the initial noise regime increases
for a shorter beam that contains overall less particles. Furthermore we can see that for shorter
beam the slope of exponential growth phase is reduced. By �tting (5.5) we extracted the growth
rate for each simulation run. Shown in �gure 7.2 is the growth rate as a function of beam length
for low value of the Lorentz boost γ and a high value respectively. In both instances we �nd that
for very short beams the extracted growth rate scales almost proportionally to the beam length
and for very long beams it asymptotically approaches the growth rate of an in�nitely long beam
we will call δ0. For the high Lorentz value the transition into the asymptotic regime happens
later. Heuristically we �nd a formula that describes the growth rate as a function of L∥ and δ0.

δ(L∥) = δ0 tanh

(
2δ0

L∥

c

)
(7.1)

Leaving δ0 as a free parameter we performed a �t of (7.1) to the data points in �gure 7.2 which
mostly agrees with the data. We can now derive a condition for which we recover the growth
rate of the in�nitely long beam.

L∥

c
≫ δ−1

0 ⇒ δ(L∥) ≈ δ0 (7.2)

The modes that are excited by the instability process (see di�erential growth rate maps in �gure
7.3) are the same for long and short beams. Beyond the overall reduction of the growth rate for
a shorter bunch we also observe a sort of interference pattern reducing the extracted di�erential
growth rate in regular intervals of k⊥. However this could be a numerical artifact of the discrete
Fourier transform with open boundaries.
A major di�erence in the case of a �nitely long beam is that the front of the beam continuously
interacts with fresh, unperturbed background plasma. Figure 7.4 shows the density of the beam
as a function of the position at multiple time steps. At early times the entire beam comforts to
the Gaussian shape the beam was initialized with. At late times this shape becomes strongly
perturbed by the instability process, but only at the back of the particle beam. The front of
the bunch still closely resembles the initial Gaussian pro�le. We can conclude that only a subset
of the particles at the back of the bunch signi�cantly experience the e�ects of the instability
mechanism. Because the excitation of unstable modes is now not only a function of time but
also space this instability mechanism has also be called spatiotemporal [97].
The particle beam momentum distribution changes as a consequence of instability growth. If dif-
ferent parts of the beam experience a di�erent amount of instability growth then the momentum
distribution will be a�ected di�erently as a function of position. More precisely the shift of the
mean longitudinal momentum and the widening of the momentum distribution in all directions
will be less severe in the front of the bunch. The total momentum distribution integrated over
position will thus be a combination of a narrow Gaussian that re�ects the initial momentum
distribution of the particles at the front of the beam and much wider distribution of the particles
at the back of the beam that is shifted to lower energies. In �gure 7.5 we show the longitudinal
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beam momentum distribution at a number of timesteps near the end of the instability growth
for a short and a long beam. In both instances we �nd that part of the distribution remains in
the narrow initial state and part of the distribution is broadened and shifted to lower energies.
For the transversal momentum distribution (�gure 7.6) for the same simulation runs we similarly
�nd that a subsection of the beam particles remain with narrow distribution while another part
experiences signi�cant broadening. We also �nd that for both the longitudinal and transversal
momentum distribution the fraction of the beam particles that makes up the narrow part of the
momentum distribution decreases for a longer beam.
Due to the more complex evolution of the beammomentum distribution the evolution of∆Mean

(
p∥
)

(�gure 7.7), Std
(
p∥
)
(�gure 7.8) and Std(p⊥) (�gure 7.9) is also changed. More precisely for a

shorter beam the rate of the shift and widening is reduced and the �nal saturation value is lower.
For each simulation run we extracted the growth rates by �tting (3.42) and (3.43) respectively.
The growth rates (�gure 7.10) all conform to (7.1) like the integrated growth rate of the �eld
energy density.

Figure 7.1: The energy density of the combined electric and magnetic �elds across all modes and all
directional components normalized to the initial energy density of the pair beam as a function of time.
Each simulation run has a density contrast of α = 10−3, Lorentz boost γ = 5 and a varying beam
length L∥. For each simulation run the start and end point of the linear growth phase, as determined
by �t to (5.5), is indicated by cross and the linear growth rate is indicated by a dashed line. The initial
noise regime is mostly driven by the background plasma and increases for a shorter beam (less particles)
compared to the beam energy.
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Figure 7.2: The integrated growth rate as a function of beam length for a density ratio α = 10−3 and
Lorentz boost γ = 5 (left) and γ = 50 (right). In both cases the data conforms to (7.1) which has been
�tted with only δ0 as a free parameter.

Figure 7.3: Map of the growth rate as a function of wavevector for each mode for two simulation runs.
On the left the beam length L∥ = 3 c

ωp
is lower than on the right where L∥ = 30 c

ωp
. For both γ = 5

and α = 10−3 are the same. For a shorter beam length an interference pattern in k⊥ is present, which
becomes less pronounced for longer beams.
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Figure 7.4: The density (normalized to the initial peak density n0) as a function of position at three
di�erent time steps for a beam length L∥ = 3 c

ωp
(top) and L∥ = 30 c

ωp
(bottom). The beam moves

towards the right.

Figure 7.5: The longitudinal beam momentum distribution, while integrating over all other momentum
dimension, for a beam with L∥ = 3 c

ωp
(left) and L∥ = 30 c

ωp
(right) at regular intervals near the end of

the linear growth phase.
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Figure 7.6: The transversal beam momentum distribution, while integrating over all other momentum
dimension, for a beam with L∥ = 3 c

ωp
(left) and L∥ = 30 c

ωp
(right) at regular intervals near the end of

the linear growth phase.

Figure 7.7: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown

for runs with varying beam length L∥, Lorentz boost γ = 5 and density contrast α = 10−3. The mean
value is calculated at regular intervals of 5ω−1

p . However for early times the shift of the mean momentum
is dominated by numeric e�ects (�nite binning) and not shown here. Furthermore for late times, after
2tfinal (�tted value), data points are not shown either since the �t to the model does not describe the
evolution very well anymore. In dashed lines a �t of (3.42) to the data is shown.
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Figure 7.8: The evolution of the width of the longitudinal momentum Std
(
p∥
)
is shown for runs with

varying beam length L∥, Lorentz boost γ = 5 and density contrast α = 10−3. The standard deviation is
calculated at regular intervals of 5ω−1

p . However for late times, after 2tfinal (�tted value), data points are
not shown since the �t to the model does not describe the evolution very well anymore. In dashed lines
a �t of (3.43) to the data is shown.

Figure 7.9: The evolution of the width of the transversal momentum Std (p⊥) is shown for runs with
varying beam length L∥, Lorentz boost γ = 5 and density contrast α = 10−3. The standard deviation is
calculated at regular intervals of 5ω−1

p . However for late times, after 2tfinal (�tted value), data points are
not shown since the �t to the model does not describe the evolution very well anymore. In dashed lines
a �t of (3.43) to the data is shown.
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Figure 7.10: The growth rate of ∆Mean
(
p∥
)
(left), Std

(
p∥
)
(middle) and Std(p⊥) (right) extracted

from �gures 7.7, 7.8 and 7.9 as a function of beam length L∥. In all three cases the data conforms to
(7.1) which has been �tted with δ0 as a free parameter

7.1.2 Finite Width

We perform a study that is similar to the �nite length also for the �nite width. Here we consider
a beam with a �nite width L⊥ with a Gaussian density pro�le in a simulation box that has a
width of 50 c

ωp
and open boundary conditions in transverse direction. In �gure 7.11 we show the

evolution of the total �eld energy density for simulation runs with varying beam width. Again
the �eld energy density is normalized to the initial beam energy and thus the energy density due
to shot noise is larger for a narrower beam with less beam particles. The narrower beam also
leads to a less steep slope of the exponential growth phase. The growth rate has been extracted
by �tting (5.5) and plotted as a function of beam width in �gure 7.12 for simulation runs with
low and high Lorentz boost γ. We �nd that for very narrow beams the growth rate is almost
proportional to the beam width L⊥ and for very wide beam the growth rate asymptotically
approaches the growth rate of an in�nitely wide beam δ0. Surprisingly the width at which the
transition between these two regimes takes place is not dependent on γ and thus the growth rate.
We �nd a heuristic formula that describes the growth rate as a function of L⊥ and δ0.

δ(L⊥) = δ0 tanh
(
2L⊥

ωp

c

)
(7.3)

While leaving δ0 as a free parameter we performed a �t of (7.3) to the data points shown in �gure
7.12. The �t describes the data quite well. This leads us to a condition on the beam width for
which we recover the growth rate of the in�nitely wide beam. This conditions essentially only
requires that the beam is wide enough to show plasma-like collective behavior.

L⊥ ≫ c

ωp
⇒ δ(L⊥) ≈ δ0 (7.4)

For the most dominant unstable modes (�gure 7.13) we �nd that the beam width has no in�u-
ence except for an interference pattern that suppresses the growth rate in regular intervals of
k∥. Again this could be an artifact of the discrete Fourier transform and the open boundary
conditions.
For a beam with a density that tapers o� transversally the density ratio of beam to background
plasma α is a function of the position. Consequently the instable modes will evolve di�erently
as a function of position as well. Figure 7.14 shows the beam plasma density as a function of
position for a number of time steps. We can see that the initial Gaussian distribution evolves a
structure. Furthermore at late times we observe that the density at the center of the beam is
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depleted and we �nd two new maximums to the left and the right from the center in transversal
direction. The beam particles gain transversal momentum due to the instability growth and
start to move away from the center of the beam. This increases the beam plasma density at the
outer edges of the beam and the instability can proceed there with increased growth rate. As a
further consequence of the gain of transversal momentum the beam widens over time possibly
posing a challenge for the further transport and measurement in a laboratory experiment. The
widening of the beam will be separately discussed.
The splitting of beam particles moving in opposite transversal directions and the delayed in-
stability growth in the outer edges of the beam can also be observed in the beam momentum
distribution. For the longitudinal momentum distribution (�gure 7.15) we see that a narrow peak
on top of an already broadened momentum spectrum that disappears at a later point. For the
transversal momentum distribution (�gure 7.16) we can see this lingering peak as well. This peak
consists of the particles at the outer edges that remain in their initial momentum distribution
for a longer time. Furthermore in the transversal momentum distribution we can also observe
the development of two peaks of left and right moving particles at later times.
Despite the more complex evolution of the momentum distribution the evolution of the moments
∆Mean

(
p∥
)
(�gure 7.17), Std

(
p∥
)
(�gure 7.18), Std(p⊥) (�gure 7.19) can still be described with

the equations derived from the Fokker-Planck equation albeit with a reduced overall growth rate.
Figure 7.20 shows the growth rates as a function of the beam width, which all conform to the
relationship (7.3) as con�rmed by a �t.

Figure 7.11: The energy density of the combined electric and magnetic �elds across all modes and
all directional components normalized to the initial energy density of the pair beam as a function of
time. Each simulation run has a density contrast of α = 10−3, Lorentz boost γ = 5 and a varying beam
length L⊥. For each simulation run the start and end point of the linear growth phase, as determined
by �t to (5.5), is indicated by cross and the linear growth rate is indicated by a dashed line. The initial
noise regime is mostly driven by the background plasma and increases for a narrow beam (less particles)
compared to the beam energy.
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Figure 7.12: The integrated growth rate as a function of beam width for a density ratio α = 10−3 and
Lorentz boost γ = 5 (left) and γ = 50 (right). In both cases the data conforms to (7.3) which has been
�tted with only δ0 as a free parameter.

Figure 7.13: Map of the growth rate as a function of wavevector for each mode for two simulation runs.
On the left the beam width L⊥ = 1 c

ωp
is lower than on the right where L⊥ = 5 c

ωp
. For both γ = 5

and α = 10−3 are the same. For a narrower beam width an interference pattern in k∥ is present, which
becomes less pronounced for wider beams.
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Figure 7.14: The density (normalized to the initial peak density n0) as a function of position at three
di�erent time steps for a beam width L⊥ = 1 c

ωp
(top) and L⊥ = 5 c

ωp
(bottom). The beam moves

towards the right.

Figure 7.15: The longitudinal beam momentum distribution, while integrating over all other momentum
dimensions, for a beam with L⊥ = 1 c

ωp
(left) and L⊥ = 5 c

ωp
(right) at regular intervals near the end of

the linear growth phase.
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Figure 7.16: The transversal beam momentum distribution, while integrating over all other momentum
dimensions, for a beam with L⊥ = 1 c

ωp
(left) and L⊥ = 5 c

ωp
(right) at regular intervals near the end of

the linear growth phase.

Figure 7.17: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown

for runs with varying beam width L⊥, Lorentz boost γ = 5 and density contrast α = 10−3. The mean
value is calculated at regular intervals of 5ω−1

p . However for early times the shift of the mean momentum
is dominate by numeric e�ects (�nite binning) and not shown here. Furthermore late times, after 2tfinal
(�tted value), data points are not shown either since the �t to the model does not describe the evolution
very well anymore. In dashed lines a �t of (3.42) to the data is shown.
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Figure 7.18: The evolution of the width of the longitudinal momentum Std
(
p∥
)
is shown for runs with

varying beam width L⊥, Lorentz boost γ = 5 and density contrast α = 10−3. The standard deviation is
calculated at regular intervals of 5ω−1

p . However for late times, after 2tfinal (�tted value), data points are
not shown since the �t to the model does not describe the evolution very well anymore. In dashed lines
a �t of (3.43) to the data is shown.

Figure 7.19: The evolution of the width of the transversal momentum Std (p⊥) is shown for runs with
varying beam width L⊥, Lorentz boost γ = 5 and density contrast α = 10−3. The standard deviation is
calculated at regular intervals of 5ω−1

p . However for late times, after 2tfinal (�tted value), data points are
not shown since the �t to the model does not describe the evolution very well anymore. In dashed lines
a �t of (3.43) to the data is shown.
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Figure 7.20: The growth rate of ∆Mean
(
p∥
)
(left), Std

(
p∥
)
(middle) and Std(p⊥) (right) extracted

from �gures 7.17, 7.18 and 7.19 as a function of beam width L⊥. In all three cases the data conforms to
(7.3) which has been �tted with δ0 as a free parameter

Figure 7.21: The evolution of the beam width L⊥ as a function of time for runs with varying initial
beam width L⊥ (t = 0). The dashed line represents the width of the simulation box (50 c

ωp
). Particles

which stray too far from the center of the beam leave the simulation box through the open boundaries
and are discarded.

Beam Broadening

Already in section 5.6.1 we showed that the transversal heating of the beam due to the instability
growth can increase the beam opening angle of an initially cold beam by orders of magnitude.
The �nal opening angle after the instability saturates depends on the values of α and γ, but for
values that could be realistic in a laboratory experiment the �nal opening angle could exceed
1◦. In the case of a beam with �nite width this means a beam that becomes broader with
time or distance. In a laboratory experiment using the momentum distribution as an observable
the beam would need to propagate some distance before reaching the instrument used for the
measurement and the increased width could spoil the measurement.
Figure 7.21 shows the evolution of the beam width L⊥, as de�ned by the standard deviation of
the transversal position distribution, with time. It is important to note that the simulation box
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is note in�nitely wide and that particles which stray too far from the center of the beam leave
the simulation box and are discarded. Once the width of the beam becomes comparable to the
simulation box width the evolution is not necessarily trustworthy anymore. After an early phase
of exponential widening that is more pronounced for initially narrower beams follows a regime
where the transverse momentum has saturated and the beam continues to widen with a constant
rate, as expected of a beam with a constant opening angle.

7.2 Warmer Beam

Even thought the shifted Gaussian momentum distribution we use for the beam is not strictly
a thermal distribution we can use the term "cold" to describe that the momentum spread is
small compared to the total momentum. We will use the standard deviation σ of the momentum
distribution to quantify the momentum spread. Since the beam plasma is not necessarily a
thermalized system it is also possible for the momentum spread to be di�erent in longitudinal
and transversal direction. In that sense a beam could be longitudinally hot and transversally
cold or vice versa. Furthermore we have not yet given a quantitative assessment under which
conditions a beam is considered cold.
For the oblique instability one can estimate that the beam transitions from the reactive to the
kinetic regime when the inequality (3.25) is no longer ful�lled. This indicates that only the
transversal temperature is relevant for this transition. Using the oblique growth rate we can
estimate the transversal momentum spread σ⊥ above which the instability is kinetic.

σ⊥ ∼ meα
1
3γ

2
3 (7.5)

The scaling of this transition with α and γ also traces the scaling of the saturation level further
indicating that the saturation occurs when the instability turns kinetic.
The scenario of a longitudinally hot and transversally cold, or at least mildly warm, beam is
the one that probably most closely resembles the astrophysical pair beam. The astrophysical
pair beam is created from gamma rays that follow a power-law distribution over many orders
of magnitude in energy. The resulting electron positron pair will come with an opening angle
of roughly γ−1. The highly relativistic particle will thus have a broad longitudinal momentum
spectrum and a transversal momentum spread on the order of the electron mass. This indicates
that for the parameters α, γ that describe an astrophysical pair beam the system falls close to
the transition regime between cold and hot beam.

σ⊥ ≈ sin
(
γ−1

)
ptot = sin

(
γ−1

)
γme ≈ me (7.6)

In the previous PIC simulations we assumed that a momentum spread of 0.5 keV (all directions)
is su�ciently small for a beam to be considered cold under any circumstances. We will �nd that
this is correct.

7.2.1 Longitudinal Temperature

We run multiple simulations of a neutral pair beam with γ = 10, α = 10−3 and σ⊥ = 0.5 keV
where we vary the initial longitudinal momentum spread from very cold (0.5 keV) to very hot
(5MeV). For the largest choice of σ∥ the longitudinal momentum spread is in fact so large
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that the momentum distribution has a signi�cant fraction of particles with negative longitudinal
momentum, that means they are in fact counter-streaming.
We �nd that the initial longitudinal momentum spread has little to no in�uence on the evolution
of the instability. In the evolution of the �eld energy density (�gure 7.22), the mean longitudinal
momentum shift (�gure 7.23) and the transversal width of the momentum distribution (�gure
7.25) we can only see a small reduction in the growth rate once the initial longitudinal width
of the momentum distribution becomes large enough that a signi�cant fraction of the particles
have negative momentum.
In �gure 7.24 we can see that if the initial width of the momentum distribution is already larger
than the broadening we expect from the instability the e�ect remains invisible, even though the
instability can proceed as usual in �eld energy density or transversal momentum.
The increase of the initial longitudinal momentum spread only reduces the overall growth rate
if some particle start with negative parallel momentum and do not participate in the instability
process. The particles with p∥ < 0 do not participate in the instability because they do not
experience a momentum inversion. For this particle population the slope of the momentum
distribution in the direction of movement is always negative. This can be observed for simulation
runs with σ∥ = 5MeV in �gure 7.27 where the momentum distribution of particles with negative
parallel momentum does not evolve and in �gure 7.28 where a subset of particles remain in their
initially narrow momentum distribution.

Figure 7.22: The energy density of the electromagnetic �elds of various simulation runs with varying
initial longitudinal momentum spread σ∥ as a function of time.
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Figure 7.23: The shift of the mean of the longitudinal momentum distribution ∆Mean
(
p∥
)
as a function

of time for simulation runs with a varying initial longitudinal momentum spread σ∥. The mean value
is calculated at regular intervals of 5ω−1

p . However for early times the shift of the mean momentum is
dominated by numeric e�ects (�nite binning) and not shown here.

Figure 7.24: The longitudinal momentum spread Std
(
p∥
)
as a function of simulation time for various

simulation runs with varying initial longitudinal momentum spread σ∥. The standard deviation is calcu-
lated at regular intervals of 5ω−1

p .
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Figure 7.25: The transversal momentum spread Std(p⊥) as a function of simulation time for various
simulation runs with varying initial longitudinal momentum spread σ∥. The standard deviation is calcu-
lated at regular intervals of 5ω−1

p . However for late times, after 2tfinal (�tted value), data points are not
shown since the �t to the model does not describe the evolution very well anymore. The dashed lines
represent a �t of (3.43 to the data). The extracted growth rate is shown in �gure 7.26.

Figure 7.26: The growth rate of the transversal momentum spread Std(p⊥) extracted from �gure 7.25
as a function of initial longitudinal momentum spread σ∥.
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Figure 7.27: The longitudinal beam momentum distribution at a number of time steps near the end
of instability growth for simulation runs with varying initial longitudinal momentum spread σ∥. In the
right plot the momentum distribution only evolves for particles with p∥ > 0.

Figure 7.28: The transversal beam momentum distribution at a number of time steps near the end of
instability growth for simulation runs with varying initial longitudinal momentum spread σ∥. In the right
plot a fraction of the particles does not undergo the momentum di�usion process, likely the particles with
negative parallel momentum.

7.2.2 Transversal Temperature

For the transversal temperature we perform the same scan of the initial transversal momentum
spread σ⊥ from very cold (0.5 keV) to hot (larger than me) while keeping the Lorentz boost γ,
the density ratio α and the initial longitudinal momentum spread σ∥ = 0.5 keV constant. We
de�ne a beam as cold when its momentum spread is small compared to its total momentum and
thus the de�nition of coldness is intimately linked to the total momentum of the beam. Whether
a beam is cold or not has to be answered in context of its Lorentz boost γ. More precisely a
higher value means that the threshold for the transversal energy spread above which a beam is
no longer cold increases and if a certain momentum spread leads to a cold beam at low γ then it
will be cold for all higher values as well. For the parameters α = 10−3 and γ = 10 we expect the
transition from the reactive (cold) beam to the kinetic (hot) beam for σ⊥ ∼ 0.2MeV according to
(7.5). This criterion is more strict than simply requiring that the transversal momentum spread
is small compare to its total momentum as the growth rate can become arbitrarily small.
The time evolution of the �eld energy density (�gure 7.29) and the beam energy loss (�gure 7.30)
show that increasing the initial transverse momentum spread quickly diminishes the growth of
the instability. Surprisingly a larger initial transverse momentum spread leads to a very fast
buildup of weak electromagnetic �elds that goes hand in hand with a very rapid but overall
minor loss of beam energy. A larger transverse momentum spread leads to stronger �elds and
larger energy loss of the beam. This early electromagnetic �eld also leads to an early di�usion of
longitudinal beam momentum (�gure 7.31) where the longitudinal momentum spread increases
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faster with larger σ⊥ before the stronger di�usion in the instability created �elds takes over and
the momentum spread grows faster with lower σ⊥.
Even though a higher initial transversal momentum spread leads to a slower instability growth
the saturation levels of the �eld energy density, the beam energy loss and longitudinal momen-
tum spread are una�ected. They only reach the same level at a later saturation time. For the
evolution of the transversal momentum spread Std(p⊥) (�gure 7.32) we similarly �nd that as long
as the initial momentum spread is not larger than the expected saturation level the instability
mechanism will eventually broaden the momentum distribution to the saturation level spread
although here too a higher initial spread σ⊥ leads to a slower growth rate. This can also be
explicitly seen in �gure 7.33 where the growth rate of the beam energy loss and the growth rate
of the transversal momentum spread are shown as a function of σ⊥. Increasing the initial mo-
mentum spread at �rst only leads to a reduction of the growth rate and only once σ⊥ exceeds the
expected saturation level of Std(p⊥) do the rates vanish. The transversal momentum distribution
(�gure 7.35) remains unchanged for σ⊥ larger than the saturation value, whereas the longitudi-
nal momentum distribution (�gure 7.34) still undergoes some minor evolution. Increasing the
initial transversal momentum spread does not only a�ect the growth rate of unstable modes, but
also alters which modes are excited in the �rst place. Figure 7.36 shows the di�erential power
spectrum at di�erent time steps. We know that for a cold beam the oblique instability excites
modes with k∥ ∼ ωp

c and a wide spectrum in k⊥ with the most dominant modes found at an
oblique angle. A larger initial transversal momentum spread reduces the range of k⊥ for which
the modes experience signi�cant growth and the most dominant modes are found at lower k⊥
as well. This can be attribute to the fact that according to (3.24) modes with higher transverse
wavenumber turn kinetic with lower transverse momentum spread. In �gure 7.37 we show the
power of the most excited mode 500ω−1

p after simulation start, which is long after the saturation
time of the cold beam. Even for 10−2MeV < σ⊥ < 10−1MeV these modes saturate at the same
level, even though we �nd that for σ⊥ > 10−2MeV the growth rate is already reduced. For
σ⊥ > 10−1MeV the power of the most dominant mode reduces with larger σ⊥. This suggests
that even for very large σ⊥ the instability can still grow some modes that are parallel to the
beam direction, albeit with drastically reduced growth rate.
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Figure 7.29: The energy density of the electromagnetic �elds of various simulation runs with γ = 10,
α = 10−3 and varying initial transversal momentum spread σ⊥ as a function of time.

Figure 7.30: The energy loss of the beam particles normalized to the initial beam energy of various
simulation runs with γ = 10, α = 10−3 and varying initial transversal momentum spread σ⊥ as a function
of time.
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Figure 7.31: The longitudinal momentum spread Std
(
p∥
)
as a function of simulation time for various

simulation runs with varying initial transversal momentum spread σ⊥. The standard deviation is calcu-
lated at regular intervals of 5ω−1

p .

Figure 7.32: The transversal momentum spread Std(p⊥) as a function of simulation time for various
simulation runs with varying initial transversal momentum spread σ⊥. The standard deviation is calcu-
lated at regular intervals of 5ω−1

p .
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Figure 7.33: The beam energy loss rate (left) extracted from �gure 7.30 and the growth rate of the
transverse momentum spread Std(p⊥) extracted from �gure 7.32 as a function of the initial transverse
momentum spread σ⊥. For a beam with γ = 10 the total momentum is p ≈ 5MeV.

Figure 7.34: The longitudinal beam momentum distribution at a number of time steps near the end of
instability growth for simulation runs with varying initial transversal momentum spread σ⊥.

Figure 7.35: The transversal beam momentum distribution at a number of time steps near the end of
instability growth for simulation runs with varying initial transversal momentum spread σ⊥.
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Figure 7.36: The di�erential power spectrum for a simulation runs with transversally cold (top), mildly
warm (middle) and hot (bottom) momentum distribution and γ = 5, α = 10−3 at three di�erent time
steps. The most dominant modes are always found at k∥ ∼ ωp

c , but for the hot beam other modes also
contribute signi�cantly. For higher σ⊥ dominating modes becomes con�ned to smaller region in k⊥.

Figure 7.37: The power of the most dominant Fourier mode at time t = 500ω−1
p > tfinal as a function

of the initial transverse momentum spread σ⊥ for simulation runs with γ = 10, α = 10−3.
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7.3 Charge Asymmetry

A neutral electron-positron beam consists in equal parts of positrons and electrons and thus
carries neither a net current nor a net charge that could produce a separate magnetic or electric
�eld. In a laboratory experiment it would only be possible to produce an approximately neutral
beam that still caries some excess of electrons. We de�ne the parameter χ as the ratio of positron
density to electron density in the beam.

χ =
ne+

ne−
(7.7)

For a neutral beam χ is equal to 1 and for a pure electron beam χ is equal to 0. The case of
χ larger than 1, where the number of positrons exceeds the number of electrons, is practically
irrelevant and would (up to a sign) carry the same charge and current as a beam with χ−1.
A beam with χ smaller than 1 carries a current density j.

j =
1− χ

1 + χ
j0 (7.8)

Here j0 is the current density of a pure electron beam with the same density ratio α and Lorentz
boost γ as the pair beam.

j0 = e

(
1− 1

γ2

)
cαnbg ≈ ecαnbg (7.9)

For a relativistic beam the velocity can be assumed to be equal to the speed of light.
Figure 7.38 shows the evolution of the �eld energy density for simulation runs with varying
beam charge ratio χ. Right from the start of the simulation runs the presence of a net current
leads to an oscillating energy density with an amplitude that increases with the beam's current.
Nevertheless the instability proceeds entirely una�ected by this oscillation and eventually the
energy density of the instability �elds exceed the �eld oscillation induced by the current. Even in
the case of a pure electron beam (χ = 0) the system shows the same late time behavior. This is
because the instability only couples to the square of the particle charge and thus in the absence
of external magnetic �elds a pure electron beam shows the same instable behavior as a neutral
pair beam. We �nd the same qualitative behavior for the energy loss of the beam particles (see
�gure 7.39) with one major di�erence: the period of the oscillation is twice as long as for the
energy density of the electromagnetic �elds. This is more easily visible when zooming in on early
times, as in �gure 7.40. There we can easily tell that the electromagnetic �eld1 oscillates with
the plasma frequency2.
From the same late time behavior we have already concluded that the unstable behavior is
independent of the beam charge ratio χ. An even more conclusive proof of this can be found in
the spectral growth rate (�gure 7.41). We �nd that the growth rates of the instable modes are
completely the same for a neutral pair beam or a pure electron beam.
A key for experimentally probing the instable behavior is the e�ect of the instability growth
on the beam momentum distribution. Unsurprisingly the oscillation of the beam energy due to
the presence of a current also leads to the same oscillation behavior of the mean longitudinal

1The energy density is given by the square of the �eld amplitude and thus oscillates with twice the frequency
2When expressing time in units of the inverse plasma frequency ω−1

p this is equal to a period of 2π
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momentum. In �gure 7.23 we can see that ∆Mean
(
p∥
)
oscillates with the same frequency as the

beam energy loss at early times and late times the instability takes over.
The widening of the momentum distribution is entirely driven by growth of �eld modes due to the
instability. Since the growth of these modes is completely una�ected by the beam charge ratio
χ it comes at no surprise that the evolution of Std

(
p∥
)
and Std(p⊥) are in turn not in�uenced

by the non-neutrality of the beam (see �gure 7.43 and 7.44).
An important insight from this is that deviating from a perfectly neutral beam will not spoil
an experiment that tries to observe the instable behavior via the change of the momentum
distribution. In fact even a pure electron beam could be a viable experimental probe for the
instable behavior.

Oscillation Amplitude

The oscillation of the �eld energy is caused by the build up of a magnetic �eld due to the current
carried by the charged beam. The �eld then induces a return current that counteracts itself by
reducing the longitudinal momentum of the beam. Since the magnetic �eld induced by a current
is proportional to the current, the amplitude of the magnetic �eld oscillation Afield induced by a
charged bunch is proportional to its current density.

Afield ∝ j ∝ α (7.10)

The energy density of a �eld is given by the square of the amplitude and thus the amplitude of
the energy density oscillation Aenergy scales with the square of the current density.

Aenergy ∝ j2 ∝ α2 (7.11)

In �gure 7.45 we con�rmed this scaling. Usually we express the energy density of the �elds or
the beam with respect to the initial energy of the beam Ebeam. In this case the normalized
amplitude Anorm scales di�erently with α and γ.

Anorm ∝ j2

Ebeam
∝ α

γ
(7.12)

Figure 7.46 con�rms this scaling of the amplitude of the �eld energy density oscillation for pure
electron beams. The relative amplitude of the oscillation can be reduced by increasing the
Lorentz boost or reducing the density ratio.
It is important to note that here we only considered in�nitely extended beams. In the case of a
beam with a �nite extension repulsive e�ects due to a net space charge of the beam or focusing
e�ects due to a toroidal magnetic �eld might play a role.
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Figure 7.38: The energy density of the electromagnetic �elds as a function of time for simulation runs
with varying beam charge ratio χ. The presence of a net current leads to an oscillating energy density at
early times with an amplitude that increases with the beam's current. At late times the energy density
of the instability exceeds the oscillation in all cases and the energy density saturates at the same level.

Figure 7.39: The energy loss of the particle beam as a function of time for simulation runs with varying
beam charge ratio χ. Similarly to �gure 7.38 at early times we �nd an oscillation induced by the presence
of a current but the instability proceeds una�ected and at late times the system reaches the same �nal
state independent of beam charge ratio.
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Figure 7.40: The �eld energy density (left) and the beam energy loss (right) as a function of simulation
time for very early times only. Here it is very apparent that the amplitude of the oscillation increases
with a stronger current (smaller χ) and that �eld energy oscillates twice as fast as the beam energy.
The oscillating electric �eld also perturbs the background plasma. The energy of the background plasma
oscillates at the same frequency as the beam plasma but shifted by a quarter period.

Figure 7.41: The spectral growth rate for two simulations runs. On the left for a beam that purely
consists of electrons. On the right a neutral pair beam. The growth rate is completely identical in both
cases.
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Figure 7.42: The shift of the mean longitudinal momentum ∆Mean
(
p∥
)
of the beam particles as a

function of time for simulation runs with varying beam charge ratio χ. Similarly to beam energy loss
we �nd that a net current leads to an initial oscillation that is eventually outgrown by the exponential
growth of the instability leading to a late time behavior that is independent of χ.

Figure 7.43: The standard deviation of the longitudinal momentum distribution Std
(
p∥
)
as a function of

time for simulation runs with varying beam charge ratio χ. The widening of the momentum distribution
is completely una�ected by χ
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Figure 7.44: The standard deviation of the transversal momentum distribution Std(p⊥) as a function of
time for simulation runs with varying beam charge ratio χ. The widening of the momentum distribution
is completely una�ected by χ

Figure 7.45: The amplitude of the �eld energy density oscillation (left) and the oscillation of
∆Mean

(
p∥
)
(right) as a function of the beam's current.
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Figure 7.46: The amplitude of the �eld energy density oscillation of a pure electron beam (χ = 0)
scaling with α (left) and γ (right). The amplitude was normalized by the initial energy of the beam.
The scaling follows the expectation outlined in (7.12).

7.4 Kinetic Energy Density Ratio

The physical system we want to study is a pair beam propagating through a much denser
background plasma. The beam is only a tiny perturbation to the whole system. One can
impose a number of more or less stringent conditions to determine if contribution of the beam
to the total system is su�ciently small. The most obvious and least stringent is for the density
ratio α to be much smaller than 1. A stronger condition would be that the energy density of
the highly relativistic beam is smaller than the energy density of the background plasma3. This
leads to the condition αγ ≪ 1. Stronger still would be the requirement that the kinetic energy
of the beam is smaller than the kinetic energy of the background plasma. Their ratio is given by
the parameter ϵ.

ϵ =
nb(γ − 1)me

3
2nbgkbT

(7.13)

In a laboratory experiment the background plasma will be produced in a gas discharge with
typical temperatures on the eV scale [26, 128]. Considering realistic values for the density ratio
and the Lorentz boost this will lead to a background plasma with much less kinetic energy than
the beam (ϵ ≫ 1). In an astrophysical scenario on the other hand the density ratio α is typically
so low that the kinetic energy of the background plasma dominates (ϵ ≪ 1).
Furthermore we have shown in section 5.8 that the kinetic energy of the background plasma is
proportional to the initial noise of the system.

Initial noise ∝ 1

Npϵ
(7.14)

The large noise due to high plasma temperature would have to be compensated by increasing
the number of simulation particles accordingly making simulations with small ϵ computationally
very expensive.

3The energy density of the background plasma is almost entirely given by its rest mass energy.
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In section 5.2.4 we saw that once we start to break the condition αγ ≪ 1 the behavior of the
system starts to change. Namely the equipartition between beam energy being converted into
�eld energy and heating the background plasma is lost. In this section we want to study the
e�ect of the ϵ parameter on the instable system to make sure that we can scale what we learn
from studying a laboratory system to astrophysical scales.
Figure 7.47 shows that raising the background plasma temperature, to reach a lower kinetic
energy density ratio ϵ, leads to larger initial noise. As long as the energy density of the initial
noise is lower than the �nal saturation level of the instability the system saturates at roughly
the same level, indicating that the instability proceeds uninhibited by the value of ϵ. Only if
the initial noise is already larger than the expected �nal saturation level of the instability do we
not see a change in the energy density with time. However if we consider the energy loss of the
beam (�gure 7.48) we can see that even for the lowest ϵ the energy drain from the beam reaches
the same level. Here the main di�erence is at early times: for small ϵ there is an initial phase
where the beam does not lose energy, in fact a small amount of energy is even gained from the
background plasma. Only when the energy loss of the beam due to the instability is large enough
does the total energy budget turn over and we see signi�cant energy loss.
Due to the higher background temperature the initial noise in the system is larger. This noise
seeds the instability and thus for more noise the instability starts from a higher level already and
thus also saturates at earlier time. In both �gure 7.47 and �gure 7.48 we can clearly see that at
the same time simulation runs with lower ϵ take on a higher value, since lower ϵ means starting
from a higher initial �eld amplitude.
In �gure 7.49 we extracted the slope of the linear growth phase from �gure 7.48. Even though the
energy drain always saturates at roughly the same level and the linear growth phase looks similar
we �nd that the extracted growth rate reduces with smaller ϵ, possibly indicating a suppression
of the instability.
In the spectral growth rate maps (�gure 7.50) we �nd that beyond a reduction of the maximum
spectral growth rate for simulation runs with smaller ϵ, there are only minor e�ects. For beams
with large ϵ the region of maximum growth curves towards smaller k∥ for high k⊥. This is likely
a computational e�ect that becomes stronger when the plasma frequency is resolved with less
grid points (the in�uence of the resolution of the plasmawavelength on the spectral growth map
is discussed in appendix A.3). Nevertheless when reducing ϵ by heating the background plasma
this e�ect subsides as well.
In a similar vein we can investigate the e�ect of adjusting ϵ on the change of the momentum
distribution. For ∆Mean

(
p∥
)
(�gures 7.51 and 7.52), Std

(
p∥
)
(�gure 7.53 and 7.54) as well as

Std(p⊥) (�gure 7.55 and 7.56) we again �nd the picture that the late time behavior is largely
una�ected by changing ϵ whereas the early time behavior can change strongly due to the larger
noise for lower ϵ leading to an earlier saturation of the instability and for particularly small ϵ
even an evolution which is almost entirely in�uenced by the noise. The proportionality constants
V1, D0 and D1 that govern how the energy density of the instability couples to the moments of
the momentum distribution are strongly dependent on the value of ϵ.
The growth rate δ does not show a clear dependence on ϵ. For the widening of the momentum
distribution larger ϵ seem to lead to a slightly reduced growth rate, whereas for the shift of the
mean momentum and the energy density larger ϵ leads to a slight increase of the growth rate.
Our physical understanding is that the growth rate should be the same for all of these processes.
The most likely explanation is that the change in extracted growth rate is only arti�cial and the
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underlying instability grows with a rate that is independent of ϵ. However when ϵ becomes too
small the large (unphysical) noise leads to behavior that seemingly changes the instable growth
behavior.
We draw the conclusion that if the numerical noise is kept to a sensibly low level then there is no
reason why the system with very low ϵ like an astrophysical pair beam should behave di�erently
from a similar system with much larger ϵ. The very di�erent kinetic energy density ratios do not
hinder one from using a laboratory system to make inferences of the astrophysical system.

Figure 7.47: The �eld energy density as a function of time for simulation runs with γ = 2, α = 10−4

and varying kinetic energy density ratio ϵ. ϵ is varied by adjusting the temperature of the background
plasma. Low ϵ leads to more initial noise. Once the initial noise exceeds the expected saturation level of
the instability no instable behavior is visible anymore.
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Figure 7.48: The energy loss of the pair beam as a function of time for simulation runs with γ = 2,
α = 10−4 and varying kinetic energy density ratio ϵ. The dashed line represent a �tted exponential
growth regime, the slopes of which are plotted in �gure 7.49.

Figure 7.49: The slopes of the �tted exponential regimes in �gure 7.48. For smaller ϵ the �tted slope
becomes less step.
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Figure 7.50: The spectral growth rate for simulation runs with varying kinetic energy density ratio
ϵ. On the left (ϵ = 10−2) and in the middle (ϵ = 10−1) the kinetic energy density of the background
plasma is larger than of the kinetic energy density of the pair beam. On the right (ϵ = 103) the hierarchy
is reversed. In all cases the most dominant modes can be found around k∥ ∼ ωp

c . However for very cold
background plasma the modes of the resonance with the largest transverse component can be found at
slightly lower k∥ whereas for smaller ϵ this trend is reduced and at least in the case of ϵ = 10−2 even
slightly reversed.

Figure 7.51: The shift of the mean of the parallel momentum distribution ∆Mean
(
p∥
)
as a function of

time for simulation runs with γ = 2, α = 10−4 and a varying kinetic energy density ratio ϵ. In dashed
line a �t of the analytical model (3.42) is shown. The extracted �t parameter δ and V1 are plotted in
�gure 7.52.
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Figure 7.52: The growth rate δ (left) and the parameter V1 (right) of the �t to (3.42) shown in �gure
7.51 each as a function of ϵ. While V1 shows a pretty clear dependence on ϵ the in�uence on the growth
rate is not so clear. For large ϵ the growth rate seems to take on a constant value, while for low value
deviations with no clear systematic are observed.

Figure 7.53: The evolution of the longitudinal beam momentum spread Std(p∥) with time for simulation
runs with γ = 2, α = 10−4 and a kinetic energy density ratio ϵ that is varied by adjusting the temperature
of the background plasma. In dashed lines a �t to (3.43) for each run is shown. The extracted �t
parameters δ, D0 and D1 are plotted in �gure 7.54.
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Figure 7.54: The growth rate δ (left), and the parameters D0 (center) and D1 (right) of the �t to
(3.43) shown in �gure 7.53 each as a function of ϵ. Both D0 and D1 show a clear dependence on ϵ,
whereas the growth rate δ only shows a very slight increase with small ϵ.

Figure 7.55: The evolution of the transversal beam momentum spread Std(p⊥) with time for simulation
runs with γ = 2, α = 10−4 and a kinetic energy density ratio ϵ that is varied by adjusting the temperature
of the background plasma. In dashed lines a �t to (3.43) for each run is shown. The extracted �t
parameters δ, D0 and D1 are plotted in �gure 7.56.
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Figure 7.56: The growth rate δ (left), and the parameters D0 (center) and D1 (right) of the �t to
(3.43) shown in �gure 7.55 each as a function of ϵ. Both D0 and D1 show a clear dependence on ϵ,
whereas the growth rate δ only shows a very slight increase with small ϵ.

7.5 Magnetic Fields

In a magnetic �eld moving charged particles are de�ected without changing energy due to the
Lorentz force.

F⃗ = qv⃗ × B⃗ (7.15)

In a constant magnetic �eld this will lead to charged particles moving on a spiral trajectory. On
the other hand in a stochastic magnetic �eld the particle will undergo many di�erent de�ections
leading to a broadening of the beam opening angle similar to what we see from instabilities. It has
been shown by Alawashra & Pohl [9] that this broadening will suppress the instability growth for
a strong enough magnetic �eld and that the required �eld strength is smaller for more coherent
�elds. However due to the nature of the Lorentz force, a simulation that is capable of studying the
e�ect of the magnetic de�ections needs to resolve three spatial dimensions. The single exception
that can be studied in a two dimensional simulation is an external, static magnetic �eld that is
aligned orthogonal to the plane of the simulation. We will have a look at this scenario to derive
some understanding of the in�uence of external magnetic �elds that could serve as a starting
point for further investigations.
A constant magnetic �eld forces charged particles on a spiral trajectory with the radius called
the gyro radius rg with the associated frequency called the gyro frequency ωg. We will use the
gyrofrequency to parameterize the magnetic �eld by using the magnetic �eld at which the gyro
frequency equals the plasma frequency as a reference.

|B| = ωgme

|e| ⇒ Bref =
ωpme

e
(7.16)

Then the gyro radius of an ultra-relativistic particle will be given in units of the plasma wave-
length.

rg =
mv⊥
eB

=
v⊥
ωg

≈ c

ωg
(7.17)

Figure 7.57 shows the evolution of the beam energy loss as a function of the external magnetic
�eld (orthogonal to the plane of simulation). For low magnetic �elds the typical evolution of an
exponential growth phase can be observed. As the magnetic �eld increases the growth rate of
this exponential phase is reduced (compare �gure 7.58). Once the magnetic �eld becomes strong
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enough the instability growth is suppressed entirely and a new oscillation behavior becomes ap-
parent.
Applying an external magnetic �eld orthogonal to the beam direction de�ects the particles side-
ways but in opposing directions for electrons and positrons. Figures 7.59 and 7.60 show how
an external magnetic �eld shifts the momentum distribution of the beam electrons continuously
over time. This leads to a misalignment of electron and positron component of the beam and
suppresses the instability growth if the magnetic �eld is strong enough. The suppression also
changes the power spectrum (�gure 7.61). The instability excites modes with k∥

c
ωp

∼ 1 and a
broad range in k⊥. When applying a strong external magnetic �eld the power spectrum instead
transitions to a circle of excited modes with k2∥ + k2⊥ =

(ωp

c

)2
. Furthermore the power of the

maximum mode (�gure 7.62) is reduced by many orders of magnitude.
The transition from an instability dominated regime to a regime that is dominated by the exter-
nal magnetic �eld takes place when the period of the magnetic gyration becomes comparable to
the time of instability growth. We use the inverse growth rate to estimate the time of instability
growth and thus roughly estimate for the magnetic �eld required to suppress the instability:

Bz
e

ωpme
≳ δ (7.18)

We note that Alawashra & Pohl [9] �nd that for incoherent �elds the required magnetic �eld to
suppress the instability is even higher.
It is important to note that this 2D treatment can only give us a rather qualitative intuition
of the in�uence of an external magnetic �eld. Especially we have to note that the magnetic
�eld of course a�ects electron and positrons very di�erently (namely de�ecting them in opposite
directions) and thus any similarities between a neutral pair beam and a pure electron beam could
be spoiled by applying an external magnetic �eld. As a minor note we mention that in the case
of very large magnetic �elds, and thus small gyroradii, it might be necessary to include radiative
e�ects in the simulation code4 to correctly describe the energy of the beam particles.

4Radiative e�ects can be treated with EPOCH, however they are turned of by default
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Figure 7.57: The energy loss of the pair beam as a function of time for simulation runs with varying
external magnetic �eld strength Bz. Increasing the magnetic �eld leads to a reduction of the beam energy
loss rate (�gure 7.58). For very strong external magnetic �elds the entire evolution changes with very
fast initial energy loss followed by an oscillation regime.

Figure 7.58: The extracted rate of the energy loss of the pair beam (�gure 7.57). Up until Bz =
0.03

ωpme

e the �tted growth rate reduces with larger magnetic �eld. For higher magnetic �elds the entire
evolution changes and exponential growth does no longer describe the system very well.
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Figure 7.59: The longitudinal beam momentum distribution for two simulation runs with di�erent
external magnetic �eld strengths at a number of time steps near the end of instability growth. On the
left the external magnetic �eld is very weak and does not alter the momentum distribution. The normal
broadening and shift behavior can be observed. On the right the external magnetic �eld is stronger and
bends the beam trajectory sideways, which leads to a continuous reduction of longitudinal momentum.

Figure 7.60: The transversal beam momentum distribution (for the electron component) for two sim-
ulation runs with di�erent external magnetic �eld strengths at a number of time steps near the end of
instability growth. On the left the external magnetic �eld is very weak and does not alter the momen-
tum distribution. The normal broadening behavior can be observed. On the right the external magnetic
�eld is stronger and bends the beam trajectory sideways, which leads to a continuous gain of transversal
momentum.
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Figure 7.61: The di�erential power spectrum for three simulation runs taken at di�erent times during
the simulation. The top shows the power spectrum for a very weak external magnetic �eld. The middle

shows a moderate magnetic �eld where the instability growth is reduced due to the external �eld. The
bottom shows a very strong external magnetic �eld where no instability growth takes place.

Figure 7.62: The power of the strongest mode at time 500ω−1
p as a function of the external magnetic

�eld strength. Applying a strong external �eld suppresses the instability and leads to much smaller
excitations of the parallel electric �eld.
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7.6 Inhomogeneous Background Medium

The plasma frequency ωp determines the most important time and length scales of the instable
system. The most dominant instable modes are found at k∥ ∼ ωp

c and the growth rate of the
instability is proportional to the plasmafrequency. The plasmafrequency in turn only depends on
physical constants and the density of the plasma. For a very dilute beam the total plasma density
is approximately the density of the background plasma. If the background plasma is homogeneous
then the ωp is a constant. However if we relax the assumption that the background plasma is
homogeneous, the plasma frequency becomes a function of position in space. Consequently
a beam propagating through a background plasma with changing density will excite di�erent
modes at di�erent times. The growth of the instability is a resonant e�ect and thus a changing
plasma frequency could suppress the instable behavior.
The inhomogeneity of the background plasma can take the form of a rapid oscillation (short
coherence length) or a gradual change over larger distances (long coherence length). Here we
will only focus on a density change with long coherence length that could for example occur in
the plasma cell of a laboratory experiment. However inhomogeneities with very short coherence
length could also be a mechanism for the suppression of the instability in astrophysical pair
beams [106, 107]. We will assume that the inhomogeneity is described by a single sine wave and
expand for distances that are much smaller than the wavelength. Then the inhomogeneity of
background medium takes on the form a density ramp with constant slope [105].

n(x) = nbg

(
1 +A sin

(
2π

λ
x

))
≈ nbg

(
1 +A

2π

λ
x

)
(7.19)

⇒ ṅ =
∂n

∂x
= nbgA

2π

λ
(7.20)

Here nbg is the average or reference density of the background medium, A is the amplitude of
the density oscillation and λ is the length scale of the density oscillation. The evolution of the
density takes on the form of a constant change with a rate that is determined by the amplitude
divided by the wavelength of the density inhomogeneity. We normalize ṅ by expressing it as the
density change in units of the reference density nbg over a plasma wavelength c

ωp
.

The scenario essential becomes a constant slope of density increase (or decrease) along the path
of the particle beam. The plasma frequency, which depends on the square root of the plasma
density, grows with the square root of the distance covered. This implies that the modes that are
excited by the instability are a function of position and thus time. At late times of the instability
development modes with higher k∥ (for growing density) are excited.
Figure 7.63 shows increasing the slope of the density reduces the rate of beam energy loss and
the �nal beam energy loss. More precisely once the relative rate of density change per plasma
wavelength reaches the permille level, roughly the growth rate in units of the plasma frequency,
the growth rate and the saturation level starts to reduce following a power-law relationship (see
�gure 7.64). The Fourier plot (�gure 7.65) shows a clear smearing out of the excited modes in
k∥ for a large background density slope.
In the evolution of the longitudinal and transversal momentum distribution (�gures 7.66 and
7.68 respectively) we also observe a suppression of the instability for a high background density
slope. Both high and low density slope can be well described by the analytical model (3.43)
derived from the Fokker-Planck equation. Some of the �t parameters are shown in �gures 7.67
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and 7.69. The transition from a constant regime for low density slopes to a power-law decay for
high slopes takes place at a similar threshold as for the beam energy loss. While the power-law
index is the same for the growth rate for the beam energy loss and the momentum broadening,
this is not the case for the saturation level. Increasing the slope of the background density also
leads to an exponential increase of the �t parameter D1 which is closely associated with the
initial noise of a simulation run. This leads to stronger initial momentum broadening for high
density slopes.
We conclude that the suppression of the instability growth due to the density slope already starts
when the relative rate of change is still small compared to the instability growth rate δ and it is not
enough that the density change is small over one growth cycle. Instead the density change has to
be small over the whole time it takes to grow the instable modes to saturation. This conclusion is
supported by the observation from �gure 7.65 that only a small rate of density change can ensure
that the same modes are excited at di�erent times during the instability growth. Furthermore
this implies that a con�guration with a narrower band in k∥ with signi�cant instability growth
(due to a high Lorentz boost γ or a low density ratio α) would be more susceptible to disruption
due to a density gradient.

Figure 7.63: The energy loss of the pair beam as a function of time for simulation runs with varying
background density slope ṅ. A stronger slope reduces the growth rate and the saturation level of the
energy drain due to the instability. The extracted growth rate and saturation level are shown in �gure
7.64. The time was normalized using the plasmafrequency derived from the reference background density
nbg.
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Figure 7.64: The growth rate δ (left) and the saturation level Λ (right) as a function of the background
density slope ṅ as extracted from the beam energy loss shown in �gure 7.63. The growth rate and
saturation level take on a constant value for a slowly changing background plasma density and above a
critical value they start to decrease following a power law behavior.

Figure 7.65: The di�erential power spectrum for two simulation runs with low rate of density change
(top) and high rate of density change (bottom) at di�erent time steps during a simulation run. The
gradual increase of the local background plasma density shifts the plasmafrequency ωp to higher value
and leads to a smearing of the power spectrum. For a stronger density change the smearing of the power
spectrum is stronger.
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Figure 7.66: The evolution of the width of the longitudinal momentum Std
(
p∥
)
is shown for runs with

varying background density slope ṅ. The standard is calculated at regular intervals of 5ω−1
p until a time

of 500ω−1
p and afterwards at intervals of 50ω−1

p . Data points are shown up to times of twice the �tted
value for the time of instability saturation. In dashed lines a �t of (3.43) to the data is shown. The
extracted values for the growth rate δ, the noise parameter D1 and the saturation level Λ can be found
in �gure 7.67.

Figure 7.67: The extracted parameters for the growth rate δ (left), the noise parameter D1 (middle)
and the saturation level Λ (right) from the �t in �gure 7.66 for the evolution of the width of the
longitudinal momentum. For high density slope the growth rate and the saturation level are reduced,
whereas the noise level D1 increases.
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Figure 7.68: The evolution of the width of the transversal momentum Std(p⊥) is shown for runs with
varying background density slope ṅ. The standard is calculated at regular intervals of 5ω−1

p until a time
of 500ω−1

p and afterwards at intervals of 50ω−1
p . Data points are shown up to times of twice the �tted

value for the time of instability saturation. In dashed lines a �t of (3.43) to the data is shown. The
extracted values for the growth rate δ, the noise parameter D1 and the saturation level Λ can be found
in �gure 7.69.

Figure 7.69: The extracted parameters for the growth rate δ (left), the noise parameter D1 (middle)
and the saturation level Λ (right) from the �t in �gure 7.68 for the evolution of the width of the transversal
momentum. For high density slope the growth rate and the saturation level are reduced, whereas the
noise level D1 increases.
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A laboratory experiment would be a great opportunity to compare the results of our simulations
with reality in a situation that allows for in situ measurements of the �elds or particle beam. In
particular the behavior of a pair beam in the non-linear post saturation regime and the unstable
behavior of pair beams in the transition region of a mildly hot beam would be interesting regimes.
In �gure 8.1 we sketch a possible setup for such a laboratory experiment. In this case an electron
beam is created by a LWFA (laser wake�eld accelerator), however depending on the requirements
this could also be a conventional accelerator. This electron beam needs to be converted into a
beam that ideally contains an equal number of electrons and positrons with equal momentum
distribution. This has been demonstrated to be possible [127, 100, 99, 101] by hitting a high
density target where the electrons undergo a cascade of Bremsstrahlung and pair production. The
resulting pair beam will have a broad energy spectrum, high divergence and an overabundance
of electrons which makes it necessary to apply clever beam optics that can focus both charges
simultaneously.
The produced, hopefully high quality, pair beam will then be led through a plasma cell where
the instability occurs leading to the build up of electromagnetic �elds in the plasma cell as well
as heating the background plasma and the pair beam. The modi�ed pair beam will then leave
the plasma cell where its momentum spectrum can be measured with a magnetic spectrometer.

Figure 8.1: Sketch of a possible laboratory setup where an electron beam is produced by a laser wake�eld
accelerator (LWFA) and converted into a neutral pair beam in a high density target. Courtesy: Benno
Zeitler
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8.1 Initial Electron Beam

The quality of modern accelerators are often judged on many di�erent aspects of their perfor-
mance: Their maximum energy, their energy spread, the number of particles per bunch (which
is equivalent to the beam charge), their emittance [62], the length of their bunches, etc. However
when we want to produce a pair beam by hitting a high density target many of these qualities
will be spoiled as a result of the radiative interactions and scattering processes. The resulting
beam will be highly divergent and have a wide energy spectrum. We will only consider three
quantities of the incoming electron beam to be relevant for the output pair beam: The initial
mean energy of the beam particles, the initial beam charge and the initial bunch length.
The number of output particles, and thus the output beam density, obviously scales proportion-
ally to the number of input particles. The input beam energy will de�ne the maximum energy for
output particles. Even though most particles will be close to the critical energy of the converter
material, a higher energy input beam will increase the mean energy of the output beam. Since
in a cascade the number of particles increases exponentially with each generation increasing the
energy of the input beam also leads to more output particles and thus a higher output density.
Lastly the length of the beam will increase only by a few femtoseconds due to interactions and
de�ections in the converter target and thus the beam length of the output beam will be approxi-
mately equal to the length of the input beam. A longer beam with the same number of particles
will have a lower density, but can drive the instability longer. LWFA can produce electron beams
with up to nanocoulomb charge, hundreds of MeV in energy and a bunch length of the order of
tens of femtoseconds [47, 79].
We have shown in section 7.1.1 that the length of the beam needs to be longer than the inverse
growth rate to drive the oblique instability. In �gure 8.2 we show the inverse growth rate as a
function of the energy and density of the output beam for di�erent background plasma densities.
For energies and densities that could be reasonably achieved with a LWFA the length of the beam
would have to exceed tens of picoseconds, about three orders of magnitudes larger than what
these kind of machines usually produce. The required beam length can be reduced by increasing
the density of the background plasma, however an increase of the growth rate by three orders of
magnitude would require an increase of the background density by 18 orders of magnitude.

δ ∝
(
α

γ

) 1
3

ωp ∝= n
1
6
bg (8.1)

If one were to stretch the input beam, for example with a magnetic chicane, the length would
increase at the cost of reducing the density of the beam. Since the beam density scales linearly
with the length of the beam and the growth rate scales with the third root of beam density
stretching the beam enough would eventually lead to a beam that can drive the instability.
However for a beam with a length that is three orders of magnitude too short, one would need
to stretch the beam by four orders of magnitude.
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An alternative proposal for the creation of pair beams is to use high energy proton beams to
induce the pair cascades [19]. Here the proton could produce neutral pions via strong interaction
which can decay into two photons that then each start an electromagnetic cascade. Protons can
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be accelerated with much less e�ort due to their higher masses and those high energy protons
would produce many more secondary particles to increase the charge of the output beam. Facili-
ties like AWAKE (bunches of 3 · 1011 protons with 400GeV energy and 400 ps bunch length) [66]
or HiRadMat (bunches of 1.2 · 1011 protons with 440GeV energy and 375 ps bunch length) [57]
could produce output beam consisting of electrons and positrons each with a density in excess
of 1013 cm−3 [19] with lengths of hundreds of picoseconds. These beams could be suitable for
studying the oblique instability.

Figure 8.2: Inverse growth time as a function of output beam mean energy E and output beam density
nb.

8.2 Pair Beam Production

To produce a beam of electron and positron pairs we want to induce electromagnetic cascades
in a high density target. In an electromagnetic cascade the incident electron produces a high
energy photon via Bremsstrahlung in a material. The photon can then go on to produce a pair of
electron and positron via the pair production process while the incident electron can again emit
a Bremsstrahlung photon. The mean distance a particle travels before it interacts is a material
constant called the radiation length X0. This mechanism can continue until all particles carry
energy below the critical energy Ec, another material constant.
In the most simple analytical model called the Heitler model one can assume that after each
interaction the two outgoing particles carry half the energy of the incoming particle [108]. Then
the cascade produced by an incident particle with energy Ein can continue for N generations,
where Np particles are produced at the end of the cascade that penetrates a depth of Xmax of
the material.

N = log2

(
Ein

Ec

)
(8.3)

Np = 2N =
Ein

Ec
(8.4)

Xmax = NX0 = X0 log2

(
Ein

Ec

)
(8.5)

Below the critical energy electrons and positrons mainly lose energy due to ionization producing
additional electrons (see �gure 8.3). As a consequence below the critical energy a vast over-
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abundance of electrons is produced. Ideally the material for the converter target should have a
low critical energy to maximize the particle yield and a short radiation length to minimize the
in�uence of scattering in the material. In table 8.1 we summarized a number of materials that
could be suitable. In particular lead and tungsten are widely available and o�er a low critical
energy and short radiation length.

Table 8.1: Radiation length and critical energy of a number of dense materials [130]. The critical energy
is given for electrons, which is slightly larger than the critical energy for positrons

Element Radiation Length X0 [cm] Critical Energy Ec [MeV]

Cu 1.436 19.42
Sn 1.206 11.86
Ta 0.4094 8.09
W 0.3504 7.97
Pb 0.5612 7.43

To study the conversion of the input electron beam in the converter target, we use the Geant4
[7, 11, 12] simulation framework to simulate a monoenergetic beam of 106 electrons (equivalent to
a charge of 0.16 pC) with zero emittance and zero timespread hitting targets of various materials
and thickness. We adopt a reference energy of 500MeV for the input electrons. In �gure 8.4 we
show the ratio of the produced positrons to electrons as a function of the converter material and
length. For a very thin converter increasing the thickness produces more positrons, but after a
couple radiation lengths the ratio begins to shrink again if we consider particles of all energies.
This can be attributed to the ionization electrons produced at low energies. If we only consider
particles well above the critical energy of the material the ratio converges towards charge parity
after a few radiation lengths. We conclude that it is only possible to produce a beam that is
close to charge neutrality we apply some �ltering mechanism to remove part of the produced
particles.
In �gure 8.5 we show the spectrum of all produced particles for a 20mm tungsten converter
target. The by far most commonly produced particles are photons, followed by electrons and
positrons produced in almost equal amount and then neutrons. The neutrons could become a
problem with regard to radiation safety in an experiment. Other particles are produced in neg-
ligible amounts. All produced particles very roughly follow a power-law spectrum that reaches
up to the energy of the incident particles. A requirement to drive the instability growth is the
inversion of the momentum distribution. This again requires some form of intervention to re-
move part of the lower energy particles. Since it is below the critical energy where electrons are
produced in much larger numbers than positrons this would also address our problem with the
charge neutrality.
We can use to our advantage that low energy particles in the cascade are produced with a larger
intrinsic opening angles and are more susceptible to scattering. If we consider the de�ection
angle with respect to the incident beam axis θ, then particles with lower energies will on average
have larger θ. If we introduce an aperture of some kind that only allows particles with small θ to
pass, we will produce a beam that is mostly charge neutral and has a momentum inversion. The
very forward going particles is also what would arrive in a plasma cell located at some distance
from the target. An arti�cial cut of θ < 5◦ approximately replicates the particles that arrive in
a plasma cell with a radius of 1.75mm at a distance of 2 cm from the converter target. In �gure
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8.6 we show the in�uence of introducing a 5◦ degree cut applied to θ on the longitudinal mo-
mentum spectrum. The resulting spectrum has a momentum inversion and particles below the
critical energy are almost entirely removed. Additionally we point out that the number of high
energy particles decreases for a thicker absorber even though more particles across all energies
are produced. One may consider using a thinner converter target to produce a non-neutral, but
high energy and high density pair beam. However for a thin target the momentum distribution
of the electrons and positrons is quite di�erent (see �gure 8.7). The excess of electrons for a
thin target manifests mainly at high energies where no positrons are present. Only for a target
thickness that also leads to a neutral beam above the critical energy does the momentum distri-
bution of both particle species becomes similar. Even though the input particle beam consists
of monoenergetic electrons with an energy of 500MeV the energy spectrum of the output pair
beam peaks at much lower energies. The exact value depends on the thickness of the converter
target.
The transversal momentum distribution (�gure 8.8) shows most particles with transverse mo-
mentum of the order of some MeV, leading to a beam that can certainly not be described as
cold. A thicker converter target leads to a beam with less transversal momentum overall, al-
though this is likely o�set by the reduction in longitudinal momentum as well. Introducing a cut
on the angle θ does not substantially change the momentum distribution. This introduces the
further challenge of cooling the beam in order to drive the oblique instability e�ciently.
One of the most important quantities for the instability growth is the density of the pair beam.
A denser pair beam leads to faster instability growth making a laboratory experiment more fea-
sible. Due to the inhomogeneous distribution of particles with respect to time and position in
space the density of the pair beam is not an immediately well de�ned quantity. We de�ne the
density as the number of particles divided by the 68th percentile in distance from the beam axis
in both transverse directions (r68) and the 68th percentile in arrival time times the speed of light
(ct68).

nb =
Ne− +Ne+

ct68r268
(8.6)

At the backside of the converter target (�gure 8.9) the output particles are focused in a small
spot around the beam axis. For a thicker target the particles experience more de�ection and the
spot size (de�ned as the area that contains 68% of the outgoing positrons) grows from 0.15mm
for a 5mm lead converter to 1.2mm for a 20mm converter target. Most particles, especially
those with high energies, leave the back of the converter target within a few femtoseconds (see
�gure 8.10). Nevertheless the time distribution of the produced particles follows an exponential
decay with few particles experiencing larger delays. 68% of particles arrive within 122 fs for a
20mm lead target (for a 5mm target within 32 fs).
Since the pair beam is diverging the density is also a quantity that rapidly evolves with distance
from the converter target. In �gure 8.11 we show the density as it evolves with distance for
di�erent converter thicknesses for an input beam with 106 electrons of 500MeV. Even though
a thicker converter target produces more secondary particles, the density of the pair beam is
reduced with increasing thickness. Within the �rst few millimeters the pair beam density already
drops by orders of magnitude. When considering only the very forward going particles (θ < 5◦)
the density does drop faster at �rst, but at distance larger �ve to ten millimeters the density
it typically one order of magnitude larger than without this cut. For a 20mm converter target
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and a plasma cell at a distance of another 20mm particle densities in excess of 107 cm−3 can
be reached, for a beam with a charge of a nanocoulomb this would translate to a density of
1011 cm−3.
In accordance with the Heitler model the number of produced secondary particles scales linearly
with the energy of the incident particle. Including the e�ect that particles with higher energy
experience less scattering in the material and are produced with smaller opening angle the density
increases stronger than linear with energy.

Figure 8.3: The fractional energy loss per radiation length X0 in lead as a function of the energy
of an electron or positron [130]. Above the critical energy Ec Bremsstrahlung is the dominant process
leading to a cascade that produces electrons and positrons in equal number. Below the critical energy
only electrons are produced via ionization.
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Figure 8.4: Ratio of the positrons to electrons produced from 500MeV incident electrons as a function
of converter material and length. The left shows all particles produced, the right shows only particles
with energies above 100MeV.
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Figure 8.5: All Particle Spectrum for a 20mm tungsten target and an incident beam of 106 electrons
with an energy of 500MeV. The overproduction of photons can be explained by the pair production
length actually being 9

7X0 and thus slightly larger than the energy loss length Bremsstrahlung.
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Figure 8.6: The electron and positron combined parallel momentum spectrum for lead converter targets
of di�erent thickness. The left shows all particles and the right only particles with an angle smaller
than 5◦ with respect to the incident beam axis. p∥ is the momentum component that is parallel to the
incident beam.

Figure 8.7: Electron (left) and positron (right) momentum spectrum for lead converter targets of
di�erent thickness considering only particles with de�ection angle θ < 5◦. Only for a target that has a
thickness of at least a few radiation lengths does the momentum distribution of both species become the
same.
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Figure 8.8: The electron and positron combined transversal momentum spectrum for lead converter
targets of di�erent thickness. The left shows all particles and the right only particles with an angle
smaller than 5◦ with respect to the incident beam axis. p⊥ is the momentum component that is orthogonal
to the incident beam.

Figure 8.9: Position of the very forward going (θ < 5◦) output positrons as they leave a 5mm (left)
and a 20mm (right) lead converter target. Most of the positrons are located in the central region with
a diameter of 0.15mm for 5mm and 1.5mm for 20mm of lead.
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Figure 8.10: Time of leaving the conversion target for very forward going (θ < 5◦) output positrons.
The left shows the correlation between time and energy while the right integrates over energy.

Figure 8.11: The density of the pair beam for lead converters of di�erent thickness as a function of
distance from the converter target for all particles (left) and very forward going (θ < 5◦, right). Within
the �rst millimeters the density already drops by multiple orders of magnitude.

8.3 Beam Optics

In the previous section we described the conversion of the electron beam into a pair beam of
electrons and positrons in a converter target. We found that the result is a highly divergent beam
with a falling energy spectrum with a density that rapidly reduces over short distances. On top
of that we only attain desired features like a momentum inversion and charge neutrality if we
introduce an additional cut on the divergence angle, which would be equal to a small plasma
cell some distance away. Finally the beam is also top transversally hot. All of these problem
could potentially be addressed with clever beam optics that �lter or focus the beam to transport
it over large distances or even increase its density and decrease its transversal momentum at a
focal point where the plasma cell could be placed.
A charged particle beam could be focused using magnetic beam elements like a solenoid magnet
[69], quadrupole magnets [50] or active plasma lenses (APLs) [111, 132, 122]. However a beam
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consisting of positively and negatively charged particles faces the additional challenge of �nding
beam optics that apply the same or similar focusing to both particle species. This is the case
for a single solenoid magnet, where the Lorentz force acts twice on a particle to achieve a
focusing e�ect. Inside the solenoid the magnetic �eld lines are parallel to the beam axis. A
particle with a transverse momentum component will then experience a Lorentz force that leads
to an azimuthal acceleration. The azimuthal momentum component will then likewise lead to
transverse acceleration that counteracts the initial transverse momentum component independent
of the charge of the particle. The twofold application of the Lorentz force leads to an energy
dependent focusing that scales with γ−2. The focusing strength of a single solenoid with magnetic
�eld B and length L can be given in the thin lens approximation [69] as follows:
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)
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Using a solenoid to focus a pair beam would be conceptually very simple, because it focuses the
beam symmetrical in both planes simultaneously, but the challenge would be to achieve magnetic
�elds that are su�ciently strong. A solenoid of length 10 cm would need a �eld strength exceeding
1T to focus 50MeV electrons with a focal length of 1m. On the other hand quadrupole magnets
focus a particle beam (depending on the charge) in one transverse plane and defocus in the other,
making it necessary to employ more complex layouts of three quadrupoles [50] to achieve net
focusing in both planes. APLs can symmetrically focus one particle species, while defocusing
the other, making it again possible that a layout of three APLs could achieve a focusing e�ect
for both species.
The energy dependence of the focal length could be used as an energy �lter. Only particles of a
narrow energy range will be focused at the position of the plasma cell. The unfocused particles
with higher and lower energies will overall constitute a low density plasma beam that will not
perturb the plasma cell much, whereas the focused particles constitute a much higher density
plasma with a narrow energy spread that could be similar to a cold beam and drive signi�cant
instability growth.

8.4 Plasma Cell

The plasma cell will be at the heart of a beam line where the plasma instability growth takes
place. The most important quantity of the background plasma will be its density that sets the
time and length scales by way of the plasma frequency and directly in�uences the growth rate.
The plasma cell needs to be long enough to contain the full instability growth. Background
plasma needs to be stable over the entire instability growth time and have a density pro�le that
is homogeneous enough (compare section 7.6). The density of the plasma also sets the transverse
size of the beam for plasma like collective behavior. A plasma can be created by ionizing a
gas with a current discharge or a laser [114, 128, 91]. Fully ionizing a Hydrogen gas of number
density nH will produce an electron-proton plasma of the same number density. The density of
a Hydrogen plasma ne is thus given by the ionization fraction xe as well as the temperature and
pressure of the original gas.

pV = NHkBT ⇒ ne = xe
p

kBT
= 2.4 · 1020xe

( p

bar

)( T

300K

)−1

cm−3 (8.8)
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For ordinary conditions in a laboratory environment fully ionizing a Hydrogen gas will produce
a plasma with a density of the order of 1020 cm−3. For a density of this magnitude a beam
with a transverse extent of more than 0.1µm would already be enough to achieve full instability
growth. Since the plasma frequency scales with the square root of the plasma density even for a
much smaller density of 1014 cm−3 a transverse extent in excess of 10µm would still satisfy the
requirement (compare �gure 8.12).

L⊥ ≫ 2πc

ωp
(8.9)

The density of the background plasma needs to be stable over the entire distance of instability
growth. For a con�guration that needs of the order of 10 ps to reach saturation this would require
a plateau of the density of the order of 300µm.

Figure 8.12: Minimum size of the plasma beam in each direction to achieve plasma-like behavior as
a function of the background plasma density nbg. For reasonable densities it is enough to exceed the
threshold of 1µm.

8.5 Diagnostics

The instability mechanism leads to the growth of electromagnetic �elds in the plasma cell. One
possibility for measuring the instability growth would be directly measure these �elds [128] for
example via proton radiography [76, 75]. However we have seen in section 5.5 that the growth
of the instability also leads to signi�cant feedback on the momentum distribution of the pair
beam. An initially cold beam with γ = 150 and α = 10−3 (�gure 5.16) can develop a momentum
spread of multiple MeV in both directions. Using a magnetic spectrometer, where particles are
de�ected in a magnetic �eld and the amount of their de�ection is recorded with a detector and
used to infer their momentum, the momentum distribution of the pair beam could be measured
with su�cient resolution to detect this e�ect. The two parameters α and γ can be varied for
example by adjusting the gas pressure in the plasma cell, the magnetic �eld of the solenoid or the
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thickness of the converter target. The scaling of the change of the momentum distribution with
α and γ could be probed for unequivocal proof that the e�ect is caused by the oblique instability.
If the instability is grown up to the saturation level then the scaling can be simply compared
with (5.15). Since the saturation level scaling follows from the growth rate scaling the change of
the momentum distribution allows for direct probing of the instability growth rate itself.

8.6 Pure Electron Experiment

Performing a laboratory experiment with pair beams of electrons and positrons has shown itself
to be very tricky with the key hurdle being the creation of handling of the pair beam itself.
On top of that we have shown that the pair beams we could create would likely have a large
overabundance of electrons, leading to a pair beam that is very di�erent from the perfectly neutral
astrophysical beams we aim to learn about. Luckily we have seen in section 7.3 that non-neutral
beams undergo the same instability mechanism as neutral pair beams. In fact, even a beam
that consists only of electrons undergoes the same unstable behavior. This opens up the exciting
opportunity of performing the suggested experiment with a pure electron beam, sidestepping all
the problems we have described about creating a pair beam in a conversion target and focusing
the beam with complicated beam optics. In the next chapter we will investigate the unstable
behavior of pure electrons in-depth.
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In section 7.3 we studied the in�uence of non-neutrality of the beam due to an over-abundance
of electrons as a correction to the idealized scenario of a neutral pair beam, which we want to
study. We realized that the instability can even proceed for beams with a very strong asymmetry
between electrons and positrons. It is even possible to produce instable growth for a pure electron
beam. In fact the momentum broadening of the beam is the same for a neutral pair beam and a
pure electron beam. Since the production of a neutral pair beam of high density and high charge
is a great experimental challenge, whereas producing pure electron beam of the same qualities
is comparatively much easier with current technology, we want to explore the possibility of
performing the experiment with a pure electron beam.
To this end we need to check that a pure electron beam comforts to the same scaling behavior
as a neutral pair beam, that the key experimental observables are not spoiled by the e�ects of
charge-carrying beam and that there are no cross e�ects between the non-neutrality and other
corrections to the idealized neutral pair beam discussed in chapter 7. We know that a neutral
pair beam and a pure electron beam start to behave much di�erently if an external magnetic
�eld is applied. However also the scenario of �nite beam extension needs to be investigated.

9.1 Growth Rates

As a �rst step we want to con�rm that for an in�nitely extend, cold, pure electron beam in
a homogeneous environment the instability evolves with the same rate and leads to a di�usion
of the beam momentum distribution with the same rate and saturation level. Only then we
can conclude that using a charged beam as a proxy for a neutral pair beam will lead to the
same result under optimal conditions. Up to the obvious absence of a positron species in the
simulation and the total runtime of the simulation, which was reduced to 1500ω−1

p , we use the
same con�guration for the simulation runs presented in this chapter as outlined in table 5.1.
The most straight-forward way to determine the rate of instability growth is the integrated
growth rate that can be extracted from the evolution of the total �eld energy density evolution.
In �gures 9.1 and 9.3 we show the evolution of the total �eld energy density as a function of γ
and α respectively. In both cases the initial noise regime exhibits a oscillation of the �eld energy
density, that depends on the current density of the beam, until the instability takes over and
the �eld energy density grows exponentially. We expect that the instability grows with the rate
of the oblique instability and the time until saturation tfinal scales like the inverse growth rate.
Again we extract the growth rate and the time of saturation by �tting the logarithmic energy
density to (5.5).
Figures 9.2 and 9.4 show that the growth rate is �tted to follow a power law as expected albeit
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with a slightly smaller spectral index of −0.27 for the γ scaling and −0.24 for the α scaling. The
inverse saturation time t−1

final also follows a power law with a spectral index that is closer to the
expected value of 1

3 for both α and γ. The scaling of the inverse saturation time is much less
sensitive to the initial oscillation of the �eld energy density at early times and could be the more
reliable quantity.
To further investigate the growth rate of the instability we also consider the constrained growth
rate that only considers the energy density of the most dominant modes. When only considering
a small number of modes the in�uence of the initial oscillation due to the beam's current is
strongly reduced. Figures 9.5 and 9.6 show the mode constrained �eld energy density evolution.
For the energy density of the modes that are relevant to the instability we observe no oscillation
at early times. Consequently the exponential rise of the �eld energy density becomes apparent
at earlier times. At late times the total �eld energy density is dominated by the selected instable
modes and thus the saturation behavior remains the same. The extracted growth rates have
been plotted in �gure 9.7 as functions of both γ and α and clearly conform to a power law
with the exact scaling of the oblique instability. We can conclude that indeed the growth of
the instable modes behaves the same for a pure electron beam and a neutral pair beam in the
idealized scenario of an in�nitely extended, cold beam.
For a laboratory experiment the change of the beam momentum distribution due to the growth of
the instability is a key observable. We need to check that this observable remains experimentally
accessible for a pure electron beam. The energy loss of the beam leads to the shift of the mean
longitudinal momentum Mean

(
p∥
)
to lower values and the build up of the electric �eld leads

to the di�usion of beam momentum that widens the beam momentum distribution ultimately
growing Std

(
p∥
)
and Std(p⊥). However for a charged beam the presence of a current also leads

to an oscillation of the beam energy and thus the mean longitudinal momentum. To re�ect this
we extend (3.42) with an additional oscillation term, where A is the amplitude of the oscillation
that proceeds with a frequency of

ωp

2 .

∆µ(t) = −2δV1

∫ t

0
dt′
(
κ−δt′ + κ−δtfinal

)− 2
log κ

+A sin2
(
ωpt

2

)
(9.1)

The evolution of the longitudinal and transversal momentum spread is not signi�cantly altered
and we continue to use (3.43).
Figures 9.8 and 9.9 show the evolution of the mean longitudinal momentum shift for simulation
runs with varying γ and α respectively. The extended model (9.1) can describe the total evolution
quite well far into the non-linear regime. The parameters of each individual �t are listed in table
9.1 and the scaling of the growth rate and the saturation level with α and γ have been plotted
in �gure 9.10. Notably we �nd that the smoothness parameter κ is �tted with a higher value,
meaning a faster transition into the non-linear regime, for higher saturation levels. For a neutral
beam we found this behavior only for the evolution of Std(p⊥), which was best described by our
model.
The evolution of the longitudinal momentum spread is shown in �gure 9.11 and 9.12 for simulation
runs with varying γ and α. The �tted di�usion model (3.43) describes the evolution quite well,
but tends to underestimate the momentum spread far into the non-linear regime, a behavior we
also observed for the neutral pair beam. The parameters of each individual �t are listed in table
9.2 and the scaling of the growth rate and the saturation level with α and γ have been plotted
in �gure 9.13.
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Lastly, the evolution of the transversal momentum spread is shown in �gures 9.14 and 9.14. Here
the �tted model describes the data very well deep into the non-linear regime. The scaling of the
growth rate and saturation level are plotted in �gure 9.16. Again we �nd that a higher saturation
level is associated with a less smooth transition from the linear into the non-linear regime (see
table 9.3).

δ∆Mean(p∥) ∝
α0.27

γ0.33
(9.2)

Λ∆Mean(p∥) ∝ α0.48γ0.61 (9.3)

δStd(p∥) ∝
α0.33

γ0.33
(9.4)

ΛStd(p∥) ∝ α0.36γ0.59 (9.5)

δStd(p⊥) ∝
α0.34

γ0.32
(9.6)

ΛStd(p⊥) ∝ α0.32γ0.63 (9.7)

For the widening of the momentum distribution in both directions we �nd that the growth rate
replicates the rate of the oblique instability and that the saturation level also agrees with what
has been found for the neutral beam (see chapter 5.5.1). For the change of the mean longitudinal
momentum this is not strictly the case, as we �nd slightly di�erent scaling relationships with
respect to α, but this could again be in�uenced by the early oscillation leading to a biased �t.
Nevertheless, if we discount the early oscillation of the mean longitudinal momentum, the evolu-
tion of the momentum distribution of an idealized pure electron beam is very similar to a neutral
pair beam and we can conclude that at least in principle a pure electron beam would allow us
to study the same physics.
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Figure 9.1: The energy density of the combined electric and magnetic �elds across all modes and all
directional components normalized to the initial energy density of the electron beam as a function of
time (bottom axis) and propagation distance (top axis). Each simulation run has a density contrast of
α = 10−3 and varying Lorentz boost γ. For each simulation run the start and end point of the linear
growth phase is indicated by cross and the linear growth rate is indicated by a dashed line. The extracted
growth rate and the time of the end of the linear growth phase are shown in �gure 9.2.

Figure 9.2: The integrated growth rate (left) and the inverse time at the end of the linear growth phase
(right) as a function of γ extracted from total energy density shown in �gure 9.1. Both follow a power
law with a �tted index slightly below 1

3 .
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Figure 9.3: The energy density of the combined electric and magnetic �elds across all modes and all
directional components normalized to the initial energy density of the electron beam as a function of time
(bottom axis) and propagation distance (top axis). Each simulation run has a Lorentz boost of γ = 5 and
varying density contrast α. For each simulation run the start and end point of the linear growth phase
is indicated by cross and the linear growth rate is indicated by a dashed line. The extracted growth rate
and the time of the end of the linear growth phase are shown in �gure 9.4.

Figure 9.4: The integrated growth rate (left) and the inverse time at the end of the linear growth phase
(right) as a function of α extracted from total energy density shown in �gure 9.3. Both follow a power
law with a �tted index of 1

3 for the inverse saturation time t−1
final and slightly lower for the growth rate.
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Figure 9.5: The energy density of the electric �eld that dominate the instability (k∥ ∼ ωp

c ) normalized
to the initial energy density of the electron beam as a function of time (bottom axis) and propagation
distance (top axis). Each simulation run has a density contrast of α = 10−3 and varying Lorentz boost
γ. The dashed line indicates the �tted linear growth phase. The extracted growth rate is shown in the
left of �gure 9.7.
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Figure 9.6: The energy density of the electric �eld that dominate the instability (k∥ ∼ ωp

c ) normalized
to the initial energy density of the electron beam as a function of time (bottom axis) and propagation
distance (top axis). Each simulation run has a Lorentz boost of γ = 5 and varying density contrast α.
The dashed line indicates the �tted linear growth phase. The extracted growth rate is shown in the left
of �gure 9.7.

Figure 9.7: The constrained growth rate as a function of γ (left) and α (right). They both follow a
power law that is �tted with a spectral index of 1

3 as expected for the oblique instability.
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Figure 9.8: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown for runs

with varying Lorentz boost γ and density contrast α = 10−3. The mean value is calculated at regular intervals
of 5ω−1

p . However at late times, after 3tfinal (�tted value), data points are not shown since the �t to the model
does not describe the evolution very well anymore. In dashed lines a �t of (9.1) to the data is shown. The �t
parameters are listed in table 9.1 and the scaling of growth rate and saturation level is shown in �gure 9.10.

Figure 9.9: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown for

runs with varying density contrast α and Lorentz boost γ = 5. The mean value is calculated at regular intervals
of 5ω−1

p . However at late times, after 3tfinal (�tted value), data points are not shown since the �t to the model
does not describe the evolution very well anymore. In dashed lines a �t of (9.1) to the data is shown. The �t
parameters are listed in table 9.1 and the scaling of growth rate and saturation level is shown in �gure 9.10.
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Table 9.1: The �t parameters (δ, V1, A, tfinal, κ) of (9.1) for ∆Mean(p∥) from simulation runs with
various values for α and γ. The derived quantity Λ is the value of ∆Mean(p∥) at time tfinal.

γ α δ [ωp] V1 [MeV] A [MeV] tfinal [ω
−1
p ] κ Λ [MeV]

5 0.001 2.06 · 10−8 2.61 · 10−2 1.01 · 10−3 254 1.48 · 103 1.21 · 10−2

10 0.001 2.79 · 10−8 2.09 · 10−2 1.03 · 10−3 317 1.45 · 1015 1.78 · 10−2

20 0.001 2.48 · 10−8 1.75 · 10−2 1.04 · 10−3 390 1.20 · 103 2.14 · 10−2

50 0.001 4.88 · 10−8 1.27 · 10−2 1.05 · 10−3 537 4.91 · 1038 4.42 · 10−2

100 0.001 6.91 · 10−8 1.01 · 10−2 1.03 · 10−3 684 6.33 · 1038 6.83 · 10−2

150 0.001 1.78 · 10−7 8.15 · 10−3 1.05 · 10−3 811 3.21 · 1044 9.84 · 10−2

5 0.05 5.68 · 10−6 6.83 · 10−2 4.98 · 10−2 66.6 8.63 · 1036 9.54 · 10−2

5 0.01 5.95 · 10−7 4.55 · 10−2 1.01 · 10−2 120 4.91 · 1010 3.40 · 10−2

5 0.005 2.43 · 10−7 3.82 · 10−2 5.01 · 10−3 152 591 2.69 · 10−2

5 0.001 2.40 · 10−8 2.62 · 10−2 1.01 · 10−3 251 830 1.19 · 10−2

5 0.0005 1.45 · 10−8 2.10 · 10−2 5.09 · 10−4 317 1.20 · 104 9.20 · 10−3

5 0.0001 2.51 · 10−9 1.36 · 10−2 1.01 · 10−4 532 73.4 4.44 · 10−3

5 0.00005 2.00 · 10−9 1.06 · 10−2 5.05 · 10−5 680 244 3.52 · 10−3

5 0.00001 1.64 · 10−10 7.27 · 10−3 9.47 · 10−6 1.11 · 103 10.4 1.27 · 10−3
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Figure 9.10: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the shift
of mean parallel momentum ∆Mean(p∥) with γ (top) and α (bottom). In all case the scaling is well
described by a power-law. For each simulation the growth rate and the saturation level are extracted by
�tting (9.1).
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Figure 9.11: The evolution of the width of the longitudinal momentum distribution Std
(
p∥
)
is shown for runs

with varying Lorentz boost γ and density contrast α = 10−3. The standard deviation is calculated at regular
intervals of 5ω−1

p . However at late times, after 2tfinal (�tted value), data points are not shown since the �t to the
model does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown. The
�t parameters are listed in table 9.2 and the scaling of growth rate and saturation level is shown in �gure 9.13.

Figure 9.12: The evolution of the width of the longitudinal momentum distribution Std
(
p∥
)
is shown for runs

with varying density contrast α and Lorentz boost γ = 5. The standard deviation is calculated at regular intervals
of 5ω−1

p . However at late times, after 2tfinal (�tted value), data points are not shown since the �t to the model
does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown. The �t
parameters are listed in table 9.2 and the scaling of growth rate and saturation level is shown in �gure 9.13.
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Table 9.2: The �t parameters (δ, D0, D1, tfinal and κ) of (3.43) for Std(p∥) from simulation runs with
various values for α and γ. The derived quantity Λ is the value of Std(p⊥) at time tfinal.

γ α δ [ωp] D0 [MeV2ωp] D1 [MeV2ωp] tfinal [ω
−1
p ] κ Λ [MeV]

5 0.001 3.22 · 10−2 6.62 · 10−11 1.99 · 10−12 287 2.55 4.90 · 10−2

10 0.001 2.54 · 10−2 9.02 · 10−11 4.39 · 10−12 354 3.08 7.23 · 10−2

20 0.001 2.02 · 10−2 1.32 · 10−10 8.31 · 10−12 446 3.57 0.117
50 0.001 1.48 · 10−2 2.89 · 10−10 2.09 · 10−11 602 4.11 0.213
100 0.001 1.18 · 10−2 4.44 · 10−10 3.95 · 10−11 752 3.27 0.290
150 0.001 1.05 · 10−2 9.41 · 10−10 4.88 · 10−11 854 3.12 0.352

5 0.05 0.118 5.70 · 10−9 3.88 · 10−10 70.9 3.23 0.163
5 0.01 6.91 · 10−2 8.89 · 10−10 4.11 · 10−11 130 2.33 0.109
5 0.005 5.47 · 10−2 3.52 · 10−10 1.72 · 10−11 166 2.32 8.90 · 10−2

5 0.001 3.23 · 10−2 5.60 · 10−11 2.74 · 10−12 283 2.55 5.10 · 10−2

5 0.0005 2.56 · 10−2 2.93 · 10−11 1.12 · 10−12 353 2.85 3.61 · 10−2

5 0.0001 1.51 · 10−2 4.76 · 10−12 1.89 · 10−13 613 2.81 2.37 · 10−2

5 0.00005 1.19 · 10−2 2.94 · 10−12 8.94 · 10−14 770 2.60 1.61 · 10−2

5 0.00001 6.93 · 10−3 2.39 · 10−13 1.70 · 10−14 1.24 · 103 8.41 7.34 · 10−3
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Figure 9.13: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the width of
the parallel momentum Std(p∥) with γ (top) and α (bottom). In all case the scaling is well described
by a power-law. For each simulation the growth rate and the saturation level are extracted by �tting
(3.43).
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Figure 9.14: The evolution of the width of the transversal momentum distribution Std(p⊥) is shown for runs
with varying Lorentz boost γ and density contrast α = 10−3. The standard deviation is calculated at regular
intervals of 5ω−1

p . However at late times, after 2tfinal (�tted value), data points are not shown since the �t to the
model does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown. The
�t parameters are listed in table 9.3 and the scaling of growth rate and saturation level is shown in �gure 9.16.

Figure 9.15: The evolution of the width of the transversal momentum distribution Std(p⊥) is shown for runs
with varying density contrast α and Lorentz boost γ = 5. The standard deviation is calculated at regular intervals
of 5ω−1

p . However at late times, after 2tfinal (�tted value), data points are not shown since the �t to the model
does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the data is shown. The �t
parameters are listed in table 9.3 and the scaling of growth rate and saturation level is shown in �gure 9.16.
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Table 9.3: The �t parameters (δ, D0, D1, tfinal and κ) of (3.43) for Std(p⊥) from simulation runs with
various values for α and γ. The derived quantity Λ is the value of Std(p⊥) at time tfinal.

γ α δ [ωp] D0 [MeV2ωp] D1 [MeV2ωp] tfinal [ω
−1
p ] κ Λ [MeV]

5 0.001 3.25 · 10−2 9.97 · 10−11 1.06 · 10−11 231 1.62 · 10−2 3.19 · 10−2

10 0.001 2.59 · 10−2 2.20 · 10−10 2.06 · 10−11 294 5.04 · 10−2 5.28 · 10−2

20 0.001 2.09 · 10−2 4.77 · 10−10 3.72 · 10−11 365 8.74 · 10−2 7.72 · 10−2

50 0.001 1.55 · 10−2 1.37 · 10−9 8.27 · 10−11 498 0.122 0.138
100 0.001 1.24 · 10−2 3.14 · 10−9 1.66 · 10−10 624 0.175 0.213
150 0.001 1.09 · 10−2 4.91 · 10−9 2.16 · 10−10 712 0.136 0.277

5 0.05 0.122 1.03 · 10−8 1.76 · 10−9 55.6 6.46 · 1040 0.108
5 0.01 7.13 · 10−2 1.85 · 10−9 1.79 · 10−10 101 144 6.42 · 10−2

5 0.005 5.62 · 10−2 8.16 · 10−10 7.67 · 10−11 130 32.7 5.21 · 10−2

5 0.001 3.27 · 10−2 1.16 · 10−10 1.26 · 10−11 228 82.7 3.29 · 10−2

5 0.0005 2.57 · 10−2 4.70 · 10−11 6.17 · 10−12 292 29.0 2.60 · 10−2

5 0.0001 1.50 · 10−2 6.37 · 10−12 1.11 · 10−12 505 28.1 1.58 · 10−2

5 0.00005 1.18 · 10−2 3.12 · 10−12 5.84 · 10−13 640 29.5 1.24 · 10−2

5 0.00001 6.89 · 10−3 6.84 · 10−13 1.10 · 10−13 1.09 · 103 28.1 6.95 · 10−3
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Figure 9.16: The scaling of the growth rate δ (left) and the saturation value Λ (right) of the width
of the transversal momentum Std(p⊥) with γ (top) and α (bottom). In all case the scaling is well
described by a power-law. For each simulation the growth rate and the saturation level are extracted by
�tting (3.43).

9.2 Finite Extent

The main di�erence between the neutral pair beam and a pure electron beam is that in the
case of the non-neutral beam it carries non-zero charge and current densities. For an in�nitely
extended, homogeneous beam the produced �elds cancel. This is not the case for a beam that
has a �nite length or width. The general e�ect of a �nite extent have already been discussed in
section 7.1, where we found that only a subset of the beam will participate in the full instability
evolution leading to an overall reduced growth rate. Moreover in the case of a �nite width,
the increase of the transversal momentum spread due to the instability mechanism produces a
strongly diverging beam that could make the further transport of the beam a challenge.
The e�ect of the electric and magnetic �elds are in a sense opposing. The electric �eld produces a
force that pushes particles away from the center of the beam (both in longitudinal and transversal
direction), whereas the toroidal magnetic �eld produces a force that pushes particles towards the
center in transversal direction (essential working as a focusing �eld).
We study the in�uence of the �nite extent on a charged beam by considering separately a beam
with a �xed �nite length and a beam with a �xed �nite width and scaling the charge ratio χ
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from 0 (for a pure electron beam) to 1 (for a neutral beam) and noting the in�uence on beam
evolution. The values for the length and width of the beam are chosen to be su�ciently large
that the overall growth rate of the instability is roughly the same as in the in�nitely extended
scenario (compare section 7.1).

9.2.1 Finite Length

For the parameters of the simulation setup (γ = 5, α = 10−3) a bunch length of 50 c
ωp

is
su�ciently long to achieve the regime where the overall instability growth rate approximates the
growth rate of an in�nitely long beam. We only qualitatively investigate how the evolution of
the momentum distribution is a�ected by changing the charge ratio χ from a neutral to a single
charge beam.
Figure 9.17 shows that for the evolution of ∆Mean

(
p∥
)
increasing the beam charge leads to the

early time oscillation we have already discussed. However the late time evolution is entirely
una�ected and both the neutral and charged beams saturate at the same level. For the evolution
of the longitudinal width Std

(
p∥
)
(�gure 9.18) we now observe an early time oscillation that

increases with larger beam charge as a new e�ect that only occurs when the beam has �nite
length. Nevertheless the late time evolution remains una�ected. Lastly the evolution of the
transversal momentum spread Std

(
p∥
)
, shown in �gure 9.19, remains completely una�ected by

the beam charge even for a �nite length beam.

Figure 9.17: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown

for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−3. The standard
deviation is calculated at regular intervals of 5ω−1

p .
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Figure 9.18: The evolution of the width of the longitudinal momentum distribution Std
(
p∥
)
is shown

for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−3. The standard
deviation is calculated at regular intervals of 5ω−1

p .

Figure 9.19: The evolution of the width of the transversal momentum distribution Std(p⊥) is shown
for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−3. The standard
deviation is calculated at regular intervals of 5ω−1

p .
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9.2.2 Finite Width

A bunch width of 2 c
ωp

is su�cient to achieve an overall instability growth rate that is approx-
imately the same as for an in�nitely wide beam. The presence of a current in the beam leads
to a toroidal magnetic �eld, in the 2D PIC simulation that takes the form of a Bz component
orthogonal to the plane of simulation (�gure 9.20). The Bz component takes opposing signs on
the left and right from the transversal center of the beam. On both sides the beam exerts a force
towards the center on the beam particles. According to Biot-Savart's law the magnetic �eld is
proportional to the current of the beam and thus proportional to α (1− χ). Figure 9.21 and 9.22
show the evolution of the transversal beam width. Here we can clearly observe that before the
increase of the transversal momentum leads to growth of the beam width, the beam is focused
due to the toroidal �eld. For larger α and smaller χ the focusing is stronger. As a consequence
of the focusing, the density of the beam is e�ectively increased, leading to a larger value for the
density ratio α. As we have widely discussed the value of α a�ects the growth rate and the
saturation level of the instability. We will see that the focusing leads to a slight modi�cation
of the late time evolution of the momentum distribution. Already in the evolution of the beam
width we can see that despite the focusing at late times the pure electron beam overtakes the
other beams which experienced less focusing.
For the shift of the mean longitudinal momentum ∆Mean

(
p∥
)
(�gure 9.23) we can observe this

slight enhancement at late times on top of the early time oscillation. Similarly for the width of
the longitudinal momentum Std

(
p∥
)
(�gure 9.24) we also observe an enhancement of the widen-

ing from the time of saturation onwards. Additionally we see a very slight oscillation at very
early times that has not been present for the in�nitely wide beams.
For the transversal momentum spread Std(p⊥) we �nd a severely altered evolution (�gures 9.25
and 9.25), where the focusing due to the toroidal magnetic �eld leads to a strong early growth
that is more pronounced for a stronger magnetic �eld (either due to smaller χ or larger α).
Nevertheless at late times the e�ect of the instability dominates and the di�erence between a
neutral pair beam and a pure electron beam resolves only to a slightly increases saturation level
for the later. Comparing �gures 9.25 (α = 10−3) and 9.26 (α = 10−4) we �nd that reducing
the density contrast α (and thus the current of the beam) also reduces the in�uence of focusing
e�ect.

Figure 9.20: The toroidal Magnetic Field Bz (orthogonal to the plane of simulation) at time 100ω−1
p

as a function of the beam charge ratio χ for beam density ratios α = 10−3 (left) and α = 10−4 (right).
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Figure 9.21: The evolution of the transversal beam width L⊥ as a function of time for varying beam
charge χ, Lorentz boost γ = 5 and density ratio α = 10−3.

Figure 9.22: The evolution of the transversal beam width L⊥ as a function of time for varying beam
charge χ, Lorentz boost γ = 5 and density ratio α = 10−4.
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Figure 9.23: The evolution of the mean value shift of the longitudinal momentum ∆Mean
(
p∥
)
is shown

for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−3. The standard
deviation is calculated at regular intervals of 5ω−1

p .

Figure 9.24: The evolution of the width of the longitudinal momentum distribution Std
(
p∥
)
is shown

for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−3. The standard
deviation is calculated at regular intervals of 5ω−1

p .
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Figure 9.25: The evolution of the width of the transversal momentum distribution Std(p⊥) is shown
for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−3. The standard
deviation is calculated at regular intervals of 5ω−1

p .

Figure 9.26: The evolution of the width of the transversal momentum distribution Std(p⊥) is shown
for runs with varying charge ratio χ, Lorentz boost γ = 5 and density contrast α = 10−4. The standard
deviation is calculated at regular intervals of 5ω−1

p .
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10 | Summary & Outlook

At the end of this thesis we will give a short summary of the results and make some suggestions
on how to continue with these results in future investigations.

10.1 Summary

We started this thesis by investigating the unstable behavior of cold, neutral, in�nitely extended
pair beams propagating through a cold background plasma with 2D PIC simulations and found
that the growth of electric �elds is described by the oblique instability. The buildup of electric
�elds in turn leads to a two-fold back-reaction on the particles that make up the beam: The
beam particles collectively lose energy and momentum that is transfered to the �elds and the
background plasma and by interacting with the electric �elds the momentum of the beam particles
can essentially di�use, leading to a heating of the beam. A hotter beam is also more strongly
diverging and in the case of the cascade contribution to the gamma ray spectrum could lead to
similar phenomenology as IGMF: a halo of extended emission around the source and delayed
arrival of the low energy component in the case of emission that is variable in time. We showed
that the heating of the beam can be modeled by a Fokker-Planck equation with a di�usion
coe�cient that is proportional to the energy density of the electric �eld's dominating modes.
The growth rates and di�usion constants can be extrapolated to astrophysical scales based on
their scaling behavior at laboratory scales that neatly conforms to power laws. Furthermore we
found that for a dilute beam the energy that is drained from the beam in equal parts builds up
the electric �elds and heats the background plasma isotropically.
Beyond the idealized conditions we investigated the in�uence of many corrections, namely a
�nite beam size, a warmer beam, a non-neutral beam, an external magnetic �eld and a warm or
non-homogeneous background plasma and derived limits when these corrections become relevant.
These corrections can have profound in�uence on the design of a laboratory experiment as well
as the astrophysical phenomenology. For example we derived a relationship for the length of
a beam and the integrated growth rate that sets a requirement for the length of a laboratory
beam to produce detectable results. The same relationship also sets the time scale for which a
blazar has to emit primary gamma rays for the instability to produce a signi�cant e�ect on the
secondary gamma ray contribution.
For a laboratory experiment that aims to investigate the unstable behavior of neutral pair beams,
and hopefully corroborate the results of our PIC simulations, we identi�ed two key challenges:
The creation and handling of a neutral pair beam and the measurement of the instability. A
pair beam consisting of electrons and positrons can be created from a pure electron beam by
hitting a high density target where electrons and positrons are produced in a cascade process.
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The resulting beam will be unfocused, with a broad energy range and not neutral at �rst.
The further handling would require non-conventional beam optics, because they need focus both
charges simultaneously. This could for example be achieved by two triplets of quadrupole magnets
right after each other or a single solenoid with a very high �eld strength. For the measurement
of the instability we identi�ed the change of the momentum distribution as an easily accessible
observable. It would be enough to measure the width of the momentum distribution along
one dimension after saturation to characterize the evolution of the system. Using the scaling
relationships derived one could unambiguously identify the instability process as mechanism that
drives this e�ect.
However an exciting alternative to using a complicated neutral pair beam setup would be to use
a charged electron beam to drive the instability. We have shown that the unstable behavior of
such a beam is the same as the neutral beam up to some minor additional e�ects that do not
spoil the evolution of the momentum distribution as an observable.

10.2 Outlook

Using the results from this thesis it should be possible to perform a relatively simple laboratory
experiment that probes the e�ect of the oblique plasma instability on an electron beam. The
results can be trivially transfered to the behavior of a neutral pair beam. This allows to con�rm
or falsify our Fokker-Planck model for the evolution of the momentum distribution. Furthermore
it allows to closely investigate the saturation regime of the instability where the continuously self-
replenishing beam in the astrophysical scenario di�ers from the scenario studied in the laboratory.
The Fokker-Planck model enables us to describe the e�ect of the collective behavior in the form
of plasma instabilities on a single particle with just the drift and di�usion coe�cient extracted
from the PIC simulation. Scaling these coe�cients to astrophysical parameters allows us to
include the e�ects of plasma instabilities in state of the art cosmic ray propagation codes and
study the phenomenology quantitatively.
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A | Numerical Convergence

The Particle-in-Cell method discretizes the Vlasov equation (3.10) by discretizing the �elds on
a grid and sampling the distribution function of the particles with numerical particles. In the
limit of in�nitely small grid spacing and in�nitely many macroparticles the PIC method solves
the Vlasov equation exactly. For any realistic simulation using �nite grid resolution and �nite
number of macroparticles great care has to be taken that the simulation converges, that means
that di�erence between the simulation result and the exact solution is small. Since the exact
solution is only known in a small number of simple cases we can not compare with the exact
solution directly. We estimate the di�erence between a simulation of a given resolution and the
exact solution by comparing the simulation result with a simulation of higher resolution. We
increase the resolution until a regime is reached where the observables remain constant within a
range of error that we deem acceptable.
Here we explicitly study the convergence behavior for the beam instability of a neutral pair beam
with a given density ratio α and Lorentz booost γ with respect to the number of macroparticles
used to resolve the particle distribution functions, the resolution of instable �eld modes and the
resolution of the plasma wavelength. Furthermore we also study the conservation of energy in
the PIC simulation.

A.1 Number of Macroparticles

The number of macroparticles used to sample the particle distribution function directly in�u-
ences the amount of noise in the PIC simulation. Scanning the number of macroparticles per
simulation cell Np/Ncell from 1 to 50 shows that the qualitative behavior remains the same but
all observables are less a�ected by noise in the simulations with a higher number of macropar-
ticles. Quantitatively the growth rate of the instability is slightly reduced for a low number of
macroparticles. For more than 10 macroparticles per cell the growth rate however stabilizes. We
have to note that some observables like the di�usion parameters D0 and D1, which are not phys-
ical observables, are strongly a�ected by the number of macroparticles and still scale according
to a power-law even in a regime that has converged. The physical behavior is not a�ected by
this scaling.
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APPENDIX A. NUMERICAL CONVERGENCE

Figure A.1: The energy density of the combined electric and magnetic �elds across all modes and
all directional components normalized to the initial energy density of the pair beam as a function of
time (bottom axis) and propagation distance (top axis). Each simulation run has a density contrast
of α = 10−3, Lorentz boost γ = 5 and varying number of macroparticles per grid cell Np/Ncell. For
each simulation run the start and end point of the linear growth phase, as determined by �t to (5.5), is
indicated by cross and the linear growth rate is indicated by a dashed line.

Figure A.2: The growth rate of the total �eld energy density as a function of the number of macropar-
ticles per grid cell Np/Ncell extracted from �gure A.1. For more than 10 particle per grid cell the growth
rate stabilizes.
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Figure A.3: Maps of the growth rate as a function of wavevector for each mode for two simulation runs
with a di�erent number of macroparticles. On the left the number of macroparticles per grid cell is small
leading to a large amount noise. On the right the number of macroparticles is 50 times larger leading to
a less noisy growth rate map.

Figure A.4: The evolution of the width of the longitudinal momentum Std
(
p∥
)
is shown for runs with

varying number of macroparticles per grid cell Np/Ncell. The standard deviation is calculated at regular
intervals of 5ω−1

p , however for late times, after 2tfinal (�tted value), data points are not shown since the
�t to the model does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the
data is shown.
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Figure A.5: The �tted values for the di�usion parameters D0 (left), D1 (middle) and the saturation
time tfinal (right) for the evolution of Std

(
p∥
)
extracted from �gure A.4 as a function of the number of

macroparticles Np/Ncell. The di�usion parameters scale almost linearly with the number of macroparti-
cles, whereas the saturation time only depends mildly on the number of cells.

Figure A.6: The longitudinal beam momentum distribution for simulation runs with Np/Ncell = 1
(left) and Np/Ncell = 50 (right) at a number of time steps near the end of instability growth. In the
simulation run with less macroparticles the momentum distribution shows stronger �uctuations.
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Figure A.7: The evolution of the width of the transversal momentum Std (p⊥) is shown for runs with
varying number of macroparticles per grid cell Np/Ncell. The standard deviation is calculated at regular
intervals of 5ω−1

p , however for late times, after 2tfinal (�tted value), data points are not shown since the
�t to the model does not describe the evolution very well anymore. In dashed lines a �t of (3.43) to the
data is shown.

Figure A.8: The �tted values for the di�usion parameters D0 (left), D1 (middle) and the saturation
time tfinal (right) for the evolution of Std(p⊥) extracted from �gure A.7 as a function of the number of
macroparticles Np/Ncell. The di�usion parameters scale almost linearly with the number of macroparti-
cles, whereas the saturation time only depends mildly on the number of cells.
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Figure A.9: The transversal beam momentum distribution for simulation runs with Np/Ncell = 1 (left)
and Np/Ncell = 50 (right) at a number of time steps near the end of instability growth. In the simulation
run with less macroparticles the momentum distribution shows stronger �uctuations.

A.2 Resolution of Modes

The maximum wavelength that can be resolved by a simulation domain with periodic boundary
conditions and length L is twice the domain length 2L. The second largest wavelength that can
be resolved under these circumstances is L. Only a discrete number of wavevector that depend
on the length of the simulation box can be resolved. The di�erence between neighboring modes
for each dimension is ∆ki.

∆ki =
π

Li
(A.1)

The resolution ∆k is too small it can happen that the fastest growing modes are not resolved
and the integrated growth rate is much smaller than the true physical growth rate. In principle
the resolution has to be checked for each dimension separately, however we know for that oblique
instability that the resonance is much narrow in k∥ than k⊥. For this reason we will scan both
direction simultaneously under the condition that ∆k∥ = 0.1∆k⊥. We note that the width of the
resonance depends on the chosen parameters of α and γ and thus for simulations with higher γ
or lower α a higher resolution has to be chosen.
We �nd that if the resolution is too coarse the instability can be outright suppressed. For the
chosen parameters of α = 10−3 and γ = 50 only for ∆k∥ = 0.1∆k⊥ < 0.1

ωp

c does the integrated
growth rate stabilize.
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Figure A.10: The energy density of the combined electric and magnetic �elds across all modes and
all directional components normalized to the initial energy density of the pair beam as a function of
time (bottom axis) and propagation distance (top axis). Each simulation run has a density contrast of
α = 10−3, Lorentz boost γ = 50 and varying resolution of �eld modes ∆k. For each simulation run the
start and end point of the linear growth phase, as determined by �t to (5.5), is indicated by cross and
the linear growth rate is indicated by a dashed line.

Figure A.11: The growth rate of the total �eld energy density as a function of resolution of �eld modes
∆k extracted from �gure A.10. For a resolution of ∆k∥ < 0.1

ωp

c the growth rate stabilizes.
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Figure A.12: Maps of the growth rate as a function of wavevector for each mode for two simulation
runs with a di�erent resolution of the �eld modes ∆k. On the left the resolution is much more coarse
than on the right.

A.3 Resolution of Plasmawavelength

The plasma wavelength is the fundamental length scale of the plasma system we want to investi-
gate. It is possible to achieve a high resolution ∆k as well as a maximum resolved mode max(k)
that is larger than the plasma wave length while still only resolving the plasma wavelength in
real space with only a few grid cells. More precisely max(k) >

ωp

c if there are more than π−1 grid
cells per plasma wavelength. This would of course be in violation of the requirement that the
fundamental length scales have to be well resolved. We scan the number of grid cells per plasma
wavelength Ncell/Lλ

−1
p and �nd that insu�cient resolution does not only reduce the integrated

growth rate but also shift the resonant modes to unphysical values k∥ <
ωp

c . Only when the
plasma wavelength is resolved with at least 8 cells do we observe convergence. This is equivalent
to a maximum wavevector max = 8π

ωp

c , which is more than one order of magnitude larger than
the resonant modes.
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Figure A.13: The energy density of the combined electric and magnetic �elds across all modes and
all directional components normalized to the initial energy density of the pair beam as a function of
time (bottom axis) and propagation distance (top axis). Each simulation run has a density contrast
of α = 10−3, Lorentz boost γ = 5 and varying resolution of the plasma wavelength Ncell/Lλ

−1
p . For

each simulation run the start and end point of the linear growth phase, as determined by �t to (5.5), is
indicated by cross and the linear growth rate is indicated by a dashed line.

Figure A.14: The growth rate of the total �eld energy density as a function of the grid cells per plasma
wavelength Ncell/Lλ

−1
p extracted from �gure A.13. For 8 or more grid cells per plasma wavelength the

growth rate stabilizes.
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Figure A.15: Maps of the growth rate as a function of wavevector for each mode for three simulation
runs that resolve the plasma wavelength if a di�erent number of grid cells. On the left the plasma
wavelength is only resolved with a single grid cell. As a result the fastest growing modes are shifted to
smaller k∥ and curve leftwards with increasing k⊥. In the middle the plasma wavelength is resolved with
3 grid cells which reduces the shift and tilt. Only on the right, where 8 grid cells resolve each plasma
wavelength, does the tilt become negligible and the fastest growing modes are found at k∥ ∼ ωp

c .

A.4 Energy Conservation

The PIC scheme implemented in EPOCH does not strictly conserve energy. Thus it is possible
that the energy of the system unphysically changes during a simulation run, an e�ect that is
often called "numerical heating" when the total energy of the system increases. Here we want to
check that the numerical heating e�ect is not out of control. We �nd that even under the worst
circumstances the relative change of the internal energy of the system remains con�ned to the
one percent level. We also �nd that the numerical heating at the beginning of the simulation
run, before and during instability growth, can be reduced by increasing the number of particles
per grid cell and that numerical heating can be reduced after instability saturation by resolving
the plasma wavelength with more grid cells.
The conservation of energy can be improved by increasing the number of macroparticles or
increasing the number of grid cells.

Figure A.16: On the left we show the evolution of the total energy of the system (normalized to the
initial energy) for simulation runs with varying Lorentz boost γ. On the right we show the maximum
deviation as a function of γ. The relative deviation decreases almost linearly with γ
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Figure A.17: On the left we show the evolution of the total energy of the system (normalized to the
initial energy) for simulation runs with varying density ratio α. On the right we show the maximum
deviation as a function of α. The numerical heating increases with smaller α.

Figure A.18: On the left we show the evolution of the total energy of the system (normalized to the
initial energy) for simulation runs with varying number of macroparticles Np/Ncell. In the center we
show the relative change of energy at time tωp = 75, which is during the initial noise regime. In this
regime the numerical heating scales linearly with the number of macroparticles. On the right we show
the relative change of energy at time tωp = 300, which is after the saturation takes place. In this regime
the numerical heating is only mildly a�ected by the number of macroparticles.
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Figure A.19: On the left we show the evolution of the total energy of the system (normalized to the
initial energy) for simulation runs with varying grid cells per plasma wavelength Ncell/Lλ

−1
p . In the

center we show the relative change of energy at time tωp = 75, which is during the initial noise regime.
In this regime the numerical heating is only mildly a�ected by the number of grid cells. On the right we
show the relative change of energy at time tωp = 300, which is after the saturation takes place. In this
regime the numerical heating is very strongly a�ected by the number of grid cells.
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B | Cold Beam in 3D

To save computational time we reduced the physical 3D problem of the beam instability to a
system that resolve two spatial dimensions, one parallel to the beam direction and one transverse,
and three momentum dimensions. This system should in principle capture most of the relevant
physics, however some unphysical phenomena can be observed. For example the momentum
distribution in the direction that is not resolved in space does not evolve. However for symmetry
reasons the momentum distribution of both transversal dimensions should behave the same. For
this reason we perform 3D simulation with reduced grid resolution and compare them with the
2D results to make sure that the insights we gained from the 2D system translate to the full
3D system. The settings of the 3D simulations can be found in table B.1. We note that the
reduced grid resolution and the reduced number of particles per grid cell does not reduce the
total number of macroparticles leading to similar computational e�ort for the simulation (per
simulation time) as in the 2D higher resolution setup. This however also means that observables
that can be averaged over the entire simulation domain su�er from far less noise than a 2D
simulation with similar parameters.
We performed a scan of the instability growth for α and γ respectively and found that the
scaling of the cold oblique instability can also be observed in 3D. Furthermore the evolution of
the momentum distribution in all three dimensions is qualitatively the same as observed in the
2D PIC simulation for the two dimensions that are spatial resolved.
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Figure B.1: The energy density of the combined electric and magnetic �elds across all modes and
all directional components normalized to the initial energy density of the pair beam as a function of
time (bottom axis) and propagation distance (top axis). Each simulation run has a density contrast of
α = 10−3 and varying Lorentz boost γ. For each simulation run the start and end point of the linear
growth phase, as determined by �t to (5.5), is indicated by cross and the linear growth rate is indicated
by a dashed line.
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Figure B.2: The energy density of the combined electric and magnetic �elds across all modes and all
directional components normalized to the initial energy density of the pair beam as a function of time
(bottom axis) and propagation distance (top axis). Each simulation run has a Lorentz boost of γ = 5
and varying density contrast α. For each simulation run the start and end point of the linear growth
phase, as determined by �t to (5.5), is indicated by cross and the linear growth rate is indicated by a
dashed line.

Figure B.3: The growth rate of the total �eld energy density as a function of γ (left, extracted from
�gure B.1) and α (right, extracted from �gure B.2).
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Figure B.4: Map of the growth rate as a function of wavevector for each mode for two simulation runs.
On the left the Lorentz boost γ = 2 is lower than on the right where γ = 25. In both cases the density
contrast α = 10−3 is the same. For a higher Lorentz boost the maximum growth rate is lower and also
the width of the resonance is much smaller.

Figure B.5: Map of the growth rate as a function of wavevector for each mode for two simulation runs.
On the left the density contrast α = 10−1 is lower than on the right where α = 10−3. In both cases the
Lorentz boost γ = 5 is the same. For a lower density contrast the maximum growth rate is lower and
also the width of the resonance is much smaller.
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Figure B.6: The beam momentum distribution for a simulation run with γ = 2 and α = 10−3 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The middle and the right plots show the two transversal momentum distributions

Figure B.7: The beam momentum distribution for a simulation run with γ = 25 and α = 10−3 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The middle and the right plots show the two transversal momentum distributions

Figure B.8: The beam momentum distribution for a simulation run with α = 0.1 and γ = 5 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The middle and the right plots show the two transversal momentum distributions
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Figure B.9: The beam momentum distribution for a simulation run with α = 10−3 and γ = 5 at a
number of time steps near the end of instability growth. The left plot shows the longitudinal momentum
distribution. The middle and the right plots show the two transversal momentum distributions

Figure B.10: The growth rate determined by a �t to the evolution of ∆Mean
(
p∥
)
(far left), Std

(
p∥
)

(center left), Std(py) (center right) and Std(pz) (far right) as a function of the Lorentz boost γ.

Figure B.11: The growth rate determined by a �t to the evolution of ∆Mean
(
p∥
)
(far left), Std

(
p∥
)

(center left), Std(py) (center right) and Std(pz) (far right) as a function of the density ratio α.
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Table B.1: Overview of the 3D PIC Simulation settings for the simulation runs.

Settings of the PIC Simulation

Number of Dimensions 3 (x beam direction, y & z transverse)

Boundary conditions in x periodic
Boundary conditions in y periodic
Boundary conditions in z periodic
Box Length Lx 125 c

ωp

Box Width Ly 12.5 c
ωp

Box Width Lz 12.5 c
ωp

Number of Cells Nx 1000
Number of Cells Ny 100
Number of Cells Nz 100
Number of particles per cell Np (per species) 1
Timestep ∆t 0.95 CFL-Criteriona ≈ 0.088ω−1

p

Maxwell Solver Yee
Field Order 6
Particle Pusher Higuera & Cray
Particle Shape Function Third Order B-Spline
Current Smoothing 5-fold (1-2-3-4 steps)

Background particles Electrons & immobile Protons
Initial Background temperature T (γ − 1)α· 200 eV
Beam particles Electrons & Positrons

Distribution Function f(p;µ, σx, σy) ∝ exp
(
− (px−µ)2

2σ2
x

+
p2y+p2z
2σ2

y

)
µ [MeV] 0.511

√
γ2 − 1

σx [keV] (alias ∆px) 0.5
σy [keV] (alias ∆py) 0.5

α 0.001 for γ scan
γ 5 for α scan
Total time T 700ω−1

p for γ scan & 500ω−1
p for α scan

aThe CFL criterion depends on the grid spacing and the �eld order. For sixth order �eld interpolation it is
120
149

1√
∆x−2+∆y−2+∆z−2

c−1
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Here we give a commented example input deck for the full simulation of a pair beam in 2D as
shown in chapter 5 for the parameters γ = 5 and α = 10−3. All other simulation results in that
chapter can be reproduced by adjusting the values of alpha and gamma in the constant block of
the input deck.

1 begin : constant
2
3 # Def ine Constants
4 # Constants can be wr i t t en to a f i l e f o r easy acce s l a t e r
5
6 nce l l_x = 4000
7 nce l l_y = 400
8 dens = 1e16 *1 e6
9 alpha = 0.001
10 omega_p = sq r t ( dens*qe^2/(me* ep s i l on0 ) )
11 Length_x = 500* c/omega_p
12 Length_y = 50* c/omega_p
13 pp e r c e l l = 25
14 gamma_peak = 5.00
15
16 p_ref = sq r t (gamma_peak^2 = 1) *me*c
17 sigma_par = 0 .0005/0 .511
18 sigma_trans = 0 .0005/0 .511
19 sigma_max_load = 0.0025/0 .511*me*c
20 sigma_max_plot_1d = (10+gamma_peak/5) *me*c
21
22 p0 = p_ref
23 p1 = sigma_par*me*c
24 p2 = sigma_trans*me*c
25 end : constant
26
27 begin : c on t r o l
28
29 # Number o f Grid Ce l l s
30 nx = ncel l_x
31 ny = ncel l_y
32
33 # Fina l time o f s imu la t i on
34 t_end = 5000/omega_p
35
36 # S i z e o f domain
37 x_min = 0
38 x_max = Length_x

201



APPENDIX C. EPOCH INPUT DECK EXAMPLE

39 y_min = 0
40 y_max = Length_y
41
42 # custom parameters
43 dt_mul t ip l i e r = 0 .95 # mu l t i p l i e r f o r t imestep r e l a t i v e to courant cond i t i on (

d e f au l t )
44 dlb_threshold = 0 .1
45 f i e l d_orde r = 6 # Fi l ed Order In t e rpo l a t i on , can be 2 , 4 , 6 f o r Yee Grid
46 stdout_frequency = 2000
47 use_random_seed = T # determine random seed from system c lock
48 smooth_currents = T # Apply Current Smoothing
49 smooth_iterat ions = 5 # Number o f Current Smoothing Steps
50 use_accurate_n_zeros = F # more expens ive way to c a l c u l a t e output f i l e names
51 pr int_constants = T # Write constant block to f i l e
52 end : c on t r o l
53
54
55 begin : boundar ies
56
57 # Def ine Boundary cond i t i on s f o r each s imu la t i on
58 # box boundary s epa r a t e l y
59
60 bc_x_min = pe r i o d i c
61 bc_x_max = pe r i o d i c
62 bc_y_min = pe r i o d i c
63 bc_y_max = pe r i o d i c
64 end : boundar ies
65
66 begin : s p e c i e s
67 # ElectronBeam
68 name = ElectronBeam
69 charge = =1
70 mass = 1 .0
71 number_density = alpha *dens
72 np a r t i c l e s = pp e r c e l l * nx * ny
73
74 # Di s t r i bu t i on func t i on o f Beam i s s h i f t e d Gaussian
75 # Has to be noramlized so that the maximum i s 1
76 dist_fn = exp(=(px = p0 ) ^2/(2*p1^2) = py^2/(2*p2^2) = pz^2/(2*p2^2) )
77 # The range o f each coord ina te that the momentum d i s t r i b u t i o n
78 # i s sampled with an acceptance r e j e c t i o n method
79 dist_fn_px_range = ( p_ref=sigma_max_load , p_ref+sigma_max_load )
80 dist_fn_py_range = (=sigma_max_load , sigma_max_load )
81 dist_fn_pz_range = (=sigma_max_load , sigma_max_load )
82 end : s p e c i e s
83
84
85 begin : s p e c i e s
86 # PositronBeam
87 name = PositronBeam
88 charge = 1
89 mass = 1 .0
90 number_density = alpha *dens
91 np a r t i c l e s = pp e r c e l l * nx * ny
92
93 dist_fn = exp(=(px = p0 ) ^2/(2*p1^2) = py^2/(2*p2^2) = pz^2/(2*p2^2) )
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94 dist_fn_px_range = ( p_ref=sigma_max_load , p_ref+sigma_max_load )
95 dist_fn_py_range = (=sigma_max_load , sigma_max_load )
96 dist_fn_pz_range = (=sigma_max_load , sigma_max_load )
97 end : s p e c i e s
98
99 begin : s p e c i e s
100 # Background Elec t rons
101 name : ElectronBG
102 charge = =1
103 mass = 1 .0
104 temperature_ev = 0 .2* ( gamma_peak=1)
105 number_density = dens
106 np a r t i c l e s = pp e r c e l l * nx * ny
107 end : s p e c i e s
108
109 begin : s p e c i e s
110 # Background Ions
111 name : IonBG
112 charge = 1
113 mass = 1836.0
114 temperature_ev = 0 . 2* ( gamma_peak=1)
115 number_density = dens
116 np a r t i c l e s = pp e r c e l l * nx * ny
117
118 # Protons are s e t to immobile due to t h e i r much l a r g e r mass
119 # Pa r t i c l e Push i s not app l i ed to immobile p a r t i c l e s
120 immobile = T
121 end : s p e c i e s
122
123 begin : d i s t_fn
124
125 # Def ine how momentum d i s t r i b u t i o n histogram o f beam e l e c t r o n s
126 # should be wr i t t en to output f i l e s
127
128 name = px_beam
129 ndims = 1
130
131 d i r e c t i o n 1 = dir_px
132 range1 = (0 , 0) # This automat i ca l l y ad ju s t e s the range as the d i s t r i b u t i o n

widens
133
134 r e s o l u t i o n 1 = nint (3* sigma_max_plot_1d/(me*c ) *50)
135
136 r e s t r i c t_px = ( p_ref=2*sigma_max_plot_1d , p_ref+sigma_max_plot_1d ) # d i s ca rd

i nd i v i dua l p a r t i c l e s with extrem momentum change f o r histogram
137
138 inc lude_spec i e s : ElectronBeam
139 end : d i s t_fn
140
141 begin : d i s t_fn
142 name = py_beam
143 ndims = 1
144
145 d i r e c t i o n 1 = dir_py
146 range1 = (0 , 0)
147
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148 r e s o l u t i o n 1 = 5000
149
150 inc lude_spec i e s : ElectronBeam
151 end : d i s t_fn
152
153 begin : d i s t_fn
154 name = px_bg
155 ndims = 1
156
157 d i r e c t i o n 1 = dir_px
158 range1 = (0 , 0)
159
160 r e s o l u t i o n 1 = 5000
161
162 r e s t r i c t_px = (=me*c , me*c )
163
164 inc lude_spec i e s : ElectronBG
165 end : d i s t_fn
166
167 begin : d i s t_fn
168 name = py_bg
169 ndims = 1
170
171 d i r e c t i o n 1 = dir_py
172 range1 = (0 , 0)
173
174 r e s o l u t i o n 1 = 5000
175
176 r e s t r i c t_px = (=me*c , me*c )
177
178 inc lude_spec i e s : ElectronBG
179 end : d i s t_fn
180
181 begin : output
182
183 # wr i t e the energy every plasma per iod
184
185 dt_snapshot = 1/omega_p
186 dump_last = T
187 name = o1
188
189 total_energy_sum = always + s i n g l e + sp e c i e s
190 d i s t r i bu t i on_ func t i on s = never
191 end : output
192
193 begin : output
194
195 # f i e l d s and d i s t r i b u t i o n func t i on s are wr i t t en every
196 # 5 plasma pe r i od s un t i l time = 500/omega_p
197
198 dt_snapshot = 5/omega_p
199 dump_last = F
200 name = o2
201
202 ex = always + s i n g l e
203 ey = always + s i n g l e
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204 bz = always + s i n g l e
205 d i s t r i bu t i on_ func t i on s = always + s i n g l e
206
207 time_stop = 500/omega_p
208 end : output
209
210 begin : output
211
212 # f i e l d s and d i s t r i b u t i o n s are wr i t t en every 50 plasma pe r i od s
213 # even a f t e r time = 500/omega_p
214
215 dt_snapshot = 50/omega_p
216 dump_last = T
217 name = o3
218
219 ex = always + s i n g l e
220 ey = always + s i n g l e
221 bz = always + s i n g l e
222 d i s t r i bu t i on_ func t i on s = always + s i n g l e
223
224 end : output
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Table D.1: Overview of key parameters and quantities that de�ne the behavior of the beam plasma
instability

Parameter Description

γ The mean Lorentz boost of the e+e− beam.

α = nb
nbg

The ratio of the beam plasma number density to the background
plasma number density. Should be smaller than 1. Also called
density contrast.

ϵ = nb(γ−1)me
3
2
nbgkbT

The ratio of the beam kinetic energy to the background plasma
kinetic energy.

δ The growth rate of the (exponentially growing) amplitude the of an
unstable mode. The energy density of a mode is proportional to the
square of the amplitude and thus the energy density grows with the
rate 2δ. The growth rate can also be derived for other quantities
that grow exponentially.

Λ The saturation value that a quantity reaches at end of a linear
growth phase.

σ∥/σ⊥ Initial spread of beam momentum distribution distribution paral-
lel/transversal to the beam direction.

L∥/L⊥ The extension of the beam longitudinal/transversal to the beam
direction. In an idealized scenario this extension is in�nite due to
periodic boundary conditions of the simulation setup.

χ =
ne+

ne−
The ratio of positrons to electrons in the beam. In a neutral beam
χ = 1.
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j ∝ ne− − ne+ = 1−χ
1+χ The current induced by the e+e− beam. For a neutral beam (χ = 1)

this is current vanishes.

ṅ = 1
nbg

∂nbg

∂x Rate of change of the background plasma number density relative
to the background plasma density. In the case of short coherence
length this is a local quantity. In the case of long coherence length
this a global quantity that gives the slope of the background plasma
density experienced by the beam.
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