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Abstract

The nature of dark matter remains one of the most important questions in modern physics. Histor-

ically, the most investigated dark matter candidates have been thermal in origin. Such candidates

are championed by the paradigm of weakly interacting massive particles (WIMPs). However, with

the continued non-discovery of WIMPs by the many dedicated direct detection searches as well as

the non-observation of supersymmetry and other beyond-Standard-Model theories related to the

WIMP paradigm, we are motivated to look elsewhere and explore new scenarios.

An interesting possibility is that dark matter may not be of a thermal origin. Non-thermal pro-

duction mechanisms of dark matter suggest that dark matter may have a coupling to the Standard

Model many orders of magnitude smaller than the range suggested by WIMPs. This allows for the

possibility of dark matter being both very light and cosmologically stable. The canonical examples

of such light, non-thermally produced dark matter candidates are the axion-like-particles, which in

recent years have seen a resurgence of attention from theorists and experimentalists alike.

Axion-like-particles are pseudoscalar particles which are natural ultra-light dark matter candi-

dates because even minimal models have an inherent production mechanism known as the misalign-

ment mechanism. This mechanism relies on the observation that an oscillating scalar field behaves

as cold dark matter and that the most generic initial conditions inevitably lead to such oscillations.

However, the energy density predicted by the misalignment mechanism strongly depends on the

initial condition of the axion field. In much of the parameter space that is experimentally acces-

sible, the standard misalignment mechanism underproduces dark matter. The key motivation for

this thesis is to question the standard assumption on the initial conditions for the axion field.

This thesis is devoted to the investigation of novel production mechanisms of axion-like-particle

dark matter, which go beyond the standard paradigm by exploring initial conditions involving non-

zero kinetic energy of the axion-like-particle field. This family of scenarios goes under the common

name of kinetic misalignment. Our exploration of kinetic misalignment is divided into two stages: In

the first stage, part II of this thesis, we investigate the dynamics of such scenarios independently of

how the initial conditions are realized. In particular, we study the role of parametric resonance and

the phenomenon of axion fragmentation. We find that this form of parametric resonance is indeed

efficient in much of the relevant parameter space and that the produced relic, therefore, has a non-

trivial momentum spectrum which could lead to observational prospects in the form of dark matter

mini-clusters. In the second stage, part III of this thesis, we investigate how the assumed initial

conditions can be implemented in scenarios inspired by Affleck-Dine baryogenesis. This allows us to

present the full story of how and under which constraints the standard paradigm can be extended

to such scenarios of kinetic misalignment. We find that a KSVZ-like model with a nearly-quadratic

potential can support much of the interesting parameter space in the 10−6 eV ≲ ma ≲ 10 eV regime

if the spectrum of primordial fluctuations can be adequately suppressed. In this case, a period of

kination can lead to an associated signature in amplified primordial gravitational waves.

In summary, we show that axion-like-particle dark matter can be motivated in nearly all of the

[ma, fa] parameter space that is currently unconstrained by experiments. In the coming years, a

large number of searches will extend the experimental reach. These experiments have the prospect of

not only discovering a QCD axion or an axion-like-particle but also having that discovery constitute

all of the observed dark matter.
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Zusammenfassung

Die Natur der Dunklen Materie bleibt eine der wichtigsten Fragen der modernen Physik. Die his-

torisch am besten untersuchten Kandidaten für Dunkle Materie waren thermische Kandidaten, wie

sie vom Paradigma der schwach wechselwirkenden massiven Teilchen (WIMPs) vertreten werden.

Die anhaltende Nichtentdeckung von WIMPs durch die vielen dedizierten Suchen per direkter De-

tektion, sowie die Nichtbeobachtung von Supersymmetrie und anderen mit dem WIMP-Paradigma

verbundenen Theorien, motiviert uns neue Szenarien zu erforschen.

Eine interessante Möglichkeit ist, dass Dunkle Materie keinen thermischen Ursprung hat. Nicht-

thermische Produktionsmechanismen eröffnen die Möglichkeit, dass Dunkle Materie sehr leicht und

trotzdem kosmologisch stabil sein kann. Das kanonische Beispiel für solche leichten, nicht thermisch

erzeugten Kandidaten für Dunkle Materie sind die Axion-ähnlichen-Teilchen, die in den letzten

Jahren sowohl von Theoretiker*innen als auch von Experimentator*innen wieder mehr Aufmerk-

samkeit erfahren haben. Axion-ähnliche-Teilchen sind pseudoskalare Teilchen, die natürliche Kan-

didaten für ultraleichte Dunkle Materie sind, da selbst minimale Modelle einen inhärenten Produk-

tionsmechanismus haben, der als Fehlausrichtungsmechanismus bekannt ist. Dieser Mechanismus

beruht auf der Beobachtung, dass sich ein oszillierendes Skalarfeld wie kalte Dunkle Materie verhält,

und dass die allgemeinsten Anfangsbedingungen unweigerlich zu solchen Oszillationen führen. Die

durch den Fehlausrichtungsmechanismus vorhergesagte Energiedichte hängt jedoch stark vom An-

fangszustand des Axionfeldes ab. Die Hauptmotivation dieser Arbeit ist es, die Standardannahme

zu den Anfangsbedingungen für das Axionfeld zu hinterfragen.

Diese Dissertation widmet sich der Untersuchung neuartiger Produktionsmechanismen Axion-

ähnlicher-Teilchen Dunkler Materie, die über das Standardparadigma hinausgehen, indem sie An-

fangsbedingungen untersucht, die eine von Null verschiedene kinetische Energie beinhalten. Diese

Familie von Szenarien wird allgemein als kinetische Fehlausrichtung bezeichnet. Unsere Erforschung

der kinetischen Fehlausrichtung ist in zwei Phasen unterteilt: In der ersten Phase untersuchen wir

die Dynamik solcher Szenarien unabhängig davon, wie die Anfangsbedingungen realisiert werden.

Insbesondere untersuchen wir die Rolle der parametrischen Resonanz und das Phänomen der Axion-

fragmentierung. Wir stellen fest, dass diese Form der parametrischen Resonanz in einem Großteil

des relevanten Parameterraums tatsächlich effizient ist, und dass das erzeugte Relikt daher ein

nicht triviales Impulsspektrum aufweist, welches in Form von Miniclustern beobachtbare Effekte

in Aussicht stellt. In der zweiten Phase untersuchen wir, wie die angenommenen Anfangsbedin-

gungen in Szenarien, die von der Affleck-Dine-Baryogenese inspiriert sind, implementiert werden

können. Dies ermöglicht es uns, umfassend darzustellen, wie und unter welchen Bedingungen das

Standardparadigma auf solche Szenarien kinetischer Fehlausrichtung erweitert werden kann. Wir

stellen fest, dass ein KSVZ-ähnliches Modell mit einem nahezu-quadratischen Potential in einen

Großteil des interessanten Parameterraums im Bereich 10−6 eV ≲ ma ≲ 10 eV realisiert werden

kann, falls das Spektrum der primordialen Fluktuationen ausreichend unterdrückt werden kann. In

diesem Fall kann eine Kinationsperiode zu einer zugehörigen Signatur in verstärkten primordialen

Gravitationswellen führen.

Zusammenfassend zeigen wir, dass Dunkle Materie sich durch Axion-ähnliche-Teilchen in fast

dem gesamten [ma, fa]-Parameterraum erklären lässt. In den kommenden Jahren wird eine Vielzahl

von Experimenten diesen Parameterraum weiter erschließen. Diese Experimente stellen die Möglich-

keit in Aussicht, nicht nur ein QCD-Axion oder ein Axion-ähnliches-Teilchen zu entdecken, sondern

auch, dass diese Entdeckung die gesamte Dunkle Materie ausmacht.
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Introduction

The standard model (SM) of particle physics and the ΛCDM model of modern cosmology provide a

hugely successful description of our universe. However, despite the great success of these theories,

there remain a number of experimental observations that are not accounted for. These include open

questions such as the nature of dark matter, dark energy and inflation, as well as the origins of

the matter-antimatter asymmetry. Furthermore, the standard model itself contains a number of

theoretical features which invite a more fundamental explanation. Such features include the strong

CP problem, the electroweak hierarchy problem and the origin of the observed flavour structure of

the SM fermions. Explanations demand physics beyond the standard model (BSM physics).

The question of dark matter has historically been dominated by the paradigm of weakly-

interacting particles (WIMPs) and other such thermal dark matter candidates. However, as was

alluded to in the abstract, the physics community is today driven to explore alternative candi-

dates for dark matter by the non-observation of WIMPs and their related BSM theories. In this

thesis, I investigate how the class of particles known as axion-like-particles (ALPs) may provide

non-thermally produced dark matter in new regimes. The general class of ALPs owe their name

to the QCD axion, which provides both an elegant solution to the strong CP problem of Quantum

Chromodynamics (QCD) [3, 4] and also constitutes a natural dark matter candidate [5–7]. ALPs

form a quite generic class of particles which frequently appear in string theories [8, 9] and other

BSM frameworks such as majoron models [10], supersymmetric (SUSY) models [11], and dynamical

models of flavour [12, 13]. An ALP is a pseudo-Nambu-Goldstone boson (pNGB) of a global U(1)

symmetry that is spontaneously broken at a large scale fa, which is known as the decay constant.

The low-energy properties are characterized by a small mass ma and couplings that, due to the

pNGB nature, are suppressed by fa and are either derivative or anomalous. QCD axions and ALPs

share similar effective theories. Depending on the author, the term axion can refer either specifically

to the QCD axion or to the more general class of ALPs. In this work, I will be inclusive and use

the term axion in the broader meaning of any axion-like-particle and refer specifically to the axion

that solves the strong CP problem as the QCD axion.

The QCD axion is predicted to acquire a small mass from meson mixing [14] due to non-

perturbative effects in QCD [15, 16]. In minimal implementations, this effect generally restricts

the axion to a fixed relationship between the axion mass and the decay constant. We will discuss

this further in section 2. For a general axion, this relationship need not apply, and such ALPs may

populate a large [ma, fa] parameter space.

The standard paradigm for the production of axion dark matter is themisalignment mechanism.

In the standard misalignment mechanism (SMM), the dark matter arises as coherent oscillations of

the axion field [5–7]. These oscillations are initiated by an initial misalignment of the axion with

respect to the potential minimum. This mechanism is appealing because it is inherent to the axion

scenario and requires little model building beyond the initial conditions that would be expected by

inflation. However, as we will see in section 3, this relic density is proportional to a positive power

of fa. Therefore, SMM with an O(1) misalignment angle tends to overproduce DM for very large

fa and underproduce DM for very low values of fa. Topological defects, i.e. domain walls and

cosmic strings, may increase the produced DM abundance in some scenarios [17–19]. The decay of

such defects may increase the axion relic abundance by a factor of a few relative to the prediction

from the SMM, although the exact impact of axions from topological defects is the topic of ongoing

debate, e.g., see [20–26].

Unfortunately, the low-fa regime, which cannot be accounted for by the standard misalignment

mechanism, is exactly the regime which is most experimentally accessible. Due to axions being a

particularly well-motivated class of particles, an impressive experimental effort has been directed
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towards their discovery. Many of these experiments are specifically trying to detect axions in the

dark matter wind. The suppression of 1/fa in axion-SM couplings implies that any direct detection

scheme would be most sensitive in the regime where axion DM would be underproduced by SMM

if QCD-axion-like interactions are assumed.

This disparity between experimental accessibility and theoretical prediction motivates us to go

beyond the standard paradigm. One such potential avenue was independently presented by Co et

al. [27] and Chang and Cui [28]. These authors proposed the kinetic misalignment mechanism

(KMM), which is the topic of this thesis. The kinetic misalignment mechanism goes beyond the

standard paradigm by considering an axion which has initial conditions that endow it with sufficient

kinetic energy to overcome the potential barriers and rotate in field space. In the original KMM

proposal, such rotation was assumed to persist until the field is eventually trapped when the kinetic

energy becomes insufficient to overcome the potential barriers. After trapping, the homogenous

field oscillates and behaves as cold dark matter. Because trapping can take place much later than

the time where oscillations would start in SMM, kinetic misalignment enhances the relic density

relative to SMM by reducing the amount of redshift.

Whereas the original KMM proposal focused on the homogenous component of the field, Fonseca

et al. [29] realized that such a rotating field will experience parametric resonance in a phenomenon

known as axion fragmentation. In our recent project [1], we studied this effect in the context of

KMM, which resulted in the work that is presented in Part II of this thesis. We show that this

effect indeed is efficient across most of the KMM parameter space and that it can take place either

before or after trapping. We find that fragmentation does not significantly alter the produced DM

abundance. However, fragmentation does significantly modify the axion spectrum as the particles

are much hotter than in the non-fragmented misalignment scenario. This can lead to observational

signatures in the form of axion DM mini-clusters [30]. We also study the potential for signatures

in the form of gravitational waves (GWs) generated by the parametric resonance. Furthermore, we

identify implementation-independent constraints from structure formation and BBN. Finally, we

find that given appropriate initial conditions, KMM, with or without fragmentation, can account

for the observed DM relic also in the experimentally accessible low-fa regime.

With the prospect of KMM providing experiments with the possibility of detecting axion dark

matter, it is of paramount importance to investigate whether the necessary initial conditions as-

sumed by KMM can be realized. Part III is devoted to this question, which we investigated in [2].

We re-evaluate implementations inspired by Affleck-Dine baryogenesis [31, 32] which were proposed

by Co et al. [27, 33–35]. We impose new constraints identified in our initial paper [1], which

significantly impact implementations. We specify solutions directly in terms of model parameters,

which allows us to show for the first time how the axion DM parameter space is impacted by im-

plementation constraints. Furthermore, radial oscillations present a significant challenge to KMM

implementations. Such oscillations must be damped through some additional mechanism since they

would dominate the cosmology if left unchecked. We present a detailed treatment of damping both

in general terms and with specific axion-SM couplings. We implement a numerical solution of the

Boltzmann equations that allows us to take into account thermal effects and the complex interplay

between the axion and the SM sector in a robust way. This solution also allows us to calculate the

potential range of damping temperatures. Furthermore, the dynamics of KMM implementations

may involve a period where the kinetic energy of the rotating axion dominates the energy density

of the universe. Such a period, known as kination, may lead to a signal from amplification of the

primordial GW spectrum [36, 37]. We map out the region that may be observable by such an

amplified GW spectrum. We find that all of the KMM parameter space can be supported, and we

identify the model parameters which are required to achieve this.

The structure of the thesis is as follows: In part I, we introduce the strong CP problem and

the QCD axion solution. We then generalize to ALPs, discuss their production as dark matter by
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the standard misalignment mechanism (SMM) and conclude the section with an overview of the

experimental effort to detect axions. In part II, we present our implementation-independent study of

fragmentation in KMM. In this part, we develop an analytic description of fragmentation, categorize

the parameter space as to the efficiency of fragmentation and present implementation-independent

constraints on the axion DM parameter space. In part III, we discuss our re-evaluation of Affleck-

Dine-like models of KMM as implemented in two realizations: nearly-quadratic and quartic. For

each of the two models, we present constraints and an analysis of the required damping mechanism.

In part IIII, we collect results and summarize the thesis. To assist the reader, appendix A includes

a summary of subscripts, symbols and abbreviations used throughout the thesis.
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Part I

Motivations for axions

We first review the paradigm of QCD axions and axion-like-particles. We start by introducing the

strong CP problem and the Peccei-Quinn solution. We then discuss the properties of the QCD

axion in a benchmark KSVZ model. Finally, we motivate the generalization to the broader class of

axion-like-particles and discuss how they can play the role of dark matter when produced by the

standard misalignment mechanism. We conclude with an overview of the observational searches for

axion-like-particles and a summary.

1 CP violation in QCD and the θ-vacuum

In this section, we review the origin of CP violation in QCD and how it follows from the non-trivial

vacuum of QCD. We take the historical approach and start by motivating the existence of the

problem by first discussing the missing meson problem. This leads us to consider the θ-vacuum

and the presence of a θ-term in QCD. Finally, we discuss how the θ-term leads to the strong CP

problem.

1.1 The missing meson problem

Let us consider the QCD Lagrangian including the first generation of quarks:

LQCD ⊃ −
1

4
GaµνGa

µν + Q̄(i /D −M)Q, (1.1)

where Q = (u d)T is a vector containing the quark fields, M is the corresponding mass matrix

and Ga
µν is the gluon field strength tensor. In the limit where the masses can be neglected, which

is a good approximation at least for the first generation of quarks, this Lagrangian possesses a

U(2)L × U(2)R symmetry, which corresponds to a unitary rotation of the left- and right-handed

components of the quark fields, respectively. At energies below ΛQCD, this classical symmetry is

spontaneously broken down to its vectorial subgroup by the QCD condensate with the following

breaking pattern:

SU(2)L × SU(2)R × U(1)V × U(1)A → SU(2)V × U(1)V , (1.2)

where the subscripts A and V refer to vectorial and axial groups, respectively. The axial part of

SU(2)L × SU(2)R as well as U(1)A are spontaneously broken. If this is the true breaking pattern

of the theory, then the spontaneous breaking of the three generators of SU(2)A
1 as well as the one

generator of U(1)A should lead to a total of four pseudo-Nambu-Goldstone bosons (pNGBs) [38–

40]. However, in the observed spectrum of hadrons, the only pNGB candidates are the three pions.

The absence of a fourth light pNGB in the meson spectrum constitutes the missing meson problem,

which was one of the major challenges for QCD until the mid 70’s [41, 42].

This problem was resolved when ’t Hooft realized [43–45] that the Adler-Bell-Jackiw (ABJ)

anomaly [46–48] explicitly reduces the physical symmetry of QCD. This anomaly affects the ap-

proximate U(1)A symmetry, which is associated with the axial rotation,

Q→ eiαγ5Q. (1.3)

1Note that SU(2)A is not closed, and as such it does not form a group. With this complication in mind, we will

nonetheless associate with SU(2)A the axial part of SU(2)L × SU(2)R.
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In the absence of quantum effects, the current related to this transformation would be broken only

by the mass term. However, even in the massless limit, the ABJ anomaly gives the current of such

an axial transformation a divergence of

∂µJ
µ
U(1)A

=
g2s

16π2
GG̃. (1.4)

Therefore, U(1)A does not correspond to a true approximate symmetry of the physical theory

and only the three generators of SU(2)A correspond to the broken generators of an approximate

symmetry. Here G̃a
µν = 1

2ϵµνρσG
aρσ is the dual of the field strength tensor, gs is the QCD gauge

coupling, and we have omitted contracted indices. This effect reduces the expected number of

pNGBs from four to three, which resolves the missing meson problem.

One might object that GG̃ is itself a total derivative,

GaµνG̃a
µν = ∂µK

µ, (1.5)

where Kµ is the Chern-Simmons current

Kµ = ϵµαβγ
(
Aa

αG
a
βγ −

gs
3
fabcAa

αA
b
βA

c
γ

)
, (1.6)

such that one might construct a new conserved current from Jµ′
= Jµ

U(1)A
− Kµ. If such a new

conserved current could be constructed, then the associated symmetry would perpetuate the missing

meson problem. However, in order for the charge to be conserved, the surface integral of the current

has to vanish at infinity. As we will see in the next section, it turns out that there exist gauge

field configurations for which Kµ does not vanish at infinity. Therefore, U(1)A is indeed explicitly

broken by QCD effects. This solution resolves the missing meson problem, but it also proves that

GG̃ has an important physical impact which is related to non-trivial field configurations.

1.2 Instantons and the θ-vacuum of QCD

To see how the GG̃ term impacts QCD, we will now discuss the QCD vacuum. To discuss the

vacuum structure of QCD, we can apply semi-classical approximations [49]. Such a semi-classical

approach allows one to study the vacuum of gauge field theories by linking it to properties of the

corresponding Euclidean action. In order for such an approach to yield non-trivial results, we need

to specifically consider configurations of finite Euclidean action, as solutions of infinite action do not

contribute in the semi-classical approach [49]. We will simplify the problem by neglecting matter

fields for now and studying a pure Yang-mills theory of SU(3) for which the Euclidian action is

SE =

∫
d4x

1

4
GG. (1.7)

In order for the action to converge to a finite value, Gaµν must decay at least as fast as Gaµν ∼
O(1/r2+ϵ) when r →∞. Therefore, the part of Aa

µ which contributes to Gaµν must decay at least

as fast as Aa
µ ∼ O(1/r2+ϵ). However, by performing a gauge transformation g(x) ∈ SU(3), we see

that there may be an additional component of Aa
µ which need not vanish at the boundary because

it does not contribute to Gaµν . In terms of Aµ = T aAa
µ, where T

a are the generators of SU(3),

lim
|x|→∞

A′
µ = ig(x)∂µg(x)

−1 +O(1/r2). (1.8)

This asymptotic field configuration is referred to as pure gauge, because the non-vanishing compo-

nent is specified entirely by the gauge transformation g(x) and how this maps to the S3 sphere at

infinity. One might wonder if such configurations are all related by a gauge transformation to the

trivial solution. It turns out that there are additional classes of solutions which cannot be related
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to the trivial solution by any continuous gauge transformation. The field configurations fall into

different homotopy classes. It has been shown by Bott [50] that a mapping from S3 to any simple

Lie group G can be continuously deformed to a mapping from S3 to an SU(2) subgroup of G.

Therefore, the field configurations of SU(3) can be classified according to the homotopy classes of

SU(2). These classes are identified by ν ∈ Z, which is known as the winding number and which

counts how many times the configuration in field space wraps around the S3 hypersphere at infin-

ity [49]. ν is a topological quantity which depends only on the mapping of g(x) → S3 at infinity.

Furthermore, it can be shown [49] that the winding number is given by the integral

ν =
g2s

32π2

∫
d4xGG̃. (1.9)

These field configurations then have a finite action but are topologically distinct. If we express the

Euclidean action in terms of GG̃,

SE =
1

4

∫
d4xGG =

1

4

∫
d4x

[
GG̃− 1

2
(G− G̃)2

]
, (1.10)

we see that the action Euclidean contains a topological piece,

SE = ν
8π2

g2s
+

1

8

∫
d4x (G− G̃)2. (1.11)

Since the second term is positive definite, configurations for which G = G̃ minimize the action for

all configurations with a given winding number ν and thus correspond to classical solutions [51].

Additional solutions with −ν and G = −G̃ can also be found by instead separating out a (G+ G̃)2

piece in eq. (1.11). These solutions are known as instantons and anti-instantons respectively.

Returning to physical Minkowski space, families of classical vacua can be found. Such classical

vacua are configurations in which the hamiltonian H vanishes everywhere in space and are thus

pure gauge configurations. As the winding number is a pure topological quantity which does not

depend on the metric, it is also defined for gauge field configurations in the Minkovski space, in

which it labels distinct classical vacua. We denote a classical vacuum of winding number n as |n⟩.
It can be shown [52] that in Minkovski space a ν-instanton corresponds to tunnelling between an

|n⟩ classical vacuum and the corresponding |n+ ν⟩ vacuum. As classical vacua are thus subject to

time evolution, they cannot correspond to a physical vacuum. Instead, the physical minimum must

be a linear superposition of the classical vacua:∑
n∈Z

an |n⟩ . (1.12)

There exist gauge transformations Tm which change the winding number of all classical vacua by a

common integer value m, i.e. Tm |n⟩ = |n+m⟩. Therefore, the difference in winding number n−m
between two states |n⟩ and |m⟩ is gauge invariant, but the winding numbers of any individual state

are not gauge invariant. We can restrict the form of an in eq. (1.12) by demanding that such gauge

transformations Tm at most change the vacuum by the complex phase eiθ up to which a state is

defined in projective Hilbert space. This condition yields a recursive relation that restricts the form

of an such that the physical vacuum |θ⟩ can be written as [49]

|θ⟩ =
∑
n∈Z

eiθ |n⟩ . (1.13)

Therefore, the QCD-vacuum is characterized by a phase θ which determines the superposition of

classical vacua of which it is composed. This is the θ-vacuum of QCD.
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Interestingly, the θ-vacuum is subject to a super-selection rule, which prevents any physical

process from transitioning from a |θ⟩ state to a |θ′⟩ state. Therefore, θ is unchangeable in any one

realization of QCD, and different θ parameters label physically distinct theories [49].

To see how the θ-vacuum impacts the Lagrangian, we can consider the vacuum expectation

value (VEV) of an operator O. Using the property that gauge transformations can relabel states

|m⟩ , |n⟩ to |k⟩ , |0⟩, this can be written as

⟨θ| O |θ⟩ =
∑
n,m

⟨m| eiθ(m−n)O |n⟩ =
∑
n,m

⟨k| eiθkO |0⟩ . (1.14)

Expressing the winding number in terms of eq. (1.9) this becomes

⟨θ| O |θ⟩ = 1

Z

∑
k

∫
[dA]Oe

i

(∫
d4xL+θ

g2s
32π2 GG̃

)
δ

(
k − g2s

32π2

∫
d4xGG̃

)
, (1.15)

where δ is a Dirac delta function which restricts the path integral to configurations with winding

number k. From this we observe that the phase factor eiθ in the θ-vacuum extends the Lagrangian

with a θGG̃ term. The θ-vacuum implies a Lagrangian term of

Lθ = θ
g2s

32π2
GG̃. (1.16)

This term is usually referred to as the θ-term. We have now shown2 that not only is it possible to

add a θGG̃ term to the QCD Lagrangian but that such a term is actually implied by the non-trivial

vacuum structure of the theory.

1.3 CP violation in physical QCD

In the previous section, we showed that in a pure Yang-Mills theory of SU(3) the non-trivial vacuum

structure implies the existence of a θGG̃ term. Let us now consider the full QCD Lagrangian,

including matter fields:

LQCD = −1

4
GaµνGa

µν + θ̃QCD
g2s

32π2
GaµνG̃a

µν + Q̄(i /D −M)Q, (1.17)

where, as before, the Q is a vector containing the quark fields, and M is the quark mass matrix.

Both the θ-term and the global phase of the mass matrix break CP. Furthermore, CP is broken in

the weak sector of the SM, such that there is no symmetry to ensure that either term must vanish.

Therefore we should expect CP to also be violated by QCD.

Naively, this Lagrangian suggests that there are two independent sources of CP violation in

QCD. However, these contributions are not independent. Because the U(1)A symmetry associated

with the axial transformation Q → eiγ5αQ is broken by both the ABJ anomaly and by the quark

mass term both parameters can be shifted by performing such an axial transformation. Therefore,

one of the two CP-violating parameters can be absorbed by performing a suitable axial rotation of

the quark fields such that the single, physically observable CP-violating parameter is

θQCD = θ̃QCD + arg(detM), (1.18)

where arg(detM) is the complex phase of the determinant of the quark mass matrix. Thus, the ABJ

anomaly of U(1)A reduced what appeared as two parameters to only one CP-violating parameter.

We may choose to remove any common phase from the quark mass matrix such that all potential

CP violation is carried by the θ-term.

2The argument presented here was based on semiclassical reasoning which breaks down as gs → ∞. Although

we can learn much about QCD from such reasoning it is not useful to describe QCD at T < ΛQCD. A more general

description is beyond the scope of this review.
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1.4 The strong CP problem

Currently, the most sensitive probe of CP violation in QCD is the neutron electric dipole moment

(nEDM). The strength of this moment is measured in terms of dn as defined by the non-relativistic

Hamiltonian

H = −dnE⃗ · Ŝ. (1.19)

This quantity is currently constrained by experiment to less than |dn| ≲ 10−26e cm [53]. The

contribution of θQCD to dn has been performed with a number of theoretical approaches, see [54]

for a review. One result, based on QCD sum-rules yields

dn ∼ 10−16e cm × θQCD, (1.20)

which corresponds to an upper bound on θQCD of

|θQCD| ≲ 10−10. (1.21)

The smallness of this parameter constitutes the strong CP problem.

The strong CP problem is quite different from that of the Higgs mass hierarchy problem in that

θQCD is stable against radiative corrections. One could expect large contributions to θQCD since CP

is violated in the SM, but Ellis and Gaillard[55] showed that renormalization of θQCD contributes

only at the level of δθQCD ∼ 10−16, which is several orders of magnitude below the level probed by

neutron EDM. Therefore, running of θQCD would preserve the smallness of θQCD if it is set to 0 in

the UV. Such solutions where CP is a symmetry of the UV theory and which is then spontaneously

broken include the Nelson-Barr models. However, such models may require somewhat exotic model

building or may themselves be fine-tuned unless supersymmetry is invoked [56].

Furthermore, a much larger value of θQCD does not appear to cause any catastrophic issues

which could motivate anthropic solutions. Ubaldi found that nuclear physics and BBN tolerates

values θQCD up to about 1% [57], such that any attempt to resolve the CP problem anthropologically

would have to link θQCD to some other small parameter [58, 59]. Therefore, the anthropic principle

might not provide the most elegant solution to the strong CP problem.

2 The Peccei-Quinn solution and the axion

In section 1.3 we saw how the ABJ anomaly of the axial rotation allowed us to render one of the

two possible sources of CP violation unphysical. Peccei and Quinn exploited this phenomenon by

introducing a new global axial U(1) symmetry to render the CP violation in QCD fully unphysical [3,

4]. This is achieved by having the new symmetry, usually denoted U(1)PQ, be an exact symmetry

of the classical theory that is only broken by an ABJ anomaly with QCD in the full theory. This

QCD anomaly allows one to perform a U(1)PQ transformation to shift the Lagrangian by

δL = α
g2s

32π2
GG̃, (2.1)

where α is an arbitrary angle, such that the θ-term of the QCD vacuum can be fully absorbed.

This renders CP violation in QCD unphysical.

A necessary component of this solution is that there exist fermions without a PQ-violating

mass term. However, no massless fermions are observed in nature, so the PQ-charged fermions

must nonetheless acquire a mass. Therefore, the PQ symmetry is generally assumed to be sponta-

neously broken at a scale fa, which generates a PQ-conserving mass term for the relevant fermions.
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Weinberg [15] and Wilczek [16] pointed out that this generically leads to the prediction of a pNGB,

which was named the axion by the latter3. Usually, this axion field is denoted by a.

As a pNGB, the axion in the absence of the QCD anomaly would feature a shift symmetry

a → a + αfa. This shift symmetry is broken down to a discrete symmetry by the QCD anomaly.

Because of the ABJ anomaly of U(1)PQ, the axion necessarily features a QCD-coupling,

L ⊃ a

fa

g2s
32π2

GG̃. (2.2)

This is the sole coupling between the axion and the SM that the axion must feature, although

specific implementations of the PQ solution may introduce additional interactions.

If this axion has a VEV away from the CP conserving value, then it would regenerate the CP

violating effects that it was introduced to solve. Fortunately, it was shown by Vafa and Witten that

vector-like theories such as QCD cannot break parity spontaneously [60] such that the minimum of

the axion potential must conserve CP.

2.1 Axion mass and interactions

At low energies, the properties of an axion can be described with an EFT specified by the following

Lagrangian:

La =
1

2
(∂µa)

2
+

a

fa

g2s
32π2

GG̃+
1

4
gaγaF F̃ +

∑
N∈{n,p}

1

2

∂µa

fa
cN N̄γ

µγ5N, (2.3)

where Fµν is the electromagnetic fields strength tensor and N is either the proton p or the neutron

n. gaγ and cN respectively parametrize axion-photon and axion-nucleon couplings. We will now

discuss how the generic axion-gluon coupling, eq. (2.2), leads to such couplings between the axion

and the SM. At energies below ΛQCD it is convenient to absorb the aGG̃ term by redefining the

quark fields as

Q→ eiγ5
a

2fa
QaQ, (2.4)

where Qa is a matrix specifying the rotation. Due to the anomaly, the axion will mix with the

neutral mesons, e.g., see [14]. At energies much lower than ΛQCD, this mixing can be described by

chiral perturbation theory. In this limit, specifying Qa such that the axion-meson mixing matrix is

diagonal results in a physical axion state with a zero-temperature mass of [14],

m2
a ≈

mumd

(mu +md)2
m2

πf
2
π

f2a
≈
[
(5.70± 0.07)× 10−6 eV

(
1012 GeV

fa

)]2
. (2.5)

Furthermore, the axion-meson mixing induces model-independent contributions to the interac-

tions [14]. The model-independent photon coupling is

gaγ,indep. =
αEM

2πfa

[
2

3

4md +mu

md +mu

]
≈ −αEM

2π

1.92± 0.04

fa
≈ − (2.227± 0.044)× 10−3

fa
, (2.6)

where αEM ≈ 1/137 is the electromagnetic fine structure constant. The model-independent proton

and neutron couplings are

cp,indep. ≈ 0.47± 0.03 and cn,indep. ≈ −0.02± 0.03. (2.7)

3Humorously, Wilczek choose the name ”axion” in honour of an American laundry detergent as it ”cleans up”

the strong CP problem.
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Specific axion implementations may introduce additional interactions for the axion, which will

modify these model-independent contributions, but these couplings will be shared by all axion

models in which the axion couples to the SM exclusively through eq. (2.2).

The QCD axion mass is temperature dependent and only approaches the zero-temperature re-

sult eq. (2.5) in the limit T ≪ ΛQCD. In the regime T ≫ ΛQCD, where the temperature dependence

is significant, chiral perturbation theory is no longer a useful description. Instead, the axion mass

can be calculated in the dilute instanton gas model [61], the interacting instanton liquid model [62]

or on the lattice [63–67]. To describe ma(T ) we will fit the lattice result of [67] with

m2
a(T ) ≈ m2

a ×

{
(T/Tc)

−γ if T > Tc

1 if T < Tc
, where

Tc = 2.12×
√
fama,

γ = 8.16,
(2.8)

which sets the amplitude of a cosine potential for the axion:

Va(T ) ≈ ma(T )
2f2a [1− cos(θ)] . (2.9)

This provides a good parametrization of the lattice result of [67].

We define our notation such that ma when written without T dependence always refers to the

zero-temperature result given by eq. (2.5). The full fit given by eq. (2.8) is only referenced when

the T dependence is explicitly written in ma(T ).

2.2 KSVZ models

One of the most popular classes of invisible axions are the Kim-Shifman-Vainshtein-Zakharov

(KSVZ) models [68, 69]. These realize the PQ mechanism by extending the SM Lagrangian with a

complex scalar field P as well as at least one new coloured fermion χ. These fields are then assumed

to possess a Yukawa coupling such that the KSVZ Lagrangian takes the form

LKSVZ = |∂µP |2 − V (P ) + χ̄i /Dχ−
√
2yχ̄LχRP + h.c., (2.10)

where V (P ) is the potential of P . This minimal Lagrangian is invariant under an axial transfor-

mation specified by

P → eiαP, χL → eiα/2χL, and χR → e−iα/2χR, (2.11)

which plays the role of U(1)PQ. Different representations of these fields are possible. The minimal

requirement of the KSVZ solution is that the χ-fermions must be in a non-trivial representation

of SU(3)QCD, such that they are subject U(1)PQ to an ABJ anomaly from QCD. The potential

V (P ) is chosen such that U(1)PQ is spontaneously broken when the scalar field acquires a VEV of

|P | = fa/
√
2. The axion arises as the angular mode a,

P =
1√
2
ϕeia/fa (2.12)

which becomes relevant when ϕ acquires a VEV of fa. When ϕ acquires a VEV the Yukawa

couplings generates a χ-fermion mass of mχ = yfa, which makes them heavy unless y is very small.

We typically take y ∼ O(1), such that mχ ∼ fa and the χ-fermions decouple from physics below

the fa scale. To integrate out the fields, we have to remove the light angular degree of freedom

from the mass terms,
√
2yχ̄LχRP ≈ mχχ̄LχRe

ia/fa . (2.13)

The axion can be decoupled by performing an axial redefinition of the χ-fermion fields:

χ→ eiγ5
a

2fa χ (2.14)
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Due to the ABJ anomaly, this rotation generates the expected aGG̃ term,

L ⊃ g2s
32π2

a

fa
GG̃. (2.15)

If the χ-fermions are chosen to be in the minimal representation (3, 1, 0) of SU(3)QCD × SU(2)L ×
U(1)Y , then eq. (2.15) is the only direct coupling between the KSVZ axion and the SM. In such

a minimal KSVZ model, the axion-photon and the axion-nucleon couplings have only the model-

independent contributions given by eqs. (2.6) and (2.7). As a KSVZ model of this type is a minimal

implementation of the PQ solution, we will use this as our benchmark model.

2.3 Other axion models

Historically, the original axion implementation was the Peccei-Quinn-Weinberg-Wilczek (PQWW)

model [3, 15, 16]. In the PQWW model, the PQ symmetry is implemented in a two Higgs doublet

model. In PQWW, one Higgs gives mass to the d-type quarks, and the other gives mass to the

u-type quarks. Like the SM Higgs, this scenario requires the PQ field to have a potential which

spontaneously breaks U(1)PQ at fa ∼ 250 GeV. However, fa ∼ 250 GeV does not sufficiently

suppress the axion-SM couplings such that the PQWW model was excluded by a combination of

beam dump experiments and rare π and K meson decays [70].

For axion models to be compatible with current constraints, much larger values of fa are

required. Such models are termed invisible axion models because the large decay constants suppress

axion-SM couplings such that the axions are hidden from searches. The two most widespread

families of invisible axion models are the Kim-Shifman-Vainshtein-Zakharov (KSVZ) models and

the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models [71, 72], of which the former were discussed

above. DFSZ models extend the two-Higgs scenario of the PQWW model with an SM-singlet

complex scalar Φ. This allows the model to decouple fa from the electroweak scale by letting Φ

acquire a VEV much larger than the VEV of the two Higgs doublets. These two Higgs fields,

Hu ∼ (1, 2,−1/2) and Hd ∼ (1, 2,+1/2) are then connected to Φ by an interaction term of the

form

VDFSZ ⊃ ξHuHd|Φ|2. (2.16)

The physical axion state a is a linear superposition between the angular mode of Φ and components

of Hd and Hu, which is dominated by the angular mode of Φ. Because the SM quarks in DFSZ

models must carry PQ charge, and these are in non-trivial representations of SU(3)QCD×SU(2)L×
U(1)Y , the axion has both color and EM anomalies. Therefore, DFSZ models feature additional

couplings which modify the model-independent contributions described in section 2.1. The exact

couplings depend on the DFSZ implementation.

Another notable class of axion models are the composite axion models, which were originally

introduced by Kim [73] a few years after the KSVZ model was proposed. These composite axion

models were originally motivated by the possibility of dynamically generating fa ≪ mPl through

dimensional transmutation. Here mPl ≈ 2.4 × 1018 GeV is the reduced Planck mass. This is

completely analogous to how ΛQCD is generated by the running of the gauge coupling in QCD.

Furthermore, in analogy with the chiral symmetry breaking of QCD, the condensate of the new

strong sector spontaneously breaks part of the global symmetry such that the composite axion can

be identified with a pNGB state, i.e. a pion of the new confining sector. This class of models

is particularly appealing because these models can naturally protect the PQ solution from global

symmetry violating effects at the Planck scale. This possibility was originally demonstrated by

Randall [74] who proposed a composite axion model which realizes the PQ symmetry as an approx-

imate accidental symmetry. Composite axions with accidental PQ symmetry were more recently

studied by, e.g., Redi and Sato [75].
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3 Beyond the QCD Axions: Generic ALPs, dark matter and searches

Light pseudoscalars such as the axion play an important role as dark matter candidates [5–7].

Furthermore, the motivation for new light pseudoscalar particles goes beyond the strong CP problem

as particles with similar properties are a generic prediction of a broad class of string theories [8, 9]

and other BSM frameworks such as majoron models [10], supersymmetric models [11] and dynamical

models of flavour [12, 13]. We, therefore, extend our discussion of dark matter to the broader class

of axion-like-particles, ALPs, which refers broadly to any pseudoscalar pNGB of a global U(1)

spontaneously broken at a scale fa. Importantly, although such particles are still specified in terms

of a mass ma and a decay constant fa, they need not conform to the QCD axion mass relation

given by eq. (2.5). The ALP parameter space, therefore, corresponds to a larger [ma, fa] plane

of which the QCD axion is a subset. We will continue to use the symbols ma, fa for the ALP

parameters. From this point, we will no longer refer to the axion field as a, and we instead use the

symbol φ to reflect that our statements apply to ALPs generically. Typically, we will work with the

dimensionless field θ = φ/fa. As mentioned earlier, the inclusiveness of the term axion depends on

the author, and we will define it to refer to the broader class of ALPs. We will specifically refer to

an axion which solves the strong CP problem as the QCD axion.

We here discuss how such light pseudoscalars may be produced as dark matter by the misalign-

ment mechanism. Furthermore, we will give a short discussion of the experimental approaches that

have been and will be used to search for ALPs.

3.1 Standard misalignment and axion dark matter

To see how axion dark matter might be non-thermally produced in the early universe [76], consider

the Lagrangian,

L ⊃ 1

2
(∂µφ)

2 − 1

2
m2

a(T )φ
2. (3.1)

Here we used ma and φ to match the notation to the scenario of an axion, but the argument

below applies to any scalar field with a sufficiently slowly changing mass. In an expanding Fried-

mann–Lemâıtre–Robertson–Walker (FLRW) universe, such a scalar field will have an equation of

motion of

φ̈+ 3Hφ̇+m2
a(T )φ = 0, (3.2)

where H is the Hubble parameter, overdots indicate derivatives with respect to time, and we have

assumed that the field is homogenous so that the gradient term does not enter. The 3Hθ̇ term can

be traced back to the non-zero Γ0
ij Christoffel symbols of an FLRW metric and is referred to as the

Hubble friction term. The behaviour of this equation can be divided into two distinct limits. In

the ma(T ) ≪ H limit the field is overdamped such that φ is approximately constant. We in this

regime say the field is frozen since any evolution of φ takes place on timescales much longer than

the timescale H−1. In the other limit, ma(T ) ≫ H, the field oscillates. We typically estimate the

onset of oscillations to take place at a temperature Tosc for which ma(Tosc) ≈ 3H. For the case of

the QCD axion, the temperature dependence of the axion makes the field nearly massless prior to

the QCD phase transition, such that ma ∼ 3H is only satisfied once the axion mass begins to grow

near T ∼ ΛQCD.

Thus, the field undergoes coherent oscillations after Tosc. It turns out that such oscillations be-

have as cold dark matter. To see this, we need to solve the oscillating limit of the EOM. If the change

in mass is adiabatic, then this limit of the EOM can be solved by the Wentzel–Kramers–Brillouin

(WKB) approximation [77–80]. Specifically, this requires ṁa(T )/m
2
a(T ) ≪ 1, which is the case of
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for a QCD-like scaling of ma(T ). The WKB approximation implies

φ ∝ m−1/2
a (T )a−3/2 cos

(∫
ma(T ) dt

)
, (3.3)

where a is the scale factor4. If we label the initial amplitude φosc we can then write φ as

φ ≈ A cos(α)

where Θ̃(a) = φosc

(
ma(Tosc)

ma(T )

)1/2 (aosc
a

)3/2
and α =

∫ t

tosc

dtma(t).
(3.4)

The energy density and pressure of φ is

ρθ =
1

2
φ̇+

1

2
ma(T )

2φ2 (3.5)

pθ =
1

2
φ̇− 1

2
ma(T )

2φ2 (3.6)

By expressing these in terms of A and α and applying double angle identities, we arrive at

ρθ =
1

2
m2

a(T )A2 +
1

2
Ȧ2 cos2(α)− 1

2
ma(T )AȦ sin(2α) (3.7)

pθ = −1

2
m2

a(T )A2 cos(2α) +
1

2
Ȧ2 cos2 α− 1

2
ma(T )AȦ sin(2α) (3.8)

Averaged over many oscillations,〈
cos2 α

〉
=

1

2
, ⟨sin(2α)⟩ = ⟨cos(2α)⟩ = 0, (3.9)

such that

⟨ρθ⟩ =
1

2
m2

a(T )A2 +
1

4
Ȧ2, (3.10)

⟨pθ⟩ =
1

4
Ȧ2. (3.11)

The WKB solution implies that ma(T )A ≫ Ȧ. Therefore the equation of state ω is that of a

pressureless fluid,

ω =
⟨pθ⟩
⟨ρθ⟩

=
Ȧ2

Ȧ2 + 2m2
a(T )A2

≈ 0, (3.12)

which proves that the axion field behaves as cold dark matter in the oscillating regime.

Returning to the dimensionless field θ = φ/fa, which we will mostly use in the rest of this

thesis, this implies a cold matter relic

ρa ≈
1

2
ma(T )ma(Tosc)f

2
aθ

2
osc

(aosc
a

)3
, (3.13)

where ρa is the axion energy density. This DM production mechanism is known as the misalignment

mechanism. Because the mechanism is inherent to models of light scalars and does not require model

building beyond the assumption of rather generic initial conditions, it is one of the most elegant

and most often invoked mechanisms for the production of axion dark matter.

4Be aware that the symbol a until this point represented the axion field. From this point onwards, a will instead

refer to the scale factor unless it is used in a subscript. As the distinction is usually quite clear from context, this

should not lead to undue confusion.

21



The relic produced by misalignment crucially depends on the decay constant fa and the initial

misalignment angle θosc. Solving the condition ma(Tosc) ≈ 3H(Tosc) for Tosc predicts a dark matter

relic of

ρa,today ≈ 0.22 ρCDM

( ma

1eV

)1/2( ma

ma(Tosc)

)1/2(
fa

1011 GeV

)2(
θosc
1

)2
g∗(Tosc)

3/4

g∗s(Tosc)
, (3.14)

Where we normalized ρa,today to the present day abundance of CDM ρCDM = 1.27 keV / (cm3c2) [81].

For a QCD-like temperature dependence of ma(T ) as specified by eq. (2.8) the relic becomes

ρa,today ≈ 40ρCDM

( ma

1eV

)1/2( fa
1011 GeV

)1.66(
θosc
1

)2
g∗(Tosc)

0.58

g∗s(Tosc)
. (3.15)

Pre- and post inflationary scenarios: In the above analysis of the misalignment mechanism,

we started the discussion by assuming that the field was homogenous. This is true if the PQ

symmetry5 of the axion is broken before or during inflation, such that inflation selects a single

initial value of θosc for the entire observable universe. If this angle is chosen randomly, we then

expect that

θosc(x) ∼ O(1) for pre-inflationary scenarios. (3.16)

Otherwise, if PQ symmetry is broken after inflation, we then expect the universe to consist of many

different patches in which θosc takes different, random values. Nevertheless, we can average over

many randomly chosen angles such that the averaged value of θosc can be described by

〈
θ2osc

〉
≈ 1

π

∫ π

0

dθ θ2 =
π2

3
for post-inflationary scenarios. (3.17)

In either case, we can therefore expect θosc to be an order O(1) number unless additional dynamics

drive a particular choice of initial angles. In such a scenario, the observed dark matter relic is

produced by exactly one value of fa. Therefore, the misalignment mechanism naturally produces

the observed dark matter abundance for one specific combination of ma and fa. For fa lower than

this value, dark matter tends to be underproduced, while for larger fa dark matter tends to be

overproduced. In the large-fa regime the overproduction can be compensated by tuning θosc → 0.

To account for axion DM in the low-fa regime the production must be enhanced relative to the

misalignment mechanism.

Topological defects Cosmic strings are topological objects which can form when CP symmetry

is broken. Domain walls can later arise when the axion mass further breaks the residual shift

symmetry to a discrete subgroup. In pre-inflationary scenarios, such topological defects usually

play no significant role because they are inflated away. However, topological defects can play

a major role in post-inflationary models where defects are formed after inflation. In particular,

decay of such defects may increase the produced DM abundance beyond what is expected from

misalignment alone [17–19]. The exact abundance of axions produced by the decay of topological

defects is the topic of ongoing debate, but the relic appears to be no larger than a factor of a few

times the prediction from misalignment, e.g., see [20–26].

Domain walls can be pathological for theories in which they form because they tend to lead

to cosmologies radically different from the one we observe in our universe. We will return to this

problem later in this thesis.

5We will continue to refer to the U(1) of which the ALP is a pNGB as the PQ symmetry even when the ALP

may not be the QCD axion.
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3.2 Axion searches

Due to their strong theoretical motivation, many experimental approaches have been applied to

search for axions. This is a field in continuous growth, and there are many experiments which will

constrain the parameter space further in the future. We will here give a brief introduction to the

different classes of axion searches. Due to the diverse nature of the field and the little space that

can be devoted here, this summary is necessarily incomplete. For a more complete overview, see,

e.g., the summary by Irastorza and Redondo [82] or the compilation by Ciaran O’Hare [83]. The

summary here serves only to provide the basic orientation within a very active field.

In the following paragraphs, we discuss search strategies as grouped by ALP source:

Haloscopes: If the dark matter of our universe is made up of ALPs, then one of the most straight-

forward approaches is to attempt to detect this relic directly. As such experiments directly

probe the dark matter halo of the Milky Way, they are typically referred to as haloscopes.

The conventional haloscope strategy was proposed by Sikivie [84] and relies on resonant ALP

conversion within microwave cavities. As enhancement is only achieved when the resonant

frequency of the cavity closely matches the ALP mass, these experiments must be tuned. As

such, haloscopes tend to be very sensitive but only to a narrow range of ma. A prominent ex-

ample of such an experiment is ADMX [85–92] which is currently probing QCD axion models

in the 3.3-4.2 µeV range.

As the resonant frequencies are intimately tied to the dimensions of the cavities, traditional

haloscopes are only practical within a limited ALP mass range. To search for ALPs of higher

masses, dielectric haloscopes such as MADMAX [93] or LAMPOST [94] are being developed

as well as dish antenna such as BRASS [95]. Lower ALP masses are being explored using LC

circuits in experiments such as DM Radio [96, 97] and WISPLC [98].

Helioscopes: It can be challenging to search for DM axions in large part because of the large

mass range. Therefore, one of the currently most successful approaches is to search for ALPs

produced by Primakoff interactions in the Sun, hence the term helioscope. Since the tem-

peratures of the relevant layers of the Sun are much hotter than the relevant ALP masses,

these solar axions are relativistic with energy set by the solar dynamics. This property makes

helioscope searches largely independent of the ALP mass ma. The currently most prominent

helioscope experiment is CAST [99, 100] which searches of ALP → x-ray conversion within a

repurposed LHC dipole. IAXO [82, 101, 102] will improve upon CAST as a next-generation

helioscope.

Laboratory experiments: Instead of relying on external sources of ALP, another possible ap-

proach is to construct experiments which are entirely self-contained. One of the most promi-

nent principles in the class of searches is the light-shining-though-wall (LSW) approach. These

LSW experiments use powerful lasers and magnetic fields to search for photon→ ALP→ pho-

ton conversion enabling light to traverse otherwise opaque barriers. This class of experiments

includes ALPS [103], CROWS [104] and OSQAR [105], none of which are competitive with

the current generation of helioscopes. However, ALPS will soon be followed by its successor

ALPSII [106], which expects to outcompete CAST in a large range of ma. Other types of

laboratory experiments include polarization experiments such as PVLAS [107] and fifth-force

experiments such as ARIADNE [108].

Astrophysics and cosmology: In addition to the experimental searches described above, a large

and diverse class of axion signatures have also been investigated in the realm of astrophysics

and cosmology. These principles range from modification of structure formation as probed by

the Lyman-α forest (e.g. [109]), conversion of axions in cosmic magnetic fields as observed in
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x-rays (e.g [110–113]), modification of stellar evolution as probed by observations of horizontal

branch stars [114] or the impact of ALP thermal relics on CMB and BBN [115].

A more complete overview of experimental searches is shown in figure 1. We show current constraints

as filled regions. Projections are distinguished by having outlines only. In order to translate the

bounds/projections from [ma, coupling]-space to [ma, fa]-space, we here and in the rest of this thesis

assume a minimal axion coupling, such as the one implemented by a minimal KSVZ model. Such

couplings are simply the model-independent contributions from the θGG̃ term:

gKSVZ
θγγ = |gaγ,indep.| ≈

2.23× 10−3

fa
, and Cn = |Cn,indep.| ≈ 0.023 (3.18)

To be specific, we assume such coupling both for QCD axions and for non-QCD axions. For non-

minimal couplings, such as those found in, e.g., DFSZ models, the constraints and the projections

of all the experiments need to be adjusted with the exception of the superradiance bounds. The

superradiance bounds depend on the axion mass and the axion decay constant directly, as the

cut-off is set by the quartic interaction induced by the axion cosine potential.

In this and in the following figures, we highlight searches which are only sensitive to axion

DM in green and depict searches which seek axions of other origins in orange. The reach of these

searches is compared to the parameter space in which axion DM is naturally accounted for by SMM.

Note that a large population of experiments, chiefly haloscopes, are primarily sensitive to axion DM

in the low-fa regime in which standard misalignment underproduces dark matter.

In table 1 and table 2 the experiments shown on figure 1 are listed along with brief notes on

the experimental principles. All experiments rely on the axion-photon coupling unless otherwise

indicated. Most of the digitized constraints are sourced from the AxionLimits repository [83].

4 Summary of part I

In the last few sections, we have discussed how the QCD axion is motivated as a solution to the

strong CP problem and how axions and ALPs are natural dark matter candidates. In section 1,

we discussed how the strong CP problem arises from non-perturbative effects and the non-trivial

vacuum structure of QCD. In section 2 we discussed how the strong CP problem can be solved

by the PQ mechanism and how this leads to the prediction of the QCD axion. We then discussed

model-independent properties of the QCD axion as well as a specific implementation in the form

of the KSVZ model. In section 3, we generalized to the broader class of ALPs and discussed how

a dark matter relic of such axions might be produced by the misalignment mechanism. We also

provided an overview of how such axion DM is searched for.

Axions make compelling dark matter candidates. However, as is apparent in figure 1, the

standard misalignment mechanism does not account for ALP DM in the low-fa regime, which is

particularly susceptible to experimental scrutiny. To improve upon this unsatisfactory situation,

we, in the next parts of this thesis, investigate how ALP DM can be accounted for also in the low-fa
regime by invoking Axion Kinetic Misalignment.
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Figure 1. Range of [ma, fa] parameter space in which axion dark matter can be realized by the misalignment

mechanism. The range in which θosc ∼ O(1) leads to the observed DM relic appears in white, see eq.(3.15).

The high-fa region (in gray) is characterized by DM overproduction unless the misalignment angle θosc is

tuned towards the minimum. The low-fa regime, also in gray, is characterized by DM underproduction

and requires dynamics beyond the standard misalignment mechanism in order to account for axion DM.

Experimental axion searches are overlaid in orange and green. Searches coloured green assume the axion to

make up all of the observed dark matter.
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Experiment: Principle DM? Ref.

Haloscope constraints

ABRACADABRA-10cm Haloscope DM [116]

ADMX Haloscope DM [85–91]

BASE Haloscope (Cryogenic Penning Trap) DM [117]

CAPP Haloscope DM [118–120]

CAST-RADES Haloscope DM [121]

DANCE Haloscope (Optical cavity polarization) DM [122]

Grenoble Haloscope Haloscope DM [123]

HAYSTAC Haloscope DM [124, 125]

ORGAN Haloscope DM [126]

QUAX Haloscope DM [127, 128]

RBF Haloscope DM [129]

SHAFT Haloscope DM [130]

SuperMAG Haloscope (Using terrestrial magnetic field) DM [131]

UF Haloscope DM [132]

Upload Haloscope DM [133]

Haloscope projections

ABDC Haloscope DM [134]

ADMX Haloscope DM [92]

aLIGO Haloscope DM [135]

ALPHA Haloscope (Plasma haloscope) DM [136]

BRASS Haloscope DM [95]

BREAD Haloscope (Parabolic reflector) DM [137]

DANCE Haloscope (Optical cavity polarization) DM [138]

DMRadio Haloscope (All stages: 50L, m3 and GUT) DM [96, 97]

FLASH Haloscope (Formerly KLASH) DM [139, 140]

Heterodyne SRF Haloscope (Superconduct. Resonant Freq.) DM [141, 142]

LAMPOST Haloscope (Dielectric) DM [94]

MADMAX Haloscope (Dielectric) DM [93]

ORGAN Haloscope DM [126]

QUAX Haloscope DM [143]

TOORAD Haloscope (Topological anti-ferromagnets) DM [144, 145]

WISPLC Haloscope (Tunable LC circuit) DM [98]

LSW and optics

ALPS Light-shining-through wall Any [103]

ALPS II Light-shining-through wall (projection) Any [106]

CROWS Light-shining-through wall (microwave) Any [104]

OSQAR Light-shining-through wall Any [105]

PVLAS Vacuum magnetic birefringence Any [107]

Helioscopes

CAST Helioscope Any [99, 100]

babyIAXO Helioscope (projection) Any [82, 101, 102]

IAXO Helioscope (projection) Any [82, 101, 102]

IAXO+ Helioscope (projection) Any [82, 101, 102]

Table 1. List of experimental searches for axions and ALPs. The table is continued in table 2.
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Experiment: Principle DM? Reference

Astrophysical constraints

Breakthough Listen ALP → radio γ in neutron star magn. fields DM [146]

Bullet Cluster Radio signal from ALP DM decay DM [147]

Chandra AGN X-ray prod. in cosmic magn. field Any [110–113]

BBN + Neff ALP thermal relic perturbing BBN and Neff Any [148]

Chandra MWD X-rays from Magnetic White Dwarf ALP prod. Any [149]

COBE/FIRAS CMB spectral distortions from DM relic decay DM [150]

Distance ladder ALP ↔ γ perturbing luminosity distances Any [151]

Fermi-LAT SN ALP product. → γ-rays in cosmic magn. field Any [152–154]

Fermi-LAT AGN X-ray production → ALP in cosmic magn. field Any [155]

Haystack Telescope ALP DM decay → microwave photons DM [156]

HAWC TeV Blazars γ → ALP → γ conversion reducing γ-ray attenuation Any [157]

H.E.S.S. AGN X-ray production → ALP in cosmic magn. field Any [158]

Horizontal branch stars Stellar metabolism and evolution Any [114]

LeoT dwarf galaxy Heating of gas-rich dwarf galaxies by ALP decay DM [159]

Magnetic white dwarf pol. γ → ALP conversion polarizing light from MWD stars Any [160]

MUSE ALP DM decay → optical photons DM [161]

Mrk 421 Blazar X-ray production → γ in cosmic magn. field Any [162]

NuStar Stellar ALP production → γ in cosmic magn. fields Any [163, 164]

NuStar, Super star clusters Stellar ALP production → γ in cosmic magn. fields Any [164]

Solar neutrinos ALP energy loss → changes in neutrino production Any [165]

SN1987A ALP decay SN ALP production → γ decay Any [166]

SN1987A gamma rays SN ALP production → γ in cosmic magnetic field Any [167, 168]

SN1987A neutrinos SN ALP luminosity less than neutrino flux Any [168, 169]

Thermal relic compilation Decay and BBN constraints from ALP thermal relic Any [115]

VIMOS Thermal relic ALP decay → optical photons Any [170]

White dwarf mass relation Stellar ALP production perturbing WD metabolism Any [171]

XMM-Newton Decay of ALP relic DM [172]

Astrophysical projections

eROSITA X-ray signal from ALP DM decay DM [173]

Fermi-LAT SN ALP production → γ in cosmic magnetic field Any [174]

IAXO Helioscope detection of supernova axions Any [175]

THESEUS ALP DM decay → x-ray photons DM [176]

Neutron coupling:

CASPEr-wind NMR from oscillating EDM (projection) DM [177, 178]

CASPEr-ZULF-Comag. NMR from oscillating EDM DM [178, 179]

CASPEr-ZULF-Sidechain NMR (constraint & projection) DM [178, 180]

NASDUCK ALP DM perturbing atomic spins DM [181]

nEDM Spin-precession in ultracold neutrons and Hg DM [178, 182]

K-3He Comagnetometer DM [183]

Old comagnetometers New analysis of old comagnetometers DM [184]

Future comagnetometers Comagnetometers DM [184]

SNO Solar ALP flux from deuterium dissociation Any [185]

Proton storage ring EDM signature from ALP DM DM [186]

Neutron Star Cooling ALP production modifies cooling rate Any [187]

SN1987 Cooling ALP production modifies cooling rate Any [188]

Coupling independent:

Black hole spin Superradiance Any [189]

Lyman−α Modification of small-scale structure DM [109]

Table 2. List of experimental searches for axions and ALPs.
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Part II

Axion kinetic misalignment

In part I, we discussed how axions and ALPs are well-motivated extensions of the standard model

that play an important role as dark matter candidates. As is summarized in fig. 1, many ex-

periments search for such ALP dark matter across the [ma, fa] parameter space. Many of these

experiments are primarily sensitive to axion dark matter in the low-fa regime, as the axion-SM

couplings in this regime are less suppressed. However, the production mechanism which is most

commonly invoked, the standard misalignment mechanism (SMM), does not produce sufficient dark

matter in the low-fa regime. In this section, which is based on our publication [1], we explore how

we can go beyond the standard paradigm and produce dark matter with axion kinetic misalignment.

Axion kinetic misalignment involves axion scenarios with an initial large kinetic energy. In

such models, which were pioneered in [27], the axion has sufficient energy to roll over the periodic

potential barriers, such that the complex PQ field is rotating in field space at early times rather than

being frozen. As this rotation can persist beyond the time of onset of oscillations in SMM of an ALP

with similar mass and decay constant, the dark matter relic can be enhanced relative to SMM. This

allows axion DM to be accounted for in the low-fa regime. Furthermore, in kinetically misaligned

scenarios, the field can undergo parametric resonance in the form of axion fragmentation [29].

We here in part II study axion kinetic misalignment and the role that fragmentation plays in

such scenarios. We develop an analytical description of kinetic misalignment and fragmentation.

We remain agnostic to the mechanism which sets the initial conditions prior to kinetic misalignment

and develop the description in this part of the thesis in an implementation-independent way. Within

this description, we map out precisely which regions of parameter space correspond to fragmentation

before trapping, fragmentation after trapping, kinetic misalignment with weak fragmentation and

which regions can only be supported by the standard misalignment mechanism. Finally, we point

out how the non-trivial momentum spectrum predicted by axion misalignment can give rise to a

gravitational wave signature that could be seen in measurements of the µ distortions of the CMB.

5 Axion dark matter from kinetic misalignment

We consider the cosmological evolution of an axion field θ whose Lagrangian is given by

L = −f
2
a

2
(∂µθ)

2 − V (θ) = −f
2
a

2
(∂µθ)

2 −m2
a(T )f

2
a [1− cos (θ)], (5.1)

Here we will either take ma(T ) to be constant or to have a QCD-like temperature dependence as

specified by eq. (2.8). We decompose the ALP field θ(t,x) into a homogeneous mode Θ(t), and

small fluctuations δθ(t,x), where the latter can be expanded into Fourier modes as

δθ(t,x) =

∫
d3k

(2π)3
θk(t)e

−ik·x. (5.2)

We will assume that the Fourier modes θk(t) evolve independently. We also separate the time

evolution of the modes from their statistical properties by defining

θk(t) = θ̂kθk(t), (5.3)

where θ̂k’s carry the statistical properties, and θk’s are c-number functions which depend only on

the magnitude of the momentum k ≡ |k| due to the isotropy of the equations of motions in the

linear approximation. We also assume that θ̂k’s obey statistical homogeneity and isotropy:〈
θ̂kθ̂

∗
k′

〉
= (2π)3δ(3)(k− k′) (5.4)
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The initial conditions for the mode function θk will be determined by the initial field power spectrum

Pθ which depends on the physical process that creates the initial conditions for the Fourier modes.

We study the initial conditions in section 6.3.

If we neglect the back-reaction, the equations of motion of the homogeneous mode Θ and of

the fluctuations θk are decoupled from each other. These are respectively given by

Θ̈ + 3HΘ̇ +m2
a(T ) sinΘ = 0, (5.5)

and

θ̈k + 3Hθ̇k +

[
k2

a2
+m2

a(T ) cosΘ

]
θk = 0. (5.6)

We start by studying the evolution of the homogeneous mode and derive today’s value of the relic

density in sections 5.1 and 5.2. Then we discuss the implications of the parametric resonance in

section 6.1. We conclude this section by providing a semi-analytical estimate of the back-reaction

of the fluctuations on the homogeneous mode. We comment on the implications in section 6.2.

5.1 Derivation of the relic density today from the adiabatic invariant

In the kinetic misalignment mechanism [27] we assume that the ALP field has a large initial velocity

such that its initial kinetic energy is much larger than its potential energy. For now, we remain

agnostic as to the source of this initial velocity and postpone a discussion of how this kinetic energy

can be delivered until Part III of this thesis. Regardless of the source, given sufficient kinetic

energy, the field travels over many barriers without being trapped. As the universe expands, the

kinetic energy will be drained by Hubble friction. At the same time, the potential energy will grow

if the axion mass has a QCD-like temperature dependence as discussed in section 2.1. At some

temperature T∗, the energy in the homogeneous mode ρΘ becomes smaller than the height of the

barriers. After this time, the ALP field cannot continue rolling as it is trapped by the barrier. The

trapping temperature T∗ is defined by the condition

ρΘ(T∗) =
1

2
f2a Θ̇

2(T∗) +m2
a(T∗)f

2
a [1− cos(Θ(T∗))] = 2m2

a(T∗)f
2
a [1− cos(Θ(T∗))]. (5.7)

From now on the ∗-subscript denotes the quantities evaluated at T = T∗. We introduce the

dimensionless parameter ϱ(t) as the ratio between the ALP kinetic energy and its potential energy6

ϱ(t) ≡ ρΘ
2m2

a(t)f
2
a

=
1

4

Θ̇2

m2
a(t)

+ sin2
(
Θ

2

)
. (5.8)

The field is trapped at ϱ(t∗) = 1. If ϱ > 1 it keeps rolling, while for ϱ < 1 it is oscillating around

its minimum.

The evolution of ϱ(t) can be studied analytically by using the action-angle formalism [190, 191],

see also [192]. Neglecting the back-reaction, the evolution of the homogeneous mode is governed by

the Lagrangian density

L0 = f2aa
3(t)

[
1

2
Θ̇2 −m2

a(t)(1− cosΘ)

]
. (5.9)

This Lagrangian has a discrete shift symmetry given by Θ→ Θ+2π, so the motion in Θ-space can

be considered periodic. In the following, we define the period to be the time it takes for the field

to roll from one maximum to the other.

6We will use the time and temperature interchangeably depending on the nature of the quantity that we want to

calculate. We always assume radiation domination so t = (2H)−1, and H(T ) ∝ g∗(T )1/2T 2 where g∗ is the effective

number of relativistic degrees of freedom. We assume that g∗ is constant throughout the parametric resonance so we

can change from temperature to time and vice versa by T 2 ∝ t−1.
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Now we assume that the parameters carrying explicit time dependence, namely a and ma,

change adiabatically ; in other words, they remain approximately constant during a single period.

This assumption is justified if the Hubble time scale is larger than the period of the motion. We

will justify this assumption later. In the case of periodic motion where the Lagrangian changes

adiabatically, the action variable J defined by

J ≡
∮

Πq dq , (5.10)

is a constant of motion, where the integral is over a single period, and

q = faΘ and Πq =
∂L0

∂q̇
= a3(t)faΘ̇. (5.11)

Assuming that the scale factor and the axion mass are constant during one period, J becomes

J ≈ f2aa3(t)
∮

dΘ Θ̇ = 2ma(t)f
2
aa

3

∮ √
ϱ− sin2

(
Θ

2

)
. (5.12)

The integral can be performed analytically, and one gets

J ≈ ma(t)f
2
aa

3(t)×

{
8
√
ϱE
(
1/
√
ϱ
)
, ϱ > 1

8
[
(ϱ− 1)K(

√
ϱ) + E(

√
ϱ)
]
, ϱ < 1

, (5.13)

where K and E are complete elliptic integrals of the first and second kind, respectively7. By using

the limiting behaviour of these as ϱ→ 1, we can show that

lim
ϱ→1+

J(ϱ) = lim
ϱ→1−

J(ϱ) = 8ma(t)f
2
aa

3(t). (5.14)

The adiabatic invariant J remains approximately constant throughout the whole evolution. This

makes J(ϱ) a perfect quantity to compare the early and late time behaviors. At early times when

ϱ≫ 1 we have

J(ϱ≫ 1) ≈ 2πf2a Θ̇a
3, (5.15)

whereas at late times we get

J(ϱ≪ 1) ≈ πρΘa
3

ma
, (5.16)

where ma is the zero-temperature axion mass. Let us introduce the yield quantity defined by

Y ≡ nPQ/s, (5.17)

where s is the entropy density of the universe, and

nPQ = f2a Θ̇ (5.18)

is the Noether charge of the axion shift symmetry. This quantity is conserved during the early

evolution when the ALP mass is negligible, so the equation of motion of the ALP field is just

7We use the following definitions for the elliptic integrals:

K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

and E(k) =

∫ π/2

0
dφ

√
1− k2 sin2 φ

Note that most software packages such as Mathematica and scipy [193] uses m = k2 instead of k as their argument

when defining elliptic integrals.
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Θ̈ + 3HΘ̇ ≈ 0. The conservation of J(ϱ) implies that eq. (5.15) and eq. (5.16) should be equal,

which gives
ρΘ,today

stoday
≈ 2maY. (5.19)

where ρΘ,today and stoday are respectively the relic density
8 and entropy density today. This equation

is also derived in [27], however, the numerical factor there was obtained numerically. Here we

presented an analytical derivation.

From this result, we obtain a simple formula for the fractional energy density of the ALP field

today, which is

h2ΩΘ,today ≈ h2ΩDM

(
ma

5× 10−3 eV

)(
Y

40

)
, (5.20)

where we took h2ΩDM = 0.12 [194]. Note that the yield only depends on the zero temperature

axion mass, not on the high-temperature behaviour. The latter will be important in determining

the trapping temperature T∗. With zero-temperature QCD axion mass, eq. (2.5), the above relation

implies

h2ΩQCDaxion
ϕ,today ≈ h2ΩDM

(
109 GeV

fa

)(
Y

40

)
. (5.21)

Before closing this subsection, we mention in which conditions the adiabaticity assumption is

justified. To do this, we need to calculate the periods of the motion before and after trapping. By

neglecting the energy loss due to the Hubble expansion during a single oscillation, the periods T>
before and T< after trapping can be derived as

T>(ϱ) =
2

ma(T )
√
ϱ
K(1/

√
ϱ) and T<(ϱ) =

2

ma(T )
K(
√
ϱ). (5.22)

At early times when ϱ≫ 1 we have

T>(ϱ≫ 1) ≈ π

ma(T )

√
1

ϱ
≈ 2π

Θ̇
, (5.23)

so the adiabaticity condition reads Θ̇ > 2πH. At early times Θ̇ ∝ a−3 and H ∝ a−2 so it is sufficient

if this condition is satisfied at trapping Θ̇ = 2ma(T∗). This yields m∗ > πH∗ as the adiabaticity

condition. On the other hand, at late times when ϱ≪ 1 we have

T<(ϱ≪ 1) ≈ π

ma(T )
, (5.24)

so the adiabaticity condition becomes m > πH. Again, it is sufficient that this condition is satisfied

at trapping, which yields
ma(T∗)

H∗
≳ π, (5.25)

as the adiabaticity condition. As we will show explicitly in section 7, the most interesting region

of the parameter space is where ma(T∗)/H∗ ≫ 1 which justifies the adiabaticity assumption. We

note that even for ma(T∗)/H∗ ≫ 1, the adiabaticity is broken for a period around ϱ = 1, but this

period is shorter for larger ma(T∗)/H∗.

8As we in this part of the thesis consider fluctuations, ρa is split into the energy density of the homogenous field

ρΘ and the energy density in fluctuations ρfluct.
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5.2 Trapping temperature

The trapping temperature is an important quantity since fragmentation happens around the same

time as trapping. We recall that the trapping happens at ϱ = 1 for which

J(ϱ = 1) = 8ma(T∗)f
2
aa

3
∗. (5.26)

By comparing this with eq.(5.16), and using conservation of J(ϱ) we obtain

ma(T∗)

ma

(
a∗

atoday

)3

=
π

8

ρΘ,today

Λ4
b,0

, (5.27)

where Λ4
b,0 = m2

af
2
a is the zero-temperature barrier height. By assuming the QCD-like temperature

dependence of ma(T ) in eq. (2.8) we can calculate the trapping temperature via (5.27). The result

is

T∗
Λb,0

≈ (2.12)
γ

6+γ
(
2× 108

) 2
6+γ

(
gs(T∗)

72

)− 2
6+γ
(
Λb,0

GeV

) 2
6+γ
(
h2Ωϕ,today

h2ΩDM

)− 2
6+γ

. (5.28)

We can observe that the trapping temperature depends only on the zero temperature barrier height

and on the scaling of the axion mass at high temperatures. For the QCD axion, the trapping

temperature does not depend on the axion mass, and it is given by

TQCD
∗ ≈ (1.21GeV)

(
h2Ωϕ,today

h2ΩDM

)−0.141

. (5.29)

We show a plot of the trapping temperature as a function of the zero-temperature barrier height

for various choices of γ in figure 2. Equation (5.28) is a key quantity that determines the different

fragmentation regimes.

6 Analytical theory of parametric resonance in kinetic misalignment

6.1 Parametric resonance

After the discussion of the evolution of the homogeneous mode Θ, we now turn our attention

to fluctuations. We generalize the results of [29] by including the regime of fragmentation after

trapping. We also use different initial conditions for the fluctuations. If we consider time scales

much shorter than H−1, we can neglect the expansion of the universe and take a and ma(T ) to

be approximately constant. The equation of motion for axion mode functions (5.6) then takes the

form

θ̈k +

[
k2

a2
+m2

a(T ) cosΘ

]
θk = 0. (6.1)

This is a second-order differential equation with periodic coefficients, so it has the form of the Hill’s

equation [195]. According to the Floquet theorem, the solutions should be of the form

θk(t) = θ+(t; k)e
µkt + θ−(t; k)e

−µkt, (6.2)

where θ±(t; k) are periodic functions in time, and µk’s are in general complex numbers known as

Floquet exponents. If Re{µk} > 0, then the mode grows exponentially during one oscillation, and

one says that the mode experiences instability via parametric resonance. The primary goal of the

Floquet analysis is to determine the instability bands of the system, which are the regions where

Re{µk} > 0.

In the case of oscillations after trapping, a closed-form expression for the Floquet exponents

has been obtained in [196]. We have found that this method can easily be extended to derive an
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Figure 2. Trapping temperature T∗ given in eq. (5.28) (left figure), and the ratio between T∗ and the zero-

temperature barrier height Λb,0 (right plot) as a function of Λb,0 for different choices of γ which parametrizes

the early-time scaling of the barrier height, and thus of the axion mass, with temperature as defined in (2.8).

We see that this ratio increases for larger Λb,0, and the trapping temperature becomes more sensitive to the

early time behaviour of the axion potential. The dashed vertical purple line shows the zero-temperature QCD

barrier height 75.6MeV.

analogous expression for Floquet exponents during the evolution before trapping. In this section,

we will just state the result and discuss the consequences. The detailed derivation is presented in

Appendix B.

Let ϱ be the dimensionless energy of the homogeneous mode as defined in (5.8), and let us

introduce a dimensionless momentum

κ ≡ k/(a ma(T )). (6.3)

Then the Floquet exponents have the following analytical solution:

µk =
√

8κ2(ϱ− κ)(1− ϱ+ κ2)×

{
T −1
> (ϱ) I

(
arcsin

(
1/
√
2ϱ− 1

))
, ϱ > 1

T −1
< (ϱ) I(π/2), ϱ < 1

, (6.4)

The first line in (6.4) is new, while the second line was derived in the literature. T> and T< are the

periods before and after trapping, respectively, and I(φ) is the following integral:

I(φ) =
∫ φ

0

dϑ′

1 + (1− 2ϱ+ 2κ2) sin2 ϑ′
2 sin2 ϑ′√(

1 + sin2 ϑ′
)[
1 + (1− 2ϱ) sin2 ϑ′

] . (6.5)

The periods T can be derived from the conservation of energy. They read

T>(ϱ) =
2

ma(T )
√
ϱ
K(1/

√
ϱ) and T<(ϱ) =

2

ma(T )
K(
√
ϱ). (6.6)

From the square root term in (6.4) we can immediately obtain the instability band. Before trapping,

it is given by

ϱ− 1 < κ2 < ϱ, (6.7)
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while its form after trapping is

0 < κ2 < ϱ. (6.8)

If one neglects the Hubble expansion, both ϱ and κ do not change, so these modes keep growing.

Therefore, in order to get realistic results, we need to incorporate the Hubble expansion, which we

will do next.

The Hubble expansion and the temperature dependence of the axion mass can be incorporated

by restoring the time dependence of ϱ and κ in the expression for the Floquet exponent (6.4):

κ→ κ(t) =
k/a(t)

ma(t)
and ϱ→ ϱ(t), (6.9)

where ϱ(t) is given by (5.8). As a result, the Floquet exponents now become time-dependent:

µk → µk(κ(t), ϱ(t)). (6.10)

Then we can obtain the total amplification factor Nk of a given mode by integrating the time-

dependent Floquet exponents over time:

Nk(t) = exp

(∫ t

ti

dt′ µ(κ(t′), ϱ(t′))

)
, (6.11)

where ti is some initial time before which the parametric resonance is not effective. At this point,

it is convenient to introduce dimensionless quantities via

κ∗ ≡
k/a∗
ma(T∗)

, τ ≡ 2H∗t , µ̃ ≡ µ

ma(T∗)
, (6.12)

where ∗-subscript implies that the quantities are evaluated at T∗ defined by (5.7). In terms of these

quantities, (6.11) becomes

Nk(τ) = exp

(
ma(T∗)

2H∗

∫ τ

τi

dτ ′ µ̃(κ(τ ′), ϱ(τ ′))

)
≡ exp

(
ma(T∗)

2H∗
Bk(τ)

)
. (6.13)

The growth factor Bk depends on the temperature scaling γ of the axion mass, but not on the

model parameters such as ma(T∗) and H∗. For the modes which amplify most efficiently its value

is ∼ O(0.5). Therefore the efficiency of the fragmentation is effectively determined by the hierarchy

between the axion mass and Hubble rate at trapping. This result can be understood physically. If

the Hubble rate is much smaller than the axion mass at the beginning of oscillations, the redshifting

of the homogeneous mode becomes very slow, which allows the axion to probe non-quadratic parts

of its potential for a longer time. In the standard misalignment mechanism, ma(T∗)/H∗ ∼ 3 so the

expansion quickly redshifts the amplitude of the oscillations, which makes the parametric resonance

ineffective. In a nutshell, efficient parametric resonance requires a mechanism which delays the onset

of oscillations. The Kinetic Misalignment Mechanism provides this via large initial kinetic energy.

In the Large Misalignment Mechanism [197, 198] this is achieved by tuning the initial angle to the

top of the axion potential such that the onset of oscillations is delayed due to the small potential

gradient at the top.

It is also instructive to study how the shape of the instability bands changes with time. For

this, let us introduce the following quantity:

J̃(t) =
ma(t∗)

ma(t)

(
a∗
a(t)

)3

. (6.14)

Then we can write κ(τ) as

κ(τ) = κ∗J̃(τ)τ. (6.15)
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To obtain ϱ(τ) we note that the adiabatic invariant (5.13) can be expressed in terms of J̃ by

J(ϱ(τ)) = 8f2ama(t)a
3(t)J̃(τ), (6.16)

so that

J̃(ϱ) =

{√
ϱE(1/

√
ϱ), ϱ > 1

(ϱ− 1)K(
√
ϱ) + E(

√
ϱ), ϱ < 1

. (6.17)

At a given time, this function can be inverted to get ϱ(τ). Generally, this needs to be done

numerically. However, in asymptotic regimes, we can use the following approximations:

J̃(ϱ≫ 1) ≈ π

2

√
ϱ and J̃(ϱ≪ 1) ≈ π

4
ϱ. (6.18)

We are now ready to discuss the behavior of the instability bands. Before trapping, the expression

for the instability band (6.7) can be written as

ϱ− 1(
J̃(τ)τ

)2 < κ2∗ <
ϱ(

J̃(τ)τ
)2 . (6.19)

Initially, ϱ is large, so the width of the instability band is narrow. As the energy of the homogeneous

mode decreases, the instability band gradually widens. The behavior after trapping is slightly more

involved. The expression for the instability band (6.8) becomes

0 < κ2∗ <
ϱ(

J̃(τ)τ
)2 . (6.20)

At late times when ϱ≪ 1 we have ϱ ≈ 4J̃/π. Therefore the upper limit of the instability band can

be approximated as

ϱ(
J̃(τ)τ

)2 ≈ 4

π
τ−1/2 ×

{
τγ/4, T > Tc

ma/ma(T∗), T < Tc
. (6.21)

We see that for γ > 2, the upper limit of the instability band grows with time until the axion

reaches its zero-temperature mass and then decreases with time. This means that the modes with

κ∗ > 1 which did enter and exit the instability band at the rolling stage will re-enter the instability

band after trapping. On the other hand, for γ < 2, and also for constant axion mass, the width

of the instability band will shrink after trapping. We show the evolution of the instability bands,

Equations (6.19) and (6.20), as a function of the scale factor for these two cases in figure 3.

Even though the Floquet analysis predicts a very wide instability band, the fragmentation is

most efficient around trapping, as can be observed in figure 4. In this plot, we have used the

parameters of figure 3 with γ = 8, but we also show the value of the Floquet exponents and zoom

in to the region around trapping. The white lines denote the boundaries of the instability band.

Our approximation so far sizably overpredicts the amplification factor. The reason is that the

Floquet analysis gives the amplification factor during one oscillation by neglecting the damping of

the mode due to the redshift. More specifically, if the Floquet exponents for a mode are imaginary

at all times, our approximation would predict that the amplitude of this mode will stay constant,

which of course is not correct. Instead, the amplitude of this mode will get redshifted and becomes

smaller. To account for this, we assume that on top of the amplification given by (6.13), all modes

redshift like a free particle. This decay factor can be calculated using WKB approximation, which

yields

Ak(t) ∝ ω−1/2
k (t)a−3/2(t) where ωk(t) =

√
k2

a2(t)
+m2

a(T ). (6.22)
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Figure 3. Time evolution of the instability bands, eq. (6.19) and (6.20), as a function of the scale factor for

two benchmark points with γ = 8 (upper plot), and constant mass γ = 0 (lower plot). Here, m∗ = ma(T∗).

In both cases we set ma = 10−11 eV, and choose the decay constant fa such that ma(T∗)/H∗ = 102.
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Figure 4. Evolution of the instability bands together with the value of the Floquet exponents by zooming into

the region around trapping. The white lines denote the boundaries of the instability band. Fragmentation is

most efficient around trapping a ≈ a∗. The model parameters are identical to the ones used in figure 3 with

γ = 8.

So our final ansatz for the mode functions is

|θk(t)| = θk,iAk(t)Nk(t), (6.23)

where θk,i is related to the initial field power spectrum (5.4) by θk,i =
√
Pθ(k), Ak(t) is normalized

such that it is unity initially, and we have omitted the oscillatory term. We provide a comparison

between this ansatz and the full numerical solutions of the mode functions in figure 5. The param-

eters are the same as in figures 3 and 4. The thin solid lines show the numerical solutions, while

the thick dashed lines are calculated via (6.23). We started the numerical solution at τ = 0.1 with
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Figure 5. Comparison between the numerical solution (thin solid lines) and our analytical ansatz (6.23)

(thick dashed lines) for three benchmark momentum modes, showing a very reasonable agreement. The

parameters are the same as in figures 3 and 4.

an initial amplitude θk,i = 1 for all the modes. We confirm that our ansatz (6.23) provides a very

reasonable approximation to the numerical solution.

6.2 An estimate of the back-reaction

In our discussion so far, we have neglected the back-reaction of the fluctuations on the homogeneous

mode. However, this approximation breaks down when fragmentation becomes efficient because the

fluctuations eventually cannot be considered small compared to the homogeneous mode [29]. If the

only thing we want to know is whether at a given point on the ALP parameter space the relic

density is dominated by fragmented axions or by the homogeneous mode, then the back-reaction

effects might not be important. However, such effects are important for observational consequences

of fragmentation such as mini-clusters [30]. To estimate such consequences, we need to calculate the

density power spectrum of the ALP field after fragmentation, and in order to get accurate results

we need to take the back-reaction into account.

A precise study of the back-reaction should be performed by using non-perturbative methods

such as lattice simulations. However, we can obtain a simple estimate semi-analytically. For this, we

only need to assume that fragmentation steals energy from the homogeneous mode and gives it to

the fluctuations. This implies that the energy gained by the fluctuations during the fragmentation

is equal to the energy lost by the homogeneous mode during the same period:

∆ρfluct = −∆ρΘ, (6.24)

where ρΘ is the energy density in the homogeneous mode. This idea has also been used in [29] for

an extensive discussion of the fragmentation before trapping. As we will show later, our calculations

reproduce these results under appropriate limits.

The energy density in the fluctuations is

ρfluct =
f2a
2

∫
d3k

(2π)3

[∣∣∣θ̇k(t)∣∣∣2 + (k2
a2

+m2
a(t) cosΘ

)
|θk(t)|2

]
, (6.25)
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including the back-reaction effects through the procedure (6.30). It shows the importance of back-reaction

effects as fa is decreased. This plot is made for a constant mass ma(T∗) = ma = 10−15 eV.

where we have neglected higher-order terms in θk. Since the mode functions oscillate very rapidly,

we can assume that the kinetic and potential terms contribute equally. We also average over

the oscillations of the homogeneous mode. With these assumptions and our ansatz (6.23), we

approximate the energy density in fluctuations as

ρfluct(t) ≈
f2a
4π2

∫
dk k2

(
k2

a2
+m2

a(t)cosΘ

)
Pθ(k)A

2
k(t)N

2
k (t), (6.26)

where

cosΘ ≡ 1

Θmax −Θmin

∫ Θmax

Θmin

dΘ cosΘ =

{
0, ϱ > 1,

sinc(2 arcsin
√
ϱ), ϱ < 1

. (6.27)

The extra 1/2 factor in (6.26) arises from averaging over the mode function oscillations. From this

result, we can estimate the energy lost by the homogeneous mode during a short time period ∆t as

−∆ρΘ
∆t

=
∆ρfluct
∆t

≈ f2a
4π2

∫
dk k2

(
k2

a2
+m2

a(t)cosΘ

)
Pθ(k)A

2
k(t)

N2
k (t)−N2

k (t−∆t)

∆t
. (6.28)

Note that we have only varied the amplification factor Nk since we are only interested in the change

in the energy due to the fragmentation. In the ∆t→ 0 limit, we find

−dρΘ
dt

=
dρfluct
dt

≈ f2a
4π2

∫
dk k2

(
k2

a2
+m2

a(t)cosΘ

)
Pθ(k)A

2
k(t)

[
2N2

k (t)µ(κ(t), ϱ(t))
]
, (6.29)

where we have used (6.11) when taking the time derivative.

With this result, we can employ the following procedure to calculate the amplification factors

including back-reaction: Choose an initial time τi at which Pθ(k) is known and Nk(τi) = 1 for all

modes. Pick a sufficiently small time-step ∆τ , and at each time interval calculate the amplification

factors by

lnNk(τ +∆τ) = lnNk(τ) +
ma(T∗)

2H∗

∫ τ+∆τ

τ

dτ ′ µ̃k(τ
′) ≈ lnNk(τ) +

ma(T∗)

2H∗
∆τ µ̃k(τ). (6.30)
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For each time step, find ϱ via (6.14) and (6.17) and therefore the time-dependent Floquet exponent

µk. Take into account the decrease in ϱ due to the back-reaction via (6.29). Then repeat the steps

either until fragmentation is no longer efficient or when ϱ drops to zero, indicating complete frag-

mentation. At this stage, the dynamics of the system become non-perturbative, so our calculation

should be considered an estimate. We illustrate the importance of back-reaction effects in figure

6. We will use this procedure in the following, especially to determine the boundary between the

‘after-trapping’ and ‘before-trapping’ fragmentation regimes defined in section 6.

6.3 Initial conditions for the mode functions

In order to study the consequences of fragmentation for ALP dark matter, we need to specify the

initial conditions for the mode functions prior to fragmentation. A scalar field, like any component

in the universe, can have adiabatic and isocurvature fluctuations. Adiabatic fluctuations arise solely

due to the temperature fluctuations in the universe and are unavoidable for any cosmological fluid,

including scalar fields. On the other hand, the isocurvature fluctuations are the fluctuations on

constant density slices, and they describe any other kind of fluctuation which is not adiabatic.

In the case of standard misalignment mechanism, adiabatic fluctuations of an ALP field are

negligible during the early evolution when it is Hubble frozen [199]. They start to grow once the

homogeneous mode starts oscillating. If the ALP field is present during inflation, for example, if the

Peccei-Quinn (PQ) symmetry is broken during inflation in the case of the QCD axion, then it will

pick up quantum fluctuations given by δϕ = HI/2π, where HI is the inflation scale. This causes

fluctuations in the initial axion angle Θi given by δΘi ≃ HI/(2πSI) where SI is the effective axion

decay constant during inflation which can be different from its value at low temperatures [200].

The situation changes drastically in the case of rotating axions. In this case, the ALP field has a

much more complicated cosmological history which is highly model-dependent. A common property

in all of these histories is that the ALP field starts moving much earlier compared to the standard

case, and it has a large velocity long before the ALP potential turns on. As we show below, this

velocity, together with curvature perturbations, acts as a source term for adiabatic fluctuations and

makes them grow. In addition to these, the kick mechanism can induce isocurvature fluctuations

from the quantum fluctuations of the field responsible for producing the kick. These can constrain

the parameter space due to their isocurvature nature and can also lead to domain wall problems in

some cases [33].

A discussion of model realizations of the kinetic misalignment mechanism, including the possible

cosmological histories as well as the implications of isocurvature fluctuations, was presented in the

context of kination in [37]. In part III of this thesis, which is based on [2], we will present DM

implementations of the kinetic misalignment mechanism in a wider range of cosmological histories.

We postpone a discussion of the early cosmological history until part III. For now, we remain

agnostic about the model implementation and consider a standard cosmological history. We assume

that the modes that are relevant for fragmentation enter the horizon when the ALP field scales as

kination. We will present the necessary condition for the validity of this assumption towards the

end of this sub-section.

To study the evolution of initial fluctuations, we start by writing the FLRW metric with cur-

vature perturbations included. In conformal time η and Newtonian (conformal) gauge, the metric

reads

ds2 = a2(η)
{
−[1 + 2Ψ(η,x)] dη2 + [1 + 2Φ(η,x)]δij dx

i dxj
}
. (6.31)

Here Ψ and Φ are Bardeen potentials [201], and they represent the curvature perturbations. The

mode functions have the following equations of motion at early times: [1]

θ′′k + 2Hθ′k + k2θk = −4Φ′
kΘ

′, (6.32)
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where ′ denotes the derivative with respect to conformal time, and H = aH is the conformal Hubble

parameter. The right side of this equation represents the source term due to the curvature fluctu-

ations. This term clearly represents the difference between the standard and kinetic misalignment

mechanisms. In the standard case, the ALP field is frozen due to the Hubble friction, so Θ′ = 0.

Therefore, the source term is absent, and the adiabatic fluctuations remain zero until the oscillations

start. However, in the case of kinetic misalignment mechanism, the ALP field receives a kick at a

much earlier time, so the right side is non-zero for a much longer time. As a result, the standard

and kinetic misalignment mechanisms predict different initial conditions for mode functions. To

our knowledge, this is the first time that this has been pointed out. Further implications of this

source term will be discussed in upcoming work by Eroncel et al. [202].

By an explicit calculation of the mode functions which we described in Appendix B of [1], see

eq. (B.53), we obtained the following result for the power spectrum:

Pθ(k; a) = |θk(a)|2 ≈
2π2

k3

(
1

3

)2

As

(
Θ̇

H

)2

(6.33)

where As is the amplitude of the primordial power spectrum. At the pivot scale k = 0.05Mpc−1,

Planck 2018 (TT,TE,EE+lowE+lensing 68%) [194] has measured As,Planck = 2.1 × 10−9. This

result is valid for both super- and sub-horizon modes but assumes that the mode is super-horizon

when the ALP field starts its kination-like scaling. We denote quantities measured at this onset with

the subscript kin. The behavior of the modes which were sub-horizon at akin cannot be determined

without specifying the cosmological history before akin.

From this result alone, we can put a bound on the duration of the kination-like scaling. For

this, we evaluate the variance of the axion velocity:〈(
δθ̇
)2〉

=
1

2π2

∫ ∞

0

dk k2
∣∣∣θ̇k∣∣∣2 =

1

2π2a2

∫ ∞

0

dk k2|θ′k(η)|
2
. (6.34)

The integral is dominated by the modes which are sub-horizon but were super-horizon at akin. Then

by approximating |θ′k(η)|
2 ≈ k2|θk(η)|2, and using (6.33) we find at late times〈(

δθ̇
)2〉

≈ 1

2

(
1

3

)2

AsΘ̇
2

(
a

akin

)2

. (6.35)

Then we can estimate the density contrast by

δϕ ∼
δ
(
θ̇2/2

)
Θ̇2/2

∼ 2

Θ̇

√〈(
δθ̇
)2〉

≈
√
2As

(
1

3

)
a

akin
. (6.36)

This becomes O(1) when
a/akin ≳ 105. (6.37)

This implies that if the ALP field scales as kination more than ln
(
105
)
∼ 10 e-folds, then the ALP

field cannot be considered homogeneous anymore. A similar bound applies if the ALP drives a

kination era. The bound eq. (6.37) is an important constraint when considering UV completions

[2], in particular models where the ALP temporarily drives a kination era in the early universe,

enhancing primordial GW signals. Such bound on the total duration of a kination era was overlooked

in previous literature on kination, as discussed in [37]. This bound leads to important constraints

on the model implementations, which we explore in part III.
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As we have stated previously, in this work, we will assume that all the modes relevant for

fragmentation are super-horizon at akin. This assumption requires that

k

akinHkin
< 1 ⇒ κ∗

ma(T∗)

H∗

akin
a∗

< 1. (6.38)

If we demand that this condition is satisfied for the relevant modes for fragmentation, i.e. κ∗ ∼ O(1),
then we need to demand that

ma(T∗)

H∗
≲

a∗
akin

. (6.39)

The quantity a∗/akin depends on the specifics of the UV completion, however we have shown that

the homogeneity of the ALP field prior to fragmentation requires a∗/akin ≳ 105 which puts the

bound ma(T∗)/H∗ ≲ 105. In the next section, we will show that this bound is satisfied in the region

of the ALP parameter space where our analytical approximation is under control.

With all these assumptions above, we can fix the field power spectrum at the onset of fragmen-

tation by

Pθ(k; ai) =
2π2

k3

(
1

3

)2

As

(
Θ̇2

i

H2
i

)
. (6.40)

As we will see explicitly in the coming sections, the choice of ai is not relevant for the final result,

as long as it is early enough that Θ̇ ∝ a−3, and any fragmentation prior to ai can be neglected.

7 ALP dark matter from fragmentation

7.1 Overview of the fragmentation regions

We categorize the ALP parameter space by dividing it into different regions according to whether

and when fragmentation takes place. There are four different scenarios:

1. Standard misalignment: In this case the onset of oscillations is not delayed from its

conventional value ma(Tosc) = 3H(Tosc), and the standard misalignment mechanism is at

play.

2. Kinetic misalignment with weak fragmentation: The ALP field has a non-zero initial

velocity such that the onset of oscillations is delayed, but the particle production is not strong

enough so that the energy density in fluctuations is always subdominant to the zero mode.

3. Fragmentation after trapping: The ALP field is completely fragmented, but the fragmen-

tation ends after it would have been trapped by the potential in the absence of fragmentation,

i.e. Tend < T∗.

4. Fragmentation before trapping: The ALP field is completely fragmented, and the frag-

mentation ends before it would have been trapped by the potential in the absence of frag-

mentation. It other words the fragmentation is complete at Tend > T∗ where T∗ is given by

(5.29).

The boundaries between these regions depend strongly on the hierarchy between the axion mass

and the Hubble rate at trapping, and have a very mild dependence on the other model parameters.

In the rest of this section, we will calculate these boundaries while giving details on the properties

of the fragmentation in each region.

An overview of these regions on the [ma, fa] plane along with various model parameters can be

seen in figures 7 and 8.
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Figure 7. Overview of the fragmentation regions for temperature-dependent axion mass with γ = 8 (left

plot), and for constant axion mass (right plot). The solid contours denote the zero-temperature barrier

heights, while the dashed ones are the m∗/3H∗ contours, where T∗ is given in eq. (5.28).
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given in eq. (5.28).
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7.1.1 Boundary between regions 1 and 2:

In order to have kinetic misalignment, the onset of oscillations needs to be delayed so ma(T∗) >

3H(T∗). Therefore the boundary between the regions 1 and 2 is given by the condition

ma(T∗) = 3H(T∗). (7.1)

In a generic ALP model, the critical value of the axion decay constant fa,crit for a given zero-

temperature axion mass ma can be calculated via (2.8) and (5.27). It can approximately be ex-

pressed as

f1 – 2
a,crit ≈ 1012 GeV

[
(3π)

−12−2γ

(
gs(T∗)

72

)2+γ(ma

eV

)−4−γ
(
h2ΩΘ,today

h2ΩDM

)8+2γ
] 1

16+3γ

(7.2)

For the QCD axion this value is

f1 – 2
a,crit ≈ 2.15× 1011 GeV, for a QCD axion. (7.3)

This is in agreement with the result obtained in [27].

7.1.2 Boundary between regions 2 and 3:

To calculate this boundary, we need to find the region where the energy density in the fluctuation

remains subdominant compared to the energy density in the homogeneous mode. In this region,

the back-reaction can be neglected. The energy density in the homogeneous mode is

ρΘ = 2f2am
2
a(T )ϱ, (7.4)

while the energy density in the fluctuations is (6.26)

ρfluct =
f2

4π2

∫
dk k2

(
k2

a2
+m2

a(t)cosΘ

)
Pθ(k)A

2
k(t)N

2
k (t). (7.5)

Let us define a quantity ∆ ≡ limt→∞ ρfluct/ρΘ as the ratio between the two energy densities at late

time limit. We refer to this quantity as the “efficiency” of the fragmentation. Then the transition

from weak fragmentation to complete fragmentation should occur approximately when ∆ reaches

unity. This point will determine the boundary between the regions 2 and 3.

We are interested in the late time limit of ∆. In this limit cosΘ = 1, and we can assume

that all the modes which did grow during the parametric resonance become non-relativistic so

that the momentum term in (7.5) can be ignored. The redshift factor A2
k(t) at late times can be

approximated by

A2
k(t) =

ωk(ti)

ωk(t)

(ai
a

)3
≈ k/ai

ma

(ai
a

)3
=

ka2i
maa3

. (7.6)

By plugging this result into (7.5) and using the expression for the initial power spectrum, we find

that the energy density in the fluctuations approach an asymptotic value given by

ρfluct →
mama(T∗)f

2
a

2

(
1

3

)2

As

(
Θ̇i

Hi

ai
a∗

)2(a∗
a

)3 ∫
dκ∗ exp

(
ma(T∗)

H∗
B∞κ
)
, (7.7)

where B∞κ is the asymptotic value of the growth factor defined in (6.13). The late time limit of the

energy density of the homogeneous mode can be found by using the fact that for ϱ≪ 1 we have

ϱ ≈ 4

π
Ĩ =

4

π

ma(T∗)

ma

(a∗
a

)3
. (7.8)
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With this result, the efficiency factor takes the form

∆ =
π

16

(
1

3

)2

As

(
Θ̇i

Hi

ai
a∗

)2 ∫
dκ∗ exp

(
m∗

H∗
B∞κ
)
. (7.9)

Note that at early time Θ̇ ∝ a−3, therefore the pre-factor in this expression does not depend on the

choice of the initial time provided that it is early enough so that Θ̇ ∝ a−3, and any fragmentation

prior to this time can be neglected. By expressing the axion velocity Θ̇i in terms of the yield

parameter introduced in section 5.1 as Θ̇i = s(Ti)Y/f
2
a where s(Ti) is the entropy density at Ti, we

can derive the following result:

Θ̇i

Hi

ai
a∗
≈ 4π

3

√
gs(T∗)

10

Y T∗mPl

f2a
. (7.10)

When arriving at this, we have neglected the difference between the effective degrees of freedom at

Ti and T∗, and also assumed that the effective degrees of freedoms in the entropy and the energy

density are the same. So our final expression for the efficiency factor is

∆ =
π3

10

(
1

9

)2

Asgs(T∗)

(
Y T∗mPl

f2a

)2 ∫
dκ∗ exp

(
ma(T∗)

H∗
B∞κ
)
. (7.11)

With this factor, we can calculate the critical point at which the efficiency becomes unity. We find

that across the parameter space the transition happens around ma(T∗)/H∗ ≈ 42 for γ = 8, and

around ma(T∗)/H∗ ≈ 38 for constant axion mass (γ = 0). This leads to a critical axion decay

constant given by

f2 – 3
a,crit ≈ 1012 GeV

[
(40π)

−12−2γ

(
gs(T∗)

72

)2+γ(ma

eV

)−4−γ
(
h2ΩΘ,today

h2ΩDM

)8+2γ
] 1

16+3γ

(7.12)

For the QCD axion, this boundary corresponds to a decay constant of

f2 – 3
a,crit ≈ 1.5× 1010 GeV, for a QCD axion. (7.13)

7.1.3 Boundary between regions 3 and 4:

In both regions the parametric resonance is efficient enough for complete fragmentation. The

question here is in which regime fragmentation becomes efficient prior to trapping of the field. At

times much earlier than trapping, i.e., for ϱ ≫ 1, we can simplify the fragmentation calculation

significantly. In this regime, the analysis we have outlined in section 6 reproduces the results of

[29], which we showed in detail in Appendix C of [1]. In this regime, the particle production by

fragmentation is efficient when

H(T ) ≲
πm4

a(T )

4Θ̇3(T )
. (7.14)

To a good approximation, exponential particle production begins if the inequality (7.14) is satisfied

before the trapping. Very quickly after the onset of exponential particles production, the back-

reaction becomes relevant. This takes place when [1, 29]

H(T ) ≲
πm4

a(T )

4Θ̇3(T )

1

lnα−1(T )
, (7.15)

where for adiabatic initial conditions

α(T ) =

(
4π

9

)2(
gs(T∗)

80

)2(
Y T∗mPl

f2a

)2

As

(
T

T∗

)2

. (7.16)
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If the inequality (7.15) is saturated before trapping, then the energy density of the homogeneous

mode is efficiently converted into fluctuations, and the fragmentation is completed in a short amount

of time. This criterion is what we use to determine when fragmentation is efficient.

To estimate the temperature at which the back-reaction becomes prominent, we can replace

Θ̇(T ) ≈ s(T )Y/f2 and ma(T ) = ma(T∗)(T∗/T )
γ/2 in (7.15) to get an equation in terms of the

temperature T and other model parameters. Let Ts denote the solution of this equation. For

fragmentation to be completed before trapping, this temperature Ts should be larger than the

trapping temperature T∗. Therefore, region 4 can be approximately defined by the condition Ts ≳
T∗. Across the parameter space, the transition happens around ma(T∗)/H∗ ∼ 9(5) × 102 for

γ = 8(0). The expression for the critical decay constant can be approximated by

f3 – 4
a,crit ≈ 1012 GeV

[(
O(1)π × 102

)−12−2γ
(
gs(T∗)

72

)2+γ(ma

eV

)−4−γ
(
h2ΩΘ,today

h2ΩDM

)8+2γ
] 1

16+3γ

(7.17)

where the O(1) factor is γ-dependent. For the QCD axion, the critical decay constant at this

boundary is

f1 – 2
a,crit ≈ 7.3× 108 GeV, QCD axion. (7.18)

7.1.4 Breakdown of perturbativity for larger m∗/H∗

Finally we discuss what happens in the parameter space where m∗/H∗ is even larger. For this, we

revisit the equation of motion for the homogeneous mode (5.5), but we also include the back-reaction

at leading order. Then the equation of motion is modified to [29]

Θ̈ + 3HΘ̇ +m2
a(T ) sinΘ−

1

2
m2

a(T ) sinΘ
〈
(δθ)

2
〉
= 0. (7.19)

The last term is responsible for the back-reaction of fluctuations, and as a result for the completion of

the fragmentation. All of our analysis depends on the assumption that this term is negligible before

the onset of fragmentation. Therefore we should check whether the adiabatic initial conditions for

the mode functions (6.33) do not violate this assumption at the beginning of fragmentation.

By using (6.33), the variance can be calculated by

〈
(δθ)

2
〉
=

∫
d3k

(2π)3
|θk|2 ∼

(
1

3

)2

As

(
Θ̇

H

)2

, (7.20)

where we have neglected the modes with k/akinHkin > 1, and assumed ln(a/akin) ∼ O(1). At early
times, the background evolution is dominated by the first two terms in (7.19) since the mass is

negligible. However, if the variance becomes much larger than unity at these times, it can affect

the slow-roll evolution much earlier than the fragmentation does. To avoid this case, we demand

that

3H(T )Θ̇(T ) >
m2

a(T )

2

(
1

3

)2

As

(
Θ̇(T )

H(T )

)2

(7.21)

until the onset of fragmentation Tfrag given by the solution of (7.14). This puts a strong bound on

the parameter space which can roughly be approximated by

ma(T∗)

H∗
≲ O(1—10)× 103, (7.22)

where the factor depends on γ. We want the stress that this result does not exclude the parameter

space where this bound is violated. It just implies that the analysis we describe might not be
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Figure 9. Left: Dilution factor (7.24) as a function of the axion decay constant for an ALP with con-

stant mass ma(T ) = 10−15 eV. Right: Amplification factor Nk (6.13) as a function of the dimensionless

momentum k/a∗m∗. The solid lines show the spectrum at the end of fragmentation, while the thin dashed

lines together with the shaded regions show the spectrum when the ALP is trapped. The line colors match

with the colored dots on the left plot.

reliable, and a dedicated study is needed. Here in part II, we concentrate on the region of the

parameter space where (7.22) is satisfied9.

7.2 ALP relic density with fragmentation

If the ALP field is completely fragmented, then all the energy density in the homogeneous mode

gets transferred into the fluctuations. This will have an effect on the relic density today, since the

redshift of the ALP energy density is not necessarily the same with and without fragmentation.

Naive expectation is that the energy density will be diluted slightly since the modes that are

enhanced exponentially are mildly relativistic right after fragmentation. Therefore it is natural to

ask whether this effect is significant or not.

At late times, the ALP energy density is given by

ρθ = ρθ +
f2a
2

∫
d3k

(2π)3

[
θ̇2k +

(
k2

a2
+m2

a

)
θ2k

]
, (7.23)

where ρθ is the energy density remaining in the homogeneous mode which is negligible in the case

of complete fragmentation. Let ρΘ be the energy density without fragmentation. We define the

dilution factor as

Z ≡ ρθ
ρΘ
. (7.24)

which will be relevant for the section on the gravitational-wave signal. Unfortunately, it is not

possible to calculate this factor precisely without a proper lattice simulation. In the non-linear

regime after the fragmentation, the self-interactions between the enhanced momentum modes can

modify the momentum spectrum of the fluctuations which can cause O(1) modifications in the

dilution factor. We leave the careful study of this dilution factor with lattice simulations for future

work.
9We have also checked whether the variance term can dominate the mass term in (7.19) before the onset of

fragmentation. This yields a weaker bound given by ma(T∗)/H∗ ≲ O(1)× 105.
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Figure 10. Evolution of the energy density of the axion in the large misalignment case (where the field

is initially frozen and then redshifts as matter once oscillations turn on) compared to the kinetic misalign-

ment/fragmentation case (a−6 redshifting preceding the matter era, with almost no time for a radiation-like

a−4 behaviour in between).

At least we show in fig. 9 our estimate for Z. Here, we assume an ALP with constant mass, fixed

it to be ma = 10−15 eV, and show the behaviour of the dilution factor as a function of the decay

constant fa on the left plot. For large decay constants, the fragmentation is inefficient, therefore

we have Z ≈ 1. As the fragmentation becomes more efficient, i.e. for smaller decay constants,

more and more energy is transferred to the modes that are mildly relativistic after fragmentation.

As a result, the dilution factor decreases confirming our expectations. However, we observe the

opposite trend at even lower decay constants where our calculation predicts dilution factors larger

than one, meaning that the relic density is enhanced by the fragmentation. This might be seen

counter-intuitive at first, but it is not. For small decay constants, most of the fragmentation occurs

before trapping as we can see from the right plot of fig. 9. Recall that the energy density of the

homogeneous mode scales as ρΘ ∝ a−6 in this regime. During fragmentation, the energy density is

transferred to the fluctuations that redshift slower compared to a−6. This yields to an enhancement

in the relic density. Even though the behaviour of the dilution factor can be understood for large

and small decay constants, we cannot derive conclusions about the behaviour in between with our

simplified calculation. The self-interactions between the excited modes can modify the momentum

distribution and therefore the dilution factor. This effect cannot be captured by our approximation

and require a lattice calculation.

We also show the evolution of the energy density of the axion in figure 10. This clearly shows

that there is almost no time for a radiation-like equation of state. The produced axions are not very

relativistic when they are produced and very quickly cool down so that we transit quickly from a

kination-like equation of state to a matter-like equation of state for the axion.
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8 Constraints on the ALP parameter space due to fragmentation

We need to impose a number of constraints to ensure that the fragmentation process does not spoil

existing cosmological observations. These are the following10:

8.1 Structure formation

If all of the dark matter is made up of fragmented axions, they will need to be sufficiently cold at

matter-radiation equality in order to be consistent with structure formation. This puts a constraint

on the axion velocity veq at matter-radiation equality aeq. In section 6, we learned that the momen-

tum modes which grow most efficiently due to the parametric resonance are those with k ∼ a∗m∗.

Then we can estimate the axion velocity at matter-radiation equality as

veq ∼
k/aeq
ma

∼
(
a∗
aeq

)(
ma(T∗)

ma

)
. (8.1)

To get precise constraints from structure formation would require involved numerical simulations,

which is beyond the scope of this work. Instead, we will use the bound veq < 10−3 which is

commonly considered in the literature [204]. So we demand(
a∗
aeq

)(
ma(T∗)

ma

)
≲ 10−3. (8.2)

It should be noted that in [35] the authors also consider a similar structure formation constraint.

The condition used in that reference yields a constraint that is somewhat stronger than the one

implied by our condition. However, since either condition is at most comparable with the BBN

constraint, we do not devote further attention to the matter.

8.2 Big Bang Nucleosynthesis (BBN)

The presence of an additional energy component at the time of BBN will modify the expansion rate

and therefore be subject to constraints from observations of primordial helium-4 and deuterium

abundances. Conventionally, the energy densities of new, dark and relativistic particle species are

recast in terms of a neutrino density to be constrained through the effective number of neutrino

species Neff . However, this recast is only possible when the new energy density redshifts like

radiation. Because our axions can either behave as cold dark matter, radiation or be in a phase

with a kination-like scaling, Neff does not provide a convenient language to cast our BBN constraints

in. Instead, we work directly in terms of energy densities and run a full numerical BBN calculation

in the presence of such an additional dark density component. Such a calculation can be done with

the built-in routines of the numerical code AlterBBN 2.2 [205].

The routine alter standmod in AlterBBN 2.2 permits the addition of an additional energy

density component of the form

ρD(T ) = ζργ(TBBN)

(
T

TBBN

)n

, (8.3)

where ζ = ρD(TBBN)/ργ(TBBN) is the ratio of the additional energy density to the photon density

as measured at the reference temperature TBBN = 1MeV and n is the scaling exponent such that

ρD ∝ a−n. Expressed in terms of the total radiation density the parameter ζ is

ζ =
ρD
ργ

∣∣∣∣
MeV

=
gρ(TBBN)

2

ρD
ρrad

∣∣∣∣
MeV

≈ 5.29
ρD
ρrad

∣∣∣∣
MeV

. (8.4)

10Note that the process of axion fragmentation does not generate a domain wall problem [203]. In part III, we will

encounter domain wall problems; these are not generated by fragmentation but rather by the evolution assumed by

the UV completion.
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If we assume that the ALP energy density scales cleanly with either n = 3, 4 or 6 during BBN,

we can then use this routine to calculate the produced helium-4 and deuterium abundances. These

abundances are then compared to the most current PDG constraints [206], which at 1σ uncertainty

are

Yp = 0.245± 0.003, (8.5)

D/H

∣∣∣∣
p

= (2.547± 0.025)× 10−5, (8.6)

where Yp and D/H|p are the helium-4 and deuterium fractions respectively. Using these constraints

with the AlterBBN routine alter standmod we obtain 2σ constraints on ALP densities. Depending

on the scaling of the axion relic at T ∼ 1MeV, the constraints are the following:

• ρD ∝ a−3: Cold dark matter is not constrained by BBN.

• ρD ∝ a−4: Constrained by BBN if ρD/ρrad|1MeV ≳ 3.2× 10−2.

• ρD ∝ a−6: Constrained by BBN if ρD/ρrad|1MeV ≳ 1.9× 10−1.

Only the last constraint is relevant for us. Taking ρD = ρΘ, this corresponds to a lower bound of

T∗ ≳ 20 keV. (8.7)

By using (7.10) and assuming that the field is still rolling at TBBN the last condition above becomes

equivalent to

4π2

135

(
gs(T∗)

gs(TBBN)

)1/3

gs(TBBN)

(
Y TBBN

fa

)2

≲ 0.19. (8.8)

Expressing the yield in terms of the zero-temperature axion mass by using (5.20) we find that the

BBN constraint implies a bound on the zero-temperature barrier height:

Λb,0 ≳ 9× 10−7 GeV ×
(
h2ΩΘ,0

h2ΩDM

)1/2

. (8.9)

This result is independent of all other model parameters including the temperature-dependence of

the axion mass. We observe that this bound is always stronger than the constraint from structure

formation.

8.3 ALP parameter space with existing and future experiments

We now show the fragmentation regions of section 7.1, and the model constraints of section 8 on

the axion parameter space together with the long list of experimental constraints/projections of

diverse nature discussion in section 3.2. This results in figures 11 and 12.

The Kinetic Misalignment Mechanism (KMM) is not the only method to get ALP dark matter

with lower decay constants. Another possibility is the Large Misalignment Mechanism (LMM)

where one chooses an initial angle very close to the top [197, 198]. The distinction between the

Standard and Large misalignment is arbitrary. In this work, we will define the LMM region as the

region above the orange line in figures 11 and 12, as this region requires tuning in the misalignment

angle to be realized by misalignment without initial kinetic energy. The required tuning in the

LMM scenario rapidly increases with decreasing fa. This is illustrated by the |π − θi| ∼ 10−1 and

the |π − θi| ∼ 10−12 lines on fig. 12.
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Figure 11. Parameter space for ALP dark matter. Every point in the white region can have the correct

relic abundance to explain DM. We assume a temperature-dependent axion mass with γ = 8, see (2.8) for

definition, consistent with the QCD axion. The orange line separates the Standard and Kinetic Misalignment

regions. The region above the orange line can also be reached without the initial kinetic energy, but by

choosing the initial angle very close to the top of the potential, i.e. Large Misalignment Mechanism. Above

the blue line, the fragmentation is efficient enough so that all the energy density is transferred from the

homogeneous mode to the fluctuations. Above the green line, the fragmentation becomes efficient before the

ALP gets trapped by the potential; see section 7.1 for the precise definitions. Above the red line, the variance

of the ALP angle becomes larger than unity before the onset of fragmentation, so our calculation cannot

be trusted. In the gray region, the ALP field is rolling during BBN with a large enough kinetic energy so

that it spoils the BBN predictions, see eq. (8.9). Thin lines correspond to experimental projections. The

bounds/projections on the axion-photon coupling are translated into bounds on the axion decay constant by

assuming a KSVZ-like coupling given in (3.18). Orange constraints apply to any ALP while the green ones

assume the ALP is DM.

9 Gravitational waves

In the case of efficient parametric resonance, the ALP field at the end of fragmentation can have

significant anisotropic stress, and this stress can source gravitational waves (GW). A precise eval-

uation of this process is not the topic of this study, and will be studied in a future work. Here,

we will present a very rough estimate based on the method introduced in [207]. A more detailed

analysis can be found in [208].

We start by discussing the frequency of the gravitational waves. Today’s frequency is related

to the comoving momentum k by

ν =
1

2π

k

atoday
=

1

2π

k

aemit

aemit

atoday
, (9.1)

where aemit is the scale factor at which the GW is emitted. By assuming that emission happens
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Figure 12. Same as figure 11 but now by assuming a constant axion mass.

around trapping aemit ≈ a∗ we get

ν ≈ m∗

2π
κ∗
a∗
a0
. (9.2)

We can calculate a∗/atoday by solving (5.27). In this equation, ρΘ,0 is the ALP energy density

today assuming no fragmentation. The non-linear effects after the fragmentation can dilute the

relic density by a factor of O(1–10) [204]. Let Z be this suppression factor so that ρθ,0 = ZρΘ,0 is

the correct ALP energy density with fragmentation. By requiring that ρθ,0 should match the dark

matter density we get

a∗
atoday

=

(
3π

8

ΩDM

Z
mPl

2H2
0

mam∗f2

)1/3

. (9.3)

We are interested in knowing the frequency at which the GW amplitude is peaked. Since most of

the fragmented modes have the momenta κ∗ ∼ 1, it is likely that the GW spectrum will also be

peaked at those momenta. Setting κ∗ ∼ 1 in (9.2), and using (9.3) we obtain the peak frequency

in terms of model parameters as

νpeak ∼ 8× 10−11 Hz

(
m∗

ma

)2/3( ma

10−16 eV

)1/3( f

1014 GeV

)−2/3

Z−1/3. (9.4)

Next we estimate the peak gravitational wave amplitude ΩGW(ν). It is defined as the fraction of

energy density in gravitational waves per logarithmic frequency:

ρGW

ρcrit
=

∫
d ln ν ΩGW(ν). (9.5)
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Figure 13. Peak amplitude and frequency of gravitational waves induced by axion fragmentation occurring

in kinetic misalignment mechanism (KMM) versus large misalignment mechanism (LMM) according to

eq. (9.11). The lines assume constant axion mass and should not be understood as GW spectra. The

predictions are compared to the sensitivity of future experiments. The expression of νpeak in terms of the

axion mass and decay constant is given by eq. (9.4), see contours in fig. 14 and 15.

After the emission, the energy density in gravitational waves dilutes as radiation. Today’s GW

amplitude is given in terms of the amplitude at emission as

ΩGW,0 =
ρGW,0

ρcrit,0
=
ρGW,emit

ρcrit,emit

ρGW,0

ρGW,emit

ρcrit,emit

ρcrit,0
= ΩGW,emit

(
aemit

a0

)4(
Hemit

H0

)2

. (9.6)

Let kpeak be the comoving momentum corresponding to the peak frequency νpeak. Ref. [207] gives

the following estimate for the peak amplitude at emission:

Ωpeak
GW,emit ∼

64π2

3mPl
4H2

emit

ρ2θ,emit

(kpeak/aemit)
2

α2

β
, (9.7)

where α ≲ 1 roughly measures the fraction of the energy stored in the fluctuations, and β ≳ 1 is

the typical logarithmic width of the spectrum of fluctuations in momentum space. We set both of

them to unity for our estimates. Again we assume that the GW emission takes place at trapping.

Then, the energy density of the ALP field at emission is

ρθ,emit ≈ 2ma(T∗)
2f2a . (9.8)

Also, the peak momentum becomes kpeak = κ∗a∗ma(T∗) ∼ a∗ma(T∗). Then (9.7) is simplified to

Ωpeak
GW,∗ ∼

256π2

3

(
ma(T∗)

H∗

)2(
f

mPl

)4

. (9.9)

Evolving this amplitude until today by using (9.6) and (9.3) we obtain

Ωpeak
GW,0 ∼ 1.5× 10−15

(
ma(T∗)

ma

)2/3( ma

10−16 eV

)−2/3
(

f

1014 GeV

)4/3

Z−4/3. (9.10)
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Figure 14. The peak frequency eq. (9.4) and peak amplitude eq. (9.11) contours in the ALP parameter

space, and the regions that can be probed by gravitational waves (GW) induced by the fragmentation process

by measuring the µ-distortions in the CMB [209]. On the left plot we assume that the fragmentation does

not dilute the relic density, while the right plot assumes a factor of 10 dilution. Above the blue lines

fragmentation is complete, and it is likely that the efficient GW production only happens in this region. The

gray regions are excluded by the BBN constraints studied in section 8. GW prospects of kinetic fragmentation

are thus severely constrained by BBN.

By combining this result with (9.4) we can obtain a simple relation between the peak frequency

and the peak amplitude:

Ωpeak
GW,0 ∼ 10−35

(
ma(T∗)/ma

(νpeak/Hz)Z

)2

. (9.11)

From this, we learn that ALP models with a constant mass have better prospects for an observable

gravitational-wave signal. Secondly, the models with a lower peak frequency predict a larger GW

amplitude. Finally, if there is an additional dilution in the energy density due to the fragmentation,

the gravitational-wave amplitude is also enhanced. We show the contours of the peak GW frequency

calculated via (9.4), and the peak GW amplitude calculated via (9.11) in the upper plots of figure

14.

A similar estimate has also been obtained in [208] by a different method, but their estimate is

lower than ours by a factor of ∼ 20. This reference also presents a numerical calculation of the GW

spectrum at the linearized level, and confirms that their estimate predicts the peak amplitude quite

well. However, the GW amplitude can be enhanced significantly during the non-linear phase which

cannot be captured by the linearized analysis [210]. Therefore, one can interpret our estimate and

the estimate of [208] as optimistic and conservative respectively.

The power-law-integrated-sensitivity for the SKA mission [211] can reach up to h2ΩGW ∼
3 × 10−16 at frequency ν ∼ 2 × 10−9 Hz assuming a signal-to-noise of 1 and an observation time

of 20 years [212]. So even considering a constant mass and assuming a suppression of factor of 10,

i.e. Z = 0.1, our optimistic estimate tells us that the signal is barely observable. Recently, [209]

did point out that the gravitational waves with frequencies much smaller than the ones probed

by SKA might be observable by measuring the µ-distortions in the CMB via the experiments

such as COBE/FIRAS [213, 214], PIXIE [215], SuperPIXIE [216], and Voyage 2050 [217]. The

COBE/FIRAS experiment sets an upper limit on the µ-distortions (µ < 9 × 10−5 95%CL), while
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Figure 15. Analog of figure 14 but for the case of large misalignment. Unlike the case of kinetic misalign-

ment there are no BBN constraints, however the requirement that the ALPs are not too warm during the

matter-radiation equality gives a similar but weaker bound. In the purple shaded region on the lower right,

the initial angle is not close to the top, and the standard misalignment is at play. The green line shows the

parameter space where |π −Θi| ≈ 10−10 above which the density contrast of the ALP field becomes O(1),

and it is expected that complete fragmentation will happen above this line. It is likely that efficient GW

production will happen only in this region.

the forecasted constraints for the experiments are µ < 3 × 10−8 for PIXIE, µ < 7.7 × 10−9 for

SuperPIXIE, and µ < 1.9× 10−9 for Voyage 2050.

These upper bounds on the observable µ-distortions can be translated into lower bounds on

the observable gravitational wave signal for a given frequency [209]. By using these bounds, we can

estimate the potentially observable regions in the ALP parameter space which we show in figure 14.

The curve labeled “Voyage 2050 10x” assumes an upper limit of µ < 1.9×10−10, see [209] for details.

We also show the critical lines separating complete and incomplete fragmentation (blue line), as

well as the region which is excluded by the BBN constrains (gray region) discussed in section 8.

Likely, the efficient GW production does happen only in the region where the fragmentation is

complete. We conclude that the BBN bound severely constrains the parameter space which can

be observable by GWs. The prospects do improve if the fragmentation efficiently dilutes the relic

density of ALPs, since this will increase the energy budget for the GWs without overclosing the

universe. Precise estimations of the dilution factor, peak GW amplitude and the GW frequency

require a dedicated lattice analysis.

Since the BBN constraint is the main obstacle to get an observable gravitational wave signal,

one might wonder what happens in a model which is immune to the BBN constraint. The Large

Misalignment Mechanism is an example of such a model since the energy density prior to the

oscillations does not redshifts as a−6. Therefore, we did repeat the above analysis for the Large

Misalignment scenario, and obtained a result which is very close to (9.11) except an O(1) factor

which depends very mildly on the value of |π −Θi|. We show the results in figure 15. Even though

the BBN constraints are absent, there is still a similar but weaker constraint that the ALPs should

not be too warm at matter-radiation equality in order to be consistent with the structure formation.

The green line shows approximately the critical initial angle |π −Θi| ≈ 10−10 at which the density

contrast of the ALP field becomes O(1). Above this line, the initial angle needs to be chosen
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closer to the top of the potential, and we expect that complete fragmentation and the efficient GW

production does happen in this region. We see that the absence of the BBN constraint opens up a

sizable region which might be probed by future CMB surveys.

The ALP masses below ∼ 10−20 eV are constrained by various probes such as Lyman-α obser-

vations [109], and the galactic rotation curves [218–220]. However, it is possible that some of these

contraints can be evaded as a consequence of the fragmentation [221].

We close this section by stressing another, and potentially much stronger, signal of GW that

can arise in the Kinetic Misalignment Mechanism, and which is not related to fragmentation. While

in this work we have assumed a radiation-dominated universe during the period when the equation

of state of the axion scales as a−6, it is also possible that the axion energy density dominates tem-

porarily, inducing a kination era inside the radiation era. Such a kination era enhances primordial

signals of GW from inflation and cosmic strings leading to striking peak features that are observable

by upcoming interferometers such as LISA and the Einstein Telescope [35–37]. The occurrence of

a kination era in specific UV completions and the precise parameter space region that lead to ob-

servable GWs are worked out in [37]. We return to this signal of amplified primordial gravitational

waves in part III, where we compute the parameter space of dark mater implementations of axion

kinetic misalignment which can potentially be probed by such a gravitational wave signal.

10 Summary of part II

In summary, the correct axion relic abundance to explain dark matter can be recovered naturally

in the majority of the [ma, fa] plane, if appropriate initial conditions can be realized. The region

which is usually discarded because it leads to insufficient dark matter becomes open in the scenario

of kinetic misalignment, in which oscillations are delayed due to the initial velocity of the axion

field. This was pointed out in [27, 28] and the underlying framework was extensively discussed in

[34, 222, 223] in some specific UV completions.

In the preceding sections, part II of this thesis, we have seen that one can no longer describe

this regime in terms of the homogeneous zero-mode. In fact, the axion field entirely fragments

in much of the KMM parameter space. We have provided a detailed analytical derivation of the

phenomenon. One main implementation-independent consequence of fragmentation is a distinct

prediction for dense compact mini-clusters, which was explored by Eroncel and Servant in [30].

There is also a stochastic gravitational wave background generated by axion fragmentation as we

discuss in our section 9. However, this signal appears at extremely low frequency and is typically

below the sensitivity of Pulsar Timing Arrays. For the very lowest masses of ALPs, the signal

might be visible in CMB experiments such as SuperPIXIE [216] or Voyage 2050 [217]. In part III

of this thesis we will return to the topic of gravitational waves and explore how another type of

signal may be generated by amplification of primordial GW’s. Our results apply generically to any

ALP, including the QCD axion.

The main results of this part, which are UV completion independent, are summarised in the

following expressions and figures:

• The temperature T∗ when the field gets trapped by the barrier is given in eq. (5.28). Fig. 8

shows the contours of the trapping temperature.

• The duration of the kination-like scaling underlying the kinetic misalignment mechanism is

constrained by eq. (6.37).

• Fig. 7 shows the contours of m∗/3H∗ at the time when the field gets trapped, which is orders

of magnitude larger compared to the unit value that characterises the time when the field

starts oscillating around its minimum in the standard misalignment mechanism.
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• The amplification factor of a given mode depends crucially on the value ofm∗/H∗ as expressed

in eq. (6.13). It is also plotted in fig. 9.

• Fig. 11 and 12 show the contours of the different regimes of dark matter production for

respectively the constant axion mass and temperature-dependent mass cases. The expressions

for these region boundaries are given in eqs. (7.2), (7.12), (7.17), and (7.22). The BBN

constraint, T∗ > 20 keV, translates into a bound on the size of the zero-temperature barrier,

see eq. (8.9).

• All phenomenological implications of fragmentation and in particular the determination of

the different regimes are controlled by the power spectrum eq. (6.33).

• Figure 9-left indicates that the impact of fragmentation on the relic abundance prediction

from kinetic misalignment is relatively weak. It typically differs by a factor of order 1, we

do not expect more than one order of magnitude effect. This can be understood as the

momentum of the produced axions during fragmentation is of the same order as the axion

mass (see fig. 9-right), higher modes are not excited. A precise estimate of the O(1) factor

requires a lattice calculation which we will present in a future work.

• We estimated the GW signal in fig. 13 and the parameter space that can be probed this way

in fig. 14. We showed that there are better prospects for GW from large misalignment in

fig. 15, something which had not been mentioned in [198].

One key question that was not addressed in this part of the thesis is the origin of the initial

axion velocity. We postponed this question so that we could perform an implementation independent

analysis of kinetic misalignment, which revealed much interesting phenomenology. With the scenario

of kinetic misalignment well motivated, we will now investigate the precise regions of ALP DM

parameter space that can be supported by specific implementations of axion kinetic misalignment.

This leads us to part III of this thesis.
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Part III

Model implementations of axion kinetic

misalignment

In part I, we motivated the axion as an attractive DM candidate. We noted that, in the standard

paradigm, dark matter is underproduced in the regime most susceptible to experimental scrutiny.

In part II, we studied how the kinetic misalignment mechanism accounts for dark matter in this

low-fa regime and discussed both implementation-independent constraints and the interesting phe-

nomenology that arises from axion fragmentation. We observed that the kinetic misalignment

mechanism holds much promise for axion dark matter. So far, we have remained agnostic as to how

such a scenario can be realized. It is now time to address this question. In part III of this thesis,

which is based on our paper [2], we will now investigate model implementations of the axion kinetic

misalignment mechanism.

Scenarios of rotating scalar fields cannot be realized without some mechanism to start the

rotation. We refer to the event that initiates the rotation as the kick. The historically most

important family of kick mechanisms relies on higher-dimensional terms initially introduced for the

Affleck-Dine mechanism [31, 32, 224]. Such Affleck-Dine-like kick mechanisms were used in the

context of rotating axions by Co et al. [27, 33–35] and Gouttenoire et al. [36, 37]. Alternatives to

Affleck-Dine-like kick mechanisms include the trapped misalignment mechanism [225, 226].

We here re-examine Affleck-Dine-like implementations of KMM. We map out the [ma, fa] axion

parameter space which can support axion dark matter produced by these mechanisms. We specify

solutions directly in terms of UV model parameters, which allows us to present, for the first time,

how [ma, fa] regions of axion dark matter from kinetic misalignment is impacted by constraints on

the kick mechanisms. This analysis also clarifies which UV parameters are required to account for

dark matter through kinetic misalignment. Furthermore, in part II, we identified a new constraint

on the rotation axion, which results from the growth of fluctuations during kination-like scaling of

the axion. We now show how this condition significantly impacts the parameter space which can

be supported by implementations of axion kinetic misalignment.

For simplicity, we in this part of the thesis restrict ourselves to axions with a QCD-like temper-

ature dependence as specified by eq. (2.8) with γ = 8.16. Furthermore, we assume that non-linear

effects do not modify the KMM relic in the regime identified in section 7.1.4, although this regime

lies outside the range of validity of the analysis of Part II. Future study is required to determine

the validity of this assumption.

Radial oscillations present a significant challenge to Affleck-Dine-like mechanisms. Such radial

oscillations will, in general, be generated by the kick, and they will end up dominating the energy

density of the universe if they are not damped out. In such a scenario, the saxion would behave as

cold dark matter and dominate the axion. While this may itself be an intriguing possibility, such

a scenario is outside of the scope of this thesis. We here instead focus on the scenario where these

radial oscillations are damped such that the dark matter relic is composed of axions. We perform

a detailed treatment of how damping affects KMM implementations, with particular attention to

thermal effects. We take into account yield dilution from damping and describe how this affects

solutions. This allows us to map out which damping temperatures are required to support the axion

DM parameter space. We supplement the analytic treatment of damping, which was carried out

in the literature [27, 33–35, 37], with a numerical solution of the Boltzmann equations that allows

us to accurately take into account how damping is affected by the interplay between the new ALP

sector and the SM plasma. Furthermore, the numerical solution enables us to follow the initial
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conditions of the kick mechanisms and robustly map out how all resulting families of solutions

populate the axion DM parameter space. We use this numerical solution to investigate realized

damping temperatures, constraints, and which regions of parameter space may be detectable by

amplified gravitational waves.

Part III is structured as follows: In section 11 we present general aspects of Affleck-Dine-

like implementations of axion kinetic misalignment and provide an overview of the subsequent

evolution and constraints. Section 12 is devoted to models with nearly-quadratic potentials, which

we introduce a damping mechanism for in section 13. Section 14 is devoted to models with quartic

potentials. In section 15 we summarize our results.

11 Essential components of a KMM implementation

Before we turn to a full implementation of the axion kinetic misalignment mechanism (KMM), we

here first provide an overview of the essential components, phenomena, and constraints that we will

encounter.

11.1 Definitions for the full complex scalar field

Until now, we have only been working with just the angular mode θ, which corresponds to the

axion. However, the kick mechanisms, which we will later explore, rely crucially on radial dynamics.

Therefore, we now consider the full complex scalar field, which we parametrize as

P =
1√
2
ϕeiθ. (11.1)

We will no longer be working with fluctuations, so for the remainder of this thesis, we take ϕ and

θ to be homogeneous fields. The radial mode ϕ is often referred to as the saxion, a name coined in

the context of supersymmetric theories that we will adopt here.

For a non-static radial mode, the Noether charge of the axion shift symmetry, which we previ-

ously defined in eq. (5.18), generalizes to

nPQ = θ̇ϕ2. (11.2)

By analogy with a QCD axion, we will refer to nPQ as the PQ charge and the complex scalar P as

the PQ field. However, keep in mind that these labels are generally used by analogy only and do

not by themselves imply that the axion in question is the QCD axion of the PQ solution.

11.2 Starting the rotation

The Affleck-Dine-inspired mechanisms, which we explore in this work, rely on two key features:

PQ-violating operators: Affleck-Dine-like mechanisms rely on higher-dimensional operators to

start the axion rotation. Such higher-dimensional terms can originate from non-renormalizable

terms in the super-potential of SUSY models [224]. Such terms lead to an angular potential,

A

n

Pn

Mn−3
+
A

n

P ∗n

Mn−3
=

2A

n2n/2
cos(nθ + δθ)

ϕn

Mn−3
, (11.3)

which can drive a rotation. Here A is a parameter that sets the amplitude of the PQ-violating

term, and M is a suppression scale that we typically set to mPl and δθ is the phase of the

potential, which in general need not be aligned with the minimum at θ = 0. The key idea

is that even though this potential may be felt initially it rapidly becomes negligible as ϕ

decreases, which leads the potential to generate a rotation rather than angular oscillations.
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Large VEV driver: To probe such higher-dimensional operators, the VEV of the PQ field has to

be driven to a large initial value, wherefore a mechanism that ensures such a large VEV is

also an essential component. In this thesis, we will consider two mechanisms for driving the

large VEV - one based on the Affleck-Dine mechanism [32, 224], and one based on de Sitter

fluctuations.

A model with the above two components can start a rotation of the PQ field. The resulting kick

can be found by solving the equation of motion [33, 224], which predicts

θ̇kick = 21−
n
2
Aϕn−2

kick sin(nθkick)

mϕMn−3
, (11.4)

where θkick is the initial angle by which θ is misaligned from the minimum set by eq. (11.3). This

result is independent of the mechanism which sets the large VEV.

It is useful to parametrize the angular velocity imparted by the kick with the parameter ϵ [27],

which gives the angular velocity as a fraction of the velocity required to maintain a circular orbit

at the apoapsis of the field orbit. If we consider the equation of motion for the radial mode,

ϕ̈+ 3Hθ̇ + V ′ = θ̇2ϕ, (11.5)

then we see that the radial potential competes with the centrifugal term θ̇2ϕ. The centrifugal term

is exactly balanced against the potential when θ̇ =
√
ϕ−1V ′, which then corresponds to a perfectly

circular orbit. We are working with large field values, so the usual mass defined by V ′′ is not the

relevant parameter as this is defined at the potential minimum. Instead, we define the effective

radial mode mass

mϕ ≡
√
ϕ−1V ′, (11.6)

as this is the parameter that enters the equation of motion and thus the relevant parameter far

from the minimum [34]. The link to the potential parameters will be made in the next sections.

We then observe that ϵ = θ̇ap/mϕ is a useful parametrization, where θ̇ap is the angular velocity at

the apoapsis of an orbit. This is equivalent to normalizing the PQ charge to nϕ = V/mϕ, i.e.,

ϵ =
nPQ/2

nϕ
=
nPQ/2

V/mϕ
=
θ̇ap
mϕ

, (11.7)

where we assumed that the radial potential was a pure quadratic potential. Since the centrifugal

term in the ϕ-EOM is balanced with the potential exactly for ϵ = 1, this value corresponds to

a perfectly circular orbit. ϵ = 0 corresponds to purely radial oscillations and by construction

0 ≤ ϵ ≤ 1. Co et al. [27, 33, 34] note that an insufficiently circular orbit can lead to a parametric

resonance in the radial mode. Throughout this thesis, we assume that ϵ is large enough that no

such resonance takes place.

11.3 Evolution after the kick

After the kick, the radial mode is not in its ground state. It has a large VEV, ϕkick ≫ fa, and

unless the kick is perfectly circular, ϕ will oscillate around the equilibrium position. That is, P will

be in an elliptic orbit. For the analysis of fragmentation and kinetic misalignment to apply, this

initial condition must be relaxed to a non-oscillating state with ϕ = fa.

The need for damping: The energy density of radial oscillations behaves as cold dark matter.

The radial energy density will therefore dominate that of the angular mode if left to oscillate.

To realize dark matter from kinetic misalignment, it is necessary to dampen these oscillations.
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Depending on when such damping takes place, the oscillations may or may not have a significant

impact. If damping takes at a time where ρϕ > ρr, then damping significantly impacts the SM

plasma. We denote the time where ρϕ = ρr as Tdom, such that yield and cosmology are only

significantly impacted if the damping temperature Tdamp is in the regime Tdom > Tdamp.

Before we specify the full model, including a specific damping mechanism, we wish to first

understand the general case. We, therefore, structure our analysis into the following steps:

1) Early damping, which is restricted to the simpler case of Tdamp > Tdom. In this case, the

exact value Tdamp does not impact the cosmology or DM relic directly and thus does not need

to be specified beyond the assumption Tdamp > Tdom.

2) General damping, which allows for either Tdamp > Tdom or Tdamp < Tdom but remains

agnostic as to the damping mechanism. This contains step 1).

3) Thermal damping, where damping is implemented by a specific coupling to the SM plasma.

This realizes a subset of the possible solutions identified in step 2).

The simplest approach, 1), is to assume that the oscillations are damped by an unspecified early

mechanism that acts while the PQ field is subdominant to radiation such that no significant entropy

injection takes place. In this case, the dynamics of the damping do not enter into the relic density

such that a solution for the DM yield can be found directly from the kick parameters. The more

general approach is to consider the damping temperature as a free parameter. To allow for lower

damping temperatures, we take yield dilution into account and provide solutions for the DM yield

also in the presence of yield dilution. Finally, we implement a specific realization of the damping

mechanism, which allows us to properly solve the evolution of the field and map out the supported

parameter space.

Evolution of the radial and angular modes: After the kick and the onset of the elliptic orbit

of the field, the equilibrium value ⟨ϕ⟩, about which ϕ oscillates, will be continuously decreasing. This

relaxation can be characterized by PQ charge conservation. Once radial oscillations are damped

the generally elliptic orbit with 0 ≤ ϵ ≤ 1 is relaxed to a circular orbit with ϵ = 1, such that θ̇ ≈ mϕ

after damping. Furthermore, it was shown in [37] that even before damping we have
〈
θ̇
〉
≈ mϕ.

Therefore, ⟨nPQ⟩ = mϕϕ
2 ∝ a−3, which ensures that

⟨ϕ⟩ ∝ m−1/2
ϕ a−3/2, (11.8)

which is the same result we would expect from the WKB approximation. If the radial mass is

time-dependent either as a consequence of radial dynamics or thermal effects, then this impacts the

relaxation of the radial mode. Expressing such a possible time-dependence as mϕ ∝ a−cmϕ , we can

conclude that ϕ reaches the minimum at fa at akin given by

ϕkick
fa
≈
(
akin
akick

)(3−cmϕ
)/2

. (11.9)

The analyses of fragmentation and kinetic misalignment [1, 27, 33, 34] assumes that the radial mode

is relaxed to ϕ ≈ fa before T∗. Therefore, these analyses are only applicable for Tkin > T∗. If this

condition is violated, then a fragmentation or kinetic misalignment analysis must be carried out in

the presence of radial dynamics. Such an analysis is beyond the scope of this work, and we mark

any parameter space in which this assumption is violated. However, it must be pointed out that

there is no principal reason why fragmentation could not take place before the relaxation of the

radial mode.
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After ϕ reaches fa, the angular mode needs no longer follow the equilibrium value θ̇ ≈ mϕ.

Applying again PQ charge conservation, nPQ = θ̇ϕ2 ∝ a−3 we observe that once ⟨ϕ⟩ = fa the

angular mode redshifts as θ̇ ∝ a−3. Therefore,〈
θ̇
〉
∝ a−cθ where cθ =

{
cmϕ

for T > Tkin,

3 for T < Tkin.
(11.10)

As suggested by the subscript, Tkin marks the onset of kination-like scaling of the energy density of

ρa ∝ θ̇2 ∝ a−6 such that a period of kination11 is triggered if ρa(Tkin) dominates the energy density.

11.4 Constraints

Implementation-independent constraints: Any UV completion of kinetic misalignment must

at least satisfy the implementation-independent constraints that we identified in part II. In par-

ticular, the constraints from structure formation and BBN discussed in section 8 as well as the

abundance of axion searches discussed in section 3.2 constrain the parameter space.

Further BBN constraints: BBN also constrains damping further. We do not perform a detailed

analysis of how the entropy injection associated with damping interferes with the observed 4He

production, and we instead simply require damping to take place before BBN. Therefore, we also

demand that

Tdamp ≳ MeV. (11.11)

In regimes in which the energy in the radial oscillations is small compared to the energy in radiation,

this constraint may be overly strict, as it is conceivable that dilution would be small enough not

to disturb BBN. Nevertheless, to be conservative, we impose this constraint regardless of how

significant the entropy injection is.

Perturbativity: For the physics to remain perturbative all dimensionless couplings in the La-

grangian must be smaller than 4π. This, in particular, applies to the self-interactions induced by

the nearly-quadratic potential, which we will study in section 12. We will return to this constraint

after we have specified the model. As the quartic coupling must be very small in a viable quartic

model of KMM, constraints from perturbativity will not play a role in section 14.

Homogeneity condition: In part II, we studied the final phases of evolution prior to trapping

or fragmentation. During that investigation, we identified a constraint that had not previously

been discussed in the literature. In particular, we in section 6.3 observed that primordial density

fluctuations in the axion field grow relative to the homogenous mode during the period of a−6

kination-like redshift, which the θ must undergo in KMM. If this period of a−6 evolution is too

long, the fluctuations may come to dominate the homogeneous mode. As we here seek to provide

model implementations that lead to a rotating, homogenous axion field, we here treat this condition

as a constraint. Nevertheless, such an inhomogeneous state may lead to interesting phenomenology

or provide a relic in its own right, which Eroncel et al. will study in upcoming work [202].

The strength of this constraint depends on the amplitude of the primordial power spectrum

As. From eq. (6.36), we see that growth in scale factor between the onset of kination-like scaling

at akin and trapping at a∗ is bounded by

As(kkin) ≲

(
akin
a∗

)2

. (11.12)

11Kination is a period of cosmological history characterized by a a−6 evolution of dominant component of the

energy density of the universe. We use the term kination-like when a specific component of the energy density

undergoes a−6 evolution without regard as to whether that component dominates the energy density.
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If As is a flat spectrum specified by As,Planck ≈ 2.1 × 10−9, then homogeneity is lost before axion

fragmentation unless a∗/akin ≲ 105. However, As is well-constrained only around the CMB pivot

of comoving momenta k = 0.05Mpc−1. We expect the comoving momentum scale of fluctuations

entering the horizon around the onset of kination-like scaling, kkin, to be many orders of magnitude

larger than the CMB pivot scale. Therefore, As(kkin) may very well deviate from As,Planck, which

provides a possible way to escape this constraint. We will explore this potential loophole later.

Until then, we will make the standard assumption that As is approximately As,Planck on all scales.

Thermal ϕ relics: An interaction that is efficient enough to dampen the radial oscillations will

also bring the radial mode into thermal equilibrium. Then, thermal fluctuations will be present in

ϕ. These fluctuations are potentially dangerous for BBN and CMB. The thermal relic will decouple

from the plasma if the interaction freezes out at a temperature Tfo and Tfo > mϕ. After decoupling

from the plasma, the thermal relic will have an energy density of

ρϕ,thermal(Tfo) ∼
ρr
g∗

∣∣∣
Tfo

, (11.13)

such that it will represent a fraction of the radiation density. It will be further diluted by reheating

in the SM sector, i.e. changes in g∗ and g∗s. Therefore, as long as the relic remains hot, it will not

be problematic unless it freezes out below ∼ 200 MeV. However, if the relic becomes cold, it will

grow relative to the radiation density and can become problematic.

At sufficiently largemϕ, such constraints are absent because the thermal relic decays into axions

as soon as it is no longer relativistic, see appendix C. At sufficiently low mϕ the constraints are

absent because the relic remains relativistic until after Teq such that it both underproduces dark

matter and does not disturb the CMB. The intermediate range is excluded by Neff constraints from

either BBN or CMB. Therefore, ϕ must satisfy either

mϕ < O(1)× Teq or O(1)× f2a
mPl

< mϕ, (11.14)

where the exact values of the prefactors depend on the exact number of relativistic degrees of

freedom. These constraints are discussed in more detail in appendix C.

Constraints from equivalence principle searches: As the radial mode is a scalar, it couples

to photons through FF rather than FF̃ . We can express the saxion-photon interaction as

Lϕγ =
1

4
gϕγγϕFF. (11.15)

We generally expect gϕγγ to be of the order of the axion-photon coupling gθγγ . This is important

because scalar couplings such as (11.15) are subject to much stronger constraints than those from

pseudoscalar interactions. Although such constraints are not relevant for theories in whichmϕ ∼ fa,
constraints from gϕγγ are significant for theories with light radial modes such as those considered

in this work. For a recent review of constraints on light scalar fields, see e.g. the Snowmass 2021

white paper on scalar and vector ultralight dark matter [227].

The reason why scalar-photon interactions give rise to such strong constraints is that the light

scalar interactions give rise to long-range forces [228]. Fundamentally, these forces can be under-

stood as scalar exchange. Classically, the effect appears because a background scalar field will

perturb the effective EM coupling through terms such as (11.15). Such perturbations will slightly

shift the EM contribution to the rest mass of macroscopic objects, which gives rise to long-range

interactions and apparent equivalence-principle (EP) violation that can be tested in fifth-force

searches such as Eöt-Wash [229] and through lunar ranging [230]. Searches for EP violation are

sensitive to EM-coupled scalar fields even if such fields are not DM. If the scalar is dark matter, it

is also constrained from atomic clocks through the oscillating EM perturbations.
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The most relevant constraints are summarized by Hess et al. [231] from torsion balance data [229,

232, 233] as well as data from the MICROSCOPE space mission [234]. Assuming a KSVZ-like pho-

ton coupling, such data constrain the [mϕ, fa] parameter space. However, as the fa cut-offs for

such constraints are beyond the range considered here, constraints from EP violation in our context

appear simply as a lower bound on saxion mass:

mϕ ≳ 10−5 eV. (11.16)

It is possible to reuse data from ALP searches to constrain saxion-photon interactions. This was

studied by Flambaum et al. [235], who derived saxion-photon constraints from CAST and ADMX.

However, although such a remapping is possible, scalar-photon constraints from EP violation dom-

inate those from ALP searches by many orders of magnitude [235].

Axion-saxion mass hierarchy: PQ symmetry should be spontaneously broken. In addition to

that, we have a small explicit PQ breaking for the axion mass. This small explicit PQ symmetry

breaking naturally realizes a mass hierarchy ma ≪ mϕ. One may ask if it is possible to have the

opposite hierarchy, i.e., ma ≫ mϕ. If the saxion is also light, we can address this question with an

effective potential for the axion and the saxion. By integrating out all of the other particles, this

potential is of the form

Veff(P ) = VPQinv(ϕ) + VPQviol(ϕ, θ). (11.17)

Here VPQinv is invariant under PQ symmetry transformation, but VPQviol is not. In order to realize

mϕ ≪ ma, we need to satisfy

∂2VPQinv

∂ϕ2
+
∂2VPQviol

∂ϕ2
≪ 1

ϕ2
∂2VPQviol

∂θ2
(11.18)

at the potential minimum. This requires some fine-tuning. First, it is natural to have ∂2VPQinv/∂ϕ
2 ≫

∂2VPQviol/∂ϕ
2, (1/ϕ2)∂2VPQviol/∂θ

2 because the PQ-violating terms are subdominant. Also, it is

natural to have ∂2VPQviol/∂ϕ
2 ∼ (1/ϕ2)∂2VPQviol/∂θ

2. In this thesis, we do not pursue the possi-

bility of having mϕ ≪ ma and focus on the region with ma < mϕ.

Impact of CP-violating term on the axion quality: In this thesis, we are studying both

QCD axions and axions in the more general sense of ALPs. However, the subsets of axions that

are intended to solve the strong QCD problem are sensitive to additional PQ-violating effects such

as those introduced by the higher dimensional operator eq. (11.3). In particular, the additional CP

breaking introduced must not induce an axion VEV of more than θ ∼ 10−10, where θ = 0 is the

CP-conserving minimum of the QCD potential. To estimate this shift, we can take δθ = π/2 to

maximally misalign the higher-dimensional potential from the QCD potential. In this case, in the

late-time potential, where ϕ = fa, is

Vtoday ≈ −21−
n
2
Afna
Mn−3

θ +
1

2
m2

af
2
aθ

2 +O
(
θ3
)
. (11.19)

The CP-violating VEV induced by this potential is then

θCPV ≈
21−

n
2

Afn
a

Mn−3

m2
af

2
a

. (11.20)

For a QCD axion to successfully solve the strong CP problem, we require θCPV ≪ 10−10. As

this constraint applies only to the subset of axions that are QCD axions, we generally display this

condition by shading the otherwise yellow QCD line of [ma, fa] parameter space blue in the range

where it cannot be satisfied.
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Saxion-to-axion decay: Saxions may decay into axions. As discussed in appendix C, this occurs

at a rate of

ΓSa ∼
1

64π

m3
ϕ

ϕ2
. (11.21)

Such decay may drain the energy in radial oscillations into a hot axion relic. Such a relic will

continue to dominate the plasma if it is efficiently produced in excess of the plasma density because

the axion relic never redshifts faster than radiation if we neglect changes in g∗(s). Therefore, we

impose the following constraint:

ΓSa < H while ρϕkin > ρr (hot axions dominate the plasma), (11.22)

where ρϕkin is the energy in radial oscillations. Furthermore, even if the hot axion relic does not

dominate the plasma, it may still lead to DM overproduction. To ensure that this does not happen,

we also impose the following constraint:

ΓSa < H while ρϕkin
2ma

mϕ

g∗(Teq)

g∗(T )

(
Teq
T

)3

> ρr,eq (DM overproduction). (11.23)

Here the subscript eq refers to quantities measured at radiation-matter equality.

These constraints depend on the damping mechanism because they are avoided if the radial

oscillations are damped before saxion-to-axion decay becomes efficient. We, therefore, impose them

only in the full model implementation where the damping mechanism is specified.

12 Models with nearly-quadratic potentials

For the radial dynamics to be effective at driving angular motion, the radial mass must be much

lighter than the usual value of mϕ ∼ fa. Therefore, the first model we here consider is a SUSY-

motivated model in which PQ symmetry is spontaneously broken by radiative corrections. Such

a potential was originally proposed by Moxhay and Yamamoto [236], who found that soft SUSY

breaking generates a nearly-quadratic potential of the form

Vlate = m2
ϕ|P |2

(
1

2
ln

(
2|P |2

f2a

)
− 1

2

)
+

1

4
m2

ϕf
2
a . (12.1)

The radial mass mϕ may then be naturally light as it is protected by SUSY. In this framework, PQ

is spontaneously broken by the logarithmic running of the potential, which gives the radial mode a

VEV at ϕ = fa once the radial mode is fully relaxed. Such models were first studied in the context

of kinetic misalignment in [27]. In the following sections, we will investigate how radial dynamics

in such a model can provide the initial conditions for fragmentation and kinetic misalignment.

Note that the mass of the radial mode, which around the minimum ismϕ, receives a logarithmic

correction at high field values. However, this logarithmic correction is at most O(1). We therefore

neglect the correction at large field amplitudes where we then take V ≈ m2
ϕ|P |2 = 1

2m
2
ϕϕ

2. Thus,

the fundamental parameter mϕ here agrees with mϕ ≡
√
ϕ−1V ′ as defined in eq. (11.6), such

that there is no distinction between the effective mass at large field values and the fundamental

parameter, as long as we neglect the logarithmic running of the potential.

12.1 Initial conditions

To set up initial conditions for axion kinetic misalignment, we here study how such a rotation

can be started and which yield is produced from the resulting kick. A classic example of models

that involve a rotating complex scalar field is Affleck-Dine Baryogenesis [31]. Such models can be
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realized by utilizing higher-dimensional terms to drive up the VEV and introduce PQ-breaking at

early times, thereby spinning up the field. This setup was proposed in the context of Affleck-Dine

Baryogenesis in [32] and was used to motivate kinetic misalignment in [27]. The mechanism utilizes

operators of the form

Vearly = (m2
ϕ − cHH2)|P |2 + A+ cAH

n

Pn

Mn−3
+ h.c.+

|P |2n−2

M2n−6
, (12.2)

where we neglected the logarithmic correction to the late-time massmϕ, H is the Hubble parameter,

M is a suppression scale which we typically take to be mPl ≈ 2.4× 1018 GeV, A is a dimension-full

constant which we typically take to be O(1)×mϕ and cA is an O(1) constant. The negative Hubble-

induced mass can be naturally generated in models where P couples to fields that dominate the

energy density of the universe [32]. If at early times mϕ ≪ H then this negative mass contribution

drives up the VEV. To stabilize against this negative potential contribution, one can introduce a

higher-dimensional term in the superpotential [32] of the form

W =
1

n

Pn

Mn−3
. (12.3)

This superpotential sources a scalar potential corresponding to the last term in eq. (12.2). The

A-term, i.e. the middle term of eq. (12.2), is generated from W by soft SUSY breaking. In addition

to the full discussion in [32], a summary of the generation of these terms can be found in [37].

At early times where H ≫ mϕ the H2 term then drives ϕ to a large VEV stabilized by the

|P |2n−2 term. The VEV found at the minimum between these two terms is

ϕearly =

(
2n−2

n− 1

) 1
2n−4 (

HMn−3
) 1

n−2 . (12.4)

Around this VEV, both the radial and angular modes acquire large masses,

mϕ,early =
√
2(n− 1)H and ma,early =

√
2|cA|n

4
√
n− 1

H, (12.5)

such that both fields are heavy during inflation and can track the minimum until mϕ ∝ 3H, where

the late-time mass becomes important. We assume that the higher-dimensional operators become

irrelevant once mϕ > 3H so that we can take the potential to be simply eq. (12.1) after this

transition.

During the transition, the PQ violating Pn + P ∗n terms can drive rotation. This is possible

because the angular mode transitions from a minimum set by the cAH term into a minimum set by

the A term. The angular minima of these two contributions are determined by the complex phase

of cA and A, respectively. If the minima of these two contributions are not accidentally aligned, the

field experiences a torque as the minimum shifts [224] and eq. (11.4) applies with θkick ̸= 0. With

A = O(1)×mϕ this naturally yields ϵ = O(1) such that

θ̇kick = O(1)×mϕ, (12.6)

where mϕ is the potential parameter appearing in eq. (12.2) and not the much larger early-time

mass given by (12.5). This kick is delivered when mϕ ≈ 3H, which implies a kick temperature of

Tkick ≈ 4

√
10

g∗(Tkick)π2

√
mϕmPl. (12.7)

We assume that soon after the kick the PQ-violating potential becomes irrelevant so that we can

disregard the higher-dimensional terms after the first rotation. This is supported by numerical

evaluation of the equations of motion [32].
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In the nearly-quadratic model, the radial massmϕ is approximately constant in time. Therefore,

applying eq. (11.9) we see that ϕ reaches the minimum at fa at akin given by

ϕkick
fa
≈
(
akin
akick

)3/2

. (12.8)

If no significant entropy injection takes place, then this corresponds to a temperature of

Tkin ≈ Tkick
(
g∗s(Tkick)

g∗s(Tkin)

)1/3(
fa
ϕkick

)2/3

. (12.9)

After this time, θ̇ transitions to kination-like scaling as described in section 11.3.

Estimation of produced yield: After the kick is complete and the PQ-violating terms have be-

come subdominant, the comoving PQ-charge becomes conserved, so that nPQ ∝ a−3. The resulting

yield, Ykick = nPQ/s, is therefore constant in the absence of entropy injection. This yield is

Ykick =
nPQ

s
= ϵ

mϕϕ
2
kick

2π2

45 g∗sT
3
kick

≈ 0.8× ϵ
(
M

mPl

) 2n−6
n−2

(
mPl

mϕ

) n−6
2n−4

, (12.10)

where the prefactor has a mild dependence on n, g∗(Tkick), and on g∗s(Tkick).

Dark matter solution in the absence of yield dilution: If no entropy injection takes place

and either kinetic misalignment or fragmentation takes place, then the yield eq. (12.10) eventually

sources axion dark matter. 2Ykick ≈ YDM is achieved for

mϕ,DM ≈ ξn × g∗(Tkick)
3(n−2)
2(n−6)

(
g∗s(Teq)

g∗s(Tkick)g∗(Teq)

) 2(n−2)
n−6

×mPl

(
M

mPl

) 4(n−3)
n−6

(
maϵ

Teq

) 2(n−2)
n−6

where ξn = (n− 1)−
2

n−6π
2−n
n−6 2

9(n−2)
2(n−6) 3

2(n−4)
n−6 5

n−2
2(n−6) . (12.11)

For a few representative choices of n,

mϕ,DM,not diluted ≈


70
(

M
mPl

)16 (
ma

10−2 eV

)10 ( ϵ
0.9

)10
if n = 7,

2× 1012
(

M
mPl

)7 (
ma

10−2 eV

)4 ( ϵ
0.9

)4
if n = 10,

5× 1013
(

M
mPl

) 40
7 ( ma

10−2 eV

) 22
7
(

ϵ
0.9

) 22
7 if n = 13.

(12.12)

It must be noted that the yield has a somewhat shallow dependence on the radial mass, i.e.

Ykick ∝ ml
ϕ where l ≈ 0.1, 0.25 or 0.3 for n = 7, 10 or 13 respectively. Therefore small changes

in various parameters require a large change in mϕ to compensate, especially for lower values of

n. Correspondingly, the numerical prefactor of eq. (12.12) is sensitive to small changes in other

parameters.

12.2 Application of constraints

The scenario described above is subject to several constraints of diverse nature. These constraints

were described in section 11.4. The most significant of these are the conditions that the kick takes

place before T∗, that the field remains homogeneous until T∗, and the condition that a thermal ϕ

relic does not spoil CMB or BBN.

The perturbativity constraint and the condition that the kick happens early enough are model

dependent, so we in the following paragraphs discuss how they apply to the nearly-quadratic model.
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Perturbativity The nearly-quadratic potential implies self-interactions which we require not to

lead to non-perturbative behaviour. To extract the coupling parameters from the nearly-quadratic

potential, we define the radial excitation around fa as S = ϕ− fa and expand the potential around

S = 0 in powers of S/fa. This yields the series

Vlate = m2
ϕ|P |2

(
1

2
ln

(
2|P |2

f2a

)
− 1

2

)
≈ 1

2
m2

ϕS
2 +

λln
3!
faS

3 − λln
4!
S4 +O

(
λln

S5

fa

)
, (12.13)

where the dimensionless coupling parameter λln, which is common to the leading terms, is

λln =
m2

ϕ

f2a
. (12.14)

Therefore, perturbativity of the self-interactions implies a bound of

m2
ϕ

f2a
< 4π. (12.15)

Early enough kick: It is essential for the consistency of the nearly-quadratic model as a kick

mechanism that the kick takes place before the field would have been trapped, i.e., Tkick > T∗.

Comparing eq. (5.28) with eq. (12.7) we find that this constraint sets a significantly lower bound

on the viable axion masses. In particular, demanding Tkick > T∗ implies a lower bound of

ma ≳


9.0× 10−5 eV

(
fa

1010 GeV

)0.13 (
M
mPl

)1.80
for n = 7

1.3× 10−12 eV
(

fa
1010 GeV

)0.40 (
M
mPl

)2.45
for n = 10

1.6× 10−17 eV
(

fa
1010 GeV

)0.57 (
M
mPl

)2.86
for n = 13

(12.16)

12.3 Early damping

The simplest case is when the radial mode is assumed to damp through some unspecified mechanism

early enough that no yield dilution takes place. In this scenario, the yield generated by the kick,

as given by eq. (12.10), remains constant until late times, and the above results apply without

modifications. Because the kick is controlled by the higher-dimensional terms, the viability of

parameter space is sensitive to the choice of n. The constraints from eq. (12.15) and eq. (11.14) can

be directly applied to the mϕ solution eq. (12.12). The constraint from homogeneity, eq. (11.12),

implies an upper bound on ma:

ma < O(10− 100)× (As(kkin))
− 177(n−6)

8(19n+4) f
− 17(n−6)

76n+16
a

(
M

mPl

)− 59(n−3)
19n+4

m
− 59(n−6)

76n+16

Pl

(
Teq
ϵ

) 59(3n−10)
76n+16

,

(12.17)

where the exact value of the prefactor depends on n and the number of relativistic degrees of

freedom. Equivalently, for representative choices of n, the condition is

ma ≲


2× 10−2 eV

(
As(kkin)
2.1×10−9

)−0.16 (
fa

109 GeV

)−0.031 (
M
mPl

)−1.7

ϵ−1.2 if n = 7

5× 10−6 eV
(

As(kkin)
2.1×10−9

)−0.46 (
fa

109 GeV

)−0.088 (
M
mPl

)−2.1

ϵ−1.5 if n = 10

5× 10−8 eV
(

As(kkin)
2.1×10−9

)−0.62 (
fa

109 GeV

)−0.12 (
M
mPl

)−2.3

ϵ−1.7 if n = 13

(12.18)

Furthermore, for the kick mechanism to provide initial conditions for kinetic misalignment, the

kick must take place before T∗. Together with the constraint from the thermal relic, the condition

T∗ < Tkick most strongly restricts the scenario. The resulting parameter space is displayed for

n = 7, 10 and 13 in figures 16 and 17. The shallow dependence of Ykick to mϕ leaves only a narrow

range of parameter space viable for n = 7. For larger n, Ykick becomes more sensitive to mϕ such

that a larger range of parameter space can be supported, although this space will also be shifted to

lower ma.
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Figure 16. Constraints on the [ma, fa] parameter space for n = 7 and M = mPl in the models with

nearly-quadratic potentials, when early damping without entropy dilution is assumed. Here n and M are

parameters of the potential eq. (12.2). The constraints from thermal ϕ relics, perturbativity, homogeneity,

and EP violation are given by eqs. (11.14), (12.15), (12.18), and (11.16), respectively. The temperatures

Tkick, Tkin, and T∗ are given by eqs. (12.7), (12.9) and (5.28), respectively. The vertical contours indicate

values of the radial mode mass mϕ, which are fixed by eq. (12.12) to obtain the observed DM relic. Note

that a few additional experiments have been added relative to the discussion in section 3, see [83] for details.

12.4 General damping

We now generalize to consider damping later than the time when the PQ field becomes dominant.

Because the energy density of the radial mode redshifts as a−3, it will eventually dominate the

energy density of radiation if not damped sufficiently early. Therefore, we first need to estimate the

yield dilution which results from damping after the radial mode dominates the energy density.

Estimation of yield dilution for late damping: The radial mode will begin to dominate

radiation at the temperature Tdom for which ρϕ ≈ ρr. Solving ρϕ(Tdom) ≈ ρr(Tdom) for Tdom we

find

Tdom ≈ 0.8

(
M

mPl

) n−3
2(n−2)

m
n−6

8(n−2)

Pl m
n+2

8(n−2)

ϕ T
3/4
damp, (12.19)

where the prefactor has a mild dependence g∗ and the exact value of n.

If damping takes place after this time, i.e. if Tdom > Tdamp, then the associated entropy injection

is significant. Therefore, the entropy density deviates from s ∝ a−3 and the yield fails to be constant

in time. The resulting yield dilution must be taken into account before an accurate estimate of the

present-day relic can be made. If all energy in the radial oscillations is instantaneously transferred

to the SM plasma at some temperature Tdamp and the entropy injection increases the plasma
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Figure 17. Same as figure 16 but for n = 10 and n = 13.
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temperature to Tdamp,heated, then the yield is diluted to

Ydiluted = Ykick
g∗s(Tdamp)T

3
damp

g∗s(Tdamp,heated)T 3
damp,heated

. (12.20)

where the reheated temperature Tdamp,heated is determined by

1

2
m2

ϕϕ
2
kick

g∗s(Tdamp)T
3
damp

g∗s(Tkick)T 3
kick

=
π2

30
g∗(Tdamp,heated)T

4
damp,heated. (12.21)

This dilution of the yield implies that the observed DM yield is realized for radial masses which

differ quite significantly from the scenario without significant entropy injection.

Solution for yield in the presence of yield dilution: If Tdom > Tdamp, then the initial yield,

given by eq. (12.10) is diluted to the result given by eq. (12.20). Correspondingly, in such diluted

scenarios, the observed DM relic is realized by

mϕ,DM,diluted ≈ 5

(
ϵ
ma

Teq

) 8(n−2)
7n−18 (

m
3(n−2)
Pl M4(n−3)T

6(n−2)
damp

) 1
7n−18

, (12.22)

where the exact value of the O(1) factor depends on n and the number of relativistic degrees of

freedom. For specific choices of n, this corresponds to

mϕ,DM,diluted ≈


2× 103 GeV

(
ma

eV

)40/31 ( M
mPl

)16/31 (
Tdamp

102 GeV

)30/31
ϵ40/31 if n = 7,

1× 104 GeV
(

ma

eV

)16/13 ( M
mPl

)7/13 (
Tdamp

102 GeV

)12/13
ϵ16/13 if n = 10,

2× 104 GeV
(

ma

eV

)88/73 ( M
mPl

)40/73 (
Tdamp

102 GeV

)66/73
ϵ88/73 if n = 13.

(12.23)

Note in particular that the ma dependence in mϕ is much shallower in the presence of entropy

injection than in the undiluted case, see eq. (12.12). This allows the solutions to span over a larger

range of axion masses without requiring unreasonable radial masses.

Classification of scenarios It is useful to classify the possible scenarios based on whether sig-

nificant entropy injection takes place or not, i.e. whether damping takes place before or after

radial mode (saxion) domination at Tdom. Furthermore, there are interesting phenomenological

consequences [36, 37] of scenarios that involve a period of kination12, wherefore, we also highlight

scenarios in which such a period takes place. We classify the scenarios as follows:

Scenario classification:

Kination No kination

Yield diluted Scenario A Scenario B

Yield not diluted Scenario C Scenario D

Kination takes place when the energy density of the universe is dominated by the kinetic energy

of the axion. Therefore, scenarios with significant yield dilution, i.e. with Tdom > Tdamp, feature

kination only if the radial oscillations are damped before ϕ relaxes to fa, i.e. if Tdamp > Tkin.

If this condition is violated, then radial oscillations would dominate in place of the axion kinetic

energy, and no kination era would arise. Scenarios without significant yield dilution, i.e. with

Tdom < Tdamp, feature kination if the kinetic energy of the axion dominates when the radial mode

relaxes to the minimum at fa, i.e. if ρa(Tkin) > ρr(Tkin).

Visualizations of the scenarios classified here are given in figure 18. A map of which scenarios

are realized across the [ma, fa] parameter space for various choices of Tdamp is provided in figure

19.
12Kination is a period of cosmological history characterized by a a−6 evolution of the energy density.

70



Figure 18. Overview of possible scenarios in models with nearly-quadratic potentials. The energy densities

of the angular (axion, orange) and radial (saxion,green) modes are comparable until damping. When the

densities coincide, only the angular mode is shown. Scenarios A and B are dominated by the PQ field at

Tdamp while C and D are radiation-dominated at Tdamp. Scenarios A and C feature kination, while scenarios

B and D do not. Regardless of whether a period of kination is triggered or not, the temperature at which the

radial mode is relaxed to fa is labeled Tkin. The end of kination is labeled by Tkin,end if it does take place.

Physically damping may not be nearly-instantaneous, and the energy density of the plasma could reheat

smoothly, as indicated by the blue dashed lines. However, as only the initial and final states matter for yield

dilution, this question does not impact the damping-mechanism-agnostic solution presented in this section.

The physical evolution of T does impact the more realistic damping rates considered in later sections of this

work. The evolutions displayed here are sketches intended to highlight the characteristic differences between

scenarios and do not represent actual solutions.
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Figure 19. Overview of scenarios in the models with nearly-quadratic potentials. Plots here assume M =

mPl; for lower values of M scenario D (always radiation dominated) is favored. The scenarios referred to

here are illustrated in fig. 18. Note that the plots presented here differ from figs. 20 and 21 in that a single,

constant value for Tdamp is assumed for each plot.

Viable range of Tdamp We here discuss which ranges of parameter space can be supported. While

the radial oscillations must be damped before T∗ for the analysis of [1] to apply such damping would

interfere with the kick if efficient at Tkick. Therefore, Tdamp is ultimately limited by13

Tkick > Tdamp > T∗. (12.24)

This condition gives the wedge-shaped envelope of the [Tdamp,ma] parameter space, which is dis-

played for constant fa in fig. 20.

13It is possible to consider scenarios in which damping takes place after fragmentation. However, the fragmentation

analysis would have to be redone in the presence of radial oscillations. We leave such studies to future work.
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Figure 20. Constraints on the [Tdamp,ma] parameter space for fixed fa = 109 GeV, n = 13 and M = mPl.

In addition to the constraints presented in figure 16, the damping temperature Tdamp is here constrained

by the BBN constraint (11.11) and the range of validity of the analysis (12.24). The plot corresponds to a

horizontal slice of fig. 21.

The damping temperature is further restricted by constraints on the thermal relic of saxions.

These constraints arise when mϕ, as determined by either eq. (12.12) or eq. (12.23), falls in the

range given by eq. (11.14) where ALP thermal relics are constrained by CMB or BBN [206, 237].

The constraint corresponds to the orange band labeled ”Thermal ϕ relic” in figure 20 and to the

central dark grey constraint in fig. 21.

Yield dilution also modifies the homogeneity condition. Combining the solution eq. (12.23)

with the condition eq. (11.12) yields an upper bound on Tdamp:

Tdamp ≲


2× 101 GeV

(
ma

eV

)0.27 ( As(kkin)
2.1×10−9

)−1.4 (
fa

109 GeV

)−0.27 (
M
mPl

)0.97
ϵ4/3 if n = 7

4× 102 GeV
(
ma

eV

)0.15 ( As(kkin)
2.1×10−9

)−1.3 (
fa

109 GeV

)−0.25 (
M
mPl

)0.93
ϵ4/3 if n = 10

1× 103 GeV
(
ma

eV

)0.10 ( As(kkin)
2.1×10−9

)−1.3 (
fa

109 GeV

)−0.24 (
M
mPl

)0.92
ϵ4/3 if n = 13

(12.25)

Interestingly, this condition permits entropy injection to circumvent the homogeneity condition such

that a large-ma window opens up in parameter space. This window is visualized in both fig. 20,

which displays the structure of the constraints along a line of constant fa, and in fig. 21, which

displays the viable range of Tdamp across the [ma, fa] parameter space.
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Figure 21. Survey of viable damping temperatures. We here assume that the homogeneity condition can

be relaxed such that the dotted region in fig. 4 can be made viable. The temperature range can be extended

further in scenarios in which the thermal relic constraint is resolved. Top: Contours of the highest possible

damping temperature for which the scenario can be realized. The maximum thermalization temperature is

reduced around ma ∼ 10−8 eV because of Neff constraints imposed by the thermal saxion relic. Bottom:

Similar plot of the lowest viable damping temperature. Figure 20 serves as a guide to the structure of this

plot.
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13 Thermal damping with Yukawa interactions

In the previous section, we studied the nearly-quadratic model and discussed how it is necessary to

damp radial oscillations to obtain the desired cosmology. Furthermore, we studied the general case

in which we stayed agnostic to the damping interaction and specified the process entirely in terms

of a damping temperature Tdamp. We then mapped out the potential range damping temperatures,

which we presented in figure 21. Now, we seek to implement specific a realization of the damping

mechanism by considering a KSVZ-like fermion Yukawa interaction.

To achieve damping, we here consider a Yukawa interaction of the form

Lint =
√
2yP χ̄χ+ h.c., (13.1)

where χ is a fermion with interactions that couple it efficiently to the SM thermal bath. The fermion

χ can be connected to the SM through either a Yukawa coupling or a gauge coupling [238]. For

definiteness, we will here assume that the χ-SM coupling takes the form of a gauge interaction with

coupling constant gχ and gauge bosons γ. Schematically, the setup is then

ϕ
y←−−−→

Yukawa
χ

gχ←−−→
Gauge

SM plasma with gauge bosons γ. (13.2)

Such a Yukawa is interesting because it is an integral part of KSVZ-type axion models. In such

a framework, the χ-fermions would be KSVZ fermions, the gauge interaction would be SU(3)QCD,

and damping as described here would be a natural consequence of the KSVZ construction.

The fermion receives a potential contribution through both the ϕ interaction and the SM gauge

interaction. We neglect any other sources such that the effective χ mass is

m2
χ,eff ≈ m2

χ,ϕ +m2
χ,T ≈ y2ϕ2 + g2χT

2. (13.3)

Additionally, we define the fine-structure constant of the gauge coupling to be αχ ≡ g2χ/4π. We

assume gχ < 1 and that the Yukawa coupling is weak such that y < αχ < gχ < 1.

13.1 Thermal effects and damping rates

Although a scalar field coupled through a Yukawa may at first glance appear to be a simple system,

thermal effects lead to surprisingly rich dynamics. For a detailed study of such thermal effects, we

refer to Mukaida et al. [238–240]. In particular, a Yukawa coupling of the type considered here

generates thermal contributions to the radial potential such that the full effective mass mϕ,eff is of

the form [239]

m2
ϕ,eff ≈

{
m2

ϕ,0 +m2
ϕ,th if T > yϕ,

m2
ϕ,0 +m2

ϕ,ln if T < yϕ,

where m2
ϕ,th ≈ y2T 2 and m2

ϕ,ln ≈ α2T
4

ϕ2
.

(13.4)

Here mϕ,0 is the zero-temperature mass considered in the previous section, mϕ,th is the thermal

mass and mϕ,ln is the thermal-log mass. The thermal-log mass replaces the ordinary thermal mass

when the χ-fermions are Boltzmann suppressed, i.e. for T < yϕ. If either of the thermal potentials

is non-negligible, then it can significantly alter the dynamics of the kick. Furthermore, when the

Yukawa interaction damps the radial oscillations, this energy is transferred to the SM plasma. This

can further modify the parameter space if the yield dilution is significant.
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The Yukawa coupling introduced in eq. (13.1) gives rise to thermal damping through a variety

of mechanisms. The most relevant rates are the following: Perturbative decay,

Γϕχ̄χ ≈
y2mϕ,0

8π
if mϕ,0 < gT and mϕ,0 < yϕ, (13.5)

Γϕγγ ≈ α2
m3

ϕ,0

ϕ2
if mϕ,0 < gT and mϕ,0 > yϕ (13.6)

where b =
T (r)

16π2

(12π)2

lnα−1
,

scattering processes with χ-fermions,

Γχ−scat. ≈

{
y2αT if yϕ < αT,

y4 ϕ2

αT if αT < yϕ < T,
(13.7)

and loop-induced scattering processes with the gauge bosons γ

Γγ−scat. ≈
bα2T 3

ϕ2
. (13.8)

These damping rates enter as a friction term in the equations of motion, such that this becomes

ϕ̈+ 3Hϕ̇+ Γtotϕ̇+m2
ϕ,effϕ = θ̇2ϕ, (13.9)

where the last term is the centrifugal term connecting the radial dynamics to the angular dynamics

and Γtot is the sum of all damping rates whose assumptions are fulfilled.

13.2 Boltzmann equations and solution approach

The energy lost through damping is transferred to the radiation bath. However, since several of the

damping rates depend on ϕ and/or T , the dynamics of this system can be non-trivial. Furthermore,

the PQ fields may dominate the energy density and thus control H. Therefore, we derive a set of

Boltzmann equations that we solve numerically. The derivation is detailed in appendix F and the

system of equations is

ρ̇ϕkin = −(3H + Γtot + cmϕ
H)ρϕkin, (13.10)

ρ̇circ = −(3H + cmϕ
H)ρcirc, (13.11)

ρ̇r = −4Hρr + Γtotρ
ϕ
kin, (13.12)

ρ̇a = −cρa
Hρa, (13.13)

where ρϕkin is the kinetic energy of the radial oscillations, ρcirc is the potential energy associated with

the circular orbit about which the radial mode is oscillating and ρr is the energy density of the SM

plasma. We parametrize a possible temperature dependence of the radial mass with a parameter

cmϕ
defined from mϕ ∝ a−cmϕ , such that cmϕ

= 1 if thermal effects dominate the potential and

cmϕ
= 0 otherwise. Similarly, we parametrize the axion redshift with ρa ∝ a−cρa where cρa

= 3

when ϕ≫ fa and cρa = 6 when ϕ ∼ fa. The initial conditions for the system, as well as details on

the handling of χ-fermion relativistic/non-relativistic transitions, are also discussed in appendix F.

13.3 Discussion

The Yukawa interaction introduces several interesting consequences which we discuss in the following

paragraphs.
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Thermal potential and the absence of low-ma solutions: One interesting consequence of

the thermal potential is that it precludes the low−ma class of solutions seen e.g. on the left-hand-

side of figure 20 and 21. To understand this, recall that Ykick ∝ ϵ ×m−k
ϕ,eff , where k is a constant

depending on n. In the absence of thermal effects, the parameter ϵ can be assumed to be of O(1).
This is a result of the balance between A ∼ O(1)mϕ,0 in the PQ-breaking angular potential and

the radial potential. Therefore, a thermal mass contribution will suppress ϵ. From eq. (11.4) and

eq. (11.7) we find

ϵ ≈ O(1)× mϕ,0

mϕ,eff
. (13.14)

This suppression disfavors14 kicks with mϕ,eff ≫ mϕ,0, and introduces a lower bound on mϕ,0. Since

the large yield corresponds to low mϕ, this affects low axion masses. As discussed in the next para-

graph, this problem can be ameliorated by considering scenarios with only intermediate relativistic

phases. Nevertheless, this precludes solutions with axion/saxion masses below the thermal ϕ relic

bound.

Intermediate relativistic phases: Intermediate relativistic phases play an important role in

overcoming the thermal mass contribution at the time of the kick. In solutions with an intermediate

relativistic phase, fermions are initially non-relativistic because of a large ϕ-induced mass and turn

relativistic once the ϕ-induced mass falls below T . This phenomenon allows efficient damping

through scatting with relativistic fermions without the problems associated with a large thermal

mass at the time of the kick. In particular, if yϕkick > Tkick then the lower limit on the mϕ,0 is

relaxed to mϕ,0 > mϕ,ln.

Because ϕ ∝ a−3/2 if ϕ is not dominated by the thermal potential, it is still possible for the

fermions to enter an intermediate relativistic phase with efficient damping. We find that this method

of evading ϵ-suppression leads to solutions with DM for ma ≳ 10−6 eV. An explicit example of this

evolution can be found among the example solutions in the appendix F, see fig. 34.

Solutions, where a thermal contribution is evaded by an early non-relativistic phase, are only

consistent for some values of the reheating temperature after inflation, Treheat. In particular, some

choices of y impose upper bounds on Treheat below which a kick in a non-relativistic phase is

inconsistent. See appendix E for a discussion of such potential contradictions. We generally allow

Treheat to take any value between the inflation scale and Tkick, except for regimes in which a too

large Treheat would contradict a kick with non-relativistic fermions. For simplicity, we always assume

Treheat > Tkick. Our results have no further dependence on Treheat.

Collider constraints: Since the χ fermions cannot be SM fermions and they have not yet been

observed they must not be observable at the colliders available today. We already assume the χ-

fermions are efficiently interacting with the SM, so to ensure compatibility with collider data, we

impose that

mχ,today ≈ yfa ≳ 1 TeV, (13.15)

so that the χ-fermions are too heavy to be produced in present-day experiments.

Kination and gravitational waves: Because the energy density of the angular mode transitions

from a−3 to a−6 evolution at akin, at which time ϕ reaches the minimum at fa, the scenarios here can

involve a period of kination. Such a period can amplify gravitational waves (GWs) from inflation.

14Note that if ϵ is suppressed then the radial mode may also experience parametric resonance which is not taken

into account here. Since we favor solutions with mϕ,eff ∼ mϕ,0, this does not have a major impact on our results.
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This effect was studied in [37] where it was found that a period of kination leads to GWs with a

peak amplitude of

ΩGW−peak(fGW−peak)h
2 ≈ 2.8× 10−13

×
(
g∗(Tkin,end)

106.25

)(
g∗s(Tkin,end)

106.25

)−4/3(
EI

1016 GeV

)4(
e2Nkin

e10

)
,

(13.16)

and a peak frequency of

fGW−peak ≈ 1.1× 10−3 Hz

(
g∗(Tkin,end)

3.37

)(
g∗s(Tkin,end)

3.91

)−4/3(
Ekin

10 TeV

)(
eNkin/2

10

)
. (13.17)

Here Tkin,end is the temperature at the end of kination domination, Nkin is the number of e-folds

of inflation and EI is the energy scale of inflation which is constrained to EI < 1.6× 1016 GeV by

Planck [241]. The peak frequency is controlled by the energy scale of kination,

Ekin = ρθ(Tkin) =
1

2
m2

ϕf
2
a . (13.18)

Therefore, the frequency of the GW peak depends on the radial mass mϕ. We discuss the ob-

servability of such a signal in the results section. However, the suppression of As(kkin), which is

required to avoid homogeneity constraints, might also suppress the stochastic GW background from

inflation. We do not take any such impact into account and leave such modifications to future work.

Visualization parameter space: Even when we fix the strength of the gauge interaction to

the reference value αχ = 0.1, the model we are considering has six parameters: ma, fa, y,M, n

and mϕ,0. This makes visualizing the viable parameter space challenging. For simplicity, we only

consider M = mPl and only show results for n = 13, although alternative choices of n can be found

in appendix G. The dimensionality is further reduced to 3 by enforcing that the axion relic matches

the observed DM density. Because of yield dilution, for any given choice of [ma, fa] the correct

DM relic can be realized by a family of solutions with varying mϕ,0 and y. We visualize the viable

parameter in the two following ways:

a) To visualize the impact of the most important constraints, we show the parameter space

that would become viable if a given constraint is relaxed. Any such region is indicated by

colored hatching. Parameter space that cannot be made viable by the relaxation of any single

condition is shown in gray.

b) To visualize parameter values, we plot contours of the highest and/or lowest values possible

in any given point of [ma, fa].

In particular, a) implies that if two constraints overlap in our visualization, then that point of

[ma, fa] space becomes viable if either constraint is relaxed. This is quite different from usual

visualizations of two-dimensional parameter spaces and is a consequence of our three-dimensional

parameter space being projected down onto the two-dimensional [ma, fa] plane.

13.4 Results

By numerically solving the Boltzmann equations (13.10)-(13.13) we can sample the across the

parameter space [fa, y,M, n,mϕ,0] and robustly identify solutions that correspond to the correct

DM relic for a given ma. Solutions both with and without yield dilution can be found with all

solutions featuring (s)axion masses above the thermal ϕ relic bound. We have investigated the

choices n = 7, 10, and n = 13. Of these choices, n = 13 supports most parameter space wherefore

we focus on this case. Solutions for n = 7 and n = 13 can be found in appendix G. Interestingly,
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there are regions of parameter space in which the radial mass can be large enough to saturate the

perturbativity condition m2
ϕ,0 ≤ 4πf2a . The full range of parameter values that are required to

support these solutions are detailed in appendix G. From our results, we highlight the following:

Dominant damping rates: We find that the process most commonly responsible for damping

is scatting with relativistic χ-fermions as given by eq. (13.7). Damping tends to take place at

temperatures near either the end or the beginning of a phase of relativistic χ-fermions. Damping

near the beginning of a relativistic phase is common because of lifting of the χ-fermion Boltzmann

suppression rapidly increases the damping rate. Damping near the end of a relativistic phase is

common because the Γχ−scat. ∝ T−1 behavior rapidly out-competes H ∝ T 2 in the short regime,

αT < yϕ < T , in which the damping rate is relevant. Damping near the end of a relativistic

phase can be problematic if the damping does not complete before Boltzmann suppression closes

the process down. The ability to explicitly confirm complete damping in such transition scenarios

is another advantage of our numerical solution. See appendix F for explicit examples of these

scenarios.

Aside from χ-scattering, saxion-to-axion decay can also play an important role in the damping

of radial oscillations. As discussed in section 11.4 and appendix C, this mechanism is constrained

by the danger of producing a hot axion relic in excess of constraints on dark radiation. This

limits saxion-to-axion decay as a stand-alone damping mechanism. Interestingly, we find that when

saxion-to-axion decay is considered in conjunction with χ-scattering then the decay can account

for the remaining energy density which is left behind after χ-scattering has damped most, but not

all, of energy out of radial oscillations. The synergy in such two-step damping lies in the fact that

after χ-scattering has reduced the energy in radial oscillations to a fraction of ρr saxion-to-axion

decay can take place without the resulting hot axion being a significant part of the overall energy

density. An explicit example of such two-step damping can be found in appendix F.

Constraints from saxion-to-axion decay: The condition given in eq. (11.22) leads to the

exclusion of solutions with large (s)axion masses. This condition ensures that saxion-to-axion decay

does not lead to the production of a relic of hot axions dominating the thermal plasma. In some parts

of parameter space, this condition is poorly captured by our visualization because high-ma solutions

are shifted by lower-ma when saxion-to-axion decay reduces yield dilution. This applies in particular

to solutions with damping triggered by an intermediate relativistic phase which would have featured

large yield dilution if the energy in radial oscillations had been dumped into radiation rather than

hot axions. To better highlight parameter space excluded by this effect, we have performed an

analytic approximation of the constraint as applied to this specific family of solutions and indicated

the upper bound on ma (and thus implicitly the upper bound on mϕ) with a red dashed line. An

O(1) constant was chosen to match the analytic solution to the numerical results. Because this

analytic bound only applies to solutions with damping triggered by an intermediate relativistic

phase some solutions featuring late damping not triggered by an intermediate relativistic phase can

be found at ma higher than the indicated dashed line.

Necessity of As(kkin) suppression: All solutions found involve an extended duration of a−6

evolution of the energy density of the angular mode. This leads to significant constraints from

the homogeneity condition eq. (11.12), which applies if the spectrum of density perturbations from

inflation As is assumed to be a flat spectrum. If the bound on As from CMB measurements, i.e.

As,Planck ∼ 2.1× 10−9 [241], is assumed to apply on all scales then Yukawa damping is not viable.

However, the relevant scale k−1
kin is many orders of magnitude smaller (k−1

kin ≪ 10−10 Mpc) than

those constrained by CMB measurements (k ∼ 0.05 Mpc−1), wherefore As(kkin) is allowed to differ

by many orders of magnitude from the value suggested by CMB measurements without tension.
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If As(kkin) is assumed to be sufficiently smaller than As ∼ 2.1 × 10−9, then a region around

ma ∼ 10−6 eV to 10−2 eV becomes viable for a benchmark value of n = 13. We display this region

in figure 22 along with the necessary As(kkin) suppression and the surrounding constraints. We

display the associated values of kkin in appendix G. Assuming As(kkin) ≪ 2.1 × 10−9 corresponds

to relaxation of the homogeneity constraint seen e.g. in figure 20.

Realized range of damping temperatures: For scenarios in which χ-scattering is the sole

relevant damping rate, we for n = 13 find scenarios with damping temperatures that generally

lie in the range Tdamp ∼ 104 GeV to 1012 GeV. When saxion-to-axion decay is also considered,

then scenarios can be found in which some energy remains in radial oscillations down to Tdamp ≳
GeV. This may appear to be in conflict with the results seen in section 12.4. However, because

damping through axion-to-saxion decay does not establish thermal contact with the plasma damping

through this channel avoids thermal relic constraints given by eq. 11.14. Therefore, lower damping

temperatures than those suggested by e.g. 21 can be achieved without conflict.

Furthermore, the definition of Tdamp is made more complex by the possibility of two-step

damping. For the analytic approach of section 12.4 we considered an instantaneous damping in

which Tdamp is unambiguously defined. For the numerical solutions, damping generally does not take

place at any singular time, so we must be more careful with the definition of Tdamp. We here define

Tdamp as the temperature at which the energy in radial oscillations is damped below all other energy

densities of the problem, i.e. we demand ρϕkin < ρr, ρa for all T < Tdamp in addition to Γtot. The

possibility of two-step damping implies that Tdamp is not necessarily anywhere near the temperature

at which the majority of energy is transferred from the PQ field to the plasma. Crucially, the bulk

of the energy in two-step solutions is transferred by χ-scattering much earlier than Tdamp. In such

scenarios, the behavior is quite different from the simple scenario of instantaneous damping, and

the analysis of section 12.4 should not be expected to apply.

With the knowledge that the very different behavior of Tdamp in two-step scenarios in some

circumstances circumvent some lower bounds discussed in section 12.4, our numerical solution

otherwise realizes a subset of the temperature range derived in that section. This range is visualized

in figure 26, which can be compared to the general case visualized in figure 21. Again, note that

each point in the [ma, fa] plane may be covered by a range of solutions with different combinations

of mϕ and y, such that each point in our [ma, fa] parameter space is associated with a range of

possible temperatures. However, note that the color gradient between the two plots cannot be

compared because the range has been chosen to best fit each plot individually.

The low damping temperatures permitted aroundma ∼ 10−4 eV andma ∼ 10−1 eV correspond

to two-step damping in which the damping is finalized by saxion-to-axion decay without violation

of the thermal ϕ relic constraints that enforced a higher lower bound in figure 21.

Gravitational waves: In figure 23 we map out how long a duration of kination can be realized

in this setup. Such long durations may lead to an observable GW signal if the necessity of As(kkin)

suppression does not interfere with the primordial spectrum. Since the frequency and amplitude of

any such signal depend on mϕ and because each point in [ma, fa] parameter space can, in general,

be supported by multiple combinations of mϕ and Yukawa coupling y, each such point will have a

family of solutions of varying peak frequency and amplitude. Within such a family, changes in mϕ

are compensated by changes in yield dilution such that the present-day yield is constant. Increased

yield dilution shortens the duration of kination and also reduces the peak frequency. In fig. 24, we

display the region of [fGW−peak,ΩGW−peakh
2] parameter space that is populated by KMM solutions.

In this figure, we also visualize the effect of yield dilution by displaying a family of solutions with

constant [ma, fa]. Future gravitational wave observatories such as Big Bang Observer [242, 243]

and DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) [244] may be sensitive
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enough to detect the stochastic background from inflation if this takes place at the largest energy

scales permitted by Planck. For the maximal value of EI,max ∼ 1.6× 1016 GeV [245], even a small

amplification of such background will be observable if the relevant frequency falls within the BBO

or DECIGO range. Therefore, it is possible that much of the parameter space supported in this

scenario could be observed by BBO or DECIGO. Significant regions of parameter space are also

within the potential reach of Einstein Telescope [246] (ET) and Cosmic Explorer [247] (CE). The

[ma, fa] parameter space which contains solutions in reach of these observatories is presented in fig.

25. However, since ΩGW−peak(fGW−peak) ∝ E4
I , the signal is significantly reduced if EI is not near

the maximal value permitted by Planck.
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Figure 22. Map of necessary suppression of As(kkin) relative to As,Planck, where As is the amplitude of the

primordial power spectrum, see eq. (11.12). Constraints on the implementation are indicated by the hatched

regions. The dominant constraints are from the thermal ϕ relic (11.14), collider constraints (13.15), and

hot axion relics produced by saxion-to-axion decay (11.22). Because each point in [ma, fa] space may be

supported by a range of solutions, we illustrate the constraints by highlighting regions that would become

viable if a given constraint is lifted.

Figure 23. Map of the largest number of e-folds of kination which can be realized if it is assumed that

the curvature fluctuations can be sufficiently suppressed. Each point in the [ma, fa] parameter space, in

general, has a range of solutions with varying radial mode mass mϕ and the Yukawa coupling y specified by

eq. (13.1). The contours given here indicate the largest possible number of e-folds at each point.
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Figure 24. Region in the [ΩGW (f)h2, f ] plane in which gravitational waves from inflation may be amplified

by kination in the nearly-quadratic model. Crucially, the green region is not a frequency spectrum. Instead,

the region indicates possible locations of the peak frequency f and amplitude ΩGW (f) of the GW signal. The

effect of entropy injection is visualized by the blue line, which represents a family of solutions with constant

[ma, fa]. Along this line, increased entropy injection reduces both frequency and amplitude of the GW signal.

Figure 25. Regions in [ma, fa] parameter space in which amplification of the inflationary GW background

may be observable by the indicated GW observatories.
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Figure 26. Realized range of damping temperatures. Here the homogeneity condition (11.12) has been

relaxed by assuming that As(kkin) is sufficiently suppressed. Therefore, the realized temperatures are much

higher than those suggested by figure 21. This can be understood by referring to fig. 20, where relaxation of

the homogeneity condition unlocks the red-shaded region. Top: Contours of the highest possible thermaliza-

tion temperature. Bottom: Contours of the lowest possible thermalization temperature
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14 Models with quartic potentials

The next model we consider features a quartic potential. Such a potential is interesting because

it is the simplest potential that features spontaneous symmetry breaking. Specifically, we consider

the potential of the form

Vlate = λ2
(
|P |2 − f2a

2

)2

. (14.1)

The effective radial mass provided by this potential is

m2
ϕ =

1

ϕ
V ′
late ≈ λ2ϕ2. (14.2)

The quartic model fundamentally differs from the nearly-quadratic model in that the quartic mass

depends linearly on ϕ, while the nearly-quadratic model features a mass approximately independent

of ϕ. The property thatmϕ becomes large at large field values presents a challenge for the generation

of the VEV via higher-dimensional terms. In appendix H.1 we show that the higher-dimensional

terms used in the nearly-quadratic model only lead to a limited amount of parameter space in the

quartic model, wherefore we do not consider such terms further as a high-VEV driver in the quartic

model. Instead, we assume that both the radial and angular modes are light during inflation such

that a large VEV is generated by de Sitter fluctuations. However, note that this inherently makes

the quartic model somewhat tuned in that a very low quartic coupling is required, e.g., λ ∼ 10−20.

14.1 Initial conditions

We assume that the kick is driven by the same type of PQ-violating terms as in the nearly-quadratic

model so that the PQ-violating part of the potential is

V��PQ =
A (Pn + P ∗n)

nmn−3
Pl

. (14.3)

The complete zero-temperature potential at early times is Vearly = Vlate + V��PQ. Once P starts

oscillating at mϕ ≈ 3H, the kick proceeds as described in section 11 and, as in the nearly-quadratic

case, the initial angular velocity is given by eq. (11.4). However, in the present case the SUSY-

motivated assumption of A ≈ O(1) ×mϕ does not yield a kick that naturally results in ϵ ∼ O(1).
Therefore, the quartic model instead assumes that the parameter A can be chosen to an arbitrary

value such that ϵ ∼ O(1) is fixed by hand [33]. This point will be further discussed in section 14.2.

If a field is lighter than HI during inflation, then fluctuations grow [248, 249]. This growth of

de Sitter fluctuations has previously been exploited to generate a large VEV for the radial in kinetic

misalignment [33]. In particular, if the radial mode is lighter than the inflation scale HI , then the

expectation value of the VEV grows up to a maximal value of

ϕ2kick ∼
3

8π2

H4
I

m2
ϕ

∼ 3

8π2

H4
I

ϕ2kickλ
2
, (14.4)

which implies an initial VEV of

ϕkick ∼ 4

√
3

8π2

HI√
λ
. (14.5)

Notably, the dependence on the quartic coupling λ drops out in the potential initial energy such

that the energy density of ϕ at the time of the kick only depends on HI :

ρϕ,pot,kick ≈
1

2
(λϕkick)

2ϕ2kick ≈
3

16π2
H4

I . (14.6)
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To avoid a period of inflation generated by ϕ before the field starts oscillating, we demand that

ρϕ,pot does not dominate the energy density at the time of the kick. Furthermore, we assume that

the kick takes place after the reheating of the inflaton so that radiation dominates the universe at

the time of the kick. The kick temperature Tkick is fixed from mϕ,kick ≈ λϕkick ≈ 3H, which implies

Tkick ≈ 0.2× λ1/4
√
HImPl, (14.7)

ρr(Tkick) ≈
1

2
√
6π
λH2

Im
2
Pl. (14.8)

Both the saxion and axion energy densities redshift as a−4 until the radial mode is relaxed to its

minimum at Tkin. This can verified by the WKB approximation according to which ϕ ∝ m−1/2
ϕ a−3/2

such that ϕ ∝ a−1 if mϕ ∝ ϕ. After the radial mode is relaxed to fa the mass becomes constant

mϕ ∼ λfa, wherefore ρϕ ∝ a−3. As in the nearly-quadratic model PQ charge conservation ensures

ρa ∝ a−6 after Tkin.

If the universe is radiation-dominated at the time of the kick, then radiation will stay dominant

at least until Tkin. Because of this, kination can never take place in the quartic model and entropy

dilution is possible only if there is enough time between Tkin and Tdamp for ρϕ, which redshifts as

a−3 after Tkin, to dominate ρr.

Estimation of the produced yield: The yield produced by the kick is

Ykick ≈
nPQ

s

∣∣∣
kick
≈ ϵ λϕ3kick

2π2

45 g∗sT
3
kick

, (14.9)

which in terms of model parameters corresponds to

Ykick ≈ 0.2× ϵ

λ5/4

(
HI

mPl

)3/2

, (14.10)

where the prefactor has mild dependence on g∗(Tkick).

Solution for dark matter in the absence of yield dilution: If no yield dilution takes place,

then the yield given eq. (14.10) corresponds to the present-day yield. To match the observed DM

yield, i.e. YDM ≈ 0.64
Teq

ma
, we choose λ such that 2Ykick = YDM. This implies a present-day radial

mass of

mϕ,today,DM ≈ 0.7× fa
(
HI

mPl

)6/5(
maϵ

Teq

)4/5

. (14.11)

The quartic coupling is also fixed from eq. (14.11) and can be obtained from λ = mϕ,today/fa.

14.2 Application of constraints

We here discuss the constraints on the quartic model. As in the nearly-quadratic case, the quartic

model is subject to constraints from the growth of fluctuations (the homogeneity condition) and

the constraints from the radial thermal relic.

The nearly-quadratic model was subject to constraints from perturbativity and from the need

for the kick to take place before T∗. For the quartic model, the perturbativity constraint is not

relevant because the model involves very low values of the quartic coupling λ. Furthermore, for

any realistic value of HI , the kick in the quartic model will always take place before the T∗, so this

condition also does not impose a significant constraint.

Because the axion and saxion are assumed to be light during inflation in the quartic model, this

scenario is subject to additional constraints. In particular, both modes will contain fluctuations

that give rise to isocurvature and domain wall constraints, which we will discuss in the following

sections. Finally, we discuss limits on the amplitude of the PQ-violating potential.
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Isocurvature constraint: Since both degrees of freedom are assumed to be light during inflation,

quantum fluctuations in both the angular mode and the radial mode will grow [248, 249]. After

inflation, we expect fluctuations of size

∆ϕkick ∼
HI

2π
and ∆θkick ∼

HI

2πϕkick
. (14.12)

These fluctuations will source isocurvature fluctuations in the dark matter relic. Such fluctuations

are tightly constrained on CMB scales. As was argued in [33], the yield fluctuations can be related

to the power spectrum of cold dark matter isocurvature perturbations,

Pϕ(k) =

〈(
δΩDM

ΩDM

)2
〉

=

〈(
δY

Y

)2
〉
. (14.13)

Assuming a pivot scale of k ∼ 0.05 Mpc−1 this power spectrum is constrained to

Pϕ(k) < 8.7× 10−11. (14.14)

Since the yield Y is a function of the angular axion field θ and radial saxion field ϕ, we can express

the fluctuations as

Pϕ(k) =

〈(
δY

Y

)2
〉

=

(
1

Y

∂Y

∂θ

)2 〈
δθ2kick

〉
+

(
1

Y

∂Y

∂ϕ

)2 〈
δϕ2kick

〉
. (14.15)

With Y = Ykick, this yields

Pϕ(k) =
n2

N2
dw

cot

(
nθkick
Ndw

)2(
HI

2πϕkick

)2

+
(5− 2n)2

4ϕ2kick

(
HI

2π

)2

, (14.16)

where we neglected any influence of entropy injection if such takes place. Note that dependence of

θ in Y enters through ϵ as given by eqs. (11.4) and (11.7). Since ϕkick is related to HI through

eq. (14.4) we can eliminate the powers of HI/ϕkick from the spectrum:

Pϕ(k) =
λn2√
6πN2

dw

cot

(
nθkick
Ndw

)2

+
λ(5− 2n)2

4
√
6π

(14.17)

The angular contribution could be removed by tuning of the cotangent. However, the two

contributions are expected to be of similar magnitude, so there is little advantage to tuning in this

scenario. If one takes the cot term to be of O(1), then the contributions are of similar importance,

and the constraint is

λ ≲ O(1)× 10−11, (14.18)

where the O(1) constant depends on n and the exact value of the initial angular misalignment θkick.

Domain wall constraint: Inflationary quantum fluctuations can also lead to a domain wall

problem. This may take place because fluctuations in the initial angular velocity over time will lead

to slightly different angular displacements in different Hubble patches. If such angular fluctuations

have become O(1) at the time of trapping, then we expect the field to form a configuration where

different patches are separated by domain walls. If this configuration is stable, then the energy in the

domain walls will eventually dominate the energy density of the universe, which is in contradiction

with observed cosmology.
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To estimate whether inflationary perturbations can induce a DW constraint, we integrate the

total angular displacement:

θ∗ ≈
∫ t∗

tkick

θ̇dt (14.19)

This integration is carried out in appendix H.2, where we find that O(1) angular fluctuations are

generated unless

HI

fa
≲ O(0.1), (14.20)

where the exact value of the O(0.1) factor depends on the choice of n in the PQ-violating potential

and on the exact initial condition of θ.

Co at al. [33] addresses this problem by invoking parametric resonance to resolve the domain

wall problem by non-thermally restoring PQ-symmetry temporarily and thereby generating cosmic

strings. Such strings would render the resulting string-wall network unstable. However, in the

absence of a more detailed analysis of the impact of such an event, we do not consider this solution

to the DW problem.

Homogeneity condition on a−6 evolution: As discussed in section 11.4, fluctuations grow in

relative importance during a−6 evolution of the axion. This effect implies an upper bound on the

amplitude of curvature perturbations As(kkin) < (akin/a∗)
2
. In the present model, we find that(

akin
a∗

)2

≈ 2× 10−7

(
fa

109 GeV

)−.86 (ma

eV

)−.059
(

HI

109 GeV

)4/5

, (14.21)

if we assume the no entropy injection takes place. If the spectrum of curvature perturbations is flat,

then we must demand that As,Planck = 2.1× 10−9 < (akin/a∗)
2
[241]. If this condition is violated,

then fluctuations may dominate the relic generated from nPQ unless the spectrum of fluctuations

can be suppressed on the relevant scales.

Limits on the PQ-violating potential: Recall that the initial rotation is driven by the higher-

dimensional PQ-violating potential:

V��PQ =
A (Pn + P ∗n)

nmn−3
Pl

(14.22)

In the SUSY motivated nearly-quadratic model one would expect that A ∼ mϕ,0, which in that

model naturally leads to ϵ ∼ O(1). However, in a quartic model, A ∼ mϕ,0 does not naturally lead

to ϵ ∼ O(1). This is a consequence of the initial amplitude, which in the quartic model depends on

HI instead of on H(T ). Therefore, factors of mPl in the kick estimate do not cancel, and A must

be chosen to compensate. Specifically, in order to get ϵ ∼ O(1) the parameter A needs to be

A ∼ 9.× 10−3 × e1.16nmPl

(
mPl

HI

)n−4

λn/2. (14.23)

This result is in agreement with [33]. Depending on HI and λ this parameter A may need to take

super-Planckian values to realize an ϵ ∼ 1 kick. We will here stay agnostic to how such a term may

be motivated, but we impose that A < mPl, which implies an upper bound on λ:

λ < O(0.1)×
(
HI

mPl

)2− 8
n

. (14.24)
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If one assumes that no yield dilution takes place, then this corresponds to an upper bound on the

axion mass that can account for the observed DM relic:

ma < O(1)× Teq
(
HI

mPl

)1− 10
n

. (14.25)

Although this constraint could potentially present a challenge, we find the thermal relics and domain

wall constraint impose stronger bounds on the parameter space.

Limits from second inflation: If P dominates the energy density of the universe prior to

the kick, then it would drive a second period of inflation which is inconsistent with the KMM

scenario [33]. To remain as agnostic as possible, we assume that reheating of the inflaton takes

place before the kick, such that the avoidance of a second period of inflation driven by P amounts

to the condition that radiation dominates the energy density of the PQ field at the time of the

kick. Since λ only appears in the energy density of radiation and not in ρϕ, there is a minimum

threshold for λ below which we do not have radiation domination at the time of the kick. Radiation

domination is ensured for

λ >
3

4π

√
3

2

(
HI

mPl

)2

. (14.26)

If the quartic coupling is fixed according to eq. (14.11) such that Ykick corresponds to the observed

DM relic, then this condition implies a lower bound on ma of

0.6
HITeq
mPl

≲ ma. (14.27)

A related lower bound is found by demanding ϕkick < mPl. This condition is somewhat weaker

than eq. (14.27) and implies 0.4HITeq/mPl ≲ ma.

Limits from eternal inflation: The model studied here relies on de Sitter fluctuation to establish

the initial condition for the kick, see eq. (14.5). However, because the radial masses here are very

light, this equilibrium configuration takes a very large number of e-folds of inflation to establish.

By solving the Fokker-Planck equation, one finds that the required number of e-folds, N , is on the

order of

N ≳ Nmin ≈
3

2

H2
I

(λϕkick)2
. (14.28)

If the duration of inflation, as measured by N, is too long, then the theory enters the regime of

eternal inflation. The condition to avoid this is

Nmin ≲
m2

Pl

H2
I

. (14.29)

We in fig. 27 provide both contours of the minimum number of e-folds given by eq. (14.28) and

map out the region in which the equilibrium distribution cannot be reached without violating the

upper bound (14.29).
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Figure 27. Viable parameter space in the quartic model under the assumption of early damping. The top

plot assumes a Hubble scale during inflation of HI = 105 GeV. The correct DM yield can be achieved in

every unshaded point. The constraints from a second period of inflation, domain walls, and the thermal ϕ

relic are given by eqs. (14.27), (14.20) and (11.14), respectively. We also show contours of λ, mϕ,today = λfa
and Nmin as defined by eq. (14.28). The thermal relic constraints may depend on the damping mechanism,

see appendix C.

14.3 Early damping

As before, we first consider the simplest scenario in which radial damping proceeds through an

unspecified mechanism and takes place sufficiently early that any yield dilution is insignificant.

This is the case when damping takes place before the energy density of the radial modes dominates

the plasma, i.e. when Tdamp > Tdom, where Tdom is specified by eq. (14.31).

In figure 27 and figure 28 we display the above-mentioned constraints on parameter space for

various choices of HI . In general, the combination of DM isocurvature constraints and the thermal

relic constraints prefer solutions with lower HI . In particular, lower values of ma require lower

values of HI . Solutions for the QCD axion are found only for HI ≲ 105 GeV and no solutions for

ALPs of any mass are found for HI ≳ 1010 GeV.
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Figure 28. Same as figure 27, but for HI = 107 GeV and 109 GeV. The constraints close the parameter

space completely for values of HI ∼ 1010 GeV and above.
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14.4 General damping

We now generalize to the scenario in which damping takes place late enough to impact the yield.

Estimation of yield dilution for late damping: If damping of the radial oscillations takes

place after ϕ reaches fa, i.e. if Tkin > Tdamp, then radial oscillations redshift as cold matter. If this

evolution is not checked by radial damping, then ρϕ will dominate the energy density after Tdom
defined by

1

2
(λϕkick)

2ϕ2kick

(
akick
akin

)4(
akin
adom

)3

=
π2

30
g∗s(Tdom)T

4
dom, (14.30)

which implies

Tdom ≈ O(0.1)×
fa
λ1/4

(
HI

mPl

)3/2

, (14.31)

where the exact value of the prefactor depends on the exact number of relativistic degrees of freedom.

If damping takes place after Tdom, where ϕ dominates the energy density, then the yield dilution

is significant. In the instantaneous approximation, damping is assumed to instantaneously transfer

all energy stored in radial fluctuations to the SM plasma such that the plasma is reheated from

Tdamp to Tdamp,heated, where Tdamp,heated is defined from

1

2
(λϕkick)

2ϕ2kick

(
akick
akin

)4(
akin
adamp

)3

=
π2

30
g∗s(Tdamp,heated)T

4
damp,heated. (14.32)

The dilution yield is then

Ydiluted ≈ 0.9 ϵλ−17/16

(
HI

mPl

)3/8(
Tdamp

fa

)3/4

(14.33)

Solution in the presence of yield dilution: If Tdom > Tdamp such that the yield is diluted

from eq. (14.10) to eq. (14.33) then the observed DM yield is found for

mϕ,today,DM,diluted ≈ O(1)×
(
HI

mPl

)6/17(
ϵ
ma

Teq

)16/17(
Tdamp

fa

)12/17

, (14.34)

which ensures ρa = ρDM in the presence of yield dilution. As pointed out above, the corresponding

quartic coupling is found from λ ≈ mϕ,today/fa.

Impact and parameter space Because the ratio ρϕ/ρr stays constant until ϕ has relaxed until

fa the phenomena of yield dilution plays a much smaller role in the quartic model. This can be

seen in figure 29 where we give constraints on the [Tdamp,ma] parameter space. Yield dilution

takes place when Tdamp is lower than the temperature where ϕ dominates the energy density, which

corresponds to the region below the green dashed line in figure 29. As can be seen, only a small

amount of parameter space is impacted by this dilution, and contrary to the nearly-quadratic model,

the structure of the constraints is such that dilution does not open up any disconnected regions of

parameter space.

Viable range of damping temperatures As in the nearly-quadratic model, the viable range of

damping temperatures is ultimately limited by Tkick and T∗. Depending on the choice of parameters,

the lower bound may be further restricted by the homogeneity condition or the condition that

radiation dominates at the time of the kick. The structure of the constraints on Tdamp is visualized

in figure 29, where the individual constraints are shown for constant fa and HI . The viable range

of Tdamp is shown on the [ma, fa] plane in figure 30 for an exemplary choice of HI .
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Figure 29. Constraints on the [Tdamp,ma] parameter space for fixed fa and HI . The correct DM yield can

be achieved in every unshaded point. The lower plot corresponds to a horizontal slice of fig. 30.

93



105GeV

105GeV

106GeV

Maximal Tdamp/GeV

10-3 10-1 10 103 105 107

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 1 102
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

ma/eV

f a
-
1
/G
e
V
-
1

Contours of highestpossible Tdamp forHI=10
5 GeV

Q
C
D
ax
io
n

10-3GeV

10-2GeV

10-2GeV

10-1GeV

1GeV

Minimal Tdamp/GeV

10-3 10-1 10 103 105 107

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 1 102
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

ma/eV

f a
-
1
/G
e
V
-
1

Contours of lowestpossible Tdamp forHI=10
5 GeV

Q
C
D
ax
io
n

Figure 30. Viable range of damping temperatures in the quartic model for HI = 105 GeV. Colored

regions are viable, and gray regions are excluded for all possible damping temperatures. See figure 29 for

a visualization of the constraints that shape these limits. Top: Maximally viable damping temperature.

Bottom: Minimally viable damping temperature.
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14.5 Obstacles to thermal damping

Without a solution to the domain wall problem, we do not find any viable solutions for models with

quartic potentials. To understand this, consider the yield produced in this class of models, which is

Ykick ≈ 0.2× ϵ

λ5/4

(
HI

mPl

)3/2

, (14.35)

where the prefactor has a mild dependence on g∗(Tkick). To realize solutions corresponding to sub-

eV axions masses it is therefore necessary to consider either large values of HI or low values of λ.

Setting aside the concerns of naturalness for the moment, we can attempt to avoid domain wall

problems by considering low values of λ. Specifically, we can consider values of λ which go below

the range constrained by thermal ϕ relics, eq. (C.15), which corresponds to

λ < O(1)Teq
fa

. (14.36)

However, this range of λ implies low radial masses. These low radial masses cannot compete with

the thermal potential and avoid thermal suppression of the kick once a damping interaction is

introduced. This holds true both for the Yukawa considered in section 13 and for Higgs portal

interactions like L ⊃ ξ2ϕ2H†H. Such a Higgs portal interaction leads to a thermal potential of a

similar form as eq. 13.4. If we demand mϕ,0 > mϕ,th at the time of the kick, then this corresponds

to the condition

ξ ≲ 2

√
HI

mPl
λ1/4, (14.37)

where we wrote the Higgs-portal coupling ξ although the same condition applies for Yukawa inter-

actions upon substitution ξ → y. Such low values of the coupling constant do not permit damping.

For instance, even with the most efficient Higgs portal interaction, [240]

Γϕ ≈ 2
ξ4ϕ2

π2αT
, (14.38)

taken at the most competitive conditions, ϕ = fa and T ∼ mH,0, efficient damping as defined by

Γ > H requires

HI ≳ 1012 GeV×
(
108 GeV

fa

)
, (14.39)

which is in contradiction with the simple domain wall constraint eq. (14.20). If we consider instead

solutions above the range constrained by thermal ϕ relics, i.e.

O(1)× fa
mPl

< λ, (14.40)

then the large values λ can only correspond to scenarios of eV-scale axions with values of HI that

are also constrained by the domain wall problem.

We have implemented a numerical solution of the Boltzmann equations and we find no solutions

without DW problems for either Yukawa-type interactions or for Higgs portal interactions. If a

solution to the DW problem is assumed, then some parameter space may become viable. We do

not peruse the possibility further here.
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15 Summary of part III

We have re-examined Affleck-Dine-like implementations of axion kinetic misalignment. We have

shown for the first time how the [ma, fa] parameter space is impacted by constraints on the mecha-

nism that starts the rotation, i.e. the kick mechanism. Given suitable parameters, we find that the

kick mechanisms studied here can generate axion-like-particles which account for all observed dark

matter in much of the experimentally unconstrained regions of [ma, fa] space in which the stan-

dard misalignment mechanism underproduces axion-like-particles dark matter. We have mapped

which subsets of this parameter space can be supported by implementations based on either nearly-

quadratic or quartic potentials, and for models with nearly-quadratic potentials, we completed

the implementation with a detailed study of the radial damping mechanism that is required for a

consistent cosmology.

In this study, we directly calculated the evolution starting from the UV potential which improves

on previous work where the dependence on UV parameters was at implicit in parameters such as

the kick temperature Tkick and initial radial VEV ϕkick. Furthermore, we studied which values of

the UV parameters can lead to consistent implementations of the kinetic misalignment mechanism

and which constraints arise directly from these assumptions. These parameter values required for

successful implementation are reported in appendix G.

The large initial values of the field required for a successful implementation of kinetic misalign-

ment generally require radial masses much lighter than the conventional scenariomϕ ∼ fa. The rich
radial dynamics made possible by mϕ ≪ fa can provide the initial conditions of θ̇ ≫ Λb required

for kinetic misalignment, but this avenue also gives rise to several constraints associated with the

radial mode ϕ. Firstly, oscillations in the radial mode can overproduce dark matter if they are

not damped out. Secondly, if the ϕ field is brought into thermal contact with the SM plasma to

dampen said oscillations, then the resulting thermal ϕ relic can be pathological for the cosmology.

We find in eq. (11.14) that this relic constrains ϕ masses in the range to eV ≲ mϕ < f2a/mPl.

Thirdly, the lower bound on the radial mass is ultimately set by tests of the equivalence principle

which demands mϕ ≳ 10−5 eV, see eq. 11.16. Fourthly, the decay of radial oscillations may source

a hot axion relic that can be problematic for the cosmology. The dynamics of kinetic misalignment

also imply a constraint from the loss of homogeneity associated with a prolonged a−6 kiniation-like

scaling of the energy in the radial mode. This constraint may be relaxed if it is assumed that the

primordial spectrum of curvature fluctuation As(k) is smaller on the relevant scales. With these

general conditions in mind, we conclude the following:

For models with nearly-quadratic potentials, we conclude the following:

• In the absence of any form of dilution or ameliorating assumptions on As(k), the combination

of thermal ϕ relics and the homogeneity condition leave only implementations with sub-eV

values of the radial mass. This can be summarized from figs. 16 to 17.

• Once the possibility of entropy dilution from damping of the radial mode is taken into account

or the homogeneity bound is relaxed, solutions with radial masses above the thermal ϕ bound,

i.e. f2a/mPl < mϕ , become possible. We summarize the constraints in fig. 20 and map the

compatible range of damping temperatures in 26.

• Once damping through a KSVZ-like Yukawa coupling is assumed, thermal effects rule out

solutions with sub-eV radial masses because such low masses cannot compete with the thermal

potential. This is discussed in section 13.3. Furthermore, higher damping temperatures are

required than those allowed by the homogeneity condition. Therefore, As(k) must be at least

a few orders of magnitude lower than the value suggested by CMB measurements for thermal

damping to work. The required degree of suppression is presented in 23.
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• Given that assumptions on As(k) are met, thermal damping supports ALP and QCD axion

dark matter in the range 10−6 eV to 10−2 eV. This includes parameter space in reach of

experiments such as MADMAX, ALPHA, BRASS, BREAD, IAXO, and ALPSII. The range

of damping temperatures compatible with thermal damping is mapped out in fig. 26.

• If this As(k) suppression does not interfere with the primordial spectrum of gravitational

waves and the inflation scale EI is near 1016 GeV, then these may be observable in future

gravitational wave observatories. See figs. 23-25.

For the models with quartic potentials, we conclude the following:

• We map out the parameter space that can be supported in the absence of thermal effects in

figs. 27 and 28. From those figures it is apparent that the combination of thermal ϕ relics

and domain wall problems force extremely small values of the quartic coupling λ. If these

problems are not addressed15 then only scenarios with mϕ ≲ eV and λ = mϕ/fa ≲ 10−15 are

possible16.

• In the absence of a solution to the domain wall problem we do not find implementations with

thermal damping for models with quartic potentials. This problem can be traced back to

Ykick ∝ λ−5/4 (HI/mPl)
3/2

, which implies either very light masses in tension with thermal

effects or large HI in tension with the domain wall problem. See section 14.5 or discussion in

appendix H.3.

• Yield dilution plays only a minor role for the models with quartic potentials. This is because

the energy density of the PQ field does not grow relative to the radiation density for much of

the cosmological evolution, such that the PQ field tends not to become dominant. This was

discussed in section 14.4.

• The parameter A in the PQ violating potential has to be chosen by hand to a value that has

no other justification than being necessary for the kick to be of ϵ ∼ O(1), see discussion in

section 14.2. Furthermore, in [34] the authors find that even with an appropriate choice of A

it may not be possible to achieve ϵ large enough to avoid parametric resonance in the radial

mode, which is not taken into account here. This makes roughly circular kicks in models with

quartic potentials somewhat unnatural.

In summary, the models based on nearly-quadratic potentials support a large range of parameter

space, including the QCD axion, but these scenarios generally require suppression of As(kkin). Such

As suppression is observationally unconstrained because kkin is many orders of magnitude larger

than the comoving momentum scale probed by Planck. If As(kkin) suppression can be implemented,

QCD axion dark matter as well as general ALP dark matter in reach of experiments such as IAXO,

ALPSII, and MADMAX can be realized by extending a KSVZ-type model with higher-dimensional

terms and a light, nearly-quadratic radial potential.

Models based on quartic potentials appear less appealing. Not only do such models suffer from

unnaturally small quartic couplings and unmotivated choices of A, but they also face difficulties

with thermal damping.

15In [33] this problem is avoided by using parametric resonance to resolve the domain wall problem. However, in

the absence of a more detailed analysis, we do not consider this solution to the domain wall problem.
16Note that definition of λ here differs from the convention used some other places. We follow Co et al.[27, 33, 34]

in our definition. One may consider λ2 the fundamental parameter.
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Part IV

Conclusions and future perspectives

We have, in this thesis, investigated novel production mechanisms for axion dark matter. In par-

ticular, we have studied how the axion kinetic misalignment mechanism can account for axion dark

matter in the regime that is most accessible to experimental observations.

In part II, we made an implementation-independent study and performed a detailed analyti-

cal treatment of both kinetic misalignment and fragmentation in such scenarios of rotating axion

fields. We show that the homogenous mode of the axion field in most of the relevant parameter

space completely fragments into fluctuations with a non-trivial momentum spectrum. Specifically,

we found that the efficiency of fragmentation depends crucially on ma(T∗)/3H∗, such that fragmen-

tation becomes more efficient as trapping is delayed to temperatures further below the oscillation

temperature expected by the standard misalignment mechanism. Because this temperature cannot

be lowered indefinitely, the axion masses that can be realized as dark matter are ultimately limited

from below by BBN. We found that the [ma, fa] parameter space of kinetic misalignment can be

classified according to the efficiency of fragmentation: Fragmentation either becomes efficient before

trapping, becomes efficient after trapping, or remains sufficiently inefficient for kinetic misalignment

to be realized with a predominantly homogeneous field.

The fragmentation process itself can generate a gravitational wave signal. We discussed this

gravitational wave signal in section 9, where we concluded that the signal was hard to observe as

they are of too low frequency and amplitude. In scenarios where the axion relic is relativistic for

a significant period following fragmentation, this amplitude may be boosted enough that it be-

comes observable for CMB experiments such as Voyage or SuperPIXIE, but our analysis suggests

that any such relativistic period may be too short for realistic observational prospects. The axion

relic will be generated with a non-trivial momentum spectrum if fragmentation becomes efficient.

This non-trivial momentum spectrum can lead to the formation of axion mini-clusters. Such ax-

ion mini-clusters, which were investigated by Eroncel and Servant [30], may provide a stronger

signature of axion fragmentation within scenarios of kinetic misalignment. Furthermore, we identi-

fied implementation-independent constraints from structure formation and BBN. Crucially, we also

pointed out that if the period of kination-like scaling of the axion field is too long, then primordial

fluctuations in the field dominate the homogenous mode of the field, which leads to constraints on

the implementations in part III.

In part III, we studied Affleck-Dine-like implementations of kinetic misalignment and mapped

out precisely which regions the [ma, fa] plane can be supported by various choices of UV param-

eters. This direct link between regions in the [ma, fa] plane and the associated UV parameters

had not been made in previous literature on KMM. We investigated in detail the two model imple-

mentations proposed by Co et al. [27] and, in particular, did a careful analysis of the mechanism

required for damping of radial oscillations. This analysis found that much of the parameter space

above ma ∼ 10−6 eV can be realized in a nearly-quadratic model with higher dimensional terms

of n = 13. This scenario relies on a Yukawa coupling such as the one inherent to KSVZ-type

axion models. One key limitation of such a KSVZ-like nearly-quadratic scenario is that primordial

fluctuations tend to ruin homogeneity long before kinetic misalignment or axion fragmentation of

the type studied in part II can take place. To avoid this constraint, it is necessary to postulate

that the spectrum of primordial fluctuations is suppressed relative to the value suggested by CMB

measurements, i.e. As(kkin) ≲ 10−4As,Planck ∼ 10−4×2.1×10−9. This postulate is compatible with

observations because Planck [194] only constrains As around the pivot scale 0.05 Mpc−1 which is

many orders magnitude of smaller than the relevant comoving momentum scale kkin. The relevant
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scale generally lies in the range 1014 Mpc−1 ≳ kkin ≳ 1010 Mpc−1. If this suppression of As(kkin)

can be accommodated, then the KSVZ-like nearly-quadratic models provide UV completions with

interesting phenomenology. In particular, some scenarios lead to kination. If the scale of inflation

is near the maximal value allowed for by Planck measurements, i.e. not much lower than EI ∼ 1016

GeV, then such kination can lead to an observable gravitational wave signal by amplifying the

primordial GW spectrum [36, 37]. As the energy density of the PQ field may dominate the energy

density in this family of scenarios and the damping rates depend intimately on the temperature

of the SM plasma, these solutions involve a complex interplay of thermal effects between the SM

sector and the new scalar sector. This interplay is accurately captured by our numerical solution

of the Boltzmann equations.

We also studied models based on quartic potentials. However, we find that such models suffer

from a number of problems including unnaturally small quartic couplings, somewhat less natural

kick dynamics, and difficulties with thermal damping arising from a domain wall problem. If the

domain wall problem can be resolved such models may be viable, but we did not pursue that

possibility further here.

Regardless of which of these options is chosen as a UV completion, our analysis reaffirms that

the initial conditions assumed by kinetic misalignment can be found. This is fantastic news for the

many upcoming axion experiments since it motivates the possibility of axion dark matter in the

regime of low values of the decay constant fa, where direct experimental searches are most sensitive.

It is particular exciting that experiments such as ALPSII, which is about to start running at DESY,

might be sensitive to axion dark matter. It is also quite remarkable that IAXO can probe the QCD

axion as DM.

In view of the many exciting possibilities presented by kinetic misalignment, much future study

is warranted. Interesting avenues for future work include the following:

• The analytic description of fragmentation which we developed in part II, breaks down for the

very lowest values of fa. To facilitate our later analysis, we made the working assumption

that the relic from fragmentation in this regime was unchanged despite this. Future study is

warranted to check this working assumption and evaluate whether there are large modifications

of the abundance and the spectrum of the axion relic in this regime. This could impact

predictions for, e.g., ALPSII, MADMAX, or IAXO.

• It would be interesting to identify other observational prospects from the non-trivial momen-

tum spectrum, which we calculated in this work.

• The KSVZ-like nearly-quadratic model required suppression of As to be viable. This solicits

a concrete realization of inflation that realizes this suppression. Furthermore, it is important

to check if gravitational wave predictions are modified by this suppression.

• More studies of non-Affleck-Dine mechanisms such as the trapped misalignment mechanism

can provide an alternative to the mechanisms studied above.

• An important constraint for the KSVZ-like model was that primordial fluctuations do not

fragment the field prematurely. We here treated this condition as a constraint because it

diverges from the misalignment scenario. However, the axions produced from primordial

fluctuations in a rotating axion field may constitute a DM relic in its own right. This scenario

is being investigated in upcoming work by Eroncel et al. [202].

To conclude, this thesis has once again demonstrated that axion-like-particles hold many interest-

ing possibilities for non-thermally produced dark matter. We have shown that these possibilities

extended beyond the standard assumption on the initial conditions of the axion field and that rich
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dynamics can be found by investigating scenarios of non-trivial initial velocity. This is especially

interesting given the many upcoming experiments that will probe deeper into the axion parameter

space in the near future. In particular, we now know that axions can provide non-thermal dark

matter candidates in nearly all of the experimentally allowed ALP parameter space. The conclusion

further strengthens the science case for further research into the search for axion-like-particles.
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A Table of subscripts, abbreviations and symbols

In this appendix, we provide a list of subscripts, abbreviations and symbols that are used throughout

part II and part III of the thesis. As part I is a review, quantities only used there are left out to

reduce the length of the list. We here use q as a placeholder for other quantities.

List of subscripts:

q∗ : Quantity measured at the time where the rotation of the PQ field ends, i.e. the time of

trapping. Around this time, the field may either fragment, begin oscillating or become frozen.

q0 : Quantity measured at zero-temperature (i.e., not necessarily today).

qap : Quantity measured at the apoapsis (i.e., the top) of the orbit. Only used with θ̇ap.

qdamp : Quantity measured at the time of damping.

qdiluted : Quantity which has been diluted by the entropy injection associated with radial damping.

qdom : Quantity measured at the time when the energy density of the PQ field starts to dominate

the energy density of the universe if such domination takes place.

qeq : Quantity measured at the time of radiation-matter equality.

qheated : Quantity which has been heated by the entropy injection associated with radial damping.

qI : Quantity measured during inflation.

qkick : Quantity measured at the time of the kick, i.e. at the onset of rotation of the PQ field.

qkin : Quantity measured at the time where ϕ reaches the minimum at fa, which corresponds to

the onset of kination-like scaling of the axion.

qtoday : Quantity measured today.

List of symbols:

ϱ : The ratio between the ALP kinetic energy density and its potential energy, see eq. (5.8).

α : Fine structure constant α ≡ g2/4π. Used for an unspecified gauge interaction in the context of

damping mechanisms.

αEM : The electroweak fine structure constant, αEM ≈ 1/137.

γ : Symbol both used for the photon and for the parameter which quantifies the temperature

dependence of the axion mass ma(T ) (see eq. (2.8)).

Γ : Damping rate or interaction rate, usually specified by a subscript.

ϵ : Parameter which measures how elliptical the initial rotation corresponds. By construction,

0 ≤ ϵ ≤ 1 where ϵ = 0 corresponds to perfectly radial oscillation and ϵ = 1 corresponds to a

perfectly circular rotation, see eq. (11.7).

θ : The angular mode of the PQ field P , also refereed to as the axion field. Can refer to either a

QCD axion or a general axion-like-particle. This field is assumed to be homogenous in part I

and part III. In part II, θ is decomposed into a homogeneous mode Θ and fluctuations θk.

κ : Dimensionless momentum parameter defined by eq. (6.3).

λ : Quartic coupling, see eq. (14.1).
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µk : Floquet exponents of mode k, see eq.(6.2).

µ̃ : Dimensionless Floquet exponents defined by eq. (6.12).

ρq Energy density of q. Note that ρa is the axion energy density, which in part II is split into the

energy density of the homogenous field ρΘ and the energy density in fluctuations ρfluct.

τ : Dimensionless time variable defined by eq. (6.12).

ϕ : The radial mode of the PQ field P , also referred to as the saxion field, see eq. (11.1).

Ωq : Critical energy density of the universe of component q, i.e. ρq/ρtot, where ρtot is the total

energy density of the universe.

ΩGW(f) : Fraction of energy density in gravitational waves per logarithmic frequency, see eq. (9.5).

a : The scale factor of the universe; also used for the axion field in Part I.

A : Dimension-full scale of the PQ-violating higher-dimensional terms, see eq. (11.3).

Ak : Redshift factor defined by eq. (6.22).

As(k) : Amplitude of the primordial power spectrum measured on comoving momentum scale k.

As,Planck : The value of As(k) measured by Planck [241] at the comoving momentum scale k = 0.05

Mpc−1, which is referred to as the pivot scale. As,Planck =≈ 2.1× 10−9.

cq : Redshift parameter which indicates that quantity q redshifts as q ∝ a−cq .

fa : Decay constant of the axion. Also the VEV of the radial mode / saxion.

g : Gauge coupling, the interaction depends on context.

g∗ : Number of relativistic degrees of freedom in the SM plasma.

g∗s : Number of effective degrees of freedom in entropy.

h : Scaling factor for Hubble expansion rate, h ≈ 0.674.

H : Hubble parameter.

mϕ : Mass of the saxion / radial mode. As we are concerned with dynamics far from the minimum,

we define this as mϕ ≡
√
V ′ϕ−1 so that the EOM takes the standard form.

mϕ,DM : Solution for the saxion / radial mode mass which ensures that the observed DM relic is

produced by KMM.

mϕ,eff ,mϕ,0,mϕ,th, and mϕ,ln : The contributions to the saxion mass are specified when thermal

effects are involved. These indicate the effective (total), zero-temperature, thermal, and

thermal-log masses, respectively.

ma(T ) : Mass of the axion / angular mode as measured at temperature T.

ma : Zero-temperature mass of the axion / radial mode.

mPl : The reduced Planck mass, mPl ≈ 2.4× 1018 GeV.

M : Suppression scale of higher dimensional terms. In this work, we usually assume M = mPl

unless otherwise stated.

n : Dimension of the higher dimensional terms.
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na : Axion number density.

nϕ : Saxion number density.

nPQ : PQ-charge. The conserved charge related to the axion shift symmetry.

Neff : Effective number of neutrinos. See appendix C.

Nk : The total amplification factor of a given mode, see eq. (6.11).

P : The full complex PQ field, which is parametrized as P = 1√
2
ϕeiθ.

Pθ The power spectrum of initial fluctuations, see eq. (6.33).

y : Yukawa coupling. See, e.g., eq. (13.1).

Y : The yield variable Y = nPQ/s, where s is the entropy density.

YDM : The observed DM yield defined from nDM/s where nDM is the number density of DM particles

and s is the entropy density. It is conveniently parametrized as YDM ≈ 0.64Teq/ma.

List of abbreviations:

ALP Axion-like-particle. In this work, the word axion is used synonymously with ALP.

BBN Big Bang Nucleosynthesis

CMB Cosmic Microwave Background

DW Domain wall

EOM Equation of motion

FLRW Friedmann–Lemâıtre–Robertson–Walker

GW Gravitational wave

KMM Kinetic misalignment mechanism

KSVZ Kim-Shifman-Vainshtein-Zakharov. Our benchmark QCD axion model, see section 2.2.

LMM Large Misalignment Mechanism. See discussion in section 8.3.

PQ Peccei-Quinn, as related to the PQ solution of the strong CP problem. Here used to refer to

the PQ field P or the PQ charge nPQ related to the axion shift symmetry. Note that as we

are working with general ALP scenarios, the reference to Peccei and Quinn here is often by

analogy only and need not imply a QCD axion scenario.

QCD Quantum Chromodynamics. Often used in conjunction with the term ”QCD axion”, which

refers to the axion which solves the strong CP problem of QCD.

SM Standard model

SMM Standard misalignment mechanism

SUSY Super symmetry

WKB Wentzel–Kramers–Brillouin
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B Detailed discussion of the parametric resonance

In this appendix, we discuss in detail the solutions of (5.6). If we neglect the expansion of the

universe, then (5.6) becomes

θ̈k +

(
k2

a2
+m2 cosΘ

)
θk = 0, (B.1)

where both the scale factor a and the axion mass m are constant. We define a dimensionless time

tm ≡ mt, and dimensionless momentum variable κ ≡ k/am so that (B.1) takes a simpler form:

θ′′κ +
(
κ2 + cosΘ

)
θκ = 0, (B.2)

where primes denote derivatives with respect to tm. The solutions of this equation have been studied

in [196] in the case of oscillations after trapping, i.e. ϱ < 1. We here review the method of getting

these solutions. Furthermore, we generalize to obtain the solutions for the rolling axion, ϱ > 1.

We start by defining a new time variable z by

z(tm) ≡ cosΘ(tm), (B.3)

where Θ is the solution of the homogeneous mode. Without expansion, the energy density ϱ becomes

a constant of motion. By taking the derivative of z(tm) by using the fact that ϱ is conserved, we

obtain
dz

dtm
= ±

√
2(1− z2)(2ϱ− 1 + z), (B.4)

where the sign depends on the sign of sinΘ and Θ′. Plugging this result into (B.2) gives

2(1− z2)(2ϱ− 1 + z)θ′′κ +
[
1 + 2(1− 2ϱ)z − 3z2

]
θ′κ +

(
κ2 + z

)
θκ = 0, (B.5)

where primes are now denoting derivatives with respect to z. Note that z is not single-valued for

the whole oscillation. Thus, this equation can describe the solutions only for a quarter of the period

when ϱ < 1 and half of the period when ϱ > 1. Nevertheless, we can still use this equation to get

the solutions in each patch, and then glue them together to get the full solution.

Let θ±(z) denote the two linearly independent solutions to (B.5), where we have omitted the

momentum subscript for cleaner notation. It turns out that the linear combinations θ2+, θ
2
−, and

θ+θ− obey a third order equation:

2(z2 − 1)(2ϱ− 1 + z)M ′′′ +
[
9z2 − 6(1− 2ϱ)z − 3

]
M ′′ + 2(z − 1 + 2ϱ− 2κ2)M ′ − 2M = 0. (B.6)

This equation has a polynomial solution given by

M(z) = z − 1 + 2ϱ− 2κ2. (B.7)

The original equation we are trying to solve (B.2) is a Hill differential equation, so according to

Floquet’s theorem, the solutions must be of the form

θ±(tm;κ) = ψ±(tm;κ)e±µκtm . (B.8)

Therefore the polynomial solution (B.7) should correspond to θ+θ− which implies

θ+(z)θ−(z) = N 2
(
z − 1 + 2ϱ− 2κ2

)
, (B.9)

whereN is a normalization constant. To obtain the individual solutions, we note that the Wronskian

of the system W ≡ θ′+θ− − θ+θ′− obeys

W ′(z) = − 1 + 2(1− 2ϱ)z − 3z2

2(1− z2)(2ϱ− 1 + z)
W (z) = − d

dz
ln
√

(1− z2)(2ϱ− 1 + z)W (z). (B.10)
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This can easily be solved as

W (z) = θ′+(z)θ−(z)− θ+(z)θ−(z) =
cκN 2

(1− z2)(2ϱ− 1 + z)
, (B.11)

where cκ is an integration constant coming from the integration of (B.10) which we will determine

shortly. By combining (B.8) and (B.11) we obtain the following differential equations for θ±:

2M(z)
d ln θ±
dz

=M ′(z)± cκ√
(1− z2)(2ϱ− 1 + z)

. (B.12)

The solutions are17

θ±(z) = N
√
|M(z)| exp

(
±cκ

2

∫ z dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

)
. (B.13)

The integration constant cκ can be obtained by plugging this solution into (B.5). The result is

c2κ = 8κ2(ϱ− κ2)(1− ϱ+ κ2). (B.14)

These coefficients determine the instability bands in the parametric resonance. If c2κ > 0, the Floquet

exponent will be real, and parametric resonance happens. Otherwise, they will be imaginary, and

mode functions will only have oscillatory solutions. Therefore by using (B.14) we can directly find

the modes which are inside the instability bands. They are given by

ϱ− 1 < κ2 < ϱ, for ϱ > 1, (B.15)

0 < κ2 < ϱ, for ϱ < 1. (B.16)

To find the value of the Floquet exponent, we need to do a little bit more work. We work out the

cases before and after trapping separately.

Before trapping: Without loss of generality, we can assume that the homogeneous mode travels

from Θ = 0 to Θ = 2π during one period. In the first half of the period, Θ moves from 0 to π,

and z decreases from z = 1 to z = −1. In this patch, the exponentially growing solution is θ+. By

choosing the normalization factor N such that the solution is unity initially, its value after half an

oscillation is given by

θ(1/2)κ =

√
|M(−1)|
|M(1)|

exp

(
cκ
2

∫ −1

1

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

)
(B.17)

In the second half of the period, Θ moves from π to 2π while z increases from z = −1 to z = 1.

Now the exponentially growing solution is θ−. In order to glue the solutions, the normalization N
should be chosen such that the full solution is continuous. Then we obtain the solution after a full

oscillation as

θ(1)κ = θ(1/2)κ

√
|M(1)|
|M(−1)|

exp

(
−cκ

2

∫ 1

−1

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

)

= exp

(
cκ

∫ −1

1

dz′

M(z′)
√

(1− z′2)(2ϱ− 1 + z′)

)
.

(B.18)

17Note that while (1 − z2)(2ϱ − 1 + z) is always non-negative, M(z) does cross zero at z = 1 − 2ϱ + 2κ2. If this

point lies in the range of the integral, then the integral is understood as its Cauchy principal value.
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The Floquet exponent µκ can be obtained by matching this solution to (B.8) and using the fact

that ψ±’s are periodic functions. We then obtain

µ(ϱ>1)
κ =

cκ
T>

∫ −1

1

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

, (B.19)

where T> is the period of oscillation of the homogeneous mode in physical time t when ϱ > 1. This

can be derived from the conservation of energy as

T> =
2

m
√
ϱ
K(1/

√
ϱ). (B.20)

The integral in (B.19) can be expressed in a more useful form by changing the integral path using

Cauchy’s integral theorem:

−
∫ 1−2ϱ

−∞

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

. (B.21)

By defining ϑ such that z = −1/ sin2 ϑ we obtain our final result.

µ(ϱ>1)
κ =

cκ
T>

∫ arcsin(1/
√
2ϱ−1)

0

dϑ

1 + (1− 2ϱ+ 2κ2) sin2 ϑ

2 sin2 ϑ√(
1 + sin2 ϑ

)[
1 + (1− 2ϱ) sin2 ϑ

] . (B.22)

After trapping: Here we start the oscillation at the minimum Θ = 0. In the first half of the

oscillation Θ travels from 0 to 2 arcsin
(√
ϱ
)
while z decreases from z = 1 to z = 1−2ϱ. The growing

solution is the θ+ solution. Again normalizing the mode functions to unity initial amplitude, we

find the solution after the first half of the oscillation as

θ(1/2)κ =

√
|M(1− 2ϱ)|
|M(1)|

exp

(
cκ
2

∫ 1−2ϱ

1

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

)
. (B.23)

In the second half of the oscillation Θ travels from 2 arcsin
(√
ϱ
)
back to 0 while z increases from

z = 1− 2ϱ to 1. Now the growing solution is θ−. So after a full period, the solution is

θκ = exp

(
cκ

∫ 1−2ϱ

1

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

)
. (B.24)

The Floquet exponent can directly be read from this result as

µ(ϱ<1)
κ =

cκ
T<

∫ 1−2ϱ

1

dz′

M(z′)
√
(1− z′2)(2ϱ− 1 + z′)

, (B.25)

where the period T< in this case is

T< =
2

m
K(
√
ϱ). (B.26)

Applying the integral transformations that we did in deriving (B.22) yields the result

µ(ϱ<1)
κ =

cκ
T<

∫ π/2

0

dϑ

1 + (1− 2ϱ+ 2κ2) sin2 ϑ

2 sin2 ϑ√(
1 + sin2 ϑ

)[
1 + (1− 2ϱ) sin2 ϑ

] . (B.27)
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Figure 31. Floquet exponents as a function of the dimensionless energy density ϱ, and the dimensionless

momentum κ, using the analytical result ( (B.28)). The white lines denote the boundaries of the instability

bands as given in ( (B.15)) and ( (B.16)). We see that the parametric resonance is most efficient around

trapping ϱ ≈ 1, and for the modes κ ∼ 0.5.

Final result: Our final result for the Floquet exponents can be summarized as

µk =
√

8κ2(ϱ− κ)(1− ϱ+ κ2)×

{
T −1
> (ϱ) I

(
arcsin

(
1/
√
2ϱ− 1

))
, ϱ > 1

T −1
< (ϱ) I(π/2), ϱ < 1

, (B.28)

where

I(φ) =
∫ φ

0

dϑ′

1 + (1− 2ϱ+ 2κ2) sin2 ϑ′
2 sin2 ϑ′√(

1 + sin2 ϑ′
)[
1 + (1− 2ϱ) sin2 ϑ′

] . (B.29)

We show a plot of the Floquet exponents together with the instability bands in figure 31. The

boundaries of the instability bands are shown in white lines. We can observe that the parametric

resonance is most efficient around trapping ϱ ≈ 1, and for the modes κ ∼ 0.5.
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C Thermal relics

Generally, the orbit produced by the kick mechanisms considered in this thesis will be elliptic rather

than perfectly circular. Therefore, there will be oscillations of the radial mode in addition to the

rotation of the angular mode. These oscillations will interfere with the cosmology if they are not

damped by some interaction. Any such interaction, parametrized by a total interaction rate Γdamp,

will have to be efficient in order to damp the radial oscillations, i.e. it must satisfy

Γdamp > H. (C.1)

An inevitable consequence of such an interaction is that the radial mode is brought into thermal

equilibrium and that a thermal population of saxions will be generated. This population may itself

be problematic, wherefore we in this appendix explore the phenomenology of the thermal relic.

The thermal population of ϕ will be generated as long as ϕ is light compared to T . The

population will have a number density of

nϕ =
ζ(3)

π2
T 3, (C.2)

which is simply the relativistic limit predicted by equilibrium thermodynamics. Here ζ is the

Riemann-Zeta function. If subsequently the interactions freeze out, i.e. if Γdamp < H, then nϕ
becomes conserved such that nϕ ∝ a−3 after this time. Therefore, assuming entropy conservation

and that the interactions remain inefficient, the corresponding yield,

Yϕ,thermal =
nϕ(Tfo)

s(Tfo)
, (C.3)

becomes constant in time. The freeze-out temperature Tfo is the last temperature for which Γdamp ≳
H. Interestingly, up to changes in g∗s, the yield becomes independent of Tfo,

Yϕ,thermal =
nϕ
s

=
ζ(3)

π2

45

2π2

1

g∗s(Tfo)
, (C.4)

which implies that the late-time energy density is not sensitive to temperature Tfo except for g∗s
dependence. This relic density will apply at sufficiently late times when the relic is cold.

While the relic is still hot, its energy density will redshift as hot matter, i.e. a−4. Thus, the

energy density of the thermal relic will remain a constant fraction of SM plasma as long as no

reheating of the latter takes place. When reheating within the SM plasma does take place, this will

slow down the redshift of the SM plasma and therefore dilute the thermal relic. Specifically, while

the decoupled relic is still hot, its energy density can be described by

ρϕ,thermal,hot(T ) ≈
1

g∗(T )

(
g∗s(T )

g∗s(Tfo)

)4/3

ρr(T ), (C.5)

so that at Tfo the relic is ρϕ,thermal ∼ ρr/g∗.
Cosmological expansion cools the relic so that it will inevitability become non-relativistic. This

transition takes place when the saxions reach a temperature of mϕ. As the saxions are decoupled

from the thermal bath, this does not take place exactly at T ∼ mϕ, where T is the SM thermal

bath temperature. Rather, the transition takes place at

Tnr ≈
(
g∗s(Tfo)

g∗s(Tnr)

)1/3

mϕ. (C.6)
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After Tnr, the relic density will instead be described by

ρϕ,thermal,cold(T ) = mϕYϕ,thermals(T ) = mϕ
ζ(3)

π2

g∗s(T )

g∗s(Tfo)
T 3. (C.7)

Approximately, the thermal relic density can be expressed as

ρϕ,thermal(T ) ≈ max(ρϕ,thermal,hot(T ), ρϕ,thermal,cold(T )) for T ≤ Tfo, (C.8)

which applies as long as the relic remains decoupled from thermal equilibrium. Note again that

this relic is present whenever mϕ < Tfo regardless of the mechanism through which equilibrium was

held and of which temperature the interaction froze out (up to changes in g∗s).

The thermal ϕ relic does not present problems for BBN or CMB as long as the relic decouples

sufficiently early, Tfo ≳ 200 MeV, and it remains in the hot phase. However, the relic can become

problematic if it experiences a cold phase since the relic density would grow relative to the SM

plasma density in such a cold phase.

Saxion to axion decay: The radial and angular modes, i.e. the saxions and the axions, are

coupled. Therefore, a cold ϕ relic may be avoided if the saxions decay into axions, which remain

relativistic much longer. At the very least, the Lagrangian must contain the kinetic term

|∂µP |2 =
1

2
(∂µS)

2 +
1

2
(∂µφ)

2 +
1

2

S2

f2a
(∂µφ)

2 − S

fa
(∂µφ)

2, (C.9)

where S = ϕ − fa and φ = θfa are the saxion and axion fields respectively. The latter of these

terms corresponds to an S → φφ decay which, following dimensional arguments, takes place with

a rate of

ΓSφ ∼
1

64π

m3
ϕ

f2a
. (C.10)

Although the saxion does also experience EM couplings, this rate is, in general, more efficient than

EM decay. Therefore, the saxion will decay into axions if the damping interactions do not dominate

this decay. We denote the temperature for which ΓSφ ≈ H as TSφ.

If the saxions do decay into axions, then the relic will end up as dark radiation at BBN. This

relic density might be boosted relative to eq. (C.5) if the saxion relic underwent a cold period prior

to the decay. Therefore, the relic density is

ρϕ/a,thermal ≈ ξ(T )×
1

g∗(T )

(
g∗s(T )

g∗s(Tfo)

)4/3

ρr(T ), (C.11)

where ξ(T ) accounts for enhancement during cold saxion evolution and is

ξ(T ) =


1 if T > Tnr or TSφ > Tnr,
g1/3
∗s (Tnr)

g
1/3
∗s (T )

Tnr

T if Tnr > T > TSφ,

g1/3
∗s (Tnr)

g
1/3
∗s (TSφ)

Tnr

TSφ
if Tnr > TSφ > T.

(C.12)

Neff constraints: If the thermal relic is too large at late times, then the relic will disturb BBN

and CMB. Constraints on such hot relics are usually parametrized in terms of change in the effective

number of neutrinos, i.e. ∆Neff . Assuming that the relic is not in a cold phase ρϕ/a,thermal can be

expressed in terms a change in Neff as

∆Neff =
g∗
2

8

7

(
11

4

)4/3 ρϕ/a,thermal

ρr
(C.13)
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For the scenario where the relic undergoes a cold period ended by axion decay prior to BBN, i.e.

for Tnr > TSφ > TBBN, this constraint is

∆Neff(T ) ≈ 2
fa√
mPlmϕ

g
4/3
∗s (T )

g∗s(Tfo)g
1/12
∗ (TSφ)

. (C.14)

The ∆Neff ∝ m−1/2
ϕ dependence arises because large mϕ enhances Γϕa. This more efficient ϕ→ aa

decay shortens the cold period, which would otherwise boost the relic density relative to ρr.

The change in Neff is constrained directly at BBN to ∆Neff ≲ 0.4[237]. The change in the

effective number of neutrinos is also constrained from CMB to ∆Neff ≲ 0.3 [206]. For simplicity,

we here demand that ∆Neff does not exceed 0.3 at either TBBN or at around the time of CMB, i.e.

T ∼ eV ∼ Teq.
If the saxion is very heavy, then the ϕ → aa decay rate is efficient at the temperature where

the saxion becomes non-relativistic. Therefore, the thermal relic density will not be enhanced by

the cold period, and Neff constraints are avoided. Conversely, if the saxion is very light, then the

thermal relic will not enter a cold period until after Teq, in which case Neff constraints can also be

avoided. Therefore, ∆Neff > 0.3 excludes a range of mϕ corresponding to

O(1)× Teq < mϕ < O(1)×
f2a
mPl

(excluded by ∆Neff > 0.3). (C.15)

The exact value of the O(1) factors depends on the exact number of relativistic degrees of freedom.

The constraint applies only if the thermal relic freezes out at Tfo such that Tdamp > mϕ.

If the thermal relic satisfies ∆Neff constraints at the time of CMB, then it must also underpro-

duce dark matter. Therefore, constraints from DM overproduction do not need to be imposed in

addition to ∆Neff constraints.

Avoidance of thermal relic constraints by SM decay: The thermal relics constraints can be

avoided if the saxions are sufficiently unstable to decay into the SM thermal bath before BBN. This

happens if the damping interaction remains efficient until T ∼ mϕ, i.e. the constraint is avoided

for Tfo < mϕ. Alternatively, if other interactions become efficient after freeze-out of the damping

interaction, then such may mediate ϕ→ SM decay. In order to avoid Neff and DM overproduction

constraints such interactions have to become efficient before TBBN and must dominate S → ϕϕ

decay. Note that saxion-to-axion decay dominates saxion EM decay so that EM decay cannot

destroy the saxion thermal relic unless the axion is also sufficiently heavy to decay before BBN.
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D Scalar field dynamics in a thermal environment

The following review is based largely on work by Mukaida and Nakayama [238], which was also

extensively applied in, e.g., [37]. We consider the scenario of the Yukawa coupling given by eq. (13.1)

and discuss the impact of the thermal environment on both the saxion ϕ, the fermion χ and the

gauge bosons γ. Note that here γ denotes the gauge bosons of the χ-SM gauge interaction, such

that γ signifies the gluon if the χ-fermions are KSVZ-fermions.

Thermal and effective masses: The mediating fermion χ receives mass contributions from

both its coupling to ϕ and its coupling to the SM plasma. The contribution from ϕ, which we

denote mχ,ϕ, is generated by the VEV of ϕ and is therefore simply mχ,ϕ ∼ yϕ in our notation. We

denote the thermal mass arising from the gauge coupling to the SM plasma as mχ,th. Under the

assumption that the dynamics are sufficiently non-violent that the fermions remain in the thermal

distribution, this contribution was found to be mχ,th ∼ yT by Mukaida and Nakayama [238]. We

assume that χ is dominated by these mass contributions such that the complete mass-squared is

m2
χ,tot = m2

χ,ϕ +m2
χ,th = y2ϕ2 + g2T 2. (D.1)

Since we assume g < 1, we will always have mχ,th ∼ gT < T and the fermions will therefore always

be relativistic if dominated by the thermal mass. Therefore,

χ are relativistic =⇒ mχ,ϕ ∼ yϕ < T. (D.2)

If this condition is not satisfied, then the χ’s become Boltzmann suppressed and decouple from the

plasma. This will be important for the scattering processes described below.

Since the gauge boson γ also has the gauge coupling g, it receives thermal mass-contribution

similar to that of χ. We assume that this is the only mass contribution to γ such that the total γ

mass is identical to the χ thermal mass:

mγ ∼ mχ,th ∼ gT. (D.3)

Again, since we, by assumption, always have gT < T , the gauge bosons will always be relativistic.

The radial mode ϕ also receives thermal contributions, which we here denote mϕ,th. We denote

the zero-temperature mass mϕ,0. Because ϕ only couples to the plasma through χ, the thermal

contributions depend on whether or not these χ-fermions are relativistic or not. ϕ acquires the

usual Yukawa thermal mass if the χ-fermions are relativistic and participating in the SM plasma:

mϕ,th ≈ yT if T > yϕ ∼ mχ,ϕ. (D.4)

However, if the χ-fermions are Boltzmann suppressed, i.e. if T < yϕ, then ϕ cannot interact with

the thermal plasma at tree-level, and the above contribution will therefore be absent. Because the

SM plasma still depends on ϕ at loop order the ϕ field will still receive a so-called thermal-log mass,

which we here denote mϕ,ln. By integrating out the heavy χ fields, this loop-induced contribution

is estimated in [238] to be

mϕ,ln ∼ α
T 2

⟨ϕ⟩
if

mϕ,0

α
< T < yϕ (D.5)

The calculation of mϕ,ln in [238] assumed that the dynamics of ϕ are slow compared to the equi-

libration time of the plasma, which is of order ∼ αT , which limits the range of validity to the

above. The scenario for which T <
mϕ,0

α < yϕ is not investigated in [238] and we will here simply

extrapolate the range of validity such that

m2
ϕ,tot ≈

{
m2

ϕ,0 + y2T 2 if T > yϕ,

m2
ϕ,0 + α T 2

⟨ϕ⟩ if T < yϕ.
(D.6)
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Mukaida and Nakayama [238] note that oscillons might be formed if the saxion oscillates with

the thermal-log mass. Because we later require the field to be homogeneous, we cannot allow such

oscillons to form, wherefore we must require that mϕ,0 > mϕ,ln if the thermal log mass is generated.

We, therefore, never consider the case where mϕ,ln is dominant.

Perturbative decay: If the saxion mass exceeds that of either the gauge boson or the χ fermions,

then it will be possible for the saxion oscillations to be damped via perturbative decay. Note that

since both the gauge bosons and the χ receive thermal mass contributions of order gT , and we

assume throughout that y < g we can conclude that perturbative decay is never kinematically

allowed if the saxion is dominated by its thermal mass, i.e.

mϕ,tot < mχ,tot and mϕ,tot < mγ,tot if mϕ,0 < yT ∼ mϕ,th. (D.7)

If ϕ is dominated by the zero-temperature mass, perturbative decay can be kinematically allowed

if mϕ,0 is larger than the mχ,tot or mγ,tot. This leads to the following decay conditions:

χ-decay: m2
ϕ,0 > y2ϕ2 + g2T 2, (D.8)

γ-decay: m2
ϕ,0 > g2T 2. (D.9)

Perturbative χ-decay takes place directly through the Yukawa vertex:

ϕ

χ

χ̄

=⇒ Γϕχ̄χ =
y2mϕ,0

8π

(
1− 4

mχ

mϕ

)3/2

≈ y2mϕ,0

8π
. (D.10)

Perturbative γ-decay takes place through the χ-1-loop. If the χ is heavy, i.e. if yϕ > gT such that

χ’s become heavy compared to the temperature of the plasma, then the diagram can be evaluated

by integrating out the χ-loop:

ϕ

γ

γ

=⇒ Γϕγγ ∼ b
(
yg2

mχ,ϕ

)2

m3
ϕ,0 ∼ bα2

m3
ϕ,0

ϕ2
, (D.11)

where

b =
T (r)

16π2

(12π)2

lnα−1
. (D.12)

Here T (r) is the index of χ’s representation r. For reference, Co et al. [33] takes the values b ∼ 1/100

and α2 ∼ 10−3 for a SU(3)QCD gauge interaction. Note that [239] includes additional O(1) factors
to these results, which we neglect here.

Because of the loop suppression, we assume that direct χ-decay dominates when it is kinemat-

ically allowed, such that that the perturbative decay rate can be summarized as

Γdecay ≈

{
Γϕχ̄χ ≈ y2mϕ,0/(8π) if mϕ,0 < gT and mϕ,0 < yϕ,

Γϕγγ ≈ α2m3
ϕ,0/ϕ

2 if mϕ,0 < gT and mϕ,0 > yϕ.
(D.13)

Scattering processes: Even if direct perturbative decay is not permitted, ϕ may still dissipate

energy by scattering with the thermal plasma, which allows for stimulated decay. This can occur

directly with the χ fermions if they participate in the plasma (i.e. if they are relativistic, T > yϕ),

or through χ-mediated γ-interactions if the χ are too heavy to avoid Boltzmann suppression. The
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dissipation rate for scattering was calculated under the assumption of adiabatic ϕ-dynamics by

Mukaida and Nakayama [238], i.e. under the assumption mϕ,tot < αT . As a rough approximation,

which is also made by Mukaida and Nakayama [238], we here extrapolate the range of validity to

include the otherwise not covered range of αT < mϕ,tot < gT . Thereby we consider scattering

processes valid until perturbative decay becomes allowed.

For the case of relativistic fermions, i.e. T > yϕ, the dissipation rate depends on whether the

χ are dominated by their thermal mass of by the ϕ-induced mass. The decay rates are estimated

by Mukaida and Nakayama [238, 239] to be:

Γχ−scat. ≈

{
y2αT if yϕ < αT,

y4 ϕ2

αT if αT < yϕ < T.
(D.14)

If the fermions are Boltzmann suppressed, then the scattering rate can instead be calculated by

integrating out the χ fermions. This results in a gauge boson scattering rate of

Γγ−scat. ≈
bα2T 3

ϕ2
. (D.15)

Redshift: The redshift of ϕ is modified in the presence of a thermal mass. If we assume that the

mass changes adiabatically, then we can apply the usual WKB approximation:

⟨ϕ⟩ ∝ m−1/2
ϕ,eff a

−3/2. (D.16)

With the properties

mϕ,0 ∝ T 0 ∝ a0, mϕ,th ∝ T ∝ a−1 and mϕ,ln ∝
T 2

ϕ
∝ a−2

ϕ
, (D.17)

we can then infer that

ϕ ∝


a−3/2 for mϕ,tot ∼ mϕ,0,

a−1 for mϕ,tot ∼ mϕ,th,

a−1 for mϕ,tot ∼ mpi,ln.

(D.18)
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E Restrictions on the inflaton reheating temperature

In this work, we generally avoid model-dependent references to the reheating temperature of the

inflaton. Thus, we generally allow for any reheating temperature between Tkick and the energy

scale of inflation EI . However, there is a regime in which the choice of reheating temperatures is

restricted by the consistency of the scenario, which we explore in this appendix. This discussion is

specific to the nearly-quadratic models.

Because thermal effects only enhance the radial potential and not the angular potential, ϵ and

yield are suppressed in scenarios where the radial mode is dominated by thermal mass contributions

at the time of the kick. We, therefore, favour solutions wheremϕ,0 dominates at the time of the kick.

Such mϕ,0 dominated scenarios can be realized in the regime where the χ-fermions are Boltzmann

suppressed, and the thermal potential is reduced from mϕ,th to the much smaller mϕ,ln at the time

of the kick. However, this scenario is only consistent if there is no earlier time in which an early

phase of relativistic χ-fermions contribute a thermal mass large enough to start a kick.

To see how a would-be mϕ,0-dominated kick can be spoiled by an earlier phase of relativistic

χ-fermions, note that prior to the kick ϕ will track the early potential minimum given by eq. (12.4),

which evolves as

ϕ ∝ T
2

n−2 before Tkick. (E.1)

Thus, ϕ redshifts slower than T for any choice of n > 4. Therefore, any era in which yϕ > T will

always be proceeded by an era in which yϕ < T if the T can be extrapolated to arbitrarily high

temperatures, i.e. if Treheat is arbitrarily high. In such an earlier phase of relativistic χ-fermions, ϕ

acquires the usual thermal massmϕ,th, which can be much larger thanmϕ,ln and which can therefore

lead to an early kick. For some choices of parameters, this phenomenon makes solutions in which the

kick is given in the non-relativistic phase, i.e. with yϕkick > Tkick, inconsistent unless reheating after

inflation takes place in the window between the end of any would-be early relativistic phase with

mϕ,th > 3H and Tkick itself. A specific example of how different choices Treheat can choose between

two different families of solutions is illustrated in figure 32. An exemplary map of the [Treheat, y]

parameter space is given in figure 33, where the blue region corresponds to parameter space in

which the kick takes place with mϕ,th and the triangular region around y ∼ 10−5 corresponds to

region in which an early mϕ,th kick can be avoided by postulating a sufficiently low Treheat.

In the regime for which either a mϕ,0-dominated kick or a mϕ,th-dominated kick is possible

depending on Treheat we in this work assume that Treheat is chosen such that the mϕ,0 kick is

realized. We do not make any further assumptions on Treheat other than EI > Treheat > Tkick. In

most of our parameter space, our solutions are compatible with any EI > Treheat > Tkick.

114



10
10

10
11

10
12

10
13

10
9

10
10

10
11

10
12

10
13

T/GeV

λ
S
/G
e
V

Solution for Treheat in window

Solution for higher Treheat

Treheat window

λϕ

T

10
10

10
12

10
14

10
16

10
10

10
12

10
14

10
16

T/GeV

λ
S
/G
e
V

Only one solution for all Treheat>Tkick

λϕ

T

10
10

10
11

10
12

10
13

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

T/GeV

m
s
,t
o
t/
G
e
V
o
r
3
H
/G
e
V Solution for higher Treheat

Solution for Treheat in window

Treheat window

ms,eff

3H

10
10

10
12

10
14

10
16

1

10
3

10
6

10
9

10
12

10
15

T/GeV

m
s
,t
o
t/
G
e
V
o
r
3
H
/G
e
V

Only one solution for all Treheat>Tkick

ms,eff

3H

Figure 32. This figure illustrates how Treheat has an impact on which type of kick is realized. Left: If Treheat

falls in the indicated window then a kick with non-relativistic fermions and mϕ,eff ≈ mϕ,0 will be realized.

If Treheat is larger than this window, then a kick will be given with mϕ,th ≫ mϕ,0 instead. The evolution

corresponding to this early kick is indicated with the dashed lines. Right: For this choice of parameters the

kick is given with mϕ,eff ≈ mϕ,0 for any Treheat > Tkick because the fermions become non-relativistic before

a mϕ,th-dominated kick can take place, even if the Treheat is assumed to be arbitrarily high. The transition

between scenarios in which either type of kick is possible depending on Treheat and scenarios in which a

mϕ,0-dominated kick is realized regardless of Treheat leads to the discontinuity is seen around y ≈ 10−3.5 in

fig. 33.
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Figure 33. Impact of Treheat on the choice of kick type. In the white region the kick is realised with

mϕ,eff ≈ mϕ,0 while in the blue region the kick is realised with mϕ,eff ≈ mϕ,th. The orange range corresponds

to Treheat < Tkick, which we do not consider in this work. In the central range of y, approximately

10−5.5 ≲ y ≲ 10−3.5, the choice of Treheat can determine which type of kick is realized. This Treheat-

dependent region corresponds to the left column of fig. 32. The high-y region, approximately 10−3.5 ≲ y,

in which only the late mϕ,eff ≈ mϕ,0 kick can be realized corresponds to the right column of fig. 32. In the

low-y region, i.e. y ≲ 10−6.5, the kick can only take place with mϕ,0 because a mϕ,th-dominated kick fails to

take place before the zero-temperature mass becomes dominant. Lines: The orange dashed line corresponds

to Tkick in the mϕ,th-dominated solution and lowest temperature for which T > yϕ corresponds to blue line.

Other remarks: Note that the parameters here are fixed such that the correct DM-yield is realized with

the mϕ,0-dominated kick, i.e. in the white parameter space. For simplicity, we have not imposed any other

constraints on this plot. Therefore, the white parameter space needs not correspond to physically viable

scenarios.
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F Boltzmann equations and solutions of thermal damping

In this appendix, we derive the Boltzmann equations, which describe thermal damping. We then

describe the numerical scheme we use to solve these systems of equations. We first consider the

nearly-quadratic potential and then generalize to the quadratic potential. Finally, in subsection F.2

we present examples of solutions.

F.1 Derivation

We first consider the case of the nearly-quadratic potential. We will, as usual, neglect the logarith-

mic correction and restrict ourselves to the regime in which higher-dimensional terms are suppressed

such that the potential is

V ∼ 1

2
m2

ϕ,effϕ
2, (F.1)

where we have included the thermal correction in mϕ,eff . The equations of motion for the radial

and angular degrees of freedom of the PQ field are

ϕ̈+ 3Hϕ̇+ Γϕ̇+m2
ϕ,effϕ = θ̇2ϕ, (F.2)

θ̈ + 3Hθ̇ = −2 θ̇ϕ̇
ϕ
, (F.3)

where Γ is the total dissipation rate. The total energy density of the field is

ρtot = ρϕkin + ρθkin + ρpot =
1

2
ϕ̇2 +

1

2
ϕ2θ̇2 +

1

2
m2

ϕ,effϕ
2. (F.4)

To express the EOM in terms of Boltzmann equations, we consider the derivative of the energy

density. If we allow for a time-dependence in the mass term from, e.g., thermal corrections, then

we find

ρ̇tot = ϕ̇ϕ̈+ ϕϕ̇θ̇2 + ϕ2θ̇θ̈ +mϕ,effṁϕ,effϕ
2 +m2

ϕ,effϕϕ̇. (F.5)

We then apply the EOM and reduce:

ρ̇tot = −(3H + Γ)θ̇2 − 3Hθ̇2ϕ2 +mϕ,effṁϕ,effϕ
2. (F.6)

It is convenient to parametrise the time dependence of mϕ,eff in terms of the parameter cmϕ
,

mϕ,eff ∝ a−cmϕ . (F.7)

In terms of this parameter cmϕ
the last term of eq. (F.6) becomes

mϕ,effṁϕ,effϕ
2 = −cmϕ

Hm2
ϕ,effϕ

2, (F.8)

so that ρ̇tot can be written as

ρ̇tot = −(6H + 2Γ)ρϕkin − 6Hρθkin +−2cmϕ
Hρpot. (F.9)

Virial theorem: To understand the relation between the potential and kinetic energy of the

system, we apply the virial theorem, which for a monomial potential ∝ ϕn states that

n

2
⟨V ⟩ = ⟨T ⟩ where n = 2 for a quadratic potential, (F.10)
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where V is the total potential energy, and T is the total kinetic energy. We then have

⟨ρpot⟩ =
〈
ρθkin + ρϕkin

〉
. (F.11)

We henceforth drop the brackets and understand all energy densities as time-averaged quantities.

Combining eq. (F.11) with eq. (F.4) we conclude that

ρtot = 2ρϕkin + 2ρθkin, (F.12)

so that

ρ̇tot = 2ρ̇ϕkin + 2ρ̇θkin = −(6H + 2Γ + 2cmϕ
H)ρϕkin − (6H + 2cmϕ

H)ρθkin. (F.13)

If we consider ρϕkin and ρθkin to be independent we can separate this equation into two Boltzmann

equations:

ρ̇ϕkin = −(3H + Γ + cmϕ
H)ρϕkin, (F.14)

ρ̇θkin = −(3H + cmϕ
H)ρθkin. (F.15)

Let us denote the energy of the circular orbit corresponding to a given angular velocity θ̇ as ρcirc.

Since for a circular orbit we have θ̇ = mϕ,eff it follows that ρcirc = ρϕkin. We can therefore express

the Boltzmann equations as a Boltzmann equation for the circular orbit and a Boltzmann equation

for the oscillations about this orbit:

ρ̇ϕkin = −(3H + Γ + cmϕ
H)ρϕkin, (F.16)

ρ̇circ = −(3H + cmϕ
H)ρcirc. (F.17)

With a total energy density of ρtot = 2ρϕkin + 2ρcirc. By conservation of energy this can be linked

to the energy density of the plasma:

ρ̇r = −4Hρr + Γρϕkin. (F.18)

The set of equations eq. (F.16-F.18) are then the equations we will solve numerically to describe

the thermal damping of the PQ field. To complete the numerical setup, we also need to determine

the initial conditions and specify how to describe the transition between phases of relativistic/non-

relativistic fermions, where we do not have a description of the mass change of the form m ∝ a−cm .

Initial conditions: After the kick, we assume that the energy density is composed of angular

kinetic and potential energy, i.e.

ρini =
1

2
m2

ϕ,effϕ
2
kick +

1

2
θ̇2kickϕ

2
kick =

1 + ϵ2

2
m2

ϕ,effϕ
2
kick. (F.19)

After the kick this energy is distributed into ρϕkin, ρ
θ
kin and ρpot. To identify the distribution, note

that in [37] it was found that after the kick

ρθkin = ϵρpot, (F.20)

so that in combination with the virial theorem, this implies

ρpot =
1

2
ρini, (F.21)

ρϕkin =
1− ϵ
2

ρini (F.22)

ρθkin =
ϵ

2
ρini. (F.23)

These equations then specify the initial conditions for the Boltzmann equations.
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Relativistic/non-relativistic fermion transition: The parameter k takes into account contin-

uous and gradual changes in the mass as with the temperature-dependence of a thermal mass. How-

ever, we generally approximate the transition between phases with relativistic and non-relativistic

fermions as instantaneous because it is non-trivial to express in greater detail. Therefore we cannot

encode the change in radial mass across such a transition in the parameter k as described above.

To take the transition into account in a physical way, we will instead assume that the transition is

gradual enough to be adiabatic such that the WKB approximation ϕ ∝ m−1/2 applies. Across a

transition where the mass changes from m → m∗ the WKB approximation implies that ϕ and an

energy density ρ ∝ m2ϕ2 is modified as

ϕ −−−−−→
m→m∗

(
m

m∗

) 1
2

ϕ, (F.24)

ρ −−−−−→
m→m∗

(m∗

m

)
ρ. (F.25)

We use this solution to account for a change in mϕ,eff across a relativistic/non-relativistic fermion

transition. We assume that ρpot, ρ
ϕ
kin and ρθkin are all shifted by the same factor and that the energy

required for this change is transferred to or from the radiation bath.

In the numerical Boltzmann solver, we then apply this transformation to ϕ and the energy

densities whenever the fermions transition between their relativistic and non-relativistic phases.

Quartic potential For a quartic potential,

V ∼ 1

4
λ2ϕ4, (F.26)

we can follow the same steps as above to arrive again at

ρ̇tot = −6Hρϕkin − 2Γρϕkin − 6Hρθkin. (F.27)

The virial theorem for ϕn with n = 4 now states that 2 ⟨V ⟩ = ⟨T ⟩, so that

ρpot =
1

2
ρϕkin +

1

2
ρθkin. (F.28)

The combined Boltzmann equation is then

3

2
ρ̇ϕkin +

3

2
ρ̇θkin = −6Hρϕkin − 2Γρϕkin − 6Hρθkin. (F.29)

If we again assume that ρϕkin and ρθkin are independent, then we arrive at the following two Boltzmann

equations:

ρ̇ϕkin = −4Hρϕkin −
4

3
Γρϕkin, (F.30)

ρ̇θkin = −4Hρθkin. (F.31)

If a thermal potential becomes dominant, then the evolution is instead determined by F.14 and

F.15 as in the quadratic case. The initial conditions are modified to

ρpot =
1

3
ρini, (F.32)

ρϕkin = (1− ϵ)2
3
ρini (F.33)

ρθkin = ϵ
2

3
ρini. (F.34)
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F.2 Examples of solutions

We here provide two examples of solutions produced with the Boltzmann prescription detailed

above:

Fig. 34: Solution from a model with a nearly-quadratic potential which features damping though

χ−fermion scattering triggered by the onset of an intermediate relativistic phase.

Fig. 35: Solution from a model with a nearly-quadratic potential which features two-step damping

though χ−fermion scattering near the end of a relativistic phase and saxion-to-axion decay.

In both examples, the top two frame shows the evolution of the damping rates, the middle frame

shows the evolution of the energy densities and the third frame shows the χ−fermion mass compared

to the temperature.
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Figure 34. Example of thermal damping within the KSVZ-like nearly-quadratic model, which assumes

Yukawa damping. The solution is found by numerical solution of eqs. (13.10-13.13) and damping is triggered

by an intermediate relativistic phase. Various events of interest are tagged with vertical lines. Top: Damping

rates compared to the Hubble parameter. Dashed lines indicate that the conditions for a given effect are not

met. Middle: Evolution of the energy densities. Note the transfer of kinetic energy from ρϕ to ρr. Bottom:

Evolution of temperature as compared to the fermion mass.
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Figure 35. Similar to figure 34, but for another choice of parameters for which damping is not triggered by

an intermediate relativistic phase. Instead, late damping is partially realized towards the end of a relativistic

phase. Here, χ-scattering is insufficient to completely damp ρϕkin. Damping is completed by saxion-to-axion

decay. The initial, incomplete, damping through χ-scattering prevents the production of a cosmologically

dangerous hot axion relic.
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G Additional details for nearly-quadratic models

We in this appendix provide additional details for the nearly-quadratic model.

Scale of As(kkin) suppression: It is essential to the nearly-quadratic model that As(kkin) can

be suppressed. Planck [241] constrains As to As(kpivot) = As,Planck ≈ 2.1× 10−9 at the pivot scale

kpivot = 0.05 Mpc−1. To demonstrate that this pivot scale is far removed from the scales which are

relevant for axion kinetic misalignment we in figure 36 display the comoving momentum scale kkin
relevant for As(kkin). It is clear that this pivot scale is many orders of magnitude removed from

kkin, such that As(kkin) may very well deviate from the value constrained by Planck.

Alternative choices of n: Furthermore, we provide an overview of the viable parameter space

for n = 7 and n = 10 in figure 37. In both cases, we find that less parameter space is supported

than in the n = 13 scenario. As(kkin) suppression is also required in these cases. For n = 10, the

lower bound on ma is set by thermal-log contributions to mϕ. We do not consider parameter space

with thermal-log domination as such may feature oscillon formation [238]. We do not show contours

of kkin for n = 10 and n = 7. For these, the relevant scales are either similar or one to two orders

of magnitude further from the Planck pivot scale.

Range of viable parameters We in this appendix connect the fundamental model parameters

and the viable range of parameter space in the [ma, fa] plane. These model parameters are the

following six variables: ma, fa, y,M, n and mϕ,0. As stated before, we assume that the axion relic

makes up all of the dark matter which reduces the number of free parameters to five. To further

reduce the number of free parameters we restrict ourselves to the well-motivated case of M = mPl.

Thus, when plotting across the [ma, fa] plane, each point may be supported by a family of solutions

with a range of viable values of y,mϕ,0, the values of which we here detail for n = 13 and n = 10.

Figure 36. Map of the comoving momentum scale kkin on which As(kkin) should be suppressed to avoid

the homogeneity constraint. The solutions shown here correspond to those shown in fig. 22. This clearly

shows that kkin ≫ 0.05 Mpc−1, which is the scale probed by Planck.
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Figure 37. Map of necessary suppression of As(kkin) relative to As,Planck for alternative choices of n. Both

n = 10 and n = 7 support less parameter space than n = 13 and both still require As(kkin) suppression.
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Figure 38. Upper and lower bounds on the radial mass mϕ,0 in Yukawa damped models with n = 13.
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Figure 39. Upper and lower bounds on the Yukawa coupling y in Yukawa damped models with n = 13.
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Figure 40. Upper and lower bounds on the radial mass mϕ,0 in Yukawa damped models with n = 10.
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Figure 41. Upper and lower bounds on the Yukawa coupling y in Yukawa damped models with n = 10.
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H Additional details for quartic models

We in this appendix provide additional material on the quartic models. In particular, we in the

following sections discuss the use of higher-dimensional terms, derive domain wall constraints and

discuss why Yukawa damping is not viable in quartic models.

H.1 Higher-dimensional terms in the quartic model

We here investigate how higher-dimensional terms can be used to drive a large VEV in the quartic

model. The early-time potential for this setup is

Vearly = λ2ϕ4 − cHH2ϕ2 +
A+ aH

n

Pn

Mn−3
+ h.c.+

|P |2n−2

M2n−6
. (H.1)

As in the nearly-quadratic model, the Hubble-induced terms generate an early large mass around

a VEV of

ϕearly =

(
2n−2

n− 1

) 1
2n−4 (

HMn−3
) 1

n−2 . (H.2)

This time-dependent VEV is the same as in the nearly-quadratic model since the VEV is set purely

by the higher dimensional terms. What does change is the VEV and temperature at the kick. The

kick takes place at mϕ ∼ λϕ ∼ 3H which implies

Tkick ≈ 0.3×
√
MmPlλ

n−2
2n−6 , (H.3)

ϕkick ≈ 1.×Mλ
1

n−3 (H.4)

where the exact value of the prefactors depends on n and g∗(Tkick). Such a kick implies a yield of

Ykick ≈ 0.8× ϵ
(
M

mPl

)3/2

λ
n−6
2n−6 . (H.5)

The observed DM yield is achieved for

λ ∼ O(1)×
(
M

mPl

) 3(n−3)
n−6

(
ϵma

Teq

) 2(n−3)
n−6

, (H.6)

which determines the late-time radial mass mϕ−late ≈ λfa.
Similar to the nearly-quadratic models, this setup requires a light radial mode in order to satisfy

the various constraints. However, while the nearly-quadratic models could motivate a light radial

mass by appealing to SUSY, there is no comparable motivation for a very light radial mass in the

quartic model. In particular, large regions of parameter space require λ < 10−20 or λ < 10−30 in

order to produce a variable phenomenology. This tuning problem is made worse by the large ma

sensitivity in λ and mϕ. By comparing eq. (H.6) with eq. (14.11) we observe that

Higher-Dim.: mϕ ∝ mk
a where 2.8 ≤ k ≤ 8 for 7 ≤ n ≤ 13, (H.7)

de Sitter: mϕ ∝ mk
a where k = 4/5. (H.8)

We conclude that although both mechanisms require significant tuning of λ, then a setup with higher

dimensional terms requires significantly more tuning than a setup with de Sitter fluctuations. We,

therefore, primarily consider de Sitter fluctuations as the driver of the large VEV in this work.

The viable parameter space for the quartic model with higher-dimensional terms under the

assumption of early damping is displayed in figures 42 to 44. Regions with λ < 10−20 is indicated

by hatched filling. Note that significantly less parameter space is available than in the model with

de Sitter fluctuations, as displayed in figures 27 and 28.
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Figure 42. Constraints on the [ma, fa] parameter space for n = 7 in the quartic model when the large VEV

is driven by higher-dimensional operators rather than de Sitter fluctuations, see eq. (H.1). We here assume

early damping without entropy dilution and M = mPl. Regions with quartic couplings lower than λ < 10−20

and λ < 10−30 are indicated by the blue dashed lines.

10-18 10-15 10-12 10-9 10-6 10-3 1 103
10-16

10-14

10-12

10-10

10-8

10-6

ma/eV

f a
-
1
/G
e
V

-
1

Quartic potential with higher-dimensional terms, n=10

λ
<
1
0
-
2
0

λ
<
1
0
-
3
0

m
ϕ
<
m
a

P
e
rt
u
rb
a
ti
v
it
y

H
o
m
o
g
e
n
e
it
y

E
I,
m
a
x
<
T
k
ic
kT
h
e
rm
a
l
ϕ
re
lic

Q
C
D
ax
io
n

Tkick<T*

T
k
in
<
T
*

Figure 43. Same as figure 42 but for n = 10.
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Figure 44. Same as figure 42 but for n = 13.

H.2 Domain wall constraints on the quartic model

We here derive the domain wall constraint on the quartic model. This constraint appears when

fluctuations in the kick velocity evolve into O(1) angular fluctuations at the time of trapping. To

estimate when this happens, we carry out the integration which was specified in eq. (14.19):

θ∗ ≈
∫ t∗

tkick

θ̇dt (H.9)

We carry out the integration using physical time t as the integration variable. This physical time t

is related to the scale factor a as

a ∝


t2/3 if matter dominated,

t1/2 if radiation dominated,

t1/3 if kination dominated.

(H.10)

In a quartic model, the universe is radiation dominated unless damping takes place sufficiently after

akin that the energy of radial oscillations can come to dominate. For simplicity, we neglect such

a period of matter domination, such that we can always take a ∝ t1/2. Applying in addition that

θ̇ ∝ a−1 we find for the quartic model:

θ∗ ≈
3

2
θ̇kicktkick

(
tkin
tkick

)1/2

. (H.11)

Applying ϕ ∝ a−1 ∝ t−1/2 this becomes

θ∗ ≈
3

2
θ̇kicktkick

(
ϕkick
ϕkin

)
+ const. (H.12)

131



The variation of the angular displacement is then

∆θ∗ ≈ θ∗

[
∆θ̇kick

θ̇kick
+

∆tkick
tkick

+
∆ϕkick
ϕkick

]
. (H.13)

From θ̇kick ∝ ϕn−2
kick sin(nθkick) we can express the variation of the kick velocity in terms of variation

of the angular and radial modes:

∆θ̇kick

θ̇kick
≈ (n− 2)

∆ϕkick
ϕkick

+ n cot(nθkick)
∆θkick
θkick

. (H.14)

The fluctuations in the timing of the kick in quartic models can be inferred from mϕ,UV ≈ λϕ and

mϕ,UV ≈ 3Hkick. We conclude that tkick ∼ 3/(2mϕ,UV) such that

∆tkick
tkick

∼ −∆mϕ,UV

mϕ,UV
∼ −∆ϕkick

ϕkick
. (H.15)

The complete variation is then

∆θ∗ ≈ θ∗
[
(n− 2)

∆ϕkick
ϕkick

+ n cot(nθkick)
∆θkick
θkick

]
. (H.16)

Evaluating θ∗ with θ̇kicktkick ∼ 1 and ϕkin ∼ fa and applying the inflationary fluctuations ∆θkick ≈
HI/(2π) and ∆θkick ≈ HI/(2πϕkick) we find that

∆θ∗ ≈
3

π
(n− 2)

HI

fa
+

3n

π

cot(nθkick)

θkick

HI

fa
, (H.17)

which must satisfy ∆θ∗ < 1 to avoid domain wall formation. The exact constraint depends on both

the choice of n and potentially on the initial θkick, but if the cot term is not tuned to a large value,

we generically expect a constraint of

HI

fa
≲ O(0.1) (H.18)

If this condition is violated, then large angular fluctuations would lead to the formation of domain

walls at the time of trapping. Since we are considering a scenario with PQ breaking during inflation,

we do not expect cosmic strings to be present, and the domain walls would therefore be stable and

pathologic to the cosmology.

Co et al. [33] propose to resolve this domain wall problem by invoking parametric resonance

to non-thermally restore PQ-symmetry, generate cosmic strings and thereby render the string-wall

network unstable. However, in the absence of a more detailed analysis, we do not consider this

solution.

H.3 Problems with Yukawa damping in the quartic model

In the case of the nearly-quadratic model, we provided a damping mechanism in the form of a

fermion Yukawa coupling as would be realized, e.g., in a KSVZ-type axion model. However, this

mechanism does not lead to viable damping in the quartic model. We in this section explore why.

To estimate the efficiency of a damping mechanism, the relevant quantity is the largest value

of Γ/H which can be reached within the limits of constraints. Therefore, we in the following

investigate how Γ/H can be maximized under various constraints and show that damping cannot

be efficient. We demonstrate this in two classes of scenarios where damping takes place in relativistic

and non-relativistic phases, respectively.
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Relativistic scenario: If we introduce a Yukawa coupling of the form yϕχ̄χ, as was used in

section 13 and was described in detail in appendix D, then the most efficient damping rate is

scattering with relativistic fermions. We, therefore, first consider the scenario in which damping

takes place with a damping rate of

Γχ−scat ≈ y2αT (H.19)

We have assumed the universe to be radiation dominated such that H ∝ T 2. Therefore, Γχ−scat/H

grows linearly with a. The rate is valid until the fermions become non-relativistic, which for a near

maximal value of y takes place shortly after Tkin where the radial mode relaxes to the minimum at

fa. The relevant quantity is, therefore,

Γχscat(Tkick)

H(Tkick)

Tkick
Tkin

≈ 0.6
αy2

λ3/4

√
HImP

fa
. (H.20)

To achieve efficient damping, we then seek to maximize the Yukawa y. One upper bound on y

results from the assumption that the fermions are relativistic at the kick, i.e. that yϕkick < Tkick.

Another upper bound on y exists from the requirement that ϕ is dominated by its zero-temperature

mass at the kick, i.e. that λϕkick > yTkick. Both upper bounds on y are maximized for

HI ≈ 0.2×mP

√
λ, (H.21)

for which y can take the maximal value of

y ≲
√
λ. (H.22)

With these optimal choices for HI and y, the damping rate becomes

Γχscat(Tkin)

H(Tkin)
≈ Γχscat(Tkick)

H(Tkick)

Tkick
Tkin

∣∣∣∣∣
max y

≈ 0.3× αmp

√
λ

fa
(H.23)

We observe that this upper bound on Γ/H depends on λ to a positive power. The quartic coupling

λ must then also be maximized. λ is ultimately limited from above by the DM isocurvature

constraint which demanded λ < 10−11. However, such low values of the quartic coupling limits mϕ,

which makes it difficult for ϕ to decay before BBN18. Therefore, the radial mode must instead be

sufficiently light to escape Neff constraints by remaining relativistic until CMB temperatures. This

requires mϕ,late ≲ eV, which corresponds to the upper bound

λ ≲ 10−19

(
1010 GeV

fa

)
. (H.24)

Evidently, this upper bound is much stronger than the bound from isocurvature fluctuations. Fi-

nally, the χ-fermions are assumed to couple efficiently with the visible sector. Therefore they have

to be heavy enough not to be produced at colliders. We, therefore, impose that mχ,today ≳ TeV,

which with the choices above requires

fa ≳ 1015 GeV. (H.25)

As is evident from fig. 11, fa ≳ 1015 GeV is outside the KMM regime as only standard misalignment

would be possible with decay constants of that magnitude.

18For decay constants lower than fa ≲ O(1) × 107 GeV it may be possible for the saxion to decay before BBN.

However, such scenarios are ruled out by collider constraints because the saxion mass is limited to mϕ,today ≲
O(10 GeV).
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Further, even if we ignore that values of fa outside the KMM regime are required to be com-

patible with constraints, the damping is still not efficient. The optimal conditions for damping

through χ-scattering are found by saturating the bounds given by eqs. (H.22), (H.24) and (H.25)

as well as assuming the optimal value of HI given by eq. (H.21). However, even under these optimal

conditions, the damping rate is still only

Γχ−scat.

H

∣∣∣∣
max

≈ 10−11. (H.26)

Any other choice will only lead to the less efficient damping, wherefore we conclude scattering

processes with fully relativistic fermions is not viable.

After Tkin the χ-fermions will quickly become dominated by the ϕ-mass. In the intermediate

regime αT < yϕ < T where the fermions become affected by the ϕ-contribution to their mass

but are still (barely) relativistic, the interaction rate is momentarily boosted. During this period,

Γ/H grows with T 2. However, maximizing y also limits the length of this period because the χ-

fermions are only just light enough to be relativistic. This tension keeps the intermediate period

αT < yϕ < T from significantly altering the conclusions above.

Non-relativistic scenario: Although the damping rate in the regime with non-relativistic χ-

fermions is in general much lower than the rate in the relativistic scenario one may wonder if there

is nonetheless a possibility to damp with non-relativistic fermions. In this case, the most efficient

damping mechanism is the loop-induced scattering with a damping rate of

Γγ−scat. ≈
bα2T 3

ϕ2
. (H.27)

Interestingly, this rate is independent of y, wherefore the exact value of y does not play a role in

the damping. This rate drops faster than the Hubble rate after the radial mode becomes relaxed

to fa, wherefore the largest ratio of Γγ−scat./H is reached at Tkin. At Tkin the ratio is

Γγ−scat.(Tkin)

H(Tkin)
≈ 0.1bα2m

3/2
P λ3/4

fa
√
HI

(H.28)

With the largest possible value ofHI (limited by the need for the zero-temperature mass to dominate

the thermal-log mass at Tkick) and the largest possible λ (limited by the thermal relic constraint),

the maximal rate is

Γγ−scat.(Tkin)

H(Tkin)

∣∣∣∣
max

≈ 7× 105 GeV

fa
(H.29)

To achieve efficient damping, the decay constant would therefore have to be less than

fa ≲ 104 GeV, (H.30)

which is strongly constrained by astrophysics and helioscopes. Thus, damping with non-relativistic

χ-fermions is also not viable.

Mixed scenarios: An attractive solution in the nearly-quadratic model is the scenario in which

the radial mode avoids thermal corrections at Tkick by having the χ-fermions be non-relativistic

at Tkick and in which damping is achieved through efficient scatting in an intermediate phase of

relativistic fermions. This is possible in the nearly-quadratic model because ϕ redshifts faster

than T in those models. However, in the quartic model ϕ never redshifts faster than T (neglecting

reheating), wherefore the χ-fermions will remain non-relativistic if first they become non-relativistic.

This absence of intermediate relativistic phases rules out such mixed scenarios in quartic models.
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Conclusion - Problems with Yukawa damping in the quartic model: We find that a

Yukawa interaction cannot be used to damp the radial oscillations in the quartic model. This

conclusion results from the tension between the various constraints discussed above (isocurvature,

thermal relic, collider, scenario consistency, efficient damping) rather than from any individual

constraint. Another type of interaction is needed for the quartic scenario to be viable. In the

previous paragraphs, we motivated this conclusion by optimizing Γ/H in analytic approximations of

both relativistic and non-relativistic scenarios. This conclusion is confirmed by numerical solutions

of the Boltzmann equation described in appendix F, which affirm that no viable scenario exists

given the constraints imposed.

135



References

[1] C. Eröncel, R. Sato, G. Servant, and P. Sørensen, ALP Dark Matter from Kinetic Fragmentation:

Opening up the Parameter Window, arXiv:2206.14259.

[2] C. Eröncel, R. Sato, G. Servant, and P. Sørensen, Model implementations of axion kinetic

fragmentation, (2023) to appear.

[3] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38

(1977) 1440–1443.

[4] R. D. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the Presence of

Instantons, Phys. Rev. D 16 (1977) 1791–1797.

[5] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983)

127–132.

[6] L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120

(1983) 133–136.

[7] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137–141.

[8] J. E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150 (1987) 1–177.

[9] P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051, [hep-th/0605206].

[10] G. B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken

Lepton Number, Phys. Lett. B 99 (1981) 411–415.

[11] B. Bellazzini, A. Mariotti, D. Redigolo, F. Sala, and J. Serra, R-axion at colliders, Phys. Rev. Lett.

119 (2017), no. 14 141804, [arXiv:1702.02152].

[12] Y. Ema, K. Hamaguchi, T. Moroi, and K. Nakayama, Flaxion: a minimal extension to solve puzzles

in the standard model, JHEP 01 (2017) 096, [arXiv:1612.05492].

[13] L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler, and J. Zupan, Minimal axion model from flavor,

Phys. Rev. D 95 (2017), no. 9 095009, [arXiv:1612.08040].

[14] G. Grilli di Cortona, E. Hardy, J. Pardo Vega, and G. Villadoro, The QCD axion, precisely, JHEP

01 (2016) 034, [arXiv:1511.02867].

[15] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.

[16] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.

40 (1978) 279–282.

[17] R. L. Davis, Goldstone Bosons in String Models of Galaxy Formation, Phys. Rev. D 32 (1985) 3172.

[18] R. L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225–230.

[19] D. Harari and P. Sikivie, On the Evolution of Global Strings in the Early Universe, Phys. Lett. B

195 (1987) 361–365.

[20] A. Vaquero, J. Redondo, and J. Stadler, Early seeds of axion miniclusters, JCAP 04 (2019) 012,

[arXiv:1809.09241].

[21] M. Buschmann, J. W. Foster, and B. R. Safdi, Early-Universe Simulations of the Cosmological

Axion, Phys. Rev. Lett. 124 (2020), no. 16 161103, [arXiv:1906.00967].

[22] M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren, and J. Urrestilla, Scaling Density of Axion Strings,

Phys. Rev. Lett. 124 (2020), no. 2 021301, [arXiv:1908.03522].

[23] M. Gorghetto, E. Hardy, and G. Villadoro, More axions from strings, SciPost Phys. 10 (2021),

no. 2 050, [arXiv:2007.04990].

[24] M. Dine, N. Fernandez, A. Ghalsasi, and H. H. Patel, Comments on axions, domain walls, and

cosmic strings, JCAP 11 (2021) 041, [arXiv:2012.13065].

136

http://arxiv.org/abs/2206.14259
http://arxiv.org/abs/hep-th/0605206
http://arxiv.org/abs/1702.02152
http://arxiv.org/abs/1612.05492
http://arxiv.org/abs/1612.08040
http://arxiv.org/abs/1511.02867
http://arxiv.org/abs/1809.09241
http://arxiv.org/abs/1906.00967
http://arxiv.org/abs/1908.03522
http://arxiv.org/abs/2007.04990
http://arxiv.org/abs/2012.13065


[25] M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox, W. Zhang, and B. R. Safdi,

Dark matter from axion strings with adaptive mesh refinement, Nature Commun. 13 (2022), no. 1

1049, [arXiv:2108.05368].

[26] M. Hindmarsh, J. Lizarraga, A. Lopez-Eiguren, and J. Urrestilla, Comment on ”More Axions from

Strings”, arXiv:2109.09679.

[27] R. T. Co, L. J. Hall, and K. Harigaya, Axion Kinetic Misalignment Mechanism, Phys. Rev. Lett.

124 (2020), no. 25 251802, [arXiv:1910.14152].

[28] C.-F. Chang and Y. Cui, New Perspectives on Axion Misalignment Mechanism, Phys. Rev. D 102

(2020), no. 1 015003, [arXiv:1911.11885].

[29] N. Fonseca, E. Morgante, R. Sato, and G. Servant, Axion fragmentation, JHEP 04 (2020) 010,

[arXiv:1911.08472].

[30] C. Eröncel and G. Servant, ALP Dark Matter Mini-Clusters from Kinetic Fragmentation,

arXiv:2207.10111.

[31] I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361–380.

[32] M. Dine, L. Randall, and S. D. Thomas, Baryogenesis from flat directions of the supersymmetric

standard model, Nucl. Phys. B 458 (1996) 291–326, [hep-ph/9507453].

[33] R. T. Co, L. J. Hall, K. Harigaya, K. A. Olive, and S. Verner, Axion Kinetic Misalignment and

Parametric Resonance from Inflation, JCAP 08 (2020) 036, [arXiv:2004.00629].

[34] R. T. Co, N. Fernandez, A. Ghalsasi, L. J. Hall, and K. Harigaya, Lepto-Axiogenesis,

arXiv:2006.05687.

[35] R. T. Co, D. Dunsky, N. Fernandez, A. Ghalsasi, L. J. Hall, K. Harigaya, and J. Shelton,

Gravitational Wave and CMB Probes of Axion Kination, arXiv:2108.09299.

[36] Y. Gouttenoire, G. Servant, and P. Simakachorn, Revealing the Primordial Irreducible Inflationary

Gravitational-Wave Background with a Spinning Peccei-Quinn Axion, arXiv:2108.10328.

[37] Y. Gouttenoire, G. Servant, and P. Simakachorn, Kination cosmology from scalar fields and

gravitational-wave signatures, arXiv:2111.01150.

[38] Y. Nambu, Axial vector current conservation in weak interactions, Phys. Rev. Lett. 4 (1960)

380–382.

[39] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19 (1961) 154–164.

[40] J. Goldstone, A. Salam, and S. Weinberg, Broken Symmetries, Phys. Rev. 127 (1962) 965–970.

[41] S. Weinberg, The U(1) Problem, Phys. Rev. D 11 (1975) 3583–3593.

[42] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, The landscape of QCD axion models, Phys.

Rept. 870 (2020) 1–117, [arXiv:2003.01100].

[43] G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8–11.

[44] G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys.

Rev. D 14 (1976) 3432–3450. [Erratum: Phys.Rev.D 18, 2199 (1978)].

[45] G. ’t Hooft, How Instantons Solve the U(1) Problem, Phys. Rept. 142 (1986) 357–387.

[46] S. L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426–2438.

[47] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47–61.

[48] W. A. Bardeen, Anomalous Ward identities in spinor field theories, Phys. Rev. 184 (1969)

1848–1857.

[49] S. Coleman, Aspects of Symmetry: Selected Erice Lectures. Cambridge University Press,

Cambridge, U.K., 1985.

137

http://arxiv.org/abs/2108.05368
http://arxiv.org/abs/2109.09679
http://arxiv.org/abs/1910.14152
http://arxiv.org/abs/1911.11885
http://arxiv.org/abs/1911.08472
http://arxiv.org/abs/2207.10111
http://arxiv.org/abs/hep-ph/9507453
http://arxiv.org/abs/2004.00629
http://arxiv.org/abs/2006.05687
http://arxiv.org/abs/2108.09299
http://arxiv.org/abs/2108.10328
http://arxiv.org/abs/2111.01150
http://arxiv.org/abs/2003.01100


[50] R. Bott, An Application of Morse theory to the topology of Lie groups, Bull. Soc. Math. Fr. 84

(1956) 251–281.

[51] E. B. Bogomolny, Stability of Classical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449.

[52] K. M. Bitar and S.-J. Chang, Vacuum Tunneling of Gauge Theory in Minkowski Space, Phys. Rev.

D 17 (1978) 486.

[53] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev.

Lett. 124 (2020), no. 8 081803, [arXiv:2001.11966].

[54] M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318

(2005) 119–169, [hep-ph/0504231].

[55] J. R. Ellis and M. K. Gaillard, Strong and Weak CP Violation, Nucl. Phys. B 150 (1979) 141–162.

[56] M. Dine and P. Draper, Challenges for the Nelson-Barr Mechanism, JHEP 08 (2015) 132,

[arXiv:1506.05433].

[57] L. Ubaldi, Effects of theta on the deuteron binding energy and the triple-alpha process, Phys. Rev. D

81 (2010) 025011, [arXiv:0811.1599].

[58] F. Takahashi, A possible solution to the strong CP problem, Prog. Theor. Phys. 121 (2009) 711–725,

[arXiv:0804.2478].

[59] N. Kaloper and J. Terning, Landscaping the Strong CP Problem, JHEP 03 (2019) 032,

[arXiv:1710.01740].

[60] C. Vafa and E. Witten, Restrictions on Symmetry Breaking in Vector-Like Gauge Theories, Nucl.

Phys. B 234 (1984) 173–188.

[61] D. J. Gross, R. D. Pisarski, and L. G. Yaffe, QCD and Instantons at Finite Temperature, Rev. Mod.

Phys. 53 (1981) 43.

[62] O. Wantz and E. P. S. Shellard, Axion Cosmology Revisited, Phys. Rev. D 82 (2010) 123508,

[arXiv:0910.1066].

[63] E. Berkowitz, M. I. Buchoff, and E. Rinaldi, Lattice QCD input for axion cosmology, Phys. Rev. D

92 (2015), no. 3 034507, [arXiv:1505.07455].

[64] E. Berkowitz, Lattice QCD and Axion Cosmology, PoS LATTICE2015 (2016) 236,

[arXiv:1509.02976].

[65] R. Kitano and N. Yamada, Topology in QCD and the axion abundance, JHEP 10 (2015) 136,

[arXiv:1506.00370].

[66] S. Borsanyi, M. Dierigl, Z. Fodor, S. D. Katz, S. W. Mages, D. Nogradi, J. Redondo, A. Ringwald,

and K. K. Szabo, Axion cosmology, lattice QCD and the dilute instanton gas, Phys. Lett. B 752

(2016) 175–181, [arXiv:1508.06917].

[67] S. Borsanyi et al., Calculation of the axion mass based on high-temperature lattice quantum

chromodynamics, Nature 539 (2016), no. 7627 69–71, [arXiv:1606.07494].

[68] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103.

[69] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can Confinement Ensure Natural CP

Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493–506.

[70] W. A. Bardeen, R. D. Peccei, and T. Yanagida, CONSTRAINTS ON VARIANT AXION

MODELS, Nucl. Phys. B 279 (1987) 401–428.

[71] A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J.

Nucl. Phys. 31 (1980) 260.

[72] M. Dine, W. Fischler, and M. Srednicki, A Simple Solution to the Strong CP Problem with a

Harmless Axion, Phys. Lett. B 104 (1981) 199–202.

138

http://arxiv.org/abs/2001.11966
http://arxiv.org/abs/hep-ph/0504231
http://arxiv.org/abs/1506.05433
http://arxiv.org/abs/0811.1599
http://arxiv.org/abs/0804.2478
http://arxiv.org/abs/1710.01740
http://arxiv.org/abs/0910.1066
http://arxiv.org/abs/1505.07455
http://arxiv.org/abs/1509.02976
http://arxiv.org/abs/1506.00370
http://arxiv.org/abs/1508.06917
http://arxiv.org/abs/1606.07494


[73] J. E. Kim, A COMPOSITE INVISIBLE AXION, Phys. Rev. D 31 (1985) 1733.

[74] L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77–80.

[75] M. Redi and R. Sato, Composite Accidental Axions, JHEP 05 (2016) 104, [arXiv:1602.05427].

[76] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, WISPy Cold Dark

Matter, JCAP 06 (2012) 013, [arXiv:1201.5902].

[77] H. Jeffreys, On certain approximate solutions of lineae differential equations of the second order*,

Proceedings of the London Mathematical Society s2-23 (1925), no. 1 428–436,

[https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-23.1.428].

[78] G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,

Z. Phys. 38 (1926), no. 6 518–529.

[79] H. A. Kramers, Wellenmechanik und halbzahlige Quantisierung, Z. Phys. 39 (1926), no. 10 828–840.
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[145] J. Schütte-Engel, D. J. E. Marsh, A. J. Millar, A. Sekine, F. Chadha-Day, S. Hoof, M. N. Ali, K.-C.
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