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Abstract

This work discusses and demonstrates the imaging method ‘photon-photon correlation of X-ray
fluorescence’, also called ‘Incoherent Diffraction Imaging (IDI)’. This method corresponds to the
‘intensity interferometry’, known from astronomy. However, this method requires measurement
or exposure times that are on the order of the coherence time of the measured radiation; for Kα

fluorescence of light transition metals, this is on the order of a femtosecond – a temporal length
that can be achieved by modern X-ray free electron lasers (XFELs).

In addition to the exposure time requirement, this work discusses other influencing factors
that can cause a reduction in the useful correlation signal. These are the temporal shape of the
excitation pulse, the sample size, the (non) polarization of the detected photons, and others.
These factors, collectively called ‘visibility factor’, also manifest as ‘speckle contrast’ and can be
measured without the need to perform intensity correlation. A weighting method is presented
to determine the speckle contrast from a data set consisting of images with very low photon
counts that fluctuate significantly from image to image. This method is applied to compare the
speckle contrast of iron Kα fluorescence excited by 3 fs and 15 fs XFEL pulses. An increase in
speckle contrast was found for the short pulses compared to the longer ones – a fundamental
requirement for the IDI method.

Furthermore, inherent noise sources affecting the IDI are discussed. A model is derived
to estimate the dependence of the signal-to-noise ratio (SNR) on the photon number per pixel,
temporal coherence (or visibility factor), and the shape of the imaged object. In addition,
simulations in two and three dimensions were performed to validate the model’s predictions.
Unlike coherent imaging methods, more detected photons do not always result in higher SNR.
Moreover, larger and more complex objects generally yield poorer SNR, even when the number
of measured photons is proportional to the object size or complexity.

Finally, an experiment that uses the photon-photon correlation of X-ray fluorescence photons
for the first time to reconstruct a nontrivial (noncontinuous) fluorescence emitter distribution
is presented. In the course of this experiment, the application of IDI to determine XFEL beam
parameters such as focus and temporal pulse length is demonstrated.
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Zusammenfassung

In dieser Arbeit wird die Bildgebungsmethode der “Photon-Photon Korrelation von Röntgenflu-
oreszenz”, auch “Incoherent Diffraction Imaging (IDI)” genannt, diskutiert und demonstriert.
Diese Methode entspricht der aus der Astronomie bekannten “Intensitätsinterferometrie”. Diese
Methode setzt jedoch Mess-, bzw. Belichtungszeiten voraus, die sich in der Größenordnung der
Kohärenzzeit der gemessenen Strahlung befinden; für Kα Fluoreszenz leichter Übergangsmetalle
befindet sich diese in der Größenordnung von einer Femtosekunde – eine zeitliche Länge die
von modernen Freie Elektronen Röntgen Laser (XFELs) erreicht werden kann.

Neben der Anforderung an die Belichtungszeit werden weitere Einflussfaktoren diskutiert,
die eine Reduzierung des brauchbaren Korrelationssignals bewirken können. Diese sind z.B. die
zeitliche Form des Anregungspulses, die Größe der Probe, die (nicht) Polarisation der detek-
tierten Photonen und Weitere. Diese Faktoren, zusammengefasst “Visibilitätsfaktor” genannt,
manifestieren sich auch als “Specklekontrast” und können gemessen werden, ohne das eine
Intensitätskorrelation durchgeführt werden muss. Es wird eine Gewichtungsmethode vorgestellt,
um den Specklekontrast von einem Datenset bestehend aus Aufnahmen mit sehr niedriger, aber
von Aufnahme zu Aufnahme stark fluktuierender Photonenzahl zu ermitteln. Diese Methode
wird angewandt, um den Specklekontrast von Eisen Kα Fluoreszenz, angeregt durch 3 fs und
15 fs XFEL Pulsen, zu vergleichen. Dabei wurde eine Erhöhung des Specklekontrast bei den
kurzen Pulsen gegenüber den längeren festgestellt, was eine elementale Voraussetzung für die
IDI Methode darstellt.

Des Weiteren werden in dieser Arbeit inhärente Rauschquellen, welche die IDI beein-
flussen, diskutiert. Hierfür wird ein Modell hergeleitet, um die Abhängigkeit des Signal-
Rausch-Verhältnisses (SNR) von der Photonenzahl pro Pixel, der zeitlichen Kohärenz (bzw.
des Visibilitätsfaktors) und der Form des abgebildeten Objekts abzuschätzen. Zusätzlich wurden
Simulationen in zwei und drei Dimensionen durchgeführt, um die Vorhersagen des Modells zu
validieren. Es stellt sich heraus, dass, im Gegensatz zu kohärenten Abbildungsmethoden, mehr
detektierte Photonen nicht immer zu einer höheren SNR führen. Außerdem liefern größere und
komplexere Objekte im Allgemeinen eine niedrigere SNR, selbst wenn die Anzahl gemessener
Photonen proportional zur Objektgröße bzw. Komplexität steigt.

Abschließend wird ein Experiment vorgestellt, in dem erstmalig die Korrelation von Röntgen-
fluoreszenz Photonen verwendet wird, um eine nicht triviale (nicht durchgängige) Fluoreszenz
Emitter Verteilung zu rekonstruieren. Im Zuge dieses Experiments wird auch die Anwendung
von IDI demonstriert, um XFEL Strahlparameter wie den Fokus und die zeitliche Pulslänge zu
bestimmen.
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Nomenclature

Frequently used constants, symbols and abbreviations.

Abbreviations

ADU arbitrary detector unit

CDI coherent diffraction imaging

FEL free electron laser

FWHM full width at half maximum

IDI incoherent diffraction imaging

RMS root mean square

SASE self-amplified spontaneous emission

SNR signal-to-noise ratio

SOR signal-to-offset ratio

XFEL X-ray free electron laser

Physics constants

c0 vacuum speed of light 2.998 × 108 m s−1

h = 2πℏ Planck constant 4.136 × 10−15 eV s

Mathematical notations

ê unity vector êx := x⃗
|x⃗|

a⃗ · b⃗ scalar product a⃗ · b⃗ :=
∑

j ajbj

a⃗× b⃗ cross product a⃗× b⃗ = (a2b3 − a3b2)ê1 + (a3b1 − a1b3)ê2 + (a1b2 − a2b1)ê3 ∀ a⃗, b⃗ ∈ R3

x modulus (shortcut) x := |x⃗|

∇ Nabla operator ∇ :=
∑

j
∂

∂xj
êj

ix



Re (z) real part Re (a+ ib) := a ∀ a, b ∈ R

Im (z) imaginary part Im (a+ ib) := b∀ a, b ∈ R

z∗ complex conjugate (a+ ib)∗ := (a− ib) ∀ a, b ∈ R

δa,b Kronecker delta δa,b = 1 if a = b else 0

δ(x⃗) delta distribution
�∞

−∞ δ(x⃗− a⃗)f(x⃗) dnx = f (⃗a)

Θ(x) Heaviside step function Θ(x) = 1 if x > 0 else 0

⟨f(x)⟩x average ⟨f(t)⟩t := limT →∞ T−1 � T/2
−T/2 f(t) dt

F [f(x⃗)] (q⃗) Fourier transform F [f(x⃗)] (q⃗) :=
�∞

−∞ f(x⃗)eix⃗·q⃗ dnx

f ∗ g convolution (f(t) ∗ g(t))(τ) :=
�∞

−∞ f(τ)g(t− τ) dt

f ⋆ g cross-correlation (f(t) ⋆ g(t))(τ) :=
�∞

−∞ f∗(t′)g(τ + t′) dt′

erf(z) error function erf(z) := 2√
π

� z
0 e

−t2
dt

erfc(z) complementary error function erfc(z) := 1 − erf(z)
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1Introduction

Since the discovery of X-rays by Wilhelm Conrad Röntgen in 1895 [101], imaging technology has
seen numerous breakthroughs. X-rays, with their very short wavelengths, can be used to image
complex structures at atomic resolution. One such imaging technique is X-ray crystallography [7,
69], which has been used to determine the structures of various materials, including minerals
and alloys. It has also revolutionized the study of biological molecules, such as proteins [62],
vitamins [71], and DNA [23], by revealing their structure and function. X-ray crystallography
is based on coherent X-ray diffraction and can be summarized as coherent diffraction imaging
(CDI) alongside other X-ray techniques [10, 91]. In CDI, the energy of the photons and a fixed
phase relation between the incoming and scattered wave field is maintained. The probability of
a photon being coherently scattered by an atom is proportional to the cross-section for elastic
scattering. Such a cross-section is plotted in Fig. 1.1 as a function of the incoming photons’
energy. Besides the cross-section for elastic scattering, the cross-sections for Compton scattering
and the photo effect are plotted. Apparently, the cross-section of the photo effect is much higher
than for the elastic scattering at all relevant energies. The photo effect describes the emission
of an electron from an atom after a photon is absorbed and its kinetic energy is transferred to
the electron. In Fig. 1.1, a sharp edge is apparent at 7.1 keV, where the ejection of an electron
from the innermost shell becomes possible. The emerging hole in this shell is quickly filled by
an electron from a higher shell, which can lead to the emission of a photon – a process called
fluorescence. Fluorescence photons are mutually incoherent and thus do not contribute to the
CDI signal; instead, they are generally viewed as disturbing background. This raises the question,
whether the incoherently emitted fluorescence photons can also be utilized for imaging. We will
address this in a moment.
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Fig. 1.1.: Cross sections of iron for elastic
(coherent) scattering, Compton
scattering, and photo absorp-
tion (photo-effect). The latter
can lead to X-ray fluorescence.
The data is taken from [109].
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In 1954, Robert Hanbury Brown and Richard Q. Twiss proposed and demonstrated a method
called intensity interferometry which was used in radio astronomy to measure the angular ex-
tent covered by a star [50, 46]. This method relies on the correlation of measured intensities
(second-order correlation) instead of wave-field amplitudes (first-order correlation), as it is
the case in classical radio astronomy. One consequence of the intensity-intensity correlation is
that a spatial coherence of the measured radiation is not required. This has the advantage that
the measurements are not sensitive to random phase shifts in the wave field as, for example,
introduced by fluctuating densities in the atmosphere. Later, Hanbury Brown and Twiss (HBT)
demonstrated that intensity interferometry is not restricted to radio waves but also works for
visible light [47].

This demonstration of intensity interferometry was of great importance to quantum optics
since it requires the interference of at least two photons. It contradicted the then-current view by
Paul Dirac that "each photon [...] only interferes with itself" [18]. The first quantum mechanical
explanation was given by Ugo Fano [29]. He investigated the case of two photons theoretically,
each emitted by an independent emitter (e1 and e2) and detected by two spatially separated
detectors (d1 and d2), detecting one photon each. When the paths of the photons are not
distinguishable, and it is thus impossible to say whether detector d1 detected the photon from e1

or e2, the quantum paths do interfere. In 1963, Roy J. Glauber published his groundbreaking
work "The Quantum Theory of Optical Coherence" [39], thoroughly explaining interference
phenomena, including the higher-order interference observed by Hanbury Brown and Twiss.

Intensity interferometry requires correlations on timescales in the order of the coherence
time of the wave fields. Hanbury Brown and Twiss archived this by a sufficiently high temporal
resolution of the intensity-intensity correlator. Furthermore, they increased the coherence time
of the radio waves by applying a narrow frequency band filter [124].

Returning to X-ray fluorescence: if we want to utilize intensity interferometry here, we face the
challenge of the coherence time being usually quite short. For example, the K-shell fluorescence
of light transition metals usually has a coherence time of less than 1 fs [67]. Since, up to this
day, the temporal resolution of the most advanced X-ray detectors is not even close to this
time scale [73], sufficiently fast coincidence detection is not an option. However, current X-ray
free-electron lasers (XFEL) can generate high-intensity pulses with a duration in the femtosecond
range [84] and have even managed to produce pulses of tenths of attoseconds [61, 72, 97]. Such
short excitation pulses enable intensity interferometry for X-ray fluorescence. Anton Classen et
al. first proposed using these short pulses for intensity interferometry in 2017. They called the
method incoherent diffraction imaging (IDI) to emphasize the X-ray fluorescence’s incoherent
nature and to distinguish it from CDI.

IDI has interesting features, such as sub-Abbe resolution [116] and element-specific sensi-
tivity [53]. Therefore, it has the potential to complement CDI. Also, due to its dependence on
the excitation pulse length, IDI can be used for characterizing XFEL pulses, as first demonstrated
by Ichiro Inoue [58] in 2019.

2 Chapter 1 Introduction



In the present work, we will comprehensively discuss the properties of IDI and present the first
successful experiment of imaging a non-trivial distribution of fluorescent emitters via IDI. We
will introduce the basics of CDI, IDI, and photon statistics of various light sources in Chapter 2.
In Chapter 3, an experimentally observed change in speckle contrast for different XFEL pulse
durations is reported, an essential requirement for the feasibility of IDI. We will also discuss the
parameters influencing the speckle contrast, which are crucial for IDI’s signal strength. Chapter 4
is about IDI’s signal-to-noise ratio (SNR), highlighting the substantial differences to CDI and
the implications for possible experiments. The demonstration of an IDI experiment, imaging a
simple yet non-trivial emitter distribution, is reported in Chapter 5. Also, the determination of
the XFEL pulse properties, namely temporal pulse length and spatial focus size, is reported. A
summary of this work and an outlook on possible further applications and experiments are given
in Chapter 6.

Even though this work is focused on IDI via X-ray fluorescence, many of the concepts
presented, especially about the SNR, apply to intensity interferometry in general and, thus, also
yield implications for applications, e.g., in astronomy.
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2Basics

In this chapter we provide a brief overview of some fundamental concepts in classical and
quantum optics. As these concepts are well-established and widely covered in textbooks [6, 96,
79, 40, 41, 75, 107, 128], we will provide a concise summary without delving into extensive
detail.
We will also go through the basics of incoherent diffraction imaging (IDI), also known as intensity
interferometry of fluorescence correlation imaging.

2.1 Electromagnetic waves

The field of (classical) optics is based on the well-known microscopic Maxwell’s equations [83].
These equations describe the interaction between free charges and the electric field, the interac-
tion between free currents and the electric field, and the interaction between the electric and
magnetic fields:

∇ · E⃗ = ρfree

ϵ0
,

∇ · B⃗ = 0 ,

∇ × E⃗ = − ∂

∂t
B⃗ ,

∇ × B⃗ = µ0j⃗free + 1
c2

0

∂

∂t
E⃗ ,

(2.1)

where the electric field is represented by E⃗, the magnetic field by B⃗; c0, ϵ0, and µ0 denote the
vacuum speed of light, vacuum permittivity, and vacuum permeability, respectively1. To set up
the wave-equation, we assume that there are neither free charges (ρfree = 0) nor free currents
(⃗jfree = 0). Using the vector relation2 ∇ ×

(
∇ × A⃗

)
= ∇ ·

(
∇ · A⃗

)
− △A⃗, we obtain the free

wave equations as
1
c2
∂2

∂t2
E⃗ − △E⃗ = 0 ,

1
c2
∂2

∂t2
B⃗ − △B⃗ = 0 .

(2.2)

In this work, we only consider the electric field for simplicity. A simple solution to the wave
equation is the plane wave:

E⃗(r⃗, t) = E⃗0 cos
(
k⃗ · r⃗ − ωt

)
, (2.3)

with the wave-vector k⃗ and angular frequency ω. In vacuum, the relation ω = ck holds as a
result of Eqn. (2.2). The modulus of the wave-vector, called wave-number k =

∣∣∣⃗k ∣∣∣ is linked to
the wavelength λ by k = 2π/λ.

1ϵ0 = 8.854 × 10−12 F m−1, µ0 = 1.257 × 10−6 H m−1 [118]
2The Laplace operator is defined by △ := ∇ · ∇.

5



In vacuum, the wave vector k⃗ is perpendicular to the electric field, and the direction of the
electric field is called polarization vector E⃗0/|E⃗0| = êP .
In this work, we make use of the scalar wave approximation, where we neglect the vectorial
nature of the electric field.

V (r⃗, t) = ψ0 cos
(
k⃗ · r⃗ − ωt

)
, (2.4)

is a solution of the scalar wave equation (also known as d’Alembert equation [14] for the case
f(r⃗, t) ≡ 0): (

1
c2
∂2

∂t2
− △

)
V (r⃗, t) = f(r⃗, t) , (2.5)

that can be interpreted as one dimensional version (or projection) of Eqn. (2.2). However it is
important to note that there are solutions of V , that if it is interpreted as one dimension of E⃗,
the individual dimensions do no longer satisfy the same wave equation. One prominent example
is the spherical wave solution

V (r, t) = cos (kr − ωt)
kr

, (2.6)

where3 r =
√
x2 + y2 + z2 = |r⃗ |. This spherical wave cannot be a solution of the vectorial wave

equation (Eqn. (2.2)), since it is not possible to construct a 2-sphere (a topological sphere in the
three dimensional space) with a non-vanishing continuous tangent vector field, for proof see the
"hairy ball theorem" [87]. However, the spherical scalar wave is an extraordinarily useful concept
where for example the Huygens–Fresnel [56] principle is based on, which we will discuss later
in this chapter.

A commonly and very useful convention is to write the wave-solutions as complex exponen-
tial function. For example Eqn. (2.4) can be written as

V (t, r⃗ ) = V0 Re
(
ei(k⃗·r⃗−ωt)

)
= 1

2
(
ei(k⃗·r⃗−ωt) + ei(−k⃗·r⃗+ωt)

)
. (2.7)

Often4, it is sufficient to only consider the complex amplitude [6] ψ(t, r⃗ ) from

V (t, r⃗ ) = Re (ψ(t, r⃗ )) . (2.8)

It should be emphasized, that ψ is a solution of Eqn. (2.5) itself. In the following, we will refer
to ψ as wave field.

In this work, we are focusing on waves in the X-ray regime (ω > 1.5 × 1018 s−1) and thus
have no experimental access to a temporal resolved amplitude. Therefore, we will usually
consider only the time independent part ψ(r⃗ ) of the wave field from

ψ(t, r⃗ ) = ψ(r⃗ )e−iωt . (2.9)

This time independent part must satisfy the Helmholtz equation at each source-free point(
△ + k2

)
ψ(r⃗ ) = 0 . (2.10)

3For the sake of readability, we choose the notation a = |⃗a|.
4In general in linear optics or when only the time average of a quadratic expression is required [6].
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2.1.1 Free space propagation and Fourier optics

Here, we recapitulate on how to propagate an arbitrary wave field along the optical axis êz. We
start with the plane wave solution of Eqn. (2.10), as given by

ψPW(x, y, z) = ei(kxx+kyy)eiz
√

k2−k2
x−k2

y , (2.11)

where the components along the optical axis and the perpendicular components have been
separated, using the relation k2 = k2

x +k2
y +k2

z . The unpropagated wave than reads ψPW(x, y, z =
0) = ei(kxx+kyy), which allows us to identify the Helmholtz propagation term as eiz

√
k2−k2

x−k2
y .

Any unpropagated wave field can be expressed by its Fourier transform

ψ(x, y, z = 0) = 1
2π

� ∞

−∞
ψ̃(kx, ky, z = 0)ei(kxx+kyy) dkx dky , (2.12)

where ψ̃(kx, ky, z = 0) denotes the 2D Fourier transform of ψ(x, y, z = 0). This representation
can be interpreted as the decomposition of ψ(x, y, z = 0) into plane wave fields [96]. This
expression allows to propagate each of these plane waves along the optical axis:

ψ(x, y, z) = 1
2π

� ∞

−∞
ψ̃(kx, ky, z = 0)eiz

√
k2−k2

x−k2
yei(kxx+kyy) dkx dky . (2.13)

We can identify the Helmholtz propagator as5

PH(x, y, z) = 1
2π

� ∞

−∞
eiz

√
k2−k2

x−k2
yei(kxx+kyy) dkx dky , (2.14)

that can be used to propagate wave fields via convolution6,7 of the propagator with the unpropa-
gated wave field

ψ(x, y, z) = ψ(x, y, z = 0) ∗ PH(x, y, z) . (2.15)

In the next step, we assume that the wave field is paraxial, which means that the wave vector,
at any point of the wave field, only slightly deviates from the direction of the optical axis
k2

z ≫ k2
x + k2

y. That justifies a Taylor expansion within the propagator of Eqn. (2.14) in terms of
k and cutting at linear order:√

k2 − k2
x − k2

y ≈ k − (k2
x + k2

y)/(2k) . (2.16)

5A detailed derivation can be found in [96, 120].
6The convolution is defined as follows (f ∗ g)(x) =

� ∞
−∞ f(x′)g(x − x′) dx′.

7The Fourier-convolution theorem is used: F [(f ∗ g)(x)] (k) = F [f(x)] (k) F [g(x)] (k).
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Substituting Eqn. (2.16) into Eqn. (2.14) yields

1
2π

� ∞

−∞
eikze−

k2
x+k2

y
2k ei(kxx+kyy) dkx dky , (2.17)

where we are now able to execute the integrals and obtain the Fresnel propagator as

PF(x, y, z) = − ik

2πz e
ikzei k

2z
(x2+y2) . (2.18)

This propagator can be used in analogous fashion to the Helmholtz propagator (see Eqn. (2.15))
for propagating paraxial wave fields in free space (vacuum).

For the next step, we write the convolution with the Fresnel propagator explicitly as

ψ(x, y, z) ≈ − ik

2πz e
ikz

� ∞

−∞
ψ(x, y, z = 0)ei k

2z ((x−x′)2+(y−y′)2) dx′ dy′

= − ik

2πz e
ikzei k

2z
(x2+y2)

� ∞

−∞
ψ(x, y, z = 0)e−i k

z
(xx′+yy′)ei k

2z ((x′)2+(y′)2) dx′ dy′.

(2.19)

When we assume that the extent of the non-zero unpropagated wave field in the x, y plane is
much smaller than the propagation distance times the wavelength (kb2/(2πz) ≪ 1, where b is
the diameter of the unpropagated wave field with non-zero contributions), we call this the far
field approximation. In this case, we can drop the ei k

2z ((x′)2+(y′)2) term in Eqn. (2.19) and obtain
the Fraunhofer diffraction [96] as

ψ(x, y, z) ≈ − ikeikz

z
e

ik
2z

(x2+y2) ψ̃

(
kx = kx

z
, ky = ky

z
, z = 0

)
. (2.20)

Since we are usually measuring the intensity I = |ψ|2, the terms prior to the Fourier transformed
unpropagated wave field (ψ̃(kx, ky, z = 0)) can be neglected except the (constant) factor k/z.
The fact that far field propagation of wave fields basically computes the Fourier transform
physically, has lead to the development of the so called ‘Fourier Optics’ [40].
In this work, we will make use of this approximation (ψ(x, y, z) ∝ ψ̃(kx, ky, z = 0) ) whenever
we are dealing with two-dimensional wave fields (e.g. resulting from two dimensional emitter
distributions).
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2.1.2 Coherent diffraction

Here, we recapitulate the interaction of a plane wave field with point scatters (like atoms).
Thereby, we keep the approximations of the scalar wave field, made in the previous section.
Furthermore, we assume elastic scattering, which means, that the wave field maintains its
wavelength during the scattering process. We modify the homogeneous Helmholtz equation of
Eqn. (2.10) to the inhomogeneous Helmholtz equation8

(
△ + k2

)
ψ(r⃗ ) = k2(1 − n2(r⃗ ))ψ(r⃗ ) , (2.21)

where n(r⃗ ) denotes the refractive index, which is unity in vacuum. These kind of differential
equations can be solved for arbitrary n(r⃗ ) with the so called Greens function G(r⃗ ) [43, 16] by
convoluting the right hand side of Eqn. (2.21) with G:

ψ(r⃗ ) = ψ0(r⃗ ) − k2

4π

� ∞

−∞

(
1 − n2(r⃗ ′)

)
ψ(r⃗ ′)G(r⃗ − r⃗ ′) d3r′ , (2.22)

where ψ0(r⃗ ) denotes the solution of the homogeneous (free) Helmholtz equation. In general,
the Greens function is the impulse response function9 ((1 − n2(r⃗ ))ψ(r⃗ ) = −4πδ(r⃗ ))(

△ + k2
)
G(r⃗ ) = −4πδ(r⃗ )

⇒ G(r⃗ ) = e±ikr

|r⃗ |
,

(2.23)

and in this special case the spherical wave. However, Eqn. (2.22) is still not easily solvable,
since it contains a recursion of ψ(r⃗ ). This can be solved, in analogous fashion to perturbation
theory [106] known from quantum mechanics, by iteratively substituting the ψ under the integral
with the current guess, starting with ψ0:

ψ(r⃗ ) = ψ0(r⃗ ) − k2

4π

� ∞

−∞
(1 − n2(r⃗ ′))G(r⃗ − r⃗ ′)ψ0(r⃗ ′) d3r′

+ k4

(4π)2

� ∞

−∞

� ∞

−∞
(1 − n2(r⃗ ′))(1 − n2(r⃗ ′′))G(r⃗ − r⃗ ′)G(r⃗ ′ − r⃗ ′′)ψ0(r⃗ ′′) d3r′′ d3r′

− . . . .
(2.24)

When the scattering is weak (1 − n2 ≪ 1) we can cut off Eqn. (2.24) after the linear order
in G. This is also known as ‘first Born approximation’ [5], and corresponds to the case that
every photon can only be scattered once (the scattered waves do not interact with the scatterers,
again). This single-scattering approximation is also known as ‘kinematic theory’ [24].

8The derivation is done in analogous fashion to Eqn. (2.10), however the macroscopic Maxwells equation are used
instead of the microscopic ones [96].

9The factor (−4π) is introduced by convention.
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Assuming the incident wave-field to be a plane wave ψ0(r⃗ ) = eik⃗0·r⃗, and the Greens function
given by Eqn. (2.23), we obtain

ψ(r⃗ ) = eik⃗0·r⃗ − k2

4π2

� ∞

−∞

e±ik|r⃗−r⃗ ′|

|r⃗ − r⃗ ′|
(1 − n2(r⃗ ′))eik⃗0·r⃗ ′

d3r′ . (2.25)

In the next step, we apply the Fraunhofer (far field) approximation, following the same criteria as
for the derivation of Eqn. (2.20), namely n(r⃗ ′) ̸= 1 only for r′ ≪ r the scatterers are concentrated
within a small volume in comparison to the distance, where the wave field is evaluated. This
allows the following approximation:

|r⃗ − r⃗ ′| =
√
x2 + y2 + z2 + x′2 + y′2 + z′2 − 2(xx′ + yy′ + zz′)

≈
√
r2 − 2r⃗ · r⃗ ′ ≈ r2 − r⃗ · r⃗ ′ ,

(2.26)

where the last approximation is done via a Taylor expansion around r′ = 0 and truncation after
linear order. Now we can write Eqn. (2.25) as

ψ(r⃗ ) = eik⃗0·r⃗ + k2eikr

4πr

� ∞

−∞

(
n2(r⃗ ′) − 1

)
eiq⃗·r⃗ ′

d3r′ , (2.27)

with q⃗ := kr⃗/|r| − k⃗0 denoting the difference between the out-going (scattered) and in-coming
wave vector. We can see that the wave-field, scattered by a scatterer density ρ(r⃗ ) ∝ (n2(r⃗ ) − 1)
is actually proportional to the Fourier transform of the scatterer distribution

ψout(q⃗ ) ∝
� ∞

−∞
ρ(r⃗ )eiq⃗·r⃗ d3r . (2.28)

This relationship is denoting that the scattered wave describes the Fourier transform of the
scatterer distribution. This was a breakthrough for X-ray crystallography, which now is a major
tool to investigate structures of matter (e.g. proteins) [37]. We will refer to imaging techniques
based on this principle of elastic scattering as coherent diffraction imaging (CDI).
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2.2 Coherence

Up to this point, we have assumed perfect spatial and temporal coherence. However, since this
work is about incoherent diffraction imaging, it is necessary to define coherence and discuss how
to quantify it. This is the purpose of this section.

Coherence refers to the ability of waves to interfere, which requires, that the phases ϕ of the
wave-fields ψ ∝ ψ0e

ik⃗·r⃗+iϕ is constant over space and time [51]. To quantify coherence, Albert A.
Michelson [86] defined the visibility of interference fringes as

ν := Imax − Imin

Imax + Imin
, (2.29)

where Imax and Imin are the maximal and minimal measured intensities of the fringes. Frederik
Zernike later on defined [132] the degree of coherence and identified it as the visibility in special
cases. However, Pieter H. van Cittert noted [125] that the degree of coherence is equal to
his earlier introduced quantity ‘Korrelation’ (correlation) [126, 127]. Nevertheless, the term
‘degree of coherence’ has prevailed and therefore we will use it in the following. In order to
quantitatively describe coherence, we will distinguish between temporal and spatial coherence
and discuss each separately.

2.2.1 temporal coherence

The temporal coherence describes the stability of a wave field ψ(t) ∝ Aeiωt in terms of frequency
ω(t) and a amplitude A(t) over time. To quantify the coherence, we make use of the so called
complex degree of coherence [41], which is defined by

γ(τ) := ⟨ψ(t)ψ∗(t+ τ)⟩t

⟨ψ(t)ψ∗(t)⟩t
, (2.30)

where ⟨f(t)⟩t = T−1 � T/2
−T/2 f(t) dt is the temporal average over a period T in the limit T → ∞.

As F. Zernike pointed out [132], the modulus of the complex degree of coherence does indeed
quantify the expected visibility of interference fringes in a Michelson interferometer (see Fig. 2.1)
as described in Eqn. (2.29) |γ| = ν.

To define the coherence time as a more practical measure of the temporal coherence
property, it is tempting to use the time τ , where the visibility falls to one over the Euler number
|γ(τc)| = 1/e. However this is not always possible, since |γ(τ)| is not necessarily a monotonic
function (see for example Fig. 3.7b in Section 3.1.4). Leonard Mandel therefore proposed [78,
80] to define the coherence time as follows:

τc :=
� ∞

−∞
|γ(τ)|2 dτ , (2.31)

and this definition prevailed [41].
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τ = 2∆z
c

beam splitter

mirror

m
irror

Fig. 2.1.: Simplified sketch of a Michelson inter-
ferometer. The light beam gets equally
split and a time delay τ = 2∆z/c can
be created by moving one of the mirrors
∆z, from which the split beams gets re-
flected.

Second order temporal correlation of chaotic light

In addition to the degree of coherence, which is also known as the first-order temporal correlation,
we can define the second-order temporal correlation as

g(2)(τ) = ⟨ψ(t)ψ(t+ τ)ψ∗(t)ψ∗(t+ τ)⟩t

⟨ψ(t)ψ∗(t)⟩2
t

= ⟨I(t)I(t+ τ)⟩t

⟨I(t)⟩2
t

, (2.32)

which is also called the temporal intensity correlation function.
For chaotic light, such as light emitted by many independent emitters, the intensity correlation is
related to the degree of coherence by the Siegert relation [113]

g(2)(τ) = 1 + |γ(τ)|2 . (2.33)

Providing a detailed derivation is refrained at this point. However, the approach is similar to
that to be discussed in Section 2.5.1, where the second order of spatial correlation is derived in
detail.
An important consequence of Eqn. (2.33) is the so-called photon bunching effect. Since
|γ(τ = 0)|2 = 1 and limτ→∞|γ(τ)|2 = 0, for chaotic light, the probability to measure multiple
photons in a short time is higher than implied by the average photon count. This effect was first
described by Robert Hanbury Brown and Richard Q. Twiss [50, 47] and thus called Hanbury
Brown and Twiss (HBT) effect.

Spectrum of the wave field

Any wave field, with changing frequency and or amplitude over time, can be expressed as
superposition of monochromatic wave fields

ψ(t) =
� ∞

−∞
F (ω)eiωt dt . (2.34)
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The complex weight function F (ω) ∈ C hereby is apparently the Fourier transform of our wave
field

F (ω) = 1
2π

� ∞

−∞
ψ(t)e−iωt dt . (2.35)

The modulus square of this weight function |F (ω)|2 is called power spectrum and can be experi-
mentally obtained by various spectroscopic methods [119].
For example, the power spectrum for a light source with a Lorentzian spectrum around the
frequency ω0 and a full width at half maximum (FWHM) of 2Γ reads

|FL(∆ω)|2 = 1
Γ2 + (ω − ω0)2 . (2.36)

This power spectrum corresponds to a monochromatic wave field with exponentially decaying
envelope

ψL(t) ∝ eiω0te−ΓtΘ(t) , (2.37)

where Θ(t) = 1 ∀ t > 0, else 0 denotes the Heaviside step function. The wave field, along with
the power spectrum and the degree of coherence is plotted in Fig. 2.2 for an exponential decaying
envelope (Fig. 2.2a to 2.2c) and a Gaussian wave package (Fig. 2.2d to 2.2f). It should be noted,
that for the first example τc actually represents the time, where the wave fields envelope falls to
1/e, however, this is not the case for the Gaussian shaped pulse, where the time between the
points, where the envelope is 1/e of its maximum is τ1/e ≈ 1.6τc.
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Fig. 2.2.: (a & d) Wave field, (b & e) power spectrum and (c & f) degree of coherence for exponential
decaying envelope (a-c) and Gaussian wave packet (d-f). For these examples ω0 = 30/τc was
chosen.
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r⃗1

r⃗2zs

A

Fig. 2.3.: Simplified sketch of a Young interferom-
eter to measure the visibility of interfer-
ence fringes, generated by two pinholes
at r⃗1 and r⃗2. In the illustrated case, the
pinholes are in an opaque mask, located
at a distance of z from a light source
with the width s.

2.2.2 spatial coherence

Complementary to the temporal coherence, the spatial coherence describes the phase (and
amplitude) relations between two spatially separated points in the wave field. To quantify the
spatial coherence, we define the normalized cross-correlation function10 in analogous fashion to
Eqn. (2.30):

g(1)(r⃗1, r⃗2) = ⟨ψ(t, r⃗1)ψ∗(t, r⃗2)⟩t√
⟨ψ(t, r⃗1)ψ∗(t, r⃗1)⟩t⟨ψ(t, r⃗2)ψ∗(t, r⃗2)⟩t

. (2.38)

The visibility of the interference fringes, measured using a Young interferometer [131] (see
Fig. 2.3), is then quantified by the modulus of the cross correlation |g(1)|.

Van-Cittert Zernike theorem

We assume a two dimensional extended chaotic light source in the x, y-plane, with the area
A. Chaotic light source means, that the phase ϕ of the wave field emitted by the source is
independent and random at any point within the source:

ψ(x, y, z = 0) ∝


√
I0(x, y)eiϕ(x,y) for x, y ∈ A ,

0 else .
(2.39)

We propagate ψ along the z-axis into the far field, using the Fraunhofer propagation (recall
Eqn. (2.20)):

ψ(x, y, z) =
√
I0

�
A

√
I0(x′, y′)eiϕ(x′,y′)ei k

z
xx′
ei k

z
yy′
dx dy . (2.40)

Substituting this into Eqn. (2.38), with r⃗1 = (x1, y1, z)⊤ and r⃗2 = (x2, y2, z)⊤, we obtain for the
numerator of Eqn. (2.38) the following term:

g(1)(r⃗1, r⃗2) ∝

I0

�
A

�
A

√
I0(x′, y′)

√
I0(x′′, y′′)ei k

z
(x1x′−x2x′′)ei k

z
(y1y′−y2y′′)⟨eiϕ(x′,y′)e−iϕ(x′′,y′′)⟩ dx′ dy′ dx′′ dy′′ .

(2.41)

10The normalized cross-correlation function is also called complex degree of mutual coherence [41].
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Assuming completely uncorrelated and random phases, the average over the phase term
⟨ei(ϕ(r⃗ ′

1)−ϕ(r⃗ ′
2))⟩ = δ(r⃗ ′

1 − r⃗ ′
2) is zero for r⃗ ′

1 ̸= r⃗ ′
2. With this, we can write the expression

of g(1), for arbitrary intensity distributions I0(x, y, z = 0), as

g(1)(r⃗1, r⃗2) =
�

A I(x′, y′)ei k
z

(x1−x2)x′
ei k

z
(y1−y2)y′

dx′ dy′�
A I(x′, y′) dx′ dy′ . (2.42)

This equation is known as the Van Cittert-Zernike theorem [11, 132]. It basically is a Fourier
transform of the intensity distribution of the light source. As the light propagates along the
z-axis, the phase fluctuation becomes smoother, and therefore the spatial coherence grows. An
infinitesimal small point source, for example, always emits perfect spatially coherent light. The
coherence area, defined by

Ac =
� ∞

−∞

∣∣∣g(1)(∆x,∆y)
∣∣∣2 d∆x d∆y , (2.43)

is depending only on the difference coordinates ∆x,∆y. For uniformly bright but spatially
incoherent sources of area As, the coherence area is given by [41]

Ac = (λz)2

As
. (2.44)
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2.3 Photon statistics

To accurately describe photon statistics, classical wave theory falls short and quantum optics
have to be utilized. Therefore, we will make use of the Dirac notation [17], without introducing
it in detail.

2.3.1 Quantization of the electromagnetic field and Fock states

To quantize the electromagnetic field, we assume that the field is confined within a cubic volume
V = L3, with periodic boundary conditions. As result, only waves of frequencies such that
an integer number of wavelengths fits into the volume ωk = 2πck/L are permitted. With this
assumption, the electric field, from Eqn. (2.3), can be quantized [128, 107] and we obtain the
electric field operator as

Êk(r⃗, t) =
∑

k

2∑
s=1

ϵ⃗k,sE0,k

(
Ê

(+)
k (r⃗, t) + Ê

(−)
k (r⃗, t)

)
with

Ê
(+)
k (r⃗, t) = E0,ke

i(k⃗·r⃗−ωkt)âk and

Ê
(−)
k (r⃗, t) = E0,ke

i(−k⃗·r⃗+ωkt)â†
k =

(
Ê

(+)
k

)†
,

(2.45)

where E0,k =
√

ℏωk
2ϵ0

. The polarization is determined by the unit polarization vectors ϵ⃗k,s, which

in vacuum are orthogonal to the wave vector ϵ⃗k,s · k⃗ = 0, with s = 1, 2 denoting the two
independent polarization states. However, for the following treatment we will, as before, neglect
the polarization (scalar wave approximation). âk and its adjoint â†

k represents the so called
annihilation operator and creation operator, respectively. They are obeying the commutation11

relation for bosons
[âk, â

†
j ] = δk,j and

[âk, âk] = [â†
k, â

†
k] = 0 ,

(2.46)

where δk,j = (1 if k = j, else 0) denotes the Kronecker delta.
The Hamilton operator represents the total energy of the radiation field within the assumed
cubic volume V and reads [128]

Ĥ =
∑

k

ℏωk

(
â†

kâk + 1
2

)
. (2.47)

We identify the number operator n̂k = â†
kâk with its eigenvalues nk and eigenstates |nk⟩, where

nk yield the number of photons occupying the mode k and therefore nk ≥ 0 is integer. The
eigenstates of n̂k are also called number or Fock states and can be constructed as follows: starting
with the ground state |0k⟩ we obtain the ‘vacuum fluctuation energy’ of mode k as

Ek,0 = ⟨0k|Ĥ|0k⟩ = 1
2ℏωk . (2.48)

11The commutator is defined by [a, b] := ab − ba.
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The creation and annihilation operators are adding, or removing a photon from the number
state, namely

â†
k|nk⟩ =

√
nk + 1|nk + 1⟩ and

âk|nk⟩ = √
nk|nk − 1⟩ .

(2.49)

With these relations it is possible to create arbitrary number states by successive applying the
creation operator to the ground state:

|nk⟩ = (â†
k)nk

√
nk!

|0k⟩ . (2.50)

Properties of the Fock states are orthogonality ⟨nk|mk⟩ = δn,m and completeness∑∞
nk=0 |nk⟩⟨nk| = 1̂, and thus any state can be expressed in terms of Fock states.

In an experimental context, the number of photons at a detector is the observable. Assuming
an arbitrary state |ψ⟩, that is composed of Fock states, we obtain the probability of measuring
exactly n photons in the mode k by

P (n) = |⟨nk|ψ⟩|2 . (2.51)

2.3.2 Coherent states

Glauber [38] introduced the coherent states as12

|α⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩ . (2.52)

These states are eigenstates of the annihilation α|α⟩ = â|α⟩ and creation operator α∗|α⟩ = â†|α⟩,
and thus eigenstates of the electric field components Ê(+) and Ê(−). Therefore, the coherent
states are a convenient form to describe classical wave fields.
Please note, that coherent states are not orthogonal. However, the scalar product ⟨α|α′⟩ decreases
in absolute magnitude as α and α′ recede from each other [38], with

|⟨α|α′⟩|2 = e−|α−α′|2 . (2.53)

Therefore, |α⟩ and |α′⟩ can be assume as approximately orthogonal, if |α− α′| ≫ 1.
Although of their non orthogonal nature, coherent states are (over) complete13:

1
π

�
α|α⟩⟨α| d2α = 1̂ . (2.54)

12For sake of simplicity, we drop the mode index in the following: |nk⟩ = |n⟩.
13Proof:

�
|α⟩⟨α| d2α =

∑∞
n,m

1√
n!m! |n⟩⟨m|

�
αe−|α|2

αn(α∗)m d2α. The integral is solved using polar coordinates

α = reiφ:
�

αe−|α|2
αn(α∗)m d2α =

� ∞
0 re−r2

rn+m dr
� 2π

0 ei(n−m)φ dφ. The latter integral evaluates to 2πδn,m.

Now, the remaining integral evaluates to 2π
� ∞

0 re−r2
r2n dr = πn!, and due to the δn,m term, we obtain∑∞

n,m
1√

n!m! |n⟩⟨m|δn,m =
∑∞

n
1
n! |n⟩⟨n|, so that 1

π

�
|α⟩⟨α| d2α =

∑∞
n

|n⟩⟨n| ■.
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Since α ∈ C is complex, the integral goes over the whole complex plane (therefore the integration
over two dimensions d2α).
The expected mean photon count µ is calculated by projecting the number operator onto the
coherent state

E(n) = ⟨α|n̂|α⟩ = |α|2 = µ , (2.55)

and the variance
Varcoh = ⟨α|n̂2|α⟩ − ⟨α|n̂|α⟩2 = |α|2 = µ . (2.56)

The probability distribution for measuring n photons is identified as the Poisson distribution14

|⟨n|α⟩|2 = e−|α|2 |α|2n

n! = e−µµn

n! = PPoisson(n|µ) . (2.57)

2.3.3 Thermal states

States of thermal light sources (TLS), also known as chaotic light, can be described by a number
of similar but statistically independent sources of light. The thermal states can be expressed in
terms of coherent states, as shown by Glauber in [38].
Since the coherent states are (over) complete, they can be used as a basis set for the density
operator ρ̂, as

ρ̂ =
�
P (α)|α⟩⟨α| d2α . (2.58)

Note that P (α) may only be interpreted as probability density if α is slowly varying and thus
they can be interpreted as orthogonal (recall Eqn. (2.53)).
With this notation, the probability density can be written

P (α) = 1
πµ

e
− |α|2

µ , (2.59)

as derived in detail in [38].
In the following we will discuss this equation and derive it in a handwavy, yet graphical classical
analogy. As discussed previously, the coherent states are eigenstates of the annihilation and
creation operator and thus also eigenstates of the electric field operator. Therefore, in the first
step, we construct a classical, chaotic wave field. Consider N independent classical emitters
at a common location, each emitting a (scalar) wave ψ ∝ eiϕj with random and independent
phase ϕj = [0, 2π). This can be viewed as a random walk in the complex plane, as illustrated in
Fig. 2.4. The resulting wave field then reads

ψ ∝
N∑

j=1
eiϕj , (2.60)

14The notation of probability distributions used in this work is described in Appendix A.1.
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ψ

Fig. 2.4.: Sketch of a random walk in the complex
plane, with equal step size but random
orientation.

where in the limit of large N , a = |ψ|2 follows an exponential distribution

PExp(a|µ) = 1
µ
e

− a
µ , (2.61)

with the expectation value E(a) = µ ∝ N and the variance Var(a) = µ2. With this classical
illustration, we go back to the Gaussian density operator, that is obtained by inserting Eqn. (2.59)
into Eqn. (2.58), as

ρ̂ = 1
πµ

�
e

− |α|2
µ |α⟩⟨α| d2α . (2.62)

Then, the probability distribution for measuring n photons reads

PBE(n|µ) = ⟨n|ρ̂|n⟩ = 1
1 + µ

(
µ

1 + µ

)n

. (2.63)

We identify this equation as the Bose-Einstein distribution, with the expectation value E(n) = µ

and the variance Var(n) = µ+ µ2. It should be emphasized that the Bose-Einstein distribution is
also the compound distribution of the exponential and Poisson distribution15.

2.3.4 Independent modes

The Fock single-mode states, introduced in Section 2.3.1, can be generalized to multi-mode
states. Therefore, we assume, that the modes are orthogonal and therefore their creation and
annihilation operators do not commute, recall Eqn. (2.46). Because of this, we can express the
multi-mode Fock state as product of single mode states

|n1, n2, . . .⟩ =
∏
j

|nj⟩ =: |{nj}⟩ . (2.64)

In the usual definition, modes are associated with their wave vector k⃗, as described in Eqn. (2.45).
In this work, however, we are going to use the term ‘mode’ slightly differently. We will refer to
(independent) ‘modes’ to express that they cannot interfere with each other.

15Proof: The compound probability distribution can be calculated by assuming a random exponential distributed
value x′, which is than used as expectation value to calculate the Poisson distributed value x. This is done for
every possible x′, for a given µ by integration:

� ∞
0

1
µ

e−x′/µ x′x

x! e−x′
dx′ = PBE(x|µ). The result is indeed the

Bose-Einstein distribution ■.
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An example of two independent modes would be an orthogonal polarization. As a second
example, to come back to the random walk in the complex plain of emitters emitting with
random phases, imagine all emitters would be simultaneously assigned a new random phase
after half of the emission time. This would also lead to two independent modes in that definition
as the photons (wave field packages) before and after the phase shift are temporally separated
and thus cannot interfere. The integrated intensity of such an M -mode random walk for a
classical wave field of N -emitters can be expressed as

I(k⃗ ) = ψ(k⃗ )ψ∗(k⃗ ) ∝ 1
M

M∑
m=1

∣∣∣∣∣∣
N∑

j=1
eiϕj

∣∣∣∣∣∣
2

. (2.65)

In the limit of large N , a = |ψ|2 follows an Erlang distribution

PErlang(a|µ,M) = aM−1e− aM
µ( µ

M

)M (M − 1)!

∣∣∣∣M ∈ N , (2.66)

with the expectation value E(a) = µ and the variance Var(a) = µ2/M .
The given definition of modes as orthogonal states typically restricts the number of modes to
integers, although each mode may contain a varying number of photons. However, within this
work, we relax this requirement and allow for non-integer (i.e., floating point) numbers of
modes. Such non-integer values may represent an average over multiple measurements, with
the actual number of modes fluctuating slightly, or they may reflect variations in the expected
number of photons per mode [12]. In Appendix A.2.1, we discuss why this approximation is
acceptable for the scope of this work.
The assumption of M ∈ R, M ≥ 1, will turn out to be very convenient for the discussions in
Chapter 3 and Chapter 4. With this interpretation of modes, Eqn. (2.66) becomes a Gamma
distribution

PGamma(a|µ,M) = aM−1e− aM
µ( µ

M

)M Γ(M)

∣∣∣∣M ∈ R , (2.67)

where Γ(x) denotes the gamma function. The expectation value E(a) = µ and variance Var(a) =
µ2/M , stays the same as for the Erlang distribution.
Following the same argumentation as given in Section 2.3.3, we can write a density operator
for each mode separately. Following Eqn. (2.63), the photons of each mode then follows the
Bose-Einstein distribution. Under the assumption that each mode has the same expectation
value µ0 = µ/M , the total expectation value stays µ =

∑M
m=1 µ0. However, since the modes

are independent, the variance is also given as the sum of the single mode variances and thus is
modified to

Var =
M∑

m=1
µ0 + µ2

0 = µ+ 1
M
µ2 . (2.68)
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The probability distribution, that gives exactly the expected expectation value (µ) and variance
(µ+ µ2/M), can be obtained by calculating the compound distribution of the Gamma and the
Poisson distribution

� ∞

0
PGamma(a|µ,M)PPoisson(n|a) da = MMµnΓ(M + n)

(M + µ)M+nn!Γ(M) = PNB(n|µ,M) , (2.69)

which we identify as the negative binomial distribution PNB. For a derivation, using the combi-
nation of (integer) M Bose-Einstein distributions, see Appendix A.2. An example with M = 2,
along side the Bose-Einstein limit (M = 1) and Poisson limit M → ∞ is plotted in Fig. 2.5. It is
important to mention that for non constant expected numbers of photons per mode, Eqn. (2.69)
is only an approximation. To obtain the exact distribution it is required to know the expected
number of photons per mode, a requirement that usually cannot be fulfilled.

2.4 X-ray fluorescence

In this work, the emitters we are dealing with are atoms that fluoresce in the X-ray spectrum.
When an atom is ionized by high energy X-ray radiation, a vacancy is created in its inner shell,
and a photon can be emitted. The ionization probability, given by the cross section of the
photo-effect, is highest at the absorption edges for the corresponding electron shell (recall
Fig. 1.1). A sketch of an atom with electron shells (here in the picture/approximation of Niels
Bohr [4]) is shown in Fig. 2.6a.
After the vacancy is created, it is replaced by an electron from a higher shell. This can occur
radiation-free by emitting an electron of an outer shell (known as the Auger-Meitner effect [85]),
or ‘radiatively’ by emitting a fluorescence photon. We call the probability of the radiative decay
fluorescence yield Y . There are different paths in which the decay can occur, resulting in different
photon energies (lines), as shown in Fig. 2.6b. The line-ratio Rline indicates the probability of a
certain decay line. The K-edge of iron, for example, is at an energy of 7.112 keV, a fluorescence
yield of Y = 0.343 and the line-ratios by RKα,1 = 0.581, RKα,2 = 0.297 and RKβ

= 0.122 [105,
60]. The edge- and line-energies, besides line-ratios of selected light transition metals can be
found in Tab. 2.1.
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The power-spectrum of the X-ray fluorescence is well described as Lorentzian (recall Fig. 2.2c),
as the K-fluorescence of the elements, we are discussing in this work, occurs on the femtosecond
timescale and thus effects such as Doppler-broadening can be neglected [129]. For example,
iron Kα,1-fluorescence has a FWHM linewidth16 of Γl = 1.62 eV [67], which corresponds to a
coherence time of τc = 2ℏ/Γl = 0.8 fs. The line widths and coherence times of selected elements
can be found in Tab. 2.2.

Other properties of fluorescence are: it is emitted isotropic, unpolarized, and chaotic which
means there is no phase relation between the emitted photons from two independent emitters
(spatial incoherence).
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Fig. 2.6.: (a) Rutherford-Bohr atom model sketch with some indicated K and L transitions. (b) Atomic
levels, with indicated Kα,1, Kα,2 and Kβ transitions.

Element (Z) K-edge (keV) Kα,1 (keV) RKα,1 Kα,2 (keV) RKα,2 Kβ (keV) RKβ

Sc (21) 4.4928 4.0906 0.586 4.0861 0.296 4.461 0.118
Ti (22) 4.9664 4.5109 0.584 4.5049 0.296 4.932 0.119
V (23) 5.4651 4.9522 0.583 4.9446 0.296 5.427 0.12
Cr (24) 5.9892 5.4147 0.585 5.4055 0.298 5.947 0.118
Mn (25) 6.539 5.8987 0.582 5.8876 0.297 6.49 0.122
Fe (26) 7.112 6.4039 0.581 6.3909 0.297 7.058 0.122
Co (27) 7.7089 6.9303 0.581 6.9153 0.297 7.649 0.122
Ni (28) 8.3328 7.4781 0.58 7.4609 0.297 8.265 0.122
Cu (29) 8.9789 8.0478 0.581 8.0279 0.298 8.905 0.121
Zn (30) 9.6586 8.6389 0.579 8.6158 0.298 9.572 0.124

Tab. 2.1.: Energy of K-edge and K-fluorescence for selected light transition metals, and line-ratio, taken
from [105]. Note, that usually the element with Z−1 can be used to filter Kβ form the element
Z. However, this is not always the case, see Ti and Sc.

16Γl is the FWHM of the power-spectrum usually in units of electron volts. It should not be confused with the Γ of
Eqn. (2.36) which is the decay constant of the wave field, given in s−1. They obey the relation Γ = Γl/(2ℏ).
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Element Fluorescence- Kα,1-line width τc(Kα,1) Kα,2-line width τc(Kα,2)
(Z) yield Y FWHM(eV) (fs) FWHM(eV) (fs)

Sc (21) 0.196 1.05 1.25 1.06 1.24
Ti (22) 0.226 1.16 1.13 1.18 1.12
V (23) 0.256 1.26 1.04 1.28 1.03
Cr (24) 0.289 1.35 0.98 1.37 0.96
Mn (25) 0.321 1.48 0.89 1.5 0.88
Fe (26) 0.355 1.61 0.82 1.62 0.81
Co (27) 0.388 1.76 0.75 1.76 0.75
Ni (28) 0.421 1.94 0.68 1.96 0.67
Cu (29) 0.454 2.11 0.62 2.17 0.61
Zn (30) 0.486 2.32 0.57 2.39 0.55

Tab. 2.2.: Fluorescence yield and fluorescence line widths with emission coherence time for selected
light transition metals, taken from [105, 67].

2.5 Photon-photon correlation imaging / incoherent
diffraction imaging (IDI)

Section 2.1.2 covered the basics of coherent diffraction, which relies on a fixed relationship
between the incoming and scattered (diffracted) wave field. However, here we assume that
each scatterer applies a random phase shift instead, and thus, there is no determined phase
relationship at all.

To distinguish this type of incoherent scattering from coherent diffraction, we will refer to
the scatterers as "emitters." Although this work primarily focuses on X-ray fluorescence, many of
the concepts we discuss apply to other sources of incoherent emissions, such as band-filtered
(monochromatic) thermal light sources (e.g., astronomical objects such as stars). Therefore,
the ideas and concepts presented in this work may have broader applications beyond X-ray
fluorescence.

2.5.1 IDI in the classical limit

We start with the classical approximation. There, the process of incoherent emission can be
described by assigning an independent and random phase factor eiϕ, with ϕ = [0, 2π) to each
emitter. The scalar wave field, in the far field approximation, for N -emitters can then be
expressed as

ψ(k⃗ ) ∝
N∑

j=1
ei(k⃗·r⃗j+ϕj) . (2.70)

This equation is the incoherent analogue to Eqn. (2.28). For simplicity, the emitter density ρ(r⃗ )
is changed to a discrete point like emitters collection, and also, the 1/|r⃗ | decay is neglected.

2.5 Photon-photon correlation imaging / incoherent diffraction imaging (IDI) 23



This implicitly assumes that the detection for different k⃗ happens in the far-field and at equal
distances to the emitter distribution. Also, the far-field approximation assumes that the extent of
the emitter distribution is small compared to the distance to the detector.
For each emission process, we assume a new random and uncorrelated set of phases (no spatial
coherence at the emitting object). Therefore, the measured intensity is integrated over time, and
thus over many phase realizations, ⟨I(k⃗ )⟩ = ⟨ψ(k⃗ )ψ∗(k⃗ )⟩{ϕ} turns out to be flat

⟨I(k⃗ )⟩ ∝
N∑

j=1

N∑
l=1

eik⃗·(r⃗j−r⃗l)⟨ei(ϕj−ϕl)⟩{ϕ} = N , (2.71)

since the phase-factor ⟨ei(ϕj−ϕl)⟩{ϕj ,ϕl} = δj,l is only unequal zero for j = l. No structural
information on the emitter distribution can be obtained from this.

However, when we correlate the integrated intensities of two different wave vectors (k⃗1 and
k⃗2), measured within sufficiently short time spans such that the phases can be assumed constant
(within the coherence time) and average many of these correlations, we can indeed obtain
structural information. Therefore, we write the intensity-intensity correlation as a four-fold sum
over the participating wave fields emitted by the individual emitters:

⟨I(k⃗1), I(k⃗2)⟩ ∝ ⟨ψ(k⃗1)ψ∗(k⃗1)ψ(k⃗2)ψ∗(k⃗2)⟩{ϕ}

=
N∑

j=1

N∑
j′=1

N∑
l=1

N∑
l′=1

eik⃗1·(r⃗j−r⃗j′)eik⃗2·(r⃗l−r⃗l′ )⟨ei(ϕj−ϕj′ +ϕl−ϕl′)⟩{ϕ} .
(2.72)

The phase term ⟨ei(ϕj−ϕj′ +ϕl−ϕl′)⟩{ϕ} is unequal zero only when the exponent becomes zero.
That occurs in two different cases:

Case 1: j = j′ and l = l′:
Then Eqn. (2.72) reduces to

N∑
j=1

N∑
l=1

eik⃗1·(r⃗j−r⃗j)eik⃗2·(r⃗l−r⃗l) = N2 , (2.73)

which is a constant distribution without any structural information. We will refer to this as offset.

Case 2: j = l′ and l = j′:
Here we obtain

N∑
j=1

N∑
l=1

eik⃗1·(r⃗j−r⃗l)eik⃗2·(r⃗l−r⃗j) =
N∑

j=1

N∑
l=1

ei(k⃗1−k⃗2)·(r⃗j−r⃗l) =

∣∣∣∣∣∣
N∑

j=1
eiq⃗·r⃗j

∣∣∣∣∣∣
2

, (2.74)

with the substitution q⃗ = k⃗1 − k⃗2 in the last step. If we assume an emitter density ρ(r⃗ ) instead of
discrete emitters, we can write Eqn. (2.74) as integral∣∣∣∣� ρ(r⃗ )eiq⃗·r⃗ d3r

∣∣∣∣2 = |F [ρ(r⃗ )] (q⃗ )|2 . (2.75)
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We identify this as the modulus Fourier transform of the emitter density |F [ρ(r⃗ )] (q⃗ )|. We will
refer to the contribution of this second case as usable signal.
By normalization and combining both cases, we obtain

⟨I(k⃗ )I(k⃗ + q⃗ )⟩
k⃗,{ϕ}

⟨I(k⃗ )⟩2
k⃗,{ϕ}

= 1 + |F [ρ(r⃗ )] (q⃗ )|2

|F [ρ(r⃗ )] (0)|2 . (2.76)

In this notation, the averaging is performed over the random phases, but also all available
(measured) k⃗1 and k⃗2 with k⃗1 − k⃗2 = q⃗. Thus, the average over the k⃗ vectors represents a spatial
auto-correlation. In the following, we will use the notation

G(1)(q⃗ ) = ⟨ψ(k⃗ )ψ∗(k⃗ + q⃗ )⟩ = F [ρ(r⃗ )] (q⃗ ) ,

g(1)(q⃗ ) = F [ρ(r⃗ )] (q⃗ )
F [ρ(r⃗ )] (0) ,

(2.77)

and
G(2)(q⃗ ) = ⟨I(k⃗ )I(k⃗ + q⃗ )⟩ ,

g(2)(q⃗ ) = ⟨I(k⃗ )I(k⃗ + q⃗ )⟩
⟨I(k⃗ )⟩2

.
(2.78)

g(1) is the normalized auto-correlation of the wave field and g(2) the second order auto-correlation
(intensity auto-correlation).
Now, we can convert Eqn. (2.76) into the following form

g(2)(q⃗ ) = 1 + β
∣∣∣g(1)(q⃗ )

∣∣∣2 , (2.79)

the (modified) so-called Siegert relation [113]. The modification consists of the visibility factor
β, which scales the usable signal. The derivation of Eqn. (2.76) assumes that the phases are not
changing during the measurement of I(k⃗ ) and that all wave fields are able to interfere. This is not
necessarily the case since the polarization can be different, and/or the measurement time might
be longer than the coherence time, which leads to changing phases during the measurement.
The visibility factor is used to parameterize all factors that prevent wave fields from interfering,
and thus, is the reciprocate number of modes β = 1/M introduced in Section 2.3.4. Since we
only expect a positive number of modes with M ≥ 1, the visibility factor ranges from 0 ≤ β ≤ 1.
An in-depth analysis of how the visibility factor can be calculated and measured is discussed and
demonstrated in Chapter 3.
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2.5.2 Non-classical light sources

In the case of very few (single photon) emitters, the classical derivation of the previous section
faces some limits. Therefore, we will discuss the second-order correlation from a quantum optic
point of view. To do so, we use the electric field operators defined in Eqn. (2.45) and obtain the
correlation function (in an analogous fashion to Eqn. (2.72))

G(2)(k⃗1, k⃗2) =
〈
Ê(−)(k⃗1)Ê(−)(k⃗2)Ê(+)(k⃗1)Ê(+)(k⃗2)

〉
. (2.80)

We will only discuss the single mode case here, and thus the mode subscript was dropped
Ê

(±)
k → Ê(±). The electric field operator (in the far field) for a field generated by N equally

strong emitters is given by

(
Ê(+)

)†
= Ê(−)(k⃗ ) ∝

N∑
j=1

ei(−k⃗·r⃗j+ϕj)â†
j . (2.81)

We can write G(2) as a four-fold sum again (similar to Eqn. (2.72))

G(2)(k⃗1, k⃗2) =
N∑

j=1

N∑
j′=1

N∑
l=1

N∑
l′=1

eik⃗1·(r⃗j−r⃗j′)eik⃗2·(r⃗l−r⃗l′ )⟨ei(ϕj−ϕj′ +ϕl−ϕl′)â†
j â

†
l âj′ âl′⟩ . (2.82)

As before, we distinguish the cases of j, j′, l, l′ combinations, where the phase term is unequal
zero:

case 1: j = j′ and l = l′ but j ̸= l:
here we obtain ⟨â†

j â
†
l âj âl⟩ = ⟨n̂⟩2, since â†

l and âj commutate ([â†
l , âj ] = 0 for l ̸= j). So the

remaining term becomes the constant offset:

N∑
j=1

N∑
l=1

(1 − δj,l)eik⃗1·(r⃗j−r⃗j)eik⃗2·(r⃗l−r⃗l) = N2 −N . (2.83)

case 2: j = l′ and j′ = l but j ̸= j′:
again, we obtain ⟨â†

j â
†
l âlâj⟩ = ⟨n̂⟩2 and the usable signal term as

N∑
j=1

N∑
l=1

(1 − δj,l)eik⃗1·(r⃗j−r⃗l)eik⃗2·(r⃗l−r⃗j) =

∣∣∣∣∣∣
N∑

j=1
eiq⃗·r⃗j

∣∣∣∣∣∣
2

−N =
∣∣∣G(1)(q⃗ )

∣∣∣2 −N , (2.84)

with q⃗ = k⃗1 − k⃗2

case 3: j = j′ = l = l′:
here we obtain the operator term

⟨â†â†ââ⟩ = ⟨â†(ââ† + [â†, â])â⟩ = ⟨n̂2⟩ − ⟨n̂⟩ , (2.85)
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where the commutator relation of Eqn. (2.46) was used ([â†, â] = −1). The remaining term
becomes N .

Combining all three cases, we obtain the non-normalized form of the intensity (photon-photon)
correlation as

G(2)(q⃗ ) = N2⟨n̂⟩2 − 2N⟨n̂⟩2 +N
(
⟨n̂2⟩ − ⟨n̂⟩

)
+
∣∣∣G(1)(q⃗ )

∣∣∣2 . (2.86)

The normalized form is obtained by dividing through (N2⟨n̂⟩2), as

g(2)(q⃗ ) = 1 + ⟨n̂2⟩ − ⟨n̂⟩
N⟨n̂⟩2 − 2

N
+
∣∣∣g(1)(q⃗ )

∣∣∣2 . (2.87)

In the case of single photon emitters, where only the Fock state |1⟩ is present, the squared number
operator yields ⟨1|n̂2|1⟩ = 1. Therefore, we obtain the single photon emitter g(2) function as

g
(2)
SPE(q⃗ ) = 1 − 2

N
+
∣∣∣g(1)(q⃗ )

∣∣∣2 . (2.88)

In the case of thermal light sources, however, we obtain17, by utilizing the Bose-Einstein
distribution of Eqn. (2.63), ⟨n̂2⟩ = N + 2N2 with ⟨n̂⟩ = N , the normalized g(2) as

g
(2)
TLS(q⃗ ) = 1 +

∣∣∣g(1)(q⃗ )
∣∣∣2 , (2.89)

which equates to the classical term derived in Section 2.5.1.
This work mainly discusses X-ray fluorescence, and a fluorescing atom can be considered as a
single photon emitter. However, we also focus on objects with many emitters (N ≫ 1), and in
this limit, the photon statistics become irrelevant for the g(2)-signal. Therefore, we will use the
classically deviated g(2) of Eqn. (2.79) for all further discussions.

2.5.3 Properties of incoherent diffraction imaging

Here, we discuss some properties of IDI and the main differences from CDI.
As discussed in Section 2.1.2, scatterers, in a CDI context, scatter photons elastically from an
incoming beam. The signal I(q⃗ ) ∝ |F [ρ(r⃗ )] (q⃗ )|2 is determined by photon counts measured at
detector positions that correspond to k⃗out and thus to q⃗ values with q⃗ = k⃗out − k⃗in, as illustrated
in Fig. 2.7a. In IDI, however, the q⃗ value is determined by the difference of two (freely selectable)
positions q⃗ = k⃗1 − k⃗2, as illustrated in Fig. 2.7b. One consequence is that IDI can have twice
the resolution for the same detector geometry as CDI. Furthermore, a single CDI measurement
gives only entries on a (two-dimensional) surface (for crystals known as the Ewald sphere [27]);
therefore, the sample must be rotated to obtain a complete image. IDI measurements, however,
give three-dimensional information from a single sample orientation [13].

17In this case, strict proof is not provided, but the interested reader is recommended to review the work of Anton
Classen [12].
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Fig. 2.7.: (a)Sketch of a CDI experiment setup. The position at the detector determines the q⃗ value. (b)
sketch of an possible IDI experiment setup. Here, the distance between two pixels determines
the q⃗ value.

This is illustrated in Fig. 2.8, displaying a simulated18 g(2) signal of the iron atoms in a 10×10×10
unit cells 1FDN ferredoxin [22] crystal emitting Kα,1 fluorescence. The shown signal is obtained
using only one crystal orientation and a fixed 35 mm × 35 mm-sized detector placed at a distance
of 25 mm from the interaction point.

Elastic scattering of X-ray photons on weakly bound electrons (often denoted as ‘free
electrons’) is well approximated by the Thomson scattering [117, 59] with the differential cross
section for polarized photons, given by

dσT

dΩ = re

(
1 − cos2(ϕ) sin2(θ)

)
, (2.90)

where re denotes the classical electron radius19, ϕ the angle between the polarization vector and
scattering plane, and θ the scattering angle. For example, beams of polarized X-rays are given
when X-rays are generated by an electron beam passing through a bending magnet or insertion
devices such as undulators [130], which is the case at synchrotrons and XFELs. The consequence
for CDI is that scattering at angles of 90◦ and parallel to the polarization vector is suppressed.
Fluorescence, on the other hand, is isotropic and unpolarized. Therefore IDI is insensitive to
this effect. The experiment, which we will discuss in Chapter 3, used the suppression of elastic
scattering by polarization at 90◦ to eliminate ‘coherent background’ [122].

While CDI is imaging the electron density, IDI is based on fluorescence and, therefore,
sensitive to certain elements that can be chosen by the energy of the photons in the excitation
beam, as recently suggested by Phay J. Ho et al. [53]. IDI could, for example, be used in addition
to CDI to track certain elements.

18Details about the simulation can be found in Appendix A.4.1
19re ≈ 2.8179 × 10−15 m [118].
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Fig. 2.8.: Illustration of the 3D information gained from single orientation IDI measurements. The
Detector consists of 350 × 350 pixels with a pixel size of 100µm × 100µm, placed at a distance
of 25 mm from the interaction point. The simulated sample is the distribution of iron atoms in
a 1FDN ferredoxin crystal emitting Kα,1 fluorescence. (a) Render of the covered g(2) volume
with the containing Bragg peaks (diameter of spheres is proportional to the signal strength).
(b) Cut through the qx − qy plane at qz = 0. (c) Cut through the qx − qz plane at qy = 0.
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3Visibility factor and speckle contrast
measurements

This chapter discusses the visibility factor β, which modulates (reduces) the usable signal part
of g(2) = 1 + β|g(1)|2. The visibility is decreased when photons cannot interfere, or there is
no perfect temporal coherence during the measurement process. We, therefore, also use the
term modes, where the photons in one mode are mutually coherent (giving rise to interference),
similar to the mode term introduced in Section 2.3.4. The number of independent modes is
reciprocal to the visibility factor

β = 1
M

. (3.91)

Simulated speckle patterns with different visibility factors are shown in Fig. 3.1, with Fig. 3.1a to 3.1c
in a high photon count (µ = 100) and Fig. 3.1d to 3.1f in a low photon count (µ = 0.01) regime.
While the effect of the visibility factor is quite apparent in the high photon count regime, it
becomes harder to see it directly in the limit of sparse signals. In this chapter, we will focus on
how to retrieve the visibility factor in the very low photon count regime.

3.1 Visibility factor calculation

So far, we have assumed that the phases of the emitter do not change during the measurement.
This can be assumed when the measurement time is significantly shorter than the coherence time.
This work focuses on X-ray fluorescence of light transition metals, where the coherence time is in
the order of, or less than one femtosecond. There are X-ray detectors with a temporal resolution
of around hundreds of picoseconds [73], which would be at least five orders of magnitude longer
than the coherence time of X-ray fluorescence. However, instead of fast gating, we can utilize
short pulses for exciting the fluorescence.

As mentioned previously, besides the gating time or pulse duration, there are more factors
reducing the visibility, which we will address in the following individually. The final visibility
factor can then be calculated as the product of all partial visibility factors:

β = βp βc βpol βlines βSPS β? . (3.92)
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(a) β = 1(M = 1), µ = 100 (b) β = 0.1(M = 10), µ = 100 (c) β = 0.01(M = 100), µ = 100

(d) β = 1(M = 1), µ = 0.01 (e) β = 0.1(M = 10), µ = 0.01 (f) β = 0.01(M = 100), µ = 0.01

Fig. 3.1.: Illustration of speckle patterns with different visibility (number of modes) and expected photon
counts per pixel. While the effect of the visibility factor is obvious in the high count regime, it
becomes harder to see in the low count regime.

3.1.1 Excitation pulse-shape factor βp

Here we discuss the dependency of the visibility (or speckle contrast) on the excitation pulse
duration and shape. Therefore we define the partial visibility factor βp, which neglects all other
contributions to the visibility factor other than the pulse shape and the degree of coherence of the
emitted radiation. We assume a pulse shape Ip(t) of a finite extent that excites the fluorescence
emitters. For convenience, we use the normalized pulse shape

P (t) = Ip(t)�∞
−∞ Ip(t) dt

. (3.93)

The probability that an emitter gets excited, and, therefore, an emission process is triggered,
is proportional to P (t). For now, we assume that the complete decay happens within only one
decay path (neglecting multiple spectral lines for now), illustrated in Fig. 3.2 as a simplified
Jablonski diagram [34]. That is approximately the case when the fluorescence happens after a
core-shell electron gets extracted by the photo effect, which occurs within tens of attoseconds or
faster [95, 94]. As a consequence, the wave function of the emission of frequency ω0 excited at
t = 0 can be expressed as [129]

ψ(t) ∝ eiω0te−t/τcΘ(t) , (3.94)
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where the step function Θ(t) = 1 for t ≥ 1 and 0 otherwise. That means that the emission
process is assumed to start immediately after the excitation. The wave function of Eqn. (3.94)
corresponds to a Lorentzian power spectrum (recall Eqn. (2.36) and Fig. 2.2b), with FWHM = 2Γ
and Γ = 1/τc. The intensity is given by Ifl(t) ∝ e−2t/τcΘ(t).
The degree of coherence is then given by

|γ(τ)| =

∣∣∣�∞
−∞ ψ(t)ψ∗(t+ τ) dt

∣∣∣�∞
−∞|ψ(t)| dt

= e− |τ |
τc . (3.95)

Subsequently, the coherence time can be calculated from the degree of coherence (recall
Eqn. (2.31)) as � ∞

−∞
e− |τ |

τc dτ = τc , (3.96)

and thus identifying the parameter τc with this quantity. it should be emphasized that, in
our case, the coherence time is twice the lifetime τl which is defined as Ifl(τl) = e−1Ifl(0), or
τl = 1/Γ0, when Γ0 is the decay constant, obtained as FWHM of the Lorentzian power spectrum
(Γ0 = 2Γ). However, in some publications (e.g., [13]), the lifetime and coherence time were
used interchangeably, which is not the case; see [41].

The partial visibility factor βp for two processes triggered at t1 and t2 is given by βp(t1, t2) =
|γ(t2−t1)|2, which corresponds to the ‘usable signal’ part of the second order temporal correlation
g(2)(t2 − t1) = 1 + |γ(t2 − t1)|2. The probability that these processes are triggered with the
temporal separation τ = |t2 − t1| is given by

Π(τ) =
� ∞

−∞
P (t)P (t+ τ) dt , (3.97)

the auto-correlation of the normalized pulse shape.
Please note that there are two contradicting approaches on how to continue to calculate βp. In
this work, we are using the approach of Lohse et al. [74]. However, there is a second approach by
Inoue et al. [58], which is discussed in Appendix A.3.1. There is also demonstrated, for Gaussian
pulse shapes, that the difference between both approaches vanishes when the excitation pulse
duration outruns the coherence time by a factor 2 or greater.
As mentioned, following the approach of [74], we obtain the partial visibility factor as

βp[P (t)] =
� ∞

−∞
Π(τ)|γ(τ)|2 dτ . (3.98)

In the following, we will discuss a few example pulse shapes.
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Γ0

Fig. 3.2.: Simplified Jablonski decay diagram of a single
path decay. Note, that the photoeffect is assumed
to be instantaneous.

Box-like pulse shape

We assume a box-like pulse shape with the width T :

PT (t) =
{

1/T for |t| ≤ T/2 ,
0 else .

(3.99)

The auto-correlation is then given by the triangle function Π(t) = (1/T )Λ(τ/T ), with Λ(τ) =
1 − |τ | for |τ | ≤ 1 and zero otherwise. The partial visibility factor then evaluates to

βp,box(τc, T ) = τc

T
+ 1

2

(
τc

T

)2 (
e−2(T/τc) − 1

)
, (3.100)

which is shown in Fig. 3.3. The short pulse duration limit (T ≪ τc) returns unity, as expected,
and the limit of longer pulse duration yields

lim
T ≫τc

βp,box(τc, T ) = τc

T
. (3.101)

This boxed pulse shape corresponds [41] to the case of a gated detector with T as the exposure
time.
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Fig. 3.3.: (a) βp,box and βp,Gauss plotted as a function of T/τc. (b) Same as (a) but multiplied by the factor
T/τc to illustrate the convergence (T/τc)βp,box → 1 and (T/τc)βp,Gauss →≈ 0.67 for T ≫ τc.
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Gaussian pulse shape

Next, we assume a Gaussian pulse shape

P (t) = 2
√

ln(2)/π
T

e− 4 ln(2)
T 2 t2

, (3.102)

with the full width at half maximum (FWHM) T . Eqn. (3.98) then evaluates to

βp,Gauss(τc, T ) = eT 2/(τ2
c ln(4))

(
1 − erf

(
T

τc

√
ln(4)

))
, (3.103)

see Fig. 3.3. As expected, the limit T ≪ τc returns unity, and the limit of long pulses yields

lim
T ≫τc

βp,Gauss(τc, T ) =

√
ln(4)
π

τc

T
≈ τc

1.5T . (3.104)

For the evaluations of experimental data in this work, we assume a Gaussian pulse shape and
therefore use βp = βp,Gauss.

SASE pulse

Modern XFELs operate in the self-amplified spontaneous emission (SASE) regime, where the
temporal pulse structure is composed of multiple spikes [104, 76]. We will not discuss details of
the SASE process in this work. Instead, numerical simulations based on the model presented
in [100] were used to obtain examples of SASE pulse shapes. Simulated example pulses for
two different mean FWHM pulse durations (3 fs and 15 fs) are plotted in Fig. 3.4a and 3.4b,
and the corresponding auto correlations in Fig. 3.4c and 3.4d. Therefore, a photon energy of
E = 7.15 keV and an energy bandwidth of 0.1 % was assumed. While the pulse shapes are pretty
spiky, their auto-correlations are much smoother and have a quite Gaussian-like shape.

1000 pulses for 3 fs and 15 fs each were simulated, and the corresponding partial visibility
factors for emission with a coherence time of τc = 0.8 fs were calculated. The resulting mean
partial visibility factors are

⟨βp,SASE(T = 3 fs, τc = 0.8 fs)⟩ = 0.168 ± 6.2 × 10−4 ,

⟨βp,SASE(T = 15 fs, τc = 0.8 fs)⟩ = 0.0355 ± 6.8 × 10−5 .
(3.105)

The second case is as good as equivalent to the corresponding βp,Gauss; however, ⟨βP,SASE(T =
3 fs, τc = 0.8 fs)⟩ is approximately 6 % lower than it would be for the Gaussian pulse case.
Justified by these quite similar results of βP,SASE and βp,Gauss, we will assume Gaussian-shaped
excitation pulses for the analysis of experimental data in this work.
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Fig. 3.4.: Simulated SASE pulses for photon energy of E = 7.15 keV and an energy bandwidth of 0.1 %.
(a) Three examples of pulses with an average FWHM pulse duration of T = 3 fs, and (b)
two examples with T = 15 fs. The corresponding auto-correlations Π(τ) are plotted in (c),
corresponding to the pulses in (a) and in (d) corresponding to (b), respectively. (e) partial
visibility factor βP,SASE for 3 fs average FWHM pulse duration and an assumed coherence time
of τc = 0.8 fs. The mean visibility is ⟨βP,SASE(T = 3 fs, τc = 0.8 fs)⟩ = 0.168 with a RMS of
σP,SASE = 0.02. (f) partial visibility factor βP,SASE for 15 fs average FWHM pulse duration and
τc = 0.8 fs. The mean visibility is ⟨βP,SASE(T = 15 fs, τc = 0.8 fs)⟩ = 0.0355 with a RMS of
σP,SASE = 0.002.
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Fig. 3.5.: Simplified Jablonski decay diagrams. (a) Two-step decay schema. (b) Multi-step decay schema.
Γ0 refers to the decay rate that produces the photon we are interested in.

Multi-stage decay

So far, we have assumed that the emission process starts immediately after absorption. However,
this is rather a special case. When the excitation does not happen by ejecting an electron, the
radiative decay of interest is often only the last of many (radiative or non-radiative) decays.
This is mostly the case when working in a regime of lower energies than X-rays (visible light,
ultraviolet, infrared, et c.) [21]. First, we discuss the case of a two-step decay: one prior to the
fluorescence of interest, with the decay constant Γ1 and the photon emitting decay with the
decay constant Γ0. The simplified Jablonski diagram is shown in Fig. 3.5a. Since we assume
that the second decay is stationary (constant in phase), we are only interested in the rate at
which the intermediate level gets excited. In the case of exponential decay, this is given by the
convolution of the exciting pulse with the first decay IP(t) ∗ exp(−Γ1t). With this, we can define
an effective normalized excitation pulse shape as

P̃ (t) =
�∞

−∞ IP(t′ + t)exp(−Γ1t
′) dt′�∞

−∞
�∞

−∞ IP(t′ + t)exp(−Γ1t′) dt′ dt
, (3.106)

which excites the level from which the fluorescence of interest is triggered. The partial visibility
factor is then calculated as described in Eqn. (3.98), with Π̃(τ) = P̃ ∗ P̃ instead of Π(τ).
Multiple-step decays with n decays prior to the fluorescence decay of interest, are illustrated in
Fig. 3.5b. In that case P̃ can be calculated by multiple convolutions as

P̃ (t) = P (t) ∗
(
Γne

−Γnt
)

∗
(
Γn−1e

−Γn−1t
)

∗ · · · ∗
(
Γ1e

−Γ1t
)
. (3.107)

Please note that such multi-stage decays prior to the fluorescence can significantly reduce the
visibility factor and are impractical for any photon-photon correlation imaging attempts. In
these cases a gating detector might be favorable, which Eqn. (3.100) can describe, as mentioned
earlier.
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3.1.2 Finite speed of light factor βc

When the spatial extent of the emitter distributions exceeds the speed of light times coherence
time ∆r > c0τc, the visibility factor might suffer. Here we quantify this effect and discuss the
implied limitations for experimental setups. Therefore, we assume two emitters at the positions
r⃗1 and r⃗2 that get excited by an excitation pulse, propagating along the z-axis, as illustrated in
Fig. 3.6. Considering a delta distributed pulse, the time delay of the excitation is given by the
spatial distance projected onto the z-axis

τ0 = 1
c0

(r⃗2 − r⃗1) · êz . (3.108)

The integrated intensity at I(k⃗1) is composed of the emission from both emitters, with an
emission time delay given by the projection of their distance at the direction of k⃗1

τ1 = 1
c0

(r⃗1 − r⃗2) · k⃗1

|⃗k1|
. (3.109)

Note that the minuend and subtrahend were swapped compared to the calculation of τ0. The
time emission time delay for τ2 for the integrated intensity measured in the direction of k⃗2 is
calculated equivalently (τ2 = c−1

0 (r⃗1 − r⃗2) · k⃗2/|⃗k2|).
The combined visibility factor βpβc can then be expressed as [74]

βpβc =
� ∞

−∞
Π(τ) |γ(τ + τ0 + τ1)| |γ(τ + τ0 + τ2)| dτ , (3.110)

for arbitrary auto correlated normalized pulse shapes Π(τ) (recall Eqn. (3.97)). Apparently,
the effect of the finite speed of light cannot be separated from the excitation pulse shape and
duration. Also, βc comes with the quite cumbersome property of being dependent on the
direction of k⃗1 and k⃗2. A variation of the visibility factor for the usable signal in g(2), not only
depending on q⃗ but also on the individual k⃗ vectors, could render a real ‘challenge’ (problem) to
imaging attempts.
For the sake of simplicity, we assume that τ1 ≈ τ2 and define ∆τ := τ0 + τ1, so we can express βc

as

βc =
�∞

−∞ Π(τ) |γ (τ + ∆τ)|2 dτ�∞
−∞ Π(τ) |γ(τ)|2 dτ

. (3.111)

Assuming a Gaussian excitation pulse with FWHM T , a minimum estimation of β can be given
by

βc(∆τ, T ) ≥ e− ln (4)( ∆τ
T )2

. (3.112)

A derivation is given in Appendix A.3.2. Interestingly, this minimum estimation is independent of
the coherence time τc. However, as a rule of thumb, a longer coherence time yields a higher βc.

The detector geometry and emitter distribution with the highest possible ∆τ would be a
detector placed in the backward direction (in the direction where the excitation pulse origins
from) so that ∆τ = 2r/c when two emitters are placed along the z-axis, separated by the
distance r. For example, assuming a sample with a diameter of r = 100 nm and an excitation
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Fig. 3.6.: Sketch of two emitters at the positions
r⃗1 and r⃗2, that radiate in the directions
(wave-vectors) k⃗1 and k⃗2. For details see
text.

pulse FWHM of T = 3 fs, the lowest possible contribution with the most unfavorable possible
detector placement would yield a βc(k⃗1, k⃗2) ≥ 0.93 | ∀ k⃗1, k⃗2.
The analysis in this section suggests that for the design of an IDI experiment, detector size and
placement must be considered together with the sample size. Also, there could be rare occasions
where a slight increase in the excitation pulse duration could help to get a clearer usable signal.
For the experiments presented in this work, βc contributions were neglected since the samples
used in the experiment, presented later on in this chapter, were sufficiently small for the given
pulse durations, and the setup of Chapter 5 was designed in a ‘forward geometry’, where
τ1 ≈ τ2 ≈ −τ0 and thus βc ≈ 1.

3.1.3 Polarization factor βpol

Photons only interfere if they are in the same polarization state. Therefore, if the emission is not
polarized (which is usually the case for fluorescence) or only partially polarized, the visibility
factor needs to be adjusted. Therefore we define the polarization visibility factor as

βpol = 1 + P2

2 , (3.113)

with the degree of polarization P = 0 for unpolarized and P = 1 for fully polarized emission.
Eqn. (3.113) can be derived, following Goodman’s argumentation [41], by assuming two
uncorrelated partial intensities I = I1 + I2. The correlation can therefore be written as

⟨(I1(t) + I2(t)) (I1(t+ τ) + I2(t+ τ))⟩t

= ⟨I2(t)I2(t+ τ)⟩t + ⟨I2(t)I2(t+ τ)⟩t + 2⟨I1(t)I2(t+ τ)⟩t .
(3.114)

The first two summands (using Siegerts relation, recall Eqn. (2.33)) evaluate to

⟨Ij(t)Ij(t+ τ)⟩t = ⟨Ij(t)⟩2
t

(
1 + |g(1)(τ)|2

)
| j = {1, 2} , (3.115)

and since I1 and I2 are uncorrelated (|g(1)| = 0) we obtain

2⟨I1(t)I2(t+ τ)⟩t = 2⟨I1(t)⟩t⟨I2(t)⟩t . (3.116)
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We define the means of the partial intensities, using the degree of polarization P as

⟨I1(t)⟩t = 1
2⟨I(t)⟩t (1 + P) ,

⟨I2(t)⟩t = 1
2⟨I(t)⟩t (1 − P) .

(3.117)

By substituting Eqn. (3.117) into Eqn. (3.118) and using Eqn. (3.115) and Eqn. (3.116), we
obtain

⟨(I1(t) + I2(t)) (I1(t+ τ) + I2(t+ τ))⟩t

= ⟨I(t)⟩t

(
1 + 1

2
(
1 + P2

)
|g(1)(τ)|2

)
,

(3.118)

where we identify the polarization visibility factor as stated in Eqn. (3.113).

3.1.4 Multi emission lines factor βlines

It is not always possible to distinguish between the fluorescence lines. In this work, we are
using K-line fluorescence, which can be split into Kα,1, Kα,2, and Kβ fluorescence (as discussed
in Section 2.4). It is often possible to filter the Kβ fluorescence by using the element with the
atomic number Z − 1 prior to one of the emitters, with the atomic number Z, since the K-edge
of the Z − 1 element is often placed between the Kα and Kβ emission, see Tab. 2.1. The Kα lines,
however, can usually not be distinguished.

Assume that we have filtered everything (Kβ, coherently scattered photons, et cetera) but
Kα,1 and Kα,2. Then Kα,1-photons do only interfere with Kα,1-photons and Kα,2- with Kα,2-photons,
respectively. We, therefore, need to calculate the probability of detecting two photons from the
same line. The line ratio, after filtering, is calculated as

Rj =
RKα,j

RKα,1 +RKα,2
for j = {1, 2} , (3.119)

and we obtain the partial visibility factor as

βlines = R2
1 +R2

2 . (3.120)

For the elements displayed in Tab. 2.1, where RKα,1 ≈ 2RKα,2 , the partial visibility factor is
approximately βlines ≈ 5/9.
Eqn. (3.120) can simply be extended for arbitrarily many lines (as long as they have approxi-
mately the same line width) as

βlines =
n∑

j=1
R2

j . (3.121)

It should be mentioned that Eqn. (3.121) assumes the lines to be clearly separated. If this is not
the case, βlines must be adjusted by the then-occurring optical beats.
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Fig. 3.7.: (a) Power spectrum of iron Kα fluorescence, calculated from values given in Tab. 2.1 and 2.2.
(b) Degree of coherence, calculated from (a).

Another way to model the effect of multiple lines is via the complex degree of coherence.
However, this presumes the βp calculation as proposed by Inoue et al. [58], discussed in
Appendix A.3.1. For example, the power spectrum of iron Kα,1 and Kα,2 fluorescence is given in
Fig. 3.7a. The degree of coherence can be calculated from this spectrum (recall the discussion in
Section 2.2.1) and is displayed in Fig. 3.7b. The effective coherence time τc,eff, calculated from
this degree of coherence, equates nearly exactly τc,eff = (R2

1 +R2
2)τc ≈ 0.45 fs, where τc = 0.82 fs

is the coherence time of one single line.

3.1.5 Speckle sampling factor βSPS

Spatially larger emitter distributions lead to smaller speckles (recall the coherence area obtained
by the Van Cittert-Zernike theorem Eqn. (2.44)). If the speckle size is smaller than the detector
(or rather a detector-pixel), the detector will integrate over multiple speckles and, therefore,
over independent contributions, which leads to a decrease in visibility. To quantify this effect,
we assume a symmetric 2D Gaussian emitter distribution with the RMS value σρ. Further, we
assume that the emitters are emitting light with the wavelength λ, which is detected by a
pixelated detector placed at the distance z. For this discussion, we also assume the classical
limit of continuous intensity. The g(2) signal is then given by a Gaussian on top of an offset as
g(2)(qx, qy) = 1 + e−(q2

x+q2
x)/(2σ2) with the RMS given by

σ = zλ√
8πσρ

. (3.122)
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A square detector pixel with the area ∆x× ∆x can be described by the top-head function defined
by

Ξ(x, y) :=


1

(∆x)2 for |x| < ∆x/2 and |y| < ∆x/2 ,

0 else ,
(3.123)

that is convolved with the measured integrated intensities (photon counts) Imeasured = (I ∗ Ξ)(x, y).
For the g(2) signal this means a convolution with the cross-correlation1 of Ξ(x, y) as g(2)

measured =
(g(2) ∗ (Ξ ⋆ Ξ))(qx, qy). This cross-correlation of the top-hat function has the following form

(Ξ ⋆ Ξ)(x, y) =


1

(∆x)2

(
1 − |x|

∆x

)(
1 − |y|

∆x

)
for |x| < ∆x and |y| < ∆x ,

0 else .
(3.124)

As we will discuss later in Section 4.1.1, in the classical limit and only in the classical limit,
the visibility factor can be expressed by β = g

(2)
cl (0) − 1. Therefore we can define the speckle

sampling visibility factor as2

βSPS :=
(
g

(2)
cl ∗ (Ξ ⋆ Ξ) − 1

)
(qx = 0, qy = 0) . (3.125)

We can now calculate βSPS for the Gaussian emitter distribution with its also Gaussian-shaped
g(2)-signal as

βSPS, Gaussian(σ,∆x) = 1 + 4e− ∆x2
σ2

(
e

∆x2
2σ2 − 1

)2 σ4

∆x4

+ 4
√

2π
(
e− ∆x2

2σ2 − 1
)

erf
( ∆x√

2σ

)
σ3

∆x3 + 2π erf
( ∆x√

2σ

)2 σ2

∆x2 .

(3.126)

This is plotted in Fig. 3.8 as a function of σ/∆x. When the FWHM of the speckle has the same
size as the pixel edge, the expected visibility is halved: βSPS, Gaussian(σ/∆x ≈ 1/2.355) ≈ 0.5.
For double sized speckles we obtain βSPS, Gaussian(σ/∆x ≈ 2/2.355) ≈ 0.81 and as a rule of
thumb, one can say that when the FWHM speckle size exceeds four times the pixel size, the βSPS

contribution can be neglected βSPS, Gaussian(σ/∆x > 4/2.355) > 0.94.
Please note that this discussion assumed only two dimensions. For detectors covering a

huge solid angle and, therefore, a non-negligible qz, the speckle shape is different for pixels
located at different k⃗. For example, think of a flat 2D detector placed close to the sample: the
pixels in the center will cover significantly smaller solid angles than the ones at the edges. In
that case, the here-discussed βSPS can only be seen as an approximation.

3.1.6 Further contributions β?

Besides the previously mentioned partial factors of the visibility factor, there can be further
partial factors that are not quantified at this point. The βp factor, for example, assumes that the
degree of coherence stays constant during the excitation. This is not the case if the pulse is very

1The cross-correlation is defined by (f ⋆ g)(x⃗) :=
� ∞

−∞ f∗(x⃗ ′)g(x⃗ + x⃗ ′) dnx′.
2neglecting all other contributions (partial visibility factors) to the visibility factor.
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Fig. 3.8.: βSPS plotted as a function of σ/∆x to
illustrate insufficient speckle sampling.
∆x denotes the pixel edge length and
σ the RMS size of assumed Gaussian
shaped speckles.

intense so that the absorption of the emitters saturates. A shortening of XFEL pulse duration via
such saturable absorption was demonstrated (using IDI) by Inoue et al. in 2021 [57]. Motivated
by that experiment, Sebastian Cardoch investigated the change in fluorescence duration and the
energy spectrum depending on the excitation pulse intensity [9]. However, up to this date, no
quantitative estimations on the dependency of β on the excitation beam intensity were made
and are also not part of this work. IDI and precision measurements of β could be useful tools
for further experimental investigations of saturable absorption and quick plasma generation via
XFELs.

Further contributions to the visibility factor could also be a background that cannot be
distinguished from the signal originating from the sample (e.g., when investigating iron fluores-
cence, there could be a background from fluorescing beam line components which are containing
iron).

3.2 Speckle contrast experiment

The Kα fluorescence of iron nanoparticles (wavelength λFe,Kα = 1.94 Å) has been measured
using two different excitation pulse durations and where a change in speckle contrast has been
observed. The increase in β for the shorter excitation pulse in comparison to the longer one is a
clear indication of the feasibility of incoherent diffractive imaging via X-ray fluorescence. The
results of this experiment have already been published in [122].

The measurements were carried out at the Macromolecular Femtosecond Crystallography
(MFX) instrument at the Linac Coherent Light Source (LCLS) using the scheme depicted in
Fig. 3.9a. The nanoparticles, referred to as iron nanostars [30], had an irregular, star-like shape
with a mean diameter of about 50 nm to 100 nm, see Fig. 3.9b. The nanostars were suspended in
toluene at a concentration of 7.9 × 1019 mL−1 (0.13 mol L−1). The sample was injected across
the focused X-ray beam as a liquid jet formed by a double-flow-focusing nozzle [92, 65]. The
jet had a diameter of 2.2µm and a velocity of 60 m s−1. The XFEL pulses came at a repetition
rate of 120 Hz, and the injection ensured that a fresh sample was present for each exposure. The
LCLS was operated in two different modes for our measurements to produce pulses of ∼15 fs, as
estimated using the X-band Transverse Deflecting Cavity (XT-CAV) [68], and ∼3 fs, as estimated
by settings of the electron pulse compression in the accelerator. The incident X-ray beam of
7.15 keV was focused to a size of approximately 4µm.
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Fig. 3.9.: (a) Sketch of the experimental setup at the MFX beamline at LCLS. Illustration taken from [122]
and modified. (b) Transmission electron microscope image of the iron nanoparticles. These
figures were already published in [122].

From estimates of the beamline transmission, the mean pulse energy at the interaction point
was about 0.1 mJ for the short and 1.5 mJ for the long pulses, which corresponds to a peak X-ray
intensity at the sample of 8 × 1017 W cm−2 for the long and 2.7 × 1017 W cm−2 for the short
pulses, respectively. The fluorescence was measured using a Jungfrau detector [89] oriented
at a scattering angle of 90◦ in the horizontal plane. This orientation was chosen to minimize
the coherent scattering since the incident X-ray pulse was linearly polarized in the horizontal
direction. The detector, with 1000 × 1000 square pixels, each 75µm wide, was placed 120 mm
away from the interaction point. A 32.4µm thick manganese filter was placed in front of the
detector to attenuate the Kβ fluorescence by the factor 1.4 × 10−4 and any coherently scattered
photons by the factor 1.8 × 10−4 while transmitting 24.5 % of the Kα fluorescence [52].

The concentration of the nanoparticles was adjusted such that, on average, 11 % of the
pulses intersected a particle. This hit rate was measured simply from the sum of fluorescence
photon counts (above a certain threshold) on the Jungfrau detector, monitored using the program
OnDA [82].
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Fig. 3.10.: (a) Mean photon count per pixel at Jungfrau detector for 3 fs XFEL pulse patterns with an
average mean photon count of ⟨⟨I⟩⟩ = 1.2 × 10−3 and (b) for 15 fs XFEL pulse patterns with
an average mean photon count of ⟨⟨I⟩⟩ = 3.8 × 10−4. These figures were already published
in [122].

After the experiment, the frames containing fluorescence counts were processed by masking
bad pixels and shadows of the shielding around the edges, leaving 895 000 ‘good’ pixels per
frame. The conversion of each detector frame from arbitrary detector units (ADU) to photon
counts is described in Appendix B.1. The number of frames with detected photons, ‘events’,
was 98 000 and 61 000 for the ‘long’ 15 fs and ‘short’ 3 fs, respectively. Histograms of the mean
number of photons ⟨I⟩, in each event, are given in 3.10b for the short and in 3.10a for the long
pulses. We can see that in both cases, the mean photon counts are less than one photon per 100
pixels for almost all frames. We also recognize that the mean counts vary considerably in both
datasets. This fluctuation of the measured counts was in part due to the sample delivery, where
the nanoparticles arrive randomly in the beam focus, and in part due to the fluctuations of the
pulse energy of the XFEL beam.

3.2.1 Expected speckle contrast

We assume a Gaussian-shaped pulse (FWHM T ) for the excitation. The coherence time of iron
Kα, with a line-width (FWHM) of Γ = 1.61eV [67], is τc = 2ℏ/Γ = 0.8fs. Furthermore, iron has
a line ratio of around two to one between Kα,1 and Kα,2.
Based on these considerations, the maximal speckle contrast, combined from βmax. expected =
βp,Gaussβpolβlines, that can be expected is

βmax. expected(T ) ≈ 5
27

0.8fs
T

,

βmax. expected(3fs) ≈ 0.049 ,

βmax. expected(15fs) ≈ 0.01 .

(3.127)

However, as previously discussed, more factors act to reduce the achievable speckle contrast
below the estimate of Eqn. (3.127). E.g., the speckle sampling would affect the expected speckle
contrast, as discussed in Section 3.1.5.
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When we assume that the sample size (diameter) between 50 nm and 100 nm can be approxi-
mated by a Gaussian emitter distribution with FWHM of σ = 75 nm Eqn. (3.126) returns a value
of βSPS ≈ 0.88.

3.3 Estimation of speckle contrast

The low mean photon counts of our measurements is a situation not uncommon in the analysis
of X-ray speckle patterns, most of which are made under the assumption of very limited signal
levels [54, 99, 55]. Given that the measured counts follow the negative binomial distribution of
Eqn. (2.69), the most straightforward method to determine the speckle contrast of a low-signal
pattern is to estimate the expectation value of the mean photon counts µ from the measured
mean photon count ⟨I⟩ and the variance Var(I) from the square of the standard deviation of
the photon count values I. Then simply solving Var(I) = µ+ βµ2 (recall Eqn. (2.68)) for the
visibility factor yields

βV = Var(I) − ⟨I⟩
⟨I⟩2 . (3.128)

We call the speckle contrast estimated this way βV.
Another approach is to count the detector pixels that measure one or two photons [54, 88,
115]. Given the measured frequency (estimate for probability) of one-photon values, P1 =
PNB(1|⟨I⟩, β), and the two-photon values, P2, we find from Eqn. (2.69)

β1,2 = 2P2 − P1⟨I⟩
(P1 − P2)⟨I⟩

, (3.129)

where the subscripts 1 and 2 stand for the use of only 1 and 2 photon counts. Note that for µ = 1,
β1,2 is not defined since P1 = 2P2 | ∀β. This estimate does not appear to have any advantage
over βV but has some significant disadvantages when the mean photon count approaches or
exceeds 1, as we will discuss later in this section. However, since approximated forms of β1,2 are
often mentioned in literature [54, 88, 115], which we discuss in Appendix A.3.3, we include β1,2

in the following analysis. Furthermore, speckle contrast estimation requires a minimum number
of simultaneously measured values (e.g., pixels) when the expected mean photon count is not
perfectly constant between the individual measurements. Even though the number of pixels
was not a concern in our experiments, the effect of an insufficient pixel count is discussed in
Appendix A.3.4. Applying Eqn. (3.128) or Eqn. (3.129) to each of the 61 000 short-pulse patterns
and separately to each of the 98 000 long-pulse patterns, then averaging the results, we obtain
the following speckle contrast estimates

⟨βV(3fs)⟩ = 0.54 ± 0.32 ,

⟨βV(15fs)⟩ = 0.0250 ± 0.0007 ,

⟨β1,2(3fs)⟩ = 0.14 ± 0.11 ,

⟨β1,2(15fs)⟩ = −0.050 ± 0.011 .

(3.130)
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These estimates are much higher than the optimistic expectations of Eqn. (3.127), except for
the negative value for β1,2 at 15 fs. The largest estimate is even unphysical since a speckle
contrast of β = 0.5 corresponds to perfectly coherent but unpolarized light, which is completely
impossible here since we did not discriminate between Kα,1 and Kα,2 fluorescence. Also, the
differences between ⟨βV⟩ and ⟨β1,2⟩ are unreasonably significant. These estimates can not be
trusted. The reason for this is a very low mean photon count for the vast majority of patterns
combined with a significant variation of ⟨I⟩ from pattern to pattern, as evident in Fig. 3.10b
and Fig. 3.10a. Histograms of the individual (single pattern) estimates are shown in Fig. 3.11a
and Fig. 3.11b for the short and the long pulses, respectively. The abscissae of both plots are
logarithmic, highlighting the long-tailed distribution of these single pattern speckle contrast
estimations, which severely skews the means given in Eqn. (3.130). Hints for how to find better
estimates if the speckle contrast can be found by subsets of patterns chosen from various bins
of ⟨I⟩ in the histogram of Fig. 3.11c. We find that the distributions of β estimates depend on
the mean counts ⟨I⟩, as seen in Fig. 3.11d. While a low ⟨I⟩ leads to a large fluctuation of β
estimates, this transmutes to a more compact Gaussian-like distribution for larger ⟨I⟩ values. This
observation that the shape of the single pattern speckle contrast estimates is highly dependent
on the mean photon counts suggests that a weighted average is more appropriate than an
arithmetical mean.

3.3.1 Weighted speckle contrast

To underline the importance of weighting the speckle contrast estimates from the individual
patterns, 155 speckle patterns with an expectation value of µ = 1 × 10−4 photons per pixel,
155 more patterns with µ = 3 × 10−4, and 1.5 × 104 speckle patterns with µ = 3 × 10−2, have
been simulated. That was done simply by generating random numbers that follow the Bose-
Einstein distribution (recall Eqn. (2.63)), corresponding to full contrast (β0 = 1). Each pattern
consisted of one million pixels – that is, one million random numbers – similar to that of our
experiment and sufficiently large to ensure that the mean estimate converged to the correct
value, as demonstrated in Appendix A.3.4.

Histograms of the per-pattern speckle contrast estimates are plotted in Fig. 3.12 for three
different expectation photon counts. For the lowest signal level of 10−4 counts per pixel
(corresponding to an average of only 100 photons per pattern), the probability of observing at
least one two-photon hit is vanishingly small (approximately 1 %). Thus, most patterns do not
have any pixel with a value of 2 or higher. In this case Pj≥2 = 0 and P1 = ⟨I⟩, and therefore
Var(I) = ⟨I⟩ − ⟨I⟩2, so that Eqn. (3.128) evaluates to βV = −1. Likewise Eqn. (3.129) with
P2 = 0 immediately returns β1,2 = −1. These values occur predominantly for ⟨I⟩ < 8.34 × 10−4,
as seen in the histograms of Fig. 3.12a and 3.12b. Conversely, a pattern containing at least one
pixel with a value of 2 or higher will return an overly large β estimate using Eqn. (3.128) or
Eqn. (3.129).
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Fig. 3.11.: Histograms of single patterns speckle estimates β1,2 and βV, obtained from X-ray fluorescence
photons emitted by iron nano-stars. (a) Fluorescence excited by 3 fs FEL pulses. (b) Fluores-
cence excited by 15 fs FEL pulses. Note the long tailed distribution with many entries at −1
and quite some high β estimates, along with the high sample variance. (c) Mean photon count
per pixel at Jungfrau detector for for 15 fs XFEL pulse patterns (equivalent to Fig. 3.10b), with
marked regions of ⟨I⟩. (d) Histograms of speckle contrast estimates for different regions of
mean photon counts. Note the transition from a long-tailed distribution with large peak at
β = −1 at low ⟨I⟩ (blue) to a more Gaussian-like distribution for higher ⟨(I)⟩ (red). These
figures were already published in [122].
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From Fig. 3.12, it is apparent that the shape of the distribution of β estimates changes with ⟨I⟩.
In Fig. 3.12a with µ = 10−4, most entries are at β = −1, and a few entries are distributed over
a wide range of large β values. At a slightly higher value µ = 3 × 10−4, shown in Fig. 3.12b,
this transmutes to a distribution consisting of peaks (caused by patterns with one two-photon
value, two two-photon values, and so on). Finally, the distribution takes on a Gaussian shape,
centered at β0 for sufficiently large µ, as seen in Fig. 3.12c. Despite the differences in the
distributions, the averages of the β estimates in each of the cases presented in Fig. 3.12 all
have the correct value of ⟨β⟩ = 1 (equal to β0). However, this is only true when averaging
over patterns with the same expectation value (approximated by the mean count) µ ≈ ⟨I⟩.
With significant intensity fluctuations, β estimates are averaged over values sampled from a
significantly different distribution. It is unlikely in that case that the β ≫ 1 estimates, which are
obtained in patterns with two-photon counts and very low ⟨I⟩, will be appropriately balanced by
the β = −1 estimates obtained when there are no two-photon counts.

The observation suggests that it might not be prudent to assign equal weight to estimate β
from patterns with different ⟨I⟩. In order to obtain a reliable speckle contrast value from datasets
with varying mean intensities, it is necessary to use an appropriately weighted mean of the single
pattern estimates. Therefore, we use the inverse of the expected variance as weights,

β̄ =
∑NP

j=1 βjσ
−2
β,j∑NP

j=1 σ
−2
β,j

, (3.131)

with NP denoting the number of patterns, βj the estimated speckle contrast of the jth pattern,
and σ2

β,j the expected variance of βj(⟨I⟩, β0). The variance of the weighted mean speckle contrast
is then given by

σ2
β̄

=
∑NP

j=1

(
βj − β̄

)2
σ−4

β,j(∑NP
j=1 σ

−2
β,j

)2 . (3.132)

However, to apply this weighting, we need to know the expected variance of each βj , namely
σ2

β,j . In the following, we derive and examine schemes for evaluating weighted averages of β1,2

and βV.

Weighted mean of β1,2

As derived in Appendix A.3.5, the variance σ2
β1,2

can be expressed as

σ2
β1,2(⟨I⟩, β) ≈ (1 + β)(1 + β⟨I⟩)

(⟨I⟩ − 1)2⟨I⟩2

(
(1 + β)⟨I⟩ + (2 + ⟨I⟩ + 3β⟨I⟩)(1 + β⟨I⟩)2+β−1)

. (3.133)

This is plotted as a function of ⟨I⟩ as solid lines in Fig. 3.13a for several true values of the speckle
contrast β0. To verify this expression, also calculations were carried out on simulated data.
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Fig. 3.12.: Histograms of single patterns speckle estimates β1,2 and βV, obtained from simulated patterns,
each consisting of one million random numbers following a Bose-Einstein distribution (β0 = 1)
and with photon count expectation values of (a) µ = 10−4, (b) µ = 3 × 10−4 and (c)
µ = 3 × 10−2. For (a) and (b) most of the entries are at β = −1 and a minority at very high
values. These figures were already published in [122].
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As for the simulations above, sets containing 106 random numbers each were generated following
a negative binomial distribution, corresponding to patterns recorded with a one-megapixel
detector. Groups of patterns were simulated for constant β0 and ⟨I⟩, for values of ⟨I⟩ spanning3

1 × 10−5 to 1. The number of simulated patterns per group decreased4 from 105 for the smallest
⟨I⟩ to 5000 patterns for the largest. For each pattern β1,2 was calculated using Eqn. (3.129) from
which sample variances were determined and plotted as dots in Fig. 3.13a. As seen in that figure,
the theoretical and simulated variances σ2

β1,2
are in good agreement. Slight deviations between

them can be explained by the fact that the assumed independence (see Appendix A.3.5) of the
observables P1, P2, and ⟨I⟩ is slightly violated, given that there is a finite number of pixels.

Next, 5 × 105 patterns of one-megapixel size and with β0 = 1, but now with fluctuating
mean counts, were simulated. The mean counts ⟨I⟩ for each pattern were chosen randomly
from a negative exponential distribution with the expectation value E(⟨I⟩) = 0.01. A histogram
of these is given in Fig. 3.14a. This distribution corresponds to a SASE process [63, 103] with
a single mode, for example, yielding measurements with an average of 0.01 counts per pixel
per pattern and a maximum value of ⟨I⟩ = 0.1. For each simulated pattern, β1,2 was calculated
using Eqn. (3.129). To examine the effectiveness of the inverse variance weighting, the patterns
were divided into two subsets depending on whether ⟨I⟩ was smaller or larger than a particular
threshold, Isplit.

For both the low-intensity and high-intensity subsets obtained for various choices of Isplit,
the weighted mean β̄1,2 and its standard deviation σβ̄1,2

, as well as the unweighted mean ⟨β1,2⟩
and its standard deviation, were calculated. The standard deviations σ⟨β1,2⟩ of the unweighted
means for the low-intensity and high-intensity subsets are plotted as a function of Isplit as the
solid orange line and the dashed orange line, respectively, in Fig. 3.14b. The inverse variance
weighted standard deviations σβ̄1,2

for the two subsets are plotted in Fig. 3.14c also as solid
orange, and dashed orange lines.

Comparing the orange lines in Fig. 3.14b with those in Fig. 3.14c shows reductions of the
standard deviations for both the low-intensity and high-intensity subsets when applying the
weighting scheme. This improvement is also apparent when using the entire set of patterns,
as when the threshold of the low-intensity subset is equal to the maximum value of Isplit = 0.1
or (equivalently) for the high-intensity subset at Isplit = 0. In this case, the weighting scheme
yields a standard deviation of 4 × 10−8, compared with 10−4 for the unweighted mean. It is also
noted that the unweighted mean ⟨β1,2⟩ of the high-intensity bin (⟨I⟩ ≥ Isplit, orange dashed line)
becomes worse if data with a lower mean photon count than about 0.01 are included. That is, the
unweighted mean ⟨β1,2⟩ suffers from a higher uncertainty when all data are included compared
with when the very-low intensity patterns are neglected. With inverse variance weighting, on
the other hand, including all data, no matter how low the mean counts, the uncertainty of β̄1,2

reduces.
It may seem circular that we need β to calculate σ2

β1,2
, which is then used to determine

β̄1,2, but it turns out that exact knowledge of β is not crucial, and an initial guess can be used to
determine β̄1,2 recursively.

3There is a typo in [122] claiming a range of ⟨I⟩ = [5 × 10−3, 1], which should be ⟨I⟩ = [1 × 10−5, 1].
4This decrease was implemented because the calculation of negative binomial variables with high µ is significantly

more computational expensive and the simulations are converging much faster for higher ⟨I⟩.
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Fig. 3.13.: (a) Variance of β1,2 as a function of ⟨I⟩ as computed using Eqn. (3.133) (solid lines) and
simulated values (dots). The variance decreases with increasing ⟨I⟩ for low signals and then
increases as ⟨I⟩ approaches 1. (b) Variance of βV as a function of ⟨I⟩ as computed using
Eqn. (3.134) (solid lines) and simulated values (dots). Note that σ2

βV
saturates at high ⟨I⟩.

These figures were already published in [122].

To put things into perspective, in the presented example, the standard deviation of the mean
unweighted β is about 3500 times higher than that of the weighted mean, considering the entire
dataset. This means that, in order to obtain a similar accuracy, 1.2 × 107 times as many patterns
would be required. However, when discarding the low-photon-count data (in the present case,
around 76 % of the whole dataset), the standard deviation can be reduced by a factor of 3 × 10−4.
Then the difference to the weighted case is relatively small, but still, the accuracy stays lower.

Weighted mean of βV

An evaluation of the inverse variance-weighting of β̄V was performed similarly to the case of β̄V

presented above. The variance of βV, required for the weighting, is approximated by

σ2
βV

≈ 2 + 2β3⟨I⟩2 + β2⟨I⟩(4 + 3⟨I⟩) + β(2 + 4⟨I⟩)
⟨I⟩2 . (3.134)

A detailed derivation of this equation can be found in Appendix A.3.6, and a verification of the
expression is presented in Fig. 3.13b utilizing the same simulated dataset as previously used for
σ2

β1,2
.
Plots of the variances of estimates of the unweighted ⟨βV⟩ as well as the inverse variance-

weighted β̄V are given in Fig. 3.14b and Fig. 3.14c, respectively. As above, the dataset was
divided into high-intensity (dashed blue line) and low-intensity (solid blue line) sets. The
standard deviations are quite similar to those observed for β1,2.

Significant differences in the βV and β1,2 methods only become apparent for mean counts
higher than about 0.1. To investigate these, a set of patterns with β0 = 1 and a negative exponen-
tial distribution with a higher expectation value E(⟨I⟩) = 0.2 and a maximum of 2.0 photons per
pixel have been simulated. A histogram of the mean counts per pattern is plotted in Fig. 3.14d.
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The standard deviation5 of the equal-weighted ⟨βV⟩ is plotted in Fig. 3.14e as a function of Isplit

for the low-intensity (solid blue line) and high-intensity (dashed blue line) dataset subdivisions.
Calculations were also made on this dataset using the β1,2 method. The plots of the standard
deviation of ⟨β1,2⟩ (orange solid and orange dashed lines) show a critical behavior around
Isplit = 1, which is due to the definition gap of β1,2 at µ = 1.

The accuracy of the equal-weighted ⟨βV⟩ decreases when we take the low ⟨I⟩ into account
(as apparent from the blue dashed line in Fig. 3.14b and 3.14e), similar to the case of the equal-
weighted ⟨β1,2⟩, as discussed before. The standard deviation of the inverse variance-weighted
β̄V and β̄1,2 (plotted in Fig. 3.14c and 3.14f), are both showing a significant improvement as
compared with the unweighted averages. While for low photon count data, the accuracy of
1/σ2

β-weighted β̄ is almost the same for β1,2 and βV, the latter is significantly better for high
photon counts.

We can state, as an intermediate conclusion, that the 1/σ2
β-weighted βV approach is prefer-

able when retrieving speckle contrast from data consisting of patterns with different mean
photon counts.

3.3.2 Speckle contrast determination of Kα X-ray fluorescence

We can now apply our proposed 1/σ2
β-weighting of speckle contrast estimates on the experimental

fluorescence data described in Section 3.2. Utilizing Eqn. (3.131) we obtain

β̄V(3 fs) = −0.048 ± 0.004 ,

β̄V(15 fs) = −0.073 ± 0.003 ,

β̄1,2(3 fs) = −0.052 ± 0.006 ,

β̄1,2(15 fs) = −0.074 ± 0.003 .

(3.135)

In contrast to the unweighted values in Eqn. (3.130), the values of β̄V and β̄1,2 are in much
better agreement. However, the estimated speckle contrast is negative now, which would imply
a sub-Poissonian photon distribution which is not expected. This result can be explained by
systematic errors in the photonization method used to extract photon counts from the measured
detector frame, as described in Appendix B.1. In particular, the discrimination of one-photon
and two-photon hits is crucial. In our case, the photonization algorithm underestimates the
two-photon hits in favor of the one-photon hits, which leads to a systematic underestimation of
the retrieved speckle contrast. Due to this bias, it is therefore not possible to obtain the speckle
contrast absolutely. Yanwen Sun et al. [115] recently discussed such systematic errors in the
estimates of speckle contrast induced by the photonization algorithms. They demonstrated that
the error behaves linearly for measurements with small photon counts ⟨I⟩ ≪ 1, implying that
the difference of the retrieved speckle contrast difference could be trusted. In order to estimate
how well the linear behavior can be assumed, see the discussion about the βH approximation in
Appendix A.3.3, which assumes such a linear dependence of the β estimation on P2.

5There is a typo in [122] calling σ⟨βV⟩ ‘variance’ but is should read ‘standard deviation’ instead.
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Fig. 3.14.: Effects of 1/σ2
β-weighting demonstrated on simulated data in which the mean counts per

pattern follows negative exponential distributions with (a) mean E(⟨I⟩) = 0.01 and (d)
E(⟨I⟩) = 0.2. The data were divided into two parts: one at high intensity with ⟨I⟩ > Isplit,
and its complement with ⟨I⟩ ≤ Isplit. (b) and (e) shows the standard deviation σ⟨β⟩ of the
retrieved ⟨β⟩ of the two parts, using equal weighting, as a function of Isplit. The standard
deviation decreases when neglecting the patterns with very low counts, as evident in the
low-intensity regime of (b). The plot of σ⟨β1,2⟩ in (e) exhibits a sharp discontinuity at Isplit = 1,
which is absent for σ⟨βV⟩. (c) and (f) shows the standard deviation of the retrieved β̄ of
the two parts, using 1/σ2

β-weighting. In this case the lowest standard deviation is achieved
by using all patterns to estimate β. Please note, that βV always performs better than β1,2,
especially in the high intensity regime, see (f). These figures were already published in [122].
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Our measured data satisfies this requirement of very small mean photon counts, and thus we can
report the retrieved speckle contrast difference ∆β̄ = β̄(3 fs) − β̄(15 fs) instead of the absolute
values as meaningful results,

∆β̄V = 0.025 ± 0.005 ,

∆β̄1,2 = 0.022 ± 0.005 .
(3.136)

The maximum expected speckle contrast difference due to the change in incident X-ray pulse
duration using Eqn. (3.127) is ∆β0 = 0.039 (∆β0 = 0.034, when considering βSPS = 0.88).
However, as discussed in Section 3.2.1, these were the theoretical maximum limit speckle
contrast calculations, and as detailed discussed in Section 3.1, there are many experimental
factors that will further reduce the speckle contrast, and so too will reduce the contrast difference.
Our estimated ∆β̄ is, therefore, reasonably consistent with the changes in pulse duration. More
important, however, is that this measured change in speckle contrast is consistent (and implies)
the interference of fluorescence photons.
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4Statistics and signal-to-noise ratio for IDI

Imaging via photon-photon correlation, also known as incoherent diffractive imaging, differs
in one major aspect from coherent diffractive imaging (CDI): The ‘usable signal’ |g(1)(q⃗ )|2 is on
top of an offset g(2)(q⃗ ) = 1 + β|g(1)(q⃗ )|2 (recall Eqn. (2.79)). In this chapter, we will point out
how this affects the signal-to-noise ratio (SNR) and discuss the implications for experiments. It
should be emphasized that the implications are not limited to IDI using X-ray fluorescence but
apply to all fields where intensity interferometry is used (e.g., astronomy). Most of the content
in this chapter was already published in [121].

4.1 Statistics of photon-photon correlation

As discussed in Section 2.3.4, the expected photon statistics can be approximated as a negative
binomial distribution

PNB(x|µ, β) = (µβ)x Γ(x+ β−1)
(1 + µβ)

1
β

+x
x! Γ(β−1)

, (4.137)

where x denotes the number of photons, µ the expectation value of x, β = M−1 is the visibility
factor (inverse of modes), and Γ(a) denotes the gamma function. As a reminder, the variance of
this distribution reads

VarNB = µ+ βµ2 . (4.138)

The first summand µ is equal to the variance for a Poisson distribution (obtained when β → 0),
and therefore, we call it Poisson noise, while the second one βµ2 is equivalent to the variance
of the Gamma distribution and so can be considered due to phase noise (recall that the ran-
dom phases are leading to the exponential distribution, see Section 2.3.3) and the visibility factor.

IDI requires the correlation of measured photon counts (recall Eqn. (2.79)). The simplest
way to perform this correlation is to multiply the counts of two single-pixel detectors. Initially,
for the sake of simplicity, we assume that the counts of both detectors are uncorrelated. This
assumption seems like a weird approximation since the correlation is our desired signal, but it
allows us to get some general statements about the expected SNR. However, we need to keep
this approximation in mind, and we will see some cases where this will reduce the validity of the
general statements in the following discussions.
Under this assumption, the correlation follows the distribution of the product of two negative-
binomial distributed random variables.
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In general, the expectation value of two independent random variables X and Y is E(XY ) =
E(X)E(Y ), and its variance reads [42]

Var(XY ) = Var(X)Var(Y ) + Var(X)E(Y )2 + Var(Y )E(X)2 . (4.139)

Thus, the expectation value of the product distribution of two negative binomial distributed
values (photon counts) is µNB·NB = µ2, where µ remains the expectation value of the detected
counts. The variance of this product distribution is given by

VarNB·NB =
(
β2 + 2β

)
µ4 + 2 (1 + β)µ3 + µ2 . (4.140)

This relation describes the variance of the correlation of signals measured with two independent
single-pixel detectors (for instance, the two telescopes Hanbury Brown and Twiss used to
determine the diameter of stars [46, 45]) or for coincidence measurements made between two
detectors out of a multiple detector array (as proposed for the Cherenkov telescope array [20]).
On the other hand, when measurements are made using a pixelated detector, where the counts in
many detector pairs are acquired simultaneously, the discrete auto-correlation AC(q⃗ ) is given by
a sum of such products. Thus, a single pixel can contribute twice to the value of AC(q⃗ ), namely
with the counts measured at I(k⃗ ) correlated with I(k⃗ + q⃗ ) and I(k⃗ − q⃗ ). These two correlations
are naturally correlated, which we must consider in our analysis.

In order to investigate this effect quantitatively, we assume a set of J negative binomial
distributed values I(j), representing the photon counts at the pixels j. Further, for the sake of
simplicity, we assume that the angular positions of these pixels are evenly spaced along a line of
k⃗ positions (that corresponds to a one-dimensional array). We keep our assumption that I(j)
values are uncorrelated. We further assume periodic boundary conditions: I(j + J) = Ij , which
would be precisely valid for a spherical 4π detector but is also a reasonable approach for small q
values at a large detector. The auto-correlation then becomes

AC(q) = 1
J

J∑
j=1

I(j)I(j − q) . (4.141)

Each term within this sum follows the product distribution with a variance given by Eqn. (4.140).
Note that even if there is no correlation between the single multiplicands I(j) (per our assump-
tion), there may still be a covariance between the summands of Eqn. (4.141). I(j)I(j + q) and
I(l)I(l + q) are uncorrelated if |j − l| ≠ q; however, there will be a non-vanishing covariance for
j − l = q. As an example, consider q = 1:

I1 I2 I3 . . . IJ

IJ I1 I2 . . . IJ−1
1
J

∑
I1 · IL I2 · I1 I3 · I2 . . . IJ · IJ−1

Obviously, there is a correlation between the summands I2 · I1 and I3 · I2, which must be
considered when calculating the variance of the auto-correlation (Eqn. (4.141)).
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Given that the variance of a sum of random variables is the sum of the covariances of all
combinations of pairs of those variables, we obtain

VarAC = 1
J

J∑
j,l=1

Cov(I(j)I(j − q), I(l)I(l − q)) . (4.142)

Since Cov(X,X) = Var(X), we can write Eqn. (4.142) as

VarAC = 1
J

J∑
j=1

Var(I(j)I(j − q)) + 2
J

J∑
j=1

Cov(I(j)I(j − q), I(j − q)I(j − 2q)) , (4.143)

since the condition j − l = q appears J times within the auto-correlation sum. The covariance
for the random variables X and Y is given by

Cov(X,Y ) = E(XY ) − E(X)E(Y ) , (4.144)

and therefore, the second term of Eqn. (4.143) can be written as

E(I(j))E(I2(j − q))E(I(j − 2q)) − E((I(j)I(j − q))E(I(j − q)I(j − 2q)) . (4.145)

With E(I(j)) = E(I(j− 2q)) = µ and E((I(j)I(j− q)) = E(I(j− q)I(j− 2q)) = µ2, we still need
to calculate E(I2(j−q))E(I(j−2q)). That is the expectation value of a squared negative-binomial
distributed variable1 given by

E(X2
NB) =

∞∑
x=0

x2PNB(x|, µ, β) = µ+ µ2 + βµ2 . (4.146)

Therefore the last sum in Eqn. (4.143) equals

2
J

J∑
j=1

Cov(I(j)I(j − q), I(j − q)I(j − 2q)) = 1
J

2(βµ4 + µ3) . (4.147)

For now, we ignore the factor 1/J since we want to have our term without dependence on the
number of detectors (pixels) involved so that Eqn. (4.143) evaluates to

VarAC = (β2 + 4β)µ4 + (4 + 2β)µ3 + µ2 . (4.148)

Be aware that this equation can only be considered as an approximation due to the following
points. First, as already mentioned, the assumption that the measured photon counts are
uncorrelated contradicts the fact that we want to measure a signal by exploiting the photon-
photon correlations. However, it will turn out that this approximation is quite good for ‘sparse’
|g(1)| signals. Second, the assumption of periodic boundary conditions in the derivation of
Eqn. (4.147) is a good approximation for detectors with many pixels when looking at values
with many q⃗ realizations but is getting worse for auto-correlations with only a few contributions.
That introduces a q⃗ dependency of the SNR, illustrated in Appendix A.4.3.

1Please note: At this point, the fact that the photons are only approximately expected to be negative-binomial
distributed might introduce an extra inaccuracy; see discussion in Appendix A.2.1.
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Fig. 4.1.: Demonstration of the g(2)(0) peak with finite expected photon counts. Cut through the
g(2)(qx, qy = 0) of a simulated 2D Gaussian emitter distribution, with the visibility factor
β = 0.5 (for details about the simulation see Appendix A.4.2). (a) Classical limit µ → ∞, here
g(2)(0) = 1 + β. (b) µ = 1 with g(2)(0) = 2 + β. (c) µ = 0.01 with g(2)(0) = 101 + β.

Also, the offset term, where, besides the effect of Eqn. (4.147), no covariance is expected can not
be assumed as totally uncorrelated, which is also demonstrated in Appendix A.4.3. This leads to
the effect that increasing the number of pixels within one frame is not equivalent to collecting
more frames.

4.1.1 Annotation: statistics of g(2)(0)

The previous analysis is only valid for the correlation between different pixels and can not be
applied to the zero-frequency component g(2)(0). The statistic of g(2)(0) differs from the other
values since the assumption of two independent photon counts is not even remotely correct here.
For example, the expectation value is given as

E
(
g(2)(0)

)
= 1
µ2

∞∑
x=0

PNB(x|µ, β)x2 = 1
µ

+ 1 + β . (4.149)

In the limit of large photon counts, we obtain the expected value limµ→∞ g(2)(0) = 1 + β.
However, for low photon counts, the 1/µ term becomes dominant, and thus we obtain pretty
high values for g(2)(0). The peak at q = 0 for finite µ is illustrated in Fig. 4.1, where the cut
through the g(2) signal of a simulated 2D Gaussian emitter distribution is plotted for different
expected photon counts. The dependence of the g(2)(0) value on the photon count expectation
value renders this a cumbersome quantity for experiments, where the mean photon count
fluctuates from measurement to measurement. Because of this, we will ignore the q⃗ = 0 pixels
in our simulations and evaluations of experimental data. When speaking of experiments with
pixelated array detectors, charge sharing causes adjacent pixels to be also affected by this effect.
For the sake of completeness, the variance is given as

Var
(
g(2)(0)

)
=
(
6β3 + 10β2 + 4β

)
µ4 +

(
12β2 + 16β + 4

)
µ3 + (7β + 6)µ2 + µ , (4.150)

which is significantly larger than for the q⃗ ̸= 0 values (recall Eqn. (4.148)), especially for small
µ.
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4.1.2 Excursus: statistics for intensity fluctuation correlation imaging

The variance can be lowered, and therefore the SNR improved if the mean photon count ⟨I⟩
can be considered constant. That is certainly not the case when investigating X-ray fluorescence
at XFELs, as discussed earlier (recall the histograms shown in Fig. 3.10); however, this can be
assumed when observing most astronomical objects (e.g., stars) as it was the case for Hanbury
Brown and Twiss [124]. The idea is that the mean photon count is known to be sufficiently
precise that we can state ⟨I⟩ → E(I) = µ. We now alter Eqn. (2.76) to

ACIFCI(q⃗ ) =
〈(
I(k⃗ ) − µ

) (
I(k⃗ + q⃗ ) − µ

)〉
k⃗

=
〈
∆I(k⃗ )∆I(k⃗ + q⃗ )

〉
k⃗

= ⟨I(k⃗ )I(k⃗ + q⃗ )⟩
k⃗

− µ2 =
∣∣∣g(1)(q⃗ )

∣∣∣2 ,
(4.151)

and obtain the usable signal without offset. The expectation value becomes E(∆I) = 0, and the
variance stays the same as in Eqn. (4.138) Var(∆I) = µ + βµ2. However, the variance of the
product ∆I(k⃗ )∆I(k⃗ + q⃗ ) (recall Eqn. (4.139)) now becomes

Var∆I∆I = β2µ4 + 2βµ3 + µ2 , (4.152)

which is less than the variance given in Eqn. (4.140), and thus, we can expect a better SNR for
intensity fluctuation correlation imaging (IFCI) than for IDI. We can explain this effect with the
reduction in uncertainty since we now assume that we have exact knowledge of µ. However
note, that the effects we will discuss in the following still qualitatively apply to IFCI since they
originate from the µ4, µ3, and µ2 contributions to the variance, which are still present in IFCI,
only differently weighted.

4.2 Signal-to-noise ratio

The signal-to-noise ratio (SNR) can be defined as the desired signal divided by the standard devi-
ation of the measured signal. For IDI, this signal (the ‘useable signal’, as defined in Section 2.5.1)
is

Sig =
∣∣∣G(1)(q⃗ )

∣∣∣2 = µ2
∣∣∣∣F [ρ(r⃗ )] (q⃗ )
F [ρ(r⃗ )] (0)

∣∣∣∣2 . (4.153)

This is different from CDI, where the signal scales linearly with µ. We use the variance from
Eqn. (4.148) and obtain the SNR as

SNR = Sig(q⃗, µ)β
√
NP
√
C(q⃗ )√

(β2 + 4β)µ4 + (4 + 2β)µ3 + µ2 , (4.154)

where NP denotes the number of averaged patterns, and C(q⃗ ) is the multiplicity equal to the
number of pixel pairs with the same wave-vector difference q⃗.
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For the discussions within this chapter, it is favorable to use the (equivalent) notation of modes
M = β−1 instead of the visibility factor, which turns Eqn. (4.154) into

SNR = Sig(q⃗, µ)
√
NP
√
C(q⃗ )

M
√

1+4M
M2 µ4 + 21+2M

M µ3 + µ2
. (4.155)

One should note that increasing C(q⃗ ) does not have the same effect on the SNR as increasing NP,
and this term saturates at some point. Even if we consider a detector covering 4π with infinite
sampling, a single pattern will still suffer from ‘phase noise’ since the assumption of independent
photon counts forming the background can not be maintained. A simple analytic example is
discussed in Appendix A.4.3.

In the following, we examine different kinds of emitting (fluorescing) samples requiring dif-
ferent simulation methods. See Appendix A.4.1 and A.4.2 for details. The detector arrangement
also differs, according to sampling requirements, placing the different cases on quite different
scales and making direct comparisons somewhat artificial (for example, imaging a crystal versus
a single non-periodic object). Therefore, we concentrate on separately studying the dependence
of the SNR on the mean photon count in Section 4.2.1, the number of modes (inverse visibility
factor) in Section 4.2.2, and object shape in Section 4.2.3 to gain an understanding of how to
best design experiments.

Simple cubic 3D crystal

The specimen we will discuss in this chapter in the most detail is a three-dimensional crystal with
n× n× n = Nuc simple cubic unit-cells. Hereby, we assume that each unit-cell consists of one
cluster of single photon emitters that are so close to each other that they are indistinguishable
and can be treated as one (thermal light) emitter2. The crystal then consists of NE = Nuc = n3

emitters, each isotropically emitting on average Nγ photons per mode and pattern. The expected
mean photon count per pixel is therefore given by

µ = ΩNENγM , (4.156)

where 4πΩ is the solid angle of a pixel. For the sake of simplicity, we assume, within this chapter,
that the solid angle is constant for each pixel. The (non-normalized) auto-correlation signal

G(2)(q⃗ ) = ⟨⟨IP (k⃗ ) IP (k⃗ + q⃗ )⟩
k⃗
⟩P , (4.157)

obtained from the measured photon counts of the crystal consists of a uniform background with
strong peaks at the reciprocal lattice points (Bragg peaks), as shown in Fig. 4.2.

2As discussed in Section 2.5.2, assuming there are a sufficient number of emitters, the nature of the emission can be
approximated as thermal light sources.
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Fig. 4.2.: Slices through the G(2)-space from IDI
simulation of a simple cubic crystal with
21 × 21 × 21 unit-cells. Integration
boundaries for the signal are indicated
as squares around the peaks. This figure
was already published in [121].

The |G(1)|2-map that is extracted from the autocorrelation can be written as

∣∣∣G(1)(q⃗, NE)
∣∣∣2 ∝

∣∣∣∣∣∣
∏

j=x,y,z

(
1√
2
ei 3√NEaqj − 1
eiaqj − 1

)∣∣∣∣∣∣
2

, (4.158)

where a is the lattice constant. We then define the signal that is extracted from such a map as
the values integrated over Bragg peaks, which in the limit of large cubic crystals is proportional
to the number of emitters

lim
NE→∞

� π
a

− π
a

∣∣∣G(1)(q⃗, NE)
∣∣∣2 dqx dqy dqz ∝ NE . (4.159)

This yields a signal as described by

SigCrystal = NEN
2
γ Ω2M2 = µ

NE
. (4.160)

And thus, the SNR is

SNRCrystal = µ2√C(q⃗ )
√
NP

NEM
√

1+4M
M2 µ4 + 21+2M

M µ3 + µ2
. (4.161)

A word of caution about Eqn. (4.160) is warranted since it indicates that pixels of larger solid
angles should result in higher SNR. However, a bigger Ω most likely implies a lower number of
total pixels and, thus, a smaller C(q⃗ ). Additionally, as previously discussed in Section 3.1.5, an
increased pixel size will lead to a loss of visibility due to insufficient speckle sampling.
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Fig. 4.3.: SNR for a simple cubic 21 × 21 × 21
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mon location. This figure was already
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4.2.1 SNR as a function of the mean photon count

To test the SNR expression in Eqn. (4.161), we first investigate the dependence of the SNR of
simulated data on µ, or more precisely, on Nγ (the number of photons emitted by a cluster of
non-distinguishable emitters per mode). Simulations with three-dimensional crystals have been
performed from which two slices through G(2)(q⃗ ) are shown in Fig. 4.2. In Fig. 4.3, the SNR of
the two Bragg peaks highlighted in Fig. 4.2 is plotted as a function of Nγ , which was changed by
adding more emitters to the cluster in each unit-cell, keeping the size of the crystal constant. It
is important to note that the individual emitters within each cluster are not resolvable, which
is ensured by adding the extra emitters to exactly the same location within the unit-cell. This
is effectively the same as increasing the intensity (emitted number of photons) of each emitter.
We observe that the SNR increases with increasing intensity but appears to asymptote to a
certain value. This is because, for a small number of photons, Poisson noise is dominant yielding
SNR ∝ Nγ , whereas, for a sufficiently large number of photons per pixel, phase noise becomes
important, which yields a constant SNR for a fixed number of patterns and modes. This can also
be seen in Eqn. (4.161) where the low and high-intensity levels are

lim
Nγ→0

SigCrystal = µ
√
NPC(q⃗ )
NEM

, and

lim
Nγ→∞

SigCrystal =
√
NPC(q⃗ )

NE
√

1 + 4M
.

(4.162)

To further investigate the SNR as a function of µ simulations were performed, where the detected
counts are obtained from emitters arranged as two-dimensional (non-crystalline) objects. The
used objects have a less distinguishable signal than the Bragg peaks of crystals, which makes it
more difficult to separate the (usable) signal from the offset. Therefore the G(2)(q⃗ ) was fitted to
the ground truth |g(1)(q⃗ )|2 via

G(2)(q⃗ ) = O + S
∣∣∣g(1)(q⃗ )

∣∣∣2 + ϵ(q⃗ ) , (4.163)

where the fit parameter S can be interpreted as the signal, O as the offset, and ϵ(q⃗ ) as the noise.
A more detailed description of the simulations can be found in Appendix A.4.2. In Fig. 4.4a, the
SNR is plotted for four different objects: two very sparse ones, one crystal-like object, and one
dense object with spatial frequencies giving a continuously filled Fourier-space.
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Fig. 4.4.: SNR dependence on shape of the object. (a) SNR as function of photon counts per pixel
normalized such that they all saturate at the same level. (b) Emitter densities: top left:
double; top right: square; bottom left: crystal; bottom right: dense. These figures were already
published in [121].

The plots of these SNRs were scaled to asymptote to unity for comparison. This also demonstrates
the limits of the here presented theory with its assumption of uncorrelated values following a
negative binomial distribution, applied to the case of correlated values with structural informa-
tion. As can be seen in the figure, the presented theory fits quite well for objects with sparsely
populated |g(1)(q⃗ )|2 signals (e.g., for the crystal object in Fig. 4.4a) since most of the detected
counts are indeed uncorrelated in such objects. It is possible to fit the single mode variance for
the limit of dense and unstructured objects as

VarDenseObj,M=1 = µ4 + 6µ3 + µ2 . (4.164)

Because of the apparent strong dependency of the variance of G(2) on the characteristics of the
object, as seen by the discrepancies of Eqn. (4.155) to the simulations in Fig. 4.4a, we keep the
expression of the variance of Eqn. (4.148) for further discussions, but we need to keep these
limits in mind when fitting this model to the simulated data.

4.2.2 SNR as a function of modes (visibility)

Here we discuss the dependence of Eqn. (4.155) on the visibility factor. For this purpose, we use
the notation of modes M = β−1. Therefore, simulations of 3D and 2D emitter distributions are
utilized again. For this discussion, we make the assumption that the expected photon counts
per pixel are proportional to the number of modes, or in other words, that each mode has the
same expected number of counts µ0 so that the total expected counts per pattern is µ = Mµ0.
Studying the SNR behavior under this assumption makes sense since intensity (photon counts)
can often be traded for visibility.
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Fig. 4.5.: Simulation of a 15 × 15 × 15 unit-cell crystal under variation of modes. Since µ0 = 1.35 is was
to be constant, the mean counts per pixel and pattern is proportional to the number of modes
µ ∝ M . (a) Inverse of the SOR with ∝ M -fit, to illustrate the β = 1/M behavior. (b) SNR as a
function of modes. These figures were already published in [121].

For example, as discussed in Section 3.1.1, doubling the excitation time can double the total
number of photons per pixel at the cost of twice the number of modes. Under this assumption,
the SNR then follows the form

SNR =

∣∣∣g(1)(q⃗ )
∣∣∣2 µ2

0
√
C(q⃗ )

√
NP√

(1 + 4M)µ4
0 + (2 + 4M)µ3

0 + µ2
0

. (4.165)

As a first example, we consider a simulation of a 3D crystal with NE = 15 × 15 × 15 unit-cells,
each with one emitter. The simulation was performed in a similar way as described in the
previous section, with a mean count per mode and pixel of µ0 = 1.35. The reduction of the
visibility β = M−1 with increased modes, according to Eqn. (2.79) can be seen in the plot of the
inverted signal-to-offset ratio (SOR) in Fig. 4.5a. The SNR obtained in the simulation is plotted
in Fig. 4.5b and found to scale with the number of modes in accordance with the expression in
Eqn. (4.165).

The influence of µ0 on the mode-dependent SNR was investigated using simulations of
the 2D ‘dense’ object from Fig. 4.4b. The variance is plotted in Fig. 4.6a and 4.6c as a function
of the number of modes, M , for µ0 = 0.01 and µ0 = 1. The corresponding plots of the SNR as
a function of M are shown in Fig. 4.6b and 4.6d, together with the analytic prediction from
Eqn. (4.165).

We can see from Fig. 4.6 that the SNR declines much slower with respect to M for µ0 = 0.01
than for µ0 = 1. In the limit of very low µ0, the dependence of the SNR on M becomes
negligible:

lim
µ0→0

∂

∂M
SNRµ0(M) = 0 . (4.166)

A negligible dependence of the SNR on the number of modes in the limit of very low µ0 (where
the contribution of Poisson-noise greatly exceeds the phase-noise) was already described by
Hanbury Brown and Twiss when they stated ‘[...] the SNR is independent of changes in the
optical bandwidth, [...]’ [45]. Similar statements can be found in [19, 20].
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Fig. 4.6.: G(2)-variance and SNR of the dense object (see Fig. 4.4b) as a function of modes. (a) and (b)
Variance and SNR for µ0 = 0.01. (c) and (d) Variance and SNR for µ0 = 1. These figures were
already published in [121].

Roughly speaking, a slight increase of µ (by increasing M) leads to less Poisson noise, while
phase noise is still negligible, and therefore the higher µ compensates for the weaker visibility
caused by the larger number of modes. In the limit of high intensity per mode, on the other
hand, we obtain

lim
µ0→∞

SNRµ0(M) ∝ 1√
1 + 4M

, (4.167)

and therefore, it is expected that under such circumstances, an increase in the number of modes
will be significantly detrimental to the SNR. We can conclude that trading higher photon counts
proportionally to a higher number of modes can never be beneficial for the SNR.
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4.2.3 Dependence of the SNR on the size and complexity of the
emitter distribution

In Section 4.2.1, we saw that the shape of the emitting object has a significant influence on the
SNR of G(2)(q⃗ ). Here we return to the 3D crystal with n × n × n unit-cells with one emitter
each, which yields a number of Nuc = n3 emitters. Here, we examine how the SNR scales with
the overall size of the crystal. Therefore we define the proportionality constant α = ΩNγM ,
in an analogous fashion to µ0 in the previous section so that µ = αNuc. α can be interpreted
as the expected number of counts generated per emitter. With this, we can rewrite the SNR of
Eqn. (4.161) as

SNRCrystal(Nuc, α) = α
√
C(q⃗ )NP

M
√

1+4M
M2 α2N2

uc + 2+4M
M αNuc + 1

. (4.168)

In Fig. 4.7, the SNR is plotted as a function of the crystal size (number of unit-cells) Nuc for
three different ‘emitter efficiencies’ α, all for the case of a single mode M = 1. On a first view
somewhat unintuitively, bigger crystals give a lower SNR. In the limit of large α the SNR behaves
as 1/Nuc, as indicated in Fig. 4.7b, where the reciprocal of the SNR is plotted against Nuc.
However, the SNR becomes less dependent on Nuc, resulting in a flatter SNR curve for smaller α.
This might seem to be an improvement over larger α at first glance; however, lower α also gives
fewer expected counts µ, which ultimately results in a lower SNR. As discussed in Section 4.2.1,
a greater α generally leads to a better SNR. However, as mentioned earlier, increasing α by
increasing Ω alone would result in a reduction of contrast; thus, this is not a reasonable option.

In conventional crystallography, which makes use of coherent scattering from the crystal,
larger crystals clearly produce higher SNR than small ones. In that case, the SNR is (in the ideal
case) proportional to the square root of the number of photons diffracted per Bragg-peak, which
by an equivalent analysis to Eqn. (4.158) is proportional to

√
Nuc (assuming scattering by the

emitting atom/cluster). Eqn. (4.168) and the simulations of Fig. 4.7 show the opposite behavior
in IDI. Even though we have assumed perfect conditions (i.e., M = 1) in the simulations, there
are at least two other factors in favor of choosing smaller crystals in a real experiment. First, the
speckle sampling, as detailed discussed in Section 3.1.5, and second the effects of the finite speed
of light, as discussed in Section 3.1.2. The implication of this crystal discussion is that signal
amplification in IDI by using crystals is not beneficial, and therefore single-molecule imaging
gives the best possible SNR.

The reason for the diminishing ability to image larger objects by IDI is due to the fact that
as the object gets larger and more complex, the number of intensity-intensity products that do
not arise in a correlated signal grows at a greater rate. This is apparent since as

∣∣∣∣F [ρ(r⃗ )] (q⃗ )
F [ρ(r⃗ )] (0)

∣∣∣∣2 =
∣∣∣g(1)(q⃗ )

∣∣∣2 ≤ 1
∣∣∣ ∀q⃗ ̸= 0 , (4.169)

the offset always exceeds or is at least as large as the usable signal for any q⃗ ̸= 0.
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Fig. 4.7.: SNR as a function of crystal size (number of unit-cells with one emitter per unit-cell). (a)
α = 4 × 10−3. (b) Inverse of (a) to demonstrate SNR ∝ 1/Nuc behavior. (c) α = 4 × 10−5. (d)
α = 4 × 10−6. These figures were already published in [121].

Since the distribution of emitters ρ(r⃗ ) is always real and positive, as the object becomes larger
|g(1)| generally becomes smaller at any given q⃗ as the spectral power is distributed into more
‘channels’. This is the case if the additional emitters added to a structure are resolvable. Those
emitters added close to others (such as considered in the single clusters of emitters in the crystal,
discussed in Section 4.2.1) will tend to not reduce |g(1)| at q⃗ ̸= 0.

To investigate the proposition that more ‘complicated’ objects have lower SNR, IDI simu-
lations were carried out of patterns of non-periodic objects constructed in such way to give a
Fourier spectrum g(1)(q⃗ ) consisting of discrete narrow Gaussian-shaped peaks equally spaced in
a ring at a particular reciprocal distance q1, as shown in Fig. 4.8.
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Fig. 4.8.: Object with parameterized complexity c. (a) Emitter density (ρ(r⃗ )) for c = 3. (b) Correspond-
ing |g(1)(q⃗ )|2 signal for (a). (c) Emitter density for c = 10. (d) Corresponding |g(1)(q⃗ )|2 signal
for (c). As signal for the discussions the integrated value of one of the outer Gaussians in
|g(2)|(q⃗ )-space was used. These figures were already published in [121].

The complexity of the object is set by the number of Fourier frequencies that follows from the
number of Gaussian peaks (see Fig. 4.8b and 4.8d), without changing the resolution or overall or
overall shape of the object in real space (see Fig. 4.8a and 4.8c). The object is parameterized by
the number of frequency components in the ring at q1, given by 2c, ensuring a centrosymmetric
transform to maintain a real and positive realspace emitter density. The number of photons per
complexity and per pixel is specified as αc = ΩNγM , such that when αc is constant, the expected
count per pixel is proportional to c. We compute the SNR based upon obtaining the signal of the
integrated value of g(2)(q⃗ ) − 1 = |g(1)(q⃗ )|2 of any of the (non-central) peaks. Since the strength
of the peaks does not change with c, we assume the signal to be Sig ∝ α2

c . With the mean counts
per pixel µ = αcc, we expect the SNR scales as

SNR(c, αc) ∝ αc

√
C(q⃗ )NP

M
√

1+4M
M2 α2

cc
4 + 2+4M

M αcc3 + c2
. (4.170)

The SNR obtained from the simulations based on the parameterized object is plotted as a
function of the complexity parameter c in Fig. 4.9.
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Fig. 4.9.: SNR as function of complexity parameterized by c. (a) Low intensity αc = 0.001. (b) Inverted
SNR (αc = 0.001) to demonstrate the 1/c behavior in the low intensity limit. (c) High intensity
αc = 100. (d) Inverted square root of the SNR (αc = 100) to demonstrate the 1/c2 behavior in
the high intensity limit. These figures were already published in [121].

The case of low intensity, with αc = 0.001, is shown in Fig. 4.8a and scales as ∝ 1/c, as
expected from Eqn. (4.170) and emphasized by the 1/SNR plot in Fig. 4.8b. SNR obtained from
simulations with high photon counts, setting αc = 100, is given in Fig. 4.8c, which shows that
the SNR scales even more strongly in this case as 1/c2, again in agreement with Eqn. (4.170).
The simulations support the assertion that the SNR never improves as the object becomes more
complex, but instead, it most probably becomes worse.
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4.3 Interim summary

We saw that noise depends not only on Poisson statistics but also on the structure of the
background term. Poisson statistics are, of course, familiar to coherent diffraction, such as
crystallography, where the SNR usually rises in proportion to the square root of the measured
counts. The random phases of the emitted waves give rise to a standard deviation in the
correlation signal that is proportional to the mean (rather than the square root of the mean).
This phase noise was discussed in the context of ‘interferometry of intensity fluctuations in light’
by Hanbury Brown and Twiss [48, 49] (there called ‘wave interaction noise’) but not considered
by them in their further analysis. We find that phase noise leads to a saturation of the SNR at
high intensities, as discussed in Section 4.2.1, indicating that higher emission from a given object
does not give a proportionally higher SNR.

Furthermore, we discussed how the visibility factor affects the SNR in the case that higher
intensity (photon counts) are traded at the cost of more modes. When modes are proportional to
the intensity M ∝ µ, the influence of modes vanishes for low intensities due to the dominance of
Poisson noise. In the limit of high detected counts per mode, however, the SNR is proportional
to 1/

√
1 + 4M for M modes.

The most significant insight gained from the model and simulations of the IDI measurement
is that the optimization of an IDI experiment, and in particular the requirement of the total
number of single-shot patterns to recover the Fourier form factors of the structure of emitters in
an object, depends strongly on the size and complexity of the object. This is apparent from the
fact that the background term in the correlation always exceeds the magnitude of all other spatial
frequencies of the Fourier spectrum of the object, and as the object becomes more complex the
ratio of frequencies to the zero frequency diminishes. Every (resolvable) emitter in the object
adds to the background (and therefore to the noise) more than it adds to the signal. In the
case of crystals, it was shown in Section 4.2.3 that an increase in the number of unit-cells always
decreases the SNR of a particular signal (here, the integrated strength of a Bragg peak). As a
consequence, single particle imaging (SPI) renders the best possible case for IDI.
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5Experimental proof of concept

In Section 2.5, we introduced the concept of incoherent diffraction imaging (IDI) and explored its
potential applications. In Chapter 3, we demonstrated the existence of multi-photon interference
between X-ray fluorescence photons, and in Chapter 4, we discussed the challenges of achieving
a high signal-to-noise ratio.
Based on the insights of these previous chapters, an experiment was designed and performed
to showcase the imaging capabilities of IDI for a non-trivial emitter distribution. This first
demonstration was designed to achieve the best possible SNR by selecting a very simple emitter
structure. Specifically, we focused on two distinguishable emitter clusters, each consisting of
numerous single photon emitters that form reasonably bright thermal light sources. To ensure
obtaining a clear usable signal from the g(2)-signal even at low visibility β, the experiment was
designed in such a way as to collect a sufficiently large amount of data.
Note that most of the content in this chapter was already published in [123].

5.1 Experiment

The experiment was carried out at the Materials Imaging & Dynamics instrument (MID) of the
European XFEL [77]. X-ray free-electron laser pulses were generated with a nominal duration
of 10 fs and a photon energy of 9 keV, just above the Cu K absorption edge of 8.979 keV [109].
These were focused on a 20µm-thick Cu foil to generate fluorescence photons. The focusing was
done using two sets of compound refractive lenses (CRLs) in series with an effective diameter of
300µm and a combined focal length of 300 mm. The geometry of the experiment is illustrated in
Fig. 5.1 (from the second CRL to the detector).

When placed into focus, the Cu foil is damaged by a single pulse, which creates a crater, see
Fig. 5.2. Repeated exposures will quickly produce a hole of around 15µm in diameter, which is
bigger than the focused beam. Therefore the foil must be moved after each exposure. The FEL
pulses were produced in trains with 10 trains per second. Within each pulse train, the pulses
were separated by 444 ns (2.25 MHz repetition). Therefore, the foil’s speed must exceed 30 m s−1,
which was achieved by spinning the disk-shaped foil. This foil-disk, of 150 mm diameter, was
mounted on a spoked aluminum frame and spun at rates up to 4500 rpm. This precise speed was
chosen such that the location of the first pulse in a train would impact the foil just beyond the
angular position of the last pulse of the previous train. By slowly translating the spinning foil
in the êy-direction (transverse to the beam), a single foil could serve for many hours. With 10
pulse trains per second and 352 pulses per train (352 matches the frame capacity of the AGIPD
detector [1]). This capability to record 3520 frames per second allowed us to obtain a dataset
with 58 million patterns collected in less than 5 hours.
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Fig. 5.1.: Simplified sketch of the experimental setup. This figure was already published in [123].

However, some craters exceeded the previous mentioned size, resulting in some unwanted
signals in the subsequent pulse; these frames were selected, as described in Appendix B.2.1, and
rejected for further analysis.

The foil is thicker than the 3µm length of a 10 fs incident pulse. Fluorescence is therefore
generated in time as this pulse propagates through the thickness of the foil, with a travel time of
67 fs front to rear. Nevertheless, in the forward scattering direction, all generated fluorescence
arrives nearly simultaneously at the detector. Thus, no reduction of the visibility factor by the
finite speed of light is expected (βc = 1, recall the discussion in Section 3.1.2).

The angularly-resolved fluorescence was detected in the forward direction using an adaptive
gain integrating pixel detector (AGIPD) with one million pixels [1] placed 8 m downstream of
the Cu foil to ensure sufficient speckle sampling (recall Section 3.1.5). For all measurements,
the detector was operated in its high-gain state, with an energy resolution of about 1 keV, able
to detect single photons but neither to reliably distinguish 8.04 keV Cu Kα fluorescence from
8.91 keV Cu Kβ fluorescence, nor from 9.00 keV elastically scattered photons. A 20µm thick
Ni filter was placed 700 mm downstream of the Cu foil, to suppress the unwanted photons.
This filter transmitted 0.8 % of the elastic photons, 0.4 % of the Cu Kβ, and 43 % of the Cu Kα.
A helium-filled flight tube placed between the Cu and Ni foils reduced air absorption of the
fluorescence, and a beamstop was located just downstream of the Ni foil to block the remaining
direct beam.

To demonstrate the ability to recover a two-dimensional real-space image of a fluorescing
structure, an emitter distribution consisting predominately of two 300 nm diameter spots sepa-
rated by 860 nm was created by placing a diamond phase grating in the beam path. More details
on the creation of the structured emitter distribution are given later in Section 5.1.2.
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Fig. 5.3.: (a)Photon counts at the AGIPD, measured with the phase-grating, averaged over 58 million
patterns. This shows a flat distribution without any apparent structural information. The mean
photon count per pixel and frame was ⟨I⟩ = 0.0077. This figure was already published in [123].
(b) Frame-wise mean photon counts per pixel at the AGIPD.

5.1.1 Focus finding and determination of the visibility factor

The short-duration X-ray FEL pulses were generated with a pulse energy of 150µJ to 350µJ. After
transmission through the beamline and the focusing optics, the energy of the pulses impinging
on the Cu foil ranged from 3µJ to 9µJ, or 2 × 109 to 5 × 109 photons. An average of 58 300 000
recorded AGIPD frames is shown in Fig. 5.3a. Excluding shadows of the beamstop and entrance
window, and masked regions of artifacts and bad pixels, the distribution of photon counts is
relatively flat. For details about the detector artifacts and pixel masking, see Appendix B.2.2.
The measured mean value of 0.0077 photons per pixel per pulse is comparable to 0.0063 photons
per pixel estimated from the instrument detection efficiency and the production of fluorescence
calculated from cold Cu cross sections. Some shadows of dust and debris can be discerned, likely
on the Kapton entrance window downstream of the Cu disk. These artifacts were excluded from
the analysis.
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The number of pixels used in each detector frame to compute the correlations was approximately
774 000.

To determine the visibility factor β of fluorescence photon correlations and to locate the
focal plane, a single emission spot of approximately 300 nm diameter was created by removing
the grating from the incident FEL beam. Since g(2) is linearly dependent on the Fourier transform
of the fluorescence emission, the best focus is found where the width of the correlation map is
maximal, because the smallest transverse emitter distribution causes the largest fluorescence
speckle size. A map of g(2)(qx, qy) obtained from 2 870 000 frames is shown in Fig. 5.4a and 5.4b,
at the longitudinal position z of the Cu foil that gave the largest correlation width.

Correlation maps (g(2)) at different displacements z were obtained by recording frames at
each position in two separate scans. The number of recorded frames per position was 3 000 000
(20 minutes of data acquisition per position) for scan 1 and 1 500 000 for scan 2. Please note that
due to detector failures, some positions in scan 2 were recorded with about 75 000 frames only.
The first scan (scan 1) was made prior to the insertion of 42µm thickness of diamond in the
converging beam (the substrate of the phase grating), and the second scan was made with the
diamond. Even though the diamond should have little effect, a slight focus shift was observed.

As discussed in Section 4.1.1, the value of q(2)(qx = 0, qy = 0) is not usable, and due to
charge sharing between neighboring pixels, this also confounds measurements at (qx, qy) =
(±1,±1). We approximate the CRL focus as being Gaussian, leading to a Gaussian emitter
distribution ρ(r1, r2) ∝ e−r2

1/(2σ2
1)−r2

2/(2σ2
2), where (r1, r2) form a basis rotated to (x, y) to match

the axis of a 2D Gaussian representing a focus with astigmatism. The expected g(2) signal then,
given that |g(1)| is the Fourier transform of the fluorescence emission, reads1

g(2)(q1, q2) = 1 + βe−(q2
1σ2

1+q2
2σ2

2) . (5.171)

This fit gives a focus size of
FWHM1 = (640 ± 40) nm ,

FWHM2 = (480 ± 30) nm ,
(5.172)

for the smallest measured focus and a visibility β = 0.018 ± 0.002. A plot of the inverse of the
focal RMS 1/(σ1σ2), determined this way, is shown in Fig. 5.4c as a function of displacements z
of the foil along the beam axis.

The focus (at z = 0) can be clearly discerned. The fitted visibility factor at each position,
displayed in Fig. 5.4d, is approximately uniform over the defocus range. It can thus be used
to estimate the FEL pulse duration, T , relative to the coherence time. The estimation of β is
discussed in detail in Section 3.1, and here, we expect:

β = βpβpolβlines ≈ 0.185τc

T
. (5.173)

Therefore, a Gaussian beam shape is assumed (recall Section 3.1.1) βP ≈ 1/1.5, and the
fluorescence to be unpolarized βpol = 0.5. Since we were not able to discriminate Kα1 and Kα2

emissions, they contribute as incoherent modes. The branching ratio for the Kα-fluorescence are

1Please note that in [123] the ‘spectroscopic wavenumber’ notation k = 1/λ is used, while in this work, we utilize
the ‘angular wavenumber’ notation k = 2π/λ.
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Fig. 5.4.: (a) g(2)-signal of Cu Kα fluorescence with the Cu foil located in the focal plane (z = 0), without
the phase grating. The RMS width of a fitted Gaussian is marked, with σ1 = (272 ± 17) nm and
σ2 = (204 ± 13) nm. (b) Same as (a) but in logarithmic representation, wherefore an offset
of 1 × 10−4 was added. (c) Inverse of the focal area 1/(σ1σ2), versus defocus z. (d) Visibility
factor β as a function of z. These figures were already published in [123].

RKα,1 = 0.581, and RKα,2 = 0.297, respectively [8]. This yields a factor βlines = (RKα,1/(RKα,1 +
RKα,2))2 + (RKα,2/(RKα,1 +RKα,2))2 ≈ 5/9.

The coherence time of copper Kα is τc = 0.6 fs, given by twice the radiative lifetime ℏ/Γ for
a spectral linewidth of Γ = 2.17 eV [66]. Thus, the measured visibility factor corresponds to an
effective pulse duration of

T = (6.2 ± 0.8) fs . (5.174)

5.1.2 Structured emitter distribution

In order to obtain a non-trivial emitter distribution, the diamond phase grating was placed in
the beam 25 mm downstream of the CRL’s principal plane. The grating period was 80µm and
consisted of equal width bars of alternating heights, differing by 8.4µm to induce a π phase
shift at a photon energy of 9 keV. A transmission electron microscope image of the diamond
phase grating is shown in Fig. 5.5. The complex transmissions of the bars were thus 1 and −1,
producing dominant ±1 orders without any zero order, separated by 860 nm in the focal plane.
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80µm

Fig. 5.5.: Transmission electron
microscope image of
the diamond phase
grating. The used
grating in the here
presented experiment
is marked.

To calculate the expected emitter density, an incident FEL beam with a Gaussian shape with
175µm FWHM and wavelength λ = 1.38 Å was assumed:

ψ−(x, y, z = −30 mm) ∝ e−(x2+y2)/(2(75µm)2) . (5.175)

A radial symmetric phase-shift was applied to simulate a perfect lens with the focal length
f = 30 mm:

ψ+(x, y, z = −30 mm) = ψ−(x, y, z = −30)ei(2π/λ)
√

f2−x2−y2
. (5.176)

The wave field was propagated via Fresnel propagation (recall Eqn. (2.18)) for 25 mm, and then
the phase shifts induced by the phase grating were applied. The phase grating was rotated by
17◦ counterclockwise around the z-axis to ensure that the expected features of the resulting
g(2)-map are not parallel to the detector rows or columns, in order to avoid any confusion with
possible detector artifacts (e.g., common readout modes). The resulting wave field was then
Fresnel propagated another 275 mm up to the position of the Cu foil, resulting in the intensity
distribution displayed in Fig. 5.6a.

The intensity distribution equates to the fluorescence emitter distribution, and the expected
g(2)-map at a detector placed another 8 m downstream is displayed in Fig. 5.6b. The actual
measured results are discussed in the following section.
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Fig. 5.6.: (a) Simulated intensity distribution in the focal plane with the phase grating. (b) Simulated
g(2) − 1 signal for the intensity distribution displayed in (a), with an assumed visibility of
β = 0.018. These figures were already published in [123].

5.2 Demonstration of imaging via photon-photon
correlation of X-ray fluorescence

Detector frames were obtained with the phase grating inserted in the incident XFEL beam,
recording fluorescence emission from predominately two spots, as discussed in Section 5.1.2
and displayed in Fig. 5.6a. A total of 58 million frames were recorded, and the resulting g(2)

signal is displayed in Fig. 5.7a (the offset was subtracted except for a value of 1 × 10−4 to allow
a logarithmic scale). It shows a fringe pattern that is compatible with the predicted pattern
of Fig. 5.6b. Fringes to the third order can be discerned, showing that the signal extends to
|q|/(2π) ≈ 4µm−1. The RMS of the background is measured at σBgr = 3.52 × 10−5, which can
be considered the noise floor. A projection of the g(2) − 1 signal is shown in Fig. 5.7b along the
direction of the grating modulation by summing pixels between the red dashed lines in Fig. 5.7a.
Here, fringes up to the third order can be discerned.

An image of the fluorescing structure cannot be obtained solely from the Fourier magnitudes
of the structure, additionally requiring knowledge of the Fourier transform phase map. The g(2)

measurement does not provide the phase map, resulting in the well-known ‘phase problem’ [28].
The phases were obtained via iterative phase retrieval [111] by constraining the image to be
the most compact structure consistent with the Fourier magnitudes |F (q⃗ )| =

√
g(2)(q⃗ ) − 1, de-

termined from the map given in Fig. 5.7a. The phasing was carried out using the ‘Shrinkwrap’
algorithm [81]. The phase retrieval is described in detail in Appendix B.2.3. The reconstructed
image of the fluorescing emitter distribution, obtained by averaging 1000 phase retrieval trials,
is shown in Fig. 5.7c. It shows two well-resolved diffraction spots of the grating. Note that the
upper one of the spots is approximately 15 % brighter than the other2. Each spot has an FWHM
of about 400 nm. The results depicted in Fig. 5.7 indicates the general feasibility of imaging
via the correlation of hard X-ray fluorescence photons.

2This observation was consistent over many different phasing attempts and therefore it is unlikely that this
observation is due to some phasing error.
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Fig. 5.7.: (a) Measured g(2) − 1 signal in logarithmic representation. (b) Cut through the g(2) − 1 signal
along qy′ and integrated along qx′ within the boundaries indicated in (a). (c) Reconstructed
intensity distribution and thus the fluorescence emitter distribution at the Cu disk. To be
compared to the simulation in Fig. 5.6a. These figures were already published in [123].
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We can roughly compare the results of the structured emitter distribution with the results
of the measurements without the phase grating in terms of signal-to-offset ratio. Therefore, we
define the integrated, ‘usable signal’ as the sum over sufficiently many pixels in q-space (here
100 × 100) to cover the whole signal, as

ΣSig =
50∑

qx=−50

50∑
qy=−50

(
g(2)(qx, qy) − 1

)
. (5.177)

In the present case, qx and qy represent the q-space coordinates in pixels. We obtain

ΣSig, Focus ≈ 1.02 ,

ΣSig, Grating ≈ 0.34 ,
(5.178)

with ΣSig, Focus, and ΣSig, Grating for the focus only (without phase grating), as displayed in
Fig. 5.4a, and for the structured case, as displayed in Fig. 5.7a, respectively. Although we ex-
pected a similar visibility factor for both cases, we observe a significantly lower integrated, usable
signal for the grating case. That indicates a lower signal-to-offset ratio, which was expected due
to the emitter distribution’s higher complexity, as discussed earlier in Section 4.2.3.
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6Summary and Outlook

In this thesis, a theoretical overview of incoherent diffraction imaging via X-ray fluorescence,
as well as the experimental proof of concept, was presented. After recapitulating the basic
concepts of coherence, coherent diffraction imaging (CDI), and photon statistics in Chapter 2,
we have introduced the concept of incoherent diffraction imaging (IDI). This was done in the
classical approximation and in terms of quantum optics. As a result, we realized that the classical
approximation is sufficient in the case of thermal light sources or in the limit of many single
photon emitters. The latter could safely be assumed for the experiments presented in the scope
of this work and for most further interesting applications of IDI.

Unlike in CDI, the ‘usable signal’ in IDI is retrieved on top of an offset and modulated
(reduced) by the so-called ‘visibility factor’. A comprehensive discussion about this visibility
factor was presented in Chapter 3. The visibility factor is not only a crucial parameter to be
optimized for IDI experiments, but it can also be used to obtain parameters about the excitation
XFEL pulse, such as the pulse duration. The visibility factor in IDI is also equivalent to the speckle
contrast, which can be directly obtained from the measured frames without the need to perform
intensity-intensity correlations. An experiment was presented where the speckle contrast of
X-ray fluorescence, excited by XFEL pulses with two different pulse durations, was measured.
We observed a higher speckle contrast for the fluorescence, excited by the shorter pulses. This
increase in speckle contrast is a clear indication of interference of X-ray fluorescence – a vital
requirement for the feasibility of IDI.

However, the estimation of the speckle contrast was complicated by the very sparse pho-
ton count combined with a highly fluctuating total number of photons per measured frame.
Therefore, the method ‘weighted speckle contrast estimation’ was introduced. That method
was also evaluated on simulated data and turned out to be significantly more reliable than
the conventional ‘unweighted speckle contrast estimation’ in the described circumstances. This
presented method of weighted speckle contrast estimation might also be useful for X-ray speckle
visibility spectroscopy (XSVS) (e.g., to study diffusion or vibrational modes in liquids and glasses
at atomic scale [70, 102]). Especially at XFELs, due to the fluctuating intensity of different X-
ray pulses or when a serial deployment of the specimens is utilized, this method should be helpful.

A comprehensive discussion about the expected signal-to-noise ratio for IDI experiments was
given in Chapter 4. The presented model is based on a classical description of wave interference
combined with Poisson photon statistics. The model was further confirmed with simulations of
IDI measurement, which are also based on the classical approximation. The most essential – yet
also most contra-intuitive insight is that more complex emitter distributions suffer from a lower
SNR than less complex ones. Higher complexity in this context means more resolvable emitter
clusters.

83



This is apparent from the fact that the offset term in the intensity-intensity correlation always
exceeds the magnitude of all other spatial frequencies of the object’s Fourier spectrum. When
the object becomes more complex, the ratio of spatial frequencies (q⃗ ̸= 0) to the zero-frequency
(q⃗ = 0) diminishes. Every (resolvable) emitter in the object adds to the offset (and therefore
the noise) more than it adds to the usable signal. The consequence of this insight is significant.
For example, in the CDI context repeating patterns, particularly crystals, are used to amplify the
measured signal. However, this is impossible for IDI, meaning single particle imaging (SPI) gives
the best possible SNR. SPI is an emerging method for CDI [90, 2, 3], which, however, is yet to be
demonstrated on small and complex molecules such as proteins.

Chapter 5 presented an experiment that first demonstrated IDI via X-ray fluorescence on a
simple yet non-trivial emitter distribution. Non-trivial, in this context, means more than one
connectedly emitter clusters – in our case, two clusters. The observed fringes in the g(2)-signal
(Fig. 5.7a) clearly indicate the feasibility of imaging via the correlation of hard X-ray fluores-
cence photons. Also, phasing on the usable signal was successfully performed, and the emitter
distribution was reconstructed.

In the presented experiment, IDI was also used to find the XFEL’s focus and to determine its
pulse duration. The obtained pulse duration of 6.2 fs was around ten times longer than the 0.6 fs
coherence time of Cu Kα fluorescence, resulting in the incoherent addition of around 55 coherent
modes in each measurement (this includes the non-polarization and indistinguishable emission
lines). The number of detected photons per pixel per mode was thus µ0 ≈ ⟨I⟩/55 ≈ 1.4 × 10−4,
generated by about 1.2 × 108 incident X-ray photons per mode (200 nJ). These numbers can be
used to estimate the required statistics for further IDI experiments.

Outlook

The here presented first imaging demonstration was possible due to a massive amount of recorded
frames. From the SNR discussion, we know that (for reasonably low intensities) the SNR is pro-
portional to the number of detected photons per mode. Therefore, significant reductions in the
required number of frames, which scales 1/SNR2, could be obtained with modest improvements
in source properties. High-brightness attosecond-duration photon sources [97] could achieve
parity of the coherence and detection time (β ≈ 0.28 to β ≈ 0.14 or 3.6 to 7 modes). Assuming
the same incident power (1.2 × 108 incident photons) we had in the experiment presented in
Chapter 5, crunched into 5.5 modes instead of 55, the amount of frames reduces by a factor of
0.01 to accomplish an equivalent SNR. That would correspond to a power of approximately 1 GW.
The then required 580 000 frames could be collected within three minutes, assuming the same
repetition rate. Additional gains could be achieved by increasing power. For example, a 1 TW
incident pulse (0.6 mJ in 0.6 fs) would provide 0.18 photons per pixel per mode, dramatically
increasing the SNR. The presented experiment’s SNR would even be close to the saturation
discussed in Chapter 4. Additionally, multiple detectors could be placed to record the isotropic
X-ray fluorescence to increase the number of detected photons per shot and, thus, the number
of potential photon-photon correlations. This would provide a corresponding increase of the

84 Chapter 6 Summary and Outlook



SNR as well as the potential to increase the resolution to a limit of λ/2 with detectors arranged
in opposite directions. Together, all these factors would allow similar results as achieved in the
presented experiment with only tens to hundreds of pulses.

Based on that result, and the in this work discussed SNR scalings, incoherent diffraction
imaging via X-ray fluorescence should be feasible to obtain high-resolution three-dimensional
images of fluorescing structures. For example, for the real-time analysis of the formation and
evolution of dense plasmas (potentially interesting for plasma physics [33]). The presented
results are also consistent with predictions to image clusters and single molecules at atomic
resolution [13, 53, 112]. The small dimension of such objects substantially relaxes the detector’s
angular resolution requirements, making it practical to record fluorescence over large solid
angles with current pixel-array detectors. Unlike elastic scattering, where atomic scattering
factors fall precipitously with the scattering angle and require even greater exposure to in-
crease the spatial resolution, fluorescence is emitted uniformly in all directions. Therefore,
the imaging of atomic structures does not necessarily require higher intensities than discussed
here. Diffraction measurements of single particles or macromolecules [90, 108, 3] could be
readily combined with simultaneous fluorescence measurements, which themselves could be
extended to discriminate fluorescence photons over a wide spectral range. For example, imaging
substructures with IDI could be used to track charge transfer or progression of oxidation states
in the bio-complexes [114] of photosynthesis or other catalytic systems.

Presupposed a sufficiently good SNR, also higher-order correlations g(n)(k⃗1, . . . , k⃗n), with
n > 2 could be performed. Such correlations could enable higher resolutions [93, 36] and could
also be used to solve the phase problem [35, 124, 98]. However, it should be mentioned that
the complexity component of the SNR becomes more devastating for higher correlation orders.
In the worst case and in the high-intensity limit, the SNR could scale with SNR ∝ 1/cn, with c
denoting the complexity parameter.
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ATheory

A.1 Notation of probability distributions

In the scope of this work, we often use probability distributions to describe statistical processes.
Therefore, the following notation for the probability density was chosen:

P (x|a1, . . . an) , (A.179)

which represents the probability that a distributed variableX has the value x, given the parameter
a1, . . . an. In general, P (x|a1, . . . an) is normalized

� ∞

−∞
P (x|a1, . . . an) dx = 1 | ∀x ∈ R ,

∞∑
x=−∞

P (x|a1, . . . an) = 1 | ∀x ∈ Z ,
(A.180)

for float and integer values of x, respectively. The expectation value E(X) is calculated by

� ∞

−∞
P (x|a1, . . . an)x dx = E(X) | ∀x ∈ R ,

∞∑
x=−∞

P (x|a1, . . . an)x = E(X) | ∀x ∈ Z .
(A.181)

It should be emphasized that the expectation value must not be confused with the mean value
⟨X⟩. The mean value is calculated from an ensemble of N , P (x|a1, . . . an)-distributed yet
uncorrelated, random variables Xj

⟨X⟩ = 1
N

N∑
j=1

Xj . (A.182)

Only in the limit of N → ∞ ⇒ ⟨X⟩ → E(X) the mean becomes the expectation value.
The variance Var(X) is calculated as follows:

� ∞

−∞
P (x|a1, . . . an) (x− E(X))2 dx = Var(X) | ∀x ∈ R ,

∞∑
x=−∞

P (x|a1, . . . an) (x− E(X))2 = Var(X) | ∀x ∈ Z .
(A.183)
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A.2 Negative binomial distribution as a combination of
Bose-Einstein distributions

We use mathematical induction to prove that the sum of M Bose-Einstein distributed values
(Eqn. (2.63)) is indeed a negative binomial distributed value (Eqn. (2.63)). The relationship we
want to prove is given as

PNB(x|µ,M) !=
∞∑

a1=0

∞∑
a2=0

· · ·
∞∑

aM =0
δ

x,
∑M

j=1 aj

M∏
j=1

PBE

(
aj

∣∣∣∣ µM
)
, (A.184)

which states that the integer variable x with the expectation value E(x) = µ is the sum of M
Bose-Einstein distributed values aj , with the expectation value E(aj) = µ/M , each. We state
that the negative-binomial distribution returns the probability of x given µ and M .
Base case:

PNB(x|µ,M = 1) = PBE(x, µ) , (A.185)

that this is true can simply be demonstrated by substitution.
Induction step:
Since the base case is true, we need to prove that

PNB

(
x

∣∣∣∣µ+ µ

M
,M + 1

)
!=

∞∑
a1=0

∞∑
a2=0

δx,a1+a2PNB(a1|µ,M)PBE

(
a2

∣∣∣∣ µM
)

(A.186)

is the combination of a negative binomial distribution and a Bose-Einstein distribution. Since
δx,a1+a2 = 1 only if a1 + b1 = x and else 0, we can substitute a2 = x− a1 (and a1 = a) and drop
the second sum. Eqn. (A.186) then reduces to

∞∑
a1=0

∞∑
a2=0

δx,a1+a2PNB(a1|µ,M)PBE

(
a2

∣∣∣∣ µM
)

=
x∑

a=0

M1+Mµx(µ+M)−(M+x+1)(M + a− 1)!
a!(M − 1)! .

(A.187)
With the relation

∑x
a=0(a+M + 1)!/a! = ((1 +x)(M +x)!)/(M(1 +x)!), Eqn. (A.187) evaluates

to

x∑
a=0

M1+Mµx(µ+M)−(M+x+1)(M + a− 1)!
a!(M − 1)! = MM+1µx(M + µ)−(M+x+1)(M + x)!

M !x! ,

(A.188)
which equates exactly PNB

(
x
∣∣µ+ µ

M ,M + 1
)
■.
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Fig. A.1.: Two combined Bose-Einstein distributions with µ1 = µ/4 and µ2 = 3µ/4 (see Eqn. (A.190)),
along side the negative binomial distribution with M = 1.6 for (a) µ = 1 and (b) µ = 100.
Note the significant deviation for (b).

A.2.1 Real non-integer M by combining Bose-Einstein distributions
with different µ – approximated by negative binomial
distributions

The previous derivation is only valid for an integer number of modes M which is also a
consequence of the assumption of orthogonal states. However, we can combine modes with
different photon count expectation values.
As a first example, we combine two Bose-Einstein distributions, the first with µ1 = (1/4)µ and
the second with µ2 = (3/4)µ. The expected visibility is obtained by the probability that two
photons can interfere. Since the photons must belong to the same mode, the visibility, and thus
the expected (non-integer) number of modes, is given by

β 1
4 , 3

4
=
(1

4

)2
+
(3

4

)2
= 1
M 1

4 , 3
4

= 1
1.6 . (A.189)

The combined probability reads

P 1
4 , 3

4
(x|µ) =

x∑
x′=0

PBE(x′|µ/4)PBE(x− x′|3µ/4) = 2
(4 + µ)x

(
3x+1

(
4µ+ µ2)x

(4 + 3µ)x+1 − µx

4 + µ

)
.

(A.190)
The expectation value is E(x) = µ, and the variance Var(x) = µ + (1/1.6)µ2, as expected.
However, this is not a negative binomial distribution P 1

4 , 3
4
(x|µ) ̸= PNB(x|µ,M = 1.6), which

is illustrated in Fig. A.1, where P 1
4 , 3

4
(x|µ) is plotted together with PNB(x|µ, 1.6). For small

expectation values (here µ = 1), they seem to be in good agreement (see Fig. A.1a). However,
that is definitely not the case for larger µ (see Fig. A.1b, with µ = 100).
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Fig. A.2.: (a) Root mean square deviation between PNB(x|µ,M = 1.6) and P 1
4 , 3

4
(x|µ) as a function of µ.

(b) Root mean square deviation between PNB(x|µ,Mi + 0.5) and Pcombined(x|µ,Mi + 0.5) as a
function of µ for various Mi.

To quantify the deviation, we define the RMS error as

Err 1
4 , 3

4
(µ) =

∞∑
x=0

(
P 1

4 , 3
4
(x|µ) − PNB(x|µ,M = 1.6)

)2
, (A.191)

which is plotted in Fig. A.2a. We can see that the combined Bose-Einstein distributions with
different expectation values approximated as negative binomial distribution seems well justified
for small µ but needs to be seen with caution for larger µ.

To combine Bose-Einstein distributions to obtain a distribution with an arbitrary floating point
number of modes M , we split M = Mi +Mf into an integer-valued Mi and the remaining part
0 ≤ Mf < 1. The distribution is then calculated by

Pcombined(x|µ,M) =
∞∑

a1=0

∞∑
a2=0

· · ·
∞∑

aMi =0

∞∑
aMi+1=0

δ
x,
∑Mi+1

j=1 aj

Mi∏
j=1

PBE

(
aj

∣∣∣∣ µc1

)PBE

(
aMi+1

∣∣∣∣ µc2

)
,

(A.192)
with the divisors

c1 = Mi +
√

(1 −Mf)MiM

M − 1 , and

c2 = M +
√

(1 −Mf)MiM

Mf
.

(A.193)

The RMS error was calculated analogously to Eqn. (A.191), is plotted in Fig. A.2b for Mf = 0.5
and various Mi. We can see that the deviation decreases for larger Mi.
In general, n modes with arbitrary expected counts µj can be combined into a distribution

Pcombined(x|µ1, µ2, . . . µn) =
∞∑

a1=0
· · ·

∞∑
an=0

δx,
∑n

j=1 aj

n∏
j=1

PNB(x|µj) , (A.194)
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and the expectation value will be E(x) =
∑n

j=1 µj = µ and the variance Var = µ+µ2∑j=1
n µ2

j/µ
2,

regardless of the exact shape of this distribution. Then, the number of modes is given by

M =

 n∑
j=1

µ2
j

µ2

2

. (A.195)

Considering the exemplary evaluations presented in this section, we can state that for small
photon counts µ ≪ 1, the approximation of a negative binomial distribution is well justified.
These small photon counts are the case for the measured data discussed in this work. Also, note
that the derivation of Eqn. (4.148) in Chapter 4 is only based on the variances (see Eqn. (4.139)
and Eqn. (4.140)) and thus is not affected by the approximation discussed here.

A.3 Visibility

A.3.1 Gating by pulse duration: how to consider the pulse shape

There are two contradicting models on how to consider the excitation pulse shape. In Sec-
tion 3.1.1, the method proposed by Lohse et al. [74] was used. However, Inoue et al. [58]
proposed to use the ‘intensity envelope function’ instead of the normalized pulse shape:

P̃ (t) = Ce
− t

τl
+ σ2

t
2τ2

l erfc
(
σt√
2τ

− t√
2σt

)
. (A.196)

For our purposes, we have changed the notation P (t) → P̃ (t) to distinguish it from P (t) as
defined in Eqn. (3.93). We identify Eqn. (A.196) as the convolution of a Gaussian-shaped pulse

P (t) = 1√
2πσt

e
− t2

2σ2
t , (A.197)

with the fluorescence intensity, excited by a delta-like pulse:

Ifl(t) = τ−1
l e

− t
τl Θ(t) . (A.198)

Here τl = 1/(2τc) denotes the lifetime and Θ(t) the Heaviside step function. Now, the intensity
envelope function can be calculated by

P̃ (t) = P ∗ Ifl , (A.199)

and we obtain Eqn. (A.196), as published by Inoue et al.. Since normalization is required for
P̃ (t), the constant C in Eqn. (A.196) reads C = 1/(2τl). We can write the auto-correlation of the
‘intensity envelope function’ as

Π̃ = (P ∗ Ifl) ⋆ (P ∗ Ifl) . (A.200)
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Using the Fourier convolution theorem1, the Fourier cross-correlation theorem2, and the real
nature of P (t) ∈ R, combined with its symmetric shape P (t) = P (−t) ⇔ (F [P ])∗ = F [P ], we
can bring Eqn. (A.200) into the following form:

Π̃ = (Ifl ⋆ Ifl) ∗ (P ∗ P ) . (A.201)

With that, we can evaluate Eqn. (A.201) in two steps:

(Ifl ⋆ Ifl)(t) = 1
2τl

e
− |t|

τl , (A.202)

and

(P ∗ P )(t) = 1
2τl

1
2
√
πσt

e
− t2

4σ2
t . (A.203)

Then, convolution yields

Π̃(τ) = 1
4τl

e

σ2
t −τlτ

τ2
l

(
1 + erf

(
τ

2σt
− σt

τl

)
+ e

2τ
τl erfc

(
τ

2σt
+ σt

τl

))
. (A.204)

For the next step, we obtain the degree of coherence for a single emission line as |γ(τ)| = e−τ/(2τl).
Therefore, we consider only the natural line width (FWHM) Γl (no collision broadening), and
thus the lifetime is given as τl = ℏ

Γl
(which is half the coherence time τc = 2ℏ

Γl
).

Next, we calculate the partial visibility factor using Eqn. (3.98):

βP̃,Gauss =
� ∞

−∞
Π(τ)|γ(τ)|2 dτ = 1

2τ2
l

2σtτl√
π

+ e

σ2
t

τ2
l

(
τ2

l − 2σ2
t

)
erfc

(
σt

τl

) . (A.205)

In contrast to the limits of βp,Gauss(τc = 2τl, T = 2
√

log (4)σt) presented in Section 3.1.1, we
obtain the following limits:

lim
σt→0

βP̃,Gauss = lim
τl→∞

βP̃,Gauss = 1
2 ,

lim
σt≫τl

βP̃,Gauss = 1√
π

τl

σt
= 2

√
log (4)

2
√
π

τc

T
≈ 0.66τc

T
,

for comparison the results from Section 3.1.1:

lim
σt→0

βp,Gauss = lim
τl→∞

βp,Gauss = 1 ,

lim
T ≫τc

βp,Gauss = 1√
π

τl

σt
= 2

√
log (4)

2
√
π

τc

T
≈ 0.66τc

T
.

(A.206)

Apparently, we have two contradicting models, where the one by Lohse et al. [74] (used in
this work) assumes that only the time point of the (instantaneous) excitation matters, with the
consequence that in the limit of infinite coherence time or a delta-like pulse shape the partial
visibility factor βp is always one. However, Inoue et al. [58] use a different model, where the
different intensities (equally corresponding to the probability of decay) of the fluorescence over

1Fourier convolution theorem: F [f ∗ g] = F [f ] F [g].
2Fourier cross-correlation theorem: F [f ⋆ g] = (F [f ])∗ F [g].
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Fig. A.3.: (a) Comparison between the model from Lohse et al. [74] βp,Gauss and the model from Inoue
et al. [58] βP̃,Gauss. (b) Relative difference ∆βp, as defined in Eqn. (A.208).

time are considered. However, I would like to point out that in this case, that information is
considered twice. That is because the degree of coherence |γ(τ)| = (ψ ⋆ ψ)(τ)/

�∞
−∞ ψ∗(t)ψ(t) dt

does already encode the decaying envelope of the fluorescence wave function. This circumstance
gets clear when we write the calculation of βP̃ in a more general way by substituting the degree
of coherence with its definition:

βP̃ =
� ∞

−∞

(
(P ∗ |ψ|2) ⋆ (P ∗ |ψ|2)

)
(τ)

∣∣∣∣∣ (ψ ⋆ ψ)(τ)�∞
−∞ ψ∗(t)ψ(t) dt

∣∣∣∣∣
2

dτ . (A.207)

However, the reader should note that both approaches return the same partial visibility factor in
the long pulse limit (T ≫ τc). In fact, this convergence happens quite fast, as demonstrated in
Fig. A.3a. To emphasize this, the normalized difference defined by

∆βp :=
βp,Gauss − βP̃,Gauss

(1/2)(βp,Gauss + βP̃,Gauss)
, (A.208)

is plotted in Fig. A.3b. In the scope of this work, we stick to βp,Gauss, and since we are dealing with
excitation pulses around an order of magnitude larger than the coherence time, this distinction
is of no importance to the here presented results. However, this topic should be addressed in
further research, as it might become more relevant with the advent of XFELs featuring attosecond
pulses.
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Fig. A.4.: (a) βc as a function of T/τc for different time delays ∆τ . (b) βc as a function of T/τc, with
the time delay proportional to T : ∆τ = ηT

A.3.2 βc – worst case estimation derivation

To derive the minimal partial visibility factor βc(∆τ, T ) as given in Eqn. (3.112), we start with
Eqn. (3.111), where the assumption τ1 ≈ τ2 is used. We further assume a Gaussian-shaped
excitation pulse with an FWHM T to calculate Π(τ). With the calculated auto-correlation of
the normalized excitation pulse Π(τ) (recall Eqn. (3.97)), we can evaluate the integrals in
Eqn. (3.111) and obtain

βc(∆τ, τc, T ) =
e− 2∆τ

τc

(
erfc

(
T 2−∆τ τc ln(4)

T τc

√
ln(4)

)
+ e4∆τ erfc

(
T 2−∆τ τc ln(4)

T τc

√
ln(4)

))
2 erfc

(
T

τc

√
ln(4)

) . (A.209)

This βc is plotted as a function of T/τc in Fig. A.4a for three different ∆τ . It is apparent that for
longer excitation pulses (implying longer ∆τ), the size of the object becomes less relevant.
In the next step, we substitute the time delay by a variable proportional to the FWHM pulse
duration ∆τ = η T and plot βc(ηT, τc, T ) as a function of T/τc in Fig. A.4b. Apparently, βc first
falls and then saturates at a value that is only dependent on η. To obtain this value, we calculate
the limit

lim
T →∞

βc(∆τ = ηT, τc, T ) = e− ln(4)η2
, (A.210)

which turns out to be independent of τc. One can also show that this limit represents the lowest
possible value of βc for all T and τc:

βc(∆τ = ηT, τc, T ) ≥ e− ln(4)η2
∣∣∣ ∀T, τc . (A.211)

After substituting η = ∆τ/T , we obtain Eqn. (3.112) ■.

94 Chapter A Theory



10 4 10 3 10 2 10 1

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

H/
0

0 = 1
0 = 0.2
0 = 0.05
0 = 0.005
0 = 0.0001

Fig. A.5.: Plot of the estimated speckle contrast
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The approximation is worse, when the
true speckle contrast β0 is weaker. Note
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A.3.3 Further approximation of β1,2

There are publications [54, 88, 115] that use a simplified shape of the β1,2 speckle contrast
estimation. Here3, we shortly discuss their approximation and why we are not using it. The
β1,2 is approximated by neglecting values of three or more photons when estimating the mean
photon count (P≥3 = 0 ⇒ ⟨I⟩ = P1 + 2P2). Furthermore, a Taylor series expansion around
P2 = 0 yields

β1,2 ≈ 2(1 − P1)P2
P 2

1
− 1 + O(P 2

2 ) . (A.212)

For example, Hruszkewycz et al. [54] truncated that expansion to define an estimate,

βH = 2(1 − P1)P2
P 2

1
− 1 . (A.213)

We can calculate P1 and P2 directly from the negative binomial distribution (recall Eqn. (2.69))

P1(µ, β0) = β0µ(1 + β0µ)− β0µ+1
β0 Γ(1 + β−1

0 )
Γ(β−1

0 )
,

P2(µ, β0) = β2
0µ

2(1 + β0µ)− β0µ+1
β0 Γ(2 + β−1

0 )
2Γ(β−1

0 )
.

(A.214)

Substituting this into Eqn. (A.213) yields

βH(µ, β0) = (1 + β0)
(
(1 + β0µ)µ+1/β0 − µ

)
− 1 . (A.215)

Plots of βH Eqn. (A.215) normalized by the true visibility β0 are shown in Fig. A.5. Although
this estimate does not diverge at µ = 1, as does β1,2, it nevertheless becomes more inaccurate as
µ increases to or over 1, for all values of β0. The plot also reveals an undesired dependence of
βH on the true visibility β0. Summing up, to me, it is not apparent what the advantage of this
approach (βH instead of β1,2 or βV) is, and therefore it is not used in the scope of this work.

3The content of this section was already published in [122].
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Fig. A.6.: Influence of the detector size on the estimated speckle contrast using (a) β1,2 and (b) βV.
For each µ a set of 5 × 108 randum numbers was generated that follow the Bose-Einstein
distribution (of Eqn. (2.63)) and thus the true speckle contrast β0 = 1. These plots have
already been published in [122].

A.3.4 Influence of the detector size on speckle contrast estimation

Here4 we discuss the influence of the number of detector pixels on the accuracy of speckle
contrast estimation using the approaches introduced in Section 3.3 (recall Eqn. (3.128) and
Eqn. (3.129)). The estimate β1,2 requires that the probabilities for detecting one (P1) or two
photons (P2), as well as the value of ⟨I⟩, can be estimated sufficiently independently. To illus-
trate the need for many pixels, consider the case of a two-pixel detector. Recall Eqn. (3.129):
β1,2 = (2P2/⟨I⟩ − P1)/(P1 − P2), it is impossible to obtain β1,2 > 0 because this would require
either (2P2 > P1⟨I⟩) ∧ (P1 > P2) or (P1⟨I⟩ > 2P2) ∧ (2P2 > P1); that can not work with only
two pixels.

To further analyze the influence of the pixel count, we performed numerical simula-
tions by generating sets of random numbers that follows the Bose-Einstein distribution (recall
Eqn. (2.63)), which corresponds to β0 = 1 with different expectation values µ for each set. Each
set consisted of 5 × 108 numbers. The values in each set were then distributed into groups of
equal sizes, corresponding to the number of detector pixels. The speckle contrast was individually
evaluated for each of these ‘detector frames’ and averaged afterward to obtain an estimate of βV

or β1,2. These estimates, plotted in Fig. A.6 as a function of the number of pixels (detector size),
were obtained using the same total number of pixel readings since a smaller detector size gives
more detector frames to average.

It is seen from Fig. A.6a that in the limit of detectors with few pixels, the contrast estimate
approaches β1,2 = −1. The correct value is only obtained for pixel counts above about 104. We
note two properties: First, for lower µ, more pixels are required in order to obtain an accurate
estimate, and second, an insufficient pixel count can lead to an overestimation of the contrast
(β1,2 > β0). The same evaluation for βV yields the result illustrated in Fig. A.6b. Also here, the
limit of detectors with few pixels leads to an underestimation of βV, but in contrast to the β1,2

estimation, it converges monotonically to the true value as the pixel count increases.

4The content of this section was already published in [122].
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A.3.5 Derivation of Var(β1,2)

In5 order to calculate the variance of the β1,2 speckle contrast estimate σ2
β1,2

:= Var(β1,2), we
make use of the linear error propagation approximation [64], as given by

Var[f(x1, . . . , xn)] ≈
n∑

j=1

∣∣∣∣∣ ∂f∂xj

∣∣∣∣∣
2

σ2
xj
, (A.216)

neglecting possible correlations between xj and xk for j ̸= k. To obtain σ2
β1,2

we need σ2
P1

, σ2
P2

and σ2
⟨I⟩. Therefore, we assume a sufficiently large detector, where sufficiently large means

that P1 and P2 can be obtained acceptably independent from each other. A trivial negative
example would be a one-pixel detector, where we have no chance of obtaining a one-photon and
a two-photon hit within a single measurement. That might sound very obvious, but please note
that our treatment requires that all Pj are independently measurable observables. Thus Pj is
found simply by counting j-photon events and then dividing the count by the number of pixels
Pj = nj/NPix. This is a counting process that satisfies the Poisson statistics [44], with σ2

Pj
= Pj

(Pj(µ, β) = PNB(j|µ, β), recall Eqn. (2.69)), and therefore we obtain

σ2
P1 = µ

(1 + β0µ)(1+β)/β
,

σ2
P2 = 1

2
(1 + β)µ2

(1 + βµ)2+1/β
.

(A.217)

We have ignored the factor 1/NPix since it is constant and applies equally to all terms. The
expectation value µ is approximated by the mean photon count µ = ⟨I⟩ and thus its variance is
given by the variance of the negative binomial distribution (recall Eqn. (2.68))

σ2
⟨I⟩ ≈ ⟨I⟩ + β⟨I⟩2 . (A.218)

Now Eqn. (A.216) can be applied to Eqn. (3.129), and we obtain

σ2
β1,2 ≈ (1 + β)(1 + β⟨I⟩)

(⟨I⟩ − 1)2⟨I⟩2

(
(1 + β)⟨I⟩ + (2 + ⟨I⟩ + 3β⟨I⟩)(1 + β⟨I⟩)2+β−1)

. (A.219)

5The content of this section was already published in [122].
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A.3.6 Derivation of Var(βV)

Here6 we derive σ2
V in an analogous way to Appendix A.3.5. Therefore, we express the mean

number of counts as a function of the photon probability, which reads

⟨I⟩ =
∞∑

j=0
jPj , (A.220)

and its variance

Var(I) =
∞∑

j=0
(j − ⟨I⟩)2Pj . (A.221)

With this, we can write βV (recall Eqn. (3.128)) as a function of {Pj} as

βV =
∑∞

j=0 Pj (j − (
∑∞

n=0 nPn))2 −
∑∞

j=0 jPj(∑∞
j=0 jPj

)2 . (A.222)

As in Appendix A.3.5, we assume that all Pj follow Poisson statistics since they originate from
countable observables, and thus the variance of βV, in the linear error propagation approximation,
is given by

σ2
βV

≈
∞∑

j=0
Pj

∣∣∣∣∣∂βV

∂Pj

∣∣∣∣∣
2

. (A.223)

To evaluate this equation, we need to differentiate Eqn. (A.222) with respect to all Pj . This can
be done, and the result simplifies nicely to

∂βV

∂Pj
= (j − 1)j − 2j(1 + βµ) + µ2

µ3 . (A.224)

Now we can express Eqn. (A.223) as a function of ⟨I⟩ ≈ µ and β,

σ2
βV

≈ 2 + 2β3⟨I⟩2 + β2⟨I⟩(4 + 3⟨I⟩) + β(2 + 4⟨I⟩)
⟨I⟩2 . (A.225)

6The content of this section was already published in [122].
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A.4 SNR analysis

A.4.1 IDI simulation of 3D crystals

For the IDI simulations of three-dimensional crystals, we assume a 500 × 500-pixel detector with
a pixel size of 100µm × 100µm, placed at a distance of 50 mm from the sample. We consider
a cubic crystal sample consisting of simple cubic unit-cells with a lattice constant of a = 5Å
and with one emitter per cell. Each snapshot pattern is simulated by generating a random
phase ϕ = [0, 2π) for each emitter and mode. The combined scalar wave function arising from
the emission of all emitters is calculated for each pixel, using the far field approximation and
considering a wavelength of λ = 2Å. Furthermore, we neglect the quadratic decay of intensity
with distance, equivalent to the assumption that each pixel covers an equal solid angle. This is
done to keep µ constant on the detector so we can focus on investigating the effects of interest
without unnecessary complexity. The wave function was evaluated on a grid of nine points
that sub-divides each pixel to ensure an accurate representation of the recorded signal. The
continuously-valued intensity for a pixel centered at r⃗pix therefore reads

Ic(r⃗pix) = 1
9M

M∑
m=1

9∑
s=1

∣∣∣∣∣∣
NE∑
j=1

e
i

2πr⃗pix,s·r⃗j
λ|r⃗pix,s|

∣∣∣∣∣∣
2

, (A.226)

where r⃗pix,s are the sampling positions within the pixel at r⃗pix, and M = β−1 is the number
of mutually incoherent modes (this type of simulation only allows for an integer number of
modes). The continuously-valued intensity Ic is then rescaled (according to the fraction of
the pixels solid angle Ω, here assumed to be equal for all pixels, and the number of photons
per emitter Nγ , to achieve a certain µ). After this scaling, a Poisson discretization is applied
I(r⃗pix) = PoissSampl

(
µ

⟨Ic⟩Ic(r⃗pix)
)
.

The auto correlation is calculated as follows

AC(q⃗ ) = 1
C(q⃗ )

Npix∑
j=1

Npix∑
l=1

I(r⃗pix),jI(r⃗pix),l Υ
(2π
λ

(r⃗pix,j − r⃗pix,l), q⃗
)
, (A.227)

where Υ(⃗a, b⃗) is defined as a modified top hat function

Υ(⃗a, b⃗) :=

1 for |aj − bj | < ∆Vox/2 | j = {x, y, z} ,

0 else .
(A.228)

∆Vox represents the voxel edge size in a discretized G(2)-space. The usage of Υ, therefore,
represented a nearest-neighbor interpolation of q⃗. If we do not have a spherical 4π-detector, the
number of possible realizations of q⃗ generally varies.
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Therefore, we define the function C(q⃗ ) as the density of realizations, which reads

C(q⃗ ) = 1
C(q⃗ )

Npix∑
j=1

Npix∑
l=1

Υ
(2π
λ

(r⃗pix,j − r⃗pix,l), q⃗
)
, (A.229)

The G(2) is then obtained by averaging NP patterns (independent auto correlations)

G(2)(q⃗ ) = ⟨AC(q⃗ )⟩NP = 1
NP

NP∑
p=1

ACp(q⃗ ) . (A.230)

To obtain the variance of G(2), we perform the whole simulation twice, with exactly the same
parameters (but with different realizations of the random phases), to obtain G

(2)
1 and G

(2)
2 .

The variance is then estimated by the C(q⃗ )-weighted, squared difference of these two auto-
correlations:

VarSim3D =
∑NVox

j=1

(
G

(2)
1 (q⃗j) −G

(2)
2 (q⃗j)

)2
C(q⃗j)

2
∑NVox

j=1 C(q⃗j)
. (A.231)

It should be noted that we have used quite small crystals (starting from 5 × 5 × 5 unit-cells) in
our simulations. Therefore the Bragg peaks that arise in G(2) have non-negligible side maxima
that are not easily distinguished from fluctuations in the offset. Fixed integration boundaries
would therefore lead to the situation that the amount of side maxima contributions within the
integration could vary. To avoid this, we chose to set the integration limits to the positions of the
first-order minima q1st min = ±2π/( 3√NEa). Even so, the signal within this integration boundary
is only proportional to NE in the limit of large crystals. Therefore, we calculated peak weighting
factors as7

PWF(NE) = NE

� 2π
3√NEa

− 2π
3√NEa

∣∣∣G(1)
theo(q⃗, NE)

∣∣∣2 dqx dqy dqz

−1

, (A.232)

where G(1)
theo are the theoretically calculated Bragg peaks as given by Eqn. (4.158).

One remark on the auto-correlation: if one wants to evaluate data from a real experiment,
the C(q⃗ ) should be calculated with an altered Eqn. (A.227)

C(q⃗ ) = 1
C(q⃗ )

Npix∑
j=1

Npix∑
l=1

⟨I(r⃗pix),j⟩NP⟨I(r⃗pix),l⟩NP Υ
(2π
λ

(r⃗pix,j − r⃗pix,l), q⃗
)
, (A.233)

where the photon count at a certain pixel I(r⃗pix) is substituted by the over all pattern averaged
photon count at that pixel ⟨I(r⃗pix),j⟩NP . This takes care of systematic inhomogeneous intensity
distributions among the pixels (detectors), as, for example, different solid angle overages per
pixel, or constant biases.

7Please note, that there is a typo in [121], where it should read ‘
∣∣G(1)(q⃗, NE)

∣∣2’ instead of ‘
∣∣G(1)(q⃗, NE)

∣∣’.
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A.4.2 IDI simulation of 2D objects

IDI simulations of two-dimensional objects were used for the analysis of non-crystalline, arbitrary
samples. As with the simulations of crystals described in Appendix A.4.1, we assume a detector
in the far field, but now the object’s emission density is represented by a two-dimensional array
of emission values, ρ(x, y), instead of discrete emitters located at arbitrary coordinates. Each
emission value of the object is assigned a random phase ϕm(x, y) = [0, 2π) per mode m. The
continuously-valued scalar wavefield intensity, considering M = β−1 mutually incoherent modes,
is then proportional to

Ic(kx, ky) =
M∑

m=1

∣∣∣DFT(2)[ρ(x, y)eiϕm(x,y)](kx, ky)
∣∣∣2 , (A.234)

making use of the 2D discrete Fourier transform DFT(2). The continuous intensity is represented
by a 2D array of the same size as ρ(x, y). The intensity is then scaled to enforce a given mean
pixel intensity µ, and a Poisson discretization is applied I(kx, ky) = PoissSampl

(
µ

⟨Ic⟩Ic(kx, ky)
)
.

The auto-correlation is performed using the Fourier-cross correlation theorem

AC(qx, qy) = iDFT(2)
[∣∣∣DFT(2)[I(ky, ky)](k̃x, k̃y)

∣∣∣2] (qx, qy) , (A.235)

where iDFT(2) denotes the 2D inverse discrete Fourier transform. Contrary to the 3D case with
a detector of limited solid angle, here, the full two-dimensional k⃗-space is covered. Therefore,
C(qx, qy) = Npix is constant. To quantify the useable signal and the variance of G(2), |g(1)|2,
which is given by ∣∣∣g(1)(qx, qy)

∣∣∣2 =

∣∣∣DFT(2)[ρ(x, y)](qx, qy)
∣∣∣2∣∣∣DFT(2)[ρ(x, y)](0, 0)
∣∣∣2 , (A.236)

can be used as ‘ground truth’. The signal and background can now be obtained as fit parameters
(S,O) with the best-fit model

G(2)(qx, qy) = O + S
∣∣∣g(1)(qx, qy)

∣∣∣2 + ϵ(qx, qy) . (A.237)

Then, the variance is calculated by

VarSim2D = 1
Npix

Npix∑
qx,qy

(
O + S

∣∣∣g(1)(qx, qy)
∣∣∣2 −G(2)(qx, qy)

)2
. (A.238)

It should be noted that for the fitting, Eqn. (A.237) and the calculation of the variance
Eqn. (A.238) the zero-frequency component (qx = qy = 0) is ignored. This is done because this
component follows a different statistic, as already discussed in Section 4.1.1.
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A.4.3 Examples of the dependence of the variance of g(2) on the
detector configuration and correlations within the offset term

In Section 4.1, the derivation of the variance of the autocorrelation, VarAC(q⃗ ), depends upon the
strong assumption that the counts measured at different detector pixels are uncorrelated. Since
this assumption may seem quite unsatisfactory, here some problems are illustrated one has to
face when dropping that assumption. Also, we demonstrate that increasing NP does not have
the same effect on the SNR as increasing C(q⃗ ) in the limit of large values.

Consider a simple one-dimensional array of emitters. The single emitters must be understood
as thermal light sources which are so bright that the high-intensity limit µ ≫ 1 applies, and thus,
we can neglect Poisson noise. This denotes the classical limit, where (X-ray) light is not treated
as energy quanta (photons) but as continuous energies (integrated intensities). Please note that
we discuss the limits of the theory presented in Section 4, and the inclusion of Poisson statistics
would not solve the issues we are discussing here but instead certainly not make the situation
less complicated in any way.

Two classical emitters – a thought experiment

As a first sample, we choose two emitters at the positions r1 = 0 and r2 = R. We further
assume that the integrated intensity signals are measured with two independent detectors (or
two detector pixels) at the positions k1 = 0 and k2 = q. The correlation product can then be
written as8

I(k1 = 0) · I(k2 = q) =
2∑

j,j′,l,l′=1
eik1(rj−rj′ )eik2(rl−rl′ )ei(ϕj−ϕj′ +ϕl−ϕl′ )

= 4
(

cos
(
qR

2

)
+ cos

(
qR

2 − ϕ1 + ϕ2

))2
.

(A.239)

Next, we average over all possible realizations of the phases ϕj = [0, 2π), which is equivalent to
an average over an infinite number of patterns ⟨I(k1 = 0) · I(k2 = q)⟩NP to obtain G(2)(q) as

G(2)(q) = 1
(2π)2

� 2π

0

� 2π

0
4
(

cos
(
qR

2

)
+ cos

(
qR

2 − ϕ1 + ϕ2

))2
dϕ1 dϕ2

= 4 + 2 cos (qR) .
(A.240)

It should be noted that the SOR of this equation neither corresponds to a TLS (see Eqn. (2.89))
nor to SPEs (see Eqn. (2.88)). However, these differences are not relevant to the SNR discussion
since they vanish in the limit of a large number of emitters NE, which is generally assumed
in the scope of this work. However, because of the small number of emitters in this example,
we are able to calculate the variance of G(2)(q) analytically by integrating over all possible

8Please note, that the equation (C1) in [121] is wrong and should be replaced by Eqn. (A.239). However
equation (C2) in [121] is right and therefore, the conclusions are still valid.
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combinations of the random phases. In general, for objects with NE emitters (and therefore NE

random phases), the variance reads9 in the two detector configuration:

VarG(2)(q) = 1
(2π)NE

� 2π

0
. . .

� 2π

0

(
G(2)(q) − I(k1 = 0, {ϕ})I(k2 = q, {ϕ})

)2
d{ϕ} . (A.241)

For our two emitters object, we obtain the variance as

Var = 18 + 16 cos (qR) . (A.242)

If we alter the situation to use more than two independent detectors – say, an infinite number
of detector pixels in this thought experiment – covering the full relevant area from q = 0 to
q = 2π/R, we can write the correlation as

R

2π

� 2π
R

0
I(k, ϕ1, ϕ2) · I(k + q, ϕ1, ϕ2) dk = 4 + 2 cos (qR)

∣∣∣ ∀ϕ1, ϕ2 . (A.243)

That may not seem so surprising since, under the assumption of uncorrelated photon counts,
more detector pixels (which implies a larger C(q)) could be seen as equivalent to more patterns,
recall Eqn. (4.155). However, we will discuss in the next step, where we increase the number of
emitters, that this assumption can not be maintained without loss of generality.

Three classical emitters – another thought experiment

In this step, we add an emitter to our sample so that it now contains three emitters with the
positions r1 = 0, r2 = R/2, and r3 = R. Then the G(2)(q) is given by

G(2)(q) = 9 + 4 cos
(
qR

2

)
+ 2 cos (qR) , (A.244)

and plotted in Fig. A.7a. The variance, calculated using Eqn. (A.241) and assuming two detectors
reads

Var2 detectors(q) = 88 cos (qR) + 176 cos
(
qR

2

)
+ 8 cos

(3
2qR

)
+ 142 . (A.245)

9Please note, there is a minor typo in equation (C3) of [121]: it should read I(0, {ϕ}) instead of I(0, ϕ).
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We can also calculate the infinite detector in analogy to Eqn. (A.243) and obtain10

R

4π

� 4π
R

0
I(k, ϕ1, ϕ2, ϕ3) · I(k + q, ϕ1, ϕ2, ϕ3) dk = 9 + 4 cos

(
qR

2

)
+ 2 cos (qR)

+ 2 cos
(
qR

2 − ϕ1 + 1ϕ2 − ϕ3

)
+ 2 cos

(
qR

2 + ϕ1 − 2ϕ2 + ϕ3

)
.

(A.246)

The different integration boundary to that of Eqn. (A.243) is required to sample the full diffraction
information.

We see that, as opposed to the case in Eqn. (A.243), the single pattern measurement with
the infinite detector is still dependent on the random phases. Therefore, averaging over pixels
within a single pattern is not equivalent to averaging over more realizations of patterns with
fewer pixels. In other words, the effect of the C(q⃗ ) on the SNR is limited.

After averaging over the random phases in Eqn. (A.246) we obtain the same result as in
Eqn. (A.244), as expected. When calculating the variance, using Eqn. (A.241), we obtain

Varinfinite detector(q) = 4 + 4 cos (qR) . (A.247)

This variance differs from that with only two independent detectors (recall Eqn. (A.242)) not
only in terms of scaling but also in terms of its dependence on q, see Fig. A.7b. These differences
originate from the fact that the intensity (counts) measurements within one pattern are not only
correlated due to the emission structure of the object but also due to the fact that the terms that
form the offset are correlated. This also leads to the situation that the maxima of the SNR, see
Fig. A.7c, are not necessarily at the same q-positions as the maxima of G(2)(q).

10Please note, that in equation (C7) of [121] it should read ‘I(k, ϕ1, ϕ2, ϕ3)·I(k+q, ϕ1, ϕ2, ϕ3)’ instead of ‘I(k, ϕ1, ϕ2)·
I(k + q, ϕ1, ϕ2)’.
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Fig. A.7.: One dimensional object consisting of three incoherent emitters, with a distance of 0.5. (a)
G(2)(q) signal. (b) Variance of G(2) as a function of q for two detectors seperated by q (solid
blue line) and for a 1D-detector of infinite sampling (dashed orange line), covering the full
q-space. Note that there is not only a difference in scaling but also in the form of the variance.
(c) SNR as a function of q for the same object and detector configurations as in (b). Note that
for the ‘infinite’ detector the SNR maxima are not at the points of the maximal signal, see(a).
These figures were already published in [121].
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BData Processing

B.1 Photonization of detector values (Jungfrau)

This process was already described in [122]. The data measured with a Jungfrau detector (in
the scope of the experiment presented in Section 3.2) were calibrated as follows. We started
with the pre-calibrated data provided by psana [15].

Dark calibration:
Instead of using dark runs, the noise peak of the histogram of data values was fitted for each
pixel separately and used to generate maps of the dark noise (the so-called dark fields) for each
run individually. This approach was possible since all recorded images were sparse (with photon
counts ≪ 1 per pixel). This dark calibration process is slightly better than measuring dark runs
since the dark current drifts over time and thus may differ at the time of measurement of the
dark run and the actual data.

Gain calibration:
Since we were only interested in the iron Kα-fluorescence at 6.4 keV, the detection of different
energies was minimized by using a manganese foil filter and a scattering angle where elastic
scattering is minimal due to suppression by the polarization of the direct beam. We fitted
the 6.4 keV peak for each pixel (using all available data) and calibrated each pixel (with the
assumption that the Jungfrau detector behaves sufficiently linear) such that an ADU (arbitrary
detector unit) value for one 6.4 keV photon was re-scaled to 1.0.

Largest adjacent pixel (LAP) photonization:
To take care of charge sharing and to assign an integer photon count for each pixel, we made
use of a method we call largest adjacent pixel (LAP), which is equivalent to the Psana Photon
Converter described by Sun et al. [115].

This method is presented as an example in Fig. B.1 on some arbitrary values, where Fig. B.1a
represents the ground truth and Fig. B.1b the detector values (ADUs). In the first step, the value
is split into whole (integer) numbers, see Fig. B.1c, and the remaining fractional values Fig. B.1d.
Using the assumption that charge sharing only occurs between two adjacent pixels (sharing an
edge), we select pixels above a certain value (here xseed = 0.5) and combine each with their
larges adjacent pixel, see Fig. B.1e. If the combined value exceeds a certain threshold (here
xtrh = 0.8), the pixel is assigned a photon.
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(a) ground truth

0.003 0.028 0.9 -0.019 -0.15 -0.005

-0.01 0.028 0.003 -0.064 0.009 0.026

1.1 0.16 -0.001 0.3 1.7 -0.12

0.13 1.6 -0.079 -0.006 0.046 -0.008

-0.005 0.023 0.055 0.064 0.96 -0.034

-0.025 -0.027 -0.074 0.003 -0.075 0.007

(b) calibrated ADUs

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(c) full photons

0.003 0.028 0.9 -0.019 -0.15 -0.005

-0.01 0.028 0.003 -0.064 0.009 0.026

0.1 0.16 -0.001 0.3 0.7 -0.12

0.13 0.61 -0.079 -0.0064 0.046 -0.008

-0.005 0.023 0.055 0.064 0.96 -0.034

-0.025 -0.027 -0.074 0.003 -0.075 0.007

(d) fractional ADUs

0 0 0.93 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0.77 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

(e) combined ADUs

0 0 1 0 0 0

0 0 0 0 0 0

1 0 0 0 2 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

(f) reconstructed photons

Fig. B.1.: Illustration of the LAP algorithm, for details see text. This figure was already published
in [122].
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The advantages of this method are that it is fast (maximum linear run-time dependence on the
photon count) and requires only two free parameters (xseed and xtrh), and thus features great
robustness. The disadvantage is that higher photon counts are underestimated in comparison
with lower counts (as visible in the example).

B.2 Imaging demonstration experiment

B.2.1 Selection of ‘good’ frames

Due to the design of the experiment with the Cu foil and the detector in the forward direction, it
was unavoidable that some amount of the direct beam passed through the foil. Recall the craters
in the foil, shown in Fig. 5.2, and it gets clear that it also can happen that a crater is so big that
the next XFEL pulse can partially pass through it. In those cases, a higher mean photon count
in the center of the AGIPD detector is expected. Those frames, with an increased number of
coherently scattered photons, needed to be rejected.

To identify these frames, the average photon count per pixel in the central part of the
detector, see Fig. B.2a, ⟨Icentral⟩, and the outer part, see Fig. B.2b, ⟨Iouter⟩ are computed. The
discrimination value is then defined as

d := ⟨Icentral⟩ − ⟨Iouter⟩
⟨Iouter⟩

. (B.248)

All frames with |d| ≥ 0.2 were rejected – approximately 25 % of all recorded frames.
A possible strategy to increase the number of ‘good’ frames could be to choose a faster spinning
speed of the disk (which was not possible here since the hardware limited the speed to 5000 rpm)
or to use thicker foils to absorb more of the direct beam, but on the cost of a fluorescence
intensity loss.
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Fig. B.2.: (a) Central area of AGIPD detector. (b) Outer area of AGIPD detector. Note, that within this
figure, the panels are not arranged according to the actual detector geometry.

B.2.2 Auto-correlation, Detector artifacts, and Pixel masking

The auto-correlation is normalized by the number of realizations, given for the corresponding
(qx, qy)-position1, by the so-calledC(qx, qy)-map as introduced for the simulations in Eqn. (A.229).
For experimental data, however, it is favorable to normalize by the auto-correlation of the
averaged intensity since this will automatically take care of ‘static’ inhomogeneous features, such
as static detector artifacts or shadows. The C(qx, qy)-map is obtained by

C(qx, qy) =
∑
x,y

⟨I(x, y)⟩x,y⟨I(x+ qx, y + qy)⟩x,y , (B.249)

where ⟨I(x, y)⟩x,y is the average photon count of the pixel (x, y), and the sum goes over all
possible pixels pairs with the position difference qx and qy. The auto-correlation is then given
by

g(2)(qx, qy) = 1
N

∑
x,y⟨I(x, y)I(x+ qx, y + qy)⟩x,y

C(qx, qy) . (B.250)

The scaling N is obtained by calculating the median of the C(qx, qy) normalized auto-correlations
in (qx, qy)-regions, where g(2) is expected to be unity (regions where no ‘usable signal’ is present,
here |qx,y| > 30). This is required since the individual frames (patterns) have different mean
photon counts (recall Fig. 5.3b).

Even though the C(qx, qy)-normalization takes care of many intensity inhomogeneities
and unwanted detector behavior, bad pixel masking is still necessary. Besides the obvious bad
pixels (hot and cold pixels) and constant shadows, there were also some unwanted artifacts that
randomly moved around. For example, on the entrance Kapton-window of the helium flight
tube, some Cu was deposited over time, which was ablated from the Cu foil. Together with a, in
terms of position, not perfectly stable beam, this caused small shadows to slowly and randomly

1In opposite to the main part, x, y as well as qx, qy are given in the unit of pixels here.
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Fig. B.3.: (a) Moving shadows on the AGIPD (see red cross for reference). Averaged photon counts of
approximately 750 000 frames at the same region. The displayed averages collected at intervals
of 50 min. (b) RMS of averaged frames, used to improve pixel-masks.

move around; for example, see Fig. B.3a. These movements were used to improve the pixel
masks by calculating the RMS of the averaged intensity. Therefore the photon count average
over a certain number of frames is computed (in the presented case NP ≈ 750 000), and the RMS
of 74 of such averaged intensities is displayed in Fig. B.3. The spots of high variance can easily
be discerned and were used to improve the pixel-masks, ba applying appropriate thresholds.
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B.2.3 Phase retrieval

An2 image of the fluorescence emitter distribution was obtained by phasing the measured
|g(1)(qx, qy)| =

√
g(2)(qx, qy) − 1 map (see Fig. 5.7a). The simplest iterative phase retrieval algo-

rithm, error reduction, alternatively enforces the Fourier transform magnitude of the estimated
image to be equal to |F |(= |g(1)|), and the structure to be smaller than a given size or within a
shape called the ‘support’ [32]. Here, a variation of the Shrinkwrap algorithm [81] was used, in
which the support region is determined from the N strongest pixels of a blurred version of the
current iterate. The support was updated on each iteration. The number of pixels in the support
was initially set to N = 450 pixels and the blurring utilized a Gaussian kernel with a RMS width
σ that was initially set to 4 pixels. In addition, we constrained the real-space image ρ(x, y) to be
real and positive.

Starting with random Fourier phases, iterations alternated between error reduction and
the difference map algorithms [26, 25]. This process was repeated 200 times during which the
support area shrank to an area of N = 300 pixels, and the Gaussian smoothing kernel size
shrank to σ = 0.25 pixels. The difference map algorithm avoids local minima using a combination
of constraint operations that reaches a fixed point at the solution [26]. To further reduce the
possibility of local minima, the hybrid input-output algorithm [32] was used in the iterations
25,50,75,100, and 125.

In Fig. B.4a the normalized RMS error [31] is plotted as a function of iterations for 5
randomly chosen phase retrievals. The metric is defined by

E2
n =

∑
qx,qy

|fn(qx, qy) − |F (qx, qy)||2∑
qx,qy

|F (qx, qy)|2
, (B.251)

where fn denotes the Fourier amplitudes of the nth iterate and |F | = |g(1)| the measured
amplitudes.
In the presence of noise, a reliable image estimate can be obtained by averaging many trials of
the above described procedure [110]. For the present evaluation 1000 of such estimates where
computed, each from a different random start. The used real-space operation of selecting the
450 strongest pixels does neither constrain the position of the structure, nor does it distinguish
between an image and its centrosymmetric inverse. Therefore each estimation was brought into a
common alignment and orientation by correlating to a reference estimate prior to averaging [31].
To demonstrate the convergence, the standard deviation archived for different numbers of
averages was determined. Fifty sets of real-space image estimates were computed and in each
set n of these estimates were averaged, to return the averages ⟨ρm(x, y)⟩n (with m = [1, 50]).
The normalized standard deviation σn is then defined by

σ2
n =

∑
x,y

1
50
∑50

m=1 |⟨ρm(x, y)⟩n − ⟨ρm(x, y)⟩n,m|2∑
x,y |⟨ρm(x, y)⟩n,m|2

, (B.252)

where ⟨ρm(x, y)⟩n,m denotes the average of all 50 averaged images. This normalized standard
deviation is plotted in Fig. B.4b as a function of the number of averages n.

2The content of this section was already published in [123].

112 Chapter B Data Processing



20 40 60
number of iterations  n

0.2

0.3

0.4

0.5

0.6

no
rm

al
ize

d 
RM

S 
er

ro
r E

n

(a)

0 10 20 30 40 50 60
number of averages  n

0.2

0.3

0.4

0.5

0.6

0.7
no

rm
al

ize
d 

RM
S 

er
ro

r 
n

(b)

Fig. B.4.: (a) Normalized RMS error as a function of iterations for 5 randomly chosen retrievals. (b)
Normalized standard deviation of the average of individual iterates, defined by Eqn. (B.252).
These figures were already published in [123].
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