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Abstract 

Tracking sequential information allows children to quickly acquire environmental 

statistics which is important for, e.g., language learning. Thus, it has been suggested that 

children should excel in implicit statistical learning and outperform adults therein. Older 

children and adults seem to rely more on explicit learning mechanisms. Findings on how the 

retention and the generalization of sequential regularities changes across development have 

been inconsistent, however. The employed research designs did not allow drawing 

conclusions, neither about long term retention, nor about transfer of sequential knowledge. 

The present dissertation aimed at closing this gap by investigating three child groups 

(5-year-olds, 6-year-olds, 7-year-olds) and two independent groups of adults, who learned 

visual sequences which were defined by complex rules as defined by an Artificial Grammar 

(AG). This age range was selected due to well-known extensive changes in cognitive 

functions, such as memory and cognitive control. All groups completed three learning 

sessions on separate days over the course of one week (Year 1). After one year, remaining 

AG knowledge was tested in three “relearning” sessions with the original item set (Year 2). 

In a subsequent session, transfer to a new visual stimulus set was tested which implemented 

the same AG. Seven-year-olds and one adult group served as controls for the other groups 

after the delay, so their study design differed slightly. They both had an additional transfer 

session at the end of Year 1, to test rule generalization before the delay. Their learning 

trajectories were discussed separately as Project 1, while learning outcomes of 5-year-olds, 6-

year-olds and the second adult group were compared in Project 2. Project 1 and Project 2 

both included assessments of explicit sequence knowledge and memory and German 

grammar skills in children and adults, which were related to AG learning for all participating 

groups in Project 3. 

We hypothesized to find an increase in learning performance across sessions in all 

child groups and adults for the first stimulus set in Year 1. We expected to observe preserved 

AG knowledge as well as transfer effects in all groups. Younger age groups were predicted to 

feature higher retention over one year and quicker relearning of the AG with the first stimulus 

set, and to show larger transfer to a second stimulus set in Year 2. Additionally, we assumed 

that children predominantly rely on implicit knowledge, while adults acquire more explicit 

knowledge about the underlying AG. We predicted that higher capacities in working memory 

and declarative memory retrieval, and stronger German grammar skills are associated with 

better AG task performance. 
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Children from 6 years onwards successfully learned the visual AG, showing an adult-

like increase in learning across three sessions while being continuously outperformed by 

adults. All age groups used their acquired AG knowledge after a 12-month delay for quicker 

relearning of the same input that enabled them to reach higher final performance levels, as 

compared to Year 1. Furthermore, all age groups transferred their AG knowledge to new 

surface features. However, relearning results did not confirm that younger children 

outperform older children and adults in the long run (Project 1 & Project 2). When 

controlling for maturational effects after the delay in 5-year-olds and 6-year-olds, both groups 

showed quicker re-acquisition of AG rules in the first session compared to age-matched naïve 

controls. The group who started at 5 years of age showed gains from prior learning when they 

were relearning at age 6 years, even though they had not demonstrated successful learning of 

the AG in the first year (Project 2). Levels of explicit AG knowledge did not differ between 

any of the investigated age groups (Project 1 & Project 2). Exploratory evidence was 

provided that memory skills (working memory & declarative memory encoding/retrieval), 

and to a lower degree German grammar skills, were associated with multi-session AG 

learning outcomes (Project 3). 

The present findings corroborate the idea that repeated exposure to sequential 

regularities results in long-lasting memory traces and the ability to generalize these 

regularities to a situation with new visual input. However, the current study does not provide 

support for superior retention of sequential regularities over a longer time period early in 

development, neither for younger children as compared to older children, nor for children as 

compared to adults. 
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Children are excellent learners, who seem to quickly acquire new skills like language 

without much effort and despite the fact that their general cognitive abilities are still 

developing. By age four to five years (Werker & Hensch, 2015), they master the grammar of 

their native language, even though they are able to store and update only a limited amount of 

information in their working memory (Gathercole, 1998), are poor at remembering specific 

episodes or facts (Gathercole, 1998; Keresztes et al., 2017), and struggle at switching 

between different task demands or inhibiting prepotent responses to irrelevant input (Hughes, 

2013; Ramscar & Gitcho, 2007). A large body of research has addressed the question, which 

environmental factors and neurocognitive mechanisms contribute to making childhood a time 

of effective and adaptive learning (Aslin, 2017; Gualtieri & Finn, 2022; M. H. Johnson & 

Munakata, 2005; Ramscar & Gitcho, 2007). A potent cognitive mechanism that allows 

learners to effortlessly extract environmental regularities has been identified from studying 

language development: Saffran et al. (1996) were the first to show that infants use frequency 

information from co-occurring syllables to learn words from continuous speech input. This 

mechanism was termed “statistical learning” and subsequent research has since provided 

evidence that it operates not only on auditory/language input, but allows the extraction of 

visual, visuomotor and tactile patterns from the environment (Conway, 2020). Furthermore, 

statistical learning mechanisms are available to learners of a wide age range from infancy to 

adulthood (Aslin, 2017; Conway, 2020), and aid the acquisition of more complex – e.g., non-

adjacent – regularities (Mueller et al., 2018; van der Kant et al., 2020), which are important 

for skills like grammar learning (Uddén & Männel, 2018). 

The tracking and use of environmental regularities is most often discussed in the 

context of language learning, e.g., how we learn syntax rules and segment speech input into 

words. This mechanism has been argued to rely on “statistical learning” (computing 

transitional probabilities between co-occurring items) and, closely related, “implicit learning” 

(chunking co-occurring items in memory) operations (see Conway & Christiansen, 2009 and 

below, on reconciling both literatures): Performance in tasks that require learning sequential 

regularities was not only shown to be cross-sectionally related to language processing 

abilities in typically developing populations (Conway et al., 2007; Misyak & Christiansen, 

2012; Misyak et al., 2010; Smith et al., 2015), but also seems to predict later language 

impairments, such as developmental dyslexia ( “procedural deficit hypotheses”; Nicolson & 

Fawcett, 2007, 2011; Ullman, 2004; Ullman & Pierpont, 2005). At the neural level, this link 

has been substantiated by fronto-parietal “language areas” (e.g., Broca’s region, BA 44/45) 
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being recruited for learning complex sequence rules from a rule set, called “Artificial 

Grammar” (Conway & Pisoni, 2008; Goranskaya et al., 2016; Skosnik et al., 2002). 

Stimulation studies have implied a causal role of these “language networks” in learning 

sequence rules. They report that task performance in discriminating rule-following vs. rule-

violating sequences was successfully manipulated by targeting core areas of this network like 

Broca’s region via current (tDCS) or magnetic (TMS) stimulation, respectively, at test 

(Uddén et al., 2008; Uddén et al., 2017; Vries et al., 2010). Above and beyond language, 

extracting sequential regularities from the environment was furthermore reported to influence 

how we segment our continuous everyday experiences into discrete events and predict 

upcoming events (Levine et al., 2019), and even how we update representations of associated 

objects in memory (Yu & Zhao, 2018). Thus, it has been established that learning sequential 

regularities is important for skills that are acquired over a longer developmental time. 

However, investigations that systematically test how the developmental timing of learning 

sequential regularities influences learning outcomes in the long run are largely missing. 

To set the stage for a cohort study that aims to fill this gap, we embrace an integrative 

perspective on the literature of implicit learning and statistical learning and review evidence 

from both approaches. The present work shares the view of other researchers in this field 

(Christiansen, 2018; Conway, 2020; Conway & Christiansen, 2009; Fiser & Lengyel, 2022; 

Pavlidou & Bogaerts, 2019; Perruchet, 2019; Perruchet & Pacton, 2006) that a combined 

review of both literatures speaks best to the question of how environmental patterns are 

extracted and used across development, and provides valuable insight into which cognitive 

and neural mechanisms might underlie this learning process. In the following, I will refer to 

this learning process as sequence learning. 

1. Learning and (brain) development 

Sequence learning is evident from very early on in infancy, as demonstrated by 

newborns’ neural markers like event-related potentials (ERPs) showing sensitivity to co-

occurring auditory input (Fló et al., 2022; Kudo et al., 2011), and continues to be effective 

until late adulthood (Conway, 2020); however, developmental differences have been found in 

(1) the situations in which learners pick up environmental regularities (passive exposure vs. 

task relevance), (2) their ability to behaviorally discriminate regular input from rule-violating 

variations of this input (i.e., performance in two-alternative forced choice tasks), and (3) the 

information represented in memory after exposure to encountered regularities (transition 

specific vs. group/broad representations) (reviewed in Forest et al., 2023). 
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1.1. Determinants of age differences in sequence learning 

Previous literature reviews (Aslin, 2017; Conway, 2020; Daltrozzo & Conway, 2014; 

Forest et al., 2023; Krogh et al., 2013) have identified several dimensions for determining if 

and how measured outcomes in sequence learning change with age. These will be elaborated 

below, based mainly on Forest et al. (2023), who presented the most recent and 

comprehensive review. 

Using indirect learning markers (term by Forest et al., 2023) like ERPs for rule-

following vs. rule-violating sequences (Daltrozzo & Conway, 2014) and neural entrainment 

to sequentially structured stimuli (e.g., reflected in inter-trial coherence indexing event-

related phase locking; Choi et al., 2020), infants’ and children’s sensitivity towards passively 

encountered regularities has been well documented. In contrast, adults seem to track 

sequential regularities more selectively depending on their task relevance: Rohlf et al. (2017) 

showed that only infants’ ERPs evidenced learning of cross-modal regularities during passive 

exposure, while adults’ ERPs differentiated between regular and newly combined stimulus 

pairings only when they were task-relevant. Mueller et al. (2018) identified the age range 

between two and four years as the optimal time in development for linguistic input (syllables) 

following non-adjacent sequence rules, after which tracking regularities from mere exposure 

is not observed to the same degree as earlier in development. Similarly, in later childhood, 

indirect behavioral measures of “online” learning paint a picture of an early sensitivity 

towards sequential regularities: These measures include improved reaction times to high-

probability vs. low-probability sequence locations, which were reported to reflect a high 

sensitivity for visuomotor regularities in the youngest age group of this study (age 4 to 12 

years) that decreases in adolescents and adults (Janacsek et al., 2012). Indirect learning 

markers comprise measurements during both exposure to rule-following input (e.g., online 

tracking of regularities in EEG markers or reaction time improvements), and at a later phase 

(e.g., ERPs or looking times in response to legal vs. illegal sequences; Forest et al., 2023). To 

sum up, indirect learning markers suggest successful sequence learning at all ages, with a 

heightened sensitivity towards passively encountered or implicitly embedded regularities in 

infants and young children vs. older children and adults.  

A different age-pattern emerges when sequence learning is measured as 

discrimination performance between regular vs. irregular input at test, after having been 

exposed to reoccurring regularities: These more direct learning markers (term by Forest et al., 

2023) show that discrimination improves from 5 to 12 years (Raviv & Arnon, 2017; 
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Shufaniya & Arnon, 2018) and, extending this age range to adults, from 6 to 30 years 

(Schlichting et al., 2017) in visual sequence learning. The distinction between developmental 

trajectories in indirect (sensitivity in tracking regularities) and direct (displaying sequence 

knowledge at test) learning markers can accommodate both the reports of a high initial 

sensitivity for statistical regularities which decreases later in childhood (in indirect learning 

markers, see paragraph above) and an improving ability with age to tell apart input which 

follows vs. such which violates the learned sequential and probabilistic relationships (direct 

learning markers; see also Lukács & Kemény, 2015; Weiermann & Meier, 2012 for more 

skill-based and probability learning tasks). 

With regard to the information represented in memory after sequence learning, it has 

recently been suggested that there is a developmental shift in how general vs. specific 

information about encountered regularities is represented in memory (reviewed in Forest et 

al., 2023). Recent evidence shows that younger children (5-7 years old) appear to remember 

only item-specific transitions from learning three-item sequences (triplets), while older 

children (8-9 years old) and adults represent specific (item-level transitions) and broad 

information about triplets (group membership) in memory (Forest et al., 2021; explained in 

detail below). This study pitted different levels of sequence information in one input stream 

against each other to directly test how representations vary by age. Still, children (and for that 

matter, even infants, see M. C. Frank et al., 2009; Marcus et al., 1999) have been shown to 

extract higher-order information like category-level rules when exposed to item-level 

regularities (Jung et al., 2020; Nowak & Baggio, 2017). I will try to reconcile these findings 

in the context of memory development later in this section and when taking a closer look at 

generalization (section Transfer in sequence learning). 

In summary, age differences in sequence learning depend on the learning marker 

(direct vs. indirect) as well as the exposure situation at hand (passive vs. task-relevant). Apart 

from these qualitative changes in sequence learning across age, the type of information that is 

represented in memory from a sequence learning experience (e.g., specific item-level 

transitions vs. broad/group membership) might change as a function of age as well. 
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1.2. Sensitive periods and neurocognitive mechanisms underlying sequence learning 

Ongoing brain development plays an important role in how learning measures differ 

depending on age; in particular, it shapes which learning mechanisms are available and 

predominantly used, and constrains what is represented in memory from learning experiences 

at a certain point in development. It has been argued that there are restricted time windows 

during development, “sensitive periods”, during which the environment exerts a stronger 

influence on brain and behavior than at other  times (Knudsen, 2004). This has been 

demonstrated in the context of higher cognitive functions; for instance, early language 

exposure shapes language acquisition and its underlying neural circuitry in the long run 

(Werker & Hensch, 2015). In their review, Werker and Hensch (2015) describe “switch” 

mechanisms, mainly the inhibitory/excitatory balance of parvalbumin cells and molecular 

brakes, that render brain structures and functions easily and extensively malleable by 

environmental input during limited time periods in development. Changes in the neural 

infrastructure during that time then shape later learning experiences that use and build on 

what has already been established. This provides a scaffold for probable future input that is 

similar to the early encountered experiences, but at the same time constrains the capacity to 

extensively adapt to completely new learning environments or input (Knudsen, 2004). While 

at the neural level, this mechanism has been mainly studied for auditory and visual 

adaptations in non-human species (Keuroghlian & Knudsen, 2007; Knudsen, 2004), there 

also seem to be long-lasting behavioral consequences from early learning experiences in 

human speech perception: Speech sound (phonetic) discrimination from a native language 

that had not been used after infancy was successfully retrained later in adulthood (Werker & 

Hensch, 2015). Additionally, early reports in second language acquisition (J. S. Johnson & 

Newport, 1989), suggested that native-like grammar skills in adulthood can only be achieved 

through exposure to grammar input before age 7. This idea of time periods in development 

with an increased sensitivity for certain input has been extended (Gualtieri & Finn, 2022) to 

other domains, such as sequence learning: Janacsek et al. (2012) showed that children 

between 5 and 12 years improve to a greater degree than older age groups in their reaction 

times to predictable vs. random sequence positions in a visuomotor sequence task. Based on 

this, the authors argue that skills that rely on exploiting (simple) sequential regularities might 

best be acquired before the age of 12 years, which maps onto the time course of second 

language learning (Gualtieri & Finn, 2022; Qureshi, 2016).  
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In addition to circumscribed periods in life that have been shown to shape neural 

functioning and learning behavior in the long run, neurocognitive accounts propose changes 

in the relative contributions of learning systems with age: Several authors have organized the 

age-related findings mentioned before by stressing that sequence learning mechanisms shift 

from more implicit to more explicit processes across development (Conway, 2020; Daltrozzo 

& Conway, 2014; Janacsek & Nemeth, 2012; Nemeth et al., 2013). In this view, an implicit 

learning system, relying on modality-specific neural systems governs learning early in 

development. It helps to extract simple patterns in a “model-free” and data-driven manner 

that requires little attentional resources. Over the course of later childhood and adolescence, 

an explicit learning system takes over, which recruits domain-general neural systems 

(presumably based on prefrontal cortex [PFC]) to extract complex patterns by leveraging 

attentional resources in a goal-directed manner. This “model-based” learning system then 

continues to be the dominant mechanism recruited in learning situations across adulthood. 

Support for this model (e.g., Jost et al., 2011) comes mainly from studies that look into early 

vs. late ERP components (reviewed in Daltrozzo & Conway, 2014). It is important to note 

that early-developing implicit mechanisms might interact with emerging explicit components, 

e.g., attentional resources, in a manner that puts children at an advantage in certain learning 

environments. For instance, an impoverished ability to allocate attentional resources allowed 

7- to 9-year-old children to learn irrelevant information in a divided attention task that looked 

into the learning sensitivity (earlier identification of old vs. new fragmented drawings) for 

previously seen, task-irrelevant pictures (Tandoc et al., 2022): In contrast to adults, whose 

learning advantage from the previous picture presentation decreased in a divided attention 

setting, children’s sensitivity towards task-irrelevant information remained unaffected. 

Remarkably, they did not experience a trade-off for task performance on the simultaneously 

presented goal-related information, when task demands were matched in difficulty for both 

age groups (see, S. M. Frank et al., 2021 for a similar phenomenon in visual perceptual 

learning in children vs. adults).    

Studies have tried to elicit this childhood advantage in adults by manipulating the 

balance of implicit vs. explicit learning mechanisms experimentally: Further promoting 

explicit learning strategies by task instructions in adults (“effortful” learning) was reported to 

be detrimental for extracting grammatical categories as compared to passive listening (Finn et 

al., 2014). On the other hand, making adults rely on more child-like learning mechanisms by 

decreasing cognitive control (i.e., having them engage in a dual working-memory task) prior 
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to passive exposure to hidden auditory regularities, fostered implicit word learning (Smalle et 

al., 2022). The recruitment of neural mechanisms supporting implicit vs. explicit learning has 

been directly targeted as well: Disrupting brain areas that usually contribute to explicit 

learning in adults by transcranial direct current stimulation of the dorsolateral PFC (BA 9) 

during the acquisition of statistical regularities caused adults to engage more of the implicit 

learning mechanisms used by children (Friederici et al., 2013). When the same brain area was 

deactivated in adults during language exposure, word-form learning (Smalle, Panouilleres, et 

al., 2017) and word segmentation performance were found to be enhanced (Smalle et al., 

2022). Applying this stimulation set-up during learning before a 24-hour delay, later 

(re)learning of visuomotor regularities was reported to be improved as assessed in a second 

learning session after the 24-hour consolidation period (Ambrus et al., 2020). This suggests 

that benefits from implicit learning mechanisms might extend to longer timescales and can 

result in improved performance after a delay period. 

To sum up, the literature on sensitive periods in learning proposes that early learning 

shapes later learning and that children might exhibit a heightened sensitivity for sequential 

regularities before age 12, with the time window for most efficient acquisition possibly 

closing as early as age 7. With regard to the extent that implicit vs. explicit mechanisms are 

recruited during learning, the respective balance seems to shift towards more explicit learning 

over development. Relying more on implicit processes, as (younger) children do naturally, 

can be advantageous in situations where a broad attentional focus benefits learning outcomes 

(i.e., for learning from passive exposure in language, and for picking up task-irrelevant 

information) and possibly for later use of implicitly acquired sequence knowledge after a 

delay.   

1.3. Memory development and sequence learning 

Not only do the brain mechanisms during learning change as children get older; the 

memory representations formed during learning, i.e., the result of learning, also seem to 

differ across development as briefly stated earlier. Forest et al. (2023) proposed that 

representations from statistical learning are generally implicit memory traces that share 

properties of other implicitly acquired memories (slow acquisition, context specificity and 

long-term durability). As briefly mentioned earlier, Forest et al. (2021) assessed memory 

representations in two groups of children by testing their ability to identify several types of 

sequence rule violations after exposure to a stream of triplets (i.e., three-item sequences). 

Younger children, aged 5 to 7, seemed to represent only specific information about item-to-
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item transitions. In contrast, older children (age 8-9 years) and adults exhibited broader 

representations that included group-level information. Compared to older children and adults, 

young children were more likely to correctly identify a sequence of reordered triplet items as 

unfamiliar. Older children and adults, however, embraced these sequences, which displayed a 

novel order of the correctly grouped items making up a triplet, more often as familiar (Forest 

et al., 2021). These age-related differences in representations could be related to the 

developmental time courses at which neural memory systems become fully functional 

(described in the following based on Forest et al., 2023), determining which memory 

processes prevail at different ages. 

The maturing hippocampus and its connections to (frontal) cortical areas have been 

described as the main drivers of age-related changes in how information from sequence 

learning is represented in memory (Keresztes et al., 2018; Schlichting et al., 2017). In infants, 

hippocampal learning was described to rely mainly on the early-maturing monosynaptic 

pathway (Gómez, 2017; Lavenex & Banta Lavenex, 2013; Schapiro et al., 2017). In addition, 

cortical learning systems seem to be available early on and support association learning 

across several encounters (McClelland et al., 1995; O'Reilly et al., 2014). Both learning 

systems have been proposed to require repeated exposure and learn slowly, suggesting that 

representations early in life lack specificity and stress commonalities rather than differences 

between learning experiences. From around 24 months of age onwards, the trisynaptic 

pathway of the hippocampus emerges (Keresztes et al., 2018; Lavenex & Banta Lavenex, 

2013; Ribordy et al., 2013) and seems to enable increasingly specific representations of 

encountered information, which have been suggested to guide behavior in early childhood up 

to 6 to 7 years of age (Forest et al., 2023). At the same time, the protracted development of 

the hippocampus’ subfields along its anterior-posterior axis was proposed to shift memory 

processes from mainly generalization (pattern completion) to increasing specificity (pattern 

separation) between the ages of 4 and 6 years (Keresztes et al., 2018; Langnes et al., 2020; 

discussed in detail in section Predictions from memory theories for age-differences in 

transfer). With regard to hippocampus-cortex interactions, connections of the hippocampus to 

the inferior frontal gyrus (likely subserving specific encoding of experiences) were reported 

to develop prior to those between the hippocampus and medial prefrontal areas (possibly 

supporting broader properties of an experience or schematic knowledge; Calabro et al., 2020; 

discussed in Forest et al., 2023). Starting around the age of 7 years, increasingly broad 

representations of sequential regularities, entailing memory specifics alongside schematic 
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information, are supported by protracted development of the anterior hippocampal subfields 

(DeMaster et al., 2016; Langnes et al., 2020; Lee et al., 2020) and its later emerging 

connections to medial PFC (Calabro et al., 2020; put forward by Forest et al., 2023). 

This proposed non-linear trend in sequence memory representations (non-specific but 

rather inflexible in infants, increasingly specific up to roughly age 7, broader including 

specific and higher-order information from age 8 onwards), is further elaborated in Forest et 

al. (2023). They caution that it needs to be further put to test empirically. 

The later use of sequence knowledge is not only determined by the kind of 

representations formed from learning experiences, but also depends on how representations 

can be accessed, retrieved and used; this puts a focus on how memory processes interact with 

prior knowledge and cognitive control (Brod et al., 2013), both of which are arguably 

reduced in (younger) children as compared to adults. It has been suggested that prior 

knowledge affects how memory processes in the medio-temporal lobe (binding episode 

features into a coherent memory representation) interact with those in PFC (strategic control 

at encoding and retrieval), thereby accounting for age-dependent changes in relational 

memory (Brod et al., 2013). In their study on associative learning and memory integration, 

Shing et al. (2019) suggest that information across related experiences is stored separately in 

middle childhood (children aged 9-10 years). These experiences are integrated late in the 

memory process by making inferences at retrieval, while adults may perform this integration 

as early as encoding.  

In summary, memory representations after sequence learning have been proposed to 

become increasingly specific until middle childhood, before turning into broad 

representations which incorporate both specific and general aspects of the encountered 

regularities – a dynamic driven by hippocampal development and its connections to frontal 

areas. In addition, memory processes, as in encoding and retrieval processes, seem to shift 

from emphasizing generalization in early childhood to stronger memory specificity until 

middle childhood (predictions from this approach for generalization, see section Transfer in 

sequence learning). Continued development of cognitive control and prior knowledge further 

influence how information from several learning experiences is integrated into memory, 

possibly from late (retrieval) in middle childhood to early (encoding) memory stages in 

adulthood.  
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2. From single session acquisition to multi-session (re)learning of regularities 

Building on the previously reviewed literature on sensitive periods, memory, and age-

dependent representations formed from exposure to sequential regularities, a longitudinal 

perspective on sequence learning seems vital (Arciuli & Torkildsen, 2012). While there is 

extensive work looking at how different age groups track and acquire sequential regularities 

in a single experimental session, it is less clear what their learning trajectories look like in the 

long run: How are previous learning experiences used and built upon later, after several 

weeks or months? And how does this retention and relearning of encountered regularities in 

behavior differ as a function of age? Approaches taking a long-term perspective are needed to 

explain real-life learning of skills (Arciuli & Torkildsen, 2012), e.g. acquiring a grammar in 

language acquisition, by modeling learning across multiple learning situations over time. 

2.1. Learning savings in behavior and neural candidate mechanisms 

Early studies on relearning (Livosky & Sugar, 1992; Parkin & Streete, 1988) 

continued in the tradition of Ebbinghaus, who had observed faster and more efficient learning 

of familiar as opposed to new lists of nonsense syllables (Ebbinghaus, 1880). These studies 

used “savings” in the relearning of visual material (less time or effort needed at relearning 

due to prior learning of the same material) after a delay as a proxy for what they call implicit 

memory and compared these savings between different age groups. They report conflicting 

results on how relearning differs depending on age after intervals up to two weeks: Livosky 

and Sugar (1992) observed an age gradient (3-year-olds > 5-year-olds > young adults) with 

the youngest age group showing the greatest advantage in learning familiar relative to new 

picture pairs after two weeks’ time. Conversely, Parkin and Streete (1988) found comparable 

relearning benefits for 3- to 7-year-old children (3 groups: 3-year-olds, 5-year-olds and 7-

year-olds) and adults in a recognition task with fragmented pictures after both a one-hour and 

a two-week delay, when controlling for baseline performance differences between children 

and adults. 

As a candidate mechanism underlying relearning advantages, non-human animal 

studies (Xu et al., 2009; Yang et al., 2009) have found persistent structural changes in the 

cortex (i.e., proliferation and reactivation of dendritic spines) when rodents acquire new 

sensory or motor skills and relearn them after a long-term delay of several months. Faster and 

more efficient relearning as compared to new learning could thus arise from the fact that the 

previously acquired task-specific neural infrastructure can be (re)used more efficiently after a 

delay period (discussed in Hofer & Bonhoeffer, 2010). Dendritic spines formed from early 
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learning experiences in development were furthermore observed to live longer than spines 

formed from learning later in life, as shown by in-vitro studies on hippocampal tissue from 

rodents (Yasumatsu et al., 2008). Relatedly, on a network level, principles of structural 

plasticity in response to auditory input have been described to differ between the developing 

and the adult neural system (Keuroghlian & Knudsen, 2007): In juvenile animals during a 

sensitive phase, molecular mechanisms like synaptic strengthening/elimination seem to 

enable the developing system to adapt to learning environments in a swift and extensive 

manner by mere exposure. In adult animals, learning plasticity reflected in functional 

adaptations can still be observed, but only if the encountered input was attended to or task-

relevant. Taking this idea to long-term effects in human behavior, Werker and Hensch (2015) 

related neural adaptations from early learning experiences in humans to lasting learning 

advantages for speech sounds later in life. For instance, they review evidence in adopted 

children, who later as adults were able to retrain discriminating phonemes of their native 

language that naïve adults are unable to discriminate. 

In sum, relearning on a behavioral level seems to be characterized by faster and more 

efficient learning as compared to first learning in both children and adults, with a possible 

advantage for young children. These behavioral advantages at relearning could be subserved 

by structural adaptations in the brain that seem to happen under less restricted conditions 

(mere exposure), more extensively, and probably with longer-lasting effects early in life. 

2.2. Multi-session studies and retention of sequence knowledge 

Despite some earlier evidence of preserved knowledge across at least one year in 

adult visuomotor (Romano et al., 2010), artificial grammar (Allen & Reber, 1980), and 

artificial language learning (M. C. Frank et al., 2012), only a limited number of studies have 

tested human retention after a long-term delay in different age groups. These studies looked 

into the question of how children and adults retain phonological (Ferman & Karni, 2010, 

2014; Smalle, Page, et al., 2017) and visuomotor (Kóbor et al., 2017; Tóth-Fáber, Janacsek, 

& Németh, 2021; Tóth-Fáber, Tárnok, et al., 2021) sequential regularities over several 

months up to one year.  

Two multi-session learning studies used auditory syllable sequences to investigate 

phonological word-form learning (Smalle, Page, et al., 2017) and the learning of an artificial 

morphological rule (Ferman & Karni, 2010, 2014). Mapping learning trajectories over 4 

(Smalle, Page, et al., 2017) to 15 (Ferman & Karni, 2010) sessions, they showed that adults 

and 8- to 12-year old children acquire a single sequence rule with the same learning rate, 
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despite better overall performance levels in adults. Both studies suggest that learning relies 

more on explicit knowledge of sequence rules in adults than in children: Adults acquired 

more explicit knowledge of sequence rules than children and their knowledge level was 

associated with improved performance and retention (Ferman & Karni, 2010; Smalle, Page, 

et al., 2017). Children (8-9 years old) showed no such association in one of the studies 

(Smalle, Page, et al., 2017) and in the second study (Ferman & Karni, 2010), only older 

children of age 12 (not of age 8) acquired any explicit rule knowledge that subsequently 

improved their performance. Looking at retention, these studies yielded inconsistent results 

for learned sequences over delays of several days to months: Smalle, Page, et al. (2017) 

observed memory advantages in 8- to 9-year-old children for retaining an implicitly acquired 

syllable sequence up to 12 months after their last learning session. For the longest retention 

period of 12 months tested in this study, this child advantage reached significance only for 

matched subgroups with comparable performance levels before the delay. An explicitly cued 

sequence was retained equally well by both age groups across 4 hours, 1 week and 12 months 

(Smalle, Page, et al., 2017). Ferman and Karni (2010) investigated learning of a sequential 

language rule from several training sessions, providing performance feedback, but no 

instructions about the sequence rule. They observed preserved performance levels and 

reaction time improvements after a 2-month retention interval for both adults and 12-year-

olds, but not for 8-year-olds. 

In the visuomotor domain, children aged 9 to 15 years (Tóth-Fáber, Janacsek, & 

Németh, 2021) and young adults (Kóbor et al., 2017) were shown to retain both frequency-

based (statistical) knowledge and order-based (sequence) knowledge over an interval of 12 

months from implicit acquisition. Within the group of children, age was not correlated with 

memory for either statistical or sequence knowledge (Tóth-Fáber, Janacsek, & Németh, 

2021). This result suggests that children between 9 and 15 years of age retained the learned 

visual sequences equally well over a one-year delay. However, the combined interpretation of 

these two studies (Kóbor et al., 2017; Tóth-Fáber, Janacsek, & Németh, 2021) is limited, 

since they used different experimental designs for children and adults. 

To sum up, multi-session studies on auditory sequence learning in children and adults 

show that children and adults improve across sessions to a comparable degree, despite adults 

outperforming children overall. Evidence on how development influences the retention of 

sequence rules is less clear. Some findings suggest that children (age 8-15 years) and adults 

retain auditory and visuomotor regularities equally well for up to one year when some 
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explicit task component is present (i.e., cueing of sequences at exposure or 

performance/visuomotor feedback). For long-term retention of implicit sequence knowledge, 

one study has suggested better retention in children vs. adults. All of this evidence on how 

learning rates and retention differ across age is limited in the choice of task material and 

sequence rules: Capabilities for linguistic vs. nonlinguistic stimuli (Raviv & Arnon, 2017; 

Shufaniya & Arnon, 2018; van der Kant et al., 2020) and adjacent vs. non-adjacent 

regularities (Uddén & Männel, 2018; Wilson et al., 2020) were reported to follow different 

developmental trajectories. Hence, memory effects for stimuli  outside the auditory domain, 

and for sequences that implement not only single rues have to be compared across 

development. More importantly, however, multi-session studies so far have neither 

implemented more than one follow-up session to map relearning trajectories, nor considered 

children younger than 8 years. As detailed above (see section Sequence learning and brain 

development), the language and memory literature identified the age range of 4 to 7 as a time 

period during which learning mechanisms change profoundly. This warrants an investigation 

of how previously acquired information is used for later learning for children in this age 

range. Additional motivation to do so comes from the generalization literature, which will be 

summarized below (see section Transfer in sequence learning). 

2.3. Sleep and forgetting in long-term approaches to sequence learning 

Long-term studies by default include offline periods with sleep in between learning 

sessions. Lerner and Gluck (2019) have reviewed studies that used a wide range of tasks, all 

requiring the extraction of “hidden regularities”, among them, statistical and implicit learning 

tasks. Based on this literature, the authors propose that extracting underlying regularities 

benefits from non-REM sleep, especially if these regularities are temporal and complex. For 

visuomotor regularities in motor skill learning, studies with children that systematically 

manipulated sleep (delay including a nap/night of sleep) vs. no sleep (delay without a 

nap/night of sleep) between learning sessions have been inconclusive, with some studies even 

reporting deteriorated performance after intervals with sleep vs. no sleep for children 

(reviewed in Wilhelm et al., 2012). Janacsek and Nemeth (2012) argue that sleep-dependent 

improvements in sequence learning require awareness, in that only sequence knowledge that 

participants of all ages become aware of before sleeping, is consolidated in an offline period 

with sleep. Notably, studies which systematically investigate the role of sleep on sequence 

learning have looked at rather short time scales spanning several hours to 1 or 2 weeks, so it 
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is unclear if these effects might simply add up across several offline periods of sleep or what 

their exact time course across months or years would look like. 

Sleep-dependent consolidation of encountered environmental patterns has been 

suggested to rely mainly on time-compressed replay processes in the hippocampus during 

slow-wave sleep (Lerner & Gluck, 2019; Wilhelm et al., 2012). These processes were 

proposed to enable the long-term storage of rule knowledge in cortical networks and 

consequently the generalization of the acquired rules. As discussed above (section Memory 

development and sequence learning), there is evidence of protracted hippocampal maturation 

in its different subfields beyond middle childhood (Gogtay et al., 2006; Keresztes et al., 2017; 

Keresztes et al., 2018), as well as in the hippocampal coupling with 

(ventromedial/ventrolateral frontal) cortical areas, all of which are implicated in memory 

formation and consolidation. The interplay of hippocampal reactivation and cortical 

redistribution of representations underlying consolidation might consequently change across 

development as well, resulting in age-dependent differences in retention and relearning. 

Recent structural evidence supports this notion and implies that memory consolidation across 

offline delays is also related to the brain volume of these areas in both children and adults 

(Schommartz et al., 2023): 6-year-olds and adults with a thinner medial orbitofrontal cortex 

were better at retaining object-location associations over 2 weeks, and in the child group, 

greater (right) hippocampal volume was related to higher retention rates. The authors took 

this finding to mean that structural brain patterns reflecting greater developmental maturity 

(more frontal thinning, bigger hippocampus) might underlie better memory integration with 

prior knowledge. 

With regard to accessing representations from prior learning experiences, sleep seems 

to differentially impact how much explicit knowledge children vs. adults gain about 

implicitly learned sequential regularities (Wilhelm et al., 2012): Wilhelm et al. (2013) found 

that children aged 8-11 years benefitted more than adults from a preceding sleep phase when 

asked to explicitly recall sequential transitions from an implicit visuomotor task.  

Faster “decay” or forgetting rates and more forgetting in offline periods between 

(sequence) learning experiences have been postulated for infants and younger children 

compared to older children and adults, which could contribute to the predicted age 

differences in memory representations that were mentioned before (discussed for statistical 

learning in Forest et al., 2023): While infants might display rather unspecific, general 

representations from fast and extensive forgetting between repeated exposures to sequential 
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regularities, these representations should shift to being more specific in early childhood (until 

age 7) due to a slower forgetting rate and maturing memory mechanisms involving the 

hippocampus and cortex (see section Memory development and sequence learning). The 

information that is represented from several learning experiences at different ages will in turn 

influence later learning, e.g., in terms of which features of future input children attend to and 

to what extent they generalize prior knowledge to new input (discussed in the next section 

Transfer in sequence learning). 

In conclusion, sleep and forgetting play a role in how sequence knowledge is 

consolidated over time in children and adults. The (explicit) extraction of temporal rules 

seems to benefit most consistently from sleep, possibly more so in children than in adults. 

Brain development factors into this sleep-dependent consolidation, with regions like the 

hippocampus and frontal areas undergoing age-related changes that likely lead to changes in 

retention and in the type of representations formed from repeated sequence learning 

experiences. These learning outcomes are further influenced by higher forgetting rates early 

in development impacting memory retrieval, which can be predicted to have consequences 

for generalizing learned regularities to new situations as well. 

3. Transfer in learning 

Apart from addressing what is learned depending on age from a long-term 

perspective, it is critical to test whether learning generalizes to new input or learning 

situations across development. Using knowledge from prior learning experiences in a new 

context requires that this information is stored in memory on a more abstract level than 

including only item-features and can be accessed and successfully applied in an adaptive 

manner. Testing generalization can thus speak to the questions of (1) how abstract the 

acquired rule knowledge is represented and (2) how flexibly the learning mechanism at play 

can operate, both of which are central characteristics of learning that are likely to change with 

age. 

3.1. Predictions from memory theories for age-differences in transfer 

From a memory perspective, early cortical development (slow learning, based on 

repetition) as opposed to protracted hippocampal development (fast learning, “one shot” 

encoding of single episodes) (Kumaran et al., 2016; McClelland et al., 1995), and, more 

recently, within-hippocampus development along its anterior-posterior subfields (Keresztes et 

al., 2018), have been suggested to support a shift from generalization to specificity in 

childhood (Complementary Learning Systems Theory, CLS): In the age range of 4-6 years, 
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processes of pattern completion (“incomplete or degraded representations are filled in based 

on previously stored representations”, Yassa & Stark, 2011, p. 515) that support 

generalization have been described to decrease relative to processes of pattern separation 

(“similar representations are stored in a distinct, non-overlapping (orthogonalized) fashion”, 

Yassa & Stark, 2011, p. 515), which start to manifest in a higher memory specificity around 

age 6, approaching an adult level. In behavior, this age shift has been observed in tasks that 

tap into relational memory (pattern completion: testing how learned object associations are 

elicited across similar settings) and mnemonic similarity (pattern separation: testing how well 

previously seen objects can be discriminated from perceptual lures), implying that children 

from 4 to 6 years over-generalize less from previous learning experiences and remember 

more specifically what they had been exposed to across different episodes (Ngo et al., 2018). 

This finding persisted after controlling for worse general memory capacities in younger 

children. Additional evidence for greater generalization early in life comes from the language 

literature, where overregularization of grammatical patterns such as past tense of verb 

endings (e.g., in English “-ed”) in early stages of language learning is a well-documented 

finding (Marcus et al., 1992). Testing this overgeneralization bias in a controlled study 

setting, evidence suggests that children – even quite late, at age 6 years – form hypotheses 

about whether or not to generalize grammatical patterns based on higher level probabilities in 

the input (Wonnacott, 2011), and that memory limitations in children (vs. adults) are not 

sufficient to account for this child bias of overgeneralization in a computational model 

(Perfors, 2012). 

Faster and greater forgetting that happens between learning experiences early in 

development could additionally favor higher transfer abilities in younger children as 

compared to older children and adults – a prediction derived from the “spacing effect” in 

category and concept learning (Vlach, 2014) that has been recently applied to statistical 

learning as well (Forest et al., 2023): The “forgetting-as-abstraction” account (Vlach, 2014) 

proposes that relevant features of learning items (i.e., shared properties of items belonging to 

words or categories) that are present at several consecutive learning events are reactivated in 

memory on these occasions. Their reactivation increases how strongly they can be retrieved 

and consequently slows down their forgetting rate (forgetting being defined as a “diminishing 

ability to retrieve information across time”, Vlach, 2014, p. 164). In this way, forgetting can 

strengthen the shared features of learning input over time, which can be transferred to 

underlying regularities of sequences that can be seen as shared (latent) features. Forgetting 
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rates early in development are very pronounced, as demonstrated for sequential input by 

(Bauer et al., 2000). All of this would suggest that younger children could show stronger 

generalization than older age groups across several sequence exposures (discussed as “fuzzy” 

representations in Forest et al., 2023). 

In general, sleep between several learning experiences seems to benefit the extraction 

of abstract regularities from environmental patterns. As an underlying mechanism, time-

compressed replay in the hippocampus during slow-wave sleep (Lerner & Gluck, 2019; 

Wilhelm et al., 2012) was suggested to enable the long-term storage of rule knowledge in 

cortical networks, and consequently the generalization of the acquired rules (described in 

more detail above, see section Sleep and forgetting in long-term approaches to sequence 

learning). This has been further elaborated by a study that looked into transfer-related replay 

mechanisms in the human hippocampus with magnetoencephalography (MEG) during rest, 

one day after learning an explicitly instructed sequence rule for remapping item positions (Y. 

Liu et al., 2019). It reports preliminary evidence that this learned sequence rule was applied 

to new items, as reflected in observed replay patterns that followed the position rule instead 

of the actually experienced input sequence. So, new input was reordered in replay according 

to a previously learned sequence rule, even if this input had never been seen in a rule-

conforming order. The authors interpret this sequential replay at rest as one mechanism for 

generalizing rule knowledge from prior learning to new input. 

3.2. Inconsistent findings for transfer in sequence learning across development 

Testing generalization in sequence learning, infants as young as 5-7 months have been 

demonstrated to apply short abstract rules from training sequences to new test stimuli in 

habituation paradigms (M. C. Frank et al., 2009; Marcus et al., 1999) – with the younger 

infants only showing learning effects if the rule was presented simultaneously in two 

modalities (M. C. Frank et al., 2009).  

Nevertheless, testing generalization in statistical and implicit learning using 

behavioral discrimination tasks has provided mixed results for children aged 3 to 12 years in 

comparison to adults so far. These studies measured generalization as applying learned 

sequence rules at test to new items of the same perceptual category present during exposure 

(e.g., new syllables in Artificial Grammar Learning [AGL] or unseen pictures of the same 

animals in triplet learning): In single-session transfer studies, adults and children aged 3-6 

years (Nowak & Baggio, 2017) or 6-9 years (Jung et al., 2020) respectively, have been shown 

to generalize learned regularities to new items in the auditory domain (Nowak & Baggio, 
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2017) and to new instances of underlying categories in the visual domain (Jung et al., 2020). 

Despite successful transfer for children and adults in both studies, they reported that age 

groups differ in the exact conditions under which transfer effects manifest: Jung et al. found 

that children failed to express their more abstract rule (category) knowledge under higher 

retrieval demands (triplet completion task as opposed to transfer in forced-choice tasks). 

Nowak and Baggio (2017) tested transfer for different rule systems governing the order of 

sequences (AG) and demonstrated that children perform better than adults in rule systems 

reflecting distributional patterns from natural languages, but worse than adults in rule systems 

with non-typological distributions. 

Conversely, 10-11-year-old-children altogether failed to generalize a sequential 

syntax rule to new items in a study using a complex artificial language, while adults 

succeeded in this transfer task by leveraging the explicit knowledge that they had acquired 

about this rule (Hickey et al., 2019). A multisession study (Ferman & Karni, 2010) reported 

that adults and 12-year-olds, but not 8-year-olds, generalized a highly practiced language rule 

to new items at the end of each of 10 training sessions. Furthermore, only these older age 

groups (adults and 12-year-olds) retained their last performance level for new items in a 

retention session after a delay of two months (Ferman & Karni, 2010). Even when provided 

with five additional training sessions, the younger age group showed no transfer to new items 

on either timescale (neither at the end of each training session, nor in the follow-up session 

after two months). Eight-year-old children were only able to transfer their acquired rule 

knowledge to new items after they were explicitly informed about the nature of the rule, as 

shown in a follow-up study with a different sample tested in the same task design (Ferman & 

Karni, 2014). This lack of transfer in (younger) children contradicts predictions derived from 

the previously introduced memory literature on CLS (Keresztes et al., 2018; Ngo et al., 2018) 

and the “forgetting-as-abstraction” account (Vlach, 2014). However, it fits well with the 

finding that younger children (5-7-year-olds) seem to represent transitions on an item-level 

after sequence learning in memory (specific representations). On the contrary, this study 

reports that behavior reflecting higher-order (“broader”) representations emerges only around 

8-9 years of age (Forest et al., 2021). 

To conclude, generalization in (sequence) learning has been hypothesized to be 

particularly strong early in development. This has been put forward by theories that focus on 

changes in memory processes and argue that processes shift towards more specific encoding 

and retrieval around the age of 6 years. In line with this, infants have been reported to transfer 
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simple sequence rules to new stimulus material, as reflected in their looking/listening times. 

But behavioral evidence in sequence learning which compared transfer effects between 

children (age 3-12 years) and adults seems inconclusive so far. In the only multi-session 

study available, children younger than 12 years failed to show transfer effects, except when 

being explicitly told what constitutes the sequence rule. This finding could be explained by 

focusing on the represented features of sequential input that might be available to learners of 

different ages (reviewed in Forest et al., 2023), with younger children displaying only item-

specific representations of sequence transitions when presented with foils violating different 

levels of regularities at test (specific to broad). Thus, memory approaches focusing on 

encoding and retrieval processes and the “forgetting-as-abstraction” account predict stronger 

transfer early in development. In contrast, stronger transfer in later childhood is predicted by 

approaches focusing on features of memory representations. In addition, observed age-

differences in sequence learning transfer might be influenced by the access to and use of 

explicit sequence knowledge, task specifics and the chosen measure of transfer. It is 

important to note that not only are these findings on transfer effects in sequence learning 

across development inconclusive, long-term (spanning several sessions or delays > 2 months) 

transfer studies that include children younger than 8 years are completely missing. 
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4. The present cohort study 

The present dissertation addressed the question of how the developmental timing of 

repeated sequence learning influences learning outcomes in the long run. To this end, we 

investigated how three child groups (5-year-olds, 6-year-olds, 7-year-olds) and adults learn 

visual sequences involving complex rules over several sessions (see Table 1). It was further 

tested whether children and adults generalize the underlying rules to new surface features in 

an integrated longitudinal design that spans a one-year delay between two sets of 7 to 8 

sessions in total (see Fig. 1 & 8). This extends the existing literature in several ways: 

(1) Mapping sequence learning across multiple sessions both before and after a one-

year-delay, enabled us to describe protracted learning of children and adults in the long run. 

Thus, we investigated the relearning of previously acquired regularities in another set of 

several sessions after one year, not only retention in a single follow-up session, as done 

before (Ferman & Karni, 2010; Kóbor et al., 2017; Smalle, Page, et al., 2017; Tóth-Fáber et 

al., 2021; see section From single session acquisition to multi-session (re)learning of 

regularities). 

 

Table 1 

A Study Design for Child Groups with Sessions in Year 1 & Year 2 

 Age  5.0 Years 6.0 Years 7.0 Years 8.0 Years 

5-Year-Olds 123 456 

Transfer 2 

 
 

6-Year-Olds   123 456 

Transfer 2 

 

7-Year-Olds     123 

Transfer 1 

456 

Transfer 2 

 

B Study Design for Adult Groups with Sessions in Year 1 & Year 2  

Timepoint 1 1 + 12 months 

Adults 1 123 

Transfer 1 

456  

Transfer 2 

Adults 2 123  

 

456  

Transfer 2 

 

Note. 1,2,3,4,5,6 = Sessions with stimulus set 1; Transfer 1&2 = sessions with stimulus Set 2, 

gray = sessions at home. 
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(2) We included younger age groups than previous multi-session studies (the youngest 

was investigated in Ferman & Karni, 2010, with age 8 years across a 2-month delay), namely 

5-, 6- and 7-year-old children. This age range is of particular interest with regard to the 

proposed shift in representations from sequence learning and from memory generalization to 

specificity (see sections Memory development and sequence learning and Transfer in 

learning). Our study design further allowed us to control for maturational changes in 5- and 

6-year-olds after the delay by contrasting their performance with a naïve control group of the 

same age, but without prior learning experience (see Table 1). As elaborated in the previous 

sections, learning mechanisms were suggested to change specifically in language, memory 

and generalization outcomes between 4 and 7 years of age. 

(3) We tested the transfer of learning effects to a new visual stimulus category in a 

separate session instead of testing transfer to new items from the trained category within the 

same session as done previously (Ferman & Karni, 2010; Jung et al., 2020; Nowak & Baggio, 

2017). This speaks to the extent to which regularities acquired in previous training sessions 

can be generalized to an unfamiliar stimulus material in a new learning situation, possibly 

leveraging advantages from sleep and forgetting in offline periods between sessions. 

(4) Instead of a single rule governing syllable sequences in the auditory domain as 

implemented in previous multi-session studies (Ferman & Karni, 2010; Smalle, Page, et al., 

2017), we used a complex rule set for picture sequences in the visual modality. This allowed 

us to directly compare long-term visual learning of complex regularities in children of 

different ages and in adults (studied separately for visuomotor learning: Kóbor et al., 2017 in 

adults, Tóth-Fáber et al., 2021: 9-15-year-old children), which is important for evaluating 

whether the previously found age differences are specific to auditory language material or 

apply to the visual domain as well. 

To look into visual sequence learning and transfer across multiple sessions over one 

year, a task paradigm using an Artificial Grammar (AG) was modified to map within-session 

and across-session learning trajectories (see Fig. 1): AGL tasks are good at assessing implicit 

sequence learning in adults (Milne et al., 2018; Pothos, 2007; A. S. Reber, 1967) and children 

(Nowak & Baggio, 2017; Pavlidou & Williams, 2014; Rosas et al., 2010; Witt & Vinter, 

2012). In AGL tasks, participants are first exposed to sequences of elements that follow a 

certain set of sequence rules (a finite state grammar, see Fig. 2 & Methods in Chapter II). 

After this learning phase, participants are asked to discriminate legal from illegal sequences 

(test phase) which allows to assess the implicit rule knowledge of participants. Interleaving 
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learning (exposure) with test phases (grammar judgement; Friederici et al., 2013; Milne et al., 

2018), allows capturing learning trajectories. Since an AG rule set can be displayed with 

different items (“surface features”), transfer was tested with a new stimulus set (animals vs. 

colors). 

Participants learned in three sessions on separate days over the course of one week. 

After one year, first remaining sequence knowledge was tested in three “relearning” sessions 

with the original item set. In a subsequent session, transfer to a new visual stimulus set was 

tested that used the same underlying rule set governing item sequences. The learning 

trajectories and transfer effects of three age groups who took part in the present study (5-

year-olds, 6-year-olds, Adults 2) are compared in Chapter III. For two groups (7-year-olds 

and Adults 1) who served as controls for the other groups after the delay, the study design 

differed slightly (see Table 1): They both had four instead of three sessions before the delay, 

including a transfer session in the end. After the 12-month-delay, a subset of these two 

groups completed the same set of another four sessions at home (as part of an additional 

follow-up that took part during lockdowns caused by the COVID-19 pandemic). 

Consequently, these two groups in total performed eight instead of seven sessions of 

sequence learning, including two transfer sessions (one in the end of each year). Their 

learning trajectories across one week and one year are discussed separately in Chapter II. 

We hypothesized to find an increase in sequence learning performance across sessions 

in all child groups and adults for the first stimulus set in Year 1. Seven-year-olds, who 

already completed a subsequent transfer session before the delay, were expected to generalize 

sequence rules to the second stimulus set at least to the same degree as the adult group 

(Adults 1). 

After the one-year delay, we expected to observe preserved AG knowledge as well as 

transfer effects at the end of the second set of sessions. Based on an early childhood 

advantage reported as a higher sensitivity towards sequential regularities, greater forgetting 

that should promote the extraction of abstract regularities, and stronger overgeneralization in 

the domains of memory and language, younger age groups were predicted to feature higher 

retention over one year and quicker relearning of the acquired rule set with the first stimulus 

set, and to show larger transfer to a second stimulus set in Year 2 (5-year-olds > 6-year-olds 

> 7-year-olds). 

Additionally, we assumed that children predominantly rely on implicit knowledge, 

while adults acquire more explicit knowledge about the underlying sequence rules. We only 
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covered a restricted age range in children (age 5 to 7 years), making it unlikely to find great 

differences in reported explicit knowledge between the child groups investigated here. 

Nevertheless, the expected direction of an age pattern was that older child groups might 

increasingly acquire more explicit knowledge (5-year-olds < 6-year-olds < 7-year-olds) and 

possibly depend more on their acquired knowledge for improvement and transfer in sequence 

learning. 

Regarding cognitive skills involved in our sequence learning task, we predicted that 

better working memory and declarative memory retrieval would benefit AGL task 

performance. Since our sequence task was tailored to the memory capacities of children age 

5-7-years, this association should emerge in children as well (opposed to Smalle, Page, et al., 

2017, who used material matched to adult memory capacities). Language grammar skills 

were hypothesized to be positively correlated with learning outcomes in all age groups, given 

previous reports that related language processing to sequence learning performance in 

children and adults. 
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1 Parts of this chapter are in preparation as a manuscript written by Daniela Schönberger, 

Patrick Bruns, and Brigitte Röder.  
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1. Introduction 

Both children and adults are capable of tracking sequential information in the 

environment (Conway, 2020). This ability has been investigated under the terms statistical 

learning or implicit learning and is referred to as sequence learning throughout this 

dissertation (see Chapter I). However, it has been proposed that this mechanism is 

particularly effective in children, allowing them, for example, to quickly and implicitly 

acquire language (Aslin, 2017; Erickson & Thiessen, 2015; Romberg & Saffran, 2010; 

Uddén & Männel, 2018). This assumption has mainly been based on cross-sectional evidence 

which compared how children vs. adults acquire sequential regularities within a single 

learning session: Firstly, behavioral results suggested a higher sensitivity for visual 

regularities in young children (< 12 years) compared to older age groups in an implicit 

learning task (Janacsek et al., 2012). Secondly, neural evidence on implicit learning markers 

(event-related brain potentials) implied that infants and young children, but not adults, pick 

up statistical regularities in passive exposure situations, that is, when they are not task-

relevant (Friederici et al., 2011; Friederici et al., 2013; Mueller et al., 2018; Rohlf et al., 

2017). Both lines of findings were taken as evidence for a shift from more implicit to more 

explicit learning mechanisms across development (Daltrozzo & Conway, 2014; Janacsek & 

Nemeth, 2012; Nemeth et al., 2013). This developmental shift might underlie children’s 

superiority in certain aspects of language learning as well, like grammar acquisition or word 

segmentation. As elaborated in Chapter I, the reliance on implicit vs. explicit learning 

mechanisms can be experimentally manipulated in adults to counteract the proposed 

developmental shift towards explicit learning, e.g., by decreasing cognitive control prior to 

passive exposure to hidden auditory regularities, which fostered implicit word learning 

(Smalle et al., 2022). Preventing interference from explicit learning mechanisms might 

consequently help to mitigate the age-related loss in sensitivity towards passively 

encountered regularities. The view of a high initial sensitivity for statistical regularities which 

decreases later in childhood has not remained uncriticized. Some authors have even proposed 

an improvement in implicit learning of sequential and probabilistic relationships from 

childhood to adulthood (Lukács & Kemény, 2015; Weiermann & Meier, 2012). 

After disrupting brain areas that usually contribute to explicit learning by brain 

stimulation in adults during a first learning phase, delayed learning of visuomotor regularities 

was reported to be improved when assessed after a 24-hour consolidation period (Ambrus et 

al., 2020). This suggests that benefits from implicit learning mechanisms might extend to 
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longer timescales and can result in improved performance after a delay period. However, 

longitudinal designs which directly compare multi-session learning and retention effects 

between children and adults are largely missing (but see Ferman & Karni, 2010; Smalle, 

Page, et al., 2017). Thus, it remains unknown whether higher learning capabilities do exist in 

children and whether they would result in superior memory of and relearning advantages for 

sequential regularities.  

Previous multi-session learning studies with auditory sequences investigated 

phonological word-form learning (Smalle, Page, et al., 2017) and the learning of an artificial 

morphological rule (Ferman & Karni, 2010). These studies provided first evidence that a 

repeated training with a single sequence rule over multiple sessions improves performance in 

adults and in 8- to 12-year old children alike, and suggested that learning relies more on 

explicit knowledge of sequence rules in adults than in children. However, these studies 

yielded inconsistent results regarding the retention of implicitly learned sequences: Smalle, 

Page, et al. (2017) observed memory advantages in 8 to 9 year-old children for retaining 

implicitly acquired syllable sequences up to 12 months after their last learning session. For 

retention after a 12-month delay, this age effect only reached significance for matched 

subgroups with comparable performance levels before the delay. An explicitly cued sequence 

was retained equally well by both age groups across 4 hours, 1 week and 12 months (Smalle, 

Page, et al., 2017). Ferman and Karni (2010) investigated implicit learning of a sequential 

language rule across several training sessions and observed preserved performance levels and 

reaction time improvements after a 2 month retention interval for both adults and 12-year-

olds, but not for 8-year-olds. Since capabilities for linguistic vs. nonlinguistic stimuli (Raviv 

& Arnon, 2017; Shufaniya & Arnon, 2018; van der Kant et al., 2020) and adjacent vs. non-

adjacent regularities (Uddén & Männel, 2018; Wilson et al., 2020) were reported to follow 

different developmental trajectories, memory effects for other than auditory stimuli with 

simple regularities have to be compared between children and adults. 

Recent evidence from a delayed learning task in the visuomotor domain has shown 

that children aged 9 to 15 years (Tóth-Fáber, Janacsek, & Németh, 2021) and young adults 

(Kóbor et al., 2017) were able to retain both frequency-based (statistical) knowledge and 

order-based (sequence) knowledge over an interval of 12 months that they had acquired 

implicitly. Within the group of children, age was not correlated with neither memory for 

statistical nor for sequence knowledge (Tóth-Fáber, Janacsek, & Németh, 2021). This hint 

towards age-invariance retention rates was corroborated in a recent study on short-term 
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retention that used the same task in a large cross-sectional sample from the same lab: Nine 

age groups in the range 7-76 years retained their acquired statistical knowledge to the same 

degree across 24 hours (Tóth-Fáber et al., 2023; supported by Bayes statistics in favor of no 

age differences). 

Generalization of rule knowledge to new situations is certainly an important skill. In 

single-session transfer studies, adults and children aged 3-6 years (Nowak & Baggio, 2017) 

or 6-9 years (Jung et al., 2020) respectively, have been shown to be able to generalize learned 

regularities to new items in the auditory domain (Nowak & Baggio, 2017) and to new 

instances of underlying categories in the in the visual domain (Jung et al., 2020). Despite 

successful transfer in both age groups as reflected in above chance discrimination 

performance, Jung et al. (2020) reported that adults but not children applied explicit rule 

knowledge in a transfer situation with high retrieval demands (triplet completion task on 

category level). Moreover, adults and 12-year-olds, but not 8-year-olds, were observed to 

generalize a highly practiced language rule to new items in the end of each training session 

and retained their last performance level for new items in a retention session after a delay of 

two months. The authors speculated that 8-year-old children lacked transfer effects, because 

they failed to explicitly discover and report the underlying language rule, which facilitated 

rule transfer to new items in the older age groups. This interpretation was confirmed in their 

follow-up study, in which 8 year old children were able to transfer the acquired rule 

knowledge to new items after they were informed about the rule (Ferman & Karni, 2014). 

The finding of no (implicit) learning transfer in younger children contradicts predictions 

derived from other lines of research: There is abundant evidence for a shift from 

generalization to specificity during development; for example, overregularization of 

grammatical patterns such as past tense of verb forms, in early stages of language learning is 

a well-documented finding (Marcus et al., 1992). Others (Keresztes et al., 2018) have used 

the terms pattern completion (generalization) and pattern separation (specificity) to indicate 

this trend in memory development. Thus, this literature would predict a stronger rather than 

lower tendency to generalize learned regularities to new instances early in development. 

In the current Project 1, a first long-term perspective on multi-session learning 

trajectories of children vs. adults is provided on two timescales, across one week and across 

one year. This serves as a proof-of-concept for the chosen sequence learning task and study 

design, which was applied in Project 2 as well (see Chapter III). Project 2 then tested how the 

developmental timing of several sequence learning instances influences learning outcomes in 



 36 

CHAPTER II: VISUAL STATISTICAL LEARNING IN 7-YEAR-OLDS & ADULTS 

 

 

   

 

the long run in 5-year-olds, 6-year-olds and adults, while controlling for maturational effects 

in children after the delay.  

Project 1 investigated how children and adults learn visual sequences involving 

complex rules over several sessions and whether they generalize them to new surface 

features in an integrated longitudinal design. This approach extends the existing literature in 

several ways (further elaborated in Chapter I): (1) Mapping sequence learning across multiple 

sessions both before and after a one-year-delay enabled us to describe learning trajectories of 

children and adults over an extended period of time. After an initial learning period that 

comprised four sessions, we investigated relearning of previously acquired regularities one 

year later again over four equivalent sessions. This approach is different from testing 

retention in a single follow-up session as typically implemented in previous studies (Ferman 

& Karni, 2010; Kóbor et al., 2017; Smalle, Page, et al., 2017; Tóth-Fáber, Janacsek, & 

Németh, 2021). (2) We tested the transfer of learning to a new visual stimulus set of a 

different category in a separate session instead of testing transfer to new items from the 

trained category (Ferman & Karni, 2010; Jung et al., 2020; Nowak & Baggio, 2017). (3) 

Instead of a single rule governing syllable sequences in the auditory domain as implemented 

in previous multi-session studies (Ferman & Karni, 2010; Smalle, Page, et al., 2017), we used 

a complex rule set governing picture sequences in the visual modality. This allowed us to 

directly compare long-term visual learning of complex regularities in children and adults 

(studied separately in both age groups in Kóbor et al., 2017; Tóth-Fáber, Janacsek, & 

Németh, 2021), which helps to evaluating how domain specific vs. domain general reported 

age differences might be.  

An AGL task was implemented, as explained in detail in Chapter I. In AGL tasks, 

participants are first exposed to sequences of elements that follow a certain set of sequence 

rules (a finite state grammar, see Methods). After this learning phase, participants were asked 

to discriminate legal from illegal sequences (test phase) which allows assessing implicit rule 

knowledge. By interleaving learning (exposure) with test phases, we described learning 

trajectories. Since an AG rule set can be displayed with different items, transfer in the present 

study was tested with a new set of pictures from different category (animals vs. colors). 

The present study recruited adults (Adults 1) and 7-year-old children (see Table 1), 

because main differences in both sequence learning and transfer were expected for children 

younger than 8 years as compared to adults. These two age groups are described separately as 

Project 1 here, since they had the same study design including a transfer session both before 
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and after a long-term delay, serving as control groups for Project 2 with different age cohorts 

(see Table 1). Characterizing long-term learning trajectories in children vs. adults here is used 

as a first step for the further investigations in Project 2, as elaborated above. 

We hypothesized that both children and adults learn the sequence rules and transfer 

this knowledge to a new stimulus set. Moreover, we expected to observe preserved AG 

knowledge after a one year period. Seven-year-olds were expected to quicker implicitly 

acquire the AG, to show lager transfer to a new stimulus set and to feature higher retention of 

the acquired rule set over one year. Finally, we predicted that children predominantly rely on 

implicit knowledge while adults acquire more explicit knowledge about the underlying 

sequence rules.  
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2. Methods 

2.1. Participants 

The study involved 30 healthy children (7 years old ± 2 months at Session 1) from the 

City of Hamburg, Germany, and 30 healthy young adults, mostly undergraduate students 

recruited from the University of Hamburg. All participants did not report a history of seeing 

or hearing impairments nor any neurological disease. They all were native German speakers.  

During the course of the study, the data of five participants had to be excluded from 

the analyses in Year 1. The reasons for exclusion were that it turned out that one adult was 

not a native speaker of German, data of one child was lost due to technical issues, and three 

participants did not adhere to task instructions at home (one child: one missing session, one 

child and one adult: no night between two sessions). The remaining 27 seven-year-olds (15 

female, mean age at Session 1: 7.05 ± 0.07 years, range: 6.91-7.20 years) and 28 adults (18 

female, mean age at Session 1: 23.12 ± 3.50 years, range: 18.83-33.54 years) were included 

for the analyses of the first four sessions in Year 1.  

From the original sample of 60 participants, 43 participants completed the experiment 

a second time after approximately 1 year at home2 (see section Study design). The data of 

three of the returning 43 participants (7-year-olds: n = 22, Adults 1: n = 21) for the home 

follow-up in Year 2 could not be analyzed due to deviations from task instructions in these 

sessions (two children: mix-up of stimulus set order, one child: 30 days between two 

sessions). Since the relearning analysis combined data from Year 1 and Year 2, we 

additionally had to exclude four of the returning participants since they had missing data in 

Year 1 for these analyses. This left a total of 16 seven-year-olds (12 female, mean age at first 

session of Year 2: 8.18 ± 0.09 years, range: 8.03-8.31 years) and 20 Adults 1 (14 female, 

mean age at first session of Year 2: 23.24 ± 2.48 years, range: 19.94-28.47 years) for the 

analyses of relearning after the one-year-delay. 

All participant characteristics for the final samples analyzed for Year 1 (Table 2) and 

for joint Analyses of Year 1 and Year 2 (Table 3) are listed below. 

Adult participants were compensated with €8 per hour or earned course credit at the 

end of each session; children received a small toy at the end of each on-site session and after 

the last session at home in Year 2 in case of a home follow-up. Study-related travel costs 

                                                 

 

2 This home follow-up was part of an additional follow-up that took part during lockdowns 

caused by the COVID-19 pandemic, and had originally not been planned for. 
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were reimbursed. All participants, i.e., children and adults, and additionally children’s legal 

guardians consented prior to participation (with written consent obtained from adult 

participants and from children’s legal guardians). The study was approved by the Local 

Ethics Board of the Faculty of Psychology and Human Movement Science at the University 

of Hamburg, and was conducted in accordance with the ethical guidelines of the Declaration 

of Helsinki (revised form of 2013). 

 

Table 2 

Participant Characteristics of the Final Sample for Analyses of Year 1 across 1 Week 

Participant Characteristics 7-Year-Olds (n = 27) Adults 1 (n = 28) 

Days between Sessions 

  Session 1 to 3 

  Session 1 to Transfer 1 

 

4.11 (1.19) 

7.00 (0.73) 

 

4.00 (1.59) 

6.75 (1.08) 

Age (years) 7.05 (0.07) 23.12 (3.50) 

Age span 6.91 – 7.20 18.83 – 33.54 

Gender (f/m) 15/12 18/10 

School/Education
 a
 

n = 26 1st grade 

elementary school 

n = 2 2nd grade 

elementary school 

n = 28 university students  

Bilinguals 4 6 * 

Daily mobile device usage (min)
 a
 9.07 (15.45) 254.77 (126.00) 

Explicit knowledge Year 1 

   N Session 3: 0/1b 

   N Transfer 1: 0/1b 

   Score Transfer 1c 

 

4/20 (3 NA) 

7/20 

0.46 (0.23) 

 

0/28 

0/28 

0.54 (0.26) 

Note. M (SD), betw. = between, NA = missing values for open questions. 
* 
n = 25 (3 missing values). 

a 
assessed in Year 1 (Session 1). 

b 
0 = sequence rules not mentioned in answers to open questions, 1 = sequence rules 

mentioned in answers to open questions. 

c 
scores could range from -1 (no rule knowledge) to 1 (max. rule knowledge). 
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Table 3 

Participant Characteristics of the Final Sample for joint Analyses of Year 1 & Year 2 

Participant Characteristics 7-Year-Olds (n = 16) Adults 1 (n = 20) 

Time period betw. Year 1 & 2 

(months betw. Session 1 & 4) 

13.00 (1.10) 

[11.00-15.00] 

12.75 (0.44) 

[12.00-13.00] 

Days between Sessions of Year 1 

  Session 1 to 3 

  Session 1 to Transfer 1 

Days between Sessions of Year 2 

  Session 4 to 6 

  Session 4 to Transfer 2 

 

4.19 (0.83) 

6.88 (0.50) 

 

2.63 (0.81) 

4.19 (1.52) 

 

3.80 (1.54) 

6.60 (1.14) 

 

2.45 (0.60) 

3.85 (0.93) 

Age Year 1 (years) 

 

7.06 (0.08) 

[6.92-7.20] 

 

22.14 (2.48) 

[18.83 – 27.36] 

Age Year 2 (years) 

 

8.18 (0.09) 

[8.03-8.31] 

 

23.24 (2.48) 

[19.94 – 28.47] 

Gender (f/m) 12/4 14/6 

Education 
a
 

n = 15 1st grade elementary school 

n = 1 2nd grade elementary school 

n = 20 university 

students  

Bilinguals 3 6 * 

Daily mobile device usage (min) 
a
 9.24 (15.46) 250.96 (120.89) 

Explicit knowledge Year 1 

   N Session 3: 0/1b 

   N Transfer 1: 0/1b 

   Score Transfer 1c 

 

2/14 

2/14 

0.51 (0.17) 

 

0/20 

0/20 

0.57 (0.26) 

Explicit knowledge Year 2 

   N Session 6: 0/1b 

   N Transfer 2: 0/1b 

   Score Transfer 2c 

 

0/16 

0/16 

0.68 (0.15) 

 

0/20 

0/20 

0.66 (0.21) 

Note. M (SD) [range], betw. = between, NA = missing values for open questions. 
* 
n = 17 (3 missing values). 

 
a 
assessed in Year 1 (Session 1). 

b 
0 = sequence rules not mentioned in answers to open questions, 1 = sequence rules mentioned in 

answers to open questions. 

c 
scores could range from -1 (no rule knowledge) to 1 (max. rule knowledge). 
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2.2. Design and procedure 

2.2.1. Study design 

All participants completed a total of four sessions in Year 1 on separate days over the 

time of approx. one week (see Fig. 1A; mean time span Session 1 to Transfer 1, see 

Table 2 & 3):  

• Session 1 (in the lab): After the assessment of working memory, the first 

learning session with the tablet computer (with stimulus set 1) followed. Next, 

we measured declarative memory and German grammar skills (see section 

Memory and language skills). Session 1 lasted 90 to 120 minutes including 

participant briefing and breaks. 

• Session 2-3 (at home): Two more learning sessions took place with stimulus 

set 1 on the tablet computer (mean time span Session 1 to Session 3, see 

Table 2 & 3). 

• Transfer 1 (in the lab): On the tablet computer stimulus set 2 was introduced 

with the same underlying rule set to test transfer of AG learning. Moreover, at 

the end of the session, explicit knowledge about sequence orders was assessed 

with a questionnaire in adults and adapted questions with picture cards in 

children (see section Explicit knowledge of sequence rules).  

Due to the ongoing COVID-19 pandemic, the follow-up in Year 2 took place at home 

(data sets from n = 16 seven-year-olds and n = 20 young adults were included, see section 

Participants). Thus, for these sessions, participants received all material and a tablet 

computer by mail and completed four additional learning sessions at home (see Fig. 1B) after 

approximately one year (mean time span from Session 1 in the final sample: 7-year-olds: see 

Table 3): Session 4, 5 and 6 used the first stimulus set from Year 1 (that is, the same stimulus 

set as used in Session 1 to 3), while Transfer 2 employed the second stimulus set from Year 

1, that is, the same as used in Transfer 1 (mean time span between Session 4 and Transfer 2, 

see Table 3). All sessions implemented the same AG rule set. At the end of Transfer 2, 

explicit sequence knowledge was assessed with the same questionnaires as in Year 1 

(Transfer 1) which had been mailed to the parents and participants, respectively. Questions 

assessing explicit sequence knowledge asked about legal items in salient positions and legal 

item-item transitions, as detailed in the section Explicit knowledge of sequence rules. 
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2.2.2. Visual sequence learning task 

The present sequence learning task built on previous AGL tasks for children of 

similar age (esp. Rosas et al., 2010; Witt & Vinter, 2012). In AGL tasks, participants are 

exposed in a learning phase to sequences of elements which follow a certain set of sequence 

rules (a finite state grammar, see Fig. 2). In the following test phase, they have to distinguish 

grammatical sequences from sequences that violate the sequence rules (“ungrammatical” 

sequences).  

We implemented visual sequence learning on a tablet computer with five blocks of 

alternating learning phases (passive watching) and test phases (two-alternative forced choice 

A B 

Note. The first 3 sessions of each year used a first stimulus set (here: Stimulus Set Animals), while the last 

session of each year employed a second stimulus set (here: Stimulus Set Colors) to investigate transfer of 

learned AG rules. Each session consisted of 5 task blocks with alternating learning (light gray background) 

and test (dark gray background) phases. 

Figure 1 

Study Design of all 8 Sessions of Visual Sequence Learning in Year 1 (A) & Year 2 (B) 

A 

B 
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task) per session. All instructions were child-directed voice recordings embedded in the task 

and they were automatically played upon starting the application. This procedure guaranteed 

a high level of standardization of the sessions at home (see Appendix A for the wording of all 

instructions). 

One task block comprised one learning phase and one subsequent test phase (see Fig. 

1). In the learning phases (see Fig. 1 light gray background), participants were instructed to 

attentively watch 18 grammatical sequences with 3 to 7 items which were randomly taken 

from the 27 possible grammatical sequences (see section Construction of grammatical and 

ungrammatical sequences). Only one stimulus set, either Stimulus Set Animals with animals 

in train cars (“circus trains” belonging to a circus director: adapted from Rosas et al., 2010) or 

Stimulus Set Colors with color segments (“team flags” belonging to a sports team: adapted 

from Witt & Vinter, 2012) was presented. Which stimulus set served as stimulus set 1 and 2 

was counterbalanced across participants.  

In the test phases following each learning phase (see Fig. 1 dark gray background), 

participants were asked in each of the 10 trials to select from the two displayed sequences the 

sequence they considered as belonging to the previously introduced task character (i.e., the 

grammatical sequence; two-alternative forced choice). This instruction was repeated for each 

trial of the test phase and participants selected their choice by touching the selected sequence 

on the tablet’s touchscreen. Each individual test trial comprised two sequences with each 

being either short (3-5 items, 5 test trials) or long (6-7 items, 5 test trials). Always one of the 

two sequences was grammatical and one was ungrammatical (see section Construction of 

grammatical and ungrammatical sequences). Participants received audio-visual feedback 

(see section Stimuli and apparatus) after each test trial which indicated if their answer was 

correct or incorrect.  

One session of the sequence learning task (5 blocks with an alternating learning and 

test phase each) took about 25-30 min to complete; additionally, short breaks were offered to 

the participants after each block. 
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2.3. Material 

2.3.1. Stimuli and apparatus 

Stimuli and timing of the visual sequence learning task. Participants completed the 

self-programmed visual sequence learning task in the mobile Neurobs Presentation App 

(Version 3.0.1, Neurobehavioral Systems Inc., 2019) on a 10.1-inch tablet computer 

(Samsung Galaxy Tab A 10.1). 

Grammatical and ungrammatical sequences were 3 to 7 items long and were built 

from a total of 5 different pictures per stimulus set (Stimulus Set Animals with circus trains: 

giraffe, camel, lion, tiger and zebra; Stimulus Set Colors with team flags: blue, yellow, green, 

purple and red; all pictures, see Appendix A). The size of one picture (i.e., one animal in a car 

or one color segment, respectively) was 240x240 pixels (ca. 4° of visual angle at a viewing 

distance of 40 cm, which is used in all subsequent calculations of the visual angle). For 

grammatical sequences, these pictures were assigned to the positions in the artificial grammar 

(see numbers in Fig. 2) in two different, randomly selected ways per stimulus set to control 

for position effects of specific animals or colors, respectively (an individual assignment for 

each participant was technically not feasible due to the implementation in a mobile App). 

This picture assignment resulted in two task versions available for each stimulus set, which 

were used in a counterbalanced manner in both age groups (for all four versions with picture 

assignments, see Table A.1 in Appendix A). 

 For the animals of the Stimulus Set Animals, we used pictures from the “Multilingual 

Picture” database (MultiPic; Dunabeitia et al., 2018). The surrounding train (car) features and 

all other visual stimuli of the task custom made digital drawings. The two chosen stimulus 

sets (Stimulus Set Animals, Stimulus Set Colors) were adapted from previous studies on 

sequence learning in children (Rosas et al., 2010 and Witt & Vinter, 2012, respectively).  

While the recorded instructions played, the screen showed a picture of a scene 

corresponding to the stimulus set (Stimulus Set Animals: a circus tent; Stimulus Set Colors: a 

sports stadium; both retrieved from the MultiPic database by Dunabeitia et al., 2018). To start 

a learning or test phase, participants were asked to click on a green button in the upper half of 

the screen (size: visual angle of ca. 4°). 

The duration of a single learning trial varied with the number of items of the 

presented sequence: items, that is single pictures of animal cars or flag segments, built up 

sequentially (1 s per item), but the full sequence stayed on the screen for 3 s for all sequence 

lengths. All learning trials were displayed in the middle of the screen. Each trial started and 
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ended with a sound which was presented synchronously with the first and last item of a 

sequence. Two different sounds, both retrieved from an open-source website 

(http://www.findsounds.com, accessed 11/16/18; train whistle for circus trains: 

http://atsf.railfan.net/airhorns/p5.html/, wind blow for team flags: 

http://www.anzwad.com/dods/sound/ambient), were used, one for each stimulus set. Each 

learning phase consisted of 18 learning trials amounting to an average duration of about three 

minutes. 

 

In the test phase all items of the two sequence were simultaneously displayed from the 

beginning. Each sequence pair stayed on the screen until the participant clicked on one of the 

two sequences, which in total took on average of about two minutes for all 10 test trials. For 

the sequence pairs in each test trial, one sequence was displayed in the upper half of the 

screen, and the other sequence was displayed in the lower half of the screen, with an equal 

likelihood for the grammatical sequence of appearing in one of the two screen locations. 

For audiovisual feedback, a green sun icon with a corresponding sound (correct) or a 

red cross icon with a corresponding sound (incorrect) was presented in the center of the 

screen (size of both icons: visual angle of ca. 6°). The two feedback sounds were taken from 

Leon Guerrero et al. (2016). Participants all started with the same sound volume and were 

allowed to customize the volume in the beginning of a session, while ensuring that the audio 

was well audible for each participant. 

Figure 2 

Sequence Rules for the Visual Sequence Learning Task (Artificial Grammar by Reber, 1967) 

Note. Grammatical sequences were constructed by following the arrows from “IN” to “OUT” 

(example sequence: 12324). Instead of numbers, we used pictures of animal cars and color segments 

(see Fig. 1 & Table A.1) for two stimulus sets that were applied in a counterbalanced manner. 

Modified drawing of Reber, 1967, Figure 1 (p. 856). 
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After the presentation of each sequence (learning phases) and after the response 

feedback to each trial (test phases), respectively, a gray fixation cross was shown for 1s in the 

center of the screen (size: visual angle of ca. 0.5°) before the start of the next trial. 

Construction of grammatical and ungrammatical sequences. We used the artificial 

grammar system introduced by Reber (1967) for constructing grammatical sequences (see 

Fig. 2). Meta-analyses have attested this artificial grammar a relatively low complexity 

suitable for use in developmental populations (Schiff & Katan, 2014). 

From this grammar, 27 grammatical sequences with 3 to 7 items were constructed 

using the Web App “AGSuite” (Cook et al., 2017; for a full list of all grammatical sequences 

see Table A.2 in Appendix A), which were divided into 9 “short” sequences consisting of 3 to 

5 items and 18 “long” sequences consisting of 6 to 7 items. We then compiled a pool of 140 

ungrammatical sequences with 3 to 7 items. For sequences of 5 to 7 items this was achieved 

by randomly shuffling the middle elements of the grammatical sequences (leaving the most 

salient first and last item unchanged). For grammatical sequences of only 4 items, either the 

first 3 or the last 3 items were shuffled. This kept the first or the last item, respectively, 

unchanged to avoid grammaticality judgements predominantly based on these most salient 

positions. For the two grammatical sequences of only 3 items, the first item stayed the same, 

while the second and third item swapped positions (as all other permutations would result in 

grammatical sequences). Next we computed the “Global Associative Chunk Strength” (ACS) 

according to Cook et al. (2017, p. 1648) in a slightly modified way for all of the 140 resulting 

ungrammatical sequences, to match them in difficulty for short (low ACS) and long trials 

(high ACS): We defined ACS as the sum of an ungrammatical sequence’s shared bigrams 

(item pairs) and trigrams (item triplets) with all bigrams/trigrams existing in all grammatical 

sequences of the same length (3 to 5 items or 6 to 7 items, respectively), divided by the total 

number of bigrams/trigrams in the given ungrammatical sequence: A higher ACS means that 

an ungrammatical sequence shared more picture pairs and triplets with the grammatical 

sequences of the same length, making this sequence more difficult to be identified as 

ungrammatical. From the 30 short ungrammatical sequences (3 to 5 items), 11 sequences 

with a similar ACS (M = 1.44, SD =.18; range: 1.25 to 1.75) were selected, which were later 

randomly paired with the 9 short grammatical sequences to build the pairs of displayed 

sequences in the “easy” test trials. Short trials on average had a lower ACS (thus, easy trials) 

than long trials (thus, difficult trials), which are described in the following. For the second, 

“difficult”, trial type, we picked 19 out of the 110 long ungrammatical sequences (6 to 7 
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items) that had a similar ACS (M = 5.97, SD =.51; range: 5.03 – 6.85) and later paired them 

randomly with the 18 long grammatical sequences to make up the “difficult” test trials (for a 

full list of all ungrammatical sequences see Table A.2 in Appendix A). This procedure 

resulted in 30 ungrammatical sequences (11 short sequences with 3 to 5 items, 19 long 

sequences with 6 to 7 items) which were presented along with their ACS-matched 27 

grammatical sequences (9 short sequences with 3 to 5 items, 18 long sequences with 6 to 7 

items) in individual test trials. For each test phase, 5 randomly chosen pairs of “easy” 

sequences (short sequence with a low ACS) and 5 randomly chosen pairs of “difficult” 

sequences (long sequence with a high ACS) were presented in a random order, adding up to 

10 test trials per block.  

Each individual grammatical sequence was restricted to appear at most once per 

learning and once per test phase, and each individual ungrammatical sequence only once per 

test phase. Thus, within each task block (comprising 1 learning phase and 1 subsequent test 

phase), an individual ungrammatical sequence was not seen more than once and an individual 

grammatical sequence was not encountered more than twice. Therefore, per session any given 

ungrammatical sequence was presented no more than 5 times and any given grammatical 

sequence was shown no more than 10 times. 

Since random subsets were drawn from the whole set of grammatical sequences for 

each learning (18 out of 27 sequences) and test phase (5 out of 9 short sequences & 5 out of 

18 long sequences), short-term familiarity was an additional dimension of test trials, apart 

from trial difficulty (based on ACS, see above): a grammatical sequence in a test trial could 

either have been presented (“seen”) or not presented (“not seen”) in the directly preceding 

learning phase of this task block (approx. 2/3 of the grammatical sequences per test phase 

seen vs. 1/3 not seen). 

2.3.2. Explicit knowledge of sequence rules 

Explicit knowledge about underlying rules of the sequence learning task was assessed 

with three open questions at the end of Session 3 and Transfer 1 and a comprehensive 

questionnaire including additional questions at the end of the final session of Transfer 1 (see 

Appendix A) . A shorter version of the questionnaire was administered for children. All 

assessments were based on a procedure by Whitmarsh et al. (2013). 

The same open questions and questionnaires were administered at the end of Session 

6 and Transfer 2, respectively. Children’s parents were asked to pose the questions and 

document the answers of their children in Transfer 2, since unlike Transfer 1, this transfer 
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session was run at home.  Due to miscommunication, 5 children answered this second 

questionnaire of Year 2 after Session 6, that is, questions were not asked about stimulus set 2 

used for transfer, but instead about stimulus set 1. 

The questionnaire asked about sequence knowledge of the just completed sequence 

learning task and started with three general questions in an open answer format: (1) What do 

you think this task was about?, (2) Did you have a strategy to choose which train/flag 

belonged to [introduced person/team]?, (3) Did you notice anything about the trains/flags of 

[introduced person/team]?. It continued with 11 (adults) or 5 (children) specific questions, 

respectively, measuring reported knowledge about legal first and last pictures (With what 

[animal/color] could the trains/flags of [introduced person/team] begin/end?) and legal 

bigram transitions (What animals/colors could repeat themselves? What animal(s)/color(s) 

could follow animal/color X? What animal(s)/color(s) could not follow animal/color X?) as 

described in detail in Whitmarsh et al. (2013). Adults and children assessed at home had to 

choose from the five possible colored pictures (animals/colors) provided as response options 

in the questionnaire (multiple choice). Children assessed in the lab chose their response as 

printed cards (multiple choice), respectively. 

The first three questions about the task were considered together as a proxy for overall 

awareness of sequence rules. For this, we scored if participants mentioned sequence rules in 

any of their answers (0 = no mention of sequential order in any of the three questions 

[(1),(2),(3)]; 1 = mention of sequential order in at least one of the three questions). 

From the specific questions, we calculated an explicit knowledge score for Year 1 and 

Year 2, respectively. To this end, correct answers (correctly chosen pictures) were added up 

and incorrect answers (incorrectly chosen pictures) were subtracted from the correct answers 

in a weighted manner (see below), then the result was divided by the number of questions 

answered. We modified the assessment and thus the scoring from Whitmarsh et al. (2013), to 

render scores comparable for both age groups: On order to make the assessment feasible for 

children, we randomly picked two (out of five) pictures and asked about their bigram 

transitions, instead of asking about all bigram transitions as in adults. The answer to each 

question in both age groups was hence weighted according to the probability of valid bigram 

answers (i.e., the number of correct pictures chosen by a participant was divided by the 

number of all possible correct pictures [considering misses] and in an analogue manner for 

incorrect picture choices [considering correct rejections]). This was done because the number 

of valid bigram answers differed for different pictures (as they represented different “arrows” 
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in the artificial grammar, see numbers in Fig. 2). As children were not asked about bigram 

transitions for all pictures, but only about those of two out of five pictures picked randomly, 

this weighting was used to render answers comparable across participants. This means that 

for each question, a score from -1 (no correct answers given) to 1 (all correct answers given, 

without any false alarms) could be obtained. The resulting scores for each question were then 

added up and divided by the number of questions answered in total, to obtain the final score 

for explicit sequence knowledge (range of total score: -1 to 1). Higher scores indicated more 

explicit sequence knowledge. 

2.3.3. Memory and language skills 

To assess working memory, declarative memory and German grammar skills, we 

administered equivalent psychometric tests in Session 1 (Year 1) in both age groups and 

normalized all test scores according to age (except for Plural German Grammar Skills in 

Adults 1 for which norms were not available and for which hence raw scores were analyzed).  

Descriptive data for both age groups in the assessed memory skills and grammar 

skills, are detailed in Chapter IV. There, correlational analyses relate AGL performance to 

cognitive skills in all age groups investigated in this dissertation.  

2.3.4. Additional assessments 

Additional information about children and adults was collected with custom-made 

questionnaires at the end of Session 1, assessing their visual and hearing development, 

educational background, 2nd languages and the use of (mobile) devices. A screening tool for 

behavior on clinically relevant dimensions (Child Behavior Checklist CBCL, Döpfner et 

al.,2014; Brief Symptom Checklist BSCL, Franke, 2017) was administered in this context as 

well. Adult participants filled out these questionnaires themselves, while caregivers did so for 

participating children.  

2.4. Data analysis 

We characterized learning trajectories and averaged performance scores as proportion 

of correct test trials: Across-session learning was assessed as the mean performance of 50 test 

trials of each session. Within session learning trajectories were derived based on the means of 

10 test trials per block.  

Trials with shorter reaction times than 200 ms were disregarded, since we did not 

consider it feasible to successfully process the two sequences within less than this time. This 

exclusion criterion reduced trial numbers by 0.18 % (a total of 20 trials from 5 seven-year-

olds were excluded) for analyses of Year 1 (see results section Repeated learning across one 
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week (Year 1)) and by 0.12 % (a total of 17 trials from 7 seven-year-olds and from 1 adult 

were disregarded) of Year 1 and Year 2 combined for relearning analyses (see results section 

Relearning after a one-year-delay (Year 1 vs. Year 2)). 

To compare performance changes over time between the two age groups, repeated-

measures Analyses of Variance (ANOVAs) were conducted using the ez package in R 

(Lawrence, 2016), with Age (7-year-olds vs. Adults 1) as between-subject factor and Session 

(levels depending on analyses as described below and in the respective Results section) as 

within-subject factor. 

1. Within Year 1, the following comparisons were analyzed: 

• Session 3 vs. Session 1 (Learning Gains) 

• Transfer 1 vs. Session 1 (Transfer Savings) 

• Transfer 1 vs. Session 3 (Transfer Loss) 

2. For comparing start and end levels between Year 1 and Year 2, the following sessions 

were analyzed: 

• Session 4 vs. Session 1 (Start Level) 

• Session 4 vs. Session 3 (Retention) 

• Session 6 vs. Session 3 (End Level) 

3. For comparing session differences between Year 1 and Year 2 (performance 

improvement over 3 sessions, transfer performance relative to the first and last session 

with the first stimulus material), an additional within-subject factor Year (Year 1 vs. 

Year 2) was added in the ANOVAs, resulting in the within-subject factors Session and 

Year with levels described in the respective Results section. 

ANOVAs were followed up with appropriate post-hoc tests. If scores were not 

normally distributed, Wilcoxon signed rank tests (instead of t-tests) and Spearman correlation 

coefficients (rs) were calculated. Two tailed significant (<.05) P-values (if not indicated 

otherwise) were Greenhouse-Geisser-corrected (in case of violated sphericity) or Holm-

corrected (in case of multiple comparisons). Effect sizes were calculated as generalized eta 

squared (η2
g) for ANOVAs, as Cohen’s d for t-tests and as matched rank biserial correlation 

(r) for Wilcoxon singed rank tests, respectively. 

For session comparisons that involved Session 1 or Session 4, additional control 

analyses were conducted with proportion correct of test trials averaged over block 2 to 5 of 

each session (without the first block), to account for task novelty. The rationale was to 

control for differences in general task familiarity between sessions, since performance in the 
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very beginning might be poorer compared to later sessions because of a lower familiarity 

with the general task setting. 

Due to the home-setting, there were some additional deviations from the task 

instructions in the final sample, mainly in Year 2 (3 participants with 4 instead of 3 sessions 

with the first stimulus set, 2 participants with 6 instead of 5 task blocks in 1 session, 1 

participant with 4 instead of 5 task blocks in Session 5). These participants were included in 

the final analyses, since they did not show any systematic peculiarities in their response 

patterns and only the originally scheduled trials were included in case of additional task 

blocks completed (n = 5) or session performance was averaged over the available data in case 

of a missing task block (n = 1), respectively. Additionally, we checked for each of the 

reported analysis whether excluding these six participants with slightly different task 

exposure would qualitatively change the pattern of results.  

We performed equivalent Bayesian analyses for all inferential statistical analyses in 

the software JASP (Version 0.14.1; JASP Team, 2021), using default priors, and report the 

Bayes Factor (BF10). The BF helps to evaluate whether the data at hand support the null-

hypothesis (H0) or the alternative hypothesis (H1), and has been described as a suitable tool 

for interpreting null results (Dienes, 2014). For main and interaction effects in ANOVAs, we 

report the inclusion Bayes factor (BFincl) – which compares models that contain the effect of 

interest to equivalent models stripped of this effect – as implemented in JASP Version 0.14.1 

and recommended by e.g. Mathôt (2017) and Quintana & Williams (2018). BF values 

between 1/3 and 1/10 indicate moderate evidence for the H0, while a BF of lower than 1/10 is 

considered strong evidence for the H0; a BF between 1 and 1/3 is defined as anecdotal 

evidence for the H0 (Schönbrodt & Wagenmakers, 2018). On the other hand, BF values 

between 3 and 10 indicate moderate evidence for the H1, while a BF from 10 onwards is 

considered as strong evidence for the H1 and a BF between 1 and 3 is defined as anecdotal 

evidence for the H1 (Schönbrodt & Wagenmakers, 2018). For post-hoc tests on scores that 

were not normally distributed, the BF was calculated for non-parametric test equivalents to 

the respective inferential tests and is reported using the default setting of data augmentation 

algorithms with 5 chains of 1000 iterations as implemented in JASP. 

All data analyses apart from Bayesian analyses were performed in the software R 

(Version 4.1.0; R Core Team, 2021). 

To further look into within-session learning, we made use of the trail-by-trial response 

data and fit the state-space random effects model by Smith et al. (2005) to binary responses 
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(correct = 1, incorrect = 0) in all 150 test trials of the 3 sessions with stimulus set 1, 

separately for each age group and each year (Session 1 to 3 in Year 1: data from 27 children 

and 28 Adults 1; Session 4 to 6 in Year 2: data from 15 children and 20 Adults 1). This model 

estimated the first trial as the timepoint where learning had first occurred for the whole 

population (i.e., age group), by estimating an unobservable learning state process, defined as 

a random walk. For an estimation of the learning curves it used a state-space random effects 

model and Expectation-Maximization algorithm, characterizing the dynamics of the learning 

process as a function of trial number (Smith et al., 2005). The modeling script was provided 

in Matlab (Matlab, MathWorks 2020) from the website indicated by Smith et al. (2005; 

http://annecsmith.net/behaviorallearning.html). The estimated first learning trial from this 

population modeling was then used to compare within-session learning between age groups.  
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3. Results 

3.1. Repeated learning across one week (Year 1) 

We first tested whether both age groups performed above chance in every session, to 

assess whether they had learned the AG rule (Fig. 2A). For all sessions, group-level 

performance exceeded the chance level of 0.5 (two-alternative forced-choice trials) in both 7-

year-olds (all t(26) ≥ 2.80, all p ≤ .005, all d ≥ 0.54, all BF+0 ≥ 9.53; one-sided) and in Adults 

1 (all V(27) = 406.00, all p ≤ .004, all r ≥ 0.87, all BF+0 > 100; one-sided). For session means 

and additional information on both groups, see Table 4A and Appendix B (session averages 

without block 1). All following analyses are based group Means(SDs) in Table 4A (n = 27 7-

year-olds & n = 28 Adults 1) which will be referenced for better readability. 

 

Table 4 

A Year 1: Proportion Correct in AGL per Session and Age Group 

 Session 1 Session 2 Session 3 Transfer 1 

 7yo Ad 1 7yo Ad 1 7yo Ad 1 7yo Ad 1 

N 27 28 27 28 27 28 27 28 

M .55 .78 .62 .90 .65 .93 .63 .89 

SD .09 .09 .12 .07 .16 .07 .11 .11 

Min .30 .62 .42 .76 .35 .74 .36 .60 

Max .70 .98 .88 1.00 .96 1.00 .90 1.00 

N* 16 20 16 20 16 20 16 20 

M .56 .79 .69 .92 .69 .94 .67 .90 

SD .07 .10 .13 .06 .17 .07 .09 .12 

Min .44 .62 .50 .76 .46 .74 .52 .60 

Max .70 .98 .88 1.00 .96 1.00 .90 1.00 

 

B Year 2: Proportion Correct in AGL per Session and Age Group 

 Session 4 Session 5 Session 6 Transfer 2 

 7yo Ad 1 7yo Ad 1 7yo Ad 1 7yo Ad 1 

N 16 20 16 20 16 20 16 20 

M .71 .91 .76 .94 .80 .94 .73 .92 

SD .11 .10 .16 .09 .13 .09 .13 .09 

Min .52 .60 .48 .70 .52 .68 .49 .64 

Max .90 1.00 .98 1.00 1.00 1.00 .98 1.00 

Note. 7yo = 7-year-olds, Ad 1 = Adults 1, Min = minimal value, Max = maximal value 

* Subgroup of returning participants with data for Year 1 & Year 2 (see section Participants).  
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3.1.1. Age comparison: Performance improvement and transfer to new stimuli 

To evaluate benefits of repeated sequence training, we tested to what degree 

performance improved from the first (Session 1) to the last session (Session 3) with the first 

stimulus set. To this end, averaged session scores (proportion correct of 50 test trials) were 

entered into an ANOVA with the factors Age (between-subject; levels: 7-year-olds, Adults 1) 

and Session (within-subject; levels: Session 1, Session 3): Learning performance improved in 

both groups from the Session 1 to Session 3 (see Table 4; main effect of Session: F(1, 

53) = 40.59, p < .001, η2
g = .24; BFincl > 100), as reflected in the positive mean difference 

scores depicted in Figure 4A. The mean proportion of correct responses was higher in Adults 

1 compared to 7-year-olds (see Table 4) for both sessions (main effect of Age: F(1, 

53) = 152.93, p < .001, η2
g = .63, BFincl > 100), while Learning Gains from Session 1 to 

Session 3 did not significantly differ between groups (interaction Age*Session: F(1, 

53) = 0.95, p = .333, η2
g = .01; BFincl = 0.40). 

Note. A: Mean proportion of correct responses in the test phases of Session 1 to 3 and Transfer 1 

(Year 1) for 7-year-olds (left) and adults (right). Learning curves of single participants are depicted in 

green (7-year-olds) and pink (adults). B: Mean proportion of correct responses in the test phases of 

each block of Session 1 to 3 and Transfer 1 (Year 1) for 7-year-olds (green) and adults (pink). The 

dotted horizontal lines mark chance level performance. Error bars indicate 95% CIs corrected for 

within-subject comparison according to Morey (2008). 

 

Figure 3 

Performance Trajectories Across Sessions and Within Sessions of Year 1 
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The same pattern of results emerged when the first block of Session 1 was excluded 

from the analysis to avoid trivial task familiarity effects (significant main effects of Age and 

Session: both F(1, 53) ≥ 22.78, both p < .001, both η2
g ≥ .15, both BFincl > 100, but no 

significant interaction Age*Session: F(1, 53) = 1.14, p = .290, η2
g < .01, BFincl = .41).  

A polynomial contrast analyses separately run for each group provided evidence for a 

linear increase of performance from Session 1 over Session 2 to Session 3 in 7-year-olds (p 

< .001; see trajectories Session 1 to 3 in Fig. 2A left panel), and for both a linear (p < .001) 

and a quadratic trend (p = .006) over these three sessions in the adult data (Fig. 2A right 

panel). In fact, Adults 1 had reached ceiling by the end of Session 2. 

Next, we asked whether children and adults were able to apply their acquired rule 

knowledge of the first three sessions to the second stimulus set in the transfer session 

(Transfer 1; see Fig. 4B). To examine transfer savings to the new stimulus set, averaged 

session scores were entered into an ANOVA with the factors Age (between-subject; levels: 7-

year-olds, Adults 1) and Session (within-subject; levels: Session 1, Transfer 1). Adults 

outperformed children (see Table 4), irrespective of the session (main effect of Age: F(1, 

Note. Learning Gains were defined as the difference in the proportion correct in Session 3 minus the 

proportion correct in Session 1 (A). Transfer Savings were computed as the difference in proportion 

correct in Transfer 1 minus the proportion correct in Session 1 (B). Boxplots for 7-year-olds (green) 

and adults (pink) with the groups’ median indicated by a black line and the corresponding mean 

indicated by a black square. Black dots represent single-subject data. Scores above the dotted lines 

indicate successful learning.  

 

Figure 4 

Learning Gains and Transfer Savings in Year 1 
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53) = 180.35, p < .001, η2
g = .64; BFincl > 100). Crucially, in both groups performance in the 

transfer session exceeded performance in the first session (Mean(SD) for both groups see 

Table 4; main effect of Session: F(1, 53) = 23.70, p < .001, η2
g = .18; BFincl > 100), indicating 

successful transfer to the new stimulus set (see Fig. 4B). This transfer effect did not 

significantly differ in size between adults and 7-year-olds (interaction Age*Session: F(1, 

53) = 0.16, p = .694, η2
g  < .01; BFincl = 0.35). 

A control analysis without block 1 yielded similar results (significant main effects of 

Age and Session: both F(1, 53) ≥ 17.06, both p < .001, both η2
g ≥ .12, both BFincl > 100, but 

no significant interaction Age*Session: F(1, 53) < 0.01, p = .934, η2
g < .01, BFincl = .26).  

We further tested whether performance changed from the last session with the first 

stimulus set (Session 3) to the subsequent transfer session (Transfer 1): An ANOVA with the 

factors Age (between-subject; levels: 7-year-olds, Adults 1) and Session (within-subject; 

levels: Session 3, Transfer 1) revealed a significant main effect of Age (F(1, 53) = 106.37, p 

< .001, η2
g = .60; BFincl > 100) with adults performing better than 7-year-olds across all 

sessions (see Table 4). No significant performance loss (main effect of Session: F(1, 

53) = 3.08, p = .085, η2
g = .01; BFincl = .74) or age difference in their preserved performance 

level in the transfer session (interaction Age*Session F(1, 53) = 0.47, p = .498, η2
g < .01; 

BFincl = .31) was obtained. 

Taken together, across one week in Year 1, both children and adults learned the AG 

and finally successfully applied this knowledge to a new stimulus set. Throughout the 

sessions, adults performed at a higher level than children, while leaning gains did not differ 

between groups. 

3.1.2. Identifying the first learning trial from modeling trial-by-trial performance 

For within-session learning, the state-space model by Smith et al. (2005) identified the 

very first test trial (i.e., in the beginning of Block 1 in Session 1) in the adult group as the first 

timepoint at which learning had taken place. This means that adults showed within-session 

learning effects after being exposed to a single learning phase of 18 grammatical sequences. 

In contrast, for children, the 30th test trial (i.e., at the end of Block 3 in the second half of 

Session 1) was identified as the first timepoint when learning had happened. Thus, children 

needed more learning trials until they featured successful learning of the AG in Year 1.  
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3.1.3. Performance correlations with explicit sequence knowledge 

After Session 3, 83% of 7-year-olds, as opposed to all adults, spontaneously 

mentioned to have noticed some aspect related to sequence rules when asked about the AGL 

task and their decision strategies for stimulus set 1 (open questions, see Explicit Knowledge 

of Sequence Rules; for answers per age group see Table 2). After Transfer 1, 74% of 7-year-

olds reported having become aware of sequence rules for stimulus set 2, while all adults 

reported to have done so. 

Separate χ2 -tests for these two timepoints yielded no statistically significant results 

for comparing proportions of aware vs. unaware participants between both age groups in 

Session 3 (χ2(1) = 1.58, p = .209, BF10 = .20) and a marginally significant result for Transfer 

1 (χ2(1) = 3.89, p = .049, BF10 = .66), with more adults than children reporting awareness.  

When comparing specific sequence knowledge (assessed at the end of Transfer 1) 

between the two age groups, scores of reported explicit knowledge did not significantly differ 

between 7-year-olds and adults (t(53) = -1.17, p = .249, d = 0.31, BF10 = .48). In 7-year-olds, 

explicit knowledge about sequence rules (assessed at the end of Transfer 1) was marginally 

positively correlated with Transfer Savings (Transfer 1 – Session 1; rs = .42, p = .058, 

BF10 = 1.68; adults n.s.: rs = .25; p = .193, BF10 = .55). All other correlations of explicit 

sequence knowledge with AGL Learning Gains and Transfer Effects are detailed in Appendix 

B (7-year-olds: all rs ≤ .33; p ≥ .176, BF10 ≤ 1.11; Adults 1: all rs ≤ .24, p ≥ .448, BF10 ≤ .42). 

3.1.4. Effects of trial difficulty and familiarity on task performance 

Since test trials in the sequence learning task differed with regard to difficulty (short 

trials with low ACS vs. long trials with high ACS) and short-term familiarity (grammatical 

sequence of a test trial seen vs. not seen in the directly preceding learning phase; for both trial 

properties, see Construction of Grammatical and Ungrammatical Sequences), we evaluated 

how these task characteristics related to learning performance averaged across all four 

sessions of Year 1 in both age groups. 

Two different ANOVA models were calculated. The first included difficulty as an 

independent variable (factors Age (between-subject; levels: 7-year-olds, Adults 1) and Trial 

Type (within-subject; levels: simple vs. difficult seen vs. not seen for short-term familiarity), 

the other short-term familiarity (factors Age (between-subject; levels: 7-year-olds, Adults 1) 

and Trial Type (within-subject; levels: seen vs. not seen). They both revealed main effects of 

Age (both F(1, 53) ≥ 165.43, p < .001, η2
g ≥ .71, BFincl > 100) and Trial Type (both 

F(1, 3) = 8.29, p ≤ .006, η2
g ≥ .03 BFincl ≥ 6.79), but no significant Age*Trial Type interaction 
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(both F(1, 53) ≤ 1.33, p ≥ .255, η2
g < .01, both BFincl ≤ .48): Overall, adults outperformed 

children in all trial types and participants performed worse in more challenging trial types 

(long test trials with high ACS and test trials with a grammatical sequence not seen in the 

previous learning phase, respectively). 

Despite being outperformed by the adult group, the group of 7-year-olds performed 

on the more challenging types of sequences better than chance (long trials with high ACS: 

t(26) = 6.25, p < .001, d = 1.02, BF10 > 100; trials with a grammatical sequence not seen in 

the preceding learning phase: t(26) = 5.00, p < .001, d = .94, BF10 > 100). 

 

3.2. Relearning after a one-year delay (Year 1 vs. Year 2) 

The following analyses were performed for the subgroup of 16 seven-year-olds and 

20 adults (Adults 1), who completed the four home follow-up sessions in Year 2 in addition 

to all sessions in Year 1. Thus, we first tested, whether this subgroup performed above chance 

in both Year 1 and Year 2 (see black group means in Fig. 5). For all eight sessions, group-

level performance exceeded the chance level of 0.5 (two-alternative forced-choice trials) in 7-

year-olds (all t(15) ≥ 3.30, all p ≤ .008, all d ≥ 0.83, all BF+0 > 100; one-sided) and in adults 

(one-sided; all V(19) = 210.00, all p ≤ .008, all r = 0.88, all BF+0 > 100; one-sided). For 

session means and additional descriptive information for both age groups that all following 

analyses are based on, see Table 4B and Appendix B (session averages without block 1). 

Table 4 will be referenced for better readability in all following analyses (Table 4A: see data 

for n = 16 seven-year-olds & n = 20 Adults 1), instead of providing groups Means(SDs) 

individually for each analyses. 
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Figure 5 

Performance Trajectories Across Sessions and Within Sessions of Year 1 & Year 2 

Note. A: Mean proportion of correct responses in the test phases of each session for 7-year-olds (left) 

and adults (right). Learning curves of single participants are depicted in green (7-year-olds) and pink 

(adults). B: Mean proportion of correct responses in the test phases of each block for 7-year-olds 

(green) and adults (pink). The dotted horizontal lines mark chance level performance. Error bars 

indicate 95% CIs corrected for within-subject comparison according to Morey (2008). 
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3.2.1. Initial and final performance levels in Year 1 vs. Year 2 

To evaluate gains for relearning in Year 2 from the previous learning experience in 

Year 1, we tested averaged performance in the very first session (Session 1) against averaged 

performance in the first session of relearning in Year 2 (Session 4) (see Fig. 6A): An 

ANOVA with the factors Age (between-subject; levels: 7-year-olds, Adults 1) and Session 

(within-subject; levels: Session 1, Session 4) revealed higher overall performance levels in 

adults than in children (see Table 4; main effect of Age F(1, 34) = 88.02, p < .001, η2
g = .57; 

BFincl > 100). Importantly, both age groups performed better in the first relearning session of 

Year 2 than in the first session of Year 1 (see Table 4; main effect of Session F(1, 

34) = 36.92, p < .001, η2
g = .35; BFincl > 100), as indicated by the positive mean difference 

scores shown in Figure 7A. The performance gain at relearning in Year 2 was of similar 

magnitude for 7-year-olds and adults (Age*Session interaction F(1, 34) = 0.33, p = .569, 

η2
g < .001; BFincl = .35). 

  

Note. Initial performance was compared as difference in proportion correct in the test phases of 

Session 4 minus Session 1 (A). Final performance was compared as difference in proportion correct in 

the test phases of Session 6 minus Session 3 (B). Boxplots for 7-year-olds (green) and adults (pink) 

with the groups’ median indicated by a black line and the corresponding mean by a black square. 

Black dots represent single-subject data. The dotted lines mark no performance difference between the 

two compared sessions. 

Figure 6 

Session Differences of Year 1 & Year 2 for Initial and Final Performance Levels  
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An additional ANOVA, comparing only performance in blocks 2 to 5 for each 

session, revealed the same pattern of results (significant main effects of Age and Session: 

both F(1, 34) ≥ 29.17, both p < .001, both η2
g ≥ .27, both BFincl > 100, and no significant 

interaction of Age*Session: F(1, 34) = .20, p = .532, η2
g = .01, BFincl = .29). 

Next, we tested whether both age groups had lost in performance from the last session 

with the first stimulus set (Session 3) to the first session of relearning of Year 2 (Session 4). 

An ANOVA with the factors Age (between-subject; levels: 7-year-olds, Adults 1) and Session 

(within-subject; levels: Session 3, Session 4) revealed only a significant main effect of Age 

(F(1, 34) = 42.81, p < .001, η2
g = .52; BFincl > 100), with adults performing better than 7-

year-olds, irrespective of the session (see Table 4). Participants retained their performance 

level from the end of Year 1 in Year 2 (see Table 4; main effect of Session: F(1, 34) = 0.11, 

p = .740, η2
g < .01; BFincl = .25), with no significant age difference in adults’ and children’s 

retention (interaction Age*Session F(1, 34) = 2.43, p = .128, η2
g = .01, BFincl = 0.81). 

Excluding block 1 from both sessions’ average scores, yielded the same results for the main 

effects of Age (F(1, 34) = 41.52, p < .001, η2
g = .51, BFincl > 100) and Session (F(1, 

34) = 1.51, p = .227, η2
g < .01, BFincl = .31), but rendered the age difference in adults’ and 

children’s retention statistically significant (Age*Session: F(1, 34) = 6.18, p = .018, η2
g = .03, 

BFincl = 2.96): Children performed better after the one-year-delay in Session 4 than in the end 

of Year 1 in Session 3 (t(15) = -1.89, p = .158, d = 0.47, BF10 = 1.07), while adults did not 

(Mean(SD) for both groups see Table B.1 in Appendix B; t(19) = 1.46, p = .160, d = 0.33, 

BF10 = .58).  

We next examined whether relearning in Year 2 results in a higher final level than in 

Year 1. Averaged performance in the last session with the first stimulus material was 

compared between Session 3 and Session 6 (see difference scores for both age groups in Fig. 

6B). An ANOVA with the factors Age (between-subject; levels: 7-year-olds, Adults 1) and 

Session (within-subject; levels: Session 3, Session 6) yielded significant main effects of Age 

(F(1, 34) = 28.17, p < .001, η2
g = .42; BFincl > 100) and Session (F(1, 34) = 15.37, p < .001, 

η2
g = .05; BFincl = 5.29), as well as a significant interaction of Age*Session (F(1, 34) = 17.85, 

p < .001, η2
g = .06; BFincl = 83.03): Only 7-year-olds performed better in Session 6 of Year 2, 

compared to Session 3 of Year 1 (Mean(SD) for both groups see Table 4; t(15) = -4.83, p 

< .002, d = 1.21, BF10 > 100; shown in red in Fig. 6B left panel), while adults’ final 

performance levels did not differ for Session 3 of Year 1 and Session 6 of Year 2 (Mean(SD) 
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for both groups see Table 4; t(19) = 0.26, p = .799, d = 0.06, BF10 = .24; shown in blue in Fig. 

6B right panel). 

3.2.2. Performance improvement and transfer effects in Year 1 vs. Year 2 

To compare performance improvements over three sessions with the first stimulus set 

in both years, we tested initial learning in Year 1 (see Fig. 7A) against relearning in Year 2 

(see Fig. 7B): An ANOVA with the factors Age (between-subject; levels: 7-year-olds, Adults 

1),Year (within-subject; levels: Year 1, Year 2) and Session (within-subject; levels: First 

Session [Year 1: Session 1; Year 2: Session 4], Last Session[Year 1: Session 3; Year 2: 

Session 6]) revealed significant two-way interactions of Age*Year (F(1, 34) = 7.83, p = .008, 

η2
g = .03; BFincl = 3.26) and Year*Session (F(1, 34) = 12.79, p = .001, η2

g = .04; 

BFincl = 23.13) as well as main effects of Age, Year and Session (all F(1, 34) ≥ 25.46, all p 

< .001, all η2
g ≥ .11, all BFincl > 100; all other F(1, 34) ≤ 3.16, p ≥ .085, η2

g ≤ .01, BFincl 

< .69): Overall, participants improved to a greater degree over three sessions in Year 1 

(Session 1 vs. Session 3, see Fig. 7A) than they did in Year 2 (Session 4 vs. Session 6, see 

Fig. 7B; performance improvement in Year 2 [Session 6 – Session 4] vs. performance 

improvement in Year 1 [Sessions 3 - 1]: t(35) = 3.63, p < .002, d = 0.60, BF10 = 34.34), and 

7-year-olds in general gained more from learning in Year 2 than adults (performance 

difference average Year 2 [Sessions 4 & 6] – average Year 1 [Sessions 1 & 3] in children vs. 

Adults 1: t(34) = 2.47, p = .019, d = 0.83, BF10 = 3.12). 

An additional analysis without the first block of each session yielded the same pattern 

of results (significant interactions Year*Session and Age*Year in addition to main effects of 

Age, Year and Session: all F(1, 34) ≥ 6.09, all p ≤ .019, all η2
g ≥ .03, all BFincl ≥ 5.63; all 

other F(1, 34) ≤ 3.07, p ≥ .089, η2
g ≤ .01, BFincl ≤ .85).  

We further characterized learning across three sessions for Year 1 and Year 2 in both 

age groups separately by polynomial contrast analyses, which tested for linear and quadratic 

trends in the data (R package emmeans; Lenth, 2021): The increase in performance followed 

a linear trend in in the children and adult groups from Sessions 1 over Session 2 to Session 3 

(Year 1) and from Sessions 4 over Session 5 to Session 6 (Year 2; all p ≤ .002). In adults, an 

additional quadratic trend emerged over Sessions 1 to 3 (Year 1, p = .006). 
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To compare how participants transferred learned regularities to a second stimulus set 

in Year 1 versus Year 2 (see Fig. 7C & 7D), we conducted an ANOVA with the factors Age 

(between-subject; levels: 7-year-olds, Adults 1), Year (within-subject; levels: Year 1, Year 2) 

and Session (within-subject; levels: First Session [Year 1: Session 1; Year 2: Session 4], 

Transfer Session [Year 1: Transfer 1; Year 2: Transfer 2]).  

This analysis revealed a significant interaction of Year*Session (F(1, 34) = 13.83, 

p = .001, η2
g = .06; BFincl = 73.70 and significant main effects of Age, Year and Session (all 

F(1, 34) ≥ 25.30, all p < .001, all η2
g ≥ .09, all BFincl > 100; all other F(1, 34) ≤ 1.61, p 

≥ .214, η2
g ≤ .01, BFincl ≤ .52): Overall, performance in Transfer 1 exceeded performance in 

Note. Learning Gains as difference in proportion correct responses of Session 3 and Session 1 

(A: Year 1) or Session 6 and Session 4 (B: Year 2), respectively. Transfer Savings as difference in 

proportion correct responses of Transfer 1 and Session 1 (C: Year 1) or Transfer 2 and Session 4 

(D: Year 2), respectively. Boxplots for 7-year-olds (green) and adults (pink) with the groups’ 

median indicated by a black line and the corresponding mean by a black square. Black dots 

represent single-subject data. The dotted lines mark no performance difference between the two 

compared sessions. 

Figure 7 

Session Differences for Learning Gains and Transfer Savings for Year 1 & Year 2 
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Session 1 in Year 1 (t(35) = -5.14, p < .002, d = 0.86, BF10 > 100; see Fig. 7C), but this was 

not the case for performance in Year 2 for Transfer 2 compared to Session 4 (t(35) = -1.11, 

p = .274, d = 0.19, BF10 = .32; see Fig. 7D). This effect was similar in size for both age 

groups (Age*Year*Session: F(1, 34) = 0.18, p = .671, η2
g < .01; BFincl = .34), Thus, no 

additional performance benefit for the second stimulus set was observed after relearning in 

Year 2. 

The same pattern of results emerged from a control analysis without the first block per 

session (interaction Year*Session F(1, 34) = 16.99, p < .001, η2
g = .06, BFincl > 100 in 

addition to main effects of Age, Year and Session: all F(1, 34) ≥ 17.01, all p < .001, all 

η2
g = .06, all BFincl > 100; all other F(1, 34) = 1.43, p > .239, η2

g = .06, BFincl ≤ .60). 

We further investigated preserved performance in the transfer session compared to the 

directly preceding session with the first stimulus set in Year 1 versus Year 2. To this end, we 

conducted an ANOVA with the factors Age (between-subject; levels: 7-year-olds, Adults 1), 

Year (within-subject; levels: Year 1, Year 2) and Session (within-subject; levels: Last Session 

[Year 1: Session 3; Year 2: Session 6], Transfer Session [Year 1: Transfer 1; Year 2: Transfer 

2]). This analysis yielded a significant two-way interaction of Age*Year (F(1, 34) = 16.86, p 

< .001, η2
g = .03; BFincl = 43.97) in addition to significant main effects of Age, Year and 

Session (all F(1, 34) ≥ 8.26, all p ≤ .007, all η2
g ≥ .03, all BFincl ≥ 14.18; all other F(1, 34) ≤ 

1.95, p ≥ .171, η2
g < .01, BFincl ≤ .70): 7-year-olds displayed performance gains from Year 1 

to Year 2 (Year 1 vs. Year 2: t(31) = -4.51, p < .002, d = 0.80, BF10 > 100), while Adults 1 

did not (Year 1 vs. Year 2: t(39) = -0.49, p = .623, d = 0.08, BF10 = .25). For both age 

groups, performance declined from the last session (i.e., average of Session 3 & 6 see Table 

4) to the transfer session (i.e., average of Transfer 1 & 2 see Table 4; main effect of Session: 

F(1, 34) = 8.26, p = .007, η2
g = .03, BFincl = 14.18). No difference in this second transfer 

contrast emerged when comparing Year 1 and Year 2 (Year*Session: F(1, 34) = 0.30, 

p = .596, η2
g < .01; BFincl = .25), independently of age (Age*Year*Session: F(1, 34) = 1.95, 

p = .171, η2
g < .01; BFincl = .70). Taken together, these non-significant interactions and the 

significant main effect of Session indicate that the performance of participants of both age 

groups decreased from the last session with the first stimulus set to the transfer session, that is 

the final session with a second stimulus set, in both Year 1 and Year 2. 

In summary, both age groups preserved their performance level in Session 3 (last 

session) of Year 1 to Session 4 (first session) of Year 2 and both groups performed higher in 

the first session of Year 2 compared to the first session of Year 1. In Year 2, both groups 
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improved less over three repeated learning sessions with the first stimulus set than in Year 1, 

and showed no additional transfer benefits for the second stimulus set from the learning 

sessions of Year 2. Seven-year-olds, but not Adults 1, reached higher final performance 

levels with the first stimulus set after relearning in Year 2, compared to Session 3 (last 

session) in Year 1. Adults 1 had reached ceiling in Year 1.  

3.2.3. Identifying the first learning trial from modeling trial-by-trial performance 

For within-session learning in Year 2, the state-space model by Smith (2005) 

identified the very first test trial (Block 1 in Session 1) in both age groups as the timepoint at 

which learning first happened. This means that at relearning, both groups showed within-

session learning effects after being exposed to a single learning phase of 18 grammatical 

sequences. Thus, children demonstrated within-session learning effects at relearning in Year 

2 as early as adults.  

3.2.4. Performance correlations with explicit sequence knowledge 

After Session 6, all 7-year-olds and all adults spontaneously mentioned to have 

noticed some aspect related to sequence rules when asked about the AGL task and their 

decision strategies about stimulus set 1 (open questions, see Explicit Knowledge of Sequence 

Rules; all answers see Table 3). After Transfer 2, the same pattern occurred with all 

participants reporting to have become aware of sequence rules. 

Scores in reported explicit sequence knowledge in Year 2 (assessed at Transfer 2 

about specific legal bigram transitions, see specific questions in Explicit Knowledge of 

Sequence Rules) did not significantly differ between 7-year-olds and Adults 1 (t(34) = 0.43, 

p = .249, d = 0.18, BF10 = .35). 

7-year-olds reported more explicit knowledge about sequence rules at the end of Year 

2, compared to the end of Year 1 (t(15) = -3.51, p = .004, d = 0.90, BF-0 = 56.33; one-sided), 

while this difference between Year 1 and 2 did not reach statistical significance in Adults 1 

(t(19) = -1.43, p = .084, d = 0.32, BF-0 = 1.02; one-sided). For all associations of explicit 

sequence knowledge with AGL Learning Gains and Transfer Effects (7-year-olds: all | rs | 

≤ .31; p ≥ .472, BF10 ≤ .68; Adults 1: all | rs | ≤ .38, p ≥ .180, BF10 ≤ 1.07), see Appendix B. 

Task difficulty and short-term familiarity caused similar performance effects in Year 

2 as in Year 1 (see Appendix B). 
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4. Discussion 

The goal of Project 1 was to characterize long-term learning trajectories in a modified 

visual AGL task in children and adults across one year. It was tested whether 7-year-olds 

outperform adults in artificial grammar learning and whether this advantage translates to 

superior long-term memory of AG rules. To this end, both 7-year-olds and adults engaged in 

a multisession visual AGL task which was repeated one year later.  

We found successful AG learning and transfer of rule knowledge to another stimulus 

set in both 7-year-olds and adults. However, adults learned quicker and overall performed at a 

higher level. Both groups retained rule knowledge over a period of one year, started at the 

level reached one year earlier and continued to improve, although to a lesser degree than in 

the first year. We did not find better retention effects or relearning advantages across the 

second set of sessions after the one-year delay in 7-year-olds compared to adults. Explicit 

knowledge of the AG rules was indistinguishable between adults and children and correlated 

with transfer gains in children. 

In the following, discussions will focus on a child-adult comparison in sequence 

learning across two timescales (1 week & 1 year). Implications for more general concepts 

like sensitive periods in development will be discussed in Chapter V. 

4.1. 7-year-olds acquire AG rules but overall learn slower and perform worse than 

adults across several sessions 

When exposed to a visual AGL task, 7-year-olds and adults learned the visual 

sequence rules. Adults overall outperformed children, but learning gains over several sessions 

were indistinguishable between both groups. These results are in accord with Ferman and 

Karni (2010) and Smalle, Page, et al. (2017), who reported indistinguishable learning rates 

across multiple sessions in 8-12-year-olds and adults in phonological sequence learning tasks. 

Our study extends these findings to visual sequence learning with more complex rules as 

defined in an AG. 

Our study allowed for a direct comparison between both age groups with regard to 

short-term retention effects, which elaborates evidence on visuomotor retention across 24 

hours in an alternating serial reaction time task for 9-15-year-old children (Tóth-Fáber, 

Janacsek, & Németh, 2021) and adults (Kóbor et al., 2017) from separate studies. Our finding 

that 7-year-olds and adults continued learning at their last performance level after delays of at 

least one night between the sessions of Year 1 suggests similarly effective short-term 

consolidation processes for learned regularities in children and adults. We can only speculate 
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on the role of sleep for performance in our task setting. Sleep-dependent consolidation of 

encountered environmental patterns has been proposed to rely mainly on time-compressed 

replay processes in the hippocampus during slow-wave sleep (Lerner & Gluck, 2019; 

Wilhelm et al., 2012), which enable the long-term storage of rule knowledge in cortical 

networks and consequently the generalization of the acquired rules. 

In contrast to previous findings on rule generalization in phonological single-session 

(Hickey et al., 2019) and multi-session (Ferman & Karni, 2010) learning, we found that 

children as young as seven years of age generalized their visual rule knowledge to the same 

extent as young adults did. Transfer effects in our study emerged without any explicit 

instructions, i.e. without providing participants explanations about the nature of these rules. 

This finding, thus, is incompatible with the proposition that explicit instructions are necessary 

for successful transfer in children younger than 12 years of age (Ferman & Karni, 2010, 

2014). In line with our findings, in a single-session study, 6- to 9-year-olds were able to 

implicitly extract categorical regularities in visual triplet learning and demonstrated a transfer 

of rule knowledge to unseen items of the same picture category to the same degree as adults 

(Jung et al., 2020). Even younger children with age 3 to 6 years were reported to successfully 

transfer learned regularities to new syllables in auditory artificial grammar learning, when 

underlying rules reflected word form distributions from natural language (Nowak & Baggio, 

2017). These inconsistent findings raise the question of under which conditions children 

transfer learned regularities to new items or even to new categories. In line with previous 

suggestions (Gomez, 1997; Nowak & Baggio, 2017; Witt et al., 2013), we hypothesize that in 

learning complex regularities, task features that help building explicit knowledge about these 

regularities might favor rule abstraction and consequently rule transfer to new surface 

features of the instantiated sequence rules in children. In the present study, task features that 

promoted the acquisition of explicit knowledge possibly included instructing participants in a 

way that linked learning and test phases (Witt et al., 2013) and providing audio-visual 

feedback after each test trial (Nowak & Baggio, 2017). This link between explicit rule 

knowledge and rule transfer is supported by our finding that in children, larger Transfer 

Savings (Transfer 1 minus Session 1) showed a trend to be positively associated with more 

explicit knowledge of the rules at the end of Year 1.  

Despite the similarities in learning trajectories and transfer effects for children and 

adults, we found age differences within the first year of learning across one week: Adults 

needed less exposure to the AG within one session to successfully apply the sequence rules in 
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subsequent test trials: After only one learning phase with 18 grammatical sequences they 

performed above-chance performance. By contrast, successful learning in children was not 

observed before the third test phase of Session 1, i.e., only after exposure to 54 grammatical 

sequences. Adult’s learning curves furthermore showed an exponential increase across three 

sessions with the same stimulus material. In contrast, children’s learning curves increased 

linearly. Interestingly, these age differences were no longer observed for relearning in Year 2. 

Instead, children in Year 2 showed within-session learning as early as adults (successful 

learning was observed after a single learning phase) and a linear increase of performance 

emerged in both age groups. The statistical learning model of Janacsek et al. (2012) (further 

elaborated by Daltrozzo & Conway, 2014; Janacsek et al., 2012; Nemeth et al., 2013) has 

suggested a switch to a more supervised, “model-based” learning system, taking place in the 

course of development. Model-based learning was considered to rely more on attentional 

resources, behavioral control and prior knowledge than the “model-free” learning, which has 

been proposed to be the predominant form of learning in early development. The reliance on 

supervised learning mechanisms in sequence learning might allow adults to reach a higher 

performance levels at test after exposure to sequential regularities (discussed as explicit 

learning markers, see Chapter I & Chapter V, based on Forest et al., 2023). By contrast, 

event-related potential (Jost et al., 2011) and reaction time (Janacsek et al., 2012) studies 

have suggested that children better implicitly pick up regularities and seem to do so at an 

earlier timepoint during acquisition than adults (discussed as implicit learning markers, see 

Chapter I & Chapter V based on Forest et al., 2023).  

Additionally, adults and children in the present study did not significantly differ in 

their reported levels of explicit sequence knowledge by the end of the transfer session. 

Previous studies have mainly relied on verbal reports about legal transitions or sequence rules 

(Ferman & Karni, 2010; Hickey et al., 2019; Smalle, Page, et al., 2017), production tasks of 

legal sequences (Jung et al., 2020) or confidence ratings at test (Smalle, Page, et al., 2017) to 

measure explicit knowledge and found that adults had acquired more knowledge about 

sequence rules than children. The lack of a significant association between explicit 

knowledge and sequence learning in adults might be due to ceiling performance in this group. 

In fact, ceiling performance was observed as early as Session 2. The lack of age differences 

in explicit knowledge might be due to the fact that we assessed explicit sequence knowledge 

only after four sequence learning sessions on separate days had been completed, in order to 

avoid inducing a change in learning strategies. Wilhelm et al. (2013) tested the explicit recall 
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of sequential transitions from learning a deterministic sequence in an implicit visuomotor task 

after a sleep vs. wake phase. They found that children aged 8-11 years benefitted more than 

adults from sleep in acquiring explicit knowledge from their implicit learning experience. 

4.2. Children and adults retain visual regularities over a one-year delay and show 

comparable relearning effects after the delay 

From Year 1 to Year 2, both age groups retained their final level of rule knowledge 

over the 12-month break, confirming the hypothesized long-term retention of sequential 

regularities in adults and children. This corroborates findings on long-term retention of 

sequence knowledge across two months (Ferman & Karni, 2010) and one year (Smalle, Page, 

et al., 2017) in the phonological domain. These studies enclosed both 8- to 12-year-old 

children and adults. Our results on retention of complex visual regularities furthermore 

extend findings from visuomotor retention across a one year delay on 9-15-year-olds’ (Tóth-

Fáber, Janacsek, & Németh, 2021) and adults’ learning (Kóbor et al., 2017) from separate 

studies: We were able to directly compare children and adults and show that adult-like 

retention is already evident in children as young as 7 years. When comparing children’s and 

adults’ learning within the same task setting, Ferman and Karni (2010) reported similar long-

term retention effects in accuracy for 8-12-year-old children and adults. Smalle, Page, et al. 

(2017) found no age differences in retaining an announced and cued syllable sequence 

(“explicit sequence”), but an advantage of 8-9-year-olds vs. adults in retaining an implicitly 

learned syllable sequence (“implicit sequence”) over a 12-month break when they matched 

baseline performance levels before the 12-month break between both age groups. In the same 

vein, we found a trend for better one-year retention in children (performance increment from 

Session 3 to 4) compared to adults (performance decrement from Session 3 to 4), when 

analyzing performance without the first task block of each session. Leaving out the very 

beginning of these sessions probably mitigated the adult advantage over children to draw on 

their general resources of greater attention and cognitive control, which should be most 

advantageous in a rather new or less practiced task setting (Session 4 after 1-year delay). This 

demonstrates children’s ability to retain visual regularities over one year to at least the same 

degree as adults, despite their overall lower memory capacities (Gathercole, 1998).  

In addition to testing retention of complex visual regularities after a long-term delay 

in a single follow-up session, we extended the existing literature by investigating how both 

age groups use their acquired rule knowledge in another set of multiple relearning sessions in 

Year 2: Children and adults continued to improve with the first stimulus set, although to a 
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lesser degree than in Year 1. This was true for both age groups, rendering the explanation 

unlikely that this decrease in learning gains was solely due to ceiling effects preventing 

further performance improvements in Year 2: Children were performing at an average of 

71% correct in the first session of the second year (Session 4), leaving enough room for them 

to further improve in the sessions to come. Nevertheless, they did not improve as much over 

the consecutive three sessions (Session 4 to 6) as they did in Year 1 (Session 1 to 3). Adult 

performance was more constrained, because they had already reached ceiling in Year 1. 

We cannot exclude the possibility that in Year 2, children’s performance was 

influenced by better sequence learning abilities compared to Year 1, due to trivial 

maturational effects (e.g., of memory capacity).Previous studies (Arciuli & Simpson, 2011; 

Raviv & Arnon, 2017; Shufaniya & Arnon, 2018) have demonstrated that children’s 

behavioral performance in visual triplet learning tasks improves between 5 and 12 years of 

age. Nevertheless, it is less clear how an age difference of only one year (in our sample, 

children were 7 years old in Year 1 vs. 8 years old in Year 2) impacts the acquisition of 

sequential regularities. Available data for 6.5-7.5-year-olds vs. 8-9-year-olds from the cross-

sectional study by Raviv and Arnon (2017) show inconsistent trends for different stimulus 

material, with younger children performing better in auditory/linguistic triplet learning vs. 

older children performing better in visual/non-linguistic triplet learning. We think that two 

observations in our data speak against the proposition that relearning effects in children 

reported here can be sufficiently explained by maturational effects: First, children preserved 

their last performance level across one year (Session 3 to Session 4), corroborating the 

phenomenon of experience-dependent benefits for relearning in school-aged children 

reported in previous studies (Smalle, Page, et al., 2017; Tóth-Fáber, Janacsek, & Németh, 

2021). Second, the relearning gain with the same stimulus material over three sessions in 

Year 2 (Session 4 to 6) compared to the learning rate in Year 1 (Session 1 to 3) was lower. If 

children were better at acquiring regularities due to their more matured cognitive abilities in 

Year 2, they would have been expected to show a greater increase in learning in Year 2 

compared to Year 1, however. Importantly, all relearning effects were confirmed after 

eliminating the first task block of Session 1 of Year 1 and Session 4 (first session) of Year 2, 

respectively, to exclude trivial task familiarity effects.  

Both age groups did not show additional transfer to the second stimulus set in Year 2. 

This suggests that the acquired rule knowledge from Year 1 was applied to the same extent in 

the more frequently encountered (stimulus set 1) and the less frequently encountered 
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(stimulus set 2) learning material, benefitting performance in both learning situations alike. 

Since additional experience with the first stimulus material further improved performance in 

Year 2 (Session 4 to 6) in both age groups, we think it is unlikely that additional transfer 

gains in Year 2 (Session 4 to Transfer 2) were prevented by ceiling effects. It has been argued 

that offline periods promote the extraction and representation of underlying regularities by 

replay-induced strengthening of memory representations (Lerner & Gluck, 2019; Y. Liu et 

al., 2019; Wilhelm et al., 2012), thereby enabling transfer effects in learning at the level of 

cortical circuits. There is little evidence on how these neural mechanisms operate over 

extended time periods like the 12-month period employed in the present study. Non-human 

animal studies (Xu et al., 2009; Yang et al., 2009) have reported persistent structural changes 

in the cortex (i.e., proliferation and reactivation of dendritic spines), when rodents acquired 

new sensory or motor skills and relearned them after a long delay. This could provide a 

possible explanation how the neural architecture implements long-term learning effects, as 

the previously acquired task-specific neural infrastructure might be used more efficiently 

when reencountering the same learning environment (discussed in Hofer & Bonhoeffer, 

2010). This mechanism of structural plasticity can be speculated to underlie relearning effects 

reported in our study and in previous behavioral reports on human relearning (Livosky & 

Sugar, 1992; Murre & Dros, 2015; Parkin & Streete, 1988), which date back to Ebbinghaus’ 

observations on faster and more efficient learning of familiar as opposed to new material 

(Ebbinghaus, 1880). 
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4.3. Conclusion 

Project 1 showed successful AG learning and transfer of visual rule knowledge to 

another stimulus set in both 7-year-olds and adults, but adults learned quicker and overall 

performed at a higher level. We report that both age groups successfully use their retained 

rule knowledge after one year, which extends studies on retention by characterizing 

relearning across another set of multiple relearning sessions after a delay. However, we did 

not observe relearning advantages across the second set of sessions after the one-year delay in 

7-year-olds compared to adults. Explicit knowledge of the AG rules was indistinguishable 

between adults and children and correlated with transfer gains in children. These findings 

challenge the notion that a more implicit extraction of sequential regularities early in life 

results in better learning outcomes in the long run. Project 2 will look into learning 

trajectories of children younger than 7 years, and addresses the question how age-related 

maturation vs. genuine effects of prior learning influence relearning after a delay. 
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1. Introduction 

Extracting sequential regularities from the environment has been suggested to 

underly, for example, language acquisition (Conway & Pisoni, 2008; Deocampo et al., 2018; 

Erickson & Thiessen, 2015; Romberg & Saffran, 2010) and motor skill learning (Lukács & 

Kemény, 2015; Savion-Lemieux et al., 2009). This mechanism has been investigated as 

statistical learning or implicit learning and is referred to as sequence learning throughout this 

dissertation (see Chapter I). A controversy has emerged, however, as to whether sequence 

learning abilities improve across development (Arciuli & Simpson, 2011; Raviv & Arnon, 

2017; Schlichting et al., 2017; Shufaniya & Arnon, 2018), or are best early in live and then 

decrease from middle childhood to adulthood (Janacsek et al., 2012; Jost et al., 2011; Nemeth 

et al., 2013; Rohlf et al., 2017; see Chapter I for a comprehensive review). For telling apart 

rule-following from rule-violating sequences in the visual domain, discrimination 

performance has been shown to improve in the age range from 5 to 12 years (Arciuli & 

Simpson, 2011; Raviv & Arnon, 2017; Shufaniya & Arnon, 2018), which was extended to the 

age range from 6 to 30 years by Schlichting et al. (2017) (see also Lukács & Kemény, 2015; 

Weiermann & Meier, 2012 for improved performance with age in other skill-based and 

probability learning tasks). At the same time, there are reports of a high initial sensitivity for 

environmental regularities early in life, which decreases later in childhood: This is mainly 

reflected in neural markers (like ERPs) during passive presentation, which, e.g., provided 

evidence for extracting cross-modal, audio-visual statistics from mere exposure in infants, but 

not in adults (Rohlf et al., 2017). An early sensitivity towards environmental regularities has 

additionally been shown in childhood, using “online” behavioral learning markers (e.g., 

reaction times for mapping motor responses to a visual sequence of stimulus locations vs. 

random locations): Reaction time improvements for visual sequences were shown to be the 

greatest in the youngest age groups of 4 to 12 year-olds (Janacsek et al., 2012) in a large 

cross-sectional sample up to 85 years of age. 

Others have tried to accommodate these two, seemingly contradictory, age trends in 

sequence learning by sorting available evidence along two main, interrelated dimensions (for 

a more thorough taxonomy, see Chapter I): Firstly, Forest et al. (2023) proposed that reported 

age changes mainly differ depending on whether direct vs. indirect learning markers of 

sequence learning were measured. When focusing on indirect measures like ERPs or reaction 

time improvements (both assessed without any “overt report” from participants, as defined 

for indirect markers by Forest et al., 2023, p. 3), younger age groups tend to show stronger 
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than or at least comparable learning effects to their older counterparts (Janacsek et al., 2012; 

Jost et al., 2011; Nemeth et al., 2013; Rohlf et al., 2017). In contrast, older children and 

adults seem to outperform younger children in more direct measures of learning, which are 

mainly based on behavioral performance in a test phase after exposure to sequential 

regularities (Arciuli & Simpson, 2011; Raviv & Arnon, 2017; Schlichting et al., 2017; 

Shufaniya & Arnon, 2018; see Forest et al., 2023, however, for the special case of linguistic 

stimulus material). Secondly, contributions of distinct neurocognitive systems for implicit vs. 

explicit learning mechanisms have been proposed to shift towards explicit learning across 

development (Conway, 2020; Daltrozzo & Conway, 2014; Nemeth et al., 2013). This 

“natural” shift might contribute to the observed decrease in tracking (passively) encountered 

sequential regularities across infancy and childhood (based on declining reliance on the 

implicit system), while at the same time growing better at deciding what makes up a legal vs. 

an illegal sequence (driven by increasing reliance on the explicit system). 

Apart from this developmental shift, Batterink et al. (2015) argue that the explicit 

system can be deployed as an additional resource for, e.g., more complex input, 

complementing implicit mechanisms that constitute the “default mode” in sequence learning. 

This might add to variations in learning outcomes as a function of the situation at hand, as 

soon as explicit components (e.g., greater selective attention) are developmentally available 

to a learner. Relatedly, H. Liu et al. (2023) argue that implicit and explicit memory traces 

emerge simultaneously (see also Batterink et al., 2015; Conway, 2020), but can be 

dissociated by using indirect (implicit) vs. direct (explicit) learning markers. In their study, 

they tested how fast implicit vs. explicit memory traces of sequential regularities decay and if 

they are influenced by repeated testing. While an adult sample acquired and reactivated these 

two types of representations in parallel, respective representations seemed to be consolidated 

differently across 24 hours: Explicit memory traces decayed faster, but became more abstract 

with time and were more strongly influenced by later testing than implicit memory traces (H. 

Liu et al., 2023).  

So, by distinguishing direct vs. indirect learning markers (Batterink et al., 2015; 

Conway, 2020; Forest et al., 2023), while at the same time mapping contributions of implicit 

vs. explicit neurocognitive mechanisms (Conway, 2020; Daltrozzo & Conway, 2014; Nemeth 

et al., 2013), findings of both, better vs. declining, sequence learning abilities with age can be 

accommodated. However, this framework is mainly based on age differences measured in 

single sessions of sequence learning, limiting the ecological validity of the modeled learning 
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processes across time. This means, it remains unclear how exactly the proposed 

developmental make-up influences sequence learning outcomes in the long run, when the 

acquisition and use of sequential regularities are assessed over several learning instances and 

after a long-term delay. 

Multi-session studies so far have mainly considered children aged 8 years and older in 

comparison to adults (Ferman & Karni, 2010, 2014; Smalle, Page, et al., 2017), investigating 

how they improve in learning spoken syllable sequences across several task encounters. In 

these studies, auditory learning rates have been shown to increase across sessions to a 

comparable degree in children age 8 to 12 years and in adults, with adults overall 

outperforming children (Ferman & Karni, 2010, 2014; Smalle, Page, et al., 2017) and 12-

year-olds overall outperforming 8-year-olds (Ferman & Karni, 2010). It is less clear how 

children under 8 years of age differ in their multi-session acquisition rates of sequential 

regularities. The only available data for younger children with age 6 and 7 years comes from 

studies on visuo-motor sequence learning with a single follow-up session after 24 hours 

(Juhász & Németh, 2018; Savion-Lemieux et al., 2009). Savion-Lemieux et al. (2009) 

investigated sequence learning of three child groups aged 6, 8 and 10 years in addition to 

adults: Performance accuracy for visuo-motor associations of a deterministic sequence 

improved to the greatest extent in younger children (6-year-olds = 8-year-olds > 10-year-

olds = adults), measured as correctly finger-tapping repeating screen-locations in the end of 

Day 2 relative to the beginning of Day 1 (see Fig. 5 in Savion-Lemieux et al., 2009). 

However, in their comprehensive cross-sectional study, Tóth-Fáber et al. (2023) utilized a 

more complex visuo-motor sequence learning task in order to prevent ceiling effects and 

report age-independent retention effects in 9 age groups from 7 to 76 years across a 24-hour 

delay. In accord with this, Juhász and Németh (2018) reported age-related changes in within-

session acquisition rates for visuo-motor sequence learning in the same task, but no age 

differences in retention across a 24-hour-interval for six age groups ranging from 7 to 29 

years. So, for developmental samples below the age of 8 years, the use of sequential 

regularities across multiple sessions separated by short-term delays has yet to be 

characterized. It remains to be tested if adult-like performance improvements and retention 

rates, documented in previous studies, hold for younger children and might even extend to 

longer delays. 

Concerning retention and consolidation rates of sequential regularities across longer 

delays of several months, previous research has focused on children older than 8 years as 
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well. Evidence for this age group suggests that eliciting mainly implicit vs. rather explicit 

processes might matter for observing age differences in retention. No age differences were 

reported when task protocols included some explicit component like cueing sequences, 

explicitly stated sequence rules prior to learning, or provided performance/visuomotor 

feedback: Implementing respective task features, children (age 8-12 years, Ferman & Karni, 

2014; Smalle, Page, et al., 2017) and adults retained auditory (syllable) sequences equally 

well across delays of two months and one year, respectively. In the same vein, sequence 

knowledge one year after the last learning session was not associated with age within the 

investigated group of children age 9 to 15 years in visuo-motor learning (Tóth-Fáber, 

Janacsek, & Németh, 2021). By contrast, for long-term retention of implicit sequence 

knowledge (i.e., acquired without any of the described task features from above), one study 

has reported better retention up to 12 months in children of age 8-9 years vs. adults (Smalle, 

Page, et al., 2017).  

Including children younger than 8 years when mapping long-term trajectories of 

sequence learning seems to be of particular interest, considering language and memory 

development in this age range: The literature on sensitive periods in language learning 

proposes that early language learning critically shapes later learning (Werker & Hensch, 

2015), with most efficient grammar learning likely to take place before the age of 7 (J. S. 

Johnson & Newport, 1989). The concept of sensitive periods, enabling better learning at a 

young age, has recently been translated to timelines of childhood advantages in other 

cognitive domains. These include learning probabilistic information and recalling object 

locations, properties and associations (Gualtieri & Finn, 2022). Several of these documented 

advantages of (younger) children in learning and remembering center around the age of 4 to 7 

years, a developmental time that has been identified to entail great changes in general 

learning mechanisms (Sameroff & Haith, 1996), related e.g., to cognitive control (M. H. 

Johnson & Munakata, 2005; Ramscar & Gitcho, 2007). The continued development of 

cognitive control and prior knowledge factors into how information from several learning 

experiences are integrated into memory (Brod et al., 2013). Children were reported to 

integrate these experiences late in the memory process by making inferences at retrieval, 

while adults may perform this integration as early as encoding (Shing et al., 2019). Thus, the 

above literature warrants an investigation of children of different ages in multi-session 

sequence learning, preferably younger than 8 years, in addition to child-adult comparisons. 
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Adopting multi-session paradigms that include a long-term delay allows to test age-related 

changes in the step-by-step acquisition and subsequent use of sequential rule knowledge. 

In addition, it is vital to ask if and how development influences the degree to which 

learning experiences can be generalized to new input. Memory processes seem to shift from 

emphasizing generalization in early childhood to stronger memory specificity until middle 

childhood (Keresztes et al., 2018; Ngo et al., 2018). This literature implies that memory 

processes change towards more specific encoding and retrieval of object representations and 

object-object associations around the age of 6 years. Relatedly, memory representations from 

sequence learning have been proposed to become increasingly specific until age 6-7 years 

(Forest et al., 2021; Forest et al., 2023), corresponding roughly to the same age range. More 

pronounced forgetting between several learning experiences early in development could 

additionally favor higher transfer abilities in younger children, as suggested by the forgetting-

by-abstraction account (Vlach, 2014; elaborated in Chapter I). The role of forgetting in 

sequence learning has recently been stressed by Endress and Johnson (2021) in computational 

modeling to further the mechanistic understanding of the involved processes, and by Forest et 

al. (2023) for developmental predictions (see Chapter I). Behavioral evidence that directly 

compares transfer effects in sequence learning between children of different ages (3-12 years) 

and adults remains inconclusive, however (Ferman & Karni, 2010, 2014; Jung et al., 2020; 

Nowak & Baggio, 2017). In the only multi-session study available, children of age 8 years (as 

opposed to children aged 12 years and adults) failed to generalize a learned sequence rule to 

new stimuli (Ferman & Karni, 2010), except when being told what constitutes the sequence 

rule before exposure (Ferman & Karni, 2014). Notably, these findings on transfer effects in 

sequence learning across development are not only diverging, but fall short of speaking to 

learning in children younger than 8 years in task protocols with several sessions and across 

longer delays between sessions (> 2 months). Children around age 6 provide a promising 

sample for testing transfer effects in these settings, given the proposed shift in memory 

processes and representations around this age as elaborated above. 

Our study is the first to look into multi-session learning of visual sequences in two 

child groups of age 5 and 6 years across 2 sets of sessions with a long-term delay of 12 

months in between. The aim of the study was to evaluate how development influences the 

repeated use of acquired sequence knowledge. The child groups of age 5 years and 6 years 

were chosen because, as discussed in the previous paragraphs, the age range of 4 to 7 has 

been identified as a period of change in learning mechanisms from the language, memory and 
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generalization literature. In addition to testing the effects of different onsets of multiple 

learning experiences in childhood (at age 5 vs. at age 6 years), learning outcomes of both 

child groups were related to adult performance. Furthermore, we included a generalization 

test of the learned sequence rules to new visual surface features. This allowed us to explore 

how abstract the acquired sequence knowledge is represented at different ages, i.e., if any age 

differences emerge when this knowledge is accessed and used for new learning material that 

displays the same underlying rules. 

Project 2 implemented the same AGL task with visual stimuli and complex sequence 

rules as Project 1, explained in detail in Chapter II. This sequence learning task was 

completed by three age groups, 5-year-old children, 6-year-old children and adults (Adults 2, 

see Table 1 and Figure 8). All participants learned in three sessions over the course of one 

week; After one year, first remaining sequence knowledge was tested in three “relearning” 

sessions with the original item set and subsequently transfer to a new visual stimulus set was 

tested in the final session. To disentangle maturational effects at relearning after one year 

from the effects of prior learning, we included a comparison to naïve groups of children of 

the same age as 5-year-olds and 6-year-olds after the delay (i.e., 6- & 7-year-old controls), for 

whom the AGL task was completely unfamiliar (see Table 1). 

We hypothesized to find an age-independent increase in sequence learning 

performance across sessions in both child groups and Adults 2 for the first stimulus set, over 

the course of one week (Year 1). After the one-year delay, we expected to observe preserved 

AG knowledge as well as transfer effects at the end of the second set of sessions (Year 2). 

Based on an early childhood advantage reported as a higher sensitivity towards sequential 

regularities, greater forgetting that should promote the extraction of abstract regularities, and 

stronger overgeneralization in the domains of memory and language, younger age groups 

were expected to feature higher retention of the acquired rule set over one year, to quicker 

implicitly relearn the AG, and to show larger transfer to a new stimulus set (5-year-olds > 6-

year-olds > Adults 2). 

Additionally, we expected that 5- and 6-year-olds predominantly rely on implicit 

knowledge, while adults acquire more explicit knowledge about the underlying sequence 

rules (Ferman & Karni, 2010; Hickey et al., 2019; Jung et al., 2020; Smalle, Page, et al., 

2017). If any trend across the restricted age range we covered could be expected, the older 

children were thought to acquire more explicit knowledge (5-year-olds < 6-year-olds) and 
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possibly depend more on their acquired knowledge for improvement and transfer in sequence 

learning. 

 

2. Methods 

2.1. Participants 

Project 2 involved two groups of healthy children, 35 five-year-olds (5 years old ± 2 

months at Session 1) and 34 six-year-olds (6 years old ± 2 months at Session 1) from the City 

of Hamburg, Germany. Additionally, an adult group was recruited which consisted of 32 

healthy adults, mostly undergraduate students recruited from the University of Hamburg. 

None of the participants reported a history of seeing or hearing impairments, nor any 

neurological disease. They all were native German speakers. The group of 7-year-olds was 

additionally included as a control group for 6-year-olds in Year 2 and is described in detail in 

Chapter II. 

To maximize on all available data in this multi-session study design, the different 

types of analyses – on session data for both years vs. only for one year vs. on trial-wise data 

per subject – included slightly different numbers of participants from these age groups as 

described below and detailed in the respective results sections. For an overview of the 

included datasets for each analysis, sample sizes per age group are listed in the tables 

detailing the subsequent analyses in the beginning of each results section.  

For all analyses requiring data from Year 1 and Year 2 (see results section 

Performance in Year 2 benefits from prior learning in Year 1), the data of 11 five-year-olds, 

7 six-year-olds and 12 adults had to be excluded from the analyses, due to missing data. 

Eighty-three participants returned for the second set of sessions in Year 2 (drop-out of 3 five-

year-olds, 4 six-year-olds and 11 adults), but we additionally had to exclude 8 five-year-olds 

and 3 six-year-olds of the returning participants since they had missing data in more than half 

a session across both years (≥ 3 task blocks in at least one session of both years). One 

additional adult had to be excluded due to technical failure leading to data loss. The 

remaining 24 five-year-olds (15 female, mean age at Session 1: 5.08 ± 0.09 years, range: 

4.91-5.22 years), 27 six-year-olds (11 female, mean age at Session 1: 6.05 ± 0.09 years, 

range: 5.83 – 6.16 years), and 20 adults (17 female, mean age at Session 1: 24.73 ± 6.45 

years, range: 19.21-49.70 years) were included for all analyses requiring data from Year 1 

and Year 2  (see results section Performance in Year 2 benefits from prior learning in Year 

1). All participant characteristics for this final sample are listed in Table 5. Of the additional 
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group of 7-year-olds from Project 1, we also included all children with available data for all 

sessions in Year 1 and Year 2 (16 seven-year-olds, described in Table 3 of Chapter II) to 

provide a comprehensive overview over all child groups who were part of this dissertation, as 

explained below (see results section Improvement and transfer in all child groups including 

7-year-olds). 

For relearning analyses on data of Year 2 in the child groups (see results section 

Relearning advantages in Year 2 for 5-year-olds and 6-year-olds compared to naïve 

controls), we included all available datasets for the age-matched naïve control groups, who 

fulfilled the missing data criterion from above (≥ 3 task blocks in at least one session of Year 

1 or 2, respectively): This amounted to data of 31 six-year-olds from Year 1 to match 24 five-

year-olds in Year 2 and data of 27 seven-year-olds from Year 1 to match 27 six-year-olds in 

Year 2. The group of 7-year-olds is described in detail in Chapter II (Table 2). 

For analyses requiring single trial responses of Session 1 to 3 in Year 1 and Session 4 

to 6 in Year 2 (see results sections Earlier trial-by-trial learning effects in Year 2 compared 

to Year 1, Earlier trial-by-trial learning effects in Year 2 due to prior learning in 5-year-olds 

and 6-year-olds compared to controls), we included all complete datasets of 24 five-year-

olds, 25 six-year-olds and 20 adults. The additional age group of 7-year-olds included n = 27 

complete datasets for Session 1 to 3 in Year 1 and n = 15 complete datasets for Session 4 to 6 

in Year 2 (described in section Participants in Chapter II).  

All procedures for participant compensation and ethics approval were described in the 

Methods section of Chapter II.   
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Table 5 

Participant Characteristics for 5-Year-Olds, 6-Year-Olds, Adults 2 (Included Datasets) 

Participant Characteristics 
5-Year-Olds 

(n = 24) 

6-Year-Olds 

(n = 27) 

Adults 2 

(n = 20) 

 

Time period betw. Year 1 & 2 

(months betw. Session 1 & 4) 

12.38 (1.21) 

[11.00-15.00] 

11.85 (1.03) 

[12.00-13.00] 

11.45 (0.51) 

[11.00-12.00] 

 

Days betw. Sessions of Year 1 

  Session 1 to 3 

 

Days betw. Sessions of Year 2 

  Session 4 to 6 

  Session 4 to Transfer 2 

 

5.46 (1.32) 

 

 

4.29 (1.37) 

7.17 (1.34) 

 

5.04 (1.76) 

 

 

5.04 (2.31) 

7.15 (1.90) 

 

3.45 (1.36) 

 

 

4.20 (1.54) 

6.85 (1.79) 

 

Age Year 1 (years) 

 

5.08 (0.09) 

[4.91-5.22] 

 

6.05 (0.09) 

[5.83 – 6.16] 

 

24.73 (6.45) 

[19.21-49.70] 

 

Age Year 2 (years) 

 

6.15 (0.13) 

[5.93-6.42] 

 

7.06 (0.07) 

[6.97 – 7.18] 

 

25.97 (7.88) 

[20.20-50.68] 

 

Gender (f/m) 15/9 11/16 17/3  

School/Education a 
n = 20 kind 

n = 4 pre 

n = 6 kind 

n = 20 pre 

n = 1 scho 

n = 19 university 

students 

 

Bilinguals 3 4 4  

Daily mobile device usage a 

(min) 
12.41 (11.90) 29.23 (34.48) 381.43 (167.64) 

 

Note. M (SD) [range]; betw. = between, kind = kindergarten, pre = preschool, sch = school, 

univ = university. 

a assessed in Year 1 (Session 1).  
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2.2. Design and procedure 

2.2.1. Study design  

All participants completed a total of three sessions in Year 1 on separate days 

(Session 1, 2 & 3), and an equivalent of three sessions (Session 4, 5, 6) with a subsequent 

transfer session (Transfer 2) in Year 2, each set spread out over the time of approx. one week 

(see study design Fig. 8 and Table 5 for information on session timing of all age groups), in 

which they completed a visual sequence learning task.  

• Session 1 & 4 (in the lab): After the assessment of working memory, the first 

learning session with the tablet computer (with stimulus set 1) followed. Next, 

we measured declarative memory and German grammar skills (see Memory 

and language skills). Session 1 & 4 lasted 90 to 120 minutes each including 

participant briefing and breaks. 

• Session 2-3 & 5-6 (at home): Two more learning sessions took place with 

stimulus set 1 on the tablet computer. 

• Transfer 2 (in the lab): The second (new) stimulus set was introduced on the 

tablet computer, but with the same underlying rule set to test transfer of AG 

learning. Moreover, explicit knowledge about sequence orders was assessed 

with a questionnaire in adults and adapted questions with picture cards in 

children (see Explicit knowledge of sequence rules).  

Due to health regulations related to the COVID-19 pandemic, some participants 

completed more than the planned two sessions in Year 2 at home (n = 3 five-year-olds, n = 2 

six-year-olds and n = 2 Adults 2, all with 3 or all 4 sessions as at home sessions). For these 

sessions, participants received all material and a tablet computer by mail and completed the 

respective learning sessions at home.  

2.2.2. Visual sequence learning task 

Details of the modified AGL task to measure multi-session visual sequence learning 

are provided in Chapter II (Stimuli and apparatus). It implemented the artificial grammar 

system introduced by Reber (1967) for constructing grammatical sequences (see Fig. 2). The 

task entailed 5 task blocks per session, consisting of alternating phases of learning (exposure 

to 18 grammatical sequences each) and test (10 trials of two-alternative forced choice 

responses between one grammatical and one ungrammatical sequence). This amounted to an 

AGL task exposure of approx. 25-30 minutes per session. The first 3 sessions of each year 
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used a first stimulus set (stimulus set 1), while the last session Year 2 employed a second 

stimulus set (stimulus set 2) to investigate transfer of learned AG rules. 

As shown in Project 1, children of age 7 years and adults did not differ systematically 

in their performance on the two dimensions of test trials, difficulty and short-term familiarity 

(explained in Construction of grammatical and ungrammatical sequences in Chapter II). 

Thus, in all analyses of the current Project 2, responses were collapsed across these 

dimensions to reduce complexity for the extensive body of analyses reported here. However, 

equivalent analyses to Project 1 are reported in Appendix C for the age groups investigated 

here, which tested the overall influence of both trial dimensions of test trials (i.e., “easy” vs. 

“difficult” trials, “seen” vs. “not seen” trials, respectively) on group performances of 5-year-

olds, 6-year-olds and Adults 2, separately for Year 1 and Year 2. 

 

 

  

 

Note. The first 3 sessions of each year used a first stimulus set (here: Stimulus Set Animals), while the last 

session of Year 2 employed a second stimulus set (here: Stimulus Set Colors) to investigate transfer of learned 

AG rules. Each session consisted of 5 task blocks with alternating learning (light gray background) and test 

(dark gray background) phases. 

Figure 8 

Study Design of all 7 Sessions of Visual Sequence Learning in Year 1(A) & Year 2 (B) 

A B 
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2.3. Material 

2.3.1. Explicit knowledge of sequence rules 

Explicit knowledge about underlying rules of the sequence learning task was assessed 

with three open questions at the end of Session 3 and Session 6 and a comprehensive 

questionnaire including additional questions at the end of the final session, Transfer 2. A 

questionnaire was applied in adults (see Appendix A), and a shorter version of the same 

questionnaire was administered for the four children, who completed the transfer session at 

home (see section Study design). In this case, children’s parents were asked to pose the 

questions and document the answers of their children. All assessments were based on a 

procedure by Whitmarsh et al. (2013). 

Wordings and scoring for open and specific questions from these assessments are 

detailed in Chapter II. From the open questions, proportions for participants reporting rule 

awareness vs. those who did not report rule awareness were calculated per age group and 

compared between groups. From the specific questions, an explicit knowledge score was 

calculated per age group and compared between groups (descriptive data for both open and 

specific questions, see Table 13). 

2.3.2. Memory and language skills  

To assess working memory, declarative memory and German grammar skills, we 

administered equivalent psychometric tests in Session 1 (Year 1) and in Session 4 (Year 2) in 

all age groups and normalized all test scores according to age (except for Plural German 

Grammar Skills in adults for which norms were not available and for which hence raw scores 

were analyzed).  

Descriptive data for all age groups in the assessed memory skills and grammar skills, 

can be found in Chapter IV. This chapter contains analyses that relate AGL performance to 

cognitive skills in all age groups investigated in the present dissertation.  

2.3.3. Additional assessments 

Additional information about participants of all ages with regard to their visual and 

hearing development, educational background, 2nd languages and the use of (mobile) devices 

was collected with custom-made questionnaires at the end of Session 1. A screening tool for 

behavior on clinically relevant dimensions (children: CBCL, Döpfner et al., 2014; adults: 

BSCL, Franke, 2017) was administered in this context as well. Adult participants filled out 

these questionnaires themselves, while caregivers did so for participating children.  
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2.4. Data analysis 

We characterized learning trajectories and averaged performance scores as proportion 

of correct test trials: Across-session learning was assessed as the mean performance of 50 test 

trials of each session. Within session learning trajectories were derived based on the means of 

10 test trials per block.  

Trials with reaction times shorter than 200 ms were disregarded, since we did not 

consider it feasible to successfully process the two sequences within less than this time. This 

exclusion criterion reduced trial numbers across all sessions by 0.36 % in 5-year olds and by 

0.55% in 6-year-olds (a total of 82 excluded trials in 12 five-year-olds and in 17 six-year olds 

with a maximum of 12 trials excluded per subject). 

To compare performance changes over time between the age groups, repeated-

measures Analyses of Variance (ANOVAs) were conducted using the ez package in R 

(Lawrence, 2016), with Age (5-year-olds, 6-year-olds, Adults 2) as between-subject factor 

and Session (levels depending on analyses as described below and in the respective Results 

section) as within-subject factor. Here we describe on a general level, which comparisons we 

performed to address a certain question; the detailed analyses with all factors of the 

respective ANOVAs and included sample sizes are listed in the beginning of each result 

section.  

1. For comparing start and end performance levels between Year 1 and Year 2, the 

following sessions were analyzed: 

• Session 4 vs. Session 1 (Start Level) 

• Session 4 vs. Session 3 (Retention) 

• Session 6 vs. Session 3 (End Level)  

2. For comparing session differences between Year 1 and Year 2 (performance 

improvement over 3 sessions), an additional within-subject factor Year (Year 1 vs. 

Year 2) was added in the ANOVAs, resulting in the within-subject factors Session and 

Year with levels for Session described in the respective Results section. 

3. For transfer performance relative to the first and last session with the first stimulus 

material in Year 2, the following sessions were analyzed: 

• Transfer 2 vs. Session 4 (Transfer Savings) 

• Transfer 2 vs. Session 6 (Transfer Loss) 

4. To compare performance of the two child groups in Year 2 to age-matched naïve 

controls, separate ANOVAs for each group were conducted with the between-subject 
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factor Group including the levels of (1) 5-year-olds in Year 2 vs. 6-year-olds in Year 

1 or (2) 6-year-olds in Year 2 vs. 7-year-olds in Year 1, respectively. ANOVAs 

further included the within-subject factor Session, with levels depending on analyses 

as described in the respective Results section. 

ANOVAs were followed up with appropriate post-hoc tests. If scores were not 

normally distributed or had inhomogeneous variances, non-parametric tests instead of t-tests 

(Wilcoxon signed rank tests in case of paired and one-sample testing, Mann-Whitney-U tests 

in case of independent sample testing) were calculated. For correlation analyses of was not 

normally distributed data, Spearman correlation coefficients (rs) instead of Pearson 

correlation coefficients (r) were calculated. Two tailed significant (<.05) P-values (if not 

indicated otherwise) were Greenhouse-Geisser-corrected (in case of violated sphericity) or 

Holm-corrected (in case of multiple comparisons). Effect sizes were calculated as generalized 

eta squared (η2
g) for ANOVAs, as Cohen’s d for t-tests and as matched rank biserial 

correlation (r) for Wilcoxon singed rank tests and Mann-Whitney-U-tests, respectively. 

For session comparisons that involved Session 1 or Session 4, additional control 

analyses were conducted with proportion correct of test trials averaged over block 2 to 5 of 

each session (without the first block) to account for task novelty. 

Due to the at home-setting for some sessions (Sessions 2, 3, 5 & 6 see Fig. 8) and 

complications due to the COVID-19 pandemic, there were some additional deviations from 

the task instructions in the final sample (2 participants with 1-2 additional task blocks 

completed in between sessions/at the end of one session (n = 1 adult, n = 1 five-year-old), 3 

participants with 1-2 additional task blocks completed in one session, but 1-2 task blocks less 

in another session (n = 1 five-year-old, n = 2 six-year-olds), 1 six-year-old with a missing 

task block in one session, 1 six-year-old with the four sessions of Year 2 spread out across 2 

weeks instead of approx. 1 week). These participants were included in the final analyses, 

since they did not show any systematic peculiarities in their response patterns and only the 

originally scheduled trials were included in case of additional task blocks completed (n = 5) 

or session performance was averaged over the available data in case of a missing task block 

(n = 5), respectively. Additionally, we checked for each of the reported analysis whether 

excluding these seven participants with slightly different task exposure would qualitatively 

change the pattern of results.  

We performed equivalent Bayesian analyses for all inferential statistical analyses in 

the software JASP (Version 0.14.1; JASP Team, 2021), using default priors, and report the 
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Bayes Factor (BF10). The BF helps evaluating whether the data at hand support the null-

hypothesis (H0) or the alternative hypothesis (H1), and has been described as a suitable tool 

for interpreting null results (Dienes, 2014). For main and interaction effects in ANOVAs, we 

report the inclusion Bayes factor (BFincl) – which compares models that contain the effect of 

interest to equivalent models stripped of this effect – as implemented in JASP Version 0.14.1 

and recommended by e.g. Mathôt (2017) and Quintana & Williams (2018). BF values 

between 1/3 and 1/10 indicate moderate evidence for the H0, while a BF of lower than 1/10 is 

considered strong evidence for the H0; a BF between 1 and 1/3 is defined as anecdotal 

evidence for the H0 (Schönbrodt & Wagenmakers, 2018). BF values between 3 and 10 

indicate moderate evidence for the H1, while a BF from 10 onwards is considered as strong 

evidence for the H1 and a BF between 1 and 3 is defined as anecdotal evidence for the H1 

(Schönbrodt & Wagenmakers, 2018). For post-hoc tests on scores that were not normally 

distributed, the BF was calculated for non-parametric test equivalents to the respective 

inferential tests and is reported using the default setting of data augmentation algorithms with 

5 chains of 1000 iterations as implemented in JASP. 

All data analyses apart from Bayesian analyses were performed in the software R 

(Version 4.1.0; R Core Team, 2021). 

To additionally look into within-session learning, we made use of the trial-by-trial 

response data and fit the state-space random effects model by Smith et al. (2005) to binary 

responses (correct = 1, incorrect = 0) in all 150 test trials of the 3 sessions with stimulus set 1, 

separately for each age group and each year (Session 1 to 3 in Year 1 and Session 4 to 6 in 

Year 2 with the number of complete datasets per age group detailed in the above Participants 

section and in the summary tables of each respective results section below). This model 

estimated the trial at which learning had first occurred for the whole population (i.e., age 

group), by estimating an unobservable learning state process, defined as a random walk. For 

an estimation of the learning curves it used a state-space random effects model and 

Expectation-Maximization algorithm, characterizing the dynamics of the learning process as 

a function of trial number (Smith et al., 2005). The modeling script was provided in Matlab 

(Matlab, MathWorks 2020) from the website indicated by Smith et al. (2005; 

http://annecsmith.net/behaviorallearning.html).The estimated first learning trial from this 

population modeling was then used to compare within-session learning between Year 1 and 

Year 2 within age groups (see results section Earlier trial-by-trial learning effects in Year 2 

compared to Year 1) and to compare within-session learning in Year 2 of 5-year-olds and 6-



 89 

CHAPTER III: DEVELOPMENTAL EFFECTS OF REPEATED STATISTICAL LEARNING 

 

 

   

 

year-olds with prior learning experience to age-matched controls without prior learning 

experience (see results section Earlier trial-by-trial learning effects in Year 2 due to prior in 

5-year-olds and 6-year-olds compared to Controls). 

 

3. Results 

We first tested whether all age groups performed above chance in each session, to 

assess whether they had learned the AG rule (Fig. 9A).   

Figure 9 

Performance Trajectories Across Sessions (A) and Within Sessions (B) of Year 1 & 2 

Note. A: Mean proportion of correct responses in the test phases of each session for all age groups. 

Learning curves of single participants are depicted in color. B: Mean proportion of correct responses 

in the test phases of each block for all age groups. The dotted horizontal lines mark chance level 

performance. Error bars indicate 95% CIs corrected for within-subject comparison according to 

Morey (2008). 

A 

B 
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For adults, group-level performance exceeded the chance level of 0.5 (two-alternative 

forced-choice trials) in all sessions (all V(20) ≥ 190.00, all p ≤ .007, all r ≥ 0.87, all BF+0 

[Wilcoxon signed-rank]  ≥ 6.51; one-sided).  

For 6-year-olds, group-level performance exceeded the chance level after the first 

Session, from Session 2 in Year 1 to Transfer 2 in Year 2 (all t(26) ≥ 3.08, all p ≤ .007, all r ≥ 

0.55, all BF+0 ≥ 17.28; one-sided). Five-year-olds did not perform above chance before 

Session 5 in Year 2 (Session 1 to 4: all t(23) ≤ 1.14, all p ≥ .40, all r ≤ 0.26, all BF+0 ≤ 1.63, 

one-sided; Session 5, Session 6 & Transfer 2: all t(23) ≥ 4.54, all p ≤ .007, all r ≥ 0.71, all 

BF+0 > 100, one-sided). For all descriptive session data, see Table 6 and Appendix C (session 

averages without block 1). Table 6 will be referenced for all Means(SDs) in the following 

analyses to improve readability. 

 

Table 6 

A Year 1: Proportion Correct in AGL per Session and Age Group 

 Session 1 Session 2 Session 3 

 5yo 6yo Ad 2 5yo 6yo Ad 2 5yo 6yo Ad 2 

N 24 27 20 24 27 20 24 27 20 

M .51 .51 .76 .52 .57 .87 .52 .64 .90 

SD .07 .09 .11 .08 .12 .13 .10 .11 .12 

Min .38 .38 .56 .36 .32 .62 .39 .36 .60 

Max .64 .76 .92 .72 .74 1.00 .80 .88 1.00 

 

B Year 2: Proportion Correct in AGL per Session and Age Group 

 Session 4 Session 5 Session 6 Transfer 2 

 5yo 6yo Ad 2 5yo 6yo Ad 2 5yo 6yo Ad 2 5yo 6yo Ad 2 

N 24 27 20 24 27 20 24 27 20 24 27 20 

M .53 .61 .87 .61 .64 .92 .64 .72 .92 .59 .63 .88 

SD .09 .11 .12 .12 .13 .07 .11 .14 .11 .09 .12 .14 

Min .42 .42 .62 .34 .45 .78 .48 .48 .62 .42 .33 .50 

Max .80 .92 1.00 .82 .94 1.00 .98 1.00 1.00 .72 .82 1.00 

Note. 5yo = 5-year-olds, 6yo = 6-year-olds, Ad 2 = Adults 2, Min = minimal value, 

Max = maximal value.  



 91 

CHAPTER III: DEVELOPMENTAL EFFECTS OF REPEATED STATISTICAL LEARNING 

 

 

   

 

3.1. Performance in Year 2 benefits from prior learning in Year 1 

3.1.1. Initial and final performance levels largely improve from Year 1 to Year 2 and are 

retained across a 12-month delay 

We performed three ANOVAs to compare learning in Year 1 to relearning in Year 2, 

which are detailed in Table 7, including the addressed question, included datasets and 

ANOVA factors with factor levels. 

 

Table 7 

ANOVAs on Start Levels, Retention & End Levels  

Addressed Question/ 

Comparison 

Included datasets Between-subject 

factors (levels) 

Within-subject 

factors (levels) 

Higher Start Levels in 

Year 2 vs. Year 1 

 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2 

Age 

(5-Year-olds,6-

Year-olds, Adults 2) 

Session 

(Session 1, 

Session 4) 

Retention from 

Year 1 to Year 2 

 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2 

Age 

(5-Year-olds, 6-

Year-olds, Adults 2) 

Session 

(Session 3, 

Session 4) 

Higher End Levels in 

Year 2 vs. Year 1 

 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2 

Age 

(5-Year-olds, 6-

Year-olds, Adults 2) 

Session 

(Session 3, 

Session 6) 

 

First, to evaluate gains for relearning in Year 2 from prior learning experience in Year 

1, we tested averaged performance in the very first session (Session 1) against averaged 

performance in the first session of relearning in Year 2 (Session 4) (see Fig. 10A): An 

ANOVA with the factors Age and Session (for factor levels, see Table 7: Higher Start Levels) 

revealed a significant interaction of Age*Session (F(2,68) = 4.68, p = .011, η2
g  = .03, 

BFincl = 3.67) in addition to main effects of Age 3 and Session (both F  ≥ 43.93, both p < .001, 

both η2
g  ≥ .14, both BFincl > 100): 5-year-olds improved less than both 6-year-olds and 

Adults 2 from Session 1 (Year 1) to Session 4 (Year 2; group comparison Session 4 – Session 

1: both t ≥ 2.45, p ≤ .018, d ≥ .69, BF10 ≥ 3.06; see Table 6 & Fig. 10A). 

                                                 

 

3 Since adults continuously outperformed both child groups in all analyses of this and the next 

results section, differences in overall performance levels between age groups (as indicated by 

significant main effects of Age) will be pursued with post-tests only in the section that compares child 

groups (see Improvement and transfer in all child groups including 7-year-olds). I.e., 5-year-olds and 

6-year-olds will be compared there. This is done to promote readability and conciseness for all results 

sections. 
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Figure 10 

Session Differences of Year 1 & Year 2 for Initial & Final Performance Levels, Retention  

 

Note. Initial performance was compared as difference in proportion correct in the test phases of Session 4 

minus Session 1 (A). Final performance was compared as difference in proportion correct in the test phases 

of Session 6 minus Session 3 (B). Retention was compared as difference in proportion correct in the test 

phases of Session 4 minus Session 3 (C). Boxplots for 5-year-olds (light blue), 6-year-olds (dark blue) and 

Adults 2 (orange) with the groups’ median indicated by a black line and the corresponding mean by a black 

square. Black dots represent single-subject data. The dotted lines mark no performance difference between 

the two compared sessions. 
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Indeed, 5-year-olds did not show any significant benefit for their initial performance 

in Year 2 compared to Year 1 (mean difference Session 4 – Session 1 tested against 0: 

t(23) = 1.16, p = .257, d = .24, BF10 = .39). 6-year-olds and Adults 2 did not differ 

significantly in their performance improvement in Year 2 (group comparison Session 4 – 

Session 1: U = 229.00, p = .38, r = 0.15, BF10 = .29, see Table 6). This result pattern was 

confirmed in a control analysis without the first task block of each session, which yielded a 

significant interaction of Age*Session in addition to main effects of Age and Session (all 

F ≥ 3.43, all p ≤ .038, all η2
g ≥ .58, all BFincl ≥ 1.44). 

Next, we tested whether all age groups had lost in performance from the last session 

with the first stimulus set (Session 3) in Year 1 to the first session of relearning in Year 2 

(Session 4, see Fig. 10C). An ANOVA with the factors Age and Session (for factor levels, see 

Table 7: Retention) yielded only a significant main effect of Age (F(2,68) = 88.53, p < .001, 

η2
g  = .65, BFincl > 100), with Adults 2  outperforming children (see Table 6, both U < 26.00, 

p < .001, r = .90, BF10 > 100) and 6-year-olds outperforming 5-year-olds (see Table 6, 

t(49) = 4.33, p < .001, d = 1.22, BF10 > 100) independent of the respective session. All age 

groups preserved their last performance level from Year 1 (Session 3) in the first Session in 

Year 2 (Session 4), with no age differences in preserved performance levels (main effect 

Session & interaction effect Age*Session n.s.: both F ≤ 1.48, p ≥  .229, η2
g  = .01, 

BFincl  ≤ .39). The same pattern of effects emerged from a control analysis without the first 

task block of each session (significant main effect of Age: F(2,68) = 80.91, p < .001, 

η2
g  = .63, BFincl  > 100; all other F ≤ 1.83, p ≥ .168, η2

g  ≤ .02, BFincl ≤ .48). 

We further examined whether relearning in Year 2 resulted in a higher final 

performance level than in Year 1. Averaged performance in the last session with the first 

stimulus material was compared between Session 3 (Year 1) and Session 6 (Year 2) 

(difference scores for all age groups see Fig. 10B). In an ANOVA with factors Age and 

Session (for factor levels, see Table 7: Higher End Levels), a marginally significant 

interaction of Age*Session emerged (F(2,68) = 3.06, p = .053, BFincl = 1.14) in addition to 

main effects of Age and Session (both F ≥ 22.97, p < .001, η2
g ≥ .09, BFincl > 100): 5-year-

olds’ gain in final performance in Year 2, i.e., reaching a higher level in the last session with 

stimulus set 1 in Year 2 (Session 6) compared to the final session with the same stimulus set 

in Year 1 (Session 3), was more pronounced than the corresponding gain was in Adults 2 (see 

Table 6, group comparison Session 6 – Session 3: t(42) = 2.72, p = .009, d = .82, 

BF10 = 5.13). The other age groups did not differ significantly in their relearning gains for the 
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final performance level (group comparisons Session 6 – Session 3: both t ≤ 1.24, p ≥ .19, d 

≤ .39, BF10 ≤ .60). 

An overview over the results on start levels, retention and final levels from this 

section is provided in Table 8. To summarize, 5-year-olds benefitted less than 6-year-olds 

and Adults 2 for their initial session performance in Year 2 compared to Year 1. Five-year-

olds, however, showed the most pronounced gain for their final performance levels at 

relearning in Year 2 relative to their final performance in Year 1, which was again 

comparable for 6-year-olds and Adults 2. All age groups retained their final performance 

level from the last session in Year 1 across the one-year delay in their first session of Year 2. 

 

Table 8 

Overview of Result Patterns for Start Levels, Retention & End Levels  

Addressed Question Session 

comparison 

Main result for age difference 

Higher Start Levels 

(Year 2 > Year 1) 

Session 4 – 1 Session 4 > Session 1 for 6-year-olds & 

Adults 2  

→ benefit in Year 2 to the same extent;  

Session 4 = Session 1 for 5-year-olds 

(no benefit) 

Retention from 

Year 1 to Year 2 

Session 4 – 3 Session 4 = Session 3 for all age groups  

→ same degree of retention across 1 year 

Higher End Levels 

(Year 2 > Year 1) 

Session 6 – 3 Session 6 > Session 3 for all age groups, 

but most pronounced benefit for higher end 

levels in 5-year-olds; 

similar benefit for 6-year-olds & Adults 2  
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3.1.2. Performance improves across several sessions in both years and generalizes to a new 

stimulus set in Year 2 

3.1.2.1. Improvement and transfer in 5-year-olds, 6-year-olds and Adults 2  

We investigated how performance improved across three sessions with stimulus set 1 

and was transferred to stimulus set 2 in three ANOVAs, which are detailed in Table 9 

including the addressed question, included datasets and ANOVA factors with factor levels. 

 

Table 9 

ANOVAs on Learning Gains & Transfer Effects for Children vs. Adults 2  

Addressed Question/ 

Comparison 

Included datasets Between-

subject factors 

(levels) 

Within-subject factors 

(levels) 

Learning Gains with 

Stimulus Set 1 

(Children vs. Adults 2) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2  

Age 

(5-Year-olds, 

6-Year-olds, 

Adults 2) 

Year 

(Year 1, Year 2) 

Session 

(First Session [Year 1: 

Session 1, Year 2: 

Session 4], Last Session 

[Year 1: Session 3, 

Year 2: Session 6]) 

Transfer Savings 

(Children vs. Adults 2) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2 

Age 

(5-Year-olds, 

6-Year-olds, 

Adults 2) 

Session 

(Transfer 2, Session 4) 

Transfer Loss 

(Children vs. Adults 2) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2 

Age 

(5-Year-olds, 

6-Year-olds, 

Adults 2) 

Session 

(Transfer 2, Session 6) 

Transfer compared to 

very first session 

(Children vs. Adults 2) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 20 Adults 2 

Age 

(5-Year-olds, 

6-Year-olds, 

Adults 2) 

Session 

(Transfer 2, Session 1) 

 

To compare performance improvements over the three sessions with the first stimulus 

set in both years, we tested initial learning in Year 1 (see Fig. 11A) against relearning in Year 

2 (see Fig. 11B): An ANOVA with the factors Age, Year and Session (for factor levels, see 

Table 9: Learning Gains with Stimulus Set 1) yielded a significant three-way interaction, 

Age*Year*Session (F(2,68) = 7.01, p = .002, η2
g = .03, BFincl  = 21.66), in addition to a 

significant two-way interaction of Age*Session and significant main effects of Age, Year and 

Session (all F ≥ 3.45, p ≤ .037, η2
g ≥ .02, BFincl > 1.39). Post-hoc comparisons revealed that 5-

year-olds improved less over three sessions in Year 1 (Session 1 to 3) than both 6-year-olds 
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(see Table 6, group comparison Session 3 – Session 1: t(49) = 3.56, p < .001, d = 1.0, 

BF10 = 36.35) and Adults 2 (see Table 6, group comparison Session 3 – Session 1: 

t(42) = 3.23, p = .002, d = .98, BF10 = 15.13). 

5-year-olds indeed did not show any performance improvement across three sessions 

in Year 1 (see Table 6, mean difference Session 3 – Session 1 tested against 0: t(23) = .53, 

p = .602, d = .11, BF10 = .24; no block 1: t(23) = .35, p = .732, d = .07, BF10 = .22). In 

contrast, 6-year-olds and Adults 2 did not differ in the extent to which they improved across 

the first three sessions of Year 1 (see Table 6, group comparison Session 3 – Session 1: 

t(45) = .17, p = .866, d = .05, BF10 = .30). 

In Year 2, however, all three age groups improved to a similar degree from Session 4 

to 6 (see Table 6, group comparisons Session 6 – Session 4: all t ≤ 1.53, p ≥ .133, d  ≤ .46, 

BF10 ≤ .76). The above result pattern replicated in a control analysis without the first task 

block of each session (Age*Year*Session: F(2,68) = 5.58, p = .006, η2
g = .02, 

BFincl  = 14.43). 

  

Figure 11 

Learning Gains in Year 1 & 2 

Note. Learning Gains as difference in proportion correct responses of Session 3 and Session 1 (A: Year 1) 

or Session 6 and Session 4 (B: Year 2), respectively. Boxplots for 5-year-olds (light blue), 6-year-olds 

(dark blue) and Adults 2 (orange) with the groups’ median indicated by a black line and the corresponding 

mean by a black square. Black dots represent single-subject data. The dotted lines mark no performance 

difference between the two compared sessions. 
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We further characterized learning across three sessions for Year 1 and Year 2 in all 

age groups separately by polynomial contrast analyses, which tested for linear and quadratic 

trends in the data (R package emmeans; Lenth, 2021): The increase in performance followed 

a linear trend in the 6-year-old and adult groups from Sessions 1 over Session 2 to Session 3 

(Year 1) and from Sessions 4 over Session 5 to Session 6 (Year 2; all p ≤ .002). Five-year-

olds showed no trend for any increase across Sessions 1 to 3 (Year 1, p = .567), but a linear 

trend for the increase from Session 4 to 6 (Year 2, p < .001) as in 6-year-olds and Adults 2. In 

Adults 2, an additional quadratic trend emerged over Sessions 1 to 3 and over Sessions 4 to 6 

(both p ≤ .042). 

Thus, with regard to performance increases for the first stimulus set across several 

sessions, 6-year-olds and Adults 2 improved to a similar degree and in a linear fashion in 

Year 1, while 5-year-olds showed no learning across the three sessions in Year 1. For 

relearning across another set of three sessions in Year 2, all age groups, including the 5-year-

olds, improved to the same extent, sharing a linear performance increase. Adults’ 

performance in both years additionally increased in an exponential fashion, reaching a very 

high performance level of ca. 90% accuracy from the second session of each year onwards 

(see Table 6). 
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Next, to compare how participants transferred learned regularities to a second 

stimulus set in Year 2 for Transfer Savings (see Fig. 12A), we conducted an ANOVA with 

the factors Age and Session (for factor levels, see Table 9: Transfer Savings). 

In this analysis, no  significant interaction of Age*Session (F(2,68) = 1.08, p = .347, 

η2
g = .01, BFincl  = .27), emerged: Performance in the transfer session was better than in the 

first session of Year 2 (Session 4) across all age groups (significant main effects of Age and 

Session (both F ≥ 4.81, p ≤ .032, η2
g ≥ .02, BFincl  ≥ 1.69), with Adults 2 outperforming both 

child groups (see Table 6, both U ≤ 15.00, p < .001, r  ≥ .84, BF10 > 100) and 6-year-olds 

outperforming 5-year-olds (see Table 6, t(49) = 2.44, p = .018, d  = .69, BF10 = 3.03) 

irrespective of session. This result pattern was confirmed in an analysis that excluded the first 

task block of both sessions. In this control analysis, the main effect of Session, indicating 

Transfer Savings in Year 2, only showed a trend towards significance (F(1,68) = 3.81, 

p = .055, η2
g = 01, BFincl  = 1.11; Age*Session n.s.: F(2,68) = 0.74, p = .479, η2

g = .01, 

BFincl  = .22). Especially Adults 2 performed on a very high level in Session 4 already 

(Mean(SD) all task blocks: .87 (.12) see Table 6, M(SD) without 1st task block: .88 (.11), see 

Figure 12 

Transfer Effects in Year 2 

Note. Transfer Savings were calculated as difference in proportion correct in the test phases of Transfer 2 

and Session 4 (A). Transfer Loss was quantified as difference in proportion correct in the test phases of 

Transfer 2 and Session 6 (B). Boxplots for 5-year-olds (light blue), 6-year-olds (dark blue) and Adults 2 

(orange) with the groups’ median indicated by a black line and the corresponding mean by a black square. 

Black dots represent single-subject data. The dotted lines mark no performance difference between the two 

compared sessions. 
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Table C.2 in Appendix C), leaving little room to improve further and show any Transfer 

Savings (Transfer 2 – Session 4). For this reason, we checked age differences in an additional 

transfer comparison, detailed in the next paragraph. 

Comparable savings in transfer to the new stimulus set across age replicated in an 

analysis that related performance in the transfer session in Year 2 (Transfer 2) to very first 

learning in Year 1 with the first stimulus set (Session 1). An ANOVA with the factors Age 

and Session (for factor levels, see Table 9: Transfer compared to very first session) revealed 

significant main effects of Age and Session (both F = 62.25, p < .001, η2
g ≥ .21, BFincl  >100), 

but no significant interaction of Age*Session (F(2,68) = 1.05, p = .357, η2
g = .01, 

BFincl  = .26). Overall, Adults 2 showed better performance, collapsed across Session 1 and 

Transfer 2, compared to both child groups (see Table 6, both U ≤ 15.00, p < .001, r  ≥ .90, 

BF10 > 100), while 5-year-olds and 6-year-olds did not differ significantly in their overall 

performance average of these two sessions (see Table 6, t(49) = 0.99, p = .325, d  = .28, 

BF10 = .42). This was also the case when leaving out the first task block per session, when 

comparing Session 1 to Transfer 2 (main effects of Age & Session: F ≥ 58.88, p < .001, η2
g 

≥ .19, BFincl  > 100; Age*Session n.s.: F(2,68) = 0.63, p = .537, η2
g < .01, BFincl  = .17). 

We further investigated preserved performance in the transfer session (Transfer 2) 

compared to the directly preceding session with the first stimulus set in Year 2 (i.e., Session 

6) as Transfer Loss (see Fig. 12B). In an ANOVA with the factors Age and Session (for factor 

levels, see Table 9: Transfer Loss), significant main effects of Age and Session emerged (both 

F(1,68) ≥ 24.09, p < .001, η2
g ≥ .01, BFincl  > 100; Age*Session n.s.: F(2,68) = 0.96, p = .387, 

η2
g < .01, BFincl  = .35): All age groups performed worse in the transfer session with the new 

stimulus set than in the preceding relearning session with the first stimulus set. Adults 2 

outperformed both child groups (see Table 6, both U ≤ 31.50, p < .001, r  ≥ .79, BF10 > 100), 

and 6-year-olds outperformed 5-year-olds (see Table 6, t(49) = 2.14, p = .037, d  = .60, 

BF10 = 1.77), irrespective of session. 

Thus, 5-year-olds, 6-year-olds and Adults 2 generalized regularities from the first 

stimulus set to a new stimulus set to the same degree: They showed a similar performance 

gain in the transfer session compared to the very first learning session of Year 1 (Session 1) 

and compared to the first session of relearning in Year 2 (Session 4, Transfer Savings). All 

age groups lost in transfer performance relative to their final performance level reached with 

the first stimulus set in Year 2 (Session 6, Transfer Loss), and did so to the same extent 

independent of age. Table 11 will summarize these results for all age groups combined after 
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the next section that additionally includes the third child group of this dissertation (7-year-

olds of Project 1). 

3.1.2.2. Improvement and transfer in all child groups including 7-year-olds 

In addition to the three age groups considered so far (5-year-olds, 6-year-olds, Adults 

2), we performed analyses on performance improvements (repeated learning with stimulus set 

1) and transfer effects (generalizing the AG to stimulus set 2) on all three children groups 

from this dissertation, including 7-year-old children. Seven-year-olds completed an additional 

transfer session in Year 1 after Session 3 (see Table 1), but based on comparisons between 

the two adult groups included in this project (Adults 1: additional transfer in Year 1, same as 

7-year-olds vs. Adults 2: no transfer in Year 1, same as 5-year-olds & 6-year-olds, see Table 

1), having an additional transfer session in Year 1 seemed to have a negligible impact on 

relearning in Year 2 (no group differences for absolute performance levels in transfer 

sessions, no group differences for transfer effects relative to Session 1, 4 and 6; see Appendix 

C). Thus, 7-year-olds were included to provide a more comprehensive picture of 

developmental effects on multi-session learning and generalization in the present sequence 

learning paradigm. Analogous analyses to the previous sections were conducted, but this time 

for the three child groups (see Table 10 with the addressed question, included datasets and 

analysis factors with levels). Table 4 (7-year-olds) and Table 6 (5- & 6-year-olds) will be 

referenced for all Means(SDs) in the following analyses. 

Table 10 

ANOVAs on Learning Gains & Transfer Effects in all 3 Child Groups including 7-Year-Olds 

Addressed Question/ 

Comparison 

Included datasets Between-subject 

factors (levels) 

Within-subject factors 

(levels) 

Learning Gains with 

Stimulus Set 1 

(3 Child Groups) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 27 7-Year-Olds 

Age 

(5-Year-Olds, 

6-Year-Olds, 

7-Year-Olds) 

Year 

(Year 1, Year 2) 

Session 

(First Session [Year 1: 

Session 1, Year 2: 

Session 4], Last Session 

[Year 1: Session 3, 

Year 2: Session 6]) 

Transfer Savings 

(3 Child Groups) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 27 7-Year-Olds 

Age 

(5-Year-Olds, 

6-Year-Olds, 

7-Year-Olds) 

Session 

(Transfer 2, Session 4) 

Transfer Loss 

(3 Child Groups) 

N = 24 5-Year-Olds 

N = 27 6-Year-Olds 

N = 27 7-Year-Olds 

Age 

(5-Year-Olds, 

6-Year-Olds, 

7-Year-Olds) 

Session 

(Transfer 2, Session 6) 
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These analyses entailed one ANOVA on performance improvements over three 

sessions in Year 1 vs. Year 2 (see Fig. 13) and two ANOVAs on transfer effects in Year 2 on 

Transfer Savings and Transfer Loss (see Fig. 14). 

The ANOVA testing performance improvements over the three sessions in Year 1 vs. 

Year 2 included the factors Age, Year and Session (for factor levels, see Table 10: Learning 

Gains with Stimulus Set 1) and yielded a significant three-way interaction of 

Age*Year*Session (F(2,64) = 4.19, p = .020, η2
g = .02, BFincl  = 2.17) in addition to 

significant main effects of Age, Year and Session (all F ≥ 65.10, p < .001, η2
g ≥ .16, 

BFincl  > 100; same pattern of results in an analogue ANOVA without the first task block of 

each session with Age*Year*Session (F(2,64) = 3.49, p = .037, η2
g = .02, BFincl  = 1.43)): 

5-year-olds improved less than 6-year-olds and 7-year-olds in Year 1 from Session 1 to 

Session 3 (see Table 6, both t ≥ 2.40, p ≤ .021, d ≥ .78, BF10 ≥ 2.80), whereas 6-year-olds and 

7-year-olds improved to a similar degree in Year 1 (U = 221.50, p = .900, r = .03, BF10 = .31, 

see Table 4 & 6 and Fig. 13A).  

  

Figure 13 

Learning Gains for all Child Groups in Year 1 & Year 2 

Note. Learning Gains as difference in proportion correct responses of Session 3 and Session 1 (A: Year 1) 

or Session 6 and Session 4 (B: Year 2), respectively. Boxplots for 5-year-olds (light blue), 6-year-olds 

(dark blue) and 7-year-olds (green) with the groups’ median indicated by a black line and the 

corresponding mean by a black square. Black dots represent single-subject data. The dotted lines mark no 

performance difference between the two compared sessions. 

 



 102 

CHAPTER III: DEVELOPMENTAL EFFECTS OF REPEATED STATISTICAL LEARNING 

 

 

   

 

In Year 2, all three child groups showed a comparable increase in performance from 

Session 4 to Session 6 (see Table 4 & 6, all U ≥ 206.50, p ≥ .699, r ≤ .08, BF10 ≤ .35, see 

Fig. 13B). Overall, older children performed on a higher level than younger children (see 

Table 4 & 6, pooled performance of Sessions 1, 3, 4, 6: 5-year-olds < 6-year-olds < 7-year-

olds: all t ≥ 2.53, p ≤ .015, d ≥ .80, BF10 ≥ 3.57). 

Relating this analysis to the previous section that included Adults 2, this means that 

from 6 years onwards, children improved to a similar degree over the three sessions with the 

first stimulus set in Year 1 (Session 1 to Session 3). For relearning rates with the same 

stimulus set across three sessions in Year 2 (Session 4 to Session 6), all age groups, from age 

5 years onwards, benefitted to the same extent from their prior learning in Year 1. In their 

overall performance levels with the first stimulus set in these sessions, an age gradient 

emerged with 7-year-olds outperforming both 6-year-olds and 5-year-olds, and 6-year-olds 

outperforming 5-year-olds. 

Investigating transfer effects in all three child groups, a first ANOVA tested how 

children transferred learned regularities from the first relearning session (Session 4) to a 

second stimulus set in Year 2 (Transfer Savings, for factor levels of Age & Session, see Table 

10). In this analysis, no age differences in transfer emerged (see Fig. 14A) as reflected in a 

non-significant interaction of Age*Session (F(2,64) = 0.56, p = .572, η2
g < .01, BFincl  = .20, 

significant main effects of Age & Session: both F ≥ 5.56, p ≤ .021, η2
g ≥ .02, BFincl  ≥ 2.60; 

same pattern without first task block: Age*Session (F(2,64) = 0.96, p = .390, η2
g < .01, 

BFincl  = .24, but no significant main effect of Session: F(1,64) = 2.33, p = .13, η2
g = .01, 

BFincl  = .68). Overall, older children performed on a higher level than younger children (see 

Table 4 & 6, pooled performance of Sessions 4 & Transfer 2: 5-year-olds < 6-year-olds <  

7-year-olds: all t ≥ 2.44, p ≤ .018, d ≥ .69, BF10 ≥ 3.03). 

To test transfer as preserved performance from Session 6 to the subsequent transfer 

session in Year 2 (Transfer 2), we computed an ANOVA with the factors Age & Session 

Transfer Loss, for factor levels, see Table 10). Again, the three child groups did not differ in 

their amount of performance loss from stimulus set 1 to stimulus set 2 (see Fig. 14B), 

reflected in a non-significant interaction of Age*Session (F(2,64) = 0.50, p = .606, η2
g < .01, 

BFincl  = .18; main effects of Age & Session: both F ≥ 10.08, p < .001, η2
g ≥ .07, BFincl  > 100). 

Overall, older children outperformed younger children (see Table 4 & 6, pooled performance 

of Sessions 6 & Transfer 2: 5-year-olds < 6-year-olds < 7-year-olds: all t ≥ 2.14, p ≤ .037, d 

≥ .60, BF10 ≥ 1.77). 
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Thus, in sum, transfer effects showed no clear developmental trend for 5-year-olds, 6-

year-olds and 7-year-olds, but older children performed on an overall higher level (7-year-

olds > 6-year-olds > 5-year-olds). Age-invariant transfer effects emerged despite the fact that 

the oldest age group even had the advantage of an additional transfer session in Year 1 and, 

thus, was already familiar with the second stimulus set in the transfer session of Year 2. 

Nevertheless, all child groups showed a similar benefit for transferring learned regularities to 

a second stimulus set in Year 2. 

All results for this whole section on age comparisons in performance improvements 

with the first stimulus set and transfer effects to a second stimulus set are summarized in 

Table 11 (incl. Adults 2).  

Figure 14 

Transfer Effects for all Child Groups in Year 2 

Note. Transfer Savings were calculated as difference in proportion correct in the test phases of Transfer 2 

and Session 4 (A). Transfer Loss was quantified as difference in proportion correct in the test phases of 

Transfer 2 and Session 6 (B). Boxplots for 5-year-olds (light blue), 6-year-olds (dark blue) and 7-year-olds 

(green) with the groups’ median indicated by a black line and the corresponding mean by a black square. 

Black dots represent single-subject data. The dotted lines mark no performance difference between the two 

compared sessions. 
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Table 11 

Overview of Results for Performance Improvements & Transfer Effects 

Addressed 

Question 

Session 

comparison 

Main result for age difference 

Learning Gains 

(Stimulus Set 1) 

Session 3 – 1 

(Year 1) vs. 

Session 6 – 4 

(Year 2) 

Year 1: Session 3 > Session 1 to the same degree in 

6-year-olds, 7-year-olds, Adults 2; 

Session 3 = Session 1 in 5-year-olds 

Year 2: Session 6 > Session 4 to the same degree 

in all age groups (5-,6-,7-year-olds, Adults 2) 

Transfer Savings Transfer 2 – 

Session 4 

Transfer > Session 4* in all age groups to the same extent; 

→ age-independent performance savings for stimulus set 2  

Transfer Loss Transfer 2 – 

Session 6 

Transfer < Session 6 in all age groups 

to the same extent; 

→  age-independent loss in performance for stimulus set 2  

Note. * n.s. when excluding first task block of both sessions, but age-independent Transfer 

Savings (n.s. Age*Session interaction) with a significant main effect of Session replicated for 

Transfer 2 (Year 2) > Session 1 (Year 1) in 5-year-olds, 6-year-olds and Adults 2.4  

 

3.1.3. Earlier trial-by-trial learning effects in Year 2 compared to Year 1 

For within-session learning, we fitted the state-space model of Smith et al. (2005) to 

compare within each age group the binary response data for the three sessions with the first 

stimulus set between Year 1 (Session 1 to 3) and Year 2 (Session 4 to 6). The state-space 

model by Smith et al. (2005) identified no trial for 5-year-olds in Year 1 (i.e., no stable above 

chance performance after a total of 150 test trials at the end of Session 3) and the 12th test 

trials (i.e., the beginning of the second task block in Session 4) at relearning in Year 2 as the 

timepoint at which learning first was evidenced by the model. For 6-year-olds, the 41st test 

trial (i.e., the end of Session 1, last task block) was identified as the first timepoint of learning 

in Year 1, while for their relearning in Year 2, the first timepoint of above-chance 

performance was identified already at the 6th test trial (i.e., in the first task block of Session 

4). By contrast, Adults 2 showed evidence for learning from their very first test trial on in 

both years. 

                                                 

 

4 Note that this additional transfer difference with Session 1 was not tested between 5-year-

olds, 6-year-olds and 7-year-olds, since 7-year-olds had an additional transfer session in the end of 

Year 1. Checking for a non-significant Age*Session effect in the presence of a main effect of Session 

in a control analysis seemed to be of little use, as the main effect of Session would mean something 

different for 5- & 6-year-olds (1st vs. 7th session) as compared to 7-year-olds (1st vs. 8th session). 
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Thus, both child groups showed earlier learning effects in Year 2 compared to Year 1: 

This means they needed less exposure to grammatical sequences at relearning before they 

showed stable learning effects as identified by the state-space model. Overall, children 

needed more task exposure than adults before they started learning. Adults showed within-

session learning effects after being exposed to a single learning phase of 18 grammatical 

sequences already in Year 1. 

Table 12 lists all learning trials identified by the state-space model by Smith et al. 

(2005) for Year 1 and 2, including 7-year-olds, whose model fitting is described in detail in 

Chapter II. Seven-year-olds are discussed there in more detail as compared to Adults 1, who 

were matched in their complete study design and showed the same results as Adults 2 in their 

first learning trial (see Chapter II). 

 

Table 12 

Overview of First Learning Trials identified by the State-Space Model (Smith et al., 2005) 

First Learning Trial 

(above chance performance) 

5-year-olds 

(n = 24) 

6-year-olds 

(n = 25) 

7-year-olds 

(n = 27/16) 

Adults 2 

(n = 20) 

Year 1 (Session 1 to 3) NaN 41 30 1 

Year 2 (Session 4 to 6) 12 6 1* 1 

Note. NaN = no learning trial identified from model. 

* in this group, only a subgroup of the original sample returned for the home follow-up in 

Year 2 (n = 16, see Chapter II).5  

 

 

 

 

 

  

                                                 

 

5 Smith et al. (2005) put forward that their analysis operates by the concept of 

exchangeability, allowing for the estimation of a population learning curve from response data of each 

subject in a group that applies to every other subject in that group. Nevertheless, we checked the first 

learning trial in Year 1 for this returning subgroup to exclude the possibility that they were quicker 

learners in the first place than the children who did not take part in Year 2. The first learning trial in 

Year 1 identified for the returning subgroup was 80, which is even later than trial 30 that was 

identified for the whole sample.   
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3.1.4. Performance correlations with explicit sequence knowledge in Year 2 

The number of children per age group, who spontaneously mentioned to have noticed 

some aspect related to sequence rules when asked about the AGL task and their decision 

strategies (open questions, see Methods, Explicit Knowledge of Sequence Rules), increased 

from Session 3 (33% of 5-year-olds, 56% of 6-year-olds), over Session 6 (75% of 5-year-

olds, 70% of 6-year-olds) to the Transfer session (83% of 5-year-olds, 81% of 6-year-olds; 

see Table 13). At the end of the study in Year 2 (Transfer 2), the vast majority of both child 

groups (> 80%) thus reported to have noticed sequential regularities in the task. For Adults 2, 

all but one participant in Session 3 (Year 1) and every single participant in Session 6/Transfer 

2 (Year 2) mentioned sequence rules in their answers to these open questions (see Table 13).  

 

Table 13 

Reported Explicit Knowledge about Sequence Rules per Age Group 

Explicit 

knowledge 

           5-Year-Olds 

           (n = 24) 

6-Year-Olds 

(n = 27) 

Adults 2 

(n = 20) 

Year 1 N Session 3: 0/1a 

 

16/8 

 

11/14 (2 NA) 

 

1/19 

Year 2 N Session 6: 0/1a 

N Transfer 2: 0/1a 

Score Transfer 2b: M (SD) 

6/18 

4/20 

0.40 (0.24)* 

7/17 (2 NA) 

5/21 (1 NA) 

0.40 (0.39)* 

0/20 

0/20 

0.54 (0.22) 

Note. NA = missing values for open questions, * n = 2 missing values for 5-year-olds, n = 3 

missing values for 6-year-olds. 
a 0 = sequence rules not mentioned in answers to open questions, 1 = sequence rules mentioned in 

answers to open questions. 
b scores could range from -1 (no rule knowledge) to 1 (max. rule knowledge). 

 

When statistically comparing proportions of participants with reported awareness 

about sequential rules in these three sessions between the age groups, 5-year-olds, 6-year-olds 

and adults differed significantly in Session 3 of Year 1 (χ2(2) = 32.03, p < .001, BF10 > 100), 

differed to a lower degree in Session 6 of Year 2 (χ2(2) = 6.33, p = .042, BF10 = .20), and did 

not differ significantly in Transfer 2 by the end of Year 2 (χ2(2) =  2.48, p = .290 , 

BF10 = .03). 
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When comparing 5-year-olds, 6-year-olds and Adults 2 in their scores of reported 

explicit sequence knowledge in the end of Year 2 (assessed in the Transfer 2), they did not 

significantly differ (F(2,63) = 1.57, p = .216, η2
g = .05, BFincl = .40, see Table 13 for 

Mean(SD) of their scores). 

Explicit knowledge scores were not significantly associated with any of the AGL 

performance differences from Year 2 in any age group (see Table 14: all rs ≤ |.23|, all 

p ≥ .891). Given our small sample sizes, we additionally considered the Bayes Factor for each 

correlation (see Table 14), which did not support any relevant relationship between AGL 

performance scores in Year 2 and the level of rule knowledge reported in the end of Year 2, 

either (all BF10 ≤ .51). 

 

Table 14 

Associations between Explicit Knowledge Levels and AGL Performance per Age Group 

  

 

Retention 

Year 1 to Year 2 

AGL 

(Session 4 – 

Session 3) 

Learning 

Gains AGL 

(Session 6 – 

Session 4) 

Transfer 

Savings 

AGL 

(Transfer 2 – 

Session 4) 

Transfer 

Loss 

AGL 

(Transfer 2 

– Session 6) 

rs BF10 rs BF10 rs BF10 rs BF10 

5-Year-Olds 

(n = 22) 
.21 (.41) .03 (.29) -.06 (.28) -.23 (.51) 

6-Year-Olds 

(n = 24) 
-.05 (.41) -.05 (.29) -.14 (.38) -.07 (.51) 

Adults 2 

(n = 20) 
.08 (.30) .04 (.29) .22 (.47) .21 (.40) 

Note. rs = Spearman Correlation Coefficient, BF10 = Bayes Factor. 
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3.2. Relearning advantages in Year 2 for 5-year-olds and 6-year-olds compared to naïve 

controls  

In Year 2, task performance of the child groups (5-year-olds & 6-year-olds) could be 

influenced by more mature general cognitive skills like higher memory capacities. Thereby, 

AG acquisition could be better due to unspecific effects as compared to previous performance 

in Year 1, rather than due to the previous learning exposure. To account for such unspecific 

effects, control analyses were conducted in which each child group was compared to a group 

of naïve children of the same age (see Table 15). 

 

Table 15 

ANOVAs on Start Levels, Learning Gains & Transfer Effects for Child Groups and Controls 

Addressed 

Question/ 

Comparison 

Included datasets Between-

subject factors 

(levels) 

Within-subject 

factors (levels) 

Higher Start Levels 

in Year 2 

(5-Year-Olds vs. 

Controls) 

N = 24 5-Year-Olds Year 2 

(6 years old at testing) 

N = 31 6-Year-Olds Year 1 

(naïve Controls age 6) 

Group for t-Test 

(5-Year-Olds 

Year 2, 6-Year-

Olds Year 1) 

Session for t-Test 

(5-Year-Olds: 

Session 4,  

6-Year-Olds: 

Session 1) 

Higher Start Levels 

in Year 2 

(6-Year-Olds vs. 

Controls) 

N = 27 6-Year-Olds Year 2 

(7 years old at testing) 

N = 27 7-Year-Olds Year 1 

(naïve Controls age 7) 

Group for t-Test 

(6-Year-Olds 

Year 2, 7-Year-

Olds Year 1) 

Session for t-Test 

(6-Year-Olds: 

Session 4,  

7-Year-Olds: 

Session 1) 

Learning Gain with 

Stimulus Set 1 

(5-Year-Olds vs. 

Controls) 

[Analysis 1] 

N = 24 5-Year-Olds Year 2 

(6 years old at testing) 

N = 31 6-Year-Olds Year 1 

(naïve Controls age 6) 

Group 

(5-Year-Olds 

Year 2, 6-Year-

Olds Year 1) 

Session 

(5-Year-Olds: Session 

4 & 6, 6-Year-Olds: 

Session 1 & 3) 

Learning Gain with 

Stimulus Set 1 

(6-Year-Olds vs. 

Controls) 

[Analysis 2] 

N = 27 6-Year-Olds Year 2 

(7 years old at testing) 

N = 27 7-Year-Olds Year 1 

(naïve Controls age 7) 

Group 

(6-Year-Olds 

Year 2, 7-Year-

Olds Year 1) 

Session 

(6-Year-Olds: Session 

4 & 6, 7-Year-Olds: 

Session 1 & 3) 

Transfer Savings 

(6-Year-Olds vs. 

Controls) 

N = 27 6-Year-Olds Year 2 

(7 years old at testing) 

N = 27 7-Year-Olds Year 1 

(naïve Controls age 7) 

Group 

(6-Year-Olds 

Year 2, 7-Year-

Olds Year 1) 

Session 

(6-Year-Olds: Session 

4 & Transfer 2, 

7-Year-Olds: Session 

1 & Transfer 1) 

Transfer Loss 

(6-Year-Olds vs. 

Controls) 

N = 27 6-Year-Olds Year 2 

(7 years old at testing) 

N = 27 7-Year-Olds Year 1 

(naïve Controls age 7) 

Group 

(6-Year-Olds 

Year 2, 7-Year-

Olds Year 1) 

Session 

(6-Year-Olds: Session 

6 & Transfer 2, 

7-Year-Olds: Session 

3 & Transfer 1) 
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3.2.1. Initial performance levels compared to controls 

To control for maturational effects, we first compared how the group of 5-year-olds, 

now at age 6, performed in the first session of Year 2 (i.e., Session 4) to a group of naïve 

children of the same age in their very first session (6-year-olds in Year 1, see Fig. 15 left): 

Initial performance levels as average performance did not differ significantly between 

children with (5-year-olds Session 4 in Year 2) vs. without (6-year-olds Session 1 in Year 1) 

prior learning experience (U = 433.50, p = .30, r = .17, BF10 = .42; without first task block: 

U = 454.50, p = .162, r = .22, BF10 = .57). So, prior learning experience in 5-year-olds did not 

significantly benefit performance in the first session of Year 2, as compared to an age-

matched naïve control group. 

For 6-year-olds, we compared how performance in the first session of Year 2 (Session 

4), now at age 7, differed from a group of naïve children of the same age in their very first 

session (7-year-olds in Year 1 Session 1, see Fig. 15 right): The group of 6-year-olds 

outperformed the naïve control group of age-matched children in their initial performance 

Figure 15 

Performance Trajectories Across Sessions in 5-Year-Olds & 6-Year-Olds vs. age-matched Controls 

Learning Trajectories of 5-Year-Olds & 6-Year-Olds with naïve Controls age-matched in Year 2 

Note. Mean proportion of correct responses in the test phases of each session for 5-year-olds (left) and 6-year-

olds (right) with a naïve age-matched group displayed for sessions of Year 2. Learning curves of single 

participants are depicted in light blue (5-year-olds), dark blue (6-year-olds) and green (7-year-olds). The dotted 

horizontal lines mark chance level performance. Error bars indicate 95% CIs corrected for within-subject 

comparison according to Morey (2008). 
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levels, when averaged across all task blocks (U = 494.50, p = .025, r = .36, BF10 = 1.96)6. 

Thus, prior learning experience in 6-year-olds benefitted their performance in the initial 

session of Year 2 as compared to an age-matched naïve control group. When the first task 

block was left out, however, this performance benefit did not reach statistical significance 

anymore (group difference for averaged Session 4: U = 440.50, p = .112, r = .26, BF10 = .80). 

3.2.3. Performance improvement and transfer effects compared to controls 

To further look into how prior learning influences performance improvement across 

three sessions with the first stimulus set, we also compared Learning Gains in Year 2 (see Fig. 

16A & 16B) for 5-year-olds and 6-year-olds to an age-matched naïve control group (6-year-

olds in Year 1, 7-year-olds in Year 1, respectively): Separate ANOVAs for each age group (for 

factor levels of Session & Group, see Table 15: Learning Gains Analysis 1&2) revealed no 

significant Group*Session interaction (all task blocks: both F ≤ 0.48, p ≥ .49, η2
g < .01, BFincl  

≤ .33,; Group*Session interaction without first task block: both F ≤ 1.45, p ≥ .245, η2
g ≤ .01, 

BFincl  ≤ .91). In 6-year-olds, this analysis (Analysis 1) yielded a significant main effect of 

Group (all task blocks: F(1,52) = 5.58, p = .022, η2
g = .07, BFincl  = 2.67, without first task 

block: F(1,52) = 4.47, p = .039, η2
g = .05, BFincl  = 1.54), indicating significantly higher 

performance levels in this group for pooled performance in Sessions 4 and 6 (Year 2) than in 

children of the same age without prior learning experience (further statistics for Learning Gains 

ANOVAs on all task blocks: main effects of Session [Analysis 1&2]: both F ≥ 29.01, p < .001, 

η2
g ≥ .15, BFincl  > 100; n.s. main effect of in 5-year-olds vs. controls [Analysis 1]:: 

F(1,53) = 0.39, p = .533, η2
g < .01, BFincl  = .30). 

For transfer effects, maturational influences could only be considered for the group of 

6-year-olds, since for 5-year-olds there was no transfer session of an age-matched group that 

could be used as a reference (6-year-olds in Year 1 completed no transfer session see groups 

in Table 1). 

 

 

 

                                                 

 

6 This performance difference was mainly driven by a performance advantage of the 6-year-

olds in the “easy” test trials of Session 4 (short sequences with low ACS, see Methods section 

Construction of Grammatical and Ungrammatical Sequences), compared to naïve controls in Session 

1 (group comparison for easy trials: t(50.74) = 2.56, p = 0.013, d = .70, BF10 = 3.96 vs. group 

comparison for difficult trials: t(51.78) = 1.00, p = 0.324, d = .27, BF10 = .42).  
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We looked into transfer effects by comparing between 6-year-olds and age-matched 

children without prior learning experience (7-year-olds in Year 1) (1) absolute performance 

levels averaged in the transfer session, (2) Transfer Savings as transfer performance relative to 

Figure 16 

Learning Gains and Transfer Effects in 5-Year-Olds & 6-Year-Olds vs. age-matched  Controls 

Note. Learning Gains as difference in proportion correct responses of Session 6 and Session 4 for 5-year-olds 

(Year 2) or Session 3 and 1 for their control group (6-year-olds in Year 1), respectively (A). Learning Gains 

as difference in proportion correct responses of Session 6 and Session 4 for 6-year-olds (Year 2) or Session 3 

and 1 for their control group (7-year-olds in Year 1), respectively (B). Transfer Savings as difference in 

proportion correct responses of Transfer 2 and Session 4 for 6-year-olds (Year 2) or Transfer 1 and Session 1 

for their control group (7-year-olds in Year 1), respectively (C). Transfer Loss as difference in proportion 

correct responses of Transfer 2 and Session 6 for 6-year-olds (Year 2) or Transfer 1 and Session 3 for their 

control group (7-year-olds in Year 1), respectively (D). 

A B 

C 
D 
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performance in the first session of the same year with stimulus set 1, see Fig. 16C, and (3) 

Transfer Loss as transfer performance relative to performance in the last session of the same 

year with stimulus set 1, see Table 15 and Fig. 16D. 

Performance in the transfer session was indistinguishable between 6-year-olds and age-

matched controls without prior learning (t(51) = 0.34, p = .73, d = .09, BF10 = .29). Transfer 

Savings were compared in an ANOVA with the factors Group (between-subject) and Session 

(within-subject; for factor levels see Table 15), which revealed no significant interaction of 

Group*Session (F(1,52) = 2.72, p = .105, η2
g = .02, BFincl  = .97; n.s. main effect of Group: 

F(1,52) = 2.09, p = .155, η2
g = .02, BFincl  = .57, main effect of Session F(1,52) = 8.27, 

p = .006, η2
g = .06, BFincl  = 8.71; without first task block: Group*Session: F(1,52) = 2.44, 

p = .124, η2
g = .02, BFincl  = .32, n.s. main effect of Group: F(1,52) = 0.61, p = .438, η2

g = .01, 

BFincl  = 1.60, main effect of Session: F(1,52) = 6.25, p = .016, η2
g = .04, BFincl  > 100). 

Transfer Loss as tested in an ANOVA with factors Group (between-subject) and Session 

(within-subject; for factor levels see Table 15), showed a trend for an interaction of 

Group*Session (F(1,52) = 3.69, p = .060, η2
g = .02, BFincl  = 1.26, n.s. main effect of Group: 

F(1,52) = 1.43, p = .238, η2
g = .02, BFincl  = .54, main effect of Session: both F(1,52) = 8.14, 

p = .006, η2
g = .04, BFincl  = 5.34). This trend was driven by 6-year-olds reaching marginally 

higher final levels with the first stimulus set in Session 6 than age-matched controls 

(t(52) = 1.77, p = .082, d = .48, BF10 = 1.00), while transfer in absolute performance levels was 

comparable in both groups (see above). 

So, both child groups at age 6 and 7 years with (Year 2 for groups of 5-year-olds and 

6-year-olds) and without (age-matched controls) learning experience 12 months prior to 

testing improved to a similar degree across three sessions with the first stimulus set. At age 7, 

children with prior learning experience (6-year-olds in Year 2) subsequently transferred 

regularities to the same extent to a new stimulus set as naïve children of the same age. 

Summarizing all analyses from this section, which controlled for maturational effects 

on relearning in Year 2 on a session level, maturation could account for the across-session 

improvement in the groups of 5-year-olds and 6-year-olds, and for transfer effects in 6-year-

olds. Nevertheless, these analyses provide first evidence that 6-year-olds in Year 2, now at 

age 7, benefitted from prior learning compared to a naïve group of the same age: 6-year-olds 

in Year 2 showed better performance in their initial session than naïve controls when 

considering all task blocks (Session 4) and performed on an overall higher level, when 
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looking at the pooled performance for their initial and their final session with the first 

stimulus set (Session 4 & 6). 

3.2.4. Earlier trial-by-trial learning effects in Year 2 due to prior learning in 5-year-olds 

and 6-year-olds compared to controls 

Next, we aimed to zoom in on within-session learning in Year 2 and tested if prior 

learning enabled earlier learning on a trial-by-trial basis than when being first exposed to the 

AG. We again compared child groups of the same age who only differed in their prior 

learning experience in Year 1 (naïve vs. three sessions of learning with stimulus set 1). The 

state-space model by Smith et al. (2005) identified earlier relearning trials in the first session 

of Year 2 for both 5-year-olds (learning trial: 12th test trial vs. 41st test trials in age-matched 

control group of 6-year-olds in Year 1) and 6-year-olds (learning trial: 6th test trial vs. 30th 

test trial in age-matched control group of 7-year-olds in Year 1), who had completed three 

sessions of sequence learning one year before. Hence, on average, both child groups showed 

learning effects at least two task blocks earlier than naïve children of the same age. This 

means that they “saved” exposure to at least 36 grammatical sequences that they needed less 

to exhibit sequence (re)learning effects, due to their prior learning experience. 

Relearning results from this whole section are summarized in Table 16 for the groups 

of 5-year-olds and 6-year-olds, testing their performance against an age-matched age group 

without prior learning experience 12 months before. Results are displayed for analyses both 

on a session level and on trial-by-trial performance.  

Table 16 

Overview of Relearning Results in Year 2 for 5-Year-Olds & 6-Year-Olds vs. naïve Controls 

(Re)Learning Measure  5-Year-Olds 

vs. naïve Controls 

6-Year-Olds 

vs. naïve Controls 

1st Session 5yo = naïve 6yo > naïve 

Learning Gains 

(Stimulus Set 1) 

5yo = naïve 6yo = naïve 

(but pooled performance Session 4+6: 

6yo > naïve) 

Transfer Session N.A. 6yo = naïve 

Transfer – 1st Session 

(Transfer Savings) 

N.A. 6yo = naïve 

Transfer – 3rd Session 

(Transfer Loss) 

N.A. Trend for Loss 6yo > naïve  

First Learning Trial 

(State-Space Model) 

Earlier than naïve  

(trial 12 vs. trial 41) 

Earlier than naïve  

(trial 6 vs. trial 30) 

Note. 5yo = 5-year-olds, 6yo = 6-year-olds, N.A. = not applicable due to study design (no 

session reference with naïve age-matched group available).  
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4. Discussion 

In Project 2, it was tested whether an earlier developmental timing of several 

instances of sequence learning facilitates learning rates, retention, and transfer of acquired 

regularities as defined by an AG in 5-year-old children, 6-year-old children and adults 

(Adults 2, see Table 1). All three age groups completed a visual AGL task with two sets of 7 

sessions in total. These two sets of sessions were separated by a 12-month-gap after the third 

session, and included a transfer session in the very end that used new visual stimuli governed 

by the same AG (see Figure 1). For relearning after the delay, we controlled for maturational 

effects in the child groups by comparing them to naïve controls of the same age. 

Table 17 summarizes the main findings, relating them to our hypotheses and the 

investigated age groups. We observed successful learning of the AG in children from age 6 

years onwards, i.e., for 6-year-olds in both years and for 5-year-olds in Year 2, and in adults. 

Adults overall outperformed child groups and displayed a steeper learning curve, thus, 

showing learning at an earlier timepoint with less task exposure needed. Despite failing to 

perform above-chance in all three sessions of Year 1, the group of 5-year-olds improved 

across the three sessions after the 12-month delay (Year 2) to the same degree as the groups 

of 6-year-olds and adults in their relearning of Year 2. In these two older age groups, retained 

rule knowledge over a period of one year was evidenced by starting out at the final level 

reached one year earlier. Control analyses in Year 2 for the groups of 5-year-olds and 6-year-

olds vs. their respective naïve age-matched controls revealed evidence for a genuine effect of 

prior learning on their performance after a one-year delay, rather than unspecific 

(maturational) effects. This was mainly evident in earlier learning effects in the first session 

of Year 2, modeled on a trial basis, for the groups of 5-year-olds and 6-year-olds as compared 

to children of the same age but without prior task exposure one year before. Notably, in this 

trial-based control measure of relearning in Year 2, prior task exposure also caused earlier 

learning effects in the group of 5-year-olds, who had failed to show learning in any 

behavioral markers of Year 1. An earlier developmental timing was not found to be of 

advantage for any of these relearning effects, however. Besides, we were not able to confirm 

what we had predicted from stronger (over)generalization early in development: No age 

differences between all available age groups emerged for transferring the learned rule 

knowledge to a new stimulus set at the end of the second set of sessions in Year 2, including 

7-year-olds from Chapter II. 
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Table 17 

Main results and conclusions with respective hypotheses and investigated age groups  

Hypothesis Age Groups Main Result / Conclusion 

Similar learning rate 

(Year 1) 

across several sessions 

independent of age 

 

5-year-olds, 

6-year-olds, 

Adults 2  

(7-year-olds) 

Supported, but no learning in 5-year-olds; 

Adult-like learning efficiency from 6 years 

onwards for using acquired rule 

knowledge for subsequent learning 

instances over 1 week 

Better long-term 

consolidation 

early in development 

(from Year 1 to Year 2) 

5-year-olds, 

6-year-olds, 

Adults 2  

No; 

Retained long-term rule knowledge in all 

age groups 

(not meaningful for 5-year-olds) 

Quicker relearning rate 

(Year 2)  

across several sessions 

early in development 

5-year-olds, 

6-year-olds, 

Adults 2  

(7-year-olds) 

No; 

Similar relearning gains in all age-groups 

for using acquired rule knowledge after a 

long-term delay for subsequent learning 

instances 

Effects of prior learning 

> maturational effects in 

children (Year 2) 

5-year-olds, 

6-year-olds, 

naïve age-

matched controls 

Partly supported; 

Preliminary support for genuine effects of 

prior learning, mainly as earlier within-

session effects; 

No evidence of an earlier developmental 

timing being of advantage for these effects 

Larger transfer to new 

stimuli early in 

development (Year 2) 

5-year-olds, 

6-year-olds, 

Adults 2  

(7-year-olds) 

No; 

Similar transfer of acquired rule 

knowledge to new set of visual stimuli in 

all age-groups  

 

Emerging awareness about sequence rules was assessed in open questions about the 

task at three points of time throughout the study (at the end of Session 3, Session 6 & 

Transfer 2). In their responses, a higher proportion of 6-year-olds and adults compared to 5-

year-olds reported to have noticed sequence rules in the AGL task already in Year 1 before 

the delay – an age pattern that ameliorated in Year 2 after the delay. Levels of quantified rule 

knowledge in the end of Year 2, about legal item positions and item-item transitions, did not 

differ between 5-year-olds, 6-year-olds and adults. These knowledge levels were not 

significantly associated with Year 2 AGL performance parameters in any age group. 

I will go through these findings one by one and relate them to the existing literature in 

the following paragraphs. This discussion will mainly focus on developmental changes in 

learning mechanisms, the concept of “savings” from prior learning, and the question which 

factors might influence the degree to which young children are able to generalize their rule 

knowledge. A broader discussion on how findings of this chapter speak to more general 
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concepts like plasticity processes and, relatedly, sensitive periods in development, follows in 

Chapter V. This combined discussion in the end happens in an effort to combine results from 

all projects of the present dissertation to derive conceptual implications. 

4.1. Developmental changes in learning mechanisms show on different timescales 

In Year 1, children age 6 years and adults successfully learned the visually presented 

AG, with adults outperforming children but similar learning gains across three sessions in 

both age groups. This finding extends previous multi-session studies on children age 8-12 

years (Ferman & Karni, 2010; Smalle, Page, et al., 2017), which showed that auditory 

sequence rules are acquired with similar learning rates, but are applied with an overall higher 

accuracy in adults than in children. Based on our data, these age trends can be extended to the 

learning of younger children (age 6 years) in the visual domain with complex sequential 

regularities as defined by an AG. Our results on overall performance levels of 5-, 6-, 7-year-

olds and adults are furthermore in line with previous studies that indicated better performance 

in visual sequence learning with age, across the range from 5 to 12 years (Arciuli & Simpson, 

2011; Raviv & Arnon, 2017; Shufaniya & Arnon, 2018) in childhood. This improved 

performance across development was extended into adulthood in a sample of age 6 to 30 

years by Schlichting et al. (2017). At the same time, previous studies found that despite age 

differences in overall performance levels, the relative amount of short-term retention (across 

24 hours) was indistinguishable between age groups (Juhász & Németh, 2018; Tóth-Fáber et 

al., 2023). This aligns well with the indistinguishable across-session trajectories we observed 

for 6-year-olds and adults, substantiating a similar benefit in children and adults from 

previous learning across short-term delays of one to several nights. 

Five-year-old children failed to reach above-chance performance in all three sessions 

of Year 1 (Session 1 to 3), which corroborates reports of chance performance in young age 

groups from previous studies on single-session sequence learning: After exposure to visual 

and auditory triplets, 5- to 6-year-olds’ performance did not exceed chance in the study of 

Raviv and Arnon (2017). Even older children, 6 to 9 years old (mean age of 8.47 years), did 

not perform better than chance in an auditory AGL task (Pavlidou & Bogaerts 2019). Thus, 

the question arises of what determines whether young children display behavioral effects in 

sequence learning? For linguistic stimuli (preferentially syllables in the auditory domain; 

Nowak & Baggio, 2017) and less complex regularities (i.e., single transitions between 2 

adjacent items or easy to discriminate foils at test; Forest et al., 2021; Witt et al., 2013; Witt 

& Vinter, 2017), also children of age 5 years have been observed to show learning effects in 
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behavior (for a discussion on the special case of learning linguistic material see Forest et al., 

2023). A very high amount of exposure to sequential regularities, however, does not seem to 

guarantee successful learning reflected in behavior (see also chance performance persisting 

for new items in 8-year-olds in the auditory domain after 5 additional sessions in Ferman & 

Karni, 2010): In our study, we exposed all participants to abundant rule-abiding input 

(exposure to 270 grammatical sequences in total) and provided performance feedback (for 

150 test trials in total) across three sessions of visual AGL in Year 1. Nevertheless, we did 

not observe stable above-chance performance in 5-year-olds. 

A genuine age-dependent improvement in learning capabilities might thus account for 

differing AGL performance in our groups of 5-year-olds and 6-year-olds in Year 1. So, what 

changes in middle childhood to enable more stable behavioral effects in these direct markers 

of sequence learning (Forest et al., 2023) at the age of approximately 6 years? Middle 

childhood has been described as a transition time that constitutes a developmental switch 

point (Del Giudice, 2014), entailing a shift in cognitive and corresponding neural 

mechanisms (Bunge & Zelazo, 2016; M. H. Johnson & Munakata, 2005; Ramscar & Gitcho, 

2007). This more mature cognitive skill set, likely amplified by external events like entering 

(pre)school (Brod et al., 2017), could cause children from 6 years on to be better equipped on 

multiple levels for succeeding in our AGL task: These levels probably include attending to 

relevant task features like legal sequence transitions, suppressing prepotent responses when 

asked to choose the legal sequence out of two presented alternatives, and adapting behavior 

to the performance feedback. Related to such aspects of stronger behavioral control with age, 

underlying neurocognitive mechanisms might already start to shift towards more explicit 

processing and better accessible, more comprehensive representations of environmental 

regularities around age 6 (shift from childhood to adulthood reviewed recently in Conway, 

2020). In support of a respective age trend, Witt and Vinter (2012) characterized single-

session AGL in the same age range as our study (four age groups: 5-, 6-, 7- and 8-year-olds), 

by measuring which type of sequences children built in a self-generation task after exposure 

to visual sequences that adhered to an AG. The authors compared produced sequence patterns 

of all child groups to theoretical profiles predicted from stimulus-specific, mild rule-based 

and strong rule-based accounts of AGL. They report that produced sequence patterns 

reflecting the acquisition of underlying rules (as opposed to such reflecting solely the 

reproduction of surface features) first emerge at age 6 years. Chapter V will point out that this 



 118 

CHAPTER III: DEVELOPMENTAL EFFECTS OF REPEATED STATISTICAL LEARNING 

 

 

   

 

shift in learning around age 6 years has been observed in neighboring domains as well, like 

perceptual learning. 

A change in the predominantly recruited learning mechanisms from earlier childhood 

to adulthood could be reflected in our measures of within-session learning as well: A 

descriptive age-gradient emerged for earlier within-session learning in older children and 

adults (first learning trial from state-space model by Smith et al., 2005 in Year 1: trial 1 in 

Adults 2  < trial 30 in 7-year-olds < trial 41 in 6-year-olds). Adults displayed a steeper 

learning curve than children with evidence for above-chance discrimination performance 

between legal and illegal sequences after as little input as 18 legal sequences for exposure 

(i.e., in their very first test phase after a single learning phase). Janacsek et al. (2012) (further 

elaborated by Daltrozzo & Conway, 2014; Nemeth et al., 2013) suggested that across 

development, an explicit learning or “model-based” system takes over, which relies more on 

attentional resources, behavioral control and prior knowledge than the “model-free” system 

prevailing earlier in childhood. These more supervised learning mechanisms governing 

sequence learning in adults could be reflected in their quick acquisition rate followed by a 

long asymptote – opposed to children, whose performance increased in a rather linear 

fashion. However, we cannot exclude the possibility that learning in adults would look 

different with more challenging stimulus material that prevents ceiling effects, e.g., a more 

complex AG or longer sequences (> 7 items). Since our main aim was to compare 

meaningful (above chance) trajectories between child groups, we chose AG complexity 

(according to Schiff & Katan, 2014) and the maximum sequence length (similar to Nowak & 

Baggio, 2017; Witt & Vinter, 2012) in a way that promised to be suitable for children of age 

5 to 7 years7. 

4.2. Rule knowledge facilitates relearning performance after a one-year delay 

After the one-year delay, all groups started out at their final level reached in Year 1, 

indicating retained rule knowledge across this extended time period in the groups of 6-year-

olds and adults. This is consistent with previous findings on long-term retention of sequence 

knowledge across two months (Ferman & Karni, 2010) and one year (Smalle, Page, et al., 

                                                 

 

7 All stimulus material and procedures of the current study were piloted in a different sample 

of twenty-seven 5-7-year-olds (mean age 73 months, range 61-85 months, 11 female), to confirm 

successful learning of 3-to-7-item sequences and check that the applied stimulus sets (animal cars 

making up trains, adapted from Rosas et al. (2010), and color segments making up flags, adapted from 

Witt and Vinter (2012) are learned equally well by children of this age. 
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2017) for single auditory rules in older children (8-12 years old). By directly comparing 

children with adults and providing evidence for adult-like retention in children at 6 years of 

age (at first exposure) already, we additionally extend separate investigations of visuomotor 

retention across a one year delay on 9-15-year-old’s (Tóth-Fáber et al., 2021) and adults’ 

(Kóbor et al., 2017) learning. The current study differed from previous studies by measuring 

remaining rule knowledge for quicker and additive relearning after a delay (including re-

exposure to the AG), rather than mere retention. The results nevertheless corroborate findings 

of successful retention in children and adults in this slightly different measure after a long-

term delay, when being re-exposed to the familiar sequence rules.   

Despite failing to perform above-chance in all three sessions of Year 1, the group of 

5-year-olds improved across three more learning sessions after the 12-month delay (Session 4 

to 6 in Year 2) to the same extent as the groups of 6-year-olds and adults. We will discuss 

possible maturational influences on these relearning effects in children later (see Long-term 

benefits from prior learning persist in children after controlling for unspecific maturational 

effects). First, this finding of age-invariant relearning rates adds to available literature on 

retention by characterizing how previous rule knowledge is used in multiple additional 

sessions after a long-term delay, instead of in a single follow-up (Ferman & Karni, 2010, 

2014; Kóbor et al., 2017; Smalle, Page, et al., 2017; Tóth-Fáber, Janacsek, & Németh, 2021). 

We find that, on a session level, all age groups showed (additional) performance gains from 

three more learning sessions in Year 2. This relearning lead to better rule knowledge in the 

end of this second set of sessions as compared to each group’s final performance level in 

Year 1. This corroborates the literature on age-independent retention up to one year in 

auditory (Ferman & Karni, 2010; Smalle, Page, et al., 2017) und visuo-motor (Kóbor et al., 

2017; Tóth-Fáber, Janacsek, & Németh, 2021) sequence learning for children age 8-15 years 

and adults, as mentioned above. Adding evidence from our multi-session relearning measure 

to these reported retention effects, our results suggest that already children at age 7 years (6-

year-olds in Year 2) are able to draw on their rule knowledge acquired several months ago 

and use it for further learning instances with adult-like efficiency. How this finding informs 

neurocognitive models of sequence learning and plasticity processes, which might underly 

the observed behavior, will be discussed in Chapter V. One limitation for this child-adult 

comparison, however, are very high performance levels in adults, who might have improved 

to a greater degree in a more difficult task (as discussed in detail above). 
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Despite adult-like relearning rates of sequential regularities in all our age groups on a 

session level, older age seemed to drive earlier within-session relearning. This was reflected 

in relearning modeled on a trial basis after the delay, showing that performance in older 

children and adults numerically exceeded the chance level at an earlier timepoint in the first 

session of Year 2 (first learning trial from state-space model by Smith et al., 2005 in Year 2: 

trial 1 in 7-year-olds & Adults 2  < trial 6 in 6-year-olds < trial 12 in 5-year-olds). From age 8 

years (7-year-olds in Year 2) on, however, children displayed these within-session relearning 

effects from trial-based modeling as early as adults, i.e., in the very first test trial after a 

single learning phase with exposure to only 18 grammatical sequences. These findings imply 

that a shift towards more explicit learning mechanisms across development as discussed 

above (Conway, 2020; Daltrozzo & Conway, 2014; Janacsek et al., 2012; Nemeth et al., 

2013) does not only affect the acquisition of sequential regularities at a single encounter. 

Additionally, this shift might result in better access to and retrieval of previously acquired 

representations of such regularities across an extended time period. Relatedly, older children 

and adults might consolidate their (previous) learning in more explicit memory traces (also 

discussed in H. Liu et al., 2023). Explicit memory traces have been found to become more 

abstract with time and more malleable to later learning than implicit memory traces (H. Liu et 

al., 2023), possibly putting older children and adults at an advantage in our multi-session 

setting with complex underlying sequence rules. 

Interpreting age differences in within-session learning effects here warrants caution, 

however, given that modeling results only varied slightly in the investigated age groups (1st 

learning trial in Year 2 identified after the first learning phase for 6-year-olds, 7-year-olds & 

Adults 2; for 5-year-olds after the second learning phase) and age differences therein were 

not statistically tested.  

4.3. Long-term benefits from prior learning persist in children after controlling for 

unspecific maturational effects  

Since children grew one year older over the course of our study, we wondered to what 

extent their matured cognitive skill set relative to their prior experience with the AGL task 

before the delay benefitted task performance in Year 2. Addressing this question, a contrast 

of 5-year-olds and 6-year-olds in Year 2 with naïve children of the same age provides first 

support in this age range for a genuine effect of prior learning on task performance after the 

one-year delay, after controlling for general maturation. The effect of prior learning was 

expressed on a session level in the group of 6-year-olds, in that they applied sequence rules 
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better in the initial session of Year 2 (Session 4)8 and displayed overall higher levels of rule 

knowledge in the first and last session of Year 2 (pooled performance of Session 4 & 6), both 

compared to age-matched controls. This experience-dependent benefit became even more 

clear from modeling performance on a trial basis (state-space model by Smith et al., 2005), 

which implied that the groups of 5-year-olds and 6-year-olds in Year 2 performed above 

chance more than two task blocks earlier compared to children of the same age, who had not 

been exposed to the AGL task one year before (see Table 1). Strikingly, earlier relearning in 

Year 2 was reflected in this within-session measure for both child groups – including the 

group of 5-year-olds, who had failed to show any learning effects in Year 1. Given their 

chance performance as a group in all three sessions of Year 1, it seems surprising that our 

youngest age group was able to draw on their previous exposure to visual regularities when 

reencountering the same task one year later. 

One concept that tries to capture this phenomenon of relearning advantages are 

“savings” from previous experiences (less time or effort needed at relearning due to prior 

learning of the same material; Ebbinghaus, 1880). Hübener and Bonhoeffer (2014) argue that 

prior learning leads to enhanced plasticity, with an underlying infrastructure that might stay 

temporarily dormant or “hidden” until being re-exposed to the same learning material. Older 

studies on behavioral savings from other task domains reported different age trends for 

children in the age range of the present study vs. adults: Livosky and Sugar (1992) observed 

the greatest advantage in 3-year-olds (> 5-year-olds > young adults) in learning familiar 

relative to new picture pairs after two weeks’ time. Parkin and Streete (1988) found 

comparable relearning benefits for 3-year-olds, 5-year-olds, 7-year-olds and adults in a 

recognition task with fragmented pictures after one-hour and after a two-week delay. Our 

results extend these findings by showing that behavioral savings emerge across extended time 

periods (up to one year) in visual sequence learning of adults and children of age 5 and 6 

years. Savings from prior learning in our group of 5-year-olds furthermore stress that prior 

learning does not need to be reflected in behavior in order to leave memory traces that can be 

reactivated at a later time, supporting behavioral advantages in the long run (for possible 

mechanisms of structural plasticity underlying this relearning behavior, see Hofer & 

                                                 

 

8 However, this performance advantage did not remain statistically significant, when analyzed 

without the first task block to account for 6-year-olds greater general task familiarity as compared to 

controls. 
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Bonhoeffer, 2010; Xu et al., 2009; Yang et al., 2009, discussed in Chapter V). Our data, 

however, provide no evidence for more effective savings from an earlier developmental 

timing of learning experiences (first exposure with age 5 years vs. 6 years of age). This 

corroborates what Parkin and Streete (1988) observed for 3-year-olds, 5-year-olds, 7-year-

olds and adults across shorter timescales in a different task. 

I will discuss later, how savings in learning observed in the present study might speak 

to underlying neural adaptations in response to prior experiences, and to the related concept 

of sensitive periods in development (Chapter V). 

4.4. Rule knowledge generalizes to new surface features after a one-year delay 

independent of age 

Contrary to our expectations based on stronger (over)generalization early in 

development (Keresztes et al., 2018; Marcus et al., 1992; Ngo et al., 2018), all age groups of 

the present study (5-year-olds, 6-year-olds, Adults 2 , and, additionally included 7-year-olds 

from Project 1) transferred the learned rule knowledge to the same degree to a new stimulus 

set at the end of the second set of sessions in Year 2. 

This is in line with single-session studies, which reported that adults and children 

aged 3-6 years (Nowak & Baggio, 2017) or 6-9 years (Jung et al., 2020) respectively, 

generalized learned regularities to new items in the auditory domain (Nowak & Baggio, 

2017) and to new instances of underlying categories in the visual domain (Jung et al., 2020). 

Our findings challenge the proposition that children younger than 12 years of age can only 

apply a learned rule to new items in a multi-session setting, if this rule has been explicitly 

instructed in the beginning (Ferman & Karni, 2010, 2014). Instead, we show that two sets of 

three sessions each, spread out across a one-year delay, suffice to subsequently enable 

successful transfer of complex visual regularities. This was demonstrated in children who 

were as young as 5 years old at first exposure and without explicitly verbalizing the used 

sequence rules at any time throughout the study. 

Hence, one might wonder which conditions facilitate the generalization of regularities 

across multiple learning instances in (young) children? Several authors propose that offline 

periods in general promote the extraction and representation of underlying regularities by 

replay-induced strengthening of memory representations (Lerner & Gluck, 2019; Liu et al., 

2019; Wilhelm et al., 2012). They argue that this mechanism might underlie transfer effects 

in learning at the level of cortical circuits. This proposition fits well with the “spacing effect” 

from category and concept learning in children (Vlach, 2014), which has been recently 
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applied to statistical learning (Forest et al., 2023). This approach suggests that forgetting 

which happens between learning experiences supports generalization, as shared features of 

input (in our case, underlying sequential regularities) are reactivated more frequently and, 

consequently, are less likely to be forgotten than specific information in the same input (in 

our case, surface features of stimulus sets; “forgetting-as-abstraction” by Vlach, 2014). 

Young children were shown to have high forgetting rates for sequential input (Bauer et al., 

2000). Therefore they might display stronger abstraction due to forgetting (discussed as 

“fuzzy” representations in Forest et al., 2023). Additionally, young children’s learning (until 

approx. 6 years) in general seems to benefit from resampling the very same information 

repeatedly (Horst, 2013; Hudson Kam & Chang, 2009; Pelz & Kidd, 2020). This 

phenomenon can be related to an early matured (slow) cortical learning system that 

represents experiences based on repeated encounters, as opposed to a fast learning system 

(mediated by the hippocampus), which develops later and is thus less available to young 

learners (Gómez, 2017; Jabès & Nelson, 2015; McClelland et al., 1995; O'Reilly et al., 2014). 

Thus, spreading out several learning opportunities with the same input over an extended time 

period, as we did in our study, could favor subsequent generalization to new input also in 

young children. Additionally, our study design might have aided the formation of explicit 

knowledge about sequence rules, especially in children: children as young as 6 years of age 

(5-year-olds in the end of Year 2) reported the same level of rule knowledge as older children 

and adults (opposed to more explicit rule knowledge in adults vs. children demonstrated by 

Ferman & Karni, 2010; Hickey et al., 2019; Jung et al., 2020; Smalle, Page, et al., 2017). 

Wilhelm et al. (2013) showed that children (8-11 years old) benefitted more than adults from 

one night of sleep in building verbalizable knowledge from their implicit sequence learning 

experience. Becoming aware of underlying sequence rules, in turn, has been proposed to 

drive the consolidation of sequence knowledge in an offline period with sleep (Janacsek & 

Nemeth, 2012).  

We show that in a longitudinal setting that allows for rule acquisition across a total of 

six sessions with the same material before testing transfer, children as young as 5 years at 

first learning successfully applied the acquired visual rules to completely new surface 

features (i.e., an unfamiliar stimulus category). This finding extends generalization effects 

previously reported in development, since prior single-session (Jung et al., 2020; Nowak & 

Baggio, 2017) and multi-session (Ferman & Karni, 2014) studies on sequence learning in 

children so far have only shown successful transfer to new instances of the same underlying 
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category (e.g., unseen pictures of the same animals tested after triplet exposure to specific 

animal pictures in Jung et al., 2020).  

Age-dependent representations of sequential regularities and how they might support 

generalization effects, are discussed as part of Chapter V in the context of broader theories on 

rule transfer. In this context I will furthermore consider timescales of rule generalization, 

from sessions spanning one week vs. one year (see comparable transfer effects in 6-year-olds 

Year 2 [after 6 sessions with stimulus set 1] with the control group of 7-year-olds in Year 1 

[after 3 sessions with sessions with stimulus set 1]). A combined review seems useful, 

because Project 1 also speaks to transfer effects before and after a long-term delay in 7-year-

olds vs. adults. 

4.5. Conclusion  

To conclude, the present study characterized long-term trajectories in visual AGL 

across different age groups (5-year-olds, 6-year-olds & adults), in two sets of sessions 

spanning a 12-month delay. Whilst our findings did not confirm that an earlier developmental 

timing of several AGL instances results in better learning outcomes in the long run, they 

show that: (1) Children from 6 years onwards successfully learn complex visual sequence 

rules across several sessions. (2) They use their acquired rule knowledge after a 12-month 

delay for quicker and additive relearning of the same input compared to before the delay and 

(3) for transfer to new but related input, both in an adult-like fashion. 

Furthermore, the present study has been one of the first attempts to directly test 

maturational effects against long-term effects of prior exposure to environmental regularities 

in children. In doing so, our findings substantiate that prior learning experiences can lead to a 

quicker re-acquisition of sequence rules in relearning after one year. This seemed to be the 

case even for young children with first task exposure at age 5 years, who had lacked to show 

any behavioral learning effects before the long-term delay. The present findings have been 

discussed with regard to developmental changes in learning mechanisms, the concept of 

“savings” from previous learning experiences, and possible factors driving generalization of 

rule knowledge in young children. Broader implications from these findings, informing 

neurocognitive learning models, underlying plasticity processes and sensitive periods in 

development are discussed in Chapter V. How exactly prior learning is represented on a 

neural level and what is necessary for its effects to persist, warrants further investigation. 

Advances in this research field will help to illuminate what mechanisms allow children to 

efficiently acquire skills over a longer developmental time. 
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1. Introduction 

Exploiting reoccurring regularities in the environment has been put forward as an 

underlying mechanism in several learning domains, among them most prominently for 

language acquisition (Erickson & Thiessen, 2015; Romberg & Saffran, 2010). This 

mechanism has been investigated as statistical learning or implicit learning and is referred to 

as sequence learning throughout this dissertation (see Chapter I). Early studies (Gómez, 2002; 

Saffran et al., 1996) mainly focused on the role of sequence learning mechanisms for 

segmenting continuous speech input into words (reviewed in Aslin, 2017). By now, other 

language outcomes like grammar/syntax proficiency and reading skills have been related to 

sequence learning abilities as well (Arciuli & Simpson, 2012; Evans et al., 2009; Kidd, 

2012). This line of research has corroborated a link between sequence learning tasks in 

different modalities and several measures of natural language processing for typically 

developed populations – both with regard to performance correlations (Conway et al., 2007; 

Misyak et al., 2010; Misyak & Christiansen, 2012; Smith et al., 2015) and overlapping neural 

underpinnings (Conway & Pisoni, 2008; Goranskaya et al., 2016; Skosnik et al., 2002). 

Taking this idea one step further, stimulation studies have provided evidence that classical 

“language networks” in fronto-parietal cortex, comprising e.g., Broca’s region (BA 44/45), 

are causally involved in sequence learning performance (Uddén et al., 2008; Uddén et al., 

2017; Vries et al., 2010). Thus, if sequence learning and language functions recruit the same 

neural infrastructure for successful behavior, this suggests shared neurocognitive mechanisms 

and intertwined trajectories across development. 

While most of the above studies investigated adults, sequence learning performance in 

children has been linked to language outcomes as well, especially to emerging literacy: 

Greater phonological awareness in first and second language acquisition, a central component 

of emergent literacy skills, was shown to be associated with better performance in visual 

sequence learning tasks (Bogaerts et al., 2016; Pavlidou & Bogaerts, 2019; Zinszer et al., 

2020). Importantly, this relationship in childhood was argued to extend beyond cross-

sectional assessments. Rather, an impaired ability to extract sequential information, based on 

deficient processing in the underlying procedural memory system, was suggested to cause 

language disorders, such as developmental dyslexia („procedural deficit hypotheses“; 

Nicolson & Fawcett, 2007, 2011; Ullman, 2004; Ullman & Pierpont, 2005; see, however, 

West et al., 2021 for a meta-analysis that questions the causal role of a general deficit in 

procedural memory for language disorders). A meta-analysis quantified the strength of this 
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link by calculating an average weighted effect size of .46 for impaired learning in visual AGL 

tasks in dyslexic samples, as compared to healthy controls (van Witteloostuijn et al., 2017, 

including children and adults).  

Given all of the evidence above, it seems plausible to assume that sequence learning 

is connected to language outcomes in the long run (but: see West et al., 2018 for a critical 

discussion on evidence generated by the „procedural deficit hypotheses“). Bogaerts et al. 

(2016) provided first long-term evidence in children at risk for developing reading difficulties 

and controls, by tracking them in two assessments from first to second grade. They showed 

that sequence learning and reading skills were positively associated across one year in this 

early phase of reading acquisition, with sequence learning performance explaining significant 

variance in reading proficiency even when controlling for individual differences in 

phonological awareness. However, longitudinal assessments looking into this relationship in 

unselected populations are scarce (Arciuli & Torkildsen, 2012). Including typically 

developed samples of both, children and adults, in a multi-session study of sequence learning, 

Smalle, Page, et al. (2017) assessed vocabulary knowledge in a first session of sequence 

learning. They reported that vocabulary knowledge was positively associated with (linguistic) 

sequence learning performance in the same session, and across delays of 4 hours, 1 week, and 

12 months in a group of 8-9-year-old children (r = .30-.40), but not in adults. Ferman and 

Karni (2010) demonstrated that phonological aspects of a sequence learning task with 

syllables are acquired by both children age 8-12 years and adults throughout 15 consecutive 

sessions and retained after a 2-month retention interval. In their study, adults (and 12-year-

old children) were better than 8-year-old children in acquiring these phonological features, 

providing evidence for this link in adults as well. Their findings furthermore suggest that 

prior language knowledge might facilitate (linguistic) sequence learning across several 

sessions. Note that the latter two studies (Ferman & Karni, 2010; Smalle, Page, et al., 2017) 

reversed the direction of the link put forward by clinical research on dyslexia, and found that 

(earlier) language skills contributed to (later) sequence learning outcomes. 

Closely related to the language domain (Ullman, 2004), memory processes have been 

intrinsically implicated in sequence learning (Perruchet, 2019; Pothos, 2007; Thiessen, 2017). 

Thiessen (2017) even put forward that sequence learning can be modelled as a phenomenon 

which is entirely based on memory processes like chunking (reviewed also in Perruchet 

2019), (re)activating, integrating (consistent) and forgetting (interfering) pieces of 

information. He stated that this “extraction and integration” approach to sequence learning 
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means that learning “does not involve explicit computation of statistics, but rather the 

extraction of elements of the input into memory traces, and subsequent integration across 

those memory traces that emphasize consistent information” (Thiessen, 2017, p. 1). From 

equating sequence learning mechanisms with memory processes, declarative memory 

encoding and retrieval skills can be hypothesized to contribute to sequence learning outcomes 

to varying degrees, depending on age. 

 An early matured procedural memory system as opposed to a continuously maturing 

declarative memory system (Finn et al., 2016; Meulemans et al., 1998; Parkin & Streete, 

1988) seems to be mainly recruited for learning in childhood (reviewed in Gualtieri & Finn, 

2022). Due to these developmental constraints, declarative memory skills might be less 

relevant for successful sequence learning in younger age (for a comprehensive discussion on 

memory development and sequence learning, see Forest et al., 2023). In contrast, adults have 

been shown to rely predominantly on their declarative memory system in learning situations 

(Finn et al., 2014; Ullman, 2001) – a reliance that has been successfully manipulated by 

cognitive load and brain stimulation in the context of sequence learning tasks (Ambrus et al., 

2020; Smalle et al., 2022). Based on the above literature, one would predict a stronger 

association between adults’ declarative memory skills and sequence learning performance as 

compared to children. 

On a shorter timescale, working memory has been discussed to at least “modulate or 

gate” (Conway, 2020, p. 279) the learning of sequential regularities, as reviewed recently 

across different task paradigms. Putting the involvement of memory functions to the test, 

studies have manipulated different aspects of working memory and tested consequences for 

sequence learning outcomes. One study of interest investigated several working memory 

characteristics in three experiments with adults, using a speech segmentation paradigm 

(Palmer & Mattys, 2016): They report that a slower presentation rate improved task 

performance and found comparable effects of a visual and an auditory two-back task during 

exposure, which both impeded processing of the auditorily presented speech regularities. 

Hendricks et al. (2013) tested working memory involvement in visual sequence learning, 

using a similar dual-task setting. They aimed to dissociate influences on sequence learning 

from working memory load during exposure vs. during test in adults. In their study, encoding 

of visual regularities was observed even under dual task conditions, while the same 

conditions during test lead to a break down in discrimination performance. However, in a 

variation of their experimental set-up that used new (transfer) stimuli in the test phase, 
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performing another task during encoding impaired test performance in their visual sequence 

task as well. These two studies stress that working memory capacities seem to be involved in 

sequence learning (1) in a domain-general manner at (2) different processing stages, and (3) 

might particularly matter for generalizing encountered regularities to new input. 

Regarding possible developmental differences for this link, a cross-sectional study on 

visual sequence learning in children and adults reported that working memory skills were 

associated with task performance only in adults (r = .30-.40), but not in children age 7-9 

years (Arnon, 2019). The only study to our knowledge that investigated memory involvement 

in a multi-session setting showed similar age differences (Smalle, Page, et al., 2017): 

Working memory capacity assessed at the beginning of the study was associated with 

sequence learning outcomes across up to 12 months only in adults (r = .50-.60), not in 

children age 8-9 years.  

All of the above studies are based on viewing sequence learning abilities as a 

separate, well-defined characteristic of individuals that can be reliably measured and related 

to interindividual differences in language and memory outcomes in a meaningful fashion. In 

support of this notion, extracting sequential regularities has been described as a trait-like 

ability in its unique relationships to various cognitive, academic and personality measures in 

a large sample of adolescents (Kaufman et al., 2010). In the same vein, differences in 

sequence learning performance have been found to explain a unique proportion of behavioral 

variance in language outcomes of children (Bogaerts et al., 2016; Pavlidou & Bogaerts, 2019; 

Zinszer et al., 2020) and adults (Conway et al., 2010; Danner et al., 2017; Kaufman et al., 

2010; Misyak & Christiansen, 2012), even after accounting for differences in other cognitive 

domains like general intelligence, processing speed, or working memory. 

However, low reliabilities of sequence learning measures have been repeatedly 

criticized (Arnon, 2019; Frost et al., 2019; Siegelman et al., 2017; West et al., 2018), which 

lead the respective authors to question how useful it is to relate performance in these tasks to 

interindividual differences in other cognitive domains. Studies have estimated the reliability 

of sequence learning tasks on different levels, both in developmental and adult samples: A 

lack of statistically significant correlations across equivalent tasks in different modalities 

(Arnon, 2019; Pavlidou & Bogaerts, 2019) suggests that sequence learning performance is 

not associated within individuals across the visual, auditory and tactile domain – at least not 

in children. In the following, we will focus on accuracy-based reliability measures in visual 

sequence tasks, as they are of interest for the current study. Split-half or internal reliabilities 
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of these tasks were reported to range from close to zero (r = .04 Zinszer et al., 2020 in 

children) to small/moderate (adults: r = .40 in Danner et al., 2017; Kaufman et al., 2010, 

r = .69-.75 in Farkas et al., 2023; children: r = .40 in Bogaerts et al., 2016; r = .50 in West et 

al., 2018 [see non-verbal Hebb task]; r = .46-.72 in Arnon, 2019) to reasonably high strengths 

(adults: r = .72-.91 in Arnon, 2019:, r = .83-.88 in Siegelman et al., 2017; children: r ≥ .80 in 

Torkildsen et al., 2019; Qi et al., 2019). Available estimates of test-retest reliabilities focus on 

adults and provide evidence for moderate performance correlations of r = .45 (Arnon, 2019) 

to r = .68 (Siegelman et al., 2017) in visual sequence tasks across two to three months (but: 

same test-retest correlation of .01 [n.s.] for 7-9-year-olds in Arnon, 2019). Extending the test-

retest interval to 12 months, a first estimate (r = .52) across this long delay comes from adult 

reaction time data in a visuomotor sequence task (see discussion in (Farkas et al., 2023); but 

see also their critical view on the role of consolidation in test-retest measurements). 

As illustrated, reliability estimates for sequence learning tasks vary widely. Thus, a 

first aim of this exploratory approach in Project 3 was to check the reliability of response 

accuracy in a multi-session AGL task across one year in our combined sample of different 

age groups (5-year-olds, 6-year-olds, 7-year-olds, Adults 1, Adults 2, see Table 1 for study 

design of all groups). To this end, associations between AGL task performance before and 

after a 12-month delay were calculated as a proxy for test-retest reliability of the applied 

AGL task in the study setting of this dissertation (task design for groups of Project 1 & 

Project 2, see Fig. 1 & Fig. 8). Additionally, AGL task performance within each year was 

correlated between the two stimulus sets used, to provide an estimate for parallel test 

reliability in two successive sessions. Both stimulus sets implemented the same underlying 

rule set in an equivalent AGL task, but displayed it with different visual surface features 

(pictures of different stimulus categories). 

The main goal of Project 3 then was to test associations of sequence learning (AGL 

task performance) with memory and language skills of children and adults on different multi-

session timescales in an exploratory manner: This included relationships across one week 

(both assessed within Year 1), across a delay of 12 months (predictive value of cognitive 

skills from Year 1 to AGL in Year 2) and for relearning after the delay (both assessed within 

Year 2).  

Based on the literature reviewed above, we expected better working memory and 

declarative memory retrieval to facilitate performance in our sequence learning task across 

one week and after the one-year delay. Since the sequence task was tailored to the working 
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memory capacities of children 5-8-years, respective associations might emerge in our child 

groups as well, opposed to a previous multi-session study that used stimulus material 

matched to adult memory capacities (Smalle, Page, et al., 2017). For declarative memory 

skills (encoding and retrieval after a short delay), adults were expected to show stronger 

positive associations with AGL performance than children. This hypothesis is based on 

reports in adults relying mainly on the declarative memory system in learning situations. 

Language grammar skills were hypothesized to be positively related to AGL outcomes in all 

age groups, given previous findings on positive associations between language processing 

and sequence learning performance in children and adults. 

All hypotheses were tested in an exploratory manner, keeping in mind the main focus 

of this dissertation was to compare groups with a different developmental timing of several 

AGL instances in their learning outcomes (see Project 1 & Project 2), using a cohort study 

approach. Our study design was consequently optimized for this purpose, resulting in limited 

power to look into interindividual differences in learning and how they relate to other 

cognitive domains. Nevertheless, this chapter aims to provide a first multi-session perspective 

on the link between language and memory skills to visual AGL in children and adults. 
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2. Methods 

2.1. Participants 

In Project 3, we combined data of all available age groups of Project 1 and Project 2 

to look into associations between visual sequence learning performance and cognitive skills. 

This involved 5-year-olds, 6-year-olds, 7-year-olds (5/6/7 years old ± 2 months at Session 1) 

and two adult groups (Adults 1, Adults 2). 

Depending on the data required for each set of analyses (correlations within Year 1 

vs. across one year vs. within Year 2, see Results sections), all age groups with available data 

we considered. Due to slight differences in the study design between these age groups (see 

Table 1), this meant that for some analyses only subgroups of the whole sample could be 

considered. The objective was to optimize statistical power for all associations tested. Within 

this rationale, all datasets with at least 3 out of 5 AGL task blocks per session (inclusion 

criterion for all AGL analyses of the dissertation, see Chapter II) and available psychometric 

scores in the cognitive variables at the timepoint of interest (Session 1 in Year 1 or Session 4 

in Year 2, see section Assessment of memory and language skills) were included. The 

resulting descriptive information (AGL parameters & cognitive scores) are detailed for Year 

1 and Year 2 separately (see Table 2-5), for all respective age groups (see Chapter II & III for 

additional sample characteristics like exact age and session timing). Additionally, sample 

sizes are indicated in the results tables below, which display the correlations per results 

section. 

The groups of 7-year-olds and Adults 1 were comprehensively described in Chapter 

II. For the analyses of the present chapter, we included data of 27 seven-year-olds and 28 

adults for analyses relating sequence learning performance to cognitive assessments in Year 1 

(descriptive data see Table 18 & 19). For predicting AGL performance in Year 2 from 

cognitive scores in Year 1, we included all available AGL data from the home follow-up 

from these groups (descriptive data see Table 20 & 21), entailing 16 seven-year-olds and 20 

Adults 1. 7-year-olds and Adults 1 considered for Year 1 and Year 2 here, correspond to the 

same participants for whom learning trajectories were discussed before in Project 1 (see 

Table 2 & Table 3 of Chapter II for additional sample characteristics like exact age and 

session timing).  

 For the three additional groups investigated in Project 2 (comprehensively described 

in Methods of Chapter III), here we included data of 27 five-year-olds, 28 six-year-olds and 

29 Adults 2 for analyses relating sequence learning performance to cognitive assessments 
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within Year 1 (descriptive data see Table 18 & 19). For predicting AGL performance from 

cognitive scores in Year 1 and analyses within in Year 2, relating sequence (re)learning 

performance after the one-year delay to cognitive assessments, we analyzed available data of 

22 five-year-olds, 25 six-year-olds and 18 adults. These samples correspond to all 

participants for whom learning trajectories were discussed in Project 2, except for 2 

participants per age group, who completed all sessions of Year 2 at home due to ongoing 

COVID-19 health restrictions (n = 2 five-year-olds, 6-year-olds, Adults 2, respectively). For 

those participants, we were not able to collect cognitive assessments in the lab, leading to 

their exclusion for correlational analyses with AGL performance. For single cognitive 

variables and timepoints, not all children completed the respective subtests and thus were 

excluded for the respective correlation (n = 1 six-year-old in Year 1 for Declarative Memory 

and German Grammar I, as indicated in the footnotes of Table 2; n = 2 five-year-olds & n = 2 

six-year-olds in Year 2 for Working Memory, see footnotes respective results tables). 

All procedures for participant compensation and ethics approval were described in 

Chapter II. 

2.2. Material and procedure 

2.2.1. Multi-session visual sequence learning 

Details of the modified AGL task and study design used to measure multi-session 

visual sequence learning are provided in Chapter II. Here, we shortly summarize the relevant 

information for Project 3. 

Seven-year-olds and Adults 1 completed a total of four sessions (Session 1,2, 3, 

Transfer 1) in Year 1 with the visual sequence learning task on separate days over the time of 

approx. one week, and an equivalent set of four additional sessions at home in Year 2 

(Session 4, 5, 6, Transfer 2) after a one-year delay (see study design Table 1). For Project 3, 

we were mainly interested in how AGL parameters (Session 1 to 3, Transfer 1) relate to 

cognitive scores in psychometric measures for language and memory, both assessed within 

Year 1 (see Data analysis). Additionally, for these groups, equivalent AGL performance 

from the home follow-up in Year 2 (Session 4 to 6, Transfer 2) was related to previously 

assessed cognitive skills in Year 1. 

Five-year-olds, 6-year-olds and Adults 2 completed a total of three sessions with the 

visual sequence learning task in Year 1 (Session 1 to 3), and an equivalent of three sessions 

(Session 4 to 6) with a subsequent transfer session (Transfer 2) in Year 2, each set spread out 

over the time of approx. one week (see study design Table 1). Here, we were mainly 
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interested in how AGL parameters in Year 1 (Session 1 to 3) and Year 2 (Session 4 to 6, 

Transfer 2) relate to cognitive scores in psychometric measures for language and memory, as 

assessed within the same year (in Session 1 for Year 1 & Session 4 for Year 2, respectively). 

In addition to this within-year focus, all performance differences from Year 2 (concerning 

Session 4 to 6, Transfer 2) were related to previously assessed cognitive skills in Year 1 (see 

Data analysis). 

The AGL task used for measuring visual sequence learning on a tablet computer is 

described in detail in Chapter II. It entailed 5 task blocks per session, consisting of alternating 

phases of learning (exposure to 18 grammatical sequences each) and test (10 trials of two-

alternative forced choice responses between one grammatical and one ungrammatical 

sequence). This amounted to an AGL task exposure of approx. 25-30 minutes per session. 

The first 3 sessions of each year used a first stimulus set (stimulus set 1), while the last 

session of each year (7-year-olds & Adults 1) or Year 2 (5-year-olds, 6-year-olds and Adults 

2), respectively, employed a second stimulus set (stimulus set 2) to investigate transfer of 

learned AG rules. 

2.2.2. Assessment of memory and language skills 

To assess declarative memory, working memory and German grammar skills, we 

administered equivalent psychometric tests in Session 1 (Year 1) for two groups (7-year-olds 

& Adults 1), and in Session 1 (Year 1) and Session 4 (Year 2) for three groups (5-year-olds, 

6-year-olds, Adults 2), see Table 18-21. 7-year-olds and Adults 1 completed the AGL task in 

Year 2 as a home follow-up, where no cognitive assessments could be administered. 

2.2.2.1. Declarative memory 

Memory skills of encoding and retrieving new information were measured using 

subtests of the “Kaufman Assessment Battery for Children II” (KABC II, subtests “Atlantis” 

(encoding) and “Atlantis – Abruf nach Intervall” (retrieval); adapted German version by 

Melchers & Melchers, 2015) for children and subtests of the “Kaufman-Test zur 

Intelligenzmessung für Jugendliche und Erwachsene“  (K-TIM; subtests “Symbole lernen” 

(encoding) and “Symbole – Abruf nach Intervall”; adapted German version by Melchers, 

Schürmann, & Scholten, 2006) for adults. Participants of all ages had to learn associations 

between words and drawings that had to be retrieved in a surprise cued recall test after a 

delay of 15 to 20 minutes (children) or 20 to 30 minutes (adults), respectively. For adults, the 

task included learning and recalling language-like rules embedded in these associations, like 

using the past tense of verbs for added features in the drawings. Split-half reliabilities of the 
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administered subtests were .91-.97 for children and .97 for adults, as indicated in the 

psychometric manuals. 

2.2.2.2. Working memory 

For assessing working memory capacity, children and adults completed digit span 

tasks, which meant repeating verbally presented digit spans of increasing length. In children, 

this was done by administering the subtest “Zahlen nachsprechen“ from the KABC II 

(Melchers & Melchers, 2015). For adults, the administered working memory subscale of the 

“Wechsler Adult Intelligence Scale“ (WAIS-IV; adapted German version by Petermann, 

2012)  included additional tasks, which asked them to repeat the presented digit spans in 

reverse order or reorder all heard digits according to their chronological order. The 

administered measures were reported to have a split-half reliability .81 for children and 

internal consistency (Cronbach’s α) of .93 for adults, as detailed in the psychometric 

manuals. 

2.2.2.3. German grammar 

Two aspects of German grammar skills were assessed in children and adults, 

involving tasks that tested plural forms for various nouns (German Grammar I) and tasks that 

tested more general grammar rules concerning e.g., syntax and tenses (German Grammar II). 

In children, these tasks were verbally presented and taken from the 

“Sprachstandserhebungstest für Kinder im Alter von 5 und 10 Jahren” (Subscale 8 and 9 of 

the SET 5-10; Petermann, 2018). Their tasks testing general grammar rules increased in 

complexity from 6 to 7 years of age (up to 6 years: judging presented sentences as 

grammatically correct or incorrect; from 7 years onwards: correcting incorrect sentences). 

Adults completed the subtest “Pluralbildung” and the subscale “Grammatik” from the 

“Deutschtest für die Personalauswahl” (D-PA; Rieser & Liepmann, 2014) in a written form 

that included time limits for each task block. Reliability coefficients of the administered 

subtests, taken from the psychometric manuals, were 94-.96 for adults (Cronbach’s α for 

internal consistency & split-half reliabilities) and .71-.84 for children (Cronbach’s α). 

All test scores for children and adults were normalized according to age (and 

additionally according to educational level, operationalized as highest school degree for 

German Grammar II in adults). This was done except for German Grammar I in adults, for 

which norms were not available and for which hence raw scores were analyzed. In addition to 

normalized test scores, we considered the maximum number of digits recalled in the working 

memory task as an additional measure for working memory capacity across all age groups. 
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Table 18 (child groups) and Table 19 (adult groups) show the administered subscales 

of these psychometric tests together with the achieved test scores and sequence learning 

parameters (session differences in the visual AGL task) for all age groups in the final sample 

of Year 1. Table 20 and 21 list the same information for Year 2, entailing sequence learning 

parameters (AGL task) for all age groups and cognitive subtests with achieved scores. 

Cognitive assessments in Year 2 were available for 5-year-olds, 6-year-olds and Adults 2 

only, as described above. 

 

Table 18 

Year 1: Assessed Memory & Grammar Skills, AGL Parameters with Means (SD) in Children 

Cognitive Skill / 

AGL Parameter 

5-Year-Olds 

(n = 27) 

6-Year-Olds 

(n = 29)3 

7-Year-Olds 

(n = 27) 

Declarative Memory Atlantis 

(Encoding)1 

Atlantis Delayed 

(Retrieval)1 

11.07 (3.01) 

 

12.48 (2.29) 

11.75 (3.11) 

 

11.96 (2.41) 

11.67 (2.76) 

 

12.37 (2.39) 

Working Memory Number Recall1 10.93 (2.84) 10.21 (2.73) 10.48 (2.62) 

 Max. Number of 

Digits recalled 

4.11 (.80) 4.38 (.73) 4.67 (.68) 

German Grammar I 

(Plural) 

Subscale 8 

SET2 

53.30 (8.54) 62.00 (9.90) 57.56 (9.66) 

German Grammar II 

(General) 

Subscale 9 

SET2 

56.67 (12.91) 69.50 (12.15) 60.19 (15.90) 

Learning Gains 

AGL 

Session 3 – 

Session 1 

.03 (.14) 13 (.11) .10 (17) 

Transfer Savings 

AGL 

Transfer 1 – 

Session 1 

NA NA .08 (.15) 

Transfer Loss 

AGL 

Transfer 1 – 

Session 3 

NA NA -.02 (.15) 

Note. 1 KABC-II (Melchers & Melchers, 2015): normalized to M±SD of 10±3; 2 SET 5-10 

(Petermann, 2018): normalized to M±SD of 50±10; 2 SET 5-10 (Petermann, 2018): 

normalized to M±SD of 50±10; 3 n = 1 missing value for subtests Atlantis, Atlantis 

Delayed, Subscale 9 SET; AGL: difference in proportion correct of the Artificial Grammar 

Learning Task; NA: not applicable due to study design. 
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Table 19 

Year 1: Assessed Memory & Grammar Skills, AGL Parameters with Means (SD) in Adults 

Cognitive Skill / 

AGL Parameter 
Adults 1 (n = 28) Adults 2 (n = 29) 

Declarative Memory Rebus 

(Encoding)1 

Rebus Delayed 

(Retrieval) 1 

11.71 (2.17) 

 

11.86 (1.53) 

12.07 (2.10) 

 

11.48 (1.82) 

Working Memory Digit Span2 11.11 (2.25) 10.38 (2.54) 

 Max. Number of 

Digits recalled 

6.79 (.96) 6.62 (.90) 

German Grammar I 

(Plural) 

Subtest AR4 

D-PA3 

12.25 (1.11) 12.28 (.96) 

German Grammar II 

(General) 

Subscale AG 

D-PA3 

53.46 (9.16)a 58.62 (25.30)a 

Learning Gains 

AGL 

Session 3 – 

Session 1 

.13 (.10) .12 (10) 

Transfer Savings 

AGL 

Transfer 1 – 

Session 1 

.10 (.13) NA 

Transfer Loss 

AGL 

Transfer 1 – 

Session 3 

-.04 (.07) NA 

Note. 1 K-TIM (Melchers et al., 2006): normalized to M±SD of 10±3; 2 WAIS-IV 

(Petermann, 2012): normalized to M±SD of 10±3; 3 D-PA (Rieser & Liepmann, 2014): 

Subscale AG normalized to M±SD of 50±10, Subtest AR4: no age norms available (raw 

scores); AGL: difference in proportion correct of the Artificial Grammar Learning Task; 

NA: not applicable due to study design. 

a  n = 3 adults with T < 15 (n = 1 Adults 1, n = 2 Adults 2). Result patterns for correlations 

were checked for excluding these participants (see respective Results tables). 
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Table 20 

Year 2: Assessed Memory & Grammar Skills, AGL Parameters with Means (SD) in Children 

Cognitive Skill / 

AGL Parameter 

           5-Year-Olds 

           (n = 22)3 

6-Year-Olds 

(n = 25)3 

7-Year-Olds 

(n = 16) 

Declarative 

Memory  

Atlantis 

(Encoding)1 

Atlantis Delayed 

(Retrieval)1 

11.54 (2.47) 

 

12.58 (2.47) 

11.74 (3.10) 

 

11.96 (2.39) 

 NA 

Working Memory Number Recall1 11.08 (2.93) 10.37 (2.56)  NA 

 Max. Number of 

Digits recalled 

4.65 (.67) 5.09 (.60)  NA 

German Grammar I 

(Plural) 

Subscale 8 

SET2 

53.92 (8.71) 61.67 (9.27)  NA 

German Grammar II 

(General) 

Subscale 9 

SET2 

56.75 (12.11) 68.41 (12.15)  NA 

Retention 

Year 1 to Year2 

AGL 

Session 4 – 

Session 3 

.00 (.13) -.03 (.13)  .02 (.13) 

Learning Gains 

AGL 

Session 6 – 

Session 4 

.12 (.13) .11 (.11)  .09 (.11) 

Transfer Savings 

AGL 

Transfer 2 – 

Session 4 

.06 (.11) .03 (.12)  .02 (.10) 

Transfer Loss 

AGL 

Transfer 2 – 

Session 6 

-.06 (.12) -.08 (.12)  -.06 (.11) 

Note. 1 KABC-II (Melchers & Melchers, 2015): normalized to M±SD of 10±3; 2 SET 5-10 

(Petermann, 2018): normalized to M±SD of 50±10; 3 n = 2 missing values for subtest Number 

Recall per age group; AGL: difference in proportion correct of the Artificial Grammar 

Learning Task; NA: no assessment due to home follow-up. 
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Table 21 

Year 2: Assessed Memory & Grammar Skills, AGL Parameters with Means (SD) in Adults 

Cognitive Skill / 

AGL Parameter 

Adults 1 

(n = 20) 

Adults 2 

(n = 18) 

Declarative Memory  Rebus (Encoding)1 

Rebus Delayed 

(Retrieval)1 

NA 12.30 (2.30) 

 

11.60 (1.82) 

Working Memory Digit Span2 NA 10.80 (2.59) 

 Max. Number of 

Digits recalled 

NA 6.22 (1.00) 

German Grammar I 

(Plural) 

Subtest AR4  

D-PA3 

NA 12.20 (.77) 

German Grammar II 

(General) 

Subscale AG 

D-PA3 

NA 54.61 (7.75) 

Retention 

Year 1 to Year2 

AGL 

Session 4 – 

Session 3 

-.03 (.06) -.03 (.07) 

Learning Gains 

AGL 

Session 6 – 

Session 4 

.02 (.05) .05 (.07) 

Transfer Savings 

AGL 

Transfer 2 – 

Session 4 

.01(.05) .01 (.08) 

Transfer Loss 

AGL 

Transfer 2 – 

Session 6 

-.02 (.05) -.05 (.07) 

Note. 1 K-TIM (Melchers et al., 2006): normalized to M±SD of 10±3; 2 WAIS-IV 

(Petermann, 2012): normalized to M±SD of 10±3; 3 D-PA (Rieser & Liepmann, 2014): 

Subscale AG normalized to M±SD of 50±10, Subtest AR4: no age norms available (raw 

scores); AGL: difference in proportion correct of the Artificial Grammar Learning Task; NA: 

no assessment due to home follow-up. 
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2.3. Data Analysis 

As in the previous chapters, we characterized AGL performance scores as proportion 

of correct test trials: For each session, learning was assessed as the mean performance of the 

total of 50 test trials completed. 

AGL trials with reaction times shorter than 200 ms were disregarded, since we did not 

consider it feasible to successfully process the two sequences within less than this time. This 

exclusion criterion reduced trial numbers for AGL sessions of all age groups in Year 1 by 

0.20 % (a total of 54 excluded trials in 5-year-olds, 6-year-olds & 7-year-olds, with a 

maximum of 16 trials excluded per subject) and for AGL sessions of all age groups in Year 2 

by 0.26 % (a total of 64 excluded trials in 5-year-olds, 6-year-olds, 7-year-olds & Adults 1, 

with a maximum of 12 trials excluded per subject). 

The following AGL session differences were considered as measures for task 

performance to be correlated with cognitive scores, corresponding to the AGL parameters 

reported in Chapter II and Chapter III: 

1. For associations within Year 1, we calculated the following difference scores to 

quantify improvement with stimulus material 1 and transfer across one week to 

stimulus material 2 in the AGL task: 

• Session 3 – Session 1 (Learning Gains) 

• Transfer 1 – Session 1 (Transfer Savings) 

• Transfer 1 – Session 3 (Transfer Loss) 

2. For associations including AGL in Year 2, we calculated equivalent differences to 

quantify improvement with stimulus material 1 and transfer across one week to 

stimulus material 2 in the AGL task. In addition, consolidation in stimulus set 1 

from the last session in Year 1 to the first session in Year 2 was analyzed: 

• Session 4 – Session 3 (Retention Year 1 to Year 2) 

• Session 6 – Session 4 (Learning Gains) 

• Transfer 2 – Session 4 (Transfer Savings) 

• Transfer 2 – Session 6 (Transfer Loss) 

Pearson correlations were calculated and their coefficients are reported as significant 

for two tailed p-values < .05, corrected for multiple comparisons by controlling the false 

discovery rate (FDR, Benjamini & Hochberg, 1995). If scores were not normally distributed 

as assessed by the Shapiro-Wilk Test for bivariate normality, Spearman correlation 

coefficients (rs) were calculated and are reported with FDR-corrected p-values. Multiple 
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comparison corrections were applied per reported age group (within children’s group & adult 

group, detailed in all results tables), within each timescale (separately for associations within 

Year 1, across one year & within Year 2) and there within each AGL performance difference 

(i.e., for all 5 associations of cognitive skills with e.g., Learning Gains AGL in children in 

Year 1, see Table 7 left column). Since this exploratory approach in Project 3 was based on 

rather small sample sizes with limited power for individual differences analyses, we marked 

correlations with an absolute size of | r | ≥ .30 independent of their statistical significance as 

trends. Additionally, we report the Bayes factor (BF, see explanation below) for each 

calculated correlation (see results tables for BFs > 3 & Appendix D for all BFs per 

association).  

Data analyses were performed in the software R (Version 4.1.0; R Core Team, 2021) 

and JASP (Version 0.14.1; JASP Team, 2021), the latter using default priors and reporting 

the BF10. The BF helps evaluating whether the data at hand support the null-hypothesis (H0, 

in this case that the correlation is zero) or the alternative hypothesis (H1). This approach has 

been used in studies with a similar correlational approach with small sample sizes before 

(Pavlidou & Bogaerts, 2019). BF values between 1/3 and 1/10 indicate moderate evidence for 

the H0, while a BF of lower than 1/10 is considered strong evidence for the H0; a BF between 

1 and 1/3 is defined as anecdotal evidence for the H0 (Schönbrodt & Wagenmakers, 2018). 

BF values between 3 and 10 indicate moderate evidence for the H1, while a BF from 10 

onwards is considered as strong evidence for the H1 and a BF between 1 and 3 is defined as 

anecdotal evidence for the H1 (Schönbrodt & Wagenmakers, 2018).  
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3. Results 

3.1. Estimating test-retest and parallel test reliabilities in the present sequence learning 

task 

We estimated two measures for the present visual AGL task across one year to 

evaluate test-retest reliability: Correlations were calculated between session performance 

levels in the first stimulus set (Session 1 ~ Session 4) and the second stimulus set (Transfer 1 

~ Transfer 2; see Table 22) across all age groups with available data for these sessions. 

 

Table 22 

AGL Estimations for Test-Retest and Parallel Test Reliability per Available Age Group 

AGL Reliability Measure 
Whole sample 

(n = 103) 

7-year-olds & Adults 1 

(n indicated below) 

 
Session 4 ~ Session 1 

(Stimulus Set 1) 

Transfer 1 ~ Transfer 2 

(Stimulus Set 2, n = 36) 

Test-Retest Reliability 

(Year 1 ~ Year 2) 
.77** [.60-.84] .79** [.62-.89] 

 
Transfer 2 ~ Session 6 

(Year 2) 

Transfer 1 ~ Session 3 

(Year 1, n = 55) 

Parallel Test Reliability 

(Stimulus Set 1 ~ Stimulus Set 2) 
.84** [.77-.89] .84** [.74-.90] 9 

Note. [...] = 95% Confidence Interval (CI), **= p <.001 & BF10 > 100.  

 

Averaged performance in Session 1 (Year 1) was positively correlated with 

performance in Session 4 (Year 2) for AGL with stimulus set 1 (r = .77, 95% CI = .60-.84, 

n = 103, p < .001, BF10 > 100, see Fig. 17). Additionally, we checked whether test-retest 

performance correlations with stimulus set 1 would hold for the last session in Year 1 

(Session 3) and the first session in Year 2 (Session 4): This correlation was of similar 

magnitude (r = .84, 95% CI =.77-.89, n = 103, p < .001, BF10 > 100). 

In the subsample of 7-year-olds and Adults 1 with available data in two (transfer) 

sessions with stimulus set 2, AGL performance in Transfer 1 (Year 1) correlated with 

                                                 

 

9 A correlation within a subset of n = 36, which corresponds to the sample for Test-Retest 

Reliability in the line above (see Transfer 1 ~ Transfer 2 (Stimulus Set 2)), replicated this correlation 

(Pearson’s r = .77, 95% CI = .59-.87,  p < .001, BF10 > 100). 
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performance in Transfer 2 (Year 2) by r = .79 (95% CI = .62-.89, n = 36, p < .001, BF10 > 

100, see Fig. 17). 

 

Figure 17 

Test-Retest Reliability in the Multi-Session AGL Task for Stimulus Set 1 & 2 

Note. Pearson correlations (within-subject) between proportion correct in the test phase for Session 1 

(Year 1) with Session 4 (Year 2) using stimulus set 1 (A), and for Transfer 1 (Year 1) with Transfer 2 

(Year 2) using stimulus set 2, respectively (B). Both stimulus sets used the same grammar, but 

different picture categories (animals or colors). Dot colors indicate subjects’ age (see legend). Gray 

lines display the linear regression. 

 

As an additional assessment of task reliability in our setting, we correlated AGL 

performance correlations between the two stimulus sets, using the two last Sessions of Year 2 

(Session 6 and Transfer 2, see Table 22). The resulting correlation of r = .84 (95% 

CI = .77-.89 , n = 103, p < .001, BF10 > 100, see Fig. 18) provides a proxy for the parallel test 

reliability between stimulus set 1 and stimulus set 2 in two subsequent sessions (separated by 

2 days on average), which should be less prone to (long-term) consolidation effects and 

additional task exposure between test-retest AGL sessions. This proxy for parallel test 

reliability of our AGL task between stimulus set 1 and stimulus set 2 was replicated in the 

subsample of 7-year-olds and Adults 1 for the equivalent sessions in Year 1 (Session 3 and 

Transfer 1: rs = .84 (95% CI = 74-.90), p < .001, BF10 > 100, see Fig. 18). 

To sum up, performance in our AGL task across one year was consistently correlated 

(r = .77-.84) in a mixed sample of children and adults within the same stimulus sets, 

providing a first estimate of long-term test-retest reliability in this multi-session setting. The 

A B 
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size of these test-retest measures was confirmed by parallel test estimates of the same 

magnitude (r = .77-.84), which emerged for performance across the two stimulus sets with 

the same underlying rule set, assessed in subsequent sessions with a delay of only several 

days. 

Correlations between Year 1 and Year 2 (Session 4 ~ Session 1) for the repeated 

assessment of cognitive skills with psychometric measures in our sample ranged from r = .17 

to r = .89 for raw scores of memory and language assessments (children: .17-.55, 

adults: .27-.89). These values were partly below the reliability coefficients of the test norms 

reported in the psychometric manuals, especially for children, and are listed in detail in 

Appendix D. Respective correlations could only be calculated for groups, who completed two 

psychometric assessments over the course of the study (5-year-olds, 6-year-olds & Adults 2). 

 

Figure 18 

Parallel Test Reliability in the Multi-Session AGL Task in Year 1 & 2 

Note. Pearson correlation (within-subject) between proportion correct in the test phase for Session 6 

(stimulus set 1) with Transfer 2 (stimulus set 2) in Year 2 (A). Spearman correlation for Session 3 

(stimulus set 1) with Transfer 1 (stimulus set 2) (B). Both stimulus sets used the same grammar, but 

different picture categories (animals or colors). Dot colors indicate subjects’ age (see legend). Gray 

lines display the linear regression. 

 

3.2. Are memory and grammar skills in Year 1 associated with multi-session sequence 

learning performance? 

To test for a possible association of memory and language skills assessed in Year 1 

with visual sequence learning, we calculated correlations of AGL task performance with 

these variables on two timescales. This was done (1) within Year 1, relating cognitive scores 

A B 
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assessed in the beginning of the study (Session 1) to multi-session AGL performance across 

one week, and (2) across one year, relating cognitive scores assessed in the beginning of the 

study (Session 1) to multi-session AGL performance after the one year delay, i.e., in Year 2. 

Given the exploratory approach of this chapter, correlations with an absolute size of  

| r | ≥ .30 independent of their statistical significance are reported in all Results sections (with 

BFs included; see also Data Analysis), and will be discussed as trends in the Discussion. 

3.2.1. Associations within Year 1 for cognitive skills and AGL performance 

Within Year 1, we used three AGL task performance scores that quantified 

performance gains across three sessions with stimulus material 1 in all age groups (Session 3 

– Session 1) and transfer effects to stimulus material 2 across one week in 7-year-olds and 

Adults 1 (Transfer Savings: Transfer 1 – Session 1; Transfer Loss: Transfer 1 – Session 3; for 

details Data Analysis). This was done to keep in line with the Project 1 and Project 2 that 

used the same session comparisons to look into age differences in AGL across one week 

(Chapter II & Chapter III).  

Table 23 shows all correlations for these three AGL performance parameters with 

German grammar skills, declarative working memory and working memory scores in Year 1 

(see Appendix D for all Scatterplots & BFs). A higher working memory capacity was 

associated with more improvement across three sessions in the first stimulus set across all age 

groups (longest digit span recalled ~ Session 3 – Session 1; rs = .23, p = .018, BF10 = 7.75). 

Numerically, better working memory skills, assessed as scores standardized for age, 

were also associated with more generalization to the second stimulus set in 7-year-old 

children (Transfer 1 – Session 1; rs = .41, BF10 = 2.79). Additionally, 7-year-olds with better 

German grammar scores (Grammar II, Plural) displayed a more pronounced drop in 

performance in the transfer session compared to the last session with the first stimulus set 

compared to 7-year-olds with lower grammar skills (Transfer 1 – Session 3; rs = -.32, 

BF10 = 1.06): However, these two associations in 7-year-olds did not remain statistically 

significant after correcting for multiple comparisons (both corrected p ≥ .175). Note that for 

5-year-olds, 6-year-olds and Adults 2, associations involving AGL transfer in Year 1 could 

not be evaluated, because these groups were first introduced to the second stimulus set used 

in the transfer session in Year 2, not in Year 1. For Adults 1, none of the associations 

between cognitive skills and AGL performance in Year 1 exceeded a value of |.30| or reached 

statistical significance (all |rs| ≤ .25, all corrected p ≥ .452, all BF10 ≤ .68). 
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Table 23 

Correlations for Memory & Grammar Skills in Year 1 with AGL Performance in Year 1  

 

Learning Gains 

 AGL 

(Session 3 – Session 1) 

Transfer 

Savings AGL 

(Transfer 1 – Session 1) 

Transfer 

Loss AGL 

(Transfer 1 – Session 3) 

Children 

(n = 83) 

Adults 

(n = 57) 

7-year-olds 

(n = 27) 

Adults 1 

(n = 28) 

7-year-olds 

(n = 27) 

Adults 1 

(n = 28) 

German Grammar 

I (Plural) 
.18 -.07 .03 -.19 -.32 .07 

German Grammar II 

(General) 
.21 a .10 b .02 b -.14 b -.06 b -.22 

Declarative 

Memory 

    Encoding 

    Retrieval 

 

 

-.02 a 

-.01 a 

 

 

-.06 

.07 

 

 

.12 

.02 

 

 

-.23 

.01 

 

 

.22 

.06 

 

 

-.25 

-.27 

Working Memory 

    Normalized Score 

 

.13 

 

.08 

 

.41 

 

-.01 

 

-.21 

 

.01 

 
Whole sample 

(n = 140) 

Whole sample 

(n = 55) 

Whole sample 

(n = 55) 

    Max. Number of 

    Digits recalled 
.23* .07 -.18 

Note. AGL = Artificial Grammar Learning Task, italic =  | r | ≥ .30, gray = BF10 ≥ 3. 

* corrected p < .05. 

a missing data of n = 1 six-year-old for these subtests. 

b The result pattern for German Grammar II with AGL performance remained the same 

when excluding n = 3 adults with very low scores in this subscale (T < 15). 

As a control analysis, 5-year-olds were excluded for correlations within Year 1 (i.e., 

associations between Learning Gains & language/memory skills, see Table 23 left column), 

because of their lack of learning effects in these first three sessions. This did not change the 

overall pattern of results. However, in this analysis, working memory capacities were 

positively associated with performance improvement across the first three sessions with the 

original stimulus set (AGL Session 3 – Session 1 ~ Working Memory (normalized score): 

r = .35, p = .035, BF10 = 8.84). This association, now evident for 6- and 7-year-olds, might 

have been occluded by the lack of performance improvements in 5-year-olds across the first 

three sessions. 
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Thus, within Year 1 a role of working memory in multi-session sequence learning 

emerged for the whole sample of all child groups and adults combined: Being able to 

immediately recall a longer digit span was associated to larger AGL performance 

improvements over three sessions. In the same vein, higher working memory capacities 

within the group of 7-year-olds showed a trend for being linked to stronger transfer of rule 

knowledge from stimulus set 1 to the new surface features of stimulus set 2. 

3.2.2. Associations between cognitive skills in Year 1 and AGL performance in Year 2 

To test if previously assessed memory and language skills (Year 1) are associated with 

later visual sequence (re)learning (Year 2), we calculated correlations of cognitive variables 

from the beginning of the study (Session 1 in Year 1) with AGL task performance across the 

one-year delay. For AGL task performance, we used four performance scores that quantified 

consolidation from Year 1 to Year 2 (Session 4 – Session 3), performance gains across three 

more sessions with stimulus material 1 in Year 2 (Session 6 – Session 4), and two transfer 

effects to stimulus material 2 in Year 2 (Transfer Savings: Transfer 2 – Session 4; Transfer 

Loss: Transfer 2 – Session 6; for details see Data Analysis). Again, these performance 

parameters were chosen to keep in line with the previous chapters that compared age groups in 

their long-term AGL (Chapters II & III).  

Table 24 shows all correlations for these four AGL performance parameters in Year 2 

with German grammar skills, declarative working memory and working memory scores in 

Year 1 (see Appendix D for all Scatterplots & BFs). A higher working memory capacity, as 

assessed for all age groups combined (longest digit span recalled), was associated with less 

AGL improvement over another set of three sessions with the first stimulus set (Session 6 – 

Session 4, r  = -.22, BF10 = 3.05)10 and a less pronounced drop in performance from the last 

session with the first stimulus set to the transfer session with stimulus set 2 (Transfer 2 – 

Session 6, r  = .23, BF10 = 2.76). Both associations displayed P-values at the a-priori 

defined .05 level for statistical significance when corrected for multiple comparisons (both 

corrected p = .052). These associations are similar to what has been reported within Year 1, 

but they display the influence of working memory capacity (independent of age norms) 

                                                 

 

10 To follow up on this negative direction of the link, an additional correlation between absolute 

performance levels in Session 4 and working memory was calculated (r = .70, p < .001, BF10 > 100): 

Persons with higher working memory skills in Year 1 started out at a better performance level in Year 

2 (i.e., Session 4) than those with lower working memory. This additional result will be used in the 

discussion to evaluate the negative correlation of working memory with AGL (Session 6 – Session 4). 
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across a longer timescale, i.e., how memory capacity contributed to AGL performance after 

the one-year delay. These associations with working memory (normalized scores) did not 

emerge in separate correlations within the groups of children and adults (see Table 24). 

From separate correlations in children and adults, which considered their cognitive 

scores normalized for age, moderate associations (n.s., but > |.30|) emerged only in the adult 

group11: Their declarative memory retrieval skills in Year 1 showed similar associations to 

AGL performance in Year 2, comparable to the role of working memory capacity in the 

whole sample; better memory retrieval in adults in Year 1 was associated with less AGL 

improvement with the first stimulus set (Session 6 – Session 4; r  = -.40, BF10 = 4.88) and 

preserved performance in Year 2 in the second stimulus set as compared to the first stimulus 

set, i.e., less Transfer Loss (Transfer 2 – Session 6; r  =.35, BF10 = 2.22). On a similar note, 

the less pronounced drop in generalization performance in Year 2, was associated with better 

(general) German grammar skills in Year 1 for the adult group (Transfer 2 – Session 6; r  

=.33, BF10 = 1.60). Despite these consistent trends across different cognitive skills displaying 

moderate associations on a descriptive level, these correlations with AGL performance in 

adults failed to reach statistical significance after correcting for multiple comparisons (both 

corrected p ≥ .050).  

In children, none of the associations between cognitive skills in Year 1 and AGL 

performance in Year 2 exceeded a value of |.30| or reached statistical significance (all |rs| 

≤ .21, all corrected p ≥ .579, all BF10 ≤ .88)12.  

 

  

                                                 

 

11 One adult group completed an additional transfer session in the end of Year 1 (Adults 1, see 

Table 1B). Separately calculating all associations across one year for the two adult groups (cognitive 

skills in Year 1 and AGL in Year 2), yielded slightly different result patterns to those reported for 

both groups combined. These separate associations for adult groups are detailed in Appendix D. 
12 Excluding 7-year-olds for analyses between cognitive skills in Year 1 and AGL in Year 2, 

because of their additional transfer session in the end of Year 1, yielded the same pattern of results.  
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Table 24  

Correlations for Memory & Grammar Skills in Year 1 with AGL Performance in Year 2  

 

  

 

Retention 

Year 1 to Year 2 

AGL 

(Session 4 – 

Session 3) 

Learning  

Gains 

AGL 

(Session 6 – 

Session 4) 

Transfer Savings 

AGL 

(Transfer 2 – 

Session 4) 

Transfer 

Loss 

AGL 

(Transfer 2 – 

Session 6) 

Children 

(n = 63) 

Adults 

(n = 40) 

Children 

(n = 63) 

Adults 

(n = 40) 

Children 

(n = 63) 

Adults 

(n = 40) 

Children 

(n = 63) 

Adults 

(n = 40) 

German Grammar 

I (Plural) 
-.17 .07 .09 -.04 .17 .10 .08 .15 

German Grammar 

II (General) 
-.21 .10 a .01 -.05 a .15 .26 a .11 .33 

Declarative 

Memory 

    Encoding 

    Retrieval 

 

 

-.07 

.08 

 

 

.02 

.15 

 

 

.09 

.04 

 

 

-.08 

-.40ṭ 

 

 

-.01 

-.04 

 

 

.06 

-.07 

 

 

-.12 

-.15 

 

 

.15 

.35 

Working Memory 

    Normalized  

    Score 

 

-.02 

 

.29 

 

.07 

 

-.10 

 

.19 

 

.10 

 

.20 

 

.21 

 
Whole sample 

(n = 103) 

Whole sample 

(n = 103) 

Whole sample 

(n = 103) 

Whole sample 

(n = 103) 

    Max. Number of 

    Digits recalled 
-.07 -.22 ṭ -.09 .23 ṭ 

Note. AGL = Artificial Grammar Learning Task, italic =  | r | ≥ .30, gray  = BF10 ≥ 3. 

ṭ  corrected p = .05. 

a The result pattern for German Grammar II with AGL performance remained the same when 

excluding n = 1 adult with very low scores in this subscale (T < 15). 
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Summarizing correlations from this section on how memory and language skills from 

Year 1 were associated with later visual sequence (re)learning in Year 2, we observed that a 

higher working memory capacity across all age groups was associated with smaller relearning 

gains across three more sessions with stimulus set 1, but with preserved performance from 

stimulus set 1 to stimulus set 2. Similar trends emerged within the adult group, especially for 

better memory retrieval skills in Year 1: Higher abilities to retrieve learned associations 

across a 30-minute delay in the beginning of the study were associated with the same AGL 

performance parameters in Year 2, i.e., with less additional improvement in stimulus set 1, 

but with stronger preserved transfer performance for stimulus set 2. 
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3.3. Are memory and grammar skills in Year 2 associated with multi-session sequence 

(re)learning performance after the delay? 

We additionally tested a possible association of memory and language skills with 

visual sequence (re)learning within Year 2, i.e., when assessing all variables at the same 

timepoint after the one-year delay. For AGL task performance in Year 2, we used the same 

performance scores as in the previous section to quantify consolidation (Session 4 – Session 

3), performance gains (Session 6 – Session 4) and transfer effects (Transfer Savings: Transfer 

2 – Session 4; Transfer Loss: Transfer 2 – Session 6; for details see Data Analysis). As 

pointed out earlier (see Assessment of memory and language skills), analyses within Year 2 

could only be conducted for the three age groups with available psychometric assessments for 

cognitive skills in Year 2 (5-year-olds, 6-year-olds and Adults 2). 

 

Table 25 

Correlations for Memory & Grammar Skills in Year 2 with AGL Performance in Year 2  

 

Consolidation 

Year 1 to Year 2 

AGL 

(Session 4 – 

Session 3) 

Learning  

Gains 

AGL 

(Session 6 – 

Session 4) 

Transfer Savings 

AGL 

(Transfer 2 – 

Session 4) 

Transfer 

Loss 

AGL 

(Transfer 2 – 

Session 6) 

Children 

(n = 43) 

Adults 2 

(n = 18) 

Children 

(n = 43) 

Adults 2 

(n = 18) 

Children 

(n = 43) 

Adults 2 

(n = 18) 

Children 

(n = 43) 

Adults 2 

(n = 18) 

German Grammar 

I (Plural) 
.30 -.11 .01 -.07 -.01 -.20 -.03 .16 

German Grammar 

II (General) 
-.05 .09 .12 .09 .01 .37 -.11 .39 

Declarative Memory 

    Encoding 

    Retrieval 

 

.04 

-.03 

 

.09 

.06 

 

.03 

.07 

 

-.23 

.30 

 

-.06 

.00 

 

.24 

.66* 

 

-.09 

-.07 

 

.68* 

.50 

Working Memory 

    Normalized Score 

 

.03 a 

 

-.14 

 

.08 

 

.04 

 

.09 

 

-.01 

 

.01 

 

.17 

 
Whole sample 

(n = 61) 

Whole sample 

(n = 61) 

Whole sample 

(n = 61) 

Whole sample 

(n = 61) 

    Max. Number of 

    Digits recalled 
-.02 -.14 -.07 .19 

Note. AGL = Artificial Grammar Learning Task, italic =  | r | ≥ .30, gray = BF10 ≥ 3. 

* corrected p < .05. 
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Table 25 shows all correlations for the four AGL performance parameters with 

German grammar skills, declarative working memory and working memory scores in Year 2 

(see Appendix D for all Scatterplots & BFs). 

Within the adult group, statistically significant associations emerged for declarative 

memory skills and AGL transfer effects: Better memory retrieval in Year 2 was associated 

with more Transfer Savings across one week, i.e. a larger performance gain in the transfer 

session using stimulus set 2 (Transfer 2) compared to the first session of relearning with 

stimulus set 1 (Session 4, rs = .66, p = .015, BF10 = 18.10). At the same time, better memory 

encoding in Year 2 was associated with a smaller drop in transfer performance when 

compared to the last relearning session with stimulus set 1 (Transfer Loss: Transfer 2 – 

Session 6, rs = .68, p = .010, BF10 = 25.75). 

This pattern reoccurred in associations for the same AGL performance parameter in 

association to memory retrieval and German grammar skills in adults (r ≥ |.30|, but corrected 

p > .05): Stronger memory retrieval (rs = .50, BF10 = 3.08) and better German grammar skills 

(general, rs = .39, BF10 = 1.16) in Year 2 were correlated with a less pronounced Transfer 

Loss in Year 2 (Transfer 2 – Session 6). Better performance in German grammar tests in Year 

2 furthermore showed a moderate association with gains in transfer performance (Transfer 2), 

as compared to the first session (Session 4) of relearning with stimulus set 1 (Transfer 

Savings; rs = .37, BF10 = 1.36). Apart from these memory and language associations with 

AGL transfer performance in adults, their memory retrieval in Year 2 also seemed to be 

related to an additional performance improvement for stimulus set 1 in relearning of Year 2 

(rs = .30, BF10 = 1.24). All of the above memory and grammar skill associations to AGL 

performance within Year 2 showed consistent trends and moderate effect sizes on a 

descriptive level, but failed to reach statistical significance when corrected for multiple 

comparisons (all corrected p ≥ .088). 

In the children’s group, a trend emerged for better (plural) grammar skills in Year 2 

being positively related to consolidation of AG knowledge across the one-year delay (from 

Session 3 to Session 4; r = .30, BF10 = 1.18). This association did not reach statistical 

significance after correcting for multiple comparisons (corrected p = .260), however. 

AGL associations with working memory in the whole sample, as measured by the 

max. length of correctly recalled digits independent of age, were not found to be statistically 

significant within Year 2 (all |rs| ≤ .19, all corrected p ≥ .602, all BF10 ≤ .77). 
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To sum up, associations in Year 2 emerged predominantly within the adult group, and 

therein mainly for declarative memory being related to two measures of AGL transfer 

performance. Some additional trends showed for German grammar skills, which were 

positively associated with AGL transfer performance in adults and consolidation across one 

year in children. 

4. Discussion 

The aim of Project 3 was to test if multi-session sequence learning in a visual AGL 

task is associated with general memory and language grammar skills in 5-year-olds, 6-year-

olds, 7-year-olds and adults (1) across one week within Year 1, (2) across a one-year delay, 

and (3) across one week after the delay (Year 2) in an exploratory manner. 

Before evaluating these associations, we confirmed that test-retest estimates across 

one year and parallel test estimates between the two presented stimulus sets were reasonably 

high for the used AGL task in our combined sample of children and adults. Both types of 

estimates ranged from r = .77 to r = .84, which is in line with the size of internal reliability 

coefficients reported in previous studies with adult and developmental samples (Farkas et al., 

2023; Qi et al., 2019; Siegelman et al., 2017; Torkildsen et al., 2019). Thus, our AGL 

measures seem suitable for a correlational approach with memory and language outcomes in 

the sample investigated here. 

AGL performance was associated by around r = .20 with working memory capacity 

across one week (see (1)) and one year (see (2)) in our whole sample, and with memory 

encoding and retrieval skills by size r = .50-.70 after the delay (see (3)) in adults. I will in 

turn discuss these exploratory findings and additional trends in our data, including possible 

contributions of German grammar skills to AGL performance in Year 2. 

4.1. The role of working memory in multi-session sequence learning 

In line with our hypotheses, memory skills were consistently associated with sequence 

learning outcomes on all three investigated timescales, i.e. across one week (Year 1), across 

one year (memory in Year 1 to AGL in Year 2), and after the delay (Year 2). 

More specifically, stronger working memory capacities, assessed in Year 1, were 

associated with greater performance improvement in the first stimulus set within Year 1, but 

less additional improvement in the same stimulus set after the 12-month delay, i.e., at 

relearning in Year 2, across all age groups combined. Despite the somewhat counterintuitive 

negative association across one year, i.e., less additional improvement after the delay when 

scoring high in a working memory task at the beginning of the study, a closer look at our data 
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confirmed that working memory facilitated learning: persons with higher working memory 

skills in Year 1 started out at a better performance level in Year 2 (i.e., Session 4) than those 

with lower working memory, probably leaving less room to further improve in the three 

relearning sessions (from Session 4 to Session 6). The above findings on working memory 

substantiate the positive link between working memory and sequence learning reported in 

single-session (Arnon, 2019) and multi-session (Smalle, Page, et al., 2017) studies in healthy 

adults, which was somewhat stronger (r = .30-.60) than the correlations reported here 

(approx. r = .20). We extended previous reports by showing that this link is also observed in 

a sample including children13, using the same working memory measure across all ages (max. 

number of digits immediately recalled). Presentation speed has been shown to influence 

visual sequence learning in children aged 5 to 12 years (Arciuli & Simpson, 2011), 

confirming working memory involvement in this age range. One reason for Smalle, Page, et 

al. (2017) reporting working memory associations in adults, but not in children, could be their 

choice of stimulus material: They matched sequence length to the working memory capacities 

of adults (sequences with 9 items), while we presented sequences of a max. length of seven 

items to enable successful and stable AGL learning effects in (young) children.  

Additionally, higher working memory skills in Year 1 in our whole sample were 

associated with stronger transfer in AGL in Year 2 (r = .23). This positive, albeit statistically 

non-significant (corrected p = .052), link was replicated within the group of 7-year-olds for 

associations within Year 1 (r = .41, corrected p = .175), who had available transfer data with 

stimulus set 2 already in Year 1. These preliminary findings in a multi-session AGL setting 

corroborate findings by Hendricks et al. (2013) in adults, who demonstrated that working 

memory skills are important for generalizing encountered regularities to new input. Based on 

our results, it can be speculated that this link holds across longer timescales of one week and 

even one year, as well as for developmental samples. Hendricks et al. (2013) argued that 

transfer conditions might specifically involve working memory capacities as part of an 

explicit decision process that is based on generating and testing hypotheses of sequence rules 

(hypotheses generation model by Dulany et al., 1984). 

                                                 

 

13 Further corroborating a role of working memory skills in children’s sequence learning, 

working memory capacities (Year 1) were positively associated with performance improvement 

across the first three sessions (Year 1), when excluding 5-year-olds from the sample of children 

(r = .35, see Results). This association in the combined sample of 6- and 7-year-olds might have been 

occluded by the lack of any AGL performance improvement in 5-year-olds across these sessions. 
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Both findings of the current study on working memory contributions in a multi-

session AGL setting speak to the debated role of awareness and attention for sequence 

learning, i.e., whether sequential regularities are extracted and used in an automatic/implicit 

vs. effortful/explicit manner (Conway, 2020; Daltrozzo & Conway, 2014; Nemeth et al., 

2013). Conway (2020), based on an extensive review of experimental studies, put forward 

that the extent to which working memory capacities are involved in sequence learning 

depends on task complexity (higher for complex regularities and transfer conditions), the 

development of underlying learning/memory systems with age (adults > children), the 

measurement of learning outcomes (direct/test phase performance > indirect/online measures 

during exposure), and possibly the timepoint of assessment during prolonged learning (later > 

earlier in the time course of a task). With regard to neurocognitive mechanisms, an implicit 

system underlying the extraction and use of sequential regularities has been suggested to get 

support from optional explicit processes, including working memory and related attentional 

resources, which can be deployed to varying degrees (Batterink et al., 2015). 

Thus, our task setting with several sessions of AGL, which exposed participants to a 

complex set of underlying sequence rules and provided continuous performance feedback in 

multiple test phases per session, possibly elicited the recruitment of additional explicit 

learning mechanisms in all age groups (see Chapters II & III for similar levels of explicit 

knowledge in children and adults, acquired over the course of this study). This might have 

contributed to the role of working memory in sequence learning of a mixed sample with 

children and adults in the current study.  

4.2. Declarative memory skills and the generalization of sequential regularities, 

dependent on age 

In accord with predictions from the literature on a developmental shift towards 

increasingly relying on the declarative memory system for learning in adulthood (Ambrus et 

al., 2020; Gualtieri & Finn, 2022; Poldrack & Packard, 2003; Smalle et al., 2022), AGL 

associations with declarative memory emerged in adults, but not in children (see Table 23-25, 

evidence from Bayes statistics for children is discussed below). The clearest picture emerged 

for better declarative memory skills benefitting rule generalization to a second set of visual 

stimuli, which we observed within Year 2 for both measures of transfer (r = .68: memory 

encoding ~ AGL Transfer Savings; r = .66: memory retrieval ~ AGL Transfer Loss). For one 

transfer marker, this association was replicated as a trend across the one year delay (r = .35: 

memory retrieval Year 1 ~ AGL Transfer Loss Year 2). Additionally, our data showed trends 
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for declarative memory being related to AGL performance improvements in the original, 

first, stimulus set on both timescales (see Table 24 & 25 for a negative trend across one year 

(r = -.40), but a positive trend within Year 2 (r = .30)). 

These exploratory findings on declarative memory skills influencing adults’ 

performance in a multi-session AGL task corroborate studies on different maturational 

trajectories of a late matured declarative memory system, as opposed to an early matured 

procedural memory system (Finn et al., 2016; Meulemans et al., 1998; Parkin & Streete, 

1988). The assumption that children seem to rely less on declarative memory for learning was 

possibly reflected in the lack of associations with declarative memory skills in the present 

study: The BF supports evidence for no association (H0) in children for associations across 

one year (all BFs ≤ .32) and within Year 2 (all BFs ≤ .23), but remains inconclusive for 

associations within Year 1 (all BFs ≤ .77, BFs for single associations see Appendix D). 

West et al. (2018) have argued that the terms explicit/declarative and 

implicit/procedural have been used interchangeably in the learning and memory literature. 

Adopting this view, our findings fit well with the age-dependent shift towards more explicit 

learning, “model-based” mechanisms, which have been put forward for sequence learning 

across development (Conway, 2020; Daltrozzo & Conway, 2014; Janacsek et al., 2012; 

Nemeth et al., 2013): More explicit learning mechanisms in adults, involving top-down 

controlled attention and memory resources, might be reflected in their reliance on declarative 

memory skills for multi-session sequence learning. Children, on the other hand, might have 

relied more strongly on their procedural memory resources, or “model-free”, learning 

processes, as proposed by this shift. We did not include separate psychometric measures to 

index procedural/implicit memory in this study, making it impossible to directly dissociate 

procedural from declarative contributions to learning performance in children. 

Nevertheless, others have shown that declarative memory functions (Finn et al., 2016; 

Gathercole, 1998; Juhász & Németh, 2018; Parkin & Streete, 1988) and underlying 

neurocognitive systems (Brod et al., 2013) mature more slowly than procedural memory 

functions. Adding to this, Friederici et al. (2013) manipulated the recruitment of brain areas 

which usually contribute to explicit (declarative) learning in adults by transcranial direct 

current stimulation of the dorsolateral PFC (BA 9) during the acquisition of statistical 

regularities. This caused adults to engage more implicit learning mechanisms, reflected in 

later event-related potentials indexing associative processes similar to those observed in 
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infants, as opposed to more controlled processes (reflected in an early N400) shown as an 

adult “default” processing mode in the sham condition (Friederici et al., 2013). 

Based on the above studies, observed associations of sequence learning performance 

with declarative memory skills in adults vs. no such associations in children in the current 

study can be speculated to indicate age-dependent changes in the recruitment of 

declarative/explicit vs. procedural/implicit memory systems, which might hold for long-term 

learning settings as well. Neuroimaging evidence is needed to further test the neural 

recruitment of both memory systems at different ages, keeping in mind that children’s brains 

seem to be functionally less specialized compared to adults, e.g., with regard to semantic 

(corresponding to declarative/explicit mechanisms) and syntactic (corresponding to 

procedural/implicit) processing (Brauer & Friederici, 2007). 

Our results furthermore extend the existing literature by providing preliminary 

evidence that declarative memory skills in adults might be involved particularly when 

transferring encountered regularities to new surface features, similar to what has been 

demonstrated for the role of working memory in rule generalization (Hendricks et al., 2013). 

This seems to be in line with research which related generalization, e.g., in category learning, 

to processes of reactivation and retrieval across several instances of learning (Vlach, 2014). 

Providing an explanation for how the brain might implement transfer-related memory 

processes, Y. Liu et al. (2019) measured sequential replay in the human hippocampus with 

MEG during rest. They observed that a previously learned sequence rule was applied to new 

items, as reflected in observed neural activity patterns that followed the learned position rule 

instead of the actually experienced input sequence. It can be speculated that in persons with 

better memory skills, these processes of replay, reactivation and retrieval work more 

efficiently. These speculations about neural underpinnings of the memory associations 

observed here need to be tested by future research.  

In sum, our memory results on adult multi-session AGL are in line with the 

“extraction and integration framework” (Thiessen, 2017), and with accounts on “chunking” 

(Perruchet, 2019; Pothos, 2007), which describe sequence learning as a set of memory 

processes. Adopting such a view on sequence learning has consequences apart from the 

theoretical appreciation, which exact computations might underlie sequence learning 

(Christiansen, 2018; Perruchet & Pacton, 2006). It is furthermore relevant for predicting how 

sleep and forgetting rates influence age differences in retention and relearning of sequential 

regularities, and under which conditions learned regularities might be transferred to new 



 158 

CHAPTER IV: STATISTICAL LEARNING & COGNITIVE SKILLS 

 

 

   

 

situations and input (see Chapter I; reviewed in Forest et al., 2023). These aspects will be 

discussed comprehensively in Chapter V. 

However, all interpretations on the role of declarative memory skills in adult multi-

session AGL, especially those within Year 2, remain rather speculative and need to be 

addressed by future research, given our small sample of 18 adults with available language 

and memory assessments in Year 2. Since relationships between declarative memory skills 

and AGL performance consistently emerged across several timescales and AGL measures, 

we think that they nevertheless hint to a genuine relationship that is worth further 

investigations.  

4.3. Possible contributions of grammar skills to multi-session sequence learning 

With regard to German grammar skills, we report trends in our multi-session study, 

which suggest that grammar skills might benefit sequence relearning in adults and children 

(consistently across all three timescales | r | > .30, but not statistically significant). 

For children, stronger consolidation across one year was associated with better 

grammar skills in Year 2. This fits well with reports of stronger retention of auditory 

sequences across up to 12 months for children, who had initially performed better in a 

different language measure, namely vocabulary knowledge (Smalle, Page, et al., 2017). The 

association across one year reported there is of similar magnitude (r = .37) as the one in our 

study (r  = .30, BF = 1.18). The current study included children as young as age 5 years at the 

beginning of the study (vs. 8-9 year-olds in Smalle, Page, et al., 2017), performing a visual 

AGL task with non-linguistic stimulus material (vs. an auditory immediate recall task with 

syllables in Smalle, Page, et al., 2017). For unselected, i.e., non-clinical, developmental 

samples, there has been a controversy as to whether sequence learning and language are 

reliably related (Conway et al., 2019; Krishnan & Watkins, 2019; West et al., 2018, 2019). 

Smalle, Page, et al. (2017) and the present results stressed that in a multi-session setting, such 

long-term links between retention measures of sequence learning and natural language skills 

can be observed in an unselected sample of children age 5 to 8 years. 

For adults, initially higher grammar skills in Year 1 were numerically associated with 

better generalization, measured as preserved AGL performance from the first to the second 

stimulus set in Year 2. Relatedly, within Year 2, adults who performed better in the German 

grammar assessments, showed stronger rule generalization in both measures of AGL transfer 

performance as well (r = .33 - .39, BF = 1.16 – 1.60). If these findings are replicated, they 

might extend the established link between language skills and sequence learning (Conway et 
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al., 2007; Misyak et al., 2010; Misyak & Christiansen, 2012; Smith et al., 2015) to longer 

timescales, and to measures of rule generalization in unselected populations. 

Note that for 7-year-olds within Year 1, this link between generalization and grammar 

skills showed an opposite trend, with better grammar skills being related to a more 

pronounced drop in performance for the new stimulus set compared to the last session of the 

first stimulus set. These preliminary findings are in line with what Ferman and Karni (2010) 

showed for acquiring phonological aspects of a sequence learning task with syllables: All age 

groups mastered the pronunciation of the new “words”, but 12-year-olds and adults 

outperformed 8-year-old children in their phonological competence for the artificial 

“language” stimuli. Additionally, adults improved to a greater degree than 8-year-old 

children across several sessions in their pronunciation. Thus, (prior) language knowledge 

seems to be involved in sequence learning (as proposed in Forest et al., 2023). Potential age 

differences in the link between language and sequence learning outcomes might speak to the 

role of prior knowledge from natural language experiences in transferring regularities from 

environmental patterns to new input (Hickey et al., 2019; Siegelman et al., 2018). 

Despite failing to reach statistical significance, the above associations in children and 

adults thus point to a potential role of language skills in long-term visual retention and 

transfer of sequential regularities. I think that this long-term perspective on language 

associations provides an important proof-of-concept tool for future research. It allows 

checking if the tasks and study designs researchers came up with actually capture what they 

were designed for: Do the sequence learning tasks successfully model language mechanisms 

and processes which unfold across a more extended time period than a single experimental 

session? This check is necessary to relate findings using these tasks to more general 

developmental concepts like sensitive phases in development, where e.g., the heightened 

sensitivity towards environmental patterns was argued to facilitate early language learning  

(Gualtieri & Finn, 2022; Janacsek et al., 2012; Werker & Hensch, 2015). Possible 

implications from all three dissertation projects for the concept of sensitive phases will be 

discussed in Chapter V. 
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4.4. Limitations and future directions 

While small associations with grammar skills emerged consistently on different 

timescales of AGL in our study setting, they were weaker in size and more restricted to less 

measures of sequence performance for these language outcomes than for memory skills. This 

seems to contradict the tradition of sequence learning tasks, modeling processes like word or 

grammar learning (Erickson & Thiessen, 2015; Romberg & Saffran, 2010), and the 

considerable body of literature on natural language processes being involved in sequence 

learning behavior (Conway et al., 2007; Misyak et al., 2010; Misyak & Christiansen, 2012; 

Smith et al., 2015) and neural processing (Conway & Pisoni, 2008; Goranskaya et al., 2016; 

Skosnik et al., 2002). Looking at our choice of cognitive assessments, however, we covered a 

broader range of memory functions (working memory, declarative memory encoding & 

retrieval) compared to grammar as a single language domain (different aspects assessed in 2 

tasks). This was done to deal with limited attentional resources of young children, by 

restricting assessments to those skills that were most strongly hypothesized to contribute to 

learning in the present AGL task. Nevertheless, this choice of assessments might have 

contributed to our pattern of findings. Besides, uncovering associations between grammar 

skills and AGL in the current study, particularly for children, might have been difficult due to 

additional task and sample characteristics: First, we used non-linguistic, visual AGL task 

material which by nature might draw less on language skills than phonological tasks. Domain 

specific vs. general mechanisms in sequence learning (Arnon, 2019; Conway, 2020; Frost et 

al., 2015; Pavlidou & Bogaerts, 2019; Siegelman et al., 2018) and their developmental 

trajectories (Forest et al., 2023; Raviv & Arnon, 2017; Shufaniya & Arnon, 2018) are still 

debated. Consequently, observing (high) associations with verbal language skills might be 

less likely for visual/non-linguistic tasks than for auditory/linguistic tasks, especially in 

developmental samples. Secondly, a large number of children scored very high in our 

grammar assessments (see Scatterplots in Appendix D), limiting variance in these tasks in our 

high-performing sample. Limited variance in one variable, in turn, restricts how strongly 

variables can be correlated (reviewed, e.g., in Carretta & Ree, 2022). 

It is important to keep in mind, however, that memory skills, in particular when 

assessed with verbal measures as in our study, are at least moderately associated (Kaufman et 

al., 2010) with language measures (see West et al., 2018 for a comprehensive model on 

memory and language measures in a large sample of 7-8-year-old children & Kaufman et al., 

2010 for academic language achievement in a large sample of 16-17-year-old students). So, 
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we refrain from pitting respective contributions of memory vs. language skills against each 

other in the current study. The preliminary findings for both domains documented here at 

least speak against a clear distinction for age-dependent contributions of (working) memory 

vs. language skills to sequence learning. This distinction might have been derived from the 

respective correlational patterns reported in Smalle, Page, et al. (2017): Working memory 

capacity was associated with sequence learning outcomes in adults but not in children, while 

language (vocabulary) skills correlated with sequence learning in children but not in adults. 

However, language and memory systems in the brain have been shown to substantially 

overlap (Ullman, 2004), which lead to the declarative/procedural model (Ullman, 2001; 

2004): It proposes shared neurocognitive mechanisms of procedural memory with language 

grammar learning, and of declarative memory with vocabulary/word learning processes, 

respectively. Based on this neurocognitive model and the behavioral evidence in 

developmental samples from above (Kaufman et al., 2010; West et al., 2018), we suspect that 

a well-powered study on individual differences in multi-session sequence learning would 

paint a more nuanced picture for both, memory and language contributions, at different ages. 

These contributions are possibly influenced by the chosen sequence learning task, either 

modeling grammar (e.g., AGL tasks) or word-form (e.g., Hebb learning tasks) learning.  

In general, extrapolating the exploratory results of this chapter warrants caution, as 

our study had limited power to look into individual differences (especially in our small adult 

sample with cognitive assessments in Year 2, see above). Given some methodological 

differences between the age groups included in this study, we checked if our reported result 

patterns would hold when (1) excluding 5-year-olds for analyses within Year 1, because of 

their lack of learning effects in these first three sessions, and when (2) excluding 7-year-olds 

for analyses between cognitive skills in Year 1 and AGL in Year 2, because of their 

additional transfer session in the end of Year 1 (analyses within Year 2 by default excluded 

this age group due to their study design, see Methods). Both control analyses yielded the 

same overall result pattern as the previous analyses. Correlations in adults across one year, 

however, yielded a slightly different result pattern, when calculated for the two groups 

separately compared to when collapsing across these groups, as reported above (cognitive 

skills Year 1 ~ AGL Year 2; Adults 1: additional transfer session in Year 1 [Transfer 1] vs. 

Adults 2: only one transfer session in the end of Year 2 [Transfer 2], see Table 1). These 

separate correlations for the two adult groups can be found in Appendix D (Table D.2).  
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4.5. Conclusion 

To conclude, we report exploratory evidence for memory skills, and to a lower degree 

potentially for language grammar skills, being implicated in multi-session sequence learning 

outcomes. This was shown using a visual AGL task in 5-year-olds, 6-year-olds, 7-year-olds 

and adults, who displayed associations with these cognitive skills across one week, a one-

year delay, and at relearning after the delay. In particular, memory skills were consistently 

associated with sequence learning improvements and rule transfer to a second set of visual 

surface features. These findings highlight how (1) working memory functions across all 

included ages and (2) declarative memory skills in adults influence the long-term extraction 

and use of sequential regularities from the environment. The exploratory findings of this 

study need to be confirmed by future research, but are well in line with the “extraction and 

integration framework” (Thiessen, 2017). This framework views sequence learning as being 

closely related to memory processes like chunking, (re)activating, integrating and retrieving 

pieces of information. 
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The present dissertation investigated how the developmental timing of several 

instances of sequence learning influences learning outcomes in the long run. Three child 

groups (5-year-olds, 6-year-olds, 7-year-olds) and adults learned visual sequences involving 

complex rules in a modified AGL task, across several sessions (see Table 1). This 

longitudinal design spanned a one-year delay between two sets of sessions (see Fig. 1 & Fig. 

8) and tested multi-session learning across one week (Year 1), and multi-session relearning of 

the previously acquired rules with the same stimuli after 12 months (Year 2). Additionally, it 

assessed rule generalization to new visual surface features in a separate session and 

exploratory associations of sequence learning outcomes with memory and language skills. 

The main findings of this dissertation entailed that children from 6 years onwards 

successfully learn complex visual sequence rules across several sessions (see Project 1 & 

Project 2). They use their acquired rule knowledge after a 12-month delay for quicker and 

additive relearning of the same input compared to Year 1, and for transfer to new but related 

input, both in an adult-like fashion. We observed successful transfer in the very last session in 

all age groups. Seven-year-olds and an adult group with the same study design, who both 

completed a transfer session in the end of each year, showed successful transfer already in 

Year 1 (see Project 1). While this study did not confirm that an earlier developmental timing 

of several learning instances results in better outcomes in the long run, it corroborates that 

prior learning results in quicker re-acquisition of sequence rules after a delay when 

controlling for unspecific maturational effects in children (see Project 2). Regarding more 

general cognitive skills involved in multi-session sequence learning, working memory and 

declarative memory encoding/retrieval were consistently associated with AGL task 

performance (see Project 3). These associations emerged across one week, a one-year delay 

and at relearning after the delay. Numerically smaller associations emerged for language 

grammar skills and sequence learning performance, which did not reach statistical 

significance. 

In the following, I will first discuss findings from Year 1 on how children of age 5 to 

7 years and adults compare in their learning outcomes within one session and across several 

subsequent sessions (over one-week’s time), with regard to possible neural adaptations and 

neurocognitive mechanisms underlying the observed behavior. The respective cognitive 

make-up and neural infrastructure available at different points in life are suggested to interact 

with the requirements of a learning situation (e.g., acquiring vs. retaining/relearning 

sequential regularities). Relatedly, age-dependent mechanisms are likely constrained by how 
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rule knowledge is represented in memory (reviewed in Forest et al., 2023), as formed from 

encountering sequential patterns in the environment. Theoretical implications from findings 

on relearning in another set of sessions in Year 2 after the long-term delay will be discussed 

separately below (see Relearning after a long-term delay: Savings in learning, plasticity & 

sensitive phases). Generalization effects in the current study and how they add to the 

literature of learning transfer will be discussed in a separate section as well (see 

Generalization of rule knowledge: mechanisms and timescales).  

1. Mechanisms of multi-session learning in development 

Successful sequence learning of the AG rules was observed in adults and in children 

from age 6 years onwards, i.e., for 6-year-olds and 7-year-olds in both years and for 5-year-

olds in Year 2. Adults outperformed all child groups at any time and displayed a steeper 

learning curve. This effect was replicated in two independent adult groups (Adults 1, Adults 

2). In Year 1 adults showed learning effects at an earlier timepoint, i.e., with less task 

exposure needed, in addition to performing on an overall higher level across all three 

sessions. This behavioral advantage with older age was also observed within childhood, in 

that a state-space model (Smith et al., 2005) identified a numerically earlier timepoint for 

stable above-chance performance in the very first session of Year 1 in 7-year-olds (30th test 

trial) vs. 6-year-olds (41st test trial). From this model, no stable above-chance performance 

was identified for the youngest group of 5-year-olds by the end of Session 3, i.e., after a total 

of 150 test trials and exposure to 270 grammatical sequences. Between the groups of 6-year-

olds, 7-year-olds and adults, however, learning gains across three subsequent sessions in Year 

1were indistinguishable. This suggests adult-like learning efficiency in children as young as 6 

years old for building on acquired rule knowledge in subsequent learning instances across 1 

week. Although, children might need more exposure to rule-abiding input at a younger age to 

successfully acquire these sequence rules in the first place. Additionally, adults and 7-year-

old children in the present study did not differ significantly in their reported levels of explicit 

sequence knowledge after four sessions of learning, i.e. by the end of Year 1. This can be 

seen as indirect evidence that explicit processes contributed to a similar degree to multi-

session AGL performance in both age groups14. 

                                                 

 

14 Note that the groups of 5-year-olds, 6-year-olds, and Adults 2 only completed a single 

assessment of explicit sequence knowledge in the end of Year 2, which will be discussed below (see 

Generalization of rule knowledge: mechanisms and timescales). 
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1.1. Learning-induced plasticity in the cortex and top-down control 

Age-dependent constraints on sequence learning can be expected to play out at least 

on two levels: (1) Bottom-up tuning of perceptual networks and (2) top-down control by 

prefrontal areas (discussed in Conway, 2020). Conway (2020) merged several previous 

theories (Kral & Eggermont, 2007; P. J. Reber, 2013; White et al., 2013) to derive two main 

mechanisms, which he suggested for learning-induced adaptations in the cortex, in response 

to sequential input. (1) Perceptual circuits are gradually tuned to process sequential input 

more efficiently. This allows for the extraction of regularities during exposure and results in 

less neural effort required for rule-following input in the recruited network (i.e., visual 

networks for the visual AGL task investigated here). This mechanism has been elaborated by 

the “plasticity of processing” approach, which was established for implicit learning (P. J. 

Reber, 2013). Learning-induced plasticity, in this view, is incremental and distributed across 

the cortex depending on the task at hand but limited to the recruited network for respective 

task processing. Across development, Conway (2020) proposes that downstream information 

from higher order areas like the PFC increasingly influences the tuning of perceptual areas 

(2). The PFC is able to operate on longer timescales than perceptual areas, i.e., it can cover 

larger temporal receptive windows of input. Consequently, its influence allows for top-down 

control of the input features that are attended to and enables the integration of sequential 

input over time (see also Forest et al., 2023 for developmental considerations on the role of 

the inferior frontal gyrus in sequence learning). 

Within this plasticity framework, the gradual tuning of task-specific visual circuits 

from 6 years onwards might underpin successful learning of complex visual regularities 

(“plasticity of processing”, P. J. Reber, 2013), as observed in the current study. General 

principles of cortical plasticity in sensory networks underlying learning were shown to be 

functional early in life already (McClelland et al., 1995). At the same time, earlier within-

session rule acquisition and overall higher performance accuracy, as observed in older 

children and adults of the present study, can be speculated to reflect age-dependent changes 

in prefrontal control. As top-down regulation and neural substrates mature profoundly in pre-

school and school-age children (reviewed in Bunge & Crone, 2009; Ramscar & Gitcho, 

2007), this might have enabled more effective cortical adaptations in response to sequential 

input in older children and adults of the current study. Given that the group of 5-year-olds in 

Year 1 failed to perform above chance in our AGL task, it could be hypothesized that, to a 

certain extent, prefrontal control guiding learning-induced tuning of perceptual circuits was 
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necessary to enable successful learning behavior in the current task setting. However, at age 5 

years, young children might have been yet unable to exert the required prefrontal control. 

Indeed, Bunge and Zelazo (2016) have proposed that the ability to acquire and use 

increasingly more complex rules across childhood mirrors the maturational trajectory of 

specific PFC subregions: An early matured orbitofrontal cortex might enable young children 

to acquire simple associations between stimulus-response patterns, while successfully using 

higher-order rules might require a more mature (rostro)lateral PFC, which was shown to 

develop more slowly. Given the complex nature of the AG rule set in the current study, 

protracted PFC development, especially in lateral subregions (BA 9,10, 44-47; Bunge & 

Zelazo, 2016), and their role in rule learning might have contributed to the observed age 

pattern in learning behavior. In addition to these maturational effects, increased brain 

activation in regions of cognitive control has been reported to result from one year of 

schooling by tracking 5-year-olds who entered vs. such who did not enter first grade during 

that time (Brod et al., 2017). Thus, changes in prefrontal control due to maturation (children 

simply growing older) likely interacted with neural changes induced by environmental 

demands (e.g., children entering school) to first give rise to successful rule acquisition 

(around age 6), and then to better overall rule application with increasing age in our multi-

session sequence task. 

1.2. Age-differences in sequence learning: The implicit vs. explicit model  

One influential model of sequence learning in development has put forward that the 

balance of implicit vs. explicit mechanisms recruited in learning situations shifts towards a 

more explicit learning mode (Conway, 2020; Daltrozzo & Conway, 2014; Janacsek & 

Nemeth, 2012; Nemeth et al., 2013), possibly around the age of 12 years (Janacsek et al., 

2012; Nemeth et al., 2013). This shift was argued to reflect the maturational timeline of brain 

regions that underly more cognitively controlled, goal-directed learning, in particular with 

regard to the interplay of the hippocampus and the PFC (Janacsek et al., 2012). As they 

mature, these regions were suggested to increasingly provide internal models as 

interpretations of encountered events (“model-based” or supervised learning mode), taking 

over from a basic pattern “extraction” system that involves the striatum and basal ganglia 

(“model-free” or unsupervised learning mode; Janacsek et al., 2012; Nemeth et al., 2013). 

Driven by the latter brain regions which mature early, the implicit learning mode is thought to 

prevail at a younger age. Relying more on this implicit system, as (younger) children seem to 

do naturally, in turn was proposed to facilitate learning outcomes in certain situations. This 
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early advantage was especially observed in contexts where less attentional control was 

beneficial for learning (e.g., picking up task-irrelevant information see Tandoc et al., 2022), 

and for indirect learning markers, like an implicit tracking of regularities “online” (Janacsek 

et al., 2012; Nemeth et al., 2013; Smalle, Page, et al., 2017).  

The current study is not suited to evaluate how these two systems were recruited on 

the neural level. Yet, the main model proposition of a more implicit extraction of sequential 

regularities early in development that results in better learning outcomes than in adulthood, 

could not be confirmed in the present sample of children age 5 to 7 years and adults.15 

Thomas et al. (2004) showed that recruited brain circuits, comprising fronto-striatal networks, 

substantially overlap in adults and 7-11-year-old children during implicit tracking (finger-

tapping) of a visuomotor sequence. Despite some activation differences in the hippocampus 

and motor areas between age groups, recruitment of these “implicit” networks during an 

implicit learning situation enabled better learning performance in adults as compared to 

children. Friederici et al. (2013) directly manipulated the recruitment of implicit vs. explicit 

mechanisms during sequential language learning in adults. They applied inhibitory 

stimulation over the dorsolateral PFC (BA 9), which resulted in implicit neurocognitive 

mechanisms as indexed by infant-like ERPs at test. However, adults who showed implicit 

mechanisms performed equally well at test, after learning sequential regularities from 

language input as compared to when using their “default” explicit processing mode in the 

sham condition (see, however, Smalle, Panouilleres, et al., 2017 ; Smalle et al., 2022). This 

challenges the notion that implicit learning mechanisms, which are taken to prevail 

“naturally” in younger learners, are only available early in life to support successful, or even 

superior, extraction of regularities and application of sequence knowledge. These 

observations are corroborated by H. Liu et al. (2023), who showed that implicit and explicit 

memory traces emerge simultaneously in adult sequence learning (see also Batterink et al., 

2015; Conway, 2020), and can be dissociated by using indirect (implicit) vs. direct (explicit) 

learning markers. This implies that implicit vs. explicit processes, resulting in respective 

representations of sequence knowledge, are not employed in an either-or-fashion that is 

solely determined by development. Rather, an implicit learning advantage early in 

                                                 

 

15 However, rule awareness was reported at a later timepoint during the study by young vs. 

older learners, see Chapter III. AGL task associations with declarative memory skills emerged only in 

adults, see Chapter IV. Both findings are in line with a developmental shift towards more explicit 

learning mechanisms, which has been discussed in the respective chapters. 
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development can be taken to mean broader input to young learners (put forward by Forest et 

al., 2023), which does not necessarily lead to better learning outcomes. Age-dependent 

constraints of the learner furthermore interact with situational demands, with an option for 

deploying explicit mechanisms as an additional resource (Batterink et al., 2015, reviewed in 

Conway, 2020). 

Adopting the view that we mainly tapped explicit processes and representations with 

our direct learning marker, a post-test after exposure (as proposed by Forest et al., 2023; H. 

Liu et al., 2023), our findings of successful learning from 6 years onwards underscore the role 

of external factors for eliciting explicit learning mechanisms. These factors likely included 

rather complex regularities (multiple sequence rules defined by an AG, including non-

adjacent dependencies), a high amount of exposure to regularities, and performance feedback 

at test when applying sequence knowledge (based on study features influencing the role of 

attention & working memory as reviewed in Conway, 2020; discussed before in Chapter IV). 

In such learning situations, explicit neurocognitive mechanisms might to some extent be 

already available in early to middle childhood (see, e.g., performance associations with 

working memory in Chapter IV). As demonstrated in our study, this could be the case for 

children as young as age 6 years, which is a lot earlier than the age around 12 years that was 

proposed for a “natural” developmental shift to more explicit mechanisms by Nemeth et al. 

(2013). Using this idea of promoting explicit learning mechanisms in children, studies have 

started to look into intervention techniques along this implicit-explicit dimension that might 

benefit e.g., specific language outcomes in clinical populations (see Baron & Arbel, 2022 for 

a framework in developmental language disorders). While previous literature has mainly 

stressed the advantages of an implicit learning mode for extracting regularities in situations 

when a broad attention focus is beneficial (e.g., for learning task-irrelevant information; 

Rohlf et al., 2017; Tandoc et al., 2022), explicit learning mechanisms might favor other 

aspects of learning like rule generalization (see, e.g., Ferman & Karni, 2014; H. Liu et al., 

2023). 

1.3. Memory representations: How does the acquisition vs. short-term retention of 

sequence knowledge depend on age? 

The above discussions underscore that a broader perspective is needed when 

evaluating how sequence learning changes across development. This perspective should 

acknowledge that age constrains learning on many different levels that go beyond the 

implicit-explicit framework. For instance, development has been proposed to shape what kind 
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of learning output is generated from being exposed to sequential regularities, i.e. what is 

represented in memory (Forest et al., 2023). Age-dependent rates of forgetting, sleep-

dependent consolidation mechanisms, and processes of memory encoding, integration, and 

retrieval interact to form these representations (discussed in Chapter I based on Forest et al., 

2023). In that respect, the main contribution of the current study to developmental sequence 

learning models lies in extending the investigated timescale to several sessions, assessed in 

early to middle childhood (3 groups of children age 5, 6, and 7 years). The present finding of 

age-invariant learning rates across subsequent sessions over one week aligns well with 

previous work on retained sequence knowledge across short delays (Tóth-Fáber et al., 2023; 

reviewed in Janacsek & Nemeth, 2012; Lerner & Gluck, 2019; discussed in Chapters II & 

III). This work has established that children (from age 6 years onwards) retain sequence 

knowledge across several hours to several days (Tóth-Fáber et al., 2023; Juhász & Németh, 

2018; Savion-Lemieux et al., 2009 Ferman & Karni, 2010; Smalle, Page, et al., 2017). 

Evaluating how consolidation rates change depend on age yielded mixed results, but studies 

with a similar study design as ours (several sessions, a task which included non-deterministic 

rules & task feedback; Ferman & Karni, 2010, 2014), or a comprehensive approach with 

large samples and results supported by Bayes statistics (Tóth-Fáber et al., 2023), respectively, 

report that this knowledge is consolidated equally well in children age 7 years and older and 

adults across such short time periods. 

Our study shows that memory traces of acquired complex rule knowledge are used 

successfully in subsequent encounters with the same input from 6 years of age onwards. In 

that respect, it seems vital to dissociate age-dependent capabilities to acquire sequence rules 

from capabilities to successfully tap existing representations, formed during acquisition (i.e., 

consolidation & retention). At acquisition, encountered regularities are extracted and encoded 

into memory, forming initially fragile representations (Walker, 2005). Consolidation then 

stabilizes these representations in an offline period without practice, storing them into long-

term memory for later retrieval (Walker, 2005). At retrieval, successful retention (i.e., the 

same performance level as before the delay) or even improved performance (i.e., a higher 

performance level as before the delay) is taken to reflect consolidated rule knowledge (Tóth-

Fáber et al., 2023; Walker, 2005). By reporting age-invariant short-term consolidation across 

24 hours, Tóth-Fáber et al. (2023) showed that the developmental timeline established for the 

acquisition of sequence knowledge in a visuomotor task (best before age 12 years Janacsek et 

al., 2012) does not translate into an equivalent timeline for age-dependent retention (age-
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invariant from 7-76 years of age), using the very same task. This implies that age constraints 

play out differently for learning on different timescales. 

A similar dissociation was found in clinical populations with a diagnosis of Dyslexia 

(Bogaerts et al., 2015) and Tourette syndrome (Tóth-Fáber, Tárnok, et al., 2021), who were 

reported to differ from controls in their acquisition capacities of sequence rules, but not in 

their retention thereof. Intriguingly, adults diagnosed with Dyslexia have been shown to need 

more practice, i.e., repeated learning of sequential input, to acquire sequence rules, and still 

perform worse at immediate recall even when provided with additional practice (Bogaerts et 

al., 2015; using an auditory Hebb learning task). Despite their slower and impaired 

acquisition, however, they retained their acquired sequence knowledge to the same degree as 

control participants across a one-month delay. This finding seems to mirror how age groups 

of the current study compare in their overall learning capacity vs. in their use of sequential 

regularities across several sessions: While children needed more exposure to rule-following 

input to successfully acquire complex sequence rules and overall performed worse in 

applying these rules than adults, they used their acquired rule knowledge in an adult-like 

fashion for subsequent learning. This was observed across short delays of, on average, 2-4 

days between sessions, over one-week’s time (long-term retention and relearning will be 

discussed later in section 3. Relearning after a long-term delay: Savings in learning, 

plasticity & sensitive phases). 

In an attempt to explain why sequence knowledge might be consolidated in an age-

invariant manner despite age-dependent acquisition capacities, opposed neural dynamics 

depending on the learning phase have been suggested. The recruited brain areas were 

proposed to interact differently when acquiring new sequence rules vs. when drawing on the 

acquired rule knowledge for retention, as indexed by a competitive (acquisition) as compared 

to a cooperative (retention) dynamic (Tóth-Fáber et al., 2023). Adopting a sequence learning 

model from the motor domain (Albouy et al., 2013), Tóth-Fáber et al. (2023) suggested that a 

network involving the striatum, the hippocampus and the PFC collaboratively supports 

behavioral retention effects. At the core of this network, the striatum has been shown to be 

involved in memory retrieval (Scimeca & Badre, 2012; see also Chapter IV for correlations 

between memory retrieval and AGL performance in adults) and to mature early in 

development, underpinning sequence learning (Forest et al., 2023). In contrast, during the 

acquisition of sequential regularities, “implicit” striatal learning (supporting the extraction of 

basic probabilities) has been postulated to compete with “explicit” mechanisms based on 
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hippocampus-PFC-interactions (generating internal models of the environment; Conway, 

2020; Janacsek et al., 2012). Tóth-Fáber et al. (2023) argued that their proposed framework 

should hold for learning of temporal sequence rules that comprise non-adjacent dependencies, 

both of which applies to the AGL task used in the current study. While in need of 

neuroimaging evidence for direct support, this proposed dissociation in interactions related to 

memory processes might explain the present result pattern from multi-session sequence 

learning. It might be speculated that a striatum-based, collaborative, retention network is 

available quite early to children (possibly around age 6), allowing for the successful use of 

sequence knowledge across several instances of learning. At the same time, acquisition 

abilities, indexing rather “explicit” mechanisms based on the hippocampus/PFC in our task 

setting, seem to continuously develop across the age range investigated here. 

2. Generalization of rule knowledge: Mechanisms and timescales 

We did not observe greater rule transfer to new visual surface features in (younger) 

children, which had been predicted from stronger (over)generalization early in development. 

Instead, all investigated age groups transferred the learned rule knowledge to a new stimulus 

set to a similar degree on two timescales: This was the case for transfer after the first set of 

three sessions in Year 1 compared between 7-year-olds and Adults 1 (across 1 week, see 

Table 1 & Fig. 1), as well as for transfer after the second set of sessions in Year 2 compared 

between 5-year-olds, 6-year-olds and Adults 2 (across 1 year, see Table 1 & Fig. 8). The two 

groups who completed a transfer session in the end of each year (7-year-olds & Adults 1 from 

Project 1) did not show any additional benefit for the second stimulus set in Year 2 (Transfer 

2, see Table 1) from another set of relearning sessions with the first stimulus set (Session 4-6, 

see Table 1). This generalized use of rule knowledge after the long-term delay was replicated 

in the other age groups (5-year-olds, 6-year-olds and Adults 2 from Project 2), who did not 

perform significantly better in the transfer session in Year 2 (Transfer 2, see Table 1) 

compared to the first session of relearning in Year 2 (Session 4).  

Yet, age might have affected at which point during the study participants became 

aware of sequence rules in the task, reflected in children’s and adults’ responses to open 

questions: A larger number of 6-year-olds and adults compared to 5-year-olds reported to 

have noticed sequence rules in the AGL already at the end of Session 3 in Year 1 (similar to 

the age pattern in Smalle, Page, et al., 2017), which was the first assessment in the study 

(Project 2). Additionally, levels of knowledge about specific sequence rules (legal items in 

salient positions, legal item-item transitions), did not differ significantly between adults and 
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children in this first assessment of Year 1 (Project 1). However, 7-year-olds explicit 

knowledge about specific rules (legal items in salient positions, legal item-item transitions) 

improved from Year 1 to Year 216. Additionally, a positive link between explicit rule 

knowledge and rule transfer in the AGL task emerged in 7-year-olds in Year 1. After the 

delay, in the end of Year 2, levels of reported rule knowledge did not differ between 5-year-

olds, 6-year-olds and Adults 2, or 7-year-olds and Adults 1, respectively. 

These findings on transfer effects and verbalizable rule knowledge have been discussed 

in previous chapters (see Chapter II & III), with regard to possible underlying brain 

mechanisms and study characteristics which might have promoted transfer, like spreading out 

learning instances across time. Summarizing the main aspects from these discussions, 

sequential replay, involving the hippocampus and cortex, could allow for regularities to be 

extracted and the resulting cortical representations to be strengthened (Janacsek & Nemeth, 

2012; Lerner & Gluck, 2019; Y. Liu et al., 2019) – a mechanism that has been closely related 

to sleep-dependent consolidation (Lerner & Gluck, 2019). The consolidation of sequence 

knowledge in an offline period with sleep, in turn, has been proposed to be driven by becoming 

aware of underlying sequence rules (Janacsek & Nemeth, 2012). Additional factors, like 

extensive rule exposure before testing transfer, performance feedback at test, and offline 

periods between sessions promoting “abstraction-by-forgetting” (Vlach, 2014), have been 

proposed to foster generalization, particularly in young populations as observed in the present 

study for children aged 5 years at first exposure (discussed in detail in Chapter III).  

Converging findings of all age groups within the current project, the following 

discussion will focus on how development might influence the transfer of sequential 

regularities by zooming in on mechanisms of generalization. A recent review article by 

Taylor et al. (2021) dissociates two generalization accounts. First, generalization can be 

viewed to result from integrated representations, formed from binding at encoding. Second, 

generalization can be based on “on-the-fly” processes of simultaneously reactivating separate 

representations at retrieval. Based on this distinction, two lines of evidence on (1) age-

dependent properties of memory representations and on (2) age-related changes in memory 

                                                 

 

16 This was not the case for adults in the same study design (Adults 1). Seven-year-olds and 

Adults 1 completed two assessments of explicit knowledge about specific rules, since they 

participated in an additional home follow-up in Year 2 that was originally not planned for. Specific 

knowledge of sequence rules in all other age groups was only assessed in the end of Year 2, to avoid 

inducing rule awareness or any change in strategy for the second set of sessions after the delay. 



 174 

CHAPTER V: GENERAL DISCUSSION 

 

 

   

 

processes (e.g., encoding & retrieval) need to be reconciled (see also Chapter I). 

Additionally, the different timescales of the current project will be considered, which 

included testing generalization across several subsequent sessions over one week, and after 

two sets of sessions spanning a one-year delay (see sessions for all age groups in Table 1). 

Our age-invariant transfer effects in children age 5-7 years and adults did not reflect 

what has been proposed for age-related changes in memory representations formed from 

sequence learning: Forest et al. (2021) suggested that representations become increasingly 

specific in childhood up to roughly age 7, before turning into broader representations that 

include specific and additional higher-order information (discussed as fuzzy, specific and 

broad representations in Forest et al., 2023). Yet, a major difference in terms of the two 

approaches by Taylor et al. (2021) which was summarized above is that Forest et al. (2021) 

investigated generalization on the level of integrated representations (transitional 

probabilities between adjacent items making up triplets, stored in “specific” representations 

& chunks of triplet items grouped independently of their order, stored in “broad” 

representations). Whereas in our task, we did not measure transfer for integrated input that 

had been presented close in time before (see “broad” representations above). Rather, 

underlying sequence rules had to be applied to completely new input at transfer (rule-based 

generalization in Taylor et al., 2021), making it impossible to bind any perceptual features 

from the original input into a joint representation that could be used for generalization 

(similarity-based generalization in Taylor et al., 2021). This means that in our task, transfer 

was likely to always involve “on-the-fly” generalization processes at retrieval (see Taylor et 

al., 2021). In this view, generalization maps onto the “extraction and integration framework” 

(Thiessen, 2017), which models sequence learning as a set of memory processes like 

chunking, (re)activating, integrating and retrieving pieces of information (discussed in 

Chapter IV). In line with this, AGL task performance, including measures of transfer, was 

associated with working memory capacity in the whole sample and with declarative memory 

encoding/retrieval in adults (see Chapter IV).  

Taylor et al. (2021) caution against inferring the specific properties of representations 

from observed generalization behavior, but put forward that generalization mechanisms 

might change over time. First, successful generalization could be based on reactivating 

separate representations simultaneously at retrieval, which then are step-by-step converted 

into a generalized, integrated representation by repeated reactivation. Additionally, cognitive 

control and prior knowledge were proposed to influence how information from several 
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learning experiences are integrated into memory across development (Brod et al., 2013), 

possibly from late (making inferences at retrieval) in middle childhood to early (forming 

integrated representations at encoding) memory stages in adulthood (Shing et al., 2019). 

According to Keresztes et al. (2018), the balance of generalization mechanisms which draw 

on memory encoding and retrieval shifts across childhood: Driven by protracted 

hippocampus development, decreasing processes of pattern completion alongside increasing 

processes of pattern separation lead to more specific encoding and retrieval around the age of 

6 years (elaborated in Chapter I). These age-related changes in memory might have put 

(younger) children at an advantage for generalization based on “on-the-fly” reactivation of 

separate representations at retrieval (Taylor et al., 2021) in the current study. Our observation 

of children age 5 to 7 years and adults transferring learned regularities to the same degree to 

new input, can thus be argued to result from interactions between two age-dependent 

generalization mechanisms, involving (1) integrated representations and (2) on-the-fly 

retrieval processes (see Taylor et al., 2021). As elaborated above, representations and 

memory processes implicated in generalization have been suggested to show opposing 

developmental patterns in the age range investigated here. 

Our task design likely favored abstraction processes at all ages due to two reasons 

(see Taylor et al., 2021 for additional task-related influences on generalization): (1) Periods 

of sleep were interspersed between sessions before testing transfer (Lerner & Gluck, 2019; Y. 

Liu et al., 2019), and (2) direct learning markers were applied that presumably tapped explicit 

memory traces (Forest et al., 2023), which were shown to grow more abstract over time (H. 

Liu et al., 2023). To observe successful, age-invariant transfer from age 7 onwards, three 

subsequent sessions of rule exposure with the same stimulus set across one week seem to 

have sufficed. 17 This can be concluded from 6-year-olds in Year 2 performing on the same 

level as age-matched controls at transfer, despite 6-year-olds’ previous rule exposure in 3 

additional sessions of Year 1 (Project 2), and from no additional transfer gains compared to 

Year 1 in 7-year-olds and Adults 1 after 3 sessions of relearning in Year 2 (Project 3, see also 

discussions on ceiling effects in adults in Chapter II; see Chapter III for considerations on 

what might be required for younger children to show transfer effects). 

                                                 

 

17 For additional evidence in support of this interpretation, see comparisons between the two 

adult groups in their transfer performance (Adults 1: across 1 week & after 3 sessions with stimulus 

set 1, Adults 2: across 1 year & after 6 sessions with stimulus set 1) in Appendix C. 
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To sum up, age seems to constrain a learner’s generalization abilities (termed 

“perceptual and cognitive biases” in Aslin & Newport, 2012), in addition to external factors, 

i.e., influences related to the input properties and learning context. Both types of influences 

likely contributed to the observed transfer effects in the multi-session study on sequence 

learning. Adult-like rule transfer to a completely new stimulus category in children as young 

as 5 years at first exposure, as demonstrated here, emphasizes children’s early abilities to 

flexibly use encountered patterns from the environment. Additionally, the present findings 

assign an important role to situational factors that determine if children generalize what they 

have learned to new input and situations. The current results furthermore stress that 

qualitative over quantitative changes in sequence learning across childhood deserve to be 

investigated more closely (see Forest et al., 2023). 

3. Relearning after a long-term delay: Savings in learning, plasticity & sensitive 

phases 

Our results showed retained rule knowledge in 6-year-olds, 7-year-olds and adults, 

who started out at their final performance level reached one year earlier. Despite failing to 

perform above-chance in all three sessions of Year 1, the group of 5-year-olds improved 

across three more sessions after the 12-month delay (Year 2) to the same degree as older age 

groups (6-year-olds, 7-year-olds, adults). This means that all age groups showed similar 

relearning rates with the original stimulus set further boosting their final performance level in 

Year 2 compared to Year 1. Additionally, relearning benefits emerged as within-session 

learning effects for all groups of children: They needed less (re)exposure to sequence rules to 

perform above chance in Year 2 compared to Year 1. When controlling for unspecific 

(maturational) effects in Year 2 in both child groups with naïve age-matched controls 

available (5-year-olds and 6-year-olds), evidence emerged for a genuine effect of prior 

learning on their performance after a one-year delay. This mainly showed in earlier learning 

effects of 5-year-olds and 6-year-olds in the first session of Year 2 than when being first 

exposed to these sequence rules: Modeling performance on a trial basis, both groups 

exceeded chance performance at least two task blocks earlier than naïve children of the same 

age. Remarkably, the group of 5-year-olds displayed this faster relearning in Year 2 due to 

prior task exposure despite the fact that they had failed to show learning of sequence rules in 

any behavioral markers of Year 1. Nevertheless, these relearning analyses did not confirm 

that an earlier developmental timing of several AGL instances results in better learning 

outcomes in the long run. 
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These findings on relearning in children of age 6 (5-year-olds in Year 2), 7 (6-year-

olds in Year 2), 8 (7-year-olds in Year 2) years and adults offer a new perspective on the 

long-term use of complex sequence rules across development, which to our knowledge has 

not been described for several relearning instances after a long-term delay before. 

Characterizing relearning after a long-term delay at different ages helps to refine the concept 

of lasting memory traces from previous experiences, adding to the understanding of plasticity 

processes and sensitive phases in development. 

3.1. (How) do long-term benefits from prior sequence learning change across 

development? 

By demonstrating facilitated relearning across extended time periods (up to one year), 

this dissertation provides proof-of-concept that adults and children aged 5 to 7 years use 

previously acquired rule knowledge for several additional learning instances in visual 

sequence learning after a long-term delay. Remaining sequence knowledge was tested in this 

study for the first time (1) for children younger than 8 years after a long-term delay, and (2) 

with regard to its role for relearning across another set of multiple sessions instead of a single 

follow-up session. In the group of 5-year-olds, earlier relearning effects observed due to prior 

learning (defined as “savings” in learning by Ebbinghaus, 1880; elaborated in Chapter I) 

demonstrate that encountering environmental patterns might leave stable, yet temporarily 

hidden or dormant memory traces, which can be reactivated later on to support behavioral 

advantages. 

Behavioral savings have been shown already in infants as young as 5 to 6 months, 

after a delay of 48 hours (Cornell, 1979). They showed that pre-exposed infants needed less 

than the minimal presentation time usually required by naïve infants to show subsequent 

picture recognition. Parkin and Streete (1988) compared three groups of children age 3 to 7 

years (3-year-olds, 5-year-olds and 7-year-olds) and adults, all in the same behavioral 

recognition task which was administered after one-hour as well as after a two-week delay. 

They reported comparable, baseline-controlled savings for all age groups in recognizing 

familiar vs. new fragmented pictures, i.e., identifying a picture at a more fragmented stage 

with less perceptual information available (see, however, Parkin & Streete, 1988 for an age 

gradient with greater savings in young age for learning familiar vs. new picture pairs). 

But what could be the underlying neural mechanisms for relearning behavior in the 

long run? Underlying behavioral savings in sensory and motor skills across a delay of several 

months in rodents, structural plasticity on the level of dendritic spines has been reported (Xu 
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et al., 2009; Yang et al., 2009). These skill-specific spines were shown to emerge during the 

acquisition of such new skills and to be later reactivated after a delay, when being exposed to 

the same learning environment. Thus, this mechanism was suggested to enable faster and 

more efficient relearning behavior in trained vs. naïve animals (Xu et al., 2009; Yang et al., 

2009). Hofer and Bonhoeffer (2010) proposed that these findings from non-human animal 

studies might explain relearning observations in humans as well, as first reported by 

Ebbinghaus (1880) for faster and more efficient learning of familiar vs. new syllable lists. 

Temporarily dormant adaptations in the task-specific neural infrastructure can be speculated 

to account for the result pattern observed in the group of 5-year-olds here: The first set of 

learning sessions before the delay can be hypothesized to have caused lasting, possibly 

dendritic, adaptations in the cortical circuits recruited by the sequence learning task. 

Respective neural “preparations” from before delay might have facilitated relearning after the 

delay when the group of 5-year-olds was re-exposed to the same sequential regularities – 

despite the fact that early stages of a learning-induced plasticity in the underlying 

infrastructure had not been captured in their learning behavior before the delay. Spanning a 

shorter time interval of 48 hours, Cornell (1979) reported that 6-month-old infants displayed 

a similar reactivation of seemingly forgotten knowledge, which could not be detected in 

behavior without re-exposure. This corroborates the observed phenomenon on a shorter 

timescale, in this case possibly driven by additional neural mechanisms of plasticity that 

allow for short-term, learning-induced adaptations. These short-term adaptations on a neural 

level are likely rather physiological than structural in nature (see Learning-induced plasticity 

in the cortex and top-down control). 

Age-invariant relearning advantages after a long-term delay reported in the current 

study furthermore extend previous research outside the classical savings literature. Successful 

consolidation of sequential information, reflected in retained or even improved performance 

levels, has been reported in different age groups and across various delays of up to several 

weeks (reviewed in Janacsek & Nemeth, 2012; Lerner & Gluck, 2019). Our finding adds to 

existing literature on retention across 2-12 months by characterizing how previous rule 

knowledge is used in multiple additional sessions after a long-term delay, instead of in a 

single follow-up as in previous studies (Ferman & Karni, 2010, 2014; Kóbor et al., 2017; 

Smalle et al., 2017; Tóth-Fáber et al., 2021, discussed in Chapters II & III). The present study 

corroborates these findings, broadening the investigated age range to children as young as 5 

years, and provides evidence for relearning effects after a one-year delay on two timescales: 
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(1) quicker acquisition within the first session and (2) additive learning leading to higher 

performance levels across another set of several sessions. Even when accounting for very 

high performance levels in adults, possibly limiting a child-adult comparison, age-invariant 

relearning patterns remain informative for children aged 5 to 7 years. Comparable relearning 

rates in this age range seem surprising, given that children’s general cognitive skill set 

matures profoundly during that time (Sameroff & Haith, 1996, discussed in Chapter III). 

Additionally, the oldest children in the current study (7-year-olds) experienced most rule 

exposure before the delay, due to their additional transfer session in Year 1. The youngest 

children (5-year-olds) nevertheless benefitted from relearning in Year 2 to the same degree, 

which shows that they were able to use previously acquired rule knowledge efficiently for 

later learning already at a pre-school age (see also previous discussions on age-invariant 

retention despite age-related acquisition in Memory representations: How does the 

acquisition vs. short-term retention of sequence knowledge depend on age?). 

While the above studies are in line with our observations, they contradict the idea that 

the influence of prior learning might be greatest early in development. Direct support of an 

relearning advantage at a young age comes from two studies. Livosky and Sugar (1992) 

observed greater savings in 3-year-olds (> 5-year-olds > young adults) after two weeks, 

measured as the number of repetitions needed to reach a learning criterion for familiar 

relative to new picture pairs. In a different study with older children (age 8-9 years), long-

term retention of implicit sequence knowledge (i.e., without any explicit task component 

included), was reported to be better than in adults up to a delay of 12 months (Smalle, Page, 

et al., 2017). Children’s performance after the delay even exceed the retention level predicted 

from their previous learning trajectories by a fitted power-law function, while adults’ 

performance declined (Smalle, Page, et al., 2017). Based on these findings, one could expect 

that drawing on prior knowledge is most effective when acquired at a young age. This claim, 

however, has not been systematically investigated to our knowledge – neither with children 

of different ages, nor outside retrospective studies with natural language experiences (e.g., J. 

S. Johnson & Newport, 1989; Scherag et al., 2004; elaborated below in A developmental 

timeline for how prior experiences are used in the long run has to be established to further 

inform sensitive periods). The current study, however, does not provide support for age-

dependent relearning advantages, at least in the investigated age range (5- to 7-year-old 

children and adults) and measured across the limited time of one year. How this finding 
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might inform sensitive phases for extracting and using sequential regularities from the 

environment, will be discussed in the next paragraph. 

3.2. Considering long-term plasticity and sensitive periods underlying learning  

How do the present results on relearning after a long-term delay speak to the concept 

of sensitive phases in development? Sensitive periods have been characterized as times of 

heightened responsiveness to certain types of input that profoundly shape later learning, 

which are underpinned by greater neural plasticity (Knudsen, 2004). Originally, these time 

periods and underlying mechanisms of neural plasticity had been described for circumscribed 

functions, like ocular dominance in vision (reviewed in Röder et al., 2021) or phoneme 

discrimination in speech perception (reviewed in Werker & Hensch, 2015). In a broader 

attempt to explain childhood advantages in certain cognitive outcomes, however, this concept 

has been translated to underlying, rather domain-general mechanisms (Gualtieri & Finn, 

2022; Janacsek et al., 2012). For extracting sequential patterns from the environment, a 

proposed sensitive phase up to age 12 years was mainly based on cross-sectional evidence in 

the single-session acquisition of visuomotor regularities, as reflected in reaction-time 

measures (Janacsek et al., 2012). If early in life, prior exposure to sequential regularities 

mattered to a greater degree for later encounters with the same input as well, one would 

expect a clear pattern of quicker relearning resulting in higher performance levels after a 

long-term delay in younger vs. older age groups. Yet, this more pronounced long-term impact 

of prior learning early in development, which we had also hypothesized to find in the current 

cohort study, failed to show in any of the relearning markers measured here. No influence of 

age emerged, neither in identifying the timepoint of first learning from within-session 

modeling, nor in learning rates across a second set of sessions with the original stimulus set 

(Session 4 to 6), nor in rule transfer to a second stimulus set (discussed separately before, see 

Generalization of rule knowledge: mechanisms and timescales). 

What does this mean in the context of sensitive periods? Perhaps the present cohort 

design was not able to capture a more pronounced long-term impact of prior learning early in 

development, due to a limited time period of delay (one year) tested in a limited age range (3 

child groups of age 5 years, 6 years and 7 years). With regard to longer delays possibly 

needed for an age-at-acquisition-effect to unfold, evidence from natural language experiences 

in populations with a history of emigration or adoption has provided some insight (e.g., J. S. 

Johnson & Newport, 1989; Scherag et al., 2004; elaborated below in A developmental 

timeline for how prior experiences are used in the long run has to be established to further 
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inform sensitive periods). In experimental settings that controlled for the exact onset, amount 

and characteristics of sequential input, however, sequence knowledge in adults was retained 

for delays from one to three years – despite having been acquired already at an adult age 

(Allen & Reber, 1980; M. C. Frank et al., 2012; Romano et al., 2010). We are not aware of 

any similar experimental studies that included different age groups to test how different ages 

of learning onsets influence learning outcomes across extended delays of several years. A 

challenge that remains for future studies addressing this gap in childhood is to control for 

maturational vs. genuine experience-dependent effects after a very long-term delay. The age 

range of 4 to 7 years was chosen for the current study, since it has been identified as a period 

of change in learning mechanisms, e.g., from the memory and generalization literature 

(Keresztes et al., 2017). It has been suggested that neural plasticity reflecting the successful 

(neural) acquisition of (automatic) auditory rules presented in spoken language might be 

restricted to even earlier time windows until four years of age (Mueller et al., 2018). 

However, when testing the consequences for the long-term (behavioral) retention of auditory 

rules in children vs. adults, Smalle, Page, et al. (2017) still found a childhood advantage in 

children as old as 8-9-years vs. adults for an implicitly acquired syllable sequence (see 

discussions in Memory representations: how does the acquisition vs. short-term retention of 

sequence knowledge depend on age?). This challenges the proposition that the children 

chosen for the current study (age 5 to 7 years) were simply too old to display a childhood 

advantage over adults at relearning. 

A methodological limitation of the current study that has been discussed before 

(Chapters II & III), are very high performance levels in adults from Session 2 in Year 1 

onwards. For uncovering child-adult differences at relearning, however, this resulted in 

“more room to improve” (Juhasz et al., 2019) for children vs. adults in Year 2 (and for 

younger compared to older children, respectively). Nevertheless, children did not show 

higher relearning rates than adults.18 Thus, it is unlikely that ceiling effects in adult 

performance occluded age differences in relearning that might have supported a sensitive 

period account of sequence learning. In contrast, this methodological constraint should have 

increased the likelihood of finding a childhood advantage in relearning, at least as reflected in 

                                                 

 

18 One might argue, however, that a loss in knowledge across one year from the last session in 

Year 1 to the first session in Year 2 might have been less detectable in adults, due to their 

performance at ceiling in the end of Year 1.  
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steeper relearning curves across the second set of sessions in Year 2. This notwithstanding, 

the observed comparable performance gain in all groups of children across the second set of 

sessions after the delay demonstrates an impressive relearning capability already at a young 

age. Given that the applied AGL task was more difficult for younger children than for older 

children and adults, as reflected in 5-year-olds performing at chance in Year 1 despite 

extensive rule exposure and task practice, their behavior at relearning can be taken as 

evidence for a very effective use of prior sequence knowledge.  

3.2.1. A developmental timeline for how prior experiences are used in the long run has to 

be established to further inform sensitive periods 

It is also possible that the current findings point to theoretical aspects of sensitive 

periods, which need to be reconsidered. First, trying to identify sensitive periods for very 

broad behavioral categories (e.g., speech perception or sequence learning per se) could prove 

to be difficult and hardly meaningful. For instance, in speech perception, Werker and Hensch 

(2015) put forward that sensitive phases for increasingly more complex abilities (e.g., first for 

phoneme discrimination, then for phonological categories) build upon each other across 

several years of life to enable successful (native) language acquisition in the long run 

(“cascading nature” described in Werker & Hensch, 2015, fig 3). It is less clear, how exactly 

this postulated timeline of several consecutive sensitive periods underlying the successful 

acquisition of a certain function, might influence later learning outcomes that tap temporarily 

unused knowledge after a delay. 

As mentioned earlier, studies on populations with different natural language 

experiences in childhood have only been able to contrast persons who had experienced vs. 

lacked language input until a certain age (reviewed in Werker & Hensch, 2015). Long-term 

effects from these diverging language experiences in childhood usually have been tested in 

adulthood after many years, sometimes even decades. In doing so, studies have established 

that some aspects of language acquisition, in particular syntactical functions (J. S. Johnson & 

Newport, 1989; Scherag et al., 2004), seem to be linked to restricted times in (early) 

childhood. While this research has provided important insights into timelines of natural 

language acquisition, it was not able to vary the onset of language input systematically, let 

alone the precise nature and amount of this input. Furthermore, interfering input, e.g., from 

learning an additional language while being deprived from one’s native language, makes it 

impossible to test how specific and persistent prior knowledge is preserved (discussed in 

Werker & Hensch, 2015).  
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Thus, more research is needed to describe which developmental steps allow for an 

efficient, further use of acquired knowledge over childhood. Relatedly, Tóth-Fáber et al. 

(2023) identified a gap in the literature for how the short-term consolidation of sequence 

knowledge changes across development. They show that a developmental timeline 

established for the acquisition of visuomotor regularities does not necessarily translate into an 

equivalent timeline for its retention across 24 hours (see above in Memory representations: 

How does the acquisition vs. short-term retention of sequence knowledge depend on age?). 

The current study might provide a starting point for a more careful and extensive 

investigation of how the long-term use of prior rule knowledge changes with age. Future 

research should consider the different levels of age-related changes in sequence learning 

(reviewed in Forest et al., 2023), especially with regard to how the acquired information is 

represented in memory at different ages and how learning outcomes are operationalized (see, 

e.g., indirect vs. direct learning markers in Forest et al., 2023).  

3.2.2. Determinants of long-term learning plasticity and implications for sensitive periods 

The present findings on age-invariant relearning raise the question what savings in 

learning as an index of long-term plasticity can say about sensitive periods. An answer might 

entail a more nuanced perspective on interrelations between the three concepts of (1) learning 

savings in behavior, (2) plasticity processes underlying savings and determining (3) the 

timing of sensitive periods, which in turn are used to explain (age) differences in long-term 

learning outcomes. In this respect, adults benefitting to the same degree from prior learning 

as children makes a case for rather effective adult plasticity even outside the proposed 

sensitive period. A sensitive period was suggested to end by age 12 years for most efficiently 

extracting (simple) sequential regularities from the environment in an implicit manner 

(Janacsek et al., 2012). Related literature on language learning has postulated that most 

efficient rule processing and acquisition is restricted to even earlier time windows (J. S. 

Johnson & Newport, 1989; Mueller et al., 2018). These time windows have been proposed to 

already close by the age of 7 years for native-like grammar acquisition of a second language 

(J. S. Johnson & Newport, 1989). A respective age pattern did not show up in the current 

study, neither on a short timescale, across one week of sequence learning of children age 5 to 

7 and adults (discussed in Mechanisms of multi-session learning in development), nor in their 

relearning of sequence rules after a one-year delay. With regard to plasticity processes 

underlying relearning behavior, additional factors, apart from development, might thus 
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influence long-term adaptations which enable the successful reactivation of previously 

acquired sequence knowledge. 

For one, long-term plasticity in response to patterned input might depend more on 

external factors, like extensive practice and attentional focus, than previously thought. Earlier 

studies in adults which assessed retained sequence knowledge across extended time periods 

of up to three years, are indeed in line with this proposition (Allen & Reber, 1980; M. C. 

Frank et al., 2012; Romano et al., 2010). Despite using different task paradigms of 

visuomotor (Romano et al., 2010), artificial grammar (Allen & Reber, 1980), and artificial 

language learning (M. C. Frank et al., 2012) in rather small samples to look into sequence 

learning, they all report successful retention of the previously acquired sequential input 

across very long timescales of one (Romano et al., 2010), two (Allen & Reber, 1980) and 

three (M. C. Frank et al., 2012) years. This adult long-term retention seemed to be driven by a 

large amount of exposure/practice (M. C. Frank et al., 2012; Romano et al., 2010) and 

attentional effects (Allen & Reber, 1980). In the study of Allen and Reber (1980), attended 

features of the sequence input (letter strings governed by an AG) were manipulated in two 

acquisition conditions, which prompted different strategies during exposure. These different 

acquisition strategies were still reflected in participant’s response patterns after a two-year 

delay without any additional exposure. The authors took this finding to point to distinct 

memory representations, which depended on a participant’s attentional focus before the 

delay. In some cases, such external factors might even outweigh established developmental 

constraints on learning plasticity. For instance, M. C. Frank et al. (2012) showed that very 

extensive exposure to a continuous stream of syllables (10 days with 1 hour of listening each) 

lead to adults successfully identifying the most frequent words after the delay, which had 

been embedded in the input stream. This successful retention was tested three full years after 

mere exposure. 

This finding in adults seems surprising, since durable and extensive brain adaptations 

in response to mere exposure have been put forward as a distinctive characteristic of sensitive 

periods during development (Keuroghlian & Knudsen, 2007; Rohlf et al., 2017). However, 

several authors proposed that it might be possible to “re-open” sensitive periods (termed 

critical periods in this context) (Cisneros-Franco et al., 2020; Dehorter & Del Pino, 2020), for 

instance by focused attention and extensive practice (Werker & Hensch, 2015). Werker and 

Hensch (2015) argued that repeated training involving performance feedback and systematic 

scaffolding of input (easy to difficult) can result in, e.g., successful discrimination of 
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nonnative consonants, even after the developmentally defined sensitive phase for this 

function has already passed (Bradlow et al., 1997; Lively et al., 1994; McCandliss et al., 

2002). Reopening sensitive periods by training has been speculated to be mediated by 

inducing neural processes that shift the brain’s excitatory-inhibitory balance, or remove 

molecular brakes through, e.g., epigenetic changes (Werker & Hensch, 2015). 

On a process level, what might enable a person to successfully tap the lasting traces 

formed from previous learning? Respective cognitive mechanisms should be functional later 

in life, too, when large-scale plasticity processes in the brain might be more limited than early 

in development. Apart from beneficial effects of practice and attention that have been 

discussed above, Romano et al. (2010) suggest that the “procedural reinstatement theory” for 

skill retention can provide a suitable framework (Fendrich et al., 1991; Healy et al., 2004; 

Marmie & Healy, 1995). According to this theory, recruiting the same set of cognitive 

processes (alongside perceptual and motor procedures), which are “reinstated” when re-

encountering a previous learning situation, is at the core of retaining a complex skill across 

extended time periods. This theory allows for cognitive strategies and neural underpinnings 

to differ between participants during task acquisition, as long as the same set of processes can 

be successfully reinstated at the point of relearning. The exact neurocognitive mechanisms, 

which supported AGL task performance in the current study, are likely to differ in the age 

range investigated here (see previous discussions in Mechanisms of multi-session learning in 

development). In this context, the “procedural reinstatement theory” points out that 

reapplying the same task and procedures after one year might have been sufficient to 

reactivate task specific processes, which had previously supported task performance in an 

individual, independent of age. Using latent class modeling on several data sets from 

previous studies, even adult participants have been reported to rely on different response 

strategies for classifying the very same sequences in AGL tasks, after having been exposed to 

the very same stimulus sets (Visser et al., 2009). This has been taken as evidence that they 

relied on different types of information in the same input for their decisions, possibly using 

different mechanisms for extracting regularities (computing transitional probabilities between 

adjacent items vs. chunking sets of adjacent items). These findings in adult samples, which 

have been substantiated elsewhere (Pothos, 2007; Siegelman et al., 2019), make a case for 

individual differences in processing and using sequential information that go beyond age 

influences. 
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To sum up, long-term plasticity processes seem to depend on additional factors apart 

from developmental constraints. Rather, the successful use of previously acquired knowledge 

can be influenced by manipulating characteristics of learning environments, such as training 

and focused attention. In addition, it might make sense to first characterize how prior learning 

experiences are used in the long run at different ages, before proposing sensitive phases for 

broad behavioral functions like a sensitivity for sequential regularities. 

4. Concluding remarks 

The findings of the present dissertation corroborate the idea that lasting memory 

traces are formed from encountering sequential regularities in the environment, which can be 

successfully tapped later on (“savings” in learning, Ebbinghaus, 1880). This has been 

demonstrated in a multi-session study using an AGL task with complex visual sequence rules, 

which showed that children age 5 to 7 years used their acquired rule knowledge after a 12-

month delay for quicker relearning of the same input compared to before the delay, and 

improved across relearning sessions in an adult-like fashion. While this study did not confirm 

that younger children display better learning outcomes at any timescale (neither at initial 

learning, nor at relearning), prior learning enabled quicker re-acquisition of sequence rules 

after a delay even after controlling for unspecific maturational effects in children, as well as 

in young children for whom learning seemed to be not successful before the delay. 

The finding that learning seems to change qualitatively between 5 and 6 years of age, 

i.e., children only showed learning effects at age 6, not at age 5, can be related to similar 

observations in neighboring domains, like perceptual learning. Fiser and Lengyel (2022) have 

proposed that perceptual learning, statistical learning (termed “sequence learning” throughout 

this dissertation), and more abstract rule learning in vision all rely on a common 

computational mechanism that can be modeled in a Hierarchical Bayesian Framework. 

Adopting this view of a common learning process tested on different abstraction levels, our 

findings fit well with studies from perceptual learning, which report great changes between 

age 5 and 6 years: Around age 6, (1) immediate cross-modal recalibration in response to 

spatially disparate audio-visual input (Rohlf et al., 2020), and (2) the automatic use of 

external reference frames for localizing tactile input (Pagel et al., 2009; Röder et al., 2014) 

were shown to first emerge (reviewed in Bruns & Röder, 2023). This implies a general 

developmental shift in learning around age 5 to 6 years across different domains (see also Del 

Giudice, 2014; Sameroff & Haith, 1996), which might be driven by age-dependent changes in 
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cognitive control and in the way encountered information is represented in the brain (see, 

e.g., Gualtieri & Finn, 2022; M. H. Johnson & Munakata, 2005; Ramscar & Gitcho, 2007). 

The present results are furthermore in line with the “extraction and integration 

framework” (Thiessen, 2017), which views sequence learning as being closely related to 

memory processes like chunking, (re)activating, integrating and retrieving pieces of 

information. This account is supported by associations of working memory capacity and 

declarative memory encoding/retrieval skills with AGL task performance on different 

timescales, shown here. The proposed memory framework is further in line with the notion 

that successful rule transfer to a new visual category observed in all our age groups can be 

argued to have relied on simultaneously reactivating separate memory representations at 

retrieval (Taylor et al., 2021). 

Adding to theories of learning mechanisms and sensitive periods, the current study 

proposes that the reliance on implicit vs. explicit learning modes and long-term plasticity 

processes could be less constrained by development than previously thought. For instance, 

extensive training and focused attention seem to promote the successful use of previously 

acquired knowledge independent of age in the age range investigated here. This stresses the 

role of learning environments, which can be targeted by interventions to promote long-term 

learning success. How exactly prior learning is represented on a neural level and what is 

necessary for its effects to persist, warrants further investigation. Future research can build on 

non-human animal-models (Hofer & Bonhoeffer, 2010), which have reported persistent 

structural changes in the cortex in skill acquisition and relearning after a long-term delay. 
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Stimulus Sets for AGL Task 

Table A.1 

Picture Assignment in AGL Task, corresponding to Numbers in Figure 2 

# in 

Fig. 2 

Assigned picture 

Stimulus Set Animals, 

Version 1 

Assigned picture 

Stimulus Set Animals, 

Version 2 

Assigned picture 

Stimulus Set Colors, 

Version 1 

Assigned picture 

Stimulus Set Colors, 

Version 2 

1 

    
2 

  
  

3 

    

4 

    
5 

    

6 

    

Note. Picture assignments for both task versions per stimulus set were randomly picked from 

all possible assignments from permutations generated by a randomization script. The 

resulting task versions were applied in a counterbalanced manner in all age groups (described 

in detail in the Methods section of Chapter II).  
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AGL Task: Grammatical & Ungrammatical Sequences 

Table A.2 

Sequences presented in the AGL task 

3-5 item 

grammatical 

sequences 

3-5 item 

ungrammatical 

sequences 

6-7 item 

grammatical 

sequences 

6-7 item 

ungrammatical 

sequences 

224 242 566534 256624 

554 2432 233324 225664 

5534 2423 553654 555364 

5654 2342 566654 262534 

2324 5435 232654 565634 

22654 56354 226654 2332564 

56534 25624 226534 2263354 

23324 22564 2333324 2362534 

56654 53564 2326534 2623354 

 26254 5666534 2636524 

 55364 5666654 2353264 

  5536654 2566234 

  5536534 5355664 

  2326654 5566354 

  2266534 2326354 

  2266654 2236564 

  5653654 2652364 

  2332654 5535664 

   5536354 

Note. Numbers were replaced by pictures of animals/color segments, see stimuli Table A.1. 

Grammatical sequences followed AG rules (see Fig. 2) and were presented in learning and 

test phases. Ungrammatical sequences violated AG rules and were presented in test phases 

(for details, see Methods section in Chapter II). 
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Instructions for AGL Task I: Stimulus Set Animals 

 

Lernphase 1: 

„Gleich siehst du den Zirkus von Frau Pepe. Sie reist mit dem Zirkus in einem Zug durch das 

ganze Land. In jedem Zugwaggon ist ein Zirkustier. Frau Pepe stellt den Zug so zusammen, 

dass sich die Tiere miteinander wohlfühlen. Du bist ein Detektiv und wirst nun einige Züge 

von Frau Pepe sehen. Schau sie dir genau an, wir stellen später Fragen dazu.“ 

Testphase 1: 

„Du kommst als Detektiv zum Bahnhof und siehst dort zwei Zirkuszüge. Nur einer der Züge 

gehört Frau Pepe. Hilf uns herauszufinden, welcher der beiden von ihr zusammengestellt 

wurde. Gehe nach deinem Bauchgefühl und wähle den Zug aus, der dir als erstes in den Sinn 

kommt. 

Um den Zug auszuwählen, tippe ihn einfach auf dem Bildschirm an.“ 

Bei jedem Testtrial (2 Züge) wird wiederholt: 

„Welcher Zirkuszug wurde von Frau Pepe zusammengestellt? Tippe ihn auf dem Bildschirm 

an.“  

 

Lernphase 2-5: 

„Der Zirkus von Frau Pepe reist nun weiter. Frau Pepe stellt den Zug immer noch auf 

dieselbe Art und Weise zusammen. Nämlich so, dass sich die Tiere miteinander wohlfühlen. 

Du wirst nun nochmal einige Züge von Frau Pepe sehen. Schau sie dir genau an, wir stellen 

später nochmal Fragen dazu.“ 

Testphase 2-5: 

„Du kommst wieder als Detektiv zum Bahnhof und siehst dort zwei Zirkuszüge. Nur einer der 

Züge gehört Frau Pepe. Hilf uns herauszufinden, welcher der beiden von ihr 

zusammengestellt wurde. Gehe nach deinem Bauchgefühl und wähle den Zug aus, der dir als 

erstes in den Sinn kommt. 

Um den Zug auszuwählen, tippe ihn einfach auf dem Bildschirm an.“ 

Bei jedem Testtrial (2 Züge) wird wiederholt: 

„Welcher Zirkuszug wurde von Frau Pepe zusammengestellt? Tippe ihn auf dem Bildschirm 

an.“ 
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Instructions for AGL Task II: Stimulus Set Colors 

 

Lernphase 1: 

„Gleich siehst du die Fahnen der Sportmannschaft „Starke Tiger“. Die Fahnen bestehen aus 

bunten Farben und werden auf Sportturnieren aufgestellt. Auf jedes Turnier bringen die 

„Starken Tiger“ eine andere Fahne mit, damit ihren Fans nicht langweilig wird. Ihre Fahnen 

stellen die „Starken Tiger“ so zusammen, dass die Farben gut zueinander passen. Du bist ein 

Detektiv und wirst nun einige Fahnen der „Starken Tiger“ sehen. Schau sie dir genau an, wir 

stellen später Fragen dazu.“ 

Testphase 1: 

„Du kommst als Detektiv zu einem Turnier und siehst dort zwei Fahnen. Nur eine davon 

gehört der Sportmannschaft „Starke Tiger“. Hilf uns herauszufinden, welche der beiden von 

ihnen zusammengestellt wurde. Gehe nach deinem Bauchgefühl und wähle die Fahne aus, die 

dir als erstes in den Sinn kommt. 

Um die Fahne auszuwählen, tippe sie einfach auf dem Bildschirm an.“ 

Bei jedem Testtrial (2 Züge) wird wiederholt: 

 „Welche Fahne wurde von den „Starken Tigern“ zusammengestellt? Tippe sie auf dem 

Bildschirm an.“ 

 

Lernphase 2-5: 

„Die „Starken Tiger“ bringen ihre Fahnen auf weitere Turniere mit. Sie stellen ihr Fahnen 

immer noch auf dieselbe Art und Weise zusammen. Nämlich so, dass die Farben gut 

zueinander passen. Du wirst nun nochmal einige Fahnen der „Starken Tiger“ sehen. Schau 

sie dir genau an, wir stellen später nochmal Fragen dazu.“ 

Testphase 2-5: 

„Du kommst wieder als Detektiv zu einem Turnier und siehst dort zwei Fahnen. Nur eine 

davon gehört der Sportmannschaft „Starke Tiger“. Hilf uns herauszufinden, welche der 

beiden von ihnen zusammengestellt wurde. Gehe nach deinem Bauchgefühl und wähle die 

Fahne aus, die dir als erstes in den Sinn kommt. 

Um die Fahne auszuwählen, tippe sie einfach auf dem Bildschirm an.“ 

Bei jedem Testtrial (2 Züge) wird wiederholt: 

„Welche Fahne wurde von den „Starken Tigern“ zusammengestellt? Tippe sie auf dem 

Bildschirm an.“ 
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Questionnaire to assess explicit sequence knowledge: one example 

(for Stimulus Set Animals, assessed in adults – adapted versions were applied for Stimulus 

Set Colors, and shortened versions for children in both stimulus sets) 

 

Fragebogen explizites Wissen (Grammatik: Reber 1967) – Tiere 1 + 2 

angepasst von: Whitmarsh, S., Uddén, J., Barendregt, H. & Petersson, K. M. (2013). 

Mindfulness reduces habitual responding based on implicit knowledge. Evidence from 

artificial grammar learning. Consciousness and cognition, 22 (3), 833-845. 

1) Allgemeine Fragen 

- „Was denkst du, worum es in diesem Spiel ging?“ 

_________________________________________________________________ 

_________________________________________________________________ 

-  „Hattest du eine Strategie, um zu entscheiden welcher Zug Frau Pepe 

gehört?“ 

_________________________________________________________________ 

_________________________________________________________________ 

- „Ist dir etwas an den Zirkuszügen von Frau Pepe aufgefallen?“ 

_________________________________________________________________ 

_________________________________________________________________ 
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Questionnaire to assess explicit sequence knowledge: one example (continued)  

 

2) Spezifische Fragen 

a) „ Welche(s) Tier(e) konnte(n) am Anfang des Zuges von Frau Pepe sein?“ 

 □   □   □   □   □   

b) „Welche(s) Tier(e) konnte(n) am Ende des Zuges von Frau Pepe sein?“ 

 □   □   □   □   □   

c) „Von welchem Tier konnten mehrere gleiche hintereinander kommen?“ 

 □   □   □   □   □   

 

d) „Welche(s) Tier(e) konnte(n) nach diesem Tier  kommen?“ 

□   □   □   □     

 

e) „Welche(s) Tier(e) konnte(n) nach diesem Tier  kommen?“ 

□   □   □    □   

 

f) „Welche(s) Tier(e) konnte(n) nach diesem Tier  kommen?“ 

□    □   □   □   

 

g) „Welche(s) Tier(e) konnte(n) nach diesem Tier  kommen?“ 

 □   □   □   □   

 

 

Bitte wenden → 
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Questionnaire to assess explicit sequence knowledge: one example (continued)  

h) „Welche(s) Tier(e) konnte(n) NICHT nach diesem Tier  kommen?“ 

 □   □   □   □    

 

i) „Welche(s) Tier(e) konnte(n) NICHT nach diesem Tier  kommen?“ 

 □   □   □    □   

 

j) „Welche(s) Tier(e) konnte(n) NICHT nach diesem Tier  kommen?“ 

 □    □   □   □   

 

k) „Welche(s) Tier(e) konnte(n) NICHT nach diesem Tier  kommen?“ 

 □   □   □   □   
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1. Descriptive data for control analyses without the first AGL task block per 

session 

Table B.1 

A Year 1: Proportion Correct Across Block 2-5 in AGL per Session and Age Group 

 Session 1 Session 2 Session 3 Transfer 1 

 7yo Ad 1 7yo Ad 1 7yo Ad 1 7yo Ad 1 

N 27 28 27 28 27 28 27 28 

M .56 .82 .62 .91 .63 .94 .64 .90 

SD .11 .10 .12 .07 .17 .07 .11 .11 

Min .23 .63 .40 .78 .37 .76 .33 .65 

Max .73 1.00 .85 1.00 .95 1.00 .88 1.00 

N* 16 20 16 20 16 20 16 20 

M .58 .81 .67 .93 .68 .95 .68 .91 

SD .08 .11 .12 .06 .18 .07 .09 .12 

Min .45 .63 .50 .80 .43 .78 .53 .65 

Max .73 .98 .85 1.00 .95 1.00 .88 1.00 

 

B Year 2: Proportion Correct in AGL Across Block 2-5 per Session and Age Group 

 Session 4 Session 5 Session 6 Transfer 2 

 7yo Ad 

1 

7yo Ad 

1 

7yo Ad 

1 

7yo Ad 

1 

N 16 20 16 20 16 20 16 20 

M .73 .93 .76 .94 .79 .94 .73 .98 

SD .11 .10 .17 .10 .15 .09 .14 .09 

Min .53 .60 .43 .68 .48 .70 .48 .70 

Max .93 1.00 1.00 1.00 1.00 1.00 .98 1.00 

Note. 7yo = 7-year-olds, Ad 1 = Adults 1, Min = minimal value, Max = maximal value 

* Subgroup of returning participants with data for Year 1 & Year 2, see Participants in 

Chapter II. 
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2. AGL performance associations with levels of explicit knowledge in Year 1 

Explicit knowledge about sequence rules (assessed at the end of Transfer 1) was 

marginally positively correlated with a performance increase in the transfer session compared 

to initial performance with the first stimulus set (Transfer Savings: Transfer 1 – Session 1) in 

7-year-olds (rs = .42, p = .058, BF10 = 1.68). For adults, this correlation did not reach the 

significance level (rs = .25; p = .193, BF10 = .55). The second transfer difference (Transfer 1 – 

Session 3) as preserved performance from the well-practiced first stimulus set did not 

correlate significantly with explicit sequence knowledge in either age group (7-year-olds: 

rs = .07, p = .725, BF10 = .26; adults: rs = .24, p = .448, BF10 = .42). For the performance 

increase from Session 1 to Session 3, children showed a numerically larger positive 

correlation with explicit sequence knowledge (rs = .33; p = .176, BF10 = 1.11) than adults 

(rs = .10; p = .619, BF10 = .31), but none of these correlations was statistically significant. All 

correlation patterns remained the same when one child with very poor explicit sequence 

knowledge was excluded (Z-Score < -3; Transfer 1 – Session 1: rs = .44, p = .075, 

BF10 = 2.15; Transfer 1 – Session 3: rs = .19, p = .382, BF10 = .36; Session 3 – Session 1: 

rs = .27, p = .382, BF10 = .37). 

3. AGL performance associations with levels of explicit knowledge in Year 2 

We asked whether explicit sequence knowledge in the end of Year 1 predicts 

performance increases in Year 2: No significant correlations between explicit knowledge 

scores at the end of Transfer 1 with an increase over Session 4 to 6 (7-year-olds: rs = -.22, 

p = .826, BF10 = .56; adults: rs = -.19, p = .826, BF10 = .38), nor with an improvement in 

Transfer 2 compared to Session 4 (7-year-olds: rs = .09, p = .728, BF10 = .34; adults: rs = -.38, 

p = .180, BF10 = 1.07), nor with better performance in Transfer 2 compared to Session 6 (7-

year-olds: rs = .27, p = .384, BF10  = .85; adults: rs = -.30, p = .384, BF10  = .77) emerged. 

Correlating explicit knowledge scores from Year 1 with higher start levels (Session 4 – 

Session 1, Session 4 – Session 3) or higher end levels (Session 6 – Session 3) at relearning in 

Year 2 compared to initial learning in Year 1, produced no significant associations as well (7-

year-olds: all | rs | ≤ .31, all p ≥ .472, BF10 ≤ .68; adults: all | rs | ≤ .15, all p ≥ .862, BF10  

≤ .38). 

4. Effects of trial difficulty and short-term familiarity on AGL performance in 

Year 2  

We evaluated for relearning across all four sessions of Year 2, how the two task 

characteristics (1) short-term familiarity (grammatical sequence of a test trial seen vs. not 
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seen in the preceding learning phase) and (2) difficulty (short test trials with low 

ACS = simple vs. long test trials with high ACS = difficult, both see Construction of 

Grammatical and Ungrammatical Sequences) relate to task performance in both age groups. 

An ANOVA on the influence of short-term familiarity with the factors Age (between-

subject; levels: 7-year-olds, adults) and Trial Type (within-subject; levels: previously seen vs. 

not seen grammatical sequences in test trials) revealed only a main effect of Age (F(1, 

34) = 25.88, p < .001, η2
g = .42, BFincl > 100; both other F(1, 34) ≤ 0.62, p ≥ .436, η2

g < .01, 

BFincl ≤ .36), with adults outperforming children in both trial types. 

A different result pattern emerged for the ANOVA on trial difficulty with the factors 

Age (between-subject; levels: 7-year-olds, adults) and Trial Type (within-subject; levels: 

simple vs. difficult test trial): This analysis revealed a significant Age*Trial Type interaction 

(F(1, 34) = 9.98, p = .003, η2
g = .04, BFincl = .84), in addition to main effects of Age and Trial 

Type (both F(1, 34) ≥ 25.99, p < .001, η2
g ≥ .13, BFincl > 100): Adults outperformed children 

in both trial types and participants performed poorer in long test trials with more shared 

transitions between grammatical and ungrammatical sequences (main effects of Age and Trial 

Type). Additionally, this effect of trial difficulty was less pronounced in adults than in 7-year-

olds (V = 247.5, p = .006, r = .54, BF10 = 3.11).  

Despite this effect of trial difficulty, also the group of 7-year-olds was able to learn 

the more challenging type of sequences in Year 2 (long test trials with high ACS: 

t(15) = 4.75, p < .001, d = 1.19, BF10 > 100). 
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1. Descriptive data for control analyses without the first AGL task block per 

session 

Table C.1 

A Year 1: Proportion Correct Across Block 2-5 in AGL per Session and Age Group 

 Session 1 Session 2 Session 3 

 5yo 6yo Ad 2 5yo 6yo Ad 2 5yo 6yo Ad 2 

N 24 27 20 24 27 20 24 27 20 

M .51 .51 .79 .51 .57 .88 .52 .65 .91 

SD .08 .11 .13 .09 .12 .13 .10 .11 .12 

Min .38 .38 .58 .38 .30 .60 .35 .38 .60 

Max .68 .85 .95 .70 .75 1.00 .78 .95 1.00 

 

B Year 2: Proportion Correct Across Block 2-5 in AGL per Session and Age Group 

 Session 4 Session 5 Session 6 Transfer 2 

 5yo 6yo Ad 2 5yo 6yo Ad 2 5yo 6yo Ad 2 5yo 6yo Ad 2 

N 24 27 20 24 27 20 24 27 20 24 27 20 

M .55 .62 .88 .61 .65 .93 .64 .72 .92 .60 .63 .89 

SD .11 .13 .11 .11 .15 .08 .12 .14 .11 .10 .12 .14 

Min .43 .35 .63 .43 .40 .75 .48 .48 .63 .45 .36 .53 

Max .83 .93 1.00 .80 .95 1.00 1.00 1.00 1.00 .75 .80 1.00 

Note. 5yo = 5-year-olds, 6yo = 6-year-olds, Ad 2 = Adults 2, Min = minimal value, Max = 

maximal value 

 

 

2. Effects of trial difficulty and short-term familiarity on AGL performance in 

Year 1  

We evaluated for learning in all three sessions of Year 1 taken together, how the two 

AGL task characteristics (1) short-term familiarity (grammatical sequence of a test trial seen 

vs. not seen in the preceding learning phase) and (2) difficulty (short test trials with low 

ACS = easy vs. long test trials with high ACS = difficult, both see Construction of 

Grammatical and Ungrammatical Sequences in Chapter II) relate to task performance in the 

three age groups. 

An ANOVA on the influence of short-term familiarity with the factors Age (between-

subject; levels: 5-year-olds, 6-year-olds, Adults 2) and Trial Type (within-subject; levels: 
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previously seen vs. not seen grammatical sequences in test trials) revealed only a main effect 

of Age (F(2, 68) = 91.48, p < .001, η2
g = .68; both other F ≤ 1.45, p ≥ .241, η2

g ≤ .01). Thus, 

age groups differed in their overall performance levels, but not in their performance for trials 

with grammatical sequences that were seen vs. such that were not seen in the directly 

preceding learning phase.  

An ANOVA on the influence of trial difficulty with the factors Age (between-subject; 

levels: 5-year-olds, 6-year-olds, Adults 2) and Trial Type (within-subject; levels: easy vs. 

difficult test trial) revealed main effects of Age (F(2, 68) = 96.31, p < .001, η2
g = .68) and of 

Trial Type (F(1, 68) = 13.27, p < .001, η2
g = .05), but no significant Age*Trial Type 

interaction (F(2, 68) = 0.45, p = .641, η2
g < .01). This means that overall performance levels 

differed depending on age, and that all age groups performed better in easy vs. difficult trials 

in Year 1. But age groups did not differ in the size of this effect of trial type on performance. 

3. Effects of trial difficulty and short-term familiarity on AGL performance in 

Year 2  

For relearning in all four sessions of Year 2 taken together, task performance was 

compared for the two task characteristics (1) short-term familiarity (grammatical sequence of 

a test trial seen vs. not seen in the preceding learning phase) and (2) difficulty (short test trials 

with low ACS = easy vs. long test trials with high ACS = difficult, both see Construction of 

Grammatical and Ungrammatical Sequences in Chapter II) in all three age groups. 

An ANOVA on the influence of short-term familiarity with the factors Age (5-year-

olds, 6-year-olds, Adults 2) and Trial Type (within-subject; levels: previously seen vs. not 

seen grammatical sequences in test trials) revealed main effects of Age (F(2, 68) = 65.21, p 

< .001, η2
g = .63) and Trial Type (F(1, 68) = 6.45, p = .013, η2

g = .01), but no Age*Trial Type 

interaction (F(2, 68) = 0.60, p = .551, η2
g < .01). This means that overall performance levels 

differed depending on age in Year 2, and that all age groups performed better in trials with 

grammatical sequences that they had seen in the preceding learning phase. But age groups did 

not differ in in the size of this effect of trial type on performance. 

An ANOVA on the influence of trial difficulty with the factors Age (between-subject; 

levels: 5-year-olds, 6-year-olds, Adults 2) and Trial Type (within-subject; levels: easy vs. 

difficult test trial) revealed main effects of Age (F(2, 68) = 64.66, p < .001, η2
g = .60) and of 

Trial Type (F(1, 68) = 48.98, p < .001, η2
g = .12), but no significant Age*Trial Type 

interaction (F(2, 68) = 1.08, p = .345, η2
g = .01). This means that age groups differed in their 

overall performance levels, and that all of them performed better in easy vs. difficult trials in 
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Year 2. But age groups did not differ in the way how trial difficulty affected their 

performance. 

To sum up, trial properties (short-term familiarity & trial difficulty) affected overall 

AGL task performance in both years, with all age groups performing worse in more 

challenging trial types (long test trials with high ACS in both years & grammatical sequence 

of a test trial which had not been seen in the preceding learning phase in Year 2). However, 

having seen the grammatical sequence of a test trial in the previous learning phase did not 

matter for performance in the sessions of Year 1. In both years, 5-year-olds, 6-year-olds and 

Adults 2 did not differ in any of the reported effects of trial types on overall performance.  

 

4. Comparison of Adults 1 and Adults 2 in their transfer of visual regularities 

The two adult groups from Project 1 (Adults 1, Chapter II) and from Project 2 (Adults 

2, Chapter III) were compared in their transfer to stimulus set 2, to evaluate if the timing of 

learning sessions with stimulus set 1 mattered for transfer effects. Adults 1 completed two 

transfer sessions, one in the end of each year, while Adults 2 completed a single transfer 

session in the end of Year 2 (see Table 1). Learning trajectories for both groups in all 

completed sessions are depicted in Figure C.1. 

To test for group differences in transfer, absolute performance levels in Transfer 2 

(Year 2) and in the first transfer session of each group (Adults 1: Transfer 1 in Year 1, Adults 

2: Transfer 2 in Year 2) were compared between the two adult groups. Additionally, four 

transfer effects were calculated as sessions differences that correspond to the transfer 

measures of Project 1 and Project 2 (Chapter II & III, Transfer Savings: Transfer 2 – Session 

4, Transfer Loss: Transfer 2 – Session 6, Transfer 2 – Session 1, first transfer session – 

Session 1; see Fig. C.2). 

Both groups did not differ significantly in their absolute performance levels at 

transfer, neither at Transfer 2 (M(SD) Adults 1: .92(.09), M(SD) Adults 2: .88(.14), Welch’s 

t(32.76) = 1.16, p = .253, d = .37, BF10 = .53), nor in their first transfer session (M(SD) 

Adults 1: .90(.12), M(SD) Adults 2: .88(.14), Welch’s t(36.86) = 0.70, p = .486, d = .22, 

BF10 = .38). Similarly, no statistically significant difference between Adults 1 and Adults 2 

emerged from the rmANOVAs which compared Transfer Savings, Transfer Loss, Transfer 2 

vs. Session 1, and the first transfer session vs. Session 1 between groups (see Table C.2). 
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Figure C.1 

Performance Trajectories Across Sessions for Adults 1 (left) and Adults 2 (right) 

Note. Mean proportion of correct responses in the test phases of each session for adult groups. 

Learning curves of single participants are depicted in color. The dotted horizontal lines mark chance 

level performance. Error bars indicate 95% CIs corrected for within-subject comparison according to 

Morey (2008). ADD. = additional. 

 

Table C.2 

Results of rmANOVAs on Transfer Effects with Group (Adults 1, Adults 2) as between 

subject factor & Session as within-subject factor 

Transfer effect Session levels Interaction effect 

Group*Session 

Transfer Savings Session 4 vs. Transfer 2 F(1, 38) = 0.01, p = .922, 

η2
g < .01, BF10 = .32 

Transfer Loss Session 6 vs. Transfer 2 F(1, 38) = 2.01, p = .165, 

η2
g < .01, BF10 =.63 

Transfer Year 2 

vs. 1st Learning 

Session 1 vs. Transfer 2 F(1, 38) = 0.25, p = .618, 

η2
g < .01, BF10 =  .36 

First Transfer 

vs. 1st Learning 

Session 1 vs. Transfer 2 

(Adults 2), Session 1 vs. 

Transfer 1 (Adults 1) 

F(1, 38) = 0.01, p = .919, 

η2
g < .01, BF10 = .33 

Note. All main effects of Group: F(1, 38) ≤ 1.73, p ≥ .197, η2
g ≤ .04, BF10 ≤ .81. 



 228 

APPENDIX C: ADDITIONAL ANALYSES CHAPTER III (PROJECT 2) 

 

 

   

 

Thus, both adult groups showed comparable transfer effects, independent of their 

session timing, i.e., independent of whether they had completed a transfer session in Year 1 

already or participated in 7 vs. 8 AGL sessions before transfer was tested in Year 2. 

Consequently, Chapter III includes 7-year-olds alongside 5-year-olds and 6-year-olds for a 

more comprehensive perspective on repeated sequence learning in development, despite 7-

year-olds completing an additional transfer session in Year 1 (equivalent to Adults 1). 

 

Figure C.2 

Transfer Effects for Adults 1 (pink) vs. Adults 2 (orange) 

 

Note. Transfer Savings as difference in proportion correct responses of Transfer 2 and Session 4 (A), 

Transfer Loss as difference in proportion correct responses of Transfer 2 and Session 6 (B). Transfer 

as difference in proportion correct responses of Transfer 2 and Session 1 (C), and as difference in 

proportion correct responses of the first transfer session (Adults 1: Transfer 1, Adults 2: Transfer 2) 

and Session 1 (B) respectively. Boxplots for Adults 1 (pink) and Adults 2 (orange) with the groups’ 

median indicated by a black line and the corresponding mean by a black square. Black dots represent 

single-subject data. The dotted lines mark no performance difference between the two compared 

sessions. ADD. = additional, Y1 = Year 1. 
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Scatterplots: Correlations of AGL performance (Year 1) with cognitive skills (Year 1) 

Figure D.1 

Scatterplots for Cognitive Skills (x-axis) and AGL performance (y-axis) within Year 1 

Note. Memory and language skills and AGL session differences plotted for children (A) and 

adults (B). Gray dots indicate individual subjects. Black lines denote linear regression. 

Numbers per plot indicate BF10. 

 

  

A 

B 
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Scatterplots: Correlations of AGL performance (Year 1) with cognitive skills (Year 1) 

 (continued) 

Figure D.2 

Scatterplots for Working Memory (x-axis) and AGL performance (y-axis) within Year 1 

 

Note. Working memory as max. digit span recalled and AGL session differences (A: 

Learning Gains, B: Transfer Savings, C: Transfer Loss) plotted for the combined sample of 

children and adults. Colored dots indicate individual subjects. Gray lines denote linear 

regression. Numbers per plot indicate BF10. 

 

  

A 

B C 
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Scatterplots: Correlations of AGL performance (Year 2) with cognitive skills (Year 1) 

Figure D.3 

Scatterplots for Cognitive Skills Year 1 (x-axis) and AGL performance Year 2 (y-axis) 

 

 
 

Note. Memory and language skills and AGL session differences plotted for children (A) and adults (B). 

Gray dots indicate individual subjects. Black lines denote linear regression. Numbers per plot indicate 

BF10.v 

A 

B 
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Scatterplots: Correlations of AGL performance (Year 2) with cognitive skills (Year 1) 

 (continued) 

Figure D.4 

Scatterplots for Working Memory Year 1 (x-axis) and AGL performance (y-axis) Year 2 

Note. Year 1 working memory as max. digit span recalled and Year 2 AGL session 

differences (A: Retention, B: Learning Gains, C: Transfer Savings, D: Transfer Loss) plotted 

for the combined sample of children and adults. Colored dots indicate individual subjects. 

Gray lines denote linear regression. Numbers per plot indicate BF10. 

  

A B 

C D
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Scatterplots: Correlations of AGL performance (Year 2) with cognitive skills (Year 2) 

Figure D.5 

 Scatterplots for Cognitive Skills Year 2 (x-axis) and AGL performance Year 2 (y-axis) 

  Note. Memory and language skills and AGL session differences plotted for children (A) and adults (B). 

Gray dots indicate individual subjects. Black lines denote linear regression. Numbers per plot indicate BF10. 

A 

B 
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Scatterplots: Correlations of AGL performance (Year 2) with cognitive skills (Year 2) 

(continued) 

Figure D.6 

 Scatterplots for Working Memory in Year 2 (x-axis) and AGL performance (y-axis) in Year 2 

Note. Year 2 working memory as max. digit span recalled and Year 2 AGL session 

differences (A: Retention, B: Learning Gains, C: Transfer Savings, D: Transfer Loss) plotted 

for the combined sample of children and adults. Colored dots indicate individual subjects. 

Gray lines denote linear regression. Numbers per plot indicate BF10. 

  

DC

B A 

 



 236 

APPENDIX D: ADDITIONAL ANALYSES CHAPTER IV (PROJECT 3) 

 

 

   

 

Psychometric Measures for cognitive skills: 

Correlations across 1 year in children and adults with 2 available assessments 

 

Table D.1 

Correlations of Psychometric Measures for Cognitive Skills in Children and Adults 

 

Test-Retest Reliability 

(Session 1 ~ Session 4) 

Children 

(5- & 6-year-olds, n = 43) 

Adults 1 

(n = 18) 

German Grammar I 

(Plural) 
.17 [-.24-.44] .27 [-.22-.66] 

German Grammar II 

(General) 
-.21 [-.48-.10] .89 [.72-.96] 

Declarative Memory 

    Encoding 

    Retrieval 

 

.55 [.30-.73] 

.34 [.05-.59] 

 

.39 [-.10-.72] 

.38 [-.11-.72] 

Working Memory 

    Raw Score 

 

.55 [.29-.73] 

 

.87 [.68-.95] 

    Max. Number of 

    Digits recalled 
.68 [.51-.79] 

Note. Correlations denote Spearman’s Rho and were calculated on proportion correct of AGL 

test phases averaged across sessions and raw scores of psychometric assessments. [...] = 95% 

Confidence Interval (CI). 
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Table D.2 

Separate Correlations in Adult Groups for Memory & Grammar Skills in Year 1 with AGL 

Parameters in Year 2  

 

 

 

Retention 

Year 1 to Year 2 

AGL 

(Session 4 – 

Session 3) 

Learning  

Gains 

AGL 

(Session 6 – 

Session 4) 

Transfer Savings 

AGL 

(Transfer 2 – 

Session 4) 

Transfer 

Loss 

AGL 

(Transfer 2 – 

Session 6) 

Adults 1 

(n = 20) 

Adults 2 

(n = 20) 

Adults 1 

(n = 20) 

Adults 2 

(n = 20) 

Adults 1 

(n = 20) 

Adults 2 

(n = 20) 

Adults 1 

(n = 20) 

Adults 2 

(n = 20) 

German 

Grammar I 

(Plural) 

.19 -.27 -.10 .07 -.18 .45 -.13 .58* 

German 

Grammar II 

(General) 

.28 -.07 -.28 -.13 -.11 .20 .29 .36 

Declarative 

Memory 

    Encoding 

    Retrieval 

 

 

-.19 

<.01 

 

 

.08 

.03 

 

 

.08 

-.27 

 

 

-.17 

-.32 

 

 

-.08 

-.13 

 

 

.08 

-.11 

 

 

-.15 

.20 

 

 

.27 

.26 

Working 

Memory      

   Normalized 

   Score 

 

.60 * 

 

.11 

 

-.38 

 

-.10 

 

-.19 

 

.08 

 

.11 

 

.24 

Note. AGL = Artificial Grammar Learning Task, italic =  | r | ≥ .30, gray = BF10 ≥ 3. 

* corrected p < .05. 
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