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Abstract

A measurement of inclusive jet cross sections in high-Q2 neutral current deep-inelastic scattering
is performed using data collected by the ZEUS detector at the HERA e±p collider. The data
were taken in the years 2004 to 2007 at a centre-of-mass energy of 318GeV and correspond to
an integrated luminosity of 347 pb−1. Jets are reconstructed using the k⊥-algorithm in the
Breit reference frame. They are measured as a function of the squared four-momentum transfer
Q2 and the transverse momentum of the jets in the Breit frame p⊥,Breit. The measurement is
performed in the kinematic region of 150GeV2 < Q2 < 15000GeV2 and 0.2 < y < 0.7, with y
being the inelasticity. Jets are required to fulfil the conditions 7GeV < p⊥,Breit < 50GeV and
−1 < ηlab < 2.5, where ηlab is the pseudorapidity in the laboratory frame.

The measured jet cross sections are compared to previous measurements and perturbative
QCD predictions. The measurement is used in a next-to-next-to-leading-order QCD analysis
to simultaneously determine the parton distribution functions of the proton and the strong
coupling constant. A significant improvement in accuracy is observed compared to similar
determinations. The physical scale dependence of the strong coupling is investigated.

Zusammenfassung

Eine Messung der inklusiven Jet-Wirkungsquerschnitte bei hohen Q2 in tiefinelastischer
Streuung wird durchgeführt unter Verwendung von Daten des ZEUS Detektors am HERA e±p
Beschleuniger. Die Daten wurden in den Jahren 2004 bis 2007 bei einer Schwerpunktsenergie
von 318GeV aufgezeichnet und entsprechen einer integrierten Luminosität von 347 pb−1. Jets
werden mit dem k⊥-Algorithmus im Breit-Bezugssystem rekonstruiert. Sie werden gemessen
als Funktion des Quadrats des Viererimpulsaustauschs Q2 und des Transversalimpulses im
Breit-System p⊥,Breit. Die Messung wird durchgeführt in der kinematischen Region 150GeV2 <
Q2 < 15000GeV2 und 0.2 < y < 0.7, wobei y die Inelastizität ist. Jets werden betrachtet
in der Region 7GeV < p⊥,Breit < 50GeV und −1 < ηlab < 2.5, mit der Pseudorapidität im
Laborsystem ηlab.

Die gemessenen Wirkungsquerschnitte werden mit vorhergehenden Messungen sowie mit
störungstheoretischen QCD-Vorhersagen verglichen. Die Messdaten werden benutzt um gleich-
zeitig die Parton-Verteilungsfunktionen des Protons und die starke Kopplungskonstante zu
bestimmen. Eine signifikant verbesserte Präzision wird erzielt im Vergleich zu ähnlichen Be-
stimmungen. Die physikalische Skalen-Abhängigkeit der starken Kopplung wird untersucht.
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CHAPTER 1

Introduction

The ultimate aim of any domain of science is to describe the natural world accurately and
precisely. Among these fields, particle physics stands out for its remarkable ability to explain
phenomena within its realm. Since it is the most fundamental domain of physical science,
many observations can be accurately explained from first principles. Consequently, predictions
can be made and tested to an astonishing degree of precision, which is exemplified by the
electron magnetic moment,1 the Lamb shift in hydrogen2 or the fine-structure constant.3

The most outstanding achievement of this field to date is the Standard Model of particle
physics.4 It describes all known non-gravitational interactions of subatomic particles. Some
of its achievements include the prediction of electroweak unification,5–7 the existence of the
Higgs boson,8–11 the explanation of the short range of the strong interaction12 as well as the
prediction of the properties of many particles.13–17 In principle, almost any observed physical
phenomenon can be explained, though sometimes very indirectly, by either the Standard Model
or the theory of general relativity,18 which describes gravity at macroscopic length scales.

Nevertheless, the Standard Model is not a complete description of nature. So far, it could
not be unified with general relativity, such that no entirely consistent theory of gravity at
microscopic length scales exists. There are also several phenomena that the Standard Model
cannot explain, such as dark matter,19 the smallness of neutrino masses,20 the amount of
matter-antimatter asymmetry in the universe21 or the strong CP-problem.22 Due to these
issues, many modern studies focus on theories beyond the Standard Model.23

However, the Standard Model has made many accurate predictions, which is not by co-
incidence. Any generalised theory must necessarily reproduce the Standard Model in some
limiting case. No matter what future research may uncover, this model will remain an accurate
description of an extensive range of physical phenomena. Therefore, precision measurements
of the Standard Model are highly relevant and will remain so in the future.

One aspect of the Standard Model that remains under intense investigation is the strong
interaction. This interaction gives rise to many complex physical phenomena, including
the proton’s existence, composition and properties. Collider experiments involving protons
are therefore ideally suited to study the strong interaction. Electron-proton collisions are
particularly useful, as the electron serves as a well-understood probe of the proton. Using
electrons as a probe also produces a much cleaner experimental picture than in, e.g. proton-
proton collisions.

The HERA accelerator at DESY was the world’s only high-energy electron-proton collider
so far.24,25 This circular collider accelerated beams of electrons or positrons and protons in
opposing directions, which made it possible to observe collisions at a centre-of-mass energy of
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1 Introduction

up to 318GeV. This thesis presents a measurement of jet cross sections in electron-proton
and positron-proton collisions. Jets are experimental signatures that are created by strongly
interacting particles. The measurement is performed using data from the ZEUS detector,
which was one of the two general-purpose particle detectors at HERA.25 The analysis is
the most important still missing jet measurement left at HERA. It uses about two-thirds of
the entire dataset collected at ZEUS – the most extensive dataset that was not yet entirely
analysed in this regard. Within this thesis, the cross sections are used to determine the strong
coupling constant, one of the fundamental parameters of the Standard Model. As such, the
measurement provides valuable information for further studies of the strong interaction.

There have been previous attempts at performing this analysis, but they have not led to a
publication.26,27 This work supersedes those attempts and improves upon their procedures
by adding additional corrections, a multidimensional matrix-unfolding method and a more
careful and complete estimation of systematic uncertainties.

1.1 Cross-section measurements in collider physics

Being the most fundamental branch of physics, particle physics finds itself in a difficult situation
concerning the comparison of theory and experiment. Theories are constructed at the most
fundamental level, yet experiments must be designed using macroscopic detectors. This leaves
few relevant quantities that are accessible via both approaches. The interaction cross section
σ is one such quantity. The cross section for a given process is defined according to

N = σ · L, (1.1)

where L is the integrated luminosity and N is the number of times the specific process occurred.
The luminosity is a measure of the intensity and the focus of the incoming particles. For the
remainder of this section, it is assumed to be known.

In an idealised, perfect detector that unambiguously reconstructs the entire interaction,
equation (1.1) would be enough to measure the cross section. The measurement would consist
of simply counting the number of occurred events N . For a real detector, however, three kinds
of complications occur.

1. Detector effects A real detector is never perfect. For example, particles might lose
energy or get scattered as they pass through inactive material such as support structures
or electronics before being measured. Some particles might not get measured at all, for
example, because their energy is too low or they escape through gaps in the detector,
such as the beam pipe. Particles can get misidentified because their measured properties
resemble another particle. As with any measurement apparatus, the recorded quantities
in a particle detector are subject to statistical fluctuations. Generally, a measured
distribution might differ significantly in shape and normalisation from its underlying
detector-independent counterpart.

2. Statistical nature of the scattering process The scattering of particles is described
by quantum mechanics and is, therefore, probabilistic. The expected number of occur-
rences of a process is given by equation (1.1), but the actual number of occurrences
is random. Thus, there is always a statistical uncertainty associated with the final
result. The actual number of times an event occurs is distributed according to a Poisson
distribution with an expectation value of N .

2



1.1 Cross-section measurements in collider physics

3. Background processes By the time the final-state particles reach the detector, what
has happened before is often ambiguous. Different physical processes might lead to
identical final-state particles. Particles that are crucial in identifying a given process can
get misreconstructed. Interactions unrelated to the nominal collision can cause signals in
the detector. Therefore, a completely different process might resemble the investigated
process.

Due to these effects, the actual number of events that occurred is not directly measurable.
While statistical fluctuations can only be dealt with by estimating an uncertainty, detector
effects and background contributions can and have to be corrected to obtain an accurate result.

In particle physics, this correction is usually done using event samples generated by a
Monte Carlo (MC) simulation. A MC simulation consists of the event generation and the
detector simulation. The event generation simulates the collision of the incoming particles
and all subsequent decays before the measurement in the detector. The detector simulation
describes the interaction of the final-state particles with active and inactive components of the
detector.

The quantities computed by a MC event generator are usually called generator-level or
truth-level quantities. They correspond to the underlying detector-independent quantities that
are to be measured. After processing these MC samples in the detector simulation, they are
called detector-level quantities. They correspond to the measured data from the real detector.

The event generation uses the most accurate available theoretical models for the interaction,
and the detector simulation uses thoroughly established principles from atomic and solid-state
physics. However, due to approximations in practical calculations and uncertainties on their
input parameters, it has to be assumed that the simulation is not entirely correct. Deriving
corrections from MC simulations and applying them to the data tends to introduce biases.
Care must be taken to minimise these biases and to quantify the remaining uncertainties. A
large fraction of the effort of making a particle physics measurement goes towards verifying
and correcting the event generation and detector simulation in the MC sample.

Another aspect that makes MC simulations useful is that the number of events is accessible
both at generator and detector level. If the detector simulation describes the real detector
sufficiently well, the relation between these two quantities will, within uncertainties, be the
same in data and MC, even if the event generation is not entirely correct. This makes it
possible to estimate the number of events at truth level in the data from the measured number
of events.

Thus, a measurement of a cross section consists of the following steps. Here, it is assumed
that the data from the detector is already available and that MC samples have been generated
and processed by the detector simulation.

1. Reconstruct events from measured data and perform the event selection. The event
selection removes events that fall outside the desired analysis phase space at detector
level or are otherwise problematic. This could include, for example, phase space regions
where the detector resolution is particularly bad, regions that are not well described by
the MC event generation or regions with a large contribution from background events.

2. Apply the same reconstruction and event selection to the detector-level MC samples.
At this point, it is possible to compare various distributions between data and MC to
determine how well the simulation describes the data. If the agreement is unsatisfactory,
correction procedures must be applied, or the event selection must be refined.

3



1 Introduction

3. Apply generator-level event selection to the MC samples. Here, a different selection is
employed. Events are only discarded if they fall outside the analysis phase space. This
step constitutes the definition of the measured cross sections.

4. At this point, three samples are available: detector-level data, detector-level MC and
generator-level MC. These samples are then used as input to a so-called unfolding
procedure that estimates the truth-level data distributions, from which the cross sections
can be derived.

5. During the first two steps, additional selection criteria and correction procedures are
introduced, which have uncertainties associated with them. The influence of these
uncertainties on the final result is quantified, e.g. by changing numerical values in the
procedure or by using an alternative procedure. The sum of these variations will become
part of the systematic uncertainty of the measured cross sections.

After discussing the theoretical framework of the measurement, the ZEUS detector and
related measurements in chapters 2, 3 and 4, the MC samples employed in this thesis are
introduced in chapter 5. The event reconstruction and selection at detector level (step 1) are
described in chapters 6 and 7, respectively. Differences between data and MC are discussed
and corrected (step 2) in chapter 8. Event selection at generator level (step 3) is presented in
section 7.4. The unfolding (steps 4) is performed in chapter 9. The estimation of uncertainties
(step 5) is described in chapter 10. Finally, the measured cross sections are presented in
chapter 11.

1.2 Interpretation of a cross-section measurement

The measured cross sections refer to processes almost exclusively found in particle colliders.
As such, they often have no direct application in any applied science or engineering. Their
practical value lies in their ability to discriminate and constrain different models of nature.
These models can then potentially be used to make predictions for technically relevant scenarios
or to gain insights into other domains of physics. The measured cross sections are defined in
such a way that they can be calculated from theoretical models. By doing so with different
models or different model parameters and comparing the predictions to the measurement, it is
possible to exclude specific models or constrain their parameter ranges.

This fact leads to another important use of cross section measurements. They can be used
to determine the parameters within a given model. The model parameters are iteratively
adjusted, and new theoretical cross sections are computed at each step. The set of parameters
whose corresponding cross section shows the best agreement with the measurement is the
preferred choice of model parameters, given the considered experimental data.

The cross sections measured in this thesis are expected to be described by the Standard
Model. In chapter 12, they will be used to determine the strong coupling constant, which is
the most relevant parameter of the Standard Model for the investigated scattering process. At
the same time, this is also a test of the Standard Model. If no value of the strong coupling
constant can be found that gives a satisactory description of the data, this could hint at physics
beyond the Standard Model. Furthermore, every measurement within the Standard Model is
simultaneously a constraint on new physics models. Any model that predicts deviations from
the Standard Model in the experimentally verified regimes can be excluded.
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CHAPTER 2

Theory of deep inelastic scattering at HERA

The desire to understand the structure of matter is as old as mankind itself. The idea of a
smallest, indivisible unit of matter dates back at least to ancient Greece.28 The first empirical
hints of such an object were described by Daniel Bernoulli in 1739. He found that the behaviour
of gases could be very well explained by describing them as a collection of submicroscopic
particles that move according to the laws of statistical mechanics.29 In the following two
centuries, the existence of atoms and later electrons was thoroughly established. Another
significant advancement was achieved by Ernest Rutherford in 1911, as he analysed the results
of the Geiger-Marsden experiment in which α-particles were scattered on a thin gold foil. He
observed that the scattering cross section does not correspond to that of an extended atom, as
was expected at the time, but rather to a point-like object at its centre, thus discovering the
nucleus. After further observations of the scattering of α-particles, Rutherford concluded that
there is a smallest constituent of the nucleus, the hydrogen ion, or as Rutherford called it, the
proton.30,31

Striving for an even deeper understanding of the structure of matter, further experiments
would soon be carried out, in which the scattering off protons was investigated. Due to their
point-like nature, electrons are an ideal probe to investigate the proton. The most powerful of
these experiments to date were located at the HERA accelerator, in which beams of protons
and electrons were accelerated and brought to collision.

2.1 The Standard Model

The Standard Model of particle physics is a theory that describes all currently known elementary
particles and all of their interactions, except gravity.4 An overview of the Standard Model
is given in figure 2.1. The model describes 17 elementary particles: twelve fermions, four
vector bosons and one scalar boson. These particles interact via the electromagnetic, the weak
nuclear and the strong nuclear interactions.17 In the figure and the remainder of this thesis,
natural units will be employed with the convention ℏ = c = 1.

Fermions are particles with half-integer spin. According to the spin-statistics theorem, they
respect the Pauli exclusion principle. This means that two identical fermions cannot occupy
the same state, which is an important property related to the stability of matter.32–34 All
elementary fermions are of spin 1

2 . They can be categorised into three generations. Each
generation contains one up-type quark with electric charge +2

3e, one down-type quark with
charge −1

3e, a charged lepton with charge −e and an electrically neutral neutrino, where e is
the elementary charge. Each fermion has a corresponding antiparticle with an identical mass,

5
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Figure 2.1: An overview of the Standard Model of particle physics. The elementary particles
are shown alongside their spin, their electric charge in units of the elementary charge and their
mass.17 The shaded areas indicate the interactions between the particles as mediated by the
respective bosons.

but its electric charge and other quantum numbers are the opposite compared to the regular
particle. Each quark exists in three variants, distinguished by their so-called colour charge.
The most relevant fermions for this thesis are the quarks and antiquarks and the electron and
its antiparticle, the positron. The six types of quarks are referred to as different quark flavours.
Similarly, the six lepton types are known as different lepton flavours.

Bosons are particles with integer spin. They can be distinguished into scalar bosons with
spin zero, vector bosons with spin one or tensor bosons with higher spin. The Standard Model
contains four types of elementary vector bosons. They are also referred to as gauge bosons
since their existence as mediators of the interactions of the Standard Model is predicted by the
corresponding gauge theories. The scalar Higgs boson was introduced to explain the masses of
the heavy gauge bosons.

The simplest interaction of the Standard Model is electromagnetism, which is also the only
long-range interaction in this model. This interaction is based on a U(1)EM gauge symmetry
acting on the electric charge. It is mediated by the photon and affects all particles with
an electric charge. The weak interaction is mediated by the W and Z bosons and affects
all fermions. It couples differently to left- and right-handed particles, making it the only
interaction in the Standard Model that violates parity and charge-parity symmetry.35 It is also
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the only interaction that can change the flavour of a particle, e.g. it can change an electron
into a neutrino.

At energies above ∼ 246GeV, the electromagnetic and weak interactions unify into the
electroweak interaction.5–7 This interaction is described by a SU(2)L × U(1)Y gauge theory,
where SU(2)L acts on the weak isospin of left-handed particles and right-handed antiparticles,
and U(1)Y acts on the weak hypercharge Y . At energies below this scale, the electroweak
symmetry is spontaneously broken to U(1)EM, leading to the emergence of the photon and the
weak bosons. In a gauge invariant theory, gauge bosons are expected to be massless, but the
weak bosons were found to be among the most massive particles in the Standard Model. The
Higgs mechanism was introduced to resolve this issue.8–11 This required the existence of the
scalar Higgs field and the associated Higgs boson.

The strong interaction is mediated by the gluons and only affects the quarks. It is governed
by a SU(3)c gauge symmetry, acting on the colour charge. Quarks carry a colour charge
that can take the values red, green and blue, while antiquarks can have the colours anti-red,
anti-green and anti-blue. Correspondingly, the quarks and antiquarks transform under the
fundamental and conjugate representations of the SU(3) group, respectively. Gluons transform
under the adjoint representation, meaning they carry a combination of a colour and an anti-
colour charge, leading to eight distinct gluons since the colour-neutral combination does not
exist. When multiple quarks form a composite particle, it is assigned a colour according to
additive colour mixing of elementary colour theory. Quarks only appear in colourless, i.e.
white bound states called hadrons. If a hadron is made from an even number of quarks, it
will have an integer spin and thus be a boson. Such a particle is called a meson. A hadron
made from an odd number of quarks and behaves fermionically is called a baryon. The most
important hadron is the proton, which is made from two up quarks and one down quark.4 The
charm, bottom and top quarks are known as the heavy quark flavours, while the up, down
and strange quarks are the light flavours.

2.2 Kinematics of lepton-hadron scattering

In the Standard Model, the scattering of leptons off hadrons is mediated by a gauge boson.
If this boson is an electrically neutral photon or a Z boson, the process is referred to as
neutral current (NC). In charged current (CC) processes, a charged W± boson is exchanged.
In the following, the interactions of the lepton are assumed Standard-Model-like via a single
boson. No assumptions are made about the hadronic interaction. The general graph of a
lepton-hadron scattering process e(k) + P (P ) → e′(k′) + P ′(P ′) is shown in figure 2.2. A
lepton e interacts with a hadron P via the exchange of a boson γ. The final state consists of
the scattered lepton e′ and the hadronic final state P ′, consisting of one or more particles. In
the context of this thesis, the incoming and scattered leptons are usually electrons or positrons,
and the exchanged boson is usually a photon. The formulae described in this section also
apply when considering neutrinos as external particles or weak-boson exchange.

The final-state four-momenta k′ and P ′ possess eight components, four of which are con-
strained by energy-momentum conservation, one is constrained by requiring the scattered
lepton to be on its mass-shell, and one corresponds to the azimuthal symmetry around the beam
axis. The hadronic system may consist of multiple particles, so it cannot be assigned a definite
mass. Two degrees of freedom remain necessary to describe the event. In early lepton-hadron
scattering experiments, the initial-state hadron was usually at rest in the laboratory frame.
Observables were the polar angle θ and the energy E′

e of the scattered lepton.30 In modern
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e(k)

P (P )

e′(k′)

P ′(P ′)

q γ∗

Figure 2.2: General graph of a lepton-hadron scattering process at leading order in electroweak
theory on the lepton side. Time runs from left to right.

collider experiments, both particles start with non-zero and non-equal momenta. The angle
and energy of both the scattered lepton and the hadronic system are measurable.

Instead of energies or angles, the event is more universally described by a set of Lorentz
invariant quantities. For lepton-hadron scattering, the following four quantities are commonly
used.36 The centre-of-mass energy

√
s is defined as
√
s =

√
(k + P )2. (2.1a)

At accelerator experiments, the centre-of-mass energy is known and constant, as it only depends
on the initial-state momenta.

The momentum transfer or boson virtuality Q2 is defined as

Q2 = −q2 = −(k − k′)2. (2.1b)

The negative sign is introduced as q2 is always negative. Especially interesting for the
investigation of the structure of the hadron is the regime where Q2 is large compared to the
so-called QCD scale Λ2

QCD ≈ (200MeV)2. The QCD scale is the energy above which the strong
interaction weakens, eventually leading to asymptotic freedom, see section 2.4.4. In this region,
the exchanged boson acts as a point-like probe of the hadron, such that it can be probed at
length scales below about 1 fm.

The Bjorken scaling parameter xBj and the inelasticity y are defined as

xBj =
Q2

2P · q , (2.1c)

y =
P · q
P · k . (2.1d)

As discussed in the next section, xBj has a clear physical interpretation in the quark-parton
model, one of the simplest models of lepton-hadron scattering. This simple correspondence is
lost, however, when considering corrections due to the strong interaction. In the fixed-target
frame, y is the fraction of the lepton’s energy transferred to the hadron. Neglecting the masses
of the initial-state particles, these four quantities are connected by the relation Q2 = xBjys,
which leaves again two quantities necessary to describe an event. Analysing their expressions,
one finds that these variables can take values in the range xBj, y ∈ [0, 1] and Q2 ∈ [0, s].

Based on the boson virtuality, two kinematic regimes can be distinguished. In the
photoproduction (PHP) regime Q2 ≲ Λ2

QCD and the exchanged photon is almost real. In
contrast, if Q2 ≫ Λ2

QCD, the process is referred to as deep inelastic scattering (DIS). In this
regime, the interaction can be interpreted as a hard scattering of the point-like boson on the
hadron.37
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2.3 Regimes of electron-proton scattering

The following section highlights important steps in the historical understanding of the proton
structure. As higher energy measurements became available, increasingly sophisticated models
of the proton could be constructed. In the following, the term ‘electron’ will denote both
electrons and positrons.

2.3.1 Elastic scattering on a point-like proton

In very low energy electron-proton scattering experiments, the proton appears like a point-like
elementary particle that can be described by the laws of quantum electrodynamics (QED).38

The corresponding Feynman graph is shown in the left panel of figure 2.3. The mass of the
final-state proton P ′ is known, such that only one degree of freedom remains for each event.
For the kinematic variables, one finds

xBj =
Q2

2P · q =
Q2

2P · (P ′ − P )
=

Q2

−(P ′ − P )2 − P 2
︸︷︷︸
=m2

P

+ P ′2
︸︷︷︸
=m2

P

=
Q2

−q2 = 1, (2.2)

where mP is the mass of the proton. The scattering cross section σ is often described using
the leptonic and hadronic tensors Lµν and Hµν

dσ

dQ2 =
πα2

Q4s2
LµνHµν , (2.3)

with α = e2

4π and e being the elementary charge.36 In the theory of QED, expressions for the
leading contributions to the leptonic and hadronic tensors can be directly derived from first
principles

Lµν = 2kµkν − (kµqν + kνqµ) + (k · q)gµν , (2.4a)

Hµν = Q2

[
1

2

(
qµqν

q2
− gµν

)
+

1

P · q

(
Pµ +

1

2
qµ
)(

P ν +
1

2
qν
)]

+O
(
m2
P

Q2

)
. (2.4b)

Combining these expressions leads to the scattering cross section

dσ

dQ2 =
2πα2

Q4 Y+ +O
(
m2
P

Q2

)
, (2.5)

with Y± = 1± (1− y)2. The proton mass may not be neglected in fixed-target or low-energy
collider experiments. In these scenarios, target mass corrections and higher-twist terms must
be included. A convenient way to treat target mass corrections is through the Nachtmann
variable, which is related to xBj but includes mass terms of the proton.39 This thesis focuses
on the high-energy regime, where these effects can be neglected. Therefore, terms involving
the proton mass are not evaluated explicitly here.

2.3.2 Elastic scattering on a structured proton

As higher-energy experiments were conducted, it became increasingly apparent that the proton
is not a point particle. Starting in 1956, Robert Hofstadter published a series of measurements
in which he scattered electrons of a few hundred MeV on stationary protons.40 The results
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e(k)

P (P )
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P (P ′)

q γ∗

e(k)
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q γ∗
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P (P )

e(k′)

P ′(P ′)

q γ∗
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Figure 2.3: Electron-proton scattering in different regimes. All graphs are shown at leading
order in electroweak theory on the electron side. Left: elastic scattering on a point-like proton.
Centre: elastic scattering on a structured proton. Right: inelastic scattering on a structured
proton.

showed a clear deviation from the predictions for a proton with a point-like charge and a
point-like magnetic moment. This suggested that the proton has a non-trivial internal structure.
A generalised form of equation (2.5) can be derived by using the most general expression for
the hadronic tensor that is allowed by Lorentz- and gauge invariance and current and parity
conservation

Hµν = Q2

[
W1(Q

2)

(
qµqν

q2
− gµν

)
+
W2(Q

2)

P · q

(
Pµ +

1

2
qµ
)(

P ν +
1

2
qν
)]

+O
(
m2
P

Q2

)
,

(2.6)

with W1, and W2 being the structure functions of the proton.36 They are real scalar functions
of the available Lorentz-invariant quantities and parameterise the interactions of the proton.
The corresponding cross section can be written as

dσ

dQ2 =
4πα2

Q4

(
y2F1(Q

2) + (1− y)F2(Q
2)
)
. (2.7)

The redefined structure functions F1/2 are functions of W1/2. Comparing to equation (2.5),
one finds that the model of a point-like proton predicts F1 = 1/2 and F2 = 1. The graph
corresponding to elastic electron-proton scattering with a structured hadron is depicted in the
middle panel of figure 2.3.

2.3.3 Inelastic scattering

Another leap in energy was achieved by the Stanford Linear Accelerator Center, which managed
to accelerate electrons to a O(10GeV) by 1969. For the first time, inelastic scattering could
be observed, in which the proton broke apart,41 as illustrated in the right panel of figure 2.3.
As the hadronic system P ′ may now consist of multiple particles, its invariant mass becomes
an additional degree of freedom, such that two quantities are necessary to describe the event.
Equation (2.2) no longer holds, such that in general xBj ̸= 1. The cross section is double
differential and equation (2.7) becomes

d2σ

dxBjdQ
2 =

4πα2

xBjQ
4

(
xBjy

2F1(xBj, Q
2) + (1− y)F2(xBj, Q

2)
)
. (2.8)

At these energies, terms involving the proton mass and higher-twist terms can be neglected.36

This also includes terms involving the mass of the scattered hadronic system, as they only
appear together with the proton mass.
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Figure 2.4: Models of inelastic electron-proton scattering. Left: quark-parton model. The
grey box indicates the electron-quark interaction. Right: general graph that is also valid for
quantum chromodynamics.

2.3.4 The quark-parton model

A theoretical model of inelastic electron-proton scattering was developed, which postulated
the existence of point-like quarks within the proton.42–44 In this model, the electron scatters
elastically on one of the quarks, which carries a fraction ξ of the total momentum of the
proton. This model is now known as the quark-parton model (QPM) and is depicted in the
left panel of figure 2.4. In this picture, one can distinguish the scattered quark p′ and the
proton remnant X, which collectively form the hadronic system P ′ = p′ +X.

In this model, one finds for the kinematic variables that

xBj =
Q2

2P · q = ξ
( Q2

2ξP · q
)

︸ ︷︷ ︸
=1

= ξ, (2.9)

where the last step is analogous to equation (2.2), except that the proton mass is replaced by
the quark mass, which can be neglected.

The electron-quark interaction in the QPM is identical to the elastic scattering of an electron
on a point-like proton. Thus, the cross section of this sub-process is given by equation (2.5)
when replacing the initial-state proton with the quark. To obtain an expression in terms of
the proton, the replacement P → ξP has to be made, which leads to xBj → ξ and s→ ξs. As
mentioned in section 2.1, the quark only carries a fraction ei of the elementary charge, such
that the coupling on the quark side needs to be modified. In equation (2.8), one of the factors
α corresponds to the electron and one to the quark. The latter one is modified as α→ e2iα.
In terms of the incoming proton, the QPM cross section therefore reads

(
dσ

dQ2

)

ξ,i

=
2πα2

Q4 Y+e
2
i . (2.10)

This expression is valid for a single quark of flavour i and at a fixed value of ξ. Assuming that
the quark flavour is not observable, all possible flavours must be summed over to obtain the
full electron-proton cross section. The momentum fraction ξ constitutes an additional degree
of freedom, such that two variables are necessary to describe the event. Therefore the full
electron-proton cross section becomes double differential and reads

d2σ

dxBjdQ
2 =

2πα2

xBjQ
4Y+

∑

i∈{q,q̄}
e2ixBjfi(xBj). (2.11)
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The probability of finding a quark i carrying a fraction ξ of the proton momentum is parame-
terised by the parton density distribution fi(ξ).36 Comparing equations (2.11) and (2.8), the
QPM predicts

F2(xBj, Q
2) =

∑

i

e2ixBjfi(xBj), (2.12a)

F1(xBj, Q
2) = F2(xBj, Q

2)/(2xBj). (2.12b)

2.3.5 Electroweak corrections to the quark-parton model

So far, only a photon was considered as the exchanged boson between the electron and the
quark. If Q2 is comparable to the Z boson mass M2

Z , the Standard Model also permits the
exchange of a Z boson and the interference of the two processes. Taking this effect into account
leads to a parity-violating term ∼ εµνκλqκqλ in the leptonic and hadronic tensors (2.6) and
correspondingly an additional structure function in the cross section.36 The electron-proton
cross section may thus be written in the most general form

d2σ±

dxBjdQ
2 =

4πα2

xBjQ
4

(
Y+F2(xBj, Q

2)∓ Y−xBjF3(xBj, Q
2)− y2FL(xBj, Q

2)
)
, (2.13)

where σ± refers to the scattering of positrons or electrons on protons. Here, the so-called
longitudinal structure function FL = F2 − 2xBjF1 was introduced, which vanishes in the QPM,
as shown in equation (2.12b).

In the QPM including electroweak corrections, one finds

F2(xBj, Q
2) =

∑

i∈q

(∫ 1

0

(
ξfi(ξ) + ξf̄i(ξ)

)
δ(ξ − xBj)dξ

)(
e2i +O

(
Q2

M2
Z

))
, (2.14a)

xBjF3(xBj, Q
2) =

∑

i∈q

(∫ 1

0

(
ξfi(ξ)− ξf̄i(ξ)

)
δ(ξ − xBj)dξ

)
O
(
Q2

M2
Z

)
, (2.14b)

FL(xBj, Q
2) = 0. (2.14c)

Note that the sums only run over the regular quarks. Antiquarks are taken into account
via the f̄i terms. In the QPM, F2 is proportional to the sum of the quark and antiquark
densities, while xBjF3 is proportional to their difference. Terms of order Q2/M2

Z arise due to
the interference of the diagrams corresponding to photon and Z exchange, and terms of order
(Q2/M2

Z)
2 arise due to the diagram corresponding to pure Z exchange. The terms related to

the Z boson also involve the weak isospin of the quarks and the electron, which is how this
interaction violates charge-parity symmetry.17,36

The parton density distributions fi(ξ) are not predicted by the QPM. However, some
constraints may be derived in the form of so-called sum rules. Since the proton is expected to
contain two up-valence quarks uv one down-valence quark dv, the relations

∫
fuv(ξ)dξ = 2 and∫

fdv(ξ)dξ = 1 should hold.36 The momentum sum rule predicts that the total momentum of
all quarks sums up to the total proton momentum

∑

i∈{q,q̄}

∫ 1

0
ξfi(ξ)dξ

!
= 1. (2.15)

Experimentally, it was found that this rule does not hold.36 The expression on the left turned
out to be less than one and depended on the energy at which it was measured. This indicates
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Figure 2.5: Leading tree-level contributions to electron-hadron scattering that include QCD
effects. Left: boson-gluon-fusion process. Middle and right: QCD Compton process.

that there are additional components of the proton that are not described by the original
QPM.

2.3.6 Inelastic scattering including effects from quantum chromodynamics

In 1979, the PETRA e+e− collider at DESY confirmed the existence of the gluon, which
turned out to be this missing contribution.45–48 The gluon is a gauge boson predicted by the
theory of quantum chromodynamics (QCD). It has no electric or weak charge and thus does
not couple directly to the boson coming from the electron. The leading contribution involving
a gluon occurs via an intermediate quark, as shown in figure 2.5. Quarks and gluons are
collectively referred to as ‘partons’.

The general graph of electron-proton scattering, including QCD corrections, is shown in
the right panel of figure 2.4. Here, p′ is the hadronic final state from the boson-parton
interaction. The generalised boson-parton vertex σ̂i allows for modifications of the coupling
due to QCD corrections. These effects can also lead to p′ consisting of multiple particles. This
is conceptually different from the case of elastic electron-proton scattering discussed before,
where the generalised boson-proton vertex Fi was introduced to describe the structure of the
proton.

The mass of the hadronic final state becomes a third degree of freedom in each event. The
kinematic quantities Q2, xBj and y are no longer sufficient to describe the event since only two
of them are independent. The simple relation (2.9) between xBj and ξ is lost and replaced by

xBj =
Q2

2P · q =
ξQ2

2ξP · q =
ξQ2

(q + ξP︸ ︷︷ ︸
=p′

)2 − q2 − ξ2 P 2
︸︷︷︸
=0

=
ξQ2

p′2 +Q2 =
ξ

1 + p′2

Q2

. (2.16)

When considering QCD corrections, all three structure functions given in equation (2.14) gain
additional terms proportional to the QCD coupling. They also gain contributions not involving
δ(ξ−xBj), such that the structure functions at any value of xBj are sensitive to the momentum
densities at all values of ξ.

2.4 Perturbative quantum chromodynamics

The following section introduces the theory of QCD. Deriving this theory with complete
theoretical rigour is beyond the scope of this thesis.39,49 Instead, key ideas in the development
from non-relativistic quantum mechanics to quantum field theory and eventually QCD are
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highlighted. It is demonstrated that QED and QCD can be derived in a similar manner. The
phenomenological differences, however, are vast and QCD is a rich theory with a wide range
of unique features.

2.4.1 Path to quantum field theory

The classical energy-momentum relation of a single free particle of mass m is E = p2

2m with E
and p being the energy and momentum of the particle. Quantising this relation leads to the
well-known Schrödinger equation

i
∂

∂t
ψ(x⃗, t) = − 1

2m
∇2
x⃗ψ(x⃗, t), (2.17)

that describes the evolution of the wave function ψ(x⃗, t) and forms the basis of non-relativistic
quantum mechanics.50,51

Being a first-order differential equation in time and second-order in space, this equation
is clearly not Lorentz covariant. An equation describing relativistic quantum mechanics can
be derived analogously from the relativistic energy-momentum relation E2 = m2 + p2. The
quantised version of this relation is the Klein-Gordon equation

(
∂µ∂

µ −m2
)
ψ(x) = 0, (2.18)

with x = (t, x⃗) being the spacetime coordinate.52,53 This equation turns out to give the correct
description of scalar particles, i.e. particles without spin.

To derive a first-order differential equation for relativistic quantum mechanics, Paul Dirac
attempted to take the square root of the Klein-Gordon operator. He realised this is not possible
for a scalar wave function, but instead, it required a wave function of at least four components.
The operator that acts on the wave function becomes a 4×4-matrix. The Dirac equation reads

(
iγµ∂µ −m

)
ψ(x) = 0, (2.19)

where the Dirac matrices γµ are four complex 4×4-matrices and ψ is now a four-component
Dirac spinor.54 To simplify notation, the spinor indices of ψ and γµ are usually not written
explicitly. This equation correctly describes spinor particles, i.e. particles with spin 1

2 . The
four components correspond to the two spin-states of the particle and its antiparticle.

The Dirac equation describes both particles and antiparticles. This implies that particles may
be created or annihilated. Being a one-particle equation, the Dirac equation cannot describe
these processes. To describe systems with a variable number of particles, the framework of
quantum field theory is necessary.38

2.4.2 Quantum electrodynamics

The Lagrangian density corresponding to the Dirac equation is

L = ψ̄
(
iγµ∂µ −m

)
ψ, (2.20)

with ψ̄ = ψ†γ0.38 This expression exhibits a global U(1) symmetry, i.e. the equation remains
invariant when multiplying ψ by unitary 1×1-matrix ψ → exp(iθ)ψ with constant θ. The
theory of QED can be derived by promoting this global symmetry to a local one θ = θ(x).
For the Lagrangian to remain invariant, the derivative ∂µ has to be replaced by the covariant
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derivative Dµ = ∂µ + ieAµ. A massless vector field Aµ(x) is introduced, that transforms as
Aµ → Aµ+

1
e∂µθ(x). A kinetic term for this vector field must be added to complete the theory.

This term can be derived from the classical relativistic Maxwell equations ∂µFµν = 0 with
Fµν = ∂µAν −∂νAµ. Ignoring muons and τ -leptons, the complete Lagrangian density for QED
thus reads36

LQED = −1

4
FµνF

µν + ψ̄
(
iγµDµ −m

)
ψ. (2.21)

In this equation, the spinor field ψ represents electrons and positrons, and the vector field Aµ
represents photons. The first term describes the propagation of free photons, and the second
term that of electrons. Via the additional field term in the covariant derivative, the second
term also describes the interaction of photons and electrons. When ignoring this interaction
term, the theory can be solved exactly and trivially, as all particles remain in their initial states
of motion and can never interact with each other. Taking the interaction term into account is
not possible exactly and analytically. In many physically relevant situations, the coupling e is
numerically small, such that the interaction term can be treated as a small perturbation of
the free theory. This allows performing approximate computations in the interacting theory
by expanding expressions in powers of the coupling. The Feynman diagram formalism gives a
convenient framework to perform this expansion.38

In QED, Feynman diagrams may contain only three elements corresponding to the three
terms in the Lagrangian: the photon propagator, the electron propagator and the electron-
photon vertex. The corresponding graphical representations and mathematical expressions are
given in figure 2.6. Each diagram that is built from these elements corresponds to one possible
way in which particles may interact. A scattering process is defined by the set of incoming
and outgoing particles. According to the superposition principle of quantum mechanics, the
transition amplitude for a particular scattering process is constructed by summing all possible
diagrams with the corresponding set of external particles. For any given process, there is
an infinite number of such diagrams. The diagrams containing more powers of the coupling
will be numerically smaller and therefore contribute less to the amplitude. An observable
can thus be calculated approximately by considering only those diagrams that contain low
powers of the coupling. In the Feynman diagram picture, this corresponds to only considering
diagrams containing a small number of vertices. All terms contributing at a given order should
be considered to ensure the cancellation of large corrections.

2.4.3 Quantum chromodynamics

The theory of QCD can be derived similarly to QED, except that a local SU(3) gauge symmetry
is imposed rather than a U(1) gauge symmetry. This symmetry acts on an additional degree of
freedom called ‘colour’. Correspondingly, the wave function is promoted to a vector in colour
space ψ = (ψred, ψgreen, ψblue). The gauge transformation now reads ψ → exp(ig λ

a

2 θ
a(x))ψ,

with the QCD coupling constant g and eight independent phases θa(x). The generators of
the colour-group λa are eight Hermitian 3×3-matrices that satisfy the commutation relation
[λa, λb] = 2ifabcλc with fabc being the structure constants of SU(3).36 To simplify notation,
the quark-colour indices of ψ and λa are usually not written explicitly. QCD is called a
non-Abelian gauge theory because the generators do not commute. This property contributes
significantly to the rich phenomenology and increased complexity of QCD compared to QED.

When defining the covariant derivative, eight vector fields Aaµ need to be introduced Dµ =

∂µ + ig λ
a

2 A
a
µ. These fields are called gluons, and unlike the electrically neutral photon in
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−igνµ
q2

i(γµβαpµ +mδβα)
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−ieγµβα
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α β

p

α

β

µ

Figure 2.6: The graphical and mathematical representation of the QED Feynman rules. The
indices µ, ν ∈ {0, 1, 2, 3} are spacetime indices and α, β ∈ {1, 2, 3, 4} are spinor indices.

QED, they also carry colour charges. The gluon-colour charge is a combination of a quark-
colour charge and an antiquark-colour charge, excluding the colour-neutral combination. The
gluon-colour charge can thus take eight different values rather than three. The covariant
derivative becomes a matrix in colour space. The field strength tensor takes the form
F aµν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν . Notably, this expression contains an additional quadratic

term not present in its QED analogue. The QCD Lagrangian reads

LQCD = −1

4
F aµνF

aµν +
∑

f

ψ̄f
(
iγµDµ −mf

)
ψf , (2.22)

where the sum over f runs over the six flavours of quarks. The corresponding Feynman rules
are given in figure 2.7.36 The quadratic term in the field strength tensor leads to the appearance
of three- and four-gluon vertices.

An important phenomenological property of QCD is colour-confinement. As discussed in the
next section, the gluon field between colour-charged particles does not decrease with distance.
Therefore, particles that carry a colour charge cannot be isolated at large distances. Partons
always appear as part of colour-neutral bound states called hadrons. There are two types of
hadrons. Mesons are formed from a quark and an antiquark with opposite colour charges, e.g.
red and anti-red. Baryons are formed from three quarks of different colours, i.e. red, green
and blue. In both cases, the overall colour charge of the hadron vanishes. In addition to these
so-called valence quarks, hadrons contain many gluons, which carry a colour and an anti-colour
charge, allowing them to continuously form and annihilate further quark-antiquark pairs.

2.4.4 Renormalisation and running of the strong coupling

One of the most distinctive features of QCD is the fact that the strong coupling decreases
with energy. This feature makes QCD qualitatively different from QED and is responsible for
many of its phenomenological properties. It leads to colour confinement at low energies and
asymptotic freedom at high energies.12,55 This makes perturbative QCD only applicable at
sufficiently high energies, where the coupling becomes small. This behaviour can be derived
by renormalising QCD in perturbation theory.
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Figure 2.7: The graphical and mathematical representation of the QCD Feynman rules.
The indices µ, ν, ρ, λ ∈ {0, 1, 2, 3} are spacetime indices, α, β ∈ {1, 2, 3, 4} are spinor indices,
i, j ∈ {red, green, blue} are quark-colour indices and a, b, c, d, e ∈ {1, 2, . . . , 8} are gluon-colour
indices.

Strategy for renormalisation

The following computation is performed in the limit of massless quarks. In massless QCD,
there are only three independent quantities that can be renormalised: the quark and gluon
field and the coupling.a The bare quantities are related to the renormalised ones as

ψ(b) =
√
Zψψ(r), (2.23a)

Aa,µ(b) =
√
ZAA

a,µ
(r) , (2.23b)

g(b) = Zgµ
εg(r). (2.23c)

The calculation is performed using dimensional regularisation in D = 4 − 2ε dimensions.
Dimensional analysis of the bare Lagrangian (2.22) shows that the bare coupling g(b) must
have mass dimension ε. The factor µε, where µ is an arbitrary constant of mass dimension 1,
is introduced in equation (2.23c) to ensure that the renormalised coupling is dimensionless.
The renormalisation factors Z must be chosen to keep the results of the computations finite.
They can be computed using perturbation theory.

aIn principle, the gauge fixing parameter ξ is also renormalised. This is not relevant for the present discussion,
and it does not add anything to the theory, since Zξ = ZA.56
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By definition, the bare coupling g(b) is independent of the scale µ. Therefore, the scale
dependence of the renormalised coupling g(r) must be such that the right-hand side of equa-
tion (2.23c) is also independent of µ. In the following, the factor Zg is explicitly computed at
one-loop order in perturbation theory and the scale dependence of the coupling is extracted.

One-loop perturbative calculation

Writing the Lagrangian (2.22) in terms of the renormalised quantities yields

LQCD =− 1

4
(F 2)

(gg)
(b) − 1

4
(F 2)

(ggg)
(b) − 1

4
(F 2)

(gggg)
(b) + ψ̄(b)iγ

µ∂µψ(b) − ψ̄(b)g(b)
λa

2
Aµ(b)γµψ(b)

=− 1

4
(F 2)

(gg)
(r) − 1

4
(F 2)

(ggg)
(r) − 1

4
(F 2)

(gggg)
(r) + ψ̄(r)iγ

µ∂µψ(r) − ψ̄(r)g(r)
λa

2
Aµ(r)γµψ(r)

− 1

4
δgg(F

2)
(gg)
(r) − 1

4
δggg(F

2)
(ggg)
(r) − 1

4
δgggg(F

2)
(gggg)
(r)

+ δqqψ̄(r)iγ
µ∂µψ(r) − δqqgψ̄(r)g(r)

λa

2
Aµ(r)γµψ(r),

where the symbols (F 2)(gg), (F 2)(ggg) and (F 2)(gggg) are used as shorthands for the two-, three-
and four-gluon terms in F aµνF aµν . The first part of the renormalised Lagrangian looks identical
to the bare one, but written in terms of the renormalised quantities. The second part contains
additional interactions, the so-called counterterms. The coefficients of the counterterms can
be expressed in terms of the renormalisation constants by analysing the terms that they
multiply. One finds δgg = ZA − 1, δqq = Zψ − 1, δqqg = ZgZψ

√
ZA − 1, δggg = ZgZ

3/2
A − 1

and δgggg = Z2
gZ

2
A − 1. Infinities that appear in the calculation can be absorbed into these

coefficients such that the calculated observables remain finite.56,57

When calculating observables in the renormalised theory, additional vertices appear, corre-
sponding to the counterterms. Since their coefficients always involve the coupling, they should
be treated as interactions, even if they contain just two fields. The counterterm Feynman rules
are given in figure 2.8.

To order g3(r), the corrections to the gluon propagator, quark propagator and quark-gluon
vertex are

q

= +

= iΠµν(q) +iδgg(q
µqν − q2gµν), (2.24a)

q

= +

= iΣ(q) + iδqqγ
µqµ, (2.24b)

q

= +

= ig(r)Γ
µ(q) − ig(r)δqqg

λ

2
γµ, (2.24c)

where the grey circles refer to all possible one-loop corrections without counterterms. The
functions Π, Σ and Γ can be calculated using perturbation theory, and their divergent parts
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Figure 2.8: The graphical and mathematical representation of the QCD counterterm Feynman
rules. The indices are labelled as in figure 2.7.

can be absorbed into the counterterm coefficients δ. These terms are explicitly calculated at
one-loop order in appendix A. The results are

iΠµν(q) = i

(
2

3
nf −

5

3
CA

)
f(q)(qµqν − q2gµν), (2.25a)

iΣ(q) = iCFf(q)q
µγµ, (2.25b)

ig(r)Γ
µ,a(q) = −ig(r)(CF + CA)f(q)

λa

2
γµ + (UV finite), (2.25c)

with f(q) =
g2(r)

16π2

(
1

ε
− γE + log(4π)− log

(−q2
µ2

))
,

where CF = N2−1
2N and CA = N are the Casimir operators of the SU(N) group and nf is the

number of active quark flavours, i.e. the number of quark flavours whose mass is low enough
to contribute at the investigated energy.39,49
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Inserting equations (2.25) into (2.24) and absorbing their divergent parts in the counterterms
yields

δMS
gg = −

g2(r)

16π2

(
1

ε
− γE + log(4π)

)
·
(
2

3
nf −

5

3
CA

)
, (2.26a)

δMS
qq = −

g2(r)

16π2

(
1

ε
− γE + log(4π)

)
· CF, (2.26b)

δMS
qqg = −

g2(r)

16π2

(
1

ε
− γE + log(4π)

)
· (CF + CA). (2.26c)

In the ‘minimal subtraction’ scheme (MS), only the divergent terms involving 1/ε are absorbed
into the counterterms. Here, the ‘modified minimal subtraction’ scheme (MS) is used. In this
scheme, also the constant terms involving γE and log(4π) are absorbed. This definition is
convenient, as these terms appear together in the calculation. Note that the counterterms are
proportional to g2(r). Thus, the expressions in equation (2.24) are a consistent expansion up to
O(g3(r)).

The coupling renormalisation factor is then given by

ZMS
g =

δMS
qqg + 1

(1 + δMS
qq )

√
1 + δMS

gg

= 1 + δMS
qqg − δMS

qq − 1

2
δMS
gg +O(g4(r)) = 1−

g2(r)

4πε

b0
2

+ g2(r)C
MS,

(2.27)

where b0 = (11CA − 2nf)/12π and CMS is a constant involving γE and log(4π).
The scale dependence of the renormalised coupling is found by demanding that the bare

coupling is independent of the scale

0
!
= µ

dg(b)

dµ
= µ

d
(
g(r)µ

εZg
)

dµ

Inserting equation (2.27) and solving for the scale dependence of the strong coupling yields

µ
dg(r)

dµ
= − g3r

4π
b0 +O(ε) +O(g5(r)),

or equivalently, for the β-function of QCD

β(αs) = µ2
dαs

dµ2
= −α2

s b0 +O(α3
s ), with b0 =

11CA − 2nf

12π
(2.28)

where αs =
g2(r)
4π . In QCD, CA = 3 and nf ≤ 6, such that b0 is positive. This equation, therefore,

predicts that the strong coupling decreases with increasing energy. This ultimately leads to
asymptotic freedom at high energies and colour confinement at low energies.12

At one-loop order in perturbation theory, this differential equation can be solved exactly,
and an analytic expression for the running of the coupling may be derived

αs(µ
2) =

αs(µ
2
0)

1 + αs(µ20)b0log
(
µ2

µ20

) =
1

b0log
(

µ2

Λ2
QCD

) . (2.29)
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Figure 2.9: The running of the strong coupling computed at up to four-loop order in the zero-
mass variable-flavour-number scheme. The ratio is shown relative to the two-loop calculation,
which is the highest order without discontinuities. All curves were calculated starting from
αs(M

2
Z) = 0.118. When passing a quark-mass threshold, the curves exhibit a small kink and,

starting at three-loop order, a discontinuity. The quark-mass thresholds are set identically at
each order in QCD.

Usually, αs(µ
2) is parameterised either by fixing its value at an arbitrary reference scale αs(µ

2
0)

or using the QCD scale ΛQCD. It is conventional to quote the strong coupling at the mass of
the Z boson: αs(M

2
Z).

58

This derivation is performed in the zero-mass fixed-flavour-number scheme. In this scheme, all
quarks are treated as massless, but individual quark flavours only contribute to the calculation
when the considered scale is larger than their mass.59 Consequently, nf(µ) is a step function
that increases at the quark-mass thresholds. This scheme is valid only if the considered scale
is far away from any of the quark masses, where threshold effects become relevant. When
passing a quark-mass threshold and adjusting nf, the value of b0 changes, leading to a kink in
the αs(µ

2) curve. Furthermore, at higher orders in perturbation theory, this transition of the
QCD scheme can lead to a discontinuity. At the mass of the nf + 1-th quark, the theory with
nf + 1 active quarks may be related to the theory with nf active quarks as

α(nf+1)
s (m2

f+1) = α(nf)
s (m2

f+1)

(
1 +

∞∑

n=1

cnα
(nf)
s (m2

f+1)
n

)
. (2.30)

It turns out that c1 = 0.17,60 Therefore, discontinuities are only present at three-loop order
and higher. The running of αs(µ

2) is shown in figure 2.9 up to four-loop order.
The scale µ is called the renormalisation scale µr. It is an arbitrary parameter introduced

during the renormalisation procedure. If the perturbative expansion was performed to all
orders, any dependence on µr in the computed quantities would cancel. However, since the
series is truncated at a fixed order, computed observables gain a scale dependence. Truncating
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the perturbative series introduces an uncertainty in predictions due to missing higher-order
terms. To minimise this uncertainty, the perturbative calculation should be performed to as
many orders as possible.

2.4.5 Factorisation in lepton-hadron collisions

The central assumption of the QPM is that the lepton-hadron cross section can be factored
into the probability fi(ξ) of finding a given quark in the proton and the cross section of the
lepton-quark interaction, see equation 2.11. This assumption also holds when considering
QCD effects, but the parton density distributions fi(ξ) no longer correspond directly to a
probability. The straightforward generalisation of the QPM formula is

d2σ

dxBjdQ
2 =

∑

i∈{q,q̄,g}

∫ 1

xBj

dξfi(ξ)σ̂i

(
xBj

ξ
,Q2, µ2r , αs(µr)

)
, (2.31)

where i runs over all partons in the proton and σ̂i is the lepton-parton matrix element, which
is calculable in perturbative QCD.61 The parton density distributions fi(ξ) belong to the
domain of low-energy QCD, where the coupling becomes large, and perturbation theory is
not applicable. Currently, the fi(ξ) can only be determined from fits to experimental data or,
to some extent, from lattice QCD computations.62 Instead of fi(ξ), these determinations are
usually performed in terms of the parton distribution functions (PDFs) ξfi(ξ).

Three types of divergences can occur when evaluating σ̂i. Ultraviolet divergences can occur
when a loop momentum goes to infinity, causing the integral to diverge. They can be dealt with
by renormalisation, as shown in the previous section. Infrared divergences can occur when the
momentum of a particle goes to zero, causing the propagator to diverge. Collinear divergences
can occur when two massless particles become collinear, which also causes the propagator to
diverge. According to the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems, infrared
and collinear divergences in the final state cancel when considering both real and virtual
corrections. The mass factorisation theorem states that infrared and collinear divergences in
the initial state can be factored out of the matrix element and into the PDFs.63 A procedure
similar to renormalisation can be used on the PDFs to cancel these divergences. As a result,
the matrix elements and the PDFs gain a dependence on a newly introduced scale µf, known
as the factorisation scale.36

Mathematically, the factorisation scale is the scale at which the PDFs are matched to
the lepton-parton matrix elements. Parton radiation above the scale µf is treated fully
perturbatively in the matrix elements, while radiation below this scale is absorbed into the
evolution of the PDFs. Equation (2.31) becomes

d2σ

dxBjdQ
2 =

∑

i∈{q,q̄,g}

∫ 1

xBj

dξfi(ξ, µ
2
f )σ̂i

(
xBj

ξ
,Q2, µ2r , µ

2
f , αs(µ

2
r )

)
. (2.32)

The dependence of the PDFs on µf is predicted by perturbative QCD. This is similar to the
µr dependence of αs, discussed in the previous section. This evolution is given by the DGLAP
equations

µf
∂fi(ξ, µ

2
f )

∂µf
=

∑

j∈{q,q̄,g}

∫ 1

ξ

dξ′

ξ′
Pij

(
ξ

ξ′
, αs(µ

2
f )

)
fj(ξ

′, µ2f ). (2.33)
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Here, i and j run over all partons and Pij are the splitting functions. The splitting function
Pij(z) gives the probability for a parton j to split into a parton i containing a fraction z of
the original partons momentum. The remaining partons resulting from the splitting are not
considered explicitly.36 The splitting functions can be calculated using perturbation theory.

This system of coupled differential equations can be used to evolve the PDFs from one scale
to another. Thus, it is sufficient to describe the PDFs at a single scale ξfi(ξ, µ2f,0), where µ2f,0
is known as the parameterisation scale.

2.5 Jets

In high-energy QCD, the final state of the lepton-hadron interaction is described in terms of
partons. As described in the previous section, these partons are experimentally unobservable as
they will fragment into a collection of hadrons. Since these hadrons are moving approximately
in the same direction, they will form a bundle. By summing up the momenta of all hadrons
in such a bundle, the momentum of the original parton can be approximately reconstructed.
This allows to measure partons experimentally, even though they are not directly observable.
A collection of particles moving in a similar direction is called a ‘jet’. Jets are an essential tool
for comparing theoretical predictions and experimental measurements of QCD processes.

Jets can be constructed from simulated partons from a QCD calculation, simulated hadrons
from MC simulations or experimentally measured particles or energy deposits. In either case,
the input to the jet clustering procedure is a collection of four-momenta corresponding to some
type of object. One distinguishes parton-level, hadron-level and detector-level jets depending
on the object type used. Since these are different jet definitions, they must be kept strictly
separate. However, there is a strong correspondence between jets constructed at different levels
that allows them to be correlated. This makes jets a valuable tool for comparing theoretical
predictions and experimental measurements.

2.5.1 Jet algorithms

It is essential to clearly define what constitutes a jet, to make precise comparisons of theoretical
predictions and experimental observations. For this purpose, various jet algorithms have been
developed that construct jets from groups of input objects.

The results of jet algorithms can be visualised in the η-ϕ-plane. Here, ϕ is the azimuthal
angle around the collision axis and η = −log(tan(θ/2)) is the pseudorapidity with θ being the
polar angle with respect to the collision axis. While η can take any value in (−∞,∞), values
outside |η| ≲ 3 are not of interest here, as they are not experimentally accessible in the ZEUS
detector due to being very close to the beam pipe. A possible set of inputs and two ways to
cluster them are shown in the η-ϕ-plane in figure 2.10.

Historically, the so-called cone algorithms were one of the first widely used classes of
jet algorithms. These algorithms place circles in the η-ϕ-plane, within which particles are
contained. The four-momenta of all particles within each circle are then added to construct
the jet axis corresponding to that circle. The circles are then moved around until the jet axes
coincide with the centres of the corresponding circles. One example of such an algorithm is
the SISCone algorithm.65 A possible output of this algorithm is shown in the left panel of
figure 2.10.

Cone algorithms are often infrared- or collinear unsafe. An infrared unsafe algorithm is
one whose output might change significantly when one of the particles in the jet radiates an
additional soft particle. Collinear unsafe algorithms are affected similarly by radiation that is
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Figure 2.10: Comparison of different jet clustering algorithms.64 The individual cells indicate
the location and energy of the input particles, and the colours indicate the constructed jets.
The same input particles were clustered in each panel using a different jet algorithm.

almost collinear to the particle axis. An algorithm affected by either of these problems will
lead to unstable output sensitive to small input fluctuations. This makes it challenging to
compare theoretical predictions and experimental measurements meaningfully.66 The SIScone
algorithm is an exception, as it is both infrared and collinear safe.

Another class of algorithms was developed that is both infrared- and collinear-safe. These
so-called sequential clustering algorithms proceed by grouping particles based on their momenta.
The most relevant such algorithm used at HERA is the k⊥-algorithm. It works as follows:67

1. For each particle i, calculate the distance to the collision axis as

di = p2⊥,iR
2.

2. For each pair of particles i and j, calculate the distance between particles as

dij = min
(
p2⊥,i, p

2
⊥,j
)(
∆η2ij +∆ϕ2ij

)
.

3. Find the smallest value in {di, dij}.
a) If the smallest value is di: Identify particle i a jet and remove it from the list of

inputs.
b) If the smallest value is dij : Combine particles i and j, i.e. add their combination to

the list of inputs and remove i and j as individual inputs.

4. Repeat until no more input particles are left.

The value R in the first step is a constant that can be used to control the angular size of
the jets. At HERA, usually R = 1. The term in parentheses in the expression for dij is the
separation of the two particles in the η-ϕ-plane. This algorithm will start by merging particles
of small energy or small angular separation. This makes it insensitive to infrared or collinear
radiation. A possible output of this algorithm is shown in the right panel of figure 2.10.

In step 3b, two particles are merged into one. There are multiple ways to perform this
merging. The simplest way is to add the four-momenta of the two particles. This is sometimes
called the E-scheme and will lead to massive jets. The construction of massless jets is often
desired for consistency with theoretical predictions of massless quarks. This can be achieved
via the p⊥-weighted scheme, in which the combined particle is defined as p⊥ = p⊥,i + p⊥,j,
η = (ηip⊥,i + ηjp⊥,j)/p⊥, ϕ = (ϕip⊥,i + ϕjp⊥,j)/p⊥ and m = 0.67
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Sequential clustering algorithms are computationally more demanding and only came into
widespread use due to advances in hardware and software.68 Other sequential clustering
algorithms are available, such as the anti-k⊥-algorithm.64 This algorithm is similar to the
k⊥-algorithm, except that the p2⊥ terms in step 1 and 2 are replaced by 1/p2⊥. This leads
to jets becoming much more circular, which is desirable at hadron-hadron colliders, where
many collisions can occur at each bunch crossing, leading to much more background activity
in the detectors. At HERA, it has been shown that both algorithms lead to a similar physics
performance.69

2.5.2 The Breit frame of reference

In this thesis, jet production in DIS will be used to study QCD. Single-jet events can arise via
the QPM-like process. Here, and in the remainder of this thesis, the term ‘QPM-like process’
refers to single-jet production in DIS, including higher-order QCD and electroweak corrections
such as PDF evolution, collinear gluon emission, loop corrections or photon radiation.70 The
leading contribution to this process is of zeroth order in QCD, O(α2αs

0), in the matrix
elements. First-order and higher-order QCD effects in the matrix elements will result in
corrections to the single-jet process and additional contributions from events with two or more
jets. This makes it difficult to probe QCD effects, as they will only manifest as a relatively
small correction to the distributions produced by the leading-order QPM-like process. It is
convenient to suppress the single-jet process to probe QCD effects more directly. In this case,
the leading contribution to the jet distribution will be from dijet events, which are of first
order in QCD in the matrix elements.

A convenient way to suppress single-jet events is to consider the events in the Breit reference
frame.36 This frame is defined such that the exchanged boson and the interacting parton
from the hadron collide head-on along the z-axis, and the parton reverses its longitudinal
momentum. Thus, the four-momentum of the exchanged boson is qµ = (0, 0, 0,−Q) and that
of the incoming parton is ξPµ = (Q/2, 0, 0, Q/2). Single-jet and dijet production are shown in
the Breit frame in figure 2.11. In the case of single-jet production, the outgoing quark has
a momentum of p′µ = (Q/2, 0, 0,−Q/2), i.e. by construction, it has a vanishing transverse
momentum in the Breit frame p′⊥,Breit = 0. In the dijet event, both jets will possess an equal
and non-zero transverse momentum in the Breit frame.

Therefore, requiring jets to have a minimum transverse momentum in the Breit frame rejects
single-jet events while retaining events with two or more jets. When applying this definition,
the leading-order contribution to jet production will be of first order in QCD. This will allow
for a precise study of QCD effects while minimising the influence of the modelling of the QPM
process.

2.5.3 Inclusive jets

Various observable distributions can be constructed from jets. The simplest class of observables
originates from dijet events, which are the leading-order QCD contribution to jet production.
The two corresponding diagrams are shown in figure 2.5. An event is classified as a dijet
event if it contains at least two jets of significant transverse momentum in the Breit frame.
Possible observables in such an event are the invariant mass of the dijet system p′2 =
(p1+ p2)

2, the average transverse momentum p⊥,Breit = (p⊥,Breit,1 + p⊥,Breit,2)/2, the difference
of pseudorapidities η∗ = |ηBreit,1 − ηBreit,2|/2 and the momentum fraction of the interaction
parton ξ = xBj(1 + p′2/Q2).71 These quantities give insights not only into the occurrence of
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Figure 2.11: Comparison of the QPM and QCD Compton processes in the Breit reference
frame. The left side shows the Feynman diagram of each process, and the right side shows
the event views in the Breit frame. The scattered quark in the QPM process will satisfy
p⊥,Breit = 0, while the two jets in the QCD Compton process will have p⊥,Breit > 0.

dijet events themselves but also into the relations between the two leading jets in the event.
Analogous quantities can be constructed for trijet events, which are events containing three or
more significant jets.72

Constructing observables based on a single jet can be less straightforward. Since the leading-
order QCD contribution to jet production involves two jets, observables need to be insensitive
to the presence of additional jets. Consider, for example, the pseudorapidity of the leading jet
ηBreit,1 as an observable. The leading jet is that with the highest transverse momentum p⊥,Breit.
If two jets have a similar transverse momentum, then small fluctuations in the reconstruction
of p⊥,Breit can change the identification of the leading jet and thus significantly change ηBreit,1.
Therefore, this observable is unsuitable, as it is sensitive to small fluctuations.

A more suitable class are the so-called inclusive jet observables. For these observables, each
jet is considered individually. If an event contains two jets of significant transverse momentum,
both jets will contribute to the inclusive jet distributions. By definition, the presence of an
additional jet does not change the contributions made by the other jets. This is conceptually
different from the dijet or trijet observables, where each event can contribute at most once to
the distributions. When considering inclusive jets, the information about the relations between
jets within an event is lost, but additional information is gained regarding each individual
jet. Furthermore, in dijet studies, one of the jets may fall outside the acceptance region,
so the entire event must be discarded. In an inclusive jet analysis, the other jet can still
contribute, leading to single-jet events even in the Breit frame. Therefore, inclusive jet studies
are complementary to dijet and trijet studies.
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2.5 Jets

Another advantage of inclusive jet observables is a higher precision of the theoretical
calculations. Since only one jet needs to be considered explicitly, the remainder of the event
can be integrated over, potentially simplifying the calculation.

One complication that arises in event-based inclusive jet studies is the treatment of statistical
uncertainties. Since events can contribute multiple times to the distributions, the observables
are no longer Poisson-distributed. This leads to increased statistical uncertainties and statistical
correlations. Implications of this fact are discussed in detail in section 9.3.3.

One needs to distinguish inclusive jets in the Breit frame and inclusive jets in the laboratory
frame. When considering inclusive jets in the Breit frame, one refers to all jets that have
significant transverse momentum in the Breit frame, such that the leading-order contribution
comes from dijet events. This criterion is not present when considering inclusive jets in the
laboratory frame, such that the leading-order contribution is from single-jet events produced
via the QPM-like process. In this thesis, the term ‘inclusive jets’ will always refer to inclusive
jets in the Breit frame.
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CHAPTER 3

Experimental setup

The data used in this thesis were collected by the ZEUS experiment at the HERA lepton-
hadron accelerator at the DESY national research centre in Hamburg, Germany. Before
HERA, the DESY institute was home to three smaller circular accelerators.25 The DESY
accelerator, which gave the institute its name, was active from 1965 to 1976 and allowed to
perform fixed-target experiments with an electron beam of 6GeV. DESY has significantly
contributed to validating the theory of QED.73 The second accelerator, DORIS, was one of
the first storage ring facilities worldwide and was in operation from 1974–1990. It could
collide electron and positron beams at 3.5GeV each, which was later upgraded to 5.6GeV.
DORIS enabled significant advancements towards understanding heavy quarks by studying
the B-mesons’ properties and placing further bounds on the top quark’s mass.74 The third
accelerator at DESY was an even larger electron-positron storage ring with a length of 2.3
kilometres. PETRA operated in collider mode from 1979 to 1986, accelerating the beams to
19GeV and later 23.5GeV. At these energies, the gluon could be observed experimentally for
the first time,75 which played a significant role in establishing the theory of QCD and, with it,
the Standard Model of particle physics. After the end of their initial use as particle colliders,
many of the facilities at DESY have been reused as pre-accelerators, test-beam facilities or
sources of synchrotron radiation.

3.1 The HERA collider

The fourth and largest particle accelerator at the DESY institute was HERA. This machine
consisted of two storage rings of length 6.3 kilometres, one for electrons or positrons and another
one for protons. Thus, HERA became the world’s first and so far only high-energy lepton-
hadron collider.25 Its unique design allows the collection of valuable data that is complementary
to that taken at other accelerator facilities. Similar to its predecessors, HERA’s main strengths
lie in the study of QCD phenomena, such as the strong coupling or the masses of the charm
and bottom quarks.76 The data collected at HERA allows the study of the proton structure at
unprecedented precision. Its most significant achievement is the precise determination of the
structure functions and PDFs.77 HERA also allows the study of diffractive processes in which
the proton does not break apart.78 Furthermore, HERA is well suited to test the electroweak
sector of the Standard Model at high energies and was the first facility to enable the study of
electroweak unification.79

The electron and proton beams collided along the accelerator ring at two locations. The two
general-purpose particle detectors, ZEUS and H1, were installed at these locations. Additionally,
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Figure 3.1: Diagram of the DESY, DORIS, PETRA and HERA accelerators.

there was the HERMES experiment, which used only the polarised electron beam to conduct
fixed target experiments for studies of the spin structure of nucleons. The HERA-B experiment
used only the proton beam for the study of B-mesons.80

Both beam types were pre-accelerated using a linear accelerator and upgraded versions of
the DESY and PETRA accelerators before being injected into the HERA rings. An overview
of the path of the particles through the accelerators is given in figure 3.1.

The operation of HERA can be divided into two major periods. The HERA I period lasted
from 1992–2000. In this period, the proton beam was accelerated to EP = 820GeV and the
lepton beam to Ee = 27.5GeV, resulting in a centre-of-mass energy of

√
s ≈ 300GeV. Towards

the end of this period, the proton beam energy was raised to EP = 920GeV, resulting in a
centre-of-mass energy of

√
s ≈ 318GeV. An instantaneous luminosity, the time derivative

of the integrated luminosity dL
dt , of 1.4 · 1031cm−1s−1 was achieved. In the HERA II period,

which lasted from 2003–2007, the instantaneous luminosity was increased to 7 · 1031cm−1s−1.81

The leptons and hadrons are kept on circular trajectories using superconducting magnets
installed along the HERA ring. The energy of a charged lepton in a magnetic field has
two spin states, either its spin points in the same direction as the magnetic field or in the
opposite. Depending on the lepton type, one of these states is preferred as it has a slightly
lower energy. Therefore, as the leptons continuously emit synchrotron radiation, their spins
tend to become aligned with the axis of the magnetic field, which is perpendicular to the axis
of the beams. This process is known as the Sokolov-Ternov effect,82 and it leads to the initially
unpolarised lepton beam at HERA becoming transversely polarised over about 40 minutes.
Due to their higher mass, hadrons are much less affected by this effect. For the HERA II
period, spin rotators were installed close to the experiments. These turned the beams into
longitudinally polarised ones close to the experiments. Along the ring, two polarimeters were
installed to measure the degree of polarisation. The transverse polarimeter (TPOL) measured
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3.2 The ZEUS detector

the polarisation in the sections where the lepton beam was transversely polarised, and the
longitudinal polarimeter (LPOL) measured it in the longitudinally polarised sections.83,84

3.2 The ZEUS detector

The ZEUS detector was a general-purpose particle detector with an almost hermetic 4π
coverage of the solid angle around the electron-proton collision region. It was twelve metres
wide, eleven metres tall, 20 metres long and weighed about 3600 tonnes. The geometry of the
detector is described in the ZEUS coordinate system. The system’s origin is located at the
nominal interaction point in the centre of the detector. The z-axis points in the proton beam’s
direction of motion also called the ‘forward’ direction. The direction of motion of the electron
beam is referred to as the ‘backward’ direction. In low-Q2 events, which are the majority
of observed events, the scattered electron is scattered in the backward region. With rising
Q2, it is scattered in an increasingly forward region of the detector. The hadronic system is
usually found in the forward section of the detector. The x-axis points towards the centre of
the HERA ring, and the y-axis completes the right-handed coordinate system. A schematic
view of the cross section of the detector in the y-z- and the x-y-planes are shown in figures 3.2
and 3.3. Due to the asymmetric nature of electron-proton collisions, the detector design is
asymmetric with respect to the x-y-plane. The forward region of the detector (z > 0) is more
strongly optimised for the detection of hadronic objects, while in the backwards region mostly
leptons are of interest.85 The following description applies to the HERA II period.

The innermost part of the detector was the microvertex detector (MVD).87 The MVD
was surrounded by the central tracking detector (CTD).88 Both of these components were

Figure 3.2: Schematic view of a cross section of the ZEUS detector in the y-z-plane.86 Shown
is the detector during the HERA II phase, as planned at the end of HERA I. The most relevant
components are shown as they were at the end of the HERA II phase.

31



3 Experimental setup

Figure 3.3: Schematic view of a cross section of the ZEUS detector in the x-y-plane during
the HERA I phase.86

contained within the thin magnetic solenoid, that created a magnetic field of 1.43T. The
tracking efficiency was enhanced in the forward direction by the straw-tube tracker (STT) and
in the backward direction by the small-angle rear tracking detector (SRTD).89,90 The next
layer of the detector was the high-resolution uraninum scintillator calorimeter (CAL), one of
the distinctive features of the ZEUS detector.91,92 The outermost section of the detector
consisted of the backing calorimeter and the muon chambers.93 The rear end of the detector
was covered by an iron wall, which shielded the detector from radiation from the proton beam.
The information from its integrated detectors was used to reject events produced by particles
that made it through the shielding.85

3.2.1 Tracking detectors

The purpose of a tracking detector is to reconstruct the trajectories of charged particles. Using
timing information, their energy loss over distance dE

dx and the curvature of the trajectories
in a magnetic field, it is possible to gain insights about a particle’s type, electric charge and
momentum.

The primary tracking detector at ZEUS was a drift chamber called the CTD. A drift
chamber consists of an array of approximately parallel wires within a conductive enclosure.
The wires are held at a high voltage compared to the chamber’s walls, creating an electric
field around the wires. The chamber is filled with a carefully selected mixture of gases, such
that charged particles passing through the chamber can ionise atoms of the gas. The resulting
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Figure 3.4: Schematic view of one octant of the cross section of the CTD in the x-y-plane.
Each dot indicates one of the 4608 sense wires.85

free electrons are accelerated by the electric field of the wires, leading to a cascade of further
ionisation. This avalanche of electrons causes a measurable pulse in the nearest wire. The
particle’s trajectory can be reconstructed by combining the information from every wire.

The CTD at ZEUS consisted of 72 cylindrical drift-chamber layers, organised in nine so-
called superlayers, as shown in figure 3.4. If all wires were exactly parallel to the beam axis,
no information on the longitudinal position of the detected particles could be extracted. To
circumvent this limitation, the sense wires were slightly tilted relative to the beam axis in
some superlayers, as indicated by the stereo angle.85,94

The CTD was supplemented by the MVD, which measured trajectories close to the primary
vertex. These trajectories are especially relevant for studying short-lived particles, such as
heavy quark flavours, but also contribute to the momentum measurement of longer-lived
particles. The MVD consisted of a barrel and a forward section containing three cylindrical
and four planar layers of silicon strip sensors, respectively. A silicon strip sensor is a solid-state
device capable of measuring the position of particles passing through it. It consists of narrow
silicon strips that are doped to act as diodes. A voltage is applied in the reverse direction such
that no current flows. Charged particles passing through these strips will cause a detectable
ionising current. The particle’s trajectory can be reconstructed by stacking multiple sensors
behind each other.87

The CTD covered particles with polar angles in the range 15° < θ < 164°. Trajectories close
to the beam pipe were reconstructed by the dedicated STT and SRTD, covering the polar
angles 5° < θ < 23° and 162° < θ < 172° respectively. The CTD achieved a resolution of the
position of hits of ≈ 200 µm in the x-y-plane and of ≈ 2mm in z. The MVD had a spatial
resolution of ≈ 20 µm, which improved the resolution of primary vertex reconstruction over the
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CTD alone. For tracks that pass through all nine superlayers and the MVD, the momentum
resolution during the HERA II period was σ(p⊥)/p⊥ = 0.0029p⊥ ⊕ 0.0081⊕ 0.0012/p⊥ with
p⊥ in GeV.88

3.2.2 Calorimeter

After passing through the tracker, particles enter the calorimeter section of the detector, which
aims to absorb and measure their energy. This is relevant for neutral particles that cannot be
detected in the tracker but also for charged particles, as the calorimeter tends to provide a
better energy resolution at high energies. The ZEUS calorimeter is a sampling calorimeter,
meaning that each cell is constructed as a tower of alternating plates of a scintillator and
absorber material. As a particle traverses the absorber plate, it will initiate a particle shower,
which deposits its energy in the scintillator plate. A scintillator is a material that emits
photons of a particular wavelength upon excitation. These photons are then converted to
electrical signals by photomultipliers.85

The ZEUS calorimeter used depleted uranium as the absorber material. The natural
radiation of the uranium was used as a stable and well-understood background signal which
allowed a precise and uniform calibration of every channel. A very uniform response to both
electromagnetic and hadronic showers was achieved by tuning the thickness of the uranium
and scintillator plates.85 The ZEUS calorimeter is called a compensating calorimeter because it
achieved an equal response to electromagnetic and hadronic showers. This property improves
the resolution of the energy measurement and sets the ZEUS detector apart from many other
experiments.95

The CAL was divided into three components: the forward, barrel and rear calorimeter
(FCAL, BCAL and RCAL) as shown in figure 3.5. These components covered ranges of the
polar angle of 2.2° < θ < 39.9°, 36.7° < θ < 129.1° and 128.1° < θ < 176.5° respectively.91,92

Showers initiated via electromagnetic objects tend to occur early in the calorimeter and are
narrower than hadronic showers. To provide a high-precision measurement of both types of
showers, each of the three CAL components was further subdivided into an electromagnetic
and one or two hadronic sections (EMC and HAC). The cells in the EMC sections were
finer and located in front of the HAC cells, i.e. closer to the interaction point. The left part
of figure 3.6 shows the decomposition of the RCAL into cells. The right part of the figure
illustrates how each cell was built as a tower, on the example of an FCAL module.85

Electrons and hadrons close to the rear beam pipe were further distinguished using the
hadron-electron separator (HES).96 While isolated electromagnetic and hadronic objects are
straightforward to identify using the CAL alone, electrons that overlap with hadronic showers
are much more challenging to identify. The HES was a highly segmented detector made from
silicon diodes and was inserted into the RCAL close to the maximum of the electromagnetic
showers. This also improved the spacial resolution of the calorimeter for electromagnetic
showers.

The HAC cells of the FCAL and RCAL had a dimension 20 cm × 20 cm, while the EMC
cells had a size of 20 cm × 10 cm in the RCAL and 20 cm × 5 cm in the FCAL. In the BCAL,
the cells were wedge-shaped and slightly rotated in the azimuthal plane. This ensured photons
cannot escape undetected through gaps between the modules. At the inner edge of the
hadronic section of the BCAL, HAC cells had a size of 24.4 cm × 27.1 cm and EMC cells
measured 4.9 cm × 23.3 cm. This small cell size allowed an especially precise reconstruction
of particle positions in the central region of the detector. Under test beam conditions, the
energy resolution of the CAL was determined to be σ(E)/E = 0.18/

√
E ⊕ 1% for electrons
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Figure 3.5: Schematic view of the cross section of the CAL in the r-z-plane from the HERA I
period.85 For the HERA II period, the locations of some components were slightly adjusted.

and σ(E)/E = 0.35/
√
E ⊕ 1% for hadrons with E in GeV.97,98 The latter made the CAL one

of the most precise hadronic calorimeters ever used in a particle detector.95

3.2.3 Luminosity system

Since the luminosity is a direct ingredient to every measured cross section, its accurate
determination is essential to every particle detector. During the HERA II period, the ZEUS
detector used two independent systems to measure instantaneous luminosity. Both relied on
measuring the number of photons produced in the bremsstrahlung (Bethe-Heitler) process
ep → epγ by the colliding beams. This QED process has a large and precisely known cross
section.

These photons were measured about 100m away from the interaction point. They were
naturally separated from the electron and proton beams, as the beams were kept on a
circular trajectory within the HERA accelerator by bending magnets. As the photons passed
through a thin window in the beam pipe, a fraction of them converted into e+e− pairs. An
additional magnet separated these electrons, positrons and unconverted photons. The number
of photons was measured by the lead-scintillator photon calorimeter (PCAL) and the number
of e+e− pairs by the luminosity spectrometer (SPEC).99,100 During the HERA II period, the
uncertainty of the luminosity measurement was between 1.8% and 2.5%.

3.2.4 Trigger system

Bunch crossings at HERA occurred every 96 ns, corresponding to a rate of about 10MHz.
Less than 1% of bunch crossings resulted in interactions. High-Q2 DIS events occurred only
with a rate of a few Hertz, which is also the rate at which the data acquisition system can
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Figure 3.6: Left: schematic view of the RCAL, as seen from the interaction point. Larger
squares indicate the HAC cell, while the smaller rectangles represent the EMC cells. The
FCAL is built similarly, except for a slightly different number of HAC cells and the EMC
cells being half the size. Right: schematic view of a module constituting one column of the
FCAL.85

store event information. The ZEUS detector used a three-level trigger system to decide which
events should be stored for analysis.85,101

The task of the first-level trigger (FLT) was to reduce the input rate to about 1 kHz. Each
detector component had its own local FLT logic that provided a limited set of lower-resolution
information to the global FLT. The global FLT made its decision based on simple features of
the event, such as isolated energy deposits in the CAL and the number of tracks in the CTD.
While the processing of the FLT was ongoing, the complete event data was stored in a pipeline,
which gave the trigger system about 5 µs to make a decision. The FLT used programmable
logic devices to allow for fast reconfiguration of the trigger conditions.85

If an event was selected by the FLT, its information was forwarded to the second-level trigger
(SLT). Each detector component also had its own local SLT logic that could run a more
sophisticated analysis based on the complete information at full resolution. At this level, timing
information was used to reject events inconsistent with the bunch crossing time. Furthermore,
events were selected using requirements based on energy deposits and tracks, such as the
primary vertex position. These requirements rejected about 97% of beam-gas background
events that made it through the FLT while retaining more than 95% of DIS events with
Q2 > 100GeV2. The SLT reduced the event rate to about 100Hz.85

The third-level trigger (TLT) consisted of multiple computers at a data centre, running a
reduced version of the full offline analysis software. This allowed for a complex decision-making
process involving e.g. more elaborate track finding and vertex fitting algorithms. The TLT
also computed kinematic quantities such as Q2, xBj and E⊥ and used them to select events.
The output rate of the TLT was about 3-5Hz. Events selected by the TLT were stored to
tape for full offline analysis later on.85
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CHAPTER 4

Context of measurement

The theory of QCD can describe a diverse range of observations and remains under intense
experimental and theoretical investigation. In the zero-mass scheme of perturbative QCD, the
theory contains just a single free parameter, the strong coupling constant, αs(M

2
Z). At hadron

colliders, non-perturbative QCD is mostly described by the PDFs. These are essential inputs for
many practical applications involving QCD. Therefore, precisely determining these quantities
is highly desirable for any analysis involving QCD effects. Even processes involving QED or
electroweak final states can be significantly affected by QCD corrections and uncertainties.102

One of the primary motivations in constructing the HERA collider were detailed studies of
QCD. Since only a single proton is involved, the experimental environment is much cleaner than
at, e.g. proton-proton colliders. The PDFs enter calculations only once instead of twice, leading
to reduced uncertainties on the predictions. The perhaps even more important consequence
is that the PDFs can be accurately determined from the data. Because of this, the HERA
inclusive DIS data have become the basis of every recent PDF determination.77,103–108

4.1 HERA inclusive deep inelastic scattering data

Throughout its operation, HERA has provided different beam configurations. Protons were
accelerated to 460GeV, 575GeV, 820GeV or 920GeV and collided with electrons or positrons
at 27.5GeV. The H1 and ZEUS collaborations have provided precise measurements of the
low-Q2 NC DIS, high-Q2 NC DIS and high-Q2 CC DIS processes under all of these conditions.
In this context, ‘low-Q2’ refers to the region 3GeV2 ≲ Q2 ≲ 100GeV2 and ‘high-Q2’ refers
to Q2 ≳ 150GeV2. More than 40 individual datasets were recorded, corresponding to an
integrated luminosity of about 1 fb−1, split evenly between the two experiments. Together,
these datasets span the range Q2 ∈ (0.045, 50000)GeV2 and xBj ∈ (6× 10−7, 0.65) for the NC
process and Q2 ∈ (200, 50000)GeV2 and xBj ∈ (0.013, 0.40) for the CC process.

To simplify the consistent treatment of these measurements, they were averaged and combined
into a single set of large datasets.77 Since the H1 and ZEUS measurements do not use identical
phase space definitions, data points were first translated to one of two common (Q2, xBj) grids.
For this translation, predictions of the cross sections at the measured and translated (Q2, xBj)
were needed. These were obtained from fits to the data points themselves, which reduced the
dependence of the results on the assumed model.

Cross sections at the grid points were then determined by averaging the measurements while
considering their statistical and systematic uncertainties. The uncertainties were propagated
to the averaged values, which required careful consideration of their correlation between data
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Figure 4.1: Comparison of the HERAPDF2.0 NNLO (left)77 and Jets NNLO (right)103 PDF
sets. The former was determined at an externally chosen value of αs(M

2
Z), while the latter

uses the value preferred by the jet data. The coloured bands show the different contributions
to the PDF uncertainty; see chapter 12 for details. The variable x in the figures corresponds to
the momentum fraction ξ in the notation of this thesis. Note that the sea-quark distribution
is defined as xS = 2x(Ū + D̄) in the left panel, and as xS = x(Ū + D̄) in the right panel.

points and different datasets. Since the two experiments have different detectors and used
different reconstruction methods, the uncertainties calibrated each other to some extent, which
led to a significant reduction of the uncertainties of the combined dataset. The result of this
combination are seven datasets corresponding to different centre-of-mass energies, different
lepton types and to the NC or CC process. In total, this combination contains 1307 averaged
data points that were determined from 2927 measured points. Collectively, these points are
referred to as the ‘HERA inclusive DIS dataset’.77

A similar combination was performed using 13 datasets on heavy quark production in the
kinematic region Q2 ∈ (2.5, 2000)GeV2 and xBj ∈ (3 × 10−5, 5 × 10−2).76 This combined
dataset is especially valuable for determining the masses of the charm and bottom quarks.

These datasets were used to determine the HERAPDF2.0 PDF sets at next-to-leading order
(NLO) and next-to-next-to-leading order (NNLO) in QCD. These determinations use HERA
data exclusively and thus serve as a valuable benchmark for other PDF determinations. Since
every other PDF determination also uses these datasets, the impact of additional data can
be evaluated by comparing the determined PDFs to HERAPDF. Furthermore, datasets from
other experiments could potentially be biased by physics beyond the Standard Model, which
would bias the determined PDFs. This is less likely in the HERA environment,109 such that
the HERAPDF sets can be used as a reference in new-physics searches. Multiple variants of
the HERAPDF sets are determined corresponding to different datasets used as input, different
model parameters, different parameterisations of the PDFs and different QCD schemes. The
nominal HERAPDF2.0 NNLO PDF set is shown in figure 4.1.

38



4.2 HERA jet data

4.2 HERA jet data

Jet measurements at HERA also profit from the clean experimental environment and well-
understood PDF uncertainties. At the same time, suitably defined jet measurements are
directly sensitive to the strong coupling. This makes them ideally suited for determining this
coupling, possibly in conjunction with the PDFs.

Jet measurements in PHP were extensively used to study QCD and determine the PDFs and
αs(M

2
Z).

110 PHP events in the laboratory frame behave similar to DIS events in the Breit frame.
Therefore, they are also directly sensitive to αs(M

2
Z). Jet data in PHP are complementary

to jet data in DIS and put further constraints, especially on the gluon distribution. Due to
their high statistics, these jets in PHP can be measured at high precision and in higher p⊥
regions than are accessible in DIS. However, theoretical predictions of the PHP process are
more challenging and have larger uncertainties than their DIS counterparts. Since predictions
for jet production in PHP are currently only available at NLO in QCD, these data are not
used in the latest NNLO determinations of the PDFs and αs(M

2
Z).

Similar to the inclusive DIS data, data on jet production in DIS are differentiated into the
low-Q2 and high-Q2 region. While low-Q2 data profit from higher statistics and thus lower
experimental uncertainties, they suffer from increased theoretical uncertainties. An overview
of existing jet measurements at HERA is given in table 4.1.

The DIS datasets were used in the HERAPDF2.0Jets analyses, which are combined deter-
minations of the PDFs and αs(M

2
Z). The HERAPDF2.0 analyses without jets were performed

at fixed values of αs(M
2
Z) because the inclusive DIS data alone do not sufficiently constrain

αs(M
2
Z), see figure 4.2. Including the jet data additionally allows determining αs(M

2
Z) from

the data, leading to a more consistent set of PDFs.
Table 4.1 also indicates which jet datasets were used in the HERAPDF2.0Jets analyses. The

H1 HERA II dataset on low-Q2 inclusive jet, dijet and trijet production was not yet published
at the time of the NLO analysis. Trijet datasets had to be excluded from the NNLO analysis
since no NNLO predictions are available. Not all HERA I datasets could be used, as they
are subject to unknown and non-trivial statistical correlations. During the HERA II period,
H1 managed to avoid this issue by performing combined analyses using a matrix-unfolding
approach in which these correlations are also determined. Some datasets were excluded from
the analyses due to their large theoretical uncertainties.

The αs(M
2
Z) values determined by the HERAPDF2.0Jets analyses are

αs(M
2
Z) = 0.1183± 0.0009 (exp./fit) ± 0.0005 (mod./par.)+0.0037

−0.0030 (scale) ± 0.0012 (hadr.)

at NLO and

αs(M
2
Z) = 0.1156± 0.0011 (exp./fit)+0.0001

−0.0002 (mod./par.) ± 0.0029 (scale)

at NNLO.77,103 The experimental/fit uncertainty is the uncertainty of the fit and includes
the uncertainties of the experimental input. At NNLO, it also includes the hadronisation
uncertainty that is given separately at NLO. The model/parameterisation uncertainty expresses
the remaining uncertainties of the analysis procedure, and the scale uncertainty corresponds
to the uncertainty of the theoretical predictions. These uncertainties are discussed in detail in
chapter 12.

The HERAPDF2.0Jets NNLO PDF set is compared to the determination without jets in
figure 4.1. The main contribution of the jet data is to constrain the value of αs(M

2
Z). Since

this value is highly correlated to the PDFs, their shape is also different, especially that of the
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Year 9394 95 96 97 98 99 00 03 04 05 06 07

LHERA [pb−1] 1 6 12 17 36 8 46 66 7 78 205 204 63

H
1

P
H

P

inclusive jets [111]
dijets 112 [113, 114] [115]
trijets

lo
w

-Q
2 inclusive jets [116] [117]∗,∗∗ [118]∗∗

dijets [117] [118]∗∗

trijets [117] [118]

hi
gh

-Q
2 inclusive jets [119] [120]∗,∗∗ [121]∗,∗∗, [118]∗∗

dijets [121]∗,∗∗

trijets [121]∗

ZE
U

S
P

H
P

inclusive jets 122123 [124]
dijets 125126 [127–129] [130]
trijets [131]

lo
w

-Q
2 inclusive jets

dijets
[132]

trijets

hi
gh

-Q
2 inclusive jets [133]∗,∗∗ [134] this thesis

dijets [135] [71]∗,∗∗ [71]∗,∗∗

trijets preliminary72,136

Table 4.1: Overview of jet measurements in PHP and in low-Q2 (3GeV2 ≲ Q2 ≲ 100GeV2)
and high-Q2 (Q2 ≳ 150GeV) NC DIS in the Breit frame at HERA. Each column indicates
one year of running. The approximate luminosity delivered by the HERA accelerator for each
year is listed and emphasised by the column width.137 This allows judging of the relative
significance of the different run periods. The useable luminosity collected for analysis is smaller
and differs between the experiments. The markers ‘*’ and ‘**’ indicate the datasets used in
the HERAPDF2.0Jets analyses at NLO and NNLO, respectively.77,103

gluon PDF. Another contribution of the jet data is a slight reduction of the uncertainty of the
gluon PDF. These PDF sets differ mostly because of the updated value of αs(M

2
Z). If PDFs

were determined from the inclusive data alone, but at the updated αs(M
2
Z) value, they would

be similar to the determination including jets. However, since this updated αs(M
2
Z) value is

only possible due to the jets, the change of the PDFs should be considered as a contribution
of the jets.

This thesis adds a measurement of the inclusive jet cross sections using data collected
from 2004 to 2007 at ZEUS. This is the most relevant jet dataset still missing from HERA
since high-Q2 DIS jet datasets are currently the most precise way to constrain αs(M

2
Z). This

dataset contributes significantly to reducing uncertainties as it uses about two-thirds of the
entire available luminosity. To make the data usable with previous datasets, the statistical
correlations to the ZEUS HERA II dijet dataset71 also need to be determined.
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Figure 4.2: The χ2 of the fit as a function of αs(M
2
Z), as determined from inclusive DIS

data alone (bottom) and including jet data (top).103 In case of the inclusive data alone, the
minimum is broad and depends significantly on the choice of Q2

min, indicating that these data
alone are not well suited to determine αs(M

2
Z). Including jet data, the minimum is much more

narrow and independent of Q2
min.

4.3 Other measurements sensitive to the strong coupling

While HERA is the only collider experiment designed for the study of DIS, various fixed target
experiments exist that allow the study of electron-, muon- or neutrino-induced DIS.138–140

Apart from DIS processes, essentially any observable that involves QCD interactions can be
used to constrain αs(M

2
Z).

One such observable are trijet cross sections at e+e− collisions. A possible Feynman diagram
for this process is shown in the left panel of figure 4.3. Also suitable are so-called jet shape
observables, which study the distribution of particles within each jet. The datasets from the
LEP141,142 and PETRA143 colliders have been reanalysed at NNLO QCD accuracy and are
thus suitable to be compared to other state-of-the-art measurements.

Another well-suited type of experiment to study QCD are proton-proton and proton-
antiproton collisions, e.g. at the LHC and Tevatron colliders.144 Commonly studied processes
are jet production,145 top quark production146 or the production of electroweak bosons.147

Selected Feynman diagrams are shown in figure 4.3. These measurements profit from their
large datasets and high experimental precision.
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Figure 4.3: Processes involving QCD interactions. Left: trijet production at e+e− collisions.
Middle: top quark pair production in pp collisions. Right: single top quark production in pp
collisions.

Mesons consisting of a quark and its own antiquark are called quarkonium. Analyses of
the masses of heavy quarkonium states are also sensitive to αs(M

2
Z).

148,149 Another possible
observable is the hadronic decay of τ leptons.150 This determination probes the strong coupling
at the low energymτ = 1.78GeV and is therefore especially suited to study the scale dependence
of the αs(µ

2), see section 12.2. Fits of the electroweak sector of the Standard Model are
sensitive to αs(M

2
Z) since many of the involved processes also involve QCD interactions.151

4.4 Further determinations of the strong coupling

The measurements mentioned in the previous section are often performed as single-parameter
fits of the strong coupling or include a few additional parameters, such as some of the quark
masses.121,143,146 At lepton-hadron and hadron-hadron colliders, this involves taking a fixed
PDF set at different values of αs(M

2
Z). It has been argued that this approach introduces a

systematic bias in the determination.17,152 Preferably, the PDFs should be fitted at the same
time. Such simultaneous fits are also often used to determine αs(M

2
Z).

145,153

Combined determinations of the PDFs and αs(M
2
Z) have been performed by various groups.

Some of the latest determinations are ABMP16,105 CT18,106 NNPDF3.1,154 or MSHT20.155

In addition to the HERA inclusive DIS and heavy quark datasets, these determinations use
additional datasets, such as

• fixed target DIS data, including data on muon-proton collisions,

• neutrino induced semi-inclusive DIS νp→ νµµ+X,

• Drell-Yan and W boson hadro-production processes pp→ γ/Z/W → ll̄/lν at fixed target
or collider experiments,

• various processes involving weak boson production, jet production and weak boson+jet
production at proton-proton and proton-antiproton collisions,

• measurements of single-top production in proton-proton and proton-antiproton collisions,

• data on tt̄ production in proton-proton collisions,

• data on proton-ion collisions

and potentially more. Due to their large number of additional datasets, these determinations
can achieve greater precision than is possible from HERA data alone.

Currently, the most precise determinations of αs(M
2
Z) are obtained from lattice QCD

calculations.156 These simulations discretise spacetime on a lattice and solve the QCD field
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4.4 Further determinations of the strong coupling

equations numerically. These calculations are mathematically well-defined since the finite
lattice spacing and the finite lattice volume naturally introduce ultraviolet and infrared
momentum cut-offs.157 The QCD continuum is recovered by studying the dependence of the
results of these simulations on the parameters of the lattice and then extrapolating them to an
infinitely large lattice with infinitesimally small spacing. Most importantly, these simulations
are non-perturbative and thus allow the study of effects that are theoretically not accessible
otherwise, such as the masses and decay rates of hadrons or properties of the quark-gluon
plasma. Since these calculations are computationally very expensive, they are currently limited
to relatively small physical systems on the order of the proton size.158 Parameters, such as
the strong coupling constant, can be determined from these simulations by fitting them to
experimental inputs, usually the decay rates of hadrons involving heavy quarks.

The Particle Data Group collects many determinations of αs(M
2
Z) and combines them into

the so-called world average value. At the time of writing, this average value is17

αs(M
2
Z) = 0.1179± 0.0009.

This value is computed as the unweighted average of the lattice QCD determination, αs(M
2
Z) =

0.1182± 0.0008, and the average of all remaining determinations, αs(M
2
Z) = 0.1176± 0.0010.
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CHAPTER 5

Calculations of observables in particle physics

In particle physics, theoretical predictions of physical observables are used for two distinct
purposes. Fixed-order perturbative calculations aim to calculate observables at the highest
possible accuracy achievable from first principles. To this end, they use sophisticated physical
and mathematical techniques to compute a large number of Feynman diagrams, often taking
into account contributions up to NNLO in perturbation theory in QCD and even higher
orders in QED.16,159 These predictions present the most accurate models of particle physics
available. Comparing them to data allows the validation of state-of-the-art theoretical models
and the determination of model parameters. These comparisons are the primary motivation
for performing a measurement, as physical conclusions can be drawn from them.

The other essential type of theoretical calculations are MC simulations. These consist of
fixed-order matrix elements and various additional components. They serve a different purpose
than fixed-order calculations. The samples generated from MC simulations are essential to
performing precise particle physics measurements. They are used to understand the data,
especially how they are affected by detector effects and to derive corrections. They are also
used to model backgrounds. For this approach to be valid, the MC samples must describe the
data accurately, even if no suitable theoretical model is available. Therefore, MC samples are
often reweighted or otherwise modified to improve the agreement with the data. At this point,
MC samples are no longer predictions, but rather a tool used to perform a measurement.

5.1 Fixed-order calculations

A computation that considers only those Feynman diagrams containing the lowest possible
number of vertices for a particular final state is referred to as a leading-order calculation.
Depending on the investigated process, the leading-order contribution can already contain
higher powers of the coupling. For example, the leading-order contribution to dijet production
in DIS is O(α1

s ), while the leading-order contribution to trijet production is O(α2
s ). A NLO

calculation also considers diagrams that contain one more power of the coupling. At NLO,
two types of higher-order diagrams are possible, so-called real and virtual corrections. Real
correction diagrams describe the emission of additional particles. Virtual correction diagrams
involve loops. One more power of the coupling constant may be achieved by the interference
of the real corrections amongst themselves or by interference of the virtual corrections with
the leading-order diagram. As an example, figure 5.1 shows the leading-order and NLO
QCD diagrams that contribute to the boson-gluon fusion process. The number of diagrams
increases rapidly with the considered order. At NNLO QCD, hundreds of diagrams need to
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5 Calculations of observables in particle physics

Leading order Real corrections Virtual corrections

Figure 5.1: Leading-order (O(α1
s )) Feynman graph for the boson-gluon fusion process as well

as real and virtual QCD corrections at NLO. Each diagram will contribute twice since the
direction of the quark line can be chosen either way. Loop corrections of the propagators of
the external particles do not need to be considered explicitly here, as they can be absorbed in
the theory parameters during renormalisation.

be considered. In addition to these QCD diagrams, higher-order diagrams in QED and the
weak interaction should also be considered. Currently, many processes have been calculated at
NNLO QCD accuracy.159,160

Scale dependence of cross section predictions When truncating the power series at a
fixed order, the renormalisation-scale dependence no longer cancels exactly. A similar argument
applies to the PDFs, which leads to a dependence on the factorisation scale. Consequently,
computed observables depend on these scales. Since these dependencies cannot be avoided,
it is crucial to choose sensible values for the scales and consider the uncertainty associated
with these choices. The scales are usually set to a value related to the physical process under
consideration. In jet production in DIS, the factorisation scale is often set to the momentum
transfer µ2f = Q2, as this is how the PDFs are defined. The renormalisation scale is usually
set to a combination of the momentum transfer and the transverse momentum of the jet, e.g.
µ2r = Q2 + p2⊥. The uncertainty associated with these choices is estimated by varying both
scales independently up and down, usually by a factor of two, and recording the change of the
computed observable.159 The scale uncertainty is often one of the dominant uncertainties of
a theoretical prediction. Since the scale dependence decreases with increasing perturbative
order, it is desirable to use predictions of the highest possible order to obtain accurate results.

At NNLO, the cross section can be written as

σ̂ = αs
n σ̂(LO) + αs

n+1 σ̂(NLO) + αs
n+2 σ̂(NNLO) +O

(
αs
n+3
)
, (5.1)

where n is the lowest order of αs at which the cross section is non-zero and the σ̂ on the left
side of the equation is the lepton-parton matrix element introduced in equation (2.32). In
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5.1 Fixed-order calculations

this equation, all quantities depend explicitly on µ2r . The dependence of the cross sections
coefficients on µ2r can be written explicitly as

σ̂(LO)(µ2r ) = σ̂(00),

σ̂(NLO)(µ2r ) = σ̂(10) + log

(
µ2r
µ20

)
σ̂(11),

σ̂(NNLO)(µ2r ) = σ̂(20) + log

(
µ2r
µ20

)
σ̂(21) + log2

(
µ2r
µ20

)
σ̂(22),

where the σ̂(ij) do not depend on µ2r . A similar expansion can be made with respect to µ2f ,
except that this case involves the splitting functions.160 This expansion shows that there
is only one scale-dependent term in the NLO expression. Therefore, the predictions will
necessarily have a relatively large scale dependence. At NNLO further scale-dependent terms
arise, which can partially cancel this behaviour, leading to a reduced scale dependence of the
NNLO predictions.

Treatment of infrared and collinear divergences Another way to express the terms in
equation (5.1) is to separate them into real and virtual contributions

σ̂(LO) =

∫

n
dσ̂(Born),

σ̂(NLO) =

∫

n
dσ̂(V) +

∫

n+1
dσ̂(R),

σ̂(NNLO) =

∫

n
dσ̂(VV) +

∫

n+1
dσ̂(RV) +

∫

n+2
dσ̂(RR),

where
∫
n represents an integral over the n-particle phase space, and the superscripts ‘V’ and

‘R’ indicate virtual and real corrections to the tree level matrix element. Starting at NLO,
all terms are individually infrared or collinearly divergent while their sum remains finite at
every order. Since these terms are usually too complicated to be integrated analytically, these
divergences have to be regularised in such a way that they can be cancelled numerically.

One method to accomplish this is to use subtraction terms. As an example, consider the
following integral

I =

∫ 1

0

dx

x
xεF (x)− 1

ε
F (0),

where F (x) is a known function over the (n+ 1)-particle phase space.161,162 The variable x
represents the energy of an emitted particle or the angle between two particles. For x → 0,
the integral diverges, which is regularised by the xε term. The second term represents the
virtual correction to the n-particle process, which is also divergent for ε → 0. To cancel
these divergences, the integral is split into the regions [0, δ] and [δ, 1]. The first integral is
approximated by a constant function, leading to

I =

∫ 1

δ

dx

x
F (x) + F (0)log(δ).
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If δ is sufficiently small, the δ-dependence of the two terms cancels. This alone can be enough
to evaluate the expression. However, computing this integral for small δ can lead to numerical
problems. To mitigate those, the term

∫ 1
δ

dx
x E(x) is added and subtracted from the expression

I =

∫ 1

δ

dx

x
(F (x)− E(x)) +

∫ 1

δ

dx

x
E(x) + F (0)log(δ).

The function E(x) must approach F (x) close to the pole, so the first integral remains finite.
Furthermore, E(x) needs to be simple enough to be integrated analytically. The lower limit of
the second integral should produce −F (0)log(δ) to cancel the third term in the expression.
If that is the case, the limit δ → 0 can be taken, and I can be computed numerically. The
theory predictions used in this thesis use the ‘antenna subtraction’ method to construct the
terms corresponding to E(x).159,163

5.2 Parton showers and hadronisation

Fixed-order calculations are well-defined and highly accurate. They are, however, insufficient
to compare to experimental results. For this purpose, higher-order and non-perturbative
final-state effects must also be modelled. This is done using phenomenological models for
parton showering and hadronisation. These models must be tuned to describe experimental
data and are thus much less well-defined than perturbative calculations.

5.2.1 Parton showers

Before and after the hard lepton-parton interaction, the incoming and outgoing partons may
emit further partons. In the limit of soft or collinear radiation, the probability for these
processes increases rapidly, leading to many such emissions.

Parton showers solve the DGLAP equation (2.33) iteratively, leading to a series of 1 → 2
branchings. Each daughter particle can undergo further branchings. This procedure is known
as the leading logarithmic approximation to parton showers.39,164 Repeated application of the
branching probability leads to the appearance of an exponential factor, known as the Sudakov
form factor, that can be used to determine when a subsequent branching should occur. In the
final-state shower, partons are evolved from the hard scale of the matrix element down to the
pre-defined hadronisation scale. In the initial state, showers are evolved backwards from the
matrix element to a cut-off scale. Furthermore, the initial-state shower has to take the PDFs
into account, to ensure that the shower evolution is consistent with the PDF evolution. Since
initial- and final-state parton showers are treated separately, interference effects between them
cannot be taken into account. Furthermore, the leading logarithmic approximation is designed
to describe soft and collinear emissions. The simulation of radiation of hard partons at large
angles might be much less accurate.165,166

An alternative to the leading logarithmic approximation is the colour-dipole model. In
this model, pairs of partons are treated as dipoles of the colour field. Gluons are emitted
directly from this field rather than from the partons. New dipoles will form between the initial
partons and the newly created gluon. From these dipoles, further gluons may be emitted.
Gluons may split into a quark-antiquark pair. Colour dipoles can, in good approximation, be
considered independent from each other. In the colour-dipole model, initial- and final-state
parton showering are not distinguished. Instead, parton radiation is assumed to also originate
from the dipole between the final-state parton and the proton remnant.167
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Figure 5.2: Schematic depiction of a quark-antiquark pair fragmenting into three separated
hadrons, according to the Lund string model. With advancing time, the quark-antiquark pair
moves apart, which leads to the breaking of the string connecting them and, thus, the creation
of further quark-antiquark pairs. The lines between the partons represent the gluon field which
is mediated by virtual gluons, while the gluon node indicates an almost real gluon.169

5.2.2 Hadronisation

The theory of perturbative QCD predicts the production of partons in the final state of the
lepton-hadron interaction. Due to colour confinement, these partons are not observable as
isolated particles. Instead, they will fragment and form colourless hadrons. As hadronisation
describes the production of low-energy hadrons, it cannot be described using perturbative
QCD calculations.

Simulations of scattering processes at HERA usually use the Lund string model to approxi-
mate fragmentation. In this model, partons are connected by colour strings. This description
was later shown to be reasonable using lattice QCD simulations, which showed that the QCD
field lines tend to form narrow tubes between coloured objects.168 The energy density of these
strings is found to be constant, i.e. the energy that is stored in a string grows linearly with
its length. If the partons move far enough apart, the energy stored in the string becomes so
large that it is energetically favourable to create a new quark-antiquark pair from the vacuum.
At this point, the string will break, and new strings are formed between the original and the
newly created pair of partons. Schematically, this process is depicted in figure 5.2. The strings
consist of virtual gluons. The emission of almost real gluons can be taken into account in this
picture as localised excitations of the string that act as additional nodes. These gluons are
modelled explicitly using their four-momentum and undergo further splittings.169 The energy
to create the additional quark-antiquark pairs is taken from the kinetic energy of the partons
to which the fragmenting string is connected. The process repeats until the remaining energy
of the partons is too small to create further pairs. The combination of the remaining partons
into colourless hadrons is described by fragmentation functions. These functions are, to some
extent, the analogue to PDFs, as they describe the non-perturbative transition from partons
to hadrons.170,171

The main alternative to the Lund string model is the cluster fragmentation model. In this
model, all gluons are first split into quark-antiquark pairs. Quarks are then grouped into
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clusters based on their colour, and fragmentation proceeds for each cluster similarly to the
Lund string model. In the Lund string model, fragmentation happens over large distances and
involves many particles simultaneously. In the cluster model, fragmentation is more localised
and involves fewer particles at a time.172 When tuned to experimental data, both models can
describe fragmentation well.

The term ‘hadronisation’ refers to fragmentation and the subsequent decay of unstable excited
particles. There is no clear theoretical distinction between parton showering, fragmentation
and decays. The creation of quark-antiquark pairs during fragmentation can, to some extent,
be considered a form of parton showering, or vice versa. Similarly, the decay of certain unstable
particles can also be treated as part of the fragmentation. In practical calculations, these
regimes are separated by cut-off parameters that are tuned to describe experimental data.

5.3 Monte Carlo simulations

MC simulations are an essential tool in high energy physics and are widely used to help
understand the data and to derive corrections for it. These simulations consist of two major
steps: event generation and detector simulation. During event generation, the interactions
of the colliding particles are simulated. A fixed-order matrix element is used to describe the
hard boson-parton interaction. In addition, MC simulations include models of initial- and
final-state radiation, fragmentation from partons to hadrons, and decays of unstable hadrons
until a set of long-lived and spatially separated particles are produced. At HERA, matrix
elements are often used at leading order, and parton showering is described in the leading
logarithmic approximation.

These particles are then used in the detector simulation that describes the response of a
particular detector to a given set of particles. This simulation describes the interactions of the
final-state particles with all active and inactive detector components, such as producing hits
in the tracker or initiating showers and depositing energy in the calorimeter.

After the event is processed in the detector simulation, it is subjected to the same recon-
struction and analysis algorithms as the data samples. At this point, the MC sample closely
resembles the data, and the two can be directly compared. One aspect that makes MC simula-
tions so valuable is that, apart from the detector-level information, the complete information
from the event generator is also available. Comparing these so-called ‘generator-level’ or
‘truth-level’ particles to their ‘detector-level’ counterparts helps to understand the detector
response and correct for it in the data.

5.3.1 Event generators

This analysis uses a series of MC chains. Each chain comprises a set of program packages
that perform different parts of the event generation. In the following, the capabilities of each
package will be briefly described. The next section explains how these packages are combined
to form the complete MC chains.

Lepto event generator and parton showering This analysis uses the Lepto package for
two purposes. First, it is capable of generating boson-parton matrix elements for lepton-hadron
collisions. It can simulate the O(α0

s ) QPM-like process as well as the O(α1
s ) QCD Compton

and boson-gluon fusion processes.165 The latter two processes constitute the leading-order
contribution to inclusive jet production in the Breit frame. Like all event generators, Lepto
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uses a PDF to describe the parton content of the hadron. While no higher-order QED effects
are taken into account in the matrix elements, loops of virtual particles are accounted for via
the scale dependence of the QED coupling constant α(µ2).

Secondly, Lepto can approximate higher orders through the emission of additional partons
from the initial- or final-state parton of the interaction. For this purpose, the leading logarithmic
approximation is used.

Ariadne parton showering The Ariadne package implements the colour-dipole model.
This model can be used as an alternative description of parton showering.167

Herwig event generator, parton showering and hadronisation The Herwig event
generator is capable of generating matrix elements for various processes, such as DIS, PHP
and Higgs production in lepton-hadron interactions. It also simulates parton showering using
an angular-ordered coherent branching algorithm as well as hadronisation using the cluster
model.173

Rapgap event generator and parton showering Rapgap is another event generator
capable of generating various processes at lepton-hadron colliders. It can also simulate parton
showering via a leading logarithmic approach.166

Heracles event generator Like Lepto, the Heracles event generator calculates leading-
order boson-parton matrix elements for lepton-hadron collisions. Additionally, leading-order
electroweak corrections can be taken into account. This includes single photon bremsstrahlung
from the initial- or final-state lepton, self-energy corrections of the exchanged boson, vertex
corrections of the lepton-boson vertex as well as the exchange of a Z boson and photon-Z
interference.174 Heracles is also able to include radiative corrections on the quark side. These
settings were, however, turned off for all samples used in this thesis.

Jetset hadronisation The event generators discussed so far aim to describe the final
state in terms of partons. The formation of hadrons from these partons is described by
Jetset, formerly part of the Pythia package.170 This package uses the Lund string model.
Furthermore, Jetset simulates subsequent decays of unstable particles.

5.3.2 Monte Carlo chains for signal and background samples

To perform a full MC simulation, the packages described above are combined to form so-called
‘MC chains’. Each chain consists of one or more packages to simulate the boson-parton matrix
element, parton emission and hadronisation.

Two high-Q2 NC DIS signal MC chains are defined, which will be referred to as ‘Ariadne’
and ‘Lepto’. These samples will be used to unfold the measured events to truth level. Two
more samples are generated, corresponding to the most relevant background contributions:
the ‘low-Q2 DIS’ and ‘PHP’ samples.

After event generation, all samples are processed by the detector simulation based on
Geant 3.21, which simulates interactions with active and passive detector components.175

Simulated events are subjected to the same trigger configurations as the real data on a
run-by-run basis.

The samples are taken from the ZEUS common ntuple database.176 Table 5.1 gives an
overview of the samples.
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Sample (internal name) Number of
events

Luminosity
[pb−1]

Ariadne (ariadne_high_Q2_NC_P) 32.88× 106 28.95× 106

Lepto (mps_high_Q2_NC_P) 31.68× 106 24.99× 106

PHP (PHP_HER_{dir,res}_4D_P) 13.86× 106 1.414× 103

Low-Q2 DIS (Ariadne_Low_Q2_NC_DIS_P) 238.6× 106 371.3

Table 5.1: An overview of MC samples at detector-level. The large luminosity of the Ariadne,
Lepto and PHP samples is because they contain subsamples in low-statistics regions. The
internal name indicates the name in the ZEUS common ntuple database.177 The P stands for
any of the four run periods 0304p, 05e, 06e and 0607p. For the Lepto sample, there was a
bug in one of the initial samples. The corrected sample mps_high_Q2_NC_fixlst_0607p is
used instead.

Ariadne The Ariadne chain is the central MC chain used in this analysis. It consists
of Heracles 4.6.6 to simulate the boson-parton matrix element, including all corrections
mentioned above and using the CTEQ 5D PDF set.104 The emission of further partons is
simulated using Ariadne 4.12 and hadronisation using Jetset 7.410.

Events were generated using this chain for Q2 > 100GeV2. Since the cross section falls
steeply with Q2, this sample contains only a few events in the very high-Q2 region. To
ensure high statistical precision, even in this low-statistics region, further subsamples were
generated with higher Q2 cuts. The subsample with the highest cut was generated in the
region Q2 > 50000GeV2. To combine these subsamples into one consistent sample, events
must be assigned a generator-level weight. This weight is computed as

w(Q2) =
Ldata∑
i LMC,i

, (5.2)

where L is the integrated luminosity, and the sum runs over all MC samples whose phase
space includes the event being weighted. Events at very high Q2, no matter from which
subsample they originate, will be assigned a small weight to account for the increased number
of samples contributing to that region. This way, the overall normalisation is preserved, and
the Q2 distribution does not exhibit discontinuities. The generator-level weight is discussed in
section 5.3.4.

Lepto The Lepto chain is used to estimate the systematic effect of the choice of MC generator.
It is identical to the Ariadne chain, except for the parton showering, which is instead simulated
using Lepto 6.5.1. Similarly to the Ariadne sample, the Lepto sample consists of multiple
subsamples that are weighted and combined to form a single consistent sample.

Low-Q2 DIS The Ariadne and Lepto signal MC samples were generated in the region
Q2 > 100GeV2, which contains the measurement region of this analysis Q2 > 150GeV2. An
additional sample was generated to estimate the contribution from events generated outside the
phase space region covered by the signal MC sample but have migrated into the measurement
region. This sample was generated using the Ariadne chain described above, in the phase
space region 4GeV2 < Q2 < 100GeV2. The cuts ensure this sample does not overlap with the
signal MC samples. This sample will be referred to as the low-Q2 DIS sample.
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5.3 Monte Carlo simulations

Photoproduction PHP events were generated for Q2 < 4GeV2 using the Herwig 5.9
generator. This choice ensures that no events are missed or double-counted when combining
this sample with the low-Q2 DIS sample. Since Herwig already simulates hadronisation using
the cluster model, the use of Jetset is not necessary. The PHP sample consists of multiple
subsamples with different cuts on p⊥ and E⊥ of the hadronic system.

5.3.3 Chains for hadron-level corrections

For some of the corrections that will be applied to the data, additional MC samples are
required. These corrections are applied after unfolding, so no detector simulation is required
for these samples. The need for these corrections will be motivated later.

These samples are newly generated for this analysis. Using configuration files from the
ZEUS common ntuple database ensures that the new samples use consistent settings compared
to the existing samples. It is verified that they produce consistent results.

Real QED radiation correction A sample is generated using matrix elements from
Heracles, including all mentioned corrections. Parton showering is performed using Rapgap
and hadronisation using Jetset. A second sample is generated using this chain, in which
higher-order QED effects are turned off within Heracles. These two samples are necessary
to derive the QED radiation correction, which will be described in section 9.5.3.

As far as possible, the samples are generated with similar settings to the existing MC
samples from the ZEUS database. In particular, the sample including QED radiation uses
the Heracles options ISNC31 = ISNC32 = ISNC33 = 1, INC31 = INC32 = INC33 = 16
as well as LPARIN(4) = 1 and LPARIN(7) = 2. These options enable collinear initial- and
final-state radiation, non-collinear radiation and vertex corrections on the electron side.174,178

The sample at Born level is generated by setting all of these options to 0, thus removing these
contributions. Self-energy corrections are taken into account in both samples via the running
of the electromagnetic coupling, which is enabled using the LPARIN(3) = 3 option. Corrections
to the quark side are turned off in both samples.

Polarisation correction The chain from the QED radiation correction, including higher-
order QED effects, is used to generate four more samples with polarised lepton beams. Each
sample corresponds to the average polarisation of one of the four run periods in the data.
Comparing these four samples to the unpolarised one is required for the polarisation correction
described in section 8.1.3. Polarised samples are generated using Heracles by adjusting the
POLARI input value from its initial value of 0 to the value corresponding to each run period, as
given in table 6.1.

Virtual electroweak correction A MC chain is constructed using matrix elements and
parton showering from Lepto and hadronisation using Jetset. Two samples are generated
using this chain. In the first sample, only photon exchange between the lepton and the hadron
is considered. The second sample also considers Z boson exchange and photon-Z interference.
These two samples are necessary for the weak-boson correction described in section 9.5.2. In
Lepto, the simulated process is controlled via the LST(23) option.165 A value of 1 corresponds
to considering only photon exchange. Setting this option to 4 enables Z exchange and the
interference term.

53



5 Calculations of observables in particle physics

5.3.4 Weights of Monte Carlo samples

Most signal and background MC chains comprise multiple, overlapping subsamples. To
consistently combine these samples, each event must be assigned a generator-level weight, as
shown in equation (5.2). This weight must be considered in all distributions where such a MC
sample is used. When applied to the MC, the term ‘number of events’ actually refers to the
sum of the event weights. For this reason, the ‘number of events’ can take non-integer values.
This also makes it possible to have high statistical precision in low-statistics regions, as bins
with a low ‘number of events’ can still have many entries with a small weight each.

Another use of the generator-level weight is to allow the reweighting of the MC samples.
The MC event generators have known deficiencies, e.g. they overestimate the number of events
in some regions of the phase space and underestimate them in others. A simple and practical
way to correct these deficiencies is to adjust the generator-level weights of the events in the
MC samples accordingly. Various such corrections will be applied in chapter 8.

In addition to the generator-level weight wgen, each MC event also possesses a detector-level
weight wrec. When determining event counts at generator level, only the generator-level weight
needs to be used. When determining detector-level counts, both weights must be included, i.e.
events are assigned a weight of wgen ·wrec. This additional detector-level weight allows applying
reweightings to the detector simulation. E.g. if there is a misrepresentation of events in some
phase space region due to effects in the detector simulation, the detector-level weight can be
adjusted to correct for it. Since this is a detector effect, it should not affect the generator-level
distributions and therefore requires a separate weight.

Similarly, events in the data sample can be assigned a weight that can be adjusted to
correct for known effects. Depending on the investigated effect, it is sometimes easier to
reweight the data than the MC samples. There is no distinction between the generator-level
and detector-level weights in the data since generator-level quantities are unknown. When
doing so, the ‘number of events’ may take non-integer values, even in the data. In this thesis,
this will only be done for one correction, with weights close to one. Therefore, the ‘number of
events’ in the data will still be approximately integer-valued, see section 8.1.3.
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CHAPTER 6

Event reconstruction

The detector measures a set of raw signals, the most important of which correspond to energy
deposits in the CAL and hits in the CTD and MVD. To perform a meaningful physics analysis,
particles must be reconstructed from these signals. In NC processes at HERA, an accurate
reconstruction of the scattered beam electron is essential since the computation of the kinematic
quantities relies heavily on this information. For the present analysis, the reconstruction of
the hadronic final state is also crucial since those particles will be used to reconstruct jets.

6.1 Data samples

This analysis is based on data recorded at the ZEUS detector during the HERA II period.
In this period, protons were accelerated to 920GeV and electrons to 27.5GeV, leading to a
centre-of-mass energy of 318GeV. The data are separated into four run periods with stable
data-taking conditions, as shown in table 6.1. Each run period consists of many individual
runs, typically lasting a few hours each. The luminosity of each run is determined from the
PCAL if available and from the SPEC if not, see section 3.2.3.

During the HERA II period, longitudinally polarised electron beams were delivered to the
experiments as described in section 3.1. The average polarisation of each run period is given
in the table. The polarisation of each run is determined either from the LPOL or the TPOL,
depending on which one was active longer during the run, see section 3.1. Combining all run
periods, the data sample is, on average, almost unpolarised. The 03p period and parts of the
04p period are not used in the analysis since it is found that the trigger rates are not as well
described by the MC as the other periods and the luminosity of these periods is small.

Run period Luminosity
[pb−1] Run numbers Average

polarisation
04p 12.9 50500–51245 0.32
05e 135.1 52258–57123 -0.06
06e 55.2 58207–59947 0.08

0607p 143.8 60005–62639 0.03
Total 347.0 50500–62639 0.01

Table 6.1: Overview of run periods. The last letter of the run period name indicates whether
the lepton beam consisted of electrons or positrons.
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6 Event reconstruction

6.2 Reconstruction of the scattered electron

In an NC DIS analysis, the scattered electron plays a central role, e.g. in the determination
of kinematic quantities, rejection of background and for the construction of the Breit frame
that is used for the clustering of jets. At ZEUS, two algorithms are commonly used to identify
electron candidates.

The so-called EM algorithm combines information from the CAL, HES, CTD and SRTD.179

It starts by grouping energy deposits from CAL cells into electromagnetic clusters, which
are taken as electron candidates. Candidates within the CTD acceptance region must have
a track associated with them. Each of these candidates is then rated according to several
criteria, such as the fraction of energy found in the electromagnetic rather than the hadronic
parts of the CAL or the isolation in the η-ϕ-plane. A total score is then derived by combining
all individual ratings. Candidates are accepted as electrons if they exceed a specific score
derived from MC studies. For high-energy electrons within the CTD acceptance region, which
is most electrons used in this analysis, the measured energy is taken from the CAL and the
position from the CTD track, extrapolated to the CAL surface, as these components have the
best resolution of these quantities. If available, the position measurement is enhanced using
information from the HES or SRTD. EM candidates are accepted as electrons for this analysis
if their combined score exceeds 0.001.

Sinistra, the other commonly used algorithm for finding electrons at ZEUS, employs a neural
network.180 This algorithm analyses the energy distribution in the CAL to distinguish between
electromagnetic and hadronic objects. A score between 0 and 1 is then assigned to each object
based on its probability of being an electron. Afterwards, the measured energy is corrected for
energy loss due to inactive material and for the small non-uniformity of the response of the
CAL. If available, information from the HES and SRTD are also used. Sinistra candidates
are considered to be of acceptable quality if their score exceeds 0.9. The Sinistra algorithm is
optimised only for the central and rear regions of the detector, i.e. for electrons found in the
RCAL and BCAL. Therefore, it is less suited for reconstructing very high-Q2 events, in which
the electron is found in the FCAL.

In this thesis, scattered electrons are identified using the EM algorithm, as it is better suited
for the very high-Q2 region.181 To estimate the systematic effect of this choice, a separate
study is performed using the Sinistra algorithm, as described in section 10.4.

6.3 Kinematic variables

As explained in section 2.2, an inclusive DIS event is usually characterised by the kinematic
variables Q2, xBj, y and s. As these quantities play a central role in defining cross sections, it
is essential to determine them precisely. Neglecting masses of the initial-state particles and
higher-order QED radiation, these quantities are related as Q2 = xBjys. Since s only depends
on the beam energies, it is constant. Therefore, only two of these kinematic quantities are
independent and must be determined for each event.

The general graph for jet production in NC DIS e+ P → e′ + p′ +X is shown in figure 6.1.
Here, P is the initial-state proton, e is the initial-state electron, e′ is the final-state electron, p′

is the hadronic final state from the hard scattering, and X is the proton remnant. The struck
parton takes a fraction ξ of the momentum of the incoming proton. All external particles are
assumed as massless, which is a valid approximation for the present analysis. The following
derivation is performed in the QPM, where the hadronic final state p′ consists of a single
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Figure 6.1: Graph of NC DIS at leading-order in the electroweak interaction on the electron
side.

particle and is thus also massless. This is not a valid approximation when considering QCD
effects. Implications of a mass of the hadronic system are discussed in the next section. In the
QPM, the initial- and final-state momenta can be parameterised as

k =




Ee
0
0

−Ee


 , P =




EP
0
0
EP


 , k′ =




E′
e

E′
esin(θ)cos(ϕ)

E′
esin(θ)sin(ϕ)
E′
ecos(θ)


 , p′ =




E′
p

E′
psin(γ)cos(ψ)

E′
psin(γ)sin(ψ)

E′
pcos(γ)


 . (6.1)

For now, the process is considered only at leading order in QED on the electron side. The
consequences of radiative corrections are discussed in section 6.5.

The six final-state quantities E′
e, E′

p, θ, γ, ϕ and ψ are measurable in the detector. The
proton remnant X is not practically measurable, as a significant part of it escapes into the
beam pipe.

Four-momentum conservation of the electron-parton system demands

k + ξP = k′ + p′. (6.2)

One of these four constraints relates the angles ϕ and ψ, which correspond to rotations around
the beam axis and do not affect the kinematic quantities due to the azimuthal symmetry of the
system. After eliminating ξ, two relations remain between the relevant observable quantities
E′
e, E′

p, θ and γ

2Ee = E′
e(1− cos(θ)) + E′

p(1− cos(γ)), (6.3a)

0 = E′
esin(θ)− E′

psin(γ). (6.3b)

Thus, only two of these four observable quantities are independent and sufficient to describe
the final state and compute the kinematic quantities. This corresponds to the earlier statement
that only two of the kinematic variables are independent.
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6 Event reconstruction

The simplest method to reconstruct the kinematic quantities is known as the electron
method, as it uses only the properties E′

e and θ of the final-state electron. It can be obtained
directly, by inserting expressions (6.1) into the definitions of the kinematic quantities (2.1)

Q2
EL = 2EeE

′
e

(
1 + cos(θ)

)
, (6.4a)

yEL = 1− E′
e

2Ee

(
1− cos(θ)

)
, (6.4b)

xBj,EL =
Ee
EP

E′
e(1 + cos(θ))

2Ee − E′
e(1− cos(θ))

. (6.4c)

Using equations (6.3), it is possible to derive alternative methods using any other two of
the four relevant observables.182,183 Since the detector resolution depends on the measured
quantity and the detector region, each method has a different resolution depending on the
investigated phase-space region. The optimal choice of method depends on the analysis and
on the desired treatment of QED corrections.

A particularly useful method is the double-angle method, which exclusively relies on the
angles θ and γ. This method is, therefore, approximately independent of any bias in the energy
measurement of the calorimeter for the scattered electron or the hadronic system from the
hard scattering

Q2
DA =

4E2
e sin(γ)

(
1 + cos(θ)

)

sin(θ) + sin(γ)− sin(θ + γ)
, (6.5a)

yDA =
sin(θ)

(
1− cos(γ)

)

sin(θ) + sin(γ)− sin(θ + γ)
, (6.5b)

xBj,DA =
Ee
EP

sin(γ)

sin(θ)

1 + cos(θ)

1− cos(γ)
. (6.5c)

A useful related quantity is the double-angle energy. This is the energy of the scattered electron
E′
e, as reconstructed from the angles θ and γ

EDA := E′
e(θ, γ) =

2Eesin(γ)

sin(θ) + sin(γ)− sin(θ + γ)
. (6.5d)

The double-angle method requires knowledge of the hadronic scattering angle γ. This angle
is determined from the momentum of the hadronic final state from the hard scattering p′

cos(γ) =
p′2x + p′2y − (E′

p − p′z)
2

p′2x + p′2y + (E′
p − p′z)2

, (6.5e)

where p′ is the sum over the momenta of all particles that contribute to the hadronic final
state from the hard scattering.

Other methods for kinematic reconstruction are also widely used. E.g. the Jacquet-Blondel
method uses only observables from the hadronic final state E′

p and γ. It has been shown in
previous analyses that the double-angle method has the best resolution in the phase space
considered in this analysis.80,182

It is instructive to invert equations (6.4) or (6.5) to obtain a more intuitive understanding
of the kinematic quantities. The final-state observables can be written as functions of the
kinematic quantities as

E′
e = EPxBjy + Ee(1− y), cos(θ) =

EPxBjy − Ee(1− y)

EPxBjy + Ee(1− y)
,

E′
p = EPxBj(1− y) + Eey, cos(γ) =

EPxBj(1− y)− Eey

EPxBj(1− y) + Eey
.

(6.6)
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Figure 6.2: The final-state quantities E′
e, E′

p, θ and γ are shown as a function of the kinematic
quantities Q2, xBj and y for the beam parameters used HERA. The relations are valid at
leading order in the QPM. The grey area indicates the phase space that is investigated in this
analysis.

These relations are illustrated in figure 6.2. For large xBj, both the electron and the hadronic
final state are mostly scattered in a forward direction and y indicates what fraction of the total
energy available is taken by the electron. This relation flips at small xBj, and the energy of
the hadronic final state becomes proportional to y, while both objects are scattered in a more
backward direction. At xBj = Ee/EP ≈ 0.03, the electron and the hadronic final state have
the same energy and are scattered back-to-back, with y determining the polar angle relative
to the beam axis.

6.4 Application to a massive hadronic system

In the previous section, the electron method (6.4) and the double-angle method (6.5) have
been derived under the assumption that the hadronic final state from the hard scattering p′ is
massless. When considering inclusive jet production in the Breit frame, this system comprises
at least two non-collinear particles. While all component particles may be assumed massless,
their sum can be rather massive, easily exceeding the energy of the incoming electron. In
the following section, it will be shown that the formulae derived above under the massless
assumption are also applicable to the massive case.

For the electron method, this proof is simple. Its derivation merely consisted of inserting
the parameterisations of k, P and k′ from equation (6.1) into the definition of the kinematic
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6 Event reconstruction

quantities (2.1). Therefore, it is independent of the hadronic final state p′, and the same
derivation applies to the massive case.

A formal derivation of the double-angle method in the massive case is rather complex.
Instead, the following argumentation will start from the massless expressions (6.5) and show
that they are also valid in the massive case. In the massive case, the parameterisation of p′

has to be adjusted in equation (6.1)

p′ =




E′
p

p′x
p′y
p′z


 =




√
p′p

2 +m2

−p′psin(γ(true))

0

p′pcos(γ
(true))



, (6.7)

where m2 = p′2 is the mass of the hadronic system. Four-momentum conservation now leads
to

p′ = k + ξP − k′ =




Ee + ξEP − E′
e

−E′
esin(θ)
0

−Ee + ξEP − E′
ecos(θ)


 . (6.8)

Each event is characterised by the six quantities E′
e, θ, ξ, p′p, γ and m. Combining the above

equations yields three constraints on these quantities. Thus, only three of these quantities are
independent and sufficient to describe the event.

Consider an event described in terms of E′
e, θ and ξ. According to the electron method,

the kinematic quantities Q2, xBj and y are completely determined by E′
e and θ, i.e. they are

independent of ξ. When picking ξ = xBj, the event corresponds to the QPM and m2 = 0. In
this case, the double-angle formulae will yield the correct kinematic quantities according to
the derivation in the previous section. What remains to be shown is that this is also the case
of other values of ξ.

In the double-angle method, the kinematic quantities are described by θ and γ. Since θ is
considered fixed, any ξ dependence of the kinematic quantities must be via γ. The quantity γ
is defined via equation (6.5e). Note that γ only depends on p′x, p′y and E′

p − p′z. According
to equation (6.8), the first two of these quantities are independent of ξ and in the third one,
the ξ-dependence cancels. Thus, γ is independent of ξ, and so are the kinematic quantities
computed using the double-angle method.

To summarise, an event is completely described by E′
e, θ and ξ. The true kinematic

quantities Q2, xBj and y do not depend on ξ. The kinematic quantities computed using the
double-angle method do not depend on ξ. For ξ = xBj, the kinematic quantities according to
the double-angle method are identical to the true ones. Therefore, the kinematic quantities
computed using the double-angle method must be identical to the true ones for any value of ξ.
The same argument can be applied to show that EDA ≡ E′

e.
This argumentation claims that γ is independent of ξ. Physically, this seems like a contradic-

tion since the properties of the hadronic system clearly must depend on the momentum of the
incoming quark. This apparent contradiction is because, in the massive case, the quantity γ
loses its physical interpretation as the angle of the hadronic system. By inserting equation (6.7)
into (6.5e), it is easy to show that γ ̸= γ(true).

Therefore, the correctness of the double-angle method in the massive case depends crucially
on the exact form of equation (6.5e). If cos(γ) where defined, e.g. as p′z/

√
p′2x + p′2y + p′2z , which
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Figure 6.3: The final-state quantities E′
e, E′

p, θ and γ(true) in the case of a massive hadronic
system with m = 30GeV. For details, see the caption of figure 6.2.

yields cos(γ(true)), then the kinematic quantities would no longer correspond to the true ones.
As can be seen, the fact that the double-angle method works in the massive case is non-trivial
and is often glossed over when discussing the double-angle method in the context of multijet
measurements.72,80,184–186

The inverse relations (6.6) that express the observables in terms of the kinematic quantities
need to be modified for a massive hadronic system. The relations for E′

e and cos(θ) remain
unchanged, as they are derived from the electron method. Inserting those expressions into
the momentum-conservation relation (6.8) leads to generalisations of the expressions for the
hadronic system. Expressed in terms of xBj, y and m, they read

ξ = xBj +
m2

sy
, (6.9a)

E′
p = EPxBj(1− y) + Eey +

m2

4Eey
, (6.9b)

cos(γ(true)) =
EPxBj(1− y)− Eey +

m2

4Eey√(
EPxBj(1− y)− Eey +

m2

4Eey

)2 −m2
. (6.9c)

Figure 6.3 shows these relations for a typical value m = 30GeV. Compared to the massless
case, the hadronic system moves in a more forward direction. The effect is most significant in
the low-xBj, low-y region.
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Figure 6.4: Feynman graph of the electron-boson-interaction at QED Born level (left) and
including radiative corrections of the electron (right). For the right graph, the momenta are
labelled according to the definitions used in this analysis.

6.5 Treatment of radiative effects

When considering single- or multijet production without real corrections, all presented methods
of kinematic reconstruction are equivalent, up to detector resolution effects. This is no longer
true when considering higher-order QED corrections to this process. Most importantly, photon
radiation from the electron line can affect these methods, as it modifies the momentum-
conservation relation (6.2). Such radiation is predominantly collinear and is referred to as
initial-state radiation (ISR) or final-state radiation (FSR), depending on whether it originates
from the incoming or outgoing electron. The different methods of kinematic reconstruction
are derived using the leading-order version of the momentum-conservation relation. These
methods are no longer equivalent when this relation does not hold. Therefore, the methods
must be distinguished and used consistently also at MC generator level.

The Feynman graphs of the electron-boson vertex in the absence and presence of QED
radiative effects are shown in figure 6.4. Collinear FSR and bremsstrahlung are not problematic,
as they are reconstructed as part of the electron. Therefore, it does not affect the reconstruction
of the event.

Collinear ISR photons require more careful treatment. They reduce the energy of the
incoming electron and thereby affect the kinematic reconstruction. These photons escape into
the beam pipe and are, therefore, usually not directly measurable in the detector, which makes
it difficult to correct for the energy loss. This means that there is no simple way to define k
and k′, such that they are observable in the detector and that q = k′ − k is the momentum of
the exchanged boson.

This issue also affects comparisons between measurements and theoretical predictions. The
available predictions for jets in DIS correspond to QED Born level. In this definition, the
process is considered at leading-order QED, i.e. the left panel of the figure. In the data and the
signal MC, on the other hand, higher-order QED radiative effects are present. The approach
chosen at HERA is to apply a correction to the measured cross sections to transform them
to QED Born level. This procedure is described in section 9.5.3. This means there is some
freedom in defining the intermediate cross sections, i.e. the ones derived by the unfolding but
before the QED correction.

For this analysis, it is chosen to use the momentum of the electron beam before ISR as
the initial-state electron k, the scattered electron including any potential FSR as final-state
electron k′ and to keep equations (2.1) as the definition of the kinematic quantities. This
choice corresponds to using the electron method at generator level. It is shown in the right
panel of figure 6.4.

This definition implies that in the presence of ISR, the quantity q no longer corresponds
exactly to the momentum of the exchanged boson. This momentum is required for constructing
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6.6 Reconstruction of detector-level jets

the Breit frame. Thus, this definition introduces a slight bias in the reconstruction of Q2

and the Breit frame boost. In the data, this bias is kept to a minimum by removing events
with large amounts of ISR from the event sample at detector level, see section 7.1. The
QED-radiation correction that is applied to the unfolded cross sections accounts for this
definition. After applying this correction, the cross sections correspond to QED Born level
with the correct and consistent definitions of Q2 and the Breit frame.

It is also possible to develop a method of kinematic reconstruction that uses three of the
observables E′

e, E′
p, θ and γ and does not rely on knowledge of the initial-state-electron

momentum. Such a method would not be sensitive to ISR and should allow for a more precise
measurement of the momentum of the exchanged boson.182,187 It would be interesting to
explore such a method in more detail in future analyses.a

The interacting quark line can also radiate collinear photons. Since the coupling of fermions
to the photon is proportional to their squared electric charge, radiative effects on the quark
side are a subdominant effect compared to the electron side. Similarly to the electron side,
FSR from the quark is not problematic, as it is reconstructed as a part of the jet. This is
especially true due to the large radius of the constructed jets, see next section, and due to
the almost equal response of the CAL to electromagnetic and hadronic objects. Collinear ISR
from the quark also affects its momentum. Since the parton momentum is inherently unknown,
none of the reconstruction methods explicitly rely on it. Therefore, they are independent of
ISR from the quark. Radiative corrections to the quark side are not further considered in this
thesis.

6.6 Reconstruction of detector-level jets

Particles of the hadronic final state are visible in the detector as energy deposits in the CAL.
Electrically charged particles have a track associated with them in the CTD and MVD. The
energy measured in the CAL has a better resolution for particles of high transverse momentum.
Charged particles of lower transverse momentum are usually better measured by the CTD
and MVD. A dedicated algorithm was developed at ZEUS to use the available information
optimally. It combines the information from the CAL and the CTD to form so-called energy
flow objects. Due to the non-uniformity of the tracker, energy flow objects require significantly
more complex correction procedures. Therefore, in this analysis, jets are reconstructed from
CAL energy deposits only. This is possible due to the high resolution and uniformity of the
calorimeter of the ZEUS detector.

Jet candidates are reconstructed using the k⊥-algorithm with radius parameter R = 1, as
described in section 2.5.1. This radius corresponds to an opening angle of the jets of 115◦.
Choosing such a large jet size is convenient as it makes the reconstruction insensitive to soft
large-angle radiation within the jets. The input to the algorithm consists of the massless
four-momenta calculated from the position and measured energy of each CAL cell. Cells
associated with the scattered electron are excluded, as well as cells directly adjacent to the
forward beam pipe, as these are more likely to be biased by the proton remnant and by particles
scattered off the beam elements. The p⊥-weighted scheme is used to combine particles. This

aAs a side note: such a method could potentially even be used to study DIS in proton-proton collisions, where
one proton radiates a photon that then splits into an e+e−-pair. One of these electrons could then engage
in a DIS interaction with a proton from the other beam. Since the energy of this electron is inherently
unknown, the study of this process is only possible using a method for kinematic reconstruction that does
not rely on this information.
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6 Event reconstruction

guarantees that the clustered jets are massless, which is necessary for consistency with previous
measurements and theoretical predictions.71,121,133,159

In this analysis, the clustering is usually, but not always, performed in the Breit frame of
reference that was described in section 2.5.2. In these cases, the four-momenta computed from
the CAL cells are boosted to the Breit frame, where the k⊥-algorithm is applied. The clustered
jet candidates are then boosted back to the laboratory frame. Knowing the four-momentum of
the exchanged boson is necessary to compute the boost matrix. This momentum is determined
from the electron method, as discussed in the previous section.
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CHAPTER 7

Event selection

In this analysis, inclusive jet production in NC DIS events is investigated. First, a set of
NC DIS events is selected. Afterwards, the high-energy jets of each event are identified and
collectively form the inclusive jet sample.

7.1 Signal and background characteristics

The Feynman graphs for the leading-order contributions to this analysis are given in figure 7.1.
Processes contributing to the analysis contain at least two jets due to using the Breit frame,
as described in section 2.5.2.

An NC DIS event is characterised by the scattered electron in the final state. The scattering
angle of the electron is shown as a function of the kinematic variables in figures 6.2 and
6.3. The phase space for this high-Q2 analysis is selected such that the electron is scattered
at moderate angles, not too close to either beam pipe. Therefore, the scattered electron is
expected to be measurable in the detector as an energy deposit in the CAL, usually with a
CTD track pointing to it. At lower Q2 values, the electron is found in the rear region of the
detector. In higher Q2 events, the electron is scattered in an increasingly forward direction.
Since the cross section drops steeply as a function of Q2, the majority of electrons are expected
to be found in the RCAL and BCAL. Only at the highest Q2 values, greater than about
10000GeV2, can the electron be scattered towards the FCAL.

The transverse momentum of the scattered electron is balanced by that of the hadronic
system. The proton remnant is not entirely measurable in the detector as it escapes into the
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Figure 7.1: Feynman diagrams of boson-gluon fusion (right) and QCD Compton (middle
and right) processes. In all cases, the measurable final state consists of the scattered electron
and two jets.
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Period 06p; Run 61747; Event 107771
Recorded 2007/01/01 03:45:57
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Figure 7.2: Event display of two signal events.188 The left panels show a trijet event, with
a Q2 value close to the lower end of the analysis phase space and the right panels show a
dijet event close to the upper end. The upper panels visualise the ZEUS detector in the
z-r-plane. The beige boxes represent the CTD with tracks shown in pink. The blue areas
correspond to the CAL, with the red boxes indicating the amount of energy registered in each
cell. The reconstructed scattered DIS electron is shown as a blue arrow and reconstructed jets
as green arrows. The lower panels show the transverse energy distribution in the η-ϕ-plane.
The electrons and high-energy jets are clearly visible as energy clusters. The low-energy jets
in the event shown on the left are spread over a larger area and, therefore, less easily visible.

beam pipe. Parts of the proton remnant are sometimes detectable in the FCAL cells adjacent
to the beam pipe. Figure 7.2 shows the appearance in the detector of two typical signal events,
one at the lower end and one at the higher end of the considered Q2 range.

Photoproduction Background is expected from misreconstructed PHP events, especially at
low Q2. PHP events can have the same Feynman graph as DIS events, but they occur at very
low Q2, below 1GeV2 according to the ZEUS convention. The electron is deflected at a very
small angle and escapes into the beam pipe. In the detector, sometimes a different electron, a
photon or a neutral pion decaying into two photons is misidentified as the scattered electron,
such that the PHP event resembles the signature of a DIS event.

A helpful quantity to reject PHP events is E − pz, the difference of the energy and the
momentum along the z-axis summed over all particles in the event. Particles travelling along
the +z direction, such as the initial-state proton or the final-state proton remnant, satisfy
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7.1 Signal and background characteristics

E = pz and thus do not contribute to this difference. In the initial state, this quantity
is determined entirely by the beam electron for which E − pz = 2Ee. Due to momentum
conservation, the same relation should hold for the final state. If the scattered electron escapes
detection, this momentum balance will not be satisfied in the final state, thus making it
possible to distinguish PHP and DIS events, even when the scattered electron is not correctly
measured.189

After applying the event selection, a small amount of PHP events is expected to remain
in the data sample. A dedicated PHP MC sample is used to estimate this contribution and
subtract it from the data when determining the cross sections.

Charged-current deep inelastic scattering Another type of background is expected from
misreconstructed CC DIS events. In these events, the exchanged boson is a W boson and the
final-state lepton is a neutrino. Since the neutrino is not measurable in the detector, a different
electron, photon or pion can be misidentified as the scattered electron. CC DIS contributes
significantly only when Q2 becomes comparable to the mass of the W boson M2

W , but since
the scattered electron is misidentified, they can contribute as a background at any Q2 value.
CC DIS events can be rejected using transverse and longitudinal momentum conservation. As
the neutrino carries a significant momentum and escapes detection, the overall momentum of
the event will be unbalanced, which can be used to distinguish CC and NC DIS events.

Cosmic rays Cosmic rays are high-energy particles that move through space, such as protons
originating from interstellar or intergalactic objects. When these particles interact with the
Earth’s atmosphere, they will induce showers of further particles. These showers can contain
muons capable of depositing energy in the detector. Since these cosmic muons sometimes
cannot be distinguished from particles originating in the beam interaction, they bias the
reconstruction of the event or cause events that originate entirely from the cosmic ray. Similar
to CC DIS events, cosmic ray interactions will affect the transverse momentum balance and
can be rejected similarly. They can also be rejected by timing requirements since cosmic rays
are usually inconsistent with the bunch crossing time and interact with the top sections of the
detector earlier than with the bottom ones.

Beam-gas interactions The beam pipes and the interaction region are kept under a high
vacuum to let the beams move undisturbed through the beam pipes. However, this vacuum is
imperfect. A few molecules remain within the beam pipes and interaction region. If such a
molecule interacts with one of the beams, it can resemble a signal event in the detector.

Beam-gas interactions often occur outside the interaction region and cause tracks in the
detector that cannot be associated with any vertex. The fraction of tracks originating from
the primary vertex can be used at trigger level to reject such interactions. They can also
be suppressed using trigger-level timing information to reject events inconsistent with the
bunch crossing time. Furthermore, depending on the momentum of the beam-gas molecule and
with which beam it interacts, they can also cause deviations in the transverse or longitudinal
momentum balances, thus giving further opportunity to distinguish them from signal events.

Events with significant initial-state radiation As discussed in section 6.5, radiative
corrections to the electron line, especially ISR, can affect the reconstruction of the kinematic
quantities. It is helpful to reject events with high energetic ISR photons, to minimise the
influence of this effect. Furthermore, the final cross sections will be quoted after correcting
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them to leading order QED, where no ISR exists. Therefore, rejecting such events from the
data sample reduces the dependence on the modelling of this effect. As the ISR photon travels
in the −z direction and escapes detection, it will influence the longitudinal momentum balance.
This makes rejecting ISR events possible, using a requirement on E − pz.

Low-Q2 DIS The measurement focusses on the region Q2 > 150GeV2. The signal MC
samples were generated in the region Q2 > 100GeV2 and are thus able to describe migrations
from Q2 ∈ (100, 150)GeV2 into the signal region. However, there is also a non-negligible
amount of events that migrate from Q2 < 100GeV2 into the signal region. Since these
misreconstructions often cannot be distinguished from real signal events, rejecting them
during event selection is difficult. A dedicated low-Q2 DIS MC sample is used to estimate
the contribution from these events to the data sample. To determine cross sections this
contribution will be subtracted from the data.

7.2 Selection of deep inelastic scattering events

The event selection relies on finding a well-reconstructed electromagnetic energy deposit
consistent with being the scattered electron. The electron is used to reconstruct the kinematic
quantities. Requiring a high-quality electron candidate helps to reject PHP, CC DIS and
beam-gas interaction events.

In the figures shown in this section, the a priori corrections discussed in section 8.1 are
already applied since these are independent of the details of the event selection. The other
corrections discussed in chapter 8 are not yet applied.

Apart from the data and the two NC DIS signal MC samples, Ariadne and Lepto, also
background MC samples for PHP and low-Q2 DIS are shown. The MC samples are discussed
in section 5.3.2. Each sample is normalised according to the MC luminosity. In some regions
of the phase space, the NC DIS MC samples alone will not describe the data. Therefore, it is
instructive to construct a combined MC sample as (Ariadne+Lepto)/2+PHP+Low-Q2 DIS,
that is expected to be more representative of the data. Since cross sections will be determined
using both the Ariadne and Lepto MC chains, it is relevant to consider their average instead
of just the two predictions individually. In the figures, this combined sample is scaled up by
about 2%, to match the normalisation of the data sample.

In the figures, each histogram is shown as if the corresponding cut is applied as the last DIS
cut, i.e. only events that are kept by all other DIS cuts described in this section are shown.
This representation is practical because the data sample is well-defined only after applying the
event selection. E.g. the Q2 distribution has little physical meaning before applying cuts on
the quality of the DIS electron. Furthermore, this representation allows directly assessing the
effect of each cut on its own.

7.2.1 Phase space

The kinematic range that is analysed is defined as 150GeV2 < Q2
DA < 15000GeV2 and

0.2 < yDA < 0.7. For calculation of the kinematic quantities via the double-angle method, the
hadronic final state is defined using the CorAndCut algorithm, which is based on clusters of
CAL cells.190 The cut in Q2 restricts the measurement to a well-understood detector region.
The scattered electron is usually reconstructed in the BCAL or RCAL and is within the
acceptance region of the CTD. The upper cut in y is necessary to ensure a good detector
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Figure 7.3: Distributions of the quantities Q2
DA and yDA in the data and MC samples. The

orange frame shows the region that is retained by the depicted cut. Only events that are kept
by all other DIS cuts are shown. Thus, events outside the orange frame are removed only by
the cut shown in each histogram. The events inside the orange frame constitute the inclusive
DIS sample and are identical in each histogram. The error bars show the statistical uncertainty.
The error bars of the MC samples are offset horizontally for visual clarity. The ‘combined MC’
sample is a linear combination of the other MC samples, expected to correspond the closest to
the data, see text.

acceptance of jets, and the lower cut limits the size of non-perturbative effects.80 This is
the same phase space region used in the corresponding analysis from H1, allowing for easy
comparison between the two measurements.121

7.2.2 Quality cuts

To use the MC simulations for the acceptance correction, they must describe the data as
closely as possible. Regions of the phase space not well described by the MC, e.g. due to
specific background processes not being simulated or due to an inaccurate detector simulation,
should be removed from the event sample. When performing the acceptance correction, these
regions are accounted for via an extrapolation from the MC predictions.

Trigger bits

In the data, events were only stored if at least one FLT, SLT and TLT trigger bit was active,
as discussed in section 3.2.4. Triggers are also simulated and applied to the simulated events
to ensure that the MC describes the data. Since not all triggers are simulated accurately, it is
necessary to select a subset of well-described triggers and reject events in both data and MC
for which none of these triggers are active.
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The selection of trigger bits is made similar to previous high-Q2 NC DIS and jet analyses
at ZEUS.72,80,189 It is required that at least one of the FLT bits 28, 30, 36, 39, 40, 41, 43,
44, 46, 47 or 50 is active. These bits check for different combinations of energy deposits
in different parts of the CAL. Some of them include requirements on the isolation of the
energy deposit or on the global number of tracks. At SLT level, at least one of the triggers
SPP1, DIS7, EXO1, EXO2 or EXO3 is required. These triggers introduce requirements on the
total transverse momentum and the global E − pz. They also contain timing vetos to reject
events inconsistent with the bunch crossing time. For TLT, the bit DIS3 is required. This
bit refines the requirements of the previous levels and adds additional requirements on the
primary vertex reconstruction and the scattered electron candidate. The trigger rates for all
mentioned triggers and all run periods are shown in appendix B.1.

Electron quality

The event reconstruction relies heavily on the final-state electron. It is, therefore, crucial to
have an accurate and well-modelled measurement of the electron. The first electron identified
by the EM algorithm is used as the candidate DIS electron. This electron is required to have
a score of at least 0.001, as explained in section 6.2. Furthermore, the DIS electron is required
to have an energy of at least 10GeV.71,191 This cut restricts the analysis to a well-measured
phase space region. It also helps to reject PHP events in which a photon is misidentified as
the electron.

Electrons that are not isolated are often poorly reconstructed. Additionally, if the DIS
electron candidate is not isolated, there is an increased chance that it is a misidentified non-DIS
electron. The sum of all energy deposits in a cone of ∆R = 0.8 around the electron is calculated.
The event is rejected if more than 10% of this energy is not associated with the electron.71

This requirement also helps to reject events in which a jet is misidentified as an electron.
Distributions for the electron quality cuts are shown in figure 7.4.

Electron-track quality

If the electron is reconstructed in the acceptance region of the CTD, 0.3 < θ < 2.85, it is
required to have a track associated with it.191 This requirement helps to reject photons and
neutral pions in the CAL that are misidentified as electrons. In the nominal event selection
described in this section, the electron is always reconstructed in this region and thus always
required to have a track. This distinction only becomes relevant for studying the jet-energy
scale, for which the cut on the inelasticity is removed, as discussed in section 10.1.

The track matched to the electron is required to have a momentum of at least 3GeV.71,191

This value is notably below the 10GeV that is required for the electron itself, to account for
FSR and bremsstrahlung photons, that are reconstructed as part of the electron cluster, but
do not leave a track. The track is extrapolated to the CAL, and the distance between the
track and the energy deposit corresponding to the reconstructed electron at the CAL surface
is required to be less than 10 cm.71,191 These two cuts reject events in which the electron track
is mismatched. Distributions of the tracking cuts are shown in figure 7.5.

DIS selection

The longitudinal energy-momentum imbalance E − pz is used to reject PHP events, NC DIS
events, events from beam-gas interactions and events with significant ISR. For NC DIS events,
one expects E − pz = 2Ee = 55GeV. Events are selected if they satisfy 38GeV < E − pz <
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Figure 7.4: Distributions for electron quality cuts. For details on the figure, see the caption
of figure 7.3. The electron-energy distribution is generally well described by the MC, with
some deviations in the steeply rising and falling regions around the peak that are difficult to
model accurately. The electron isolation is reasonably described only by the combined MC
sample, especially in the region rejected by the cut, indicating that background contributions
significantly affect this region. The uncertainty of the electron-energy cut will be covered by
the electron-energy scale uncertainty. The uncertainty of the electron-isolation cut will be
shown to be negligible in section 10.5.

65GeV.71,191 Especially above the upper bound, the MC deviates from the data, indicating
the presence of effects that are not modelled. The lower bound can be translated into a cut on
ISR events. It corresponds to rejecting events in which the ISR photon has an energy of more
than 8.5GeV.

For NC DIS events, the total reconstructed transverse momentum is expected to vanish.
Significant deviations from zero can occur for background events from CC DIS, cosmic rays or
beam-gas interactions. Such events are suppressed by requiring that p⊥/

√
E⊥ < 2.5

√
GeV,

where p⊥ =
√∑

i(p
2
x,i + p2y,i) is the vectorial sum and E⊥ =

∑
i

√
p2x,i + p2y,i is the scalar

sum of the transverse momenta of all reconstructed particles, according to the CorAndCut
algorithm.71,190 The normalisation factor

√
E⊥ is inserted to account for the resolution of the

CAL. Distributions for the DIS selection cuts are shown in figure 7.6.

Poorly measured regions of the detector

Due to the geometry of the detector, some regions of the CAL have a lower acceptance or are
otherwise poorly understood. This leads to a reduced resolution which is often badly described
by the MC. Thus, events in which the scattered electron is reconstructed in such an area
should be rejected.
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Figure 7.5: Distributions for electron tracking cuts. For details on the figure, see the caption
of figure 7.3. The description of the tracking distributions by the MC is not ideal. In the
next chapter, multiple corrections will be applied that improve the agreement slightly. The
distributions are shown after corrections in figure B.8. Systematic uncertainties will be assigned
to cover the remaining disagreement between data and MC close to the cut boundaries.

The CAL comprises three sections, as described in section 3.2.2. The regions where these
parts are joined are the so-called super-crack regions and located at −143.5 cm < z < −98.5 cm
and 164 cm < z < 216.5 cm.72,80,189 Electrons reconstructed in this region are measured by the
edge of the BCAL. It is likely that parts of the induced showers pass through the BCAL and
thereby escape detection, creating a bias in the electron energy measurement. To avoid this
bias, events in which the DIS electron is reconstructed in this region are rejected. Only the
inner cut boundaries, −98.5 cm and 164 cm, are clearly defined, while the outer boundaries
are arbitrarily placed between the BCAL and RCAL or FCAL, see figure 7.8.

A support pipe is located in the upper half of the RCAL. The event is rejected if the DIS
electron is reconstructed in the RCAL at y > 80 cm and |x| < 12 cm.72,80,189 The need for
this cut becomes clear in figure 7.7, which shows the two-dimensional spatial distribution of
electrons reconstructed in the RCAL

The outer region of the RCAL is screened by the BCAL, which reduces the energy of
measured particles. If the DIS electron is found within RCAL and more than 175 cm from the
beam axis, the event is rejected.72,80,189 Distributions corresponding the each of these cuts are
shown in figure 7.8.
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Figure 7.6: Distributions for further DIS selection cuts. For details on the figure, see
the caption of figure 7.3. The signal MC samples alone do not describe these distributions
satisfactorily, especially in the regions removed by the cuts. The agreement is much improved
when compared to the combined MC sample. This demonstrates that these distributions are
significantly affected by background and that these cuts are useful in rejecting non-NC-DIS
events. In the transverse momentum distribution, modelling differences between Ariadne
and Lepto can be observed, but their average gives a good description of the data. The
difference between Ariadne and Lepto will be accounted for as a systematic uncertainty. A
dedicated systematic uncertainty will be assigned to each of these cuts to cover the remaining
disagreement between data and MC close to the cut boundaries.

Other quality cuts

Most collision events occur at a longitudinal position of |z| ≲ 10 cm, a length which is
determined mainly by the proton bunch length. Due to imperfections in the accelerator,
particle bunches are usually surrounded by smaller, so-called satellite bunches. Interactions
can also occur between nominal bunches of one beam and satellite bunches of the other, usually
happening at |z| ≳ 50 cm. Since all event kinematics are affected by the vertex position, it
is desirable for the vertex to be located close to z = 0. A large fraction of events that do
not originate from interactions of the nominal bunches can be rejected by requiring that the
primary vertex of each interaction is located at |z| < 30 cm.71,191

The position of the event vertex is determined from the tracks of charged particles, as
measured in the MVD and CTD. A fit is then performed to determine the primary and
possibly secondary vertex positions. To ensure this fit is possible, at least one well-defined
track matched to the primary vertex is required. A track is considered well-defined if it passes
through at least three superlayers and has a transverse momentum of p⊥ > 0.2GeV. The
sample quality is further improved by requiring χ2/degree of freedom < 10 for this fit. The
distributions of the vertex-related cuts are shown in figure 7.9.72,80,189
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Figure 7.7: Spatial distribution of electrons reconstructed in the RCAL after applying all but
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in the data and the right panel that in the Ariadne MC sample. The region that is removed
by the cut is not well-modelled.
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figure, see the caption of figure 7.3. All three distributions are reasonably described by the
MC.
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Figure 7.9: Distributions for vertex-related cuts. For details on the figure, see the caption of
figure 7.3. Similar to the electron tracking cuts shown in figure 7.5, there is a notable deviation
between data and MC. The agreement improves after applying the corrections described in
the next chapter. The distributions are shown after corrections in figure B.9. For the vertex
position cut, a systematic uncertainty will be introduced. The efficiencies of the other two
cuts are sufficiently high to neglect their uncertainties.

The Feynman graphs of diffractive QED Compton events are given in figure 7.10. These
events are not part of the cross section definition and are not modelled by any of the MC
samples used. Therefore, they should be rejected from the data sample. Such an event is
characterised by two isolated electromagnetic energy deposits in the CAL, one of which is
the scattered electron, the other one the photon. The photon can be misreconstructed as an
electron candidate. The two clusters balance the momentum of each other, and the event
usually contains no other energy deposits since the proton remains intact. An event is classified
as QED Compton and thus rejected if there is another electron candidate that has an angular
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Figure 7.10: Diffractive QED Compton graphs in which a non-collinear photon is emitted
from the final-state proton (left) or electron (right). The proton remains intact. Two more
graphs exist in which the photon is emitted from the initial-state particles.
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separation ∆ϕ > 3 to the nominal electron, whose momentum is within 20% of the nominal
electron’s momentum and if there is no more energy than 3GeV in the CAL, that is not
associated with either of the two electron candidates.72,80,189 According to this definition,
about 0.6% of data events are classified as QED Compton events, while less than 0.02% of
events are misidentified as such in the MC samples.

7.3 Selection of single inclusive jets

The inclusive jet sample is selected based on the inclusive DIS sample. Even though they
are reconstructed from the same events, the two samples are of a very different nature. The
inclusive DIS sample is a set of events, whereas the inclusive jet sample is a set of jets, each of
which is associated with an event. An event with multiple jets can thus contribute multiple
times, introducing statistical and systematic correlations within the inclusive jet sample.

The starting point for jet reconstruction is the corrected inclusive DIS sample, whose
selection is described in the previous section and which includes the corrections described in
sections 8.1 and 8.2. In the figures shown in this section, these corrections are already applied.
The jet corrections from section 8.3 are not yet applied.

Massless jet candidates are clustered in the Breit reference frame based on CAL cells as
described in section 6.6. Jet candidates are subjected to a series of cuts. Candidates that pass
all cuts are then referred to as jets.
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Figure 7.11: Distributions for jet veto cuts. For details on the figure, see the caption of
figure 7.3. The figures are shown after applying the inclusive DIS selection. Each cut is shown
as if it is applied as the last jet veto cut. The jet corrections described in section 8.3 improve the
agreement between data and MC significantly. Corrected distributions are shown in figure B.10.
The uncertainty due to the electron-distance cut becomes negligible after corrections, and the
uncertainty due to the backwards-jet cut is covered by the model uncertainty.
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7.3 Selection of single inclusive jets

Before applying the jet cuts, a series of jet vetos is applied. A veto is a specific condition
under which the entire event is rejected. An event is rejected if any jet candidate with
p⊥,Breit > 5GeV is closer than ∆R = 1 to the DIS electron.71 In such events, the electron
and the jet may overlap, which leads to a poor reconstruction of both of them. Events are
also rejected if any jet candidate with p⊥,Breit > 5GeV is found at ηlab < −1.5, as such
candidates are often misreconstructed ISR photons from the electron. Distributions of the
angular separation between the DIS electron and the jet candidates, as well as the most
backward jet candidate, are given in figure 7.11.

After applying the jet veto cuts, the main jet cuts are applied. Each jet is required to have
a transverse momentum in the Breit frame between 7 and 50GeV. The lower bound removes
candidates from the QPM-like process, that are not interesting for a study of QCD. The upper
bound restricts the measurement to a region of sufficient statistics. Each jet is required to
have a transverse momentum in the laboratory frame of at least 3GeV.71 This requirement
rejects low-energy jet candidates that have a poor resolution in the CAL. Finally, each jet is
required to be in the region −1 < ηlab < 2.5.71 Here, the upper bound removes candidates that
point in a very forward direction, as there is a high probability that they partially escaped
into the beam pipe. The lower cut also removes a region of low statistics. Distributions for
these quantities are shown in figure 7.12.
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Figure 7.12: Distributions for jet cuts. For details on the figure, see the caption of figure 7.3.
The figures are shown after the jet veto cuts. Each cut is shown as if it is applied as the last
jet cut, i.e. only jet candidates that are kept by all other cuts are shown. The jet corrections
described in section 8.3 improve the agreement between data and MC significantly. Corrected
distributions are shown in figure B.10. A systematic uncertainty will be assigned to the p⊥,lab
cut.
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7 Event selection

7.4 Hadron-level selection

The hadron-level event selection is crucial as it defines the cross sections of the measurement.
Section 11.1 gives the complete cross section definition. The hadron-level event samples are
also used for some of the corrections described in the next chapter. The hadron-level selection
is more straightforward than the one at detector level, since it only consists of phase space
cuts and does not contain any quality cuts.

7.4.1 Inclusive DIS selection

The kinematic variables are defined at hadron level in the presence of QED radiation on the
electron side as discussed in section 6.5. Events are selected if they fall into the analysis phase
space 150GeV2 < Q2 < 15000GeV2 and 0.2 < y < 0.7.

Distributions of these quantities are shown in figure 7.13. The figures are shown after the a
priori corrections discussed in section 8.1. Of those three corrections, only the first affects the
hadron level.

The MC event generators do not use the same definition of the kinematic variables in the
presence of QED radiative effects. Therefore, even though the samples were generated with
a sharp cut of Q2 > 100GeV2, the cut is not exact according to the definition used in this
analysis. This is not problematic since the analysis phase space is sufficiently far away from
this cut.

7.4.2 Jet selection

Hadron-level jets are clustered similarly to detector-level jets, as described in section 6.6. The
input to the clustering algorithm consisted of generator-level hadrons, charged leptons and
photons with a lifetime of more than 10 ps, which corresponds to a flight time of 3mm. This
roughly means that weakly decaying particles made from light quark flavours, such as kaons
or lambda baryons, are considered stable. Strongly and electromagnetically decaying particles
and weakly decaying hadrons involving heavy quarks, such as B or D mesons, are considered
unstable. Neutrinos are not used during jet construction. This definition corresponds most
closely to the measured data at detector level. Particles with a longer lifetime are likely to
interact with the inner components of the detector and thus cannot decay naturally. Particles
with a shorter lifetime might decay into neutrinos which escape undetected.

These particles are made massless by setting the absolute value of their three-momentum
equal to their energy. This corresponds to the reconstruction at detector level since the
calorimeter cells measure the energy of the particles, but not their momenta. The massless
four-momenta corresponding to each particle are boosted to the Breit frame. There, the
k⊥-clustering algorithm is applied using the p⊥-weighted combination scheme and a distance
parameter of R = 1.

Inclusive jets are selected if they belong to the analysis phase space 7GeV < p⊥,Breit < 50GeV
and −1 < ηlab < 2.5. The distributions of these two cuts are shown in figure 7.14.
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Figure 7.13: Distributions for inclusive DIS cuts at hadron level. The histogram for each cut
is shown as if the other cut is already applied. The two MC chains are in excellent agreement
in both distributions because they are based on the same matrix element generator.
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Figure 7.14: Distributions of inclusive jet cuts at hadron level. For details on the figure,
see the caption of figure 7.3. The samples differ significantly due to the different models for
parton showering. The agreement will improve significantly after applying the jet reweighting
described in section 8.3. These distributions are shown after corrections in figure B.11.
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CHAPTER 8

Corrections

Using MC samples that accurately describe the data is essential to a precise measurement.
Due to deficiencies in the MC models, the initial description of the data is not ideal. Since
many of these deficiencies are well understood, targeted corrections can be applied.

In this chapter, corrections are divided into three types. A priori corrections are corrections
that can be applied without comparing data and MC as there is a single and unique way to
apply them. Since these corrections are independent of the event selection, they are already
applied in the figures shown in the previous chapter. DIS corrections are applied to the
inclusive DIS sample. Most of them are derived by comparing the data and MC samples and
deriving correction factors that are then applied to the MC. Some of them also involve the MC
hadron level. Jet corrections work similarly to DIS corrections, except that they are derived
based on the inclusive jet sample. All three types of corrections include corrections to the
data, the detector simulation and the MC event generation.

All corrections are derived separately for each run period 04p, 05e, 06e and 0607p. Cor-
rections to the MC event generation are applied separately to the Ariadne and Lepto MC
chains. For corrections to the detector simulation, common factors are derived and applied to
both chains. Corrections are not applied to background MC samples, as the effect would be
negligible, and some corrections do not apply to all background samples.

8.1 A priori corrections

8.1.1 Longitudinal structure function

The longitudinal structure function correction is a correction to the MC event generator. Both
signal MC chains used in this analysis neglect this contribution in their matrix elements,
i.e. they set FL ≡ 0. This influences mostly the large-y region, according to equation (2.13).
Within this region, the structure function plays a role, especially at low xBj, where it can affect
the cross section by up to 10%.192

Two MC samples are generated, one including the longitudinal structure function and one
excluding it. Cross sections are computed from each sample, and the ratio of those is used to
reweight the signal MC sample at generator level, as a function of Q2 and xBj.189 The most
notable effect of this correction, a change in the distribution of the inelasticity, is shown in
figure 8.1.
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Figure 8.1: Distribution of the inelasticity at detector-level before and after applying the
correction for the longitudinal structure function. The Ariadne and Lepto MC samples are
combined for this figure. The correction improves the agreement of the shape of the MC
distributions with the data.

8.1.2 FLT30 trigger efficiency

The FLT30 trigger efficiency correction is a correction to the detector simulation. During parts
of the 0607p run period, the FLT30 bit was misconfigured in the data.189 Affected are 122
runs in the run range 60226 to 60778. The desired configuration, and the one that was used in
the MC, was (RCAL_EMC_TH>15000 or RCAL_EMC>3992), where RCAL_EMC_TH and RCAL_EMC
are FLT estimates of RCAL energy deposits in MeV. The actual configuration used in the
data was RCAL_EMC_TH>15000, which means that some events were mistakenly discarded from
the data while still being present in the MC samples.

This discrepancy can be corrected by applying the undesired configuration also to the MC,
thus losing some events but improving the description of the data. For all events in the affected
runs, FLT30 is turned off, if RCAL_EMC_TH<15000. This does not necessarily mean that the
event is rejected, as it might still be triggered by other FLT bits. The trigger rate of FLT30
for the affected run range is shown in figure 8.2.

8.1.3 Polarisation

The polarisation correction is a correction to the data at detector level. During the HERA II
period, the lepton beam provided by the HERA accelerator was longitudinally polarised, as
described in section 3.1. The QCD interaction does not depend on the polarisation, but the
inclusive DIS cross section does. The goal of this analysis is to measure cross sections for
unpolarised beams so the data are corrected for polarisation. This is the only reweighting
applied to the data instead of the MC since the two employed MC chains already use unpolarised
beams.
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Figure 8.2: Trigger rate of FLT30 during part of 0607p run period before and after trigger
configuration correction. The Ariadne and Lepto MC samples are combined for this figure.
After applying the correction, the drop in trigger rate in the data is described by the MC
samples.

Several sets of MC samples are generated as described in section 5.3.3, two using unpolarised
beams, one for an electron and one for a positron beam, and four using the average polarisations
of the 04p, 05e, 06e and 0607p run periods and the corresponding lepton type. The ratio
of the unpolarised to polarised cross section is used to determine correction factors for each
period. To reduce binning effects, a quadratic polynomial of log(Q2) is fitted to each ratio and
is then used to reweight the data distributions at detector level as a function of Q2

DA. The
ratios are shown in figure 8.3.

The effect on the cross section can be significant for the individual run periods, especially
for the 04p period, where the correction reaches a size of more than 10% at high Q2. When
considering all run periods together, the different polarisations cancel almost completely, such
that the total effect of this correction is below 0.5% in the entire phase space.
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Figure 8.3: Polarisation correction factors (σunpolarised/σpolarised). The dashed lines show the
fitted polynomial. The black dashed line denotes the luminosity weighted average over all run
periods.

83



8 Corrections

8.2 DIS corrections

8.2.1 Vertex position

The primary vertex position is chosen by the detector simulation. Nevertheless, the vertex
position correction should be treated as a correction to the event generator, which is equal for
both signal MC samples. As described in section 7.2.2, the distribution of the longitudinal
position of the primary vertex shows multiple peaks. The so-called ’satellite peaks’ at
|z| ≈ 60 cm are not well described by the MC and are discarded for this analysis. Nevertheless,
they must be reasonably described by the MC, as they affect the efficiency of the corresponding
cut and, thereby, the normalisation of the measured cross sections.72,80,189

The ratio of the vertex position distributions between data and MC is computed at detector
level. This ratio is then used to reweight the MC at generator level as a function of the
true position of the vertex. The overall normalisation of the MC samples is maintained. To
reduce binning effects, linear interpolation of the reweighting factors is performed between the
two closest bin centres. Since the vertex position is determined by the detector simulation,
common correction factors are derived for both signal MC chains. The corrected distributions
are shown in figure 8.4.

8.2.2 Track-matching efficiency

The event selection contains three cuts related to the electron track: track existence, track
momentum and distance of closest approach to CAL cluster. These cuts remove events in
which no track or a wrong track is assigned to the DIS electron and events in which a photon
is misidentified as the DIS electron. Neither of these effects is described by the signal MC
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Figure 8.4: Distribution of longitudinal position of the primary vertex position before and
after the corresponding correction. After correction, the MC samples describe the shape of
the data very well.
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8.2 DIS corrections

samples. That the detector simulation does not describe the efficiency of matching tracks to
the DIS electron was shown in a previous analysis.189 Since the signal MC does not simulate
isolated photon emissions, the rate of photon misidentification is not described either.

After applying these cuts, events in which the DIS electron candidate is a misidentified
photon are removed from the event sample. Therefore, and since these events are not part of
the cross section definition, it is not problematic that they are not described by the signal MC.
The efficiencies of these cuts will differ in data and MC, and the MC should explicitly not be
corrected for this effect.

Events in which a wrong track is matched to the DIS electron are, however, part of the
cross section definition, and they must be adequately described by the MC. Therefore, when
designing a correction, care has to be taken to correct for the rate of mismatching a track to
the DIS electron but not for the rate of misidentification of photons.

Before reweighting the signal MC to the data, the background MC samples are subtracted
from the data. The PHP background MC describes isolated radiation of neutral pions that
decay into two photons. This sample describes part of the photon misidentification rate and
ensures it is not erroneously corrected. Another contribution to the photon misidentification
rate comes from the direct emission of isolated photons, which is not described by any of the
considered MC samples. To account for these events, the correction described below is only
applied halfway. A systematic uncertainty will be introduced to cover the effect of applying
this correction either fully or not at all, see section 10.7.

The track-matching efficiency is defined as the fraction of events that pass the tracking cuts,
given that they already passed all remaining DIS cuts that are listed in section 7.2

Track matching efficiency =
Number of events that pass all DIS cuts

Number of events that pass all non-tracking cuts
. (8.1a)

The events in the MC that pass the tracking cuts are then reweighted according to the ratio
of the track matching efficiency in signal data and signal MC. Events that are rejected by the
tracking cuts are reweighted using the ratio of the track matching inefficiency

wtracking cut passed =
Track matching efficiencydata
Track matching efficiencyMC

, (8.1b)

wtracking cut rejected =
1− Track matching efficiencydata
1− Track matching efficiencyMC

. (8.1c)

Reweighting events that are rejected by a cut is not strictly necessary, but it is convenient,
as it preserves the overall normalisation of the signal MC. Since this is a correction to the
detector simulation, the reweighting is applied to the detector-level weight, see section 5.3.4.
To apply this correction halfway, events are reweighted by

√
w instead of w.

As the track-matching efficiency depends on the position of the reconstructed electron in
the detector, this correction is applied as a function of θ. To reduce binning effects, linear
interpolation of the reweighting factors is performed between the two closest bin centres. The
effect of this correction on the track matching efficiency is shown in figure 8.5.

The halfway application procedure is checked using a dedicated PHP MC sample that
includes the direct emissions of isolated photons. It is estimated that the contribution to
the data sample is about 10−3 before the tracking cuts and 10−4 afterwards. Therefore,
this contribution does not affect the track-matching efficiency significantly. The systematic
uncertainty assigned to this correction will cover the uncertainty associated with neglecting
this contribution.
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Figure 8.5: Track-matching efficiency before and after correction. The Ariadne and Lepto
MC samples are combined for this figure. Since the correction is applied halfway, the corrected
MC distribution is in the middle between the data and the uncorrected MC.

8.2.3 Track-veto efficiency

The track-veto-efficiency correction is a correction to the trigger simulation of the detector
simulation. At the FLT, most bits have a track veto associated with them. A track veto is a
condition under which the corresponding trigger bit does not activate, even if its remaining
conditions are fulfilled. This condition is related to the total number of tracks and the track
class. The track class is a function of the total number of tracks and the number of tracks
matched to the primary vertex. This definition helps reject beam-gas interaction, see section 7.1.
It is known that the detector simulation does not describe the efficiencies of these track vetos
and, therefore, the corresponding trigger bits exactly.72,80,189

The FLT bits used in this analysis use four different types of track veto, including the
absence of a track veto.

FLT bits Track veto condition
30 none
36, 39, 41, 43, 46, 47 Track class = 2
28, 40, 50 Track class = 2 or (Track class = 8 and at least 26 tracks)
44 Track class = 2 or Track class = 8

If the listed condition is met, the corresponding FLT bits cannot be active. FLT30 is the only
bit that does not have a track veto, i.e. it can always be active. Its efficiency is, therefore,
independent of the description of the track vetos by the MC.

Based on these track-veto types, events are split into four distinct categories.
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8.2 DIS corrections

Condition FLT bits that can be active
A Track class = 2 30
B Track class = 8 and at least 26 tracks 30, 36, 39, 41, 43, 46, 47
C Track class = 8 and less than 26 tracks 28, 30, 36, 39, 40, 41, 43, 46, 47, 50
D None of the above 28, 30, 36, 39, 40, 41, 43, 44, 46, 47, 50

Category A is the strictest, as all three track-veto conditions are fulfilled, and only FLT30 can
be active. Category D is the loosest, where each FLT bit might be active.

The straightforward way to apply a correction would be to define the track-veto efficiency as

Track-veto eff. i =
Number of category i events that pass all non-FLT DIS cuts

Number of events that pass all non-FLT DIS cuts
,

where i is A, B, C or D. The ratio of the efficiencies in data and MC could then be used to
reweight the MC at detector level. Here ‘non-FLT DIS cuts’ refers to all cuts presented in
section 7.2, except for the cut on the FLT bits. This procedure is, however, not possible since
events that were rejected by the FLT got discarded during data taking and are therefore not
available for analysis. Thus, the above definition of the track-veto efficiency cannot be applied
to the data.

Instead, the track-veto efficiency is estimated based on all events for which FLT30 is active

Track-veto eff. i =
Number of category i events that pass all DIS cuts and FLT30 is active

Number of events that pass all DIS cuts and FLT30 is active
.

Here, the track-veto efficiency is assumed to be independent of FLT30. A weight is then
determined as a function of the FLT track multiplicity for each category as the ratio of the
track-veto efficiency in data and MC

wi =
(Track-veto eff. i)data

(Track-veto eff. i)MC
. (8.2)

These weights are then used to reweight the MC samples separately for each event category i.
Since this is a correction for the detector simulation, it is applied to the detector-level weight,
see section 5.3.4. To reduce binning effects, linear interpolation of the reweighting factors
is performed between the two closest bin centres. Events for which FLT30 is active are not
reweighted since those are triggered independently of the track veto.

8.2.4 Electron-energy calibration

The electron calibration is a correction to the event reconstruction and thus applies both to
the data and the detector simulation. The DIS electron plays a significant role in this analysis.
Therefore, the reconstructed detector-level electron must match the generator-level electron as
closely as possible. Due to detector effects, such as the energy-scale calibration or the finite
cell size of the calorimeter, the reconstructed electron energy has a systematic bias that can
be corrected.

In this analysis, the electron-energy scale is corrected by comparing the DIS electron at
detector and generator level in the MC. From this comparison, the average ratio of generator-
level to detector-level energy is determined and then applied to the energy of the detector-level
electrons in both data and MC. Since this is a correction of a detector effect, it is expected to
have the same size in both MC samples. To minimise fluctuations, the Ariadne and Lepto
samples are combined to derive the correction factors. The correction is applied independently
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to the directly measured electron energy EEL and the energy reconstructed from the double-
angle method EDA. The directly measured energy EEL is used in the inclusive DIS selection,
described in section 7.2. It is corrected as a two-dimensional function of the quantities
corresponding to the electron method of reconstruction, i.e. EEL and θ. The double-angle
energy EDA is used to construct the Breit frame and for the relative jet calibration, which
is discussed in section 8.3.1. It is corrected as a function of the input quantities of the
double-angle method, i.e. θ and γ.

For the determination of this correction, the event selection is modified. The cut EEL >
10GeV is replaced by a cut on the generator-level electron energy Etrue > 10GeV. Similarly,
the cut on the longitudinal energy E − pz is replaced by a cut on the corresponding generator-
level quantity. These changes help to include events in the selection that are otherwise rejected
due to an incorrect measurement of the electron energy. Additionally, a cut on angular distance
between the reconstructed and generated electron is introduced,

√
∆ϕ2 +∆η2 < 0.1, where

∆ϕ and ∆η and are the differences between the detector level and generator level electrons.
This cut rejects events in which a different particle is misidentified as the DIS electron.

The average ratio of the reconstructed to the generated electron energy is shown in figure 8.6.
Before the correction, the bias of the energy measurement was about 0.3% for the electron
method and 2.1% for the double-angle method. After the correction, the bias is less than 0.1%
for both methods.
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Figure 8.6: Average ratio of reconstructed to generated electron energy for electron method
and double-angle method as a function of the input variables to each method before and after
calibration.
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8.3 Jet corrections

Jet corrections are applied to the inclusive jet samples in data and MC. The inclusive jet
samples are reconstructed and selected based on the corrected inclusive DIS sample. I.e.
when applying the following corrections, all selection cuts from the previous chapter and all
corrections described in this chapter so far are already applied.

This analysis uses three jet corrections. The jet-energy scale describes the relationship
between the truth-level energy of a jet and the reconstructed energy of the same jet. Before
corrections, the reconstructed energy might be biased compared to the true energy, and this
bias might not be described by the MC.

The relative jet-energy scale correction is a correction to the detector simulation. It corrects
for the fact that the simulated detector response is not necessarily the same as the calibration
of the real detector, i.e. the bias in jet-energy reconstruction might be different in data and
MC. After applying this relative jet-scale correction, the jet-energy scale in the MC will be
correct relative to the data, i.e. the bias in jet energy reconstruction will be the same in data
and MC.

Removing this bias in the reconstruction is the purpose of the absolute jet-energy-scale
correction. This is a correction to the jet reconstruction and applies both to data and MC.
This correction is similar to the electron calibration discussed in section 8.2.4. After applying
the absolute jet-scale correction, the detector-level jet energy is, on average, equal to the
corresponding hadron-level energy.

Finally, the jet reweighting is a correction to the MC event generators. It changes the jet
distributions in the MC to match those in the data.

8.3.1 Relative jet-energy scale

The response of the detector to hadronic objects is not necessarily correctly described by the
detector simulation. The purpose of the relative jet-energy-scale correction is to improve this
description of the detector response, such that the MC can be used to derive the absolute jet
correction, as described in the next section.

Due to conservation of momentum, the vectorial sum of the transverse momenta of all jets
and the DIS electron vanishes. For events containing just one jet, consider the ratio

p⊥,lab,jet

p⊥,DA
,

where p⊥,lab,jet is the transverse momentum of the single jet and p⊥,DA is the transverse
momentum of the double-angle electron. At parton level and in the absence of final-state
radiation, momentum conservation demands that this ratio equals one. At detector level, the
ratio can deviate from one due to hadronisation effects, large-angle radiation and since the
detector has a different response to electrons and jets. Thanks to the uranium calorimeter
employed at the ZEUS detector, this difference is minimised but not negligible.

The deviation of this ratio alone could be used to derive a relative and absolute jet-energy-
scale correction. For this analysis, a different approach is chosen.80 Rather than requiring this
ratio to be one, which would only be reasonable in the absence of hadronisation and radiative
effects, this ratio is required to be equal in data and MC. This approach is also valid in the
presence of the mentioned effects, as long as they are described by the MC.

For the relative jet-scale correction, this ratio is determined at detector level in data and
MC. To apply the correction, the energy of each jet in the MC is rescaled by the double
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Figure 8.7: Average of the ratio p⊥,lab,jet
p⊥,DA

as a function of ηlab and p⊥,lab before and after the
correction. A double differential distribution of ⟨p⊥,lab,jet
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given in figure B.4. After the correction, the jet-energy scale agrees in data and MC to about
1%.
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Afterwards, a dedicated absolute energy-scale correction will be applied.
As the detector response is expected to depend on the location of the jets within the detector,

correction factors are determined as a function of ηlab of each jet. For the determination
of the correction factors, the event selection is modified. The lower cut on the inelasticity
yDA > 0.2 is removed to increase the number of jets in the forward direction, i.e. with large
ηlab. Figure 7.3 shows that the data is well described by the MC also in this region.

Since the determination of this correction uses single jet events, the inclusive jet selection
discussed in section 7.3 is not used. Instead, jets are reconstructed in the laboratory frame, as
this is a correction to the detector geometry. An event is classified as a single jet event if the
leading jet has a transverse momentum in the laboratory of at least 10GeV. All other jets are
required to have a transverse momentum of no more than 5GeV. Additionally, the vectorial
sum of the transverse momenta of all remaining jets is required to be less than 5GeV.

For this single-jet sample, the average of the ratio p⊥,lab,jet
p⊥,DA

is determined in bins of ηlab.
Since this is a correction to the detector simulation and the detector simulation is identical for
both MC chains, the Ariadne and Lepto samples are combined to derive common correction
factors. The distribution used to derive these factors is shown in figure 8.7. To apply the
correction, the double ratio, as shown in the lower left panel, is used to scale the jet energies
in the MC. A linear interpolation between the two adjacent bin centres is performed to reduce
binning effects. The corrected distribution is also shown in the figure.

8.3.2 Absolute jet-energy scale

Jets can lose energy before being measured as they pass through inactive material in the
detector. Therefore, the reconstructed jet energy deviates systematically from the true energy
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Figure 8.8: The left panel shows the average hadron-level jet energy as a function of the
detector-level energy in one bin of ηlab before and after the calibration. The dashed line shows
the diagonal ⟨p⊥,gen⟩ = p⊥,rec. The right panel depicts the bias and resolution of the jet-energy
reconstruction.

of each jet. After the relative jet-energy-scale calibration, this bias is similar in data and MC.
The purpose of the absolute jet-energy-scale correction is to compensate for this bias of the
energy measurement. The corresponding correction factors are derived by comparing MC
hadron level and MC detector level. Therefore, the relative jet-energy-scale calibration must
be applied beforehand, such that the detector simulation is representative of the data.80

For the absolute jet-scale correction, it is necessary to reconstruct both detector-level and
hadron-level jets. Jets at the two levels are then matched to each other based on their distance
in the η-ϕ-plane. Using a purely geometric matching condition rather than one based on the
energy helps avoid biases in the calibration. Since this is a correction for a detector effect, the
entire procedure is performed in the laboratory frame. For the same reason, the Ariadne and
Lepto MC chains are combined to determine common correction factors.

A modified jet selection is used for the calibration. At both levels, jets are constructed in
the laboratory frame and are required to fulfil p⊥,lab > 5GeV. This requirement rejects many
low-energy jet candidates, especially at detector level, that could otherwise get mismatched to
high-energy hadron-level jets. Jets are also required to belong to the region −1.25 < ηlab < 2.75.
This range is slightly larger than the one used in the analysis to avoid cut-off effects at the
edges of the analysis phase space.

After reconstruction, detector-level and hadron-level jets are matched to each other, according
to the following algorithm. Between each pair of detector- and hadron-level jets, the angular
distance ∆R =

√
(ϕrec − ϕgen)2 + (ηrec − ηgen)2 is computed in the laboratory frame. The

pair for which this distance is the smallest is considered a match if ∆R < 0.7. The matching
repeats until no more suitable pairs are found. All remaining jets at both levels are considered
unmatched and ignored. Using this procedure, more than 99% of the detector-level jets with a
transverse momentum of more than 10GeV are matched.

The average hadron-level jet energy is determined as a function of the detector-level energy.
This correction is performed in several bins of ηlab to account for differences in the detector
geometry. The result in one such bin is depicted in the left panel of figure 8.8. The remaining
bins are shown in figure B.5. It can be seen that the relation is in very good approximation a
linear function. Therefore, it is parameterised as ⟨p⊥,gen⟩ = a+ b · p⊥,rec, where the parameters
a and b are determined from a fit to the described distributions, separately in each ηlab bin.

91



8 Corrections

To apply the calibration, the four-momentum of each detector-level jet candidate is rescaled
by a factor of (a+ b · p⊥,rec,lab)/p⊥,rec,lab, where a and b are chosen according to the ηlab of the
jet. The correction tends to increase the energy of the jet candidates, especially at low energies.
To prevent very-low-energy jet candidates from becoming jets in the analysis, candidates with
p⊥,rec,lab < 3GeV are not corrected. The influence of the ηlab-binning is reduced by linearly
interpolating both a and b between the closest bin centres. Since the four-momenta in the
Breit frame are related to the four-momenta in the laboratory frame, this correction can be
propagated to the Breit frame by applying the same factor there. The correction notably
reduces the bias of the jet-energy measurement, as can be seen in the right panel of figure 8.8.
This bias is reduced from more than 10% to less than 1.5%. The resolution does not change
significantly.

8.3.3 Jet reweighting

As seen in section 7.3, the leading-order MC predictions fail to describe the jet distributions
in the data accurately. To use the MC for the acceptance correction, it is, therefore, necessary
to reweight the MC distributions. After applying the relative and absolute jet-energy-scale
corrections, detector-level jets correspond on average to hadron-level jets of the same energy.
This makes it possible to derive correction factors for the MC hadron-level distributions
by comparing the detector-level distributions of data and MC. The reconstruction of MC
hadron-level quantities is described in section 7.4. Since this is a correction to the MC event
generators, it is derived and applied separately to the Ariadne and Lepto MC chains.

In this analysis, two approaches to jet reweighting are considered. One is based on reweighting
events based on their jet multiplicity, and the other is based on reweighting each jet individually.
The multijet reweighting procedure is used as the nominal correction in this analysis. The
inclusive jet reweighting is used to estimate the systematic uncertainty of this choice, see
section 10.3.

Multijet reweighting

The idea of multijet reweighting is to sort jet events into three categories: single-jet events,
dijet events and events with three or more jets. Each event category is then reweighted
separately as a function of p⊥,Breit.

The definition of the single-jet, dijet and trijet categories does not need to agree with any
definition previously used. For this correction, the following definitions are used. Only jets in
the region −1 < ηlab < 2.5 and 7GeV < p⊥,Breit < 50GeV are considered. At detector level,
additionally p⊥,lab > 3GeV is required. If three or more such jets exist, and the invariant mass
of the three leading jets in the Breit frame satisfies Mjjj > 40GeV, the event is classified as a
trijet event. If that is not the case, but exactly two jets exist, and their invariant mass satisfies
Mjj > 20GeV, the event is classified as a dijet event. If this is also not the case, but there is
at least one jet, the event is classified as a single-jet event. For the single-jet category, the
requirement on the transverse momentum in the Breit frame is relaxed to p⊥,Breit > 4GeV. If
all of these tests fail, the event is not classified as a jet event and is ignored for this correction.

For each event category, a histogram is created with bins in p⊥,Breit. For the dijet and trijet
categories, the average transverse momentum of the jets, p⊥,Breit, is used. A second-degree
polynomial is then fitted to the ratio of this histogram in data and each MC chain. To apply the
reweighting, jets are reconstructed at hadron level, such that hadron-level jet quantities can be
determined. Events are classified into single-jet, dijet or trijet events using the same definition
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Figure 8.9: Multijet (upper row) and inclusive jet (lower row) distributions before and after
multijet and inclusive jet reweighting of the Ariadne MC chain. Both methods show similar
performance in improving the agreement between data and MC. The equivalent figure for the
Lepto MC chain is given in figure B.6.

used at the detector level but using the corresponding hadron-level quantities. Afterwards, the
fitted function of the appropriate category is used to reweight the MC event at hadron level.

The jet distributions before and after the multijet reweighting are shown in figure 8.9 for
the Ariadne MC chain. The equivalent figure for the Lepto chain is given in figure B.6 in the
appendix.
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Inclusive jet reweighting

For the inclusive jet reweighting, each jet is reweighted individually. This means, in addition to
the event weights, each jet also has an additional weight associated with it. For this approach
to jet reweighting, jets must be matched at detector and hadron level to propagate the adjusted
weights to the detector level.

To derive the correction, a two-dimensional histogram with bins in Q2
DA and p⊥,Breit is

filled using the inclusive jet sample. A second-degree polynomial of log(Q2
DA) and p⊥,Breit is

fitted to the ratio of this histogram in data and MC. When applying the reweighting, jets are
reconstructed at hadron level, and each jet is reweighted individually according to the fitted
function.

After that, generator- and detector-level jets are matched to each other in the laboratory
frame using the same algorithm described in section 8.3.2, but with a modified cut of ∆R < 1.
The matching is performed before applying jet cuts at both levels to account for migrations.
For each matched pair of jets, the weight of the hadron-level jet is copied to the detector-level
jet. Unmatched hadron-level jets can be considered inefficiencies of the detector and are
irrelevant for the reweighting. Unmatched detector-level jets are more problematic, as it is
unclear which weight should be assigned to them. About 30% of the unmatched jets arise from
jet splitting, i.e. a single hadron-level jet is reconstructed as multiple detector-level jets. Since
the jet clustering is performed in the Breit frame, the jets may be very close together in the
laboratory frame. To account for this effect, all remaining detector-level jets are matched to
the closest hadron-level jet if they are closer to them than ∆R = 1 in the laboratory frame. As
this matching is only used to copy the weights, a one-to-one correspondence is not necessary.
After applying this jet matching, less than 3% of detector-level jets remain unweighted. The
weights of these remaining jets are not changed.

The distributions before and after the inclusive jet reweighting are shown in figure 8.9. It
can be seen that both methods of jet reweighting give similar results and that the difference
between the two methods is of similar size to the remaining disagreement between data and
MC. In this analysis, multijet reweighting is used as the nominal correction method. Inclusive
jet reweighting is used as a variation to estimate the remaining systematic uncertainty of this
correction.
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CHAPTER 9

Determination of cross sections

Detector-level distributions depend on the details of the accelerator, the detector, the event
selection and the applied corrections. Therefore, they cannot be straightforwardly compared to
theory predictions, measurements from different experiments or even different measurements
from the same experiment. Interaction cross sections at hadron level are a detector independent
observable that can be derived by correcting the detector-level distributions for all experiment-
specific details.

9.1 The corrected data sample

The determination of cross sections uses the MC samples. For this approach to be valid, the
MC samples must describe the data well in all variables used in the analysis.

The signal MC alone does not describe the data completely since contributions from other
physical processes are also present in the data sample. The selection criteria introduced in
chapter 7 aim to remove these contributions as much as possible. However, a small number of
background events is expected to remain in the final data sample and needs to be accounted
for when deriving hadron-level cross sections. In this analysis, the two dominant sources of
background that remain after the inclusive jet selection are from low-Q2 DIS and PHP events,
see section 7.1. For both of these processes, the Feynman graph can be identical to the high-Q2

NC DIS signal process, which leads to a similar signature in the detector.
Distributions of the inclusive DIS sample, including all DIS and jet corrections described in

the previous chapter, are given in figures B.7, B.8 and B.9. Similar to the figures in chapter 7,
these figures also show the contributions from the two background sources and the combined
MC sample.

The contribution of low-Q2 DIS is a few per cent at the lower end of the considered Q2

range and drops off rapidly with increasing Q2. The contribution from PHP is usually below
1%. Outside the selected phase space, the background contributions sometimes increase to
more than 10%. The combined MC sample describes the shape of the data well within the
selected phase space region.

Distributions of the jet veto cuts and the inclusive jet cuts are shown in figure B.10,
including all corrections. Compared to uncorrected distributions from figures 7.11 and 7.12,
the agreement between data and MC is significantly improved in both shape and normalisation.

Distributions for the inclusive DIS and inclusive jet selection at hadron level are given in
figure B.11. Compared to figures 7.13 and 7.14, the agreement between the two samples in the
DIS quantities is degraded because the jet reweighting affects the two samples differently. The
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9 Determination of cross sections

agreement in the jet quantities is significantly improved regarding normalisation and shape of
the p⊥,Breit distribution.

9.2 Bin definition

The choice of the size of the bins of a cross section measurement needs to ensure that each
bin contains sufficient data statistics and that bins are not smaller than the resolution of the
considered variables. If a bin does not contain enough data events, its statistical uncertainty
will be large, and no reliable cross section can be extracted. If the size of a bin is smaller
than the detector resolution of a specific variable, the measured cross section will be strongly
biased by the surrounding bins, which again prevents a precise measurement of the bin under
consideration.

In this analysis, the definition of the bins is taken from the corresponding measurement of
the H1 collaboration.121 While the ZEUS and H1 detectors have somewhat different resolutions,
this choice is also acceptable for the ZEUS detector, as will be shown in the next section. The
kinematic range of DIS events is 150GeV2 < Q2 < 15000GeV2 and 0.2 < y < 0.7. Jets are
considered in the region 7GeV < p⊥,Breit < 50GeV and −1 < ηlab < 2.5. The measurement
is performed double-differentially in Q2 and p⊥,Breit with the exact bin boundaries listed in
table 9.1. This choice allows a direct comparison of the measured cross sections between the
two experiments.

Label Q2 [GeV2]
1 150 – 200
2 200 – 270
3 270 – 400
4 400 – 700
5 700 – 5000
6 5000 – 15000

Label p⊥,Breit [GeV]
a 7 – 11
b 11 – 18
c 18 – 30
d 30 – 50

Table 9.1: Definition of the Q2 and p⊥,Breit bins used for the measurement. See section 6.5
for the hadron-level definitions of Q2 and p⊥,Breit.

9.3 Bin-by-bin correction

A particle detector can never be perfect. The energies and positions of particles can get
distorted by interactions with inactive detector material. Particles might not be measured at
all because their energy is too low or they escape through gaps in the detector, such as the
beam pipes. A particle can get misidentified during reconstruction because its measurement is
ambiguous. Due to these reasons, corresponding detector and hadron-level distributions tend
to differ significantly in shape and normalisation.

Mathematically, this process is called ‘folding’. The detector-level distributions can be
described by a convolution of the distributions at hadron level with the detector response
function. To obtain results at hadron level, which can be compared to other measurements or
theoretical predictions, this operation has to be reversed in a process called ‘unfolding’.

Different approaches to unfolding exist, such as iterative Bayesian unfolding or matrix
unfolding with regularisation.193,194 The simplest type of unfolding is called the bin-by-bin
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correction and is widely used at HERA.71,133,179 This method works by determining the
acceptance of each bin from the MC sample according to

Acceptance =
Nrec

Ngen
, (9.1a)

where Nrec is the number of jets found in the bin at detector level and Ngen is the number of
jets found in the corresponding bin at hadron level in the MC sample. Here, it is assumed
that there is a conceptual one-to-one correspondence between bins at detector and hadron
level. The acceptance relates the number of generated and reconstructed jets and thereby
serves as a simplified model of the detector. The number of jets at truth level in the data is
then determined by dividing the number of jets in each detector-level bin in the data by the
acceptance.

9.3.1 Bin quality

The bin-by-bin correction is only applicable if the number of jets that migrate between bins
and across the phase space boundaries is sufficiently small and well described by the MC.
Whether this is the case can be determined by considering the efficiency and purity of each
bin. These quantities are defined as

Efficiency =
Nrec&gen

Ngen
, (9.1b)

Purity =
Nrec&gen

Nrec
, (9.1c)

where Nrec&gen is the number of jets that belong to the same bin at detector and hadron level.
Thus, the efficiency is the fraction of the hadron-level jets that are correctly reconstructed in
the same bin at detector level. The purity is the fraction of detector-level jets that were also
generated in the same bin.

For single-differential distributions at HERA, efficiency and purity are usually required to
be above 40%.80 Figure 9.1 shows these quantities for the Q2 and p⊥,Breit bins. The purity is
typically in the range of 50%− 60%, indicating that a large fraction of the reconstructed jets
is correctly measured. The efficiency is smaller, especially in the low-Q2 and low-p⊥,Breit bins,
where it is almost as low as 30%. This indicates that many hadron-level jets are either not
reconstructed at all or not reconstructed in the correct bin.

To understand this effect, a study on the efficiency is performed. This study starts by
counting the number of hadron-level jets, Ngen, in each bin of the analysis phase space. Then,
one by one, additional requirements are imposed at detector level up to the full detector-level
selection. At each step new counts Ngen&partial rec are determined, and the partial efficiency
Ngen&partial rec/Ngen is computed. Comparing the partial efficiency at the different steps allows
determining which part of the selection is responsible for the low efficiency.

The intermediate steps considered are:

1. A DIS electron candidate above the score threshold is required to exist. At this stage,
no additional requirements, e.g. on the energy or isolation, are imposed, except for those
already included in the electron finder;

2. The event has to belong to the analysis phase space in yDA at detector level;
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Figure 9.1: Acceptance, efficiency and purity for the single differential distributions in Q2

and p⊥,Breit. The bins are labelled according to table 9.1.

3. The event has to belong to the desired phase space in Q2
DA at detector level. For the

efficiency as a function of Q2, this means the event has to belong to the same Q2 bin as
at hadron level. As a function of p⊥,Breit, this only means that the event belongs to the
analysis phase space in Q2 because migrations in Q2 within the phase space should not
affect the efficiency in p⊥,Breit;

4. The event is required to pass all DIS cuts, from section 7.2;

5. The event is required to pass the jet veto cuts, and each hadron-level jet must be matched
to a detector-level jet. Detector-level jets are required to belong to the analysis phase
space in p⊥,Breit and in ηlab;

6. The matched detector-level jet has to belong to the same p⊥,Breit bin as the hadron-level
jet. Similar to the third step, this requirement does not apply to the efficiency as a
function of Q2, as that should not be affected by migrations in p⊥,Breit within the phase
space.

At this point, the full detector-level selection is applied, and the partial efficiency determined
from the last step is equal to the regular efficiency discussed above. The results for the partial
efficiency are shown in figure 9.2.

A detector-level DIS electron candidate exists for almost all hadron-level jets. When requiring
that the event belongs to the analysis phase space in y, a notable drop in the partial efficiency
is observed of almost 30% in some bins. This indicates large migrations in y out of the phase
space. Additionally requiring that the event belongs to the correct region in Q2 causes another
significant drop in the low-Q2 region, indicating a large migration between bins in that region.
At high Q2, the detector resolution improves, and the drop in efficiency is much smaller. As a
function of p⊥,Breit, the drop due to migrations in Q2 is much smaller since migrations within
the phase space do not contribute. In the low-Q2 region, where the efficiency is especially low,
migrations in Q2 and y are the dominant sources of inefficiency, contributing about 50% to the
overall efficiency. As a function of p⊥,Breit, the efficiency drops by about 15% when requiring
DIS cuts to be passed. The fact that this drop is smaller when considering the efficiency as
a function of Q2 indicates that the DIS cuts especially remove events in which Q2 is poorly
reconstructed. Especially in the lowest p⊥,Breit bin, there is another significant drop when
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requiring each hadron-level jet to be matched to a detector-level jet. This is due to the worse
reconstruction efficiency of low-p⊥,Breit jets.

In summary, as a function of Q2 and p⊥,Breit, the efficiency of the DIS selection is about 40%
and 60% and for the jet selection about 80% and 50%, respectively. It has been extensively
checked in previous analyses that the MC describes the inclusive DIS data well, such that the
low efficiency of this part of the event selection is acceptable.80,189,195 The efficiency of the jet
selection is sufficiently high to justify using the bin-by-bin correction.

A similar study is performed on the purity and is shown in figure B.12. Also, here, migrations
in Q2 and y are found to be a significant contribution. The corresponding double-differential
figures are given in appendix B.4. These scenarios have lower efficiency and purity, as migrations
can occur along two axes. However, they are not significantly lower since many sources of
inefficiency and impurity are shared between the Q2- and p⊥,Breit-distributions.

9.3.2 Cross section determination

Rearranging equation (9.1a) and taking background contributions into account yields an
equation for the corrected number of jets in a given bin

Ndata,truth =
Ndata −Nbackground

Acceptance
, (9.2)

where Ndata is the number of jets in the data sample and Nbackground is the number of jets in
the background MC samples at detector level. Section 9.4 gives more details on the background
contribution.

When propagating the statistical uncertainty of the signal MC to the cross sections, the
correlations of Nrec and Ngen in equation (9.1a) need to be taken into account. In previous
ZEUS analyses, this was often done by instead expressing the acceptance in terms of the
uncorrelated quantities Nrec&gen, (Nrec−Nrec&gen) and (Ngen−Nrec&gen), in which case simple
error propagation can be used.72,80 In this analysis, a different but equivalent approach is used.
For each bin, the covariance of Nrec and Ngen is computed as σrec,gen =

∑
wrecwgen, where
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the p⊥,Breit bins.

the sum runs over matched pairs of detector-level and hadron-level jets with weights wrec and
wgen respectively. The relative uncertainty of the acceptance is then given as

δAcceptance =

√
δ2rec + δ2gen − 2δrecδgen

σrec,gen

δrecNrecδgenNgen
, (9.3)

with δrec/gen being the relative statistical uncertainty of the jet counts in the detector-level
and hadron-level MC bins, respectively. In the low-Q2 region, where data statistics is large,
the statistical uncertainty from the MC sample makes up about 30% of the total statistical
uncertainty. At high Q2, this number decreases to less than 10%.

Ideally, the corrected cross sections do not depend on the MC model used to derive them.
In practice, however, even after applying all corrections from the previous chapter, the cross
sections still depend on the MC model to some extent. Since the MC models are not entirely
correct, this will bias the result. To reduce this bias, the Ariadne and Lepto signal MC samples
are combined to perform this correction. This reduces the dependence on each model. A
systematic uncertainty will be introduced in section 10.2 to estimate the remaining bias.

The corrected number of jets is shown in figure 9.3. It can be seen that the MC samples still
differ in some bins. The bin-by-bin corrected data points depend slightly on the MC model
used. Their difference, however, is much smaller than the difference between the MC models.
This indicates that the acceptance does not significantly depend on the MC hadron-level
distribution, which is desirable for the bin-by-bin correction. Cross sections can be derived
from the corrected number of jets using equation (1.1). Cross sections are discussed, including
systematic uncertainties in chapter 11.

9.3.3 Correlations

When determining cross sections and using them in further analyses, such as the QCD fit
described in chapter 12, it is important to treat correlations consistently. In this analysis, two
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types of statistical correlation need to be considered when using the bin-by-bin correction
method. Firstly, in an inclusive jet analysis, events may contain multiple jets and thus
contribute multiple times to the measurement. Therefore, the statistical uncertainty of the
different bins of the inclusive jet measurement will be correlated. Furthermore, the statistical
uncertainty of each individual bin will be increased.

Secondly, the cross sections determined in this analysis will be analysed together with a
previous dijet measurement at ZEUS. Since dijet production is closely related to inclusive jet
production in the Breit frame and the two analyses use similar data samples and jet selection
criteria, there will be considerable overlap between the jets contributing to both analyses.
Thus, the statistical uncertainties will also be correlated across the two measurements. For
both of these cases, a statistical correlation matrix needs to be determined.

Poisson statistics

Before discussing correlations, it is useful to state the relevant statistical laws. Event counts
in particle physics measurements are usually treated as Poisson distributed. This model is
justified if

1. Events occur independently of each other, i.e. the occurrence of an event in one collision
does not affect the probability of occurrence in the next collision.

2. The average rate at which events occur is constant.

3. Two events may not occur simultaneously. At each collision, an event either occurs or
does not occur.

When N Poisson-distributed events are observed with weight wi, the expectation value µ and
variance σ2 are given by

µ =
N∑

i=1

wi, (9.4a)

σ2 =

N∑

i=1

w2
i . (9.4b)

The square root of the variance gives the statistical uncertainty. If wi ≡ 1, these expressions
reduce to µ = σ2 = N . When considering two observables, A and B, that may occur
simultaneously with weights wA,i and wB,i, their covariance is given by

σAB =

N∑

i=1

wA,iwB,i. (9.4c)

A useful related quantity is the correlation between two observables, which is defined as

ρAB =
σAB√
σ2Aσ

2
B

. (9.4d)
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When considering multiple observables, e.g. event counts in multiple bins, it is convenient
to promote these quantities to vectors and matrices

µ⃗ =
N∑

i=1

w⃗i, (9.5a)

V =

N∑

i=1

w⃗iw⃗
⊺
i , (9.5b)

σ⃗ =

dim(µ⃗)∑

A=1

e⃗A
√
VAA, (9.5c)

C =

dim(µ⃗)∑

A,B=1

e⃗Ae⃗
⊺
B

VAB
σAσB

, (9.5d)

where e⃗A is the unit vector in direction A. Now, µ⃗ are the expectation values of all the
observables, V is the covariance matrix, σ⃗ are the statistical uncertainties, and C is the
correlation matrix. The correlation matrix can be considered a version of the covariance matrix
normalised to the statistical uncertainties. The outcome of a measurement is specified either
by the expectation values and covariance matrix, µ⃗ and V or by the expectation values, their
statistical uncertainties and the correlation matrix, µ⃗, σ⃗ and C.

Correlations within inclusive jet measurement

The assumptions of a Poisson distribution are fulfilled for any observable that is defined at
the event level, e.g. inclusive DIS events, single-jet events and dijet events. For inclusive jets,
however, the third part of the definition is not fulfilled since multiple jets can be produced
in the same collision event. Poisson statistics may still be employed if, instead of counting
inclusive jets, n-jet events are counted, as n-jet events are individually Poisson distributed
for any n. Each event is assigned a weight of wi = n to account for the number of jets. This
approach also allows a determination of the correlations between bins, as is demonstrated by
the following two examples.

Consider m n-jet events with all jets belonging to the same bin, i.e. wi ≡ n. The expectation
value will be µ = m · n with statistical uncertainty σ =

√
m · n2, according to Poisson

statistics (9.4). Now, consider m
2 2n-jet events, with all jets belonging to the same bin, i.e.

wi ≡ 2n. The expectation value remains unchanged. But now the statistical uncertainty is
σ =

√
m
2 · (2n)2 = 2

√
m · n2. This example illustrates that the statistical uncertainty increases

when more jets originate from the same event.
As a second example, consider m1 dijet events, with the jets belonging to two different

bins, accompanied by m2 dijet events in which both jets belong to the first of these two
bins and m3 dijet events in which both jets belong to the second bin, i.e. w⃗1,i ≡

(
1
1

)
,

w⃗2,i ≡
(
2
0

)
and w⃗3,i ≡

(
0
2

)
. The expectation value and covariance matrix are µ⃗ =

(
m1+2m2
m1+2m3

)

and V = m1

(
1
1

) (
1
1

)⊺
+ m2

(
2
0

) (
2
0

)⊺
+ m3

(
0
2

) (
0
2

)⊺
=
(
m1+4m2 m1

m1 m1+4m3

)
. The statistical

uncertainties are σ⃗ =
(√

m1+4m2√
m1+4m3

)
. The covariance matrix contains off-diagonal entries,

indicating that the two bins are correlated. The correlation matrix is C =
(

1 ρ12
ρ12 1

)
with

ρ12 = m1√
(m1+4m2)(m1+4m3)

. This expression agrees with the physical intuition that the two

bins are uncorrelated if m1 → 0 and fully correlated if m2,m3 → 0.
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9.3 Bin-by-bin correction
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Figure 9.4: Inclusive jet correlation matrix (left) and inclusive jet – dijet correlation matrix
(right) with bin-by-bin correction. The bins of the inclusive jet measurement are labelled
according to table 9.2. The large bins indicate Q2 bins, and the smaller ones are p⊥,Breit bins.
The dijet bins are labelled similarly but using the bin definitions from that measurement.71 A
block structure arises because correlations can only occur between jets at the same Q2. In
the case of the inclusive jet – dijet correlation matrix, this structure is distorted due to the
different bin boundaries of the two measurements. The numerical values of these matrices are
given in table C.3.

Using equations (9.5) allows to determine the correct statistical uncertainties and correlations
of inclusive jet distributions. This procedure is applied to the 24 inclusive jet bins at detector
level, and the correlation matrix is derived. According to equation (9.4d), the bin-by-bin
correction cancels in the correlation matrix. Therefore, the same matrix is also applicable to
the hadron-level cross sections. The determined correlation matrix is shown in the left panel
of figure 9.4. By definition, the matrix is symmetric, and entries along the diagonal are 100%.
Only positive correlations can occur due to events producing multiple jets. The determined
correlations between bins are small and do not exceed 20%.

Correlations to dijet measurement

A single event can produce inclusive jets and simultaneously be a dijet event. Since inclusive
jets in the Breit frame and dijets are closely related, this will be the case for a significant
fraction of events, such that correlations need to be taken into account also between the two
measurements.

The dijet event selection is recreated.80 Then, the correlation matrix between the two
measurements is determined at detector level. This is done similarly to the previous sections
by including both the inclusive jet bins and the dijet bins in the collection of observables w⃗i,
i.e. w⃗i will now contain the 24 inclusive jet bins and the 22 dijet bins. The corresponding
correlation matrix will comprise three sub-matrices: the inclusive jet correlation matrix, the
inclusive jet – dijet correlation matrix and the dijet correlation matrix. The latter will be a
diagonal matrix, as dijet events are not statistically correlated with each other.
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9 Determination of cross sections

The run periods of the two measurements do not overlap completely. The impact of the
overlap on the correlations can be quantified using equations (9.4). The set of all events is
decomposed into the overlap region and the two regions that are only present in one of the
analyses. For two observables A and B with partially overlapping run periods

ρAB =
σAB√
σ2Aσ

2
B

=

∑

all events

wA,iwB,i

√ ∑

all events

w2
A,i

√ ∑

all events

w2
B,i

=

∑

overlap

w
(A)
i w

(B)
i

√ ∑

overlap

w2
A,i +

∑

A only

w2
A,i

√ ∑

overlap

w2
B,i +

∑

B only

w2
B,i

=

∑

overlap

wA,iwB,i

√ ∑

overlap

w2
A,i

√ ∑

overlap

w2
B,i

√√√√√√√√

∑

overlap

w2
A,i

∑

overlap

w2
A,i +

∑

A only

w2
A,i

√√√√√√√√

∑

overlap

w2
B,i

∑

overlap

w2
B,i +

∑

B only

w2
B,i

= ρAB,overlap

√
Loverlap

LA

√
Loverlap

LB
. (9.6)

In the last step, it is used that the sum over a set of events is proportional to the integrated
luminosity of those events. Since the expression in the sum is identical in the numerator and
the denominator, the sums may be replaced by the luminosities. For the present case, this
means that the correlations determined for the overlap of the two analyses should be scaled by
Loverlap/

√
Linclusive jetLdijet ≈ 80%, where Linclusive jet, Ldijet and Loverlap are the integrated

luminosities of the data samples used in the inclusive jet measurement, the dijet measurement
and the overlap of the two respectively. The inclusive jet – dijet correlation matrix is shown
after applying this scaling in the right panel of figure 9.4. Correlations are notably larger than
within the inclusive jets and can reach more than 55%.

9.4 Matrix unfolding

An alternative to the bin-by-bin correction method is the matrix unfolding approach. In the
following, the hadron-level distribution will be denoted as x⃗, i.e. xj is the number of jets
in hadron-level bin j and the dimension of x⃗ is the number of hadron-level bins. Similarly,
the detector-level distribution is denoted as y⃗. A central quantity of the matrix unfolding
approach is the migration matrix A. Its elements Aij give the probability for a jet originating
in hadron-level bin j to be reconstructed in detector-level bin i. The matrix A thus serves as
a model for the detector response. The j-th column of A gives the shape of the detector-level
distribution induced by jets in the j-th hadron-level bin. These quantities can be related via
the equation

y⃗ = A · x⃗. (9.7)
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9.4 Matrix unfolding

With matrix unfolding, the bins at hadron- and detector-level do not need to correspond to
each other. Furthermore, a different number of bins can be used at each level. In this analysis,
a two-dimensional unfolding is performed. Thus the vectors x⃗ and y⃗ refer to two-dimensional
distributions. To simplify notation, these two-dimensional distributions are mapped onto a
one-dimensional axis, such that the elements can be referred to using a single index and drawn
in a one-dimensional histogram.

The basic approach of matrix unfolding is to take the detector-level distribution y⃗ from
the data, the migration matrix A from the MC and use those to determine the truth-level
distribution x⃗ in the data. If dim(x⃗) = dim(y⃗), i.e. the number hadron-level and detector-level
bins are equal, A is a square matrix. In this case, equation (9.7) can be solved directly by matrix
inversion. While mathematically correct, this approach can lead to strong anti-correlations
and large fluctuations of the determined truth-level distribution.193 In matrix unfolding, these
fluctuations are reduced by choosing a larger number of bins at detector level than at hadron
level. In this case, the equation can be solved by a linear transformation, as described below.

Not all jets that are identified at detector level belong to the signal region at truth level.
Background contributions arise when a detector-level jet is misidentified and has no hadron-
level counterpart. They also include jets that are generated outside the analysis phase space
and have migrated to the inside. Another possible source are jets from different physical
processes, such as PHP events that do not belong to the hadron-level phase space by definition.
For the unfolding, background contributions are taken into account by defining

y⃗ = y⃗data ⊙
(
1⃗− b⃗⊘ y⃗MC

)
, (9.8)

where 1⃗ is a vector, all of whose elements are one and ⊙ and ⊘ are element-wise (Hadamard)
multiplication and division. The vector y⃗data represents the distribution recorded in the
data. The vector b⃗ represents the background that is estimated from the MC and should be
subtracted from the data before unfolding. Subtracting the absolute number of background
jets introduces biases to the unfolded result. These biases are reduced by subtracting the
relative number of background jets instead. This is achieved by normalising b⃗ to the MC
detector-level distribution y⃗MC and subtracting it multiplicatively. Technically, three types of
background can be distinguished:

b⃗ = b⃗low-Q2 DIS + b⃗PHP + b⃗unfolding. (9.9)

The vectors b⃗low-Q2 DIS and b⃗PHP represent the contributions from background processes and
are determined from the corresponding background MC samples. The vector b⃗unfolding will be
referred to as the ‘unfolding background’ and represents misreconstructions and migrations
from outside the analysis phase space, that are described by the signal MC, e.g. migrations in
y or p⊥,Breit.

Unmatched jets also exist at hadron level. These missing jets occur when the event or the
jet is discarded at detector level due to inefficiencies in the reconstruction. They also occur
when a jet migrates out of the analysis phase space. Missing jets are considered by computing

x⃗data = x⃗⊙
(
1⃗ + m⃗⊘ x⃗MC

)
, (9.10)

where x⃗ is the distribution determined from solving equation (9.7) and x⃗data is the corrected
estimate for the truth-level distribution in the data. The vector m⃗ is the distribution of
signal jets at MC hadron level that cannot be matched to a detector-level jet in the phase
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9 Determination of cross sections

space. Similarly to the background contribution, the missing jets are normalised to the MC
hadron-level distribution x⃗MC and added multiplicatively.

Here, the convention
∑

iAij = 1 is used, meaning that A only describes jets that are
reconstructed at all at detector level. Alternatively, one could use the convention

∑
iAij ≤ 1,

so that A already accounts for the fact that some jets are not reconstructed. In that case, the
missing jets m⃗ could be absorbed into A.

The unfolded distribution x⃗ is then determined by minimising the expression
(
y⃗ −A · x⃗

)⊺· V −1 ·
(
y⃗ −A · x⃗

)
, (9.11)

where V = Vyy + Vbb is the covariance matrix. It consists of a contribution from the detector-
level distribution, Vyy, and one determined from the background, Vbb.194 The detector-level
distribution y⃗data and the corresponding covariance matrix Vyy are determined from the data
as explained in section 9.3.3. The distributions m⃗, b⃗, x⃗MC, y⃗MC and A are taken from the MC
samples and their statistical uncertainties are computed similarly.

In the MC sample, jets are clustered at detector and hadron level and matched to each other
using the algorithm described in section 8.3.2, with a distance cut of ∆R > 0.9. Matched pairs
are used to fill the response matrix R. The element Rij is the number of jets generated in bin
j and reconstructed in bin i. The migration matrix is determined by normalising the columns
of the response matrix Aij = Rij/(

∑
iRij). Unmatched hadron-level jets are filled into the

vector m⃗ and unmatched detector-level jets into b⃗unfolding.
The uncertainties of bins in the unfolded distribution are correlated. Correlations can arise

from two possible sources. Similarly to the bin-by-bin correction, jets are positively correlated
if they originate from the same event. These input correlations are described by the matrix Vyy.
Secondly, primarily negative correlations arise due to the finite detector resolution, leading to
migrations of jets between bins, as described by the migration matrix A. Matrix unfolding
naturally considers both types of correlation and determines the correlations alongside the
unfolded distribution.

The solution for the unfolded distribution x⃗ and its covariance matrix Vxx is given by194

x⃗ = Dxy · y⃗, (9.12a)
Vxx = Dxy · V ·D⊺

xy, (9.12b)

with

Dxy = (∂y⃗ x⃗)
⊺ = (A⊺ · V −1 ·A)−1 ·A⊺ · V −1. (9.12c)

If A is a square matrix, i.e. the same number of bins is used at detector and hadron level, this
expression reduces to matrix inversion.

Another relevant quantity in matrix unfolding is the condition number of the matrix A.
The condition number is a real number greater than one. It is a measure for how sensitive the
solution of an equation of type (9.7) is to uncertainties in its input, i.e. the condition number
describes how uncertainties of y⃗ will be amplified when determining x⃗. If the condition number
is close to one, the uncertainty of x⃗ will not be much greater than that of y⃗. If the condition
number is large, however, the uncertainty in y⃗ will be amplified and the result x⃗ can become
sensitive to small fluctuations of y⃗. In this case, the problem is said to be ill-conditioned,
and the unfolded distribution can exhibit large fluctuations.145 In such cases, a regularisation
term can be added to the unfolding procedure, which can dampen fluctuations at the cost
of introducing a bias to the result. Such a regularisation procedure can distort features of

106



9.4 Matrix unfolding

the truth-level distribution, e.g. if it contains a peak or a step. The condition number of the
migration matrix used in the remainder of this section is about 12, which is considered small
enough not to need a regularisation term. Using more bins at detector level than at hadron
level can also be considered a form of regularisation, as it prevents fluctuations in the unfolded
distributions that are not present at detector level.

The uncertainties determined by the unfolding procedure are a combination of statistical
uncertainties of data, signal MC and background MC as well as systematic uncertainties due to
jets belonging to the same event at theory level and systematic uncertainties due to migrations
during reconstruction. With matrix unfolding, these contributions cannot be clearly separated.
In the following, the sum of these uncertainties will be referred to as ‘unfolding uncertainty’.

9.4.1 Choice of binning scheme

It is important to supply sufficient information to the unfolding procedure to reduce fluctuations
in the determined distribution. Therefore, significantly more bins should be used at detector
level than for the measurement. Furthermore, previous analyses have found that it can be
advantageous to use finer hadron-level bins during the unfolding than are desired in the
measurement, as this gives additional flexibility to the unfolding algorithm.196 Cross sections
in this finer binning tend to be strongly correlated. These correlations will be reduced when
combining these bins to determine cross sections in the measurement binning.

The choice of hadron- and detector-level binning is optimised using a MC study. One of the
Ariadne and Lepto MC samples is used as pseudo-data and unfolded with the other sample.
The unfolded distribution is compared to the corresponding MC truth. Various aspects of the
binning are, in turn, modified, and each change is kept if it improves the agreement between
unfolded and truth distributions.

It is found that subdividing the Q2 bins at hadron level has little effect on the result.
However, subdividing the p⊥,Breit bins reduces the dependence of the unfolded result on the
MC model. It is determined that the optimal choice at hadron level is to divide each p⊥,Breit
bin into two, except for the lowest one. In the low-p⊥,Breit region, the energy resolution of the
reconstructed jets is limited by the CAL. To ensure sufficient information is supplied to the
unfolding algorithm, bins at detector level are subdivided into two or three bins, depending on
whether they were already subdivided at hadron level.

The fraction of missing and background jets in the signal region is reduced by adding
overflow bins in Q2 and p⊥,Breit and an underflow bin in p⊥,Breit. As the signal MC samples
are generated with the cut Q2 > 100GeV2, all events that originate from below this threshold
need to be considered background and subtracted using the dedicated low-Q2 DIS background
MC sample. Below the measurement region, this background becomes sizeable and therefore,
no underflow bin is added in Q2.

The final bin definitions used at hadron and detector level are given in table 9.2. In the
following, the three types of binning will be called detector-level binning, hadron-level binning
and measurement binning.

9.4.2 Inputs and results

Like the bin-by-bin correction, the matrix unfolding is performed using a combination of the
Ariadne and Lepto signal MC samples to mitigate the model dependence. The remaining
systematic uncertainty is estimated in section 10.2. In the following, the term ‘(signal) MC’
will always refer to this combined sample.
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9 Determination of cross sections

Measurement Hadron level Detector level
Label Q2 [GeV2] i Q2 [GeV2] i Q2 [GeV2]

1 150 – 200 0 150 – 200 0 150 – 175
1 175 – 200

2 200 – 270 1 200 – 270 2 200 – 230
3 230 – 270

3 270 – 400 2 270 – 400 4 270 – 320
5 320 – 400

4 400 – 700 3 400 – 700 6 400 – 500
7 500 – 700

5 700 – 5000 4 700 – 5000
8 700 – 1000
9 1000 – 2500
10 2500 – 5000

6 5000 – 15000 5 5000 – 15000 11 5000 – 15000
6 15000 – ∞ 12 15000 – ∞

Measurement Hadron level Detector level
Label p⊥,Breit [GeV] j p⊥,Breit [GeV] j p⊥,Breit [GeV]

0 4.5 – 7 0 4.5 – 7

a 7 – 11 1 7 – 11 1 7 – 9
2 9 – 11

b 11 – 18
2 11 – 14 3 11 – 13

4 13 – 15
3 14 – 18 5 15 – 18

c 18 – 30
4 18 – 24 6 18 – 21

7 21 – 25
5 24 – 30 8 25 – 30

d 30 – 50
6 30 – 39 9 30 – 36

10 36 – 45
7 39 – 50 11 45 – 50
8 50 – ∞ 12 50 – ∞

Table 9.2: Bin definitions used during matrix unfolding. The measurement bins, shown in
the left columns, are identical to table 9.1 and are labelled by a number and a letter. The
hadron-level binning is given in the middle columns. The two-dimensional binning is mapped
onto a one-dimensional axis by assigning each (Q2, p⊥,Breit)-bin a one-dimensional index as
9i+ j. Bins in the one-dimensional axis are indexed from 0 to 62. The detector-level binning
is shown in the right columns. The bins are mapped onto a one-dimensional axis as 13i+ j,
which leads to bin indices ranging from 0 to 168. Similar to figure 9.3, the blocks of bins
correspond to the Q2 bins. The individual bins within these blocks represent the p⊥,Breit bins.

Detector-level distributions The detector-level distributions are given in figure 9.5. It
can be seen that the background distribution b⃗ is dominated by jets from the signal MC that
cannot be assigned to a hadron level bin. Its contribution is about 15% in the central region
of the phase space and increases towards the edges, especially in the under- and overflow bins.
Within statistical uncertainties, the sum of the three MC contributions describes the data
reasonably, achieving a χ2 per degree of freedom164 of about 1.2 in the signal region.
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Figure 9.5: Distributions of jets at detector level in data y⃗data, signal MC y⃗MC and signal +
background MC y⃗MC+ b⃗, unfolding background b⃗unfolding and the contribution from background
processes b⃗low-Q2 DIS + b⃗PHP. The bin indices are defined in table 9.2. The large bins indicate
Q2 bins, and the smaller ones are p⊥,Breit bins.

The matrix unfolding method naturally takes migrations between the unfolded bins into
account. Since a two-dimensional unfolding of Q2 and p⊥,Breit is performed, migrations along
both directions will be considered. It is also possible to include further dimensions in the
unfolding to reduce the dependence on the correctness of the MC model. For this purpose, the
variables y and ηlab are well suited, as they are used to limit the phase space. Also, if under-
and overflow bins in these quantities are considered, the fraction of missing and background
jets in the signal region could be further reduced. However, as shown in figure 9.5, some bins
already have just ten or fewer entries in the data. If bins were subdivided further, or lower
statistics underflow and overflow bins were added, the data statistics would be insufficient for
a reliable unfolding. Therefore, no further dimensions are added to the unfolding.

Detector-level covariance matrix The covariance matrix Vyy corresponding to the data
distribution is shown in figure 9.6. An exact block structure arises because, by definition, jets
from events with different Q2 cannot be correlated. Each block in the figure corresponds to
one Q2 bin. The structure within each block represents the p⊥,Breit correlations in that Q2 bin.

Migration matrix The final input to the unfolding procedure is the migration matrix as
determined from the signal MC sample. This matrix is shown in figure 9.7. Also, here, a
distinct structure is visible. The structure arises due to the overlap of the detector-level and
hadron-level bins in table 9.2 and is slightly distorted due to the detector resolution.
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Figure 9.6: Covariance matrix of the data distribution Vyy. The bins are defined according
to table 9.2.

Unfolded distributions in hadron-level binning The unfolded distribution is shown in
figure 9.8, compared to the corresponding distribution from the MC. It can be seen that matrix
unfolding and the bin-by-bin correction method give consistent results in the signal region. In
some overflow bins where the number of jets gets small, the matrix unfolding method fails to
determine estimates of the hadron-level distribution. For bin values that are compatible with
zero and thus do not contribute to the detector-level distribution, matrix unfolding can lead
to very small or even slightly negative values. Within uncertainties, these bins are compatible
with the shape created by the surrounding bins. This is not problematic as long as these bins
do not belong to the measurement phase space.

The figure also shows that the uncertainties from matrix unfolding appear significantly
larger than those from the bin-by-bin correction. This is primarily due to the fine hadron-
level binning, in which bins are strongly anti-correlated when using matrix unfolding. The
uncertainties appear large, as the uncertainties in the figure only represent the diagonal entries
of the covariance matrix. When combining the bins to derive distributions in the measurement
binning, correlations will be reduced, and uncertainties will appear smaller. Another reason
is that the unfolding uncertainty from the matrix unfolding includes additional systematic
contributions that are not included in the statistical uncertainty of the bin-by-bin correction.
The correlation matrix in the hadron-level binning is given in figure 9.10. The anti-correlation
between neighbouring p⊥,Breit bins frequently exceeds −50% and can reach as high as −95%.
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Figure 9.7: Migration matrix A from hadron to detector level. In the upper left panel, the
detector-level and hadron-level bins are defined according to table 9.2. The upper right panel
shows the same data, but the two-dimensional axes are mapped to one dimension as 13j + i
and 7j + i at detector and hadron level, respectively. Consequently, the large bins correspond
to p⊥,Breit bins and the small bins to Q2. This way of drawing the matrix makes it easier to
evaluate migrations in p⊥,Breit, while the left panel is more suitable to judge migrations in Q2.
In the lower row, the response matrix is integrated over p⊥,Breit (left) or Q2 (right) before
deriving the migration matrix. These two figures are thus simplified versions of those in the
upper row. They show only migrations in Q2 or p⊥,Breit, respectively.
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Figure 9.8: Distributions of jets at hadron level in the unfolded data x⃗data, the signal MC
x⃗MC and the missing entries m⃗. The bin indices are defined in table 9.2. The large bins
indicate Q2 bins, and the smaller ones are p⊥,Breit bins. Additionaly shown is the contribution
from missing hadron-level jets, that are missing because their event is rejected at detector
level. For reference, the same distribution is derived using the bin-by-bin correction method.

Taking into account the correlations, the matrix unfolded distribution results in χ2 per
degree of freedom of about 0.9 compared to the MC truth in the signal region, which is
consistent with the value at detector level. The bin-by-bin correction yields an increased value
of 4.6. This is mostly due to the smaller uncertainty estimates of this method. The χ2 per
degree of freedom at hadron level is not necessarily expected to be 1, since data and MC might
disagree. Instead, it should be compared to the corresponding value at detector level. This
comparison is known as the bottom-line test.164

The figure also shows that the contribution from unmatched hadron-level jets is significant
and makes up 30%− 60% of all jets. Many of the unmatched hadron-level jets are unmatched
due to the corresponding event being rejected during detector-level reconstruction, e.g. since no
under- and overflow bins were added in y and ηlab, small migrations close to the boundaries can
cause jets to become unmatched. Only a small fraction of unmatched jets is due to deficiencies
in the jet reconstruction. A similar effect is observed when using the bin-by-bin correction,
where a low efficiency of 25%− 45% is observed, see figure B.14. As the efficiency represents
the fraction of hadron-level jets matched to a detector-level jet in the same bin, the efficiency
is, by definition, smaller than the matching rate.

Unfolded distributions in measurement binning The hadron-level bins are combined to
derive the measurement distribution shown in figure 9.9. It is again found that both unfolding
methods yield consistent results. Again in the measurement binning, the uncertainties from
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matrix unfolding appear larger, though the difference is much smaller than in the hadron-level
binning. The most noticeable difference in the size of uncertainties is observed in bins 6a and
6b, though these are also the most strongly anti-correlated bins, as shown in the correlation
matrix in figure 9.10.

In the measurement binning, the χ2 per degree of freedom is 3.5 with matrix unfolding
and 7.2 with the bin-by-bin correction. Both of these values are larger than their hadron-
level counterparts. This is because there is a slight disagreement between data and MC.
The disagreement is less prominent in the finer hadron-level binning because of the larger
uncertainties. The difference is larger for matrix unfolding since the anti-correlations lead to
an even stronger reduction of uncertainties when combining bins.

9.4.3 Correlations to dijet measurement

As discussed in section 9.3.3, it is vital to determine statistical correlations to make the
measured cross sections usable in further studies. Matrix unfolding naturally takes correlations
into account, and the correlation matrix presented in the previous section is sufficient to
make the inclusive jet measurement usable on its own. To make the measurement also usable
in conjunction with the previous ZEUS dijet measurement, correlations between the two
measurements need to be determined.

It would be possible to extend the measurement vectors x⃗, y⃗, A, . . . by additional dijet bins
and unfold the two measurements simultaneously. This approach would be similar to the one
taken for the bin-by-bin correction. However, for the current case, this method is not applicable.
If the two measurements were unfolded simultaneously, the obtained correlation matrix would
refer to matrix unfolded measurements, in which migrations between bins are explicitly
considered during the unfolding. This is not the case for the previous dijet measurement,
as that was performed using a bin-by-bin correction. The importance of this distinction is
further demonstrated by the fact that the inclusive jet correlation matrix determined for the
bin-by-bin correction in figure 9.4 is qualitatively different from the one for matrix unfolding
in figure 9.10.

Rather than appending all of the dijet bins to the measurement vectors, only a single dijet
bin is added. When repeating the unfolding, a single row of the inclusive jet – dijet correlation
matrix is determined, namely that row that describes the correlations between all the inclusive
jet bins and the single added dijet bin. The entire inclusive jet – dijet correlation matrix can
be constructed by repeating this procedure for every dijet bin. Using this method, migrations
of dijets between bins are not explicitly considered during the unfolding since only a single
dijet bin is considered at every step. This makes it possible to derive a consistent correlation
matrix between the matrix unfolded inclusive jets and the bin-by-bin corrected dijets.

The determined correlation matrix is given in figure 9.11, scaled by 80%, similar to the
previous section. The structure is similar to the corresponding matrix for the bin-by-bin
correction, as shown in figure 9.4, but the strength of the correlations is reduced, not exceeding
40%.

9.4.4 Formulation as template fit

A template fit describes a distribution as a linear combination of several component distributions.
The coefficients are determined in a linear fit. This technique is often used to describe detector-
level distributions in the data as a sum of component distributions from the MC. Matrix
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Figure 9.9: Distributions of jets at hadron level in the measurement binning. The data are
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bins indicate Q2 bins, the smaller ones p⊥,Breit.

8 17 26 35 44 53 62

8

17

26

35

44

53

62

Hadron-level (Q2, p⊥,Breit) bin

H
ad

ro
n
-l
ev
el

(Q
2
,p

⊥
,B

re
it
)
b
in

1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d 4a 4b 4c 4d 5a 5b 5c 5d 6a 6b 6c 6d

1a
1b
1c
1d
2a
2b
2c
2d
3a
3b
3c
3d
4a
4b
4c
4d
5a
5b
5c
5d
6a
6b
6c
6d

Measurement (Q2, p⊥,Breit) bin

M
ea
su
re
m
en
t
(Q

2
,p

⊥
,B

re
it
)
b
in

−1

−0.5

0

0.5

1
C
or
re
la
ti
on

Figure 9.10: Correlation matrices of the unfolding uncertainty in the hadron-level binning
(left) and in the measurement binning (right). The bin labels are defined in table 9.2. The
numerical values of the correlation matrix in the measurement binning are given in table C.6.
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Figure 9.11: Correlation matrix between matrix unfolded inclusive jets and bin-by-bin
corrected dijets. The bins of the inclusive jet measurement are labelled according to table 9.2.
The large bins indicate Q2 bins, and the smaller ones are p⊥,Breit bins. The dijet bins are
labelled similarly but using the bin definitions from that measurement.71 The numerical values
of this matrix are given in table C.6.

unfolding is often presented in this context, which helps understand the method in general
and how the unfolding behaves in a specific situation.

As explained earlier in this section, each column of the response matrix corresponds to the
shape of the detector-level distribution induced by jets in the corresponding hadron-level bin,
i.e. when scaling each column by the corresponding hadron-level bin content and adding up all
the columns, the full detector-level distribution is obtained. Rewriting equation (9.7) in this
context yields

y⃗ =
∑

j

A⃗jxj , (9.13)

with A⃗j =
∑

iAij e⃗i. This equation highlights the similarity of matrix unfolding and template
fits. The j columns of the response matrix A⃗j are the component distributions used in the
template fit. The hadron-level bin contents xj are the coefficients of the components and are
determined in the fit.

The effect of matrix unfolding can be understood by comparing the different components
A⃗jxj before and after the fit to the data, i.e. before and after the unfolding. Before the
unfolding, the xj are taken from the MC, and the sum of templates is the distribution from
the signal MC. After the fit, they represent the unfolded distribution from the data. At this
point, the sum of templates should agree with the data.

In this analysis, the hadron-level distribution used during the unfolding consists of 63 bins,
as shown in table 9.2. This means there are 63 individual templates, each corresponding
to one (Q2, p⊥,Breit) bin. Drawing all of these templates at once would not give a clear and
helpful picture. To obtain a manageable number of graphs, templates can be combined to
form a smaller number of meta-templates. Two separate comparisons are made. In the first,
templates are combined such that each meta-template corresponds to one hadron-level Q2 bin,
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9 Determination of cross sections

leading to seven meta-templates. For the second comparison, nine meta-templates are formed,
corresponding to one hadron-level p⊥,Breit bin each. These two variants of the comparison are
shown in figures 9.12 and 9.13.

Comparing these meta-templates before and after unfolding does not illustrate the full effect
of the unfolding. Because the unfolding happens in both Q2 and p⊥,Breit, the shape of the
meta-templates will change during the unfolding, which is not the case for a regular template
fit. Nevertheless, understanding the behaviour of the meta-templates in both cases can help
understand the behaviour of the unfolding.

The structure of these graphs can be explained by the correspondence between the hadron-
level and detector-level bins. The large bins in figure 9.12 correspond to Q2 bins at detector
level. The first two detector-level Q2 bins are dominated by the Q2 ∈ (150, 200)GeV2 meta-
template. This is because the first two detector-level Q2 bins range from 150–175GeV2 and
175–200GeV2 and thereby correspond to the first hadron-level Q2 bin, see table 9.2. The
next two detector-level Q2 bins are dominated by the Q2 ∈ (200, 270)GeV2 meta-template
and so on. The same applies to figure 9.13, where the large bins correspond to detector-level
p⊥,Breit bins. Here, the first meta-template dominates only the first detector-level bin since
the bin boundaries are identical at hadron level and detector level. The second meta-template
corresponds to the second and third detector-level bin, and so on.

As expected, the figures show that the detector resolution is better in Q2 than in p⊥,Breit.
The Q2 meta-templates contribute significantly only to a few detector-level bins. Their
contribution drops off rapidly when moving away from this region. Especially in the high-Q2

region, meta-templates contribute almost exclusively to their corresponding detector-level
bins. The p⊥,Breit meta-templates contribute to a broader range of detector-level bins. This
indicates that migrations in p⊥,Breit occur more frequently and over greater distances than in
Q2. The same effect is visible in the migration matrices in figure 9.7.

When comparing the sum of the templates to the data, it is clear that the unfolding improves
the agreement in both shape and normalisation. Before the unfolding, the shapes of the Q2

and p⊥,Breit distributions deviate systematically from the data. After unfolding, they are
essentially identical and agree within statistical uncertainty. This is especially visible in the
p⊥,Breit overflow bin of figure 9.13. In figures 9.12 and 9.13, this effect is small since the
combined sample from Ariadne and Lepto agrees well with the data. In appendix B.5, the
analogous figures are shown using only the Ariadne sample, where the effect of the unfolding
is much more visible.
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Figure 9.12: Matrix unfolding as template fit in Q2. The data are compared after subtracting
the background to the Q2 meta-templates before (top panel) and after (bottom panel) the
unfolding. The bin indices are defined in table 9.2. The large bins indicate Q2 bins, and the
smaller ones are p⊥,Breit bins.
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Figure 9.13: Matrix unfolding as template fit in p⊥,Breit. For details see the caption of
figure 9.12. To better show the shape of p⊥,Breit distribution, the bin indices are defined
differently from the ones different in table 9.2. The two-dimensional distributions are mapped
onto a one-dimensional axis as 13j + i rather than 13i+ j. Consequently, the large bins now
indicate p⊥,Breit bins, and the smaller ones are Q2 bins.
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9.5 Theory corrections

The unfolded cross sections correspond directly to the data. These cross sections cannot be
compared directly to fixed-order perturbative QCD predictions because not all effects present
in the data are included in these predictions. To make a comparison, correction factors are
derived and applied to the measured or the predicted cross sections. In the case of the present
measurement, three corrections need to be derived: hadronisation, weak-boson exchange and
QED radiation. By convention, the first two are applied to the theory predictions, whereas
the last is applied to the data.

9.5.1 Hadronisation

The most notable effect in which data and theory differ is hadronisation, see section 5.2.2 and
7.4.2. Only hadrons are observable in the data so that the measured cross sections necessarily
correspond to hadron jets. On the other hand, perturbative QCD can only describe partons.
The relation between partons and hadrons is described by the hadronisation correction.

In this analysis, the size of the hadronisation correction is estimated using the same Ariadne
and Lepto MC samples used for the unfolding. In each sample, two sets of jets are reconstructed
at generator level, one from hadrons and one from partons. The correction factors are then
defined as the ratio of the number of jets of the two jet types chad =

Nhadron jets
Nparton jets

in a given bin.
These factors are determined separately from the Ariadne and Lepto MC chains. The average
of the correction factors is used as the nominal correction, and half the difference between
them is used as an uncertainty of the correction.

Both Ariadne and Lepto rely on a leading-order matrix element calculation and an initial-
and final-state parton shower to approximate higher orders. Compared to this approach,
the theory calculations produce a relatively small number of partons (up to four at NNLO)
whose hadronisation does not necessarily correspond to the hadronisation observed in the MC
samples. It is assumed that the uncertainty of the hadronisation correction covers not only the
difference between the two parton showering models used in Ariadne and Lepto but also the
difference between the parton showering approach itself and the partons from the fixed-order
calculation.

The predicted number of jets of each type is given in figure 9.14 for the two samples. The
ratio panel shows the hadronisation correction. The predictions for parton and hadron jets
differ significantly between the two MC chains, but hadronisation corrections determined from
each sample are similar. The correction factors are below 1, indicating that there are fewer
hadron jets than parton jets. This can be explained by the weak decays during hadronisation,
in which neutrinos are produced. Neutrinos are, by definition, not part of the hadron-level
jets. Furthermore, if hadrons are emitted too far away from the jet axis, they will not be part
of the hadron-level jet. Therefore, hadron-level jets tend to have slightly lower energy and are
more likely to be rejected by p⊥,Breit requirements. In most bins, the effect is about 3%, but
in the lowest p⊥,Breit bins, it can reach up to 11%. These correction factors are applied to the
perturbative QCD predictions to obtain predictions for hadron jets.

9.5.2 Weak-boson exchange

The theory predictions to which the measured cross sections will be compared consider only a
photon as the exchanged DIS boson. This is a good approximation at low Q2 values. However,
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Figure 9.14: Jet predictions using the Ariadne and Lepto MC chain for hadron and parton
jets. The average of the two graphs in the ratio panel gives the hadronisation correction. The
uncertainty of the correction is given by half the difference between these two graphs. The
numerical values for this correction and the associated uncertainty are given in table C.4.

when the boson virtuality becomes comparable to the mass of the Z boson, the exchange of a
Z boson and the interference of the photon and Z boson processes can no longer be neglected.

Additional MC samples are generated as described in section 5.3.3 to account for this
effect. In one sample, contributions from the Z boson are disabled, similar to the theoretical
predictions. Two more samples are generated, including these contributions, one for e−p
and one for e+p interactions. Due to the parity-violating nature of the weak interaction, the
inclusive DIS cross section depends on the type of lepton beam, see section 2.3.5.

The predictions for the inclusive DIS cross section from each of these three samples is shown
in figure 9.15. The unpolarised jet cross section is expected to depend on the lepton charge only
via the inclusive DIS cross section. Therefore, this correction is applied only as a function of
Q2 and not as a function of p⊥,Breit. An additional graph in the figure shows the average of the
cross sections, including electroweak corrections, weighted according to the luminosities of the
electron and proton beam data samples used in this analysis. This ratio is 190.3/156.7 ≈ 6/5,
see table 6.1.

The correction factors cZ0 =
Nphoton and Z

Nphoton only
are given in the ratio panel of the figure. As

expected, the influence of electroweak effects is negligible at low Q2. The correction is only
significant in the highest two Q2 bins, where it reaches a size of 36% for the individual samples
and 15% for the average. The correction factors used in the analysis are given by the graph
for the weighted average in the ratio panel. Since electroweak effects are well understood, no
uncertainty is assigned to this correction.159 A sufficient number of MC events is generated,
such that the statistical uncertainty of these correction factors becomes negligible.
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Figure 9.15: Inclusive DIS predictions calculated including and excluding electroweak cor-
rections. The ratio panel gives the electroweak correction. The numerical values for this
correction are given in table C.4.

9.5.3 QED radiation

As discussed in section 6.5, the treatment of radiative effects in the cross section definition is
non-trivial. In the presence of radiative corrections, the definition of the kinematic quantities
is no longer unique. The approach often chosen at HERA is to apply an artificial correction to
the data to remove QED radiative effects. At this point, the cross sections are referred to as
being at QED Born level. Since the theoretical prediction to which this measurement will be
compared does not consider QED radiation, the same approach is taken in this analysis.

For this purpose, further MC samples are generated using the chain described in section 5.3.3.
Two sets of samples are generated, one at QED Born level and one including QED radiation
on the electron side. In both cases, one sample for e−p and one for e+p collisions is generated,
which are then combined and weighted by the luminosities of the run periods with each lepton
type in the data. From each sample, inclusive jet cross sections at hadron level are computed.
For the sample including QED radiation, the electron method is used, as described in section 6.5.
The predictions are shown in figure 9.16. The correction factors cQED = NBorn level

NWith radiation
are given

in the ratio panel of the figure. The correction is sizeable, especially in the high-Q2 region.
The statistical uncertainty from generating the MC samples is used as a systematic uncertainty
of the corrected cross sections.

In principle, a similar correction should be applied to QED radiation on the quark side.
Since these effects are expected to be very small, this effect is neglected.

Alternative QED correction NLO electroweak corrections are available for the DIS
process,197 but they are not yet integrated into the NNLO QCD jet calculations. It is desirable
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Figure 9.16: Inclusive jet predictions calculated at QED Born level and including QED
radiative effects. The ratio panel gives correction factors. The numerical values for this
correction are given in table C.4. Also shown are predictions including QED radiative effects
and including a cut on hard ISR photons. These predictions are used for the alternative QED
correction, as discussed in the text.

to treat QED radiation more rigorously, should more comprehensive theoretical predictions
including these effects become available in the future. The correction factors for the QED
Born level correction are provided explicitly, so it is possible to undo this correction.

The cross sections without this correction correspond to the data, including radiative
corrections. These are vertex corrections and collinear initial-state, collinear final-state and
non-collinear photon radiation from the electron or quark. However, not all of these effects were
actually measured. At detector level, the cut E − pz ∈ (38, 65)GeV is applied, which, amongst
other things, removes events with hard ISR photons from the electron. In the presence of ISR,
the expected value for E − pz is 2(Ee − EISR), where EISR is the energy of the collinear ISR
photon. Therefore, the lower bound of this cut effectively amounts to a cut EISR < 8.5GeV.
Consequently, events with hard ISR from the electron are absent in the data sample. These
events are extrapolated from the MC during unfolding.

To reduce the dependence on the MC simulation, an alternative set of QED correction
factors is determined. These factors correct the unfolded cross sections to a definition including
higher-order QED effects and including the ISR cut. They are derived from the same sample
that is used for the QED Born level correction and are defined as c′QED = NWith radiation and ISR cut

NWith radiation
.

When applying these factors to the cross sections, the dependence on the MC samples cancels.
This definition is slightly more challenging on the theoretical side, as this cut has to be
integrated into the calculations. These alternative factors and their uncertainties are shown in
figure 9.16. They are given numerically, alongside the corresponding cross sections in table C.7.
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CHAPTER 10

Systematic uncertainties

Experimental systematic uncertainties of the measurement arise due to imperfect modelling of
the data or the theory. This includes the description of the detector response by the detector
simulation, and the description of the signal and background processes by the MC event
generators. Corrections are introduced for many of these imperfections as described in the
previous chapters. In these cases, the uncertainty due to imperfect modelling is replaced by a
much smaller uncertainty due to an imperfect correction.

To quantify the influence of these imperfections on the measured cross sections, each known
contribution or correction is varied within its uncertainty. The effect of each variation on the
unfolded cross section is recorded and added up to form the total systematic uncertainty.

Using the bin-by-bin correction, the effect of each variation on the cross sections can be
determined straightforwardly. The bin-by-bin correction is repeated with the modified data
and MC samples, including the variation corresponding to a systematic uncertainty. The
result is compared to the nominal cross sections, and the difference is used as the systematic
uncertainty on the cross sections.

When using matrix unfolding, this simple approach is often not viable, as statistical
fluctuations of the data and MC samples tend to be amplified and would therefore be double
counted as part of the systematic uncertainty. It is possible to compensate for this effect by
applying a smoothing procedure to the determined uncertainties.145 In this analysis, a different
approach is chosen. For most systematic uncertainties, instead of repeating the unfolding for
the variation, the effect of the variation is propagated using bin-wise factors. In each bin

Nunfolded,variation := Nunfolded,nominal
Ndata,variation

Ndata,nominal

Nrec,nominal

Nrec,variation

Ngen,variation

Ngen,nominal
,

where N is the number of jets in a given bin, the subscripts ‘data’, ‘rec’ and ‘gen’ refer to data
at detector level, MC at detector level and MC at hadron level respectively and Nunfolded,nominal
is the number of jets in the data at truth level, as determined by matrix unfolding using the
nominal samples. Instead of repeating the matrix unfolding for each variation, Nunfolded,variation
is used. Using this formula, the relative systematic uncertainty for the matrix unfolded cross
sections is the same as the relative uncertainty determined from the bin-by-bin correction.

This simplified approach is justified for most sources of systematic uncertainty since matrix
unfolding is expected to have a similar uncertainty as the bin-by-bin correction. A notable
exception is the model uncertainty, which is expected to decrease when using matrix unfolding.
For this uncertainty, a dedicated treatment is employed for matrix unfolding. There are a few
sources of systematic uncertainty, which are estimated using a reweighting of the samples. Since
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10 Systematic uncertainties

events do not move between bins for these variations, statistical fluctuations will cancel when
comparing the unfolded cross sections to the nominal ones. Therefore, the straightforward way
to evaluate the systematic uncertainty discussed above can also be applied to matrix unfolding.
In most cases, the uncertainties derived via both approaches are essentially identical.

10.1 Jet-energy scale

The dominant systematic uncertainty on most jet measurements arises due to uncertainty in
the description of the detector response to hadronic objects in the MC. Due to an imperfect
reconstruction, the measured energy of each hadronic object does not necessarily correspond
exactly to the true energy of the object. If the relation between true and measured energy
is not described by the MC sample used for unfolding, there will be a systematic bias in
the measured cross sections. The uncertainty in the description of this relation is called the
jet-energy-scale uncertainty. Since the jet spectrum is steeply falling, the uncertainty on the
jet-energy scale is amplified when determining its effect on the measured cross sections.

In this analysis, the jet-energy scale in the MC samples is calibrated as described in
section 8.3.1. The result of this correction is shown in figure 8.7. After the correction, data
and MC agree within about 1%. Therefore, a value of 1% is taken as the uncertainty on the
jet-energy scale. The correction is applied to jets with p⊥,lab > 10GeV. It has been shown in
a previous analysis that for lower-energy jets, the uncertainty is 3%.80

The effect of the jet-energy-scale uncertainty on the measured cross sections is determined
by repeating the unfolding with two modified MC samples. In these modified samples, the
energies of the jets after the relative jet-energy calibration are modified up or down by 1% for
jets with p⊥,lab > 10GeV and by 3% for jets of lower energy.

The resulting cross section uncertainty is given in figure 10.1. Due to the steeply falling jet
spectrum, the 1% uncertainty on the jet-energy scale results in a cross section uncertainty of
about 4% at low Q2. At higher Q2, the jet spectrum becomes more shallow, and the cross
section uncertainty decreases to about 2%. A decrease in the jet energy in the MC downwards
leads to an increase in the unfolded cross sections and vice versa.
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Figure 10.1: Systematic uncertainty associated with the MC jet-energy scale. The entries
‘Variation up/down’ refer to the change of the MC jet energy, which changes the cross sections
in the opposite direction. The bins are labelled according to table 9.1.
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10.2 Model uncertainty

10.2 Model uncertainty

Ideally, the unfolded cross sections should not depend on the correctness of the MC event
generator used for the unfolding. In practice, this is not the case since the model of the
detector response used during the unfolding is necessarily a strong simplification of the complete
detector response and integrates over a large number of MC distributions. If the MC does not
describe the data in these distributions, the unfolded cross sections will be biased by the MC
event generator. Many selection criteria and corrections applied in the previous chapters, most
notably the jet reweighting from section 8.3.3, aim to make the MC samples more similar to
the data and, thereby, reduce this bias.

Quantifying the remaining bias is the purpose of the model uncertainty. In this analysis,
this is done by comparing the Ariadne and Lepto signal MC samples. Most importantly, this
variation accounts for the uncertainty from the modelling of the parton-showering. At ZEUS,
this uncertainty is considered the dominant contribution to the model uncertainty.191,198,199

This approach also accounts for uncertainties in any other parameter that differs between the
two samples. However, since all of these uncertainties are considered simultaneously, some may
partially cancel. Also, the uncertainties in all parameters that are identical in both samples
are neglected. For this thesis, these effects are considered subdominant. Some of them are
accounted for in the other systematic uncertainties.

When the unfolding is performed using a bin-by-bin correction, each bin is unfolded indepen-
dently, meaning that all distributions in the MC are integrated over. In the matrix unfolding
approach, the Q2 and p⊥,Breit distributions are considered explicitly, which leads to a signifi-
cantly reduced dependence on the correctness of these two distributions. After reweighting the
MC samples to the data, this effect is expected to be reduced but still observable. Therefore,
a dedicated treatment of the model uncertainty is necessary for the bin-by-bin correction and
for matrix unfolding.

10.2.1 For the bin-by-bin correction

Cross sections are derived using the combination of the Ariadne and Lepto signal MC samples,
see section 9.3.2. The model uncertainty is estimated by repeating the cross section determi-
nation twice, once using only the Ariadne sample and once using only Lepto. The difference
between the nominal set of cross sections and these two alternative sets is then taken as the
model uncertainty. Since the nominal cross sections were derived using a combination of the
two samples, this model uncertainty will be approximately symmetric.

The relative uncertainty resulting from this procedure is shown in the first panel of figure 10.2.
The individual components from each MC sample are also shown.

10.2.2 For matrix unfolding

When using matrix unfolding, the nominal cross section is defined similarly as for the bin-by-bin
correction, i.e. the two MC samples are combined to determine the migration matrix used for
unfolding. However, to evaluate the model uncertainty for the matrix unfolding, the approach
described above cannot be easily used, as it would amplify and double count statistical
fluctuations in the data, leading to a significant overestimation of the model uncertainty.
Instead, the model uncertainty is estimated from a MC study. The idea is to perform a closure
test, in which one MC sample is taken as pseudo-data and unfolded with the other sample. The
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Figure 10.2: Systematic model uncertainty determined for the bin-by-bin correction (top
panel) and matrix unfolding (middle and bottom panel). In the first two panels, the individual
contributions from each unfolding step are also shown as red and blue lines at the edges of the
uncertainty band.

unfolded distribution should agree with the corresponding truth distribution within statistical
and model uncertainty. This relation can be used to extract the model uncertainty.

The closure test can be performed in two ways. Either the Ariadne or Lepto MC sample
can be used as pseudo-data and unfolded with the other sample. Both of these are performed,
and each of them gives the one-sided model uncertainty. The resulting model uncertainty will
be approximately symmetric.

The unfolded and truth distributions should agree within statistical and model uncertainties.
Therefore, the uncertainty is given by the difference between these two distributions. In each
bin and for both ways to perform the closure test, the model uncertainty is given by

∆stat.+model :=
Nunfolded −Ntruth

Nunfolded
,

where Nunfolded and Ntruth are the number of jets in the unfolded and truth distributions of the
pseudo-data and ∆stat.+model is the relative statistical and model uncertainty. This bin-wise
approach can only be an approximation, as it neglects correlations of the unfolding uncertainty.
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10.3 Jet reweighting

The model uncertainty ∆model is assumed to be a constant fraction of the combined statistical
and model uncertainty

∆model := f∆stat.+model.

The factor f should be between 0 and 1. To determine f , the unfolded distribution is
compared to the truth distribution within the correlated statistical and the uncorrelated model
uncertainty by computing the χ2 per degree of freedom.196 The factor f is adjusted until a
χ2 per degree of freedom of 1 is achieved. This procedure results in values of f = 0.90 when
using Lepto as pseudo-data and f = 0.76 when using Ariadne as pseudo-data. As expected,
these factors are only slightly less than 1, indicating that the model uncertainty is larger than
the statistical uncertainties of the MC samples.

Afterwards, the model uncertainty is divided by a factor of 2. This is because the model
uncertainty is defined to be half the difference between the Ariadne and Lepto samples,
analogously to the approach used for the bin-by-bin correction. In other words, each of the
two variants of the closure test determines half of the model uncertainty.

The resulting model uncertainty is shown in the second panel of figure 10.2. It can be
observed that there are a few bins in which the uncertainty becomes very small. This is because
the results from the two closure tests can cross. This would be acceptable for a correlated
systematic. As discussed in section 12.1.1, the model uncertainty will be treated as partially
uncorrelated. Therefore, bins of zero uncertainty are not acceptable, as they underestimate
the uncertainty. Another problem is that this distribution often changes rapidly between
neighbouring bins, whereas a physical distribution is expected to be smooth. This is probably
due to additional fluctuations that are amplified.

To address both of these issues, a smoothing procedure is applied, which increases the
uncertainty near the cross-over points and dampens close-range fluctuations. To simplify
this procedure, the distribution is symmetrised. Afterwards, the uncertainty in each bin i is
replaced by

∆model,smoothed,i :=
2∆model,i +

∑
j ∆model,j

2 +
∑

j 1
,

where j runs over the nearest neighbouring bins of i in Q2 and p⊥,Breit. There are four nearest
neighbours for bins in the central region of the phase space, three for bins at the edges and two
for bins in the corners of the phase space. The smoothing procedure will necessarily distort
the shape of the uncertainty. To reduce this distortion and preserve more of the original shape,
the central bin is given double weight.

The smoothed model uncertainty is given in the third panel of figure 10.2. There are no
more bins of zero uncertainty, and fluctuations are significantly reduced. The sign of the
uncertainty is added back after smoothing, such that the uncertainty can be treated as partially
correlated. Comparing this distribution to the model uncertainty determined for the bin-by-bin
correction, one finds that the two have a similar shape and size. As expected, in most bins, the
uncertainty is very slightly reduced using matrix unfolding, indicating a reduced dependence
of the unfolded cross sections on the MC event generator.

10.3 Jet reweighting

Related to the model uncertainty is the uncertainty on the jet reweighting, which was described
in section 8.3.3. This correction aims to make the MC samples more similar to the data,
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Figure 10.3: Systematic uncertainty associated with the jet reweighting correction of the MC
sample using the bin-by-bin correction (top panel) and for matrix unfolding (bottom panel).

thereby reducing the dependence of the unfolded cross sections on the MC model. Also, if
the MC models fail to describe the data reasonably, the approach described in the previous
section to evaluate this model dependence is no longer applicable.

As described in the corresponding section, two approaches to jet reweighting are considered:
multijet reweighting and inclusive jet reweighting. Both methods show similar performance,
and therefore, it is justified to use the difference between the two as an estimate for the
systematic uncertainty remaining after this correction. Since this uncertainty is also related to
the model dependence of the unfolded cross sections, it is expected to be reduced when using
matrix unfolding instead of the bin-by-bin correction. Therefore, this systematic uncertainty
is derived separately for the two unfolding methods. Since this correction is just a reweighting,
no special treatment is needed to reduce fluctuations. The results are shown in figure 10.3.
In both cases, the uncertainty is typically below 1.5%, but for the bin-by-bin correction, a
significant increase can be observed in the high-Q2, high-p⊥,Breit region.

10.4 Electron uncertainties

Electron-energy scale The electron-energy-scale uncertainty arises for similar reasons as
the jet-energy-scale uncertainty but concerning the energy measurement of the DIS electron.
In a previous analysis, the uncertainty on the description of the detector response regarding
the electron energy has been estimated to be 2%.80

This analysis uses almost exclusively the electron energy from the double-angle method,
which is approximately independent of any bias in the calorimeter energy measurement. The
electron-energy measurement from the calorimeter is used only for the corresponding cut as
part of the DIS selection, see section 7.2.2. Consequently, the influence of this uncertainty on
the cross sections is minimal, as is depicted in the top panel of figure 10.4.

Electron identification At ZEUS, two different algorithms are commonly used to identify
electrons: EM and Sinistra, see section 6.2. The EM electron finder is used in this analysis
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Figure 10.4: Systematic uncertainty associated with the MC electron energy scale (top panel),
the electron finding algorithm (middle panel) and the electron calibration (bottom panel).

since it is better optimised for the very high-Q2 region. The systematic effect of this choice is
evaluated by repeating the cross section determination using Sinistra instead of EM, i.e. all
quantities involving the DIS electron are determined using Sinistra instead of EM. Correction
factors are not rederived for this study. This procedure results in a conservative estimate of
the uncertainty, as it is known that Sinistra is less suited for parts of the analysis region. The
determined uncertainty is given in the middle panel of figure 10.4. In most bins, the effect
is around 1.5%, but the distribution is subject to fluctuations up to 6%. This uncertainty is
assumed to cover also the uncertainty associated with choosing the double-angle method for
kinematic reconstruction.

Electron-energy calibration In section 8.2.4, a calibration procedure to the electron
energy was introduced, which aims to bring the measured energy of the electron in data and
MC closer to the true energy. A modified correction procedure is investigated to estimate the
systematic uncertainty due to this correction. Instead of applying the correction factors as a
two-dimensional function, they are applied only as a one-dimensional function of θ. The effect
on the cross section is shown in the bottom panel of figure 10.4. In most bins, the effect is
around 1% or less.
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10 Systematic uncertainties

10.5 Cut boundaries

To improve the quality of the data sample and its agreement to the MC simulations, a series of
cuts is introduced in chapter 7. The exact numerical values of these cuts are, to some extent,
arbitrary. To evaluate the systematic effect of these arbitrary choices, the values of the cut
boundaries are varied in both data and MC within the uncertainties of the corresponding
variables. If the MC samples describe the data well in the regions close to the cut boundaries,
these variations are expected to have little impact on the cross sections.

The effect of the variation of a quality cut on the cross sections can be roughly estimated as

(Relative change of number of events in data)− (Rel. change of number of events in MC).

For example, changing the boundary of the electron isolation cut from 0.1 to 0.2 would increase
the number of events by 1.3% and 1.2% in data and MC respectively, indicating that there is
an ∼ 8% disagreement in this region, see figure 7.4. Thus, the expected change of the cross
section is 0.1%, which is negligible compared to the remaining systematic uncertainties. This
formula shows that the uncertainty on cuts can be neglected if the fraction of affected events is
sufficiently small or if data and MC agree close to the cut boundary. This simple approximation
assumes that the affected events are distributed similarly to the remaining events and that
the fractional changes in the number of events are small and constant throughout the phase
space. A more thorough estimation of the uncertainty is necessary for cuts whose influence is
potentially large in some bins.

The following cut variations are identified as potentially large and are investigated in more
detail.

Variable Original value Variation
Jet momentum p⊥,lab > 3GeV ±1GeV
Electron-track momentum ptrack > 3GeV ±1GeV
Longitudinal-momentum balance E − pz ∈ [38, 65]GeV ±6%

Transverse-momentum balance p⊥/
√
E⊥ < 2.5

√
GeV ±0.5

√
GeV

Primary-vertex position |zvertex| < 30 cm ±5%
RCAL radius of electron rRCAL < 175 cm ±2 cm
Electron-track distance DCA < 10 cm < 8 cm

For the downward variation of the E − pz cut, both boundaries are moved downwards
simultaneously and similarly for the upwards variation. The electron-energy-scale uncertainty
covers the uncertainty on the electron-energy cut EEL.

The resulting uncertainties on the cross section are given in figure 10.5. For most variations
and bins, the effect on the cross section is well below 1%. The only notable exception is the
high-p⊥,Breit region of the E − pz variation, where the effect can reach up to 6%.
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Figure 10.5: Systematic uncertainties associated with the exact numerical value of the quality
cuts. The labels ‘Variation up/down’ refer to the variation of cut value, which does not
necessarily change the cross section in the same direction.

10.6 Background contribution

The unfolding procedure assumes that the MC sample describes the data. However, the
samples used for the unfolding in this analysis only describe the DIS signal process. During
the event selection, several cuts were introduced to reject events from other processes, but a
small fraction of these events is expected to remain in the final sample. These background
contributions are estimated using additional MC samples. Before unfolding, the estimated
background distributions are subtracted from the data distributions.

The MC samples to describe the low-Q2 DIS and PHP background contributions are
introduced in section 5.3.2 and compared to the data and the signal MC distributions in
section B.3. The normalisation uncertainty on these samples is conservatively estimated to be
50%. For the bin-by-bin correction, the systematic uncertainty is determined by repeating
the unfolding without subtracting the background and taking half of the effect on the cross
section as a systematic uncertainty. The uncertainty is shown in figure 10.6.
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Figure 10.6: Systematic uncertainties associated with the contribution of background events.
The first panel shows the combined uncertainty due to PHP and low-Q2 DIS events as used
for the bin-by-bin correction. The second and third panels show the individual uncertainties
due to PHP and low-Q2 DIS events as used for matrix unfolding. The last panel shows the
additional uncertainty due to matrix unfolding, which arises due to jets that are not part of
the response matrix.

For matrix unfolding, the uncertainties due to these processes are considered separately and
shown in the second and third panels of the figure. The low-Q2 DIS background uncertainty
has a similar shape and size to the combined uncertainty from the bin-by-bin correction. The
contribution from PHP events is very small.

When using matrix unfolding, an additional type of background contribution arises. In
section 9.4.2, this type of background is referred to as ‘unfolding background’. It refers to jets
that contribute to the detector-level distribution but cannot be matched to any hadron-level jet
in the phase space, i.e. due to misreconstructions or migrations from outside the phase space.
This contribution is estimated using the signal DIS MC samples. The normalisation uncertainty
on this background is estimated to be 5% by comparing the data and MC distributions and
varying the normalisation of the contribution from unmatched jets. The resulting systematic
uncertainty is shown in the final panel of figure 10.6. The uncertainty is approximately constant
and has a typical size of 1.5%.

10.7 Other sources

Other corrections In section 8.1 and 8.2, corrections were introduced for the polarisation,
vertex-position, track-matching efficiency and track-veto efficiency. The effects of the first two
of these corrections on the unfolded cross sections are very small. Therefore, the systematic
uncertainty is estimated conservatively by repeating the unfolding without these corrections
and taking half of the resulting change of the cross sections as an uncertainty. The track-
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Figure 10.7: Systematic uncertainties associated with the polarisation, vertex position, track-
matching efficiency, and track-veto efficiency correction using bin-by-bin correction. The final
panel shows the statistical uncertainty on the QED radiation correction.

matching correction is applied halfway. The entire size of this halved correction is used as
uncertainty to account for the effect of possibly applying the correction completely or not at
all. The systematic uncertainty on the trigger-efficiency correction is estimated by applying
the correction as a function of the electron inelasticity y instead of the FLT track multiplicity.
The resulting systematic uncertainties are shown in figure 10.7.

As all these corrections rely on reweighting the data or MC samples, they can also be straight-
forwardly evaluated using matrix unfolding. The determined uncertainties are essentially
identical for both methods.

QED radiation correction As described in section 9.5.3, an additional MC sample is
generated to correct the unfolded cross sections to QED Born level. The statistical uncertainty
on this MC samples is taken as a systematic uncertainty on the data. A sufficient amount of
MC events are generated to make this uncertainty subdominant. The resulting uncertainty is
also given in figure 10.7. Apart from this statistical uncertainty, no systematic uncertainty is
assigned to this correction, since QED effects are well understood.

Luminosity Each run period has a luminosity uncertainty between 1.8% and 2.5% associated
with it.200 The luminosity weighted average of these uncertainties is 1.9%, which is taken
as the luminosity uncertainty on this measurement. By ZEUS convention, the luminosity
uncertainty is not shown in the cross section figures due to its fully correlated nature.
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10 Systematic uncertainties

10.8 Combined uncertainty

The total uncertainty and the contributions from each of the sources listed above are given
in figure 10.8 for matrix unfolding and the bin-by-bin correction. The jet energy scale is
the dominant systematic uncertainty in most parts of the phase space, especially the low-Q2

and low-p⊥,Breit regions. Another significant contribution in the high-Q2 region comes from
the model uncertainty and, in the case of the bin-by-bin correction, from the jet reweighting
uncertainty. In the high-p⊥,Breit region, the data are less well understood due to a lack of
statistics. This leads not only to an increase in the statistical uncertainty but also in the
electron uncertainties and the variations of the cut boundaries. The combined systematic
uncertainty is usually around 5%, except in the high-p⊥,Breit region, where it increases to
about 10%. The numerical values of all systematic uncertainties are listed in appendix C.
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Figure 10.8: Total systematic uncertainty and the individual contributions from each source.
The bins are labelled according to table 9.1.
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CHAPTER 11

Cross sections

In the previous two chapters, event counts and their uncertainties have been estimated at
truth level in the data. By normalising these counts to the luminosity of the measurement,
the detector-independent cross sections can be derived, which are the core result of this thesis.

11.1 Cross section definition

The cross section definition is given and motivated in the previous chapters. For convenience,
it is repeated here in its entirety.

The cross sections refer to NC DIS processes in unpolarised e±p collisions. Protons have
an energy of EP = 920GeV and electrons and positrons of Ee = 27.5GeV, leading to a
centre-of-mass energy of

√
s = 318GeV. Events are required to belong to the kinematic range

150GeV2 < Q2 < 15000GeV2 and 0.2 < y < 0.7. Jets are considered in the phase space region
of 7GeV < p⊥,Breit < 50GeV and −1 < ηlab < 2.5.

The jets are constructed at hadron-level from photons, hadrons and charged leptons with
a lifetime of more than 10 ps, excluding neutrinos, see section 7.4. The selected particles
are made massless by rescaling their three-momentum to match their energy. The massless
four-vectors corresponding to each particle are boosted to the Breit frame of reference. In this
frame, jets are constructed using the k⊥-algorithm with a distance parameter of R = 1. The
p⊥-weighted scheme is used to combine particles, which leads to massless jets.

The quoted cross sections are defined as the average of e−p and e+p cross sections in a ratio
of 6 : 5. The lepton type affects the cross sections at high Q2, where Z boson exchange and
photon-Z interference become relevant. Correction factors from a definition excluding weak
effects are given in table C.4.

Cross sections at QED Born level Cross sections are provided in two variants. In the
first variant, they are defined at QED Born level, meaning they exclude higher-order QED
effects, such as initial-state radiation from the electron or quark. In this definition, loops of
virtual particles are still considered via the scale dependence of the QED coupling. Table C.4
lists cross sections and the correction factors applied to the data to achieve this definition.

Cross sections including QED radiation It is desirable to consider the data without the
Born level definition. A second variant of cross sections is provided, in which this correction is
not applied. Instead, a cut EISR > 8.5GeV is applied on the energy of the ISR photon from
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the electron line, see section 9.5.3. When considering events including QED radiation from
the electron, the kinematic quantities are defined using the electron method, see section 6.5.
Table C.7 presents the cross sections in this alternative definition.

11.2 Theoretical predictions

The full potential of an experimental measurement can only be exploited when confronting
it with sufficiently precise theoretical predictions. Fixed-order predictions for inclusive jet
production in the Breit frame in NC DIS with a photon as exchanged boson are available
at NNLO QCD accuracy, as calculated using the NNLOjet program.159 Like most NNLO
calculations, this program is effectively a parton-level event generator and thus gives access
to the complete kinematic information of all final-state partons. This allows computing
cross sections corresponding precisely to the experimental definition, including the exact jet
definition and all phase space cuts.

Cross sections are computed using the HERAPDF2.0Jets NNLO PDF set.103 The strong
coupling constant and the factorisation and renormalisation scales were set to αs(M

2
Z) = 0.1155

and µ2f = µ2r = Q2+p2⊥,Breit, as were used in the determination of the PDF set. The calculation
is available at QED Born level, so the kinematic quantities are unambiguously defined according
to equation (2.1). The final-state partons are considered in the Breit frame, where the same jet
clustering algorithm is used that was applied to the data in section 7.3. Due to the relatively
small number of partons produced in the fixed-order calculation, jets will often consist of just
a single parton.

The NNLO calculation is only available in the zero-mass variable-flavour-number scheme.
Massless jets are constructed to minimise inconsistencies with the massless quarks in this
scheme. For consistency, massless jets are also constructed in the data, even though the
real quarks are massive. The difference between massive and massless quarks is not further
considered. It is often assumed that this effect is small, though this has not been proven.103

To compare the parton-level jets from the fixed-order calculation, the hadronisation correction
described in section 5.2.2 is applied to determine hadron-level cross sections. Furthermore,
the calculation only takes photon exchange into account. The weak-boson correction from
section 9.5.2 is applied to account for contributions from Z boson exchange and photon-Z
interference. After applying this correction, the cross sections correspond to the specific
composition of electron-proton and positron-proton data that is present in the data.

The uncertainty of the theory predictions consists mainly of the PDF and scale uncertainty.
The PDF uncertainty is computed as described in the corresponding publication.103 This
means that the cross section uncertainty resulting from the fit and model parameters is
added in quadrature, separately in the positive and negative directions. The parameterisation
uncertainty is computed as the envelope of the cross section values computed with different
PDF parameterisations. The scale uncertainty is estimated by performing a six-point variation,
in which the factorisation and renormalisation scales are varied up and down by factor two,
both independently and simultaneously.159 Lesser contributions to the uncertainty arise from
the statistical and systematic uncertainty of the numerical calculations and the uncertainty of
the hadronisation correction.
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11.3 Cross section results

Having now discussed all the individual steps of a cross section measurement mentioned in the
introduction, cross sections can finally be derived using equation (1.1) from the event counts
and the luminosity. Before being comparable to the theory predictions, the QED radiation
correction from section 9.5.3 is applied to the data. This changes the cross section definition
to QED Born level, which is used in the theoretical predictions.

11.3.1 Cross sections at QED Born level

The derived cross sections are presented in figure 11.1. The cross sections presented here are
shown in the matrix unfolded and the bin-by-bin corrected variant. They are compared to the
corresponding measurement from the H1 collaboration121 and the NNLO QCD predictions.
All cross sections are well compatible with each other, and some interesting conclusions can
be drawn. The numerical information about the ZEUS cross sections, their uncertainties and
correlations is given in appendix C.1 for the bin-by-bin correction and in appendix C.2 for
matrix unfolding.

The uncertainties of the ZEUS measurement with the bin-by-bin correction appear signifi-
cantly smaller than the ZEUS measurement using matrix unfolding and the H1 measurement,
which also uses matrix unfolding. Especially the unfolding uncertainty is notably smaller.
This difference is because the unfolding uncertainty of the matrix unfolded cross sections is
anti-correlated between bins, as was discussed in section 9.4.2. Since the figure only shows
the diagonal elements of the covariance matrix, the uncertainties appear larger. This effect
is difficult to visualise in the figure, but it will decrease the effective size of the uncertainty
in subsequent numerical analyses of the cross sections. Furthermore, the uncertainty of the
bin-by-bin corrected cross sections is weakly positively correlated, which will usually increase
their effective uncertainty. The increased unfolding uncertainty of matrix unfolding is partially
compensated by a decreased systematic uncertainty. This is because parts of the systematic
model uncertainty are included in the unfolding uncertainty of the matrix unfolding. Com-
bining all these effects, the cross sections derived using the two correction methods possess a
similar constraining power, even though their uncertainties appear very different in the figure.
This will be further demonstrated in the next chapter, where both sets of cross sections are
used in a QCD analysis, and their constraining power is compared.

Due to the parity-violating nature of the weak interaction, the electron-proton and positron-
proton cross sections differ at very high-Q2. The cross sections are defined as the luminosity
weighted average of the two lepton beam types. The weak-boson correction that is applied
to the theory takes this ratio into account. The same definition was chosen in the H1
measurement, but their electron-positron ratio is slightly different from the one in ZEUS. This
effect is considered insignificant for the figure, so it is not corrected. If adjusted to the ZEUS
composition, the cross sections from H1 would increase by about 1% in the fourth and fifth
Q2 bin and by about 5% in the highest Q2 bin.

When comparing the theoretical predictions to the two measurements, one finds that,
while compatible, the measurements show similar trends relative to the theory. Overall, the
predictions seem to overestimate the cross sections by a few percent. In the high-p⊥,Breit region
at medium to high Q2, this difference seems to increase to about 20%.
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Figure 11.1: The measured double-differential inclusive jet cross sections with 7GeV <
p⊥,Breit < 50GeV and −1 < ηlab < 2.5, in the kinematic range 150GeV2 < Q2 < 15000GeV2

and 0.2 < y < 0.7. Shown are the present measurement from ZEUS using matrix unfolding
and using the bin-by-bin correction, the corresponding measurement from H1121 and the
NNLO QCD predictions. The inner error bars of the measurements represent the unfolding
uncertainty, and the outer error bars the total uncertainty. For the ZEUS measurement with
matrix unfolding, the shaded band shows the uncertainty associated with the jet energy scale.
The upper panel shows the measured and predicted cross sections, and the lower panel shows
the ratio of those cross sections to the NNLO QCD prediction. The data points are shifted
horizontally for visual clarity.
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11.3.2 Cross sections including QED radiation

Cross sections are also provided in an alternative definition, including leading-order QED
radiative effects and a cut on ISR. Currently, no theoretical calculations are available for
comparison. In figure 11.2, these cross sections are compared to the uncorrected predictions
from the signal MC samples.

The cross sections in this definition are higher than at QED Born level. In the low- and
medium-Q2 region of the measurement, this difference decreases with increasing p⊥,Breit. At
low p⊥,Breit, the cross sections, including radiation, are about 25% larger than at QED Born
level. At high p⊥,Breit, this difference decreases to about 5%. This trend reverses in the highest
Q2 bin of the measurement. In the highest-Q2 highest-p⊥,Breit bin, the difference between the
two cross section definitions is about 60%. The difference is shown in figure 9.16.

Without corrections, most importantly without the jet reweighting, the MC samples do not
describe the data. The Ariadne sample predicts a more shallow jet spectrum as a function
of p⊥,Breit, leading to significant deviations in the high-p⊥,Breit region. The Lepto sample
describes the shape of data much better and only shows a potential systematic deviation
in the highest p⊥,Breit bin. The data usually lies between the predictions from Ariadne and
Lepto, which confirms that it is reasonable to use these two samples to estimate the model
uncertainty.
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Figure 11.2: The measured double-differential inclusive jet cross sections with 7GeV <
p⊥,Breit < 50GeV and −1 < ηlab < 2.5, in the kinematic range 150GeV2 < Q2 < 15000GeV2,
0.2 < y < 0.7 and EISR < 8.5GeV. The present measurement from ZEUS is shown in the
matrix unfolded and bin-by-bin corrected variants. The predictions from the uncorrected
signal MC samples are also shown, including statistical uncertainties and normalised to the
MC luminosity. The inner error bars of the measurement represent the unfolding uncertainty,
and the outer error bars are the total uncertainty. The shaded band shows the uncertainty
associated with the jet-energy scale for the matrix unfolded variant. The upper panel shows
the measured and predicted cross sections, and the lower panel shows the ratio of those cross
sections to the matrix unfolded data. The data points are shifted horizontally for visual clarity.
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CHAPTER 12

Determination of the strong coupling constant

The main strength of measured cross sections is their ability to constrain theoretical models.
In this thesis, the cross sections are considered within the theory of QCD. In the zero-mass
scheme of perturbative QCD, this theory has a single free parameter, the strong coupling
constant αs(M

2
Z). To calculate cross sections in lepton-hadron interactions, one additionally

requires the PDFs, which parameterise the non-perturbative regime of QCD. The inclusive jet
cross sections presented in the previous chapter can constrain αs(M

2
Z) and, to a lesser extent,

the PDFs.

12.1 Global determination of the strong coupling constant

The PDFs ξfi(ξ, µ2f ) are a set of real scalar functions. Using the DGLAP equations (2.33), the
PDFs at one value of the factorisation scale µ2f can be related to those at a different scale.
Therefore it is sufficient to describe the PDFs at a single scale, which is referred to as the
starting scale µ2f,0. At this starting scale, the PDFs are parameterised in terms of a finite
number of parameters.

Cross sections can then be written as a function of the PDF parameters and of αs(M
2
Z).

To calculate cross sections, the PDFs and αs(M
2
Z) are evolved to the desired scale, where

they are convolved with the matrix element from the fixed-order calculation, as is sketched in
equation (2.32). The appropriateness of the chosen parameters may be evaluated by comparing
the calculated cross sections against the measured ones. Thus, a non-linear fit may be used to
determine the PDF parameters and αs(M

2
Z) from the measured cross sections. In this thesis,

this is accomplished using the xFitter package.201,202 This procedure is well established and
has been used in many previous analyses.77,103–105,145

During the fit, a χ2(⃗p) function is minimised numerically. This function quantifies the
difference between calculation and measurement as a function of the PDF parameters and
αs(M

2
Z), collectively referred to as p⃗. It is defined as

χ2(⃗p) = min
s

(
D⃗ · Ṽ −1 · D⃗ +

∑

k

s2k + log

(
Det

(
Ṽ
)

Det
(
V
)
))

, (12.1)
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where

D⃗ =
(
1+

∑

k

sk diag
(
γ⃗k
)
· diag

(
β⃗
))

· σ⃗data − σ⃗theory(⃗p)

V = Vstat + Vuncor,

Ṽ =

√
diag

(
β⃗
)
· Vstat ·

√
diag

(
β⃗
)
+ diag

(
β⃗
)
· Vuncor · diag

(
β⃗
)
,

βi =
σtheory,i(⃗p)

σdata,i
,

and diag(x⃗) is the diagonal matrix whose entries are the elements of x⃗. The measured and
calculated cross sections are given by σ⃗data and σ⃗theory(⃗p). The covariance matrix of the
unfolding uncertainty of the data is given by Vstat, and the uncorrelated systematic uncertainty
is given by the diagonal matrix Vuncor. The first term in equation (12.1) is the main term of
the expression. It evaluates the difference between measurement and calculation, weighted by
the inverse of the unfolding and uncorrelated systematic uncertainty. Correlated systematic
uncertainties are technically taken into account as shifts in the data. For each correlated
uncertainty k, a vector γ⃗k expresses how the measurements change under that uncertainty.
Each correlated systematic uncertainty is added to the measurements, scaled by a shift
sk. These shifts are referred to as nuisance parameters, meaning that they are additional
parameters that are optimised during the fit but that are not the main point of interest.
The second term in (12.1) ensures that the shifts cannot get too large. The minimisation
concerning these shifts is performed analytically, such that the numerical stability of the fit is
not affected by the presence of a large number of shifts. The βi in the formula account for the
fact that uncertainties should not scale with the measured value of the cross section, but rather
with the true one, which is approximated in the fit by σ⃗theory(⃗p). Systematic uncertainties
should scale linearly with the calculated cross section, and the unfolding uncertainty, which is
dominated by the statistical uncertainty, should scale with the square root of the calculated
cross sections.77,203

This form of the χ2 expression is based on the likelihood function

L =
1√

(2π)n Det(Ṽ )
e−

1
2
D⃗·Ṽ −1·D⃗ ∏

k

1√
2π

e−
1
2
s2k , (12.2)

with n being the number of data points. The first term is a multivariate normal distribution for
the data points. The expectation values are the true cross sections, which are approximated by
the fitted values σ⃗theory(⃗p). This term includes the scaling of the statistical and uncorrelated
systematic uncertainties via Ṽ and the shifts due to correlated systematic uncertainties via
D⃗. The second term in the likelihood function is a normal distribution for each shift with
expectation value 0 and standard deviation 1. The χ2 function is derived from the likelihood as
χ2 = −2Log(L/L0), where the normalisation factor L0 = L|σ⃗theory=σ⃗data,sk=0 removes constant
additive terms. Constant terms are irrelevant for the fit, but their removal ensures that
the derived expression is χ2-distributed and can thus be used as a goodness-of-fit test.204

Evaluating this expression leads to the appearance of the third term in equation (12.1).

12.1.1 Datasets and uncertainties

The inclusive jet cross sections presented in this thesis alone do not possess enough constraining
power to usefully determine the PDFs and αs(M

2
Z). Therefore, they are analysed together with
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12.1 Global determination of the strong coupling constant

the HERA combined inclusive DIS data77 and previous inclusive jet and dijet measurements
from ZEUS during the HERA I and II periods. For details on the combined HERA DIS
dataset, see section 4.1. An overview of the ZEUS jet datasets is given in the following table.
The last line represents the datasets presented in this thesis. Here, and in the remainder of
this chapter, p⊥ will denote p⊥,Breit when referring to inclusive jet calculations and p⊥,Breit for
dijets.

Dataset Years L [pb−1] Points Q2 p⊥

HERA I inclusive jets133 96–97 38.6 pb−1 30 > 125GeV2 > 8GeV
HERA I/II dijets71 98–00, 04–07 374 pb−1 16 > 125GeV2 > 8GeV
HERA II inclusive jets 04–07 347 pb−1 24 > 150GeV2 > 7GeV

Due to a cut on the invariant mass in the dijet measurement, the leading-order (O(αs))
prediction vanishes in parts of the dijet phase space. Therefore, the NLO calculation (O(α2

s ))
is effectively only leading order, and the NNLO calculation (O(α3

s )) is effectively NLO. This
leads to an increased scale uncertainty for the affected points and, more importantly, changes
the correlation of the scale uncertainty to the other points. To avoid this issue, the six low-p⊥
dijet points are excluded from the analysis, such that only 16 of the 22 published points are
used.

Jet-energy-scale and luminosity uncertainty In the previous jet datasets, the jet-energy-
scale and luminosity uncertainties are treated as fully correlated, while all other uncertainties
are treated as uncorrelated. These two sources of uncertainty are also treated as fully correlated
in this analysis. For simplicity and since it is approximately symmetric, the jet-energy-scale
uncertainty is symmetrised by averaging the absolute values of the relative upward and
downward uncertainty. As explained in section 9.3.3, the data analysed in this thesis overlap
significantly with those of the dijet measurement. This results in statistical correlations between
the two datasets, which are considered via a statistical correlation matrix, as described in the
same section. Furthermore, it results in correlations of the systematic uncertainties. In the
mentioned section, the overlap of the data used in the two measurements is quantified to be
80%. Correspondingly, the jet-energy-scale and luminosity uncertainties are treated as 80%
correlated across both datasets and 20% correlated only within each dataset. Equation (12.1)
only allows for fully correlated or fully uncorrelated uncertainties. Technically, this partial
correlation is achieved by splitting these uncertainties into two components, one

√
80% and one√

20% the size of the original uncertainty. The former component is treated as fully correlated
across both datasets. The latter components are treated as fully correlated only within each
dataset.

Model uncertainty For the present dataset, additional correlations are considered. They
are summarised in table 12.1. The model uncertainty is treated as half correlated across all
points. This is because it is estimated from the smooth distributions of the Ariadne and Lepto
MC samples. However, it is not guaranteed that these samples are entirely representative
of the model dependence of the cross sections. Similar to the previous paragraph, the half
correlation is achieved by splitting the uncertainty into two equal pieces, both

√
50% the size

of the original. One is treated as fully correlated, and the other as fully uncorrelated.

Uncertainty of the E − pz cut As seen in section 10.5, the upward variation of the
uncertainty associated with the E − pz cut has little effect on the cross sections, while the
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Uncertainty Fraction
uncorrelated

Fraction
correlated

within inclusive
jets

Fraction
correlated to

dijets

Jet-energy scale 0% 80% 20%
Luminosity 0% 80% 20%

Model 50% 50% –
E − pz cut 0% 100% –

Track-matching efficiency 0% 100% –
Low-Q2 DIS 0% 100% –

Unfolding background 50% 50% –
Hadronisation 50% 0% 50%*

Theoretical calculations 50% 0% 50%*
All remaining uncertainties 100% 0% –

Table 12.1: Overview of the systematic uncertainties of the HERA II inclusive jet measurement
that are considered correlated in the fit. The ‘*’ in the last column indicates that the uncertainty
is treated as correlated not only to the dijets but also to the HERA I inclusive jets.

downward variation affects the high-p⊥ region significantly. This effect is dominated by the
variation of the lower boundary of the cut, where the MC does not describe the data perfectly,
as seen in figure 7.6. This uncertainty is treated as fully correlated since it quantifies the
influence of a single parameter, the E − pz cut boundary.

Uncertainty due to background normalisation The uncertainty associated with the
normalisation of the low-Q2 DIS MC samples is also treated as fully correlated since, by
definition, it affects all phase space regions simultaneously and in the same way. The unfolding
background, discussed in figure 9.5, consists of multiple components, such as migrations in y
or ηlab and misreconstructions. Therefore, it is treated as half correlated.

Uncertainty due to track-matching efficiency The track-matching-efficiency correction
accounts for mismatched tracks and misidentified photons, see section 8.2.2. It is checked
that both of these effects lead to a similar shape of the systematic uncertainty, such that this
uncertainty can also be treated as fully correlated.

All remaining experimental systematic uncertainties are either very small or their degree of
correlation is difficult to determine. Therefore, they are treated conservatively as uncorrelated.
For simplicity, they are symmetrised by averaging the absolute values of their relative upward
and downward uncertainties and added in quadrature to form a single uncorrelated systematic
uncertainty.

The uncertainty of the hadronisation correction is treated as a systematic uncertainty in
the fit. This prescription reduces the influence of the hadronisation uncertainty compared to
the previously used offset method.103 It is assumed to be 50% correlated across all jet datasets
and 50% uncorrelated. An additional uncertainty arises due to the statistical and systematic
uncertainty of the theoretical calculations. This uncertainty is also treated as a 50% correlated
systematic uncertainty.
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12.1 Global determination of the strong coupling constant

12.1.2 Fit settings

The strategy of the analysis closely follows that of the previous HERAPDF2.0Jets (N)NLO
analyses.77,103 The general form of the PDF parameterisation is

ξf(ξ, µ2f,0) = Afξ
Bf (1− ξ)Cf (1 +Dfξ + Efξ

2).

Relevant parameters for each parton type were identified by observing their effect on the χ2.103

The determined optimal parameterisation for all PDFs is

ξg(ξ, µ2f,0) = Agξ
Bg(1− ξ)Cg −A′

gξ
B′

g(1− ξ)C
′
g , (12.3a)

ξuv(ξ, µ
2
f,0) = Auvξ

Buv (1− ξ)Cuv (1 + Euvξ
2), (12.3b)

ξdv(ξ, µ
2
f,0) = Advξ

Bdv (1− ξ)Cdv , (12.3c)

ξŪ(ξ, µ2f,0) = AŪξ
BŪ (1− ξ)CŪ (1 +DŪξ), (12.3d)

ξD̄(ξ, µ2f,0) = AD̄ξ
BD̄(1− ξ)CD̄ . (12.3e)

Here, g, uv and dv represent the gluon, up-valence-quark and down-valance-quark distributions
respectively, Ū = ū = u− uv is the up-type sea-quark distribution and D̄ = d̄+ s̄ = d− dv + s
is the down-type sea-quark distribution. The strange sea-quark distribution is approximated as
a constant fraction fs of the down-type sea-quark distribution s = s̄ = fsD̄. The distributions
of the heavy quarks and the photon are set to zero at the starting scale. The second term of
the gluon parameterisation is added to better describe data that is sensitive to the low-xBj
region, such as the inclusive DIS data at low Q2.77

The parameters Ag, Auv and Adv are constrained by the sum rules
∫ 1
0 uv(ξ, µ

2
f,0)dξ = 2,∫ 1

0 dv(ξ, µ
2
f,0)dξ = 1 and

∑
i∈{g,q,q̄}

∫ 1
0 ξfi(ξ)dξ = 1. The constraints AŪ = AD̄(1 − fs) and

BŪ = BD̄ ensure that the anti-up- and anti-down-quark distributions become equal at low ξ.
This constraint is motivated by the fact that the valence quarks do not contribute at low ξ.
When neglecting the quark masses, isospin symmetry requires Ū and D̄ to be equal in this
case. This assumption is necessary because the HERA data are not sensitive to the difference
between Ū and D̄ distributions at low ξ. The parameter C ′

g is fixed to 25 to ensure that the
corresponding term does not contribute at large ξ.77,103 This leaves 14 independent parameters
to describe the PDFs.

An overview of the settings of the fit is given in table 12.2. The settings of the fit are chosen
similarly to the HERAPDF analyses. Low-Q2 DIS data points are excluded by requiring Q2

to be greater than Q2
min. The calculations of the inclusive DIS cross sections were performed

in a general-mass variable-flavour-number scheme, in which the heavy quark masses mc and
mb need to be specified.205 These choices do not affect the jet calculations directly, as they are
performed in a massless scheme. The renormalisation and factorisation scales of the inclusive
DIS calculations are set to µ2f = µ2r = Q2. This is treated as a definition of the PDFs. In the
jet calculations, the renormalisation and factorisation scales are chosen to depend also on p⊥
as given in the table.

By definition, the χ2 function will be approximately parabolic close to its minimum. The
experimental/fit uncertainty of the fit is defined as the width of this parabola at the height
where it has increased by one with respect to the minimum, i.e. χ2 − χ2

min = 1. This
uncertainty includes the uncertainty of the experimental input, the hadronisation correction
and the uncertainty of the theory calculations.

The model uncertainty is evaluated by modifying each of the model parameters listed in
the table by its uncertainty and repeating the fit. The changes of the PDFs and αs(M

2
Z)
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NLO NNLO
Model

Q2 cut-off Q2
min [GeV2] 3.5+1.5

−1.0

Strange fraction fs 0.4± 0.1

Charm mass mc [GeV] 1.46+0.04
−symmetrise 1.41+0.04

−symmetrise

Bottom mass mb [GeV] 4.3± 0.10 4.2± 0.10

Parameterisation

Starting scale µ2f,0 [GeV2] 1.9+symmetrise
−0.3

Additional parameters Dg, Eg, Duv , Ddv , Edv , EŪ , DD̄, ED̄
Scales

Renormalisation scale µ2r (Q2 + p2⊥)/2 Q2 + p2⊥Factorisation scale µ2f Q2

Table 12.2: Fit settings and associated uncertainties at NLO and NNLO.

are added up in quadrature, separately for the positive and negative directions. For the
parameterisation uncertainty, the starting scale is varied similarly. A requirement of the QCD
scheme for the inclusive DIS data is that the starting scale is less than the heavy-quark masses.
To ensure this during the parameter variations, the starting scale is only varied downwards
and the charm mass only upwards. The resulting changes on the PDFs and αs(M

2
Z) are

assumed to be symmetric for the variation in the other direction. Another contribution to
the parameterisation uncertainty comes from adding additional parameters. Each of the eight
D and E parameters not considered in (12.3) is added to the fit in turn. The envelope of
the determined PDFs and αs(M

2
Z) forms the second contribution to the parameterisation

uncertainty.

12.1.3 Scale uncertainty

A scale uncertainty is assigned to αs(M
2
Z) to account for the uncertainty due to missing

higher-order terms in the jet calculations. Thus, it represents the theoretical uncertainty
on the αs(M

2
Z) determination. No scale uncertainty is assigned to the PDFs, as they are

determined mainly by the inclusive DIS data, for which the scale choices are treated as part of
the definition and thus have no uncertainty associated with them.

The most commonly used method to evaluate the scale uncertainty is to adjust the scale
choices and repeat the fit. In this analysis, this is done using a six-point variation with
rescaling factors 0.5 and 2, i.e. six additional fits are performed with the renormalisation and
factorisation scales set to (µr, µf) ∈ {(0.5, 1), (1, 0.5), (0.5, 0.5), (2, 1), (1, 2), (2, 2)}(µr,0, µf,0),
where µr,0 and µf,0 are the nominal choices given in table 12.2. The envelope of the resulting
αs(M

2
Z) values is used as the scale uncertainty.159

In this method, the scales for calculating all jet points are varied simultaneously and by
the same amount. This corresponds to the assumption that the scale dependence of the cross
sections is fully correlated. The scale dependence estimates the influence of missing higher
orders in the perturbative expansion, which are expected to vary smoothly throughout the
phase space. Therefore, this fully correlated assumption is reasonable when considering jet
points close in phase space. However, when considering points far away from each other in
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12.1 Global determination of the strong coupling constant

phase space or in different final states, such as inclusive jets and dijets, the scale uncertainty
of the cross sections cannot be assumed to be fully correlated. It might be uncorrelated or
even anti-correlated. Therefore, the fully correlated method described above can give larger
uncertainties than necessary, which is a known issue.103 This effect will contribute especially
strongly when fitting jet points across a wide range in phase space. In this analysis, jets are
fitted in a relatively small region of phase space, so the effect is expected to be moderate.

Nevertheless, an alternative treatment of the scale uncertainty is investigated. This approach
assumes that the scale dependence is half correlated and half uncorrelated across all jet points.
While still not ideal, this treatment is expected to be more reasonable than the fully correlated
approach. A conceptually similar method has been used in previous analyses.77,121

The alternative evaluation of the scale uncertainty proceeds as follows. First, a fit is
performed using the nominal scales. Using the PDFs and αs(M

2
Z) from this fit, cross section

scale uncertainties are computed for all jet points using a six-point variation with rescaling
factors 0.5 and 2. These cross section scale uncertainties are scaled by

√
0.5 and added

to the fit as an uncorrelated systematic uncertainty. When the fit is repeated with this
additional uncertainty of the data, the experimental/fit uncertainty of αs(M

2
Z) will increase.

The quadratic difference between the increased and the original experimental/fit uncertainty
is used as the uncorrelated contribution to the scale uncertainty of αs(M

2
Z). Using the fit with

the added systematic uncertainty as a starting point, the correlated contribution is computed
similarly to the fully correlated case, but with rescaling factors

√
0.5 and

√
2. The total scale

uncertainty is finally determined as the quadratic sum of the uncorrelated and correlated
contributions.

12.1.4 Results

A fit is performed at NNLO accuracy, using the newly measured cross sections in the matrix
unfolded variant. The fit achieves a χ2 per degree of of freedom of 1419/1200. Appendix B.6.1
provides more details on the fit output. To judge the impact of the new dataset, the result
of this fit is compared to a similar fit, excluding the cross sections presented in this thesis,
i.e. using only the HERA combined inclusive DIS, ZEUS HERA I inclusive jet and ZEUS
HERA I/II dijet datasets. The PDFs are compared in figure 12.1. The PDFs move slightly
within their uncertainty. None of the PDFs are significantly constrained by the inclusion of
the additional jet dataset. The same behaviour is observed in HERAPDF, see section 4.2. The
main effect on the PDFs is due to the updated value of αs(M

2
Z), which is strongly correlated

with the shape of the PDFs, especially that of the gluon PDF, see section 2.3.5. Since the two
fits determine similar values of αs(M

2
Z), the corresponding PDFs are also similar.

The determined values of αs(M
2
Z) are shown at NLO and NNLO, including all available

uncertainties in table 12.3. Values are presented using the dataset presented in this thesis in
both the matrix unfolded and bin-by-bin corrected variant. The determined central values are
in excellent agreement with each other. The experimental/fit uncertainties are also similar,
indicating that both unfolding methods lead to a similar constraining power of the resulting
dataset. This verifies the claim made in section 11.3, that even though the uncertainties of the
matrix unfolded cross sections appear much larger, they become comparable when including
correlations.

The table also shows the fit result, excluding the dataset presented in this thesis. Including
the additional dataset reduces the experimental/fit uncertainty of αs(M

2
Z). This reduction

is especially important since the experimental/fit uncertainty is the dominant uncertainty
in the current determination. Furthermore, fits have been performed using only the newly
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Figure 12.1: The fitted PDFs, before including the inclusive jet cross sections presented
in this thesis in the fit and after including them. The sea-quark distribution is defined as
xS = x(Ū + D̄). Only experimental uncertainties are shown. Note that αs(M

2
Z) is left free in

these fits. Due to the uncertainty of αs(M
2
Z) and the correlation between αs(M

2
Z) and the PDFs,

the PDF uncertainties obtained here are notably larger than the ones in the corresponding
HERAPDF determination, in which αs(M

2
Z) was fixed, see figure 4.1.

measured cross sections and excluding the previous ZEUS datasets. These fits result in similar
experimental/fit uncertainties to those using only the previous ZEUS datasets. This indicates
that the new dataset alone has a similar constraining power to both previous datasets. The
reduction in uncertainty of the combined fit is suppressed due to the positive correlation
between the datasets.

An additional fit is performed at NNLO accuracy and using only the HERA inclusive DIS
data and the newly measured cross sections in the bin-by-bin corrected variant. In this fit,
the model uncertainty is set to zero. Consequently, the experimental/fit uncertainty decreases
compared to the fit including the uncertainty. Taking the quadratic difference between the
experimental/fit uncertainties of these two fits yields an estimate of the contribution of the
model uncertainty of the cross sections to the uncertainty of αs(M

2
Z). A value of 0.0005

is determined for this contribution. The central αs(M
2
Z) value determined in fits with the

bin-by-bin corrected cross sections (0.1114) and the matrix unfolded variant (0.1107) are
compatible within this model uncertainty. This is further confirmation that the two unfolding
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12.1 Global determination of the strong coupling constant

αs(M
2
Z) ±∆exp./fit ±∆mod./par. ±∆scale

(100%) ±∆scale
(50%)

N
LO

Previous ZEUS datasets only 0.1165 ± 0.0019

New dataset only(m) 0.1121 ± 0.0019

New dataset only(b) 0.1121 ± 0.0019

All ZEUS datasets(m) 0.1160 ± 0.0017 +0.0007
−0.0009

+0.0026
−0.0014

+0.0012
−0.0009

All ZEUS datasets(b) 0.1159 ± 0.0016

HERAPDF2.0Jets77 0.1183 ± 0.0015 ±0.0005 +0.0037
−0.0033

N
N

LO

Previous ZEUS datasets only 0.1149 ± 0.0019

New dataset only(m) 0.1107 ± 0.0019

New dataset only(b) 0.1114 ± 0.0016

All ZEUS datasets(m) 0.1143 ± 0.0017 +0.0006
−0.0007

+0.0012
−0.0005

+0.0006
−0.0004

All ZEUS datasets(b) 0.1141 ± 0.0015

HERAPDF2.0Jets103 0.1156 ± 0.0011 +0.0001
−0.0002 ±0.0029 ±0.0022

Table 12.3: Fitted values of αs(M
2
Z) at NLO and NNLO, including all available uncertainties.

The total uncertainty is the quadratic sum of the experimental/fit uncertainty ∆exp./fit, the
model/parameterisation uncertainty ∆mod./par. and either the scale uncertainty evaluated
under the fully correlated (∆(100%)

scale ) or half correlated (∆(50%)
scale ) assumption. Shown are the

results from fits using, apart from the HERA inclusive DIS data, only previous ZEUS jet
datasets, only the dataset presented in this thesis and all of them simultaneously. For fits
including the newly measured dataset, the superscript ‘m/b’ indicates whether the dataset
is used in the matrix unfolded and bin-by-bin corrected variant. The corresponding results
from HERAPDF at also shown. For the HERAPDF2.0Jets determination at NLO, the listed
exp./fit uncertainty includes the hadronisation uncertainty, which is quoted separately in the
corresponding publication, but in all the other ones is included in the exp./fit uncertainty by
default.

methods are consistent with each other. From now on, only the matrix unfolded cross sections
will be considered.

For reference, the table also shows the results from the corresponding HERAPDF analyses,
see section 4.2 for details. As expected, the experimental/fit uncertainty of the present analysis
is increased since fewer jet datasets are used than in HERAPDF. The model/parameterisation
uncertainty is slightly increased compared to HERAPDF. This is potentially also a consequence
of the lower number of jet datasets used. Since αs(M

2
Z) is less constrained, it is more strongly

affected by a change in the model parameters. This effect is not investigated further since this
is still a subdominant contribution to the overall uncertainty.

Very notably, the scale uncertainty of the present analysis is significantly smaller than that
of the HERAPDF analyses. This is a direct consequence of the way this scale uncertainty is
evaluated. In the standard treatment, listed as ∆

(100%)
scale in the table, the scale dependence of

the cross sections is assumed to be fully correlated across all jet data points. As discussed in
section 12.1.3, this assumption is not justified when fitting points across a wide range in phase
space. Varying the scales by the same amount for all jet points can, thus, overestimate the
uncertainty associated with the scale choice. Since the HERAPDF analyses also use H1 jet
datasets at low-Q2, this issue affects them much more severely than the current determination.
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Figure 12.2: Scale dependence of the investigated cross sections. The figure shows the ratio
of the cross sections computed with modified scales to the cross sections computed with the
nominal scales µ2r = µ2f = Q2 + p2⊥. In the legend, the symbols ∆r/f =

µr/f
µr/f,0

indicate the factor
by which the renormalisation/factorisation scales are modified. Shown are the NNLO QCD
predictions corresponding to jet datasets used in the fit presented here. The double-differential
points are mapped onto the one-dimensional axis similarly to section 9.4, with the large bins
corresponding to Q2 bins and the points within them corresponding to p⊥ bins. For visual
clarity, some points are connected by solid lines.

The half-correlated treatment of the scale uncertainty is designed to partially counter this
issue. While still assuming long-range correlations in the cross section scale dependence, this
approach effectively allows the fit to adjust the scale choice of each jet point separately. This
is achieved by adding an additional uncorrelated uncertainty to the fit that corresponds to the
size of the scale dependence, see section 12.1.3. The scale uncertainties determined using this
approach are listed in the table as ∆

(50%)
scale . In all cases where the scale uncertainty is evaluated

using both approaches, the half-correlated approach leads to a smaller uncertainty.
When fitting points in a very wide range of phase space, the half-correlated treatment might

not be sufficient. The scale uncertainty of the cross sections can even be anti-correlated for jet
points very far away from each other in phase space. The half-correlated/half-uncorrelated
approach does not cover anti-correlations. On the other hand, when fitting points in a very
narrow range of phase space, the half-correlated treatment can also be inappropriate. The
scale dependence of points close in phase space is likely strongly correlated. In those cases,
the half-correlated treatment can underestimate the scale uncertainty.

The scale dependence of cross sections considered in the current fit is shown in figure 12.2. It
is dominated by the renormalisation scale, especially in the low-Q2 regions, which in the figure
are shown at the left side of the ranges corresponding to each measurement. In most cases, a
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12.1 Global determination of the strong coupling constant

variation of the scales shifts all points in the same direction, indicating a positive correlation
of the scale dependence. The most notable exception is the variation of the factorisation
scale of the HERA II inclusive jet measurement. Here, the scale dependence is anti-correlated
since a scale variation moves points in different directions. The half-correlated treatment
is appropriate for the current fit since negative correlations are observed only for a small
number of points and for a subdominant scale variation. Even if this were not the case, the
half-correlated treatment would still be preferable over the fully correlated one.

Furthermore, the figure shows that especially the high-Q2 points have a minimal scale
dependence. This means they prefer the same αs(M

2
Z) value, regardless of the chosen scale.

Therefore, when performing a fit with changed scales, the determined αs(M
2
Z) values must be

reasonably close to the nominal one. Otherwise, the fit could not describe the high-Q2 points.
This aspect also contributes to the small scale uncertainty of the determined αs(M

2
Z) value.

Figure 12.3 compares the αs(M
2
Z) value determined in this analysis at NNLO, from the

matrix-unfolded cross sections and using the half-correlated treatment of the scale uncertainty
to various other determinations, some of which are explained in more detail in section 4.3 and
4.4. Due to the decreased scale uncertainty, the present measurement is one of the most precise
determinations of the strong coupling constant at hadron colliders so far. It achieves the
highest precision at HERA, even though some previous determinations use significantly more
data from both the ZEUS and H1 experiments. The presented measurement even competes
with recent measurements from the LHC. It has the potential to contribute to further reducing
the uncertainty of the world average value of αs(M

2
Z).
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Figure 12.3: Comparison of different determinations of the strong coupling constant. The
blue band indicates the Particle Data Group world average, and the red points are the
determinations that enter it.17 The yellow boxes indicate the sub-averages in each of the seven
categories. In addition, the latest HERAPDF result and a recent determination from CMS
are shown in green.103,145 The top point represents the value found in this analysis using the
half-correlated treatment of the scale uncertainty. All determinations shown are at least at
NNLO accuracy in QCD. The error bars indicate the total uncertainty of each determination.
Figure adapted from Particle Data Group.
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12.2 Determination of the scale dependence of the strong coupling

12.2 Determination of the scale dependence of the strong
coupling

As discussed in section 2.4.4, the strong coupling αs is not a constant but depends on the
scale at which it is measured. Another valuable test of QCD is to investigate the shape of
the αs(µ

2) curve. This information can be used to confirm that QCD is the correct theory to
describe the strong interaction.

12.2.1 Global and local determinations of αs

In the previous section, the strong coupling is expressed at the mass of the Z boson, which
is a commonly used convention.17,104,105,145 In xFitter, αs(M

2
Z) is the fit parameter that is

numerically determined. It should be noted that MZ is just an arbitrary choice for a reference
scale. Since the QCD evolution of αs(µ

2) is assumed to hold, adjusting αs(M
2
Z) affects the

entire αs(µ
2) curve in a precisely known way. Therefore, one should not think of the fit as

fitting αs(M
2
Z), but rather as fitting the entire αs(µ

2) curve, within the constraints of QCD,
and quoting the result as αs(M

2
Z). The fit would have determined the exact same results if the

fit parameter was αs(µ
2
ref) at a different reference scale µref. The fact that the fit parameter

is αs(M
2
Z) is just an implementation detail and carries no physical meaning. Using QCD

evolution, αs could also be quoted at any other scale, and the conclusions would be the same.
A fit that uses data points at many different scales and thus fits large sections of the αs(µ

2)
curve is referred to as a global fit.

To study the scale dependence of the strong coupling, αs(µ
2
i ) is determined at different scales

µi, and the curve is compared to the QCD prediction. This can be realised as follows. First,
each jet data point used in the previous section is assigned a scale µ. Data points are then
sorted into groups of points with similar scales µi. The strong coupling is then determined
using, as far as possible, only the jet data points in one of these groups. The determined value
corresponds to αs(µ

2
i ). Note again that the fit adjusts the entire αs(µ

2) curve and quotes
the result as αs(M

2
Z). But since the only inputs to the fit are jet points close to a scale µi,

this effectively corresponds to fitting αs(µ
2
i ). The αs(M

2
Z) value quoted by the fit should be

evolved to the scale µi to determine the physically meaningful result αs(µ
2
i ). A fit that only

uses data points close to a single scale value will be referred to as a local fit.

12.2.2 Interpretation of the result

Determining αs(µ
2
i ) exclusively from jet data points at one scale is not feasible. This is because

any prediction of jet cross sections necessarily requires PDFs, and those cannot be usefully
constrained using just a few jet data points. The next best approach is to use fixed PDFs
at different αs(M

2
Z) values. The concrete procedure to determine αs(µ

2
i ) in this way is the

following: Using the inclusive DIS data only, determine PDF sets at different fixed αs(M
2
Z)

values. Next, for each αs(M
2
Z) value, use the corresponding PDFs to compute χ2 according to

equation (12.1) for just the jet points. The computed points form a χ2(αs(M
2
Z)) curve that

will exhibit a minimum from which the preferred αs(M
2
Z) value of the jet data points can be

extracted. This αs(M
2
Z) value is then evolved to the scale of the jets to obtain αs(µ

2
i ). This

procedure is reasonable because the inclusive DIS data alone do not have a strong preference
for an αs(M

2
Z) value, as discussed in section 4.2.

This procedure introduces another conceptual difficulty. When determining the PDFs, it
is assumed that the QCD evolution of the strong coupling holds for the inclusive DIS data.
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12 Determination of the strong coupling constant

Therefore, this procedure cannot be considered a measurement of the scale dependence of
the strong coupling. If QCD was not the correct theory of the strong interaction and the
scale dependence of αs(µ

2) would differ, then the determined curve would not reflect the true
shape. Instead, it would be a complicated combination of the true shape and the fact that
QCD evolution was assumed to hold for the PDFs. Therefore, if the determined curve deviates
from the QCD prediction, it would be very difficult to quantify what this means for the scale
dependence of αs(µ

2). A qualitative statement can, however, be made. If the curves disagree,
a potential deviation from QCD would have been found. Any potential deviation from QCD
will usually lead to a different curve, which makes this a valuable study.

12.2.3 Procedure

PDFs are determined from the inclusive DIS data only similar to the HERAPDF2.0 NNLO PDF
set, but using the updated model parameters and procedures described in the previous section.
The experimental/fit, model and parameterisation uncertainties are fully determined for each
αs(M

2
Z) value. Each uncertainty is provided as an alternative PDF set. The experimental/fit

uncertainty is provided in the form of so-called PDF eigenvectors.201 PDF sets are determined
for αs(M

2
Z) from 0.112 to 0.120 in steps of 0.001.

Each jet data point from the datasets used in the previous section is assigned a scale. The
jet cross section falls roughly with 1/(Q2 + p2⊥)

2. Therefore, the barycentre of each data point
can be approximated as

1

µ4
=

1

2

(
1

(Q2
low + p2⊥,low)

2
+

1

(Q2
high + p2⊥,high)

2

)
,

where the subscripts ‘low’ and ‘high’ represent the lower and upper bin boundaries of each
data point. This definition gives a higher weight to the lower bin boundary since the cross
section is steeply falling within the bin. The scales assigned to each point are tabulated in the
appendix B.6.2.

The jet data points are then split into five groups based on their scale. For this purpose, the
jet points are sorted by their scale, and the scale is plotted against the sorted point index. This
procedure is shown in figure 12.4. Boundaries between scale bins are placed such that each bin
contains a similar number of points and bins are separated from each other, i.e. boundaries
are preferably placed in gaps of the scale value. This results in five bins with 11 to 19 jet
points each. These assignments are also given in appendix B.6.2. Each group of points is then
assigned a representative scale value ⟨µ⟩, as the cross-section-weighted average of the scales of
the jet points within that group.

For each group of jet points, a χ2(αs(M
2
Z)) curve is then computed using equation (12.1).

Similar to the previous section, this curve is approximated as a parabola close to its minimum.
The location of this minimum is the central αs(M

2
Z) value. The uncertainty of the determination

is the width of this parabola at the height where it has increased by one unit in χ2.

12.2.4 Uncertainties

When using the same statistical and systematic uncertainties of the cross sections as in
the previous section, the determined uncertainty of αs(M

2
Z) will correspond to a subset of

the experimental/fit uncertainty from the previous section. What is missing to the full
experimental/fit uncertainty of αs(M

2
Z) is the effect of the experimental/fit uncertainty of the

used PDFs. This uncertainty can be propagated to αs(M
2
Z) by adding additional correlated
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Figure 12.4: Assigned scales of jet points. The scales of the jet data points are drawn
after sorting the points by their scale. The symbols indicate from which dataset each point
originates. The dashed lines indicate the chosen boundaries of the scale bins.

systematic uncertainties in the fit. These describe the effect of the experimental/fit uncertainties
of the PDFs on the jet cross sections. They are determined by calculating cross section
predictions using the nominal PDFs and using the PDF eigenvectors and recording the effect
on the cross sections. One systematic uncertainty is added for each eigenvector.

The model/parameterisation uncertainty is included similarly. Cross sections are calculated
using the nominal PDFs and those corresponding to the model/parameterisation variations. For
each variation, the difference between the two is added to the fit as a systematic uncertainty. If
the corresponding variation is two-sided, this systematic uncertainty will be asymmetric. When
these model/parameterisation uncertainties are added to the fit, the determined uncertainty of
αs(M

2
Z) will increase. The model/parameterisation uncertainty is determined by taking the

quadratic difference between this increased uncertainty and the experimental/fit uncertainty
determined above. Technically, the procedure of adding additional systematic uncertainties to
the fit, corresponding to variations of the PDF set is implemented using the ‘Profiling’ feature
of recent xFitter versions.202

The scale uncertainty is computed similarly to the previous section. Six additional fits are
performed, corresponding to a six-point scale variation of the renormalisation and factorisation
scales with rescaling factors 0.5 and 2. In each case, a new central αs(M

2
Z) value is determined.

The envelope of the obtained αs(M
2
Z) values is taken as the scale uncertainty. Since this is a

local determination of αs(µ
2), it is appropriate to assume the scale dependence of the involved

cross sections to be fully correlated.

12.2.5 Results

A cross-check is performed before applying this procedure to the groups of jet points. The
procedure is applied to all jet data points simultaneously. Such a single-parameter fit of
αs(M

2
Z), without refitting the PDFs is also a commonly used procedure.146,206

The (αs(M
2
Z), χ

2) points corresponding to this cross-check are shown in figure 12.5. A
parabola is fitted to each set of points. Only the seven points for which χ2 − χ2

min < 4 are
considered in these fits because the parabolic approximation is not expected to hold for points
far from the minimum. As expected, the width of the curve including model/parameterisation
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red points and line indicate the curve taking only experimental/fit uncertainties into account.
For the green points and line, the model/parameterisation uncertainty is additionally included.
The yellow points and lines indicate the six curves corresponding to the scale variations.

uncertainties is slightly larger than that of the curve considering only the experimental/fit
uncertainty. The central values are well-compatible within the model/parameterisation uncer-
tainty. The curves corresponding to the scale variations do not differ significantly in shape,
but the locations of their minima are offset.

The results of this cross-check are given in the last line of table 12.4. The central value
agrees with the combined fit presented in the previous section, well within the experimental/fit
uncertainty. The experimental/fit uncertainty is slightly increased. This is expected since the
single-parameter fit does not take correlations between αs(M

2
Z) and the PDF parameters into

account to the same extent as the combined fit. This effect also affects the central value of the
fit. The model/parameterisation and scale uncertainties are similar to the combined fit.

The procedure is then applied to the five groups of jet data points separately. The points and
fitted parabolas are shown in figure 12.6. The parabolas are determined from the points that
satisfy χ2 −χ2

min < 1. As before, adding the model/parameterisation uncertainty increases the
width of the parabolas slightly but does not affect the locations of their minima significantly.
The six curves corresponding to the scale variations form three pairs with similar central values.
These three pairs correspond to the variations of the renormalisation scale µr ∈ {0.5, 1, 2}µr,0.
It was already seen in figure 12.2 that the scale dependence of the cross sections is dominated
by the renormalisation scale, especially for the low-scale data points.

The determined αs values are listed in table 12.4. The values are quoted as αs(M
2
Z), including

the usual uncertainties. As discussed in section 12.2.1, the fact that the fit quotes the result as
αs(M

2
Z) is an arbitrary choice and does not carry physical meaning. A physically meaningful

result is derived by evolving these values to the scale ⟨µ⟩, where the corresponding jet data
were actually measured. This value αs(⟨µ⟩2) is also given in the table.

The determined points are compared to previous analyses and the theoretical prediction in
figure 12.7. The points are well-compatible with the prediction. No deviation can be observed
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12.2 Determination of the scale dependence of the strong coupling

Number of
jet points

⟨µ⟩
[GeV] αs(M

2
Z) ±δexp./fit ±δmod./par. ±δscale αs(⟨µ⟩2)±δtotal

12 18 0.1156 ±0.0037 ±0.0008 +0.0035
−0.0025 0.1525 ±0.0086

16 26 0.1153 ±0.0026 ±0.0006 +0.0028
−0.0017 0.1417 ±0.0054

19 35 0.1167 ±0.0024 ±0.0003 +0.0018
−0.0010 0.1363 ±0.0039

12 52 0.1164 ±0.0032 ±0.0002 +0.0011
−0.0003 0.1271 ±0.0040

11 84 0.1158 ±0.0045 ±0.0003 +0.0014
−0.0004 0.1172 ±0.0047

70 – 0.1161 ±0.0019 ±0.0004 +0.0014
−0.0007 –

Table 12.4: Values of the strong coupling determined at different scales. Shown are the number
of jet points that enter each determination and the representative scale ⟨µ⟩ of each group. For
each determination, the result is quoted as αs(M

2
Z), including all individual uncertainties and

as αs(⟨µ⟩2), including the total uncertainty. The last line of the table shows the result of the
cross-check, for which all jet points are fitted simultaneously.
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Figure 12.6: The χ2(αs(M
2
Z)) curve determined using groups of jet points. See the caption of

figure 12.4 for details. Note that the αs(M
2
Z) axis of the last panel is different from the others.
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12 Determination of the strong coupling constant

that would indicate any inconsistency in the employed method or in the assumption that QCD
is the correct theory to describe the strong interaction.
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Figure 12.7: Predicted and measured scale dependence of the strong coupling. The blue
curve shows the four-loop QCD prediction, assuming the Particle Data Group world average
value of αs(M

2
Z) = 0.1179± 0.009.17 Also shown are measurements from e+e−,141–143 ep206,207

and pp146 collisions, as well as from τ leptons150 and quarkonium states.149 The black points
represent the values determined in this thesis. The error bars indicate the total uncertainties.
All determinations included are at least at NNLO in QCD. The lower panel shows the αs(M

2
Z)

values computed from each data point.
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CHAPTER 13

Conclusions

A measurement of inclusive jet cross sections in NC DIS at the ZEUS detector at the HERA
e±p collider was performed. The data were taken in the years 2004–2007 and correspond to an
integrated luminosity of 347 pb−1. This amounts to about two-thirds of the entire luminosity
collected by the ZEUS experiment. Thus, the measured cross sections provide additional
insights into jet production in DIS and significant constraining power in subsequent QCD
analyses. The cross sections were compared to the corresponding measurement from the H1
collaboration and to NNLO QCD predictions and found to be well compatible.

The cross sections were measured in collisions of protons of energy 920GeV and electrons or
positrons of energy 27.5GeV, leading to a centre-of-mass energy of 318GeV. The kinematic
range is defined using the virtuality of the exchanged boson Q2 ∈ (150, 15000)GeV2 and
the inelasticity y ∈ (0.2, 0.7). Massless jets were reconstructed using the k⊥-algorithm and
required have a pseudorapidity ηlab ∈ (−1, 2.5) and a transverse momentum in the Breit
frame p⊥,Breit ∈ (7, 50)GeV, where the Breit frame is the reference frame in which the
exchanged boson and the struck parton collide collinearly. In an inclusive jet measurement,
each jet that passes these criteria is counted individually. The cross sections were measured
double-differentially as a function of Q2 and p⊥,Breit.

At detector level, the kinematic quantities of the event were reconstructed using the double-
angle method, and jets were constructed from calorimeter cells. This reconstruction exploits
the highly uniform and well-calibrated response of the high-resolution uranium-scintillator
calorimeter of the ZEUS detector.

Several corrections were derived for this analysis and applied to improve the measurement
of the detector-level quantities and to correct for deficiencies in the MC simulations. The
track-matching- and track-veto-efficiency corrections improved the description of the tracking
performance of the ZEUS detector in the MC. The electron calibration removed bias in
the measurement of the DIS electron. One of the most critical corrections is the relative
jet-energy-scale correction, which ensured that the bias of the jet-energy reconstruction is well
described by the MC. After ensuring that it is well described, this bias was corrected by the
absolute jet-energy-scale correction. Finally, the signal MC samples were reweighted so their
jet distributions agree with those in the data.

After these corrections, the Ariadne and Lepto MC samples describe the data reasonably well
in all relevant distributions. These samples were then used to unfold the data to hadron level
and derive cross sections. This was done using a multi-dimensional matrix unfolding procedure,
the most complex unfolding procedure employed at ZEUS to date. This procedure explicitly
considers migrations in Q2 and p⊥,Breit within the phase space and across the boundaries of
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13 Conclusions

the analysis phase space. Cross sections were also derived using a more traditional bin-by-bin
correction method, and the results were found to be very consistent.

The consistency between the two unfolding methods shows that, when applied correctly,
both are similarly valid to determine the cross sections. For the bin-by-bin correction, more
elaborate corrections to the MC are required to ensure that it describes the data. For matrix
unfolding, agreement between data and MC is less important for the unfolded variables but
still crucial in all other variables. Previous measurements from ZEUS were often performed
using the bin-by-bin correction. The results presented in this thesis demonstrate that these
results are just as valid as more modern measurements with more sophisticated unfolding
techniques.

Systematic uncertainties were evaluated by propagating the uncertainties of the employed
selection and correction procedures to the cross sections. In most regions of the phase space,
the systematic uncertainty is dominated by the uncertainty associated with the description of
the jet-energy scale by the MC. The second significant contribution comes from the model
uncertainty, which describes the uncertainty due to the parton shower model in the MC
samples. Statistical uncertainty plays a subdominant role in most bins.

Available theoretical calculations do not include all physical effects present in the data.
Correction factors were derived to make data and theory comparable. The theoretical predic-
tions are corrected for the exchange of a virtual Z boson and photon-Z interference terms.
Hadronisation correction factors were derived to make the theoretical predictions of parton
level cross sections comparable to the measurement at hardon level. The QED radiation
correction is applied to the measured cross sections to remove the influence of higher-order
QED effects, most importantly, initial-state radiation of the electron. Cross sections are also
provided using an alternative QED correction. These will allow a more rigorous treatment of
higher-order QED effects once suitable theoretical predictions become available.

The derived cross sections are compared against the corresponding measurement of the H1
collaboration and to NNLO QCD theory predictions. Since the H1 measurement uses the same
binning and cross section definition, the two sets of cross sections are directly comparable.
The measurements are found to be in good agreement. Within the combined uncertainty, the
measurements agree well with the theoretical predictions. Similar trends are observed between
the two measurements and the predictions. Most notably, the predictions slightly overestimate
the cross sections, especially at high p⊥,Breit.

This new jet dataset was used together with combined HERA inclusive DIS data and previous
jet measurements at ZEUS in a combined QCD fit at NNLO accuracy to simultaneously
determine the PDFs of the proton and the strong coupling constant αs(M

2
Z). The latter was

determined to be

αs(M
2
Z) = 0.1143± 0.0017 (exp./fit)+0.0006

−0.0007 (model/param.)+0.0006
−0.0004 (scale).

A significantly reduced total uncertainty is observed compared to similar determinations. This
is primarily due to the absence of low-Q2 jet datasets in the determination, which leads to
a strongly reduced theoretical uncertainty. Another slight reduction could be achieved by
using a more appropriate treatment of this uncertainty. For the first time at ZEUS at NNLO
accuracy, the jet datasets were used to determine the scale dependence of the strong coupling.
No deviation from the behaviour predicted by QCD is observed.

An earlier version of this analysis was made public as a ZEUS preliminary report.208 The
full publication, including the final results presented in this thesis, was recently made public
as a preprint209 and is currently undergoing peer review for publication.

160



The measured cross sections are the core result of this thesis. They are a valuable input to
future QCD analyses and will become part of the legacy of HERA. It has been demonstrated
that this dataset allows highly precise determinations of the strong coupling constant. It will
be very interesting to see future analyses combining the ZEUS jet datasets with measurements
from other experiments, such as H1 or the LHC experiments. Since the current determination
is limited by the experimental/fit uncertainty, the addition of further datasets has the potential
to improve the precision of the analysis notably. When adding these datasets to the fit, the
treatment of the theoretical uncertainty is likely to become even more relevant. It is highly
desirable to develop a further improved treatment of this uncertainty, as this would lead to
another significant reduction in the total uncertainty of QCD analyses.

161





APPENDIX A Corrections to QCD amplitudes

In this section, the one-loop corrections to the quark and gluon propagators and the quark-
gluon vertex are computed. They are required for the renormalisation of QCD, discussed in
section 2.4.4. The following six diagrams need to be evaluated:

iΠµν(q) =

= + + ,

iΣ(q) = = ,

igΓµ(q) = = + .

The correction to the gluon propagator includes a contribution from a Fadeev-Popov
ghost.39,56 Ghosts are not introduced in the main text, as they are not relevant to the
discussion there. Ghosts are additional fields added to the theory to preserve unitarity and
never appear as external particles. They are scalar fermions that transform under the adjoint
representation of SU(3), i.e. they carry the same colour charge as gluons. Their Feynman
rules are

k

a b
=

−iδab
k2

,

k

µ, a

b

c

= −gfabckµ.

In the following, the renormalised variants of all quantities are considered. The evaluation
is performed in dimensional regularisation in 4− 2ε dimensions and using Feynman parame-
terisation. Formulae for commonly encountered integrals are available in the literature.39,49,56

Furthermore, the SU(3) colour factors must be computed.210 Colour factors are usually written
in terms of the Casimir operators CF = N2−1

2N and CA = N , to make it clear how the group
structure affects the results. For QCD, N = 3 is inserted in the end.

Vacuum polarisation

Quark loop To evaluate a diagram, start by labelling all internal and external vertices and
momenta. Then use the Feynman rules from figure 2.7 to assign a term to each element of
the diagram. The external propagators do not need to be considered here. In the following,
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A One-loop corrections to QCD amplitudes

the symbols µ, ν, ρ, . . . are used to denote spacetime indices, α, β, γ, . . . are spinor indices,
i, j, k, . . . are quark-colour indices and a, b, c, . . . are gluon-colour indices. The expression for
the quark loop correction to the vacuum polarisation is

(
iΠµν,ab(q)

)(quark)
=

q

k

k − q

µ, a ν, b

i, α

j, β

l, δ

k, γ

= (−1)nf

∫
d4k

(2π)4

(
i(/k − /q)αδδil

(k − q)2

)(
−igλ

b
lk

2
γνδγ

)(
i/kγβδkj

k2

)(
−ig

λaji
2
γµβα

)

= −g2nfTr

(
λa

2

λb

2

)∫
d4k

(2π)4

Tr
(
γν/kγµ(/k − /q)

)

k2(k − q)2
.

Here, the closed fermion loop introduces an additional factor of −1. The factor nf arises from
the summation over quark flavours. The colour factor of this diagram is Tr

(
λa

2
λb

2

)
= 1

2δ
ab.

The denominator of the integral is transformed using Feynman parameterisation

1

k2(k − q)2
=

∫ 1

0
dx

1

x(k − q)2 + (1− x)k2
=

∫ 1

0
dx

1

l2 − C
,

with l = k − xq and C = −x(1 − x)q2. Since the loop momentum is integrated to infinity,
the integration variable can be shifted from k to l. The denominator is even under l → −l.
Therefore, terms that are odd in l cancel in the numerator. In particular, lµlν → 1

4g
µν l2. The

numerator becomes

Tr
(
γν/kγµ(/k − /q)

)
→ −2l2gµν − 4x(1− x)(2qµqν − gµνq2).

The resulting integral can be solved using standard formulae. The result is

(
iΠµν,ab(q)

)(quark)
= i

2

3
nfδ

abf(q)
(
qµqν − gµνq2

)
,

where

f(q) =
g2

16π2
Γ(ε)

(
−q2
4πµ2

)−ε

=
g2

16π2


1

ε
− γE + log(4π)− log

(
−q2
µ2

)
 ,

and γE is the Euler-Mascheroni constant.
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Gluon loop The diagram involving a gluon loop is computed similarly. It receives an
additional combinatoric factor of 1

2 . Its colour factor is fadcf bcd = −CAδ
ab.

(
iΠµν,ab(q)

)(gluon)
=

q

k

k − q

µ, a ν, b

c, ρ f, κ

d, λ e, σ

=
1

2

∫
d4k

(2π)4

(−igσλδed
k2

)(−igρκδcf
(k − q)2

)

·
(
−gfadc

(
gµλ(q + k)ρ + gλρ(−k − k + q)µ + gρµ(k − q − q)λ

))

·
(
−gf bfe

(
gνκ(−q + k − q)σ + gκσ(−k + q − k)ν + gσν(k + q)κ

))

= −iCA
12
δabf(q)(22qµqν − 19q2gµν).

Ghost loop The ghost loop diagram has a similar structure and the same colour factor as
the gluon loop diagram. Since ghosts are fermions, it receives a factor −1.

(
iΠµν,ab(q)

)(ghost)
=

q

k

k − q

µ, a ν, b

c

d

f

e

= (−1)

∫
d4k

(2π)4

(
−gfadckµ

)(
−gf bfe(k − q)ν

)(−iδed
k2

)( −iδcf
(k − q)2

)

= i
CA
12
δabf(q)(2qµqν + q2gµν)

Complete vacuum polarisation Combining these three expressions yields

iΠµν,ab(q) = iδabf(q)

(
2

3
nf −

5

3
CA

)
(qµqν − q2gµν),

which is the result quoted in equation (2.25a) in the main text.
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A One-loop corrections to QCD amplitudes

Self energy

The quark self-energy diagram has a similar structure to the vacuum polarisation diagrams. It
has a colour factor of

(
λa

2
λa

2

)
ji
= CFδji.

iΣ(q)ij,αβ =

q

k

k − q

i, α j, β

µ, a ν, b

k, γ l, δ

=

∫
d4k

(2π)4

(
−ig

λbjl
2
γνβδ

)(
i/kδγδlk

k2

)(
−igλ

a
ki

2
γµγα

)(−igµνδab
(k − q)2

)

= iCFf(q)δji/qβα.

This is the result quoted in equation (2.25b) in the main text.

Vertex correction

Abelian diagram The Abelian vertex correction diagram is identical to the corresponding
diagram in QED, except for the colour factor.

(
igΓµ,aij,αβ(q)

)(a)
=

q

p1

p1 − k

p2 − k

p2

k
µ, a

j, β

i, α

b, ν

c, ρ

n, η

k, γ

l, δ
m, ε

=

∫
d4k

(2π)4

(
−ig

λbjn
2
γνβη

)(
i(/p2 − /k)ηδδnl

(p2 − k)2

)(
−igλ

a
lm

2
γµδε

)

·
(
i(/p1 − /k)εγδmk

(p1 − k)2

)(
−igλ

c
ki

2
γργα

)(−igνρδbc
k2

)

= −g3
(
λb

2

λa

2

λb

2

)

ji

∫
d4k

(2π)4

(
γν(/p2 − /k)γµ(/p1 − /k)γν

)
βα

k2(p1 − k)2(p2 − k)2
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The colour factor is
(
λb

2
λa

2
λb

2

)
ji

= − 1
2N

λa

2 = −(12CA − CF)
λa

2 . The integration requires a

different Feynman parameterisation since the loop contains three propagators. Terms involving
p2i can be neglected because external particles are taken to be on-shell:

1

k2(p1 − k)2(p2 − k)2
= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz

δ(1− x− y − z)

(xk2 + y(p1 − k)2 + z(p2 − k)2)3

= 2

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz
δ(1− x− y − z)
(
l2 − C

)3 .

with l = k − yp1 − zp2 and C = −yzq2. Due to the high mass dimension of the denominator,
terms independent of l in the numerator will not diverge at large loop momenta. They are
irrelevant to the present discussion and are not evaluated further. Shifting the integration
variable leads to

γν(/k + /p2)γ
µ(/k + /p1)γν → −1

2
l2γµ +O(1)

The resulting integral can be evaluated using standard formulae:

(
igΓµ,aij,αβ(q)

)(a)
= igf(q)(

1

2
CA − CF)

λa

2
γµβα + (UV finite)

Non-Abelian diagram The non-Abelian diagram is evaluated analogously to the Abelian
one. It has a colour factor of fabc

(
λc

2
λb

2

)
ji
= −iCA

2

λaji
2 .

(
igΓµ,aij,αβ(q)

)(n)
=

q

p1

k

p2

p2 − k

p1 − k

µ, a

j, β

i, α

l, δ

k, γ

e, κ

c, ρ

d, λ
b, ν

=

∫
d4k

(2π)4

(
−igλ

c
ki

2
γργα

)(
−ig

λejl
2
γκβδ

)(
−igνρδbc
(p1 − k)2

)(
−igκλδed
(p2 − k)2

)

(
−gfabd

(
gµν(q − p1 + k)λ + gνλ(p1 + p2 − 2k)µ + gλµ(−p2 + k − q)ν

))

= −igf(q)3
2
CA

λaji
2
γµβα + (UV finite)

Combined vertex correction Combining these expressions leads to the result quoted in
equation (2.25c):

(
igΓµ,aij,αβ(q)

)
= −igf(q)(CA + CF)

λa

2
γµβα + (UV finite).

167





APPENDIX B Additional figures and tables

B.1 Trigger rates
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Figure B.1: Trigger rates of FLT bits 28, 30, 36, 39 and 40. The rates are shown after the
FLT30 efficiency correction, described in section 8.1.2
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Figure B.2: Trigger rates of FLT bits 41, 43, 44, 46, 47 and 50
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Figure B.3: Trigger rates of SLT and TLT
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B Additional figures and tables

B.2 Jet distributions
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Figure B.4: Average of the ratio p⊥,lab,jet
p⊥,DA

as a function of p⊥,lab in different bins of ηlab. For
detail see section 8.3.1.
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B.2 Jet distributions
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Figure B.5: Average hadron-level jet energy as a function of the detector-level jet energy in
different bins of ηlab. For details see section 8.3.2.
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Figure B.6: Multijet (upper row) and inclusive jet (lower row) distributions before and after
jet reweighting of the Lepto MC chain. For detail see figure 8.9.
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B.3 Corrected data sample
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Figure B.7: Distributions of the phase space and lepton quality cuts of the inclusive DIS
sample including all corrections. For details on the figure, see caption of figure 7.3. The
distributions are shown before corrections in figures 7.3 and 7.4.
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Figure B.8: Distributions of the lepton tracking cuts and DIS selection cuts of the inclusive
DIS sample including all corrections. For details on the figure, see caption of figure 7.3. The
distributions are shown before corrections in figures 7.5 and 7.6.
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Figure B.9: Distributions of cuts on poorly measured regions of the detector and vertex-
related cuts of the inclusive DIS sample including all corrections. For details on the figure, see
caption of figure 7.3. The distributions are shown before corrections in figures 7.7 and 7.9.
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Figure B.10: Distributions of the jet veto cuts and the inclusive jet selection cuts including
all corrections. For details, see captions of figures 7.11 and 7.12.
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Figure B.11: Distributions of the inclusive DIS and inclusive jet cuts at hadron level including
all corrections. For details, see captions of figures 7.13 and 7.14.
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B.4 Bin quality
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Figure B.12: Partial purity for the single differential distributions in Q2 and p⊥,Breit for
different stages of the hadron-level reconstruction. The partial purity is the ratio of the number
of detector-level jets that pass part of the hadron-level selection to the total number of detector-
level jets in a given bin Nrec&partial gen/Nrec. For details, see section 9.3.1. The intermediate
steps considered are: 1. detector-level jets for which the corresponding hadron-level event
belongs to the analysis phase space in y; 2. and the correct region in Q2; 3. and that could be
matched to a hadron-level jet, that is within the analysis phase space in p⊥,Breit and ηlab; 4.
and that belongs to the correct region in p⊥,Breit (except for purity as function of Q2). The
significant contribution to the low purity comes from migrations in Q2 and y.
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Figure B.13: Double differential bin quality. For details, see the single differential version of
this distribution, shown in figure 9.1.

0

0.2

0.4

0.6

0.8

1

1a1b1c1d2a2b2c2d3a3b3c3d4a4b4c4d5a5b5c5d6a6b6c6d
(Q2, p⊥,Breit) bin

Pa
rt

ia
le

ffi
ci

en
cy

Electron reconstructed
Migration in y

Migration in Q2

DIS cuts passed
Jet matched

Migration in p⊥,Breit

Figure B.14: Double differential partial efficiency. For details, see the single differential
version of this distribution, shown in figure 9.2.
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Figure B.15: Double differential partial purity. For details, see the single differential version
of this distribution, shown in figure B.12.
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B.5 Matrix unfolding templates with Ariadne
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Figure B.16: Matrix unfolding as template fit in Q2 with Ariadne MC. This figure is similar
to 9.12, except that only the Ariadne signal MC sample is used, rather than a combination of
Ariadne and Lepto.
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Figure B.17: Matrix unfolding as template fit in p⊥,Breit with Ariadne MC. The figure
is similar to 9.13, except that only the Ariadne signal MC sample is used, rather than a
combination of Ariadne and Lepto.
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B.6 Aditional information on the αs analysis

B.6.1 Detailed fit results

Dataset Partial χ2/Number of
points

HERA NC e+p DIS, EP = 920GeV 447.65/377
HERA NC e+p DIS, EP = 820GeV 64.99/70
HERA NC e+p DIS, EP = 575GeV 219.16/254
HERA NC e+p DIS, EP = 460GeV 216.58/204
HERA NC e−p DIS, EP = 920GeV 219.88/159
HERA CC e+p DIS, EP = 920GeV 47.52/39
HERA CC e−p DIS, EP = 920GeV 51.73/42

HERA I inclusive jets 26.38/30
HERA I/II dijets 14.65/16

HERA II inclusive jets 14.98/24

Shifts of correlated systematics 96.24
Global χ2 per degree of freedom 1418.93/1200

Table B.1: The determined χ2 values from the nominal fit at NNLO.

Parameter Fitted value

Bg -0.084941 ± 0.073962
Cg 6.947203 ± 0.747311
A′
g 0.184528 ± 0.179314

B′
g -0.387773 ± 0.066123

Buv 0.772017 ± 0.032302
Cuv 4.878890 ± 0.092664
Euv 10.310995 ± 1.416879
Bdv 0.975858 ± 0.088014
Cdv 4.855352 ± 0.384069
CŪ 7.524403 ± 1.491796
DŪ 3.584528 ± 2.594193
AD̄ 0.255332 ± 0.011212
BD̄ -0.132296 ± 0.005217
CD̄ 9.395293 ± 1.834683

αs(M
2
Z) 0.114259 ± 0.001661

Table B.2: Fitted parameters in the nominal fit at NNLO.
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C
Ū
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A
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B
D̄

C
D̄

α
s(
M

2 Z
)

Bg 100 29 −87 −58 9 −4 −1 2 −4 1 7 −12 −20 −6 17

Cg 29 100 −10 5 −26 29 17 −20 −9 27 48 −53 −55 −24 −63

A′
g −87 −10 100 90 15 −7 −17 7 6 3 1 5 5 −4 −2

B′
g −58 5 90 100 30 −16 −30 13 8 3 −3 5 0 −8 10

Buv 9 −26 15 30 100 −27 −72 40 13 33 −5 52 40 7 57

Cuv −4 29 −7 −16 −27 100 73 −16 −15 46 54 −24 −19 −5 −37

Euv −1 17 −17 −30 −72 73 100 −27 −16 12 39 −43 −35 −12 −27

Bdv 2 −20 7 13 40 −16 −27 100 88 42 25 32 27 58 19

Cdv −4 −9 6 8 13 −15 −16 88 100 23 15 20 18 56 −9

CŪ 1 27 3 3 33 46 12 42 23 100 89 −5 −6 19 −13

DŪ 1 48 1 −3 −5 54 39 25 15 89 100 −36 −35 22 −34

AD̄ −12 −53 5 5 52 −24 −43 32 20 −5 −36 100 96 23 36

BD̄ −20 −55 5 0 40 −19 −35 27 18 −6 −35 96 100 24 26

CD̄ −6 −24 −4 −8 7 −5 −12 58 56 19 22 23 24 100 −16

αs(M
2
Z) 17 −63 −2 10 57 −37 −27 19 −9 −13 −34 36 26 −16 100

Table B.3: Correlations of the fitted parameters from the nominal fit at NNLO.

Dataset Uncertainty Shift
HERA I inclusive jets Jet-energy scale -1.2253 ± 0.4671
HERA I/II dijets Jet-energy scale (20%) -0.7079 ± 0.8817
HERA II inclusive jets Jet-energy scale (20%) 0.9345 ± 0.8662
HERA I/II dijets + HERA II inclusive jets Jet-energy scale (80%) 0.4650 ± 0.6133
HERA I inclusive jets Luminosity -0.9849 ± 0.9220
HERA I/II dijets Luminosity (20%) -0.3657 ± 0.9459
HERA II inclusive jets Luminosity (20%) 0.3373 ± 0.9614
HERA I/II dijets + HERA II inclusive jets Luminosity (80%) -0.0568 ± 0.8426
HERA II inclusive jets Model (50%) 0.2668 ± 0.7167
HERA II inclusive jets Low-Q2 DIS background 0.3632 ± 0.9447
HERA II inclusive jets Unfolding background (50%) 0.4532 ± 0.9527
HERA II inclusive jets E − pz cut 0.5566 ± 0.8174
HERA II inclusive jets Track-matching efficiency 0.5992 ± 0.9476
All jet datasets Hadronisation (50%) -0.9323 ± 0.8644
All jet datasets Theoretical calculation (50%) -0.5187 ± 0.9436

Table B.4: Shifts of the correlated systematic uncertainties of the jet datasets in the nominal
fit at NNLO. For uncertainties that are split into multiple parts, the number in parenthesis
indicates the fraction of the original uncertainty, see table 12.1.
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B.6.2 Scale assignment for running αs analysis

Q2 [GeV2] p⊥,Breit [GeV] Scale µ [GeV]
H

E
R

A
I

in
cl

us
iv

e
je

ts
125 – 250 8 – 10 15.3
125 – 250 10 – 14 16.9
125 – 250 14 – 18 19.9
125 – 250 18 – 25 23.8
125 – 250 25 – 100 32.5
250 – 500 8 – 10 19.8
250 – 500 10 – 14 21.0
250 – 500 14 – 18 23.6
250 – 500 18 – 25 26.9
250 – 500 25 – 100 35.1

500 – 1000 8 – 10 26.6
500 – 1000 10 – 14 27.5
500 – 1000 14 – 18 29.5
500 – 1000 18 – 25 32.2
500 – 1000 25 – 100 39.8

1000 – 2000 8 – 10 36.6
1000 – 2000 10 – 14 37.3
1000 – 2000 14 – 18 38.8
1000 – 2000 18 – 25 40.9
1000 – 2000 25 – 100 47.7
2000 – 5000 8 – 10 52.0
2000 – 5000 10 – 14 52.5
2000 – 5000 14 – 18 53.6
2000 – 5000 18 – 25 55.1
2000 – 5000 25 – 100 60.5

5000 – 100000 8 – 10 84.6
5000 – 100000 10 – 14 84.9
5000 – 100000 14 – 18 85.7
5000 – 100000 18 – 25 86.7
5000 – 100000 25 – 100 89.1

Table B.5: Data points from the ZEUS HERA I inclusive jet dataset.133 For each point, the
bin boundaries are given along with the scale that was assigned to this point. The position of
the number in the last column indicates to which of the five scale bins the point belongs.
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Q2 [GeV2] p⊥ [GeV] Scale µ [GeV]

H
E

R
A

I/
II

di
je

ts

125 – 250 15 – 22 21.1
125 – 250 22 – 30 27.6
125 – 250 30 – 60 37.4
250 – 500 15 – 22 24.6
250 – 500 22 – 30 30.3
250 – 500 30 – 60 39.6

500 – 1000 15 – 22 30.4
500 – 1000 22 – 30 35.1
500 – 1000 30 – 60 43.5

1000 – 2000 15 – 22 39.4
1000 – 2000 22 – 30 43.2
1000 – 2000 30 – 60 50.4
2000 – 5000 16 – 28 54.5
2000 – 5000 28 – 60 61.2

5000 – 20000 16 – 28 84.9
5000 – 20000 28 – 60 89.1

H
E

R
A

II
in

cl
us

iv
e

je
ts

150 – 200 7 – 11 15.5
150 – 200 11 – 18 18.4
150 – 200 18 – 30 24.8
150 – 200 30 – 50 37.2
200 – 270 7 – 11 17.2
200 – 270 11 – 18 20.0
200 – 270 18 – 30 26.0
200 – 270 30 – 50 38.0
270 – 400 7 – 11 19.6
270 – 400 11 – 18 22.1
270 – 400 18 – 30 27.6
270 – 400 30 – 50 39.2
400 – 700 7 – 11 23.6
400 – 700 11 – 18 25.6
400 – 700 18 – 30 30.5
400 – 700 30 – 50 41.3

700 – 5000 7 – 11 32.4
700 – 5000 11 – 18 33.9
700 – 5000 18 – 30 37.8
700 – 5000 30 – 50 47.0

5000 – 15000 7 – 11 82.3
5000 – 15000 11 – 18 82.9
5000 – 15000 18 – 30 84.5
5000 – 15000 30 – 50 88.9

Table B.6: Data points from the ZEUS HERA I/II dijet dataset and the dataset presented in
this thesis.71 For details, see caption of table B.6.
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APPENDIX C Cross section tables

C.1 With bin-by-bin correction

Q2

[GeV2]
p⊥,Breit
[GeV]

σ
[pb]

δstat
[%]

δuncor
[%]

δJES
[%]

δmodel
[%]

δBkg.
[%]

δE−pz

[%]
δTME
[%]

cQED cZ cHad
δHad
[%]

150–200 7–11 68.1 0.8 1.7 +4.4
−4.1 2.5 1.1 +0.9

−0.0 1.4 0.686 1.00 0.929 0.8
150–200 11–18 29.6 1.3 1.3 +5.3

−5.1 1.5 1.2 +0.8
−0.2 1.4 0.868 1.00 0.973 0.9

150–200 18–30 6.52 3.0 1.7 +3.4
−3.2 1.5 1.7 +1.8

−0.3 1.3 0.946 1.00 0.971 0.4
150–200 30–50 0.766 9.2 5.3 +3.4

−4.2 4.4 4.8 +5.3
+0.0 1.3 0.901 1.00 0.959 0.3

200–270 7–11 55.0 0.9 1.7 +4.1
−3.9 3.2 0.5 +0.7

−0.2 1.1 0.679 1.00 0.936 1.2
200–270 11–18 27.1 1.4 0.9 +4.7

−4.5 1.4 0.4 +1.1
−0.2 1.1 0.800 1.00 0.961 0.2

200–270 18–30 6.53 3.0 2.8 +3.7
−3.4 2.4 0.4 +2.0

−0.3 1.0 0.953 1.00 0.978 0.2
200–270 30–50 0.655 9.7 6.9 +3.6

−4.1 7.9 0.6 +4.5
−1.2 1.0 0.951 1.00 0.985 0.8

270–400 7–11 50.8 1.0 1.8 +3.9
−3.6 2.9 0.2 +0.8

+0.1 0.8 0.704 1.00 0.930 1.6
270–400 11–18 26.9 1.5 2.4 +4.2

−4.3 2.9 0.3 +1.0
−0.0 0.8 0.690 1.00 0.967 0.1

270–400 18–30 6.87 3.1 2.2 +3.6
−3.7 0.8 0.3 +1.4

−0.5 0.8 0.923 1.00 0.973 0.2
270–400 30–50 0.817 9.0 4.9 +3.8

−2.9 -2.1 0.5 +5.0
−1.6 0.7 0.956 1.00 0.977 0.4

400–700 7–11 44.7 1.1 1.1 +3.3
−3.0 2.0 0.2 +0.9

−0.2 0.6 0.755 1.01 0.916 1.4
400–700 11–18 26.9 1.5 2.3 +3.5

−3.6 4.3 0.2 +1.7
−0.0 0.6 0.626 1.01 0.974 0.2

400–700 18–30 8.21 2.8 1.2 +3.5
−3.3 2.3 0.2 +1.7

−0.2 0.6 0.854 1.01 0.972 0.3
400–700 30–50 1.35 7.0 2.8 +4.5

−3.7 2.6 0.0 +6.3
−0.1 0.6 0.982 1.01 0.973 0.5

700–5000 7–11 41.9 1.0 1.4 +2.5
−2.2 0.9 0.1 +0.4

−0.2 0.5 0.826 1.03 0.903 0.6
700–5000 11–18 28.6 1.3 1.6 +2.5

−2.5 3.2 0.2 +0.9
−0.2 0.5 0.702 1.03 0.967 0.7

700–5000 18–30 11.9 2.1 4.6 +2.7
−2.7 4.6 0.1 +1.2

−0.0 0.5 0.571 1.03 0.974 0.0
700–5000 30–50 2.11 4.6 4.8 +4.6

−4.4 4.1 0.1 −0.7
−0.4 0.5 0.714 1.03 0.963 0.4

5000–15000 7–11 2.31 3.6 3.0 +1.6
−1.6 0.5 0.1 −1.0

−0.5 0.3 0.930 1.16 0.889 0.6
5000–15000 11–18 1.97 4.6 3.3 +1.3

−1.2 2.2 0.0 −0.6
+0.0 0.3 0.867 1.16 0.948 0.3

5000–15000 18–30 0.988 6.6 3.2 +1.5
−1.5 4.7 0.0 −2.4

−1.6 0.3 0.722 1.16 0.976 0.1
5000–15000 30–50 0.248 11.7 8.1 +3.5

−3.4 11.3 0.4 −5.0
−4.1 0.3 0.433 1.16 0.977 0.9

Table C.1: Double-differential inclusive jet cross sections derived with the bin-by-bin correction,
see section 11.1. Listed are the statistical uncertainty δstat, the sum of the uncorrelated
systematic uncertainties δuncor and the correlated systematic uncertainties associated with the
jet energy scale δJES, MC model δmodel, the background contribution δBkg., the E − pz cut
δE−pz and the track-matching efficiency correction δTME. Not listed explicitly is the luminosity
uncertainty of 1.9%, which is fully correlated across all points. The last four columns show
the QED Born level correction cQED that has been applied to the data as well as the Z0 and
hadronisation correction and associated uncertainty, cZ , cHad and δHad, that need to be applied
to the theoretical predictions.
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C Cross section tables

Q2

[GeV2]
p⊥,Breit
[GeV]

δ1
[%]

δ2
[%]

δ3
[%]

δ4
[%]

δ5
[%]

δ6
[%]

δ7
[%]

δ8
[%]

δ9
[%]

δ10
[%]

δ12
[%]

δ13
[%]

δ14
[%]

150–200 7–11 -0.9 −0.0
+0.1 +0.6 -1.1 +0.4

−0.6
+0.0
+0.3

+0.0
+0.0

+0.1
−0.0

+0.0
−0.0 -0.3 -0.0 +0.0 +0.2

150–200 11–18 -0.1 −0.1
+0.1 +0.2 -1.1 +0.5

−0.0
+0.0
+0.2

+0.0
+0.0

−0.0
+0.0

+0.0
−0.0 -0.3 -0.0 -0.0 +0.3

150–200 18–30 -0.4 −0.0
+0.0 -0.4 -1.1 +0.2

+0.1
+0.0
−0.2

+0.1
+0.2

−0.2
−0.0

−0.1
+0.0 -0.5 -0.0 -0.0 +0.9

150–200 30–50 +1.3 +0.0
+0.3 -3.0 +2.8 −0.1

+0.2
+0.0
+1.1

+0.4
+0.1

−0.1
−0.8

−0.1
+0.0 -1.6 -0.0 -0.0 +2.5

200–270 7–11 -1.0 −0.0
+0.1 +0.8 -0.5 +1.0

−1.1
+0.0
+0.1

+0.0
+0.0

−0.0
+0.0

+0.1
−0.0 -0.4 -0.0 -0.0 +0.1

200–270 11–18 -0.7 −0.0
+0.0 -0.2 -0.3 +0.1

−0.2
+0.0
−0.0

−0.0
+0.0

−0.1
+0.0

−0.1
−0.1 -0.3 -0.0 -0.0 +0.3

200–270 18–30 -0.6 −0.0
−0.0 +2.6 +0.2 +0.0

−0.2
+0.0
+0.1

+0.0
+0.1

−0.1
−0.1

−0.2
−0.8 -0.5 -0.0 -0.0 +0.7

200–270 30–50 +0.9 −0.2
+0.4 +6.0 +1.7 +0.0

+0.2
+0.0
+1.1

+0.0
+0.7

−0.1
+0.1

+0.1
+1.2 -0.3 -0.0 -0.3 +2.5

270–400 7–11 -0.9 −0.1
+0.1 +1.2 -0.6 +0.6

−0.7
+0.0
+0.1

+0.0
+0.0

−0.0
−0.0

+0.1
+0.1 -0.3 -0.1 -0.1 +0.1

270–400 11–18 -1.6 −0.0
+0.0 +1.5 -0.7 +0.4

−0.6
+0.0
+0.1

−0.0
+0.0

+0.1
+0.1

+0.0
−0.1 -0.3 -0.1 -0.2 +0.2

270–400 18–30 -0.6 +0.1
+0.1 +0.6 -1.7 −0.1

+0.1
+0.0
+0.0

−0.0
+0.2

+0.1
−0.0

−0.5
−0.2 -0.8 -0.1 -0.3 +0.6

270–400 30–50 +0.1 −0.1
+0.3 +3.6 -2.1 −0.1

+0.0
+0.0
−0.0

+0.2
+0.3

−0.1
−0.7

−1.0
−1.9 +0.4 -0.0 -0.6 +1.8

400–700 7–11 -0.8 −0.0
+0.1 +0.2 -0.2 +0.5

−0.7
+0.0
−0.0

−0.0
+0.0

+0.1
−0.0

−0.2
−0.1 -0.1 -0.1 -0.2 +0.2

400–700 11–18 -2.2 +0.0
+0.1 +0.1 -0.3 +0.2

−0.2
+0.0
+0.0

−0.0
−0.0

−0.0
+0.1

−0.2
−0.1 -0.1 -0.1 -0.2 +0.2

400–700 18–30 -0.8 +0.1
+0.1 -0.4 +0.3 −0.0

−0.1
+0.0
+0.1

−0.1
+0.3

+0.1
−0.1

−0.5
+0.2 -0.0 -0.1 -0.2 +0.5

400–700 30–50 +0.0 +0.2
−0.1 +1.4 +1.4 −0.2

−0.7
+0.0
−0.3

−0.2
+0.4

−0.1
+0.2

−0.4
−1.6 +0.2 -0.1 -0.6 +1.5

700–5000 7–11 -0.5 −0.1
+0.1 +1.0 -0.1 +1.0

−0.5
+0.0
+0.1

−0.0
+0.0

+0.0
−0.0

+0.0
+0.0 -0.1 -0.1 +0.3 +0.1

700–5000 11–18 -1.5 −0.1
+0.1 +0.5 +0.2 +0.4

−0.2
+0.0
+0.2

−0.0
+0.1

−0.0
−0.0

+0.0
+0.0 -0.1 -0.1 +0.1 +0.1

700–5000 18–30 -4.6 −0.1
+0.1 +0.1 +0.1 +0.2

−0.5
+0.0
+0.0

−0.1
+0.1

−0.0
−0.3

+0.0
+0.0 -0.0 -0.1 +0.0 +0.2

700–5000 30–50 -4.6 −0.3
+0.5 +0.1 +0.7 +2.1

+0.2
+0.0
−0.3

+0.0
+0.2

−0.1
−0.6

+0.0
+0.0 +0.0 -0.1 -0.1 +0.5

5000–15000 7–11 -1.2 −0.2
+0.2 +1.5 -1.6 +0.1

−2.2
+0.0
+0.1

+0.0
−0.3

+0.1
−0.2

+0.0
+0.0 -0.1 -0.1 +1.3 +0.2

5000–15000 11–18 +0.7 −0.2
+0.2 -2.7 +0.8 +0.2

−1.1
+0.0
−0.0

+0.2
−1.0

−0.2
−0.5

+0.0
+0.0 -0.8 -0.1 +1.1 +0.2

5000–15000 18–30 -2.0 −0.2
+0.1 +2.0 -0.1 +1.1

+1.1
+0.0
−0.0

−0.1
−0.4

−0.2
−0.7

+0.0
+0.0 -0.3 -0.1 +0.7 +0.2

5000–15000 30–50 -6.6 −0.2
+0.2 +4.5 +0.1 +1.0

−0.3
+0.0
−0.1

−0.1
+0.1

−0.2
+0.2

+0.0
+0.0 +0.4 -0.1 +0.4 +0.2

Table C.2: Breakdown of the uncorrelated uncertainty δuncor from table C.1. Shown are the
uncertainties associated with the reweighting of the MC models (δ1), the electron-energy scale
(δ2), the electron-finding algorithm (δ3), the electron calibration (δ4), the variation of the p⊥,lab
cut of the jets (δ5), the variation of the ptrack cut (δ6), the variation of the p⊥/

√
E⊥ cut (δ7),

the variation of the zvertex cut (δ8), the variation of the rRCAL cut (δ9), the variation of the
electron-track distance cut (δ10), the polarisation correction (δ12), the FLT track veto efficiency
correction (δ13) and the correction to QED Born level (δ14). The uncertainty associated with
the vertex position reweighting is not shown, as it is zero within the quoted number of digits.
For the asymmetric uncertainties, the upper number corresponds to the upward variation of
the corresponding parameter and the lower number corresponds to the downward variation.
For details on individual uncertainties, see chapter 10.
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C.1 With bin-by-bin correction

Inclusive jet bin

Q2

[GeV2]

15
0–

20
0

15
0–

20
0

15
0–

20
0

15
0–

20
0

20
0–

27
0

20
0–

27
0

20
0–

27
0

20
0–

27
0

27
0–

40
0

27
0–

40
0

27
0–

40
0

27
0–

40
0

40
0–

70
0

40
0–

70
0

40
0–

70
0

40
0–

70
0

70
0–

50
00

70
0–

50
00

70
0–

50
00

70
0–

50
00

50
00

–1
50

00

50
00

–1
50

00

50
00

–1
50

00

50
00

–1
50

00

p⊥
[GeV] 7–

11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

In
cl

u
si

ve
je

t
b
in

150–200 7–11 100 18 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

150–200 11–18 18 100 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

150–200 18–30 5 12 100 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

150–200 30–50 1 2 9 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

200–270 7–11 0 0 0 0 100 19 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

200–270 11–18 0 0 0 0 19 100 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

200–270 18–30 0 0 0 0 5 12 100 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

200–270 30–50 0 0 0 0 1 1 7 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

270–400 7–11 0 0 0 0 0 0 0 0 100 19 5 1 0 0 0 0 0 0 0 0 0 0 0 0

270–400 11–18 0 0 0 0 0 0 0 0 19 100 13 1 0 0 0 0 0 0 0 0 0 0 0 0

270–400 18–30 0 0 0 0 0 0 0 0 5 13 100 8 0 0 0 0 0 0 0 0 0 0 0 0

270–400 30–50 0 0 0 0 0 0 0 0 1 1 8 100 0 0 0 0 0 0 0 0 0 0 0 0

400–700 7–11 0 0 0 0 0 0 0 0 0 0 0 0 100 20 5 2 0 0 0 0 0 0 0 0

400–700 11–18 0 0 0 0 0 0 0 0 0 0 0 0 20 100 14 2 0 0 0 0 0 0 0 0

400–700 18–30 0 0 0 0 0 0 0 0 0 0 0 0 5 14 100 9 0 0 0 0 0 0 0 0

400–700 30–50 0 0 0 0 0 0 0 0 0 0 0 0 2 2 9 100 0 0 0 0 0 0 0 0

700–5000 7–11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 20 7 2 0 0 0 0

700–5000 11–18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 100 15 3 0 0 0 0

700–5000 18–30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 15 100 9 0 0 0 0

700–5000 30–50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 9 100 0 0 0 0

5000–15000 7–11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 19 10 3

5000–15000 11–18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 100 18 10

5000–15000 18–30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 18 100 13

5000–15000 30–50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 10 13 100

D
ij
et

b
in

125–250 8–15 15 32 1 0 11 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125–250 15–22 2 16 27 0 1 13 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125–250 22–30 1 1 27 8 1 1 21 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125–250 30–60 0 1 3 43 0 0 2 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

250–500 8–15 0 0 0 0 5 11 0 0 18 36 1 0 7 14 0 0 0 0 0 0 0 0 0 0

250–500 15–22 0 0 0 0 1 5 8 0 2 20 30 0 1 8 13 0 0 0 0 0 0 0 0 0

250–500 22–30 0 0 0 0 0 0 8 3 1 1 30 4 0 1 14 4 0 0 0 0 0 0 0 0

250–500 30–60 0 0 0 0 0 0 0 10 0 0 4 45 0 0 2 16 0 0 0 0 0 0 0 0

500–1000 8–15 0 0 0 0 0 0 0 0 0 0 0 0 14 26 1 0 11 20 1 0 0 0 0 0

500–1000 15–22 0 0 0 0 0 0 0 0 0 0 0 0 2 16 23 0 2 11 17 0 0 0 0 0

500–1000 22–30 0 0 0 0 0 0 0 0 0 0 0 0 1 1 24 6 1 1 17 4 0 0 0 0

500–1000 30–60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 37 1 0 3 23 0 0 0 0

1000–2000 8–15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 31 1 0 0 0 0 0

1000–2000 15–22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 18 26 0 0 0 0 0

1000–2000 22–30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 28 6 0 0 0 0

1000–2000 30–60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 41 0 0 0 0

2000–5000 8–16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 22 2 0 0 0 0 0

2000–5000 16–28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 9 28 3 0 0 0 0

2000–5000 28–60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 30 0 0 0 0

5000–20000 8–16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 40 8 0

5000–20000 16–28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 22 45 8

5000–20000 28–60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 18 53

Table C.3: Correlation matrix of the unfolding uncertainty within the inclusive jet cross section
measurement and between the inclusive jet measurement and the previous dijet measurement.71

Correlations are given in percent. The transverse momentum p⊥ is p⊥,Breit for the inclusive
jets and p⊥,Breit for the dijets.
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C Cross section tables

C.2 With matrix unfolding

Q2

[GeV2]
p⊥,Breit
[GeV]

σ
[pb]

δunf
[%]

δuncor
[%]

δJES
[%]

δmodel
[%]

δFake
[%]

δLow-Q2

[%]

δE−pz

[%]
δTME
[%]

cQED cZ cHad
δHad
[%]

150–200 7–11 68.4 3.6 1.7 +4.4
−4.1 2.0 1.7 0.3 +0.9

−0.0 1.4 0.686 1.00 0.929 0.8
150–200 11–18 29.6 4.5 1.8 +5.3

−5.1 1.0 2.1 1.1 +0.8
−0.2 1.4 0.868 1.00 0.973 0.9

150–200 18–30 6.55 8.3 1.7 +3.4
−3.2 1.4 1.2 1.7 +1.8

−0.3 1.3 0.946 1.00 0.971 0.4
150–200 30–50 0.828 22.4 5.3 +3.4

−4.2 4.2 1.1 4.2 +5.3
+0.0 1.2 0.901 1.00 0.959 0.3

200–270 7–11 55.9 3.7 1.6 +4.1
−3.9 2.3 1.3 0.2 +0.7

−0.2 1.0 0.679 1.00 0.936 1.2
200–270 11–18 27.8 4.3 1.3 +4.7

−4.5 0.9 1.5 0.1 +1.1
−0.2 1.0 0.800 1.00 0.961 0.2

200–270 18–30 6.70 7.8 2.8 +3.7
−3.4 -2.0 1.0 -0.1 +2.0

−0.3 1.0 0.953 1.00 0.978 0.2
200–270 30–50 0.590 28.9 7.1 +3.6

−4.1 5.5 1.4 -2.3 +4.5
−1.2 0.9 0.951 1.00 0.985 0.8

270–400 7–11 51.2 3.7 1.7 +3.9
−3.6 2.5 1.3 0.1 +0.8

+0.1 0.7 0.704 1.00 0.930 1.6
270–400 11–18 26.6 4.3 2.3 +4.2

−4.3 0.9 1.4 0.2 +1.0
−0.0 0.8 0.690 1.00 0.967 0.1

270–400 18–30 6.56 7.2 2.2 +3.6
−3.7 1.7 1.0 0.2 +1.4

−0.5 0.7 0.923 1.00 0.973 0.2
270–400 30–50 0.690 24.0 5.0 +3.8

−2.9 -5.2 1.1 1.0 +5.0
−1.6 0.7 0.956 1.00 0.977 0.4

400–700 7–11 45.5 3.5 1.1 +3.3
−3.0 2.4 1.2 0.2 +0.9

−0.2 0.6 0.755 1.01 0.916 1.4
400–700 11–18 26.7 3.4 1.2 +3.5

−3.6 1.8 1.2 -0.1 +1.7
−0.0 0.6 0.626 1.01 0.974 0.2

400–700 18–30 8.23 5.6 1.0 +3.5
−3.3 2.2 0.9 -0.0 +1.7

−0.2 0.6 0.854 1.01 0.972 0.3
400–700 30–50 1.41 12.2 3.2 +4.5

−3.7 3.5 0.8 -0.2 +6.3
−0.1 0.6 0.982 1.01 0.973 0.5

700–5000 7–11 42.9 3.3 1.3 +2.5
−2.2 2.4 1.1 0.1 +0.4

−0.2 0.5 0.826 1.03 0.903 0.6
700–5000 11–18 27.8 2.8 1.8 +2.5

−2.5 2.2 0.9 -0.0 +0.9
−0.2 0.5 0.702 1.03 0.967 0.7

700–5000 18–30 12.1 4.0 0.9 +2.7
−2.7 3.5 0.9 -0.0 +1.2

−0.0 0.5 0.571 1.03 0.974 0.0
700–5000 30–50 2.23 9.4 1.6 +4.6

−4.4 4.0 1.4 0.1 −0.7
−0.4 0.5 0.714 1.03 0.963 0.4

5000–15000 7–11 2.48 22.6 2.9 +1.6
−1.6 -3.4 2.0 0.1 −1.0

−0.5 0.3 0.930 1.16 0.889 0.6
5000–15000 11–18 1.99 13.6 3.5 +1.3

−1.2 4.3 1.4 -0.1 −0.6
+0.0 0.3 0.867 1.16 0.948 0.3

5000–15000 18–30 0.965 14.8 3.1 +1.5
−1.5 6.4 0.8 -0.0 −2.4

−1.6 0.3 0.722 1.16 0.976 0.1
5000–15000 30–50 0.204 32.5 4.9 +3.5

−3.4 6.9 1.7 -0.1 −5.0
−4.1 0.3 0.433 1.16 0.977 0.9

Table C.4: Double-differential inclusive jet cross sections derived with matrix unfolding, see
section 11.1. Listed are the unfolding uncertainty δunf, the sum of the uncorrelated systematic
uncertainties δuncor and the correlated systematic uncertainties associated with the jet energy
scale δJES, MC model δmodel, the background contribution from unmatched jets δFake, the
background contribution from low-Q2 DIS events δLow-Q2 , the E − pz cut δE−pz and the
track-matching efficiency correction δTME. Not listed explicitly is the luminosity uncertainty
of 1.9%, which is fully correlated across all points. The last four columns show the QED Born
level correction cQED that has been applied to the data as well as the Z0 and hadronisation
correction and associated uncertainty, cZ , cHad and δHad, that need to be applied to the
theoretical predictions.
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C.2 With matrix unfolding

Q2

[GeV2]
p⊥,Breit
[GeV]

δ1
[%]

δ2
[%]

δ3
[%]

δ4
[%]

δ5
[%]

δ6
[%]

δ7
[%]

δ8
[%]

δ9
[%]

δ10
[%]

δ11
[%]

δ12
[%]

δ13
[%]

δ14
[%]

150–200 7–11 -0.9 −0.0
+0.1 +0.6 -1.1 +0.4

−0.6
+0.0
+0.3

+0.0
+0.0

+0.1
−0.0

+0.0
−0.0 -0.3 +0.0 -0.0 +0.0 +0.2

150–200 11–18 -1.2 −0.1
+0.1 +0.2 -1.1 +0.5

−0.0
+0.0
+0.2

+0.0
+0.0

−0.0
+0.0

+0.0
−0.0 -0.3 +0.1 -0.0 -0.0+0.3

150–200 18–30 +0.5 −0.0
+0.0 -0.4 -1.1 +0.2

+0.1
+0.0
−0.2

+0.1
+0.2

−0.2
−0.0

−0.1
+0.0 -0.5 -0.1 -0.0 +0.0+0.9

150–200 30–50 +1.4 +0.0
+0.3 -3.0 +2.8 −0.1

+0.2
+0.0
+1.1

+0.4
+0.1

−0.1
−0.8

−0.1
+0.0 -1.6 +0.0 -0.0 -0.1+2.5

200–270 7–11 -0.7 −0.0
+0.1 +0.8 -0.5 +1.0

−1.1
+0.0
+0.1

+0.0
+0.0

−0.0
+0.0

+0.1
−0.0 -0.4 -0.1 -0.0 +0.0+0.1

200–270 11–18 -1.2 −0.0
+0.0 -0.2 -0.3 +0.1

−0.2
+0.0
−0.0

−0.0
+0.0

−0.1
+0.0

−0.1
−0.1 -0.3 +0.1 -0.0 -0.0+0.3

200–270 18–30 +0.2 −0.0
−0.0 +2.6 +0.2 +0.0

−0.2
+0.0
+0.1

+0.0
+0.1

−0.1
−0.1

−0.2
−0.8 -0.5 +0.1 -0.0 -0.0+0.7

200–270 30–50 +1.9 −0.2
+0.4 +6.0 +1.7 +0.0

+0.2
+0.0
+1.1

+0.0
+0.7

−0.1
+0.1

+0.1
+1.2 -0.3 -0.2 -0.1 +0.0+2.5

270–400 7–11 -0.7 −0.1
+0.1 +1.2 -0.6 +0.6

−0.7
+0.0
+0.1

+0.0
+0.0

−0.0
−0.0

+0.1
+0.1 -0.3 +0.2 -0.1 -0.1+0.1

270–400 11–18 -1.5 −0.0
+0.0 +1.5 -0.7 +0.4

−0.6
+0.0
+0.1

−0.0
+0.0

+0.1
+0.1

+0.0
−0.1 -0.3 -0.0 -0.1 -0.2 +0.2

270–400 18–30 +0.4 +0.1
+0.1 +0.6 -1.7 −0.1

+0.1
+0.0
+0.0

−0.0
+0.2

+0.1
−0.0

−0.5
−0.2 -0.8 -0.1 -0.1 -0.3 +0.6

270–400 30–50 +0.7 −0.1
+0.3 +3.6 -2.1 −0.1

+0.0
+0.0
−0.0

+0.2
+0.3

−0.1
−0.7

−1.0
−1.9 +0.4 -0.0 -0.1 -0.9 +1.8

400–700 7–11 -0.7 −0.0
+0.1 +0.2 -0.2 +0.5

−0.7
+0.0
−0.0

−0.0
+0.0

+0.1
−0.0

−0.2
−0.1 -0.1 +0.2 -0.1 -0.3+0.2

400–700 11–18 -1.1 +0.0
+0.1 +0.1 -0.3 +0.2

−0.2
+0.0
+0.0

−0.0
−0.0

−0.0
+0.1

−0.2
−0.1 -0.1 +0.1 -0.1 -0.3+0.2

400–700 18–30 +0.5 +0.1
+0.1 -0.4 +0.3 −0.0

−0.1
+0.0
+0.1

−0.1
+0.3

+0.1
−0.1

−0.5
+0.2 -0.0 +0.3 -0.1 -0.2+0.5

400–700 30–50 +1.5 +0.2
−0.1 +1.4 +1.4 −0.2

−0.7
+0.0
−0.3

−0.2
+0.4

−0.1
+0.2

−0.4
−1.6 +0.2 -0.0 -0.0 -0.9 +1.5

700–5000 7–11 -0.2 −0.1
+0.1 +1.0 -0.1 +1.0

−0.5
+0.0
+0.1

−0.0
+0.0

+0.0
−0.0

+0.0
+0.0 -0.1 -0.1 -0.1 +0.3+0.1

700–5000 11–18 -1.7 −0.1
+0.1 +0.5 +0.2 +0.4

−0.2
+0.0
+0.2

−0.0
+0.1

−0.0
−0.0

+0.0
+0.0 -0.1 +0.2 -0.1 +0.1 +0.1

700–5000 18–30 -0.8 −0.1
+0.1 +0.1 +0.1 +0.2

−0.5
+0.0
+0.0

−0.1
+0.1

−0.0
−0.3

+0.0
+0.0 -0.0 +0.2 -0.1 +0.0 +0.2

700–5000 30–50 -0.2 −0.3
+0.5 +0.1 +0.7 +2.1

+0.2
+0.0
−0.3

+0.0
+0.2

−0.1
−0.6

+0.0
+0.0 +0.0 -0.0 -0.1 -0.1 +0.5

5000–15000 7–11 -0.0 −0.2
+0.2 +1.5 -1.6 +0.1

−2.2
+0.0
+0.1

+0.0
−0.3

+0.1
−0.2

+0.0
+0.0 -0.1 +0.3 -0.1 +1.5 +0.2

5000–15000 11–18 -1.2 −0.2
+0.2 -2.7 +0.8 +0.2

−1.1
+0.0
−0.0

+0.2
−1.0

−0.2
−0.5

+0.0
+0.0 -0.8 -0.2 -0.1 +1.1+0.2

5000–15000 18–30 -1.8 −0.2
+0.1 +2.0 -0.1 +1.1

+1.1
+0.0
−0.0

−0.1
−0.4

−0.2
−0.7

+0.0
+0.0 -0.3 -0.1 -0.1 +0.7+0.2

5000–15000 30–50 -1.5 −0.2
+0.2 +4.5 +0.1 +1.0

−0.3
+0.0
−0.1

−0.1
+0.1

−0.2
+0.2

+0.0
+0.0 +0.4 +0.6 +0.2 +0.1+0.2

Table C.5: Breakdown of the uncorrelated uncertainty δuncor from table C.4. Shown are
the uncertainties associated with the reweighting of the MC models (δ1), the electron-energy
scale (δ2), the electron-finding algorithm (δ3), the electron calibration (δ4), the variation of
the p⊥,lab cut of the jets (δ5), the variation of the ptrack cut (δ6), the variation of the p⊥/

√
E⊥

cut (δ7), the variation of the zvertex cut (δ8), the variation of the rRCAL cut (δ9), the variation
of the electron-track distance cut (δ10), the relative normalisation of the background from
photoproduction events (δ11), the polarisation correction (δ12), the FLT track veto efficiency
correction (δ13) and the correction to QED Born level (δ14). The uncertainty associated with
the vertex position reweighting is not shown, as it is zero within the quoted number of digits.
For the asymmetric uncertainties, the upper number corresponds to the upward variation of
the corresponding parameter and the lower number corresponds to the downward variation.
For details on individual uncertainties, see chapter 10.
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C Cross section tables

Inclusive jet bin

Q2

[GeV2]

15
0–

20
0

15
0–

20
0

15
0–

20
0

15
0–

20
0

20
0–

27
0

20
0–

27
0

20
0–

27
0

20
0–

27
0

27
0–

40
0

27
0–

40
0

27
0–

40
0

27
0–

40
0

40
0–

70
0

40
0–

70
0

40
0–

70
0

40
0–

70
0

70
0–

50
00

70
0–

50
00

70
0–

50
00

70
0–

50
00

50
00

–1
50

00

50
00

–1
50

00

50
00

–1
50

00

50
00

–1
50

00

p⊥
[GeV] 7–

11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

7–
11

11
–1

8

18
–3

0

30
–5

0

In
cl

u
si

ve
je

t
b
in

150–200 7–11 100−38 −7 0 −13 6 2 0 13 −5 −1 −0 9 −3 −1 −0 9 −4 −2 −1 2 −1 −1 −1

150–200 11–18 −38 100 4 4 5−26 −0 −1 −4 7 1 1 −3 1 0 −0 −3 2 1 0 −1 0 0 0

150–200 18–30 −7 4 100 −1 0 3−36 1 −0 −0 9 −0 −0 0 −1 0 −0 0 0 0 −0 0 0 0

150–200 30–50 0 4 −1 100 0 −0 2−47 0 0 −1 14 0 −0 0 −3 0 0 0 0 0 −0 −0 −0

200–270 7–11 −13 5 0 0 100−41 −8 −1 −10 4 2 0 9 −3 −1 −0 7 −3 −1 −1 2 −1 −1 −0

200–270 11–18 6−26 3 −0 −41 100 −4 −1 3−17 1 0 −3 4 0 −0 −3 1 0 0 −1 0 0 0

200–270 18–30 2 −0−36 2 −8 −4 100 −5 −1 2−26 2 −1 −0 5 −0 −1 0 −0 0 −0 0 0 0

200–270 30–50 0 −1 1−47 −1 −1 −5 100 −0 0 3−39 −0 0 −1 10 −0 0 0 −1 −0 0 0 0

270–400 7–11 13 −4 −0 0 −10 3 −1 −0 100−38 −8 −1 −3 1 1 0 7 −3 −1 −1 2 −1 −0 −0

270–400 11–18 −5 7 −0 0 4−17 2 0 −38 100 −4 −1 0 −9 1 0 −2 2 0 0 −1 0 0 0

270–400 18–30 −1 1 9 −1 2 1−26 3 −8 −4 100 −3 −0 2−16 1 −0 0 1 −0 −0 0 0 0

270–400 30–50 −0 1 −0 14 0 0 2−39 −1 −1 −3 100 −0 0 2−25 −0 0 −0 3 −0 0 −0 −0

400–700 7–11 9 −3 −0 0 9 −3 −1 −0 −3 0 −0 −0 100−39 −9 −1 1 −0 −0 −0 2 −1 −0 −0

400–700 11–18 −3 1 0 −0 −3 4 −0 0 1 −9 2 0 −39 100 −5 −1 −1 −4 1 0 −1 0 0 0

400–700 18–30 −1 0 −1 0 −1 0 5 −1 1 1−16 2 −9 −5 100 −5 −0 1 −7 1 −0 0 0 0

400–700 30–50 −0 −0 0 −3 −0 −0 −0 10 0 0 1−25 −1 −1 −5 100 −0 0 1−10 −0 0 0 0

700–5000 7–11 9 −3 −0 0 7 −3 −1 −0 7 −2 −0 −0 1 −1 −0 −0 100−50−10 −2 1 −0 −0 −0

700–5000 11–18 −4 2 0 0 −3 1 0 0 −3 2 0 0 −0 −4 1 0 −50 100−10 −2 −0 −1 0 0

700–5000 18–30 −2 1 0 0 −1 0 −0 0 −1 0 1 −0 −0 1 −7 1 −10−10 100 −7 −0 0 −1 −0

700–5000 30–50 −1 0 0 0 −1 0 0 −1 −1 0 −0 3 −0 0 1−10 −2 −2 −7 100 −0 −0 −0 −1

5000–15000 7–11 2 −1 −0 0 2 −1 −0 −0 2 −1 −0 −0 2 −1 −0 −0 1 −0 −0 −0 100−67−15 −3

5000–15000 11–18 −1 0 0 −0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −0 −1 0 −0 −67 100−12 1

5000–15000 18–30 −1 0 0 −0 −1 0 0 0 −0 0 0 −0 −0 0 0 0 −0 0 −1 −0 −15−12 100−17

5000–15000 30–50 −1 0 0 −0 −0 0 0 0 −0 0 0 −0 −0 0 0 0 −0 0 −0 −1 −3 1−17 100

D
ij
et

b
in

125–250 8–15 2 26 5 3 −1 11 −0 −1 −7 2 1 1 −6 3 1 −0 −6 3 1 1 −2 1 0 0

125–250 15–22 2 13 18 2 1 4 7 −1 −0 −1 −1 0 −0 0 0 −0 −0 0 0 0 −0 0 0 0

125–250 22–30 −0 4 20 5 −1 −0 10 −1 −0 0 −2 0 −0 0 0 −0 −0 0 0 0 −0 0 0 0

125–250 30–60 1 4 2 36 −0 −0 −1 10 −0 0 0 −2 −0 0 0 0 −0 0 0 0 −0 0 0 0

250–500 8–15 −9 2 1 0 −5 6 1 0 4 19 0 0 −4 7 0 0 −7 3 1 1 −2 1 0 0

250–500 15–22 −1 0 −1 0 −1 2 2 0 1 9 15 0 −1 2 5 0 −1 0 −0 0 −0 0 0 0

250–500 22–30 −1 1 −1 0 −1 0 3 −0 −1 0 21 0 −1 0 6 1 −1 0 −1 0 −0 0 0 0

250–500 30–60 −0 1 0 −1 −0 0 −0 2 −1 0 1 33 −0 0 0 10 −0 0 0 −1 −0 0 0 0

500–1000 8–15 −8 3 0 −0 −6 3 1 0 −7 −1 1 0 4 19 −0 0 1 13 1 1 −2 1 0 0

500–1000 15–22 −2 1 −0 0 −1 1 1 −0 −2 −1 −4 0 1 10 18 1 −1 6 9 −0 −0 0 −0 −0

500–1000 22–30 −1 1 −0 −0 −1 0 1 0 −1 0 −4 −1 −1 −0 22 2 −1 −0 14 −0 −0 0 −0 0

500–1000 30–60 −1 0 0 −1 −1 0 −0 4 −1 0 0−10 −1 0 −1 37 −1 0 −1 22 −0 0 −0 −0

1000–2000 8–15 −6 2 0 −0 −5 2 0 0 −4 2 0 0 −5 −0 1 0 6 24 −1 0 −1 0 0 0

1000–2000 15–22 −2 1 0 0 −1 0 −0 0 −1 1 1 −0 −2 −0 −2 0 1 13 17 0 −0 −0 −0 −0

1000–2000 22–30 −1 0 0 0 −1 0 −0 −0 −1 0 0 0 −1 0 −2 −1 −1 −0 25 1 −0 0 −1 −0

1000–2000 30–60 −1 1 0 0 −1 0 0 −1 −1 0 0 1 −1 0 0 −5 −0 1 −1 42 −0 0 −0 −1

2000–5000 8–16 −4 1 0 −0 −3 1 0 0 −3 1 0 −0 −4 −0 0 0 3 20 −1 −0 −1 1 0 0

2000–5000 16–28 −2 1 0 0 −1 0 −0 −0 −1 0 1 0 −1 0 −3 −0 0 4 28 0 −0 0 0 −0

2000–5000 28–60 −1 0 0 0 −1 0 0 −0 −1 0 0 1 −1 0 −0 −3 −1 1 3 25 −0 0 −0 0

5000–20000 8–16 −2 1 0 −0 −2 1 0 0 −2 1 0 0 −2 1 0 0 −2 1 0 0 8 24 −3 0

5000–20000 16–28 −1 0 0 −0 −1 0 0 0 −1 0 0 0 −1 0 0 0 −1 0 −0 0 3 9 31 −1

5000–20000 28–60 −1 0 0 −0 −1 0 0 0 −1 0 0 −0 −1 0 0 0 −1 0 0 −0 0 1 7 39

Table C.6: Correlation matrix of the unfolding uncertainty within the inclusive jet cross section
measurement and between the inclusive jet measurement and the previous dijet measurement.71

Correlations are given in per cent. The transverse momentum p⊥ is p⊥,Breit for the inclusive
jets and p⊥,Breit for the dijets.
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C.2 With matrix unfolding

Q2

[GeV2]
p⊥,Breit
[GeV]

σ
[pb]

δuncor
[%]

c′QED
δ′QED
[%]

150–200 7–11 85.4 1.7 0.856 0.2
150–200 11–18 32.6 1.8 0.954 0.4
150–200 18–30 6.82 1.8 0.986 1.0
150–200 30–50 0.913 5.6 0.994 3.0

200–270 7–11 70.0 1.6 0.851 0.2
200–270 11–18 32.1 1.3 0.924 0.3
200–270 18–30 6.91 2.8 0.983 0.8
200–270 30–50 0.617 7.3 0.994 3.0

270–400 7–11 63.4 1.7 0.871 0.2
270–400 11–18 33.5 2.3 0.870 0.3
270–400 18–30 6.93 2.2 0.976 0.6
270–400 30–50 0.712 5.0 0.986 1.8

400–700 7–11 55.4 1.1 0.919 0.2
400–700 11–18 35.2 1.2 0.825 0.2
400–700 18–30 9.13 1.1 0.947 0.5
400–700 30–50 1.42 3.3 0.988 1.5

700–5000 7–11 50.3 1.3 0.970 0.1
700–5000 11–18 35.4 1.8 0.896 0.1
700–5000 18–30 17.1 0.9 0.809 0.2
700–5000 30–50 2.67 1.5 0.855 0.5

5000–15000 7–11 2.65 2.9 0.994 0.2
5000–15000 11–18 2.27 3.5 0.989 0.2
5000–15000 18–30 1.270 3.1 0.950 0.2
5000–15000 30–50 0.330 4.9 0.702 0.2

Table C.7: Cross sections using the alternative QED correction factors. These numbers
correspond to a cross section definition including QED radiation on the electron side and
including a cut EISR < 8.5GeV on the energy of the ISR photon. Also given are the
corresponding QED correction factors that have been applied and their uncertainties. All
numbers and definitions that are not listed are identical to those from table C.4. The column
δuncor represents the sum of uncorrelated systematic uncertainties from table C.5, but using the
uncertainties of the alternative QED correction, rather than the nominal one. See section 9.5.3
for more details.
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