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Abstract

Conformal Field Theories (CFTs) are ubiquitous in modern theoretical physics and play
an important role in high-energy physics and condensed matter physics alike, describing
the universal behavior of second-order phase transitions. The notion of a CFT can be
generalized by introducing extended objects, or defects. These defects, breaking part of
the conformal symmetry, give access to new observables, and provide interesting new dy-
namics. Conformal defects are those that preserve conformal symmetry on the defect, and
can be studied with similar methods employed to study CFTs without extended objects.
In particular, one can use well-known perturbative methods such as the ε-expansion to
compute critical exponents, or employ a modern approach and use the conformal boot-
strap to constrain bulk and defect CFT data. In this thesis we study a plethora of
conformal defects, ranging from highly constraining supersymmetric setups to physical
and experimentally realizable setups without supersymmetry, including interactions be-
tween scalars and fermions. We will use the ε−expansion and the conformal bootstrap,
and in this way combine the old and the new.

Zusammenfassung

Konforme Feldtheorien (KFT) sind allgegenwärtig in der moderne theoretischen Physik
und spielen eine wichtige Rolle in der Hoch-Energiephysik und der Physik der konden-
sierten Materie, da sie das Universalverhalten von Phasenübergängen zweiter Ordnung
beschreiben. Die Einführung von ausgedehnten Objekten, oder Defekten, generalisieren
den Begriff einer konformen Feldtheorie. Solche Defekte gewähren uns Zugang zu neuen
Messgrößen und bieten eine interessante, neue Dynamik, weil sie Teile der konformen
Symmetrie brechen. Konforme Defekte sind Defekte, die die konforme Symmetrie auf
dem Defekt erhalten. Um sie zu studieren, können ähnliche Methoden wie im Studium
der KFTs ohne ausgedehnte Objekte verwendet werden. Vor allem kann man bekannte
störungsbezogene Methoden, wie die ε−Expansion zur Berechnung der kritischer Expo-
nenten, oder moderne Ansätze, zum Beispiel den konforme Bootstrap um Gros und Defekt
KFT Daten einzuschränken, verwenden. In dieser Arbeit studieren wir eine Fülle von
konformen Defekten, angefangen bei sehr einschränkenden, supersymmetrischen Modellen
bis zu physischen und experimentell realisierbaren Modellen ohne Supersymmetrie mit In-
teraktionen zwischen skalaren und fermionischen Felden. Wir benutzen die ε−Expansion
und den konformen Bootstrap um auf diese Weise das Alte und Neue zu kombinieren.
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Chapter 1

Introduction

There is a natural distinction between long-distance (low energy) and short-distance (high
energy) physics in theoretical physics. Low-energy physics is the domain of condensed
matter physics, of effective field theories, and materials that often exhibit remarkable
behavior. On the other side, high-energy physics encaptures fundamental interactions
between elementary particles, string theory, and other theories of quantum gravity. A
bridge between these two domains is formed by the Renormalization Group (RG) flow
of Quantum Field Theories (QFTs). QFTs are evaluated at different energy scales, and
coupling constants in the theory evolve or “run” with these energies. As such, the RG
flow describes physics between the UV (high energy) and the IR (low energy).

The term Renormalization Group flow first appeared in a paper in 1955 by Bogoli-
ubov and Shirkov [1], following earlier pioneering work by Stückelberg and Petermann,
and Gell-Mann and Low [2, 3]. However, it was Kenneth Wilson who solidified the
approach, and gave a more physical meaning to the abstract concept of renormalizing
quantum field theories [4]. The RG flows of QFTs start or end in fixed points, which
correspond to scale-invariant theories [4, 5]. These theories are in general also invari-
ant under special conformal symmetry, which preserves the angles in a theory, and the
fixed point corresponds to a conformal field theory (CFT).1 CFTs describe second-order,
continuous phase transitions, for which the correlation length goes to infinity. The re-
quirement of scale and conformal invariance severely constrains the form of correlation
functions between different operators. In particular, higher-point correlation functions
are related to lower-point correlation functions through the Operator Product Expansion
(OPE), and one considers a CFT to be “solved” if one knows its entire spectrum and
the normalization of the three-point correlation functions. While not an easy task, this
is already a simplification with respect to QFTs, where the OPE is not exact, and one
would need to compute all correlation functions individually. In this way, CFTs can be
a gateway to a better understanding of QFTs.

A well-known example is the conformal window of QCD. QCD is famously hard to
solve, and it is hard to obtain reliable predictions through perturbative methods due to
the strong coupling constant at low energies. Various nonperturbative techniques, the
most well-established one being lattice QCD, have been used over the years to tackle
this problem. Together with methods to improve perturbative studies of QCD, they

1The question whether scale invariance implies conformal invariance is an interesting and longstand-
ing problem. Proof in 2d was provided in [6], but counterexamples are also known, e.g. [7]. In higher
dimensions, under certain assumptions such as unitarity, Poincaré invariance, a discrete spectrum, un-
broken scale invariance in the vacuum, and the existence of a scale current, it seems that scale invariance
implies conformal invariance and to date, no counterexamples have been found. See for a review [8].

1



2 CHAPTER 1. INTRODUCTION

have led to a greatly improved understanding of QCD. In addition, there is a “window”
for a certain number of fermions Nf , given a certain amount of colors Nc, in which the
theory becomes conformally invariant citation!. Here, it is possible to use nonperturbative
methods specific to CFTs and one might hope to gain even more insight in the full theory
of QCD.

In condensed matter the examples of CFTs corresponding to interesting and often
surprising behavior of materials, are ubiquitous. The most famous one is the critical
point of water or other liquids, which exhibits critical opalescence, leading to the liquid
becoming luminous. The CFT describing this phase transition, the critical point of the
famous 3d Ising model, also describes the second-order phase transition of ferromagnets
at the Curie point. It is said that these phase transitions belong to the same universality
class, and it becomes clear that the same underlying CFT can describe vastly different
physical systems. The behavior of fields or operators and their correlation functions in
the critical point are the same, and are given by critical exponents, e.g. the susceptibility
exponent, the magnetisation exponent, or the specific heat exponent. These are related
to CFT quantities such as conformal dimensions of operators and the dimension d of
the CFT itself. Throughout this thesis, we encounter different examples of universality
classes besides the 3d Ising model, such as the O(N) CFTs, the Yukawa CFTs, and the
Wess-Zumino CFTs. Distinctions between these universality classes of CFTs are given
by e.g. the number of fundamental fields (scalars, fermions or gauge fields) in the theory,
or the number of dimensions the theory is defined in. When studying CFTs, in general a
distinction is made between CFTs in one dimension, CFTs in two dimensions, and CFTs
in higher dimensions. In this thesis, we focus on CFTs in d > 2, however 1d CFTs will
appear as conformal line defects. They are further discussed in section 2.2.4.

CFTs can be studied either perturbatively or nonperturbatively. Perturbative ap-
proaches rely on the existence of a small parameter to expand in. In a scale invariant
theory, it is sometimes difficult to find such a parameter. However, there are a few ex-
pansions that are often considered in the context of CFTs. Examples are the large−N
expansion, the weak coupling expansion, and the ε-expansion, where we deform the num-
ber of dimensions d in which the CFT is evaluated by a (small) parameter ε. In this
thesis we use the ε-expansion to study CFTs across dimensions, and focus on CFTs with
an upper critical dimension d = 4, such as the Ising model or ϕ4 theory, and the O(N)
models, for which perturbative results are known up to 7-loop order [9]. There are other
well-studied CFTs whose upper critical dimension is higher, e.g. the Yang–Lee edge sin-
gularity with dc = 6, corresponding to ϕ3 theory, or lower, e.g. the purely fermionic
Gross–Neveu or Nambu–Jona-Lasinio models with dc = 2.

The d = 4−ε expansion has a long history in QFT, and has been used in the context of
dimensional regularization to renormalize theories such as QED and electroweak theories.
There, one is interested in d = 4 and the limit ε → 0 is taken after expanding in orders
of ε. In the context of CFTs, it is often the 3d physics that is the most interesting.
Take again the example of the Ising model, which is a free theory in d = 4 (its upper-
critical dimension), but becomes interacting in d = 4 − ε. The corresponding fixed point
is the famous Wilson–Fisher fixed point [10], proportional to λ ∼ O(ε). In this case,
we would like to set ε → 1, which of course brings up the question of convergence of
the perturbative expansion. The general technique of computing critical exponents in
the ε-expansion and concerns like these will be discussed later in this thesis. There are
many known interacting, conformal fixed points in the ε-expansion. Other well-known
examples are the Wess-Zumino fixed point for superconformal Wess–Zumino models [11],
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the Banks–Zaks fixed point for nonabelian CFTs such as conformal QCD [12], and the
Wilson–Fisher–Yukawa fixed points for CFTs with scalar-fermion interactions. We will
encounter some of them later in this thesis.

Although perturbative expansions give us a good grasp on the theory, some properties
only become apparent in nonperturbative studies and some CFTs can only be studied
nonperturbatively due to being strongly interacting/coupled. Nonperturbative results
can in addition be used to compare with perturbative calculations, and can lead to an
intriguing interplay between the two. Nonperturbative techniques for CFTs include e.g.
Monte Carlo simulations, lattice calculations, and the conformal bootstrap. Monte Carlo
simulations are an excellent way to study strongly coupled many-body systems, and with
the advancement of computer power can obtain very precise results for various observables
and critical exponents. One is not necessarily restricted to the critical point and can study
a larger domain of phase transitions. Studying QFTs on a lattice is a widely applied
technique in high-energy physics, and allows one to study strongly coupled theories such
as QCD. For CFTs, they are mostly used to study them in two dimensions. In 1944, this
method was used by Onsager to solve the 2d Ising model [13].

The conformal bootstrap on the other hand is a method specifically tailored to CFTs.
The idea is to constrain CFTs by only making use of their symmetry properties and
a handful of assumptions such as associativity of the OPE, and sometimes unitarity,
but to remain agnostic about microscopic details of the theory. By using this minimal
input, one can then “pull oneself up by the bootstraps” and either constrain the space
of possible CFTs, or determine critical exponents of a particular CFT of interest. This
method is fully nonperturbative, and can also be applied to CFTs without a Lagrangian
description. The conformal bootstrap, already formulated in the ’70s [14, 15], booked
its first great succes in 2 dimensions, when in 1984 the authors of [16] used it to solve
a set of 2d CFTs called the minimal models. However, 2d CFTs are invariant under
the severely constraining, infinite Virasoro algebra, while this algebra is not present in
d > 2. In particular, the minimal models in two dimensions have a finite number of
Virasoro primaries, operators from which all other operators can be constructed as infinite
towers of descendants, while the number of conformal primaries is infinite in CFTs in
d > 2. Hence, it proved more difficult to bootstrap interacting CFTs in higher dimensions
and additional approaches and techniques were required. The first breakthrough for
higher-dimensional CFTs came in 2008 [17], where they numerically computed bounds
on conformal dimensions in four-dimensional CFTs. Since then, there has been a lot of
developments, both in the numerical and the analytic conformal bootstrap.

The numerical conformal bootstrap has known great successes in determining confor-
mal data to high precision in the last decade. A milestone was the Ising model “kink”: a
feature in the numerical bound on the dimension of the lowest-lying operator in a scalar
CFT in 3d, that corresponds to the interacting 3d Ising CFT [18]. The state-of-the-art for
the numerical bootstrap nowadays is very precise islands for the Ising model and other
O(N) models [19, 20], as well as for other CFTs [21, 22]. The precision has reached a
point where it competes or surpasses other methods to study CFTs, and it can be used
as an independent source to solve discrepancies between for example Monte Carlo studies
and experiment, as was done in the case of the O(2) model [23].

The analytic conformal bootstrap for d > 2 is generally considered to have started a
few years later, in 2012, with the two works [24, 25]. Here, it was shown that there are
families of operators parametrized by their spin, so-called twist families that exist in any
CFT in d > 2. Another breakthrough came in 2017 with the work of Caron-Huot [26],
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which introduced the Lorentzian inversion formula, neatly capturing and generalizing
the analyticity in spin of the spectrum of CFTs. Other directions within the analytic
conformal bootstrap include the large charge bootstrap [27, 28], analytic functionals [29–
32], the Mellin space bootstrap [33–36], and the superconformal bootstrap for protected
subsectors [37–39].

We cannot end our discussion of CFTs without mentioning the AdS/CFT correspon-
dence [40]. It states that there is a one-to-one correspondence between quantities in
Anti-de Sitter (AdS) spacetime in d + 1 dimensions, and correlation functions in a d-
dimensional CFT living on the boundary of the AdS space. The original setup was the
large-N superconformal field theory N = 4 SYM (with gauge group SU(N)) in four
dimensions on the boundary of AdS5×S5, where the bulk theory corresponds to type IIB
string theory. Since then, the AdS/CFT correspondence has been established in many
dimensions and extensively tested. It provides us with a way to understand quantum
gravity if we have a good grasp on the CFT living on the boundary. The conformal al-
gebra can be enhanced to a superconformal algebra by including supercharges, resulting
in a superconformal field theory (SCFT). The addition of supersymmetry (SUSY) puts
extra constraints on the CFT spectrum and on OPE coefficients of certain operators. On
top of that, techniques such as localization can be used to compute SCFT data. We will
not discuss SCFTs in the general introduction, but discuss a specific setup in section 4.

1.1 Conformal defects

Besides local operators, a CFT can contain extended operators or defects. These defects
can break conformal symmetry in the bulk, relaxing the constraints on correlation func-
tions of local operators. Hence, they provide access to observables which are normally
hidden in CFTs, such as one-point functions of local operators in the presence of the
defect, or the expectation value of the defect itself. Defects are important objects his-
torically used to study confinement [41–43], to describe generalized symmetries [44], to
investigate dualities between 4d gauge theories [45], and more. Conformal defects are
a special class of defects which preserve a conformal subgroup on the defect. They can
be studied perturbatively in various limits, similar to the bulk CFT. In this thesis the
focus lies on the ε-expansion, where the defect can either change dimension with the bulk
(fixed codimension), or have a fixed dimension while the codimension changes with ε.
Both cases will be discussed later on in this thesis.

In addition, conformal defects can be included in the modern conformal bootstrap
program, to extend it to the defect bootstrap [46, 47]. Using the defect bootstrap, one can
constrain both bulk and defect CFT data in a nonperturbative way. The techniques that
have been developed and used are similar to those of the conformal bootstrap, but there
are some important differences that are highlighted in section 3.4. For example, even
though a conformal symmetry group is preserved on the defect, the theory on the defect
is not a local CFT due to the absence of a conserved stress-energy tensor. The breaking
of the bulk conformal symmetry changes the kinematics of correlators of bulk operators
in the presence of the defect, which has been developed in [48–52]. In particular, one can
use the bootstrap to study two-point correlation functions of bulk operators, which are
no longer fully fixed kinematically.

Defects also exist in superconformal field theories, and can either completely break or
preserve part of the supersymmetry in the bulk. We can define the class of superconformal
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defects as preserving a superalgebra on the defect. Often, one can have different super-
conformal defects in the same SCFT depending on which supercharges are left unbroken
by the defect. We will see an example of this in chapter 4.

Conformal defects can be classified according to their dimension and codimension.
Boundaries are codimension-1 objects and are somewhat special. They allow for only one
defect cross-ratio, and do not admit transverse rotations, and thus operators do not have
transverse spin. They have gotten a lot of attention in recent years [53–66], and have been
studied for a variety of theories. In the two-dimensional minimal models, Cardy classified
the conformal boundary conditions now known as Cardy boundary conditions [67]. Efforts
to constrain the space of possible boundary theories in higher-dimensional bulk CFTs
using the analytic defect bootstrap have also been made [56]. The boundary has also
been studied using numerical bootstrap [68–70]. A closely related defect is the interface.
Where the boundary only has a bulk CFT on one side and a trivial or non-physical theory
on the other, the interface can connect two CFTs with each other. One can also study
two boundaries or interfaces connected to each other, forming an edge [71, 72].

Higher-codimension defects can preserve transverse rotations in addition to conformal
symmetry on the defect. A special class are monodromy defects, which are codimension-
2 defects that can be interpreted as domain walls [73, 74]. Operators acquire a phase
when going around the monodromy defect, resulting in fractional transverse spin. In the
ε-expansion, since the codimension is fixed to q = 2, these defects change dimension with
the bulk theory. Studies of these defects in the ε−expansion can be found in [75–79].

Line defects are one-dimensional defects of arbitrary codimension that can exist in
any CFT with dimension d > 1. In d = 2 they “coincide” with a boundary or interface.
Since one-dimensional CFTs are non-local, the interpretation as conformal line defects
comes very naturally. Well-known examples of conformal line defects in gauge theories
are Wilson lines or loops [41]. They have been studied extensively in the literature, es-
pecially embedded in N = 4 SYM, where the conformal Wilson line or loop is dual to a
string worldsheet in AdS2 [80]. Another class are the localized magnetic field or pinning
line defects, constructed by integrating over a scalar field [81–84]. These defects have
been studied in the O(N) model [85–88] and generalized Yukawa CFTs [89–91] Con-
straining line defects and one-dimensional CFTs using the modern conformal bootstrap
has proven to be very successful in the case of N = 4 SYM due to the combination
with integrability [92–94]. In addition the numerical bootstrap [95, 96, 85], and analytic
bootstrap methods such as the inversion formula [97, 78, 98, 99] and analytic function-
als [30, 32, 100, 101], have been used to study line defects and one-dimensional CFTs.
They have also been tackled using perturbative techniques such as the ε−expansion or
the large−N expansion [84, 89, 90].

There are other defects with higer dimension and codimension. Surface defects are
two-dimensional defects, which coincide with boundaries and interfaces in a 3d CFT. They
exist as an analog to the localized magnetic field line defect in the O(N) and Yukawa
models in d = 4 − ε, where now a surface operator is inserted in a CFT in d = 6 − ε
dimensions [102–105]. In the context of the AdS/CFT correspondence, they are dual to
branes in different AdS backgrounds. In 4d gauge theories they are studied in connection
with the geometric Langlands program [106, 107]. Superconformal surface defects can
also be defined in 6dN = (2, 0) theories [108], where notably, one can define another type
of superconformal defect with codimension two [109]. These types of defects will not play
a role in this thesis, with the exception of the monodromy defect, which is defined as a
surface defect in 4d.
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There are many applications of conformal defects in different areas of theoretical
physics. In the context of string theory and holography, they are related to D-branes and
boundaries of open strings. They appear in the context of quantum information theory;
codimension-2 twist defects in n copies of a CFT can be used to study the so-called
Rényi entropy [48]. In condensed matter, they correspond to (magnetic) impurities, or
boundaries of topological insulators. An interesting point of view is also provided by
their interpretation as theories with long-range interactions [110, 111].

1.2 Layout of the thesis

The aim of this thesis is to study extended objects in CFTs using several approaches.
The “old” method of perturbative d = 4−ε expansion will play a central role, as does the
“new” method of nonperturbative conformal bootstrap. Combining the two gives us more
powerful constraints, and the ε-expansion provides us with guidance in a nonperturbative
bootstrap study. As we combine the old with the new, we also move through different
theories and go from a controlled, supersymmetric setup to a more and more realistic
setup that describes many interesting materials and phenomena in condensed matter.

This work is structured as follows. In chapter 2, we discuss aspects of CFTs necessary
to understand the main results of this thesis. We focus on CFTs in general higher
dimensions (d > 2), but also comment on one-dimensional CFTs. Furthermore, the ε-
expansion is discussed as a perturbative method to study CFTs. The final part of the
section introduces the conformal bootstrap program, and shows how one can use either
numerical or analytical techniques to study CFTs nonperturbatively.

Chapter 3 is dedicated to conformal defects, and explains how the conformal algebra
and correlation functions of conformal primaries get modified in the presence of a defect.
Several types of defects are discussed, and it is shown how they can be studied in the
ε-expansion. The defect conformal bootstrap is introduced as an analog of the conformal
bootstrap to study CFTs including defects. There are some important differences with
respect to the bootstrap for CFTs without defects, which are pointed out at the end of
this chapter.

After the review of these concepts, the main results of the thesis will be presented. In
chapter 4 (appeared as [62]), we study 1/2-BPS superconformal boundaries in 3dN = 2
superconformal field theories. We analytically continue one such boundary to d = 4 − ε
dimensions, and bootstrap correlators of bulk chiral fields in the 4−ε expansion. Then, in
chapter 5 (appeared as [85]), we study line defects with additional O(2) global symmetry
using the numerical conformal bootstrap. We take two specific line defects to compare
with our general results: a monodromy line defect and a localized magnetic field line
defect. The latter can also appear in Yukawa-type theories, and is the subject of the
work presented in chapter 6 (appeared as [91]). We study correlation functions of both
bulk and defect operators for general Yukawa CFTs with N scalars and Nf fermions in
the d = 4 − ε expansion. We expand several of the obtained correlators in conformal
blocks to extract the conformal data. The thesis concludes with a summary, conclusion,
and outlook in chapter 7.



Chapter 2

Conformal Field Theory

In this chapter we introduce conformal field theories in general higher dimensions d >
2. The chapter starts with a discussion of the conformal algebra in section 2.1, where
the notion of conformal primaries is introduced. The state-operator correspondence
and unitarity bounds are also treated in this section. Section 2.2 contains a review
of the structure of correlation functions of conformal primaries, the Operator Product
Expansion, and the construction of conformal blocks. We briefly comment on CFTs in
one dimension at the end of this section.

CFTs can be studied perturbatively across dimensions using the ε-expansion. In sec-
tion 2.3 some aspects of Renormalization Group (RG) techniques are reviewed using the
example of ϕ4 theory in d = 4−ε dimensions; in three dimensions this model corresponds
to the 3d Ising model. We show how to compute various critical exponents for this model
in the ε−expansion.

Section 2.4 is dedicated to a nonperturbative method to study CFTs: the conformal
bootstrap. The crossing equations for four-point correlation functions of scalars are given
and the two main approaches within the conformal bootstrap are discussed: the numerical
bootstrap in section 2.4.2 and the analytic conformal bootstrap in section 2.4.3.

There are many excellent reviews and lecture notes on CFTs and the conformal boot-
strap, which are more detailed and complete than the introduction given in this thesis,
serving merely as an overview and a reminder of concepts used later on. For CFTs and
the conformal bootstrap, see for example [112–115].

2.1 Conformal Algebra

The conformal symmetry group in d spacetime dimensions is SO(d+ 1, 1) for Euclidean
CFTs and SO(d, 2) for Lorentzian CFTs. In this thesis we work with Euclidean CFTs, but
in some cases, such as when considering the lightcone limit introduced in section 2.4.3, the
Lorentzian signature is preferred. The conformal group contains the Poincaré symmetry
group of QFT generated by translations and rotations, and in addition to that, CFTs are
scale invariant and invariant under special conformal transformations. The generators of
these symmetries together form the conformal algebra, and can be found by solving the
appropriate Killing equations.

7
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2.1.1 Killing equations

A local QFT should satisfy the condition that the stress-energy tensor Tµν is conserved:

∂µT
µν(x) = 0 , (2.1.1)

as long as there are no other operator insertions. A local CFT requires a stronger
condition on the stress-energy tensor, namely that it is not only conserved, but also
traceless:

T µµ = 0 . (2.1.2)

This can be interpreted as the theory being invariant under a local rescaling of the metric:

δgµν = ω(x)gµν . (2.1.3)

The demand of conservation and tracelessness of the stress-energy tensor results in the
conformal Killing equation:

∂µϵν + ∂νϵµ = c(x)δµν , (2.1.4)

where c(x) is a scalar, position-dependent function. This equation has the following
solutions for the Killing vectors ϵµ:

pµ = ∂µ ,

mµν = xν∂µ − xµ∂ν ,

d = xµ∂µ ,

kµ = 2xµ(x · ∂) − x2∂µ ,

(2.1.5)

which are respectively translations, rotations, dilatations and special conformal transfor-
mations.

2.1.2 Conformal algebra in general d

Each of the Killing vectors in eq. (2.1.5) corresponds to a conserved charge:

Qϵ(Σ) = −
∫
Σ

dSµϵν(x)T µν(x) . (2.1.6)

These conserved charges are momentum Pµ, angular momentum Mµν , scaling D, and
special conformal symmetry Kµ. Their commutation relations form the conformal algebra,
which in general spacetime dimensions d can be written as follows:

[Pµ,Kν ] = 2Mµν − 2Dδµν ,
[D,Pµ] = Pµ ,
[D,Kµ] = −Kµ ,

[Mµν ,Pρ] = δνρPµ − δµρPν ,
[Mµν ,Kρ] = δνρKµ − δµρKν ,

[Mµν ,Mρσ] = δνρMµσ − δµρMνσ + δνσMρµ − δµσMρν ,

(2.1.7)

where µ, ν, · · · = 1, · · · , d. All other commutators vanish. The generators can be recast
in a more compact form:

Ld+1,µ =
1

2
(Pµ −Kµ) , Ld+2,µ =

1

2
(Pµ + Kµ) , Lµν = Mµν , Ld+1,d+2 = D ,

[LAB, LCD] = ηBCLAD − ηACLBD + ηBDLCA − ηADLCB ,
(2.1.8)
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where ηAB = diag(1, 1, · · · ,−1) is a d + 2 dimensional metric. From this it is easily
seen that the symmetry group is SO(d+ 1, 1). It also indicates that when considering a
(d+1)−dimensional space Rd+1 instead of Rd, the conformal transformations act linearly
on operators instead of quadratically. This is the idea of the embedding space formalism.
Dating back to Dirac [116], who used it to generalize the Maxwell equations to conformal
space, the embedding space formalism provides a compact way to construct correlation
functions of operators. We will not encounter the embedding space formalism in this
thesis. For the interested reader, reviews can be found in e.g. [113, 114].

2.1.3 Representations of the conformal algebra

Having established the form of the conformal algebra, we can focus on how its generators
act on local operators Oa and classify the operators in terms of different representations
of the SO(d+1, 1) symmetry. Local operators at the origin, denoted by Oa(0), transform
as irreducible representations of the SO(d) rotation symmetry group:

[Mµν ,Oa(0)] = (Sµν)baOb(0) . (2.1.9)

The matrices Sµν satisfy the same algebra as Mµν . In the rest of this section, we use the
example of scalar operators O, which transform in the trivial representation of SO(d). We
can find the action on O(x), where the operator is no longer at the origin, by considering

O(x) = eP·xO(0) , (2.1.10)

and using the commutation relations in eq. (2.1.7). Since a CFT is scale invariant, the
dilatation operator can be diagonalized such that it acts on operators in the origin as:

[D,O(0)] = ∆O(0) . (2.1.11)

The eigenvalue ∆ is called the conformal dimension of the operator O(0), and labels the
operator in question.1 In principle, ∆ can take arbitrary values, with the constraint that
for unitary theories, ∆ ≥ 0. However, we will see that there exist special operators called
protected operators, which have fractional or integer values of ∆. The unique operator
with ∆ = 0 is the identity.

If one acts with the generator of special conformal transformations Kµ on an operator
with dimension ∆, Kµ becomes a lowering operator:2

DKµO(0) = (∆ − 1)KµO(0) . (2.1.12)

The equation above, together with the constraint that ∆ ≥ 0 for unitary theories, implies
there is an operator for which

[Kµ,O(0)] = 0 . (2.1.13)

We call these operators conformal primaries. In a similar way, the generator of transla-
tions Pµ acts as a raising operator:

DPµO(0) = (∆ + 1)PµO(0) . (2.1.14)

Other operators can then be constructed from the conformal primaries with conformal
dimension ∆n = ∆O + n, n ∈ Z, which are called conformal descendants. Usually, we are
only concerned with correlation functions between conformal primaries, and from here
on the operators considered are primary operators, unless specified otherwise.

1Spinning operators are labeled by both their conformal dimension and their spin ℓ.
2Note that here we make use of the shorthand KµO(0) ≡ [Kµ,O(0)].
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Figure 2.1: Radial quantization versus cylindrical quantization, figure from [113]

2.1.4 State-operator correspondence

So far we have studied how the conformal algebra acts on operators. We can also think of
a particular quantization of the theory, and relate operators to states in a Hilbert space
H. A natural choice for scale-invariant theories is radial quantization, in which spacetime
is foliated in concentric circles around the origin.3 States evolve from one foliation or
circle to the next by acting with an evolution operator Û . This evolution operator is
constructed using the dilatation operator D:

Û = ei∆log r , (2.1.15)

where r is the radius of the circle. The evolution of states is then given by:

⟨Oout|Û |Oin⟩ . (2.1.16)

In radial quantization, D acts as a Hamiltonian and evolves an operator over time, and
one can construct states with a defined conformal dimension ∆. This is called the state-
operator correspondence. Since the dilatation operator commutes with the generator of
rotations Mµν , states can also have a defined spin ℓ.

For conformal theories, this picture can be expanded further, and one can consider
the evolution of operators along a cylinder, see figure 2.1. The cylinder and flat space are
conformally equivalent, since their metric is related by a Weyl transformation:

ds2cyl = dτ 2 + ds2Sd−1 =
1

r2
ds2flat . (2.1.17)

In the cylindrical picture, states now evolve along cylindrical time τ , with τ = log r, and

Û = ei∆τ . (2.1.18)

The equivalence between cylindrical and flat space plays a role in the AdS/CFT cor-
respondence. If Anti-de Sitter spacetime is described in the usual, so-called “global
coordinates”, it can be depicted as a cylinder. Time evolution along τ in AdS is then
conformally equivalent to radial quantization and evolution along r in the CFT.

3Of course, instead of the origin, one can take any arbitrary point.
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2.1.5 Unitarity bounds

From the radial or cylindrical quantization and the “state” picture, we can derive bounds
on conformal dimensions of operators in unitary theories.4 It was already mentioned in
section 2.1.3 that for unitary theories, ∆ needs to be zero (the identity) or positive. Let
us derive this result, and find stronger constraints. Cylindrical quantization provides a
natural inner product, and for unitary theories we can write:

|P0 |O⟩ |2 = ⟨O|K0P0|O⟩ = 2∆ ⟨O|O⟩ → ∆ ≥ 0 . (2.1.19)

Here we have made use of the fact that P†
µ = Kµ, and O is a primary such that

Kµ |O⟩ = 0. We can continue taking inner products, now including descendants defined
by Pµ1 · · · Pµi |O⟩:

|PµPµ |O⟩ |2 = ⟨O|KνKνPµPµ|O⟩ = 4∆(2 + 2∆ − 2) ⟨O|O⟩ , (2.1.20)

where the last equality is found by repeatedly using the commutation relations in eq. 2.1.7.
This results in stronger bounds on ∆, and one might wonder if, in order to find the
strongest possible unitarity bound, one needs to consider infinitely many descendants.
Fortunately, the equation above already results in the optimal unitarity bound for scalars.
Repeating this excercise for spinning operators, one finds:5

∆ = 0 (identity) ,

∆ ≥ d− 2

2
, ℓ = 0 , (2.1.21)

∆ ≥ ℓ+ d− 2 , ℓ > 0 .

These bounds will play an important role in the numerical conformal bootstrap of sec-
tion 2.4.2.

2.2 Conformal kinematics

2.2.1 Conformal correlators

The requirement of conformal symmetry heavily restricts the form of correlation functions
between operators, and many correlation functions are fully fixed kinematically. In this
section, we restrict ourselves to correlators of scalars. Correlation functions of spinning
operators depend on additional tensor structures, and can be found in [117, 50]. In a
CFT, one-point functions of conformal primaries are zero:

⟨O(x)⟩ = 0 . (2.2.1)

Two-point functions between conformal primaries are not zero, but are completely fixed
kinematically. For scalar operators, they take the form:

⟨O∆1(x1)O∆2(x2)⟩ =
δ∆1∆2

|x12|2∆1
, (2.2.2)

4Below we are considering Euclidean CFTs.
5see for example [112] for a more extensive derivation.
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where we have defined xij ≡ xi − xj. It follows that the two-point functions are only
nonzero if the operators have equal conformal dimensions. The two-point functions are
normalized to 1.

Three-point functions are also fixed kinematically, and for scalars, they are given by:

⟨O∆1(x1)O∆2(x2)O∆3(x3)⟩ =
λ123

|x12|∆1+∆23|x23|∆2+∆31|x13|∆3+∆12
, (2.2.3)

while for general spinning operators the three-point function depends on tensor structures,
but is still fixed by conformal symmetry. We have defined ∆ij ≡ ∆i−∆j. Since we have
already normalized the two-point function, the three-point function will now depend on
a constant λ123 which is theory dependent.

Four-point functions can no longer be fully determined kinematically, but depend on
conformal cross-ratios :

u ≡ x212x
2
34

x213x
2
24

, v ≡ x214x
2
23

x213x
2
24

. (2.2.4)

Often, these cross-ratios are denoted as z and z̄, where

u = zz̄ , v = (1 − z)(1 − z̄) . (2.2.5)

The correlation function of four scalar conformal primaries is then given by

⟨O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)⟩ =
f(u, v)

|x12|∆1+∆2|x34|∆3+∆4

(
|x24|
|x14|

)∆12
(
|x14|
|x13|

)∆34

,

(2.2.6)

where f(u, v) is an unknown function depending on the cross-ratios of eq. (2.2.4).
Eq. (2.2.6) simplifies significantly in the case of identical scalars, for which ∆ij = 0.

If we consider higher-point correlation functions, then the number of cross-ratios on
which the correlator depends, will increase. This causes the correlation functions to
become more complicated and hence more difficult objects to study using e.g. the con-
formal bootstrap. In this thesis we will not consider correlation functions of more than
four operators.

2.2.2 Operator Product Expansion

Two operators brought close together can be expanded in an infinite sum of local opera-
tors, which is called the Operator Product Expansion (OPE). In ordinary QFT, the OPE
is an approximation for operators at an infinitesimally small distance from each other.
However, due to scale invariance, in CFTs the OPE converges everywhere as long as there
are no other operators inserted in between the two operators involved in the OPE, that
is, if a circle or sphere can be drawn around the two operators that does not intersect
any other operator, see figure 2.2. The OPE between two conformal primaries is given
by:

O∆1,ℓ1(x)O∆2,ℓ2(0) ∼
∑
k

λ12k

[
Cµ(x)O∆k,ℓk(0) + · · ·

]
. (2.2.7)

The function Cµ(x) is known and can be written as

Cµ(x) =
xµ1 · · ·xµℓ

|x|∆1+∆2−∆k+ℓ
. (2.2.8)
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O1

O2

Figure 2.2: The OPE between two operators in a CFT converges as long as there are
no other operator insertions.

The coefficients λ12k are called OPE coefficients, and are real for unitary CFTs, such that
λ212k is always positive. Using the OPE we can write n+ 1−point functions as an infinite
sum of n−point functions. When applied to the three-point function in eq. (2.2.3), it is
reduced to two-point functions, which are completely fixed by conformal invariance. It
turns out that the constant λ123 in eq. (2.2.3) is given by the OPE coefficient in eq. (2.2.7)
for an operator O3 in the OPE of O1 and O2. Hence, three-point functions give us direct
access to the OPE coefficients between the external operators.

2.2.3 Conformal blocks

Using the OPE of eq. (2.2.7), we can rewrite the four-point function of eq. (2.2.6) as:

⟨O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)⟩ =
∑
k

λ12kλ34kgk(u, v) , (2.2.9)

where u, v are the conformal cross-ratios given in eq. (2.2.4) and we have taken the OPE
between operators O1,O2, and O3,O4. The functions gk(u, v) are called conformal blocks
and in general, they depend on the conformal dimension ∆k of the operator Ok, on its
spin ℓk, and on the dimensions ∆i, i = 1, · · · , 4 of the external operators. The work by
Dolan and Osborn [118, 119] have been crucial for our understanding of these functions.
They showed that the blocks are solutions to differential equations, which are obtained by
acting with the Casimir of the conformal group SO(d+ 1, 1) on the four-point function:

(C2 − c)⟨O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)⟩ = 0 . (2.2.10)

The solutions to the resulting differential equations are unique when appropriate bound-
ary conditions are chosen, given by the asymptotic behavior of the blocks found by looking
at the leading term in the OPE.

In some cases, the differential equations have a closed-form solution. This is the case
for even dimensions, and for d = 1, which we discuss below. The conformal blocks for
scalars in even d ≤ 4 are given by:

d = 4 : g∆12,∆34

∆,ℓ (z, z̄) =
1

(−2)ℓ
zz̄

(z − z̄)

(
k∆12,∆34

∆+ℓ (z)k∆12,∆34

∆−ℓ−2 (z̄) − z ↔ z̄
)
, (2.2.11)

d = 2 : g∆12,∆34

∆,ℓ (z, z̄) =
1

(−2)ℓ
1

1 + δℓ,0

(
k∆12,∆34

∆+ℓ (z)k∆12,∆34

∆−ℓ (z̄) + z ↔ z̄
)
, (2.2.12)

k∆12,∆34

β (x) = x
β
2 2F1

(
β − ∆12

2
,
β + ∆34

2
, β, x

)
. (2.2.13)

For d = 3 the blocks are not known in closed form, but can be written as an infinite
series. The same series can also be used to write down conformal blocks analytic in d,
which one can use to expand correlation functions across dimensions.
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2.2.4 CFTs in 1d

Later on in this thesis we will encounter CFTs in one dimension, which are in some
aspects different from CFTs in higher dimensions. In 1d, the theory is restricted to a line
or a circle, and one needs to specify the ordering of the operators. The conformal blocks
for the four-point function reduce to simple hypergeometric functions of a single variable:

d = 1 : g∆12,∆34

∆ (z) = k∆12,∆34

2∆ (ξ) , (2.2.14)

where k∆12,∆34

∆ (ξ) is defined in eq. (2.2.13). The cross-ratio ξ differs slightly from u defined
in eq. (2.2.5), and is given by:

ξ =
x12x34
x13x24

. (2.2.15)

If one consideres the ordering x1 < x2 < x3 < x4, the cross-ratio takes values between
0 < ξ < 1. The equivalent of v is now given by:

1 − ξ =
x14x23
x13x24

, (2.2.16)

and is no longer an independent variable. Another difference with respect to higher-
dimensional CFTs is the absence of spin in one dimension. There is a notion of parity,
which is more extensively discussed in chapter 5. Operators are classified according to
their transformation under parity in parity-preserving CFTs, in analogy to the classifica-
tion according to their spin.

One-dimensional CFTs are nonlocal, since there is no stress-tensor that can be written
down in 1d. Hence, 1d CFTs are less intuitive than their higher-dimensional counterparts.
We will encounter 1d CFTs as line defects in this thesis, for which the nonlocality follows
naturally.

Considering one-dimensional CFTs often simplifies calculations. Conformal blocks
are well-known functions of only one variable, making it straightforward to expand in
them. On the other hand, 1d CFTs lack the structure that higher-dimensional CFTs
have. Operators cannot be labeled according to their spin, and there is no protected
stress-tensor or other tensor structures that define a certain class of operators. All in all,
they are an excellent testing ground for various approaches such as analytic functionals,
but need to be treated with care.

2.3 The ε−expansion

Having determined the basic kinematics of CFTs, the next step is to extract dynami-
cal information such as conformal dimensions, spins, and OPE coefficients of different
operators. The set of these is called the conformal data:

conformal data = {∆i, ℓi, λijk} . (2.3.1)

As pointed out in the introduction, this data can either be determined perturbatively, or
nonperturbatively. There are many perturbative approaches e.g. large-N , weak coupling,
which have been mentioned in the introduction, and which we will not review here.
Instead, we will focus on the ε-expansion.

CFTs can be seen as the fixed points of renormalization group flows of QFTs. A few
well-known examples that will be considered later in this thesis are the Wilson-Fisher
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fixed point of the Ising model and the O(N) models, the Wess-Zumino fixed point for
the supersymmetric Wess-Zumino models, and the Wilson-Fisher-Yukawa fixed point for
the Yukawa CFTs. All these CFTs are free theories in d = 4 dimensions, but become
interacting if we consider the theory in d = 4 − ε dimensions. If we stay at the fixed
point, the respective CFTs can be studied perturbatively using the ε-expansion. Setting
ε → 1, one obtains information about the fully interacting CFT in three dimensions. It
is of course not necessary to start in four dimensions, and there exist fixed points with
corresponding CFTs in d = 6 − ε and d = 2 + ε̃ as well, examples of which were given in
the introduction. However, in this section and thesis we will focus on the ε-expansion in
d = 4 − ε dimensions, and below we give the example of ϕ4 theory at the Wilson-Fisher
fixed point, which corresponds to the Ising model.

2.3.1 The Wilson-Fisher fixed point

The Ising model in d = 4− ε dimensions is described by the action of massless ϕ4 theory:

S =

∫
ddx

(
(∂µϕ)2 +

λ

4!
ϕ4

)
, (2.3.2)

where the coupling λ describes a four-scalar interaction. The following Feynman rules
are associated to this action. The free propagator of the scalar in d dimensions is given
by:

:= ⟨ϕ(x1)ϕ(x2)⟩λ=g=0 = δab I12 . (2.3.3)

where the scalar propagator function in d = 4 − ε dimensions is defined as:

Iij :=
Γ(1 − ε/2)

4π2−ε/2x2(1−ε/2)ij

, (2.3.4)

with xij := xi − xj. The scalar propagator satisfies the Green’s equation:

∂2i Iij = −δ(d)(xij) , (2.3.5)

where δ(d)(x) is the d-dimensional Dirac delta function.
The interaction terms yield the following vertices:

:= −λ0
∫
ddx5 I15I25I35I45 . (2.3.6)

The fixed point describing the CFT is given by the value of the coupling λ for which
the β−function associated to the action (2.3.2) is zero. To compute the β−function, we
need to compute all corrections to the scalar interaction vertex up to a given order in
ε, and require that this is finite when introducing the proper counterterms. From these
counterterms the β-function can be derived, and equated to zero to find the fixed point.
The coupling λ does not receive a correction at O(ε). The first contribution is at O(ε2)
and is given by:

λ = + + O(ε4) . (2.3.7)



16 CHAPTER 2. CONFORMAL FIELD THEORY

Their evaluation is well known (see e.g. [120]) and the diagrams diverge with 1/ε. We
can now introduce a counterterm Zλ to absorb these divergences, and define:

Zλ = = µελ
(

1 +
αλ

ε
+ · · ·

)
, (2.3.8)

where the dots represent contributions that will appear at O (1/ε2). The renormalization
scale µ is introduced to ensure that the coupling is dimensionless. It is unphysical, mean-
ing that after proper renormalization it should drop out of the computations. Imposing
that eq. (2.3.7) is finite gives us the following expression for Zλ:

Zλ = µελ

(
1 +

3λ

ε(4π)2
− 3λ2

ε(4π)2
+ O(λ3, 1/ε2)

)
. (2.3.9)

The β−function can now be determined by requiring that Zλ is independent of the renor-
malization scale µ:

βλ =
dZλ
d log µ

= −ελ+
3

(4π)2
λ− 17

3(4π)4
λ2 + O(λ3) , (2.3.10)

where we have redefined g → g/(4π)2. The Wilson-Fisher (WF) fixed point is given by
the zeros of eq. (2.3.10):

λ⋆ =
16π2ε

3
. (2.3.11)

The fixed point is of order O(ε). This means that up to O(εa), we only need to consider
diagrams with a maximum of a scalar vertices.

2.3.2 Renormalization factors

We have used the renormalization factor for the coupling Zλ to determine the β−function
and the corresponding WF fixed point. We also need to renormalize the field ϕ to
describe the fully renormalized CFT. We proceed similarly as before, but now consider
the two-point function ⟨ϕ(x)ϕ(0)⟩ and require that it is finite when adding the appropriate
counterterms. The diagrams contributing to the two-point function at O(ε2) are:

⟨ϕ(x1)ϕ(x2)⟩ = + + O(ε3) . (2.3.12)

Their evaluation is once again well known (see [120]) and divergent in 1/ε. In order to
cancel the divergences, we need the following counterterm:

Zϕ = = µε
(

1 − λ2

12(4π)4
+ O(λ4)

)
. (2.3.13)

From the renormalization factor of ϕ we can determine the anomalous dimension, which
is the correction to the conformal dimension:

∆ϕ =
d− 2

2
+ γϕ , (2.3.14)

where d−2
2

is the free theory dimension of a scalar field in d dimensions. The anomalous
dimension is given by:

γϕ = βϕ
dZϕ
d log µ

=
λ2

12(4π)4
+ O(λ4) . (2.3.15)
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2.3.3 More conformal data

Having determined the anomalous dimensions and renormalization factors, we are ready
to compute higher-point functions. The three-point function of three operators O1,2,3

contains the OPE coefficient λ123. Note that there are no possible diagrams that would
give us the three-point function ⟨ϕ(x1)ϕ(x2)ϕ(x3)⟩. For three scalars ϕ, ϕ, ϕ2, the three-
point function can be expressed in Feynman diagrams as:

⟨ϕ(x1)ϕ(x2)ϕ
2(x3)⟩ = + + O(ε2) . (2.3.16)

Adding these diagrams, we find the three-point function and the OPE coefficient λϕϕϕ2 :

⟨ϕ(x1)ϕ(x2)ϕ
2(x3)⟩ =

N 2
ϕNϕ2λϕϕϕ2

|x12|2∆ϕ−∆ϕ2 |x23|∆ϕ2 |x13|∆ϕ2
, λϕϕϕ2 =

(√
2 − ε

3
√

2

)
. (2.3.17)

The constants Nϕ,Nϕ2 are normalization constants that can be found from the two-point
functions of ϕ and ϕ2 respectively.

Having found the CFT data at a given order in ε, we want to find the results at
finite ε → 1 to obtain the CFT data for the 3d Ising model. Unfortunately, an exact
solution would require computing Feynman diagrams to infinte order in ε. There are other
methods such as Padé approximation to find better estimates of the CFT data at finite
order. This raises the question how well the ε-expansion converges. It turns out that the
expansion is non-convergent, but Borel summable [121]. The Borel resummation consists
of first finding the Borel transform of the series (in this case a series in ε), and then Borel
resumming this transformation by integrating over it. For this to be well defined, and
hence for a series to be considered Borel summable, there are three properties that needs
to be satisfied: the Borel transformation itself is convergent, it does not have singularities
when analytically continued in a certain chosen direction, and the final integration of the
Borel transform is finite. All these properties are satisfied in the case of the ε-expansion.

Besides computing explicit Feynman diagrams, there is an additional method of ob-
taining CFT data up to O(ε) in ϕ4 theory, which relies on observations of multiplet
recombination in the interacting theory. In the interacting theory, the equations of mo-
tion of the action in eq. (2.3.2) relate ϕ to ϕ3, making ϕ3 a conformal descendant of ϕ. In
contrast, in the free theory in 4d, which does not have the four-scalar interaction term,
both ϕ and ϕ3 are conformal primaries. This observation made in [122] leads to relations
which can be used to determine conformal data up to a low order in ε. However, to go
to higher order explicit Feynman diagram computations are required. A nice overview of
results for the O(N) CFTs can be found in [123].

2.4 Conformal bootstrap

The conformal bootstrap is the idea that conformal field theories can be constrained by
making use of the conformal symmetry and some additional assumptions, such as the
associativity of the Operator Product Expansion. The goal is to use crossing symmetry
to constrain conformal data, which determines the entire CFT. This is done without
considering specific realizations of the theory, and the goal is to be able to find universally
valid bounds on theories. It is a nonperturbative method to study CFTs and hence is not
only valid in perturbative limits. The crossing equation can be derived from the fact that
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∆O
∑
O

(λO)2
∆O=

∑
O

(λO)2

Figure 2.3: The crossing equation for the four-point function of scalars.

when considering four operators, the OPEs between them can be taken in different ways.
These are called s-channel, u-channel and t-channel expansions, after the Mandelstam
variables s, t, u that capture different limits of scattering amplitudes.

The crossing equation gives us an infinite set of constraints on correlation functions. It
is very hard to solve, which can be seen from the infinite number of operators contributing
on both sides. However, in some limits the equations simplify, making it possible to solve
for the conformal data. This happens in specific kinematic limits or when approaching
the theory from a perturbative point of view. Another approach is to artificially truncate
the sum and derive less optimal, but still valid bounds using numerical techniques. Both
the analytic and numerical approach will be discussed below.

2.4.1 Crossing equation

In section 2.2.3 we have shown how the four-point function of scalars can be decomposed
in conformal blocks by taking the OPE between the four operators. In that case, we took
the OPE between O1,O2 and O3,O4. We can repeat the process but now take the OPE
in different combinations. Since the OPE is associative, this should result in the same
expression. If we additionally take the OPE between O1,O4 and O2,O3, we end up with
the equation in figure 2.3. The crossing equation can be written as (for simplicity we
take the external operators to be identical):

∑
Ok

λ12kλ34kg(u, v) =
∑
Oi

λ14iλ23i
u∆ϕ

v∆ϕ
g(v, u) . (2.4.1)

Note that we can also consider x1 ↔ x2, which will give a trivial crossing equation where
u → u/v, v → 1/v. The operators appearing in the two OPEs in principle differ from
each other; they can have different spin and come in different representations of the
global symmetries of the CFT. It turns out that not all combinations of {λ,∆, ℓ} satisfy
the crossing equation. It is the goal of the conformal bootstrap to determine the set of
conformal data that does, or find exclusion regions and bounds on OPE coefficients and
operator dimensions. We will review two methods: the numerical bootstrap and the
analytic bootstrap. Both have different regions in the space of CFT data where they are
best applicable. In this thesis, the numerical bootstrap will be used in chapter 5. The
analytic bootstrap will be used in combination with the ε−expansion in chapter 4.

2.4.2 Numerical conformal bootstrap

The aim of the numerical conformal bootstrap is to put bounds - both upper and lower
ones - on conformal data. In order to do this, one can make use of semidefinite pro-
gramming to solve the crossing equations discussed in section 2.4.1. There are two main
objectives: bounding conformal dimensions and bounding OPE coefficients.
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In order to put bounds on a certain OPE coefficient λO of an operator O being the
lowest-lying operator appearing in the OPE of two other, identical scalar operators ϕ, we
write the crossing equation (2.4.1) in the following way:

λ2OF∆O,ℓO(u, v) = −F0,0(u, v) −
∑
Ok ̸=O

λ2OkF∆k,ℓk(u, v) , (2.4.2)

F∆,ℓ(u, v) =
v∆ϕg0,0∆,ℓ(u, v) − u∆ϕg0,0∆,ℓ(u, v)

u∆ϕ − v∆ϕ
. (2.4.3)

The contribution from the operator O whose OPE coefficient we want to bound, is pulled
out. The functions F∆,ℓ(u, v) are normalized such that the contribution of the identity
F0,0(u, v) = −1. Note that for a unitary CFT, the OPE coefficients λ are real and hence
λ2 is positive. This is an important assumption in the numerical bootstrap, and we will
restrict ourselves to unitary CFTs for the rest of this section.

The crossing equation is in fact an infinite set of constraints, one for each value of u
and v. The crossing equation does not change when acting with a functional on F , and
we can write

λ2Oα (F∆O,ℓO(u, v)) = −α (F0,0(u, v)) −
∑
Ok ̸=O

λ2Okα (F∆k,ℓk(u, v)) . (2.4.4)

The functional α can be any linear functional, but is most often taken to be a number
of derivatives in u and v. The functions F , which contain the conformal blocks, have
certain positivity properties which makes it possible to find functionals α such that:

α (F∆O,ℓO) = 1 , α (F∆k,ℓk) ≥ 0 . (2.4.5)

It becomes clear that under these conditions, we obtain an upper bound on λ2O:

λ2O = −α (F0,0(u, v)) −
∑
Ok

λ2Okα (F∆k,ℓk(u, v)) ≤ −α (F0,0(u, v)) . (2.4.6)

Finding an α that satisfies eq. (2.4.5) is nontrivial and depends on the spectrum of the
CFT under consideration. In particular, if one makes assumptions about the conformal
dimension of the operators appearing in the OPE, and demands that no operators with
dimension lower than ∆⋆ appear, the space of α’s satisfying eq. (2.4.5) becomes larger.
Having found such a functional α, one can try to optimize the bound on λ2O by minimizing
α (F0,0(u, v)). If then it happens that λ2O ≤ 0, the operator is excluded from the spectrum
of the CFT.

The same logic can be applied to bound conformal dimensions, but the algorithm
needs to be changed slightly. Instead of isolating an operator O, we use the fact that the
identity gives a nonzero contribution and we write:

α (F0,0(u, v)) = −
∑

Ok,∆k≥∆⋆

λ2Okα (F∆k,ℓk(u, v)) , (2.4.7)

where the dimensions ∆k of the operators Ok are taken to be larger than some minimal
dimension ∆⋆. Now the goal is to try to find a functional α such that:

α (F0,0) = 1 , α (F∆k,ℓk) ≥ 0 . (2.4.8)
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If this α exists, the crossing equation (2.4.7) cannot be satisfied and ∆⋆ becomes an
upper bound on the conformal dimensions. We call such a solution dual feasible. If there
is no such α (within a set precision), the solution is allowed and is named primal feasible.
One can perform a bisection to find the exact value of ∆⋆ where one jumps from primal
feasible to dual feasible, and find the optimal upper bound on the conformal dimensions.

The problem of bounding the OPE coefficients or conformal dimensions is now turned
into a problem of finding a set of functionals αi that satisfy either (2.4.5) or (2.4.8).
However, there is still an infinite set of constraints, and in principle an infinite search
space for α. Hence, there are a few cutoffs that need to be made. First, the conformal
blocks need to be expanded in polynomials in u, v up to a certain order, and are evaluated
around u = v = 1/4. Second, we take α to be derivatives in u, v, and impose a maximum
number of derivatives Λ. Third, the search space for α needs to be bounded when there
is no α satisfying (2.4.5) or (2.4.8). All these cutoffs affect the precision of the bounds.
Luckily, due to the analytic properties of the conformal blocks, increasing the cutoffs only
leads to stronger bounds, so at a certain precision the bound that is obtained is still valid,
just not optimal. By looking at the convergence of the bound, one can estimate at which
precision one needs to work.

The examples above treated correlation functions of identical scalars. If one includes
multiple operators with different conformal dimensions, the crossing equations get modi-
fied and may involve contributions with λO1λO2 instead of λ2O. This requires the condition
of positivity to be slightly relaxed to a condition of semidefinite positivity on matrices of
polynomials. The state-of-the-art linear program SDPB [124] makes it possible and easy
to implement such constraints as well.

Lastly, we have focused on obtaining upper bounds on conformal data. It is possible
to obtain lower bounds as well, but one needs to make further assumptions about the
CFT spectrum, and assume discreteness in the spectrum for low-lying operators. In
some cases, this can lead to isolated “islands”, as is the case for the 3d Ising model
when one assumes only a limited number of relevant (∆ < 3) operators in the spectrum,
and study multiple correlators of the lowest-lying operators in the spectrum [20]. High
numerical precision combined with multi-operator and multi-correlator studies have led
to the numerical bootstrap being able to obtain extremely precise results for various
critical exponents. In some cases, it can also serve as an independent method to solve
existing discrepancies between theory and experiment, for example in the case of the O(2)
model [23], where Monte Carlo studies disagree with experimental measurements.

The numerical bootstrap focuses on bounding the lowest-lying operators in the spec-
trum in a region around u, v = 1/4. The precision of the results decreases significantly
when trying to bound higher-dimensional operators, and hence the range of applicabil-
ity is often limited to low ∆ and low ℓ. The extremal functional method can be used
to extract the spectrum of the lower-lying operators [125, 126]. More recently, a new
method called the “Navigator” has been developed that allows for a more efficient search
of islands in the parameter space of the CFT data [127, 128].

The numerical conformal bootstrap has been combined with the ε-expansion to study
CFTs in fractional or non-integer dimensions. However, it can be shown that the CFT
is no longer unitary [129]. This poses a problem for numerics, which heavily relies on
unitarity and positivity of the OPE coefficients. Nevertheless, it can be successfully
applied, since the operators which break unitarity only appear at very high dimension ∆,
and the numerical bootstrap is most sensitive to operators of low ∆ [130].
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2.4.3 Analytic conformal bootstrap

The second pillar of the conformal bootstrap is the analytical conformal bootstrap. The
development of especially Caron-Huot’s inversion formula [26] has played a major role in
the modern bootstrap, as have several other techniques such as Mellin space bootstrap,
large charge expansion and analytic functionals. Although most of the analytical tech-
niques available nowadays are not used in this thesis, we briefly review the highlights of
the literature. More detailed overviews of recent progress can be found in [131, 132].

The lightcone bootstrap and the inversion formula

The analytic conformal bootstrap applies to Lorentzian CFTs, and the crossing equation
is studied in what is known as the lightcone limit. In a Lorentzian CFT, the two cross-
ratios (z, z̄) in eq. (2.2.5) are independent of each other, and it is possible to let z be
small while keeping z̄ fixed. This is called the lightcone limit and is equivalent to sending
x2 → 0 while staying on the lightcone. The double lightcone limit requires one to take
z → 0 and afterwards z̄ → 1, such that z ≪ 1 − z̄ ≪ 1. In this limit, the crossing
equation for identical scalars (2.4.1) is given by:(

z

1 − z̄

)∆ϕ

∼
∑
O

1

(−2)ℓ
λ2ϕϕOz

∆−ℓ
2 k∆+ℓ(z̄) , 0 < 1 − z̄ ≪ z ≪ 1 , (2.4.9)

where the functions k∆ are given in eq. (2.2.13). For z̄ → 1, it is clear that the left-hand
side has a powerlaw divergence. On the right-hand side, it turns out that the divergence
in this limit is logarithmic. Hence, there needs to be an infinite number of contributions
on the right-hand side in this limit to reproduce the divergence on the left-hand side. It
was shown in [24, 25] that there must exist an infinite family of operators with scaling
dimensions

∆ℓ,n = 2∆ϕ + ℓ+ 2n+ γτ , (2.4.10)

which are called multi-twist operators. The anomalous dimensions γτ can be found with
the lightcone bootstrap and are of the order of O(1/ℓ). The crossing equation can be
expanded around large spin ℓ → ∞ and low twist τ = ∆ − ℓ. This gives access to a
different regime than the numerical bootstrap, which is most efficient for operators with
low ∆.

The ideas of the lightcone bootstrap sketched above are elegantly and compactly
generalized in the Lorentzian inversion formula [26]:

ct(∆, ℓ) =
κℓ+∆

4

∫ 1

0

dzdz̄µ(z, z̄)G∆+1−d,ℓ+d−1(z, z̄)dDisc[G(z, z̄)] , (2.4.11)

where µ(z, z̄) is the appropriate measure for the integral, G∆,ℓ(z, z̄) are the conformal
blocks, dDisc[G(z, z̄)] is the double discontinuity of a four-point correlation function, and
the coefficient κℓ+∆ is given by:

κ∆+ℓ =
(1 + (−1)ℓ)Γ

(
∆+ℓ
2

)4
2π2Γ(∆ + ℓ− 1)Γ(∆ + ℓ)

. (2.4.12)

The coefficient ct(∆, ℓ) is the t-channel contribution to the full OPE coefficient c(∆, ℓ) =
ct(∆, ℓ) + cu(∆, ℓ), and the u-channel contribution can be written in the same way as
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eq. (2.4.11) but with the range of integration being (−∞, 0) instead of (0, 1) and the
double discontinuity is taken around ∞. The Lorentzian inversion formula provides a
way to construct OPE coefficients from the double discontinuity of the correlator, which
is in general a simpler object than the full correlator itself. However, one needs to be
careful for operators of low spin. Specifically, eq. (2.4.11) cannot be trusted for operators
with spin ℓ < ℓ⋆, where ℓ⋆ is theory-dependent but is at most ℓ⋆ = 2.

Other analytic approaches

Another development is the understanding of analytic functionals. The conformal boot-
strap has taught us that some interesting CFTs (e.g. the 3d Ising model), are close
to saturating the bound found by the numerical bootstrap. The exact solution to the
numerical bound is given by extremal functionals [133], which often contain enough in-
formation to reconstruct a solution to crossing. To obtain an analytic solution instead of
a numerical bound, one would need to analytically construct these extremal functionals.
This was first done in [29] and further developed in [30–32] in 1d.6 A generalization to
higher d has been made in [135]. Examples of analytic functionals have been found for
generalized free theories, and the goal is to obtain such functionals for interacting CFTs
and hence solve crossing exactly by perturbing the free theory solutions.

Both the Lorentzian inversion formula and analytic functionals for generalized free
theories lead to so-called conformal dispersion relations. A third method can also be
used as a basis to derive these relations: the Polyakov bootstrap [14]. In later work [33–
36], Mellin space was used to recast the Polyakov bootstrap in the language of Witten
exchange diagrams.

A fourth noteworthy development is the large global charge expansion in CFTs. Be-
sides large spin, one can also expand in large global charge J [27]. This gives access to
CFT data of CFTs with global symmetry that might be strongly coupled and cannot be
computed in other perturbative regimes. The large charge limit corresponds to specific
phases, such as a superfluid phase, of the theory, and allows one to construct an effec-
tive field theory (EFT) for this phase. Computations can be done explicitly in the EFT
framework, but can also be combined with bootstrap techniques as was done in [28].

The above techniques will play no further role in this thesis. However, it is also
possible to combine the conformal bootstrap with perturbative expansions such as large-
N , weak coupling, and the ε-expansion and solve the bootstrap equations order by order
in perturbation theory. In this thesis we will combine the conformal bootstrap with the
d = 4 − ε expansion, both for the analytic bootstrap and the numerical bootstrap. In
this way, we combine the old and the new in a modern approach to solving CFTs.

6Remarkably, these analytic functionals can also be applied to the problem of sphere packing in pure
mathematics [134].



Chapter 3

Conformal defects

One can extend the notion of a conformal field theory by allowing the presence of ex-
tended objects, also commonly called defects. Extended objects, such as line operators,
boundaries, interfaces and surface operators, break part of the conformal symmetry of
the original CFT, which we refer to as the bulk CFT from now on. Correlation functions
between operators are no longer invariant under the full bulk conformal algebra, but only
under the reduced algebra preserved by the defect. There are many types of extended
operators, but we focus on the special class of conformal defects.

In section 3.1 we show how such defects break the bulk conformal algebra, and which
symmetries will be preserved by conformal defects. In addition, we highlight special
defect operators that appear as a result of the symmetry breaking. The bulk-to-defect
OPE and correlation functions of bulk and defect operators are treated in section 3.2.
Defects can also be studied perturbatively. Explicit calculations in the ε-expansion for a
line defect in ϕ4 theory are shown in section 3.3. Lastly, in section 3.4, we introduce the
defect bootstrap and highlight similarities and differences with the conformal bootstrap
covered in section 2.4.

3.1 Defect algebra

A general p-dimensional, non-spinning conformal defect will break the d-dimensional bulk
conformal algebra in the following way:

SO(d+ 1, 1) → SO(p+ 1, 1) × SO(q) , (3.1.1)

where q ≡ d − p is the codimension of the defect. If q = 1, the defect is a boundary or
an interface, while monodromy defects have codimension q = 2. The group SO(p+ 1, 1)
is the conformal symmetry group preserved on the defect, and SO(q) is the symmetry
group of the preserved rotations around the defect.

The defect conformal algebra is given by the bulk algebra restricted to the defect, and

23
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the transverse rotations as a disconnected part of the algebra:

[Pâ,Kb̂] = −2Dδâb̂ ,
[D,Pâ] = Pâ ,
[D,Kb̂] = −Kb̂ ,

[Mâb̂,Pĉ] = δb̂ĉPâ − δâĉPb̂ ,
[Mâb̂,Kĉ] = δb̂ĉKâ − δâĉKb̂ ,

[Mâb̂,Mĉd̂] = δb̂ĉMâd̂ − δâĉMb̂d̂ + δb̂d̂Mĉâ − δâd̂Mĉb̂ ,

[Mij,Mkl] = δjkMil − δikMjl + δjlMki − δilMkj .

(3.1.2)

The indices running over the dimension of the defect are denoted with a hat, while i, j
are the directions perpendicular to the defect. In the rest of this thesis, we will extend
this notation to operators, and denote operators restricted to the defect with a hat to
distinguish them from bulk operators. Defect conformal primaries are defined similarly
to bulk conformal primaries, that is:

[Kâ, Ô(0)] = 0 . (3.1.3)

Descendants are constructed by acting with Pâ on a defect conformal primary.

There are now two types of generators of rotations: those that generate the rotations
on the defect and those generating the rotations around the defect. The generators of
rotations on the defect, Mâb̂, commute with the generator of dilatations, D, and as such

we can label defect operators by their conformal dimension ∆̂ and spin ĵ. The generators
of rotations around the defect, Mi,j, also commute with D since they form a disconnected

part of the algebra. Hence, we can add an extra label to Ô, which is the transverse spin
s. Here, s denotes the charge under the SO(q) symmetry group.

Because the defect breaks the bulk conformal symmetry, and in particular the trans-
lational symmetry, the stress-energy tensor Tµν is no longer locally conserved. This gives
rise to a defect operator called the displacement, which is defined through the following
Ward identity [47]:

∂µTµi = −δ(q)(D)Di , (3.1.4)

where the defect is denoted by D. The displacement is a protected operator with confor-
mal dimension ∆D = p + 1, and transverse spin s = 1. It is a canonical defect operator
which appears in the defect spectrum when translational symmetry is broken in the bulk.1

So far we have not included additional flavor symmetries in the bulk, which can either
be preserved or broken by the presence of a conformal defect. If the flavor symmetry
is partly broken, it will give rise to a protected operator associated to the broken flavor
current in the bulk, analogous to the displacement operator [136]. The defect operator is
commonly referred to as the tilt and is defined as:

∂µJ
µ
A = δ(q)(D)tA . (3.1.5)

It has a protected conformal dimension ∆t = p. It is also charged under the flavor
symmetry preserved by the defect, but does not have transverse spin.

1Trivial and topological defects do not have a displacement operator.
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O

Figure 3.1: The OPE between a bulk operator O and the defect, depicted by a solid
line. The OPE converges as long as there are no other operator insertions within the
circle.

3.2 Defect kinematics

The presence of a conformal defect influences the kinematics of the CFT. In particular,
one-point functions of bulk operators are no longer necessarily zero by symmetry require-
ments, and two-point functions depend on defect cross-ratios instead of being completely
fixed kinematically. Furthermore, there exist correlators between bulk and defect op-
erators. Note that all correlators involving only defect operators still obey the usual
CFT constraints, but now in p dimensions, and hence are given by the expressions in
section 2.2.

To write down the general form of the correlation functions between bulk and defect
operators, let us introduce the bulk-to-defect OPE. Bulk operators close to the defect can
be expanded in an infinite series of defect operators. This expansion takes the following
form [47]:

O(x) ∼
∑ bOÔ

|x⊥|∆−∆̂
CÔ
(
|x⊥|2∂2∥

) xi1 · · · xis
|x⊥|s

Ôi1,··· ,is(x̂) , (3.2.1)

where x⊥ are the directions perpendicular to the defect, and x̂ ≡ xâ are the directions
parallel to the defect. The bulk-to-defect OPE converges if one considers a sphere drawn
around the bulk operator, intersecting the defect, in which no other operator insertions
are present. Then, following the state-operator correspondence, the bulk operator can
be expressed as an infinite sum of defect states as in eq. (3.2.1). This is depicted in
figure 3.1. Using eq. (3.2.1), the one-point function of a bulk scalar in the presence of a
conformal defect is given by:

⟨⟨O(x) ⟩⟩ =
aO

|x⊥|∆O
. (3.2.2)

We have used the notation

⟨⟨· · · ⟩⟩ ≡ ⟨D · · · ⟩
⟨D⟩

, (3.2.3)

to denote a correlation function of bulk operators in the presence of a defect, normalized
by the expectation value of the defect itself. The two-point function between bulk and
defect scalar operators is given by:

⟨⟨O(x1)Ô(x̂2) ⟩⟩ =
bOÔ

|x⊥1 |∆1−∆̂2|xµ12|2∆̂2
. (3.2.4)

In the case of spinning or fermionic operators, additional tensor structures will appear
in eq. (3.2.4). These are all the correlation functions involving bulk operators that are
kinematically fixed. Two-point functions between bulk operators are the first correlators
that depend on the defect cross-ratios :

r +
1

r
=
x̂212 + x⊥1 + x⊥2

|x⊥1 ||x⊥2 |
, w +

1

w
=

2x⊥1 · x⊥2
|x⊥1 ||x⊥2 |

. (3.2.5)
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They are often rewritten as (z, z̄), where2

z = rw, z̄ =
r

w
. (3.2.6)

A third variable χ is also used, with

χ =
(1 − rw)(w − r)

rw
=

x212
|x⊥1 ||x⊥2 |

. (3.2.7)

In terms of these cross-ratios, the two-point function of two bulk scalar operators can be
written as follows:

⟨⟨O∆1(x1)O∆2(x2) ⟩⟩ =
F(r, w)

|x⊥1 |∆1|x⊥2 |∆2
. (3.2.8)

One can also consider three-point functions between bulk and defect operators, which
in general depend on more cross-ratios. Expressions for general, spinning three-point
functions between one or two bulk operators and a defect operator can be found in [52].
Three-point functions of a bulk and two boundary operators are derived in appendix B.2.

An additional piece of defect CFT data is provided by the normalization of the two-
point function of the displacement. Usually, the normalization of the two-point function
is non-physical data, but because of the relation of the displacement to the bulk stress-
tensor, this coefficient becomes meaningful [47]:

⟨Di(x̂1)Dj(x̂2)⟩ = cD
δij

(x̂2)p+1
. (3.2.9)

The bulk-to-defect coupling of the stress-tensor Tµν and the displacement is fully fixed in
terms of this coefficient cD and the one-point function coefficient of the stress-tensor aT .

3.2.1 Conformal blocks

We have seen in the previous subsection that two-point functions of bulk operators in the
presence of a defect depend on defect cross ratios r, w. They admit a conformal block
expansion, similar to the four-point functions in CFTs without defects, or far away from
the defect, described in section 2.2. In the presence of a defect, there are two different
OPEs one can exploit: the “ordinary” bulk OPE of eq. (2.2.7) between two bulk operators
away from the defect, and the bulk-to-defect OPE in eq. (3.2.1). Choosing either one or
the other allows us to expand eq. (3.2.8) in bulk or defect blocks.

Bulk channel. The expansion of eq. (3.2.8) in bulk blocks is obtained by acting with
the bulk OPE (2.2.7) first. This results in an infinite sum of local bulk operators, which
can acquire a one-point function when brought close to the defect. Hence, the expansion
in bulk channel conformal blocks provides information on the bulk OPE coefficient λijk
as well as on the one-point function coefficient ak:

⟨⟨O1(x1)O2(x2) ⟩⟩ =
∑
Ok

λ12kakf
∆12
∆k,ℓk

(r, w) . (3.2.10)

2Not to be confused with the bulk cross-ratios defined in eq. (2.2.5). It will be clear from the context
whether bulk or defect cross-ratios are meant.
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The blocks f∆12
∆k,ℓk

(r, w) can be found by acting with the quadratic Casimir of the bulk
algebra and solving the corresponding differential equation.

The bulk channel blocks are not known in closed form for arbitrary defect dimension
p and codimension q. They can be written down as an infinite sum over hypergeometrics
instead [47, 137]:

f∆12
∆,ℓ (r, w) = r−

∆12
2

∞∑
m,n=0

4m−n (− ℓ
2

)
m

m!n!

(
1−ℓ−p

2

)
m

(
− ℓ+∆+2+∆12

2

)
m(

2 − d
2
− ℓ
)
m

(
3−∆−ℓ

2

)
m

×

(
∆−1
2

)
n

(
∆−p
2

)
n(

1 + ∆ − d
2

)
n

(
1+∆+ℓ

2

)
n

(
ℓ+∆+∆12

2

)
n−m(

ℓ+∆−1
2

)
n−m

(1 − r2)ℓ−2m

(
(w − r)(1 − rw)

w

)∆−ℓ
2

+m+n

×

2F1

(
∆ + ℓ− ∆12

2
−m+ n,

∆ + ℓ

2
−m+ n,∆ + ℓ− 2m+ 2n; 1 − r2

)
×

4F3

(
−n −m 1+∆12

2
∆12+∆−ℓ−d+2

2
∆12−∆−ℓ−2n+2

2
∆12+∆+ℓ−2m

2
∆−ℓ−d+3

2

; 1

)
,

(3.2.11)

In special cases it is possible to write down a closed form expression, for example for the
case of a boundary or interface, which will be discussed in more detail below.

Defect channel. Another way to expand eq. (3.2.8) is by taking the bulk-to-defect
OPE twice, resulting in a (normalized) two-point function on the defect. In this case, the
expansion in defect channel blocks provides us with the bulk-to-defect OPE coefficients
b̂ij:

⟨⟨O1(x1)O2(x2) ⟩⟩ =
∑
Ôk

b̂1kb̂2kf̂∆̂k,ĵk,sk(r, w) . (3.2.12)

The defect blocks f̂∆̂k,ĵk,sk(r, w) are obtained by acting with the quadratic Casimir of the
defect algebra (3.1.2). Solving the resulting differential equations, we find the following
formula for the conformal blocks [47]:

f̂∆̂,s(χ, ϕ) = 2−s Γ(q + s− 2)Γ
(
q
2
− 1
)

Γ
(
q
2

+ s− 1
)

Γ(q − 2)
χ−∆̂

2F1

(
q + s

2
− 1,−s

2
;
q − 1

2
; sinϕ2

)
× 2F1

(
∆̂ + 1

2
,
∆̂

2
; ∆̂ + 1 − p

2
;

4

χ2

)
,

(3.2.13)

where p is the dimension of the defect and q the codimension.
Conformal blocks for two-point functions of spinning operators in the presence of a

defect were computed in [50], where they also found a closed-form expression for the
blocks in the defect channel.

3.2.2 Boundary CFT

Let us look further into the case of a codimension-1 defect. We specifically consider
boundaries, but the discussion below also applies to interfaces. There are some similarities
with one-dimensional CFTs in the way that they differ from higher-codimensional defects.
Firstly, there are no rotations possible around a boundary or interface, and hence bulk
operators cannot acquire transverse spin. Secondly, for a CFT with a boundary there is
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Figure 3.2: Diagrams contributing to the one-point function ⟨⟨ϕ ⟩⟩ up to O(ε2). The
defect is denoted by a solid line, scalars by a dotted line, and fermions by solid arrowed
lines. Bulk scalar couplings λ0 are represented by a black dot, and defect couplings h0
by a blue dot.

only one direction perpendicular to the defect. Because of this, the two-point function of
bulk operators shown in eq. (3.2.8) no longer depends on two independent cross-ratios,
but only on χ defined in eq. (3.2.7). This makes the expressions for the conformal blocks
simpler, and in particular makes it possible to find a closed form expression for the bulk
channel blocks:

g∆12
∆ (χ) = χ∆/2

2F1

(∆ + ∆12

2
,
∆ − ∆12

2
; ∆ + 1 − d

2
;−χ

)
. (3.2.14)

More details on the derivation can be found in appendix B. Lastly, boundary CFTs
only admit one-point functions of scalar operators. Spinning operators, including the
stress-tensor, do not have a one-point function.

3.3 Defects in the ε−expansion

CFTs with defects can also be studied in the ε-expansion, where oboth the bulk and the
defect need to be tuned to the fixed point. There are two different types of defects one
can study: those with a fixed dimension p or those with a fixed codimension q. Examples
of defects with a fixed codimension are boundaries (q = 1) or monodromy defects (q = 2).
As a result of having q fixed, the defect changes dimension with the bulk. Calculations
in the ε-expansion for these types of defects are given in section 4.5 for a superconformal
field theory with a boundary, and in section 5.3.1 for a monodromy defect with O(N)
flavor symmetry.

Defects with a fixed dimension are e.g. surface or line defects. Let us look at the
example of a line defect in the ϕ4 model we studied in section 2.3. We take the localized
magnetic field line defect studied in [81, 84] and section 5.3 for the O(N) model, and
focus on the case N = 1. The action of eq. (2.3.2) is modified with the field ϕ integrated
over a line:

Sϕ4 → Sϕ4 + h

∫
dτϕ(x) . (3.3.1)

Because ϕ has dimension ∆ϕ = 1 in four dimensions, it is a marginal operator in 1d.
The action in eq. (3.3.1) describes a CFT if we tune both the bulk coupling λ and the
defect coupling h to their fixed points. This requires us to find the fixed point h⋆, which
is given by the zero of the β-function βh. In the bulk, we obtained βλ by requiring that
the four-point interaction vertex is finite. To obtain βh, we require that the one-point
function of ϕ is finite. The corresponding Feynman diagrams up to O(ε2) are given in
figure 3.2. Their evaluation can be found in [81]. Note that even though we can work
perturbatively in the bulk coupling λ, this is not the case for the defect coupling h and
we need to consider diagrams to all orders in h. However, it becomes immediately clear
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that for a given number of bulk couplings λ, there are only finitely many defect diagrams.
Extracting the divergences, we find the following expression for Zh:

Zh = µε/2h

{
1 +

1

ε(4π)2

(
λh3

12
+

λ2h

24(4π)2
− λ2h3

12(4π)2
− λ2h5

48(4π)2
+ O(λ3)

)
+ · · ·

}
,

(3.3.2)
where the dots indicate terms of order 1/ε2. The β-function is obtained in the same way
we found βλ in section 2.3:

βh =
dZh
d log µ

= −ε
2
h+

λh3

6(4π)2
+

λ2h

12(4π)4
− λ2h3

4(4π)4
− λ2h5

12(4π)4
+ O(λ3) . (3.3.3)

The fixed point is given by the zero of eq. (3.3.3) for λ = λ⋆ given in eq. (2.3.11):

h2⋆ = 9 +
73ε

6
+ O(ε2) . (3.3.4)

Notice that we only find the fixed point up to O(ε). To go to O(ε2), we would need to
know the β-function at O(ε3).

When we also consider the finite part of the diagrams in figure 3.2, we find the
complete one-point function:

⟨⟨ϕ(x) ⟩⟩ =
Nϕaϕ
|x|∆ϕ

, a2ϕ =
9

4
+ ε

81 log 4 − 24

56
+ O(ε2) , (3.3.5)

where the normalization factor Nϕ comes from the normalization of ⟨ϕ(x1)ϕ(x2)⟩ away
from the defect.

The anomalous dimension of the first operator in the bulk-to-defect expansion, which
we denote as ϕ̂, can be computed in the usual way by looking at the divergence of its
two-point function on the defect. However, in this case we can also extract it directly
from the β-function βh. The reason is that one can define a defect stress-tensor T̂D, which
here is proportional to βh [84]:

T̂D(τ) = βhϕ̂(τ) , (3.3.6)

with protected dimension ∆T̂D
= 1. Hence, the conformal dimension of ϕ̂ is given by:

∆̂ϕ̂ = 1 +
∂βh
∂h

= 1 +
6ε

7
+ O(ε2) . (3.3.7)

For the O(N) model (note that the defect above is the case N = 1), correlation functions
between defect operators can be found in section 5.3.2, while correlators between bulk
and defect operators, and bulk operators in the presence of a defect were recently com-
puted in [86, 87]. A generalization to Yukawa CFTs, which include interactions between
fermions and scalars, is given in chapter 6.

3.4 Defect bootstrap

We have seen in section 3.2 that two-point functions of bulk operators in the presence of
a defect are no longer fully fixed by conformal symmetry. Instead, they depend on the
defect cross-ratios r and w. In section 3.2, it was shown that the two-point functions
can be expanded in either bulk or defect conformal blocks, depending on which OPE one
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∆O
∑
O
λOaO

∆Ô

=
∑̂
O

(b̂O)2

Figure 3.3: The defect crossing equation. On the left the bulk channel is shown, while
the right-hand side corresponds to the defect channel.

uses: the bulk OPE between the two operators and subsequently bringing the resulting
local operators to the defect, or the bulk-to-defect OPE for each operator, resulting in a
two-point function of two defect operators. The first expansion is called the bulk channel,
and the second expansion the defect channel. Demanding that these two expansions
are equivalent if we are close enough to the defect (and there are no insertions of other
operators), results in the defect crossing equation, depicted in figure 3.3, which takes the
following form: ∑

Ok

λ12kaOkf(r, w) =
∑
Ôi

b̂1ib̂2if̂(r, w) , (3.4.1)

where λijk is the bulk OPE coefficient, aO the one-point function coefficient, b̂ij the bulk-

to-boundary OPE coefficients, f(r, w) the bulk channel conformal blocks and f̂(r, w) the
defect channel conformal blocks. Note that while on the defect side the square of the
bulk-to-defect OPE coefficients appears, on the bulk side it is the product of the bulk
OPE coefficient and the one-point function coefficient.

One might wonder if eq. (3.4.1) is the most fundamental crossing equation for defect
CFTs that one can write down, and defect data, and the answer is no. While this crossing
equation includes information on bulk OPE coefficients, one-point function coefficients,
and bulk-to-defect OPE coefficients, as well as the bulk and defect spectrum, it does not
rely on defect OPE coefficients and hence cannot be used to constrain those. The true
parallel with the four-point function of bulk operators far away from the defect appearing
in the bulk crossing equation in eq. (2.4.1), would be the correlator ⟨⟨ϕϕϕ̂ ⟩⟩. Knowing
all the correlators of this form would be enough to completely determine the bulk and
defect CFT data. However, it was already pointed out in section 3.2 that the correlation
function depends on multiple cross-ratios, which makes it harder to use them in the
defect bootstrap, and most results in the defect bootstrap rely on the study of two-point
functions between bulk operators in the presence of the defect, which already constrain
a significant part of the bulk and defect CFT data.

3.4.1 Numerical versus analytic bootstrap

The defect crossing equation in eq. (3.4.1) contains information on both the defect and
the bulk CFT. Hence, having knowledge about the bulk conformal data can be beneficial
to find constraints on defect data, but it is also possible to obtain information about
the bulk using the defect bootstrap. In this way, the defect bootstrap enriches the usual
conformal bootstrap program, but at the same time comes with additional challenges.

One main challenge is the lack of positivity, even for unitary theories. As said earlier,
on the bulk channel side the bulk OPE coefficient appears together with the one-point
function coefficient, and there is no guarantee that this combination will be a positive
number. Hence, solving eq. (3.4.1) with the modern numerical conformal bootstrap tech-
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niques outlined in section 2.4.2 is currently not possible. It is, however, possible to look
at the CFT on the defect and study it as an “ordinary” CFT using the numerical boot-
strap. This approach is used in chapter 5. Since it is equivalent to using numerical
techniques described in section 2.4.2, we will not further elaborate here. The same phi-
losophy has also been applied to other setups, for example to find the space of allowed
conformal boundary conditions of a free bulk theory [68, 69]. Another possibility is to
assume positivity in the defect crossing equation, based on for example results for the
OPE coefficients and one-point coefficients from various perturbative expansions, as was
done in [70].

A noteworthy method to bootstrap theories without positivity is the method of deter-
minants, also known as Gliozzi’s method [138, 139]. Instead of considering the full crossing
equations with an infinite number of conformal primaries exchanged in the OPEs, one
studies a truncated version where only a few exchanged operators contribute. If one
assumes that N operators contribute, and considers M linear functionals (derivatives of
conformal blocks), with M > N , and there are n < N free parameters, the system is
overdetermined and it might be possible to find a unique solution. The main advantage
is that no unitarity is required, and one can find the spectrum of theories not saturating
the numerical bound. Indeed, this method was used in [53] to bootstrap codimension-1
defects. However, the assumptions of a finite spectrum are very strong, and it is in general
difficult to estimate the error on the obtained spectrum.

Let us now turn to the analytic bootstrap, which does not require positivity. Similar
to the bulk CFT, it is possible to construct a Lorentzian defect inversion formula [51, 97].
Starting from the lightcone limit and performing the lightcone bootstrap for two-point
functions of bulk operators in the presence of a defect, it can be shown [51] that in the
defect spectrum, there are conformal primaries with dimension

∆̂ = ∆ϕ + s+ 2m+ O
(

1

s

)
, (3.4.2)

where s denotes the transverse spin. Hence, an expansion in large transverse spin is
possible, and the analogy with the bulk case without defects, discussed in section 2.4.3,
becomes clear. A Lorentzian inversion formula for the defect channel was then constructed
in [51], and later for the bulk channel as well in [97], following an improved understanding
of the bulk conformal blocks [137].

Other analytical methods that we encountered in section 2.4.3 can also be applied to or
adapted for the case of defect CFTs. The analytic functionals used to study 1d CFTs can
be directly applied to constrain four-point functions of defect operators confined to a line.
In addition, the functional bootstrap has been set up for the case of a boundary [57, 58],
which as we have seen shares many similarities with the 1d bootstrap.

The large charge expansion has also been used in the context of defects to study
new, strongly coupled regions not accessible by perturbative methods. In the case of a
boundary, [140] showed that if a bulk operator at large charge corresponds to a superfluid
state, then the large charge sector of boundary operators will also be in a superfluid
state, and an effective field theory can be constructed. From the EFT, the large charge
spectrum of boundary operators can be determined.

Another possibility, as for bulk CFTs, is to combine perturbative expansions with the
analytic bootstrap. In the next chapter 4 we will bootstrap bulk and boundary CFT data
of superconformal boundaries in the ε−expansion.
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Chapter 4

Superconformal boundaries in 4− ε
dimensions

4.1 Introduction

The conformal algebra shown in section 2.1 can be extended to a superconformal algebra
by including anticommuting supersymmetry generators. Theories invariant under this
algebra are called superconformal field theories (SCFTs). The amount of supersymmetry
is usually denoted by N and corresponds to the number of supercharges present in the su-
perconformal algebra. Which superconformal algebra is considered depends on N and on
the dimension of the SCFT. In this chapter we consider 3dN = 2 SCFTs with a bound-
ary, where the bulk superconformal algebra is OSP (2|4) and contains the supercharges
Qα, Q̄α, α = 1, 2 as well as their superpartners Sα, S̄α, α = 1, 2.

We have seen that the presence of conformal symmetry severely constrains the kine-
matics of correlation functions and makes it possible to constrain the spectrum of a
CFT based on symmetry arguments and basic assumptions alone, using the conformal
bootstrap. Adding additional symmetry constraints could then lead to even stronger
bounds on CFTs. However, the Coleman–Mandula theorem [141] states that spacetime
and internal symmetries can only combine trivially. Conformal symmetry is still allowed
because of the lack of a mass gap, which is one of the assumptions of the Coleman–
Mandula theorem. Supersymmetry is the other exception, which has been solidified in
the Haag– Lopuszański–Sohnius theorem [142], generalizing the Coleman-Mandula theo-
rem by allowing anticommmuting generators of the symmetry algebra. Hence, supersym-
metry (SUSY) seems to be the only possibility to further constrain correlation functions
in the theory, which can be exploited to find stronger bounds on the CFT data.

Adding a boundary to the bulk SCFT breaks part of the conformal symmetry and
of the supersymmetry. We will consider 1/2-BPS superconformal boundaries, which pre-
serve a superconformal algebra on the boundary with half the amount of SUSY of the
bulk. Such a setup has received particular attention in the context of infrared duali-
ties [143–146], and localization [147, 148].

There are two ways in which supersymmetry can be preserved when a boundary is
introduced: one choice preserves supercharges of the same chirality which define a 2d
N = (0, 2) subalgebra, while the other choice is non-chiral and describes a 2d N = (1, 1)
subalgebra. We will study the kinematical constraints on correlators for both choices,
with a particular emphasis on two-point functions. As explained in section 3.2, in the
presence of a boundary two-point correlators of bulk fields are not fixed by symmetry, but

33
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depend on a conformal invariant. They contain non-trivial dynamics akin to four-point
functions in homogeneous CFTs, which is captured by the existence of two inequivalent
conformal block expansions: the bulk and defect expansions. Consistency between the
two decompositions is the starting point of the bootstrap program for BCFT.

Our main focus will be chiral fields, which are short operators of the bulk supercon-
formal algebra killed by half of the supercharges, and whose conformal dimension is fixed
by the R-symmetry. As usual in the bootstrap, it is essential to calculate the relevant
superconformal blocks. Bosonic blocks for BCFT two-point functions have been known
for a long time [149], however less work has been done on supersymmetric models, the
sole exception being boundaries in N = 4 SYM [150]. Attempts to formalize the study of
superconformal blocks include analytic superspace [151] and the connection to Calogero-
Sutherland models [152, 153]. Here we start our analysis using standard superspace
techniques, and calculate superblocks using the Casimir approach [119]. The superspace
analysis will be uniform for the N = (0, 2) and N = (1, 1) subalgebras, but it turns out
that the N = (1, 1) blocks have the interesting property that they can be analytically
continued across dimensions. In more detail, there is a unique half-BPS boundary in 4d
N = 1 which is non-chiral, and that can be interpolated to the N = (1, 1) boundary
in 3d. This is the BCFT counterpart of the results obtained in [154], where the bulk
superconformal blocks were continued in d. Even though conformal symmetry is subtle
in non-integer dimensions,1 conformal blocks are usually analytic in all their quantum
numbers.2

Armed with the analytic continuation we tackle the ε-expansion for models that satisfy
our constraints. Using minimal assumptions, we prove that two-point functions of free
chiral and antichiral fields are completely fixed. At leading order in ε, which already
corresponds to an interacting fixed point, we prove that the two-point functions are
universal up to two free parameters: the anomalous dimension of the lowest-lying bulk
field, and the anomalous dimension of the lowest-lying boundary field. The solution is
non-trivial and contains an infinite number of conformal blocks, and therefore can be
used to extract an infinite amount of CFT data.

As a check of our general order ε result, we concentrate on the Wess-Zumino model
with cubic superpotential, which is a prime example of a critical system that preserves
four supercharges. Using the results of [156], we construct an explicit Lagrangian model
with boundary degrees of freedom that exhibits all the symmetries of our setup. We use
this model to perform a Feynman diagram calculation at one-loop order, and confirm
that the perturbative result is in perfect agreement with our bootstrap prediction.

The outline of this chapter is as follows. In section 4.2 we summarize the differences
between the N = (0, 2) and N = (1, 1) boundaries and introduce the crossing equations
for BCFT. In section 4.3 we carry out a detailed study of correlation functions and su-
perconformal blocks of these 3d models. In section 4.4 we rederive the superconformal
blocks with a new method that is applicable to any 3 ≤ d ≤ 4, and use them to boot-
strap two-point functions of chiral operators in the ε expansion. Finally, in section 4.5
we compute the same two-point functions for the Wess-Zumino model using Feynman
diagrams.

1See [129] for discussions on non-integer d and [155] for non-integerN (in the context of O(N) models).
2In the case of the defects both dimension and codimension appear as parameters in the blocks [47, 137]

as was shown in section 3.2.
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4.2 Preliminaries

In this preliminary section we introduce the symmetry algebra in the bulk, and the two
possible half-BPS subalgebras preserved by a supersymmetric boundary. We also intro-
duce chiral fields and review the standard bootstrap equations for two-point functions in
BCFT.

4.2.1 Superconformal boundaries in 3d

There are two inequivalent half-BPS boundaries that one can consider in 3d N = 2
superconformal theories, which are commonly denoted as N = (0, 2) and N = (1, 1)
boundaries (see [147, 148, 143–146, 157] for related work). The cleanest way to understand
their differences is at the level of the commutation relations of their algebras.

Let us start by reminding the reader about the main features of 3d N = 2 supercon-
formal symmetry. Besides the conformal generators D,Pµ,Kµ,Mµν , the superconformal
algebra has four Poincaré supercharges Qα, Q̄α, and four superconformal partners Sα, S̄α.
There is an extra U(1) symmetry generated by R under which Qa,Sa have charge −1,
and Q̄a, S̄a have charge +1. The precise commutation relations with a summary of our
conventions are presented in appendix A. The representation theory of 3d N = 2 is well
known and can be found for example in [158].

When we restrict ourselves to three dimensions, we take the superconformal boundary
to be located at x2 ≡ x⊥ = 0. It is clear that the bosonic subalgebra is generated by Pa,
Ka, Mab, and D, where a = 0, 1 runs over directions parallel to the boundary. We are
now ready to introduce the two inequivalent boundary-preserving superalgebras, which
differ only by the choice of fermionic generators.

The N = (0, 2) boundary: The first possibility is to choose the following fermionic
generators: Q2, Q̄2, S2, S̄2. The precise commutation relations can be obtained by
restricting the full superconformal algebra presented in appendix A.2. The following
ones are of particular importance:

{Q2, Q̄2} = −2(P0 + P1),

{Q2, S̄2} = −2iD + 2R + 2iM01,

{Q̄2,S2} = −2iD − 2R + 2iM01.

(4.2.1)

From the first equation, we notice that P2 does not appear on the right-hand side. This
was to be expected, since translations in the x2 = x⊥ direction are not preserved. Regard-
ing the second and third equations, it is crucial to notice the appearence of R. Physically,
it means that the N = (0, 2) boundary preserves R-symmetry, a property that strongly
constrains which correlation functions are non-vanishing. For example, we will often
be concerned with bulk operators Or with charge r. From the above discussion, it fol-
lows that one-point functions ⟨Or⟩ = 0 unless r = 0, and similarly two-point functions
⟨Or1Or2⟩ = 0 unless r1 + r2 = 0.
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The N = (1, 1) boundary: The second possibility is to choose the following fermionic
generators:

Q̃1 ≡
1√
2

(
Q1 + Q̄1

)
, Q̃2 ≡

i√
2

(
Q2 − Q̄2

)
,

S̃1 ≡ 1√
2

(
S1 + S̄1

)
, S̃2 ≡ i√

2

(
S2 − S̄2

)
.

(4.2.2)

Once again, the full set of commutation relations can be obtained from the formulas in
appendix A.2. The non-vanishing anticommutators are

{Q̃α, Q̃β} = 2(γa)αβPa ,
{Q̃1, S̃1} = −2i(D + M01) ,

{Q̃2, S̃2} = −2i(D −M01) .

(4.2.3)

As before, P2 is not part of the algebra since a = 0, 1. Interestingly, the second anticom-
mutator does not contain R, since R-symmetry is broken by the N = (1, 1) boundary.
In this case, charged bulk operators can have one- and two-point functions that would
be forbidden by charge conservation, namely ⟨Or⟩ ̸= 0 ̸= ⟨Or1Or2⟩ for any values of the
charges.

4.2.2 Chiral primaries in superconformal theories

As announced before, we will mostly focus on chiral primary operators ϕ and their com-
plex conjugates. Often, we will call these operators “chirals” and “antichirals” for sim-
plicity. These are short multiplets of the superconformal algebra killed by half of the
supercharges:

[Q̄α, ϕ(0)] = 0 , [Qα, ϕ̄(0)] = 0 , (4.2.4)

and whose conformal dimension and R-charge are related to each other. For general
spacetime dimension one obtains

∆ϕ =
d− 1

2
rϕ , ∆ϕ̄ = −d− 1

2
rϕ̄ . (4.2.5)

There is a consistent way to define chiral multiplets in any, in principle continuous,
number of dimensions, a fact that will play a significant role in section 4.4.

Chiral operators are ubiquitous in the study of SCFTs and they are present in most
known models. A textbook example of a 4d Lagrangian with N = 1 supersymmetry is to
consider chiral fields in superspace with some non-linear interaction. We will consider a
simple example of this in section 4.5, where we study the Wess-Zumino model, i.e. a single
chiral multiplet with a cubic superpotential. This model flows to an interacting fixed
point, which can be described perturbatively in the ε-expansion using weakly-coupled
chiral fields. It turns out that the ε-expansion can be generalized to include boundaries,
a fact that we will explore using the bootstrap results obtained in this work.

An important property of chiral operators is that they often satisfy non-trivial chiral-
ring relations. These relations are dynamic and imply that certain chiral operators might
disappear from an OPE, for example ϕ3 /∈ ϕ1 × ϕ2, even if this is not forbidden by
superconformal symmetry. The Wess-Zumino model in 3d is a simple SCFT with chiral-
ring relations. The chiral ring of this model is generated by ϕ together with the relation
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ϕ2 /∈ ϕ × ϕ. In the numerical bootstrap analysis of [159, 154], the chiral-ring relation
provided strong evidence that a kink in the numerical plots described the Wess-Zumino
model. In section 4.5.3 we will notice that our perturbative results are also consistent
with the same chiral-ring relation. More complicated examples of chiral-ring relations
can be found in [160] where the authors studied numerically a 3d conformal manifold
parametrized by the complex gauge coupling τ . Chiral-ring relations of bulk operators
could also be used to extract information of a theory living on the boundary, similar in
spirit to the work of [52, 68].3

In this work we will not explore all these questions yet, but they motivated us to study
this setup. Here we will work out basic kinematical constraints and use the bootstrap to
study the dynamics of a single chiral field. Possible future directions and applications of
our results will be discussed in the conclusions. Before we jump to the main analysis, let
us first review the bootstrap approach for BCFT, which will be one of our main tools.

4.2.3 Crossing symmetry in BCFT

In this section we will review crossing symmetry for generic, non-supersymmetric bound-
ary CFTs. There are two relevant symmetry algebras to study BCFT. The first one
contains the d-dimensional conformal group, and it describes physics far away from the
boundary. In particular, bulk local operators O(x) transform in irreducible representa-
tions of this algebra, and are labeled by a conformal dimension ∆ and spin ℓ. There can
also be physical excitations localized on the boundary, which are represented by local
operators Ô(xa, x

⊥ = 0). These boundary operators transform as irreducible representa-
tions of the symmetry algebra that preserves the boundary, namely they have conformal
dimension ∆̂ and d− 1 dimensional spin j.

Correlation functions can be constructed with arbitrary combinations of bulk and
boundary operators. As usual, conformal symmetry puts strong constraints on the form
of these correlation functions. For example, the one-point function and the bulk-to-
boundary correlator of a bulk scalar are fixed up to a constant [149]

⟨O(x)⟩ =
aO

(2x⊥)∆
, ⟨O(x1)Ô(xa2)⟩ =

bOÔ

(2x⊥1 )∆−∆̂
(
(xa12)

2 + (x⊥1 )2
)∆̂ . (4.2.6)

For more general correlation functions the situation is more involved, because they can de-
pend on conformal invariants. For example, a two-point function of bulk scalars depends
on an arbitrary function of the invariant ξ:

⟨O1(x1)O2(x2)⟩ =
F(ξ)

(2x⊥1 )∆1(2x⊥2 )∆2
, ξ =

(x1 − x2)
2

4x⊥1 x
⊥
2

. (4.2.7)

Knowledge of F(ξ) is equivalent to knowing the full two-point correlator. The function
F(ξ) is far from arbitrary; it is heavily constrained by crossing symmetry and it is the
main subject of study in the bootstrap program for BCFT.

The main ingredient to derive the crossing equation is the operator product expansion
(OPE). It is well known that one can rewrite a product of two bulk local operators as an
infinite sum of individual bulk local operators using the standard OPE. In the presence
of a boundary there is a second possible expansion, the boundary operator expansion

3We thank Edo Lauria for discussions on this idea.
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(BOE), in which one bulk local operator is replaced by a sum of operators that are
localized in the boundary. In terms of equations, these two OPEs are

O1(x)O2(0) =
1

x2∆
+
∑
O

λO1O2OC[x, ∂x]O(0) ,

O(x) =
aO

(2x⊥)∆
+
∑
Ô

bOÔD[x⊥, ∂a]Ô(xa) .
(4.2.8)

The sums run only over conformal primaries, and the contributions of the descendants are
captured by the differential operators C and D which are completely fixed by conformal
symmetry.

The power of the OPE is that it allows us to evaluate higher-point functions using
lower-point correlators, provided we know the spectrum of the theory and all the OPE
coefficients a, b and λ. In the example of a bulk two-point function, there are two different
decompositions possible:

F(ξ) =
∑
O

aOλO1O2Of∆(ξ) =
∑
Ô

bO1ÔbO2Ôf̂∆̂(ξ) . (4.2.9)

The objects f∆(ξ) and f̂∆̂(ξ) are called conformal blocks, which we review in appendix B.
Equation (4.2.9) is called the “crossing equation”, and it provides non-trivial constraints
on the spectrum and CFT data of boundary conformal field theories.

The above discussion was completely general, and it applies to any conformal field
theory with a conformal boundary. The main goal of this work is to specialize it to
superconformal boundaries, in which case the crossing equation (4.2.9) can be constrained
even further. The reason is that supersymmetry relates the OPE coefficients of different
conformal primaries that belong to the same supermultiplet, which means that we can
organize the expansion in terms of superconformal blocks F∆(ξ) and F̂∆̂(ξ). These new

objects are linear combinations of the bosonic blocks f∆(ξ) and f̂∆̂(ξ) with coefficients
fixed by supersymmetry. In sections 4.3 and 4.4 we will compute these objects in d = 3
and in 3 ≤ d ≤ 4 respectively, which will allow us to study the bootstrap equations
analytically in section 4.4.4.

4.3 Boundaries in three dimensions

4.3.1 Superspace analysis

Let us start by studying correlators for both types of boundary conditions using super-
space techniques. We introduce a standard Minkowski superspace in which each super-
charge Qα, Q̄α, where α = (1, 2) = (−,+), has a Grassmann variable θα, θ̄α associated
to it. This setup is enough for our purposes, because we will mostly study correlators of
scalar operators in a system with minimal supersymmetry.4 Our superspace then consists
of three spacetime coordinates xµ and four Grassmann coordinates θα and θ̄α which we
collect as follows:

z = (xµ, θα, θ̄α) , (4.3.1)

4See [50, 161] for studies of non-supersymmetric two-point functions of arbitrary spin.
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where µ = 0, 1, 2. We can convert spinor indices α, β into vector indices µ, ν by means of
the gamma matrices (γµ)αβ. The form of these matrices, together with further conventions
regarding raising, lowering and contracting indices, can be found in appendix A.1.

The differential form of the (super)translations acting on fields O(z) is standard

[Pµ,O(z)] = i∂µO(z) , (4.3.2)

[Qα,O(z)] =
(
∂α + i(γµ)αβ θ̄

β∂µ
)
O(z) , (4.3.3)[

Q̄α,O(z)
]

= −
(
∂̄α + i(γµ)αβθ

β∂µ
)
O(z) . (4.3.4)

From the bulk algebra it is easy to derive the form of all the other differential operators,
which we list in appendix A.3. The action of the covariant derivatives is also standard

DαO(z) =
(
∂α − i(γµ)αβ θ̄

β∂µ
)
O(z) , D̄αO(z) = −

(
∂̄α − i(γµ)αβθ

β∂µ
)
O(z) , (4.3.5)

and as usual, they anticommute with the action of supertranslations. The main focus
of this work is on chiral and antichiral operators (see section 4.2), which are defined in
superspace as

D̄αΦ(z) = 0 , DαΦ̄(z) = 0 . (4.3.6)

In order to work with chiral operators it is useful to work with chiral/antichiral coordi-
nates defined as

yµ = xµ − iγµαβθ
αθ̄β, ȳµ = xµ + iγµαβθ

αθ̄β. (4.3.7)

In terms of these coordinates, a chiral field depends only on Φ(y, θ) and similarly for
the antichiral field Φ̄(ȳ, θ̄). If we consider two points, we can also define supersymmetric
invariant distances with well-defined chirality:5

yµ12 = xµ12 − i(γµ)αβ

(
θα1 θ̄

β
1 + θα2 θ̄

β
2 − 2θα1 θ̄

β
2

)
, (4.3.8)

ȳµ12 = xµ12 + i(γµ)αβ

(
θα1 θ̄

β
1 + θα2 θ̄

β
2 + 2θ̄α1 θ

β
2

)
. (4.3.9)

These distances are chiral at one point and antichiral at the other, namely

D̄(1)
α yµ12 = D(2)

α yµ12 = 0 , D(1)
α ȳµ12 = D̄(2)

α ȳµ12 = 0 . (4.3.10)

Introducing a boundary will generally break supersymmetry in the bulk. In this
chapter we study a special class of boundaries that preserve one half of the supersymmetry.
As already discussed, they are characterized by 2d algebras with N = (0, 2) and N =
(1, 1) supersymmetry respectively. The two boundaries have distinct features that we
discuss in detail below, the most prominent being that the N = (1, 1) boundary breaks
R-symmetry, while it is kept intact in the N = (0, 2) case.

4.3.2 The N = (0, 2) boundary

The N = (0, 2) boundary preserves the supercharges Q+, Q̄+, resulting in the algebra
given in (4.2.1). The bulk superspace can be split into coordinates parallel and perpen-
dicular to the boundary. The parallel coordinates are(

θ+, θ̄+, xa
)
, a = 0, 1, (4.3.11)

5Note that yµ12 ̸= yµ1 − yµ2 , we hope the notation will not create confusion.
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while the perpendicular coordinates read(
θ−, θ̄−, x⊥ ≡ x2

)
. (4.3.12)

As was the case for the bulk theory, it is convenient to define supersymmetric, chiral, and
antichiral perpendicular distances. The supersymmetric distance is

z⊥ = x⊥ − iθαθ̄α (4.3.13)

and the chiral y⊥ ≡ y2 and antichiral ȳ⊥ ≡ ȳ2 perpendicular distances can be read off
from eq. (4.3.7). Note that z⊥ is invariant under the boundary (super)translations Pa,Q+

and Q̄+, while y⊥ and ȳ⊥ are not. The component expansion of a chiral field Φ takes the
familiar form

Φ(y, θ) = ϕ(y) + θ+ψ+(y) + θ−ψ−(y) + θ+θ−F (y) , (4.3.14)

where ϕ is a complex boson, ψα a complex fermion, and F a complex auxiliary field.
It will be convenient to decompose this bulk chiral supermultiplet Φ in terms boundary
supermultiplets, that transform irreducibly under the (0, 2) subalgebra [157, 146]

Φ = Φ̂ + θ−Ψ̂ + . . . , (4.3.15)

where Φ̂ is a boundary chiral field, Ψ̂ a boundary Fermi field, and the . . . stand for
derivatives of Φ̂ parallel to the boundary. A similar expansion can be written for the
antichiral bulk supermultiplet Φ̄. From now on, we will denote boundary multiplets and
boundary fields with a hat. One can straightforwardly derive a similar expansion for Φ̂
and Ψ̂:

Φ̂ = Φ
∣∣∣
θ−=θ̄−=0

= ϕ+ θ+ψ+ + . . . , (4.3.16)

Ψ̂ = D−Φ
∣∣∣
θ−=θ̄−=0

= ψ− + θ+F + . . . , (4.3.17)

where F ∼ ∂⊥ϕ on-shell and the . . . stand for terms with derivatives. The usual Neumann
and Dirichlet boundary conditions can be neatly represented in terms of these superfields:

Neumann: ∂⊥ϕ
∣∣∣
∂

= 0, ψ−

∣∣∣
∂

= 0 → Ψ̂|∂ = 0, (4.3.18)

Dirichlet: ϕ
∣∣∣
∂

= 0, ψ+

∣∣∣
∂

= 0 → Φ̂|∂ = 0. (4.3.19)

One-point functions

As reviewed in section 4.2, scalar bulk operators can acquire a one-point function in the
presence of a boundary. In the superspace setup we are considering, we expect on general
grounds one-point functions of the form

⟨O(z)⟩ =
aO

(z⊥)∆
, (4.3.20)

where z⊥ is given in eq. (4.3.13). For chiral fields, the chirality condition (4.3.6) and
conservation of R-symmetry imply that the one-point function vanishes: aΦ = 0.
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Bulk-to-boundary correlator

Similarly to the one-point function, we expect bulk-to-boundary correlators to be of the
form

⟨O(z1)Ô(z2)⟩ =
1

(z⊥1 )∆−∆̂|y212 ȳ212|∆̂/2
g(Θi) , (4.3.21)

where g is a function of possible nilpotent invariants Θi.
Again, the chirality condition (4.3.6) is extremely powerful and severely constrains the

possible defect operators that can appear in the boundary OPE of a chiral field. From
the expansion in (4.3.15) we expect two types of boundary multiplets, and indeed there
are two possible correlators consistent with all the symmetry constraints. One choice
involves a scalar boundary multiplet6

⟨Φ(y, θ) ˆ̄Φr(0)⟩ =
b
Φˆ̄Φ

|yµ|2∆
, (4.3.22)

where |yµ| is the norm of the chiral distance (4.3.7), and the conformal dimensions are
constrained by conservation of R-symmetry ∆̂ = ∆ϕ = rϕ = rϕ̂.

The other bulk-to-boundary two-point function involves the Fermi multiplet ˆ̄Ψ whose
highest weight carries spin:

⟨Φ(y, θ) ˆ̄Ψ(0)⟩ =
b
Φˆ̄Ψ
γµ1βyµθ

β

(y⊥)∆−∆̂+ 1
2 |yµ|2(∆̂+ 1

2
)
. (4.3.23)

Charge conservation implies rψ = 1− rϕ but ∆̂ is not constrained to take a specific value,
which means these multiplets are responsible for most of the operators that appear in
the boundary block expansion of the two-point function of chiral fields. The power ∆̂ + 1

2

indicates that the contributing field is not the primary, but a descendant (see eq. (4.3.36)
below).

Two-point functions

As reviewed in section 4.2, bosonic two-point functions depend on a conformal invariant
and therefore contain a large amount of dynamical information through their conformal
block decompositions. As evident from our analysis so far, correlators of chiral fields are
severely constrained by superconformal symmetry and their chirality condition. There is
actually only one possible two-point invariant that satisfies all the superspace constraints:

ξ =
y212

4y⊥1 ȳ
⊥
2

(
1 + 2i

(y012 + y112)θ
−
1 θ̄

−
2

y⊥1 ȳ
⊥
2

+ 2i
θ+1 θ̄

−
2

ȳ⊥2

)
. (4.3.24)

This is the unique “supersymmetrization” of the standard bosonic invariant. The most
general two-point function of a chiral and an antichiral field then reads

⟨Φ(y1, θ1)Φ̄(0, ȳ⊥2 , θ̄
−
2 )⟩ =

(
ξ

y212

)∆

F(ξ) , (4.3.25)

where F is an abitrary function of the superconformal invariant ξ. In eqs. (4.3.24)
and (4.3.25) we work in a frame where ȳa2 = θ̄+2 = 0, (a = 0, 1), but we keep the

6Whenever possible we supertranslate point 2 to the origin to simplify our formulas, but if necessary
one can easily supertranslate back to a general frame.
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dependence on ȳ⊥2 and θ̄−2 , since they are perpendicular coordinates and cannot be set
to zero. Using a supertranslation one can find the two-point function in a frame with
completely general z1 and z2, as will be needed below. Two-point functions of two chiral
(or two antichiral) fields are zero due to R-symmetry. For more general external operators,
for example long multiplets of the superconformal algebra, we expect a more complicated
correlator involving nilpotent invariants, which then translates into superconformal blocks
that have free parameters (see for example [162]). We will not consider more general
correlators in this work, however our superspace setup could be used to study them in
the future.

Superconformal blocks

We are now ready to obtain one of the main results of this section: the superconformal
blocks associated to the two-point correlator F(ξ). As reviewed in section 4.2, there are
two conformal block expansions associated to the bulk and defect channel respectively.
Bulk conformal blocks are eigenfunctions of the two-point bulk Casimir operator, while
defect blocks are eigenfunctions of the defect Casimir.

Bulk channel: Let us start with the bulk channel,

C(12)
susy⟨Φ(z1)Φ̄(z2)⟩ = C∆,ℓ,r⟨Φ(z1)Φ̄(z2)⟩ , (4.3.26)

where the supersymmetric bulk Casimir is given by

C(12)
susy = −D2 − 1

2
{Kµ,Pµ} +

1

2
MµνMµν −

1

2
R2 +

1

4
[Sα, Q̄α] +

1

4
[S̄α,Qα] . (4.3.27)

The superscript (12) indicates that the operator acts on points z1 and z2. To avoid
cluttering we wrote the superscript only on the Casimir, and omit it from the operators
on the RHS. The eigenvalue reads

C∆,ℓ,r = ∆(∆ − 1) + ℓ(ℓ+ 1) − r2

2
. (4.3.28)

Evaluating (4.3.26) leads to a differential equation for the corresponding block F∆(ξ).
Our analysis implies the absence of nilpotent invariants when chiral fields are involved.
This means that full superspace correlators can be reconstructed from those of the super-
primaries and implies that a multiplet contributes only if its superprimary contributes.
Because only scalars can acquire a one-point function in BCFT, we can safely set ℓ = 0
when looking for solutions to the Casimir equation. A standard approach to solve these
equations is to recognize that superconformal blocks can be written as linear combina-
tions of bosonic blocks. The superdescendants of a field O(z) can be generated by acting
on the superprimary O(z) with the supercharges Q, Q̄. This creates superdescendants of
the schematic form Q1 . . . Q̄nO(z).7 We therefore make the following ansatz

F∆(ξ) = f∆(ξ) + c0f∆+ 1
2

+ c1f∆+1(ξ) + c2f∆+ 3
2
(ξ) + c3f∆+2(ξ) , (4.3.29)

where f∆(ξ) are the bosonic blocks given in eq. (B.1.3), and we fix the relative coefficients
using eq. (4.3.26). The solution is easy to find

F∆(ξ) = f∆(ξ) − (∆ − 1)∆

(2∆ − 1)(2∆ + 1)
f∆+2(ξ) , (4.3.30)

7In order to obtain proper conformal primaries (killed by K) the action of the Qi has to be corrected
by terms containing the momentum generator P.
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which corresponds to a long operator being exchanged in the ϕ × ϕ̄ OPE. There are
also contributions from short multiplets, but they can be obtained from eq. (4.3.30)
evaluating ∆ at the unitarity bound. The selection rules of this OPE have been studied
in the context of bulk four-point functions [154] and our results are in perfect agreement
with the literature. The block in eq. (4.3.30) can be written as a single hypergeometric
funtion

F∆(ξ) = ξ∆/2 2F1

(
1 +

∆

2
,
∆

2
; ∆ +

1

2
;−ξ

)
. (4.3.31)

We will see that all of the two-point blocks derived in this section have this feature.

Boundary channel: In the boundary channel the blocks are eigenfunctions of the
boundary Casimir

Ĉsusy = −D2 − 1

2
{Ka,Pa} +

1

2
MabMab −

1

2
R2 +

1

4

(
[S̄+,Q+] + [S+, Q̄+]

)
, (4.3.32)

where now the operator acts at a single point:

Ĉ(1)
susy⟨Φ(z1)Φ̄(z2)⟩ = Ĉ∆̂,j,r⟨Φ(z1)Φ̄(z2)⟩ . (4.3.33)

The eigenvalue depends on the conformal dimension ∆̂ of the exchanged boundary oper-
ator, as well as its parallel spin j and its R-charge:

Ĉ∆̂,j,r = ∆̂(∆̂ − 1) + j(j − 1) − r 2

2
. (4.3.34)

Proceeding as before we make an ansatz for F̂∆̂ in terms of bosonic blocks and fix the
relative coefficients using eq. (4.3.33). Note that we only have to include conformal
blocks up to dimension ∆̂ + 1 in our ansatz, since the boundary only preserves half of the
supercharges. From section 4.3.2 we know there are two types of boundary multiplets
that can appear in the boundary expansion of a chiral field: a scalar Φ̂ and the Fermi
multiplet Ψ̂. We therefore expect two classes of solutions to the Casimir equation. Indeed,
the solution corresponding to a chiral primary with r = rϕ, j = 0 and ∆̂ = ∆ϕ = rϕ, is
given by

F̂ Φ̂
∆̂

(ξ) = f̂∆ϕ(ξ) . (4.3.35)

The second solution, with r = rϕ − 1, j = 1
2

corresponds to the Fermi field

F̂ Ψ̂
∆̂

(ξ) = f̂∆̂+ 1
2
(ξ) . (4.3.36)

Notice that the 1
2

in the argument indicates that the highest weight does not contribute,
but a descendant (as expected).

Three-point functions

Although not our main topic, let us also analyze three-point correlators involving one
bulk field and two boundary fields. An interesting application for these correlators is
to impose that the bulk field is free, and to study the corresponding constraints on the
boundary three-point couplings [52, 68]. For the rest of this section we will choose a
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frame where xa2 = θ+2 = θ̄+2 = θ+3 = θ̄+3 = 0, xa3 → ∞. By imposing that the bulk field is
chiral we obtain

⟨Φ(y, θ)Ô2,j(0, ω)Ô3(∞)⟩ =
(yaωa)

j

(y⊥)∆+∆̂23|ya|j
F3pt(χ) . (4.3.37)

The second operator has arbitrary parallel spin j, and we use an index-free notation
where Ô2,j(z, ω) = Ô2,j(z)a1...ajωa1 . . . ωaj and ωa is a null vector in the parallel directions.

For brevity we define ∆̂23 ≡ ∆̂2 − ∆̂3, and ya is defined in eq. (4.3.7), where one should
remember that a = 0, 1 are the parallel coordinates. Conservation of R-symmetry implies
rϕ+r2+r3 = 0. The function F3pt(χ) depends on the superconformal three-point invariant
χ. Like in the two-point function case, there is a unique, non-nilpotent, three-point
invariant:

χ =
|ya|2

(y⊥)2
. (4.3.38)

The function F3pt(χ) can be expanded in three-point superconformal blocks which are in
turn sums of three-point bosonic blocks (reviewed in appendix B.2). Notice that there is
no crossing equation for this correlator. We can act with the boundary Casimir on point
z1 and obtain the eigenvalue equation

Ĉ(1)
susy⟨Φ(y, θ)Ô2,j(0, ω)Ô3(∞)⟩ = Ĉ∆̂,j,r⟨Φ(y, θ)Ô2,j(0, ω)Ô3(∞)⟩ . (4.3.39)

By now the story is familiar; we give an ansatz in terms of bosonic blocks and obtain a
solution with r = rϕ, jchiral = 0, ∆̂ = ∆ϕ = rϕ :

F̂ 3pt
∆ϕ

(χ) = f̂ 3pt,∆̂23

∆ϕ,j
(χ) , (4.3.40)

which describes the exchange of a boundary chiral field. The other possible solution has
r = rϕ − 1, jfermi = 1

2
and generic ∆̂ :

F̂ 3pt

∆̂
(χ) = f̂ 3pt,∆̂23

∆̂+ 1
2
,j

(χ) , (4.3.41)

and corresponds to the exchange of a Fermi multiplet. Let us also consider the case where
the second operator is a Fermi field. The three-point function is given by

⟨Φ(y, θ) ˆ̄Ψ(0)Ô(∞)⟩ =
(γ1β)µyµθ

β

(y⊥)∆+∆̂23+
3
2

F3pt(χ) , (4.3.42)

where χ is the same invariant as before. There are again two solutions to the eigenvalue
equation, the first one corresponds to the exchange of a boundary chiral

F̂ 3pt
∆ϕ

(χ) = f̂
3pt,∆̂23+

1
2

∆ϕ,0
(χ) , (4.3.43)

while the second describes a Fermi field

F̂ 3pt

∆̂
(χ) = f

3pt,∆̂23+
1
2

∆̂+ 1
2
,0

(χ) . (4.3.44)

The supersymmetric block corresponds to a bosonic block with shifted external conformal
dimensions ∆̂23 → ∆̂23 + 1

2
and with spin j = 0. Like in the two-point case, the shift can

be understood as a contribution coming from a superconformal descendant of ˆ̄Ψ.
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Free theory in the bulk

Having obtained a handful of correlators, let us investigate the possible constraints that
a free theory in the bulk imposes on the boundary data. In superspace the free field
equations of motion take the form

DαDαΦ(y, θ) = 0 , (4.3.45)

which is the supersymmetric version of the more familiar ∂2ϕ(x) = 0. As usual, a free
chiral field has dimension ∆ϕ = rϕ = 1

2
. Imposing this condition on the two bulk-to-

boundary correlators (4.3.22) and (4.3.23), we obtain two solutions:

⟨Φ(y, θ) ˆ̄Φ∆̂= 1
2
(0)⟩ =

b
Φˆ̄Φ

|yµ|
, ⟨Φ(y, θ) ˆ̄Ψ∆̂=1(0)⟩ =

b
Φˆ̄Ψ
γµ1βyµθ

β

|yµ|3
. (4.3.46)

This is not surprising. The first solution corresponds to a boundary chiral field of di-
mension ∆̂ = 1

2
, which corresponds to the operator ϕ̂ and describes Neumann boundary

conditions. The second solution is a Fermi field with ∆̂ = 1, which has a scalar de-
scendant with dimension ∆̂ + 1

2
= 3

2
(recall the discussion below eq. (4.3.23)). The

descendant can be identified with ∂⊥ϕ̂ as expected for Dirichlet boundary conditions. We
have therefore proven that the boundary expansion of a bulk free field has a finite number
of contributions.

We now turn to the three-point function to see if there are extra constraints on
the boundary operators from a free bulk chiral field. Let us expand the correlation
function (4.3.37) in bosonic blocks, where we take Φ to be a free bulk chiral. From
eq. (4.3.46) we know that there are two independent contributions coming from a chiral
and a Fermi boundary field:

F3pt(χ) = bϕϕ̂λϕ̂Ô2Ô3
f̂ 3pt,∆̂23

∆̂= 1
2
,j

(χ) + bϕ∂⊥ϕ̂λ∂̂⊥ϕ̂Ô2Ô3
f̂ 3pt,∆̂23

∆̂= 3
2
,j

(χ) . (4.3.47)

Note that we have written the OPE coefficients explicitly in terms of the operators that
appear in the OPE and not in terms of the superprimaries. Eq. (4.3.47) is identical to
the conformal block expansion of a non-supersymmetric free scalar in the bulk, which has
been studied in detail in [52, 68]. In the limit χ → 0 there are unphysical singularities,
which can only be removed provided the OPE coefficients satisfy the following relation:

bϕ∂⊥ϕ̂λ∂̂⊥ϕ̂Ô2Ô3
= −

2Γ
(

2j−2∆̂23+3
4

)
Γ
(

2j+2∆̂23+3
4

)
Γ
(

2j−2∆̂23+1
4

)
Γ
(

2j+2∆̂23+1
4

) bϕϕ̂λϕ̂Ô2Ô3
. (4.3.48)

This constraint is equivalent to the constraints on non-supersymmetric three-point func-
tions with a free bulk. We can go one step further and look at the three-point function
involving a boundary Fermi multiplet (4.3.42) in the hope that we will find additional
constraints on the CFT data from supersymmetry. Once again, we expect the two solu-
tions in eq. (4.3.46) to contribute to the Fermi three-point function. If we act with the
equations of motion, the resulting differential equation can only be solved if ∆̂23 = 1,
excluding the solution ∆̂ = 1

2
. The resulting correlator corresponds to a single bosonic

block

F3pt(χ) ∝ f̂
3pt, 3

2

∆̂= 3
2
,0

(χ) =
1

(χ+ 1)
3
2

. (4.3.49)
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In this case the correlator is manifestly non-singular as χ → 0. Having a free bulk
implies that there is only one operator in the OPE ϕ̂ × ψ̂, which has fixed dimension
∆̂3 = ∆̂2 − 1. This is a new, additional constraint coming from the superspace analysis
that was not present in the non-supersymmetric case. It would be interesting to see if a
more systematic analysis allows us to find more general constraints.

4.3.3 The N = (1, 1) boundary

We now present the superspace analysis for the N = (1, 1) boundary, and since it is quite
similar to what we have done so far, we will mostly state the results. We again divide
the superspace into parallel and perpendicular coordinates, the bosonic coordinates are
split as usual, and for the fermionic variables we define

parallel: θ̃1 ≡ θ̃− = −i(θ− − θ̄−) , θ̃2 ≡ θ̃+ = −(θ+ + θ̄+) , (4.3.50)

perpendicular: θ1⊥ ≡ θ−⊥ = −(θ− + θ̄−) , θ2⊥ ≡ θ+⊥ = −i(θ+ − θ̄+) , (4.3.51)

There are two useful ways to construct supersymmetric perpendicular distances

z⊥ = y⊥ + 2iθ−θ+ , z̄⊥ = ȳ⊥ + 2iθ̄−θ̄+ , (4.3.52)

with the property that they are chiral and antichiral respectively D̄αz
⊥ = Dαz̄

⊥ = 0.
These distances will be the natural objects to appear in correlators of (anti)chiral fields.
The decomposition of a bulk (anti)chiral field for the N = (1, 1) boundary contains only
one boundary supermultiplet instead of the two possibilities present in the (0, 2) boundary

Φ = Φ̂ + . . . , (4.3.53)

where the dots stand for derivatives of Φ̂. The field Φ̂ can be decomposed into bosonic
components, schematically (see [157] for the precise coefficients)

Φ̂ = ϕ̂+ θ̃+ψ̂+ + θ̃−ψ̂− + θ̃2∂⊥ϕ̂+ θ̃2F̂ . (4.3.54)

We see that ϕ̂ and ∂⊥ϕ̂ belong to the same boundary multiplet, which implies the un-
expected feature that Neumann and Dirichlet boundary conditions are related by super-
symmetry.

One-point functions

Due to the absence of R-symmetry, (anti)chiral bulk fields can now acquire a one-point
function. The only correlators consistent with the symmetry constraints are given by

⟨Φ(y, θ)⟩ =
aΦ

(2z⊥)∆
, ⟨Φ̄(ȳ, θ̄)⟩ =

aΦ̄
(2z̄⊥)∆

, (4.3.55)

where z⊥, z̄⊥ were defined in eq. (4.3.52), and aΦ is the one-point coupling that appears
as the coefficient of the “boundary identity” in the conformal block expansion.

Bulk-to-boundary correlator

Since a chiral bulk supermultiplet decomposes into one boundary supermultiplet, we
expect only one correlator:

⟨Φ(y, θ)Ô(0)⟩ =
bΦÔ

(2z⊥)∆−∆̂|yµ|2∆̂
, (4.3.56)
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where z⊥ is the same as above and |yµ| is the norm of the chiral coordinate (4.3.7). Notice
that ∆̂ is unconstrained so these are the operators captured by the boundary conformal
blocks to be calculated below.

Two-point functions

Due to the broken R-symmetry there is now no selection rule implying that correlators
with fields of the same chirality vanish. Thus, we should consider the two-point functions
⟨Φ1Φ̄2⟩ and ⟨Φ1Φ2⟩ where the R-charges are arbitrary. The two-point functions in the
presence of the N = (1, 1) boundary have the same structure as in the N = (0, 2) case.
Each of them depends on a single superconformal invariant ξ which has the appropriate
chirality properties:

⟨Φ1(y1, θ1)Φ̄2(ȳ2, θ̄2)⟩ =
Fϕϕ̄(ξ)

(2z⊥1 )∆1(2z̄⊥2 )∆2
, ξ =

(y12)
2

4z⊥1 z̄
⊥
2

, (4.3.57)

⟨Φ1(y1, θ1)Φ2(y2, θ2)⟩ =
Fϕϕ(ξ)

(2z⊥1 )∆1(2z⊥2 )∆2
, ξ =

(ỹ12)
2 + 2iθ212(z

⊥
1 + z⊥2 )

4z⊥1 z
⊥
2

. (4.3.58)

The perpendicular distances z⊥, z̄⊥ are given in eq. (4.3.52), the chiral-antichiral distance
yµ12 can be found in eq. (4.3.8), and we have defined the following chiral-chiral distance:

ỹ012 = y01 − y02 − 2i(θ+1 θ
+
2 − θ−1 θ

−
2 ) ,

ỹ112 = y11 − y12 − 2i(θ+1 θ
+
2 + θ−1 θ

−
2 ) ,

ỹ212 = z⊥1 − z⊥2 .

(4.3.59)

Let us now calculate the corresponding superblocks for the functions Fϕϕ̄(ξ) and Fϕϕ(ξ).

Superconformal blocks

We now calculate the superconformal blocks using the same approach we used in the
N = (0, 2) case in section 4.3.2. We use the Casimir to obtain a differential equation
that we then solve using a finite combination of bosonic blocks.

Bulk channel. We first act wit the bulk Casimir

C(12)
susy⟨Φ1(y1, θ1)Φ̄2(ȳ2, θ̄2)⟩ = C∆,ℓ,r⟨Φ1(y1, θ1)Φ̄2(ȳ2, θ̄2)⟩ , (4.3.60)

where C(12)
susy and C∆,ℓ,r were already given in eqs. (4.3.27) and (4.3.28) respectively. The

solution to this equation in terms of bosonic blocks is easy to find. Only ℓ = 0 and
r = r1 − r2 contributes

F ϕ1ϕ̄2
∆ (ξ) = f∆12

∆ (ξ) +
(∆ − ∆12)(∆ + ∆12)

(2∆ − 1)(2∆ + 1)
f∆12
∆+2(ξ)

= ξ
∆−∆1−∆2

2 2F1

(∆ − ∆12

2
,
∆ + ∆12

2
; ∆ +

1

2
;−ξ

)
,

(4.3.61)

which in general corresponds to a long operator being exchanged in the ϕ1× ϕ̄2 OPE. The
contributions of short operators can be found by evaluating ∆ at the unitarity bound, as
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discussed below eq. (4.3.30). For the two-point function ⟨Φ1Φ2⟩, which was not present
in the N = (0, 2) case, the solution to the Casimir equation

C(12)
susy⟨Φ1(y1, θ1)Φ2(y2, θ2)⟩ = C∆,ℓ,r⟨Φ1(y1, θ1)Φ2(y2, θ2)⟩ , (4.3.62)

can be written in terms of single bosonic blocks with shifted arguments F ϕϕ
∆ = f∆+n

2
.

This is a well-known result which has been described in detail for d = 3 in [154]. We will
review the analysis in detail in section 4.4.1.

Boundary channel. Let us now move on to the boundary channel. The boundary
Casimir is now given by

Ĉsusy = −D2 − 1

2
{Ka,Pa} +

1

2
MabMab +

1

4
[S̃α, Q̃α] , (4.3.63)

with eigenvalue
Ĉ∆̂,j = ∆̂(∆̂ − 1) + j2 . (4.3.64)

We can only find consistent solutions when the superprimary has no parallel spin: j = 0.
For the chiral-antichiral correlator we find

F̂ ϕ1ϕ̄2
∆̂

(ξ) = f̂∆̂(ξ) +
1

4
f̂∆̂+1(ξ)

= ξ−∆̂
2F1

(
∆̂ − 1

2
, ∆̂; 2∆̂;−1

ξ

)
.

(4.3.65)

while for the chiral-chiral correlator we have

F̂ ϕ1ϕ2
∆̂

(ξ) = f̂∆̂(ξ) − 1

4
f̂∆̂+1(ξ)

= ξ−∆̂
2F1

(
∆̂ +

1

2
, ∆̂; 2∆̂;−1

ξ

)
.

(4.3.66)

These two blocks describe the exchange of operators whose correlator (4.3.56) is non-
vanishing. This concludes our analysis of two-point blocks in the N = (1, 1) boundary.
We will generalize these results for arbitrary 3 ≤ d ≤ 4 in section 4.4. The superspace
analysis of this section will give supporting evidence that the blocks of section 4.4 are a
consistent continuation of the 3d results presented here.

Three-point functions

Let us now study the correlator of a chiral bulk field and two boundary fields. We allow
the first boundary operator to have arbitrary spin j, and we will work in a frame where
we set xa2, θ̃

a
2 , θ̃

a
3 to zero, and xa3 to infinity. Unlike the situations studied so far, there

is a nilpotent invariant consistent with all the symmetries, which implies the following
structure

⟨Φ(y, θ)Ô2,j(0, ω)Ô3(∞)⟩ =
(yaωa)

j

(y⊥)∆ϕ+∆̂23|ya|j

(
F3pt

1 (χ) +
θ+θ−

y⊥
F3pt

2 (χ)

)
. (4.3.67)

All the dependence of the correlator is in terms of the chiral coordinates y and θ,
see (4.3.7). The superconformal invariant χ is the same as for the N = (0, 2) boundary in
eq. (4.3.38). The superfields Φ, Ôi appearing in the three-point function can be expanded
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into bosonic components, whose correlators are captured by F3pt
i . Let us look at this

expansion with more details. Since we chose a frame where θ2 = θ̄2 = θ3 = θ̄3 = 0, only
the superprimary in the θ-expansion of Ôi will contribute, then

Φ(y, θ) = ϕ(y) + θαψα(y) + θ+θ−F (y) , Ô2(0, ω) = Ô2(0, ω) , Ô3(∞) = Ô3(∞) .
(4.3.68)

Comparing the correlator (4.3.67) with the expansion (4.3.68) we read off

⟨ϕ(x)Ô2(0, ω)Ô3(∞)⟩ =
(xawa)

j

(x⊥)∆ϕ+∆̂23 |xµ|j
F3pt

1 (χ) , (4.3.69)

⟨ψα(x)Ô2(0, ω)Ô3(∞)⟩ = 0 , (4.3.70)

⟨F (x)Ô2(0, ω)Ô3(∞)⟩ =
(xawa)

j

(x⊥)(∆ϕ+1)+∆̂23|xµ|j
F3pt

2 (χ) , (4.3.71)

so indeed F3pt
1,2 capture the correlators of the top and bottom components of the chiral

multiplet. To find the corresponding superconformal blocks we act with the boundary
supersymmetric Casimir in point z1:

Ĉ(1)
susy⟨Φ(y, θ)Ô2,j(0, ω)Ô3(∞)⟩ = Ĉ∆̂,0,r⟨Φ(y, θ)Ô2,j(0, ω)Ô3(∞)⟩ , (4.3.72)

where Ĉ∆̂,0,r is given in eq. (4.3.64). This results in two coupled differential equations,
which we can solve by assuming that the superconformal blocks are given in terms of the
bosonic blocks f̂ 3pt

∆̂
given in eq. (B.2.4). The final result reads

F 3pt

1,∆̂
(χ) = f 3pt,∆̂23

∆̂,j
(χ) + c∆̂f

3pt,∆̂23

∆̂+1,j
(χ) ,

F 3pt

2,∆̂
(χ) = −2i(rϕ − ∆̂)f 3pt,∆̂23

∆̂,j
(χ) + 2ic∆̂(rϕ + ∆̂ − 1)f 3pt,∆̂23

∆̂+1,j
(χ) , (4.3.73)

where c∆̂ is a free parameter, related to the OPE coefficients of the exchanged operator,
see eq. (4.3.74) below.

Free bulk theory

We now repeat the analysis of section 4.3.2, and see how the bulk equations of motion
constrain the spectrum of boundary operators. Imposing that the chiral field is free in
eq. (4.3.56) fixes the dimension of the boundary field to ∆̂ = 1

2
. Unlike in the N = (0, 2)

case there is only solution, since both Neumann and Dirichlet boundary conditions are
related by supersymmetry, and belong to the same supermultiplet.

Let us now focus on to the three-point function (4.3.67). It is well known that the
free equations of motion for a chiral field imply F (x) = 0, so it is sufficient to focus
on F3pt

1 (χ). From the analysis of the free bulk-to-boundary correlator we conclude that
there can only be one multiplet in the bulk-to-boundary OPE. The superprimary has
dimension ∆̂ = 1

2
, which we will call ϕ̂. The multiplet also contains a superdescendant

of dimension ∆̂ + 1 = 3
2
, which we denote by ∂⊥ϕ̂. Both operators contribute to the

superconformal block (4.3.73), and the resulting correlation function is

F3pt
1 (χ) = bϕϕ̂λϕ̂Ô2Ô3

f̂ 3pt,∆̂23

∆̂= 1
2
,j

(χ) + bϕ∂⊥ϕ̂λ∂̂⊥ϕ̂Ô2Ô3
f̂ 3pt,∆̂23

∆̂= 3
2
,j

(χ) , (4.3.74)
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where the OPE coefficients are written in terms of the superdescendants, not the superpri-
maries. Due to the presence of a free coefficient c∆̂ in the superconformal block (4.3.73),
the relative coefficient in this expansion is not fixed by supersymmetry. Eq. (4.3.74) is
identical to the non-supersymmetric case of a free scalar in the bulk and to eq. (4.3.47)
for the N = (0, 2) boundary. Thus, the analysis below eq. (4.3.47) applies here as well
and we find the same OPE relations (4.3.48). There are no extra constraints coming from
supersymmetry.

4.4 Boundaries across dimensions

In this section we study superconformal theories with boundaries in any, in principle
continuous, number of dimensions 3 ≤ d ≤ 4, keeping the codimension fixed. We obtain
superconformal blocks using similar techniques as were developed originally for bulk four-
point functions in [154, 163].8 Conformal blocks in an arbitrary number of dimensions
allow us to use analytical techniques like the ε-expansion, a subject that we explore in
this section inspired by previous work [46, 56].

4.4.1 Superconformal blocks

Superconformal algebra

In the entire section we follow the same conventions as [154], which we review briefly. The
notation will differ from the one in section 4.3, but our main results, the superconformal
blocks, will be convention-independent. We hope this does not cause too much confusion.
The reader is welcome to look at the original reference for more details. The conformal
part of the algebra is generated by the usual operators D, Pi, Ki and Mij. We also have
four Poincaré supercharges Q+

α and Q−
α̇ and four conformal supercharges Sα̇+ and Sα−

with anticommutation relations

{Q+
α , Q

−
α̇} = Σi

αα̇Pi , {Sα̇+, Sα−} = Σ̄α̇α
i Pi , i = 1, . . . , d . (4.4.1)

Finally, there is a generator R of U(1)R symmetry, under which Q+
α and Q−

α̇ have charge
+1 and −1 respectively. Provided that Σi

αα̇ satisfies certain formal identities, the super-
jacobi identites are satisfied for arbitrary d. The full set of commutation relations, the
Casimir operator Cbulk, and many other important relations can be found in [154].

In what follows, we will focus our attention on chiral primary operators ϕ and their
complex conjugates ϕ̄. These operators are killed by supercharges of the same chirality,
and using the superconformal algebra their conformal dimension is related to the R-
charge:[

Q+
α , ϕ(0)

]
=
[
Q−
α̇ , ϕ̄(0)

]
= 0 ⇒ ∆ϕ = ∆ϕ̄ =

d− 1

2
rϕ = −d− 1

2
rϕ̄ . (4.4.2)

The chirality property, as well as the relation between ∆ and r, will be important in the
calculation of superconformal blocks in the next section.

The subalgebra of conformal transformations that preserve the boundary is generated
by D, Pa, Ka and Mab, where a, b = 2, . . . , d. We chose P1 not to be part of this

8Another example of blocks across dimensions was uncovered in the context of Parisi-Sourlas super-
symmetry [164, 165].
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subalgebra, which physically means that the boundary sits at x1 ≡ x⊥ = 0. Only half of
the original supercharges belong to the algebra, and they anticommute as:

{Qbdy
A , Qbdy

B } = (Σbdy)
a
ABPa , {Sbdy

A , Sbdy
B } = (Σbdy)

a
ABKa , A,B = 1, 2. (4.4.3)

For arbitrary d we embbed the boundary subalgebra into the full superconformal algebra
as

Qbdy
1 = Q+

1 +Q−
2 , Qbdy

2 = Q+
2 +Q−

1 , Sbdy
1 = S+

2 + S−
1 , Sbdy

2 = S+
1 + S−

2 . (4.4.4)

It is easy to check explicitly in d = 3 and d = 4 that eq. (4.4.4) indeed generates a
subalgebra and that all the superjacobi identities are satisfied, provided that we use the
following Clifford algebra representation:

Σi
αα̇ = (Σ̄α̇α

i )∗ = (σ3, σ1, σ2, i1) . (4.4.5)

Notice that the generator R is not part of the boundary superalgebra. In physical terms
the R charge is not conserved near the boundary, and both ⟨ϕ1ϕ2⟩ and ⟨ϕ1ϕ̄2⟩ are non-
vanishing two-point functions for any r1,2. These two-point functions have different su-
perconformal block decompositions that we treat separately in the next section.

In order to compute superconformal blocks, we will need the explicit form of the
superconformal Casimir of the boundary superalgebra:

Cbdy = −D2 − 1

2
{Pa, Ka} +

1

2
MabM

ab +
1

4
[Sbdy
A , Qbdy

A ] . (4.4.6)

If we consider a boundary operator with quantum numbers ∆̂, j, then it will be an
eigenstate of the superconformal Casimir with eigenvalue

Ĉ∆̂,j = ∆̂(∆̂ − d+ 2) + j(j − d+ 3) . (4.4.7)

Boundary channel

As discussed at length in the superspace section, the boundary channel blocks for a two-
point function are eigenfunctions of the boundary superconformal Casimir (4.4.6). We can
naturally split the Casimir operator into a non-supersymmetric piece and a contribution
coming from supersymmetry:

Cbdy = Cbdy,non-susy + Cbdy,susy , Cbdy,susy ≡
1

4
[Sbdy
A , Qbdy

A ] . (4.4.8)

We worked out the non-supersymmetric contribution in eq. (B.1.4). Focusing only on the
supersymmetric part and using the anticommutation relations we obtain:

[Cbdy,susy, ϕ1(x)]|0⟩ =

(
d− 1

2
[R, ϕ1(x)] − 1

2

{
Q−

2 ,
[
S1−, ϕ1(x)

]})
|0⟩

=
(

∆1ϕ1(x) + ix⊥{Q−
1 , [Q

−
2 , ϕ1(x)]}

)
|0⟩ .

(4.4.9)

In appendix C we use superconformal Ward identities to rewrite the piece with Q−
1 Q

−
2 as

a term that can be included in a differential equation. Unfortunately, we have not been
able to find a strategy to use these Ward identities for general d. Instead, we focus on the
particular cases of d = 3, 4 where the explicit Clifford algebra representation (4.4.5) is
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valid. Since the final result does not depend on d, we claim it is also valid for 3 ≤ d ≤ 4.9

The fact that we can find solutions to the Casimir equations with the expected properties
for any continuous d confirms that our assumption is justified. The ε-expansion results,
to be described below and in the next section, also give supporting evidence that the
whole picture is consistent.

⟨ϕ1ϕ̄2⟩ correlator: When we consider the two-point function of a chiral and antichiral
operator, the contribution from supersymmetry is given by

Cbdy,susy⟨ϕ1(x1)ϕ̄2(x2)⟩
(2x⊥1 )−∆1(2x⊥2 )−∆2

= −ξ∂ξF̂ ϕ1ϕ̄2
∆̂

(ξ) . (4.4.10)

Combining the supersymmetric and non-supersymmetric pieces, and using the appropri-
ate value of the Casimir, we get the following differential equation:[

ξ(ξ + 1)∂2ξ +

(
d

2
+ (d− 1)ξ

)
∂ξ −

(
∆̂(∆̂ − d+ 2) + j(j − d+ 3)

)]
F̂ ϕ1ϕ̄2
∆̂

(ξ) = 0 .

(4.4.11)

A priori, there are two independent solutions of this equation for arbitrary values ∆̂
and j. However, we must also require that the solutions can be decomposed into non-
supersymmetric blocks, and we find that this is only possible whenever j = 0 for arbitrary
∆̂. The solution can be expressed either as a linear combination of bosonic blocks, or as
a single hypergeometric function with a prefactor:

F̂ ϕ1ϕ̄2
∆̂

(ξ) = f̂∆̂(ξ) +
∆̂

2(2∆̂ − d+ 3)
f̂∆̂+1(ξ) ,

= ξ−∆̂
2F1

(
∆̂, ∆̂ + 1 − d

2
; 2∆̂ − d+ 3;−1

ξ

)
.

(4.4.12)

Even though we considered a general two-point function ⟨ϕ1ϕ̄2⟩, the superconformal
blocks are the same as for a two-point function of identical (anti)chiral operators ⟨ϕϕ̄⟩.
A nice consistency check is that the relative coefficient between the non-supersymmetric
blocks is positive, as we expect in the defect channel of ⟨ϕϕ̄⟩, because the coefficients that
appear in the OPE are |bϕÔ|2. When we restrict to d = 3 we find perfect agreement with
the explicit superspace calculation (4.3.65).

⟨ϕ1ϕ2⟩ correlator: In a similar way, we can work out the Ward identities for the ⟨ϕ1ϕ2⟩
two-point function. The new contribution to the Casimir equation is:

Cbdy,susy⟨ϕ1(x1)ϕ2(x2)⟩
(2x⊥1 )−∆1(2x⊥2 )−∆2

= −(ξ + 1)∂ξF̂
ϕ1ϕ2
∆̂

(ξ) . (4.4.13)

Combining the non-supersymmetric and supersymmetric pieces with the eigen-
value (4.4.7), the Casimir equation reads[
ξ(ξ + 1)∂2ξ +

(
d− 2

2
+ (d− 1)ξ

)
∂ξ −

(
∆̂(∆̂ − d+ 2) + j(j − d+ 3)

)]
F̂ ϕ1ϕ2
∆̂

(ξ) = 0 .

(4.4.14)

9It is likely that our blocks are valid for 2 ≤ d ≤ 4 but we have not checked explicitly the d = 2 case.
Notice that below d ≤ 3 on has to take into account the operators Mî,ĵ with î, ĵ = d, . . . , 4, and the
calculation is slightly more complicated.
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Once again, we only find physically acceptable solutions whenever j = 0:

F̂ ϕ1ϕ2
∆̂

(ξ) = f̂∆̂(ξ) − ∆̂

2(2∆̂ − d+ 3)
f̂∆̂+1(ξ) ,

= ξ−∆
2F1

(
∆̂, ∆̂ + 2 − d

2
; 2∆̂ − d+ 3;−1

ξ

)
.

(4.4.15)

The decompositions into non-supersymmetric blocks in eqs. (4.4.15) and (4.4.12) are
identical up to a relative minus sign. We know this must be the case, since the boundary
OPE of ⟨ϕϕ⟩ contains b2

ϕÔ, which is not necesarily positive definite, but instead b2
ϕÔ =

±|bϕÔ|2. When we restrict to d = 3 we find perfect agreement with the explicit superspace
calculation (4.3.66).

Bulk channel

Now we proceed to calculate the blocks that appear in the bulk decomposition using the
bulk Casimir.

⟨ϕ1ϕ̄2⟩ correlator: To obtain bulk channel blocks we act with the full Casimir once
more focusing on the part that is new from supersymmetry:

Cbulk,susy = −d− 1

2
R2 +

1

2
[Sα̇+, Q−

α̇ ] +
1

2
[Sα−, Q+

α ] . (4.4.16)

We can simplify the action of the superconformal Casimir using the commutation rela-
tions, the chirality properties of ϕ1 and ϕ̄2, and equation (51) from [154]:[

Cbulk,susy, ϕ1(x1)ϕ̄2(x2)
]
|0⟩ = ixµ12Σ̄

α̇α
µ

[
Q−
α̇ , ϕ1(x1)

] [
Q+
α , ϕ̄2(x2)

]
|0⟩

+

(
2(∆1 + ∆2) −

d− 1

4
r212

)
ϕ1(x1)ϕ̄2(x2)|0⟩ .

(4.4.17)

Here we assume ϕi has charge ri, we define r12 = r1 − r2 and we use chirality to relate
∆i = 1

2
(d − 1)ri. We can use Ward identities to rewrite the Q-dependent part in a way

that can be put in a Casimir equation. After some algebra we get10

Cbulk,susy⟨ϕ1(x1)ϕ̄2(x2)⟩
(2x⊥1 )−∆1(2x⊥2 )−∆2ξ−(∆1+∆2)/2

=

(
4ξ∂ξ −

d− 1

4
r212

)
Gϕ1ϕ̄2

∆ (ξ) . (4.4.18)

Now we can combine all the pieces to form the differential equation[
4ξ2(ξ + 1)∂2ξ + 2ξ(2ξ − d+ 4)∂ξ − ∆(∆ − d+ 2)

− ℓ(ℓ+ d− 2) − d− 1

4
(r212 − r2) − ∆2

12ξ

]
Gϕ1ϕ̄2

∆ (ξ) = 0 .

(4.4.19)

The superselection rules in the ϕ1 × ϕ̄2 OPE were worked out in four dimensions [166]
and in any d [154]. For our setup, they imply that only superprimaries with r = r12 and

10We find it more convenient to work in terms of G(ξ) = ξ(∆1+∆2)/2F (ξ), but one can easily map the
results between the two conventions.
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ℓ = 0 can appear11. Indeed, we can solve the Casimir equation in this case to find:

Gϕ1ϕ̄2
∆ (ξ) = g∆12

∆ (ξ) +
(∆ − ∆12)(∆ + ∆12)

(2∆ − d+ 2)(2∆ − d+ 4)
g∆12
∆+2(ξ)

= ξ∆/2 2F1

(∆ + ∆12

2
,
∆ − ∆12

2
; ∆ + 2 − d

2
;−ξ

)
.

(4.4.20)

For generic values of ∆ these blocks capture the exchange of a long operator, while
they can be interpreted as short operators when ∆ saturates the unitarity bounds. The
classification of possible short multiplets in d = 3, 4 is well known and can be found for
example in [167, 158].

⟨ϕ1ϕ2⟩ correlator: It is well know that when the two operators are chiral the bulk
blocks are equal to non-supersymmetric blocks. The precise selection rules for ϕ1 × ϕ2

are known [154], but we review them here for convenience:

� Consider a superprimary O that has R-charge r = r1 + r2 − 2 and dimension ∆.
The descendant (Q+)2O has charge r1 + r2, dimension ∆ + 1 and is killed by Q+

α ,
so it appears in the ϕ1 × ϕ2 OPE.

� Alternatively, consider the chiral superprimary operator (ϕ1ϕ2), with r = r1 + r2
and ∆ = ∆1 + ∆2. In this case the superprimary itself is exchanged in the OPE.

� Finally, consider an anti-chiral superprimary operator Ψ̄ whose dimension is related
to its charge and given by ∆ = −d−1

2
r = d−1−(∆1+∆2). The descendant operator

(Q+)2Ψ̄ is exchanged in the OPE.

In what follows, whenever we consider bulk channel ϕϕ superconformal blocks, ∆ will be
the dimension of the actual exchanged operator, and not the dimension of the superpri-
mary.

4.4.2 An aside: codimension-two defects

In this work we are mostly concerned with boundaries that interpolate between 3 ≤ d ≤ 4
models. In the same way there exist codimension-two defects that interpolate between a
line in d = 3 and a surface in d = 4. A familiar example is the 3d Ising twist defect, which
was studied using Feynman diagrams in 4 − ε dimensions [74] (see also [73] for a Monte-
Carlo analysis in exactly d = 3). These results were later reproduced and generalized
using analytic bootstrap technology [97]. Similar techniques should be applicable to half-
BPS codimension-two defects in supersymmetric theories like the Wess-Zumino model.
We plan to come back to this problem in the future, but for now we describe how the
superconformal blocks can be obtained within our framework.

The notation in this subsection will be different from the rest of the section; we
hope this does not cause confusion. We insert the codimension-two defect at xi = 0 for
i = 1, 2 and label the parallel directions as xa for a = 3, . . . , d. The defect will naturally
preserve parallel translations and special conformal transformations Pa, Ka, dilatations
D, as well as parallel and perpendicular rotations Mab,Mij. The two-point function of

11Superprimaries with ℓ ≥ 1 also appear in the OPE but they have zero one-point function, so they
are not relevant in our analysis.
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local operators depends on two cross-ratios. To study the defect channel it is convenient
to use coordinates (χ, ϕ), while the bulk channel simplifies using coordinates (x, x̄):12

|xa12|2 + |xi1|2 + |xi2|2

|xi1||xi2|
= χ =

2 − x− x̄√
(1 − x)(1 − x̄)

,

xi1x
i
2

|xi1||xi2|
= cosϕ =

2 − x− x̄+ xx̄

2
√

(1 − x)(1 − x̄)
.

(4.4.21)

The non-supersymmetric as well as the supercoformal blocks are given below.
Besides the bosonic generators described above, a half-BPS defect preserves two

Poincaré supercharges:

Qdefect
1 = Q+

1 , Qdefect
2 = Q−

1 , Sdefect
1 = S1+ , Sdefect

2 = S1− . (4.4.22)

Our system does not preserve R-symmetry or transverse rotations independently, but
only a linear combination of them that we call twisted transverse rotations:13

Mdefect = M12 +
d− 1

2
R . (4.4.23)

With these conventions in mind, we proceed to obtain the superconformal blocks.

Defect channel

When supersymmetry is not present, the defect operators are labeled by the conformal
dimension ∆̂ and the transverse spin s. One can write down a Casimir equation which is
solved by the following conformal blocks [47]:

f̂∆̂,s(χ, ϕ) = eisϕχ−∆̂
2F1

(∆̂

2
,
∆̂ + 1

2
; ∆̂ + 2 − d

2
;

4

χ2

)
. (4.4.24)

In the supersymmetric case the only difference is that s denotes the twisted transverse
spin (4.4.23). One can work out the selection rules, and find that only one operator in
each multiplet contributes to the OPE, so the superconformal blocks are just eq. (4.4.24)
with the arguments shifted appropriately.

Bulk channel

Similarly, one can obtain a Casimir equation for the non-supersymmetric bulk channel.
It was observed in [47] that for codimension-two the Casimir equation is identical to the
one found by Dolan and Osborn (D&O) for bulk four-point functions [119]. Therefore,
the bulk-channel blocks of a defect two-point function are equal to the familiar four-point
blocks:

f∆,ℓ(x, x̄) = G0,0
∆,ℓ,D&O(x, x̄) . (4.4.25)

When supersymmetry is included, the Casimir equation has an extra term Cbulk,susy that
can be simplified using Ward identites, as described in appendix C. When the dust

12Our cross-ratios are related to the ones in [51] by z = 1− x and z̄ = (1− x̄)−1.
13For the particular case of a line defect in d = 3, the subalgebra has been written explicitly in [168].
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settles, it turns out that the blocks are described by non-supersymmetric blocks with
shifted arguments:

F∆,ℓ(x, x̄) = (xx̄)−
1
2G−1,−1

∆+1,ℓ,D&O(x, x̄) . (4.4.26)

Even more surprisingly, these blocks are exactly the same that were found in [154] for a
four-point function of chiral and antichiral operators!

4.4.3 Free theory

After the small codimension-two detour let us come back to the boundary setup. As a
first consistency check of our superconformal blocks, we consider a free chiral multiplet
in the bulk in the presence of a half-BPS boundary. It is well known that a free scalar
has dimension ∆ϕ = d−2

2
, and the bulk equations of motion have a simple solution:

∂2x⟨ϕ(x)ϕ̄(x′)⟩ = 0 ⇒ Fϕϕ̄(ξ) =
cϕϕ̄1

ξ(d−2)/2
+

cϕϕ̄2
(ξ + 1)(d−2)/2

. (4.4.27)

For the two-point function ⟨ϕϕ⟩ we find the same solution with free coefficients cϕϕ1,2. In
order to impose supersymmetry, we must require that these correlators have consistent
superconformal block decompositions in the bulk and boundary channels. It is a simple

exercise to show that this fixes cϕϕ1 = cϕϕ̄2 = 0. We can also fix cϕϕ̄1 = 1 requiring that far
away from the boundary, the two-point function ⟨ϕϕ̄⟩ is unit normalized: it is normalized
such that the OPE coefficient of the bulk identity block is 1. Finally, after an appropriate
redefinition ϕ→ eiδϕ we can always chose the normalization cϕϕ2 = 1. All in all,

Fϕϕ̄(ξ) =
1

ξ(d−2)/2
= F ϕϕ̄

Id (ξ) = F̂ ϕϕ̄
(d−2)/2(ξ) ,

Fϕϕ(ξ) =
1

(ξ + 1)(d−2)/2
= F ϕϕ

d−2(ξ) = F̂ ϕϕ
(d−2)/2(ξ) .

(4.4.28)

In the above equation we also present the expansion of the correlation functions in terms
of superconformal blocks. Interestingly, only one superconformal block contributes to
each channel, and with our normalization conventions all OPE coefficients are equal to
one.

The above solution to crossing has a clear physical interpretation if we split the chiral
primary operator in terms of its real and imaginary parts ϕ = ϕ1 + iϕ2. Then we see
that ϕ1 satisfies Neumann boundary conditions, whereas ϕ2 satisfies Dirichlet boundary
conditions. Indeed, from eq. (4.4.28) we obtain

lim
x→bdy

⟨∂⊥ϕ1(x)ϕ1(x
′)⟩ = 0 , lim

x→bdy
⟨ϕ2(x)ϕ2(x

′)⟩ = 0 . (4.4.29)

We can think of our free correlation functions as linear combinations of the Neumann
and Dirichlet boundary CFTs studied in [46], with the precise relative coefficients fixed
by supersymmetry.

4.4.4 The ε−expansion bootstrap

It was originally observed in [46] that the crossing equation for boundary CFTs can be
used to extract information about the Wilson-Fischer fixed point in the epsilon expansion.
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In particular, they bootstrapped the one-loop correlators at order O(ε), and the analysis
was generalized to O(ε2) using different techniques in later works [56, 57, 169]. In this
section we apply the same ideas to our supersymmetric two-point functions, and we obtain
the full correlation functions at order O(ε).

In the supersymmetric setup there are two relevant crossing equations, one for ϕϕ̄ and
the other for ϕϕ:

F ϕϕ̄
Id (ξ) +

∑
n

cnF
ϕϕ̄

∆̃n
(ξ) =

∑
n

µnF̂
ϕϕ̄

∆̂n
(ξ) ,

∑
n

dnF
ϕϕ
∆n

(ξ) =
∑
n

ρnF̂
ϕϕ

∆̂n
(ξ) . (4.4.30)

Notice that the spectrum of operators in the boundary channel is the same for the two
correlators. The boundary OPE coefficients are given in terms of bulk-to-boundary co-
efficients as µn = |bϕOn|2 and ρn = b2ϕOn , so they must be equal up to possible signs
µn = ±ρn. The precise signs as a function of n will be an outcome of our bootstrap anal-
ysis. The bulk channel OPE coefficients are products of one- and three-point coefficients
cn = aOnλϕϕ̄On and dn = aOnλϕϕOn so we do not expect any relations between them.

Our analysis starts in d = 4, where the SCFT is free and the correlators are given in
eq. (4.4.28). We assume that the coupling of the theory is of order g ∼ ε, so as we lower
the dimension to d = 4 − ε the CFT data acquires small corrections. In particular, we
expect the external chiral operator to acquire an anomalous dimension:

∆ϕ =
d− 2

2
+ ∆

(1)
ϕ ε+ ∆

(2)
ϕ ε2 + . . . . (4.4.31)

We should think of ∆
(1)
ϕ as being related to the strenght of the coupling g ∝ ∆

(1)
ϕ ε, and

the precise constant depends on the model under consideration. In the bulk four-point
function ε-expansion bootstrap, see for example [170], conservation of the stress tensor

allows one to fix the precise value of ∆
(1)
ϕ . Unfortunately this will not be possible in our

setup because the stress-tensor multiplet does not appear in the bulk OPE.
Another consequence of turning on the couplings is that we expect that new infinite

families of operators will enter our crossing equations. In the bulk channel, from the
intuition gained from the usual four-point function analytic bootstrap, we expect double-
trace operators of the form ϕ2nϕ with dimensions

∆n = d− 2 + 2n+ ∆(1)
n ε+ ∆(2)

n ε2 + . . . , (4.4.32)

and similarly operators ϕ2nϕ̄ with dimensions ∆̃n. In the boundary channel, we expect
operators of the schematic form 2m∂n−2m

⊥ ϕ so they have dimension

∆̂n =
d− 2

2
+ n+ ∆̂(1)

n ε+ ∆̂(2)
n ε2 + . . . . (4.4.33)

Finally, the OPE coefficients will also get corrections as a power series in ε, namely

cn = c(0)n + c(1)n ε+ c(2)n ε2 + . . . , (4.4.34)

and similarly for dn, µn and ρn. With the above conventions, the free theory solution
when d = 4 is given by

d
(0)
0 = µ

(0)
0 = ρ

(0)
0 = 1, c

(0)
n≥0 = d

(0)
n≥1 = µ

(0)
n≥1 = ρ

(0)
n≥1 = 0 . (4.4.35)

In what follows we derive the first order correction to the CFT data.
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⟨ϕϕ⟩ correlator

We start by studying the two-point function ⟨ϕϕ⟩ , because in this case we can reuse many
results from [56]. We will very closely follow the notation and manipulations from this
reference, and we refer the reader there for further details. The similarity is a consequence
of the ϕϕ bulk channel superconformal blocks being equal to non-supersymmetric ones:
F ϕϕ
∆ = f∆.

The first step in the construction of [56] is to divide the crossing equation in two terms
called G and H:

Fϕϕ(ξ) = Gblk(ξ) +Hblk(ξ) = Gbdy(ξ) +Hbdy(ξ) . (4.4.36)

In G we collect the contributions that appeared at order ε0, but we allow them to acquire
anomalous dimensions:

Gblk(ξ) = F ϕϕ

2−ε+∆
(1)
0 ε

(ξ) =
1

ξ + 1
+

(∆
(1)
0 − 2∆

(1)
ϕ ) log ξ + log(ξ + 1)

2(ξ + 1)
ε+ O(ε2) ,

Gbdy(ξ) = F̂ ϕϕ

1− ε
2
+ε∆̂

(1)
0

(ξ) =
1

ξ + 1
+

log(ξ + 1) − 2∆̂
(1)
0 log ξ

2(ξ + 1)
ε+ O(ε2) .

(4.4.37)

On the other hand, we collect in H all the contributions where the anomalous dimensions
do not contribute, so the blocks are evaluated at integer values of the dimensions:

Hblk(ξ) = ε
∞∑
n=0

d(1)n F ϕϕ
2n+2(ξ) , Hbdy(ξ) = ε

∞∑
n=0

ρ(1)n F̂ ϕϕ
n+1(ξ) . (4.4.38)

Note that an operator can contribute to both G and H, for instance the anomalous
dimension ∆

(1)
0 of the leading bulk operator O0 appears in Gblk, while the correction to

its OPE coefficient d
(1)
0 appears in Hblk.

The key observation of [56] was that one can eliminate Hbdy from the crossing equation
by applying the following discontinuity:

Disc f(z) = f(zeiπ) − f(ze−iπ) , z ≡ ξ +
1

2
∈ (1

2
,∞) . (4.4.39)

Indeed, from (4.4.39) one sees that Disc f̂n(ξ) = 0 for integer n, which implies
DiscHbdy(ξ) = 0. It is an easy exercise to take the discontinuity of eq. (4.4.37), and
using the crossing equation we find

DiscHblk(ξ) = DiscGbdy(ξ) − DiscGblk(ξ) =
iπε

ξ

(
2∆̂

(1)
0 − 2∆

(1)
ϕ + ∆

(1)
0

)
. (4.4.40)

The authors of [56] reconstructed the full correlator by expanding eq. (4.4.40) in terms
of discontinuities of bulk blocks, extracting the CFT data, and then resumming the bulk
OPE expansion. Note that since our expansion in the bulk has non-supersymmetric
blocks, we can reuse their results without problems. In particular, comparing their equa-
tions (4.8) and (4.14) with our expression we obtain

Hblk(ξ) = −ε log(ξ + 1)

2(ξ + 1)

(
2∆̂

(1)
0 − 2∆

(1)
ϕ + ∆

(1)
0

)
. (4.4.41)

From this calculation we can reconstruct the full correlator Fϕϕ(ξ) = Gblk(ξ) + Hblk(ξ)
and extract CFT data to O(ε). Before we do that, however, let us also reconstruct the
⟨ϕϕ̄⟩ correlator using the same technique.
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⟨ϕϕ̄⟩ correlator

As before, let us divide the contributions of the crossing equations into two pieces, where

Gblk(ξ) = F ϕϕ̄
Id (ξ) =

1

ξ
+

(1 − 2∆
(1)
ϕ ) log ξ

2ξ
ε+ O(ε2) ,

Gbdy(ξ) = F̂ ϕϕ̄

1− ε
2
+ε∆̂

(1)
0

(ξ) =
1

ξ
+

log ξ − 2∆̂
(1)
0 log(ξ + 1)

2ξ
ε+ O(ε2) ,

(4.4.42)

and the functions H are the same we defined in eq. (4.4.38), replacing (dn, ρn) → (cn, µn)
and using the appropriate superconformal blocks for ϕϕ̄. Again, the discontinuity removes
Hbdy(ξ) and we are left with

DiscHblk(ξ) = DiscGbdy(ξ) − DiscGblk(ξ) = − 2πiε

ξ + 1

(
∆

(1)
ϕ − ∆̂

(1)
0

)
. (4.4.43)

This can be expanded in terms of discontinuities of superconformal blocks. In principle,
we should repeat the analysis of [56] using our superconformal blocks. However, the first
term in the expansion captures the entire correlator:

DiscF ϕϕ̄
2 (ξ) = − 2πi

ξ + 1
=

DiscHblk(ξ)

ε
(

∆
(1)
ϕ − ∆̂

(1)
0

) . (4.4.44)

We can remove the discontinuity from this equation14 to obtain

Hblk(ξ) = ε
(

∆
(1)
ϕ − ∆̂

(1)
0

)
F ϕϕ̄
2 = ε

(
∆

(1)
ϕ − ∆̂

(1)
0

) log(ξ + 1)

ξ
. (4.4.45)

The full correlator is Fϕϕ̄(ξ) = Gblk(ξ) + Hblk(ξ). Equation (4.4.44) implies that the
bulk channel of ϕϕ̄ contains only the identity and another block, unlike the ϕϕ expansion
which contained infinitely many blocks.

Correlation functions and CFT data

The solution of crossing we have found to O(ε) has three free parameters. However, as
discussed below eq. (4.4.30), the boundary OPE coefficients in the two channels should
be equal up to a sign ρn = ±µn. Expanding Fϕϕ(ξ) and Fϕϕ̄(ξ) in boundary superblocks
and comparing the expansions we find one last constraint:

∆
(1)
0 = 2

(
(s+ 1)∆

(1)
ϕ − ∆̂

(1)
0

)
, s = ± . (4.4.46)

Hence, our solution depends on the anomalous dimension ∆
(1)
ϕ of the external chiral

operator, the anomalous dimension of the leading boundary operator ∆̂
(1)
0 , and a choice

of signs s = ±. Using this relation, the one-loop correlation functions take a very simple

14The discontinuities of superblocks are schematically DiscFϕϕ̄
2n ∼ Pn, where Pn are certain orthogonal

polynomials. Since any function has a unique expansion in terms of Pn, it is safe to remove Disc
from (4.4.44).
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form15

Fϕϕ̄(ξ) =
1

ξ
+

(
1 − 2∆

(1)
ϕ

)
log ξ + 2

(
∆

(1)
ϕ − ∆̂

(1)
0

)
log(ξ + 1)

2ξ
ε+ O(ε2) ,

Fϕϕ(ξ) =
1

ξ + 1
+

(
1 − 2s∆

(1)
ϕ

)
log(ξ + 1) + 2

(
s∆

(1)
ϕ − ∆̂

(1)
0

)
log ξ

2(ξ + 1)
ε+ O(ε2) .

(4.4.47)

From the correlation functions we can extract the CFT data at one-loop:16

c
(1)
0 = ∆

(1)
ϕ − ∆̂

(1)
0 , c

(1)
n≥1 = 0, d

(1)
0 = 0, µ

(1)
0 = ρ

(1)
0 = 0 ,

µ(1)
n = s(−1)nρ(1)n = s(−1)nd(1)n =

(n− 1)!

2n−1(2n− 1)!!
∆

(1)
ϕ , n ≥ 1 .

(4.4.48)

Although we lack a conclusive proof, we believe it is very likely that the unfixed sign is
always s = +1. One argument is that the correlators (4.4.47) are related to each other
under ξ ↔ ξ+1, provided s = +1. Another argument is that only for s = +1 the signs of
the coefficients in the BOE are alternating, namely (ρ0, ρ1, ρ2, . . .) = (µ0,−µ1, µ2, . . .), and
otherwise they are alternating only for n ≥ 1. Finally, we will do an explicit perturbative
calculation for a specific model in the next section and we will find again that s = +1.

An interesting feature of the CFT data (4.4.48) is that the bulk and boundary OPE
coefficients are identical for the two-point function ⟨ϕϕ⟩ . This is a very non-trivial
relation, since ρn = b2ϕOn , but dn = aOnλϕϕOn . It would be interesting to see if this is
just a coincidence of the order O(ε) result, or if it actually persists at higher orders in
perturbation theory.

Going to order ε2

From the structure of the order ε CFT data (4.4.48), there is hope that one can push
the bootstrap analysis to order ε2. Indeed, only two blocks contribute at order ε in the
ϕϕ̄ bulk channel. We expect infinitely many operators at order ε2, but the majority of
them will contribute as conformal blocks of even dimension F2n+2(ξ). One can construct

a discontinuity, different than (4.4.39), that kills bulk blocks D̃iscF2n+2 = 0, see [58].
From here there are several possible directions one can pursue:

� Following the ideas of the present section and [56], one can calculate D̃iscHbdy =

D̃iscGblk− D̃iscGbdy. One should now expand D̃iscHbdy in terms of discontinuities
of boundary blocks to extract the relevant CFT data. However, at this order in
ε, the discontinuities of the blocks cannot be easily rewritten in terms orthogonal
polynomials, and it is not clear how to proceed.

15We can also write ⟨ϕ(x)ϕ̄(y)⟩ = (x − y)−2∆ϕ(ξ + 1)ε(∆
(1)
ϕ −∆̂

(1)
0 ) and similarly for ⟨ϕϕ⟩. This is very

similar to the non-supersymmetric case, see equation (2.32) of [171]. We thank A. Söderberg for pointing
this out.

16Our solution of crossing splits naturally into a pice involving only boundary blocks with n = 0 and
a piece that includes all n ≥ 1. This resembles the four-point analytic bootstrap where our n plays the
role of the bulk spin ℓ. In particular, our n = 0 solution corresponds to the solutions with finite support
in spin found in [172]. We thank F. Alday for pointing this out.
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� The authors of [58] studied an inversion formula that would reconstruct the bound-

ary data from the two discontinuities DiscF and D̃iscF of a correlator. Unfortu-
nately, they were unable to determine its precise form for the case of interest here,
and even if the relevant inversion formula is found, calculating DiscFϕϕ̄ in our setup
would be challenging.

� Finally, one can make an ansatz for the full correlator based on trascendentality
and demand consistency with the above discontinuities to fix coefficients. With this
approach it is possible to rederive the order ε2 correlator of the Wilson-Fischer fixed
point calculated in [56]. In our supersymmetric setup, we have found a consistent
solution to crossing at order ε2 that depends on a number of free parameters.
However, it is not clear to us yet whether this correlator is physical or whether it
is part of a more general solution of crossing yet to be found.

4.5 Wess-Zumino model with a boundary

In this section we study the Wess-Zumino (WZ) model with a cubic superpotential in
the presence of half-BPS boundary conditions. The WZ model has a stable fixed point
in 4 − ε dimensions, which has been studied in the context of emergent supersymme-
try [173, 174]. The two-loop calculation of [175] showed that supersymmetry is preserved
perturbatively, provided the gamma matrix algebra is evaluated in d = 4, but using a
4−ε dimensional spacetime otherwise. Here we adopt the same regularization procedure,
which is reminiscent of the way we obtained the blocks in section 4.4, using a supercon-
formal algebra with 4d spinor representations, but allowing arbitrary d ≤ 4 spacetime
dimensions. Furthermore, we assume that the boundary is exactly codimension-one for
any d.

4.5.1 Action and boundary conditions

Our model consists of a single chiral multiplet interacting with a cubic superpotential,
so the degrees of freedom are the real and imaginary parts of ϕ = ϕ1 + iϕ2, a four-
component Majorana fermion Ψ, and the real and imaginary parts of the auxiliary fields
F = F1 + iF2. The action is obtained by integrating the Lagrangian density over a
half-space, with parallel coordinates x ∈ Rd−1 and perpendicular coordinate y ∈ R+:17

Sblk =

∫
dd−1x dy

(
1

2
(∂µϕ1)

2 +
1

2
(∂µϕ2)

2 +
1

2
Ψ̄γµ∂µΨ − 1

2
F 2
1 − 1

2
F 2
2

− λ

2
√

2

(
F1(ϕ

2
1 − ϕ2

2) + 2F2ϕ1ϕ2 − Ψ̄(ϕ1 + iγ5ϕ2)Ψ
))

.

(4.5.1)

In order to compute Feynman diagrams, it will be simpler to integrate out the auxiliary
fields Fi, producing the following interaction vertices:

Sint =

∫
dd−1x dy

(
1

16
λ2
(
ϕ2
1 + ϕ2

2

)2
+

λ

2
√

2
Ψ̄(ϕ1 + iγ5ϕ2)Ψ

)
. (4.5.2)

17We work in Euclidean signature with {γµ, γν} = 2δµν and γ5 = γ1γ2γ3γ4. The Majorana reality
condition is ΨTC = Ψ̄, where the charge conjugation matrix satisfies γµ = −C−1(γµ)TC.
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However, it is easier to work with the off-shell action to study how the boundary breaks
supersymmetry. The supersymmetry transformations are parametrized by a Majorana
spinor ε and they are well known:

δϕ1 = −ε̄Ψ,
δϕ2 = iε̄γ5Ψ ,

δΨ =
(
−/∂ϕ1 − iγ5/∂ϕ2 − F1 + iγ5F2

)
ε ,

δΨ̄ = ε̄
(
/∂ϕ1 − iγ5/∂ϕ2 − F1 + iγ5F2

)
,

δF1 = −ε̄/∂Ψ,

δF2 = iε̄γ5/∂Ψ .
(4.5.3)

If we integrated the Lagrangian (4.5.1) over Rd, the supersymmetry transforma-
tions (4.5.3) would be an exact symmetry of the action. However, the situation is more
complicated in the presence of the boundary. On the one hand, we know that not all su-
persymmetries can be preserved, because that would imply that translations orthogonal
to the boundary are also preserved. We can preserve at most half of the supersymmetry,
namely the transformations generated by spinors satisfying [176]

Π+ε = ε ⇔ Π−ε = 0, Π± ≡ 1

2
(1 ± iγ5γ

n) . (4.5.4)

On the other hand, to check invariance under supersymmetry of (4.5.1), we have to
integrate by parts, which generates extra boundary terms. Supersymmetry will only be
preserved for an action containing extra boundary degrees of freedom S = Sblk + Sbdy,
provided we choose Sbdy to cancel the terms generated by the supersymmetry variation
of Sblk. A systematic study of all possible boundary actions for a generic 4d N = 1
theory appeared in [156], and we can easily translate their results to our conventions.
For the purposes of this section, we will pick the minimal boundary action that preserves
supersymmetry, although more general options would be possible:

Sbdy =

∫
dd−1x

(
1

2

(
ϕ1∂nϕ1 + ϕ2∂nϕ2 + ϕ1F2 + ϕ2F1

)
− λ

2
√

2

(
1
3
ϕ3
2 − ϕ2

1ϕ2

))
. (4.5.5)

It is an easy but tedious exercise to check that the combination of bulk and boundary
actions indeed preserves half of the original supersymmetries.

Next we address the problem of determining the boundary conditions of our fields.
Demanding that the Euler-Lagrange variation of the total action vanishes produces a
bulk term which is zero, provided that the fields satisfy the equations of motion (EOM).
However, we also get terms localized in the boundary

δ(Sbulk + Sbdy) =

∫
dd−1x dy ( EOM ) +

∫
dd−1x

(
1

2
ϕ1 δ(F2 + ∂nϕ1)

+
1

2
ϕ2 δ(F1 + ∂nϕ2) −

1

2
δϕ1(F2 + ∂nϕ1) −

1

2
δϕ2(F1 + ∂nϕ2) +

1

2
δΨ̄γnΨ

)
,

(4.5.6)

and the boundary conditions must be chosen such that they are zero. Moreover, one must
check that the boundary conditions are closed under the supersymmetry transformations
(4.5.3). In [156] it was shown that there is only one possible supersymmetric boundary
condition, up to R-symmetry redefinitions ϕ → eiδϕ. In conventions that match the
bootstrap analysis of section 4.4 this boundary condition is

∂nϕ1 = −F2 =
λ√
2
ϕ1ϕ2 , ϕ2 = 0, Π−Ψ = 0 . (4.5.7)
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In equations (4.5.6) and (4.5.7) we used the bulk equations of motion that relate F ∼ λϕ2.
Since we will work in perturbation theory, the free propagators are obtained for λ = 0,
where ϕ1 satisfies Neumann boundary conditions ∂nϕ1 = 0. As pointed out in [177], these
boundary conditions are a good description near the free theory, but are not meant to
describe the boundary condition of the fields at the interacting fixed point.

4.5.2 Using susceptibility

The calculation of correlation functions in the presence of boundaries using Feynman
diagrams is typically challenging. An important observation that dates back to the work
of McAvity and Osborn [149, 178] is that the calculations simplify in terms of suscepti-
bilities, defined as

χO1O2(y, y
′) =

∫
dd−1x ⟨O1(x, y)O2(0, y

′)⟩ . (4.5.8)

Crucially, this integral transform is invertible and one can recover the two-point function
in terms of the susceptibility. This idea has been recently used to compute the one-loop
two-point function of the order parameter in the extraordinary phase transition of the
O(N) model [179, 61]. One can also apply it to the O(N) model in the large-N limit,
see [180] for the three-dimensional case with a ϕ6 potential.

In susceptibility space the role of the cross ratio ξ is played by a new object ζ, which
is defined as follows:

ζ =
min(y, y′)

max(y, y′)
. (4.5.9)

The importance of ζ was noted in [61], where they observed that the contribution of a

single conformal block in the boundary expansion is proportional to ζ∆̂− d−1
2 . This allows

one to extract the boundary CFT data directly from the susceptibility without the need
to reexpress everything in terms of the correlation function F (ξ). To be more precise,
the susceptibility can be expanded as

χOO(y, y′) = (4yy′)
d−1
2

−∆O
∑
Ô

µÔπ
d−1
2

Γ
(

∆̂ − d−1
2

)
Γ(∆̂)

(4ζ)∆̂− d−1
2 , (4.5.10)

where ∆O is the dimension of the external operator, µÔ is the boundary OPE coefficient

and ∆̂ is the dimension of the exchanged operator.
Even though the bootstrap analysis used the chiral field and its complex conjugate,

for the purposes of the current section it is more convenient to work with its real and
imaginary parts ϕ = ϕ1 + iϕ2. The susceptibilities of the two descriptions are related by

χ+(y, y′) ≡ χϕ1ϕ1(y, y
′) =

1 + ε
2
(γ + log π)

4π2

(
χϕϕ̄(y, y′) + χϕϕ(y, y′)

)
,

χ−(y, y′) ≡ χϕ2ϕ2(y, y
′) =

1 + ε
2
(γ + log π)

4π2

(
χϕϕ̄(y, y′) − χϕϕ(y, y′)

)
,

(4.5.11)

where the prefactor translates from the natural normalization in the bootstrap calculation
to the natural normalization using Lagrangians. It is an easy exercise to check that our
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prediction for the order ε correlator (4.4.47) leads to

χ+(y, y′) =
−1

2
√
ζ

(4yy′)
1
2
−∆

(1)
ϕ ε

[
1 + 2∆̂

(1)
0 ε+ ∆̂

(1)
0 ε log ζ

− ∆
(1)
ϕ ε
(
(1 + ζ) log(1 + ζ) + (1 − ζ) log(1 − ζ)

)
+ O(ε2)

]
,

χ−(y, y′) =

√
ζ

2
(4yy′)

1
2
−∆

(1)
ϕ ε

[
1 + 2

(
2∆

(1)
ϕ − ∆̂

(1)
0

)
ε+ ∆̂

(1)
0 ε log ζ

− ∆
(1)
ϕ ε

(
(1 + ζ)

ζ
log(1 + ζ) − (1 − ζ)

ζ
log(1 − ζ)

)
+ O(ε2)

]
.

(4.5.12)

In the rest of this section we will check that perturbation theory gives a result consistent
with this prediction, and we will find the explicit values of ∆

(1)
ϕ and ∆̂

(1)
0 for the Wess-

Zumino model.

4.5.3 Susceptibility at one-loop

Tree level

To compute the scalar propagators we have to solve the Klein-Gordon equation in position
space. It is well known that in the presence of a boundary one has to add a “mirror”
term to the propagator to satisfy the correct boundary conditions at y = 0. Since ϕ1/ϕ2

satisfy Neumann/Dirichlet boundary conditions we have:

⟨ϕ1(x)ϕ1(x
′)⟩0 = κs

(
1

|x− x′|d−2
+

1

|x̄− x′|d−2

)
,

⟨ϕ2(x)ϕ2(x
′)⟩0 = κs

(
1

|x− x′|d−2
− 1

|x̄− x′|d−2

)
.

(4.5.13)

Here ⟨. . .⟩0 indicates the two-point functions are evaluated in the free theory. For each
x = (x, y) we defined the mirror point x̄ = (x,−y), and the overall normalization is

κs =
Γ( d

2
)

(d−2)2πd/2
. We will be mostly interested in the susceptibilities, which can be readily

obtained from eqs. (4.5.8) and (4.5.13):

χ+
0 (y, y′) = χ⟨ϕ1ϕ1⟩0(y, y

′) = −max(y, y′) ,

χ−
0 (y, y′) = χ⟨ϕ2ϕ2⟩0(y, y

′) = + min(y, y′) .
(4.5.14)

Similarly, solving the Dirac equation and adding a “mirror” term dictated by the bound-
ary conditions one gets [176]

⟨Ψ(x)Ψ̄(x′)⟩0 = κf

(
γ · (x− x′)

|x− x′|d
+ iγ5γ

nγ · (x̄− x′)

|x̄− x′|d

)
, κf =

Γ(d
2
)

2πd/2
. (4.5.15)

It is not hard to check that the fermion propagator satisfies the correct boundary condi-
tions:

Π−⟨Ψ(x, 0)Ψ̄(x′, y′)⟩0 = ⟨Ψ(x, y)Ψ̄(x′, 0)⟩0 Π− = 0 . (4.5.16)
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Tadpole diagram

First we consider the quartic interaction terms in eq. (4.5.2) and we use them to form
loop diagrams with either ϕ1 or ϕ2 running in the loop. These diagrams would vanish
if the boundary was not present, or equivalently if we studied physics far away from the
boundary. As a result, we expect them to be finite in the limit ε→ 0. Taking symmetry
factors into account the total contribution is

χ±(y, y′)|tadpole = = ∓2−3+ελ2κsI
±
b (y, y′) . (4.5.17)

The propagator that runs in the loop is defined as the finite part of ⟨ϕi(x, y)ϕi(x
′, y′)⟩0

when x′ → x, and can be obtained from (4.5.13). With this prescription, the Feynman
integrals we must compute are [179]

I+b (y, y′) =

∫ ∞

0

dz χ+
0 (y, z) z−2+ε χ+

0 (z, y′) =
yεy′

ε− 1
− y′(yε − y′ε)

ε
− y′ε+1

ε+ 1
,

I−b (y, y′) =

∫ ∞

0

dz χ−
0 (y, z) z−2+ε χ−

0 (z, y′) = − yy′ε

ε− 1
− y(yε − y′ε)

ε
+
yε+1

ε+ 1
.

(4.5.18)

For simplicity we assumed here and in the rest of the section that y < y′, but one can
obtain the integral for y > y′ replacing y ↔ y′.

Fermion bubble

Similarly, we can use the Yukawa interactions in eq. (4.5.2) to form diagrams with fermions
running in the loop. If the boundary was not present, these diagrams would be UV
divergent and would contribute to the renormalization of ϕ. Since the boundary does
not change the UV behaviour of the theory, we expect a divergence as ε → 0 which is
canceled by the counterterm δϕ:

χ±(y, y′)|bubble = +

= λ2κ2fI
±
f (y, y′) − δϕχ

±
0 (y, y′).

(4.5.19)

Using the identities

tr
[
⟨Ψ(x)Ψ̄(x′)⟩0⟨Ψ(x′)Ψ̄(x)⟩0

]
= −4κ2f

(
1

|x− x′|2(d−1)
+

1

|x̄− x′|2(d−1)

)
,

tr
[
⟨Ψ(x)Ψ̄(x′)⟩0γ5⟨Ψ(x′)Ψ̄(x)⟩0γ5

]
= 4κ2f

(
1

|x− x′|2(d−1)
− 1

|x̄− x′|2(d−1)

)
,

(4.5.20)

we see that the Feynman integral is

I±f (y, y′) =

∫ ∞

0

dz

∫ ∞

0

dz′χ±(y, z)b±(z, z′)χ±(z′, y′) , (4.5.21)

where we have defined

b±(z, z′) =

∫
dd−1r

(
1(

r2 + (z − z′)2
)d−1

± 1(
r2 + (z + z′)2

)d−1

)

=
22−dπd/2

Γ
(
d
2

) (
|z − z′|−3+ε ± |z + z′|−3+ε

)
.

(4.5.22)
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We will evaluate this integral with a trick that has been used in the literature in similar
situations [181, 179, 61]. The idea is to split the integration region between z > z′ and
z < z′. By changing variables to Z = z

z′
and Z = z′

z
, one can carry out the first integration

in terms of I±b defined in the previous section. The result is:

I±f (y, y′) = yε+1

[∫ ∞

1

dZI±b (1, Z/ζ)b±(1, Z)Z−ε +

∫ 1/ζ

1

dZI±b (1, (Zζ)−1)b±(1, Z)Z

+ ζ−1−ε
∫ ∞

1/ζ

dZI±b (1, ζZ)b±(1, Z)Z−ε

]
. (4.5.23)

Remember that we are assuming y < y′, such that ζ = y/y′. Finally, all terms in
eq. (4.5.23) can be integrated using Mathematica18. The result for general ε is not
particularly illuminating and will not be needed later, instead we focus on the result
in the limit ε → 0. First, the divergent piece is canceled in MS with the following
counterterm:

δϕ = − λ2

(4π)2

(
1

ε
+

1

2
(γ + log π) + 1

)
. (4.5.24)

The total diagram is now finite:

χ+(y, y′)|bubble =
λ2

64π2

√
4yy′√
ζ

(
log(4yy′) − log ζ − 2

+ (1 + ζ) log(1 + ζ) + (1 − ζ) log(1 − ζ)
)

+ O(ε) ,

χ−(y, y′)|bubble =
−λ2

64π2

√
4yy′ζ

(
log(4yy′) − log ζ − 2

+
(1 + ζ)

ζ
log(1 + ζ) − (1 − ζ)

ζ
log(1 − ζ)

)
+ O(ε) .

(4.5.25)

Final result

We can obtain the full susceptibility at order ε by combining the tree-level result (4.5.14),
the tadpole diagram (4.5.18), and the fermion bubble (4.5.25). We should evaluate the
sum at the fixed point coupling λ2∗ = 16π2

3
ε, and keep only terms up to order ε. The result

is perfectly consistent with the bootstrap prediction (4.5.12), and we identify

∆
(1)
ϕ =

1

6
, ∆̂

(1)
0 = 0 , s = +1 . (4.5.26)

The anomalous dimension of ϕ in the Wess-Zumino model is well known in the literature.
One can obtain it by demanding that the superpotential has R-charge R(W ) = 3rϕ = 2, so
we find that rϕ = 2/3. Using the relation between the R-charge and conformal dimension
we find ∆ϕ = d−1

3
, in perfect agreement with eq. (4.5.26). From this argument it is clear

that ∆ϕ is one-loop exact.

18The only exception are integrals of the form
∫∞
1
dZ(Z − 1)a, but they are zero in dimensional

regularization.
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An interesting prediction of our calculation is the anomalous dimension of the leading
bulk operator in the OPE ϕ × ϕ ∼ O0 + . . .. We calculated this for a general model
in (4.4.46), and for the Wess-Zumino case we get

∆
(1)
0 =

2

3
⇒ ∆0 =

d+ 2

3
= d− 2∆ϕ . (4.5.27)

Recalling the selection rules of section 4.4.1, we see that the exchanged operator is of the
form O0 ∼ (Q+)2Ψ̄ where Ψ̄ is an antichiral primary operator. Indeed, the numerical
bootstrap applied to the Wess-Zumino model in [159, 154] also provides strong evidence
that the leading operator in the ϕ× ϕ OPE is of this form. The agreement of our results
with the predictions from [159, 154] provides a non-trivial sanity check of our perturbative
calculation. It would be interesting to consider other particular models, for instance with
extra boundary interactions or a more complicated bulk, and see whether the anomalous
dimension of the defect operator changes. We hope to come back to this question in the
future.
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Chapter 5

Bootstrapping line defects with O(2)
global symmetry

5.1 Introduction

The presence of supersymmetry in the previous chapter provided us with better control
over the setup of a SCFT with a boundary. However, if we want to consider applications
of defects in physical setups, then supersymmetry is often not present. Hence, we will
trade the increased control for more realistic setups, and study defects without SUSY,
but with an additonal global or flavor symmetry.

In this chapter we explore the space of codimension two conformal line defects with
O(N) global symmetry. We base our approach on the modern numerical conformal
bootstrap discussed in section 2.4.2, and we focus exclusively on the 1d theory living on
the line defect. This work is then a natural extension of [74], where line defects with a Z2

global symmetry were studied using similar techniques. Other setups where this strategy
has been successful include line defects in supersymmetric models in [182, 95] and in the
study of the long-range Ising model in various dimensions in [183]. More recently it has
also been employed in order to carve out the space of conformal boundary conditions for
a free massless scalar in [68, 69].

By definition, a codimension two conformal line defect with O(N) global symmetry
preserves a ‘little’ conformal group SL(2,R) along the line times a residual ‘transverse
rotations’ group SO(2)T about the line.1 We can think of O(N) to be the remnant bulk
global symmetry after the introduction of the defect in the homogeneous 3d CFT with a
global symmetry G so that

SO(4, 1) ×G −→ SL(2,R) × SO(2)T ×O(N) , O(N) ⊆ G . (5.1.1)

The residual symmetry of the theory allows us to define local defect operators that are
primaries with respect to the ‘little’ conformal group. Such operators will then be conve-
niently labeled by their scaling dimensions ∆, which are non-negative in unitary theories,
their transverse SO(2)T spins s and their SO(N) charges ri. Since all connected rotations
along the line are trivial, we just need to distinguish between parity-odd and parity-even
scalar defect operators, whenever parity on the line is preserved.2

Correlation functions between defect operators are akin to those of a one-dimensional
CFT and must be crossing symmetric in the usual sense. Hence, while on the one hand

1Such ‘transverse rotations’ may be broken e.g. by spinning conformal defects, see e.g. [184].
2In the context of the 3d Ising model, this parity has been called S-parity [74, 73].
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these correlation functions enjoy ‘positivity’ in unitary theories and so they can be boot-
strapped using semi-definite programming, on the other hand they know little about the
bulk. While it remains a very interesting open problem to understand how, for generic
bulk CFTs, the bulk information can be encoded into defect correlation functions,3 at
the same time we find that a systematic exploration of codimension two line defects with
O(N) global symmetry purely based on the numerical conformal bootstrap technique is
still missing.4 In the present chapter we aim at filling this gap, and in doing so we will
be starting from codimension two defects with O(2)F global symmetry.5

In section 5.4 we will present a systematic bootstrap study of certain universal defect
observables such as mixed correlation functions involving the displacement operator and
the tilt operator, which capture the breaking of certain bulk local symmetries by the
presence of the defect. Along with the agnostic bootstrap and whenever possible, we will
try to isolate known defect theories by making gap assumptions inspired by ε-expansion
predictions in specific models. There are indeed quite a few instances of interesting
conformal defects of this sort which should be allowed by our bootstrap bounds. The
preeminent example is the so-called localized magnetic field line defect or magnetic line
defect (see [83, 84] and references therein), which for our purposes can be defined in the
O(3) CFT and breaks the bulk global symmetry down to O(2)F , i.e.

SLML = SO(3) + h

∫ ∞

−∞
dτ ϕ1(τ) , (5.1.2)

where ϕ1 is one component of the fundamental O(3) vector. This symmetry breaking
implies the existence of a tilt in the spectrum, namely the defect primary operator with
protected scaling dimension ∆t = 1 and transforming as a vector of O(2)F discussed
earlier in section 3.1. A review of known results on the magnetic line defect, along
with original computations of correlators relevant to our study in the ε-expansion will
be presented in section 5.3. Other interesting known examples of codimension two line
defects with continuous global symmetry are of the monodromy type, i.e. they can be
thought of as boundaries of codimension one topological operators that implement a
bulk global symmetry transformation g ∈ G, see e.g. [73, 74]. For our purposes we can
consider a bulk CFT with global symmetry G and a complex scalar field Φ charged under
U(1)F ∈ G. We can then define an U(1)F -preserving monodromy defect for any element
g = e2πiv ∈ U(1)F by requiring Φ to be single valued after a SO(2)T rotation only up to
g, i.e. [76, 77, 79]

Φ(r, θ + 2π, x⃗) = e2πivΦ(r, θ, x⃗) , v ∼ v + 1 , v ∈ [0, 1) , (5.1.3)

where (r, θ) are the polar coordinates in the transverse plane with respect to the defect.
For both v = 0 (i.e. no monodromy) and v = 1/2, the internal U(1)F symmetry of Φ will
get enhanced to O(2)F , which includes complex conjugation of Φ. Now, the specific choice
for the monodromy has broken the original symmetry G down to U(1)F , and therefore
the resulting defect may feature a tilt operator as well. In our study however we will

3Some progress in this direction can be found in [52, 68, 69] in the context of conformal boundaries
and defects for the free massless scalar field and in [185] in the context of surface defects for the 4d
Maxwell field.

4See [32] and references therein for works that combine analytic functionals in 1d with the numerical
conformal bootstrap.

5Here and below (whenever necessary) we will denote the global symmetry group as O(2)F , to be
distinguished from the group of transverse rotations about the defect that is denoted as SO(2)T .
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focus on the O(2) bulk global symmetry, for which the defect spectrum does not contain
a tilt operator.

This chapter is organized as follows. In section 5.2, we discuss properties of codi-
mension two line defects with global symmetries, covering the discrete symmetries of the
defect, the two canonical defect operators, and in the end showing the crossing equations
for correlators studied in section 5.4. Then, in section 5.3, we present a small review
on ε-expansion results relevant to our numerical study and focus on the monodromy de-
fect and the localized magnetic field line defect. The results of the numerical conformal
bootstrap for the O(2) line defect will be presented in section 5.4.

5.2 Line defects with global symmetry

In this section we discuss some universal properties of co-dimension two line defects with
global symmetry. We start our analysis with a discussion of the discrete symmetries that
characterize a line defect. We then introduce the two main characters of our bootstrap
analysis: the displacement operator and the tilt operator. We conclude by presenting the
crossing equations for the correlators that we will study in section 5.4.

5.2.1 Discrete symmetries and parity

In addition to the continuous part of the symmetry, e.g. the group in eq. (5.1.1), we are
also interested in the case where the symmetry group involves improper reflections along
the parallel or transverse directions with respect to the line, i.e.

O+(2, 1) ×O(2)T ×O(2)F , O+(2, 1) × SO(2)T ×O(2)F . (5.2.1)

We can think about theO+(2, 1) parity as the improper rotations in 1d, such that spin-odd
primaries in higher dimensions become parity-odd in 1d. This is the S-parity of [73, 74],

S : τ → −τ , S(ψ(τ)) = (−1)Sψψ(−τ) , Sψ = 0, 1 , (5.2.2)

so that invariance under S-parity of defect correlation functions implies that (τi < τi+1)

⟨ψ1(τ1)ψ2(τ2)ψ3(τ3)⟩ = (−1)S1+S2+S3⟨ψ3(−τ3)ψ2(−τ2)ψ1(−τ1)⟩ . (5.2.3)

For the conformal three-point correlation functions, invariance under S-parity means
that [74]

λ123 = (−1)S1+S2+S3λ213 . (5.2.4)

Hence, only S-parity even operators are allowed to appear in the fusion of two identical
local defect operators.6 Throughout this chapter we will assume S-parity invariant defects
and so S will play an important role in our numerical bootstrap study of section 5.4.

The second parity assignment is for O(2)T . We will adopt the convention of [74] and
denote the action of the O(2)T -parity with B. The action B is a reflection in a plane
perpendicular to the defect [73] which flips the sign of one of the transverse coordinates7

6Note that the connected component of the conformal group does not change the cyclic order of
operators insertions, so λ123 = λ231 = λ312.

7Flipping the sign of both transverse coordinates would be a transformation with det(B′
) = 1 and is

part of the connected part of the group O(2)T instead of the disconnected part.
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and reverses the O(2)T charge (as it follows from the anti-symmetric properties of the
generator of the rotations around the defect, Mxy)

B : (x, y) → (−x, y) , B(ψs(τ)) = bψsψ−s(τ) . (5.2.5)

The coefficient bψs determines the parity of the operator. Without loss of generality we
can choose a basis of operators such that operators with s ̸= 0 are even under O(2)T -
parity, while operators with s = 0 can be both even or odd [74]. In this chapter we will
not require O(2)T parity to be a symmetry of the defect CFT.

5.2.2 Universal defect operators

The displacement operator

When considering a local d-dimensional bulk CFT, i.e. with a stress-energy tensor T µν ,
conservation of T µν is generically violated by terms localized on the defect [74, 47]:

∂µT
µi = −δ(q)(D)Di . (5.2.6)

Here δ(q)(D) is a Dirac delta function with support on the co-dimension q = d− p defect,
and i = 1, . . . , q is an index in the directions orthogonal to the defect. The operator
D on the right-hand side of the eq. (5.2.6) is the displacement operator, i.e. a defect
primary operator of scaling dimension ∆ = p + 1 and a vector under SO(2)T . For the
co-dimension two case we use the notation

D ≡ D1 + iD2 , D̄ ≡ D1 − iD2 , (5.2.7)

to denote the positive and negative spin components.
When taking the correlator of four displacement operators, there are two OPEs that

we need to consider. In a theory where S-parity is preserved, the D × D̄ OPE contains
the identity operator 1, as well as SO(2)T singlet operators, which can be either even
or odd under S-parity as dictated by eq. (5.2.4). We denote these operators as (DD̄)

±
.

The D × D OPE exchanges operators with transverse spin s = 2 and positive S-parity,
denoted D2. All in all, we get

D × D̄ ∼ 1 + (DD̄)
+

+ (DD̄)
−

+ · · · , D × D ∼ D2 + · · · . (5.2.8)

The tilt operator

In analogy to the case of the displacement operator, a conformal defect that breaks a
local continuous global symmetry of the bulk must feature a tilt operator.8 Consider the
case where the bulk global symmetry G is broken down to a subgroup H. If JµA is the
conserved current of the symmetry G, then for each symmetry generator broken by the
defect we have [136, 140, 70]

∂µJ
µ
A =δ(q)(D)tA , A ∈ G/H . (5.2.9)

The tilt tA has protected scaling dimension ∆t = p and is a scalar under rotations.
Furthermore, the tilt consists of dim(G)− dim(H) components, which are organized into

8Here the term ‘local’ refers to the existence of a conserved current in the bulk that can be used to
define conserved charges.
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irreducible representations of the preserved subgroup H. The example we consider in
this work is G = O(N) and H = O(N − 1), when the tilt transforms in the vector
representation of H. For the particular case N = 3, such that the preserved sugroup is
O(2)F , the tilt consists of two components t1 and t2, which can be expressed in complex
notation as

t ≡ t1 + it2 , t̄ ≡ t1 − it2 . (5.2.10)

The symmetries allow us to define the following OPEs:

t× t̄ ∼ 1 + (tt̄)+ + (tt̄)− + . . . , t× t ∼ t2 + . . . . (5.2.11)

In the expressions above, the operators (tt̄)± are O(2)F ×SO(2)T singlets and even (odd)
under S-parity. The operators t2 are charged under O(2)F , and they are even under
S-parity.

5.2.3 Crossing equations

We are interested in the study of one-dimensional conformal defects in three-dimensional
bulk CFTs, but because we restrict our attention to four-point functions on the defect,
the crossing equations are identical to the ones for regular one-dimensional CFTs. In
particular, a general four-point function takes the form

⟨ϕi(τ1)ϕj(τ2)ϕk(τ3)ϕl(τ4)⟩ =
Gijkl(ξ)

|τ12|∆i+∆j |τ34|∆k+∆l

(
|τ24|
|τ14|

)∆i−∆j ( |τ14|
|τ13|

)∆k−∆l

, (5.2.12)

where τ is the coordinate along the defect, and we introduced the cross-ratio

ξ =
τ12τ34
τ13τ24

. (5.2.13)

The external operators are ordered along the line τ1 < τ2 < τ3 < τ4, such that the cross-
ratio takes the values 0 < ξ < 1. In the limit when τ1 approaches τ2, or equivalently
when ξ → 0, the correlation function Gijkl(ξ) admits an expansion in s-channel conformal
blocks [186]

Gijkl(ξ) =
∑
O

λijOλklOg
∆ij ,∆kl
∆ (ξ) , g

∆ij ,∆kl
∆ (ξ) = ξ∆2F1(∆ − ∆ij,∆ + ∆kl; 2∆; ξ) ,

(5.2.14)

where λijO are three-point OPE coefficients. It is natural to think of the one-dimensional
CFT as living on a circle, which is the conformal compactification of the real line. On
the circle, it is clear that the correlator should respect cyclicity ⟨ϕiϕjϕkϕl⟩ = ⟨ϕlϕiϕjϕk⟩,
which, including the prefactor in eq. (5.2.12), leads to

(1 − ξ)∆j+∆kGijkl(ξ) = ξ∆i+∆jGlijk(1 − ξ) . (5.2.15)

The crossing equation is obtained by requiring consistency between cyclicity and the
conformal block decomposition. Using standard manipulations, see for example [187], we
can write the crossing equations as∑

O

[
λijOλklOF

ij,kl
∓,∆ (ξ) ± λkjOλilOF

kj,il
∓,∆ (ξ)

]
= 0 , (5.2.16)
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where F ij,kl
±,∆ are defined similarly as for higher-dimensional CFTs:

F ij,kl
±,∆ (ξ) ≡ (1 − ξ)∆k+∆jg

∆ij ,∆kl
∆ (ξ) ± ξ∆k+∆jg

∆ij ,∆kl
∆ (1 − ξ) . (5.2.17)

With the help of these results, the process of writing all crossing equations becomes
straightforward. Given a set of external operators, one simply lists all non-vanishing
four-point functions. Then, for each inequivalent ordering, eq. (5.2.16) gives the relevant
crossing equations.

Comment on complex notation

In this work we consider scalar operators charged under O(2) symmetry, so in order
to write the crossing equations we should take global-symmetry tensor structures into
account. Alternatively, we can exploit complex notation, which means that for an O(2)
vector instead of working with a real field ϕi with a two-valued index i = 1, 2, we work with
a single complex field ϕ = ϕ1 + iϕ2 and its complex conjugate ϕ̄ ≡ ϕ∗. In a completely
analogous way, we can construct operators with arbitrary charge. The advantage of
complex notation is that it eliminates the need to keep track of global-symmetry indices
and tensor structures. Using again the example of a vector under O(2), the OPE ϕi× ϕj

contains the singlet representation (S), the antisymmetric representation (A), and the
symmetric-traceless representation (T ), each with an associated tensor structure. Instead,
in complex notation we have the OPE ϕ× ϕ̄ with S-parity even operators corresponding
to (S), the OPE ϕ× ϕ̄ with S-parity odd operators corresponding to (A), and the OPE
ϕ× ϕ with S-parity even operators corresponding to (T ).

One complex scalar

The simplest case of crossing that we can consider is for one complex scalar ϕ. From the
defect CFT perspective, this setup has three applications depending on the interpretation
given to ϕ. In the first application, which we consider in section 5.4.1, we take ∆ϕ = 2
and interpret ϕ = D1 + iD2 ≡ D as the displacement operator of a co-dimension two
defect. In the second application, which we consider in section 5.4.1, we take ∆ϕ = 1 and
interpret ϕ = t1 + it2 ≡ t as the tilt operator. In the third application, which we consider
in section 5.3.1, we can think of ϕ = ψn+v with n ∈ Z as a defect mode in a monodromy
defect.

Regardless of the interpretation of ϕ, we can use eq. (5.2.16) on the orderings ⟨ϕϕ̄ϕϕ̄⟩
and ⟨ϕϕϕ̄ϕ̄⟩. We find a system of three crossing equations which in vector notation
read [188] ∑

O±

(λϕϕ̄O)2V⃗ ϕϕ̄
∆,S +

∑
O+

|λϕϕO|2V⃗ ϕϕ
∆ = 0 , (5.2.18)

where the crossing vectors are given explicitly in eq. (E.1.1). The leftmost sum runs
over defect primaries of both S-parities, while the rightmost one include only S-parity
even defect primaries. The contribution of the identity operator has not been separated

explicitly, but is given by V⃗ ϕϕ̄
0,0 .

One complex generalized free field. A notable solution to the crossing equations
in eq. (5.2.18) is complex generalized free field theory, based on a complex scalar field
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ϕ with scaling dimension ∆ϕ, and its complex conjugate ϕ̄. Using Wick’s theorem, the
four-point function in the notation of eq. (5.2.12) reads

Gϕϕ̄ϕϕ̄(ξ) = 1 +

(
ξ

1 − ξ

)2∆ϕ

= 1 +
∞∑
p=0

cp(∆ϕ,∆ϕ)g0,02∆ϕ+p
(ξ) , (5.2.19)

Gϕϕϕ̄ϕ̄(ξ) = αξ2∆ϕ +

(
ξ

1 − ξ

)2∆ϕ

=
∞∑
p=0

(
1 + α(−1)p

)
cp(∆ϕ,∆ϕ)g0,02∆ϕ+p

(ξ) , (5.2.20)

with [189, 74]

cp(∆1,∆2) =
(2∆1)p(2∆2)p

p!(2∆1 + 2∆2 + p− 1)p
. (5.2.21)

The second correlator above contains a parameter α, such that −1 ≤ α ≤ 1 in unitary
theories. For α = 1 the solution corresponds to a generalized free boson (GFB), while
for α = −1 it corresponds to a generalized free fermion (GFF).

It was noted in [74] that the solution to the crossing equation of the generalized
real free fermion ⟨ψ(τ1)ψ(τ2)ψ(τ3)ψ(τ4)⟩ can be extended to a solution of the crossing
equations in eq. (5.2.18), if the gap on the scaling dimension of the first operator in the
traceless-symmetric representation does not exceed 2∆ψ. The spectra for the S-parity
even and odd operators are equal in this case. For the displacement operator, this happens
for ∆D2 < 2× 2 = 4, while for the tilt operator the solution appears for ∆t2 < 2× 1 = 2.

Tilt and displacement

Next we consider a mixed system between the tilt operator t and the displacement op-
erator D, where we again use complex notation. In order to write down the crossing
equations we note that the S-parity even singlets can appear both in t × t̄ and D × D̄,
while the S-parity odd channels are different in the two OPEs, because the tilt and
displacement transform under different O(2) groups. All in all, crossing reads∑

O+

(λtt̄O λDD̄O)V⃗ +
∆

(
λtt̄O
λDD̄O

)
+
∑
O−

|λtt̄O|2V⃗ tt̄,−
∆ +

∑
O−

|λDD̄O|2V⃗ DD̄,−
∆

+
∑
O+

|λttO|2V⃗ tt
∆ +

∑
O+

|λDDO|2V⃗ DD
∆ +

∑
O±

|λtDO|2V⃗ tD
∆,S = 0 .

(5.2.22)

Once again the crossing vectors are presented in appendix E.2.

One real scalar and the tilt

The third setup we study is crossing for one real scalar ϕ1 and a tilt operator t, for
which we use complex notation. This has applications to the magnetic line defect of
section 5.3.2, where ϕ1 corresponds to the scalar that breaks the bulk symmetry, and
the tilt operator must be present due to the symmetry breaking. The numerical results
for this setup will be discussed in section 5.4.3. The crossing equations can be obtain in
a similar way as before, but we now obtain seven independent equations that in vector
notation read∑

O+

(λϕ1ϕ1O λtt̄O)V⃗ +
∆

(
λϕ1ϕ1O
λtt̄O

)
+
∑
O−

(λtt̄O)2V⃗ −
∆ +

∑
O+

|λttO|2V⃗ tt
∆ +

∑
O±

|λϕ1tO|2V⃗
ϕ1t
∆,S = 0 .

(5.2.23)
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The crossing vectors are found in appendix E.3. Mutatis mutandis, the same system of
crossing equations can be used to study the mixed correlators of ϕ1 and D. We will leave
this idea for future exploration.

Two complex scalars

Finally we study the crossing equations of two unequal complex scalars ϕ1 and ϕ2. We
apply this to monodromy defects, see section 5.4.2, where ϕ1 = ψn1+v and ϕ2 = ψn2+v

are two different defect modes of a bulk scalar field. In total there are twelve crossing
equations and five different OPE channels [190]∑

O±

(λϕ1ϕ̄1O λϕ2ϕ̄2O)V⃗∆,S

(
λϕ1ϕ̄1O
λϕ2ϕ̄2O

)
+
∑
O+

|λϕ1ϕ1O|2V⃗ 11
∆ +

∑
O+

|λϕ2ϕ2O|2V⃗ 22
∆

+
∑
O±

|λϕ1ϕ2O|2V⃗ 12
∆,S +

∑
O±

|λϕ1ϕ̄2O|
2V⃗ 12̄

∆,S = 0 .
(5.2.24)

The crossing vectors can be found in appendix E.4.

Two complex generalized free fields. The OPE coefficients that contain only ϕ1

or only ϕ2 follow from our discussion above. The new information is contained in the
ϕ1 × ϕ2 OPE, which can be analyzed from the following four-point function

Gϕ1ϕ2ϕ̄2ϕ̄1(ξ) =
ξ∆1+∆2

(1 − ξ)2∆2
=

∞∑
p=0

cp(∆1,∆2)g
∆12,∆21

∆1+∆2+p
(ξ) . (5.2.25)

From here we immediately read off |λϕ1ϕ2O|2, and by sending ϕ2 → ϕ̄2 we find that the
same formula applies to |λϕ1ϕ̄2O|2.

5.3 Defect theories in the ε-expansion

In this section we use perturbation theory to study two important examples of conformal
line defects: the SO(2)F -preserving monodromy defect and the O(3)-breaking magnetic
line defect. We start by reviewing known results on the SO(2)F monodromy defect in
the ε-expansion, which has been studied in great detail in [76, 77, 79]. In view of the
comparison to the numerical bootstrap results, we add a few OPE coefficients to the
CFT data already available in the literature, which can be straightforwardly extracted
from the results of [77]. Then, we study the magnetic line defect in the ε-expansion,
and present new results which complement the study performed in [84]. We compare
these perturbative results with the predictions from the numerical conformal bootstrap
in section 5.4.

5.3.1 Monodromy defects with SO(2)F symmetry

Monodromy defects in the free O(2) model. The first example we discuss is a
U(1)F -preserving monodromy defect in free theory. This defect, first considered in [76,
77, 79], generalizes the Z2 twist defect defined in [73, 74]. Following [76], we start from
a set of N = 2 free real scalars ϕi in the bulk that satisfy

ϕi(r, θ + 2π, x⃗) = gijϕj(r, θ, x⃗) , gij ∈ O(2)F . (5.3.1)
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The scalars ϕi either get mixed into each other, obtain a minus sign, or remain unchanged
when going around the monodromy defect. In terms of the complex combination

Φ = ϕ1 + iϕ2 , (5.3.2)

the most general U(1)F monodromy becomes9

Φ(r, θ + 2π, x⃗) = e2πivΦ(r, θ, x⃗) , v ∼ v + 1 , v ∈ [0, 1) . (5.3.3)

The complex scalar Φ has an internal U(1)F symmetry that gets enhanced to O(2)F for
v = 0 (the trivial defect) and for v = 1

2
(the Z2 monodromy defect). For these values

of v, the transformation Φ → Φ̄, which belongs to O(2)F but not U(1) ≃ SO(2)F , is a
symmetry. As a consequence of the monodromy, the local primary operators allowed to
appear in the bulk-defect expansion of Φ will generically have non-integer spin s ∈ Z+ v,
i.e.

Φ(r, θ, x⃗) ∼
r→0

∑
Ψs

∑
s∈Z+v

e−iθs

r∆Φ−∆Ψs
Ψs(x⃗) + c.c. (5.3.4)

The scaling dimensions of the defect modes of Φ are completely fixed as a consequence
of the bulk free equation of motion, and read (see e.g. [73, 74, 47])

∆Ψs = ∆Φ + |s| =
d− 2

2
+ |s| . (5.3.5)

In terms of real bulk scalar ϕi ∼
∑

s e
isθψis + c.c., the reality condition is that ψ̄is = ψi−s

and so Ψs = ψ1
s + iψ2

s satisfies Ψ̄s ≡ ψ̄1
s − iψ̄2

s = ψ1
−s − iψ2

−s.

Monodromy defects in the interacting O(2) model. The simplest example of an in-
teracting U(1)F monodromy defect is obtained by imposing the condition of eq. (5.3.3) on
the fundamental vector of the critical 3d O(2) vector model. In perturbation theory this
example is tractable in the standard framework of ε-expansion (with fixed co-dimension
q = 2). The bulk is tuned to the Wilson-Fisher fixed point with coupling10

λ∗ =
8π2

10
+ O(ε2) . (5.3.6)

The scaling dimensions of the defect modes Ψs are found to be [76, 77]

∆Ψs = 1 + |s| − ε

2
+

1

5

v(v − 1)

|s|
ε+ O(ε2) . (5.3.7)

For the monodromy defect, the displacement operator D appears in the OPE of two defect
modes with spins |s| = v and |s| = v − 1:

Ψv × Ψ̄v−1 ∼ D , Ψ̄v × Ψv−1 ∼ D̄ . (5.3.8)

9As explained in [79] this monodromy can be thought of as a large and constant U(1) background
gauge transformation for Φ.

10There is a slight difference in notation with respect to [77], where the symmetry group in the bulk
and on the defect is O(2N), while we will denote it by O(N) with N = even, and in particular take
N = 2, to avoid differences in notation throughout this thesis.
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In appendix D we show that it appears in the Ψv × Ψ̄v−1 OPE with (squared) OPE
coefficient

|λΨvΨ̄v−1D|
2 = 1 +

ε

10

(
2H1−v + 2Hv − 3

)
, (5.3.9)

where Hv is the analytic continuation of the harmonic number. We will also need the
scaling dimensions and correponding OPE coefficients of the leading singlets in

Ψv × Ψ̄v ∼ 1 + O0 + . . . , Ψv−1 × Ψ̄v−1 ∼ 1 + O0 + . . . . (5.3.10)

In appendix D we show that

∆O0 = 2 + 2v − ε+ ε

(
4

5(1 + 2v)
+

2(v − 1)

5

)
. (5.3.11)

In section 5.4.2 we will compare the ε-expansion predictions to the numerical bootstrap
results.

It would be interesting to compute the correlator ⟨DDD̄D̄⟩ at the first non-trivial
order in ε-expansion to compare this to our single-correlator numerical bounds for the
displacement operator. We will leave this for future work.

5.3.2 Localized magnetic field line defect

Let us continue with the determination of three-point OPE coefficients of defect operators
for the magnetic line defect. The calculation is based on and extends the work [84], which
focused on the scaling dimensions of low-lying defect operators. We obtain these results
from a Feynman diagram expansion, keeping terms up to order O(ε) in the ε-expansion.
In order to obtain properly normalized OPE coefficients, we need to determine both two-
and three-point functions. At the end, we also calculate several four-point functions, that
by means of the conformal block decomposition allow us to check our results and obtain
further coefficients.

Overview

To study the magnetic line defect we use a Lagrangian description that couples the O(N)
model to a magnetic field localized along an infinite line. Using rotation invariance we
take the line to be oriented as xµ(τ) = (τ, 0⃗), while using O(N) invariance, we choose the
magnetic field to be in the ϕ1 direction. All in all, the action is

S =

∫
ddx

(
1

2
(∂µϕa)

2 +
λ0
4!

(ϕ2
a)

2

)
+ h0

∫ ∞

−∞
dτ ϕ1(x(τ)) , a = 1, . . . , N . (5.3.12)

Let us start reviewing the results of [84], which motivate our bootstrap setup in
section 5.4.3. Because the defect in eq. (5.3.12) breaks the global symmetry O(N) →
O(N − 1), there exists a tilt operator besides the displacement operator. In perturbation
theory, the tilt and displacement operators are identified as

tâ ∝ ϕâ , D ∝ ∇ϕ1 , â = 2, . . . , N , (5.3.13)

and as usual they have protected dimension ∆t = 1 and ∆D = 2. After the tilt, the
operator with the second-lowest dimension is the localized magnetic field ϕ1. The scaling
dimension of ϕ1 to two-loop order in the ε-expansion reads

∆ϕ1 = 1 + ε− 3N2 + 49N + 194

2(N + 8)2
ε2 + O(ε3)

Padé−−→ 1.55 . (5.3.14)
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λϕ1ϕ1ϕ1 λttϕ1 λϕ1ϕ1s± λtts± λϕ1tV λttA λttT

(5.3.46) (5.3.46) (5.3.51) (5.3.52) (5.3.53) (5.3.58) (5.3.53)

Table 5.1: Summary of the most important OPE coefficients computed in this section.
Further coefficients appear in (5.3.48) or can be extracted from the four-point functions
in section 5.3.2.

Furthermore, inputting information from d = 2 in a Padé approximant, the authors
of [84] estimated the value ∆ϕ1 ≈ 1.55, which is also consistent with their 1/N results
and Monte-Carlo simulations [191, 192].

Since the two lowest-dimensional operators on the defect are tâ and ϕ1, a natural
candidate for a bootstrap study is the mixed correlator involving them, which is the one-
dimensional analog of [19, 20]. In order to motivate gap assumptions in the numerical
study, let us look at the lowest-lying operators in the different OPE channels. In the
singlet channel (S), which appears for ϕ1×ϕ1 or (tâ×tb̂)S, the lowest dimension operators
are ϕ1+s−+s++. . .. Here s± are linear combinations of ϕ2

1 and ϕ2
a with scaling dimension

∆s± = 2 + ε
3N + 20 ±

√
N2 + 40N + 320

2(N + 8)
+ O(ε2) . (5.3.15)

Similarly, vector operators appear in the OPE ϕ1× tâ = tâ +Vâ + . . .. The leading vector
is Vâ ∝ ϕ1ϕâ, and its dimension reads

∆V = 2 + ε
N + 10

N + 8
+ O(ε2) . (5.3.16)

Finally, in the OPE tâ × tb̂ there is an antisymmetric channel (A), where the lowest-
dimensional operator is Aâb̂ ∝ ϕ[âϕb̂], and a symmetric-traceless channel (T ) with the
lowest-lying operator Tâb̂ ∝ ϕâϕb̂. Their dimensions are given by

∆A = 3 + O(ε2) , ∆T = 2 +
2ε

N + 8
+ O(ε2) . (5.3.17)

Besides scaling dimensions, the numerical conformal bootstrap can also probe the
three-point OPE coefficients of these operators. The goal of the rest of the section will be
to compute these OPE coefficients to leading order in the ε-expansion, see table 5.1 for
a summary of the main results. Besides two- and three-point functions, we also compute
several four-point functions, which thanks to the conformal block decomposition, contain
information of many other OPE coefficients.

Conventions

Throughout this section we follow the conventions of [84], so in particular the action is
given by eq. (5.3.12) and the scalar propagator in free theory is

≡ ⟨ϕa(x1)ϕb(x2)⟩λ0=h0=0 =
κδab

(x212)
1− ε

2

, κ =
Γ
(
d
2

)
2πd/2(d− 2)

. (5.3.18)

In perturbative expansions there is a bulk four-point vertex and a vertex that couples a
bulk operator to the defect

≡ −λ0
∫
ddx . . . , ≡ −h0

∫ ∞

−∞
dτ . . . . (5.3.19)
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Notice that only ϕ1 couples to the line, and not all ϕâ for â = 2, . . . , N . We work in
dimensional regularization with minimal subtraction, so the bare couplings λ0 and h0 are
related to the renormalized ones as

λ0 = λM ε

(
1 +

λ

(4π)2
N + 8

3ε
+ O(λ2)

)
, h0 = hM ε/2

(
1 +

λ

(4π)2
h2

12ε
+ O(λ2)

)
.

(5.3.20)

The renormalized couplings depend on the renormalization scale M as

βλ = M
dλ

dM
= −λε+

λ2

(4π)2
N + 8

3
+ O(λ3) ,

βh = M
dh

dM
= −hε

2
+

λ

(4π)2
h3

6
+ O(λ2) ,

(5.3.21)

so there exists a non-trivial fixed point where we evaluate most of our results:

λ∗
(4π)2

=
3ε

N + 8
+ O(ε2) , h2∗ = N + 8 + O(ε) . (5.3.22)

Since we are interested in obtaining OPE coefficients at order O(ε), we shall consider
diagrams with at most one bulk vertex insertion λ∗ ∼ O(ε). On the other hand, we
have to allow an arbitrary number of defect insertions because h∗ ∼ O(1). However, in
practice only a finite number of diagrams will contribute at any given order in ε.

We often split the coordinates into a direction τ parallel to the defect and x⃗ ∈ Rd−1

directions orthogonal to the defect. We shall only consider correlation functions of opera-
tors that live on the defect, for which we use the shorthand notation O(τ) = O(τ, x⃗ = 0).

Two-point functions

We obtain all two-point functions of operators of the schematic form ϕ, ϕ2, ∇ϕ, where
ϕ is the fundamental scalar and ∇ are derivatives orthogonal to the defect. Besides
rederiving their scaling dimensions, which appeared previously in [84], we obtain the
overall normalization, which is needed in the calculation of higher-point functions.

The correlator ⟨ϕϕ ⟩

Let us start with the simplest example: the two-point function of the fundamental field.
To order O(ε) only two diagrams contribute:

⟨ϕa(τ)ϕb(0) ⟩ = + + . . . . (5.3.23)

The first diagram is obtained setting x⃗1 = x⃗2 = 0 in the free propagator (5.3.18). For the
integral that enters the second diagram, we first integrate the two defect insertions using∫ ∞

−∞

dτ

(|x⃗|2 + τ 2)∆
=

√
π Γ
(
∆ − 1

2

)
Γ(∆)

1

|x⃗2|∆− 1
2

, (5.3.24)

and then the bulk vertex using∫
ddx3

|x⃗3|ε

(x213x
2
23)

1− ε
2

=

√
π Γ
(
1 − 3ε

2

)
Γ(ε)2 Γ

(
ε+1
2

)
2Γ
(
1 − ε

2

)2
Γ(2ε)

1

|τ 212|1−
3ε
2

, (5.3.25)
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which follows from Schwinger parametrization. Using these results, it is a simple book-
keeping exercise to obtain the contribution of each diagram:

=
κδab
τ 2−ε

,

= − λ0h
2
0

(4π)4
2δ1aδ1b + δab

τ 2−3ε

(
2

3ε
− 1

3
+ ℵ + O(ε)

)
.

(5.3.26)

To simplify the notation, we have introduced the constant

ℵ ≡ 1 + γE + log π , (5.3.27)

which appears repeatedly in the calculations below but drops out of physical quantities
such as scaling dimensions and OPE coefficients. We now introduce renormalized fields,
which transform irreducibly under the unbroken symmetry group O(N − 1):

ϕ1 ≡ Zϕ1 [ϕ1] , ϕâ ≡ Zt tâ . (5.3.28)

The operator tâ is the tilt operator from section 5.2.2. The two renormalization factors
are obtained demanding that poles in ε cancel in (5.3.23), giving

Zϕ1 = 1 − λ

(4π)2
h2

4ε
+ O(λ2) , Zt = 1 − λ

(4π)2
h2

12ε
+ O(λ2) . (5.3.29)

From the renormalization factor one can immediately obtain the anomalous dimension
at the critical point using γO = M d

dM
logZO. The results have been summarized in

section 5.3.2, and are in perfect agreement with [84]. Finally, note that the two-point
functions at the critical point read

⟨ [ϕ1](τ) [ϕ1](0) ⟩ =
N 2
ϕ1

τ 2∆ϕ1
, N 2

ϕ1
= κ

(
1 − 3ℵ

2
ε+ O(ε2)

)
,

⟨ tâ(τ) tb̂(0) ⟩ = δâb̂
N 2
t

τ 2
, N 2

t = κ

(
1 − ℵ

2
ε+ O(ε2)

)
.

(5.3.30)

The correlator ⟨∇ϕ∇ϕ ⟩

Similarly, we can consider the two-point function ⟨∇iϕa∇jϕb⟩, which again consists of
two diagrams at this order:

= κ(d− 2)
δijδab
τ 4−ε

,

= − λ0h
2
0

(4π)4
δij(2δ1aδ1b + δab)

τ 4−3ε

(
4

9ε
− 8

27
+

2

3
ℵ + O(ε)

)
.

The integrals are computed as before, but one needs to be careful to first take transverse
derivatives with respect to x⃗1 and x⃗2 and then sending x⃗1, x⃗2 → 0. Once again we
introduce renormalized fields

∇ϕ1 ≡ ZD D , ∇ϕâ ≡ Z∇ϕ [∇ϕâ] , (5.3.31)
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where D is the displacement operator which transforms as a vector under SO(d − 1)
transverse rotations. Cancelling poles in ε we find

ZD = 1 − λ

(4π)2
h2

12ε
+ O(λ2) , Z∇ϕ = 1 − λ

(4π)2
h2

36ε
+ O(λ2) . (5.3.32)

It follows that the scaling dimension of the displacement is protected, and we obtain
the scaling dimension ∆∇ϕ = 2 − 1

3
ε + O(ε2), in agreement with [84]. The defect-defect

two-point functions at the critical point read

⟨Di(τ) Dj(0) ⟩ = δij
N 2

D

τ 4
, N 2

D = 2κ

(
1 − 4 + 3ℵ

6
ε+ O(ε2)

)
,

⟨ [∇iϕâ](τ) [∇jϕb̂](0) ⟩ = δâb̂δij
N 2

∇ϕ

τ 2∆∇ϕ
, N 2

∇ϕ = 2κ

(
1 − 10 + 3ℵ

18
ε+ O(ε2)

)
.

The correlator ⟨ϕ2 ϕ2 ⟩

Finally, the last type of operators we are interested in are composites of two fundamental
fields:

⟨ϕaϕb(τ)ϕcϕd(τ) ⟩ = + + + . . . (5.3.33)

The first and third diagrams are computed as in section 5.3.2, whereas the second is a
chain diagram, for which the integral is well known (see e.g. [120]):∫

ddx3
(x213)

∆1(x223)
∆2

=
π
d
2

(x212)
∆1+∆2− d

2

Γ
(
d
2
− ∆1

)
Γ(∆1)

Γ
(
d
2
− ∆2

)
Γ(∆2)

Γ
(
∆1 + ∆2 − d

2

)
Γ(d− ∆1 − ∆2)

. (5.3.34)

Once again, we are interested in reducing ϕaϕb into irreducible components. On one hand,
we can form a vector and a symmetric-traceless operator as follows:

ZV Vâ = ϕ1ϕâ , ZTTâb̂ = ϕâϕb̂ −
δâb̂

N − 1
ϕ2
ĉ , (5.3.35)

with the following renormalization factors:

ZV = 1 − λ

(4π)2
h2 + 2

3ε
+ O(λ2) , ZT = 1 − λ

(4π)2
h2 + 4

6ε
+ O(λ2) . (5.3.36)

Again, it is straightforward to extract the anomalous dimensions at the critical point and
the normalization of the two-point functions:

⟨Vâ(τ)Vb̂(0) ⟩ = δâb̂
N 2
V

τ 2∆V
, N 2

V = κ2
(

1 − 2N + 18

N + 8
ℵ ε+ O(ε2)

)
,

⟨Tâb̂(τ)Tĉd̂(0) ⟩ = Tâb̂,ĉd̂

N 2
T

τ 2∆T
, N 2

T = 2κ2
(

1 − N + 10

N + 8
ℵ ε+ O(ε2)

)
.

(5.3.37)

Here we have introduced a symmetric-traceless tensor which will be useful later:

Tâb̂,ĉd̂ =
1

2
δâĉδb̂d̂ +

1

2
δâd̂δb̂ĉ −

δâb̂δĉd̂
N − 1

. (5.3.38)
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On the other hand, we can form two independent scalars ϕ2
1 and ϕ2

a, which mix at O(ε)
due to quantum corrections. The renormalized fields s± are defined as(

ϕ2
1

ϕ2
a

)
= Zs

(
s−
s+

)
, (5.3.39)

where the renormalization factor Zs is a two-by-two matrix. To determine Zs one requires
that three-point functions of renormalized fields

⟨ [ϕ1] [ϕ1] s± ⟩ , ⟨ [ϕ1] tâ s± ⟩ , ⟨ tâ tb̂ s± ⟩ , (5.3.40)

have no poles in ε. We explain how to compute these three-point functions in section 5.3.2.
Furthermore, one should require that Zs is such that s± have anomalous dimensions that
do not mix. Demanding this we find the anomalous-dimension matrix

γ = Z−1
s

∂Zs
∂ logM

∣∣∣
fixed point

=

(
5N+36−

√
N2+40N+320

2N+16
0

0 5N+36+
√
N2+40N+320

2N+16

)
ε+ O(ε2) .

(5.3.41)

Our choice of Zs guarantees that the two-point functions are orthogonal, as one usually
requires in CFT:

⟨ s±(τ) s±(0) ⟩ =
N 2
s±

τ 2∆s±
, ⟨ s±(τ) s∓(0) ⟩ = 0 . (5.3.42)

The formulas for Zs and N 2
s± are somewhat complicated and not particularly illuminating,

so instead of writing them explicitly we attach them in a notebook.

Three-point functions

Having determined the scaling dimension and normalization of the defect operators of
interest, we are ready to compute some of their three-point OPE coefficients λO1O2O3 .
Here we shall focus on parity-even operators, that have three-point functions of the form

⟨O1(τ1)O2(τ2)O3(τ3)⟩ =
NO1NO2NO3 λO1O2O3

|τ12|∆1+∆2−∆3|τ13|∆1+∆3−∆2 |τ23|∆2+∆3−∆1
. (5.3.43)

By choosing different external operators there are many three-point functions that can be
computed. Here we focus on a subset of them, which can be compared to our numerical
study or in future works.

The correlator ⟨ϕϕϕ ⟩

The simplest three-point functions are the ones that involve only the fundamental scalar.
These are zero at tree level, but receive a contribution at order O(ε) from the following
diagram:

⟨ϕa(τ1)ϕb(τ2)ϕc(τ3) ⟩ = + . . . (5.3.44)

Because this diagram is proportional to a factor λ∗ ∝ ε, it suffices to evaluate the integral
in exactly d = 4: ∫

dτ4 d
4x5

x215x
2
25x

2
35x

2
45

=
2π4√
τ 212τ

2
13τ

2
23

. (5.3.45)
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To compute this integral, we exploit that it is invariant under the one-dimensional confor-
mal group, so we use a frame where τ1 = 0, τ2 = 1 and τ3 = ∞. We start integrating over
τ4, then the orthogonal directions x⃗25, and finally over τ5, all the steps being elementary.
Splitting the diagram (5.3.44) into irreducible components under O(N − 1), and keeping
track of all normalization factors, we find the two OPE coefficients

λϕ1ϕ1ϕ1 =
3πε√
N + 8

+ O(ε2) , λttϕ1 =
πε√
N + 8

+ O(ε2) . (5.3.46)

The correlator ⟨∇ϕ∇ϕϕ ⟩

We can also consider a three-point function where two of the external operators are
orthogonal derivatives ⟨∇ϕa(τ1)∇ϕb(τ2)ϕc(τ3)⟩. The same diagram as in (5.3.44) con-
tributes, but now it leads to the integral

lim
x⃗1,x⃗2→0

∂

∂x⃗1,i

∂

∂x⃗2,j

∫
dτ4 d

4x5
x215x

2
25x

2
35x

2
45

=
4π4/3√
τ 612τ

2
13τ

2
23

, (5.3.47)

which has been computed as before in eq. (5.3.45). Splitting the result into irreducible
components under O(N − 1) and keeping track of all normalization factors, we find the
three OPE coefficients

λDDϕ1 =
πε√
N + 8

+ O(ε2) , λD∇ϕt =
πε

3
√
N + 8

+ O(ε2) , λ∇ϕ∇ϕϕ1 =
πε

3
√
N + 8

+ O(ε2) .

(5.3.48)

The correlator ⟨ϕϕϕ2 ⟩

The last type of OPE coefficient we consider involves two fundamental fields and a com-
posite one:

⟨ϕa(τ1)ϕb(τ2)ϕcϕd(τ3) ⟩ = + + + . . .

(5.3.49)

The first and third diagrams are elementary, and have been computed in section 5.3.2.
The second diagram contains a new integral that reads∫

ddx4

(x214x
2
24)

1− ε
2 (x234)

2−ε
=

π2

τ 213τ
2
23

(
2

ε
+ 3 − ℵ + log

(
τ 413τ

4
23

τ 212

)
+ O(ε)

)
. (5.3.50)

To compute it, we first rewrite the integral in parametric form using Schwinger’s represen-
tation, and then we partial integrate as described in [193, 194].11 The result is expanded
to order O(ε0), and each of the terms in the expansion is a convergent integral that can
be solved with elementary methods.

Once again, the correlator in eq. (5.3.49) contains several OPE coefficients. If we
let the third operator be a scalar under O(N − 1), then we have the following OPE

11Although we have not used HyperInt [195], the package automatizes this in the function
dimregPartial.
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coefficients:

λϕ1ϕ1s± =
±2

√
N − 1√

N2 + 40N + 320 ∓ (N + 18)
√
N2 + 40N + 320

(
1 ± (95N − 640)ε

64
√
N2 + 40N + 320

± 17ε
√
N2 + 40N + 320

64(N + 8)
− 7N3 + 182N2 + 1160N + 2280

4(N + 8) (N2 + 40N + 320)
ε+ O(ε2)

)
,

(5.3.51)

λtts± =

(
∓(N + 18) +

√
N2 + 40N + 320

)
(N − 1)−1/2√

N2 + 40N + 320 ∓ (N + 18)
√
N2 + 40N + 320

(
1 ∓ (95N − 640)ε

64
√
N2 + 40N + 320

∓ 49ε
√
N2 + 40N + 320

64(N + 8)
− (11N3 + 374N2 + 3720N + 12520) ε

4(N + 8) (N2 + 40N + 320)
+ O(ε2)

)
.

(5.3.52)

If we instead let the third operator be a vector or a symmetric-traceless tensor, we find:

λϕ1tV = 1 − ε

N + 8
+ O(ε2) , λttT =

√
2

(
1 − ε

N + 8
+ O(ε2)

)
. (5.3.53)

The normalization of λttT is chosen such that the tensor structure in eq. (5.3.38) multiplies
the three-point function in eq. (5.3.43).

Four-point functions

In this final section, we turn our attention to four-point functions of operators formed
by the fundamental field and possibly one transverse derivative. Because of the OPE,
four-point functions contain information about three-point OPE coefficients, so we will
be able to check some calculations of section 5.3.2 and obtain new results.

The correlator ⟨ϕϕϕϕ ⟩

The simplest four-point function is that of the fundamental field:

⟨ϕa(τ1)ϕb(τ2)ϕc(τ3)ϕd(τ4) ⟩ = + + + . . .

(5.3.54)

The first and third contributions lead to the disconnected part of the correlator, while the
non-trivial part is given by the second diagram. Since the second diagram is multiplied
by a coupling λ∗ = O(ε), it suffices to evaluate the integral in d = 4:

lim
x⃗n→0

∫
d4x5

x215x
2
25x

2
35x

2
45

= −2π2 I1(ξ)

τ 212τ
2
34

. (5.3.55)

Since this integral preserves the one-dimensional conformal group, we can evaluate it in
the frame (τ1, τ2, τ3, τ4) = (0, ξ, 1,∞), where the cross-ratio ξ is defined in eq. (5.2.13).
We integrate first over orthogonal directions x⃗25 and then over τ5, considering separately
the intervals τ5 ∈ (−∞, 0), τ5 ∈ (0, ξ), τ5 ∈ (ξ, 1) and τ5 ∈ (1,∞). The final result reads

I1(ξ) = ξ log(1 − ξ) +
ξ2

1 − ξ
log ξ . (5.3.56)
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As usual, we decompose the correlator in eq. (5.3.54) into irreducible components, and
using the appropriate renormalization factors we obtain three inequivalent correlators:

Gϕ1ϕ1ϕ1ϕ1(ξ) = 1 + ξ2∆ϕ1 +

(
ξ

1 − ξ

)2∆ϕ1

+
6εI1(ξ)

N + 8
+ O(ε2) ,

Gϕ1ϕ1tâtb̂
(ξ) = δâb̂ + ε

2δâb̂
N + 8

I1(ξ) + O(ε2) ,

Gtâtb̂tĉtd̂
(ξ) = δâb̂δĉd̂ + δâĉδb̂d̂ξ

2 + δâd̂δb̂ĉ

(
ξ

1 − ξ

)2

+
2εI1(ξ)

N + 8

(
δâb̂δĉd̂ + perms

)
+ O(ε2)

= δâb̂δĉd̂G
S
tttt(ξ) + (δâd̂δb̂ĉ − δâĉδb̂d̂)G

A
tttt(ξ) + Tâb̂,ĉd̂G

T
tttt(ξ) .

(5.3.57)

The correlator of four tilt operators decomposes into singlet (S), antisymmetric (A) and
symmetric-traceless (T ) channels with respect to the O(N − 1) symmetry, where the last
tensor structure is shown in eq. (5.3.38).

The virtue of having four-point functions is that they can be expanded in confor-
mal blocks to obtain anomalous dimensions and three-point coefficients. For the vector,
symmetric-traceless and antisymmetric channels we find:

Gtϕ1ϕ1t(ξ) =

(
1 − 2ε

N + 8

)
g
∆tϕ1 ,∆ϕ1t
2 (ξ) + ε

N + 10

N + 8
∂∆g

∆tϕ1 ,∆ϕ1t
2 (ξ) + . . . ,

GS
tttt(ξ) =

(
2 − 4ε

N + 8

)
g2(ξ) +

4ε

N + 8
∂∆g2(ξ) + . . . ,

GA
tttt(ξ) = g3(ξ) + . . . .

(5.3.58)

The ellipses stand for higher dimensional operators, as well as higher order corrections
in ε. The first two lines confirm our computations of ∆V , ∆T , λϕ1tV and λttT . From
the third line, we conclude that the antisymmetric operator Aab ∼ ϕ[a∂τϕb] has scaling
dimension ∆A = 3 + O(ε2) and three-point coefficient λttA = 1 + O(ε2).

Of course, we can also expand correlators in the singlet channel, for example

Gϕ1ϕ1ϕ1ϕ1(ξ) = 1 +

(
2 − 6ε

N + 8

)
g2(ξ) + ε

4N + 38

N + 8
∂∆g2(ξ) + . . . (5.3.59)

However, the above contributions are due to two operators s± with nearly-degenerate
dimension, so the expansion does not fix the scaling dimension or OPE coefficient, but
instead it relates them in a non-trivial way:

(∆s+ − 2)λ2ϕ1ϕ1s+ + (∆s− − 2)λ2ϕ1ϕ1s− = ε
4N + 38

N + 8
+ O(ε2) ,

λ2ϕ1ϕ1s+ + λ2ϕ1ϕ1s− = 2 − 6ε

N + 8
+ O(ε2) .

(5.3.60)

It is reassuring that eq. (5.3.15) and eq. (5.3.51) indeed satisfy these relations. In a similar
way, we can expand Gsing

tttt and Gϕ1ϕ1tt, finding again perfect agreement with our results.
Note that the four-point functions do not capture the OPE coefficients in eq. (5.3.46) at
this order in ε.
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The correlators ⟨∇ϕ∇ϕϕϕ ⟩ and ⟨∇ϕ∇ϕ∇ϕ∇ϕ ⟩

In a similar way, one can consider four-point functions that include derivative operators
∇ϕa, and the only non-trivial contribution is a contact diagram. For the case of two
derivative operators, the relevant integral is

lim
x⃗n→0

∂2

∂x⃗3,i∂x⃗4,j

∫
d4x5

x215x
2
25x

2
35x

2
45

=
2π2

3

I2(ξ)

τ 212τ
4
34

δij ,

I2(ξ) =
ξ2

1 − ξ
− (ξ + 2)ξ log(1 − ξ) +

ξ4

(1 − ξ)2
log ξ ,

(5.3.61)

which has been computed using the same technique as in eq. (5.3.56). From this, we can
read off several correlators, for example

Gϕ1ϕ1DiDj(ξ) = δij

(
1 − εI2(ξ)

N + 8
+ O(ε2)

)
,

Gtâtb̂DiDj
(ξ) = δâb̂δij

(
1 − εI2(ξ)

3(N + 8)
+ O(ε2)

)
.

(5.3.62)

We can also obtain correlators with ∇ϕâ, but we do not write them for compactness.
Finally, if we consider four derivative operators the relevant integral is

lim
x⃗n→0

∂4

∂x⃗1,i∂x⃗2,j∂x⃗3,k∂x⃗4,l

∫
d4x5

x215x
2
25x

2
35x

2
45

= −8π2

15

I3(ξ)

τ 412τ
4
34

(
δijδkl + δikδjl + δilδjk

)
,

I3(ξ) =
(ξ2 − ξ + 1) ξ2

(1 − ξ)2
+

1

2

(
2ξ2 + ξ + 2

)
ξ log(1 − ξ) +

(2ξ2 − 5ξ + 5) ξ4

2(1 − ξ)3
log ξ .

(5.3.63)

From here we extract the four-point function of the displacement operator

GDiDjDkDl(ξ) = δijδkl + δikδjlξ4 + δilδjk
( ξ

1 − ξ

)4
+

2εI3(ξ)

5(N + 8)

(
δijδkl + perms

)
+ O(ε2) .

(5.3.64)

In order to extract CFT data from this correlator, we decompose it in terms of singlet
(S), antisymmetric (A) and symmetric-traceless (T ) channels under SO(d− 1)T :

GS
DDDD(ξ) = 1 +

(
2

3
+

(4N + 37)ε

18(N + 8)

)
f4(ξ) +

5ε

3(N + 8)
∂∆f4(ξ) + . . . ,

GA
DDDD(ξ) = 2f5(ξ) + . . . ,

GT
DDDD(ξ) =

(
2 +

ε

3(N + 8)

)
f4(ξ) +

2ε

N + 8
∂∆f4(ξ) + . . . .

(5.3.65)

Notice that these operators are not necessarily the lowest-dimensional operators in each
channel. For instance, in the (D×D)S channel we have ϕ1 with ∆ϕ1 = 1 + ε+O(ε2), but
it does not appear because λ2DDϕ1 = O(ε2), see eq. (5.3.48). Similarly, in the (D × D)T
channel the lowest-dimension operator is ∂i∂jϕ1 with ∆ = 3 + O(ε), but it is invisible in
the four-point function at this order. Only in the channel (D×D)A we expect the lowest-
lying operators to be ∂[iϕ1∂τ∂j]ϕ1 and ∂[iϕa∂τ∂j]ϕa, with nearly-degenerate dimension
∆ = 5 + . . .. However, in order to disentangle these operators one should do an analysis
similar to the one we did for s± below eq. (5.3.39).
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5.4 Numerical results

In this section we use numerical conformal bootstrap and the semidefinite program solver
SDPB [196] to carve out the space of line defects with O(2)F global symmetry. We
consider:

1. Line defects without a tilt operator (t) that preserve a U(1)F subgroup of the O(2)F
symmetry in the bulk;

2. Line defects that break local O(3)F to U(1)F ≃ SO(2)F and therefore feature a tilt
operator transforming in the vector representation of U(1)F .

In section 5.4.1 we study correlation functions involving D and t. Due to the universal
nature of these operators, the numerical bounds presented in section 5.4.1 are valid for
a large class of conformal defects. In sections 5.4.2 and 5.4.3 we focus on the specific
models already announced in section 5.3: the magnetic line defect and the monodromy
line defect. Here we use the ε-expansion results of section 5.3 as guidance, in order to
zoom in on specific regions of the parameter space, where we expect these models to live.

5.4.1 Bounds on universal correlators

Single-correlator with the displacement operator

We start bootstrapping correlation functions of the displacement operator D. Recall from
section 5.2.2 that D is a defect primary of scaling dimension ∆D = 2, transforming as a
vector under SO(2)T and neutral under O(2)F . Hence, while we cannot impose the global
symmetry O(2)F , the charge of the displacement under SO(2)T implies we restrict to
defects of co-dimension q ≥ 2. In the complex notation introduced in section 5.2.2, there
are two non-equivalent orderings of the correlation functions involving the displacement

⟨D(τ1)D(τ2)D̄(τ3)D̄(τ4)⟩ , ⟨D(τ1)D̄(τ2)D(τ3)D̄(τ4)⟩ , (5.4.1)

and the relevant crossing equations can be obtained from eq. (5.2.18) upon setting ∆D = 2.
The leading non-identity defect primaries in the D × D̄ OPE are denoted (DD̄)

±
in the

conventions of section 5.2.2, while the leading primary in the D×D OPE is denoted D2.

Gap bounds. We start computing the upper bound on the scaling dimension of the
leading S-parity even scalar ∆(DD̄)

+ as we vary ∆D2 and ∆(DD̄)
− . The result is shown in

the 3d plot of figure 5.1(a), where the light-red shaded region represents the ‘agnostic’
bound obtained imposing the same gap on the dimension of the S-parity odd and S-parity
even scalars. The term ‘agnostic’ here refers to the fact that by holding ∆(DD̄)

+ = ∆(DD̄)
−

we are putting a bound on the lowest-lying singlet, whether it is parity-even or parity-
odd. In order to help visualizing the constant-∆(DD̄)

+ slices, we included figure 5.1(b).

There are three notable regions in figure 5.1(a):

I. This is the region with the weakest ∆(DD̄)
− gap assumptions, i.e. ∆(DD̄)

− ≃ 0÷3. In
this region the upper bound is smooth: it is saturated by the ‘agnostic’ bound for
both small and large values of ∆D2 , with a cross-over behavior at around ∆D2 ≃ 6.
For low values of ∆D2 , the agnostic bound approaches the GFF value for a real
fermion ∆(DD̄) = 2∆D + 1 = 5. This is because a single real GFF satisfies the
crossing equations for a single complex scalar as long as the gap in the charged
sector is ∆D2 < 2∆D = 4, see e.g. [110].
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Figure 5.1: (a) Upper bounds on the dimension of the S-parity even scalar (DD̄)
+

as
a function of the S-parity odd operator (DD̄)

−
and the leading charged operator D2.

(b) Projection of the three-dimensional allowed region in the (∆
(DD̄)

− ,∆D2) plane for

different values of ∆
(DD̄)

+ . All points are computed with Λ = 33, P = 53. The green

and red dots correspond to the GFF and GFB solutions respectively. The yellow dot is
the extrapolation to ε = 1 of the ε-expansion predictions for the magnetic line defect.
The solid red line in (b) is the ‘agnostic’ bound for ∆

(DD̄)
+ = ∆

(DD̄)
− .
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II. This is the region with intermediate values of ∆(DD̄)
− ≃ 3 ÷ 5. The upper bound

remains constant for ∆D2 ≲ 6, while it drops to zero for ∆D2 ≳ 6. These vertical
drops can be interpreted as an upper bound on the dimension of ∆D2 as a function
on the gap on ∆(DD̄)

− . As we increase the gap on ∆(DD̄)
− , the upper bound on

∆D2 becomes stronger. This region includes the GFF and GFB solutions – see
eq. (5.2.20)– which are indicated in the figure by green and red dots respectively,
as well as the (extrapolated) ε-expansion prediction for the magnetic line defect –
see eqs. (5.3.14) and (5.3.65) – which is (∆D2 ,∆(DD̄)

− ,∆(DD̄)
+) ≃ (3, 5, 1.55) and

is marked in yellow. Interestingly, the yellow dot is close to saturating the upper
bound on ∆(DD̄)

− , as can be seen more clearly from figure 5.1(b). The U(1)F
monodromy defect should also live in this region, and it would be interesting to
verify this by computing e.g. the correlator ⟨DDD̄D̄⟩ at the first non-trivial order
in the ε-expansion.

III. This is the region with the strongest ∆(DD̄)
− gap assumptions, i.e. ∆(DD̄)

− ≃ 5 ÷ 8.

As we enter this region from region II, we observe that for values 6 ≲ ∆(DD̄)
− ≲

7, the convexity of the bound changes and a plateau starts forming as we move
towards small values of ∆D2 . If we increase ∆(DD̄)

− further, the plateau terminates

around (∆D2 ,∆(DD̄)
+) ≃ (2.7, 2.7). The plateau happens to have the same height

∆(DD̄)
+ ≃ 2.7 as the bound for large ∆D2 in region I. This indicates that there is a

universal upper bound ∆(DD̄)
+ ≃ 2.7 when increasing the gaps on the dimensions

of all other operators.

Figure 5.2: Bounds on the dimension of the first singlet in the D×D̄ OPE as a function
of the gap on the dimension ∆D2 and the OPE coefficient (λDDD2)2 of the first charged
operator in the D×D OPE. The parity-even and -odd singlets are set to have the same
gap: ∆

(DD̄)
+ = ∆

(DD̄)
− . The green and red dots correspond to the solutions for GFF

and GFB, respectively. Λ = 49, P = 69.

Including the OPE coefficient of D2. The light-red curve in figure 5.1 shows a
family of solutions to crossing that maximize the gap on the lowest-lying operator in the
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singlet channel. This curve looks rather smooth in figure 5.1. To further investigate this
family of solutions, we repeat the gap maximization procedure but this time we keep
∆(DD̄)

+ = ∆(DD̄)
− and varying both ∆D2 and the (squared) OPE coefficient (λDDD2)2.

This OPE coefficient is the most straightforward to implement, and a similar choice was
made in [74, 32]. The results are shown in figure 5.2, whose features we now describe.
The free theory solutions are marked in the figure by green (GFF) and red (GFB) dots.
We recall that these free theory solutions are given in eqs. (5.2.19) and (5.2.20), where it
is shown that the OPE coefficients depend on the parameter α, which is α = −1 for GFF
and α = 1 for GFB. The red line in the figure represents the solutions for intermediate
α ∈ (−1, 1); it is well inside the allowed region and appears to be parallel to the upper
bound. The GFF solution lies outside the red line, which can be understood from the fact
that for an anti-commuting fermion ψa, the leading symmetric traceless representation
in the ψa × ϕb OPE is ψa∂τψb and has scaling dimension 2∆ψ + 1 = 5, while for a boson
ϕa it is ϕaϕb and has scaling dimension 2∆ϕ = 4. A family of rising kinks appears for
values around ∆D2 ≃ 5, i.e. close to the GFF solution. Although we have not studied the
evolution of these kinks when increasing the number of derivatives, it is plausible that
they can be explained by the vicinity of the GFF solution. For ∆D2 ≳ 5, the bound on
∆(DD̄)

± quickly drops to the value ∆(DD̄)
± ≃ 2.7. For ∆D2 ≲ 5, the kinks move towards

smaller values of (λDDD2)2 until around ∆D2 ≃ 4 and below, the upper bound becomes
completely smooth. The magnetic line defect lies well inside the allowed region, since for
this defect the first parity-even singlet has dimension ∆(DD̄)

+ ≃ 1.55.

Single-correlator with the tilt operator

Next, we consider the four-point functions of the tilt operator t. We recall that t is a
defect primary of scaling dimension ∆t = 1, transforming as a vector of O(2)F and neutral
under SO(2)T (see section 5.2.2). This means that unlike the displacement bootstrap,
here we are imposing the existence of a global symmetry O(2)F , although we cannot
distinguish between one-dimensional conformal defects with different co-dimension. In
the complex notation of section 5.2.2, the two non-equivalent orderings along the line are

⟨t(τ1)t(τ2)t̄(τ3)t̄(τ4)⟩ , ⟨t(τ1)t̄(τ2)t(τ3)t̄(τ4)⟩ . (5.4.2)

The leading non-identity defect primaries in the t × t̄ OPE are denoted (tt̄)± in the
conventions of section 5.2.2, while the leading primary in the t × t OPE is denoted t2.
The bootstrap equations can be obtained from eq. (5.2.18), setting ∆t = 1 as external
dimensions.

Gap bounds. Here we ask the same question as for the single-correlator displacement
bootstrap, namely what is the upper bound on the scaling dimension of the leading S-
parity even scalar ∆(tt̄)+ as we vary ∆t2 and ∆(tt̄)− . The results are shown in the 3d
plot of figure 5.3(a), where the light-red shaded region represents the ‘agnostic’ bound
obtained by imposing the same gap on the S-parity odd and S-parity even scalars, and in
figure 5.3(b). Not surprisingly, these plots show many similarities with those in figure 5.1
because we used the same crossing equations, although for different external scaling
dimensions. What changes is the interpretation of the results. There are three notable
regions in 5.3(a):

I. This is the region with the weakest ∆(tt̄)− gap assumptions, i.e. ∆(tt̄)− ≃ 0 ÷ 1.5.
In this region the upper bound is saturated by the ‘agnostic’ bound for both small
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Figure 5.3: Bounds on the maximal gap on the dimension of the S-parity even scalar
(tt̄)+ (a) or S-parity odd scalar (tt̄)− (b) vs. the S-parity odd (a) or even (b) scalar
gap vs. the gap on the leading charged operator t2. Λ = 33, P = 53. The green and
blue dots correspond to the solutions for GFF and GFB, respectively. The yellow dot is
the 1-loop ε-expansion prediction for the magnetic line defect discussed in section 5.3.2.
The solid red line in (b) is the ‘agnostic’ bound for ∆(tt̄)+ = ∆(tt̄)− .
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and large values of ∆t2 , which approaches the GFF bound for a real fermion ∆(tt̄) =
2∆t + 1 = 3 for ∆t2 < 2 (cf. previous discussion in the displacement bootstrap).
At around ∆t2 ≃ 3, the bound drops but remains smooth.

II. This is the region with intermediate values of ∆(tt̄)− ≃ 1.5 ÷ 3.5. For ∆t2 ≲ 3, the
upper bound still approaches the GFF bound at ∆(tt̄) = 3. For ∆t2 ≳ 3 the bound
drops to zero, with increasingly sharper drops until ∆(tt̄)− = 3, after which the
drops remain but become smoother. As we noted previously, these vertical drops
are due to the existing upper bound on ∆t2 , as a function of ∆(tt̄)− . This region also
contains the GFF (green) and GFB (blue) solutions – see eqs. (5.2.19) and (5.2.20)
–, as well as the ε-expansion results (∆t2 ,∆(tt̄)− ,∆(tt̄)+) ≃ (2 + 2/11, 3, 1.55) for the

magnetic line defect (see section 5.3.2) which are shown as a yellow dot.12 The ε-
expansion results are close to saturating the bootstrap bound at ∆(tt̄)− ≃ 3.2, which
can be most clearly seen in figure 5.3(b). It would be very interesting to know the
sign of the O(ε2) correction to the scaling dimension of (tt̄)− in the magnetic line
defect.

III. This is the region with the largest ∆(tt̄)− gap, i.e. ∆(tt̄)− ≃ 3.5 ÷ 5. The convexity
of the bound changes for 4 ≲ ∆(tt̄)− ≲ 5. The plateau that was clearly visible in
the same region in figure 5.1 also appears here once we move towards small values
of ∆t2 , but it is less pronounced. For higher ∆(tt̄)− , the plateau again terminates
around (∆t2 ,∆(tt̄)+) ≃ (1.35, 1.35). This is the same height ∆(tt̄)+ ≃ 1.35 as the
bound for large ∆t2 in region I, which can again be thought of as a universal upper
bound on ∆(tt̄)+ . These kinks are reflected in figure 5.3(b) around ∆t2 ∼ 1.35. The
bound on ∆(tt̄)− becomes infinite for ∆(tt̄)+ ≲ 2 and ∆t2 ≲ 1.35, while it is saturated
by the agnostic ∆(tt̄)+ = ∆(tt̄)− bound for ∆t2 > 1.35.

Including the OPE coefficient of t2. The ε-expansion results for the magnetic line
defect from section 5.3.2 are close to saturating the bound in figure 5.3. However, since
we do not know the sign of the O(ε2) correction on ∆(tt̄)− , we cannot predict if the point
will move closer or further away from the bound. Let us focus on the agnostic bound and
impose the same gap on ∆(tt̄)+ and ∆(tt̄)− . Similarly to what we did for the displacement

bootstrap, we look for bounds on ∆(tt̄)± as a function of (λttt2)
2 – the (squared) OPE

coefficient of the first charged operator t2 – and ∆t2 . The results are shown in figure 5.4.
The free theory solutions shown in green (GFF), and blue (GFB) – see eqs. (5.2.19)
and (5.2.20) – are close to saturating the bound. Again, the GFF solution (α = −1)
is disconnected from the GFB solution (α = 1) and the solution for α ∈ (−1, 1) (cf.
previous discussion). The ε-expansion result up to O(ε) for the magnetic line defect
given by ((λttt2)

2,∆t2 ,∆(tt̄)) ≃ (2 − 4
11
, 2 + 2

11
, 1.55) – see eqs. (5.3.14), (5.3.17),(5.3.53)

– and marked with the yellow dot in the figure is below the upper bound. There are
additional kinks for 2 ≲ ∆t2 ≲ 4 around (λttt2)

2 ≃ 2, one of which gets saturated by the
GFF solution. For ∆t2 ≳ 4 the bound becomes horizontal and settles at ∆(tt̄)± ≃ 1.35 .

12Here, the leading S-parity even singlet is (tt̄)
+
= ϕ1, with scaling dimension ≃ 1.55, see eq. (5.2.19).
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Figure 5.4: Bounds on the dimension of the first singlet in the t× t̄ OPE as a function
of the gap on the dimension ∆t2 and the OPE coefficient (λttt2)

2 of the first operator
charged under O(2)F in the t × t OPE. The gaps on the dimension of the parity-even
and -odd operators are set to be equal. The free theory solutions GFF (green), GFB
(blue), and their interpolation (blue), presented in eqs. (5.2.19) and (5.2.20) are also
shown, as is the ε-expansion result for the magnetic line defect discussed in section 5.3.2
(yellow). Λ = 49, P = 69.

Mixed-correlator with tilt and displacement

After having analyzed the single correlators of either the tilt or the displacement opera-
tors, we consider mixed correlators that involve both at the same time:

⟨D(τ1)D̄(τ2)D(τ3)D̄(τ4)⟩ , ⟨t(τ1)t̄(τ2)t(τ3)t̄(τ4)⟩ , ⟨D(τ1)D̄(τ2)t(τ3)t̄(τ4)⟩ . (5.4.3)

plus all other non-equivalent orderings. This is the natural system of correlators to study
the magnetic line defect for the O(3) vector model, which features a tilt operator in the
vector representation of O(2)F , as well as a displacement in the vector of SO(2)T . The
bootstrap equations can be found in eq. (5.2.22).

Gap bounds. There are several operators one can study with these crossing equations.
On the one hand, we have the leading non-identity S-parity even primary O+ which
appears both in the t× t̄ and the D× D̄ OPEs. On the other hand, there are the leading
S-parity odd primaries (tt̄)− and (DD̄)

−
, which are in general different to each other.

Finally, there is the lowest-lying O(2)F × SO(2)T vector in the t× D channel

t× D ∼ (tD)± + . . . , (5.4.4)

where the superscript ± denotes the S parity of the operator. In figure 5.5 we compute
the upper bound on ∆O+ , while assuming gaps on the scaling dimensions of (tt̄)−, (tD)±

keeping ∆(tD)+ = ∆(tD)− . We take all other gaps to be very close to the unitarity bound,
concretely we set them to ∆ > 0.001. If we are interested in the most ‘agnostic’ bound
with ∆O+ = ∆(tt̄)− , then the allowed region shrinks to the light-red region of figure 5.5,
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Figure 5.5: Bounds on the dimension of the first S-parity even singlet O+ in the t× t̄
and the D × D̄ OPEs as a function of the scaling dimension of (tD)± and (tt̄)−. The
GFB solution, given in eq. (5.2.25), is shown in red. The ε-expansion results for the
magnetic line defect are given in yellow. The light-shaded region represents the results
for the agnostic bound ∆(tt̄)+ = ∆(tt̄)− . Λ = 33, P = 63.

which contains both the GFB (red dot) and the ε-expansion result for the magnetic line
defect. The latter is far from saturating the upper bound and it seems hard to make
progress without further assumptions. We will come back to this issue in section 5.4.3.
The bounds are very uniform and show two drops, one in the ∆(tt̄)− direction around
∆(tt̄)− ≃ 3 and one in the ∆(tD)± direction around ∆(tD)± ≃ 5. For ∆(tD)± ≳ 5 the bound
on ∆O+ becomes flat and approaches the value ∆O+ ≃ 2.7, a result we already found
in the single-correlator bootstrap of the displacement operator of section 5.4.1. In the
upper ‘cubic-shaped’ region we have that ∆O+ ≲ 3.4, which approaches the bound for a
real GFF ∆O+ = 3.

Including one OPE coefficient. In sections 5.4.1 and 5.4.1 we have seen that includ-
ing one OPE coefficient leads to interesting bounds. We repeat this strategy here and
bound (λtD(tD)+)2 while varying the gap ∆(tD)± in the agnostic region ∆(tt̄)+ = ∆(tt̄)− .

It turns out that (λtD(tD)+)2 is unbounded for ∆O+ ≲ 2.7. Above this value and for
∆O+ ≲ 3.4 there exists an upper bound which is shown in figure 5.6, while for ∆O+ ≳ 3.4
the upper bound (λtD(tD)+)2 becomes negative, consistently with the results shown in fig-
ure 5.5. Since we are assuming a gap on the lowest operator ∆(tD)± , but do not make any
assumptions on the scaling dimension of the next operator in the t × D OPE, the lower
bound on (λtD(tD)+)2 is at zero. The ε = 1 solution of the ε-expansion for the magnetic
line defect is not shown, since it lies far within the bounds in the region where the OPE
coefficient (λtD(tD)+)2 is unbounded.
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Figure 5.6: Bounds on (λtD(tD)+)
2 as a function of the scaling dimension of ∆(tD)+ and

of the scaling dimension of the first parity-even singlet ∆O+ . The gap on the dimension
∆(tD)− is set to ∆(tD)+ , and all other gaps are set to 0.001. The GFB solution given in

eq. (5.2.25) is marked by the red dot. Λ = 33, P = 63.

5.4.2 Bootstrapping the monodromy line defect in the O(2)
model

The approach adopted so far was agnostic, in that we bounded CFT data without com-
mitting to any particular model. In this section we pursue a complementary approach,
and combine the numerical bootstrap with the ε-expansion with the goal of bootstrap-
ping the monodromy defect in the O(2) model. Recall from section 5.3.1 two universal
features of this monodromy defect: (i) for generic values of the parameter v ∈ [0, 1) the
flavor symmetry of the model is SO(2)F , which gets enhanced to O(2)F for v = 0, 1

2
; (ii)

the defect spectrum contains a family of S-parity even defect primaries Ψs with SO(2)F
charge v and transverse spin s ∈ Z + v. These two features can be combined in our nu-
merical bootstrap problem as follows. First, we consider a system of correlation functions
that involve the lowest-lying operator with SO(2)F charge r = v and its partner with
charge r = 1 − v. By charge conservation, the non-zero correlation functions are

⟨Ψv(τ1)Ψ̄v(τ2)Ψv(τ3)Ψ̄v(τ4)⟩ , ⟨Ψ1−v(τ1)Ψ̄1−v(τ2)Ψ1−v(τ3)Ψ̄1−v(τ4)⟩ ,
⟨Ψv(τ1)Ψ̄1−v(τ2)Ψ1−v(τ3)Ψ̄v(τ4)⟩ ,

(5.4.5)

which lead to the crossing equations presented in eq. (5.2.24). Although for general v
the monodromy defect is not invariant under O(2)F symmetry, but only under SO(2)F
symmetry, we can use the same crossing equations in both cases. The justification for
this appeared in [19], but we repeat it here for convenience. The tensor ϵij is invariant
under SO(2) but not under O(2), so the antisymmetric representation is isomorphic
to the singlet representation for SO(2) but not for O(2). However, this does not lead
to additional relations in the crossing equations, because even when the singlet and
antisymmetric representations are isomorphic, we can distinguish them since they contain
S-parity even and odd operators respectively.

Second, we input the scaling dimensions of Ψs using the predictions from the ε-
expansion in eq. (5.3.7), extrapolated to ε = 1. With this input, we put an upper bound
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Figure 5.7: Bounds on the dimension of the first singlet in the Ψs × Ψ̄s OPE ∆
(ΨΨ̄)

±

versus the OPE coefficient of the displacement operator and the monodromy v. The
gaps on the dimension of the lowest-lying operators in all other channels is set to the
unitarity bound. Parity-even and odd operators are set to have the same gaps. The
gray line corresponds to the ε-expansion results. Λ = 21, P = 41.
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to the dimension of the lowest-lying operator in Ψs × Ψ̄s, i.e.

Ψs × Ψ̄s = 1 + (ΨΨ̄)
±

+ . . . , s = v, or v − 1 . (5.4.6)

Note that (ΨΨ̄)
±

is a singlet under SO(2)T × SO(2)F , and it could be either S-parity
even or S-parity odd. For the Ψv × Ψ̄v−1 OPE we assume the lowest-lying operator is
the displacement operator, which is S-parity even. We will further assume that there is
no operator in the S-parity odd channel with dimension smaller than the displacement,
namely:

(Ψv × Ψ̄v−1)
+ = D + . . . , (Ψv × Ψ̄v−1)

− = (ΨvΨ̄v−1)
− + . . . , ∆(ΨvΨ̄v−1)− ≥ 2 .

(5.4.7)

These assumptions are true in the ε-expansion, where one can see at leading order that
the displacement operator appears in the OPE with the expected dimension ∆D = 2, see
appendix D for more details.

In figure 5.7 we plot the upper bound on ∆(ΨΨ̄)
± as a function of the SO(2)F charge

v and the OPE coefficient of the displacement operator (λΨvΨ̄1−vD)2. Let us stress that v
enters the crossing equations through the dimension of the external operators, which we
take to be the ε-expansion prediction (5.3.7). Furthermore, since the crossing equations
in eq. (5.4.5) are invariant under v ↔ 1− v, it suffices to consider the range 0 < v ≤ 1/2,
where the limiting case v = 1/2 corresponds to the Z2 twist defect studied in [74]. In
the figure we observe a family of drops as we move along the (λΨvΨ̄1−vD)2 direction, and
as we increase v towards v = 1/2 these drops become sharper and move slightly to the
right. It is promising that the ε-expansion results are above and left of the free theory
solutions, because this makes it possible for the theoretical prediction to saturate the
bound. However, for the results with Λ = 21 derivatives shown in figure 5.7(b), both the
ε-expansion result and the free theory solution are still somewhat far from saturating the
numerical bound.

One possibility that we explore in figure 5.8 is whether increasing the number of
derivatives can bring the bound closer to the analytical prediction. For concreteness we
focus on v = 1/3,13 and we increase the number of derivatives to Λ = 33. We observe
that the kink moves slightly towards the left of the plot, but remains somewhat far from
the analytical prediction. Another possibility is that one needs to consider less agnostic
gap assumptions in the channels besides Ψv × Ψ̄1−v, or perhaps higher-order corrections
from the ε-expansion are needed to reconcile theory and numerics. In either case, this
provides a good motivation for a more detailed study of monodromy defects using the
ε-expansion, to which we hope to come back in future work.

5.4.3 Bootstrapping the localized magnetic field line defect

This section studies the magnetic line defect of [84] in the bulk O(3) CFT, combining
the numerical bootstrap with the ε-expansion results of section 5.3.2. There are two
features of the magnetic line defect which are important in our analysis: (i) the model is
invariant under a O(2)F ⊂ O(3) flavor symmetry and, (ii) the defect spectrum features
a tilt operator t transforming in the vector representation of O(2)F . To exploit these

13The choice v = 1/3 is particularly interesting for its connection to half-BPS defects in superconformal
field theories. For example, we expect that the monodromy defect for the Wess-Zumino model [78]
preserves supersymmetry whenever v = 1/3.
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Figure 5.8: Bounds on the dimension of the first singlet in the Ψs × Ψ̄s OPE ∆
(ΨΨ̄)

±

versus the OPE coefficient of the displacement operator (λΨvΨ̄1−vD)
2. v = 1

3 and the
gaps on the dimension of the lowest-lying operators in all other channels are set to
the unitarity bound. Parity-even and odd operators are set to have the same gaps.
Λ = 21, P = 41 and Λ = 33, P = 53.

features, we consider a bootstrap problem involving the tilt t and the lowest-dimension
neutral scalar ϕ1, so we consider the correlation functions

⟨ϕ1(τ1)ϕ1(τ2)ϕ1(τ3)ϕ1(τ4)⟩ , ⟨t(τ1)t̄(τ2)t(τ3)t̄(τ4)⟩ ,

⟨ϕ1(τ1)ϕ1(τ2)t(τ3)t̄(τ4)⟩ , (5.4.8)

plus all other non-equivalent orderings. The corresponding crossing equations are given
in eq. (5.2.23).14 There are five OPE channels that enter in our discussion

ϕ1 × ϕ1 ∼ 1 + ϕ1 + s− + · · · , (t× t̄)+ ∼ 1 + ϕ1 + s− + · · · ,
(t× t̄)− ∼ A+ · · · , t× t ∼ T + . . . , t× ϕ1 ∼ t+ V + · · · ,

(5.4.9)

where further details on the operators exchanged can be found in section 5.3.2. Note
that the external operators are exchanged in some of the fusion channels, which allows
us to impose the extra relations λϕ1tt̄ = λtt̄ϕ1 in the crossing equations. Furthermore, we
impose the following gaps

∆s− = 2.36 , ∆A = 3 , ∆T = 2.18 , ∆V = 3.18 , (5.4.10)

where the values are the O(ε) results for the scaling dimensions from eqs. (5.3.15), (5.3.16)
and (5.3.17). With these assumptions we bound the scaling dimensions of ϕ1 and t.
Although we could also fix the scaling dimensions of t and ϕ1 using the perturbative
calculation (in particular, t has protected dimension ∆t = 1), we keep them unfixed to
see how they are constrained by the numerics. This logic is inspired by the search for the
Ising model island, where (physically motivated) gap assumptions led to constraints on
the external operators σ and ϵ [187]. Our results are presented in figure 5.9, where the
allowed values in the (∆t,∆ϕ1) plane are shown in green.

14Since we are not including the displacement operator, this system of correlation functions is agnostic
about the co-dimension of the line defect. It will enter only implicitly via our gap assumptions which
are determined by the ε-expansion results of section 5.3.2. The inclusion of the displacement operator is
more involved. Nevertheless, it is an interesting extension and we will leave it for future work.
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Figure 5.9: Bootstrapping the O(3)-breaking line defect. In (a), bounds on the scaling
dimensions ∆ϕ1 and ∆t for Λ = 21, P = 41. The gaps are given in eq. (5.4.10). Allowed
values of (∆t,∆ϕ1) are given in green. In (b), the bound on ∆ϕ1 for ∆t = 1 as a function
of the number of derivatives Λ, for which a fit is performed.

The lower bound for t is strikingly close to 1, the numerics seems to be rediscovering
the tilt. For this value of ∆t, the bound goes up and cuts out a corner. It should also
be noted that there are numerical instabilities in the region with large ∆ϕ1 outside the
range of figure 5.9(a). The lower bound on ∆ϕ1 is on the other hand weaker, its value
being nowhere close to the Padé extrapolation of ∆ϕ1 ≃ 1.55 (and it is even further
away from the crude ε-expansion result ∆ϕ1 = 2 + O(ε2)). It is nevertheless a non-
trivial numerical result that such a lower bound exists at all. Note that the magnetic
line defect has no relevant operators [84], so ∆ϕ1 > 1 should be expected. Our O(ε)
assumptions allow for a weaker numerical bound on ∆ϕ1 . For the physically interesting
value ∆t = 1, figure 5.9(b) displays an extrapolation to infinite number of derivatives of
the lower bound, which converges to

∆ϕ1 ≳ 0.76 . (5.4.11)

Again, we cannot completely rule out the region with ∆ϕ1 ≤ 1. It could be that our
numerics is not strong enough to rule out the presence of relevant operators, so we
should either change our assumptions or include more external operators to the system
of eq. (5.4.8). Another possibility which we cannot rule out is the existence of alternative
models consistent with our assumptions but with one relevant scalar in the spectrum.
Definitely, we think this result calls for a more systematic investigation, which nowadays
can be efficiently performed with the help of the Navigator Function [127, 128] in order
to search for bootstrap islands in a large parameter space. Finally, one may wonder if
our gap assumptions allow for upper bounds on ∆ϕ1 as well. Clearly, ∆ϕ1 cannot be
bigger than ≃ 2.36, which is when the next operator ∆s− appears, see eq. (5.4.10). Below
this threshold there seems to be no upper bound, at least with the current number of
derivatives.

Bounds on OPE coefficients. Having constrained the region (∆ϕ1 ,∆t), we now set
∆t to its physical value of 1, but continue to treat ∆ϕ1 as an external parameter. The
goal is to bound the OPE coefficients (λtt̄ϕ1)

2 and (λϕ1ϕ1ϕ1)
2 as functions of ∆ϕ1 , which

in turn were computed in the ε-expansion in section 5.3.2, see eqs. (5.3.14) and (5.3.46).
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Figure 5.10: Bounds on the OPE coefficients λtt̄ϕ1 and λϕ1ϕ1ϕ1 as a function of the gap
∆ϕ1 for the O(3)-breaking magnetic line defect. The black dot is the prediction from
the ε-expansion. The gaps are given in eq. (5.4.10). Λ = 21, P = 41.

To this end, we employ the strategy developed in [187], i.e. we introduce the OPE angle
θ defined as

tan θ =
λϕ1ϕ1ϕ1
λtt̄ϕ1

, (5.4.12)

and we search for upper and lower bounds on the quantity (λϕ1ϕ1ϕ1)
2+(λtt̄ϕ1)

2 as a function
of θ ∈ [0, π) and of ∆ϕ1 . For concreteness we restrict to the case where 0 ≤ θ < π

2
(i.e.

λϕ1ϕ1ϕ1λtt̄ϕ1 ≥ 0), which is also compatible with the leading ε-expansion prediction. The
numerics is of course sensitive to the relative sign only. The results in figure 5.10 show
that for any value of the OPE coefficients λϕ1ϕ1ϕ1 and λtt̄ϕ1 , there is an excluded region
which is fully consistent with the lower bound from figure 5.9(a). However, as it turns
out, for λϕ1ϕ1ϕ1/λtt̄ϕ1 ≥ 0, the excluded region is larger and exists for ∆ϕ1 ≲ 0.9, while
for λϕ1ϕ1ϕ1/λtt̄ϕ1 ≤ 0, only values up to ∆ϕ1 ≲ 0.7 are excluded. For values between
0.7 ≲ ∆ϕ1 ≲ 1.1, the upper and lower bounds on λtt̄ϕ1 approach each other until they
meet, after which the upper bound goes to zero. This means that certain values of
the OPE coefficent λϕ1ϕ1ϕ1 are ruled out by the numerical bootstrap, even though the
corresponding ∆ϕ1 values are allowed in figure 5.9(a). For ∆ϕ1 ≳ 1.1, the bound on λtt̄ϕ1
is always positive. There is an intriguing feature visible starting around ∆ϕ1 ≲ 0.9 and
continuing until ∆ϕ1 ≃ 1.4, where the projection onto the (λϕ1ϕ1ϕ1 , λtt̄ϕ1) plane shows a
pronunced cusp, see figure 5.11(a). For higher values of ∆ϕ1 this feature disappears and
the plot becomes smooth. For the quadrant where the OPE coefficients have opposite
sign this cusp is not present. In order to better understand this feature, we have plotted
two slices of the three-dimensional plot in figure 5.11. For figure 5.11(a) we have chosen
the value ∆ϕ1 = 1.2 somewhat arbitrarily, in order to highlight a region where the cusp
is clearly visible. It appears around λϕ1ϕ1ϕ1 ≃ 0.9, although its position shifts depending
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Figure 5.11: Bootstrapping the O(3)-breaking magnetic line defect. Upper bounds on
the OPE coefficient λϕ1ϕ1ϕ1 as a function of λtt̄ϕ1 . Λ = 21, P = 41 and Λ = 33, P = 63.
In (a) the external scalar has dimension ∆ϕ1 = 1.2. In (b) the external scalar has
dimension ∆ϕ1 = 1.55. The ε-expansion result is shown by the black dot.

on the value of ∆ϕ1 and the number of derivatives. In figure 5.11(b) we have chosen
∆ϕ1 = 1.55, which corresponds to the best estimate of the conformal dimension of ϕ1

using a Padé approximation [84]. For this value of ∆ϕ1 the features from figure 5.11(a)
are gone and the bound is smooth. We have added in figure 5.11(b) the prediction coming
from the ε-expansion for reference. We should warn the reader that this prediction is valid
up to O(ε), for which ∆ϕ1 = 2. Our numerical plot was obtained with a different set
of assumptions, in particular for ∆ϕ1 = 1.55, which explains why the dot is outside the
numerical exclusion region. One possibility is that the cusp is also present for ∆ϕ1 ≃ 1.55,
but was lost due to numerical precision. Indeed from figure 5.11(a) the feature becomes
more pronounced when we jump from Λ = 21 to Λ = 33 derivatives. It would be
remarkable if the numerics could be pushed, such that figure 5.11(b) starts looking more
like figure 5.11(a). The position of the cusp would then be a good candidate for the
magnetic line defect.



Chapter 6

Line defect correlators in fermionic
CFTs

6.1 Introduction

Our journey started with SCFTs in the presence of a boundary, through line defects with
additional global symmetry in bosonic theories, which have a wider range of physical and
experimental applications. Now, we move on to study line defects in non-supersymmetric
CFTs that include scalar and fermionic fields in d = 4 − ε dimensions: the Yukawa
CFTs. They are known to describe phase transitions in Dirac and Weyl semimetals,
and can be used to e.g. study phase transitions in graphene and surfaces of topological
insulators [197]. There are three models most studied in the literature: the Gross–
Neveu–Yukawa model, the Nambu–Jona-Lasinio–Yukawa model, and the chiral Heisen-
berg model. They have an interacting fixed point in 4 − ε dimensions, and exist for
an arbitrary number of Dirac fermions Nf . They differ by the number of scalars in the
model, and subsequently the additional global symmetry they preserve on top of the
U(Nf ) symmetry of the fermions.

The Gross–Neveu–Yukawa (GNY) model contains a single real scalar and Nf Dirac
fermions. It has a perturbative fixed point in 4 − ε and is expected to flow to the
same three-dimensional universality class as the classic Gross–Neveu (GN) model. The
GN model is a fermionic CFT with a four-fermion interaction originally formulated in d
dimensions displaying asymptotic freedom in the large-Nf limit [198], and is believed to
have a non-trivial interacting fixed point in 2 + ε dimensions. In d > 2 dimensions, the
GN model is renormalizable in the large-Nf limit [199], but not for finite Nf . The GNY
model can therfore be considered a UV-completion of the GN model [200, 201].1

If we consider a complex scalar and Nf Dirac fermions we obtain the Nambu–Jona-
Lasinio–Yukawa (NJLY) model. Similarly to the GNY model, the NJLY model can be
thought of as a UV completion of the Nambu–Jona-Lasinio (NJL) model [203], a purely
fermionic model which exhibits asymptotic freedom in the large-Nf limit and has the
same symmetries as QCD. Similarly to the discussion above, in d = 3 both the NJL and
NJLY models are expected to describe the same universality class.2

With three real scalars we have the chiral Heisenberg (cH) model, which has an O(3)

1For a specific number of fermions, Nf = 1/4, the interacting fixed point in d = 3 exhibits emergent
supersymmetry (SUSY) [173, 202]

2This model shows emergent SUSY as well, now for Nf = 1/2 [174]. The SCFT in d = 3 is the
Wess-Zumino model with minimal SUSY (N = 2), which was considered with a boundary in chapter 4.
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symmetry in addition to the U(Nf ) symmetry of the fermions. This model has been
studied less than the GNY and NJLY models in the literature, it is however expected
to describe the antiferromagnetic critical point on graphene [204]. The cH model also
has a d = 2 + ε description known as the SU(2)-Gross–Neveu model, where the fermion
bilinear is contracted with a Pauli matrix (see for example [205]).

It was recently pointed out that all these models admit line defects that can be studied
perturbatively [89, 90]. In the 4 − ε description, the defect is given by an exponential of
a scalar field integrated along a line. In d = 4 a free scalar has dimension ∆ϕ = 1, which
makes the defect coupling marginal, and is therefore a good candidate for describing a
non-trivial defect CFT in d = 4 − ε dimensions. In [89] (see also [90]) it was shown that
this is indeed the case.

It was also pointed out in [89], that the GN model in 2+ε dimensions admits a natural
line defect defined as the exponential of a fermion bilinear. In d = 2 a free fermion has
dimension ∆ψ = 1

2
and the defect coupling is again marginal. In 2 + ε dimensions one

can find a non-trival defect CFT which is expected to be in the same universality class as
the defect CFT in 4 − ε dimensions described above. Most likely, this d = 2 + ε picture
of the defect can also be generalized to the NJL and the cH models discussed above.
For the chiral Heisenberg model, the defect will be given by the exponential of a fermion
bilinear, similar to the GN model description. In the NJL model one can construct two
fermion bilinears: ∼ ψ̄ψ, ψ̄γ5ψ, and the defect will be given by an exponential of both
these terms, neatly matching the 4 − ε analysis of [90]. In this work however, we will
focus exclusively on the 4 − ε expansion.

The line defect considered here is closely related to the localized magnetic field or
pinning line defect for the O(N) models studied in [81–85], and discussed in section 5.3.
We focus on four-point functions on the defect, and two-point functions of bulk opera-
tors outside the defect. For the magnetic line defect in the O(N)-model, perturbative
correlators were calculated in [85–88]. The results of this paper generalize the analysis of
O(N) models to include fermions.

Notice that in our setup the defect remains one-dimensional, while the bulk is allowed
to change dimension. It is also possible to keep the codimension fixed and to allow the
defect to change dimension, as is the case for monodromy defects [73, 74]. We will not
consider monodromy defects here, for interesting recent progress see for example [79].
Interpolating between different dimensions and/or codimensions poses several challenges,
as it is not clear how to represent correlators across dimensions. This problem was recently
tackled in the context of BCFT [65] (see also [59, 63]). However, for higher codimension
defects the analysis is more involved. We will not study fermions across dimensions in
this chapter, but we discuss possible future directions in section 7.

The outline of this chapter is as follows. In section 6.2 we discuss the fixed point
of the line defect in generalized Yukawa CFTs, and compute the two-loop β-function of
the defect scalar. In section 6.3 we focus on operators on the defect and compute two-,
three-, and four-point correlators of scalars and fermions. We check that our results are
consistent with an expansion of the four-point function in conformal blocks. In section 6.4,
we move to bulk operators in the presence of the defect, and study one- and two-point
functions for the scalars. In this section we also sketch the diagrams that contribute to
two-point functions of fermions in the presence of the line.
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6.2 Yukawa CFTs with a line defect

We are studying a general class of Yukawa models with Nf fermions and O(N) flavor sym-
metry. These theories are described by the following action in d-dimensional Euclidean
space, with 2 < d < 4:

S =

∫
ddx

(
1

2
∂µϕ

a∂µϕ
a + iψ̄i/∂ψi + g ψ̄iΣaϕaψi +

λ

4!
((ϕa)2)2

)
, (6.2.1)

with µ = 0 , . . . , d− 1 with x0 = τ the Euclidean time direction, i = 1 , . . . , Nf the flavor
index of the (Dirac) spinors, a = 1 , . . . , N the index of the O(N) symmetry, /∂ = γµ∂µ

and ψ̄ = ψ†γ0. There are d γ-matrices, which obey the (Euclidean) Clifford algebra
{γµ, γν} = 2δµν in d dimensions, for which our conventions are gathered in appendix F.

The matrix Σa is a 4× 4-matrix that defines how the field ϕa interacts with fermions.
A choice of Σa for a given N corresponds of a choice of model, and in this work we
focus on the ones listed in appendix G for N = 1, 2, 3. The fermions here are defined as
4-component spinors, and we will use A,B = 1 , . . . , 4 as the matrix indices of Σa and
γµ. There is some ambiguity on how to take Σ and γ across dimensions. Here we will do
so by assuming that the following identities hold:

tr ΣaγµΣbγν = 4 δabδµν , (6.2.2)

γµΣaγνΣaγρ = N(δµνγρ + δνργµ − δµργν + i ϵσµνργσγ5) . (6.2.3)

In all of the models mentioned above, we choose the matrix Σ1 to be

Σ1 = 1 . (6.2.4)

On the other hand, we keep the matrices Σâ=2 ,... ,N arbitrary, i.e. the fields ϕâ can behave
as scalars or pseudoscalars :

Σâγµ = +γµΣâ , if ϕâ is a scalar, (6.2.5)

Σâγµ = −γµΣâ , if ϕâ is a pseudoscalar. (6.2.6)

It is clear that ϕ1 behaves as a scalar since (6.2.4) trivially commutes with all γ-matrices.
For the NJLY model (N = 2), ϕ2 is a pseudoscalar, while for the chiral Heisenberg model
(N = 3) all the fields ϕa are scalars.

The β−functions of the couplings in eq. (6.2.1) are known to several loop orders for
each model [206]. For general Yukawa and scalar couplings, they can be found up to
two loops in (the appendix of) [174]. We will use their conventions in the rest of this
paper. For the purpose of writing our results for the three Yukawa models presented in
appendix G in a compact way, we will write the β−functions in terms of the number of
scalars N = 1, 2, 3. In this parametrization, setting Nf → 0 will give results that can be
compared with the O(N) model. However, the exact β−function depends on the chosen
Yukawa couplings that appear in the Lagrangian in eq. (6.2.1), and the parametrization
of N should be considered with care and not be extended to N > 3. Below, we only list
the expressions up to O(ε).

The β−functions are given by [207–209]

βλ = −ελ+
1

(4π)2

(
8g2λNf − 48g4Nf +

N + 8

3
λ2
)

+ O(λ3, g6, λ2g2, λg4) , (6.2.7)

βg = −εg
2

+
κ1g

3

(4π)2
+ O(g5) , (6.2.8)
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where 1 ≤ N ≤ 3. The Wilson-Fisher-Yukawa (WFY) fixed point can be reached for the
following values of the couplings at one loop in ε := 4 − d:

λ⋆
(4π)2

=
3κ2ε

2κ1(N + 8)
+ O(ε2) ,

g2⋆
(4π)2

=
ε

2κ1
+ O(ε2) , (6.2.9)

where we see that g ∼ O(
√
ε), while λ ∼ O(ε). Furthermore, we have defined

κ1 := 2Nf −N + 4 , (6.2.10)

κ2 := 2(4 −N) − κ1 +
√

12 (N2 + 16) + κ1(κ1 + 12(N + 4)) . (6.2.11)

Note that all the dependency on Nf is contained in κ1.

6.2.1 Feynman rules

We collect in this section the Feynman rules associated to the action (6.2.1). The free
propagators in d dimensions are given by

:= ⟨ϕa(x1)ϕb(x2)⟩λ=g=0 = δab I12 , (6.2.12)

:= δij /∂1I12 , (6.2.13)

where we have defined the scalar propagator function in d = 4 − ε dimensions:

Iij :=
Γ(1 − ε/2)

4π2−ε/2x2(1−ε/2)ij

, (6.2.14)

with xij := xi − xj. For d = 4 we have

I12 =
1

4π2x212
. (6.2.15)

The scalar propagator satisfies the Green’s equation

∂2i Iij = −δ(d)(xij) , (6.2.16)

where δ(d)(x) refers to the d-dimensional Dirac delta function.
The interaction terms yield the following vertices:

:= −λ0
∫
ddx5 I15I25I35I45 , (6.2.17)

:= −g0
∫
ddx4 /∂1I14Σ

a/∂4I34I24 . (6.2.18)

Note that one has to add a factor 1/n! when n vertices of the same kind are being inserted,
and that symmetry factors have to be taken into account.

6.2.2 Bulk renormalization

The couplings, as well as the (bulk) scalars ϕa and fermions ψi, ψ̄i get renormalized. We
can define the bare couplings and fields as

λ0 = µελZλ , g0 = µ
ε
2 gZg , ϕ0 = Zϕϕ , ψ0 = Zψψ , (6.2.19)
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where we have introduced rescaled couplings g → µ
ε
2 g, λ → µελ to ensure that the

couplings in the renormalized Lagrangian are dimensionless. The expressions for the
renormalization factors Zi up to O(ε2) can be found in appendix G.

The renormalization factors allow us to obtain the anomalous dimensions γϕ, γψ for
the scalar and fermionic fields, which are given here to first order in the couplings:

γϕ =
d logZϕ
d log µ

=
2g2Nf

(4π)2
+ O(λ2, g4, λg2) , (6.2.20)

γψ =
d logZψ
d log µ

=
g2N

2(4π)2
+ O(λ2, g4, λg2) . (6.2.21)

This leads to the following values for the conformal dimensions evaluated at the WFY
fixed point defined in eq. (6.2.9):

∆ϕ = 1 − ε

2
+ γϕ = 1 − ε

4 −N

2κ1
+ O(ε2) , (6.2.22)

∆ψ =
3

2
− ε

2
+ γψ =

3

2
− ε

4

(
2 − N

κ1

)
+ O(ε2) . (6.2.23)

Furthermore, we will need the normalization of the two-point function, which is given by

⟨ϕa(x1)ϕb(x2)⟩ =
δabN 2

ϕ

(x212)
∆ϕ

, (6.2.24)

with

Nϕ =

√
Γ
(
d
2

)
2(d− 2)πd/2

− ε
(κ1 +N − 4)(1 + ℵ)

8π κ1
+ O(ε2) , (6.2.25)

where we have defined the following combination:

ℵ := 1 + log π + γE , (6.2.26)

with γE = 0.57722 . . . the Euler-Mascheroni constant.

6.2.3 Defect fixed point

One can define a defect CFT by adding a scalar line to the action (6.2.1), in the same way
as in the O(N) model [81]. This was shown in [89] for the GNY model, and generalized
to the NJLY and chiral Heisenberg models in [90]. More precisely,

Sdefect := S0 + h0

∫ ∞

−∞
dτ ϕ1(τ) . (6.2.27)

Here h0 is the bare coupling of the defect, which extends in the Euclidean time direction τ ,
and S0 is the bulk action in terms of the bare couplings λ0 and g0. The defect introduces
a new vertex

≡ −h0
∫ ∞

−∞
dτ2 I12 , (6.2.28)

with τ2 the point on the line, and where one should note that only ϕ1 and not ϕâ, â =
2, · · · , N nor the fermions ψi, ψ̄j couple to the defect. As for the bulk Feynman rules,
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Figure 6.1: Diagrams contributing to the one-point function ⟨⟨ϕa ⟩⟩ up to O(ε2). The
defect is denoted by a solid line, scalars by a dotted line, and fermions by solid arrowed
lines. Bulk scalar couplings λ0 are represented by a black dot, bulk Yukawa couplings
g0 by a red dot and defect couplings h0 by a blue dot.

one should add a factor 1/n! when n vertices are inserted, and symmetry factors have to
be accounted for.

We can renormalize the defect coupling in a similar way to the bulk couplings. We
define the bare coupling h0 in terms of the renormalized coupling h as

h0 = µ
ε
2 hZh , (6.2.29)

where Zh is given in appendix G, and can be computed by extracting the divergences
from the one-point function of the renormalized scalar ϕa and requiring that it is finite:

⟨⟨ϕa(x) ⟩⟩ = finite . (6.2.30)

Note that the one-point function of a single fermion ψi is zero. The Feynman diagrams
that contribute to the one-point function of ϕa up to O(ε2) are given in figure 6.1. It is
important to keep in mind that we are working perturbatively in the two bulk couplings λ
and g, since they are O(ε) and O(

√
ε) respectively at the WFY fixed point, but we need

to keep diagrams up to all orders in the defect coupling h since it is of order O(1). There
are however only a finite number of possible diagrams per order in λ and g. The diagrams
in figure 6.1 involving only scalar four-point couplings λ (black dots) and defect couplings
h (blue dots) are the same as for the line defect in the O(N) model and were already
computed in [81]. The diagrams in figure 6.1 that include the Yukawa coupling g (red
dots) were recently computed in [90]. Here we will give the corresponding β−function
for h up to O(ε2), which match the ones in [90].

Some of the diagrams in figure 6.1 are completely cancelled by the wavefunction
renormalizations of ϕa and ψi, while others do contribute to the defect counterterms.

We can compute the β−function βh from the divergent part of the diagrams and we
obtain:

βh = − εh

2
+

1

(4π)2

(
λh3

6

)
+

1

(4π)4

{
λ2h

(
(2 +N)

36
− h2(N + 8)

35
− h4

12

)
− λg2h3Nf

+ g4h

(
−(N + 4)Nf

2
+ h24Nf

(
1 − π2

6

))}
+ O(λ3, g6, λ2g2, λg4) .

(6.2.31)
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Using the values for λ and g at the WFY fixed point in eq. (6.2.9), we find the corre-
sponding defect fixed point

h2⋆ = −2(N − 4)(N + 8)

κ2
+ O(ε) , (6.2.32)

where the O(ε) term is given in appendix G for N = 1, 2, 3. If we include the finite part
of the one-point function, we can extract the one-point function coefficient aϕ :

⟨⟨ϕ(x) ⟩⟩ =
aϕ

|x⊥|1+γϕ
, a2ϕ = −(N − 4)(N + 8)

2κ2
+ O(ε) . (6.2.33)

The O(ε) term is lengthy and given in the attached Mathematica notebook.

6.3 Correlators of defect operators

The bulk operators give rise to a plethora of defect operators. In this section we will
consider correlation functions between the lowest-lying defect operators. The lowest-
lying scalars are the first scalars appearing in the bulk-to-defect expansion of ϕa, and are
labelled in the following as ϕ̂1 and tâ, with â = 2 , . . . , N . These correspond to the two
scalar operators of length 1 that arise due to the breaking of O(N) symmetry in the bulk
to O(N − 1) symmetry on the defect, namely ϕ1 couples to the defect while ϕâ does not.
The conformal dimension of ϕ̂1 was computed in [89] for the GNY model up to O(ε). It
can be extracted from the β−function of the defect coupling at the fixed point:

∆ϕ̂1 = 1 +
∂βh
∂h

|h=h⋆ = 1 +
(4 −N)ε

κ1
+ O(ε2) , (6.3.1)

which agrees with [89] for the case N = 1 corresponding to the pure GNY model. In this
section, we will extend their results to general N , as well as compute additional defect
correlators. The operator tâ (the tilt operator) has protected conformal dimension

∆t = 1 . (6.3.2)

Note that for the GNY model, there will be no tilt operator, but only ϕ̂1 ≡ ϕ̂ on the
defect.

Besides the tilt there is another scalar defect operator with protected conformal di-
mension, namely the displacement operator D. It is related to the bulk stress-energy
tensor through the Ward identity

∂µT
µν = δd−1(x⊥)Dµ̂ , î = 1 , . . . , d− 1 , (6.3.3)

and has transverse spin s = 1 and conformal dimension

∆D = 2 . (6.3.4)

The expansion of the bulk fermion on the defect gives us the defect Dirac fermions

ψ̂, ˆ̄ψ with conformal dimension

∆ψ̂ =
3 − ε

2
+ γψ̂ . (6.3.5)

The anomalous dimension γψ̂ can be extracted from the two-point function.
Below we will compute correlation functions between these operators and extract the

corresponding defect CFT data.
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6.3.1 Two-point functions

We will start by computing the two-point functions between the defect operators to obtain
their anomalous dimensions and normalization constants.

Two-point functions of scalars

We consider first the two-point functions ⟨ ϕ̂1(τ1)ϕ̂
1(τ2) ⟩ and ⟨ tâ(τ1)tb̂(τ2) ⟩. The two-

point function of arbitrary (defect) scalars ϕ̂a takes the general form

⟨ϕ̂a(τ1)ϕ̂b(τ2)⟩ = N 2
ϕ̂

δab

τ 2∆ϕ̂12

, (6.3.6)

with τ12 := τ1 − τ2, and where Nϕ̂ and ∆ϕ̂ correspond respectively to the normalization
constant and to the scaling dimensions given in eqs. (6.3.1) and (6.3.2).

In terms of Feynman diagrams, this two-point function can be expressed as

⟨ ϕ̂a(τ1) ϕ̂b(τ2) ⟩ = + + + O(ε2) , (6.3.7)

In the first diagram, the two external operators are connected through a single tree-level
propagator. The second diagram corresponds to the bulk self-energy and consists of an
internal fermion loop and two bulk Yukawa vertices (represented by red dots), while
the third one is special to the defect theory and involves two integrals along the line
(represented by blue dots) as well as a bulk four-scalar vertex (the black dot).

The fermion loop diagram is easy to compute and reads

= g20Nf tr ΣaΣbB12

= −g
2
0Nf

4π2
δabI12

(
1

ε
+ ℵ + log τ 212 + O(ε2)

)
, (6.3.8)

where we have made use of the rules given in eq. (6.2.3). The integral B12 is defined in
eq. (H.0.23) and solved in eq. (H.0.24), while the function I12 corresponds to the scalar
propagator and is defined in eq. (6.2.14). Finally, the constant ℵ arising from dimensional
regularization is defined in eq. (6.2.26). The expressions for the two other diagrams can
be found in [85].

Requiring that the sum of the diagrams is finite allows us to compute the renormal-
ization factors for ϕ̂1 and tâ:

⟨ ϕ̂a(τ1)ϕ̂b(τ2) ⟩ =
1

Z2
ϕ̂

⟨ ϕ̂a0(τ1)ϕ̂b0(τ2) ⟩ = finite , (6.3.9)

and leads to

Zϕ̂1 = 1 − 1

ε

λh2 + 8g2Nf

64π2
+ O(ε−2) , (6.3.10)

Zt = 1 − 1

ε

λh2 − 24g2Nf

192π2
+ O(ε−2) . (6.3.11)

As a sanity check, we can read the scaling dimensions from the renormalization factors:

∆ϕ̂1 = µ
∂ logZϕ̂1

∂µ
= 1 + ε

4 −N

κ1
+ O(ε2) , (6.3.12)

∆t = µ
∂ logZt
∂µ

= 1 + O(ε2) , (6.3.13)
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which agree with the results given in eqs. (6.3.1) and (6.3.2).

The normalization constants can now be extracted from the finite two-point functions,
and we find for the two scalars

N 2
ϕ̂1 =

1

4π2

{
1 − ε

2

(
2 +

(N − 4)(1 − 2ℵ)

κ1

)
+ O(ε2)

}
, (6.3.14)

N 2
t =

1

4π2

{
1 − ε

2

(
2 +

N − 4

κ1

)
+ O(ε2)

}
, (6.3.15)

where κ1 depends on Nf and N and is defined in eq. (6.2.10).

Two-point function of the displacement

We continue with the two-point function of the displacement. The displacement has
transverse spin s = 1 and can be constructed by taking a transverse derivative of the
field ϕ̂1:

Dî = ∂⊥
î
ϕ̂1 , (6.3.16)

while there exist additional operators ∂⊥
î
tâ that correspond to taking the transverse

derivative of the tilt. The latter will not be considered here for brevity, but its cor-
relators can be computed in a similar way as the displacement correlators.

Because we can write the displacement as in eq. (6.3.16), the diagrams that contribute
to the two-point function are the same as for ϕ̂a and are given in eq. (6.3.7). For the
evaluation of the diagrams, we need to first take the derivatives with respect to x⊥1 , x

⊥
2

and then send x⊥1 , x
⊥
2 → 0. This leads to the following expressions for the diagrams:

=
1

2
g20Nf trΣaΣbB12

= −1

2

g20Nf

4π2
I12δ

ab

(
1

ε
+ ℵ + log τ 212 + O(ε2)

)
.

(6.3.17)

The other diagrams were computed in [85].

We can compute the renormalization factor for the displacement in the usual way, by
requiring that the two-point function is finite. This results in

ZD = 1 − 1

(4π)2ε

(
λh2

12
+ 2Nfg

2

)
+ O(ε−2) . (6.3.18)

As a check, we compute the anomalous dimension of D and find:

∆D = µ
∂ logZD

∂µ
= 2 + O(ε2) , (6.3.19)

where the O(ε) contributions cancel as expected. We can extract the proper normalization
from the finite parts of the diagrams and obtain

N 2
D =

1

2π2

{
1 − ε

(
1 − N − 4

6κ1

)
+ O(ε2)

}
. (6.3.20)
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Two-point functions of fermions

Let us now turn our attention to the fermions. In 1d, the two-point function of Dirac
fermions takes the form

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2) ⟩ = N 2

ψ̂

s̄1γ
0s2

τ 2∆ψ̂12

δij , (6.3.21)

where we have use the polarization spinors s̄A1 , sB2 as defined in eq. (F.0.8) in order to
avoid cluttering.

The diagrams involved are:

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2) ⟩ = +

+ + + O(ε2) .
(6.3.22)

As noted in [89], the second diagram is zero at order O(ε). This can be easily checked
in the following way:

= δijg0h0 s̄1

∫
dτ3

∫
ddx4 /∂4I14 Σ1/∂4I24I34 s2

= δijπ2(s̄1γ
0s2) g0h0 I12

∫
dτ3 τ13τ23 I13I23

= 0 + O
(
ε

3
2

)
,

(6.3.23)

where in the second line we have used the 4d fermionic star-triangle relationship given
in eq. (H.0.17), to which the corrections towards d = 4 − ε are of order O(ε) while
g ∼ O(

√
ϵ).

The third diagram can be computed as follows:

= g20δ
ij s̄1

∫
ddx3

∫
ddx4 /∂1I13 Σa /∂3I34 Σa /∂4I24I34 s2

= 2g20Nδ
ij s̄1/∂2B12s2

=
g20N

32π4

s̄1γ
0s2

τ 312
δij
{

1

ε
+ ℵ − 1 + log τ 212 + O(ε)

}
.

(6.3.24)

Here we have again made use of the rules given in eq. (6.2.3) in order to be able to rewrite
the integral as a derivative of B12.

The fourth diagram is more involved and reads

= g20h
2
0δ
ij s̄1

∫
dτ3

∫
dτ4

∫
ddx5

∫
ddx6 /∂1I15 Σ1 /∂5I56 Σ1 /∂6I26I35I46 s2 ,

(6.3.25)
with Σ1 = 1. The easiest way to compute it is to apply another slashed derivative on the
integral and compare the result to an ansatz. We define

J12 :=

∫
dτ3

∫
dτ4

∫
ddx5

∫
ddx6 /∂1I15/∂5I56/∂6I26I35I46 , (6.3.26)

and assume that

J12 =
γ0

τ 212

{
A

ε
+B + C log τ 212

}
. (6.3.27)
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We then compute

/∂1J12 = −
∫
dτ3

∫
dτ4 I13 /∂1/∂2Y124 , (6.3.28)

where we have used /∂1/∂1 = 1∂21 and ∂21I15 = −δ(d)(x15). After applying the iden-
tity (H.0.17), we find

/∂1J12 =
3

16π6
1 + (quadratic divergences) , (6.3.29)

from which we can read:

A = C = 0 , B = − 1

16π6
. (6.3.30)

We see that this diagram is finite (after dropping the quadratic divergences) and so it
contributes only to the normalization constant.

In the same way as for the scalars, we define a renormalization factor Zψ̂ such that

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2) ⟩ =

1

Z2
ψ̂

⟨ ˆ̄ψi0(τ1)ψ̂
j
0(τ2) ⟩ = finite , (6.3.31)

for which we find

Zψ̂ = 1 − g2N

32π2ε
+ O(ε−2) , (6.3.32)

which agrees with the renormalization factor for the bulk given in eq. (G.0.4).
The scaling dimension gives

∆ψ̂ =
3

2
− ε

4

(
2 − N

κ1

)
+ O(ε2) , (6.3.33)

while the normalization constant reads

N 2
ψ̂ = − 1

2π2

{
1 − ε

2κ1

(
2κ1 − ℵ

(
1 − N

2κ1

)
+

4

π2

(N − 4)(N + 8)

κ1κ2

)
+ O(ε2)

}
.

(6.3.34)
Note that the renormalization factor as well the scaling dimension agree with the bulk
computation, as the diagrams contributing to these results are the same3.

6.3.2 Three-point functions

We now compute three-point functions between the lowest-lying operators. This gives us
various defect OPE coefficients, which can be compared with the OPE coefficients coming
from the conformal block expansion of the four-point function.

Three-point functions of scalars

The three-point function between three defect scalars ϕ̂a,b,c, where ϕ̂a = {ϕ̂1, tâ}, is given
by a single Feynman diagram up to O(ε):

⟨ ϕ̂a(τ1) ϕ̂b(τ2) ϕ̂c(τ3) ⟩ = + O(ε2)

= Nϕ̂aNϕ̂bNϕ̂c
λϕ̂aϕ̂bϕ̂c

τ 2∆abc12 τ 2∆bca23 τ 2∆cab13

, (6.3.35)

3This agreement is expected to be lifted at higher orders of ε.
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where we have defined ∆abc := 1
2
(∆ϕ̂a + ∆ϕ̂b − ∆ϕ̂c).

This diagram was already evaluated in [85], and results in the following OPE coeffi-
cients:

λϕ̂1ϕ̂1ϕ̂1 =
3πε

8

(4κ1 −Nf )
√

2(4 −N)(N + 8)κ2
κ21(N + 8)

+ O(ε2) , (6.3.36)

λttϕ̂1 =
λϕ̂1ϕ̂1ϕ̂1

3
+ O(ε2) . (6.3.37)

Since the OPE coefficients start at O(ε), they will only appear at order O(ε2) in the
four-point function of scalars.

Three-point functions involving ϕ̂2

The first scalar operators that appear in the OPE ϕ̂a × ϕ̂a, ϕ̂a = {ϕ̂1, tâ}, after ϕ̂1 itself,
are the degenerate operators s±. These operators have dimension close to 2, and can be
constructed from (ϕ̂1)2 and (ϕ̂â)2. In order to find the correct anomalous dimensions we
need to require that the three-point functions involving ϕ̂ and s± are finite. The diagrams
that contribute up to O(ε) are

⟨ ϕ̂a(τ1) ϕ̂b(τ2) ϕ̂cϕ̂c(τ3) ⟩ = + + + + O(ε2)

= N 2
ϕ̂a
Ns±

λϕ̂aϕ̂as±

τ
2∆abc2
12 τ

2∆bc2a
23 τ

2∆ac2b
13

.

(6.3.38)

The first three diagrams have been computed in [85], while the last one is the wave-
function renormalization. Requiring that this three-point function is finite in ε gives a
renormalization matrix Zs that has a lengthy expression and is given in a Mathematica
notebook. The anomalous dimension can be computed by diagonalizing this matrix and
taking the derivative:

γs± =
ε(−4(N + 8)(−κ1 +N − 4) + κ2(N + 4) ± κ3)

4κ1(N + 8)
+ O(ε2) , (6.3.39)

where we have defined

κ3 :=
√
κ22N

2 + 8κ2(N − 4)(N − 2)(N + 8) + 16(N − 4)2(N + 8)2 . (6.3.40)

We obtain the conformal dimension as ∆s± = 2 − ε+ γs± .

To complete the computation of the OPE coefficients, we also need the normalization
of the two-point functions ⟨s±(τ1)s±(τ2)⟩. From the two-point function, we get

N 2
s± = ±(N − 1) (κ2(N − 2) + 4(N − 4)(N + 8) ± κ3)

16π4κ3
+ O(ε) . (6.3.41)

We have only displayed the O(1) term here, while the O(ε) term is once again long and
given in the Mathematica notebook. We checked that the operators are now properly
normalized, such that ⟨s+(τ1)s−(τ2)⟩ = 0.
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Putting everything together, we can now extract the OPE coefficients, for which we
find:

λϕ̂1ϕ̂1s± = ± 2κ2
√
N − 1√

κ23 ± (κ2(N − 2) + 4(N − 4)(N + 8))κ3
+ O(ε) , (6.3.42)

λtâtb̂s± = δâb̂
√
κ3 ± κ2(N − 2) + 4(N − 4)(N + 8)

√
κ3
√
N − 1

+ O(ε) . (6.3.43)

The O(ε) terms can be found in the attached Mathematica notebook.

Three-point functions of two fermions and one scalar

An example of a mixed correlator is the three-point function ⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)ϕ̂

a(τ3) ⟩, which
is given at leading order by

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)ϕ̂

a(τ3) ⟩ = + O(ε)

= N 2
ψ̂Nϕ̂a

δij(s̄1γ
0Σas2)λ ˆ̄ψψ̂ϕ̂a

τ
2∆ψ̂ψ̂a
12 τ

2∆ψ̂aψ̂
23 τ

2∆aψ̂ψ̂
13

,
(6.3.44)

with ∆ijk following the same convention as given below eq. (6.3.35).
At order O(

√
ε) we have a single diagram contributing. It is easy to evaluate this

diagram using the usual commutation rules for Σa as well as the fermionic star-triangle
identity given in eq. (H.0.17). The results differ depending on the nature of the field ϕa:

= ±N 2
ψ̂Nϕ̂ag0 δ

ij
(
s̄1Σ

aγ0s2
) 1

64π4τ 212τ23τ31
, (6.3.45)

where the sign is − for ϕa scalar and + for ϕa pseudoscalar. After inserting the normal-
ization constants derived in section 6.3.1 we find that the OPE coefficient is

λ ˆ̄ψψ̂ϕ̂a
= ±

√
ε

4
√

2κ1
+ O(ε) . (6.3.46)

6.3.3 Four-point functions

Let us now turn our attention to the four-point functions, which are the first correlators in
our list to have non-trivial kinematics. These correlators can be expanded in 1d conformal
blocks to obtain defect CFT data, which we can compare with the OPE coefficients
computed in the previous section. We start by considering correlators of purely scalar
operators, before moving on to fermions and concluding with an example of a mixed
correlator including both scalars and fermions.

Four-point functions of scalars

We start this section by the four-point functions of scalars. Such correlators depend
kinematically on a single cross-ratio χ, which we define as4

χ :=
τ12τ34
τ13τ24

. (6.3.47)

4In higher d, four-point functions depend on two cross-ratios χ and χ̄. In 1d the second cross-ratio is
not independent of χ and becomes χ̄ = 1− χ.



116 CHAPTER 6. LINE DEFECT CORRELATORS IN FERMIONIC CFTS

Four-point functions of scalars take the following form:

⟨ ϕ̂a(τ1) ϕ̂b(τ2) ϕ̂c(τ3) ϕ̂d(τ4) ⟩ = Nϕ̂aNϕ̂bNϕ̂cNϕ̂d K4 f
abcd(χ) . (6.3.48)

with the conformal prefactor

K4 :=
1

τ∆ϕ̂a+∆
ϕ̂b12 τ∆ϕ̂c+∆

ϕ̂d34

(
τ24
τ14

)∆ϕ̂a−∆
ϕ̂b
(
τ14
τ13

)∆ϕ̂a−∆
ϕ̂b

. (6.3.49)

In terms of Feynman diagrams, the four-point function of arbitrary scalars is given up to
O(ε) by

⟨ ϕ̂a(τ1) ϕ̂b(τ2) ϕ̂c(τ3) ϕ̂d(τ4) ⟩ = +

+ + + O(ε2) ,
(6.3.50)

where the first diagrams are products of two-point functions, and the last one was com-
puted in [85].

Adding all diagrams in eq. (6.3.50), we obtain the following unit-normalized results:

f 1111(χ) =1 + χ2∆ϕ̂1 +

(
χ

1 − χ

)2∆ϕ̂1

+
3εκ2

κ1(N + 8)

(
χ log(1 − χ) +

χ2

1 − χ
logχ

)
+ O(ε2) ,

(6.3.51)

f 1â1b̂(χ) =δâb̂χ∆ϕ̂1+∆t + εδâb̂
κ2

κ1(N + 8)

(
χ log(1 − χ) +

χ2

1 − χ
logχ

)
+ O(ε2) , (6.3.52)

f âb̂ĉd̂(χ) =δâb̂δĉd̂ + δâĉδb̂d̂χ2 + δâd̂δb̂ĉ
χ2

(1 − χ)2

+ ε(δâb̂δĉd̂ + δâĉδb̂d̂ + δâd̂δb̂ĉ)
κ2

κ1(N + 8)

(
χ log(1 − χ) +

χ2

1 − χ
logχ

)
+ O(ε2) ,

(6.3.53)

where κ1 and κ2 are defined in eqs. (6.2.10) and (6.2.11). Other orderings of ϕ̂1 and tâ

are not given here but can be computed in the same way straightforwardly from (6.3.50).
The last correlator f âb̂ĉd̂(χ) can be decomposed into a scalar (S), an antisymmetric (A),
and a traceless symmetric (T ) contribution:

f âb̂ĉd̂S (χ) =
N

N − 1

χ2

(1 − χ)2
(2 + χ(χ− 2))

+ ε
κ2(N + 1)

κ1(N − 1)(N + 8)

χ

1 − χ
(χ logχ+ (1 − χ) log(1 − χ)) + O(ε2) , (6.3.54)

f âb̂ĉd̂T (χ) =
χ2

(1 − χ)2
(2 + χ(χ− 2))

+ ε
2κ2

κ1(N + 8)

χ

1 − χ
(χ logχ+ (1 − χ) log(1 − χ)) + O(ε2) , (6.3.55)

f âb̂ĉd̂A (χ) =
(2 − χ)χ3

2(1 − χ)2
+ O(ε2) . (6.3.56)

We can expand these four-point functions in the 1d conformal blocks

g
∆ij ,∆kl
∆ (χ) = χ∆

2F1 (∆ − ∆ij,∆ + ∆kl; 2∆;χ) , g∆ := g0,0∆ , (6.3.57)
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where ∆ij = ∆i − ∆j are the conformal dimensions of the external operators.

The first operators in the ϕ̂1 × ϕ̂1 OPE are the degenerate operators s±. They can be
unmixed, which we have done in section 6.3.2 in order to obtain the anomalous dimensions
γs± and the OPE coefficients λϕ̂aϕ̂as± . However, in the conformal block expansion we will
only see the average of the conformal data for this operator, and we find

f 1111(χ) = 1 +

(
2 − 3κ2ε

κ1(N + 8)

)
g2(χ) + ε

(
3κ2 + 4(N + 8)(4 −N)

κ1(N + 8)

)
∂∆g2(χ) + · · · ,

(6.3.58)

(∆s+ − 2)λ2
ϕ̂1ϕ̂1s+

+ (∆s− − 2)λ2
ϕ̂1ϕ̂1s−

= ε
3κ2 + 4(N + 8)(4 −N)

κ1(N + 8)
+ O(ε2) , (6.3.59)

λ2
ϕ̂1ϕ̂1s+

+ λ2
ϕ̂1ϕ̂1s−

= 2 − 3κ2ε

κ1(N + 8)
+ O(ε2) . (6.3.60)

This is also the case for the correlators f âb̂ĉd̂S (χ) and f 11âb̂(χ), which contain in addition
information on the OPE coefficients λtts± . The OPE coefficients given in eq. (6.3.43)
neatly obey these relations.

From the other correlators we can obtain the OPE coefficients and anomalous dimen-
sions of V̂ â appearing in ϕ̂1 × tâ, and T̂ âb̂ and Ââb̂, which are respectively a traceless
symmetric and antisymmetric operator appearing in tâ × tb̂.

∆V̂ = 2 + ε
2(κ2 + (4 −N)(N + 8))

(N + 8)κ1
+ O(ε2) , λ2

tϕ̂1V̂
= 1 − ε

κ2
κ1(N + 8)

+ O(ε2) ,

(6.3.61)

∆T̂ = 2 + ε
κ2

κ1(8 +N)
+ O(ε2) , λ2

ttT̂
= 2 − ε

2κ2
κ1(N + 8)

+ O(ε2) ,

(6.3.62)

∆Â = 3 + O(ε2) , λttÂ = 1 + O(ε2) . (6.3.63)

Setting Nf → 0, we obtain the results for the O(N) model found in [84, 85] which provides
a final check for our results.

Four-point functions of the displacement

We consider now the four-point function of the displacement. Similarly to the two-
point function, the diagrams contributing to this four-point function are the same as for
the four-point function of scalars, and are shown in eq. (6.3.50). Again, we will take
the derivative with respect to the transverse coordinates ∂⊥j , j = 1, · · · , 4, and then set
x⊥j → 0, j = 1, · · · , 4. The diagrams not involving fermions were already computed
for the O(N) model in [85], while the fermionic diagram is the renormalization of the
wavefunction. Adding all the diagrams and using the proper renormalization, we find the
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correlators up to O(ε):

⟨Di(τ1)Dj(τ2)Dk(τ3)Dl(τ4)⟩ = δijδkl + δikδjlχ
4 + δilδjk

χ4

(1 − χ)4

+ ε(δilδjk + δikδjl + δijδkl)
κ2

10κ1(N + 8)

χ

(1 − χ)3

×
(
2χ(1 − χ)(χ(1 − χ) − 1) + χ3(χ(5 − 2χ) − 5) log χ

− (1 − χ)3(2χ2 + χ+ 2) log(1 − χ)
)

+ O(ε2) .

(6.3.64)

Four-point functions of fermions

We now turn our attention to correlators involving four elementary fermions, identical
up to their flavor index. This correlator is given by

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)

ˆ̄ψk(τ3)ψ̂
l(τ4) ⟩ = + +

+ + + O(ε
3
2 )

=
N 4
ψ̂

τ 2∆ψ̂12 τ 2∆ψ̂34

(
f ijkl12,34(χ) − χ3

(1 − χ)3
f ilkj14,32(1 − χ)

)
,

(6.3.65)

where the second term follows by crossing symmetry, and where the flavor structure is
encoded in f ijkl12,34. The subscripts indicate the dependency on the polarization spinors
s̄1, s2, s̄3, s4. We have omitted the product of two-point functions that gives zero at this
order (see section 6.3.1). The disconnected part of the correlator is easy to compute and
give

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)

ˆ̄ψk(τ3)ψ̂
l(τ4) ⟩disc. = ⟨ ˆ̄ψi(τ1)ψ̂

j(τ2) ⟩⟨ ˆ̄ψk(τ3)ψ̂
l(τ4) ⟩

+ ⟨ ˆ̄ψi(τ1)ψ̂
l(τ4) ⟩⟨ ˆ̄ψk(τ3)ψ̂

j(τ2) ⟩

=
1

τ 2∆ψ̂12 τ 2∆ψ̂34

{
(s̄1γ

0s2)(s̄3γ
0s4)δ

ijδkl

− χ3

(1 − χ)3
({s2 , j , χ} ↔ {s4 , l , 1 − χ})

}
.

(6.3.66)

The connected part consists of two diagrams:

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)

ˆ̄ψk(τ3)ψ̂
l(τ4) ⟩conn. = + . (6.3.67)

These diagrams belong to a new class that we have not encountered yet and that we
name H-diagrams. They can be expressed as

= g20δ
ijδkl(s̄1Σ

a/∂1/∂2s2)(s̄3Σ
a/∂3/∂4s4)H12,34 , (6.3.68)

where we used the rules defined in eqs. (6.2.4) and (6.2.6) in order to move the Σ-matrices
in front, and where the integral H12,34 is defined in eq. (H.0.3) and has not been solved
analytically yet. It is however possible to solve the integral thanks to the derivatives in
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front, as shown in (H.0.19)-(H.0.21). The second diagram can be calculated analogously,
and we obtain the following unit-normalized correlator:

f ijkl12,34(χ) = δijδkl(s̄1γ
0s2)(s̄3γ

0s4)

+
ε

64κ1
δijδkl(s̄1Σ

aγ0s2)(s̄3Σ
aγ0s4)

× χ

(1 − χ)2
(
(1 − χ)(2 − χ) + χ2(2 − χ) logχ+ χ(1 − χ)2 log(1 − χ)

)
+ O(ε2) .

(6.3.69)

We can extract new defect CFT data from this correlator by expanding it in the 1d blocks
of eq. (6.3.57). Since we have Nf fermions, there is a U(Nf ) flavor symmetry and we
need to decompose the fermions in the singlet (S) and adjoint (Adj) representations:

f ijkl(χ) = δijδklfS(χ) +

(
δilδjk − δijδkl

Nf

)
fAdj(χ) , (6.3.70)

fS(χ) =
4 + (κ1 +N)(χ− 1)3 − 2χ((χ− 6)χ+ 6)

(χ− 1)3(κ1 +N − 4)
+

κ1 +N

(κ1 +N − 4)

+
χε

64κ1(χ− 1)2(κ1 +N − 4)

{
2(κ1 − 4 +N) − χ(14 + 3κ1 + 3N)

+ χ2(κ1 +N − 2) − χ2(χ(κ1 +N − 2) − 2(κ1 +N − 3)) logχ

+ (χ− 1)2(χ(κ1 +N − 2) + 2) log(1 − χ)

}
, (6.3.71)

fAdj(χ) =
χ3

(χ− 1)3
+

εχ

64κ1(χ− 1)2

{
χ(1 + χ) + (1 + χ)(1 − χ)2 log(1 − χ)

+ (1 − χ)χ2 logχ

}
. (6.3.72)

Let us decompose the singlet sector in the conformal blocks. For the first few operators,
we find

fS(χ) = g0(χ) +
ε

32κ1
g1(χ) −

(
1

Nf

− ε(17 − 2N − 2κ1)

384κ1Nf

)
g3(χ)

− ε(3 −N − κ1)

64κ1Nf

∂∆g3(χ) + · · · .
(6.3.73)

The absence of a conformal block g∆=2(χ) indicates that

λ ˆ̄ψψ̂s±
= O(ε) , (6.3.74)

such that the squared OPE coefficients only contribute at O(ε2). We can read off λ2ˆ̄ψψ̂ϕ̂1
as

the coefficient in front of the block g∆=1(χ), which matches the expression in eq. (6.3.46).
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Four-point functions of fermions and scalars

In this section we will compute the mixed correlator with two Dirac fermions ˆ̄ψi, ψ̂j and
two elementary scalars ϕa, ϕb. The correlator takes the following form:

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)ϕ̂

a(τ3)ϕ̂
b(τ4) ⟩ =

N 2
ψ̂N 2

ϕ̂

τ 2∆ψ̂12 τ 2∆ϕ̂34

δijfab(χ) , (6.3.75)

with the kinematical cross-ratio χ defined in eq. (6.3.47), and where the O(N) tensor
structure is encoded in fab. As before, the disconnected part of the correlator is easy to
obtain and consists of only one non-zero term:

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)ϕ̂

a(τ3)ϕ̂
b(τ4) ⟩disc. = ⟨ ˆ̄ψi(τ1)ψ̂

j(τ2) ⟩⟨ ϕ̂a(τ3)ϕ̂b(τ4) ⟩

=
(s̄1γ

0s2)

τ 2∆ψ̂12 τ 2∆ϕ̂34

δijδab .
(6.3.76)

The connected part consists of two fermion-scalar H-diagrams:

⟨ ˆ̄ψi(τ1)ψ̂
j(τ2)ϕ̂

a(τ3)ϕ̂
b(τ4) ⟩conn. = + . (6.3.77)

After using the rules defined in eqs. (6.2.4) and (6.2.6) in order to commute the Σ-
matrices, we find that the first diagram gives

= ±g20δij(s̄1 ΣaΣbF13,24 s2) , (6.3.78)

with + if ϕa is a scalar and − if it is a pseudoscalar5, and where the integral F13,24

is defined in eq. (H.0.15) and solved in eq. (H.0.18). Putting everything together, the
unit-normalized correlator reads

fab(χ) = δab(s̄1 · s2)

± (s̄1Σ
aΣbs2)

ε

8κ1

χ

(1 − χ)2
(
χ3 logχ− (1 − χ)2(2 + χ) log(1 − χ)

)
+ O(ε2) .

(6.3.79)

We expand this correlator in the 1d blocks of eq. (6.3.57) for the case of equal external
scalars, such that

Σa = Σb , ΣaΣb = 1 . (6.3.80)

We find:

faa(χ) = g0(χ) +
ε

4κ1
g2(χ) +

19ε

240κ1
g4(χ) − ε

8κ1
∂∆g4(χ) + · · · , (6.3.81)

where we emphasize that no sum is implied by the repetition of indices on the left-hand
side. Since the correlator and the block expansion have the same expression for ϕ̂1 and
tâ, we find the same relations for the OPE coefficients λϕ̂1ϕ̂1O and λttO, which we will
denote as λϕ̂aϕ̂aO for brevity.

5In this formulation, the index b can be kept arbitrary since we have to commute Σb with γ-matrices
twice.
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From the block expansion we see that for s±, which has dimension ∆s± ∼ 2, we obtain

λ ˆ̄ψψ̂s+
λϕ̂aϕ̂as+ + λ ˆ̄ψψ̂s−

λϕ̂aϕ̂as− =
ε

4κ1
, (6.3.82)

(∆s+ − 2)λ ˆ̄ψψ̂s+
λϕ̂aϕ̂as+ + (∆s− − 2)λ ˆ̄ψψ̂s−

λϕ̂aϕ̂as− = 0 . (6.3.83)

Using the expressions for ∆s± and λϕ̂1ϕ̂1s± , λtts± in eqs. (6.3.39) and (6.3.43), we can
extract the OPE coefficients involving the fermions:

λ ˆ̄ψψ̂s±
= ε

(Nκ2 − 4(N − 4)(N + 8) ± κ3)
√
κ3 ± 4(N − 4)(N + 8) ± (N − 2)κ2

16κ1κ2
√
κ3
√
N − 1

+ O(ε2) . (6.3.84)

As expected from the conformal block expansion in eq. (6.3.73), the OPE coefficients
start at O(ε).

6.4 Correlators of bulk operators with a defect

The three- and four-point functions of scalars and fermions on the defect provided us with
important defect data. In addition, we can also study bulk operators in the presence of
the line defect, and obtain new data such as bulk-to-defect OPE coefficients. In this
section we study two-point functions of bulk and defect operators, as well as two-point
functions of bulk scalars. At the end of the section we give a short outlook on how to
generalize our analysis to the case of fermionic operators.

6.4.1 One-point functions

Squared scalar. We computed the one-point function of ϕa in section 6.2 to extract
the β-function of the defect coupling. The coefficient of this one-point function, aϕ, will
appear in the bulk channel expansion of the two-point function of ϕa in the presence of
the line defect. One-point function coefficients of other operators will appear as well, the
first one being the one-point function of ϕ2 and the traceless symmetric tensor T ab =
ϕaϕb − δab

N
(ϕc)2.6 These observables were computed for the O(N) model in [84]. At O(ε)

there are four diagrams that contribute:

⟨⟨ϕaϕb(x)⟩⟩ = + + + + O(ε2) . (6.4.1)

The diagrams not including any fermionic contributions were computed in [84, 86, 87],
while the diagram with the fermionic loop cancels the wavefunction renormalization of ϕa.
In order to compute the one-point function coefficient, we need the renormalization factor,
anomalous dimension, and normalization factor of ϕ2 and T ab. The anomalous dimensions
for the GNY and NJLY models can be found in [174], while the others can be obtained
from computing the corrections to the propagator ⟨ϕaϕb(x1)ϕcϕd(x2)⟩. Generalized for

6Note that T ab does not appear for the GNY model, where N = 1.
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N = 1, 2, 3, we find for ϕ2 up to O(ε) [174, 206]

Zϕ2 = 1 − 1

ε(4π)2

(
λ(N + 2)

3
+ 4g2Nf

)
+ O

(
1

ε2

)
, (6.4.2)

γϕ2 =
λ(N + 2)

3(4π)2
+

4g2Nf

(4π)2
+ O(λ2, g4, λg2) , (6.4.3)

Nϕ2 =
Γ
(
d
2

)√
2N

2π
d
2 (d− 2)

{
1 − ε

(
2(ℵ + 1)(N + 8)(κ1 +N − 4) + κ2ℵ(N + 2)

4κ1(N + 8)

)
+ O(ε2)

}
.

(6.4.4)

For T ab, we obtain the following results:

ZT = 1 − 1

ε(4π)2

(
2λ

3
+ 4g2Nf

)
+ O

(
1

ε2

)
, (6.4.5)

γT =
2λ

3(4π)2
+

4g2Nf

(4π)2
+ O(λ2, g4, λg2) , (6.4.6)

Nϕ2 =
Γ
(
d
2

)
√

2π
d
2 (d− 2)

{
1 − ε

(
(ℵ + 1)(N + 8)(κ1 +N − 4) + κ2ℵ

2κ1(N + 8)

)
+ O(ε2)

}
, (6.4.7)

from which we can extract the one-point function coefficients aϕ2 and aT :

aϕ2 =
(4 −N)(N + 8)

2κ2
√

2N
+ O(ε) , aT =

(4 −N)(N + 8)

2κ2
√

2
+ O(ε) . (6.4.8)

The O(ε)-terms are lengthy and can be found in the attached Mathematica notebook.

Fermion bilinear. Another interesting one-point function is ⟨⟨ ψ̄iψi(x) ⟩⟩, which ap-
pears in the two-point function ⟨⟨ ψ̄i(x1)ψj(x2) ⟩⟩. In this case, ψ̄iψi is not a conformal
primary, but rather a conformal descendant of ϕ. This can be seen from its conformal
dimension being ∆ϕ + 2 +O(ε2) [174]. The one-point function can be computed through
Feynman diagrams, and receives a contribution at O(

√
ε):

⟨⟨ ψ̄iψi(x) ⟩⟩ = + O(ε) . (6.4.9)

This egg-shaped diagram is new and has the following expression:

= Nψ̄ψ

g0h0Nf

16π3|x⊥|3
s1 tr Σ1 . (6.4.10)

Hence, the one-point function coefficient can be written as

⟨⟨ ψ̄iψi(x) ⟩⟩ =
aψ̄ψ

|x⊥|∆ψ̄ψ
, aψ̄ψ = −

√
(4 −N)(N + 8)

√
κ1κ2

8π2Nf

(4π)2
√
ε+ O(ε) . (6.4.11)
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6.4.2 Bulk-to-defect two-point functions

The correlators of a bulk and a defect operator give us the OPE coefficients of the bulk-
to-defect OPE. The fundamental bulk scalar ϕa can be decomposed into ϕ̂1 and tâ, and
the two-point function between these operators is given by the following diagrams:

⟨⟨ϕa(x1)ϕ̂b(τ2) ⟩⟩ = + + + O(ε2) . (6.4.12)

The first diagram does not involve any integration, while the second is a self-energy
correction. The third diagram is less trivial, and was computed in [86]. Adding all
diagrams and the proper renormalization terms, we obtain the following bulk-to-defect
OPE coefficients:

⟨⟨ϕa(x1)ϕ̂1(τ2) ⟩⟩ =
δa1NϕNϕ̂1 b̂ϕϕ̂1

(x̂2
12̂

)∆̂ϕ̂1 |x⊥1 |
∆ϕ−∆̂ϕ̂1

, b̂ϕϕ̂1 = 1 + ε
3(4 −N)(log 2 − 1)

2κ1
+ O(ε2) ,

(6.4.13)

⟨⟨ϕa(x1)tb̂(τ2) ⟩⟩ =
δab̂NϕNtb̂ϕt

(x̂2
12̂

)∆̂t|x⊥1 |∆ϕ−∆̂t
, b̂ϕt = 1 + ε

(4 −N)(log 2 − 1)

2κ1
+ O(ε2) .

(6.4.14)

6.4.3 Two-point functions of bulk scalars

In the presence of a defect, the two-point function of bulk operators is no longer fixed by
kinematics. Instead, it depends on two defect cross-ratios determined by the distance to
the defect and the distance between the bulk operators. The scalar two-point function
then takes the form

⟨⟨ϕa(x1)ϕb(x2) ⟩⟩ =
N 2
ϕFab(r, w)

|x⊥1 |∆ϕ |x⊥2 |∆ϕ
, (6.4.15)

where Fab(r, w) is a function of the cross-ratios

r +
1

r
=
τ 212 + (x⊥1 )2 + (x⊥2 )2

|x⊥1 ||x⊥2 |
, w +

1

w
=

2x⊥1 · x⊥2
|x⊥1 ||x⊥2 |

. (6.4.16)

It is sometimes convenient to switch to different cross-ratios z, z̄, which are related to
r, w as

z = rw , z̄ =
r

w
. (6.4.17)

The diagrams contributing to this two-point function, up to O(ε), are shown in figure 6.2.
They consist of diagrams we already encountered when computing the one-point function
of ϕa, of diagrams coming from the wavefunction renormalization in the bulk, and one
non-trivial one.

The non-trivial diagram is the X-shaped diagram, which was computed for a line
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Figure 6.2: Contributions to the two-point function ⟨⟨ϕa(x1)ϕb(x2) ⟩⟩ up to O(ε). The
defect is denoted by a solid line, scalars by a dotted line, and fermions by solid arrowed
lines. Bulk scalar couplings λ0 are represented by a black dot, bulk Yukawa couplings
g0 by a red dot and defect couplings h0 by a blue dot.

defect in the O(N) model in [86, 87]. Evaluating it in d = 4 gives:

= −
λ0h

2
0Γ
(
d
2

)4
32π2d(d− 2)4

∫
dτ3dτ4d

dx5

(x̂235)
d−2
2 (x̂245)

d−2
2 (x215)

d−2
2 (x225)

d−2
2

=
3λ0h

2
0H(r, w)

768π4|x⊥1 ||x⊥2 |
+ O(ε2) ,

(6.4.18)

where H(r, w) contains one unevaluated integral over a Schwinger parameter α [86]:

H(r, w) = −
∫ ∞

0

dα

√
zz̄

(α + 1)(α + zz̄)(α + z)(α + z̄)
tanh−1

√
(α + z)(α + z̄)

(α + 1)(α + zz̄)
.

(6.4.19)
Even though the integral is unevaluated, the series expansions in the bulk and defect
channels are known.

Adding all diagrams in figure 6.2 and properly renormalizing them, we obtain:

Fab(r, w) = δabξ−∆ϕ + δa1δb1a2ϕ + ε(δab + 2δa1δb1)
3(4 −N)

4κ1
H(r, w) + O(ε2) . (6.4.20)

Here, aϕ is the one-point function coefficient given in eq. (6.2.33). We see that the
general form is the same as in [86, 87], except for additional fermionic contributions to
the coefficient in front of H(r, w). We can expand this expression in bulk and defect
conformal blocks to extract CFT data, and check with the explicit calculations in the
previous sections.

Defect channel

In the defect channel, the correlator Fab(r, w) contains two types of operators:
O(N)−singlets ÔS

s,n and O(N)−vectors ÔV
s,n. Their conformal dimensions are given by

∆ÔS,Vs,n = ∆ϕ + s+ n+ γÔS,Vs,n . (6.4.21)
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These operators are in general degenerate, except for n = 0, where they can be expressed
as derivatives of ϕ̂1 and t:

ÔS
s,0 ∼ ∂⊥i1 · · · ∂

⊥
is ϕ̂1 , ÔS

s,0 ∼ ∂⊥i1 · · · ∂
⊥
is tâ , (6.4.22)

where in = 1, · · · , d − 1 are the directions transverse to the defect. For higher n, one
needs to solve a mixing problem. This has been done in [84, 85] for the O(N) model and
repeated in section 6.3.2 for the case n = 1, s = 0 to obtain the anomalous dimension
γs± . For general n > 0, s we will give the averaged CFT data.

The correlator Fab(r, w) can be decomposed in the two symmetry channels S (singlet)
and V (vector):

Fab(r, w) = δa1δb1F̂S(r, w) + (δab − δa1δb1) F̂V (r, w) , (6.4.23)

F̂S(r, w) = a2ϕ +
1

ξ∆ϕ
+ ε

3(4 −N)

4κ1
H(r, w) , F̂V (r, w) =

1

ξ∆ϕ
+ ε

(4 −N)

4κ1
H(r, w) .

(6.4.24)

Each of the channels can be composed in defect conformal blocks, which are known in
closed form [47]:

F(z, z̄) =
∑
Ô

2−s b̂2OÔf̂∆̂,s(z, z̄) , (6.4.25)

f̂∆̂,s(z, z̄) = (zz̄)
∆̂
2

( z̄
z

) s
2

2F1

(p
2
, ∆̂; ∆̂ + 1 − p

2
; zz̄
)

2F1

(
−s, q

2
− 1; 2 − q

2
− s;

z

z̄

)
,

(6.4.26)

where p = 1 is the dimension of the defect, q = d− 1 the codimension, s is the transverse
spin and we have switched variables from r, w to z, z̄ using the definition in eq. (6.4.17).
The factor of 2−s ensures that the blocks have a convenient normalization.

To expand the correlator in terms of these blocks, we need to know how to decompose
the function H(r, w). It turns out there is an elegant expression found in [86, 87]:

H(r, w) =
∞∑
s=0

(
Hs −Hs− 1

2

s+ 1
2

− 1

(s+ 1
2
)2

+
1

s+ 1
2

∂∆̂

)
f̂s+1,s(r, w) . (6.4.27)

The derivative of the block gives us the anomalous dimension of the corresponding oper-
ator, and hence eq. (6.4.27) provides a straightforward way to extract defect CFT data.

The constant terms in eq. (6.4.24) correspond to the defect identity given by f̂0,0(r, w).
This leaves us with the factors ξ−∆ϕ , whose expansion in defect blocks is well known [51].

Combining all the pieces together we are ready to extract the CFT data. Let us start
with the singlet channel. Expanding in conformal blocks gives us

F̂S(r, w) = a2ϕ f̂0,0(r, w) +
∞∑
s=0

2−s b̂2
ϕÔSs,0

f̂∆̂ÔSs,0
,s(r, w) + O(ε2) , (6.4.28)

where up to O(ε) only operators with n = 0 appear. Combining eq. (6.4.28) and
eq. (6.4.24), and using the expression in eq. (6.4.27), we obtain the following OPE coef-
ficients:

b̂ϕÔSs,0 =2
s
2

{
1 +

ε

4κ1

(
6(N − 4)

(2s+ 1)2
− (κ1(2s+ 1) + 3(N − 4))

(2s+ 1)
Hs

+ 3(N − 4)Hs− 1
2

)
+ O(ε2)

}
.

(6.4.29)
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For s = 0, we see that this matches exactly the bulk-to-defect OPE coefficient b̂ϕϕ̂1 given
in eq. (6.4.14). As stated above, to extract the anomalous dimension we only have to
look at the derivative term in eq. (6.4.27). This results in

∆ÔSs,0
= ∆ϕ + s+ n+

3(4 −N)ε

4κ1
(
s+ 1

2

) + O(ε2)

= 1 + s+
(N − 4)(s− 1)ε

κ1(2s+ 1)
+ O(ε2) .

(6.4.30)

For s = 0, this matches with ∆ϕ̂1
given in eq. (6.3.1), while for s = 1 this should give

us the dimension of the displacement ∆D = 2. Indeed, we see that for s = 1, the O(ε)
correction is zero and the dimension is protected and equal to 2.

We are ready to move on to the vector channel. The expansion in conformal blocks
results in

F̂V (r, w) =
∞∑
s=0

2−s b̂2
ϕÔVs,0

f̂∆̂ÔVs,0
,s(r, w) + O(ε2) , (6.4.31)

where we see that also here up to O(ε), only the n = 0 family of operators appears. The
defect identity is not present in this case. We will follow the same procedure as for the
singlet channel, and extract the bulk-to-defect OPE coefficients

b̂ϕÔVs,0 = 2
s
2

{
1 +

ε(N − 4)

4κ1

(
2s+ 3

(2s+ 1)2
+

2sHs +Hs− 1
2

(2s+ 1)

)
+ O(ε2)

}
. (6.4.32)

We can now compare this for s = 0 with b̂ϕt in eq. (6.4.14) and find a perfect match. The
anomalous dimensions are once again read off from the derivative term in the expansion
of H(r, w), and result in the following conformal dimensions:

∆̂ÔVs,0
= ∆ϕ + s+ n+

ε(4 −N)

4κ1
(
s+ 1

2

) + O(ε2) = 1 + s+
ε(N − 4)s

κ1(2s+ 1)
+ O(ε2) . (6.4.33)

As a check, we see that for s = 0 the O(ε) term disappears and we find the protected
dimension of the tilt ∆t = 1.

Bulk channel

In the bulk channel, the operators that appear in the ϕa × ϕb OPE are O(N) singlets
OS
ℓ,n, where the first one is ϕ2, and traceless symmetric representations OT

ℓ,n, the first one

of which is T ab. The operators in the lowest twist family after ϕ2 and T ab can be written
as

OS
ℓ,0 ∼ ∂µ1 · · · ∂µℓ(ϕa)2 , OT

ℓ,0 ∼ ∂µ1 · · · ∂µℓ
(
ϕaϕb − δab

N
(ϕc)2

)
, (6.4.34)

where ℓ ≥ 2. In the free theory, they are the higher-spin currents and hence their
conformal dimension and OPE coefficients are protected up to O(ε) and given by the
conformal dimension of ϕ and their spin. The CFT data is given by

∆OS,Tℓ,0
= 2∆ϕ + ℓ+ O(ε2) , (6.4.35)

λ2ϕϕOSℓ,0
=

2ℓ+1(∆ϕ)2ℓ
Nℓ!(2∆ϕ + ℓ− 1)ℓ

+ O(ε2) , (6.4.36)

λ2ϕϕOTℓ,0
= Nλ2ϕϕOSℓ,0

+ O(ε2) . (6.4.37)
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Operators with n > 0 are not protected up to this order, and are also degenerate. The
correlator can be decomposed in the two symmetry channels as:

Fab(r, w) = δabFS(r, w) +

(
δa1δb1 − δab

N

)
FT (r, w) , (6.4.38)

FS(r, w) =
1

ξ∆ϕ
+
a2ϕ
N

+
ε(4 −N)(N − 2)

4Nκ1
H(r, w) , (6.4.39)

FT (r, w) = a2ϕ +
ε(4 −N)

2κ1
H(r, w) . (6.4.40)

The decomposition in bulk channel blocks is more difficult, since they are not known in
closed form. One should also keep in mind that the correlator gets multiplied by a factor
of ξ∆ϕ coming from the prefactor. However, as pointed out, eq. (6.4.20) has a similar
form to the correlator ⟨⟨ϕaϕb⟩⟩ computed for the O(N) model in [86, 87], and we can
reuse known results. In particular, they found an expression for H(r, w) in terms of bulk
blocks as well:

ξH(r, w) = (∂∆ − 1 − log 2)f 0
2,0(r, w) + O(ϵ) , (6.4.41)

where f∆12
∆,ℓ (r, w) are the bulk channel conformal blocks, which are known as a double

sum [47, 137].
From eq. (6.4.41) we see that H(r, w) only corrects ϕ2, hence, for the CFT data of

the other operators we can directly use the results from [86, 87]. The other terms in
eq. (6.4.40), after multiplication with ξ∆ϕ , are a constant term that corresponds to the
bulk identity f 0

0,0(r, w), and a term proportional to ξ∆ϕ , whose expansion in bulk blocks
is given in equation (167) of [86]. Putting eveything together, the expansion of FS,T in
blocks can be written as follows:

ξ∆ϕFS(r, w) = 1 + λϕϕϕ2 aϕ2f∆ϕ2 ,0 +
∞∑

ℓ=2,4,···

2−ℓ λϕϕOSℓ,0aOSℓ,0f
0
2∆ϕ+ℓ,ℓ

+
∞∑

ℓ=0,2,···

2−ℓ λϕϕOSℓ,1aOSℓ,1f
0
2∆ϕ+ℓ+2,ℓ + O(ε2) , (6.4.42)

ξ∆ϕFT (r, w) =λϕϕT aTf∆T ,0 +
∞∑

ℓ=2,4,···

2−ℓ λϕϕOTℓ,0aOTℓ,0f
0
2∆ϕ+ℓ,ℓ

+
∞∑

ℓ=0,2,···

2−ℓ λϕϕOTℓ,1aOTℓ,1f
0
2∆ϕ+ℓ+2,ℓ + O(ε2) , (6.4.43)

where the bar indicates an average over CFT data since mixing needs to be solved before
one is able to extract the individual OPE and one-point coefficients. We can now extract
the CFT data of all operators except ϕ2 and T . For the O(N) singlets, using eq. (6.4.37),
we extract the following one-point functions of twist-two operators:

aOSℓ,0 =

(4 −N)(N + 8)Γ
(
ℓ+1
2

)2√21−ℓΓ(ℓ+1)

NΓ(ℓ+ 1
2)

π
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−
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2κ1

(
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2
+H2ℓ − 2Hℓ −Hℓ− 1

2
+ 2 log 2

))
+ O(ε2)

}
,

(6.4.44)
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where a
(1)
ϕ is the O(ε) correction to aϕ, which can be found in the attached Mathematica

notebook. The averaged CFT data for the higher-twist n = 1 operators is given by

λϕϕOSℓ,1aOSℓ,1 = ε
(ℓ+ 1)2(4 −N)(N + 8)Γ

(
ℓ+1
2

)3
64πκ2NΓ

(
ℓ
2

+ 2
)

Γ
(
ℓ+ 3

2

) + O(ε2) . (6.4.45)

For the traceless symmetric operators, we find the following conformal dimensions and
OPE coefficients:

aOTℓ,0 =

(4 −N)(N + 8)Γ
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)
+ O(ε2)

}
(6.4.46)

λϕϕOTℓ,1aOTℓ,1 = ε
(ℓ+ 1)2(N + 8)Γ

(
ℓ+1
2

)3
128πΓ

(
ℓ
2

+ 2
)

Γ
(
ℓ+ 3

2

) + O(ε2) . (6.4.47)

To compare the expansion in eq. (6.4.43) with the one-point functions of ϕ2 and Tab
computed in section 6.4.1, we need to know the bulk OPE coefficients λϕϕϕ2 and λϕϕT .
These can be easily calculated and are given by

λϕϕϕ2 = δab

(√
2

N
− εκ2(N + 2)

2
√

2Nκ1(N + 8)
+ O(ε2)

)
, (6.4.48)

λϕϕT =
√

2 − εκ2√
2κ1(N + 8)

+ O(ε2) . (6.4.49)

With these OPE coefficients and the one-point functions in eq. (6.4.8), we can check the
block expansion in eq. (6.4.43) and see that it indeed reproduces the desired conformal
data of ϕ2 and T ab.

6.4.4 Towards two-point functions of bulk fermions

We conclude this section by commenting on how to generalize the two-point function
analysis when the external operators are fermions. This is an interesting problem as the
ε-expansion was originally designed to capture physics in three dimensions, however four-
dimensional fermions are very different objects compared to three-dimensional fermions.
In order to understand how fermionic correlators in d = 3 are encoded in the ε-expansion,
we can start by calculating them in perturbation theory. We will not bring this calculation
to completion in this section, as the diagrams involved are a lot more challenging than
the ones we have studied so far. Nevertheless we sketch out the computation, and in the
conclusion we discuss in more detail possible future directions.

The disconnected part of the correlator corresponds to the wavefunction renormal-
ization of the bulk fermion, and the diagrams are the first and third ones shown in
figure 6.3. The Feynman diagrams contributing to the connected part of the fermionic
two-point function ⟨⟨ ψ̄i(x1)ψj(x2) ⟩⟩ up to O(ε) are given in figure 6.3 (second and fourth
diagrams).
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Figure 6.3: Contributions to the two-point function ⟨⟨ ψ̄i(x1)ψj(x2) ⟩⟩ up to O(ε). The
defect is denoted by a solid line, scalars by a dotted line, and fermions by solid arrowed
lines. Bulk Yukawa couplings g0 are represented by a red dot and defect couplings h0
by a blue dot. The first and third diagrams correspond to the disconnected part of the
correlator, while the second and fourth are connected and are the diagrams which make
the correlator different to a defectless two-point function.

The Y -diagram in figure 6.3 is the first connected diagram at O(g) ∼ O(
√
ε). It is

given by

= s̄A1 s
B
2 N 2

ψg0h0δ
ij

∫
dτ3

∫
d4x4 /∂1I14 Σ1 /∂2I24I34

= − π g0h0 δ
ij

8(|x⊥1 | + |x⊥2 |)
s̄1

(
/x1/x2

|x⊥1 ||x⊥2 |
+ 1

)
s2 ,

(6.4.50)

where we have used the fermionic star-triangle identity given in eq. (H.0.17). The re-
maining one-dimensional integral is trivial to compute.

At O(ε) we have one H-diagram that connects scalars insertions on the line to the
external fermions through two Yukawa vertices. This diagram contains a challenging ten-
dimensional (finite) integral that we will only solve partially for now. We will however
provide a solution for the 4d bulk integral, i.e. before performing the τ3 , τ4 integrals.
After Wick contractions the diagram gives

= −g20h20 s̄1
∫
dτ3

∫
dτ4

∫
d4x5

∫
d4x6 /∂1I15Σ

1/∂5I56Σ
1/∂6I26I35I46 s2 .

(6.4.51)
We set Σ1 = 1 as in eq. (6.2.4), and one four-dimensional integral can be lifted by using
the fermionic star-triangle identity given in eq. (H.0.17). We then have

= π2 g2h2 s̄1 /∂1

∫
dτ3

∫
dτ4 I24

(∫
d4x5 /x54 I15I25I35I45

)
/x24 s2 . (6.4.52)

The tensor integral between the brackets can be solved by applying tensor decomposition.
There exists many automated tools to perform this step, and here we use the package
X [210]. We find

J123;4 :=

∫
d4x5 /x54 I15I25I35I45 =

2

ϕK
j123;4 , (6.4.53)
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with ϕK the Kibble function defined as

ϕK := Φ1234 + Φ1324 + Φ1423 + Ψ123 + Ψ124 + Ψ134 + Ψ234 , (6.4.54)

Φ1234 = − 1

64π6I12I34

(
1

I12
+

1

I34
− 1

I13
− 1

I14
− 1

I23
− 1

I24

)
, (6.4.55)

Ψ123 = − 1

64π6I12I13I23
, (6.4.56)

and with

j123;4 := ̸f 1234X1234 + /g123;4Y123 + /g124;3Y124 + /g134;2Y134 + /g234;1Y234 . (6.4.57)

The X- and Y -integrals are defined in eq. (H.0.3) and solved in eqs. (H.0.4) and (H.0.8).
The prefactor function ̸f 1234 can be expressed in terms of propagators and read

̸f 1234 = a1234 /x1 + a2341 /x2 + a3412 /x3 + (a4123 − 1)/x4 , (6.4.58)

with

a1234 := − 1
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1

I13
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.

(6.4.59)

The function /g123;4 can also be expressed in an elegant way as

/g123;4 := b123;4/x1 + b231;4/x2 + b312;4/x3 + c123/x4 , (6.4.60)

with

b123;4 :=
1
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1
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+
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I24
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I14
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,

(6.4.61)

c123 :=
1

I212
+

1

I213
+

1

I223
− 2

(
1

I12I13
+

1

I12I23
+

1

I13I23

)
. (6.4.62)

This is as far as we can go for now and we are left with a difficult two-dimensional integral
as well as a slashed derivative with respect to x1. We note however that this integral can
efficiently be computed numerically.

There is another path that one can take in order to try and solve this integral. Instead
of computing the bulk integrals, one could start with the defect integral over τ3 , τ4 and use
e.g. Schwinger parametrization for computing the remaining eight-dimensional integral.
This approach was indeed useful for the computation of the X-diagram in the scalar two-
point case, however here it is not clear at present how these 8 integrals could be solved
efficiently.



Chapter 7

Conclusion

In this thesis we studied a special class of extended objects in conformal field theo-
ries, called conformal defects, using various approaches such as the ε−expansion and the
modern conformal bootstrap. After an introduction to the basics of CFTs in chapter 2
and conformal defects in chapter 3, we started our journey through the main results of
this thesis with the most symmetry-constrained case of superconformal boundaries in 3d
N = 2 superconformal theories in chapter 4. There are two possible choices character-
ized by 2d N = (0, 2) and N = (1, 1) boundary algebras. After performing a careful
superspace analysis of correlators involving chiral fields, we observed in section 4.4 that
the N = (1, 1) choice can be analytically continued in the spacetime dimension. This
allowed us to compute superconformal blocks across dimensions and opened the door for
the ϵ-expansion bootstrap in our supersymmetric setup. We proved uniqueness of the
first two orders in ϵ, and confirmed our general prediction for one specific model using
perturbation theory.

In the next chapter 5, we moved on to defects with higher codimension and without
supersymmetry, which have interesting physical applications. We studied O(2) line de-
fects in a 3d bulk CFT with SO(2) flavor symmetry – the monodromy defect – or O(3)
flavor symmetry – the magnetic line defect – using the conformal bootstrap. After writ-
ing the corresponding crossing equations we applied the numerical machinery in order
to obtain exclusion bounds valid for generic 1d defect CFTs. We concentrated mostly
on two canonical operators: the displacement and the tilt. The displacement operator
is truly universal in that it controls the breaking of translations due to the presence of
the conformal defect. The tilt operator can exist when a conformal defect breaks a bulk
global symmetry, which is still quite a generic phenomenon.

After obtaining general bounds that constrain the landscape of 1d theories, we changed
gears and focused on two models of interest: the monodromy defect studied in [76, 77,
79], and the magnetic line defect described in [84]. In order to guide the numerics
we complemented our bootstrap analysis with explicit analytic calculations in the ε-
expansion. For the monodromy defect, the results had already appeared in [76, 77], while
for the magnetic line defect most of the calculations presented in section 5.3.2 are new.

For the monodromy defect we have kept the gap assumptions to a minimum, using
the dimension of the external operators from the ε-expansion results and imposing the
existence of the displacement operator. Hence the numerical results are quite general, and
they are fully consistent with the analytical data. The results for the magnetic line defect
are more constraining. By imposing gaps coming from the ε-expansion, the allowed region
for certain OPE coefficients shows a series of intriguing cusps. The location of these cusps
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however, does not match the best numerical estimates of the conformal dimension of the
scalar field ∆ϕ1 ≃ 1.55. Nevertheless, we consider this result an encouraging sign. Ways
in which our methods can be improved include higher order terms in the ε-expansion,
and higher precision in the numerics. The hope is that with these improvements, the
region where the magnetic line defect is expected to sit will be constrained even further.

Many applications of CFTs in condensed matter physics involve the presence of
fermions. Chapter 6 is dedicated to the study of defect correlators for line defects in
fermionic models using the ε-expansion. Our setup is a natural generalization of the
localized magnetic field line defect for the O(N) models studied as one of the examples
in chapter 5. Indeed, the definition of the defect as the integral of a scalar along a line
is identical to this defect. The main difference is the presence of fermions in the bulk,
which induce new fermionic excitations on the 1d defect.

We calculated a host of 1d correlators, putting special emphasis on the new fermionic
excitations. Closed-form expressions for four-point functions on the line were obtained
in terms of the unique 1d cross-ratio. These correlators can be used to easily extract
CFT data by means of a conformal block expansion, and can also be used as input in
the numerical bootstrap. The numerical bootstrap for magnetic line defects was initiated
in [85]. The numerical bootstrap plots should accommodate the models studied in this
paper, where the numbers of fermions Nf is a free parameter. One can also use the data
calculated here to steer the numerics, and hopefully solve particular models of interest
using the numerical bootstrap machinery.

In addition to correlators constrained to the line, we also studied how excitations in
the bulk are modified by the presence of the defect. We focused on two-point functions,
which have non-trivial kinematics and depend on two conformal invariants. For O(N)
models this analysis had been done recently in [86, 87]. Due to the similarity of the
Feynman diagram calculation, we could recycle several of their results, in particular the
non-trivial integral presented in eq. (6.4.19).

Conformal defects give access to a host of new conformal data that can be com-
puted perturbatively, or constrained using nonperturbative methods such as the confor-
mal bootstrap. Combining these two approaches can provide guidance in the infinite-
dimensional parameter space of the crossing equations for the conformal bootstrap, and
help to find stronger bounds. One could also try using alternative approaches, such as
Mellin space [57], analytic functionals [32] or the equations of motion method of [169].

Instead of studying a boundary in a 3dN = 2 SCFT, one can also consider a 1/2−BPS
monodromy defect. This setup was bootstrapped in the ε−expansion in [78] using the
defect inversion formula. The bulk R−symmetry is broken to a U(1) symmetry on the
defect, which is comparable to the O(2) symmetry on the line considered in chapter 5.
It would be interesting to study this defect using the numerical bootstrap, as we did in
chapter 5. The monodromy defect now contains a displacement as well as a tilt operator
due to the breaking of the R-symmetry, which in turn sit inside protected multiplets of
the superconformal algebra. Together with the fundamental fields with transverse spin
related to the charge of the monodromy, one can study mixed correlators with three
external operators as has been done in [211, 23, 212] in the context of O(2) and O(3)
models. A similar setup could be applied to a non-supersymmetric monodromy defect
that breaks the bulk O(N) flavor symmetry.

Furthermore, the numerical results of chapter 5 could be extended to line defects
with O(N) flavor symmetry. In addition to the analytical tools used in this work, we
would gain access to the large-N expansion, giving us perturbative results in a different
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regime to compare with the numerics. At the same time, these line defects could break
a bulk O(N + M) symmetry to a defect O(N) symmetry, where N,M ∈ Z. In this
generalization, the tilt will no longer be a vector under O(2) flavour symmetry, but will
be part of another representation.

The results of chapter 6 for the chiral Heisenberg model (N = 3) should also be
captured by the numerical bootstrap results of chapter 5. In fact, the cusp found in
section 5.4 could correspond to a line defect in a fermionic theory instead, for a certain
number of fermions Nf . It would be interesting to explore this further and add correlators
of fermions to the ones of the tilt and fundamental scalar considered at the moment.
This would hopefully add additional constraints that can be used to carve out a region
corresponding to line defects in Yukawa CFTs and distinguish them from O(N) line
defects.

It is known that critical exponents for the Yukawa and O(N) CFTs can be computed
perturbatively in the d = 2 + ε̃ expansion in addition to the d = 4− ε expansion, leading
to the same interacting fixed point in three dimensions. For a line defect in the Gross–
Neveu–Yukawa model, this was shown to be the case as well in [89]. The advantage is
that having access to both the d = 4−ε and the d = 2+ ε̃ expansion can be used to obtain
a two-sided Padé approximation for the conformal data, hence improving the ε-expansion
results obtained so far. A technical difficulty, however, is that one would need to sum an
infinite number of Feynman diagrams already at first order in ε̃.

A direct extension to the research in chapter 6, where we ended with the two-point
functions of scalars in the presence of a line, is to study two-point functions of fermions.
This analysis comes with several conceptual and technical challenges. The question of how
to analytically continue fermions across dimensions has not been studied systematically,
and a naive counting of tensor structures already shows disagreement between three
and four dimensions. This problem opens several avenues for future research. On the
one hand there is the explicit perturbative calculation, which we sketched at the end
of section 6.4. Regardless if one knows how to interpolate fermions across dimensions,
the Yukawa models studied here are well-defined pertubartive CFTs, and correlators
involving fermions exist and can be calculated. On the other hand, one can also study the
kinematics of fermion correlators at a more fundamental level, understanding for example
the structure of conformal blocks and how they depend on the spacetime dimension d. We
should point out that, even though in this paper we focused on a line defect, the questions
raised above are relevant for standard CFTs without defects. For example, the following
bulk four-point function ⟨ψψϕϕ⟩ already exhibits interesting non-trivial behavior across
dimensions [213]. To our knowledge this type of correlator has never been studied using
the ε-expansion.

There are other setups which are similar to the localized magnetic field line defect
considered in chapters 5 and 6 which could be studied in the ε-expansion or using boot-
strap techniques. An example is the same defect in theories with upper critical dimension
dc = 6, where it would correspond to a surface defect. This defect was recently studied
in [102–105], for a defect not breaking the O(N) symmetry in the bulk. Another related
setup is a Wilson line in gauge theories, such as QED. Such a defect was recently studied
in [214]. This defect has some resemblance to a line defect in fermionic theories, and
could also be tackled with either the conformal bootstrap or the ε−expansion.

A longer term goal is to include multipoint correlators in the bootstrap analyses pre-
sented in this thesis; this is a program that has been underexplored, although significant
progress can be made using Calogero-Sutherland technology [215], and multipoint corre-



134 CHAPTER 7. CONCLUSION

lators have been studied for operators on a Wilson line in N = 4 SYM [216, 217] and in
the presence of a boundary [68, 52, 218]. Finally, the study of free theories in the presence
of interacting defects has gotten some attention recently; in particular the results of [68]
suggest the existence of a new conformal boundary condition for the free scalar field. It
would be interesting to repeat their analysis in a supersymmetric setup or in a setup with
fermions, either for boundaries or higher codimension defects.



Appendix A

Details on three-dimensional
boundaries

A.1 Conventions

In section 4.3 we work in Lorenzian signature with mostly plus metric ηµν =
diag(−1,+1,+1). The gamma matrices are defined in terms of the identity matrix 1
and Pauli matrices σi as

(γµ)αβ ≡
(
−1αβ, (σ

3)αβ, (σ
1)αβ

)
, (γµ) β

α = (γµ)αγϵ
γβ , (γµ)αβ = ϵαγ(γµ) β

γ . (A.1.1)

With these conventions the gamma matrices are real and symmetric. Here and in what
follows we are raising and lowering spinor indices as θα = ϵαβθβ and θα = ϵαβθ

β, where

ϵ12 = 1, ϵ12 = −1 . (A.1.2)

The contraction of two spinors is defined as θ2 = ϵαβθ
αθβ. Finally, the spacetime Levi-

Civita tensor is defined by:
ϵ012 = −1, ϵ012 = 1 . (A.1.3)

A.2 Superconformal algebra

The three dimensional Lorenz group SO(2, 1) is generated by Mµν . A generic element
of the algebra J contains vector indices µ, ν, λ, . . . and spinor indices α, β, . . ., and each
of them transforms under rotations as:

[Mµν ,Jλ...] = i (ηµλJν... − ηνλJµ...) ,

[Mµν ,Jα...] = +
i

2
ϵµνλ(γλ) β

α Jβ...,

[Mµν ,J α...] = − i

2
ϵµνλ(γλ) α

β J β... .

(A.2.1)

With these identities it is easy to write down any commutator involving Mµν . The rest
of the 3d conformal algebra is:

[D,Pµ] = iPµ, [D,Kµ] = −iKµ, [Kµ,Pν ] = −2i (Mµν + ηµνD) . (A.2.2)

The 3d N = 2 superconformal algebra is given by OSP (2|4). Besides the conformal and
R-symmetry generators, it contains four Poincaré supercharges and four superconformal
supercharges that anticommute as

{Qα, Q̄β} = 2(γµ)αβPµ, {Sα, S̄β} = 2(γµ)αβKµ,

{Qα, S̄β} = −i
(
2δ β
α (D + iR) − ϵµνλ(γλ) β

α Mµν

)
,

{Q̄α,Sβ} = −i
(
2δ β
α (D − iR) − ϵµνλ(γλ) β

α Mµν

)
.

(A.2.3)
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The commutation relations between the conformal group and the supercharges are

[D,Qα] =
1

2
iQα, [D,Sα] = −1

2
iSα, [Kµ,Qα] = (γµ)αβSβ, [Pµ,Sα] = −(γµ)αβQβ,

[D, Q̄α] =
1

2
iQ̄α, [D, S̄α] = −1

2
iS̄α, [Kµ, Q̄α] = (γµ)αβS̄β, [Pµ, S̄α] = −(γµ)αβQ̄β .

(A.2.4)

Lastly, all generators are neutral under R-symmetry, except the eight supercharges:

[R,Qα] = −Qα , [R, Q̄α] = Q̄α , [R,Sα] = −Sα , [R, S̄α] = S̄α . (A.2.5)

A.3 Differential operators

In this appendix we present the action of our generators in terms of differential operators
in superspace. We consider an operator O(z) of dimension ∆ and charge r that transforms
under rotations in a representation dictated by matrices sµν , which satisfy the same
commutation relations as Mµν . Then, the generators of the algebra act as:

[D,O(z)] = i

(
∆ + xµ∂µ +

1

2
θα∂α +

1

2
θ̄α∂̄α

)
O(z) , (A.3.1)

[Kµ,O(z)] =
(
− 2i∆xµ − 2ixµx

ν∂ν + ix2∂µ

− ixµ(θα∂α + θ̄α∂̄α) + iϵµνρ(γ
ν) β
α xρ(θα∂β + θ̄α∂̄β)

+ (γµ)αβθ
αθ̄β(θγ∂γ − θ̄γ ∂̄γ) −

i

2
θ2θ̄2∂µ

− 2r(γµ)αβθ
αθ̄β − 2xνsµν − iηµνϵ

νρσsρσθ
αθ̄α

)
O(z) , (A.3.2)

[Mµν ,O(z)] =

(
i

2
ϵµνρ(γ

ρ) β
α (θα∂β + θ̄α∂̄β) + ixµ∂ν − ixν∂µ + sµν

)
O(z) , (A.3.3)

[R,O(z)] =
(
θ̄α∂̄α − θα∂α + r

)
O(z) , (A.3.4)

[Sα,O(z)] =
(
− i(γµ)αβxµ∂β + θ̄αxµ∂µ +

1

2
(γµ)αβ(γν)βγ θ̄

γ(xµ∂ν − xν∂µ)

− θαθ̄β∂β + θ̄αθβ∂β − 2θ̄αθ̄β∂̄β

− i(γµ)βγθ
β θ̄γ θ̄α∂µ + 2∆θ̄α − 2r θ̄α + iϵµνρ(γρ)

α
β θ̄βsµν

)
O(z) , (A.3.5)[

S̄α,O(z)
]

=
(
i(γµ)αβxµ∂̄β − θαxµ∂µ −

1

2
(γµ)αβ(γν)βγθ

γ(xµ∂ν − xν∂µ)

+ θ̄αθβ∂̄β − θαθ̄β∂̄β + 2θαθβ∂β

+ i(γµ)βγ θ̄
βθγθα∂µ − 2∆θα − 2rθα − iϵµνρ(γρ)

α
β θβsµν

)
O(z) . (A.3.6)



Appendix B

Non-supersymmetric conformal
blocks

In this appendix, we derive the non-supersymmetric bulk and boundary blocks for bulk
two-point functions and bulk-boundary-boundary correlators.

B.1 Two-point function

The conformal blocks for a two-point function were first derived in [149] but we will
follow [46] in our approach.

Bulk channel. The bulk-channel blocks can be found by acting on the two-point func-
tion (4.2.7) with the bulk Casimir operator:

C(12)
bulk,bos = −D2 − 1

2
{Kµ,Pµ} +

1

2
MµνMµν . (B.1.1)

The differential operators are well know, but they can also be obtained from section A.3
by setting all Grassmann coordinates to zero. The Casimir eigenvalues is C∆,ℓ = ∆(∆ −
d) + ℓ(ℓ+d−2), but only operators with ℓ = 0 can appear in the bulk OPE. For the bulk
channel, it is convenient to define the blocks in terms of g∆12

∆ (ξ) = ξ(∆1+∆2)/2f∆12
∆ (ξ). The

resulting differential equation is

(Cbulk,bos − C∆,ℓ) ⟨ϕ1(x1)ϕ2(x2)⟩
(2x⊥1 )−∆1(2x⊥2 )−∆2ξ−(∆1+∆2)/2

=

[
4ξ2(ξ + 1)∂2ξ + 2ξ(2ξ − d+ 2)∂ξ

−
(
∆(∆ − d) + ∆2

12ξ
)]
g∆12
∆ (ξ) = 0 ,

(B.1.2)

which is solved by

g∆12
∆ (ξ) = ξ∆/2 2F1

(∆ + ∆12

2
,
∆ − ∆12

2
; ∆ + 1 − d

2
;−ξ

)
. (B.1.3)

Whenever the superscript ∆12 is omitted, it is assumed that ∆12 = 0.

Boundary channel. In the boundary channel, the conformal blocks are eigenfunctions
of the boundary Casimir that acts on a single point

Ĉ(1)
non-susy = −D2 − 1

2
{Ka,Pa} +

1

2
MabMab , (B.1.4)

where the index a, b runs only on directions parallel to the boundary. The eigenvalue of
the boundary Casimir is Ĉ∆,j = ∆(∆ − d + 1) + j(j + d − 1), but once more we have
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to take j = 0 because only scalar operators appear in the BOE of a bulk scalar. The
resulting differential equation is(

Ĉnon-susy − Ĉ∆,0

)
⟨ϕ1(x1)ϕ2(x2)⟩

(2x⊥1 )−∆1(2x⊥2 )−∆2
=

[
ξ(ξ + 1)∂2ξ +

d

2
(2ξ + 1)∂ξ

− ∆̂(∆̂ − d+ 1)

]
f̂∆̂(ξ) = 0 ,

(B.1.5)

which is solved by

f̂∆̂(ξ) = ξ−∆̂
2F1

(
∆̂, ∆̂ − d

2
+ 1; 2∆̂ − d+ 2;−1

ξ

)
. (B.1.6)

B.2 Three-point bosonic blocks

In this section we restrict to d = 3. We start with considering the bosonic correlator

⟨O1(x)Ô2,j(0)Ô3(∞)⟩ =
(xaωa)

j

(x⊥)∆1+∆̂23|xa|j
F3pt(χ), χ =

|xa|2

(x⊥)2
, (B.2.1)

where the second operator has parallel spin j. We used index-free notation to contract
all vector indices, and ωa is a null-vector. We need to evaluate the eigenvalue equation

Ĉ(1)
bos⟨O1(x)Ô2,j(0)Ô3(∞)⟩ = Ĉ∆̂,0⟨O1(x)Ô2,j(0)Ô3(∞)⟩ , (B.2.2)

where Ĉ∆̂,0 is the boundary Casimir eigenvalue when the parallel spin of the exchanged
operator is zero. This gives us the differential equation[

4χ(χ+ 1)∂2χ + 4
(

(∆̂23 + 2)χ+ 1
)
∂χ − ∆̂(∆̂ − 2) + ∆̂23(∆̂23 + 2) − j2

χ

]
f̂ 3pt,∆̂23

∆̂,j
= 0 .

(B.2.3)
The solution to eq. (B.2.3) is once more given by a hypergeometric function

f̂ 3pt,∆̂23

∆̂,j
(χ) = χ− 1

2
(∆̂+∆̂23)

2F1

(1

2

(
∆̂ + ∆̂23 − j

)
,
1

2

(
∆̂ + ∆̂23 + j

)
; ∆̂;− 1

χ

)
. (B.2.4)



Appendix C

More on blocks across dimensions

In this appendix, we provide more details on the derivation of the superconformal blocks
in any number of dimension. In section 4.4 we showed that the supersymmetric part of
the Casimir acting on a two-point function can be written in terms of Q supercharges
acting on the two-point function. Our current goal is to find equivalent expressions where
the supercharges are replaced by a differential operator, for example〈

0
∣∣ [Q−

α̇ , ϕ1(x1)
] [
Q+
α , ϕ̄2(x2)

] ∣∣0〉 ∼ Dx

〈
0
∣∣ϕ1(x1)ϕ̄2(x2)

∣∣0〉 . (C.0.1)

It was proposed in [154] that this can be achieved with supersymmetric Ward identities.
Here we give a quick summary of the strategy. In our setup the supercharges QA and SA
are preserved by the boundary, so the following Ward identities are satisfied:〈

0
∣∣{Qbdy

1 ,
[
Q−

1 , ϕ1(x1)
]
ϕ̄2(x2)

}∣∣0〉 = 0 ,〈
0
∣∣{Qbdy

1 ,
[
Q−

2 , ϕ1(x1)
]
ϕ̄2(x2)

}∣∣0〉 = 0 ,〈
0
∣∣{Qbdy

2 ,
[
Q−

1 , ϕ1(x1)
]
ϕ̄2(x2)

}∣∣0〉 = 0 ,

〈
0
∣∣{Sbdy

1 ,
[
Q−

1 , ϕ1(x1)
]
ϕ̄2(x2)

}∣∣0〉 = 0 ,〈
0
∣∣{Sbdy

1 ,
[
Q−

2 , ϕ1(x1)
]
ϕ̄2(x2)

}∣∣0〉 = 0 .

(C.0.2)

There are other Ward identities that can be considered, but these five are sufficient for
our purposes. At this point, it is hard to continue without an explicit matrix represen-
tation for the Clifford algebra, so we focus on d = 3 where Σµ = (σ3, σ1, σ2). Let us
consider explicitly the simplest Ward identity to show how to replace the supercharges
with differential operators in the general case. With elementary manipulations we find:

0 =
〈
0
∣∣{Qbdy

2 ,
[
Q−

1 , ϕ1(x1)
]
ϕ̄2(x2)

}∣∣0〉
=
〈
0
∣∣{Qbdy

2 ,
[
Q−

1 , ϕ1(x1)
] }
ϕ̄2(x2)

∣∣0〉− 〈0∣∣[Q−
1 , ϕ1(x1)

][
Qbdy

2 , ϕ̄2(x2)
]∣∣0〉

=
〈
0
∣∣[{Q+

2 , Q
−
1

}
, ϕ1(x1)

]
ϕ̄2(x2)

∣∣0〉− 〈0∣∣[Q−
1 , ϕ1(x1)

][
Q+

2 , ϕ̄2(x2)
]∣∣0〉 . (C.0.3)

In our conventions {Q+
2 , Q

−
1 } = P2 + iP3 and also [Pµ,O(x)] = −i∂µO(x), so we conclude〈

0
∣∣[Q−

1 , ϕ1(x1)
] [
Q+

2 , ϕ̄2(x2)
]∣∣ 0〉 = (−i∂2 + ∂3)

〈
0
∣∣ϕ1(x1)ϕ̄2(x2)

∣∣ 0〉 . (C.0.4)

The other Ward identities can be manipulated identically, but unlike the example we
showed they do not decouple, so one has to solve a simple linear system of equations to
obtain the terms we are interested in.

These steps can be automated in Mathematica and applied to all cases of interest
in d = 3, 4. The resulting differential operators Dx depend on xµi and ∂µ,i and take a
complicated looking form. However, we know that the Casimir operator Cbulk/bdy,susy

has to respect conformal invariance, so when we combine all the contributing terms, the
result has to be a differential operator of the cross-ratio ξ. Indeed, in d = 3, 4 we find the
following results:

ixµ12Σ̄
α̇α
µ

〈
0
∣∣[Q−

α̇ , ϕ1(x1)
] [
Q+
α , ϕ̄2(x2)

]∣∣ 0〉→ (
4ξ∂ξ − 2(∆1 + ∆2)

)
G(ξ) ,

ix⊥1
〈
0
∣∣{Q−

1 ,
[
Q−

2 , ϕ1(x1)
]}
ϕ̄2(x2)

∣∣ 0〉→ (−ξ∂ξ − ∆1)F(ξ),

ix⊥1
〈
0
∣∣{Q−

1 ,
[
Q−

2 , ϕ1(x1)
]}
ϕ2(x2)

∣∣ 0〉→ (
−(ξ + 1)∂ξ − ∆1

)
F(ξ) .

(C.0.5)
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From these results we can obtain (4.4.10), (4.4.13) and (4.4.18). Although the interme-
diate differential operators were complicated, the final result takes a remarkably simple
form. Perhaps one could find a more direct method of obtaining these results, and at the
same time make it more manifest that the result is indeed independent of d.



Appendix D

More data on the O(N) monodromy
defect in 3d

In this appendix, we give a more detailed explanation of the calculation of the dimensions
and OPE coefficients given in section 5.3.1 and computed in [77].

D.1 OPE coefficients with the displacement operator

The displacement operator appears in the OPE of two defect modes Ψv×Ψ̄v−1 ∼ D+ · · · .
Hence, we are interested in the correlators involving these defect modes, which are

⟨Ψv(x⃗1)Ψ̄v(x⃗2)Ψv(x⃗3)Ψ̄v(x⃗4)⟩ , ⟨Ψ1−v(x⃗1)Ψ̄1−v(x⃗2)Ψ1−v(x⃗3)Ψ̄1−v(x⃗4)⟩ ,
⟨Ψv(x⃗1)Ψ̄1−v(x⃗2)Ψ1−v(x⃗3)Ψ̄v(x⃗4)⟩ .

(D.1.1)

The results for the single-operator correlators were already computed in [74] for a
Z2 monodromy defect. For correlators with two operators Ψ1 and Ψ2, the anomalous
dimensions of the operators appearing in the OPEs are computed in [77], and from their
results also the OPE coefficients can be readily derived.1 The anomalous dimensions and
first-order corrections to the OPE coefficients appear in the four-point correlator as

⟨Ψα+v(x⃗1)Ψ̄α−s+v(x⃗2)Ψβ−s+v(x⃗3)Ψ̄β+v(x⃗4)⟩ ∈
∑
m

(
|λ(0)

ΨΨ̄Ōs,mα
|2 + ε|λ(1)

ΨΨ̄Ōs,mα
|2
)

×
(
δαβ +

ε

2
∆s,m
αβ ∂m

)
Wd−2+s+2m,0(x⃗i) ,

(D.1.3)

where

W∆,ℓ(x⃗i) =

(
x⃗224
x⃗214

) 1
2
∆12
(
x⃗214
x⃗213

) 1
2
∆34 G∆,ℓ(u, v)

x⃗
1
2
(∆1+∆2)

12 x⃗
1
2
(∆3+∆4)

34

, (D.1.4)

and G∆,ℓ are the conformal blocks as defined in [186]. The variables α, β in eq. (D.1.3)
refer to degeneracies between operators that have the same tree-level conformal dimension
and SO(2)T spin. For the correlator of interest to us, we set s = 1 and since α, β =
0, 1, · · · , s− 1 = 0 [77], we will not have to worry about said degeneracies.

The anomalous dimensions will receive contributions from the logarithmic term of the
four-point correlator, and from the O(ε) term of the dimension of the external operators.

1Note that our conventions differ slightly from those used in [77]; in particular, we normalize the
two-point function as

⟨Ψ̄s1(x⃗1)Ψs2(x⃗2)⟩0 =
δs1,s2

x⃗
2∆s1
12

, (D.1.2)

without an extra factor of C∆s1
that was present in [77]. This does not have any impact on the anomalous

dimensions, but needs to be taken into account when computing the OPE coefficients.
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The anomalous dimension of the external operators was given in eq. 5.3.7, and gives a
contribution of

∆(1);disc = ∆(1)
s1

+ ∆(1)
s2

=
v(v − 1)(N + 2)

2(N + 8)

(
1

|s1|
+

1

|s2|

)
(D.1.5)

to the anomalous dimension of the operators appearing in their OPEs. At tree level,
the four-point correlator is given by the free theory discussed in eq. (5.2.25). At O(ε),
one can compute the correction to the correlator through a contact Witten diagram with
the four defect modes Ψsi as external operators. These diagrams are described by the
well-known D-functions [219, 220, 118]. The first-order correction to the correlator in
eq. (D.1.3) is given by [77]

⟨Ψv(x⃗1)Ψ̄v−1(x⃗2)Ψv−1(x⃗3)Ψ̄v(x⃗4)⟩1 = −πλ∗ ×D∆Ψv ,∆Ψv−1
,∆Ψv−1

,∆Ψv
(x⃗i) , (D.1.6)

where λ∗ ∼ O(ε) is given in eq. (5.3.6). The D-function can be expanded in conformal
blocks as [221, 222]:

D∆s1 ,∆s2 ,∆s3 ,∆s4
(x⃗i) =

∑
m

P
(12)
1 (m, 0)W∆m,0(x⃗i) +

∑
n

P
(34)
1 (n, 0)W∆n,0(x⃗i) . (D.1.7)

Note that since λ∗ ∼ O(ε), we can evaluate the conformal blocks at p = d − 2 = 2, and
the dimensions ∆m = ∆s1 + ∆s2 + 2m contribute at tree level. The coefficients P1(m, 0)
are given in [77].

When ∆s1 + ∆s2 − ∆s3 − ∆s4 = 2k, k ∈ Z, where ∆si are evaluated at tree level, the
coefficients have a divergence and hence contribute to the anomalous dimension. For the
correlator we study, ∆v + ∆v−1 − ∆v−1 − ∆v = 0. In this case, the D-function can be
written as [77]:

D∆s1 ,∆s2 ,∆s3 ,∆s4
(x⃗i) =

∑
m

π
(
Π4
i=1(∆si)m

)
(∆s1 + ∆s2 + 2m− 1)2−m

2(m!)2(∆s1 + ∆s2 + 2m− 1)

( 2

∆s1 + ∆s2 + 2m− 1

+ 2Hm − 2Hm+∆s1+∆s2−2 + 4H2m+∆s1+∆s2−2 −
4∑
i=1

Hm+∆si−1 − ∂m

)
W∆s1+∆s2+2m,0(x⃗i) ,

(D.1.8)

where Hm are harmonic numbers. Setting s1 = s4 = v , s2 = s3 = v− 1, we can extract
the contribution to the anomalous dimension from the logarithmic part:

∆(1);con =
4

10(2 + 2m)
, (D.1.9)

and the O(ε) correction to the OPE coefficients from the non-divergent part, for m = 0:

|λ(1)
ΨvΨ̄v−1O1,0

0,0

|2 =
(N + 2) (2H1−v + 2Hv − 3)

2N(N + 8)
. (D.1.10)

Combining the contribution in eq. (D.1.9) and the contribution in eq. (D.1.5), we get

∆1,m
0,0 =

1

5(1 +m)
− 1

5
, (D.1.11)

such that indeed, for m = 0, ∆1,0
0,0 = 0 and the displacement, a protected operator, does

not get any anomalous dimension.



D.2. THE LEADING SINGLET 143

OPE s ∆(1) λ(1)

Ψv × Ψ̄v−1 1 N+2
(N+8)(2+2m)

− (N+2)
2(N+8)

(N+2)(2H1−v+2Hv−3)
2N(N+8)

Ψv−1 × Ψ̄v−1 0 2(N+2)
(N+8)(3−2v)

− (N+2)v
(N+8)

2(N+2)(2H1−v−H2−2v)
(3−2v)N(N+8)

− 2(N+2)
(3−2v)2N(N+8)

Ψv × Ψ̄v 0 2(N+2)
(N+8)(1+2v)

+ (N+2)(v−1)
(N+8)

2(N+2)(2Hv−H2v)
(1+2v)N(N+8)

− 2(N+2)
(1+2v)2N(N+8)

Table D.1: The ε-expansion results for various operators, m = 0

D.2 The leading singlet

The anomalous dimension of the first singlet in the Ψv×Ψ̄v, or the Ψv−1×Ψ̄v−1 OPE, and
its OPE coefficient, can be computed in the same way as for the Ψv× Ψ̄v−1 OPE. We still
do not encounter degeneracies. The correction coming from the anomalous dimensions
of the external operators is now given by

2∆(1);disc
si

=
v(v − 1)(N + 2)

(N + 8)

1

|si|
, (D.2.1)

and the tree-level dimensions and OPE coefficients of the operators in the Ψsi× Ψ̄si OPE
are given by the free theory results described in eq. (5.2.19). The first-order correction
to the correlator is given by

⟨Ψsi(x⃗1)Ψ̄si(x⃗2)Ψsi(x⃗3)Ψ̄si(x⃗4)⟩1 = −2πλ∗ ×D∆si ,∆si ,∆si ,∆si
(x⃗i) , (D.2.2)

and we can use the same conformal block expansion of the D-functions in eq. (D.1.7).
Since all external dimensions are equal, the relation ∆s1 + ∆s2 − ∆s3 − ∆s4 = 2k, k ∈ Z
holds. Hence, the coefficients P1(m, 0) have a divergence and the D-function is given
by eq. (D.1.8). We extract the contributions to the anomalous dimensions from the
logarithmic part of eq. (D.1.8) and obtain

∆(1);con
v =

2(N + 2)

(N + 8)(1 + 2v)
, ∆

(1);con
v−1 =

2(N + 2)

(N + 8)(3 − 2v)
. (D.2.3)

The O(ε) corrections to the OPE coefficients is now given by

|λ(1)
ΨvΨ̄vO0

|2 =
2(N + 2) (2Hv −H2v)

(1 + 2v)N(N + 8)
− 2(N + 2)

(1 + 2v)2N(N + 8)
, (D.2.4)

|λ(1)
Ψv−1Ψ̄v−1O0

|2 =
2(N + 2) (2H1−v −H2−2v)

(3 − 2v)N(N + 8)
− 2(N + 2)

(3 − 2v)2N(N + 8)
. (D.2.5)

Adding the results from eq. (D.2.3) and eq. (D.2.1), we obtain the following anomalous
dimensions:

∆0,m
0,0 |si=v =

2(N + 2)

(N + 8)(1 + 2v)
+

(N + 2)(v − 1)

(N + 8)
, (D.2.6)

∆0,m
0,0 |si=v−1 =

2(N + 2)

(N + 8)(3 − 2v)
− (N + 2)v

(N + 8)
. (D.2.7)

All results are summarized in table 5.1. We have only considered the Ψs1 × Ψ̄s2 channel.
One can also consider the Ψs1×Ψs2 channel, which contains operators of the form Os,m

α =

Ψα+v(∂⃗
2)mΨs−α−v that have fractional spin s = s1 + s2 = k + 2v ∈ Z + 2v. Since the

anomalous dimensions have been given in [77] and we have shown how to obtain the OPE
coefficients from their results, we will not repeat the calculation for this channel in this
work.
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Appendix E

Crossing vectors for O(2) line defects

In this appendix, we give explicit formulas for the vectors that enter the crossing equa-
tions.

E.1 One complex scalar

The crossing vectors for eq. (5.2.18) read

V⃗ ϕϕ̄
∆,S =

 F−,∆
(−1)SF−,∆
(−1)SF+,∆

 , V⃗ ϕϕ
∆ =

 0
F−,∆
−F+,∆

 , (E.1.1)

where the shorthand notation F±,∆ = F ϕϕϕϕ
±,∆ (ξ) is understood.

E.2 Tilt and displacement

The crossing equations for the tilt and displacement in eq. (5.2.22) are written in terms
of the following crossing vectors:

V⃗ +
∆ =



(
F tt,tt
−,∆ 0
0 0

)
(
F tt,tt
−,∆ 0
0 0

)
(
F tt,tt
+,∆ 0
0 0

)
(

0 0

0 FDD,DD
−,∆

)
(

0 0

0 FDD,DD
−,∆

)
(

0 0

0 FDD,DD
+,∆

)
0(

0 1
2

1
2

0

)
F tt,DD
−,∆(

0 1
2

1
2

0

)
F tt,DD
+,∆



, V⃗ tt̄,−
∆ =



F tt,tt
−,∆

−F tt,tt
−,∆

−F tt,tt
+,∆

0
0
0
0
0
0


, V⃗ DD̄,−

∆ =



0
0
0

FDD,DD
−,∆

−FDD,DD
−,∆

−FDD,DD
+,∆

0
0
0


, (E.2.1)
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V⃗ tt
∆ =



0
F tt,tt
−,∆

−F tt,tt
+,∆

0
0
0
0
0
0


, V⃗ DD

∆ =



0
0
0
0

FDD,DD
−,∆

−FDD,DD
+,∆

0
0
0


, V⃗ tD

∆,S =



0
0
0
0
0
0

(−1)SF tD,tD
−,∆

FDt,tD
−,∆

−FDt,tD
+,∆


. (E.2.2)

E.3 One real and one complex scalar

The crossing equations for one real scalar ϕ1 and one complex scalar ϕ2 appear in
eq. (5.2.23), with crossing vectors

V⃗ +
∆ =



(
F 11,11
−,∆ 0
0 0

)
(

0 0

0 F 22,22
−,∆

)
(

0 0

0 F 22,22
−,∆

)
(

0 0

0 F 22,22
+,∆

)
0(

0 1
2

1
2

0

)
F 11,22
−,∆(

0 1
2

1
2

0

)
F 11,22
+,∆



, V⃗ −
∆ =



0

F 22,22
−,∆

−F 22,22
−,∆

−F 22,22
+,∆

0
0
0


, (E.3.1)

V⃗ 22
∆ =



0
0

F 22,22
−,∆

−F 22,22
+,∆

0
0
0


, V⃗ 12

∆,S =



0
0
0
0

(−1)SF 12,12
−,∆

F 21,12
−,∆

−F 21,12
+,∆


. (E.3.2)

Here we are using F ij,kl
±,∆ = F

ϕiϕj ,ϕkϕl
±,∆ (ξ), and we do not distinguish between ϕ2 and ϕ̄2

because they have the same scaling dimension.
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E.4 Two complex scalars

The crossing equations for two complex scalars given in eq. (5.2.24) are written in terms
of the following crossing vectors:

V⃗∆,S =



(
F 11,11
−,∆ 0
0 0

)
(

(−1)SF 11,11
−,∆ 0

0 0

)
(

(−1)SF 11,11
+,∆ 0

0 0

)
(

0 0

0 F 22,22
−,∆

)
(

0 0

0 (−1)SF 22,22
−,∆

)
(

0 0

0 (−1)SF 22,22
+,∆

)
0
0(

0 1
2

1
2

0

)
F 11,22
−,∆(

0 1
2

1
2

0

)
F 11,22
+,∆(

0 1
2

1
2

0

)
(−1)SF 11,22

−,∆(
0 1

2
1
2

0

)
(−1)SF 11,22

+,∆



, V⃗ 11
∆ =



0

F 11,11
−,∆

−F 11,11
+,∆

0
0
0
0
0
0
0
0
0



, V⃗ 22
∆ =



0
0
0
0

F 22,22
−,∆

−F 22,22
+,∆

0
0
0
0
0
0



, (E.4.1)

V⃗ 12̄
∆,S =



0
0
0
0
0
0

(−1)SF 12,12
−,∆

−(−1)SF 12,12
+,∆

F 21,12
−,∆

−F 21,12
+,∆

0
0



, V⃗ 12
∆,S =



0
0
0
0
0
0

(−1)SF 12,12
−,∆

(−1)SF 12,12
+,∆

0
0

F 21,12
−,∆

−F 21,12
+,∆



. (E.4.2)
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Appendix F

Spinor conventions

In this appendix we describe our conventions for the spinor fields. In the action given in
eq. (6.2.1), the fermions are presented as Dirac fields, which can be decomposed into two
basic Weyl spinors as follows:

ψA =

(
χα
ξ†α̇

)
, ψ̄A =

(
ξα χ†

α̇

)
, (F.0.1)

with α, α̇ = 1, 2. The Weyl spinors are two-component vectors defined as

χ =

(
χ1

χ2

)
, ξ† = (ξ1 ξ2) . (F.0.2)

Spinors with an undotted index α transform as left-handed spinors (1, 0), while right-
handed spinors (0, 1) are complex conjugates of the (1, 0) representation and carry a
dotted index α̇. The dot is here to indicate the transformation property, i.e.

χ†
α̇ = (χα)† . (F.0.3)

Indices can be raised and lowered in the following way:

χα = ϵαβχβ = −ϵβαχβ , (F.0.4)

which implies
χαξα = −χαξα . (F.0.5)

Here the tensor ϵαβ is defined as

ϵ12 = −ϵ21 = ϵ21 = −ϵ12 = +1 , (F.0.6)

and a similar definition can be formulated for dotted indices:

ϵα̇β̇ = ϵαβ , ϵα̇β̇ = ϵαβ . (F.0.7)

For external operators it is convenient to use polarization spinors sA, s̄A in order to
avoid cluttering of the indices. We define

ψi(s, τ) := sAψi,A(τ) , ψ̄i(s, τ) := s̄Aψ̄i,A(τ) , (F.0.8)

and a similar definition holds for the Weyl fermions as well.
The four-dimensional (Euclidean) γ-matrices are defined in the chiral representation

as

(γµ)AB :=

(
0 (σµ)αβ̇

(σ̄µ)α̇β 0

)
, (F.0.9)

where we have introduced

(σµ)αβ̇ :=
(
σ0 , iσi

)
, (σ̄µ)α̇β :=

(
σ0 ,−iσi

)
. (F.0.10)
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The Pauli matrices σ0 , σi are defined as

σ0 = 12 , σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (F.0.11)

The γ-matrices satisfy the Euclidean Clifford algebra

{γµ, γν}AB = 2δµν1AB , (F.0.12)

and we can define an additional γ-matrix as

(γ5)AB :=

(
1 β
α 0
0 −1α̇β̇

)
. (F.0.13)

This definition ensures that γ5 satisfies the following properties:

{γ5 , γµ} = 0 (γ5)† = γ5 , (γ5)2 = 1 . (F.0.14)



Appendix G

More details on the β−functions for
Yukawa CFTs

The general β−function for the bulk coupling constants λijkl,Γi, as well as the anomalous
dimensions, was given in the appendix of [174] up to O(ε2). The renormalization constants
up to O(ε2), are:

Zλ = 1 +
1

(4π)2ε

(
(N + 8)λ

3
+ 8Nfg

2 − 4(N + 8)Nfg
2λ

6(4π)2
− 12Nfg

4

λ
+

12Nfg
6

π2λ

+
4(12 − 5N)Nfg

4

2(4π)2
− (14 + 3N)λ2

6(4π)2

)

+
1

(4π)4ε2

(
− 96Nf (4 + 4Nf −N)

g6

λ
+ 4(N + 8)Nfg

2λ

+ 12Nf (4Nf − 2(N + 4)) g4 +
(N + 8)2

9
λ2

)
+ O(λ3, g6, λ2g2, λg4) , (G.0.1)

Zg = 1 +
1

(4π)2ε

(
κ1g

2 − N + 2

3(4π)2
g2λ− 9N2 − 40N − 32 + 24κ1

8(4π)2
g4 +

N + 2

72(4π)2
λ2
)

+
1

(4π)4ε2

(
(N + 2)(5κ1 − 32)

72(4π)2
g2λ2 +

3κ21
2
g4
)

+ O(λ3, g6, λ2g2, λg4) , (G.0.2)

Zϕ = 1 +
1

(4π)2ε

(
−2Nfg

2 +
4(N + 4)Nf

8(4π)2
g4 − N + 2

72(4π)2
λ2
)

+
1

(4π)4ε2

(
(N − 4)2 − κ21

2
g4
)

+ O(λ3, g6, λ2g2, λg4) , (G.0.3)

Zψ = 1 +
1

(4π)2ε

(
−N

2
g2 +

N(7N + 6(κ1 − 4))

16(4π)2
g4
)
− 1

(4π)4ε2

(
N(N − 4κ1)

8
g4
)

+ O(λ3, g6, λ2g2, λg4) . (G.0.4)

The β−function for the defect coupling was computed up to O(ε2) in [90]. The
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corresponding renormalization factor is given by

Zh = 1 +
1

(4π)2ε

{
λh2

12
− g2λh2Nf

3(4π)2
− (π2 − 6) g4h22Nf

9(4π)2

− g4(N + 4)Nf

4(4π)2
+ g22Nf + λ2

(
−h

2(N + 8)

108(4π)2
− h4

48(4π)2
+

N + 2

72(4π)2

)}

+
1

(4π)4ε2

{
g2λh2Nf

2
− g4h24Nf

3
+ g4 (6Nf + 8 − 2NN) + λ2

(
h2(N + 8)

108
+
h4

96

)}
.

(G.0.5)

Let us look at each model individually.

G.1 Gross–Neveu–Yukawa model (N = 1)

We will start with considering the GNY model, which contains a single scalar field ϕ and
Nf fermions. Hence, the matrix Σa = Σ1 in eq. (6.2.1), which corresponds to Γi in [174],
is given by the identity matrix:

Σ = 1 , Γ1 = g11Nf×Nf ⊗ 1 . (G.1.1)

The β−functions up to O(ε2) were computed in [207] and we adopted the same convention
as [174]:

βGNY
λ = −ελ+

1

(4π)2
(
8g2λNf − 48g4Nf + 3λ2

)
− 1

(4π)4

(
−12g2λ2Nf + 28g4λNf + 384g6Nf −

17λ3

3

)
+ O(λ3, g6, λ2g2, λg4) ,

(G.1.2)

βGNY
g = −g ε

2
+

1

(4π)2

(
g3(4Nf + 6)

2

)
+

1

(4π)4

(
−2g3λ− 3

4
g5(16Nf + 3) +

gλ2

12

)
+ O(g6) .

(G.1.3)

The Wilson-Fisher-Yukawa (WFY) fixed point can be reached for the following values of
the couplings at one loop in ε := 4 − d:

(gGNY
⋆ )2 = (4π)2

(
ε

2κ1
+
ε2(2κ1(κ2 + 288) + 15(4κ2 − 99))

432κ31
+ O(ε3)

)
, (G.1.4)

λGNY
⋆ = (4π)2

{
εκ2
6κ1

+
ε2

216κ31(κ1 + κ2 − 6)

(
− 12κ31(κ2 − 36)

+ 2κ21(97κ2 + 72) + 15κ1(47κ2 − 1188) − 2925κ2 + 40500

)
+ O(ε3)

}
. (G.1.5)
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The β−function for h ≡ h1 is given by

βGNY
h = −hε

2
+

1

(4π)2

(
2g2hNf +

λh3

6

)
+

1

(4π)4

(
4g4h3Nf − g2λh3Nf −

2

3
π2g4h3Nf −

5

2
g4hNf −

λ2h5

12
− λ2h3

4
+
λ2h

12

)
+ O(λ3, g6, λ2g2, λg4) ,

(G.1.6)

leading to the following fixed point at O(ε):

(hGNY
⋆ )2 =

54

κ2
+

ε

2κ21κ
2
2(4κ1(κ2 − 54) + (κ2 − 24)κ2 + 648)

{
(κ1(149κ1 − 816) + 1125)κ32

+ 3
(
κ1
(
−216π2(κ1 − 3) + κ1(105κ1 − 302) + 1545

)
− 4500

)
κ22

− 216
(
κ1
(
3π2(κ1 − 6)(κ1 − 3) + κ1(69κ1 − 112) + 171

)
− 1125

)
κ2

+ 69984(κ1 − 6)(κ1 − 3)κ1

}
+ O(ε2) .

(G.1.7)

G.2 Nambu–Jona-Lasinio–Yukawa model (N = 2)

When we extend the number of scalars to a real scalar and a real pseudoscalar, or one
complex scalar, and keep the number of fermions arbitrary at Nf , we obtain the NJLY
model. The matrix Σa = Σ1,Σ2 is now given by Σ1 = 1,Σ2 = iγ5. The β-functions for λ
and g are given up to two loop orders by [174]:

βNJLY
λ = −ελ+

1

(4π)2

(
10

3
λ2 + 8Nfλg

2 − 48Nfg
4

)
− 1

(4π)4

(
20

3
λ2 − 384Nfg

6 − 8Nfλg
4 +

40

3
Nfg

2λ2
)

+ O(λ3, g6, λ2g2, λg4) , (G.2.1)

βNJLY
g = −ε

2
g +

1

(4π)2
(2Nf + 2) +

1

(4π)4

(
−8

3
g3λ+

1

9
gλ2 + (7 − 12Nf )g5

)
+ O(g7) .

(G.2.2)

The zeros of these β−functions give us the fixed points λ⋆, g⋆ of the NJLY model:

λNJLY
⋆

(4π)2
=

3κ2ε

20κ1
− 9ε2 (3κ31(κ2 − 40) + κ21(160 − 75κ2) + κ1(5000 − 219κ2) + 674κ2 − 9680)

500κ31(κ1 + κ2 − 4)

+ O(ε3) , (G.2.3)

(gNJLY
⋆ )2

(4π)2
=

ε

2κ1
+
ε2(κ1(κ2 + 260) + 36κ2 − 870)

200κ31
+ O(ε3) . (G.2.4)
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The defect β-function is given by

βNJLY
h = − εh

2
+

1

(4π)2

(
2g2hNf +

λh3

6

)
+

1

(4π)4

(
4g4h3Nf − 3g4hNf − g2λh3Nf −

2

3
π2g4h3Nf −

λ2h5

12
− 5λ2h3

18
+
λ2h

9

)
+ O(λ3, g6, λ2g2, λg4) ,

(G.2.5)

which has a fixed point for g⋆, λ⋆ and

(hNJLY
⋆ )2 =

40

κ2
+

ε

15κ21κ
2
2(4κ1(κ2 − 60) + (κ2 − 16)κ2 + 480)

{
6(κ1(187κ1 − 1096) + 1452)κ32

+ 2
(
κ1
(
−2000π2(κ1 − 2) + 3κ1(353κ1 + 1620) + 3708

)
− 34848

)
κ22

− 160
(
κ1
(
25π2(κ1 − 4)(κ1 − 2) + 3κ1(179κ1 − 72) + 2820

)
− 8712

)
κ2

+ 288000(κ1 − 4)(κ1 − 2)κ1

}
+ O(ε2) .

(G.2.6)

G.3 Chiral Heisenberg model (N = 3)

The last model we will consider is the chiral Heisenberg model. It contains three real
scalars and the model is invariant under SO(3) rotations. The matrix Σa = Σ1,Σ2,Σ3 is
given by the Pauli matrices σi:

Σa = σa ⊗ 12 . (G.3.1)

The β−functions for λ and g up to O(ε2) were calculated in [208], together with various
critical exponents. They are given by

βχHλ = − ελ+
1

(4π)2

(
8g2λNf − 48g4Nf +

11λ2

3

)
− 1

(4π)4

(
−44

3
g2λ2Nf − 12g4λNf + 384g6Nf −

23λ3

3

)
+ O(λ3, g6, λ2g2, λg4) ,

(G.3.2)

βχHg = − ε

2
g +

1

(4π)2
(
2g3Nf + g3

)
+

1

(4π)4

(
−10g3λ

3
− 12g5Nf +

47g5

4
+

5gλ2

36

)
+ O(g7) .

(G.3.3)

The corresponding WFY fixed points are

λχH⋆
(4π)2

=
3κ2ε

22κ1
+

ε2

10648κ31(κ1 + κ2 − 2)

(
− 564κ31(κ2 − 44)

+ 6κ21(2951κ2 − 9064) + 57κ1(1027κ2 − 16412) − 74853κ2 + 965052

)
+ O(ε3) ,

(G.3.4)

(gχH⋆ )2

(4π)2
=

ε

2κ1
+
ε2(2κ1(5κ2 + 1232) + 420κ2 − 8151)

1936κ31
+ O(ε3) . (G.3.5)
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The β−function of h is given by

βχHh = − εh

2
+

1

(4π)2

(
2g2hNf +

λh3

6

)
+

1

(4π)4

(
− g2λh3Nf −

2

3
π2g4h3Nf + 4g4h3Nf −

7

2
g4hNf −

λ2h5

12
− 11λ2h3

36
+

5λ2h

36

)
+ O(λ3, g6, λ2g2, λg4) ,

(G.3.6)

with the corresponding fixed point

(hχH⋆ )2 =
22

κ2
+

ε

66κ21κ
2
2(4κ1(κ2 − 66) + (κ2 − 8)κ2 + 264)

{(
κ1

(
7947κ21 + 98706κ1

− 10648π2(κ1 − 1) − 18717
)
− 87732

)
κ22 + 3(κ1(1627κ1 − 8928) + 7311)κ32

− 88
(
κ1
(
121π2(κ1 − 2)(κ1 − 1) + 3κ1(813κ1 + 280) + 18753

)
− 21933

)
κ2

+ 383328(κ1 − 2)(κ1 − 1)κ1

}
+ O(ε2) .

(G.3.7)
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Appendix H

Integrals

We gather in this appendix the integrals useful for the computations performed in this
work. Integrals are computed using dimensional regularization with d = 4 − ε. In our
perturbative computations, we encounter the following integrals:

Y123 :=

∫
ddx4 I14I24I34 , (H.0.1)

X1234 :=

∫
ddx5 I15I25I35I45 , (H.0.2)

H12,34 :=

∫
ddx5

∫
ddx6 I15I25I36I46I56 =

∫
ddx5 I15I25Y345 , (H.0.3)

where Iij corresponds to the scalar propagator in d dimensions (see eq. (6.2.14)). The
three- and four-point massless integrals X and Y are finite in d = 4 and have been solved
analytically [223, 224]. The X-integral is given by

X1234 =
I12I34
16π2

χχ̄D(χ , χ̄) , (H.0.4)

with the Bloch-Wigner function

D(χ, χ̄) :=
1

χ− χ̄

(
2Li2(χ) − 2Li2(χ̄) + logχχ̄ log

1 − χ

1 − χ̄

)
, (H.0.5)

and where the variables χ, χ̄ are defined via

χχ̄ =
I13I24
I12I34

, (1 − χ)(1 − χ̄) =
I13I24
I14I23

. (H.0.6)

In the case where all the external points are aligned (here in the τ -direction), the
X-integral can be expressed as a special limit of the result above:

X1234 =
I12I34
16π2

χ2D(χ , χ)

= −I12I34
8π2

χ

1 − χ
(χ logχ+ (1 − χ) log(1 − χ)) . (H.0.7)

Note that in 1d, X1234 is one degree of transcendentality lower than in higher d, and that
although the prefactor in eq. (H.0.5) implies a divergence in the limit χ̄ → χ, it turns
out to be compensated by the numerator.

The Y -integral can easily be obtained starting with X1234 and sending one of the
external points to ∞:

Y123 = lim
x4→∞

4π2x24X1234 . (H.0.8)

For the 1d limit mentioned above, this gives

Y123 = − I12
8π2

(
τ12
τ13

log
τ12
τ13

+
τ23
τ13

log
τ23
τ13

)
, (H.0.9)
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with τij := τi − τj. It is also useful to consider derivatives of the Y -integral, e.g.

∂21Y123 = −I12I13 , (H.0.10)

(∂1 · ∂2)Y123 =
1

2
(I12I13 + I12I23 − I13I23) . (H.0.11)

To the best of our knowledge there exists no analytical solution for the H-integral.
However several identities relate derivatives of the H-integral to its X and Y siblings [225,
226]:

∂21H12,34 = −I12Y134 , (H.0.12)

(∂1 · ∂2)H12,34 =
1

2
[I12(Y134 + Y234) −X1234] . (H.0.13)

Other combinations can be obtained by using

H12,34 = H21,34 = H12,43 = H34,12 . (H.0.14)

In our calculations we only encounter the H-integral in the following special ”spinor”
combinations:

(F13,24)
AB := (/∂1(/∂1 + /∂3)/∂2)

ABH13,24 , (H.0.15)

(G12,34)
ABCD := (/∂1/∂2)

AB(/∂3/∂4)
CDH12,34 , (H.0.16)

where we have written the matrix indices explicitly to avoid confusion.
The F -integral is finite and can be solved by using integration by parts, the fermionic

star-triangle relation ∫
ddx4 /∂4I14I24/∂4I34 = −4π2/x12/x23I12I13I23 , (H.0.17)

and going to a conformal frame. For the case where all the external points are aligned,
this gives

F13,24
τ4→∞∼ γ0

4
I34∂τ1Y123

=
γ0

τ 312τ
2
34

1

512π6

χ

1 − χ

(
χ2 logχ+ (1 + χ)(1 − χ) log(1 − χ)

)
, (H.0.18)

where we have suppressed the indices for compactness.
The G-integral is also finite and can be solved by observing that the correlator given

in (6.3.68) for the case N = 1 needs to have the following structure in terms of spinor
matrices:

GABCD
12,34 =

(γ0)AB(γ0)CD

τ 312τ
2
34

g12,34(χ) . (H.0.19)

This implies

g12,34(χ) =
1

4
τ 312τ

3
34(∂1 · ∂2)(∂3 · ∂4)H12,34 , (H.0.20)

which, after using the identities given in eqs. (H.0.11) and (H.0.13), turns into

g12,34(χ) =
1

2048π6

χ

(1 − χ)2
(
(1 − χ)(2 − χ) + χ2(2 − χ) logχ+ χ(1 − χ)2 log(1 − χ)

)
.

(H.0.21)
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The integrals described above are log-divergent in the limit where two external points
coincide. In particular, we encounter repeatedly the integral Y112 in self-energy diagrams,
which reads:

Y112 = − 1

32π4τ 212

(
1

ε
+ ℵ + log τ 212 + O(ε)

)
. (H.0.22)

Another divergent integral that appears in two-point fermion loops is the following:

B12 :=

∫
ddx3

∫
ddx4 I13I24/∂3I34/∂3I34 . (H.0.23)

This integral is easy to relate to Y112 by using γ-matrix identities and integration by
parts:

B12 =
1

2

∫
ddx3

∫
ddx4 I13I24∂

2
3I

2
34

=
1

2
Y112 , (H.0.24)

where in the final result there is a 4 × 4 identity matrix implied. Note that in the last
line we have made use of Green’s equation (6.2.16). In the course of the computation, a
quadratic divergence dropped out as dimensional regularization is insensitive to it.
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[76] A. Söderberg, Anomalous Dimensions in the WF O(N) Model with a Monodromy
Line Defect, JHEP 03 (2018) 058, [arXiv:1706.02414].

[77] S. Giombi, E. Helfenberger, Z. Ji, and H. Khanchandani, Monodromy defects from
hyperbolic space, JHEP 02 (2022) 041, [arXiv:2102.11815].

[78] A. Gimenez-Grau and P. Liendo, Bootstrapping Monodromy Defects in the
Wess-Zumino Model, arXiv:2108.05107.

[79] L. Bianchi, A. Chalabi, V. Procházka, B. Robinson, and J. Sisti, Monodromy
defects in free field theories, JHEP 08 (2021) 013, [arXiv:2104.01220].

[80] D. E. Berenstein, R. Corrado, W. Fischler, and J. M. Maldacena, The Operator
product expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D
59 (1999) 105023, [hep-th/9809188].

[81] A. Allais and S. Sachdev, Spectral function of a localized fermion coupled to the
Wilson-Fisher conformal field theory, Phys. Rev. B90 (2014), no. 3 035131,
[arXiv:1406.3022].

[82] A. Allais, Magnetic defect line in a critical ising bath, arXiv:1412.3449.

[83] F. P. Toldin, F. F. Assaad, and S. Wessel, Critical behavior in the presence of an
order-parameter pinning field, Physical Review B 95 (jan, 2017).

[84] G. Cuomo, Z. Komargodski, and M. Mezei, Localized magnetic field in the O(N)
model, JHEP 02 (2022) 134, [arXiv:2112.10634].

http://arxiv.org/abs/2009.03336
http://arxiv.org/abs/2111.04747
http://arxiv.org/abs/2111.03071
http://arxiv.org/abs/2103.03132
http://arxiv.org/abs/2206.06326
http://arxiv.org/abs/1304.4110
http://arxiv.org/abs/1310.5078
http://arxiv.org/abs/1607.05551
http://arxiv.org/abs/1706.02414
http://arxiv.org/abs/2102.11815
http://arxiv.org/abs/2108.05107
http://arxiv.org/abs/2104.01220
http://arxiv.org/abs/hep-th/9809188
http://arxiv.org/abs/1406.3022
http://arxiv.org/abs/1412.3449
http://arxiv.org/abs/2112.10634


166 BIBLIOGRAPHY

[85] A. Gimenez-Grau, E. Lauria, P. Liendo, and P. van Vliet, Bootstrapping line
defects with O(2) global symmetry, JHEP 11 (2022) 018, [arXiv:2208.11715].

[86] A. Gimenez-Grau, Probing magnetic line defects with two-point functions,
arXiv:2212.02520.

[87] L. Bianchi, D. Bonomi, and E. de Sabbata, Analytic bootstrap for the localized
magnetic field, arXiv:2212.02524.

[88] T. Nishioka, Y. Okuyama, and S. Shimamori, The epsilon expansion of the O(N)
model with line defect from conformal field theory, JHEP 03 (2023) 203,
[arXiv:2212.04076].

[89] S. Giombi, E. Helfenberger, and H. Khanchandani, Line Defects in Fermionic
CFTs, arXiv:2211.11073.

[90] W. H. Pannell and A. Stergiou, Line Defect RG Flows in the ε Expansion,
arXiv:2302.14069.

[91] J. Barrat, P. Liendo, and P. van Vliet, Line defect correlators in fermionic CFTs,
arXiv:2304.13588.
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