
Stationary properties and dynamical
response of few-body systems at low

temperatures

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und
Naturwissenschaften,

Fachbereich Physik,

der Universität Hamburg

vorgelegt von
Georgios Bougas

geboren am 16.01.1993 in Iraklion

Hamburg
2023



Gutachter/innen der Dissertation: Prof. Dr. Peter Schmelcher
Prof. Dr. Dieter Jaksch

Zusammensetzung der Prüfungskommission : Prof. Dr. Peter Schmelcher
Prof. Dr. Dieter Jaksch
Prof. Dr. Daniela Pfannkuche
Priv. Doz. Dr. Tim Laarmann
Prof. Dr. Henning Moritz

Vorsitzende/r der Prüfungskommission: Prof. Dr. Daniela Pfannkuche

Datum der Disputation: 19/12/2023

Vorsitzender des Fach-Promotionsausschusses PHYSIK : Prof. Dr. Günter H. W. Sigl

Leiter des Fachbereichs PHYSIK: Prof. Dr. Wolfgang J. Parak

Dekan der Fakultät MIN: Prof. Dr.-Ing. Norbert Ritter



iii

“I am afraid that our eyes are bigger than our stomachs, and that we have more
curiosity than understanding. We grasp at everything, but catch nothing except wind.”

Michel de Montaigne





v

To my parents





vii

Abstract
Quantum gases at low temperatures provide an ideal testbed for generating, ma-
nipulating and imaging strongly interacting systems. This is granted by the ability
to tune many parameters, including the effective interatomic interactions as well as
the particle number or the dimensionality. Such good grasp over these parameters
renders the out-of-equilibrium dynamics of ultracold gases tractable and even con-
trollable. Few-body bound state formation is a fundamental dynamical process of
ultracold atoms, and novel phases emerge when a macroscopic number of molecules
is generated. Moreover, the out-of-equilibrium properties of few atoms embedded in
a many-body medium are crucial for understanding the emergence of quasiparticles.

The present cumulative thesis aims to provide insights on the stationary corre-
lation properties of few-body bound states, as well as their dynamical formation by
employing time-dependent protocols. Short-range correlation observables are utilized
as signatures for efficiently populating and detecting few-body bound states upon
considering several dynamical schemes. The latter involve abrupt ramps (quenches),
or modulations of the interaction strengths. Such protocols are also implemented to
efficiently control the correlated dynamics of few impurities immersed in a bosonic
medium.

Within the first part, analytical formulas are derived for the short-range correlation
observables of two and three particles in two dimensions pertaining to all eigenstates
at arbitrary interaction strength. We provide a generalized framework for the treat-
ment of three-body correlations of arbitrary three-body binary mixtures in a harmonic
trap. These correlation properties are subsequently utilized to assess the dynamical
contributions of few-body bound states. For two confined atoms, the two-body bound
state is significantly populated following interaction quenches from the repulsive to
the attractive regime and vice versa. It is found that the system is perturbed the
most when considering quenches from finite values to the vicinity of zero interactions.

For three particle binary mixtures confined in two dimensions, we come up with
a dynamical protocol for selectively exciting distinct classes of eigenstates, such as
trimers, atom-dimers and atom-atom-atom eigenstates. The mixtures are initialized in
a non-interacting state with variable spatial extent. The initial width acts as a control
parameter maximizing the dynamical contribution of final eigenstates possessing a
comparable spatial extent to the initial state. For initial widths smaller than the
oscillator length, trimers and atom-dimers are predominantly populated.

With all the insights on few-body models, we set out to address the association
and decay mechanisms of a recently realized protocol that generated a coherent su-
perposition of an Efimov trimer with an atom-dimer in thermal gases. We solve
the time-dependent three-boson problem in a three dimensional harmonic trap, upon
considering a sequence of modulated interaction strength. It is found that the super-
position of the Efimov trimer with the atom-dimer is robust against thermal effects.
Moreover, additional superpositions of the two latter states with the first eigenstate
describing three interacting atoms in a trap are observed. Furthermore, the manifested
interference fringes in the trimer probability display a decay time which is twice as
long as the intrinsic lifetime of the Efimov state. In that regard, our results provide a
sound theoretical interpretation of the decay mechanisms observed in the experiment.

In the second part of this thesis, we study the out-of-equilibrium response of few in-
teracting impurities embedded in a many-body bosonic environment. The dynamics is
initiated by driving the interspecies interaction strength across the miscible-immiscible
phase transition. We identify regimes where the impurities are expelled from the bath,
or they remain trapped within, performing a breathing motion. These regimes depend
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on the initialization of the setup, whether it lies in the miscible or immiscible phase,
as well as the driving frequency. The dynamics of the impurities in both scenaria are
quite well understood within an effective potential picture, incorporating interspecies
correlations induced by the bath.
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Zusammenfassung
Quantengase bei niedrigen Temperaturen bieten ein ideales Testfeld für die Erzeu-

gung, Manipulation und Abbildung stark wechselwirkender Systeme. Dies wird er-
möglicht durch die Möglichkeit viele Parameter einzustellen, darunter die effektiven
interatomaren Wechselwirkungen sowie die Teilchenzahl oder die Dimensionalität.
Die gute Beherrschung dieser Parameter macht die Dynamik von ultrakalten Gasen
außerhalb des Gleichgewichts nachvollziehbar und sogar kontrollierbar. Die Bildung
von gebundenen Zuständen mit wenigen Teilchen ist ein grundlegender dynamischer
Prozess bei ultrakalten Atomen, und neue Phasen entstehen, wenn eine makroskopis-
che Anzahl von Molekülen erzeugt wird. Darüber hinaus sind die Eigenschaften von
wenigen Atomen, die in einem Vielteilchenmedium eingebettet sind, entscheidend für
das Verständnis der Entstehung von Quasiteilchen.

Die vorliegende kumulative Dissertation zielt darauf ab, Einblicke in die sta-
tionären Korrelationseigenschaften von gebundenen Zuständen mit wenigen Körpern
sowie in deren dynamische Entstehung zu geben, indem durch die Verwendung zeitab-
hängiger Protokolle. Kurzreichweitige Korrelationsobservablen werden genutzt als
Signaturen für die effiziente Besiedlung und Erkennung von gebundenen Zuständen
mit wenigen Körpern unter Berücksichtigung verschiedener dynamischer Schemata.
Letztere beinhalten abrupte Rampen (Quenches), oder Modulationen der Wechsel-
wirkungsstärken. Solche Protokolle werden auch eingesetzt, um die korrelierte Dy-
namik von wenigen Verunreinigungen in einem bosonischen Medium effizient zu kon-
trollieren.

Im ersten Teil werden analytische Formeln für die Kurzstreckenkorrelationsob-
servablen von zwei und drei Teilchen in zwei Dimensionen für alle Eigenzustände bei
beliebiger Wechselwirkungsstärke abgeleitet. Wir stellen einen verallgemeinerten Rah-
men für die Behandlung von Dreikörper-Korrelationen beliebiger Dreikörper-Binärgemische
in einer harmonischen Falle bereit. Diese Korrelationseigenschaften werden anschließend
genutzt, um die dynamischen Beiträge von gebundenen Zuständen mit wenigen Kör-
pern zu bewerten. Bei zwei eingeschlossenen Atomen ist der gebundene Zweikör-
perzustand nach dem Wechselwirkungsquench vom abstoßenden in den anziehenden
Bereich und umgekehrt stark bevölkert. Es zeigt sich, dass das System am stärk-
sten gestört wird, wenn man Quenches von endlichen Werten in der Nähe von Null-
Wechselwirkungen betrachtet.

Für binäre Dreiteilchenmischungen, die in zwei Dimensionen eingeschlossen sind,
entwickeln wir ein dynamisches Protokoll zur selektiven Anregung verschiedener Klassen
von Eigenzuständen wie Trimere, Atom-Dimere und Atom-Atom-Atom-Eigenzustände.
Die Gemische werden in einem nicht interagierenden Zustand mit variabler räumlicher
Ausdehnung initialisiert. Die Anfangsbreite wirkt als Kontrollparameter, der den dy-
namischen Beitrag der endgültigen Eigenzustände maximiert, die eine vergleichbare
räumliche Ausdehnung wie der Anfangszustand besitzen. Für Anfangsbreiten, die
kleiner sind als die Oszillatorlänge, werden überwiegend Trimere und Atom-Dimere
besiedelt.

Mit all den Erkenntnissen über Wenig-Körper-Modelle haben wir uns die Assoziations-
und Zerfallsmechanismen eines kürzlich realisierten Protokolls zu untersuchen, das
eine kohärente Superposition eines Efimov-Trimers mit einem Atom-Dimer in ther-
mischen Gasen erzeugt. Wir lösen das zeitabhängige Drei-Bosonen-Problem in einer
dreidimensionalen harmonischen Falle, indem wir eine Sequenz modulierter Wechsel-
wirkungsstärken berücksichtigen. Es zeigt sich, dass die Überlagerung des Efimov-
Trimers mit dem Atom-Dimer robust gegen thermische Effekte ist. Außerdem sind
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zusätzliche Überlagerungen der beiden letztgenannten Zustände mit dem ersten Eigen-
zustand der drei wechselwirkende Atome in einer Falle beschreibt, beobachtet werden.
Darüber hinaus sind die manifestierten Interferenzstreifen in der Trimer-Wahrscheinlichkeit
eine Abklingzeit auf, die doppelt so lang ist lang wie die intrinsische Lebensdauer des
Efimov-Zustands ist. In dieser Hinsicht liefern unsere Ergebnisse eine eine fundierte
theoretische Interpretation der im Experiment beobachteten Zerfallsmechanismen.

Im zweiten Teil dieser Arbeit untersuchen wir das Verhalten von wenigen wechsel-
wirkenden Verunreinigungen, die in einer vielteiligen bosonischen Umgebung eingebet-
tet sind, außerhalb des Gleichgewichts. Die Dynamik wird die Wechselwirkungsstärke
zwischen den Spezies über den Phasenübergang mischbar-unmischbar Phasenüber-
gang. Wir identifizieren Regime, in denen die Verunreinigungen aus dem Bad aus-
getrieben werden, oder sie bleiben darin gefangen und führen eine atmende Bewegung
aus. Diese Regime hängen von der Initialisierung des Aufbaus, ob er in der mischbaren
oder nicht mischbaren Phase liegt, sowie von der Antriebsfrequenz ab. Die Dynamik
der Verunreinigungen in beiden Szenarien ist im Rahmen eines effektiven Potential-
bildes recht gut verstanden, wobei durch das Bad Korrelationen, die durch das Bad
induziert werden.
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Chapter 1

Introduction

A
dvances in laser cooling of atoms [1–6] granted access to the quantum degen-
eracy limit and the formation of Bose-Einstein condensates [7, 8] initially,
and degenerate Fermi gases later on [9–11]. These milestones were followed
by improved techniques for loading, cooling, imaging and controlling gases,

further establishing the field of ultracold quantum gases [12–14]. The key advantage
of such settings is the ability to control a plethora of parameters. First and foremost,
the effective interatomic interactions can be arbitrarily tuned by means of external
electromagnetic fields, taking advantage of Fano-Feshbach resonances [15–17]. This
remarkable technique allowed the creation of strongly interacting Bose and Fermi gases
[18–23].

Moreover, the control over external electromagnetic fields [2] leads to the realiza-
tion of arbitrary trapping geometries, such as harmonic oscillator traps and optical
lattices [24–26]. By tuning the electromagnetic fields, different trapping frequencies
along the three spatial dimensions can be generated. For sufficiently high trapping
frequencies, the cold atoms are essentially confined kinematically in two or one spatial
direction [27]. In this way, low dimensional ultracold quantum systems can be realized
[28, 29], exhibiting novel phases [30] and strong correlations [31, 32].

The manipulation of different atomic species as well as the control of their particle
number is nowadays state of the art. Indeed, advances in trapping techniques have
led to the realization of binary mixtures of any quantum statistics, i.e. bosons and
fermions [33–37]. In these setups, the interplay between inter- and intraspecies inter-
actions leads to phase separation phenomena [38, 39], coexistence of non-linear soliton
structures in both components [40–44], and stabilization due to quantum fluctuations
[45–50]. Furthermore, novel methods [51] allowed the observation of phenomena such
as the formation of degenerate Fermi sea [52], Cooper pairing [53], and superfluidity
[54] from a few-to-many particles bottom-up approach. At the few-atom limit, the
advent of optical tweezers [55–58] provided reliable trapping schemes down to single
atoms [59–62], leading to the controllability of quantum states with very high fidelity
[63–65].

Given all of this progress, understanding the properties of few cold atoms serves
a twofold goal. First, their scattering aspects are crucial for describing resonance
mechanisms [15], recombination processes [66], and determining regimes where few-
body bound state formation occurs [67, 68]. Second, the small number of degrees
of freedom render these few-body setups analytically and numerically tractable for
weak and strong interactions [69–75]. This is especially the case for two and three
harmonically confined atoms, where the complete energy structure as well as the
corresponding eigenstates are known [69, 70, 72, 76]. The energy landscape of two cold
atoms was in fact explored experimentally by confining two fermions with opposite
spin in a single site of an optical lattice [62, 77]. The results displayed excellent
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agreement with the theoretical predictions. This was also the case for two trapped
atoms stemming from two different atomic species [78].

Few-body settings provide a very useful theoretical interpretation toolbox for the
behavior of quantum gases, given their analytical or semi-analytical treatment. For
instance, insights from the three boson problem helped identifying three-body bound
states as the culprit for particle losses in a strongly interacting Bose gas [79]. More-
over, two interacting bosons in a one dimensional trap provided the necessary frame-
work for further investigating the breathing mode spectrum in a few-to-many atom
crossover [80]. In a similar vein, the energy levels of two atoms in a two dimensional
trap provided a reference point for the breathing frequency of a strongly interacting
two component Fermi gas [81]. Moreover, the analytical solutions of two confined
particles with an effective mass were utilized to model the dynamical properties of
two impurities embedded in a mesoscopic bosonic gas in one dimension [82].

Two dimensional few-body models however, have not been widely used so far.
Their behavior is not so much explored as compared to other dimensionalities [244,
245], especially their dynamical aspects. Two dimensional few atom systems how-
ever possess unique traits such as the existence of a two-body bound state for all
interactions [83, 84]. Moreover, the study of three-body bound states is of particular
importance since they are more stable to three-body losses compared to three dimen-
sions [85, 86]. In [B1–B3] we aim to provide further insights on the stationary and
dynamical properties of two and three atoms confined in two dimensional harmonic
traps. Their correlation properties are investigated for a wide range of interaction
strengths. Furthermore, it is shown that the two-body bound state has an enhanced
contribution in the dynamical response of the system following an interaction strength.

Bound state formation is a representative example where few-body setups are
especially appealing for modeling such processes due to their tractability. On the
two-body level, sweeps of external magnetic fields have been employed to associate
weakly bound molecules (Feshbach dimers) out of atoms, a process called magnetoas-
sociation [87–92]. More general time-dependent protocols have been utilized, such as
modulated magnetic fields [93–95], achieving atom-molecule coherence [96, 97] and
enhanced molecular fractions [98]. The dynamics of two cold atoms led to the iden-
tification of regimes where efficient molecular association is achieved with respect to
the parameters of these protocols, such as the amplitude of the magnetic fields or
the modulation duration [99–102]. Further dynamical protocols were proposed, where
the interaction strengths are quenched to strong interactions, subsequently swept to
smaller values [103] after a delay time. The two-body analysis revealed substantial
molecular conversion for larger delay times.

The preparation and out-of-equilibrium dynamics [18, 21, 79, 104] of strongly
interacting Bose ultracold gases sparked a lot of interest in treating the dynamics from
a few-body perspective. It was shown that the short-time quench dynamics of two
atoms yielded identical signatures for bound state formation with the respective short-
time many-body description of a Bose-Einstein condensate [105, 106]. On the three
particle level, the respective models have been proven especially fruitful for unraveling
three-body bound state formation in strongly interacting Bose gases. These states
are usually detected from resonant features in loss signals [107–112], and they are
metastable. In the experimental work [79] however, a substantial population of trimers
was observed by quenching the interactions to very strong values. Following this
breakthrough, three-atom models shed light onto the dynamical buildup of three-body
correlations occurring at strong interactions [113–117]. One of the key results is that
trimer formation is enhanced when the length scale stemming from the density of the
gas is comparable to the size of the associated trimer. Inspired by this observation, we
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have conceived a dynamical protocol for selectively populating particular eigenstates
in a three-body mixture confined in two dimensions [B4]. The protocol relies on the
separation of spatial extent between three-body, two-body bound states, as well as
atom-atom-atom eigenstates.

Employing modulated magnetic fields, it was shown that trimers in thermal gases
not only could be associated, but also manipulated by forming coherent superpo-
sitions with atom-dimers [118, 119]. This dynamical protocol allowed for the high
precision measurement of the binding energy of the first excited trimer state at repul-
sive interactions. The energy was extracted from the interference fringes manifested
in the particle loss signal. The latter displayed a damping time, which was very long
compared to typical lifetimes of such trimer states. In [B5] we set out to under-
stand the association and decay mechanisms of this protocol, by solving the three
particle problem with modulated interactions. We discovered that the superpositions
of trimers with atom-dimers and atom-atom-atom eigenstates lead to a decay time,
which is twice as long as the lifetime of trimers. In this way a plausible explanation
is provided for the long coherence times observed in the experiment.

The ability to model bound state formation in cold gases by utilizing few-body
setups is certainly a remarkable feature. There is however a more fundamental con-
nection between few- and many-body systems. This is granted by the so-called two-
and three-body contacts [67, 120–126]. The latter stem from the behavior of a system
when two or three particles approach at very short distances. The contacts are de-
fined through a multitude of relations, involving macroscopic observables such as the
asymptotic expansion of the one-body density in momentum space [13, 120, 127], the
rate of change of the energy with respect to interactions [123], and the decay width
due to few-body losses [128, 129] to name only a few. These relations are universal,
meaning that they equally apply to arbitrary particle number, quantum statistics or
interaction strengths [13, 67].

The fact that the contacts are defined through a plethora of relations with seem-
ingly unrelated observables is of course a unique trait. Utilizing the relations regarding
the rate of change of the energy, the asymptotic tail of the transition rate in radiofre-
quency spectra, and a generalized virial theorem, the two-body contact for a two
component Fermi gas was extracted from three independent measurements [130]. Its
value was consistent for all three applied methods. Further experimental efforts fo-
cused on measuring the two-body contact through these relations, primarily in two
component Fermi gases [130–132]. The three-body contact satisfies a smaller num-
ber of universal relations compared to the two-body one and it is more challenging
to measure [131]. However, employing a universal relation regarding the asymptotic
expansion of the transition rate in radiofrequency spectra, the three-body contact has
been measured in a strongly interacting Bose gas [104].

The knowledge of the contacts therefore is sufficient for specifying certain macro-
scopic properties of a general ultracold system. These involve the energy [121], pres-
sure [122, 124, 125], virial theorems [122, 133], static structure factor [134–137] and
asymptotic expansions of radiofrequency spectra [138, 139]. The contacts themselves
stem from the behavior of a setup when two or three particles approach at very short
distances, and thus quantify short-range few-body correlations. In that regard, the
contacts are microscopic quantities linked to macroscopic observables [67]. The con-
tacts may assume different values in different settings, the relations that they satisfy
however hold for any system, hence their universality.

The fact that the contacts quantify short-range few-body correlations makes them
ideal diagnostics tools for the formation of bound states. As mentioned above, the
three-body models used in [113, 115] employed the three-body contact to identify
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regimes where enhanced trimer population has been achieved. Moreover, the oscil-
latory behavior of the two-body contact in strongly interacting quenched Bose gases
[105] has been attributed to the presence of the Feshbach dimer in the dynamics.
In [B1] we took advantage of this diagnostics tool to assess the contribution of the
two-body bound state in the quench dynamics of two particles confined in two dimen-
sions. Moreover, we identified a population of atom-dimers from the peaked structure
of the two-body contact following an interaction quench in two dimensional three atom
binary mixtures [B4].

Apart from providing a signature for bound state formation, the contacts were
applied to other scenaria as well. For instance the two-body contact of strongly
interacting two component fermions has been linked [140] to the deviation of their
breathing frequency from twice the trapping frequency. This feature is known as
the breathing frequency anomaly present in two dimensions [141–144]. Moreover the
photoassociation rate for populating tightly bound molecules in strongly interacting
two component Fermi gases [145] was related to the value of the two-body contact
[146–148].

Despite the determination of certain macroscopic observables for arbitrary ultra-
cold systems, the contacts fail to describe collective excitations. The reason is that
the contacts are microscopic quantities stemming from the short-distance behavior of
two and three particles, whereas collective phenomena arise from the many-particle
character of a system. In order to address such processes a many-body description is
required. A characteristic and well studied example is the dressing of impurity parti-
cles by collective modes of the environment in which they are embedded. Their bare
properties such as their mass are modified, introducing the concept of the quasipar-
ticle [149–152]. Ultracold atoms turned out to be ideal platforms for studying these
setups [153–157], due to the controllability of the interactions by means of Feshbach
resonances, in contrast to condensed matter settings. The stationary properties of
such quasiparticles, such as energy [156, 157], effective mass [158–160], and lifetime
[154, 157] have been investigated both in bosonic and fermionic media.

Embedding few interacting impurities in a many-body environment opens up the
possibility of investigating induced interactions between them [82, 161, 162] and in-
medium bound state formation. A prominent case consists of two impurities immersed
in a many-body environment forming bipolarons [163–171], two-body bound states
whose properties are altered compared to those formed just by two atoms. One illus-
trative scenario is that of two heavy atoms interacting with a light impurity. Within
the Born-Oppenheimer approximation [75, 172, 173] an effective interaction can be
induced between the two heavy particles, where the third atom acts as a mediator.
Depending on the interspecies interaction strength, the effective interaction takes the
form of a Yukawa potential or that of an Efimov attraction [172, 174]. Substituting
the light particle with a degenerate Fermi sea results in interaction potentials with
a sinusoidal dependence on the relative distance between the two heavy atoms [175,
176], a well studied potential form in the context of magnetic interactions [177, 178].

Similarly to the formation and coherent manipulation of few-body bound states,
time-dependent protocols result in a controllable behavior of impurities in an ultracold
medium. These protocols include for instance interspecies interaction quenches [179,
180], dragging the impurities in a many-body environment [181, 182] and modifying
their external potential [183, 184]. All of these protocols led to interesting dynamical
response, such as the dynamical breakdown of the quasiparticle picture [179, 185, 186],
dissipative motion [181, 183] and slow relaxation dynamics [182, 187]. Along these
lines we investigate in [B6] the dynamical behavior of few impurities interacting with
a mesoscopic Bose gas in one dimension by modulating the interspecies interaction
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strength. Depending on the interplay between intra- and interspecies interactions,
phase separation regimes can be dynamically accessed [38, 39]. The impurities can
become localized at the edges of the bosonic cloud or perform a breathing motion
depending on the driving frequency as well.

Objectives of this thesis

In this cumulative thesis, our main goal is to theoretically study the dynamical
response of few ultracold atoms by considering time-dependent protocols, such as
quenches or modulation of the interaction strengths. This is examined in two setups.
First, the dynamics of two and three atoms confined in a harmonic oscillator is in-
vestigated, focusing on the few-body bound state formation. Short-range few-body
correlations are utilized as probes for characterizing the participation of such bound
states. Moreover, a three-body model is employed in order to provide a theoretical
framework for the recently achieved coherent manipulation of trimer states, by means
of modulated magnetic fields. Second, the dynamics of few interacting particles (im-
purities) is investigated when they are immersed in a many-body bosonic environment.
By modulating the interspecies interaction strength different dynamical regimes can
be accessed, where the behavior of the impurities can be controlled. In particular, we
aim to

♢ understand the interplay of short-range few-body correlations between different
classes of eigenstates in two and three atom setups confined in two dimensions;

♢ yield analytical insights for time-dependent observables such as the correlation
properties of two and three particle settings, by quenching their interaction
strength;

♢ investigate the microscopic excitation mechanisms induced by an interaction
quench in few-body setups;

♢ take advantage of these mechanisms and devise interaction quench protocols for
selectively populating few-body bound states in three-body binary mixtures;

♢ solve the three-body problem with modulated interactions to shed light on as-
sociation and decay mechanisms of trimers in thermal gases;

♢ control the dynamical response of impurity atoms immersed in a many-body
environment upon modulating their interspecies interaction strength.

The first four of these goals are achieved by utilizing the analytic solutions of few
atoms confined in harmonic traps [Sec. 2.3]. For three-body systems in particular, we
employ the adiabatic hyperspherical toolbox [Sec. 2.3.2], suited for determining the
stationary properties of arbitrary three particle systems in two and three dimensions.
Moreover, the split-operator method is included in our techniques arsenal to treat
the dynamical behavior of three bosonic particles with modulated interactions. For
the case of impurities in a bosonic medium, insights are provided within the scope of
the Multi-Layer Multi-Configuration Time-Dependent Hartree method for mixtures,
an ab-initio variational method for tackling the out-of-equilibrium dynamics of mul-
ticomponent systems [Sec. 2.5.2].
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Chapter 2

Theoretical Framework

2.1 Quantum gases

L
et us consider a macroscopic number of neutral atoms with mass m, density
n at temperature T , trapped in an external potential. The interatomic
interactions are described by isotropic short-range potentials of range r0

with a van der Walls tail [12], meaning that the potential decays with the
sixth power of the interatomic distance for sufficiently large distances. At low enough
densities, the system is dilute and only binary collisions can be taken into consideration
[188].

The properties of these atoms crucially depend on the competition between the
length scales set by the density, temperature and interactions. In particular, we may
distinguish between the following cases:

• For high temperatures, the thermal de Broglie wavelength Λth = ( 2πh̵2

mkBT
)1/2

is
much smaller than the mean interparticle spacing, nΛ3

th ≪ 1. In this regime, we
can treat the system on classical terms [12, 188]. The interactions however have
an important effect on its properties.

ã If the average interparticle spacing is larger than the collisional length,
n∣a∣3 ≪ 1, the system can be modeled as an ideal classical gas. The colli-
sional length a determines the extent of the cross section, σ ∝ a2, and is
roughly given by the range of the interatomic potential, r0 [12, 188]. How-
ever, this is not true in general as we will see later on [Sec. 2.2.4]. In this
regime, the macroscopic properties of the atoms can be determined from a
statistical description [189].

ã In the case where n∣a∣3 ≳ 1, we are dealing with an interacting classical gas.
An adequate description for its thermodynamic attributes, like pressure
and chemical potential, is given by the van der Waals and Onnes equations
of states [190].

• At low temperatures, the thermal de Broglie wavelength is comparable to or
larger than the mean interparticle distance, nΛ3

th ≳ 1. In this limit the system of
N atoms reaches the quantum degeneracy regime, and a quantum mechanical
description is appropriate for treating their behavior. Depending on the strength
of interactions we distinguish between two cases.

ã For nearly ideal quantum gases, the macroscopic properties of the system
are evaluated from the bosonic or fermionic statistics [191]. Despite the
absence of interactions, collective phenomena can emerge due to the quan-
tum statistical correlations, such as the Bose-Einstein condensation [12,
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13]. For weakly interacting quantum gases, n∣a∣3 ≪ 1, a mean-field treat-
ment is adequate in treating the collective motion of the gas as well as
elementary excitations [12, 192–194].

ã For interacting gases, n∣a∣3 ≳ 1, the description is certainly challenging and
highly depends on the characteristics of the particular system in question
and its dimensionality [27, 74].

Apart from the above mentioned length scales, there is an additional crucial one,
the length of the external trapping potential. Utilizing the internal hyperfine structure
of atomic species, it is possible to confine quantum gases in space by means of optical
and magnetic fields [2, 3, 6, 12, 13, 55], realizing harmonic confinement for the gas in
all three spatial directions. Importantly, the frequency aspect ratio of these harmonic
traps can be tuned to large or small values, confining kinematically the cold atoms in
low dimensions [27, 28].

2.2 Scattering of two interacting cold atoms

2.2.1 s-wave regime

The first step in understanding the stationary and dynamical properties of quantum
gases is to consider the motion of two interacting neutral atoms in free space at low
temperatures with relative energy E = h̵2k2

2µ2b
> 0, where µ2b is the two-body reduced

mass. Their relative wavefunction is expanded in spherical harmonics with definite
angular momentum l due to the isotropic nature of the interaction potential. Depend-
ing on the statistics of the particles, the expansion can be restricted to a subspace of
angular momenta. For instance, identical bosons (fermions) allow only even (odd) l in
the expansion. The radial wavefunctions associated to the different angular momenta,
Ψk,l(r), satisfy the following relative radial Schrödinger equation [195],

{− d2

dr2
− 2

r

d

dr
+ Vint(r) + l(l + 1)

r2
}Ψk,l(r) = k2Ψk,l(r), (2.1)

where Vint(r) is the interatomic potential and the fourth term is the centrifugal barrier
for finite l. Low temperatures translate to low collisional energy, meaning that the
relative energy of the atoms is much smaller than the characteristic energy scale of the
interaction potential, h̵2

2µ2br
2
0
. The latter condition is simply written as kr0 ≪ 1. The

atoms scattering with l ≠ 0 experience a barrier with height of the order h̵2[l(l+1)]3/2
µ2br

2
0

,
which is way larger than their collisional energy, since kr0 ≪ 1. The probability to
tunnel past the barrier and experience the van der Waals potential Vint(r) is therefore
very low. In this sense, scattering processes with finite angular momentum (l ≠ 0) are
suppressed at low energies. The only relevant process is for l = 0, the s-wave regime.
Note that this regime does not apply to identical (spin-polarized) fermions.

For s-wave scattering, the relative wavefunction describing the scattered atoms at
large interparticle distances is isotropic [12],

Ψk,0(r) r≫r0Ð→ 1

r
sin[kr + δ0(k)]. (2.2)

At such large distances the Vint(r) potential decays fast (r−6), and affects only the
phase of the wavefunction. It is essentially that of free atoms shifted by δ0(k), which is
the phase that the wavefunction accumulated when the atoms were interacting at short
interatomic distances. For the van der Waals potential the phase shifts depend on
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the relative wavevector according to the following scaling law δl(k) ∼ k2l+1 for l = 0,1,
and k4 for l ≥ 2 [195–197]. In particular, in the limit of vanishing relative energy,
limk→0 tan δ0(k)/k = −a [188, 198, 199]. From this expression the s-wave scattering
length a is defined. Revisiting Eq. (2.2), we see that Ψk,0(r) r≫r0Ð→ sin[k(r − a)]/(r).

In the s-wave regime scattering properties like the cross section depend only on
the scattering length a instead of the short-range details of the interaction potential
[12, 13]. Even more importantly, different interaction potentials yielding the same
scattering length, will capture the same collisional properties in this regime.

2.2.2 Contact Pseudopotential

Instead of treating the motion of interacting particles with the van der Waals poten-
tial, which poses challenges when describing many-body systems, one can replace it
with a contact pseudopotential [12], resulting in the same scattering length. This is
achieved by extending the wavefunction (2.2) to zero interparticle separations, subject
to an appropriate boundary condition at r → 0, [rΨk,0(r)]′

rΨk,0(r) ∣
r→0

= − 1
a , the Bethe-Peierls

condition [200]. The prime here denotes a derivative with respect to the interatomic
separation. A pseudopotential that satisfies these properties is the Fermi-Huang pseu-
dopotential [201, 202],

Vint(r) = 2πh̵2a

µ2b
δ(3)(r) ∂

∂r
(r ⋅). (2.3)

The scattering length a essentially determines the effective interaction strength be-
tween the atoms. Note that the regularization operator ∂

∂r(r⋅) lifts the 1/r divergence
of the two-body wavefunction at small distances.

Even though this pseudopotential yields the same s-wave scattering length with
the actual van der Waals potential, the number of bound states is different. In prin-
ciple van der Waals potentials can support many two-body bound states, whereas the
pseudopotential (2.3) supports a single one for positive scattering length with energy−h̵2/(2µ2ba

2) [15]. It refers to the least bound state in the van der Waals interaction
potential.

2.2.3 Scattering of neutral cold atoms in low dimensions

Scattering of neutral ultracold atoms in lower dimensions is completely different com-
pared to the three dimensional case. Here we briefly review the main aspects of
scattering in two and one dimension.

Two dimensions

Focusing on the s-wave regime, it is shown that the asymptotic expansion of the
relative two-body wavefunction for interparticle distances larger than the range of the
interaction potential r2D

0 takes the form [83, 203–205],

Ψk,0(r) r≫r2D0Ð→ ln( r

a2D
) , (2.4)

where a2D is the two dimensional s-wave scattering length. Note that the s-wave
limit refers to zero azimuthal quantum number [83], hence the zero subscript in the
wavefunction. Here we have assumed the low energy limit of the s-wave scatter-
ing phase shift employed in [206]. Similarly to the three dimensional case a pseu-
dopotential yielding the same scattering length extends the wavefunction (2.4) to
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small interatomic distances with the appropriate Bethe-Peierls condition [rΨk,0(r)′ −
Ψk,0(r)/ ln(r/a2D)]∣r→0 = 0 [207–209]. The derivation of such a pseudopotential how-
ever is not so straightforward as in three dimensions. In fact, there are multiple
contact potentials in the literature [203, 210–213], and below we list a few of them,

Vint(r) = πh̵2

µ2b
δ(2)(r)r ∂

∂r
, (2.5a)

Vint(r) = πh̵2

µ2b
δ(2)(r) 1

1 + ln(r/a2D) ∂∂r (r ⋅), (2.5b)

Vint(r) = −πh̵2

µ2b
δ(2)(r) 1

ln(a2Dλeγ/2) [1 − ln(λreγ/2)r ∂
∂r

] . (2.5c)

In Eq. (2.5c), γ = 0.577 . . . is the Euler-Mascheroni constant [214] and λ is an arbitrary
wavevector, which however does not impact the properties of the system [215]. Despite
the apparent differences in all pseudopotentials, their action on a two-body relative
wavefunction satisfying the Bethe-Peierls condition for short interparticle distances
in two dimensions, Ψ(r) = B ln(r/a2D), is identical [215]. Namely, Vint(r)Ψ(r) =
πh̵2

µ2b
δ(2)(r)B.
In stark contrast to three dimensions, the two dimensional scattering length is

always positive. A two-body bound state with energy E = −2h̵2e−2γ
µ2ba

2
2D

is thus supported
by the contact potential, regardless of the magnitude of the scattering length [207,
216]. Note that from the form of the pseudopotentials it is not clear which are the
non-interacting and strongly interacting limits, in contrast to the three dimensional
case. This is going to be clarified later on [Sec. 2.3], when the energy spectrum of two
interacting atoms in a two dimensional harmonic oscillator will be discussed.

One dimension

In one dimension, the asymptotic expansion of the relative wavefunction for distances
much larger than the range of the interaction potential r1D

0 assumes the form [203,
217],

Ψk(x) ∣x∣≫r1D0Ð→ sin[k(∣x∣ − a1D)], (2.6)

where a1D is the one dimensional scattering length. A pseudopotential extending
this wavefunction to zero interparticle spacings, with the appropriate Bethe-Peierls
boundary condition [218], Ψ′

k(x)
Ψk(x) ∣x→0± = ∓ 1

a1D
is the following [203, 213],

Vint(x) = − h̵2

µ2ba1D
δ(x). (2.7)

This contact potential supports a two-body bound state for positive one dimensional
scattering lengths with energy E = − h̵2

2µ2ba
2
1D

[69]. The form of the pseudopotential
suggests counterintuitively that the non-interacting limit is reached for a1D = ±∞, and
that repulsive and attractive interactions occur when the one dimensional scattering
length is negative and positive respectively. These limits will be more apparent when
inspecting the energy spectrum of two atoms trapped in a one dimensional harmonic
oscillator [Sec. 2.3].
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Quasi-low dimensional systems

As mentioned in Sec. 2.1, the way to realize low dimensional gases in the laboratory is
by strongly confining them kinematically along one or multiple dimensions, utilizing
harmonic traps with high frequency in these dimensions. Confinement introduces
another length scale in the system, the oscillator length along the tightly confined
direction(s), and modifies the three dimensional scattering properties of atoms. For
very large trapping frequency(ies) in the confined direction(s), signatures of the low
dimensional scattering properties emerge at length scales larger than the oscillator
length associated to these frequencies [28, 29, 205, 219–223]. In this way, relations
can be established between the three and lower dimensional scattering lengths.

For a quasi-one dimensional setup, this relation reads explicitly [224, 225],

a1D = −a2
⊥

2a
[1 − ζ(1/2) a

a⊥
] , (2.8)

where a⊥ = √
h̵

µ2bω⊥ is the oscillator length along the two strongly confined directions,
and ω⊥ is the trapping frequency. ζ(⋅) is the Riemann zeta function [226]. In a quasi-
two dimensional setting, atoms are strongly confined along a single direction. The
two dimensional scattering length is related to a according to [205]

a2D = 2e−γ
√

π

0.915
a⊥ exp

⎧⎪⎪⎨⎪⎪⎩ −
√
π

2

a⊥
a

⎫⎪⎪⎬⎪⎪⎭, (2.9)

where a⊥ is now the oscillator length along the tightly confined dimension.
Both of these relations suggest that the lower dimensional scattering lengths can

be tuned by changing the harmonic frequency(ies) in the tightly trapped dimension(s).
In this way, the corresponding lower dimensional effective interaction strengths are
altered [227–230], realizing in principle strongly interacting low dimensional gases [31,
141].

2.2.4 Fano-Feshbach resonances

A powerful technique for realizing strong effective interactions is that of Fano-Feshbach
resonances. In our previous discussion regarding the quantum scattering of neutral
atoms [Sec. 2.2.1], we have assumed that particles scatter off a single van der Waals
potential. However, due to the internal structure of the atoms, there are multiple
potentials associated to different total spins of the particles (e.g. singlet and triplet
potentials), exhibiting a van der Waals tail at large separation distances [188]. At even
larger distances, the potentials saturate to finite energies Eα, stemming solely from
the Hamiltonian describing the total spin of the atoms [27, 199]. In this asymptotic
region, the potentials are called channels. Depending on the colliding energy of the
particles E, they are classified as open or closed. Open channels are those that
possess an asymptotic energy smaller than the colliding energy, Eα < E, and are
thus classically energetically accessible. On the other hand, closed channels are those
that have an asymptotic energy larger than E, Eα > E, and they are classically
energetically inaccessible. Moroever, due to the hyperfine interactions in atoms and
the coupling of total spin with nuclear spin, different total spin degrees of freedom
are coupled to each other. This results in a coupling between the aforementioned
potentials [188, 231].

Due to the different total spin character of the potentials, their relative spacing
can be tuned by applying external magnetic fields. The thresholds of these potentials
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are thus shifted according to the Zeeman effect. At a particular magnetic field Bres,
the potentials are shifted in such a way that the colliding energy almost coincides
with the energy of a bound state supported by a closed channel. When the particles
approach at short distances, couplings between the open and closed channels become
substantial and the atoms couple resonantly to the two-body bound state of the closed
channel. This resonance modifies the (three dimensional) scattering length according
to the following expression [15, 87],

a(B) ≃ abg (1 − ∆B

B −Bres) . (2.10)

abg is the off-resonant scattering length and ∆B is the width of the resonance. When
the magnetic field is parked around B = ∆B + Bres, a zero crossing occurs and a
non-interacting gas can be realized. In contrast, in the vicinity of B ≃ Bres, strongly
interacting quantum gases can be realized with n∣a∣3 ≳ 1. This mechanism is called
Fano-Feshbach resonance [232–235], conceived both in atomic and nuclear physics. A
multitude of Feshbach resonances has been identified so far for many atomic species
[15]. Given the excellent controllability of external magnetic fields [16, 236], Fano-
Feshbach resonances are massively exploited for molecule production [79, 87], realizing
strongly interacting gases [18, 237], crossing phase boundaries [14, 67, 238], or trig-
gering dynamics by employing dynamical protocols of the scattering length [239] to
name but a few. Note that Feshbach resonances have been achieved also with external
optical fields [240].

2.3 Few cold atoms in a harmonic oscillator trap

In this section we investigate the experimentally relevant scenario of two and three
interacting ultracold atoms confined in a harmonic trap [51, 55, 59–62, 241, 242].
These systems can be treated semi-analytically and they provide important insights
on the dynamical formation of few-body bound states in quantum gases [73, 103, 106,
113, 114, 243].

2.3.1 Two interacting confined atoms

The problem of two interacting atoms confined in a harmonic oscillator can be sim-
plified by separating the center-of-mass from the relative degrees of freedom. The
Hamiltonian describing the latter is effectively that of a single-particle. In [69], ana-
lytical solutions were found for the eigenstates and eigenenergies of this Hamiltonian.
The relative wavefunction was expanded in terms of the non-interacting eigenstates
of the harmonic oscillator and subsequently the Bethe-Peierls condition was applied.
With such an ansatz, an expression for the relative wavefunction is derived, whose
corresponding eigenenergy is determined by a transcendental equation. This proce-
dure was then generalized to lower dimensional settings. The wavefunctions describing
the relative degrees of freedom assume an analytical form, which can be written in a
compact way [69, 243],

Ψi,d(r) = Ni,dΓ(d
4
− Ei

2
) e−r2/(2a2ho)U (d

4
− Ei

2
,
d

2
,
r2

a2
ho

) , d = 1,2,3. (2.11)

The parameter d is related to the dimensionality of the system (d = 1 stands for one
dimension, and so on and so forth), r is the norm of the relative interatomic distance,
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Figure 2.1: Energy spectrum of two interacting particles confined in
a harmonic oscillator in (a) three, (b) two and (c) one dimension. The
vertical dash-dotted lines in all three panels signify the non-interacting

limit.

Γ(⋅) is the gamma function, and U(a, b, ⋅) is the confluent hypergeometric function
of the second kind (Kummer, Tricomi) [214]. aho is the harmonic oscillator length
with the two-body reduced mass in the respective dimension. Note that these relative
wavefunctions correspond to zero total angular momentum between the particles in
three (l = 0) and two (m = 0) dimensions, and even-parity states upon exchange of
the particle positions in one dimension. The normalization constants Ni,d take the
following expressions [B1, 244–246],

Ni,d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2π2a3

ho

¿ÁÁÁÀ Γ ( Ei
2h̵ω + 1

4
) ( Ei

2h̵ω − 3
4
)

Γ (− Ei
2h̵ω + 7

4
) [ψ (− Ei

2h̵ω + 1
4
) − ψ (− Ei

2h̵ω + 3
4
)] , d = 3

1

aho

√
πψ(1)(− Ei

2h̵ω
+1)

, d = 2

1√
πaho

¿ÁÁÁÀ Γ (− Ei
2h̵ω + 3

4
)

Γ (− Ei
2h̵ω + 1

4
) [ψ (− Ei

2h̵ω + 3
4
) − ψ (− Ei

2h̵ω + 1
4
)] , d = 1.

(2.12)

ψ(⋅) and ψ(1)(⋅) are the digamma and trigamma functions respectively [214].
The solutions (2.11) hold for any pair of particles, distinguishable or indistinguish-

able, and with any masses, as long as they interact through an s-wave pseudopoten-
tial. Moreover, they were also generalized for anisotropic harmonic traps in three
dimensions [70, 76, 247]. In this context, the stationary properties of two atoms were
investigated at the crossover to quasi low dimensional geometries.
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The associated energy levels Ei are determined from the following transcendental
equations [69, 71, 73, 203, 248],

Γ (− Ei
2h̵ω + 3

4
)

Γ (− Ei
2h̵ω + 1

4
) = aho

2a
d = 3, (2.13a)

ψ (− Ei
2h̵ω

+ 1

2
) = ln(a2

hoe
−2γ

a2
2D

) d = 2, (2.13b)

Γ (− Ei
2h̵ω + 3

4
)

Γ (− Ei
2h̵ω + 1

4
) = aho

2a1D
d = 1, (2.13c)

where ω is the trapping frequency in the corresponding dimension. The functions
on the left hand side are multi-valued from which one can determine the energies of
the ground and excited states for all scattering lengths. The non-interacting limits
E = 2n+ d/2, d = 1,2,3, are reached when a = 0, 1/a1D = 0 and ln−1(a2

hoe
−2γ/a2

2D) = 0.
These limits determine the appropriate interaction strengths in low dimensions that
were elusive from the form of the pseudopotentials, especially in two dimensions [Sec.
2.2.3].

Figure 2.1 depicts the energy spectra for (a) three, (b) two, and (c) one dimension
with respect to the corresponding interaction strengths in dimensionless units, as
identified from the transcendental equations [Eqs. (2.13a)-(2.13c)]. Zero interactions
are depicted with the dash-dotted lines. The energy levels that cross this dash-dotted
line correspond to the spectrum of a particle in a harmonic oscillator in the respective
dimension, taking into account only l = 0, m = 0 (zero total angular momentum)
in three and two dimensions, and even-parity states in one dimension. For repulsive
(attractive) interactions all energy levels are shifted upwards (downwards) with respect
to their non-interacting values, regardless of the dimensionality of the system.

As discussed in Sections 2.2.2 and 2.2.3, the dependence of the energy of the two-
body bound states on the scattering lengths is now clearly showcased in Fig. 2.1. In
three dimensions [Fig. 2.1 (a)] a single bound state exists for repulsive interactions.
As the scattering length becomes comparable or larger than the oscillator length, the
energy of the bound state is shifted upwards to positive values. In two dimensions [Fig.
2.1 (b)] there is always a two-body bound state, regardless of the sign or magnitude
of interactions, in contrast to the other dimensions. In one dimension [Fig. 2.1 (c)],
a two-body bound state is supported only for attractive interactions (positive one
dimensional scattering length). Note that strictly speaking all eigenstates are bound,
since the atoms are confined in a harmonic trap. By two-body bound states we refer
here to the genuine bound states, which are supported by the pseudopotentials even
in the absence of a trap.

2.3.2 Three interacting atoms in a trap

Jacobi and Hyperspherical coordinates

Three interacting atoms confined in a trap are also treated in the center-of-mass frame.
In contrast however to two-particle systems, there are two relative coordinates, called
Jacobi coordinates [75]. As sketched in Fig. 2.2 for an arbitrary three-body system,
the first relative coordinate (ρ1) is proportional to the interparticle distance between
two atoms. The second Jacobi vector ρ2 is proportional to the difference of the third
particle with the center-of-mass of the two remaining atoms. The proportionality
factors are usually related to the masses of the particles [249]. Note also that there
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Figure 2.2: Sketch of the Jacobi coordinates for an arbitrary three-
body system. ρ1 and ρ2 are the two Jacobi vectors and R is the

hyperradius, describing the size of the system.

are three sets of Jacobi coordinates, in which a different particle is connected each time
to the center-of-mass of the remaining two. All of the sets are related to each other
through a transformation matrix depending on the masses, the kinematic rotation
[250].

In the next step, one can transform the two Jacobi vectors to a generalization of
the spherical coordinates in higher dimensional spaces, the so-called hyperspherical
coordinates [66, 251]. These involve the hyperradius R, characterizing the spatial ex-
tent of the system, and hyperangles, collectively denoted as Ω. These are related to
the relative positions of the particles, as well as the angles associated to the configu-
ration of the Jacobi vectors in space. In three dimensions there are five hyperangles,
whereas in two and one dimension there are three and one respectively [252]. Note
that there are multiple choices for the representation of the hyperangles [249, 253–
255]. Moreover, in one dimension the term hyperspherical coordinates is abusive since
there is only a single angle [256].

Upon this choice of coordinate system, the relative three-body Schrödinger equa-
tion is written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− h̵2

2µ3b

∂2

∂R2
+ 1

2
µ3bω

2R2 + h̵2[Λ2 + (2d − 3)(2d − 1)/4]
2µ3bR2

+ Vint(R,Ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Had(R;Ω)

−E
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ψ(R,Ω) = 0,

(2.14)
where µ2

3b =m1m2m3/(m1 +m2 +m3) is the three-body reduced mass, and Λ2 is the
grand angular momentum operator describing the total angular momentum of the
three particles [257, 258] expressed in d = 1,2,3 dimensions. Vint(R,Ω) is the sum of
three pairwise contact interatomic potentials expressed in hyperspherical coordinates.
The first term in Eq. (2.14) is the kinetic term, the second is the potential energy
term due to the harmonic confinement, the third is a centrifugal barrier due to the
angular momentum of the particles in the respective dimension, and the fourth one is
the interaction potential.

Potential curves

The Schrödinger equation (2.14) is solved by employing the adiabatic hyperspherical
method [259–261]. The first step consists of diagonalizing the adiabatic Hamiltonian
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Figure 2.3: Schematic of potential curves Uν(R) with respect to the
hyperradius R.

Had(R;Ω) at every fixed R, obtaining an orthonormal basis set of hyperangular wave-
functions Φν(R;Ω) and a set of potential curves Uν(R) depending on the hyperradius,

Had(R;Ω)Φν(R;Ω) = Uν(R)Φν(R;Ω). (2.15)

When zero-range pseudopotentials are considered for the interatomic interactions, it
is very convenient to solve the above equation by employing the Green’s function
[262–264] of the grand angular momentum operator Λ2 [258]. One arrives at a semi-
analytical expression for the hyperangular wavefunctions. Subsequently, the Bethe-
Peierls conditions are applied, which take the form of a three dimensional matrix
eigenvalue equation with zero eigenvalue. The eigenvectors depend solely on R and
they serve a twofold purpose.

First, they are normalization coefficients for the hyperangular wavefunctions. More-
over, the Φν(R;Ω) eigenfunctions are expanded in terms of the three different sets of
Jacobi coordinates with these eigenvectors as coefficients, from where the appropri-
ate symmetry of the wavefunction can be easily implemented upon exchange of any
particle pair. The potential curves Uν(R) are then specified from a transcendental
equation stemming from the zero determinant of the matrix in the eigenvalue problem
[262, 265]. The transcendental equation is general, since it depends on the masses,
the statistics of the particles and the scattering length(s).

A sketch of potential curves is depicted in Fig. 2.3 corresponding to three bosonic
particles. A first remark is that there is no upper bound on the number of potential
curves. The number is truncated so that observables such as the energies are converged
in the particular energy slice one is interested in. For every two-body bound state
supported by the pairwise interatomic potential, there is a corresponding potential
curve which at very large hyperradii R saturates at the energy of the corresponding
dimer, the atom-dimer threshold [dashed curve in Fig. 2.3]. At such large sizes,
these are channels describing a dimer and a third atom very far away. Since we are
considering zero-range pseudopotentials for the pairwise interactions, there is at most
a single two-body bound state, and this translates to a single potential curve U1(R).
However, if we consider distinguishable particles or mixtures, there can be two or
three two-body bound states, yielding the same number of potential curves with the
appropriate atom-dimer thresholds [266].

For these atom-dimer potential curves, at shorter hyperradii the atoms experience
a potential well whose depth depends on the masses and the scattering length(s). In
this well, the atoms can form in principle three-body bound states, i.e. eigenstates
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with energy lower than the atom-dimer threshold. The shape of the well greatly
depends on the dimensionality of the system. In two dimensions there is a barrier at
small hyperradii [85, 267], which depends on the parameters of the three-body setup,
such as the scattering length(s) and the masses. Remarkably, in three dimensions
there is no repulsive barrier and some of the potential curves with the atom-dimer
threshold tend to −∞ [268]. One has to supplement the zero-range theory with a hard
wall [269] that fixes the number of three-body bound states as well as the position of
the ground trimer. Apart from trimers, these potential curves can also support atom-
dimers with energy above the atom-dimer threshold. These are dimers interacting
with the third atom.

The higher potential curves [solid lines in Fig. 2.3] saturate at large distances to
zero. Every one of these corresponds to a different total angular momentum quantum
number [251], and they describe three interacting atoms. In these potential curves,
the particles cannot approach very close since they experience a centrifugal barrier.

Hyperradial equations and eigenspectra

To obtain the eigenenergies and eigenstates of three atoms confined in a harmonic trap,
we expand the three-body relative wavefunction in the hyperangular basis with R-
dependent coefficients, the hyperradial channels Fν(R), Ψ(R,Ω) = ∑ν Fν(R)Φν(R;Ω)
[66, 262]. Substituting this expansion in the three-body Schrödinger equation [Eq.
(2.14)] and projecting with Φ∗

ν′(R;Ω) integrating over the hyperangles, we obtain
coupled first order differential equations depending on a single parameter, the hyper-
radius R,

− h̵2

2µ3b

d2

dR2
Fν′(R) + 1

2
µ3bω

2R2Fν′(R) +Uν′(R)Fν′(R)
− h̵2

2µ3b
∑
ν

[2Pν′ν(R) d

dR
+Qν′ν(R)]Fν(R) = EFν′(R). (2.16)

The matrix elements Pν′ν(R) and Qν′ν(R) provide the couplings between different po-
tential curves and they stem from the dependence of the hyperangular eigenfunctions
on the size of the system R. The coupling elements are defined according to,

Pν′ν(R) = ⟨Φν′(R;Ω)∣∂Φν(R;Ω)
∂R

⟩
Ω

(2.17)

Qν′ν(R) = ⟨Φν′(R;Ω)∣∂2Φν(R;Ω)
∂R2

⟩
Ω
, (2.18)

where the ⟨. . .⟩Ω symbol denotes integration only over the hyperangular degrees of
freedom. In the case of contact pseudopotentials the coupling elements assume semi-
analytical expressions [270, 271].

A convenient way to solve the coupled equations in (2.16) is by expressing the
hyperradial channels in the B-spline basis [272, 273]. These are piece-wise polynomi-
als constructed recursively, whose derivatives are known analytically. Moreover, the
appropriate boundary conditions can be easily implemented.

A schematic of the energy spectrum of three interacting atoms in a trap is shown
in Fig. 2.4 with respect to a single positive scattering length in three, two, and one
dimension. Only three eigenstates are shown exemplarily, but of course the spec-
trum is far more dense [207, 274–282]. Overall, we can classify the eigenstates in
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Figure 2.4: Cartoon of the energy spectrum of three atoms confined
in a harmonic trap with respect to the scattering lengths in three,
two and one dimension. Trimer states occur below the atom-dimer
threshold [dashed line], and avoided crossings [dashed circle] occur

between the atom-dimers and atom-atom-atom states.

three classes: Trimers [red region], atom-dimers [blue region], and atom-atom-atom
eigenstates [green region].

Trimers [red eigenstate] have energy below the atom-dimer threshold [black dashed
line] and their number greatly depends on the statistics of the particles [271], the
masses [283], the scattering lengths [75], and the dimensionality of the setting [284,
285].

Above the zero-point threshold, dh̵ω, d = 1,2,3 [dash-dotted line in Fig. 2.4], atom-
atom-atom states [green eigenstate] can be supported, describing three interacting
atoms confined in a trap. Their existence can be traced to the potential curves with
the repulsive barriers at short hyperradii [solid green potential curves in Fig. 2.3].
At particular values of the scattering length there are avoided crossings [dashed circle
in Fig. 2.4] between the atom-atom-atom states and atom-dimers [blue eigenstate].
These crossings occur due to the couplings between the potential curves with the
atom-dimer threshold [dashed curve in Fig. 2.3] and the potential curves supporting
three interacting atoms [green solid curves in Fig. 2.3] through the P and Q matrix
elements [Eqs. (2.17), (2.18)]. For energies way lower than the zero-point threshold
[blue region], atom-dimers describe a strongly bound dimer interacting with a third
atom. At this regime the energy is given approximately by the energy of the dimer plus
the energy of a third atom in a harmonic trap. Close to the avoided crossings though
[dashed circle in Fig. 2.4], these states resemble atom-atom-atom states. The same
applies also for the latter eigenstates. The faded colors in the vicinity of the avoided
crossing in Fig. 2.4 imply that these eigenstates do not have a definite character. The
number of avoided crossings greatly increases for higher E/h̵ω due to the larger density
of atom-atom-atom eigenstates. This occurs due to the large number of potential
curves with a repulsive barrier at small hyperradii [green curves in Fig. 2.3].

2.4 Short-range correlations

In the previous section we have investigated the stationary properties of few interacting
trapped atoms in terms of a single parameter, the scattering length. It turns out that
the Bethe-Peierls boundary conditions give rise to other central quantities satisfying a
plethora of relations. These are universal relations describing the stationary properties
of arbitrary systems in three dimensions. Here, the universality means that they
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are valid for few trapped atoms as well as strongly interacting many-body systems
of bosons, fermions or mixtures thereof. The relations were generalized to lower
dimensions as well.

2.4.1 Two-body contact and universal relations

As already discussed in Secs. 2.2.2 2.2.3, the s-wave scattering aspects of two atoms are
properly captured by substituting the respective interaction potentials with contact
pseudopotentials. The latter impose the appropriate Bethe-Peierls conditions for the
two-body relative wavefunction at vanishing interparticle distances r, namely Ψ(r) r→0→
B3(1 − a/r),B2 ln(r/a2D),B1(r − a1D) in three (d = 3), two (d = 2) and one (d = 1)
dimension respectively. In these expressions, Bd is a normalization constant that
depends on the eigenenergy associated with the relative wavefunction as well as the
dimensionality [e.g. Eq. (2.11) for two trapped atoms]. The boundary conditions lead
to a specific form for the asymptotic expansion of the relative two-body wavefunction
in momentum space. It reads explicitly [13],

Ψ̃(k) Ð→
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−4πaB3

k2
d = 3,−2πB2

k2
d = 2,

2B1

a1Dk2
d = 1,

(2.19)

where Ψ̃(k) is the Fourier transform of the relative two-body wavefunction.
These relations hold when the wavevector k is much larger than the inverse of the

respective scattering length, k ≫ ∣a∣−1, a−1
2D, ∣a1D ∣−1 [67]. It follows that the relative

two-body momentum distribution ∣Ψ̃(k)∣2 displays a 1/k4 tail at large k in all dimen-
sions, ∣Ψ̃(k)∣2 k≫1Ð→ C

(2b)
d /k4, d = 1,2,3 [120–122, 286]. The proportionality factor C(2b)

d
is called the two-body contact. It is related to the probability of detecting two par-
ticles with very large relative wavevectors (larger than the inverse scattering length),
i.e. at small interatomic distances (smaller than the scattering length). In this sense,
the contact captures two-body short-range interparticle correlations. This innocuous
asymptotic expansion, however, is the first in a series of relations that will appear
later on, where the two-body contact plays a central role.

Consider for example two harmonically trapped atoms in three dimensions in an
arbitrary eigenstate characterized by energy Ei. From the transcendental equation
determining the energy levels (2.13a), we deduce that the rate of change of the i-th
energy level with respect to the scattering length assumes the form [69]

− adEi
da

= 2

ψ (− Ei
2h̵ω + 1

4
) − ψ (− Ei

2h̵ω + 3
4
) . (2.20)

From the expansion of the corresponding relative two-body wavefunction (2.11) at
short interparticle distances, we get the appropriate 1 − a/r behavior satisfying the
Bethe-Peierls conditions,

Ψi,3(r) r≪∣a∣Ð→ − 1

a
√

2πaho
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2h̵ω + 7

4
) [ψ (− Ei

2h̵ω + 1
4
) − ψ (− Ei

2h̵ω + 3
4
)] (1 − a

r
) .
(2.21)

The two-body contact for the two atoms in that eigenstate then follows easily from
the asymptotic expansion given by Eq. (2.19),
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C
(2b)
i,3 = −16πa

a2
ho

1

ψ (− Ei
2h̵ω + 1

4
) − ψ (− Ei

2h̵ω + 3
4
) . (2.22)

Combining Eqs. (2.20) and (2.22), we arrive at the following expression for the rate
of change of the i-th eigenenergy with respect to the scattering length,

dEi
d(−1/a) = h̵2

8πµ2b
C

(2b)
i,3 . (2.23)

Eq. (2.23) is completely general in the sense that it holds for any two-body eigen-
state independently of the value of the scattering length. Applying the same reasoning
to lower dimensions, similar rates of change are derived for the eigenenergy Ei asso-
ciated with an arbitrary eigenstate, namely

dEi
d(lna2D) = h̵2

4πµ2b
C

(2b)
i,2 , (2.24)

dEi
da1D

= h̵2

4µ2b
C

(2b)
i,1 . (2.25)

All these relations imply that knowledge of the two-body contact for all eigenstates
and scattering lengths is sufficient for reconstructing the energy spectrum presented
in Fig. 2.1. Apart from two-body short-range correlations, the two-body contact
determines also variations of the energy upon tuning the scattering length.

Remarkably, by employing the asymptotic expansion of the one-body density in
momentum space for an arbitrary number of bosonic or fermionic particles, the same
behavior of the momentum tail (k−4) is observed, see for instance Refs. [120–123,
126, 128, 287]. Moreover, the equations regarding the rate of change of the energy
with respect to the scattering length can also be generalized, dubbed the adiabatic
sweep theorems [13]. These relations hold both for weakly and strongly interacting
systems, confined either in harmonic traps or in free space. In this sense they are
called universal. Note, however, that the two-body contact in all of these setups is in
principle different, since it is derived from the wavefunction describing the system in
question [see asymptotic expansion in Eq. (2.19)].

Moreover, the sweep theorems are further generalized [120] for finite temperature
systems. In this case, the two-body contact of a system is related to the rate of change
of the Helmholtz free energy F = E−TS as a function of the scattering length at fixed
temperature T ,

dF

d(−1/a) ∣T = h̵2

8πµ2b
C

(2b)
3 . (2.26)

In this context, the two-body contact determines the thermodynamic properties of
a system in thermal equilibrium, and can be thought of as the conjugate thermo-
dynamic variable to the inverse scattering length. From the free energy, additional
thermodynamic quantities can be estimated as well. In particular, the pressure of a
homogeneous system is related to the energy density E of a system and the contact
density C(2b)3 = C(2b)

3 /V [122, 124, 125, 288],

P = 2

3
E + h̵2

12πma
C(2b)3 , (2.27)

which has been extended to lower dimensions as well, see e.g. Refs. [124, 125]. For
externally trapped systems, a generalized virial theorem can be derived involving the
two-body contact [122, 133],
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Ekin +Eint −Epot = − h̵2

8πma
C

(2b)
3 . (2.28)

In the latter expression, Ekin,Eint and Epot are the kinetic, interaction and potential
energies of the system respectively. All of these relations hold for any system. Note
that interestingly many more relations were derived, connecting the two-body contact
with other observables such as the static structure factor [134–137].

Apart from the thermodynamic relations describing arbitrary systems in equilib-
rium, the two-body contact is also important in determining their dynamical aspects.
A characteristic example arises when considering population transfer of atoms from
one hyperfine state to another by applying radiofrequency (rf) pulses. The underlying
transition rate Γ(ωrf) has the following asymptotic tail at large frequency domains of
the rf signal, ωrf [138, 139],

Γ(ωrf) ωrf→∞Ð→ h̵1/2Ω2

4πm1/2ω3/2
rf

C
(2b)
3 , (2.29)

where Ω is the Rabi coupling between the two different hyperfine states. This relation
was employed to measure the two-body contact in two-component Fermi gases [130–
132]. Moreover, collisions between spinful atoms can lead to two-body losses through
inelastic channels (e.g. spin flips). Then, the decay width for the depletion of atoms
in one spin component takes the form [128],

Γ ≃ h̵2[−I(a)]
2πm∣a∣2 C

(2b)
3 . (2.30)

Note that in the case of inelastic collisions the scattering length is complex [289].
From the above description, the importance of the two-body contact becomes

evident. It is a microscopic quantity directly related to the macroscopic state of a
system through a series of relations [Eqs. (2.23), (2.27),(2.28),(2.29),(2.30)] [13]. This
is a general statement holding for a plethora of different systems, being weakly or
strongly interacting, fermions or bosons, having few or many particles. In this sense,
all of the above relations are universal. Furthermore, they were even extended to
mixtures [123, 290].

2.4.2 Three-body contact

The asymptotic expansion of the single-particle momentum distribution of an ar-
bitrary system displayed a 1/k4 tail at large momenta, introducing the two-body
contact. This occurs irrespective of the dimensionality. When considering however
bosonic particles, a next-to-leading order term appears, stemming from the behavior
of three identical particles at short distances [ i.e. at small hyperradius R]. This term
strongly depends on the dimension of the setup. In three dimensions, the asymptotic
expansion of the one-body density in momentum space of such a system assumes the
following form [129, 291],

n(k) k≫∣a∣−1Ð→ C
(2b)
3

k4
+ 89.26 sin[2s0 ln(k/k∗) − 1.338]

k5
C

(3b)
3 , (2.31)

where s0 = 1.00624. In analogy to the two-body contact, the coefficient of the next-
to-leading order term (k−5) is identified as the three-body contact C(3b)

3 . It is related
to the probability of finding three bosons at distances much smaller than ∣a∣ [123].
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In that regard the three-body contact quantifies short-range three-body correlations.
In Eq. (2.31), k∗ is the wavevector associated with the energy of the ground three-
body bound state, −h̵2k2

∗/m, at strong interactions, ∣a∣ → ∞ [75]. For a contact
pseudopotential, the k∗ parameter is related to the hard wall Rt (otherwise called the
three-body parameter) that regularizes the potential curves at small hyperradii, fixes
the number of three-body bound states and determines the position of the energy of
the ground trimer, Rt = √

2k−1
∗ exp{I[ln(Γ(1 + is0))]/s0} [292], see also the relevant

discussion for the potential curves in Sec. 2.3.2.
The fact that this momentum scale comes into play in the next-to-leading order

term of the one-body momentum density is related to the Efimov effect [107, 172, 269,
293–298]. Namely, for three particles in free space interacting via pairwise interactions
with a very large scattering length, an infinity of three-body bound states occurs,
whose energies display a geometric progression. Due to the latter, the energies of the
three-body bound states accumulate at the zero-energy threshold. For a zero-range
model, the energy spectrum is unbounded from below, and one has to supplement the
theory with the three-body parameter Rt to fix the energy of the ground trimer [75].

Similarly to the two-body contact, C(3b)
3 defined through the asymptotic expansion

(2.31) satisfies also a few universal relations. First of all, an equivalent adiabatic sweep
theorem states that the rate of change of the energy with respect to variations of the
three-body parameter at fixed scattering length is proportional to C(3b)

3 [123, 129,
291],

dE

d ln(Rt) ∣a = 2h̵2

m
C

(3b)
3 or k∗

dE

dk∗
∣
a
= −2h̵2

m
C

(3b)
3 . (2.32)

Moreover, the virial theorem presented in Eq. (2.28) for the two-body contact is
generalized when considering bosonic particles, incorporating the three-body contact
as well [133, 291],

Ekin +Eint −Epot = − h̵2

16πma
C

(2b)
3 − h̵2

m
C

(3b)
3 . (2.33)

Within the context of the virial theorem, effects stemming from three-body physics
become dominant at strong interactions in comparison to two-body effects.

Furthermore, the universal relation associated to the frequency tail of the rf tran-
sition rate is also modified when considering identical bosons. In particular, the
asymptotic behavior of the transition rate Γ(ωrf) to transfer population from one
hyperfine state to another acquires an additional next-to-leading order term related
to the three-body contact [291],

Γ(ωrf) ωrf→∞Ð→ Ω2
⎡⎢⎢⎢⎢⎣

h̵1/2

4πm1/2ω3/2
rf

C
(2b)
3 + h̵2C

(3b)
3

2mω2
rf

(9.23 − 13.6 sin[s0 ln(mωrf
h̵k2

∗
) + 2.66])⎤⎥⎥⎥⎥⎦ ,

(2.34)
decaying as ω−2

rf . Note again the appearance of the wavevector k∗ due to the Efimov
effect. This relation was in fact utilized to measure the three-body contact of a
strongly interacting 39K gas [104], by employing Ramsey interferometry and creating
a superposition of two hyperfine states.

A universal formula is also derived, relating the three-body contact with the decay
width due to three-body losses, generalizing in that sense Eq. (2.30). Low-energy
three-body collisions can be inelastic when a deeply bound dimer plus another atom
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are formed afterwards. These deep dimers are, of course, not accounted for by the zero-
range model, but rather by van der Waals potentials [299]. Due to energy conservation,
the large negative potential energy of the deep dimer is converted to large kinetic
energy of the latter and the remaining atom. The sum of these two energy terms
matches the low initial colliding energy of three atoms. As a result all three particles
escape from the gas, a process called three-body recombination [66]. Three-body
bound states are thus metastable due to these processes, with the exception of 4He
trimers [300]. Within the zero-range model, inelastic three-body collisions are treated
by letting the three-body parameter to be complex, namely ln(Rt) → ln(Rt) − iη

s0
,

where η is called the inelasticity parameter [123]. This is in direct analogy with the
complex scattering length in the presence of two-body losses. In the limit η → 0, a
simple equation is derived connecting the decay width of a bosonic gas due to three-
body losses Γ with the three-body contact [113, 123, 129],

Γ
η→0Ð→ 4h̵η

ms0
C

(3b)
3 . (2.35)

All of the above relations for the three-body contact are universal in the sense that
they apply independently of the bosonic species, the value of the interaction strength
or the particle number. They are expected to be modified when considering bosonic
mixtures [123]. In the case of two-component fermions however, three-body short-
range correlations, and hence the three-body contact are predominantly suppressed
due to the Pauli exclusion principle.

In two dimensions, the equivalent asymptotic expansion of the one-body density in
momentum space n(k) is completely different due to the absence of the Efimov effect
[209, 301], even though trimer states do exist [284]. The expansion of n(k) therefore
reads [302, 303],

n(k) k≫a−12DÐ→ C
(2b)
2

k4
+ ln3(ka2D)

k6
C

(3b)
2 , (2.36)

defining the two dimensional three-body contact C(3b)
2 . Note that in the next-to-

leading order term (k−6) no additional length scale is introduced, only the two dimen-
sional scattering length. To the best of my knowledge there are no universal relations
that the two dimensional three-body contact satisfies, in contrast to the three dimen-
sional one. This behavior may be related to the fact that three-body physics in two
dimensions is determined from a single length scale, the two dimensional scattering
length. Namely, the behavior of the potential curves [see Sec. 2.3.2], as well as the
three-body binding energies are solely determined by a2D [270].

2.5 Interacting ultracold quantum gases

The universal relations that the two- and three-body contacts enjoy are powerful since
they link macroscopic properties, such as the energy, pressure and loss rates with
microscopic quantities for arbitrary systems. The contacts stem from the behavior
of atoms when approaching at very short distances, smaller than the absolute value
of the scattering length. In this sense, these relations describe the buildup of short
range correlations. Despite their universality, they fail to characterize the behavior
of arbitrary systems at larger length scales, e.g. at which collective excitations occur.
In order to deal with such phenomena there exist multiple approaches. For weakly
interacting quantum gases with a large macroscopic particle number, a mean-field
treatment is adequate, where the motion of every atom is dictated by the density of
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the entire gas [304]. For smaller number of atoms and/or stronger interactions such a
picture breaks down and a many-body description is required [27].

2.5.1 Weakly interacting gases

Here, we are interested in the description of collective phenomena within a mean-field
treatment. Consider a single component weakly interacting bosonic gas with N atoms
in three dimensions given by the following effective Hamiltonian [12],

H = N∑
i=1

[− h̵2

2m
∇2
i + Vpot(ri)] + 4πh̵2a

m
∑
i<j
δ(3)(ri − rj), (2.37)

where ri are the positions of the particles in the lab frame and Vpot(r) is the external
harmonic trap potential. The three dimensional scattering length a is smaller than any
other length scale of the system and the particle number N is very large. The effective
interaction contact potential is different from the one in Eq. (2.3) [Sec. 2.2.2]. The
reason is that the wavefunction describing the quantum gas, Ψ(r1, . . . ,rN) is regular
when ∣ri − rj ∣ ≃ 0 ∀i ≠ j. Namely, it does not exhibit the divergent 1 − a/∣ri − rj ∣
behavior due to the Bethe-Peierls boundary condition. Essentially the wavefunction
treats particles at a length scale larger than the scattering length [12] and captures
the collective behavior of the gas. The regularization operator therefore acts as an
identity operator on such regular wavefunctions.

For bosonic gases in the limit of zero temperature, nΛ3
th ≫ 1 [Sec. 2.1] and weak

interactions n∣a∣3 ≪ 1, an appropriate ansatz for the wavefunction is given by a product
of single particle wavefunctions [Hartree product for bosons],

Ψ(r1, . . . ,rN) = N∏
i=1

ϕ(ri), (2.38)

normalized to unity ∫ dr ∣ϕ(r)∣2 = 1. This ansatz implies that all particles occupy
a single quantum state. In the ideal quantum gas limit (a = 0), this describes the
well-known phenomenon of Bose-Einstein condensation [305, 306]. However, we are
interested in the behavior of that quantum state in the weakly interacting regime,
n∣a∣3 ≪ 1. The energy of the bosonic gas is given by the expectation value [12]

E = ∫ N∏
p=1

drp Ψ∗(r1, . . . ,rN)HΨ(r1, . . . ,rN)
= N ∫ dr [ h̵2

2m
∣∇ϕ(r)∣2 + Vpot(r)∣ϕ(r)∣2 + (N − 1)

2

4πh̵2a

m
∣ϕ(r)∣4] . (2.39)

The subscripts denoting the different particles have been dropped, since all of the
expectation values are the same, hence the N factor in front. For the kinetic energy
term, Gauss therorem was utilized and the surface terms on a sphere with large radius
vanish, since the wavefunction ϕ(r) vanishes (exponentially) at large distances due
to the harmonic trap potential.

Eq. (2.39) is an energy functional with respect to the unknown wavefunction ϕ(r).
It is convenient to express it instead in terms of Φ(r) = √

Nϕ(r),

E[Φ(r)] = ∫ dr [ h̵2

2m
∣∇Φ(r)∣2 + Vpot(r)∣Φ(r)∣2 + 1

2

4πh̵2a

m
∣Φ(r)∣4] . (2.40)
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Since we are dealing with a macroscopic number of bosons, we have employed that
N(N − 1) ≃ N2. To determine the macroscopic wavefunction Φ(r), we seek solu-
tions that render the energy functional stationary with respect to variations of Φ∗(r),
δE[Φ(r)]
δΦ∗(r′) = 0. Moreover, the stationarity should be achieved at fixed particle number
N = ∫ dr ∣Φ(r)∣2. This is guaranteed by minimizing the energy functional with a
Lagrange multiplier, known as the chemical potential µ,

δE[Φ(r)]
δΦ∗(r′) − µΦ(r′) = 0Ô⇒ [− h̵2

2m
∇′2 + Vpot(r′) + 4πh̵2a

m
∣Φ(r′)∣2]Φ(r′) = µΦ(r′).

(2.41)
This is the widely used Gross-Pitaevskii equation [193, 304, 307–309] characterizing
the ground state properties of weakly interacting bosonic gases. It determines the
macroscopic mean-field wavefunction Φ(r).

To assess the time-dependent behavior of the macroscopic mean-field wavefunction,
we seek solutions Φ(r, t) that render the functional

S[Φ(r, t)] = ∫ drdt [ih̵Φ∗(r, t)∂Φ(r, t)
∂t

−Φ∗(r, t)HΦ(r, t)] (2.42)

stationary. Varying the above functional with respect to Φ∗(r′, t′), one arrives at the
time-dependent Gross-Pitaevskii equation,

ih̵
∂Φ(r′, t′)

∂t′
= [− h̵2

2m
∇′2 + Vpot(r′) + 4πh̵2a

m
∣Φ(r′, t′)∣2]Φ(r′, t′). (2.43)

The above equation captures a plethora of dynamical phenomena in weakly interacting
bosonic gases. Its predictions have been experimentally verified for a multitude of
atomic species [193, 310–314].

As discussed at the beginning of this subsection, the Gross-Pitaevskii equation
should capture phenomena related to collective excitations with length scales larger
than the scattering length a. An estimate of the typical length scale for non-linear
collective excitations can be given by the stationary Gross-Pitaevskii equation [Eq.
(2.41)] when considering perturbations induced by a hard wall at r = 0 [12]. The∣Φ(r)∣2 density then transitions from a vanishing value at r = 0 to its background
value in the absence of that obstacle nbg. It is assumed that this transition occurs
on a length scale smaller than the oscillator length, which is the case for very weak
trapping frequencies. The variation of the density takes place on a characteristic length
scale ξ. The kinetic energy associated to this variation is of the order h̵2/(2mξ2). At
the transition between the vanishing value of ∣Φ(r)∣2 and its background value it is
approximately comparable to the interaction energy 4πh̵2anbg/m. Equating these
energies, we get ξ = 1/√8πnbga, called the healing length. As the name suggests
it is the length scale where the density of the condensate "recovers" from a local
disturbance, tending to its background value in the absence of that obstacle. The
healing length is the length scale associated to non-linear structures such as solitons
and vortices [304, 310, 311, 315–318].

Assuming tight trapping along a single or multiple dimensions, one can derive low
dimensional Gross-Pitaevskii equations featuring an effective interparticle interaction
strength. The equations can capture the macroscopic behavior of bosonic systems
in two (d = 2) and one (d = 1) dimension, whenever the energy gap between two
subsequent levels of the trap in the strongly confined dimension(s) is way larger than
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all other relevant energy scales in the system. The bosons are thus kinematically
confined along the weakly confined dimension(s). In that regard the wavefunction,
Φ(r), can be separated as [319–322],

Φ(r) = Φ̃(r∥)φ0(r⊥), (2.44)

where r∥ (r⊥) are the coordinates of the weakly (strongly) confined dimension(s).
φ0(r⊥) is the harmonic oscillator ground state along the tightly confined dimension(s)
and it is normalized to unity. Multiplying Eq. (2.43) on the left with φ∗0(r⊥) and
integrating over the r⊥ degrees of freedom, one arrives at the following effective low-
dimensional time-dependent Gross-Pitaevskii equations [304],

ih̵
∂Φ̃(r∥)
∂t

= [− h̵2

2m
∇2
∥ + Vpot(r∥) +

√
8πh̵2a

ma⊥
∣Φ̃(r∥)∣2] Φ̃(r∥), d = 2 (2.45a)

ih̵
∂Φ̃(r∥)
∂t

= ⎡⎢⎢⎢⎢⎣−
h̵2

2m

∂2

∂r2
∥
+ Vpot(r∥) + 2h̵2a

ma2
⊥
∣Φ̃(r∥)∣2⎤⎥⎥⎥⎥⎦ Φ̃(r∥), d = 1, (2.45b)

where a⊥ is the oscillator length in the tightly confined dimension(s).
In the case of weakly interacting two-component (total spin 1/2) ultracold fermionic

gases, their mean-field description is given in terms of a single Slater determinant. This
is a generalization of the Hartree product [Eq. (2.38)], taking into account the anti-
symmetry of the wavefunction upon exchange of two fermions. The N single-particle
functions comprising the Slater determinant are determined in a self consistent way
from the Hartree-Fock equations [323, 324], which is the equivalent formal mean-field
description for fermions.

2.5.2 Mesoscopic systems

The problem of strongly interacting ultracold mesoscopic systems, i.e. containing
an intermediate particle number, is very intricate due to the treatment of many de-
grees of freedom and the potential development of strong correlations. Many methods
have been developed aiming to tackle these systems, as for example variational meth-
ods [325–329], density matrix renormalization group methods [330–333] and quantum
Monte Carlo [159, 334–336]. The above list is of course by no means exhaustive.

One among the variational methods is the Multi-Layer Multi-Configuration Time-
Dependent Hartree method for atomic mixtures (ML-MCTDHX) [337–340]. The
above method describes the stationary and dynamical properties of mesoscopic sys-
tems, consisting of bosons, fermions or mixtures of any quantum statistics at zero
temperature. It is employed mostly for one dimensional systems, however extensions
exist for treating higher dimensional systems as well [339, 341, 342]. The method has
been utilized for a variety of trapping potentials, such as harmonic traps [179, 181,
343–348], double wells [349–356] and optical lattices [357–362] to name a few.

ML-MCTDHX

Here we briefly outline the general structure of the ML-MCTDHX method and restrict
our discussion for simplicity in a one dimensional binary mixture. More thorough
reviews focusing on a detailed description of the properties of this approach can be
found in [337–340, 363–367]. The variational method has been successfully applied to
assess the dynamical response of strongly driven bosons. Its predictions were on par
with the experimental findings [368, 369].
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Consider a binary mixture consisting of species A and B which can be of arbitrary
statistics, confined in a one dimensional harmonic oscillator trap. The positions of the
Nσ particles of species σ are collectively denoted as xσ = (xσ1 , . . . , xσNσ). As part of the
name suggests, the ML-MCTDHX method relies on a multi-layered structure of the
many-body wavefunction. The top layer consists of expanding the wavefunction de-
scribing the dynamic properties of the mixture in a truncated Schmidt decomposition
for the wavefunctions of both species,

Ψ(xA,xB, t) = D∑
k=1

√
λk(t)ΦA

k (xA, t)ΦB
k (xB, t), (2.46)

where λk(t) are called the Schmidt coefficients and D ≤ min{dim(HA),dim(HB)}
[370] denotes the truncation rank. The Φσ

k(xσ, t) are called the species functions.
The Schmidt coefficients capture (interspecies) correlations between the two species.
The Schmidt decomposition guarantees that when at least two coefficients have signif-
icant contribution, the Ψ(xA,xB, t) wavefunction cannot be written as a product of
two independent wavefunctions, pertaining to species A and B. This implies that in-
terspecies correlations develop and the species become entangled. On the other hand,
when only a single coefficient is non-zero, λ1(t) ≃ 1, such a product state is possible
and the species are not entangled. Let us note that out of computational simplicity,
the top layer is implemented as follows,

Ψ(xA,xB, t) = D∑
k,l=1

Ak,l(t)ΦA
k (xA, t)ΦB

l (xB, t), (2.47)

which is equivalent to Eq. (2.46) via a unitary transformation of the species functions
[363].

The next layer consists of expanding each of the species function Φσ
k(xσ, t) in dσ

time-dependent single-particle basis functions, namely

Φσ
k(xσ, t) = ∑

(n1,...,ndσ )
∑i ni=Nσ

C
(n1,...,ndσ )
k (t)Nσ !∑

i=1

sign(Pi)ζ

×⎡⎢⎢⎢⎢⎣
n1∏
j1=1

ϕ1(xσPi(j1), t) . . .
ndσ∏
jdσ=1

ϕdσ(xσPi(n1+...ndσ−1+jdσ ), t)
⎤⎥⎥⎥⎥⎦ . (2.48)

The Nσ particles are accommodated in the dσ single-particle functions and this can
be done in many distinct ways, called configurations. A configuration is denoted
as (n1, . . . , ndσ) where ni signifies the number of particles occupying the i-th single-
particle function (orbital). All of the distinct configurations are subject to the con-
straint ∑i ni = Nσ, i.e. particle number conservation. Depending on the species
statistics, the number of all possible configurations can differ. Bosonic particles tend
to cluster together and many of them can occupy a single orbital. Taking that into
account there are Nσ = (Nσ+dσ−1

dσ−1
) ways of distributing them into dσ orbitals. For

fermions, this number is Nσ = (dσ
Nσ

), since the Pauli exclusion principle dictates the
distribution of the atoms. In that regard, the number of orbitals is always larger or
equal than the number of fermionic particles. Given the indistinguishability of the
particles, we have to (anti)symmetrize the wavefunction when considering all possible
permutations of (fermions) bosons denoted by Pi, i = 1, . . . ,Nσ!. This operation rep-
resents the i-th element of the SNσ permutation group. The symmetry/antisymmetry
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is properly taken into account with the exponent ζ, assuming the value 0 for bosons
and 1 for fermions.

The advantage of ML-MCTDHX over other variational methods is that the many-
body wavefunction describing the stationary state and dynamics of the mixture is ex-
panded over time-dependent single-particle functions with time-dependent expansion
coefficients. This greatly reduces the number of required basis states, as compared to
the case where only the expansion coefficients are time-dependent. The single-particle
functions ϕ as well as the expansion coefficients A and C are determined variationally.
Given the many-body ansatz [Eqs. (2.47), (2.48)], one needs to find solutions yielding
a stationary action [371],

S[A,C,ϕ] = ∫ dt ⟨Ψ∣H − ih̵ d
dt

∣Ψ⟩ . (2.49)

This is subject to the constraint that the species functions and single-particle functions
remain orthonormalized during the entire time evolution of the two component setting.

The stationarity of the action (2.49) results in many integro-differential equations
for the Ak,l(t), C(n1,...,ndσ )

k (t) and ϕ variational parameters. In a nutshell, there
are D2 first-order differential equations for the Ak,l(t) coefficients. Regarding the
expansion in species functions and the C(n1,...,ndσ )

k (t) parameters, there are D∑σNσ
non-linear integro-differential equations. Finally, the single-particle functions satisfy
a set of dA + dB non-linear integro-differential equations. These equations of motion
can be generalized to any number of species of arbitrary statistics [337–340].

The parameters dσ and D are chosen such that observables of interest are con-
verged within a specified tolerance, see also [74] for more details. In the limiting case
where dA = dB = D = 1, one retrieves the Hartree product [Eq. (2.38)] for a binary
mixture,

Ψ(xA,xB, t) = NA∏
i=1

ϕA(xAi , t)NB∏
j=1

ϕB(xBj , t). (2.50)

The variational principle then leads to two coupled Gross-Pitaevskii equations for
the single-particle functions ϕA and ϕB [372, 373]. This is the mean-field limit where
both intra- and interspecies correlations are neglected. Moreover, by considering just a
single Schmidt coefficient (D = 1), interspecies correlations are discarded, highlighting
in this way the impact of intraspecies ones. This is the so-called species mean-field
approach [343, 354, 355].
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Chapter 3

Outline of Scientific contributions

3.1 Correlations and dynamical response of few-body trapped
systems

S
cattering of two and three atoms at low energies is important for under-
standing the collisional properties of ultracold quantum gases, especially
loss processes [66] and Feshbach resonances [15] [Sec. 2.2.4]. The latter
are fundamental in controlling the interatomic interactions and exploring

strongly interacting quantum gases. In order to monitor the dynamics of atomic sys-
tems, external electromagnetic fields are being utilized, acting as harmonic oscillator
traps and confining the atoms in space.

In that regard, investigating the dynamics of two and three atoms in harmonic
traps is crucial, being the most elementary non-trivial trapped systems. Their sta-
tionary properties have been extensively studied [see Sec. 2.3], and analytic solutions
are found for the energy levels and relative wavefunctions [69, 71, 72, 203, 243, 262,
374]. Few-body trapped setups are analytically tractable even in the case of strong
interactions [72]. Therefore, their analytical properties can be utilized to study their
dynamical response [61, 375], yielding insights into efficient protocols for populating
few-body bound states [244, 245, 87, 97, 103, 376]. Moreover, few-body trapped setups
have been employed to probe the dynamics of many-body systems at short timescales
and large momenta [105, 106, 114]. The contacts lie at the heart of this connection
[Sec. 2.4].

In the following outlined works, we aim to provide further insights on the corre-
lation properties of two- and three-body trapped systems. Analytical expressions are
provided for the two-body contact for atoms in the dimensional crossover from two
to one dimension. Beyond two particles, we map out the three-body contact over
a wide range of scattering lengths for two-dimensional three-body binary mixtures.
The latter consist of two identical bosons or spin-polarized fermions interacting with
a third distinguishable particle. In this context, the interplay of two- and three-body
correlations between distinct eigenstates is analyzed.

The correlation properties are utilized to probe the dynamics of these systems upon
abrupt variations of the scattering lengths (interaction quench). Substantial enhance-
ment of correlation measures signals the dynamical contribution of few-body bound
states. In order to enhance their participation in the quench dynamics, a protocol
is proposed to selectively excite distinct eigenstates. A good grasp on three-particle
models allows us also to tackle the dynamical generation of a coherent superposi-
tion of Efimov trimer with atom-dimer states in thermal gases. Such a superposition
is achieved upon modulating the scattering length in a fashion similar to Ramsey
spectroscopy.
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3.1.1 Dynamical response of two particles in two dimensions [B1]

Our starting point for exploring correlation measures of few atoms are two-dimensional
systems. They are inherently different from their three- or one-dimensional counter-
parts, due to the existence of a two-body bound state irrespective of the sign of the
interaction strength [Sec. 2.2.3]. In [B1], the role of this bound state is revealed in the
interaction quench dynamics of two atoms over a wide range of interaction strengths.
For that purpose several observables are investigated, such as the fidelity [377] and
the two-body contact, quantifying short-range two-body correlations.

As a first step, the energy level structure is identified for all interaction strengths,
and an asymptotic expansion is given for the energy levels at strong interactions,
hinting at the absence of the Bose-Fermi mapping in two dimensions [378–380]. The
short-range correlation properties are subsequently explored, and analytic expressions
for the two-body contact are derived, independently of the interaction strength or
the eigenstate. The time-evolved relative wavefunction is expanded in terms of the
stationary eigenstates at the final interaction strengths, and analytical expressions are
derived for the expansion coefficients. This allows us to express the time evolution of
any observable, such as the fidelity, measuring the deviation of the time-evolved state
from the initial one, the radial probability density in real and momentum space, and
the two-body contact in a closed analytical form.

Subsequently, three different dynamical protocols are considered : Quenches from
attractive to repulsive interactions (i), the reverse scenarios (ii), and quenches from the
non-interacting case to infinitely strong interactions (iii). The system is initialized in
the ground atom-atom state, describing two interacting particles in a harmonic trap.
In both quench protocols (i) and (ii), it is found that the particles significantly deviate
from their initial state, when the interaction strength is quenched from attractive or
repulsive interactions in the vicinity of the non-interacting region.

From the Fourier spectra of the fidelity [381–383] in conjunction with the expan-
sion coefficients, we identify the contributing eigenstates in the dynamics at the final
interaction strength. In the vicinity of vanishing interaction strengths, many non-
interacting eigenstates are populated. Quenching the interactions from repulsive to
attractive values and vice versa, it is found that the ground atom-atom eigenstate is
mainly contributing, along with the two-body bound state. Signatures of the latter
are observed in the evolution of the radial probability density in real and momen-
tum space. In real space we observe peaks at short distances, matching the structure
of the bound state radial density. In reciprocal space large tails are present in the
evolution of the radial density, due to the extended structure of the two-body bound
state density in momentum space. Moreover, beatings are present in the evolution of
the two-body contact, associated to energy differences between the two-body bound
state and the ground atom-atom state. These interferences are encountered for quench
scenarios (i) and (ii).

The role of the initial states in the quench dynamics is also investigated. It is
shown that the system is substantially perturbed from its starting configuration, when
initialized in the two-body bound state. This behavior persists for both protocols (i)
and (ii). In contrast, smaller deviations occur when higher-lying excited states are
considered for the initialization.

Another efficient way of perturbing the two-body setup is explored by quenching
the interaction strength from zero to strong values [protocol (iii)]. A significant growth
of short-range two-body correlations is manifested by inspecting the two-body contact.
This behavior is attributed to the population of the bound state as well as higher
excited eigenstates, displaying enhanced short-range correlations.
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3.1.2 Correlation and dynamical properties of two atoms in the di-
mensional crossover from two dimensions to one [B2]

Having at hand the stationary and dynamical properties of two interacting atoms in
two dimensions, we set out to study the impact of the dimensional crossover from two
dimensions to one. The dimensional crossover for cold gases is usually achieved by
changing the ratio between the trapping frequencies along certain direction(s), thus
confining kinematically cold atoms along the desired dimension(s). Apart from being
able to control the dimensionality of the system, such a crossover leads also to the
effective tunability of the interaction strength [Sec. 2.2.3]. In [B2] the dimensional
crossover of two interacting particles is investigated from two dimensions to one. This
is an interesting regime, given the completely different energy structure of confined
atoms in one and two dimensions, such as the existence of a two-body bound state. We
focus in establishing relations between quantities in these two dimensions, such as the
scattering lengths and short-range two-body correlations. Moreover, the stationary
and dynamical properties of two atoms are examined in the intermediate regime,
where different ratios of the trapping frequencies are considered.

Initially, we express the relative Hamiltonian in cartesian coordinates and establish
a transcendental equation for the energy levels, valid for arbitrary ratio α between
the trapping frequencies along the y and x spatial directions. By setting α = 1, the
energy spectrum of two particles in two dimensions is retrieved. At large values of
the anisotropy parameter, we recover the transcendental equation determining the
energy levels of two interacting atoms in one dimension. This equation is expressed in
terms of the two dimensional scattering length. From there a mapping is established
between the two- and one-dimensional scattering lengths. It is shown that already
from α = 10, the energy levels have a very good agreement with those obtained from
the pure one-dimensional case. For smaller anisotropies, the energy levels are not
equidistant, displaying larger gaps every α-th state, for integer α. This behavior
is traced to the energy gaps present in the non-interacting spectrum. Interestingly,
the energy difference between the ground atom-atom and the two-body bound state
increases as the trapping frequency ratio becomes larger, for all interaction strengths
except from the vicinity of zero two-dimensional interactions.

Subsequently, analytic expressions are derived for the relative two-body wavefunc-
tion, granting access to the density distributions of eigenstates in real and momentum
space. As the anisotropy parameter α gets larger, the densities in real space become
more elongated along the weakly confined dimension. For higher excited states, a two-
hump structure is discernible. On the contrary, in momentum space the elongation of
the density patterns occurs in the strongly confined dimension, as α increases.

At interparticle distances smaller than the harmonic oscillator length along the
weakly confined direction, the two-body wavefunction develops a logarithmic singu-
larity, invoked by the character of two-dimensional interactions. This divergence is
related to the two-body contact, for which we have derived analytic expressions for
any trapping frequency ratio, thereby extending our previous results [B1]. At large
anisotropies α, a simple linear relation is found between the two- and one-dimensional
two-body contacts. The proportionality factor depends on the oscillator length in the
strongly confined dimension, similarly to the relations established in the literature
between the three- and lower-dimensional two-body contacts [125, 384, 385]. Subse-
quently, an analysis is carried out for the two-body contact of the bound and ground
atom-atom state for intermediate anisotropy. Short-range two-body correlations of
the bound state display a monotonic increase with respect to the anisotropy α, re-
gardless of the interaction strength. In contrast, the two-body contact of the ground
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atom-atom state saturates for large ratio of the trapping frequency, regardless of the
interaction strength.

The knowledge of the stationary properties of the two particles for arbitrary fre-
quency ratio, allows us to treat the system from a dynamical perspective across the
dimensional crossover. Similar to [B1], interaction quenches are employed from attrac-
tive to repulsive interactions (i) and vice versa (ii). The time-evolved wavefunction
is expanded in terms of the stationary eigenstates at final interaction strengths, and
analytical expressions are derived for the expansion coefficients. In order to quantify
the degree of perturbation of the system from its initial arrangement, the fidelity is
utilized. It is shown that regardless of the interaction strength, the setup is more
efficiently perturbed when small ratios of the trapping frequency are considered. This
behavior is observed for both quench protocols (i) and (ii). Moreover, strong devia-
tions from the initial configuration are reported for quenches to the weakly interacting
regime. This phenomenon is consistent with the results obtained in [B1], for the pure
two-dimensional case, and takes place for arbitrary anisotropy values.

From the Fourier spectra of the position variance along the two spatial direc-
tions, the contributing stationary eigenstates are identified, revealing the microscopic
mechanisms of the quench dynamics. Close to zero interactions, a plethora of non-
interacting states appear in the variance spectra in both dimensions, reflecting the
fact that the system is efficiently driven out-of-equilibrium. Further away from that
regime, mostly the ground atom-atom and bound states are populated. The number
of excitations in the strongly confined dimension is larger than the respective one in
the weakly confined one, but with a smaller amplitude. This occurs irrespective of
the ratio between the trapping frequencies. The difference in the number is explained
in terms of the amplitudes of the Fourier spectra, for which we derive analytical for-
mulas related to the expansion coefficients. The smaller amplitude of excitations in
the spectrum along the strongly confined dimension is readily explained by inspecting
the profiles of one-body densities at distinct time intervals. The two atoms undergo
a breathing motion, which is more prominent along the weakly confined direction.
As the anisotropy increases, the dynamics along the strongly confined dimension is
essentially frozen, leading to small amplitude excitations.

This work concludes our investigations for the stationary and dynamical aspects of
two-body setups in two dimensions, setting the stage for exploring three-body systems.

3.1.3 Stationary properties of two-dimensional three-body mixtures
[B3]

The stationary properties of three-body systems are far more intricate compared to
the attributes of two atom setups. This is not only due to the presence of three-body
bound states, but also because three-body setups can consist of elementary mass
balanced or imbalanced binary mixtures, possessing different quantum statistics. In
[B3] such binary mixtures are considered consisting of two identical bosonic particles
(BBX) or two spin polarized fermions (FFX) interacting with a third distinguishable
particle (X), all of them confined in a two dimensional harmonic trap. Their two-
and three-body short-range correlation properties are extensively studied for different
mass ratios and interspecies scattering lengths. These two dimensional systems are
more stable from losses stemming from three-body recombination compared to their
counterparts in three dimensions [85, 86, 386].

The three-body mixtures are treated within the adiabatic hyperspherical approach
[Sec. 2.3.2]. Solving the hyperangular equation, we obtain a set of potential curves
corresponding to a light-light-heavy (LLH), equal mass (EM), and heavy-heavy-light
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(HHL) setup. The considered values for the mass ratios are chosen so that they cor-
respond to mixtures of 6Li and 133Cs (BBX HHL, FFX LLH), 6Li and 7Li (BBX
EM, FFX EM), 7Li and 173Yb (BBX LLH, FFX HHL). From the solution of the cou-
pled hyperradial equations [Sec. 2.3.2], the resulting eigenenergies are categorized in
three classes: trimers, i.e. three-body bound states, atom-dimers, which are two-body
bound states interacting with a third particle, and atom-atom-atom states, describ-
ing three interacting particles in a harmonic oscillator. For BBX and FFX systems
alike, the number of trimers increases as the identical particles become heavier [285,
387]. For fermions however, LLH and EM setups do not support any trimer state in
contrast to BBX systems. It is found that the mass ratio threshold for forming trimer
states in FFX HHL systems is shifted to higher values compared to free space [283].
This occurs since the trimer states with energy close to the atom-dimer threshold
are highly affected by the trap, and their energy is shifted upwards. Moreover, the
energy spectra reveal an abundance of avoided crossings between atom-dimers and
atom-atom-atom states with respect to the interspecies scattering length, regardless
of the particle statistics or mass ratio.

Subsequently, a formalism is developed for describing few-body short-range corre-
lations for two dimensional three-body systems in the presence of an external potential.
Our approach extends the usual treatment of few-body correlations for such systems
in free space [302, 303]. In particular, this formalism applies to all eigenstates, and
employs the adiabatic hyperspherical formalism in the asymptotic expansion of the
one-body densities in momentum space. Regarding two-body correlations, a clear
separation of scales is found for the three classes of eigenstates. Namely, trimer states
exhibit a more enhanced two-body contact compared to the contact of atom-dimers.
The latter in turn display magnified two-body correlations with respect to atom-atom-
atom eigenstates.

The two-body contact of atom-dimers and atom-atom-atom states features an os-
cillatory behavior with respect to the interspecies scattering length and displays an
upper and a lower bound. The oscillations occur due to the avoided crossings between
these two types of states as one tunes the interspecies scattering length. Starting for
example from an atom-atom-atom state, the two-body contact subsequently jumps to
a higher value when the interspecies scattering length approaches a crossing with an
atom-dimer. Eventually the contact will jump to a lower value when another crossing
is encountered at a different interspecies scattering length, and now the atom-dimer
converts to another atom-atom-atom eigenstate. The lower bound tends to zero as
one considers highly excited atom-atom-atom states. The particles in these states
are further apart from each other, and thus their short-range two-body correlations
encapsulated by the two-body contact are suppressed. The upper bound is associated
to atom-dimer states close to the atom-dimer threshold. For small interspecies scat-
tering lengths the bound is given by the two-body contact stemming from a deeply
bound dimer and a third particle being further away. This picture breaks down for
large interspecies scattering lengths, where the dimer is loosely bound. The oscillatory
pattern of the two-body contact as well as the existence of the bounds are manifested
both for BBX and FFX systems for all considered mass ratios.

Focusing on the three-body contact, the same hierarchy of three-body correla-
tions is observed as for the two-body contact. Trimer states display a much more
enhanced Tan contact compared to atom-dimers, which in turn display significant
three-body correlations compared to the atom-atom-atom eigenstates. An oscillatory
pattern, similar to the one identified for the two-body contact, is encountered between
the atom-dimer and atom-atom-atom eigenstates for varying interspecies scattering
lengths. This behavior is again attributed to the multiple avoided crossings between
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these two types of states. A lower bound is also identified, associated to highly ex-
cited atom-atom-atom states. However, an upper bound in the three-body contact
is absent. Atom-dimers close to the atom-dimer threshold display more enhanced
three-body correlations, compared to other atom-dimers being energetically further
away from that threshold. The above mentioned properties of the three-body contact
are investigated only for BBX systems and different mass ratios. For FFX settings,
three-body short-range correlations are suppressed due to the Pauli exclusion principle
[303].

Given the prominent oscillatory behavior of the two- and three-body contact for
atom-dimers and atom-atom-atom states with respect to the interspecies scattering
length, we subsequently examine whether these features persist in the presence of
temperature effects [388–391]. Thermal effects are taken into account by weighting
observables according to the Maxwell-Boltzmann distribution. Trimer states and deep
atom-dimers are typically not populated in thermal gases in equilibrium, and hence
they are excluded from the thermal average. For increasing temperature it is found
that the magnitude of Tan contacts decreases. Thermal energy prevents the particles
from approaching to small distances and become correlated. Moreover, the amplitude
of oscillations with respect to the interspecies scattering length decreases and the two-
and three-body contacts become eventually smooth.

Furthermore, we provide insights regarding the spatial configuration of three-
particle systems for the binary mixtures of different statistics, by employing the one-
body densities. For BBX systems, the structures are all isotropic due to the zero total
angular momentum. For FFX systems however, interesting patterns emerge in the
density of atom-atom-atom states. In particular, a phase separation occurs and the
fermions are repelled from the trap center, where the X particle resides. For atom-
dimers however, fermions are attracted to the third distinguishable particle, forming
a more localized structure at the trap center.

3.1.4 Dynamical excitation of distinct eigenstates in three-body two-
dimensional mixtures [B4]

Having at hand the correlation properties of three-body mass-imbalanced mixtures,
we now aim to investigate dynamical protocols for populating particular types of
eigenstates in two dimensions [B4]. Our studies are motivated by joint experimental
and theoretical works in three dimensions, where an enhanced population of Efimov
trimers was detected following quenches from zero to strong interactions [79, 113].

The three-body binary mixtures are initialized in a non-interacting state with
variable spatial extent. The latter can be achieved by confining the system in har-
monic traps of adjustable trap frequency, whereas Fano-Feshbach resonances can be
employed to achieve a non-interacting state. Subsequently, all interactions are turned
on abruptly (interaction quench). The dynamical response of the three-body systems
is evaluated over a wide range of final interspecies scattering lengths by inspecting the
time-averaged fidelity.

First, we focus on LLH settings. Two regimes are identified depending on the ratio
between the harmonic oscillator length with the three-body reduced mass and the
initial spatial extent of the system. When the initial spatial extent is larger than the
harmonic oscillator length, the BBX and FFX systems are more efficiently perturbed
from their initial state compared to the reverse case. From the Fourier spectra of
the fidelity we infer that mostly atom-atom-atom eigenstates are contributing to the
dynamics. In contrast, when the spatial extent is smaller than the oscillator length,
a superposition of few trimers and atom-dimer states is dynamically generated. In



3.1. Correlations and dynamical response of few-body trapped systems 35

essence, selective classes of eigenstates are excited depending on the initial spatial
configuration. This mechanism allows for efficiently creating superpositions of few-
body bound states. It relies on the separation of length scales between the latter
and states which are supported solely by the trap (atom-atom-atom). The length
scale of few-body bound states is typically smaller than the oscillator length. Hence
the three-body setup prepared in an initial configuration with small size has a large
overlap with these bound states.

The dynamical formation of bound states is imprinted on the time-averaged short-
range few-body correlations. For any final interspecies scattering length, these ob-
servables are greatly enhanced when the width of the initial state is smaller than the
harmonic oscillator length, as compared to the opposite scenario. When the width
increases, the magnitude of short-range correlations not only decreases, but also devel-
ops a prominent oscillatory pattern with respect to the interspecies scattering length.
From our results in [B3] we know that such a feature occurs due to the presence of
avoided crossings between atom-dimers and atom-atom-atom eigenstates as the inter-
species interaction is varied. This pattern is therefore a signature of the dynamical
participation of atom-dimers at certain interspecies scattering lengths.

Turning to HHL settings, the BBX and FFX mixtures are efficiently perturbed
from their initial configuration regardless of the starting spatial extent. Subsequent
analysis of the microscopic mechanisms through the Fourier spectra of the fidelity
reveals that similarly to LLH setups, a superposition of trimers and atom-dimers is
populated when the initial spatial extent is smaller than the harmonic oscillator length.
The difference from LLH settings is that atom-atom-atom eigenstates are excited as
well, driving the binary mixtures further out of equilibrium. For widths larger than
the oscillator length, a large number of atom-atom-atom eigenstates is predominantly
populated.

The distinct excitation processes are also imprinted on the time-evolution of the
two- and three-body correlation measures for HHL setups. As the width increases,
the magnitude of the contacts decreases, signaling the presence of eigenstates with
suppressed short-range correlations, namely atom-atom-atom ones. Moreover, an en-
hanced oscillatory structure appears with respect to the interspecies scattering lengths,
stemming from the large number of avoided crossings between atom-dimers and atom-
atom-atom eigenstates. Due to the sharper avoided crossings present in the energy
spectra of HHL setups [B3] compared to their LLH counterparts, the oscillatory pat-
tern is manifested mostly as a sharp peak sequence.

We conclude this work by providing parameters such as magnetic field strengths
and trapping frequencies that could lead to a potential experimental realization of our
setup. The key aspect of this project is that we have proposed a dynamical scheme
for selectively generating superpositions of few-body bound states in two dimensional
three-body mixtures.

3.1.5 Interferometry of Efimov trimers in thermal gases with mod-
ulated magnetic fields [B5]

A dynamical protocol was recently devised experimentally [118, 119], creating coherent
superpositions of Efimov trimers with atom-dimers in three dimensional 7Li thermal
gases. The dynamical scheme capitalized on a sequence of modulated magnetic fields
(pulses) around a background value, separated by a varying free evolution time (dark
time). The length of the pulses is such that when converted to an energy scale, it
matches the energy difference between the first excited Efimov trimer and the first
atom-dimer. Therefore these states are not energetically resolved, and they are both
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addressed by the pulses. This scenario mimics Ramsey interferometry with magnetic
fields, and was employed to extract the binding energy of the first excited Efimov
trimer from the manifested interference fringes of the measured atom number. The
latter displayed a large damping time, the origin of which remained unclear. Possible
suspects were the lifetime of the trimer state or the elastic collisions between trimers,
dimers and free atoms. In [B5] we shed light on the association and decay mechanisms
of this protocol, from a theoretical perspective.

We start our analysis by considering three 85Rb atoms confined in a three dimen-
sional harmonic trap. The oscillator length is chosen such that it corresponds to the
mean interparticle distance stemming from the peak density of 85Rb gases in typical
experiments. The reason behind the choise of this species is that we know from recent
experiments [79] the lifetime of trimers and dimers, which can be reproduced within
the scope of a zero-range model for large background interactions. Thermal effects
are taken into account by initializing the system in an ensemble of atom-atom-atom
states and weighting the observables according to a Maxwell-Boltzmann distribution.
The observable we are interested in is the rescaled Efimov trimer probability after the
second magnetic field pulse relative to the first one.

Initially, we exclude any trimer decay width from our calculations, focusing on the
impact of thermal effects on the interference fringes in the trimer probability. The
latter displays a rich multifrequency pattern, which can be divided in two regions.
At short dark times, large amplitude oscillations are manifested, persisting for large
temperature variations. The frequency spectrum in that region reveals a single pre-
vailing frequency, matching the energy difference between the first excited Efimov and
the first atom-atom-atom state. At longer dark times, the amplitude of oscillations
drastically drops due to temperature effects, and three dominant frequencies appear
in the Fourier spectra, being robust against thermal effects. The highest matches the
frequency identified in the short dark time region. The second is associated to the
energy difference between the first atom-dimer and atom-atom-atom eigenstate. The
lowest one stems from the superposition of the first excited Efimov trimer with the
first atom-dimer, consistent with the experimental detection [118]. Note that the two
other high frequencies were not observed in [118].

To better understand the appearance of three dominant frequencies in the Efi-
mov trimer probability, we construct a three-level model. It is based on the first
excited Efimov state, the first atom-dimer and a single atom-atom-atom state. The
results obtained from different atom-atom-atom eigenstates are eventually weighted
according to the Maxwell-Boltzmann distribution, taking thus into account thermal
effects. From this three-level model in conjunction with time-dependent first order
perturbation theory, analytical approximate formulas are derived for the Efimov trimer
probability. The predictions of that model for the frequencies agree very well with
our numerical computations. Moreover, the amplitude of oscillations at early dark
times is shown to decay according to a power law formula, depending strongly on the
temperature.

Now that the impact of thermal effects on the interference fringes has been appre-
ciated, we proceed to include the decay width of the Efimov trimer in our calculations.
The background scattering length is parked at a large value (2030a0), where the zero-
range model yields reliable predictions for the decay width. The duration of the pulses
is shorter than the lifetime of Efimov states, and the latter is included only during the
dark time between the magnetic field pulses. In order to distinguish the amplitude
damping due to thermal effects from the damping due to the lifetime, we fit the enve-
lope of oscillations at later dark times with an exponential decay. Two characteristic
decay times are identified. The first one, emerging at intermediate dark times, matches
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the lifetime of the first excited Efimov trimer. The decay occurs as if no interference
would be present, and the trimer probability signal would decay solely according to
the lifetime of the Efimov state. The second decay time is extracted at later dark
times, and is found to be twice as long as the lifetime of the trimer. This doubling
is attributed to the manifested interferences between this state and the first atom-
dimer and first atom-atom-atom state. To corroborate our findings, the three-level
model is again employed incorporating now the decay width of the trimer. Within
this framework, we clearly see that the signal stemming from interference terms of the
Efimov trimer with the first atom-dimer and the first atom-atom-atom state possesses
a decay width, being half of the width of the trimer state. This behavior explains
the unusually long damping timescales observed in the interference fringes of the 7Li
experiment [118].

The fact that interference terms exist also between the first atom-atom-atom and
Efimov state, allows us to extend the dynamical protocol to attractive interactions,
where atom-dimers are absent [Sec. 2.3.1]. Indeed, by considering large negative
background scattering lengths, a single frequency is present in the probability to oc-
cupy Efimov trimers, matching the energy difference between the two aforementioned
eigenstates. The damping time of the oscillations is again found to be twice as long
as the lifetime of the Efimov state.

Our work [B5] provides a sound theoretical interpretation of the results reported in
[118], and demonstrates that the interferometer can be employed to accurately assess
the intrinsic properties of Efimov states for all interaction strengths. It also paves the
way for understanding possible modifications inflicted upon the properties of Efimov
states by many-body environments [392].

3.2 Dynamics of few particles in a many-body environ-
ment

So far, we have studied the static and dynamic properties of few-body trapped sys-
tems. Apart from being elementary settings where analytical insights are obtained
regarding their dynamics, it has been shown [97, 105, 106] that they are also ade-
quate in describing the behavior of many-body setups at short timescales and large
momenta. This connection is illustrated by the two-body contact, derived from the
asymptotic expansion of the one-body density in momentum space. For example, the
evolution of the two-body contact showed very good agreement between two- and
many-body models describing quenched Bose-Einstein condensates at early evolution
times [105, 106].

However, few-body models in principle fail to describe the dynamics of quantum
gases, since many-body effects kick in and collective phenomena emerge. In order
to study such processes, an appropriate description of many-body systems is needed.
Such a formalism allows the study of modified properties of few particles (impuri-
ties), immersed in a many-body environment. A few characteristic examples are one
or two impurities dressed with excitations in a Fermi sea or a Bose-Einstein conden-
sate, forming polarons [153–158, 160, 393–395], bipolarons [164–171, 175], or even
in-medium Efimov states [163, 174]. In this section, we address the dynamics of few
bosonic impurities in a mesoscopic Bose gas, and explore collective phenomena such
as phase separation and dark-bright soliton formation.
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3.2.1 Pattern formation of impurities subjected to driving of the
impurity-medium interactions [B6]

Particle imbalanced two-component mixtures are particularly intriguing, since the
dressing mechanisms of impurities in a many-body medium can be assessed. These
mechanisms can be subsequently altered or controlled by devising dynamical protocols
such as quenches of the impurity-medium (interspecies) interaction strength [179, 180].
Moreover, driving of the interspecies interactions has proven especially fruitful in
generating and stabilizing non-linear excitations in two-component setups [396–398],
and pattern formation in Bose-Einstein condensates, such as Faraday waves [239, 368,
399–403]. In [B6] we study the dynamical response of few interacting impurities in a
bosonic many-body medium, upon driving the impurity-medium interaction strength.
For that end we employ a variational many-body method, ML-MCTDHX (Sec. 2.5.2).
In particular, the latter is driven across the phase separation boundary between the
two species [38, 39]. Our aim is to identify dynamical regimes where localization of
the impurities can occur, or patterns are imprinted in the bosonic medium. A mixture
of two hyperfine states of 87Rb is considered, confined in a one dimensional harmonic
trap, with an imbalance of 10 and 100 particles in these two states. The intraspecies
interaction strengths are kept fixed, while the interspecies interaction is modulated
by means of Feshbach resonances.

First, the response of the system is investigated for drivings from the miscible to
the immiscible phase. For modulation frequencies smaller than the trapping one, it
is found that the mixture alternates between the miscible and immiscible regime, in
phase with the modulation of the interspecies interaction strength. Within a mean-
field description, dark-bright soliton pairs are identified when the mixture resides in its
immiscible phase. For driving frequencies larger than the trapping one, these pairs of
non-linear excitations perform a breathing motion during a quarter of their oscillation
period, and subsequently merge in a single bound state at the trap center. However,
taking correlations into account, this picture breaks down and some of the impurities
are expelled towards the edges of the trap, where they tend to equilibrate, while a
significant fraction of them is localized at the trap center. At the positions of the
impurities, the many-body medium develops density dips, the biggest one being at
the trap center. This central dip splits the bosonic medium into two main parts, which
by inspecting second-order noise correlations [404–406] are found to be two-body anti-
correlated. Namely, it is more likely to locate two bosons in the two separated regions,
than in the same one. Anticorrelations occur mostly for the impurities as well.

In order to intuitively understand the dynamics of impurities, we rely on a time-
dependent effective potential [179, 351, 407], taking into account the harmonic trap
and the instantaneous density profile of the medium, weighted by the interspecies
interaction strength. In this picture, the impurity excitations stem essentially from
an effective trap provided by the bosonic medium. For modulation frequencies larger
than the trapping one, the one-body density of the impurities can be assigned mainly
in the three lowest eigenstates of that effective potential.

Now, let us investigate the opposite driving scenario, from the immiscible to the
miscible region. Again, for modulation frequency smaller than the trapping one,
the system is consecutively dragged from the immiscible to the miscible phase, in
accordance with the impurity-medium driving protocol. For modulation frequency
larger than the trapping frequency however, the picture is completely different from
the reverse scenario. Tracking the dynamical response of the system within the mean-
field perspective, pairs of dark-bright solitons emerge, with a smaller oscillation period
compared to the one identified in the opposite driving scheme. These non-linear
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structures become distorted by excitations of the bosonic medium at later evolution
times, showing no sign of merging. Within the correlated framework however, almost
stationary density dips and humps appear close to the trap center in the density profile
of the bath and the impurities respectively. The two opposite regions enclosed by the
dips and the edges of the cloud of the bath display loss of one-body coherence, meaning
that particles are localized in either of those regions. Furthermore, two particles of the
medium tend to cluster together at the same density dip, as indicated by the second-
order noise correlations. The same applies also to impurities, which show a bunching
behavior at the same density hump. Moreover, a breathing motion is observed in
the density profile of the impurities, and the breathing frequency extracted from the
effective potential shows good agreement with the measured one.

Next, we comment on the role of the impurity number and intraspecies interac-
tions, for the interesting regime where the modulation frequency is larger than the
trapping one. Upon considering only two non-interacting impurities, we find that
they remain localized at the trap center, irrespective of the driving protocol from the
miscible or immiscible phase. The same applies also to 10 non-interacting impurities.
Only by increasing the impurity intraspecies repulsion, do the characteristic density
patterns of the two driving protocols start appearing. Namely, a fraction of impurities
is expelled towards the edges of the medium cloud, when driving the impurity-medium
interactions from the miscible to the immiscible phase. In the opposite driving scheme,
the breathing motion in the one-body density of the impurities becomes more visible,
along with the stationary density humps.
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Chapter 4

Scientific contributions

4.1 Correlations and dynamical response of few-body trapped
systems

4.1.1 Analytical treatment of the interaction quench dynamics of
two bosons in a two-dimensional harmonic trap
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We investigate the quantum dynamics of two bosons, trapped in a two-dimensional harmonic trap, upon
quenching arbitrarily their interaction strength and thereby covering the entire energy spectrum. Utilizing
the exact analytical solution of the stationary system, we derive a closed analytical form of the expansion
coefficients of the time-evolved two-body wave function, whose dynamics is determined by an expansion over
the postquench eigenstates. The emergent dynamical response of the system is analyzed in detail by inspecting
several observables such as the fidelity, the reduced one-body densities, the radial probability density of the
relative wave function in both real and momentum space, and the Tan contact, which unveils the existence of
short range two-body correlations. When the system is initialized in its bound state, it is perturbed in the most
efficient manner as compared to any other initial configuration. Moreover, starting from an interacting ground
state, the two-boson response is enhanced for quenches toward the noninteracting limit.
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I. INTRODUCTION

Ultracold quantum gases provide an excellent and highly
controllable test bed for realizing a multitude of systems
without the inherent complexity of their condensed matter
counterparts [1]. Key features of ultracold atoms include the
ability to manipulate their interparticle interactions by em-
ploying Feshbach resonances [2,3], tune the dimensionality
of the system [4,5], and trap few-body ensembles possessing
unique properties [6–10]. Two-dimensional (2D) systems are
of particular interest because of their peculiar scattering prop-
erties, the emergent phase transitions such as the Berezinskii-
Kosterlitz-Thouless transition [11–16], and the existence of
long-range thermal fluctuations in the homogeneous case.
These thermal fluctuations in turn prohibit the development
of a condensed phase but can allow a residual quasiordered
state [17].

Among the few solvable quantum problems, one is the
system of two ultracold atoms confined in an isotropic har-
monic oscillator. Here the two atoms interact via a contact
pseudopotential where only s-wave scattering is taken into
account [18], an approximation which is valid at ultralow
temperatures where two-body interactions dominate [19]. The
stationary properties of this system have been extensively
studied for various dimensionalities and for arbitrary values
of the coupling strength [20–23]. Generalizations have also
been reported including, for instance, the involvement of
anisotropic traps [24], higher partial waves [25,26], and (very
recently) long-range interactions [27] and hard-core inter-
action potentials [28]. Remarkably enough, exact solutions
of few-body setups have also been obtained regarding the
stationary properties of three harmonically trapped identical
atoms in all dimensions [29–34].

A quench of one of the intrinsic system’s parameters is the
most simple way to drive it out of equilibrium [35]. Quenches
of 87Rb condensates confined in a 2D pancake geometry have
been employed, for instance, by changing abruptly the trap-
ping frequency to excite collective breathing modes [36,37],
in line with the theoretical predictions [38,39]. On the con-
trary, the breathing frequency of two-dimensional Fermi gases
has been recently measured experimentally [40,41] and found
to deviate from theoretical predictions at strong interactions,
a behavior called quantum anomaly. Also, oscillations of the
density fluctuations reminiscent of the Sakharov oscillations
[42] have been observed by quenching the interparticle repul-
sion. Furthermore, it has been shown that the dynamics of an
expanding Bose gas when switching off the external trap leads
to the fast and slow equilibration of the atomic sample in one
and two spatial dimensions, respectively [43]. Moreover, the
collisional dynamics of two 6Li atoms has been experimen-
tally monitored after quenching the frequencies of a three-
dimensional harmonic trap [44]. Turning to two harmonically
trapped bosons, the existing analytical solutions have been
employed in order to track the interaction quench dynamics
in one- [45–48] and three-dimensional systems [49]. Focusing
on a single dimension, an analytical expression regarding the
eigenstate transition amplitudes after the quench has been
derived [45]. Moreover, by utilizing the Bose-Fermi mapping
theorem [50,51], a closed form of the time-evolved two-body
wave function for quenches toward the infinite interaction
strength has been obtained [47], with a dynamical crossover
from bosonic to fermionic properties.

Besides these investigations, the interaction quench dy-
namics of the two-boson system in two spatial dimensions em-
ploying an analytical treatment has not been addressed. Here,
the existence of a bound state for all interaction strengths
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might be crucial, giving rise to a very different dynamics
compared to its one-dimensional analog. Also, regarding the
strongly interacting regime, the Bose-Fermi theorem does
not hold. Therefore, it is not clear whether signatures of
fermionic properties can be unveiled, although there are some
suggestions for their existence [52–54]. Another interesting
feature is the inherent analogy between three bosons interact-
ing via a three-body force in one dimension and two bosons
interacting via a two-body force in two spatial dimensions
[55–59]. Therefore, our work can provide additional hints on
the largely unexplored three-body dynamics of three bosons
in one spatial dimension [60]. The present investigation will
enable us to unravel the role of the different eigenstates for
the dynamical response of the system and might inspire future
studies examining state transfer processes [61,62], which are
currently mainly restricted to one-dimensional setups.

In this work, we study the interaction quench dynamics of
two harmonically confined bosons in two spatial dimensions
for arbitrary interaction strengths. To set the stage, we briefly
review the analytical solution of the system for an arbitrary
stationary eigenstate and discuss the corresponding two-body
energy eigenspectrum [20]. Subsequently, the time-evolving
two-body wave function is derived as an expansion over
the postquench eigenstates of the system with the expansion
coefficients acquiring a closed form. The quench-induced
dynamical response of the system is showcased via inspecting
the fidelity evolution. The underlying eigenstate transitions
that predominantly participate in the dynamics are identified
in the fidelity spectrum [63–65]. It is found that after initial-
izing the system in its ground state, characterized by finite
interactions of either sign, it is driven more efficiently out
of equilibrium when employing an interaction quench in the
vicinity of the noninteracting limit. Because of the interaction
quench, the two bosons perform a breathing motion, visual-
ized in the temporal evolution of the single-particle density
and the radial probability density in both real and momentum
space. These observables develop characteristic structures
which signal the participation of the bound and energetically
higher lying excited states of the postquench system. The
dynamics of the short-range correlations is captured by the
two-body contact, which is found to perform an oscillatory
motion possessing a multitude of frequencies. In all cases, the
predominantly involved frequency corresponds to the energy
difference between the bound and ground states. Additionally,
the amplitude of these oscillations is enhanced when quench-
ing the system from weak to infinite interactions. Moreover,
it is shown that the system’s dynamical response crucially
depends on the initial state and in particular that, starting from
an energetically higher excited state, the system is perturbed
to a lesser extent and fewer postquench eigenstates contribute
in the dynamics [66–70]. However, if the quench is performed
from the bound state, the system is perturbed in the most
efficient manner compared to any other initial-state config-
uration. Finally, we observe that after quenching the system
from its ground state at zero interactions toward the infinitely
strong ones the time-evolved wave function becomes almost
orthogonal to the initial one at certain time intervals.

This work is structured as follows. In Sec. II, we introduce
our setup, provide a brief summary of its energy spectrum,
and most importantly derive a closed form of the time-evolved

wave function while discussing also basic observables. Subse-
quently, we investigate the interaction quench dynamics from
attractive to repulsive interactions in Sec. III and vice versa
in Sec. IV, as well as from zero to infinitely large coupling
strengths in Sec. V. We summarize our results and provide an
outlook in Sec. VI.

II. THEORETICAL FRAMEWORK

A. Setup and its stationary solutions

We consider two ultracold bosons trapped in a 2D isotropic
harmonic trap. The interparticle interaction is modeled by a
contact s-wave pseudopotential, which is an adequate approx-
imation within the ultracold regime. The Hamiltonian of the
system, employing harmonic oscillator units (h̄ = m = ω =
1), reads

H = 1

2

2∑
i=1

[−∇2
i + r2

i

] + 2Vpp(r1 − r2), (1)

where r1 and r2 denote the spatial coordinates of each boson.
Note that the prefactor 2 is used for later convenience in the
calculations. The contact regularized pseudopotential can be
expressed as [71]

Vpp(r) = − πδ(r)

ln(Aa�)

[
1 − ln(A�r)r

∂

∂r

]
, (2)

with � being an arbitrary dimensionful parameter possessing
the dimension of a wave vector and A = eγ /2 where γ =
0.577 . . . is the Euler-Mascheroni constant. We remark that
the parameter � does not affect the value of any observable or
the energies and eigenstates of the system, as has been shown
in Refs. [16,71]. Furthermore, the 2D s-wave scattering length
is given by a.

To proceed, we perform a separation of variables in terms
of the center of mass, R = 1√

2
(r1 + r2), and the relative

coordinates ρ = 1√
2
(r1 − r2). Employing this separation, the

Hamiltonian (1) acquires the form H = Hc.m. + Hrel with

Hc.m. = − 1
2∇2

R + 1
2 R2, (3)

being the Hamiltonian of the center of mass and

Hrel = − 1
2∇2

ρ + 1
2ρ2 + Vpp(ρ) (4)

is the Hamiltonian corresponding to the motion in the relative
coordinate frame.

As a result, the Schrödinger equation can be cast into
the form H	(r1, r2) = E	(r1, r2). Here the total energy of
the system has two contributions, namely E = Ec.m. + Erel,
and the system’s wave function is a product of a center-
of-mass part and a relative coordinate part, i.e., 	(r1, r2) =
	c.m.(R)	rel(ρ). Since the center-of-mass Hamiltonian Hc.m.

is interaction independent [see Eq. (3)], its eigenstates cor-
respond to the well-known noninteracting 2D harmonic os-
cillator states [72]. We assume that the center-of-mass wave

function takes the form 	c.m.(R) = e−R2/2√
π

, namely the nonin-
teracting ground state of the 2D harmonic oscillator. Since we
are interested in the interaction quench dynamics of the two
interacting bosons, we omit the center-of-mass wave function
in what follows for simplicity. Following the above-mentioned
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separation of coordinates, the problem boils down to solving
the relative part of the Hamiltonian, Hrel, which is interaction
dependent. For this purpose, we assume an ansatz for the
relative wave function, which involves an expansion over
the noninteracting energy eigenstates of the 2D harmonic
oscillator

ϕn,m(ρ, θ ) =
√

n!

π�(n + |m| + 1)
e−ρ2/2ρ|m|L(m)

n (ρ2)eimθ .

(5)

In this expression, �(n) is the gamma function while L(m)
n

refer to the generalized Laguerre polynomials of degree n and
value of angular momentum m. Also, ρ = (ρ, θ ), where ρ is
the relative polar coordinate and θ is the relative angle. The
energy of the noninteracting 2D harmonic oscillator eigen-
states in harmonic oscillator units is Erel,n,m = 2n + |m| + 1
[72]. Within our relative coordinate wave function ansatz
[see Eq. (6) below], we will employ, however, only those
states that are affected by the pseudopotential and thus have
a nonvanishing value at ρ = 0. These are the states with
bosonic symmetry m = 0, i.e., zero angular momentum. The
states with odd m are fermionic, since under the exchange
θ → θ − π , they acquire an extra minus sign due to the term
eimθ . Therefore, the ansatz for the relative wave function reads

	rel(ρ) =
∞∑

n=0

cnϕn(ρ), (6)

where the summation is performed over the principal quantum
number n and we omit the angle θ since only the states
with m = 0 are taken into account. Note that this ansatz has
already been reported previously, e.g., in Refs. [20,45]. In
order to determine the expansion coefficients cn, we plug
Eq. (6) into the Schrödinger equation that Hrel satisfies and
project the resulting equation onto the state ϕ∗

n′ (ρ). Following
this procedure, we arrive at

cn′ (Erel,n′ − Erel )

= πϕ∗
n′ (0)

ln(Aa�)

{[
1 − ln(

√
2A�ρ)ρ

∂

∂ρ

] ∞∑
n=0

cnϕn(ρ)

}
ρ→0

.

(7)

The right-hand side of Eq. (7) is related to a normalization
factor of the relative wave function |	rel〉. Indeed, it has been
shown [20,45] that the coefficients take the form

cn = A1
ϕ∗

n (0)

Erel,n − Erel
, (8)

with A1 = 2
√

π√
ψ (1) (

1−Erel
2 )

being a normalization constant and

ψ (1)(z) being the trigamma function.
By inserting this expression of cn into Eq. (6), we can

determine the relative wave function. This can be achieved
by making use of the generating function of the Laguerre
polynomials, i.e.,

∑∞
n=0 t nLn(x) = 1

1−t e− tx
1−t . Thus, the relative

wave function takes the form [33]

	rel,νi (ρ) = �(−νi )√
πψ (1)(−νi )

e−ρ2/2U (−νi, 1, ρ2), (9)

where U (a, b, z) refers to the confluent hypergeometric func-
tion of the second type (also known as Tricomi’s function) and
2νi + 1 is the energy of the i = 0, 1, . . . interacting eigenstate
[73]. In what follows, we will drop the subscript rel and denote
these relative coordinate states by |	νi〉. It is important to note
at this point that this relative wave-function ansatz solves also
the problem of three one-dimensional harmonically trapped
bosons interacting via three-body forces; see, e.g., Ref. [60]
for more details.

To find the energy spectrum of Hrel, we employ Eq. (7)
along with the form of cn,i =

√
πϕ∗

n (0)

(n−νi )
√

ψ (1) (−νi )
. Note that in

order to determine the right-hand side of Eq. (7), we make
use of the behavior of the relative wave function (9) close to
ρ = 0. In this way, we obtain the following algebraic equa-
tion regarding the energy of the relative coordinates [20,21],
2νi + 1,

ψ (−νi ) = ln

(
1

2a2

)
+ 2 ln 2 − 2γ , (10)

where ψ (x) is the digamma function. Note here that a different
form of the algebraic Eq. (10) can be found in Ref. [20]
and stems from a different definition of the scattering length
a [21]. It is also important to emphasize that the energy
spectrum given by Eq. (10) is independent of the form of
the pseudopotential, Vpp(r), i.e., independent of �, A, or any
short-range potential, as long as its range is much smaller
than the harmonic oscillator length [21]. Denoting a0 ≡ a

2 eγ ,
the algebraic Eq. (10) can be casted into the simpler form
ψ (−νi ) = ln ( 1

2a2
0
). Also, we define the interparticle interac-

tion strength [5,15,20,21,74,75] to be

g = 1

ln
(

1
2a2

0

) . (11)

The energy Erel of the two bosons as a function of the
interparticle interaction strength is presented in Fig. 1. As can
be seen, for g = 0 Erel has the simple form Erel,n = 2n + 1,
and thus we recover the noninteracting energy spectrum
of a 2D harmonic oscillator with zero angular momentum
[19,72]. In this case, the energy spacing between two
consecutive eigenenergies is independent of n, i.e., �E =
Erel,n+1 − Erel,n = 2. For repulsive (attractive) interactions,
the energy is increased (lowered) with respect to its value
at g = 0. Also, and in contrast to the one-dimensional case,
there are bound states |	ν0〉, namely eigenstates characterized
by negative energy, in both interaction regimes. Note that
herein we shall refer to these eigenstates with negative energy
as bound states (ν0) while the corresponding eigenstates
with positive energy in increasing energetic order will be
denoted, e.g., as the first (ν1), second (ν2), etc., eigenstates
and called ground state, first excited state, etc. The presence
of these bound states can be attributed to the existence of the
centripetal term − 1

4r2 , in the 2D radial Schrödinger equation
[72], which supports a bound state even for weakly attractive
potentials, in contrast to the 3D case [14,76]. These energy
states, ν0, correspond to the molecular branch of two cold
atoms in two dimensions. This is clearly captured by the
lowest energy branch of Fig. 1, as has been demonstrated
in Ref. [33]. Note that due to a different definition of the
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FIG. 1. Energy spectrum of two bosons trapped in a 2D harmonic trap for varying interaction strengths g. In the spectrum for g > −0.51,
we display the bound state, ν0, and higher lying eigenstates up to the fourth excited state, ν5. On the other hand, for g < −0.51 the spectrum
contains the bound state, ν0, as well as higher excited states up to the third excited state, ν4. The black solid horizontal lines indicate the
asymptotic values of the energy determined by ψ (−νi ) = 0, in the limit of strong interactions. The black solid vertical line at g = −0.51
marks the boundary at which the bound state for negative interaction strengths becomes the ground state for g > −0.51. The insets show the
radial probability density of the bound states ν0 for different attractive (left panel) and repulsive (right panel) interactions, as well as the radial
probability density of the ground state, ν1, at g = 0.3 (left panel).

coupling constant compared to Ref. [33], which possesses a
bijective mapping to our definition of the coupling strength
[75], the molecular branch maps to the bound states (ν0)
herein in both the repulsive and the attractive interaction
regimes. To further appreciate the influence of these bound
states, we also provide in the insets of Fig. 1 their radial
probability densities 2πρ|	|2 [14] for various interaction
strengths as well as the radial probability density of the ground
state |	ν1〉 at g = 0.3. In the repulsive regime of interactions
(right panel of Fig. 1), the full width at half maximum of
2πρ|	|2 is smaller than the one of the attractive regime (left
panel of Fig. 1). This behavior is caused by the much stronger
energy of the bound state at g > 0 compared to the g < 0 case.
For large interaction strengths, |g| > 8, the widths of 2πρ|	|2
tend to be the same. Another interesting feature of the 2D
energy spectrum is the occurrence of a boundary signifying
a crossover from the bound to the ground state (ν0 → ν1)
at g = −0.51; see the corresponding vertical line in Fig. 1.
This means that the negative eigenenergy of |	ν0〉 crosses
the zero-energy axis and becomes the positive eigenenergy of
|	ν1〉 at g = −0.51. This crossover is captured, for instance,
by 2πρ|	|2 which changes from a delocalized (e.g., at
g = 0.3) to a localized (e.g., at g = −1) distribution. The
existence of this boundary affects the labeling of all the states
and therefore νi becomes νi+1 as it crosses from the repulsive
side of interactions. We note here that with |	ν1〉 (|	ν0〉)
we label the ground (bound) state and with |	νi〉 , i > 1,
the corresponding excited states. For repulsive interactions,
the energy of the bound state diverges at g = 0 as −1/a2

0
[26,76] or as −2e1/g in terms of the interparticle strength,

while it approaches its asymptotic value for very strong
interactions (see Fig. 1). The two bound states share the same
asymptotic value Erel = −1.923264 at g → ±∞. We remark
that this behavior of the bound state in the vicinity of g = 0
is the same as the one of the so-called universal bound state
of two cold atoms in two dimensions in the absence of a trap
[26]. We also note that the states |	νi〉 with i 
= 0 approach
their asymptotic values faster (being close to their asymptotic
value already for g = 2) than the bound states. The asymptotic
values are determined via the algebraic equation ψ (−νi ) = 0.
Moreover, it can be shown that approximately the positive
energy in the infinite interaction limit is given by the formula
Erel ≈ 2n + 1 − 2

ln(n) + O((ln n)−2) when n � 1 [73].

B. Time evolution of basic observables

To study the dynamics of the two harmonically trapped
bosons, we perform an interaction quench starting from a
stationary state of the system, |	 in

νi
(0)〉, at gin to the value gf .

Let us also remark in passing that the dynamics of two bosons
in a 2D harmonic trap employing an analytical treatment has
not yet been reported. The time evolution of the system’s
initial wave function reads∣∣	νi (t )

〉 = e−i Ĥt
∣∣	 in

νi
(0)

〉
=

∑
j

e−i (2ν
f
j +1)t

∣∣	 f
ν j

〉 〈
	 f

ν j

∣∣	 in
νi

(0)
〉
, (12)

where |	 f
ν j 〉 denotes the jth eigenstate of the postquench

Hamiltonian Ĥ with energy (2ν
f
j + 1). Note that the indices

“in” and f indicate that the corresponding quantities of
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interest refer to the initial (prequench) and final (postquench)
state of the system, respectively. Moreover, the overlap coef-
ficients, 〈	 f

ν j |	 in
νi

(0)〉, between the initial wave function and a

final eigenstate |	 f
ν j 〉 determine the degree of participation of

this postquench eigenstate in the dynamics. Recall also here
that 	c.m.(R), is not included in Eq. (12) since the latter is not

affected by the quench [see also Sec. II A] and therefore does
not play any role in the description of the dynamics.

It can be shown that initializing the system in the eigenstate
|	 in

νi
〉 at gin, the probability to occupy the eigenstate |	 f

ν j 〉 after
the quench is given by

d
ν

f
j ,ν

in
i

≡ 〈
	 f

ν j

∣∣	 in
νi

〉 = �
(−ν in

i

)
�

(−ν
f
j

)
√

ψ (1)
(−ν in

i

)
ψ (1)

(−ν
f
j

)
∫ ∞

0
dre−rU

(−ν in
i , 1, r

)
U

(−ν
f
j , 1, r

)

=
�

(−ν
f
j

)
G32

33

(1 0 0 −ν
f
j

∣∣∣
0 0 −1 − νin

i

)
�

(−ν in
i

)√
ψ (1)

(−ν in
i

)
ψ (1)

(−ν
f
j

) , (13)

with Gp,q
m,n

(z a1, . . . ap
∣∣∣ b1, . . . bq

)
being the Meijer G function [77]. Remarkably enough, the coefficients d

ν
f
j ,ν

in
i

can also be expressed

in a much simpler form if we make use of the ansatz of Eq. (6). Indeed, by employing the orthonormality properties of the
noninteracting eigenstates ϕn(ρ) and the explicit expression of the expansion coefficients appearing in the ansatz (6), the overlap
coefficients between the final and initial eigenstates reads

d
ν

f
j ,ν

in
i

=
[

1
gf − 1

gin

]
(
ν in

i − ν
f
j

)√
ψ (1)

(−ν in
i

)
ψ (1)

(−ν
f
j

) . (14)

It should be emphasized here that this is a closed form of the overlap coefficients and the only parameters that need to be
determined are the energies, which are determined from the algebraic equation (10). As a result, in order to obtain the time
evolution of |	 in

νi
(0)〉, we need to numerically evaluate Eq. (12), which is an infinite summation over the postquench eigenstates

denoted by |	 f
ν j 〉. In practice, this infinite summation is truncated to a finite one with an upper limit which ensures that the values

of all observables have been converged with respect to a further adding of eigenstates.
Having determined the time evolution of the system’s wave function [Eq. (12)] enables us to determine any observable of

interest in the course of the dynamics. To inspect the dynamics of the system from a single-particle perspective, we monitor its
one-body density

ρ (1)(r1, t ) =
∫

dr2	̃(r1, r2; t )	̃∗(r1, r2; t )

= e−(x2+y2 )

π2

∑
j,k

e2i (ν f
j −ν

f
k )t�

(−ν
f
k

)
�∗(−ν

f
j

)
d

ν
f
k ,ν in

i
d∗

ν
f
j ,ν

in
i√

ψ (1)
(−ν

f
k

)
ψ (1)∗(−ν

f
j

)
×

∫ ∞

−∞
dzdwe−z2−w2

U ∗(−ν
f
j , 1, (x − z)2/2 + (y − w)2/2

)
U

(−ν
f
k , 1, (x − z)2/2 + (y − w)2/2

)
. (15)

In this expression, the total wave function of the system is
denoted by 	̃(r1, r2) = 	c.m.(R(r1, r2), t )	rel,νi (ρ(r1, r2), t )
[78]. To arrive at the second line of Eq. (15), we have
expressed the relative, ρ2 = 1

2 (r2
1 + r2

2 − 2r1 · r2), and the
center-of-mass coordinates, R2 = 1

2 (r2
1 + r2

2 + 2r1 · r2), in
terms of the Cartesian coordinates (r1, r2) and integrated out
the ones pertaining to the other particle. In particular, we
adopted the notation r1 = (x, y) and r2 = (z,w) for the coor-
dinates that are being integrated out. Moreover, the integral
I
ν

f
j ,ν

f
k

appearing in the last line of Eq. (15) can be further

simplified by employing the replacements z′ = x − z, w′ =
y − w and then the new variables can be expressed in terms
of polar coordinates. The emergent angle integration can be
readily performed and the integral with respect to the radial

coordinate becomes

I
ν

f
j ,ν

f
k

= 2πe−(x2+y2 )
∫ ∞

0
dr re−r2

I0(2r
√

x2 + y2)

×U ∗
(

−ν
f
j , 1,

r2

2

)
U

(
−ν

f
k , 1,

r2

2

)
. (16)

Here, I0(x) is the zeroth-order modified Bessel function of the
first kind [73,77].

Another interesting quantity which provides information
about the state of the system on the two-body level is the radial
probability density of the relative wave function

B(ρ, t ) = 2πρ|	(ρ, t )|2. (17)
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It provides the probability density to detect two bosons for a
fixed time instant t at a relative distance ρ. It can be directly
determined by employing the overlap coefficients of Eq. (14).
Moreover, the corresponding radial probability density in
momentum space reads

C(k, t ) = 2πk|	̃(k, t )|2. (18)

Here, the relative wave function in momentum space is ob-
tained from the two-dimensional Fourier transform

	̃(k, t ) = 2π

∫ ∞

0
dρ ρ	(ρ, t )J0(2πρk), (19)

where J0(x) is the zeroth-order Bessel function.
To estimate the system’s dynamical response after the

quench, we resort to the fidelity evolution F (t ). It is defined as
the overlap between the time-evolved wave function at time t
and the initial one [79], namely

F (t ) = 〈	(0)| e−i Ĥt |	(0)〉 =
∑

j

e−i (2ν
f
j +1)t

∣∣d
ν

f
j ,ν

in
i

∣∣2
. (20)

Evidently, F (t ) is a measure of the deviation of the system
from its initial state [45]. In what follows, we will make use
of the modulus of the fidelity, |F (t )|. Most importantly, the
frequency spectrum of the modulus of the fidelity F (ω) =

1√
2π

∫ ∞
−∞ dt |F (t )|eiωt grants access to the quench-induced

dynamical modes [63,64,80–82]. Indeed, the emergent fre-
quencies appearing in the spectrum correspond to the energy
differences of particular postquench eigenstates of the system
and therefore enable us to identify the states that participate in
the dynamics (see also the discussion below).

Another observable of interest is the two-body contact D.
The latter is defined from the momentum distribution in the
limit of very large momenta, i.e., C(k, t )

k→∞−−−→ 2πD(t )
k3 and

captures the occurrence of short-range two-body correlations
[83–85]. Moreover, this quantity can be experimentally mon-
itored [86,87] and satisfies a variety of universal relations in-
dependently of the quantum statistics, the number of particles,
or the system’s dimensionality [85,88–90]. Having at hand the
eigenstates of the system, we can expand the time evolved
contact after a quench from |	 in

νi
〉 at gin to an arbitrary gf

in terms of the contacts of the postquench eigenstates [91].
Namely,

D(t ) =
∣∣∣∣∣∣
∑

j

e−i (2ν
f
j +1)t d

ν
f
j ,ν

in
i

√|D j |
∣∣∣∣∣∣
2

. (21)

The contacts D j of the postquench eigenstates |	 f
ν j 〉 can be

inferred by employing the behavior of the eigenstates [Eq. (9)]
close to zero distance, ρ → 0, between the atoms

	ν j (ρ) −−→
ρ→0

− 2 ln ρ√
πψ (1)(−ν j )

. (22)

By plugging Eq. (22) into Eq. (19) and restricting ourselves to
small ρ values, we obtain the contact from the leading-order
term (≈1/k2) of the resulting expression. The contact for the
postquench eigenstates |	 f

ν j 〉 reads

D j = 1

π3ψ (1)(−ν j )
. (23)

FIG. 2. (a) Fidelity evolution of the two bosons follow-
ing an interaction quench from gin = −1 and |	 in

ν1
〉 to various

postquench interaction strengths. (b) Fidelity evolution at represen-
tative postquench interaction strengths (see legend).

Note that in order to capture the quench-induced dynamical
modes that participate in the dynamics of the contact, we
employ its corresponding frequency spectrum, i.e., D(ω) =∫ ∞
−∞ dtD(t )eiωt .

Having analyzed the exact solution of the two bosons
trapped in a 2D harmonic trap both for the stationary and
the time-dependent cases, we subsequently explore the cor-
responding interaction quench dynamics. In particular, we
initialize the system into its ground state |	 in

ν1
〉 for attractive

interactions and perform interaction quenches toward the re-
pulsive regime (Sec. III) and vice versa (Sec. IV).

III. QUENCH DYNAMICS OF TWO ATTRACTIVE BOSONS
TO REPULSIVE INTERACTIONS

We first study the interaction quench dynamics of two
attractively interacting bosons confined in a 2D isotropic har-
monic trap. More specifically, the system is initially prepared
in its corresponding ground state |	 in

ν1
〉 at gin = −1. At t =

0, we perform an interaction quench toward the repulsive
interactions, letting the system evolve. Our main objective is
to analyze the dynamical response of the system and identify
the underlying dominant microscopic mechanisms.

A. Dynamical response

To examine the dynamical response of the system after
the quench, we employ the corresponding fidelity evolution
|F (t )| [see Eq. (20)] [92]. Figure 2(a) shows |F (t )| for
various postquench interaction strengths gf . We observe the
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emergence of four distinct dynamical regions where the fi-
delity exhibits a different behavior. In region I, −1 < gf <

−0.27, |F (t )| performs small amplitude oscillations in time
[see also |F (t )| for gf = −0.5 in Fig. 2(b)] and therefore the
system remains essentially unperturbed. Note that the oscilla-
tion period is slightly smaller than π [see also the discussion
below]; e.g., see Fig. 2(b) for gf = −0.5. Entering region II,
−0.27 < gf < 0.8, the system departs significantly from its
initial state since |F (t )| exhibits large amplitude oscillations in
time [see the blue lobes in Fig. 2(a) within region II] deviating
appreciably from unity [see also Fig. 2(b) at gf = 0.5]. A
more careful inspection of |F (t )| reveals that it oscillates with
at least two frequencies, namely a faster one and a slower
one. Indeed, |F (t )| oscillates rapidly (fast frequency) within
a large amplitude envelope of period �π (slow frequency).
Within region III, 0.8 < gf < 2.7, the oscillation amplitude
of |F (t )| becomes smaller when compared to region II. Most
importantly, we observe the appearance of irregular minima
and maxima in |F (t )| being shifted with time [Fig. 2(b) at
gf = 1]. For strong interactions, 2.7 < gf < 10, we encounter
region IV in which |F (t )| > 0.9 performs small-amplitude
oscillations that resemble the ones already observed within
region I [Fig. 2(b) at gf = 7]. An important difference with
respect to region I is that the oscillations of |F (t )| are faster
and there is more than one frequency involved; compare |F (t )|
at gf = −0.5 and gf = 7 in Fig. 2(b).

To gain more insights onto the dynamics, we next resort
to the frequency spectrum of the fidelity F (ω), shown in
Fig. 3(a) for varying postquench interaction strengths. This
spectrum provides information about the contribution of the
different postquench states that participate in the dynamics.
Indeed, the square of the fidelity [see Eq. (20)] can be ex-
pressed as

|F (t )|2 =
∑

j

∣∣d
ν

f
j ,ν

in
1

∣∣4

+ 2
∑
j 
=k

∣∣d
ν

f
j ,ν

in
1

∣∣2∣∣d
ν

f
k ,ν in

1

∣∣2
cos

(
ω

ν
f
j ,ν

f
k
t
)
, (24)

where d
ν

f
j ,ν

in
1

are the overlap coefficients between the initial

(prequench) |	 in
ν1

〉 and the final (postquench) |	 f
ν j 〉 eigen-

states. The corresponding overlap coefficients |d
ν

f
j ,ν

in
1
|2 for an

increasing postquench interaction strength are presented in
Fig. 3(b). Moreover, the frequencies ω

ν
f
j ,ν

f
k

are determined

by the energy differences between two distinct eigenstates of
the postquench Hamiltonian, namely ω

ν
f
j ,ν

f
k

= 2(ν f
j − ν

f
k ) ≡

ων j ,νk with j 
= k. Note also that the amplitudes of the
frequencies [encoded in the color bar of Fig. 3(a)] mainly
depend on the product of their respective overlap coefficients,
i.e., |d

ν
f
j ,ν

in
1
|2|d

ν
f
k ,ν in

1
|2. Finally, the values of the frequencies

ων j ,νk along with the coefficients |d
ν

f
j ,ν

in
1
|2 [Fig. 3(b)] de-

termine the dominantly participating postquench eigenstates
[45,63,64,80].

Focusing on region I, we observe that in F (ω) there are two
frequencies, hardly visible in Fig. 3(a). The most dominant
one corresponds to ων1,ν0 for −1 < gf < −0.51 and to ων2,ν1

for −0.51 < gf < −0.27. It is larger than 2, thus giving
rise to a period of |F (t )| smaller than π . The fainter one

FIG. 3. (a) The fidelity spectrum F (ω) after an interaction
quench from gin = −1 to different final interaction strengths gf .
(b) The corresponding largest overlap coefficients |d

ν
f
j ,νin

1
|2 (see

legend). The black dashed vertical line at gf = −0.51 marks the
boundary at which the bound state for negative interaction strengths
becomes the ground state for gf > −0.51; see also Fig. 1. The inset
presents a magnification of |d

ν
f
j ,νin

1
|2 for −1 � gf � −0.4.

corresponds to ων2,ν1 for −1 < gf < −0.51 and to ων3,ν2 for
−0.51 < gf < −0.27. For reasons of clarity, let us mention
that each of these frequencies, of course, coincides with
the corresponding energy difference between the respective
eigenstates of the system’s eigenspectrum (Fig. 1). Recall
that at gf = −0.51 indicated by the vertical line in Fig. 3
(see also Fig. 1), the labeling of the eigenstates changes and,
e.g., the frequency ων1,ν0 becomes ων2,ν1 . As can be seen
from Fig. 3(a), ων1,ν0 decreases for increasing gf , which is
in accordance with the behavior of the energy gap ων1,ν0 =
2(ν f

1 − ν
f
0 ) in the system’s eigenspectrum (Fig. 1). Turning

to region II, a multitude of almost equidistant frequencies
appears. This behavior is clearly captured in the vicinity
of gf = 0, where the energy difference between consecutive
eigenenergies exhibits an almost equal spacing of the order
of �E � 2 (see also Fig. 1). To characterize the observed
frequency branches in terms of transitions between the sys-
tem’s eigenstates, we determine the corresponding overlap
coefficients d

ν
f
j ,ν

in
1

shown in Fig. 3(b) and also the respective

eigenstate energy differences known from the eigenspectrum
of the system (Fig. 1). In this way, we identify the most
prominent frequency ων2,ν1 appearing in F (ω) which is near
ω ≈ 2. Additionally, a careful inspection of Fig. 3(b) reveals
that there is a significant decrease of |d

ν
f
2 ,ν in

1
|2 for a larger gf

and subsequently energetically higher excited states come into
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play, e.g., |	 f
ν3〉. These latter contributions give rise to the ap-

pearance of energetically higher frequencies in F (ω). Indeed,
the bound state, |	 f

ν0〉, possesses a non-negligible population
already for gf > 0.27 [Fig. 3(b)], giving rise to the frequency
branch ων1,ν0 that at gf ≈ 0.54 has a quite large value of
approximately 14.9 and decreases rapidly as gf increases.
Of course, this behavior stems directly from the energy gap
between the bound, |	 f

ν0〉, and the ground, |	 f
ν1〉, states as

it can be easily confirmed by inspecting the eigenspectrum
(Fig. 1). In the intersection between regions II and III, ων1,ν0

becomes degenerate with the other frequency branches [see
the black circles in Fig. 3(a)], e.g., ων4,ν1 in the vicinity of gf =
1 and ων3,ν1 close to gf = 3 [Fig. 3(a)]. The aforementioned
frequency branches are much fainter when compared to ων1,ν0 ,
since the overlap coefficients between the relevant eigenstates
are small, e.g., |d

ν
f
3 ,ν in

1
|2 < |d

ν
f
0 ,ν in

1
|2 [Fig. 3(b)]. Finally, in

region IV, there are mainly two dominant frequencies, namely
ων1,ν0 and ων2,ν1 , that acquire constant values as gf increases.
Indeed, in this region |d

ν
f
1 ,ν in

1
|2, |d

ν
f
0 ,ν in

1
|2, and |d

ν
f
2 ,ν in

1
|2 are the

most significantly populated coefficients [Fig. 3(b)], which in
turn yield these two frequencies.

B. Role of the initial state

To investigate the role of the initial eigenstate in the
dynamical response of the two bosons, we consider an in-
teraction quench from gin = −1 to gf = 1 but initializing the
system at energetically different excited states, i.e., |	 in

νk
〉, k >

1, and the bound state |	 in
ν0

〉. In particular, Fig. 4(a) illustrates
|F (t )| with a prequench eigenstate being the bound state and
the first, third, fifth, and seventh excited states. In all cases,
|F (t )| exhibits an irregular oscillatory motion as in the case of
|	 in

ν1
〉; see also Fig. 2(b). Evidently, for an energetically higher

initial eigenstate (but not the bound state), |F (t )| takes larger
values and therefore the system is less perturbed. However,
when the two bosons are prepared in the bound state, |	 in

ν0
〉, of

the system, then |F (t )| drops to smaller values as compared
to the case of energetically higher initial states and the system
becomes more perturbed.

The impact of the initial state on the oscillation amplitude
of |F (t )| is reflected on the values of the corresponding
overlap coefficients that appear in the expansion of the fidelity
in Eq. (24). More precisely, when an overlap coefficient
possesses a dominant population with respect to the others
then |F (t )| exhibits a smaller oscillation amplitude than in
the case where at least two overlap coefficients possess a
non-negligible population. For convenience and in order to
identify the states that take part in the dynamics, we provide
the relevant overlap coefficients, |d

ν
f
j ,ν

in
k
|2, for the quench

gin = −1 → gf = 1 in Table I for various initial eigenstates
|	 in

νk
〉. Indeed, an initial energetically higher lying excited state

results in the dominant population of one postquench state
while the other states exhibit a very small contribution, e.g.,
see the last column of Table I. For this reason, an initially
energetically higher excited state leads to a smaller oscillation
amplitude of |F (t )|. Moreover, the large frequency oscilla-
tions appearing in |F (t )| are caused by the presence of sev-
eral higher than first-order eigenstate transitions, e.g., ων6,ν4 ,
ων7,ν4 , ων4,ν0 in the case of starting from |	 in

ν4
〉 [Fig. 4(b)].

FIG. 4. (a) Fidelity evolution when performing a quench from
gin = −1 to gf = 1 starting from energetically higher excited states
|	 in

νk
〉, k > 1, as well as the bound state |	 in

ν0
〉 (see legend). The corre-

sponding fidelity spectrum when initializing the system in (b) |	 in
ν4

〉
and (c) |	 in

ν8
〉.

The transition mainly responsible for these large frequency
oscillations of |F (t )| involves the bound state |	 f

ν0〉. Indeed,
by inspecting |F (t )| of different initial configurations shown
in Fig. 4(a), we observe that starting from energetically higher
excited states such that ν j > ν4 the respective contribution of
|	 f

ν0〉 diminishes (see also Table I), leading to a decay of the
amplitude of these large frequency oscillations of |F (t )|. The
aforementioned behavior becomes evident, e.g., by comparing
|F (t )| for ν in

2 and ν in
8 in Fig. 4(a).

On the other hand, in order to unveil the participating
frequencies in the dynamics of |F (t )|, we calculate its spec-
trum |F (ω)|, shown in Figs. 4(b) and 4(c). We observe that
starting from an energetically higher excited state several
frequencies, referring to different eigenstate transitions, are
triggered. Most of these frequencies which refer to different
initial states almost coincide, e.g., ων5,ν4 with ων9,ν8 , since
the energy gap of the underlying eigenstates is approximately
the same (see also Fig. 1). They possess, however, a distinct
amplitude. Additionally, there are also distinct contributing
frequencies, e.g., compare ων4,ν0 with ων8,ν0 . The latter are in
turn responsible for the dependence of the oscillation period
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TABLE I. Overlap coefficients |d
ν

f
j ,νin

i
|2 for the quench from

gin = −1 to gf = 1 starting from various excited states, namely
|	 in

ν0
〉, |	 in

ν2
〉, |	 in

ν4
〉, |	 in

ν6
〉, and |	 in

ν8
〉. Only the coefficients with a

value larger than 0.9% are presented.

∣∣d
ν

f
j ,νin

0

∣∣2 ∣∣d
ν

f
j ,νin

2

∣∣2 ∣∣d
ν

f
j ,νin

4

∣∣2 ∣∣d
ν

f
j ,νin

6

∣∣2 ∣∣d
ν

f
j ,νin

8

∣∣2

ν
f
j = ν0 0.7896 0.0367 0.0147

ν
f
j = ν1 0.1214 0.0198

ν
f
j = ν2 0.0351 0.8765

ν
f
j = ν3 0.0163 0.0464 0.0187

ν
f
j = ν4 0.0092 0.0092 0.9078

ν
f
j = ν5 0.0351 0.0164

ν
f
j = ν6 0.9249

ν
f
j = ν7 0.0286 0.0145

ν
f
j = ν8 0.9358

ν
f
j = ν9 0.0243

of |F (t )| on the initial eigenstate of the system. Finally, let us
note that if the system is quenched to other final interaction
strengths (not shown here for brevity reasons), across the four
dynamical regions identified in Fig. 2(a), then |F (t )| follows
a similar pattern as discussed in Fig. 4(a).

C. One-body density evolution

To monitor the dynamical spatial redistribution of the two
atoms after the quench at the single-particle level, we next
examine the evolution of the one-body density ρ (1)(x, y, t )
[Eq. (15)]. Figures 5(a)–5(f) depict ρ (1)(x, y, t ) following an
interaction quench from gin = −1 to gf = 1 when the system
is initialized in its ground-state configuration |	 in

ν1
〉. Note that

the shown time instants of the evolution are in the vicinity
of the local minima and maxima of the fidelity [see also
Fig. 2(b)], where the system deviates strongly and weakly
from its initial state respectively. Overall, we observe that the
atoms undergo a breathing motion manifested as a contraction
and expansion dynamics of ρ (1)(x, y, t ); see, for instance, the
increase of the density close to x = y = 0 [Figs. 5(b) and 5(c)]

FIG. 5. [(a)–(f)] Time evolution of the one-body density follow-
ing an interaction quench from gin = −1 to gf = 1. The system of
two bosons is initialized in its ground state, |	 in

ν1
〉, trapped in a 2D

harmonic oscillator. [(g)–(j)] The corresponding one-body densities
for the pre- and postquench eigenstates (see legends) whose overlap
coefficients are the dominant ones for the specific quench.

FIG. 6. (a) Time evolution of the radial probability density,
B(ρ, t ), of the two atoms at selected time instants (see legend) for an
interaction quench from gin = −1 to gf = 1 starting from the ground
state |	 in

ν1
〉. The inset illustrates B(ρ ) of the initial state and different

postquench eigenstates (see legend). (b) Temporal evolution of the
corresponding radial probability density in momentum space, C(k, t )
at specific time instants (see legend). The inset depicts C(k) of the
initial state and various postquench eigenstates (see legend).

and its subsequent spread [Figs. 5(d) and 5(e)]. To provide fur-
ther hints on the dynamical superposition [66,67,70] of states,
we show in Figs. 5(g)–5(j) the corresponding ρ (1)(x, y, t =
0) of the initial state, i.e., |	 in

ν1
〉, and the densities of the

three most significant, in terms of the overlap coefficients,
final states, namely |	 f

ν1〉 , |	 f
ν0〉, and |	 f

ν2〉. Comparing these
ρ (1)(x, y, t = 0) with the ρ (1)(x, y, t ), we can deduce that
during evolution the one-body density of the system is mainly
in a superposition of the |	 f

ν1〉 and the |	 f
ν0〉. The excited state

|	 f
ν2〉 has a smaller contribution to the dynamics of ρ (1)(x, y, t )

[e.g., see Fig. 5(e)] compared to the other states.

D. Evolution of the radial probability density

In order to gain a better understanding of the nonequilib-
rium dynamics of the two bosons, we also employ the time
evolution of the radial probability density of the relative wave
function B(ρ, t ) [Eq. (17)]. Recall that this quantity provides
the probability density of finding the two bosons at a distance
ρ apart for a fixed time instant. The dynamics of B(ρ, t )
after a quench from gin = −1 to gf = 1, starting from |	 in

ν1
〉,

is illustrated at selected time instants in Fig. 6(a). We can
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infer that the emergent breathing motion of the two bosons
is identified via the succession in time of a single-peak [e.g.,
at t = 0.46, 1.31] and a double-peak [e.g., at t = 0.84, 2.63]
structure in the dynamics of B(ρ, t ). Here, the one peak is
located close to ρ = 0 and the other close to the harmonic
oscillator length (unity in our choice of units). Moreover,
by comparing B(ρ, t ) [Fig. 6(a)] with ρ (1)(x, y, t ) (Fig. 5)
suggests that a double-peak structure in B(ρ, t ) refers to an
expansion of ρ (1)(x, y, t ) (e.g., at t = 6.09), while a single-
peaked B(ρ, t ) corresponds to a contraction of ρ (1)(x, y, t )
(e.g., at t = 1.31). Indeed, for a double-peak structure of
B(ρ, t ), its secondary maximum always occurs at slightly
larger radii than the maximum of a single-peak distribution
of B(ρ, t ), possessing also a more extended tail. This further
testifies the expanding (contracting) tendency of the cloud in
the former (latter) case. To reveal the microscopic origin of the
structures building upon B(ρ, t ), we also calculate this quan-
tity [see the inset of Fig. 6(a)] for the states |	 in

ν1
〉, |	 f

ν1〉, |	 f
ν0〉,

and |	 f
ν2〉 that primarily contribute to the dynamics in terms of

the overlap coefficients [see also Fig. 3(b)]. Indeed, comparing
B(ρ, t ) [Fig. 6(a)] with B(ρ) of the stationary eigenstates
[inset of Fig. 6(a)] enables us to deduce that B(ρ, t ) resides
mainly in a superposition of the ground (|	 f

ν1〉), the bound
(|	 f

ν0〉), and the first excited (|	 f
ν2〉) eigenstates. Also, it can be

clearly seen that the main contribution stems from the ground
state, while the other two states possess smaller contributions.
In particular, the participation of the bound state can be
inferred due to the existence of the peak close to ρ = 0, which,
e.g., for t = 0.84 becomes prominent, whereas the presence of
the excited state |	 f

ν2〉 is discernible from the spatial extent of
the B(ρ, t ), e.g., at t = 2.63 [Fig. 6(a)].

To showcase the motion of the two atoms in momentum
space, we invoke the evolution of the radial probability den-
sity in momentum space C(k, t ) [93] illustrated in Fig. 6(b)
for the quench gin = −1 → gf = 1 starting from |	 in

ν1
〉. We

observe that in the course of the dynamics a pronounced
peak close to k = 0 and a secondary one located at values of
larger k appear in C(k, t ). Moreover, the breathing motion in
momentum space is manifested by the lowering and raising
of the zero momentum peak accompanied by a subsequent
enhancement or reduction of the tail of C(k, t ), as shown, e.g.,
at t = 0.84, 6.09. Note also that the tail of C(k, t ) decays in a
much slower manner compared to the tail of B(ρ, t ). Indeed,
the latter decays asymptotically as ∼e−ρ2

[see also Eq. (9)]
while by fitting the tail of C(k, t ) we observe a decay law
∼1/k3 (not shown here for brevity) [83–85,94]. Additionally,
in order to unveil the corresponding superposition of states
that contribute to the momentum distribution, the inset of
Fig. 6(b) presents C(k) of the postquench eigenstates that
possess the most significantly populated overlap coefficients
[see also Fig. 3(b)]. As can be seen, the bound state (|	 f

ν0〉)
exhibits a broad momentum distribution with a tail that ex-
tends to large values of k, while C(k) of the ground state
(|	 f

ν1〉) contributes the most and has a main peak around
k = 0. On the other hand, the excited state (|	 f

ν2〉) con-
tributes to a lesser extent, and its presence is mainly identified
when the momentum distribution exhibits two nodes, e.g., at
t = 2.63.

FIG. 7. (a) Temporal evolution of the normalized contact
D(t )/D(0) upon considering an interaction quench from gin = −1
to gf = 1. (b) The corresponding frequency spectrum.

E. Evolution of the contact

Subsequently, we examine the contact D(t )/D(0) in the
course of the evolution after a quench from gin = −1 to gf =
1; see Fig. 7(a). Recall that the contact reveals the existence
of short-range two-body correlations. Evidently D(t )/D(0)
exhibits an irregular oscillatory behavior containing a variety
of different frequencies. Indeed, by inspecting the correspond-
ing frequency spectrum depicted in Fig. 7(b), a multitude of
frequencies appear. The most predominant frequencies pos-
sessing the largest amplitude originate from the energy differ-
ence between the bound state, |	ν0〉, and energetically higher
lying states, such as ων1,ν0 , ων2,ν0 and ων3,ν0 . Also here ων2,ν1

has a comparable value to ων3,ν0 and thus contributes non-
negligibly to the dynamics of D(t )/D(0). Moreover, there
is a multitude of other contributing frequencies, e.g., ων8,ν0

having an amplitude smaller than ων3,ν0 . These frequencies
indicate the presence of higher lying states in the dynamics
of the contact. The above-described behavior of D(t )/D(0) is
expected to occur since the contact is related to short-range
two-body correlations, and as such its dynamics involves a
large number of postquench eigenstates, giving rise to the
frequencies observed in Fig. 7(b).

IV. QUENCH DYNAMICS OF TWO REPULSIVE BOSONS
TO ATTRACTIVE INTERACTIONS

As a next step, we shall investigate the interaction
quench dynamics of two initially repulsive bosons toward the
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FIG. 8. (a) Fidelity evolution of two bosons after an interaction
quench from |	 in

ν1
〉 at gin = 1 to different final interaction strengths

gf . (b) Time evolution of the fidelity for selected postquench interac-
tion strengths (see legend).

attractive side of interactions. In particular, throughout this
section we initialize the system in its ground-state configura-
tion |	 in

ν1
〉 at gin = 1 (unless it is stated otherwise) and perform

an interaction quench to the attractive side of the spectrum.

A. Dynamical response

In order to study the dynamical response of the system,
we invoke the fidelity evolution [Eq. (20)] [92] shown in
Fig. 8(a) with respect to gf . We observe the appearance
of three different dynamical regions, in a similar fashion
to the response of the reverse-quench scenario discussed in
Sec. III A. Within region I, 0.35 < gf < 1, |F (t )| undergoes
small-amplitude oscillations [see also Fig. 8(b)] and the sys-
tem remains close to its initial state. However, in region
II, characterized by −2.36 < gf < 0.35, the system becomes
significantly perturbed since overall |F (t )| oscillates between
unity and zero. For instance, see |F (t )| in Fig. 8(b) at gf =
−0.2 where, e.g., at t � π/2, 3π/2 |F (t )| � 0.07. Region
III where −10 < gf < −2.36 incorporates the intermediate
and strongly attractive regime of interactions. Here, |F (t )|
oscillates with a small amplitude, while its main difference
compared to region I is that the oscillation period is larger.
Another interesting feature of |F (t )| is that as we enter deeper
into region III the oscillation amplitude decreases and the cor-
responding period becomes smaller (see also the discussion
below).

FIG. 9. (a) Frequency spectrum of the fidelity, F (ω), when per-
forming an interaction quench from gin = 1 to various final interac-
tion strengths. (b) The corresponding most significantly contributing
overlap coefficients |d

ν
f
j ,νin

1
|2. The black dashed vertical line at gf =

−0.51 indicates the boundary at which the bound state for negative
interactions becomes the ground state for gf > −0.51; see also
Fig. 1.

To identify the postquench eigenstates that participate in
the nonequilibrium dynamics of the two bosons, we next
calculate the fidelity spectrum F (ω) [Fig. 9(a)] as well
as the most notably populated overlap coefficients |d

ν
f
j ,ν

in
1
|2

[Fig. 9(b)] for a varying postquench interaction strength. In
region I, we observe the occurrence of a predominant fre-
quency, namely ων2,ν1 , in F (ω). This frequency is associated
with the notable population of the coefficients |d

ν
f
1 ,ν in

1
|2 and

|d
ν

f
2 ,ν in

1
|2 [Fig. 9(b)]. Recall that the amplitude of the frequency

peaks appearing in F (ω) depends on the participating overlap
coefficients, as explicitly displayed in Eq. (24). Entering re-
gion II, there is a multitude of contributing frequencies, the
most prominent of them being ων2,ν1 . The appearance of the
different frequencies is related to the fact that in this regime
|d

ν
f
1 ,ν in

1
|2 drops significantly for more attractive interactions

accompanied by the population of other states such as |	 f
ν2〉

and |	 f
ν3〉 [see Fig. 9(b)]. It is important to remember here

that at the vertical line gf = −0.51 [see also Fig. 1] there is
a change in the labeling of the eigenstates, resulting in the
alteration of the frequencies from ων j ,νk to ων j−1,νk−1 when
crossing this line toward the attractive regime. In region III,
there are essentially two excited frequencies, namely ων1,ν0

and ων2,ν1 . The former is the most dominant since here the
mainly contributing states are |	 f

ν1〉, |	 f
ν0〉, as can be seen from
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FIG. 10. (a) Fidelity evolution of the two bosons when perform-
ing a quench from gin = 1 to gf = −1 starting from various excited
states (see legend). The fidelity spectrum when the system is initially
prepared in (b) |	 in

ν4
〉 and (c) |	 in

ν8
〉.

Fig. 9(b). Note also that ων1,ν0 increases for decreasing gf , a
behavior that reflects the increasing energy gap in the system’s
energy spectrum (Fig. 1). On the other hand, the amplitude
of ων2,ν1 is weaker and essentially fades away for strong
attractive interactions. This latter behavior can be attributed
to the fact that the contribution of the |	 f

ν2〉 state in this region
decreases substantially.

B. Role of the initial state

In order to expose the role of the initial state for the
two-boson dynamics, we explore interaction quenches from
gin = 1 toward gf = −1 but initializing the system in various
excited states |	 in

νk
〉, k > 1, or the bound state |	 in

ν0
〉. The

emergent dynamical response of the system as captured via
|F (t )| is depicted in Fig. 10(a) starting from the bound state
and the first, third, fifth, and seventh excited states. Inspecting
the behavior of |F (t )|, we can infer that the system becomes
more perturbed when it is prepared in an energetically lower
excited state since the oscillation amplitude of |F (t )| in-
creases accordingly; compare, for instance, |F (t )| for ν in

2 and
ν in

6 . Moreover, starting from the bound state, the system is

TABLE II. The most significantly populated overlap coefficients,
|d

ν
f
j ,νin

k
|2, for the quench from gin = 1 to gf = −1 initializing the

system at various initial states. Only the coefficients with a value
larger than 0.9% are shown.

∣∣d
ν

f
j ,νin

0

∣∣2 ∣∣d
ν

f
j ,νin

2

∣∣2 ∣∣d
ν

f
j ,νin

4

∣∣2 ∣∣d
ν

f
j ,νin

6

∣∣2 ∣∣d
ν

f
j ,νin

8

∣∣2

ν
f
j = ν0 0.7896 0.0351 0.0092

ν
f
j = ν1 0.0729 0.0556

ν
f
j = ν2 0.0367 0.8765 0.0092

ν
f
j = ν3 0.0221 0.0198 0.0399

ν
f
j = ν4 0.0147 0.9078

ν
f
j = ν5 0.0175 0.0315

ν
f
j = ν6 0.9248

ν
f
j = ν7 0.0154 0.0262

ν
f
j = ν8 0.9357

ν
f
j = ν9 0.0138

significantly perturbed compared to the previous cases and
|F (t )| showcases an irregular oscillatory behavior. This pat-
tern is maintained if the quench is performed to other values
of gf which belong to the attractive regime (not shown here
for brevity). Recall that a similar behavior of |F (t )| occurs for
the reverse quench process; see Sec. III B and Fig. 4(a).

The above-mentioned behavior of the fidelity evolution
can be understood by employing the corresponding overlap
coefficients |d

ν
f
j ,ν

in
k
|2; see also Eq. (24). As already discussed

in Sec. III B, the fidelity remains close to its initial value in
the case where one overlap coefficient dominates the others
and deviates significantly from unity when at least two overlap
coefficients possess a notable population. The predominantly
populated overlap coefficients, |d

ν
f
j ,ν

in
k
|2, are listed in Table II

when starting from different initial eigenstates |	 in
νk

〉. A close
inspection of this table reveals that starting from an energeti-
cally higher excited state leads to a lesser amount of contribut-
ing overlap coefficients with one among them becoming the
dominant one. This behavior explains the decreasing tendency
of the oscillation amplitude of |F (t )| for an initially energet-
ically higher excited state; e.g., compare |F (t )| of |	 in

ν2
〉 and

|	 in
ν6

〉 in Fig. 10(a). Accordingly, an initially lower (higher)
lying excited state results in a larger (smaller) amount of
excitations and thus to more (less) contributing frequencies.
The latter can be readily seen by resorting to the fidelity
spectrum F (ω) shown in Figs. 10(b) and 10(c) when starting
from |	 in

ν4
〉 and |	 in

ν8
〉, respectively.

C. One-body density evolution

To visualize the nonequilibrium dynamics of the two
bosons, we next monitor the time evolution of the one-body
density [Eq. (15)] depicted in Figs. 11(a)–11(f) for a quench
from |	 in

ν1
〉 at gin = 1 to gf = −0.2. Note that the time instants

portrayed in Fig. 11 refer to roughly the minima and maxima
of the respective fidelity evolution [see Fig. 8(b)]. Overall,
the atomic cloud performs a breathing motion during evolu-
tion; namely, it expands and contracts in a periodic manner.
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FIG. 11. [(a)–(f)] Snapshots of the one-body density evolution
following an interaction quench from |	 in

ν1
〉 at gin = 1 to gf =

−0.2. [(g)–(j)] The corresponding one-body densities for different
stationary eigenstates (see legend) that possess the largest overlap
coefficients.

Moreover, we deduce that when the fidelity is minimized
(e.g., at t = 1.5, 4.53, 7.54), the one-body density expands
[Figs. 11(a), 11(c) and 11(e)], while for the case of a max-
imum fidelity ρ (1)(x, y, t ) contracts [Figs. 11(b) and 11(f)].
To understand which states are imprinted in ρ (1)(x, y, t ), we
further show in Figs. 11(g)–11(j) ρ (1)(x, y, t = 0) of the initial
state |	 in

ν1
〉 and the three most significantly populated, accord-

ing to the overlap coefficients |d
ν

f
j ,ν

in
1
|2, final states, i.e., |	 f

ν1〉,
|	 f

ν2〉, and |	 f
ν3〉 [69,70]. Comparing the ρ (1)(x, y, t = 0) of

these stationary states with ρ (1)(x, y, t ), it becomes evident
that during evolution ρ (1)(x, y; t ) is mainly in a superposition
of the ground state [Fig. 11(i)] and the first excited state
[Fig. 11(h)].

D. Evolution of the radial probability density

As a next step, we examine the evolution of the radial
probability density B(ρ, t ) [Eq. (17)] presented in Fig. 12(a)
for a quench from |	 in

ν1
〉 and gin = 1 to gf = −0.2. Note that

the snapshots of B(ρ, t ) depicted in Fig. 12(a) correspond
again to time instants at which the fidelity evolution exhibits
local minima and maxima [see also Fig. 8(b)]. We observe
that when |F (t )| is minimized, e.g., at t = 1.50, 4.00, 7.74,
B(ρ, t ) shows a double-peak structure around ρ ≈ 0.5 and
ρ ≈ 2 respectively. However, for times that correspond to a
maximum of the fidelity, e.g., at t = 3.1, 6.17, B(ρ, t ) de-
forms to a single-peak distribution around ρ ≈ 1.2. To relate
this alternating behavior of B(ρ, t ) with the breathing motion
of the two bosons, we can infer that when B(ρ, t ) possesses a
double-peak distribution the cloud expands while in the case
of a single-peak structure it contracts; see also Fig. 11. It is
also worth mentioning here that for the times at which B(ρ, t )
exhibits a double-peak structure there is a quite significant
probability density tail for ρ > 1.5. This latter behavior is
a signature of the participation of energetically higher lying
excited states, as we shall discuss below.

Indeed, the inset of Fig. 12(a) depicts B(ρ) of the initial
(|	 in

ν1
〉) and the postquench (|	 f

ν1〉 and |	 f
ν2〉) states that have

the major contribution for this specific quench in terms of the
overlap coefficients [see also Fig. 9(b)]. Comparing B(ρ, t )
with B(ρ), we can deduce that mainly the ground, |	 f

ν1〉,
and the first excited, |	 f

ν2〉, states of the postquench system
are imprinted in the dynamics of the relative density. More
specifically, |	 f

ν2〉 gives rise to the enhanced tail of B(ρ, t )

FIG. 12. (a) Temporal evolution of the radial probability density,
B(ρ, t ), upon considering a quench from gin = 1 to gf = −0.2
starting from the ground state, |	 in

ν1
〉. The inset shows B(ρ ) of the

prequench state |	 in
ν1

〉 and of the postquench eigenstates |	 f
ν1

〉, |	 f
ν2

〉
with the most relevant overlap coefficients. (b) The corresponding
C(k, t ) of panel (a). The inset presents C(k) of the |	 in

ν1
〉 and of the

|	 f
ν1

〉, |	 f
ν2

〉.

[Fig. 12(a)], while the participation of |	 f
ν1〉 (possessing also

the major contribution) leads to the central peak of B(ρ, t )
close to ρ = 0.

The radial probability density in momentum space [93],
C(k, t ), is shown in Fig. 12(b) for selected time instants of
the evolution following the quench gin = 1 → gf = −0.2.
We observe that C(k, t ) exhibits always a two-peak structure
with the location and amplitude of the emergent peaks being
changed in the course of the evolution. In particular, when
the atomic cloud contracts, e.g., at t = 3.10, 9.19 [see also
Figs. 11(b) and 11(f)], C(k, t ) has a large amplitude peak
around k ≈ 0.1 and a secondary one of small amplitude close
to k ≈ 0.4. However, for an expansion of the two bosons,
e.g., at t = 1.50 [Figs. 11(a)], the radial probability den-
sity in momentum space shows small- and large-amplitude
peaks around k ≈ 0.05 and k ≈ 0.3, respectively. Moreover,
the momentum distribution during evolution is mainly in a
superposition of the ground state |	 f

ν1〉 and the first excited
state |	 f

ν2〉; see, in particular, the inset of Fig. 12(b), which
illustrates C(k) of these stationary states. As can be readily
seen, |	 f

ν2〉 is responsible for the secondary peak of C(k, t ) at
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FIG. 13. (a) Time evolution of the rescaled contact D(t )/D(0)
following a quench from gin = 1 to gf = −1. (b) The corresponding
frequency spectrum.

higher momenta, while the ground-state contributes mainly to
the peak close to k = 0.

E. Dynamics of the contact

To unravel the emergence of short-range two-body cor-
relations, we next track the time evolution of the rescaled
contact D(t )/D(0) after an interaction quench from gin = 1
to gf = −1; see Fig. 13(a). As can be seen, the rescaled con-
tact exhibits an irregular multifrequency oscillatory pattern
in time. It is also worth mentioning that here the involved
frequencies in the dynamics of D(t )/D(0) are smaller when
compared to the ones excited in the reverse quench scenario;
see, in particular, Figs. 13(b) and 7(b). By inspecting the
corresponding frequency spectrum presented in Fig. 13(b),
we can deduce that the most prominent frequency ων1,ν0 ≈
2.5 corresponds to the energy difference between the bound
and ground states. Moreover, this predominant frequency is
smaller than the corresponding dominant frequency ων1,ν0 ≈
7.5 occurring at the reverse quench process [Fig. 7(b)]. There
is also a variety of other contributing frequencies which signal
the participation of higher lying states in the evolution of the
contact, such as ων7,ν0 , ων2,ν1 , ων3,ν1 , and ων2,ν0 , exhibiting,
however, a much smaller amplitude as compared to ων1,ν0 .
These frequencies are essentially responsible for the observed
irregular motion of D(t )/D(0).

FIG. 14. Fidelity evolution when applying an interaction quench
gin = 0 → gf = ∞. The system is initialized in different eigenstates
(see legend).

V. QUENCH FROM ZERO TO INFINITE INTERACTIONS

Up to now, we have discussed in detail the interaction
quench dynamics of two bosons trapped in a 2D harmonic
trap for weak, intermediate, and strong couplings in both the
attractive and the repulsive regime. Next, we aim at briefly an-
alyzing the corresponding interaction quench dynamics from
gin = 0 to gf = ∞. We remark here that when the system is
initialized at gin = 0 the formula of Eq. (14) is no longer valid
and the overlap coefficients between the eigenstates |	 in

νi
〉 and

|	 f
ν j 〉 are given by

d
ν

f
j ,ν

in
i

= 2�
(−ν

f
j

)
√

ψ (1)
(−ν

f
j

)
∫ ∞

0
dr re−r2

U
(−ν

f
j , 1, r2

)
Lν in

i
(r2)

= 1(
ν in

i − ν
f
j

)√
ψ (1)

(−ν
f
j

) . (25)

The dynamical response of the system after such a quench
[gin = 0 → gf = ∞] as captured by the fidelity evolution
[Eq. (20)] is illustrated in Fig. 14 when considering different
initial states |	 in

νk
〉. Evidently, when the system is initialized

in its ground state |	 in
ν1

〉, |F (t )| performs large amplitude
oscillations. The latter implies that the time-evolved wave
function becomes almost orthogonal to the initial one at
certain time intervals and as a consequence the system is
significantly perturbed. Also, it can directly be deduced by
the fidelity evolution that when the system is prepared in an
energetically higher excited state it is less perturbed since
the oscillation amplitude of |F (t )| is smaller; e.g., compare
|F (t )| for |	 in

ν1
〉 and |	 in

ν5
〉. This tendency, which has already

been discussed in Secs. III B and IV B, can be explained
in terms of the distribution of the amplitude of the overlap
coefficients; see also Eq. (24). Indeed, if there is a single
dominant overlap coefficient, then |F (t )| ≈ 1, while if more
than one overlap coefficients possess large values |F (t )| de-
viates appreciably from unity. Here, for instance, the first
two most dominant overlap coefficients when starting from
|	 in

ν1
〉 and |	 in

ν5
〉 are |d

ν
f
0 ,ν in

1
|2 = 0.4837, |d

ν
f
1 ,ν in

1
|2 = 0.4402 and

|d
ν

f
4 ,ν in

5
|2 = 0.6453, |d

ν
f
5 ,ν in

5
|2 = 0.1894, respectively.

To further unravel the motion of the two bosons, we
next employ the time evolution of their radial probability
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FIG. 15. (a) Radial probability, B(ρ, t ), at specific time instants
of the evolution following an interaction quench gin = 0 → gf = ∞.
The system is prepared in its ground state |	 in

ν1
〉. The inset illustrates

B(ρ ) of the initial state |	 in
ν1

〉 and some of the postquench eigenstates
|	 f

ν0
〉, |	 f

ν1
〉, and |	 f

ν2
〉. (b) Time evolution of the corresponding

radial probability density in momentum space, C(k, t ). The inset
shows C(k) of the initial state |	 in

ν1
〉 and of certain postquench

eigenstates, namely |	 f
ν0

〉, |	 f
ν1

〉, and |	 f
ν2

〉.

density, B(ρ, t ), in real space [see also Eq. (17)]. Figure 15(a)
shows snapshots of B(ρ, t ) after an interaction quench from
|	 in

ν1
〉 at gin = 0 to gf = ∞. As can be seen for the time

intervals where |F (t )| is minimized (Fig. 14), e.g., at t =
0.78, 2.42, 5.61, B(ρ, t ) exhibits a pronounced peak close to
ρ = 0 and a secondary one at a larger radii, ρ ≈ 1.5. However,
when |F (t )| ≈ 1 (t = 1.62, 3.13, 8.04), B(ρ, t ) shows a more
delocalized distribution. To explain this behavior of B(ρ, t ),
we next calculate B(ρ) of the initial state (i.e., |	 in

ν1
〉) and

of the postquench eigenstates that possess the most dominant
overlap coefficients, namely |	 f

ν0〉, |	 f
ν1〉, and |	 f

ν2〉, follow-
ing the above-described quench scenario [see the inset of
Fig. 15(a)]. Comparing B(ρ, t ) with B(ρ), we observe that
the bound state, |	 f

ν0〉, gives rise to the prominent peak close
to ρ = 0 [see Fig. 15(a)]. Moreover, the states |	 f

ν1〉 and
|	 f

ν2〉 are responsible for the emergent spatial delocalization
of B(ρ, t ). Of course, the ground state (|	 f

ν1〉) plays a more
important role here than the first excited state (|	 f

ν2〉), since
|d

ν
f
1 ,ν in

1
|2 = 0.4402 and |d

ν
f
2 ,ν in

1
|2 = 0.0406, respectively [see

the inset of Fig. 15(a)].

FIG. 16. (a) Time evolution of the rescaled contact D(t )/D(0)
for the interaction quench from gin = 0.2 to gf = ∞. (b) The respec-
tive frequency spectrum D(ω).

Turning to the dynamics in momentum space, Fig. 15(b)
presents C(k, t ) at specific time instants for the quench gin =
0 → gf = ∞ starting from the ground state |	 in

ν1
〉. We observe

that when the system deviates notably from its initial state
(i.e., t = 0.78, 2.42, 5.61), meaning also that |F (t )| � 1, then
C(k, t ) shows a two-peak structure with the first peak located
close to k = 0 and the second one at k ≈ 0.4. Notice also here
that the tail of C(k, t ) has an oscillatory behavior. On the other
hand, if |F (t )| is close to unity (e.g., at t = 1.62, 3.13, 8.04)
where also B(ρ, t ) is spread out [Fig. 15(a)], the correspond-
ing C(k, t ) has a narrow momentum peak close to zero and a
quickly decaying tail at large k.

The inset of Fig. 15(b) illustrates C(k) of the initial eigen-
state and some specific postquench ones which possess the
largest contributions for the considered quench according
to the overlap coefficients. It becomes evident that both
the bound state, |	 f

ν0〉, and the ground state, |	 f
ν1〉, of the

postquench system are mainly imprinted in C(k, t ). Indeed,
the bound state has a broad momentum distribution, whereas
the ground state possesses a main peak close to k = 0. On
the other hand, the first excited state (|	 f

ν2〉) has a smaller
contribution compared to the previous ones and its presence
can be discerned in Fig. 15(b) from the oscillatory tails of
C(k, t ) at large momenta.

Finally, we examine the dynamics of the rescaled contact
D(t )/D(0) illustrated in Fig. 16(a) following a quench from
gin = 0.2 to gf = ∞. Note here that we choose gin = 0.2 and
not exactly gin = 0, since the contact is well defined only for

053602-15

56



BOUGAS, MISTAKIDIS, AND SCHMELCHER PHYSICAL REVIEW A 100, 053602 (2019)

interacting eigenstates [88]. Evidently, D(t )/D(0) undergoes
a large amplitude multifrequency oscillatory motion. The
large amplitude of these oscillations stems from the fact that
the system is quenched to unitarity and therefore the buildup
of short-range two-body correlations is substantial, especially
when compared to the correlations occurring for finite inter-
actions as, e.g., the ones displayed in Figs. 7(a) and 13(a). We
remark that similar large-amplitude oscillations of the contact,
at the frequency of the two-body bound state, have already
been observed in Ref. [95] during the interaction quench
dynamics of a three-dimensional homogeneous BEC from
zero to very large interactions. Regarding the participating
frequencies identified in the spectrum of the contact shown in
Fig. 16(b), we can clearly infer that the dominant frequencies
refer to the energy differences between the bound state, |	ν0〉,
and higher lying states, e.g., ων1,ν0 , ων2,ν0 . The existence of
other contributing frequencies in the spectrum, such as ων2,ν1

and ων3,ν0 , has also an impact on the dynamics of the contact
and signals the involvement of higher lying states.

VI. CONCLUSIONS

We have explored the quantum dynamics of two bosons
trapped in an isotropic two-dimensional harmonic trap and
interacting via a contact s-wave pseudopotential. As a first
step, we have presented the analytical solution of the in-
teracting two-body wave function for an arbitrary stationary
eigenstate. We also briefly discuss the corresponding two-
body energy eigenspectrum covering both the attractive and
repulsive interaction regimes, showcasing the importance of
the existing bound state.

To trigger the dynamics, we consider an interaction quench
from repulsive to attractive interactions and vice versa as
well as a quench from zero to infinite interactions. With
knowledge of the stationary properties of the system, the form
of the time-evolving two-body wave function is provided.
Most importantly, we showcase that the expansion coefficients
can be derived in a closed form and therefore the dynamics of
the two-body wave function can be obtained by numerically
determining its expansion with respect to the eigenstates of
the postquench system. In all cases, the dynamical response
of the system has been analyzed in detail and the underlying
eigenstate transitions that mainly contribute to the dynamics
have been identified in the fidelity spectrum together with the
system’s eigenspectrum.

We have shown that after initializing the system in its
ground state, characterized by either repulsive or attractive
interactions, it is driven more efficiently out of equilibrium, as
captured by the fidelity evolution, when performing an inter-
action quench toward the vicinity of zero interactions. How-
ever, if we follow a quench toward the intermediate or strong
coupling regimes of either sign, then the system remains close
to its initial state. As a consequence of the interaction quench,
the two bosons undergo a breathing motion which has been
visualized by monitoring the temporal evolution of the single-
particle density and the radial probability density, in both real
and momentum space. The characteristic structures building
upon the above-mentioned quantities enable us also to infer
the participation of energetically higher lying excited states of
the postquench system.

To inspect the dependence of the system’s dynamical re-
sponse, we have examined also quenches for a variety of
different initial states such as the bound state or an energet-
ically higher excited state in both the repulsive and attractive
interaction regimes. It has been found that when starting from
energetically higher excited states, the system is perturbed to
a lesser extent and fewer postquench eigenstates contribute
in the emergent dynamics. A crucial role here is played by
the bound state of the postquench system, both in the attrac-
tive and repulsive regimes, whose contribution is essentially
diminished as we initialize the two bosons at higher excited
states. On the other hand, when the quench is performed
from the bound state, independent of the interaction strength,
the system is driven out of equilibrium in the most efficient
manner of any initial state configuration.

Additionally, upon quenching the system from zero to
infinite interactions starting from its ground state, the time-
evolved wave function becomes even orthogonal to the initial
one at certain time intervals. Again here, if the two bosons
are prepared in an energetically higher excited state then the
system becomes more unperturbed. Inspecting the evolution
of the radial probability density, we have identified that it
mainly resides in a superposition of the bound and ground
states alternating from a two peaked structure to a more spread
distribution.

To unveil the emergence of short-range two-body correla-
tions, we have examined the dynamics of the Tan’s contact
in all of the above-mentioned quench scenarios. In particular,
we have found that the contact performs a multifrequency
oscillatory motion in time. The predominant frequency of
these oscillations refers to the energy difference between the
bound and ground states. The participation of other frequen-
cies possessing a comparable smaller amplitude signals the
contribution of higher lying states in the dynamics of the
contact. Moreover, upon quenching the system from weak to
infinite interactions, the oscillation amplitude of the contact
is substantially enhanced, indicating the significant develop-
ment of short-range two-body correlations as compared to the
correlations occurring at finite postquench interactions.

There is a variety of fruitful directions to follow in future
works. An interesting one would be to consider two bosons
confined in an anisotropic two-dimensional harmonic trap
and examine the stationary properties of this system in the
dimensional crossover from two to one dimensions. Having
at hand such an analytical solution would allow us to study
the corresponding dynamics of the system upon changing
its dimensionality, e.g., by considering a quench of the trap
frequency in one of the spatial directions which enable us
to excite higher than the monopole mode. Also one could
utilize the spectra with respect to the different anisotropy in
order to achieve controllable state transfer processes [61,62].
Besides the dimensionality crossover, it would be interesting
to study the effect of the presence of the temperature in the
interaction quench dynamics examined herein. Finally, the
dynamics of three two-dimensional trapped bosons requires
further investigation. Even though the Efimov effect is absent
in that case [96], the energy spectrum is rich, possessing dimer
and trimer states [33], and the corresponding dynamics might
reveal intriguing dynamical features when quenching from
one to another configuration.
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We unravel the stationary properties and the interaction quench dynamics of two bosons, confined in a two-
dimensional anisotropic harmonic trap. A transcendental equation is derived giving access to the energy spectrum
and revealing the dependence of the energy gaps on the anisotropy parameter. The relation between the two- and
one-dimensional scattering lengths as well as the Tan contacts is established. The contact, capturing the two-body
short-range correlations, shows an increasing tendency for a larger anisotropy. Subsequently, the interaction
quench dynamics from attractive to repulsive values and vice versa is investigated for various anisotropies. A
closed analytical form of the expansion coefficients of the two-body wave function, during the time evolution
is constructed. The response of the system is studied by means of the time-averaged fidelity, the spectra of the
spatial extent of the cloud in each direction, and the one-body density. It is found that as the anisotropy increases,
the system becomes less perturbed independently of the interactions, while for fixed anisotropy quenches toward
the noninteracting regime perturb the system in the most efficient manner. Furthermore, we identify that in the
tightly confined direction more frequencies are involved in the dynamics stemming from higher lying excited
states.

DOI: 10.1103/PhysRevA.102.013314

I. INTRODUCTION

Ultracold gases offer a highly controllable platform for
studying quantum few- and many-body systems due to their
extraordinary tunability [1,2]. Feshbach resonances play a
pivotal role, since the interparticle interaction strength can
be arbitrarily adjusted by means of magnetic and optical
fields [3,4]. Moreover, advances in atom trapping enable us to
realize systems of different dimensionality [5–8] and particle
number, thus rendering few-body ensembles which exhibit
remarkable properties, such as the Efimov effect, experimen-
tally tractable [2,9–13].

Utilizing anisotropic harmonic traps allows us
to reach the quasi-two-dimensional (quasi-2D) and
quasi-one-dimensional (quasi-1D) regimes by manipulating
the axial (ωz) or the radial frequency (ωr), such that h̄ωz

(h̄ωr) becomes much larger than all the intrinsic energy
scales of the system [8,14,15]. The crossover to different
dimensions has been investigated in various setups and
several relations have been established for the scattering
properties in different dimensions, e.g., between the
scattering lengths [16–22]. These relations give rise to
confinement-induced resonances [16,23–26], which provide
further means to tune the interparticle interaction in lower
dimensional settings. Moreover, it has been showcased that
the two-body Tan contact in three dimensions (3D), 2D, and
1D are proportional by factors depending on the dimension

[15,27,28]. Interestingly, next-to-leading-order terms in the
asymptotic expansion of the two-body momentum distribution
reveal the contribution of the three-body contact and the role
of dimensionality [29]. Recently, on the two-body level, a
correspondence between a dimension-dependent centrifugal
barrier and a confining potential has been established
[30]. Importantly, apart from the stationary properties, the
nonequilibrium dynamics of Bose and Fermi gases at the
dimensional crossover has attracted considerable interest
[31–34]. This is corroborated by the advent of new trapping
techniques, e.g., utilizing optical tweezers [35,36], which
paves the way for monitoring the time-evolution of few-body
systems. For instance, the collisional dynamics of two 6Li
atoms [13] has been experimentally probed, by quenching the
frequencies of an anisotropic 3D harmonic oscillator.

The stationary properties of two ultracold atoms confined
in an isotropic harmonic oscillator trap have been thor-
oughly explored across all dimensions [37–39]. Generaliza-
tions of these studies include, for instance, the involvement of
anisotropic traps in three dimensions [40–43], higher partial
waves [44,45], long-range interactions [46], and hard-core
interaction potentials [47]. Moreover, a correspondence be-
tween three bosons interacting via three-body forces in 1D
and two bosons interacting via pairwise interactions in 2D
has been established [48–53]. The stationary solutions have
been utilized in order to probe the nonequilibrium dynamics
of two atoms, by quenching the interaction strength in all
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dimensions [54–57]. The solutions also serve as a simple
model for the dynamics of quenched Bose gases, at short
times and larger momenta than those set by the density of the
gas [58,59]. Analytical expressions for several observables are
known, including, for instance, momentum distributions [60]
and thermodynamical quantities [61,62].

Even though the dimensional crossover at the two-body
level has been extensively studied from three to lower di-
mensions, the crossover from two to one dimensions is yet
an unexplored problem, in terms of both the stationary and
the dynamical properties. In this work, we shed light into the
stationary properties and interaction quench dynamics of two
ultracold bosons trapped in an anisotropic 2D harmonic trap.
However, our results have a more general character and can
be equally applied to two distinguishable s-wave interacting
ultracold atoms in even-parity states of their relative coordi-
nate. A transcendental equation for the anisotropic system is
derived, allowing us to probe the underlying energy spectrum
for arbitrary interactions and anisotropies. For instance, it
is shown that the energy gaps between the involved eigen-
states for a fixed interaction strength strongly depend on the
anisotropy. An analytical expression for the two-boson wave
function both in real and momentum space is constructed and
the relation between the 2D and the 1D scattering lengths is
established. We find that the momentum distribution exhibits
a multihump structure along the weaker confined direction
while the corresponding one-body densities feature two-hump
patterns. Remarkably, the 2D and the 1D Tan contacts, captur-
ing the occurrence of short-range two-body correlations, are
found to be proportional to each other by a simple relation.
The Tan contact of the bound and the ground state shows an
increasing tendency for larger anisotropies independently of
the sign of the interaction, and in particular for the ground
state it tends to saturate when approaching the 1D regime.

Subsequently, we focus on the interaction quench dynam-
ics of the two particles from attractive to repulsive interactions
and vice versa. The response of the system is analyzed in
terms of the time-averaged fidelity, and the frequency spectra
of the spatial extent of the bosonic cloud in both confined
directions. We showcase that the time-evolved state devi-
ates significantly from the initial one in the vicinity of zero
postquench interactions, when the latter is initialized at finite
attractive or repulsive interactions. For increasing anisotropy,
the system becomes less perturbed following an interaction
quench, independent of the interactions. The quench excites
a breathing motion, visualized in the time evolution of the
reduced one-body density, in both the x and y directions with
a distinct number of participating frequencies in each spatial
direction.

This work is structured as follows. In Sec. II, we introduce
our setup of the two trapped bosons in a 2D anisotropic
harmonic trap. Subsequently, in Sec. III the energy spectra
are presented for various anisotropies, while Sec. IV contains
the expression of the two-body wave function in real and
momentum space. Section V is dedicated to the behavior of
the reduced one-body density for several anisotropy parame-
ters and Sec. VI showcases the Tan contact of the bound and
the ground states with respect to the anisotropy. In Sec. VII,
the interaction quench dynamics of two bosons is explored
for different anisotropies. We lay out our concluding remarks

and provide an outlook in Sec. VIII. Appendix A provides
details on the derivation of the transcendental equation which
determines the relative energy of the two bosons. Appendix B
provides the 1D energy spectrum of two bosons by inspecting
the quasi-1D limit of the transcendental equation. Details on
the calculation of the 2D Tan contact and its quasi-1D limit are
presented in Appendix C. Appendix D includes an analytical
derivation of the spatial extent of the bosonic cloud in both
directions and the corresponding frequency amplitudes.

II. HAMILTONIAN AND EIGENVALUE PROBLEM

We consider two ultracold bosons trapped in a 2D
anisotropic harmonic trap interacting via an s-wave pseudopo-
tential. Note that the following analysis applies to the general
case of ultracold atoms except for two spin-polarized fermions
[39]; see in particular the discussion following Eq. (7). The
latter constitutes an adequate approximation within the ultra-
cold regime [3,4]. The Hamiltonian of the system reads

H =
2∑

i=1

[
− h̄2

2m
∇2

i + mω2
x

(
x2

i + α2y2
i

)
2

]
+ 2Vpp(ρ1 − ρ2).

(1)
For simplicity, below, we shall adopt harmonic oscillator
units namely h̄ = m = ωx = 1 unless it is stated otherwise.
Additionally, the anisotropy parameter α = ωy

ωx
is the ratio

of the harmonic trap frequencies along the y and x spatial
directions. Evidently, α takes values from unity (2D case) up
to infinity (1D case). Also, ρi = (xi, yi ) denotes the position of
the ith boson in the 2D plane while the prefactor 2 in Eq. (1) is
used for later convenience. The zero-range regularized s-wave
pseudopotential assumes the following form [63]:

Vpp(ρ) = − πδ(ρ)

ln(Aa2D�)

[
1 − ln(A�ρ)ρ

∂

∂ρ

]
, (2)

where � is an arbitrary dimensionful parameter possessing
the units of momentum and A = eγ /2 with γ = 0.577 . . .

being the Euler-Mascheroni constant. Note that the arbitrary
parameter � does not affect any observable of the system and
eventually drops out of the calculations when the pseudopo-
tential is applied to wave functions exhibiting a logarithmic
behavior at the origin ρ = 0 [63,64]. The 2D s-wave scattering
length is a2D.

To separate the center-of-mass (X , Y ) and relative (x, y) co-
ordinates, we employ the following transformations in terms
of the Cartesian coordinates (xi, yi) X = x1+x2√

2
,Y = y1+y2√

2
, and

x = x1−x2√
2

, y = y1−y2√
2

. Therefore, the Hamiltonian of Eq. (1)
separates into the center of mass Hc.m. and the relative Hrel

Hamiltonian, namely H = Hc.m. + Hrel with

Hc.m. = −1

2

(
∂2

X + ∂2
Y

) + 1

2
(X 2 + α2Y 2)

Hrel = −1

2

(
∂2

x + ∂2
y

) + 1

2
(x2 + α2y2)

− πδ(x)δ(y)

ln(Aa2D�)

[
1 − ln(

√
2A�ρ)ρ

∂

∂ρ

]
, (3)

where ρ =
√

x2 + y2. Because of the above-described separa-
tion of the Hamiltonian, the corresponding wave function of
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the system can subsequently be written as a product state, i.e.,

(ρ1, ρ2) = 
c.m.(X,Y )
rel(x, y).

The eigenvalue problem of the center of mass (c.m.) is easy
to solve since it consists of two decoupled noninteracting 1D
harmonic oscillators in the x and y directions; see Eq. (3).
Indeed, the corresponding wave function reads


c.m.(X,Y ) = φn(X )φm(Y ), (4)

where φn(z) = e−ωz2/2√
2nn!

( ω
π

)1/4Hn(
√

ωz) with n = 0, 1, 2, . . . are
the eigenfunctions of a 1D harmonic oscillator of frequency
ω = 1, α and energy En = (n + 1/2)ω in harmonic oscillator
units [65]. Hn are the Hermite polynomials of degree n.
Thus, the energy of the center of mass reads Eñ,m̃

c.m. = ñ +
αm̃ + α+1

2 . Throughout this work, we assume that the center-
of-mass wave function is in its ground state 
c.m.(X,Y ) =
φ0(X )φ0(Y ).

To tackle the eigenvalue problem of the relative Hamilto-
nian, Hrel, we utilize as a wave-function ansatz an expansion
over the noninteracting eigenstates φn(z) [37,54] in both spa-
tial directions, i.e.,


rel(x, y) =
∑
n,m

cn,mφn(x)φm(y). (5)

Here, cn,m denote the corresponding expansion coefficients
(see also below). By plugging Eq. (5) into the Schrödinger
equation for the relative Hamiltonian Hrel
rel = Erel
rel, see
also Eq. (3), and projecting onto the noninteracting eigenstates
φ∗

n′ (x)φ∗
m′ (y), one arrives at the following equation:

0 = cn′,m′
(
En′,m′

rel − Erel
) − πφ∗

n′ (0)φ∗
m′ (0)

ln(a2DA�)

×
{[

1 − ln(
√

2A�ρ)ρ
∂

∂ρ

]

rel(x, y)

}
ρ→0

, (6)

where ρ =
√

x2 + y2 and En,m
rel = n + αm + α+1

2 . The regular-
ization operator enclosed in the parentheses (. . . ) of Eq. (6)
acts on the relative wave function and subtracts the loga-
rithmic divergence close to the origin, ρ = 0 [64,66]. As a
consequence, the expression in the right-hand side of Eq. (6)
is related to a normalization factor denoted below by B of the
wave function, as it has been argued in Refs. [37,54], that will
be determined later. The expansion coefficients, cn,m, thus take
the following form:

cn,m = B
φ∗

n (0)φ∗
m(0)

En,m
rel − Erel

. (7)

Note that the expansion coefficients vanish for odd n, m.
Indeed, the 2D pseudopotential of Eq. (2) affects only states
with a nonvanishing value at x = y = 0 which in turn involve
only even Hermite polynomials, i.e., even-parity states of the
relative coordinate, in the ansatz (5) [40,41]. Therefore, our
analysis is also valid for two distinguishable ultracold atoms
in even-parity states, i.e., the ones that are affected by the
s-wave interaction. The odd-parity states are not impacted
by the contact potential. Having at hand the expansion co-
efficients [see Eq. (7)], one can directly perform the double
summation appearing in Eq. (5). For that end, we express
the denominator of the expansion coefficients [Eq. (7)] in an

integral representation [37,40,41]
1

En,m
rel − Erel

=
∫ ∞

0
dt e−t (En,m

rel −Erel ), (8)

and then perform the double summation by using the Mehler
identity for the Hermite polynomials [67]. Therefore, the
relative wave function reads


rel(x, y) = B

√
α

2π
e−(x2+αy2 )/2

×
∫ +∞

0
dt exp

(
e−t x2

e−t − 1
+ αe−αt y2

e−αt − 1

)

× e−t f (E )/2

√
1 − e−t

√
1 − e−αt

, (9)

where f (E ) = α+1
2 − E . The above integral converges pro-

vided that f (E ) > 0. Later on, and in particular in
Appendix A, we shall consider values of f (E ) < 0 by means
of analytic continuation [40,41]. Note also that in Eq. (9) we
have dropped the subscript rel from the energy for simplicity.

Furthermore, by employing the form of the expansion
coefficients [Eq. (7)], the relative energy is determined via
Eq. (6), namely{(

1 − ln(
√

2A�ρ)ρ
∂

∂ρ

)

rel(x, y)

B

}
ρ→0

= ln(a2DA�)

π
,

(10)
where 
rel(x, y) is determined by Eq. (9). The aim of the fol-
lowing section is to solve Eq. (10) for an arbitrary anisotropy
parameter α, in order to determine the stationary properties
of the two bosons by calculating their energy spectra and
eigenstates.

III. ENERGY SPECTRA

A. Transcendental equation

To find the relative energy E , we need to solve Eq. (10)
and therefore establish a formula that captures the behavior
of the wave function close to x = y = 0. For x, y → 0, the
main contribution to the integral (9) stems from very small
values of the integration variable t [40,41]. Indeed, the integral
appearing in Eq. (9) can be split into two parts,


rel(x, y)|x,y�1 = B

2π

∫ L

0
dt

e−(x2+y2 )/t

t

+ B

√
α

2π

∫ +∞

L
dt

e−t f (E )/2

√
1 − e−t

√
1 − e−αt︸ ︷︷ ︸

I ( f (E )/2)

.

(11)

In the first part, we have linearized all the exponentials
around t = 0, while in the second part, we have set x = y = 0
directly. The parameter L is very small, being of the order
of x, y. The first integral corresponds to �(0,

x2+y2

L ), where
�(x, y) is the incomplete gamma function [68]. For small r2 =
x2 + y2, this gamma function can be expanded as follows:

�

(
0,

r2

L

)
r→0−→ −γ − ln

(
r2

L

)
+ r2

L
+ O(r4). (12)

Note that this result is independent of α, since at very small
interparticle distances r → 0 the confining potential does
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not play any crucial role and the wave function develops a
logarithmic behavior, as a consequence of the 2D interaction
pseudopotential [15,69]. At this point, it is better to restore the

units, i.e., x2 + y2 → x2+y2

l2
x

, where lx =
√

h̄
mωx

is the harmonic

oscillator length in the x direction. Thus, we can deduce that
the pure 2D regime is accessed when the interparticle distance
r is much smaller than lx.

Since the behavior of the relative wave function 
rel(x, y)
is now available [see Eq. (11)] close to x = y = 0, one can
insert Eq. (11) into Eq. (10) and in turn derive a transcendental
equation that will allow us to determine the relative energy
of the two bosons (see Appendix A for more details). The
resulting transcendental equation reads

−γ + 2 ln 2 + √
α

∫ 1

0
dz ln(1 − z)ϕ′

(
z,

f (E )

2

)
︸ ︷︷ ︸

P( f (E )/2)

= −1

g
,

(13)
where g = [ln ( 1

2a2
2D

)]
−1

is the 2D coupling constant

[37,38,70], ϕ(z, f (E )/2) = z f (E )/2−1
√

1−z√
1−zα

, and the
differentiation is performed with respect to the variable
z. Equation (13) provides the energy spectrum of the two
bosons for an arbitrary anisotropy parameter α. As has been
mentioned earlier, this equation is valid only for f (E ) > 0.
Its extension to negative values is granted by the recurrence
formula (see also Appendix A)

P

(
f (E )

2

)
= P

(
α + f (E )

2

)

+
∞∑

n=0

(
1/2

n

)√
π (−1)n�

( f (E )
2 + αn

)
�

(
1
2 + f (E )

2 + αn
) . (14)

B. Quasi-1D limit

Before calculating the energies for various values of α,
let us first retrieve the 1D energy spectrum, by assuming
that α � 1. In this case, the harmonic confinement along
the y direction is tight and therefore we enter the quasi-1D
regime, at least when the interparticle distance is comparable
or larger than the harmonic oscillator length in the x direction,
i.e., r � lx (see also the previous discussion). For α � 1, the
transcendental equation (13) becomes (see also Appendix B)

√
πα

�
( f (E )

2

)
�

(
1
2 + f (E )

2

) − ln(α) + D = ln
(
a2

2D

)
, (15)

where D = −γ − 2
√

k + ln(2k) + k
4 − k2

192 − k3

1152 and k ≈ 6;
see for details Appendix B. The above formula is reminiscent
of the transcendental equation of two bosons confined in a 1D
harmonic trap, which determines the energy spectrum of this
system and reads [37]

√
2a1D = �

(
1
4 − E

2

)
�

(
3
4 − E

2

) = −2
√

2

g1D
. (16)

This expression is derived by following the same steps as
in Sec. II but in 1D and with the pseudopotential Vpp(x) =
− 2

a1D
δ(x) [23]. Most importantly, by employing a proper

rescaling of the energies in Eq. (15), namely E ′ = − f (E ) +

1/2 and comparing Eqs. (15) and (16), we obtain a relation
between the 2D, a2D, and the 1D, a1D, scattering lengths

a2D = D0√
α

e
√

παa1D/
√

2, (17)

with D0 = eD/2. We remark that when restoring the units
of the system, this expression acquires the form a2D =
lyD0e

√
πa1D/(

√
2ly ), where ly is the harmonic oscillator length in

the y direction. Recently, a similar relation between these two
scattering lengths has been established in Ref. [22], by means
of nonrelativistic effective field theory. The connection be-
tween the scattering lengths is achieved by imposing periodic
boundary conditions along one direction and comparing the
effective range expansion with the purely 1D one. Apart from
the scattering lengths, we are able to establish also a relation
among the coupling constants in one and two dimensions,

1

g
= ln(α) − ln 2 + 2

√
2πα

g1D
− D, (18)

where g denotes the 2D effective coupling constant and g1D

denotes the corresponding 1D effective interaction strength;
see also Eq. (16).

Let us also note in passing that the 2D energy spectrum
can also be easily retrieved. Indeed, by substituting α = 1 in
Eq. (9), one gets


rel(x, y) = B

2π
e−(x2+y2 )/2�

(
f (E )

2

)
U

(
f (E )

2
, 1, x2 + y2

)
,

(19)

which is the 2D wave function of two interacting bosons
confined in a radial trap [55]. Here, U (a, b, z) is the confluent
hypergeometric function of the second kind [68]. Then, by
plugging Eq. (19) into Eq. (10), we retrieve the known 2D
energy spectrum [55]

ψ

(
f (E )

2

)
= ln

(
1

2a2
2D

)
+ 2 ln 2 − 2γ , (20)

with ψ (z) being the digamma function [68].
For convenience, in the following, we will refer to the

states with energy less than the zero-point energy, E0 ≡ α+1
2 ,

as bound states [40,41]. The energetically higher lying states
will be subsequently labeled the ground state, first excited
state, and so forth. Additionally, the energetic order of the
eigenstates will be denoted by the subscripts 0 for the bound
state, 1 for the ground state, and in general i denoting the (i −
1)-th excited state. This labeling of the energies is explicitly
showcased in Fig. 1(a), and then it is omitted for brevity.
Furthermore, a black dashed line is included to indicate the
zero-point energy.

Figure 1 illustrates the two extreme regimes, namely the
2D case, for α = 1 [Fig. 1(a)], and the quasi-1D case, for
α � 1 [Fig. 1(b)]. In the quasi-1D regime, the spectrum of
Eqs. (13) and (14) is shown for α = 10 and compared with
the energy spectrum directly derived from Eq. (16) for the 1D
case. The two resulting energy spectra are presented together
for a varying g1D in Fig. 1(b). The zero-point energy is put
to α+1

2 . As can be seen, regarding the excited states there
is a perfect match for all values of g1D. We should note,
however, that for |g| > 5 there is a slight deviation between
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FIG. 1. (a) Energy spectrum with anisotropy α = 1, thus recov-
ering the 2D limit, for various 2D interaction strengths. The black
dashed line indicates the zero-point energy. (b) Comparison of the
energy spectra for α = 10 (blue line) and for a pure 1D system
(red dashed line), with respect to the 1D interaction strength g1D.
In both cases the system consists of two ultracold bosons confined
in an anisotropic 2D harmonic trap. All quantities shown are in
dimensionless units.

the two energies, which is of the order of 2% at infinite g1D.
For a larger anisotropy, this discrepancy becomes smaller; for
instance, it is of the order of 0.5% at α = 100. Deviations
between the two spectra arise also for the bound state in
the attractive interaction regime, and in particular for large
negative interactions g1D < −10 they become of the order
of 15%. The aforementioned discrepancy is due to the fact
that the bound state in the pure 1D system exhibits a lower
energy compared to the corresponding 2D setup. Indeed, the
2D system possesses bound states both in the attractive and
the repulsive interaction regimes [55,71] and for attractive
couplings the energy of the bound state remains finite inde-
pendently of the negative value of the interaction strength; see
Fig. 1(a). For positive values, though, the energy of the bound
state is not bounded from below. This is in sharp contrast
to the pure 1D system where the energy of the bound state
in the attractive regime diverges at very strong interactions
[54]. As we shall discuss in the following, the energy gap
between the bound and the ground states increases as the

anisotropy parameter acquires larger values. However, for a
larger value of α the above-mentioned discrepancy between
the energies of the bound states in strictly 1D as compared to
2D [see Fig. 1(b)] becomes smaller and occurs for stronger
attractions. Note also that in Fig. 1(b) there is a bound state in
the repulsive interaction regime, having an energy much lower
than the energy of the other states of the spectrum and is way
below the shown energy scales.

C. Energy dependence on the anisotropy parameter

To expose the dependence of the eigenenergies on the
anisotropy parameter α, corresponding energy spectra are
shown in Fig. 2 for different values of α, thus accessing the
dimensional crossover from the quasi-1D to the 2D regime.
Evidently, in all cases the energy spacing among the different
eigenstates is not equal, in contrast to the 2D case [Fig. 1(a)],
and greatly depends on α. This behavior is anticipated by the
expression of the energy for zero interactions, namely E =
2(n + αm) + α+1

2 , n, m ∈ N . For integer values of α, the
energy spacing between consecutive energy states becomes
larger every αth state in both the attractive and the repulsive
interaction regimes starting from the ground state; see, for in-
stance, Figs. 2(b) and 2(d). However, for noninteger α values,
the energy spacings become more irregular, as depicted in
Figs. 2(a), 2(c) and 2(e). For instance, at α = 1.1 and g = 0
[Fig. 2(a)], the energetic difference between the third and the
fourth excited states is 2α = 0.2. We should mention here that
qualitatively similar results have been reported also for two
bosons confined in a 3D anisotropic trap [40,41]. Moreover,
the energy gap between the bound and ground states increases
for a larger anisotropy parameter independently of the sign of
the interaction strength; see Figs. 2(a)–2(f).

The energy of the bound states is shifted upward for an
increasing value of α due to the increase of the zero-point
energy, α+1

2 . To elaborate on the impact of the anisotropy
parameter on the energy gaps, we depict in Fig. 3 the en-
ergy difference between the bound and ground states, i.e.,
E1 − E0, as a function of α for various repulsive [Fig. 3(a)]
and attractive [Fig. 3(b)] interactions. We observe that the
aforementioned energy difference increases for large α inde-
pendently of the interactions and it does not saturate, e.g.,
at α = 200 and for g = 3 E1 − E0 = 38.97. Moreover, on
the repulsive interaction regime [Fig. 3(a)], when α is kept
constant, E1 − E0 takes larger values at weak interactions.
This is due to the divergence of the energy of the bound state
close to the noninteracting limit of the repulsive interaction
regime [45,71]. Also deep into the quasi-1D regime, i.e., α �
1, the bound state is largely separated from the other states
of the energy spectrum for all interaction strengths. On the
attractive side [Fig. 3(b)], at fixed α, the energy gap E1 − E0 is
larger at stronger attractions. For fixed attractive interaction g,
E1 − E0 becomes larger as the anisotropy parameter increases.
Recall that for g = 0 the energy of the bound state is always
α+1

2 , i.e., it crosses the bound-state threshold [see Fig. 1(a)],
and hence it is connected with E1 at the repulsive side of the
spectrum [Figs. 2(a)–2(f)].

Figure 4 displays the energy difference between the second
excited and ground states, E3 − E1, as well as between the
fourth excited and ground states E5 − E1 in the corresponding
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FIG. 2. Energy spectra for anisotropy parameter (a) α = 1.1, (b) α = 2, (c) α = 2.5, (d) α = 5, (e) α = 6.5, and (f) α = 20 for varying 2D
coupling strength g. The labeling of the energy states is showcased only in panel (b) for convenience. In all cases, the quantities displayed are
in dimensionless units.

inset, for exemple, for g = 3. In both cases, for small 0 < α <

5 the energy spacings feature jumps and subsequently saturate
for adequately large α > 9. These energy jumps occur for
integer values of α and depend on the level of the excited state;
for instance, there are two jumps in the main Fig. 4 and four
jumps in the inset. For values of α, a little bit smaller or larger
than these integer values, the energy gaps between the states
decrease; see, e.g., Fig. 2(a), and hence the aforementioned
jumps are manifested in the energy difference between excited
states and the ground state. However, for anisotropies higher
than the level of the examined excited state, the energy gap
with the ground state saturates, because the change in the
energy spacing occurs at even higher excited states. This is the
case for the fourth excited state in Figs. 2(d)–2(f). We finally
remark that for other interaction strengths of either sign,
E3 − E1 and E5 − E1, exhibit a similar to the above-described
behavior.

IV. EIGENSTATE ANALYSIS

A. Two-body wave function

To acquire complete knowledge on the stationary proper-
ties of the system, we next determine the two-boson wave
function. The starting point is Eq. (9), where the integral
is convergent for f (E ) > 0. However, it is advantageous to
establish a more convenient form of 
rel(x, y) in order to
span the entire energy spectrum. To this end, one can utilize
the wave-function ansatz introduced in Eq. (5) along with
the underlying expansion coefficients [Eq. (7)]. Indeed, by
expressing the denominator of Eq. (7) in an integral repre-
sentation, see Eq. (8), and performing a single out of the
two summations with the aid of the Mehler identity [67],
the two-boson wave function of the relative coordinate takes

the simplified form


rel(x, y)

= B
√

α

π
e−(x2+αy2 )/2

∞∑
m=0

Hm(0)Hm(
√

αy)�
(

αm−E
2

)
2m+1m!

×U

(
αm − E

2
,

1

2
, x2

)
, (21)

where E = E − (α + 1)/2. In practice, this summation is
truncated when numerically calculating the wave function,
with an upper bound which is chosen such that convergence
is achieved [54]. Note that the wave function in real space
exhibits a logarithmic divergence close to the origin x = y =
0, as already argued in Eq. (12). However, the wave function
of Eq. (21) cannot capture this behavior when truncating the
infinite summation. Indeed, inserting x = y = 0 in Eq. (21),
the wave function does not converge as we increase the cutoff
in the summation. Moreover, the normalization constant B can
be easily determined analytically if we express the conflu-
ent hypergeometric function U (a, b, x) in terms of parabolic
cylinder functions Dz(x) [68]. For this choice, the integration
can be performed analytically [72], resulting in

B−2 =
√

α√
π

∞∑
m=0

Hm(0)2�
(

αm−E
2

)
2m+2m!�

(
αm−E

2 + 1
2

)
×

[
ψ

(
1

2
− E − αm

2

)
− ψ

(
−E − αm

2

)]
, (22)

which corresponds to the analytical expression of the normal-
ization coefficients.

As pointed out in Sec. III, the 2D wave function can be
easily retrieved when α = 1; see Eq. (19). In the following,
the wave function will be evaluated and further investigated
deep into the quasi-1D regime, i.e., in the case of α � 1.
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FIG. 3. Energy difference between the bound and the ground
states, E1 − E0, at different (a) repulsive and (b) attractive 2D in-
teraction strengths (see legends) for varying anisotropy parameter α.
For all observables, dimensionless units are adopted.

Starting from Eq. (9), we note that in this case the wave
function is elongated in the x direction. Thus, in order to
avoid the logarithmic divergence appearing at x = y = 0,
we shall restrict ourselves to y = 0 and x � lx. With these
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FIG. 4. Energy difference between the second excited and
ground states, namely E3 − E1, for increasing anisotropy parameter
α. The inset presents the energy difference between the fourth excited
and ground states, i.e., E5 − E1, with respect to α. In both cases, the
2D interaction strength of the two bosons is g = 3. In all cases, the
quantities displayed are in dimensionless units.

simplifications, Eq. (9) is rewritten as


rel(x, 0) ≈ B
√

α

2π
e−x2/2

×
∫ ∞

0
dw exp

{
− x2e−w

1 − e−w

}
e−w f (E )/2

√
1 − e−w

. (23)

Note that the square root involving the anisotropy parameter
α in Eq. (9) can be neglected, since for w � 1

α
the exponent

e−αw tends to zero. Also, for w � 1
α

, the 1
w

divergence in

Eq. (11) is counterbalanced by the factor e−x2/w, and the
entire integrand vanishes. Employing a change of variables,
z = e−w

1−e−w , it is easy to show that the wave function of two in-
teracting bosons in a quasi-1D trap [54] takes the approximate
form


rel(x, 0) ≈ B
√

α

2π
e−x2/2�

(
f (E )

2

)
U

(
f (E )

2
,

1

2
, x2

)
. (24)

The approximate nature of this expression stems from the fact
that we have restricted ourselves to the spatial region x � lx.

B. Momentum distribution

Consequently, it is straightforward to calculate the wave
function in momentum space. To this end, we utilize its expan-
sion in terms of the Hermite polynomials introduced in Eq. (5)
as well as an identity regarding their Fourier transform.1

Therefore, the wave function 
rel(kx, ky) in momentum space
reads


rel(kx, ky) = B

π
e−(k2

x +k2
y /α)/2

×
∑
n,m

(−i )n+m
Hn(0)Hm(0)Hn(kx )Hm

( ky√
α

)
2n+mn!m!(n + αm − E )

.

(25)

Since the wave function in real space exhibits a logarithmic
divergence at the origin (x = y = 0), it is better to analyze the
structure of the two-boson wave function in momentum space.
Figure 5 illustrates the momentum distribution |
rel, j (kx, ky)|2
for different anisotropy parameters α = 1.1 [Figs. 5(a j)],
α = 2.5 [Figs. 5(b j)], and α = 5 [Figs. 5(c j)], regarding the
ground ( j = 1) and higher excited states ( j = 2, 3) at g = 1.
Independently of the energetic order of the state, we observe
that as the anisotropy parameter increases the momentum
distribution is elongated along the ky direction; see, e.g.,
Figs. 5(a1), 5(b1), and 5(c1). This elongation occurs since
the momentum distribution is more long-ranged for ky than
kx, according to the exponential decay given by Eq. (25). Ad-
ditionally, the momentum distribution for large anisotropies
[see, e.g., Figs. 5(c1)–5(c3)] exhibits a multihump structure
along the kx direction. This multihump structure becomes
more pronounced for energetically higher excited states; com-
pare, for instance, Figs. 5(c2) and 5(c3). The latter behavior is
attributed to the fact that the major contribution in the double

1F{e−αx2/2Hn(x
√

α)} = (−i )n√
α

e−k2/(2α)Hn( k√
α

), where F{g(x)} de-
notes the Fourier transform of a function g(x).
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FIG. 5. Momentum distributions |
rel, j (kx, ky )|2 for α = 1.1 [(a) series], α = 2.5 [(b) series], and α = 5 [(c) series]. The subindices (1, 2,
3) stand for the ground, first, and second excited states, respectively. All cases refer to interaction strength g = 1. |
rel,2(kx, ky )|2 of the first
excited state ( j = 2) for α = 2.5 at (d1) g = −1, (d2) g = −0.1, and (d3) g = 0.1. For all observables, dimensionless units are adopted.

summation of Eq. (25) for high energies E (i.e., higher excited
states) stems from higher order Hermite polynomials which
are responsible for the observed multihump structure of the
momentum distribution. Note also that for larger values of α,
a similar structure of the momentum distribution occurs as
described in Figs. 5(c1)–5(c3) (not shown here for brevity).
The momentum distribution of the first excited state ( j = 2)
|
rel,2(kx, ky)|2 for α = 2.5 is also presented at g = −1, g =
−0.1, and g = 0.1 in Figs. 5(d1)–5(d3). We deduce that as the
attraction increases, |
rel,2(kx, ky)|2 becomes more localized
toward smaller values of kx while its outer humps are depleted;
compare Figs. 5(d1) and 5(d2). Also, in the vicinity of g = 0
but on the attractive side, |
rel,2(kx, ky)|2 develops an addi-
tional outer hump [Fig. 5(d2)] compared to the momentum
distribution for weak repulsions [Fig. 5(d3)]. This is exactly
due to the mismatch in the energy E2 in the vicinity of zero
interactions; see Fig. 2(c).

A more complicated momentum structure of the first ex-
cited state ( j = 2) occurs for α = 1.1, where |
rel,2(kx, ky)|2
displays a pedal-like structure [Fig. 5(a2)]. We remark that for
increasing anisotropy within the interval α ∈ [1.1, 1.9], it is
found that this pedal-like distribution becomes fainter along
ky and more squeezed in the kx direction (not shown here).
Moreover, these pedal patterns approach the origin, i.e., kx =
ky = 0 for α → 1.9. Let us also note that the energy of the first
excited state at α = 1.1 and g = 1 (E = 3.14633) is close to
the energy of a fermionic state with odd n, m in the expression
E = n + αm + α+1

2 (E = 3.15). As α increases in the interval
α ∈ [1.1, 1.9], the energy of the first excited state at g = 1
deviates significantly from the energy of the energetically
closest fermionic state. The momentum distribution of the
fermionic state exhibits also a pedal structure similar to the
one presented in Fig. 5(a2) but with a nodal line at kx = 0
and ky = 0. For α = 1.9, |
rel,2(kx, ky)|2 shows a behavior
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similar to the one displayed in Fig. 5(b2) for α = 2.5. At
this value of α = 2.5, |
rel,3(kx, ky)|2 of the second excited
state ( j = 3) [Fig. 5(b3)] exhibits populated tails for large ky

values. As α increases, these tails of the momentum distribu-
tion, in the ky direction, are suppressed and become apparent
only for higher lying excited states (not shown here for
brevity).

V. ONE-BODY DENSITIES

Having at hand the two-boson wave function for an arbi-
trary anisotropy parameter enables us to access all the prop-
erties of the system. As a case example, we shall investigate
the corresponding one-body densities ρ (1)(x1, y1) for several
states and anisotropies. The one-body density of two bosons
reads [73]

ρ (1)(x1, y1) =
∫

dx2dy2|
c.m.[X (x1, x2),Y (y1, y2)]
rel[x(x1, x2), y(y1, y2)]|2. (26)

For the relative coordinate wave function, we employ the expansion of Eq. (21). The center-of-mass wave function resides in its
ground state, as was discussed in Sec. II. To perform the integral appearing in Eq. (26), we utilize the coordinate transformations
of the center-of-mass and relative coordinates, and therefore express all variables in terms of the positions of the two bosons. In
this way, the one-body density reads

ρ (1)(x1, y1) = B2α3/2

π3
e−(x2

1+αy2
1 )

∑
n,m

f (n) f (m)

J︷ ︸︸ ︷∫ +∞

−∞
dy2 e−αy2

2 Hn

(√
α

y1 − y2√
2

)
Hm

(√
α

y1 − y2√
2

)

×
∫ +∞

−∞
dx2 e−x2

2 U

(
αm − E

2
,

1

2
,

(x1 − x2)2

2

)
U

(
αn − E

2
,

1

2
,

(x1 − x2)2

2

)
, (27)

with f (n) = Hn(0)�( αn−E
2 )

2n+1�(n+1) . The first integral denoted by J can be calculated analytically by using the transformation y2 → √
αy2,

and subsequently the substitution y2 = y1
√

α − y2 [72]. Then, the integral is

J =
√

π√
α

min(n,m)∑
k=0

2kk!

(
m

k

)(
n

k

)
1

2

m+n
2 −k

Hm+n−2k (y1
√

α). (28)

Figure 6 illustrates the one-body densities of the bound,
ground, first excited, and second excited states at g = 1 when
α = 1.1 [Figs. 6(a1)–6(a4)], α = 2.5 [Figs. 6(b1)–6(b4)], and
α = 5 [Figs. 6(c1)–6(c4)]. If α ≈ 1, ρ (1)(x, y) of the higher
lying excited states [Figs. 6(a2)–6(a4)] tends to show an al-
most isotropic distribution along the x and y directions. On the
other hand, for a large anisotropy parameter α, the 1D limit is
approached and therefore ρ (1)(x, y) becomes more elongated
in the x direction [Figs. 6(c1)–6(c4)]. Indeed, as the anisotropy
α increases, the one-body densities of the ground and higher
excited states develop a prominent two-hump structure in the
elongated x direction; see, for instance, Figs. 6(c2)–6(c4),
where α = 5. This is reminiscent of the behavior of the one-
body densities of two bosons confined in a 1D harmonic trap
[54,56]. Entering the intermediate anisotropy regime, e.g.,
α = 2.5 [Figs. 6(b1)–6(b4)], ρ (1)(x, y) exhibits population
tails along the y direction as well. The two-hump structure
of ρ (1)(x, y) is present in the ground [Fig. 6(b2)] and the
first excited [Fig. 6(b3)] states, but disappears in the second
excited state [Fig. 6(b4)] and in higher excited states as well
(not shown). However, for small anisotropies [Figs. 6(a1)–
6(a4), α = 1.1], the one-body density resembles the structure
of the corresponding pure 2D case [55]. The only exception
is the first excited state [Fig. 6(a3)], which features a small
density dip at the center x = y = 0. Recall that this latter
state corresponds to the pedal-like structure of the momen-
tum distribution depicted in Fig. 5(a2). Finally, the one-body
density of the bound states [Figs. 6(a1), 6(b1), and 6(c1)] is

more elongated in the x direction and somewhat localized near
the origin, x = y = 0. The latter is due to the fact that the
bound state is strong in the repulsive interaction regime, as
was discussed in Sec. III (see Fig. 2).

VI. TAN CONTACTS

In Sec. III, it was argued that at interparticle distances
much smaller than lx, the two-boson wave function develops a
logarithmic divergence. This behavior is caused by the contact
interaction in 2D, see also Eq. (2), which can also be expressed
as a boundary condition for the wave function at zero inter-
particle distances [74,75], where the Tan contact is defined
[76–82]. In this section, we measure the Tan contact as a
function of the anisotropy parameter α for various eigenstates
and several interaction strengths.

The Tan contact, D, is defined from the momentum
distribution in the limit of very large momenta, namely

|
(k)|2 k→∞−→ D
k4 , in all dimensions [79,83,84]. Since the wave

function at small interparticle distances depends only on the
radius r2 = x2 + y2 [see also Eq. (12)], and the Tan contact
is determined by the behavior of the wave function at r → 0
[60], D is isotropic; i.e., it does not depend on the x or y
direction. The contact reads (for details, see Appendix C)

D(α, E ) = B2(α, E )

4π4
. (29)
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FIG. 6. One-body densities, ρ (1)(x1, y1) for α = 1.1 [(a) series], α = 2.5 [(b) series], and α = 5 [(c) series]. The subscripts (1, 2, 3, 4)
refer to the bound, ground, first excited, and second excited states respectively. In all cases, the interparticle interaction strength is g = 1. All
quantities shown are in dimensionless units.

Therefore, this Tan contact is essentially defined by the nor-
malization constant B(α, E ) of the wave function [Eq. (22)]
and refers to the two-body state, which is in turn characterized
by the anisotropy parameter α and the energy E . In the quasi-
1D limit, i.e., α � 1, we obtain the following relation (for
details, see Appendix C):

D2D = ly
√

πD1D. (30)

As a consequence, the 2D and the 1D contacts are linked via a
geometric factor

√
π and the harmonic oscillator length of the

strongly confined direction. Note that the three-dimensional
contact is also related to the lower dimensional ones through
specific geometric factors and the oscillator lengths in the
tightly confined directions [15,27,28]. In what follows, we
shall explore D(α, E ) rescaled by the factor 1/ly (or

√
α in

harmonic oscillator units) in order to expose the connection
between the contacts in 1D and 2D, and subsequently show-
case the saturation of the D2D for large values of α toward the
value of the 1D contact.

Figure 7 depicts
√

αD(α, E0) of the bound states with
respect to α, for both repulsive [Fig. 7(a)] and attractive
[Fig. 7(b)] interaction strengths. We observe that for increas-
ing α, and independent of the interaction strength, the contact
takes larger values and does not saturate. This enhancement
of two-body short-range correlations is attributed to the fact
that the bound states in the repulsive and attractive regimes
become more deeply bound as the anisotropy increases; see
also Fig. 2. Furthermore, at fixed anisotropy α and weak
interparticle interactions [Fig. 7(a)], the contact is enhanced
compared to the one for larger interaction strengths. This can
be explained from the fact that the bound state diverges for

weak repulsive interactions [see Figs. 2(a)–2(f)] and therefore
the degree of short-range correlations is enhanced. On the
contrary, for attractive interactions [Fig. 7(b)], the contact
increases as the interactions become more attractive, while α

is kept fixed. Indeed, inspecting Figs. 2(a)–2(f) reveals that
for a stronger attraction the contribution of the bound state
becomes substantial.

The rescaled contact
√

αD(α, E1) of the ground state as a
function of the anisotropy parameter α is illustrated in Fig. 8
for various repulsive [Fig. 8(a)] and attractive [Fig. 8(b)]
interactions. As can be seen, in contrast to Fig. 7,

√
αD(α, E1)

features an initial growth and then it saturates to a value
that is proportional to the 1D contact [Eq. (30)] for all
coupling strengths. Initially at α = 1, the contact possesses a
higher value for strong repulsions [82]; see Fig. 8(a). How-
ever, this behavior is reversed as the anisotropy increases,
and

√
αD(α, E1) acquires larger values for weaker repul-

sive interactions; compare, for instance, g = 1 and g = 3 in
Fig. 8(a) for α � 5. This latter feature is better visualized
in the inset of Fig. 8(a), where

√
αD(α, E1) is showcased

within the anisotropy interval α ∈ [1, 3] and the aforemen-
tioned inverted behavior occurs at α � 2. Indeed, for in-
creasing α, we enter deep into the quasi-1D regime and
therefore one should use the corresponding 1D interaction
strength related to its 2D counterpart via Eq. (18). This
relation maps the repulsive 2D interactions to attractive 1D
interactions for large values of the anisotropy α. For in-
stance, Eq. (18) provides the mapping g2D = (1, 3, 20, 50) 
→
g1D = (−6.403,−5.045,−4.628,−4.588) for α = 10. Simi-
larly, for attractive interactions, an increasing behavior of the
short-range two-body correlations as captured by

√
αD(α, E1)
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FIG. 7. Rescaled Tan contact
√

αD(α, E0 ) of the bound state
at various (a) repulsive and (b) attractive interaction strengths (see
legends) for increasing anisotropy parameter α. In all cases, the
quantities displayed are in dimensionless units.

occurs and then a tendency of saturation is observed in-
dependently of the coupling strength [Fig. 8(b)]. When α

is fixed,
√

αD(α, E1) acquires larger values for a stronger
attraction. Here, Eq. (18) maps the strong 2D attraction
to the strong 1D attraction for large anisotropies. Explic-
itly, this mapping reads g2D = (−50,−20,−3,−1) 
→ g1D =
(−4.535,−4.496,−4.162,−3.542) for α = 10.

Another interesting observation is that
√

αD(α, E1) shows
a peak within α ∈ [2, 4]; see Figs. 8(a) and 8(b). Indeed, for
a small anisotropy parameter the energy of the ground state,
E1, increases in both the repulsive and attractive interaction
regimes for larger α satisfying α ∈ [2, 4]. Hence, the Tan
contact is also enhanced in this α interval. Note also that√

αD(α, E1) for fixed α becomes smaller [larger] for increas-
ing repulsive [attractive] 2D coupling strength; see Figs. 8(a)
and 8(b). However, if α exceeds a critical value depending on
g, we approach the quasi-1D region and Eq. (18) maps the 2D
to the 1D coupling strength. In particular, for α ∈ [2, 6], the
1D coupling becomes less attractive, acquiring larger negative
values for increasing α. Hence, qualitatively

√
αD(α, E1)

initially increases up to a point where the crossover to 1D
starts to become important and then it decreases similarly to
the absolute value of g1D [83]. Subsequently, the 1D attraction

10 20 30 40 50
4.2

4.7
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5.5
10 -3
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FIG. 8. Rescaled Tan contact
√

αD(α, E1) of the ground states at
different (a) repulsive and (b) attractive interactions (see legends) for
varying anisotropy α. The inset in panel (a) presents a magnification
of

√
αD(α, E1) within the anisotropy interval α ∈ [1, 3]. For all

observables, dimensionless units are adopted.

is enhanced and the contact increases up to its saturation
value.

VII. INTERACTION QUENCH DYNAMICS

A. Time evolution of the wave function

Having analyzed the stationary properties of the two-boson
system in the dimensional crossover from 2D to 1D, we
next proceed by investigating the resulting interaction quench
dynamics of this setup for a fixed anisotropy parameter α

and different postquench 2D interaction strengths g. As al-
ready discussed in Sec. II, the center-of-mass wave function

c.m.(X,Y ) [Eq. (4)] lies in the ground state and thus it is not
affected by the interaction quench. Therefore, the center-of-
mass wave function does not play any role in the description of
the interaction quench dynamics and it will not be considered
in the following analysis.

To be more precise, in order to study the dynamics, the
system is initially prepared in an eigenstate |
 in

rel,i(x, y; 0)〉
at an initial interaction strength gin with energy E in

i and at
t = 0 this coupling strength is suddenly changed (quenched)

013314-11

71



G. BOUGAS et al. PHYSICAL REVIEW A 102, 013314 (2020)

to a final (postquench) value g. Then, the time evolution of the
initial wave function reads∣∣
 in

rel,i(x, y; t )
〉

= e−iĤt
∣∣
 in

rel,i(x, y; 0)
〉

=
∑

j

e−iE j t
∣∣
 f

rel, j (x, y)
〉 〈



f

rel, j (x, y)
∣∣
 in

rel,i(x, y; 0)
〉

︸ ︷︷ ︸
di, j

,

(31)

where the summation is performed over the eigenstates of
the postquench Hamiltonian |
 f

rel, j (x, y)〉 with energy E j .
The underlying overlap coefficients, di, j , are determined by
employing the ansatz introduced in Eq. (5) as well as the
orthonormality of the noninteracting wave functions φn(x) and
have the form

di, j = BiBj

E in
i − E j

√
α

π

∑
m�0

H2
m(0)

2m+1m!

×
[

�
( αm−E in

i
2

)
�

( 1+αm−E in
i

2

) − �
( αm−E j

2

)
�

( 1+αm−E j

2

)
]
. (32)

These overlap coefficients between the initial wave function,

 in

rel,i(x, y; 0), and a final eigenstate, 
 f
rel, j (x, y), determine the

degree of participation of this postquench eigenstate in the
dynamics.

B. Dynamical response of the system

A well-known observable of interest that enables us to
identify the dynamical response of the system to its external
perturbation, herein an interaction quench, is the fidelity. The
latter is defined by the overlap between the time-evolved and
the initial wave functions [57,85–88], namely

F (t ) = 〈

 in

rel,i

∣∣e−iĤt
∣∣
 in

rel,i

〉 =
∑

j

e−iE j t |di, j |2. (33)

Evidently, F (t ) is tailored to estimate the instantaneous de-
viation of the system from its initial state. Below, in order
to capture the mean dynamical response of the system after
a quench, we invoke the time-averaged fidelity i.e., |F̄ | =
limT →∞ 1

T

∫ T
0 dt |F (t )|.

The resulting |F̄ | following an interaction quench from the
ground state either at gin = −1 to repulsive postquench inter-
actions is shown in Fig. 9(a) or at gin = 1 toward the attrac-
tive regime is depicted in Fig. 9(b) for various anisotropies,
namely α = 2, 6.5 and 50. In both quench scenarios and for
all displayed anisotropies, |F̄ | drops from unity by developing
a characteristic dip in the vicinity of zero postquench interac-
tions, indicating that the system is significantly perturbed for
these values of g. However, |F̄ | tends to approach values close
to unity for large attractive or repulsive postquench interaction
strengths g, evincing that the system remains close to its
initial state. The above-described behavior of |F̄ | indicates
the fact that the time-evolved two-body state in the vicinity of
zero interactions is a nontrivial superposition containing many
postquench eigenstates. However, for quenches to strong at-
tractive or repulsive interactions, the system populates a much

FIG. 9. Time-averaged fidelity |F̄ | as a function of the 2D in-
teraction strength g for various anisotropies (see legends). (a) The
dynamics is triggered by following an interaction quench from the
ground state of the system with gin = −1 to larger interactions. (In-
set) |F̄ | following a quench from gin

1D = −1 to larger 1D interactions
for different anisotropies (see legend). (b) The quench is applied from
the ground state of the two bosons with gin = 1 to smaller values of
the interaction strengths. All quantities shown are in dimensionless
units.

smaller amount of postquench eigenstates and thus deviates
from the initial state to a lesser extent compared to the
g = 0 case. For instance, the initial state E1 at gin = −1 is
energetically close to the postquench E1 at g > 1 and therefore
this eigenstate predominantly contributes to the time-evolved
wave function. This is in contrast to, e.g., the case of a quench
to g = 0 where both the E0 and E1 postquench eigenstates are
energetically close to the initial E1. The explicit contribution
of the postquench eigenstates will be discussed below in
detail.

The width of the aforementioned dip of |F̄ | becomes more
narrow as α increases and its location is displaced toward
zero postquench interactions. Also, the minimum value of
|F̄ | in the region of the dip increases for a larger anisotropy.
Interestingly, for large postquench attractive or repulsive in-
teractions, e.g., |g| = 8 in Figs. 9(a) and 9(b), the system
deviates more from its initial configuration as the anisotropy α
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becomes smaller. Furthermore, in both quench scenarios, as α

increases, |F̄ | tends to saturate close to unity for smaller inter-
action strengths g; see Figs. 9(a) and 9(b). This latter behavior
stems from the underlying energy spectrum presented in Fig. 2
and the associated energy gaps. Indeed, as the anisotropy
increases, the saturation of the energies to their values at
g = 0 occurs at smaller attractive or repulsive interactions.
Therefore, by decreasing the anisotropy of the 2D system, we
can drive it out of equilibrium in a more efficient manner.

To further expose the interplay between the 2D and the
1D effective coupling constants, we showcase in the inset of
Fig. 9(a) the dependence of |F̄ | on g1D for distinct values
of α. Here, the explicit relation between the g2D and the
g1D [Eq. (18)] has been used. As before, initially, gin

1D = −1
and the interaction quench is performed toward the repulsive
regime. In all cases, i.e., independently of α, |F̄ | exhibits a
decreasing tendency for increasing g1D until it approaches
a fixed value for large g1D. Recall that the energy spacings
among the involved eigenstates in 1D [Fig. 1(b)] saturate
only for very large attractive or repulsive interactions and
thus |F̄ | tends to a constant value after g1D > 20. For these
values of g1D, we approach the strongly interacting regime and
the (time-averaged) overlap of the time-dependent two-body
state with the initial one is very small [54]. It is also worth
mentioning that the deviation of |F̄ | between α = 6.5 and
α = 50 is very small. However, for α = 2, where the quasi-1D
limit is not well established, |F̄ | differs noticeably, e.g., from
the case of α = 6.5. Note again that the quasi-1D limit is
adequately approached for α > 10; see also Fig. 1(b). There-
fore, the involved energy spacings which are considerably
different between α = 2 [Fig. 2(b)], α = 6.5 [Fig. 2(e)], and
α = 50 result in the observed discrepancy of |F̄ | between the
aforementioned values of α.

C. Dynamics of the position variance
along each spatial direction

Because of the considered anisotropy of the 2D harmonic
trap, different frequencies will be excited along the two spa-
tial directions after the quench, thus yielding a much richer
dynamics compared to the purely isotropic case, as has been
reported in several experiments with anisotropic 3D traps [33].
To study the excitations in the different spatial directions of
the trap, we resort to the frequency spectra of the spatial extent
of the relative wave function along the x and y directions
[86,89,90]. The instantaneous spatial extent of the two-boson
cloud in each spatial direction is given by the respective
variances

〈x2(t )〉 =
∫ ∞

−∞
dxdy x2

∣∣
 in
rel,i(x, y; t )

∣∣2
, (34)

〈y2(t )〉 =
∫ ∞

−∞
dxdy y2

∣∣
 in
rel,i(x, y; t )

∣∣2
. (35)

These observables allow us to monitor the expansion and
contraction of the bosonic cloud in the course of the time
evolution and also to identify the frequencies of the partic-
ipating modes in the dynamics along each spatial direction.
This can be achieved by utilizing the frequency spectra of

FIG. 10. Frequency spectrum (a) F (ωx ) of 〈x2(t )〉 and (b) F (ωy )
of 〈y2(t )〉. The anisotropy of the system is α = 2 and the interaction
quench is performed from the ground state at gin = 1 to various
attractive final interactions. The identified energy differences, ωi j ,
corresponding to the observed frequency branches are also shown. In
all cases, the quantities displayed are in dimensionless units.

〈x2(t )〉 and 〈y2(t )〉, namely F (ωx ) = 1√
2π

∫ ∞
−∞ dt eiωxt 〈x2(t )〉

and F (ωy) = 1√
2π

∫ ∞
−∞ dt eiωyt 〈y2(t )〉, respectively.

Case examples of the above-mentioned frequency spectra
are provided in Fig. 10 for α = 2 and in Fig. 11 for α = 6.5,
upon applying an interaction quench from the ground state
at gin = 1 toward the attractive interaction regime. Note that
the emergent frequencies stem from the energy difference be-
tween specific eigenstates of the postquench Hamiltonian and
will be denoted in the following as ωi, j = Ei − E j [54,55,89].
Moreover, the amplitude of these frequencies suggests their
degree of participation in the time evolution, which can be
explicitly measured via the respective overlap coefficients
[Eq. (32)]. The latter essentially means that a relatively large
[small] amplitude of ωi, j indicates a dominant [suppressed]
contribution of the involved eigenstates. Regarding the motion
of the bosons along the x direction, we calculate the frequency
spectrum F (ωx ); see Fig. 10(a). In the attractive interaction
regime, there is a dominant frequency marked as ω2,1, which
corresponds to the energy difference between the ground and
first excited states. Indeed, by calculating the corresponding
overlap coefficients [Eq. (32)] for attractive postquench inter-
actions, it turns out that the final ground state (E1) possesses
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FIG. 11. Frequency spectrum (a) F (ωx ) of 〈x2(t )〉 and (b) F (ωy )
of 〈y2(t )〉. The anisotropy of the system is α = 6.5 following an
interaction quench from the ground state at gin = 1 to different
attractive final interactions. Specific energy differences, ωi j , referring
to the observed frequency branches are also depicted. All quantities
shown are in dimensionless units.

the largest population, while the next-to-leading-order occu-
pied one is the first excited state (E2). Additionally, there are
two other frequencies denoted by ω1,0 and ω3,2 possessing a
relatively much smaller amplitude than ω2,1. These frequen-
cies refer to the energy differences between the bound and
ground states and between the second excited and first excited
states, respectively. Close to zero postquench interactions, all
these frequencies approach ωx � 2. The latter can be easily
deduced by inspecting the corresponding energy spectrum at
α = 2 [see Fig. 2(b)], where the energy spacing is uniform
at zero interactions in contrast to the nonuniform energy gaps
appearing in both the repulsive and the attractive interaction
regimes. Furthermore, in the vicinity of g = 0, another fre-
quency contributes to the spectrum of 〈x2(t )〉, namely ω3,1,
whose amplitude decreases substantially for attractive as well
as repulsive interactions.

Entering the repulsive interaction regime, we observe that
mainly two frequencies dominate, i.e., ω2,1 and ω3,2. Note that
ω2,1 has a larger amplitude since it corresponds to the energy
difference between the ground and first excited states, which
are the most significantly occupied states in this postquench
interaction regime. Turning to the dynamical evolution in the
y direction, the spectrum F (ωy) is presented in Fig. 10(b).

Evidently, a larger number of frequencies are involved in the
dynamics, but with an amplitude being an order of magnitude
smaller than the corresponding ones in the x direction. The
latter is attributed to the fact that the variance in the y
direction, which is tightly confined by the harmonic trap, is
smaller compared to the one in the elongated x direction. To
qualitatively explain the larger number of frequencies along
the y direction, one can resort to an analytic expression for
F (ωy) and F (ωx ), namely

F (ωx ) = B2
√

2α

4π

∑
i, j

δ[ωx − ωi, j]Ax(i, j), (36)

F (ωy) = B2
√

2

4α5/2π

∑
i, j

δ[ωy − ωi, j]Ay(i, j). (37)

For the detailed derivation of these spectra as well as the
explicit expressions of the involved amplitudes Ax(i, j) and
Ay(i, j), see Appendix D. It is worth mentioning here that
both Ax(i, j) and Ay(i, j) depend on ωi, j . Closely comparing
Ax(i, j) and Ay(i, j) (see also Appendix D), we can deduce
that for (i, j) = (1, 2) Ax(i, j) � Ay(i, j) is satisfied, while
for all other pairs i �= j > 2 it holds that Ay(i, j) > Ax(i, j).
The latter means that a larger number of frequencies con-
tributes to Ay(i, j) than Ax(i, j) and especially the higher
order ones possess a vanishing contribution to Ax(i, j). In
particular, for attractive interactions there are predominantly
four contributing frequencies, namely ω2,1 and ω3,1, which
stem from the energy difference between the ground and the
first and second excited states, respectively. Also, the frequen-
cies ω1,0 and ω2,0 are imprinted in the spectrum and refer to
the energy difference between the bound state and the ground
and first excited states, respectively. Near the noninteracting
regime, g = 0, two more frequencies appear, i.e., ω4,1 and
ω3,2 [hardly visible in Fig. 10(b)]. Note that at g = 0 all three
frequencies, ω2,1, ω3,2, and ω1,0 merge to ωy � 2; see also
the previous discussion. However, on the repulsive regime,
essentially two frequencies dominate, i.e., ω2,1 and ω3,1.

The frequency spectra of 〈x2(t )〉 and 〈y2(t )〉 for a larger
anisotropy α = 6.5 and for the same interaction quench sce-
nario as before are illustrated in Fig. 11. Along the x direc-
tion [Fig. 11(a)] and for interparticle attractions, the most
prominent frequency corresponds to the energy difference
between the ground and first excited states i.e., ω2,1. In terms
of the involved overlap coefficients, these two states have
the dominant contribution during the dynamics. There is also
another frequency, stemming from the energy difference of
the bound and the ground states, ω1,0, which becomes more
prominent close to zero postquench interactions. This fre-
quency possesses a larger value compared to the correspond-
ing one for α = 2 [see also Fig. 10(a)], since the energy dif-
ference between the two involved states grows with increasing
anisotropy parameter, as shown explicitly in Fig. 3(b). For
g ≈ 0, there is an additional frequency present, namely ω3,1,
which disappears for attractive as well as repulsive interac-
tions. The frequencies regarding the dynamics along the y
direction [Fig. 11(b)] are fainter than the respective ones in
the x direction by almost two orders of magnitude.

Moreover for attractive interactions, more frequencies are
involved in the dynamics in the strongly confined direction,
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with the most prominent one stemming from the energy
difference between the ground and bound states, ω1,0. In the
vicinity of zero interactions, there is a multitude of frequen-
cies referring to the energy difference between the ground
and higher excited states such as ω2,1 and ω4,1, as well as
frequencies stemming from higher lying energy eigenstates,
e.g., ω11,7 and ω13,7. The larger number of frequencies in the
y direction and their smaller amplitude compared to the ones
appearing along the x direction can be explained with the
same reasoning applied to Fig. 10(b); see in particular the
discussion in the context of Eq. (37). Note here that some
of the frequencies depicted in Fig. 11(b) have a very small
amplitude and are not identified by specific energy differences
between the eigenstates of the system. A further increase of

the anisotropy parameter α essentially freezes out the motion
along the y direction and the frequencies involved in the
dynamics become fainter (not shown for brevity). The most
prominent frequency that remains is the energy difference
between the bound and ground states in the attractive regime.

D. One-body density evolution

To unveil the dynamical spatial redistribution of the two
bosons, subjected to an interaction quench, from a single-
particle perspective we inspect their reduced one-body den-
sity, which can be experimentally probed [13,73]. In particu-
lar, the time evolution of the one-body reduced density starting
from a state characterized by energy E in

i at gin toward g reads

ρ (1)(x1, y1; t ) =
(√

α

π

)3

e−(x2
1+αy2

1 )
∑
j, j′

ei (E j−E j′ )t B jB j′di, jd
∗
i, j′

∑
n,m

Hn(0)Hm(0)

2n+m+2n!m!

×�

(
αn − E j

2

)
�

(
αm − E j′

2

)∫ ∞

−∞
dy2 e−αy2

2 Hn

(√
α

y1 − y2√
2

)
Hm

(√
α

y1 − y2√
2

)

×
∫ ∞

−∞
dx2 e−x2

2U

(
αn − E j

2
,

1

2
,

(x1 − x2)2

2

)
U

(
αm − E j′

2
,

1

2
,

(x1 − x2)2

2

)
. (38)

Figures 12 and 13 display snapshots of the reduced one-
body density for a quench from the ground state at gin = 1 to
g = −0.2 for α = 2 and 6.5 respectively. We remark that the
postquench interaction is close to the noninteracting regime
where the time-evolved state deviates significantly from the
initial one; see also Fig. 9(b). Also, the depicted time instants
correspond to the timescales set by the prevalent frequencies
in the dynamics of the x and y direction variances identified in
Figs. 10 and 11. These frequencies are the energy differences
between the predominantly contributing postquench eigen-

FIG. 12. [(a)–(h)] Instantaneous one-body density following an
interaction quench from the ground state at gin = 1 to g = −0.2.
[(i)–(l)] One-body density of the dominantly populated postquench
eigenstates in the time evolution. The system consists of two bosons
and the anisotropy of the 2D harmonic trap is α = 2. For all observ-
ables, dimensionless units are adopted.

states in the dynamics of the system as it can also be verified
by calculating the respective overlap coefficients [Eq. (32)].

Referring to the case of α = 2 (Fig. 12), we observe the
appearance of two-humped structures in both the x and y di-
rections; see, for instance, Figs. 12(a), 12(b) 12(c), and 12(e).
The appearance of these hump patterns is predominantly at-
tributed to the participation of the postquench eigenstates, E1

[Fig. 10(j)] and E2 [Fig. 10(k)] during the dynamics. Notably
the eigenstate with energy E2 has a relatively much smaller
impact on the shape of ρ (1)(x1, y1; t ) compared to one with

FIG. 13. [(a)–(h)] Snapshots of the one-body density after an
interaction quench from the ground state at gin = 1 to g = −0.2.
[(i)–(l)] One-body density of the dominantly contributing postquench
eigenstates during the dynamics. The anisotropy of the 2D harmonic
trap is α = 6.5. All quantities shown are in dimensionless units.
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energy E1, a result that is also confirmed by inspecting the cor-
responding overlap coefficients since d1,1 � d1,2. However,
during the contraction of the bosonic cloud, the two-hump
structure is destroyed by means of a smoothing of the density
profile and the development of a crosslike pattern [Figs. 12(f)
and 12(h)]. This structural change of ρ (1)(x1, y1; t ) is caused
by the predominant contribution of the postquench bound
state with energy E0 [Fig. 10(i)], whose presence is manifested
in the contraction of the cloud. Note that the contraction of the
bosons is identified by inspecting the time evolution of 〈x2(t )〉
and 〈y2(t )〉 (not shown for brevity). In particular, when 〈x2(t )〉
and 〈y2(t )〉 experience minima [maxima], the bosons feature
a contraction [expansion]. Moreover, the two-hump structure
shown in the one-body density [Figs. 12(b), 12(c) and 12(e)]
is associated with the expansion of the cloud, a result that can
again be confirmed from the dynamics of 〈x2(t )〉 and 〈y2(t )〉.

For a larger anisotropy, e.g., α = 6.5 shown in Fig. 13, the
motion along the y direction is frozen out, as anticipated by
the frequency spectra presented in Fig. 11(b). Thus, the single-
particle density evolution takes place predominantly along the
x direction and corresponds to a breathing dynamics. Indeed,
when the density expands, there is a two-hump structure [see
Figs. 13(b), 13(d) and 13(f)], while for a contraction in the
x direction [see Figs. 13(c), 13(e) and 13(g)] the two-hump
pattern disappears and the density dip around the trap center is
filled. Again, the contraction and expansion of the two bosons
is identified by inspecting the minima and maxima of 〈x2(t )〉
and 〈y2(t )〉 after the quench. We finally remark that the time-
evolved state resides mainly in a superposition of the bound
state, E0 [Fig. 13(i)], and the ground state, E1 [Fig. 13(j)]. This
fact is verified by calculating the corresponding overlap coef-
fcients [Eq. (32)] and it is also readily supported by compar-
ing the instantaneous ρ (1)(x1, y1; t ) with the ρ (1)(x1, y1; 0) of
the corresponding postquench eigenstates. Other energetically
higher lying excited states have a much smaller contribution
in the time-evolved two-body state and thus their impact is
less obvious in ρ (1)(x1, y1; t ); see, e.g., Figs. 13(k) and 13(l)
for E2 and E3 respectively.

VIII. SUMMARY AND OUTLOOK

We have investigated the stationary properties and the
interaction quench dynamics of two bosons confined in an
anisotropic 2D harmonic trap and interacting through an s-
wave pseudopotential. A transcendental equation with respect
to the anisotropy parameter is derived, giving access to the
energy spectrum of the system. The spectrum is in turn ex-
plored for a wide range of attractive and repulsive 2D coupling
strengths and arbitrary values of the anisotropy.

It is found that the energy spacing between the involved
energy eigenstates for a fixed interaction strength strongly de-
pends on the anisotropy. Deep in the quasi-1D regime, where
the anisotropy is very large, the energy spectrum of the purely
1D setup is retrieved. Importantly, a relation is established
between the 2D and 1D scattering lengths. Moreover, we
have derived an analytical expression for the two-boson wave
function both in real and momentum space. It is shown that
for interparticle distances much smaller than the harmonic
oscillator length in the less tightly confined direction, the wave
function exhibits a logarithmic singularity, a feature which is

inherently related to two spatial dimensions. In momentum
space, the wave function exhibits a multihump structure along
the weaker confined direction with the humps being elongated
along the other direction. This latter behavior becomes more
prominent as the anisotropy increases. The corresponding
one-body densities feature a two-hump structure along the
spatial direction where the confinement is less tight, a behav-
ior that is more pronounced for a larger anisotropy. For higher
lying excited states, the interhump separation is enhanced.

Subsequently we have investigated the Tan contact, which
captures short-range two-body correlations, for different
anisotropies in both the repulsive and the attractive inter-
action regimes. Inspecting the contact of the bound state
reveals an increasing tendency for larger anisotropies inde-
pendently of the sign of the interaction and does not saturate
as the quasi-1D region is approached. Furthermore, the short-
range two-body correlations of the ground state increases for
small anisotropies and subsequently saturates for larger ones.
Within the quasi-1D regime, a relation is established among
the 2D and 1D contacts, unveiling that they are proportional
by a geometric factor and the harmonic oscillator length along
the strongly confined direction.

Apart from the stationary properties, we have also exam-
ined the dynamical evolution of the system by applying an
interaction quench for different anisotropies. Employing the
time-averaged fidelity of the system, we have showcased that
the time-evolved state deviates significantly from the initial
one in the vicinity of zero postquench interactions while it is
less perturbed for stronger postquench interactions. Moreover,
for increasing anisotropy, the system becomes less perturbed
after an interaction quench of fixed amplitude in both the
attractive and the repulsive coupling regimes. The quench
excites a breathing motion in both the x and y directions,
with a distinct number of participating frequencies in each
spatial direction. At large anisotropies, the motion along the
y direction freezes out, and there are many eigenstates con-
tributing in the dynamics, with the most prominent one being
the bound state. The dynamical response is also visualized on
the one-body level, by monitoring the evolution of the reduced
one-body density after an interaction quench in the vicinity
of zero interactions, where the time-evolved state deviates
substantially from the initial one. For small anisotropies, the
bosonic cloud undergoes a periodic expansion and contraction
dynamics in both spatial directions, with the appearance of
a two-hump structure building upon the one-body density in
both the x and y spatial directions. An increasing anisotropy
causes density oscillations and the development of two humps
along the less tight direction, while the motion in the tightly
confined direction is frozen out.

There are several research directions that one can pursue
in future works. A straightforward extension is to perform
a quench of the anisotropy parameter and investigate the
resulting nonequilibrium dynamics of the two-bosons from
the 2D plane to the quasi-1D regime and vice versa. Here,
it is interesting to inspect how efficiently one can populate
specific eigenstates since this quench changes the energy gaps
between the various states. Another prospect is to consider
a long-range interaction between the atoms, such as a dipo-
lar coupling, in order to study how the long-range charac-
ter affects the energy spectra and also the nonequilibrium
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dynamics. Finally, the extension to three interacting bosons in
an anisotropic 2D trap and exploring their stationary and dy-
namical properties is certainly of interest. The latter endeavor
can shed light, e.g., into the dynamical formation of trimer
bound states.
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APPENDIX A: TRANSCENDENTAL EQUATION
FOR THE RELATIVE ENERGIES

In this Appendix, the transcendental equation for deter-
mining the energy of two bosons confined in a 2D harmonic
trap with anisotropy parameter α is derived. When we plug
Eq. (11) into Eq. (10) and perform the change of variables
z = e−t in I ( f (E )/2), the equation that determines the energy
of the system reads

−γ + ln L + ln 2 + √
α

∫ e−L

0
dz

z f (E )/2−1

√
1 − z

√
1 − zα

= ln
(
a2

2D

)
.

(A1)

As has already been remarked in Sec. II, the integral appearing
in the general form of the wave function [Eq. (9)] converges
for f (E ) > 0, which corresponds to eigenstates with energy
lower than α+1

2 . To extend Eq. (A1) to energies larger than
the zero-point oscillation energy, we shall use the following
relation that the integral I ( f (E )/2) satisfies:

I ( f (E )/2) = I (α + f (E )/2) +
∫ e−L

0
dz

z f (E )/2−1
√

1 − zα

√
1 − z

.

(A2)

The latter integral can be performed analytically, if the term√
1 − zα is expanded as a Taylor series yielding

I

(
f (E )

2

)
= I

(
α + f (E )

2

)

+
∞∑

n=0

(
1/2

n

)√
π (−1)n�

(
f (E )

2 + αn
)

�
(

1
2 + f (E )

2 + αn
) . (A3)

The last point that one needs to take care of is the divergence
of the integral I ( f (E )/2) as L → 0. This divergence turns out
to be logarithmic and it can be extracted from the following

integral

I

(
f (E )

2

)
= − ln L√

α
+

∫ 1

0
dz ln(1 − z)ϕ′

(
z,

f (E )

2

)
, (A4)

where ϕ(z, f (E )
2 ) = z f (E )/2−1

√
1−z√

1−zα
and the differentiation is

with respect to the variable z. Moreover, the first term cancels
exactly the term ln L present in the transcendental Eq. (A1).
We can further express Eq. (A1) in the form

−γ + 2 ln 2 + √
α

∫ 1

0
dz ln(1 − z)ϕ′

(
z,

f (E )

2

)
= −1

g
.

(A5)

The latter is exactly the transcendental equation that we
are seeking. We remark that Eq. (A3) extends the validity
of Eq. (A5) to f (E ) < 0, determining thus completely the
relative energy of the two bosons.

APPENDIX B: RETRIEVING THE 1D SPECTRUM

To recover the well-known 1D energy spectrum from the
transcendental Eq. (A5), we assume that α � 1. In this case,
one can separate the integral I ( f (E )

2 ) into two parts, namely

I

(
f (E )

2

)
=

I1︷ ︸︸ ︷∫ θ

0
dx

x f (E )/2−1

√
1 − x

+
∫ e−L

θ

dx
1√

1 − x
√

1 − xα︸ ︷︷ ︸
I2

,

(B1)

where θ is a parameter very close to unity, such that 1√
1−xα

�
1 + ε on the interval [0, θ ], with ε � 1. In this case, θ =
1 − k

α
, where k ≈ 6 for achieving an accuracy of ε ≈ 0.001.

Therefore, I1 reads

I1 = √
π

�
( f (E )

2

)
�

(
1
2 + f (E )

2

) − 2

√
k

α
+ O(α−3/2), (B2)

assuming that θ is very close to 1. In the second part, I2, the
dependence on the energy is dropped, since in this interval x
is very close to unity. Furthermore, the term 1/

√
1 − xα can

be expanded for x close to unity as follows:

1√
1 − xα

= 1√
α
√

1 − x
+ (α − 1)

√
1 − x

4
√

α

+ (α2 + 6α − 7)(1 − x)3/2

96
√

α

+ (α3 − 3α2 − 13α + 15)(1 − x)5/2

384
√

α

+ O

(
(1 − x)7/2

10240

)
. (B3)
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Keeping the first four terms, the integral I2 becomes

I2 = − ln L√
α

+ ln(k/α)√
a

+ k

4
√

α
− k2

192
√

α

− k3

1152
√

α
+ O(α−1). (B4)

The other terms are of the order of O( 1
α

) and for sufficiently
large α become negligible. After we gather the two integrals
I1 and I2 [Eqs. (B2) and (B4)] together, the transcendental
Eq. (A1) becomes

−γ + √
πα

�
( f (E )

2

)
�

(
1
2 + f (E )

2

) − 2
√

k + ln(2k) − ln(α) + k

4

− k2

192
− − k3

1152
= ln

(
a2

2D

)
. (B5)

This expression is the transcendental equation of two bosons
deep into the quasi-1D regime.

APPENDIX C: THE TAN CONTACT AND
ITS QUASI-1D LIMIT

To find the Tan contact, we start from the 2D Fourier
transform of a radially symmetric wave function 
(ρ) [55],
namely


̃(k, t ) = 2π

∫ ∞

0
dρ ρ
(ρ, t )J0(2πρk), (C1)

where J0(x) denotes the zeroth-order Bessel function. In our
setup, the wave function 
(x, y) is radially symmetric only
for small x, y. Thus, if we restrict the integration at very
small values of ρ, i.e., very large momenta, the contact is
obtained from the leading-order term (∼1/k2) in the resulting
expression [55] and reads

D(α, E ) = B2(α, E )

4π4
. (C2)

Moreover, if α = 1, Eq. (C2) reduces to D(1, E ) =
1

π3ψ (1) (−E/2) , which is the contact of a stationary eigenstate in

an isotropic 2D trap [55], and ψ (1)(z) is the trigamma function
[68].

For large α, i.e., in the quasi-1D regime, only the term
m = 0 dominates in the summation of Eq. (22) for the nor-
malization constant B. Hence, in this case the contact can be
written as follows:

B2(α � 1, E )

4π4
= 1

π7/2

�
(−E

2 + 1
2

)
�

(−E
2

)[
ψ

(
1−E

2

) − ψ
(−E

2

)]√
α

.

(C3)

This form is analogous to the Tan contact for two interacting
bosons confined in a 1D harmonic trap [60,84], rescaled by the
anisotropy parameter α. To be more precise, the 1D Tan con-
tact, when adopting the same convention for the Fourier trans-
form as in Eq. (C1), namely 
̃(k) = ∫ ∞

−∞ dx e−2π ikx
(x),
reads [84]

D1D = �
(

1
2 − ε

)
π4�(−ε)

[
ψ

(
1
2 − ε

) − ψ (−ε)
] , (C4)

where ε = E
2 − 1

4 , and the energy E is determined by the tran-
scendental Eq. (16). When restoring the units of the system,
a relation is established among the 1D and the 2D contacts,
namely

D2D = ly
√

πD1D, (C5)

which holds in the quasi-1D regime.

APPENDIX D: ANALYTICAL EXPRESSION
FOR THE FREQUENCY AMPLITUDES

OF THE TWO-ATOM VARIANCE

The frequency amplitudes of the spatial extent of the two
atoms during the dynamics can be analytically determined,
by employing the following expansion of the time-evolved
relative wave function in terms of the postquench eigenstates:


 in
rel,i(x, y; t ) =

∑
j

e−iE j t

f

rel, j (x, y)di, j . (D1)

Here 

f

rel, j (x, y) are the postquench eigenstates [see also
Eq. (21)] with energy E j = Ej − (α + 1)/2. Also, di, j denote
the overlap coefficients between the postquench and initial
eigenstates [Eq. (32)]. By substituting the above relation
into 〈x2(t )〉 = ∫ ∞

−∞ dxdy x2|
 in
rel,i(x, y; t )|2 and performing the

integration over the y direction, we obtain

〈x2(t )〉 = B2√α

4π3/2

∑
j, j′

di, jdi, j′e
−i(E j−E j′ )t

∑
m

H2
m(0)

2mm!

×�

(
αm − E j

2

)
�

(
αm − E j′

2

)
Im

j, j′ , (D2)

where the last integral reads

Im
j, j′ =

∫ ∞

−∞
dx x2e−x2

U

(
αm − E j

2
,

1

2
, x2

)

×U

(
αm − E j′

2
,

1

2
, x2

)
. (D3)

Along the same lines, we can calculate the explicit expres-
sion for 〈y2(t )〉, namely

〈y2(t )〉 = B2

4α5/2π3/2

∑
j, j′

di, jdi, j′e
−i(E j−E j′ )t

∑
n

H2
n (0)

2nn!

×�

(
n − E j

2α

)
�

(
n − E j′

2α

)
In

j, j′ , (D4)

with the latter integral having the form

In
j, j′ =

∫ ∞

−∞
dy y2e−y2

U

(
n − E j

2α
,

1

2
, y2

)

×U

(
n − E j′

2α
,

1

2
, y2

)
. (D5)
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Taking the Fourier transform of both 〈x2(t )〉 and 〈y2(t )〉,
we find

F (ωx ) = B2
√

2α

4π

∑
j, j′

δ[ωx − ω j, j′ ]Ax( j, j′), (D6)

F (ωy) = B2
√

2

4α5/2π

∑
j, j′

δ[ωy − ω j, j′ ]Ay( j, j′), (D7)

where the energy differences between the initial and the
postquench eigenstates are ω j, j′ = E j − E j′ . Importantly, the
corresponding amplitudes in the x and y spatial directions read

Ax( j, j′) = di, jdi, j′
∑

m

H2
m(0)

2mm!
�

(
αm−E j

2

)
�

(
αm−E j′

2

)
Im

j, j′

(D8)

Ay( j, j′) = di, jdi, j′
∑

n

H2
n (0)

2nn!
�

(
n − E j

2α

)
�

(
n − E j′

2α

)
In

j, j′ .

(D9)

Inspecting these amplitudes for fixed j, j′ we can conclude
by a direct numerical evaluation that for j′ = j + 1 and j =
1, 2, i.e., the ground and the first excited states, it holds that
Ax( j, j′) � Ay( j, j′). Otherwise, it is found that Ay( j, j′) >

Ax( j, j′). As a consequence, in this latter case, there is a larger
number of participating frequencies in F (ωy) than F (ωx ) and
therefore in the dynamics of the y spatial direction. Indeed,
by calculating numerically Ay( j, j′) [Ax( j, j′)] it can be
shown that higher lying energy states possess a non-negligible
[suppressed] contribution.
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Abstract
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are
comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and
trap states, in addition to trimers. The Tan’s contacts of these eigenstates are studied for varying
interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided
within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer
states are substantially enhanced compared to the other eigenstates. The two-body contact of the
atom-dimer and trap states features an upper bound regardless of the statistics, treated
semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an
upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies
scattering length the contacts oscillate as the atom-dimer and trap states change character through
the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of
the involved two- and three-body correlations is evinced manifesting the impact of thermal effects.
Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to
angular anisotropic patterns are captured. Our results provide valuable insights into the inherent
correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom
experiments and will be especially useful for probing the crossover from few- to many-atom
systems.

1. Introduction

The advent of optical tweezers corroborates the experimental realization of few-body ultracold atom
settings [1–3] in a controllable manner even at the level of two [4–7], and three [8] atoms. Moreover,
advances in the relevant trapping techniques provide an exquisite variability of such systems, e.g. in terms of
reduced dimensionality [1, 2] or tunable atomic interactions through Feshbach [9] and confinement
induced resonances [10–13]. As such, strongly correlated few-body systems are nowadays accessible with a
high fidelity in a prosaic way.

Three-particle systems in two-dimensions (2D) are of particular interest given that they yield insights
into the stability properties of 2D gases in terms of their inherent three-body recombination processes
[14–16], and are viewed as the fundamental building-blocks for understanding the crossover from few- to
many atom systems [17–20]. Also, they constitute the minimal settings containing both two- and
three-body correlations whose characteristics are essential for engineering many-body processes
[18, 21, 22]. The reduced dimensionality plays a crucial role on the impact of correlations, namely they are
more prominent in lower compared to three-dimensions (3D) [23–25]. Conventionally, correlation effects
manifest in the asymptotic expansion of the momentum distribution of the one-body reduced density
[26, 27] and are consecutively captured by the so-called two- and three-body contacts. The latter are
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experimentally probed via radio-frequency spectroscopy, time-of-flight expansion, and subsequent
measurement of the structure factor with the aid of Bragg spectroscopy [28–33]. Their investigation sheds
light into the microscopic properties of the system, especially the formation of two- [34–37] and three-body
bound states (trimers) [27, 34]. Importantly, the two-body contact satisfies universal relations regarding the
energy, the two-body loss rate, and the radio-frequency spectra that hold regardless of the statistics and the
dimensionality, in few- as well as in many-body settings [38–41].

Three-body correlations on the other hand, captured by the three-body contact, strongly depend on the
dimensionality of the system [26, 27]. This behavior is attributed to the presence of the Efimov effect in 3D,
which significantly affects the energy spectra of three-body systems [27, 42], and in particular the trimer
states [19]. Interestingly, the experimental observation of the three-body contact in 2D settings remains, to
the best of our knowledge, yet elusive. The important role of correlations in reduced dimensions however
renders its study of immense interest, especially in trapped three-particle systems. This is further
corroborated by the investigation of the two-body contact, in strongly interacting harmonically trapped
two-component Fermi gases [43, 44], and more recently in a two-component bosonic gas confined in a 2D
box potential [45], revealing enhanced two-body correlations in the BEC-BCS crossover.

Particularly, 2D binary set-ups consisting of two identical bosonic or fermionic atoms interacting with a
third distinguishable one are known to possess a plethora of trimer states in terms of the 2D scattering
lengths among the identical particles (intraspecies) and the two different atoms (interspecies), as well as the
mass ratio [46, 47]. This holds in spite of the absence of the Efimov effect [48, 49], which is usually
manifested as the appearance of an infinite progression of trimer states. Another crucial property is that
when the identical bosons or fermions become heavier than the third particle, ancillary trimer states are
created [46, 50]. Generally, studies in 3D have shown that the mass ratio can drastically affect the properties
of the three-body complexes allowing, for example, more favorable experimental conditions to observe
multiple successive Efimov states [51, 52], or resonant effects that are absent on equal mass three-body
collisions [53–58]. Apart from that, the confinement of three-body systems in a 2D harmonic oscillator
yields the presence of additional eigenstates in the energy spectrum aside from trimer ones. These consist of
a dimer interacting with another trapped atom [17], as well as trap states characterizing three weakly
interacting atoms confined in a harmonic potential.

Focusing on the problem of 2D three-particle binary settings, we unveil their emergent few-body
correlation characteristics for a wide range of their intrinsic parameters such as the interspecies scattering
lengths and the mass ratio, as well as for different particle statistics. An emphasis is placed on the impact of
the above-described additional eigenstates originating from the presence of the trap which has not been
studied so far [26]. Exploiting the utility of the adiabatic hyperspherical formalism [19, 59, 60], the
corresponding few-body correlation measures are constructed and their behavior, as captured by the two-
and three-body contacts, is systematically investigated over a vast parameter space which is comprised by
the particles’ statistics, the 2D scattering lengths and the mass ratio.

In particular, for trimer states we observe the same overall behavior of the corresponding two- and
three-body correlations, as was shown in previous studies [26]. However, we explicate that despite the
statistics, both the two- and three-body contacts of atom-dimer and trap states display an oscillatory pattern
for varying scattering length. This behavior is attributed to the existent avoided-crossings between these two
eigenstates in the energy spectra. By considering thermal gases, the amplitude of these oscillations decreases
for larger temperatures, a phenomenon that holds equally for the magnitude of two- and three-body
correlations. Interestingly, the atom-dimer states provide an upper bound for the two-body contact of
all non-trimer states and a semi-analytical prediction is derived within the Jeffreys–Wentzel–Kramers–
Brillouin (JWKB) method, regardless of the particle exchange symmetry. Such a bound is absent in the case
of three-body correlations. Binary systems with bosonic majority species exhibit overall an increased degree
of correlations, due to the existence of three-body ones, being absent in their fermionic counterpart.
Moreover, the spatial configuration of the eigenstates is demonstrated via the experimentally accessible
one-body reduced density in position space, an observable largely unexplored in 2D three-body
systems [61].

This work is arranged as follows. In section 2, the Hamiltonian of the considered mixtures is introduced
within the hyperspherical formalism whose main aspects are presented in detail. In section 3 we review the
behavior of the adiabatic potential curves stemming from the hyperangular problem and the underlying
energy spectra for different scattering lengths and mass ratios. Subsequently, the susceptibility of the
contacts is unraveled with respect to the scattering lengths [section 4.1] and the mass ratios [section 4.2].
Furthermore, the spatial configuration of the binary 2D three-body systems is revealed via the reduced
one-body density in section 5. We conclude and discuss future perspectives in section 6. Appendix A
discusses the boundary condition of two colliding particles within the hyperspherical formalism while
appendix B elaborates on the derivation of the reduced one-body density and its asymptotic expansion in

2
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momentum space. Finally, in appendix C an analytic bound is established for the two-body contact of
atom-dimer states for all binary mixtures.

2. Hamiltonian and hyperspherical framework

In the following, we focus on the three-body collisions of harmonically trapped binary mixtures in 2D. The
three-body collisional complex mainly consists of two identical particles of either bosonic or fermionic
symmetry and a third distinguishable one where their pairwise interactions are modeled via δ-function
pseudopotentials. This setup constitutes a straightforward generalisation of the analytically tractable
trapped two-body problem [36, 62–64]. These particular considerations permit us to investigate the
dependence of two-/three-body correlations on the scattering lengths, the mass ratio of the particles as well
as the impact of particle symmetry. In view of the broad parameter space, three-body collisions in 2D are
best treated in the theoretical framework of the adiabatic hyperspherical approach. One particular aspect of
this method is that the particle symmetry can be postimposed. Therefore, following references [65, 66] the
general scope of the hyperspherical approach is presented below whereas the particle symmetry is imposed
at the end of this section.

In the laboratory (lab) frame the Hamiltonian of three-particles of mass mi (i = 1, 2, 3) in a 2D isotropic
trap of frequency ω reads:

H =

3∑

i=1

(
− �2

2mi
∇2

i +
1

2
miω

2r2
i

)
+

∑

i<j

Vij(ri − rj), (1)

where ri is the 2D position vector of the i-th particle with mass mi. The regularized pseudopotential
describing pairwise s-wave interactions in 2D [67] is given by

Vij(rij) = − π�2δ(2)(rij)

μij ln(Aλa(k))

[
1 − ln(Aλrij)rij

∂

∂rij

]
, (2)

where rij = ri − rj and the reduced two-body mass is given by μij =
mimj

mi+mj
. The constant A is A = eγ/2

where γ ≈ 0.577 is the Euler–Mascheroni constant. Also, λ serves as an ultraviolet-cutoff for the zero-range
pseudopotential and provides an upper bound in momentum, which, however, does not impact any
observable [67]. a(k) ≡ aij refers to the 2D scattering length between the particles i and j, labeled in the

odd-man-out notation [66]. Note that a(k) is related to the 3D scattering length, a(k)
3D, via the expression

a(k) = 2e−γ
√

π/0.915l(k)
0 exp{−

√
π/2l(k)

0 /a(k)
3D} [68]. Here, l(k)

0 =
√

�/(μijωz) denotes the harmonic

oscillator length in the z-direction perpendicular to the 2D plane. Experimentally, a(k)
3D can be flexibly tuned

by means of Feshbach resonances [9].
The number of degrees of freedom in the Hamiltonian of equation (1) can be reduced by changing from

the lab-to the body-frame of reference. This permits us to separate H into center-of-mass and relative
Hamiltonian contributions. This can be achieved by transforming the lab coordinates ri, with i = 1, 2, 3,
into a set of three equivalent mass-scaled Jacobi vectors [19, 69]. Namely

rCM =
m1r1 + m2r2 + m3r3

m1 + m2 + m3
, (3)

ρ(k)
1 =

ri − rj

dk
, (4)

ρ(k)
2 = dk

(
miri + mjrj

mi + mj
− rk

)
, (5)

where d2
k =

mk(mi+mj)

μ(m1+m2+m3) and μ =
√

m1m2m3
m1+m2+m3

is the three-body reduced mass. The superscript (k = 1, 2, 3)

labels the three sets of the relevant Jacobi vectors. The first vector, ρ(k)
1 , links the particle pair i − j whereas

ρ(k)
2 relates the k-th particle with the center-of-mass of the pair [66], see also figure 1.

The separability of the center-of-mass and relative degrees of freedom permits us to consider that the
center-of-mass part of the total wave function, namely ΨCM(rCM), resides in its ground state, i.e.
ΨCM(rCM) =

√
Mω/π�e−Mωr2

CM/2�, where M = m1 + m2 + m3 is the total mass of the system. However, the
relative part of the wave function does not possess a simple expression as for the center-of-mass, since the
corresponding Hamiltonian, i.e. Hrel, contains all the relevant potential terms. In order to solve the
Schrödinger equation of Hrel we express the corresponding relative Jacobi vectors, i.e. ρ(k)

1 and ρ(k)
2 , in the

hyperspherical coordinates that consist of the hyperradius R =

√
(ρ(k)

1 )2 + (ρ(k)
2 )2 and a set of hyperangles

3
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Figure 1. Sketch of the three possible sets of Jacobi vectors regarding three distinguishable atoms with masses m1, m2 and m3.
θ(k)

1,2 are the polar angles corresponding to the ρ(k)
1,2 Jacobi vectors [equation (5)] which connect the atoms i and j, ρ(k)

1 , and their
center-of-mass with the third atom k, ρ(k)

2 .

Ω(k) [19, 66]. The hyperradius R indicates the entire system size whereas Ω(k) collectively denotes the
hyperangles which track the orientation of the particles on the 2D plane [figure 1]. More specifically,
Ω(k) = {α(k), θ(k)

1 , θ(k)
2 }, where θ(k)

j are the polar angles associated to the ρ(k)
j Jacobi vectors, and α(k)

characterizes the length ratio between the two Jacobi vectors, i.e. ρ(k)
1 = R sin α(k) and ρ(k)

2 = R cos α(k).
The resulting relative Hamiltonian in this coordinate system takes the following form:

Hrel = − �2

2μR3/2

∂2

∂R2
R3/2 +

3�2

8μR2
+

1

2
μω2R2 + Had(R; Ω), (6)

Had(R; Ω) =
�2Λ̂2

2μR2
+

∑

i<j

Vij(R; Ω(k)), (7)

where in equation (6) the first three terms depend only on the hyperradius R, denoting the kinetic term and
the trapping potential, respectively. In equation (7) the first term of Had(R; Ω) describes the centrifugal
motion of the three particles where the hyperangular operator, Λ̂2, contains all the hyperangles Ω(k),
expressed in any of the three possible configurations k = 1, 2, 3 [70, 71]. The second term of equation (7)
refers to the three pairwise interactions which couple the hyperradial and hyperangular degrees of freedom.

In order to solve the corresponding three-body Schrödinger equation of equation (6) we choose the
relative three-body wave function to obey the ansatz Ψ(R, Ω) = R−3/2

∑
ν Fν(R)Φν(R; Ω), where the

hyperradius R is treated as an adiabatic parameter. This is the so-called adiabatic hyperspherical
representation, where Fν(R) and Φν(R; Ω) denote the ν-th hyperradial and hyperangular part of Ψ(R, Ω),
respectively. In particular, the hyperangular Φν(R; Ω) is obtained by diagonalizing equation (7) at fixed R.
Namely, the corresponding fixed-R hyperangular Schrödinger equation reads:

[
2μR2

�2
Had(R; Ω) − (s2

ν(R) − 1)

]
Φν(R; Ω) = 0, (8)

where sν(R) indicate the eigenvalues of Had(R; Ω) for fixed R. Note that, in the following, for notation
simplicity we drop the R dependence from the sν(R) ≡ sν eigenvalues. In order to tackle the hyperangular
Schrödinger equation we exploit the fact that the two-body interactions are δ-functions pseudopotentials.
This allows us to semi-analytically solve equation (8) by employing the Green’s function method [66]
together with the corresponding two-body boundary conditions [for details see also appendix A]. Under
these considerations, the hyperangular eigenfunction Φν(R; Ω(k ′)) for the k′−th Jacobi tree of equation (8)
takes the form:

Φν(R; Ω(k′)) = −
3∑

k=1

∑

l=±L

C(k)
ν,l (R)Yl(θ

(k)
2 )Y0(θ(k)

1 )cos|l| α(k)

×2F1

(
l̃ − sν

2
,

sν + l̃

2
; l̃ ; cos2(α(k))

)
Γ

(
sν+l̃

2

)
Γ

(
l̃ −sν

2

)

2Γ(l̃ )
, (9)

where 2F1(a, b; c; z) is the Gauss hypergeometric function, Γ(·) is the gamma function [72], l̃ = |l| + 1,

Yl(θ
(k)
2 ) = eilθ(k)

2√
2π

are plane-waves and L denotes the total angular momentum carried by the system. The sum

is over the three possible Jacobi trees k = 1, 2, 3 [see also figure 1], each weighted by the coefficients C(k)
ν,l (R).

The three Jacobi trees are connected to the specific k′ tree on the left-hand side of equation (9) via a set of
geometric relations [73]. It should be noted that by interrelating the C(k)

ν,l (R) coefficients of different k the
bosonic or fermionic character of the particles can be specified [see also discussion below].
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Table 1. The interrelation of C(k)
ν,l coefficients due to particle symmetry and the

corresponding scattering lengths a(k) in the case of two identical spin-polarized
fermions (FFX) and two bosons (BBX), together with a third distinguishable particle.
The table also connects the odd-man-out and the descriptive notation.

ABC C(1)
ν,l a(1) C(2)

ν,l a(2) C(3)
ν,l a(3)

FFX CFX
ν,±1 aFX −CFX

ν,±1 aFX 0 0
BBX CBX

ν,0 aBX CBX
ν,0 aBX CBB

ν,0 aBB

By utilizing the analytic expression for Φν(R; Ω(k)) and the two-body boundary conditions we obtain a
matrix equation for the C(k)

ν,l (R) coefficients [for details see also appendix A], which reads
∑

k

Ml
k′ kC(k)

ν,l (R) = 0, (10)

Ml
k′k =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln

(
dkRe−γ

a(k)

)
− 1

2
ψ

(
l̃ − sν

2

)
− 1

2
ψ

(
l̃ + sν

2

)
, k′ = k

(−1)l
Γ

(
sν+l̃

2

)
Γ

(
l̃ −sν

2

)

2Γ(l̃ )
f (βk′k), k′ �= k,

(11)

f (βk′k) = cos|l|(βk′ k)2F1

(
l̃ − sν

2
,

sν + l̃

2
; l̃ ; cos2βk′ k

)
, (12)

where βk′k = arctan
[

(m1+m2+m3)μ
mkmk′

]
, l̃ = |l| + 1, and ψ(·) is the digamma function. The hyperangular

eigenvalues sν are obtained by searching for zero-eigenvalues of the matrix Ml at fixed R whereas the
elements of the corresponding eigenvector determine the C(k)

ν,l (R) coefficients [14, 66, 73].
In equations (10) and (11) the particle symmetry is not specified and in principle refer to three-body

systems where all particles are distinguishable with each other. As we mentioned at the beginning of this
section we are primarily interested in three-body systems where two particles are identical obeying either
bosonic or fermionic symmetry and the third one is distinguishable. Equations (10) and (11) in order to be
symmetry adapted, additional constraints on the C(k)

ν,l coefficients must be imposed. Table 1 shows the

symmetry adapted C(k)
ν,l (R) coefficients and the corresponding notation for the scattering lengths a(k) of two

spin-polarized fermions (FF) or two identical bosons (BB) interacting with a third distinguishable
atom (X). For example, if the particles (1) and (2) are identical fermions, then only four coefficients are
non-zero, namely C(1)

ν,±1 = −C(2)
ν,±1 = CFX

ν,±1, and the third coefficient being zero due to the lack of p-wave
interactions. The latter also implies that the s-wave interaction between the two fermions is zero, thus
aFF = 0, yielding thus one scattering length, aFX, which describes the interaction between each fermion with
the distinguishable atom [see also table 1].

Using the eigenvalues sν and the eigenfunctions Φν(R; Ω) of equation (8), in the three-body Schrödinger
equation belonging to the Hamiltonian Hrel, and by integrating over all the hyperangular degrees of
freedom, a system of coupled one-dimensional ordinary differential equations for the hyperradial
degree-of-freedom is obtained.

{
− �2

2μ

d2

dR2
+ Uν(R)

}
Fν(R) − �2

2μ

∑

ν′

[
2Pνν′(R)

d

dR
+ Qνν′ (R)

]
Fν′(R) = EFν(R). (13)

Here, Fν(R) is the hyperradial part of the relative three-body wave function, Uν(R) indicates the ν-th
adiabatic potential that includes the trap, whereas the terms Pνν′(R) and Qνν′(R) denote the non-adiabatic
coupling matrix elements [19]. More specifically, Uν(R), Pνν′(R) and Qνν′(R) are given by the following
expressions:

Uν(R) =
�2

2μR2

(
s2
ν − 1

4

)
+

1

2
μω2R2, (14)

Pνν′(R) = 〈Φν(R; Ω(k))|∂Φν′ (R; Ω(k))

∂R
〉Ω, (15)

Qνν′(R) = 〈Φν(R; Ω(k))|∂
2Φν′(R; Ω(k))

∂R2
〉Ω, (16)

where the symbol 〈. . .〉Ω indicates that the integration is over the hyperangles only. Due to the zero-range
interactions the Pνν′(R) and Qνν′(R) matrix elements have semi-analytical expressions as shown in
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Table 2. Representative cases of identical particles with fermionic and bosonic
symmetry, which are lighter (LLH), roughly equal in mass (EM) and heavier than a
third distinguishable particle (X).

ABC LLH EM HHL
BBX 7Li −7 Li −173 Yb 7Li −7 Li −6 Li 133Cs −133 Cs −6 Li
FFX 6Li −6 Li −133 Cs 6Li −6 Li −7 Li 173Yb −173 Yb −7 Li

references [66, 74, 75]. This particular feature simplifies the numerical diagonalization of equation (13)
where the hyperradial solutions Fν(R), which are expanded in the basis of B-splines [76], obey the vanishing
boundary conditions at the origin and asymptotically. The former is a result of the repulsive nature of the
Uν(R) potentials at short hyperradii and the latter occurs due to the 2D harmonic trap. We should note that
in the following sections and in the appendices the notation Fj

ν(R) and Ej signifies the jth eigenvector and
eigenvalue of equation (13) respectively.

In the following, we will mainly focus on two different types of three-body mixture systems. The first
comprises two spin-polarized fermions interacting with a distinguishable particle. It will be termed FFX and
exhibits total angular momentum L = 1 with an antisymmetric wave function upon exchange of the two
identical fermions i.e. Lπ = 1−, where π is the total parity of the system, a mass ratio M = mF/mX and
scattering length aFX. The second setup consists of two identical interacting bosons coupled with a third
atom. This setting is dubbed BBX and it is characterized by Lπ = 0+, a mass ratio M = mB/mX as well as
two scattering lengths aBB and aBX for the identical bosons and between the two different species
respectively. For convenience, in the following, we will consider their ratio aBB/aBX as the relevant
interaction parameter. Owing to the spherical symmetry of the interactions the total angular momentum L
is conserved. However, the two-body angular momenta (l1, l2) that construct the L-space are also decoupled
in our case because we have only considered s-wave interactions [77]. Hereafter, harmonic oscillator units
are adopted, meaning that � = ω = mB/F = 1, where mB/F denotes the mass of the majority species (two
identical atoms), unless it is specified otherwise. It is also worth noting that considering a radial trapping
frequency of ω = 2π × 20 Hz, typical in 2D experiments [78, 79], then the harmonic oscillator length takes
the values a0 = 4.58, 9.22 μm when 173Yb −173 Yb −7 Li and 6Li −6 Li −133 Cs FFX settings are considered.
Similarly, a0 takes the values a0 = 5.29, 8.53 μm for 133Cs −133 Cs −6 Li and 7Li −7 Li −173 Yb BBX systems
respectively.

3. Adiabatic hyperspherical potentials and energy spectra

To shed light into the eigenspectrum of three-body mixtures and their microscopically allowed processes, in
the following, we investigate the potential curves and the corresponding hyperradial spectrum for the FFX
and BBX systems. More specifically, we consider three representative cases of different mass ratio, where the
two identical particles, with either bosonic or fermionic symmetry, are lighter, roughly equal in mass, and
heavier than the third distinguishable particle. These three distinct scenarios are referred to as
light–light–heavy (LLH), equal-massed (EM) and heavy–heavy–light (HHL), respectively [19]. The
adiabatic potential curves obtained via equation (14) for the above-described settings are depicted in
figure 2. Note that the selection of the specific mass ratio corresponds to the experimentally relevant atomic
species reported in table 2.

The two energetically lowest potential curves, U1(R) (blue solid line) and U2(R) (red dash-dotted
line), shown in figures 2(a)–(c) represent the ones which in the absence of a trap approach
asymptotically, i.e. R → ∞, the BX + B and BB + X atom-dimer thresholds. The latter have energy
EBX = −2e−2γ(1 + M)/a2

BX and EBB = −4e−2γ/a2
BB respectively [14]. However, here at large hyperradii the

harmonic 2D trap dominates and thus these two potential curves coincide scaling as ∼R2 [65, 80]. In the
limit of small hyperradius R (i.e. R → 0), U1(R) and U2(R) exhibit a repulsive potential ‘wall’ preventing in
this manner the three atoms to approach together at short distances. Another notable feature of U1(R) (blue
line) is that independently of the mass ratio it possesses a classically allowed region at small R where the
potential is deep enough in order to support trimer states. The remaining gray solid lines in figures 2(a)–(c)
represent potential curves, with high hyperangular momentum sν , which describe the effective centrifugal
forces between the three atoms [14].

For FFX systems, the corresponding potential curves [see figures 2(d)–(f)] exhibit significantly altered
characteristics from the BBX setting. Indeed, there is only one atom-dimer threshold, i.e. FX + F, since the
two identical fermions do not interact. The associated potential curve is illustrated in panels (d)–(f) by the
blue solid line. We remark that in the absence of a trapping potential this potential curve asymptotically
saturates at an energy EFX = −2e−2γ(1 + M)/a2

FX [14]. Moreover, in the classically allowed region, the
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Figure 2. Rescaled adiabatic potentials sgn(Uν(R))
√

|Uν(R)| of (a)–(c) BBX and (d)–(f) FFX three-body mixtures for different
hyperadius R. The LLH to HHL transition occurs from left to right as M =

mB/F
mX

increases taking values mB/mX = 0.04, 1.16,
22.16, and mF/mX = 0.045, 0.86, 24.71. The identical particles (denoted with red circles) become heavier than the distinguish
able particle (marked by blue circles). The corresponding 2D scattering lengths obey (a)–(c) 1/aFX = 2.7, and (d)–(f)
aBB/aBX = 2. Harmonic oscillator units are employed.

lowest potential is not deep enough to maintain trimer states for all mass ratios. Namely, only for systems
with an adequately large mass ratio (HHL), the lower potential curve possesses a pronounced well
[figure 2(f)] in contrast to BBX systems, where a deep well is always present [figures 2(a)–(c)].

The hyperradial spectra of the potential curves [figure 2] are provided in figure 3. Namely, panels in
figures 3(a)–(c) [3(d)–(f)] refer to the adiabatic potential curves depicted in figures 2(a)–(c) [2(d)–(f)]
and corresponding to the BBX [FFX] system at three different mass ratios. Evidently, three types of bound
states are discernible: (I) trap states and atom-dimer states with energies E > 0, (II) purely atom-dimer
states (black dash-dotted line) with dimer energies Eσσ′ � E < 0, where σ = B, F, X and σ �= σ′, and (III)
trimer bound states (blue solid line) with energies E < Eσσ′ . Note that the red dashed lines in figure 3
denote the σσ′-dimer energies Eσσ′ , whereas the black solid horizontal line in panel (a) depicts E = 0. The
trap states of type-I [figure 3(a)] correspond to three weakly interacting trapped atoms. They emerge at
E > 0 and are virtually independent of aBB/aBX or 1/aFX as depicted in figure 3(a) [65]. It is also important
to mention that the energetically lowest trap state in BBX systems takes place at energies E > 0 whereas for
FFX they emerge for E > 1. The type-II states are associated with the formation of an atom and a dimer,
while their energy lies between the dimer energy and 0. In the limit of aBB/aBX � 1 [1/aFX � 1], the
atom-dimer energies behave like −aBB/a2

BX (−1/a2
FX) for BBX [FFX], see in particular figures 3(a) and (d)

[17, 65]. For large 1/aFX and aBB/aBX, the energy difference of two successive eigenstates, approaches
ΔE = 2 [81], which is affected due to the employed scaling in figure 3. It is the excitation energy of the
particle accompanying the dimer and stems from the harmonic trap. Due to the coupling between different
adiabatic potentials via the P and Q non-adiabatic elements [equations (15) and (16)], the trap states
change character in the vicinity of avoided-crossings, alternating between type-I atom-dimer and
energetically lower trap states [see the circle in figure 3(a)]. The distinction between these two states in
region I is more prominent in the case of sharp avoided-crossings [e.g. at aBB/aBX � 7 in figure 3(a)],
compared to the case of broad avoided-crossings [e.g. at aBB/aBX � 3 in figure 3(a)].

The type-III states are related to trimers which energetically occur below the dimer energy Eσσ′ . More
specifically, for the BBX system we observe in figures 3(a)–(c) that as the mass ratio increases the number of
trimer states ranges from 2 to 4. This is an immediate effect of the corresponding potential curve, i.e. U1(R)
in figures 2(a)–(c) which deepens as we transition from a LLH scenario to a HHL one [61]. On the other
hand, regarding the FFX system trimer states are visible only for a HHL case [figure 3(f)]. The
aforementioned aspects of the 2D three-body collisions can be clearly inferred by inspecting figure 4. As can
be seen, for the BBX system [figure 4(a)] at fixed aBB/aBX = 2 there is at least one trimer state at any mass
ratio, whilst for the FFX system [figure 4(b)] there are no trimer states at least within the regime of light
identical fermions and a heavy spectator particle [50]. Indeed, a detailed calculation of the eigenvalues of
equation (13) explicates that for a scattering length 1/aFX = 2 the first trimer state occurs at a critical mass
ratio M∗ = 3.817. This value is larger than M∗ = 3.34 reported in reference [50], which treats the FFX
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Figure 3. Rescaled energy spectra E1/3 of (a)–(c) BBX and (d)–(f) FFX systems for typical LLH, EM and HHL cases (see
legends) characterized by mass ratio mB/mX = 0.04, 1.16, 22.16 and mF/mX = 0.045, 0.86, 24.71 respectively for varying
scattering length. In all panels, the red dashed line indicates the atom-dimer threshold (a)–(c) EBX and (d)–(f) EFX separating the
trimer from the atom-dimer and trap states. A schematic illustration of the aforementioned energy regions in which these states
occur is provided in panel (a) where the black solid horizontal line separates the trap from the atom-dimer states. Particularly,
type-I mark the trap and atom-dimer states, type-II the atom-dimer and type-III indicate the trimer states. The type-I trap and
atom-dimer states change character in the vicinity of avoided-crossings (see for instance the circle). The inset in panel (a)
showcases in detail such an avoided crossing. All quantities are expressed in harmonic oscillator units.

system in the absence of a trap. Note that a similar effect occurs in 3D FFX systems where the first trimer
state appears at even larger mass ratio, i.e. M∗ = 8.17 [82]. The fact that trimer states emerge at larger mass
ratio compared to free space can be explained via the behavior of the first adiabatic potential, U1(R)
[figure 2(d)]. The trapping potential contribution [second term in equation (14)] shifts U1(R) to more
positive values, compared to the adiabatic potential term [first term in equation (14)] in free space.
Accordingly, U1(R) becomes shallower in the presence of a trap and therefore larger mass ratios deepen
U1(R), favoring in turn the formation of trimer states.

4. Few-body correlations and Tan contacts

Few-body correlations of short-range interacting atomic ensembles are embedded in the momentum
distribution of the reduced one-body density in the limit of large momenta [38, 83–85]. This observable
can be routinely measured in ultracold atom experiments via time-of-flight measurements [30, 31]. For
binary three-body mixtures this asymptotic expansion is related to the relevant short-range two- and
three-body correlation functions [38] via the so-called two- and three-body contacts [26, 86]. In particular,
the two-body contact has been directly measured via radio-frequency spectroscopy [29, 30]. More
specifically, in the limit of large momenta the momentum distribution of the σ = B/F or X species reduced
one-body density [see also appendices A and B] takes the form

nσ(pσ) ≈ na
σ(pσ) + nb

σ(pσ), (17)

where the single-particle momentum of the σ species pσ is larger than all the relevant momentum scales
provided by the inverse scattering lengths 1/aσσ′ . Note that σ = σ′ (σ′ �= σ) denote the intraspecies
(interspecies) interactions. Equation (17) shows that the momentum distribution of the one-body density
possesses two main contributions, namely na

σ(pσ) and nb
σ(pσ) which are attributed to the presence of two-

[38] and three-body correlations [26, 27] respectively.
More specifically, na

σ(pσ) contains terms solely associated with intra- and interspecies two-body
correlations of the σ species atom [see also appendix B]. For instance, the asymptotic expansion of the
reduced density of B species involves both intra- and interspecies two-body correlations, whereas the
density of X species involves only interspecies ones. Utilizing the hyperspherical approach, na

σ(pσ) can be
expressed in terms of the hyperradial solutions Fν(R) and Cσσ′

ν coefficients of the hyperangular part of the
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Figure 4. Rescaled energy spectrum E1/3 for (a) BBX and (b) FFX systems with respect to the mass ratio mB/mX and mF/mX

respectively. The considered scattering length ratios are (a) aBB/aBX = 2 and (b) 1/aFX = 2. The red dashed line denotes the
energy of the dimer in each case, namely EσX = −8e−2γ(1 + M), where σ = B/F and M =

mB/F
mX

.

three-body wave function in the descriptive notation [see also appendix B and table 1]

na
σ(pσ) =

4π

μNσp4
σ

∑

σ′
μσσ′

∫ ∞

0

dR

R2

∣∣∣∣∣
∑

ν

Fν(R)
∑

l=±L

Cσσ′
ν,l (R)

∣∣∣∣∣

2

=
1

Nσp4
σ

∑

σ′
(1 + δσσ′)Dσσ′

2 . (18)

Here, μσσ′ is the two-body reduced mass between two atoms of the same species (σ = σ′) or two atoms
belonging to different species (σ �= σ′), while Nσ is the σ species particle number. Importantly, Dσσ′

2

signifies the intra- (σ = σ′) or interspecies (σ �= σ′) two-body contact [38]. On the other hand, the term
nb

σ(pσ) is related to the product of inter- and intraspecies two-body correlations of the σ species particle
giving rise to the three-body ones. In the hyperspherical framework nb

σ(pσ) reads:

nb
σ(pσ) =

4π

Nσp4
σ

∑

σ′

μσσ′

μ

∫ ∞

0

dR

R2

{
J0

[
pσR

√
μσσ′√
μ

]
(−1)L + J2L

[
pσR

√
μσσ′√
μ

]
(1 − δ0,L)

}

×
∑

σ′′ �=σ′

∑

l=±L

(∑

ν

Fν(R)Cσσ′
ν,l (R)

) (∑

ν′
Fν′(R)Cσ′σ′′

ν′ ,l (R)

)∗

, (19)

where Jν(·) is the ν-th Bessel function of the first kind and L is the total angular momentum of the
three-body system. Note that in contrast to the two-body term na

σ(pσ), the single-particle momentum pσ is
also involved into the integration of nb

σ(pσ). Hence, the scaling of the latter with the momentum is different
than 1/p4

σ , see in particular the discussion in section 4.2.

4.1. Scaling behavior of two-body correlations
The presence of two-body short-range correlations in binary mixtures, is captured by Dσσ′

2 [equation (18)],
i.e. the σσ′ two-body contact. Intuitively, the contact Dσσ′

2 can, in principle, exhibit an increasing tendency
as the σσ′ pair of particles comes closer relatively to the third particle. This enhancement of Dσσ′

2 signals
that the three-body is dominated by strong two-body correlations. Therefore, it is anticipated that Dσσ′

2
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Figure 5. Two-body contact
√

Dσσ′
2 among the (a)–(c) BX and (d)–(f) BB species for three body settings ranging from LLH

(mB/mX = 0.04), EM (mB/mX = 1.16) to HHL (mB/mX = 22.16) as a function of aBB/aBX [see also table 2]. The inset in panel
(a) displays exemplarily the oscillatory behavior of DBX

2 due to the change of character of type-I atom-dimer and trap states in the
vicinity of avoided-crossings. The insets in panels (d)–(f) feature

√
DBB

2 of the first trimer state. The bound stemming from the
analytical expression described by equation (21), is shown with the red solid line, whereas the upper bound stemming from the
JWKB method is depicted by the black dashed line. The two-body contact of (non) trimer states is illustrated with the (gray
solid) blue dash-dotted lines.

Figure 6. Two-body contact
√

DFX
2 between FX species in (a) LLH (mF/mX = 0.045), (b) EM (mF/mX = 0.86) and

(c) HHL (mB/mX = 24.71) cases for different 1/aFX. The analytical expression for the upper bound [equation (21)] is shown
with the red solid line, whereas the upper bound stemming from the JWKB method is denoted by the black dashed line. The
two-body contact of (non) trimer states is showcased with (gray solid) blue dash-dotted lines.

possesses distinctive characteristics with respect to the particular type of eigenstate of the three-body
system, i.e. referring to trimer, type-I/II atom-dimer and trap states.

For instance, the two-body contacts are strongly enhanced if the three particles are bounded in a trimer
state, see in particular the blue dash-dotted lines in figures 5 and 6(c). Concretely, the two-body correlations
of these states become substantial as aBB/aBX [figure 5] and 1/aFX [figure 6] increase. This holds for both
inter- (DBX

2 ) and intraspecies (DBB
2 ) correlations in BBX as well for DFX

2 in FFX settings. A general feature
observed in both BBX [figure 5] and FFX [figure 6] systems is that the two-body contact of all the other
eigenstates, that is atom-dimer and trap states showcased in gray lines, is confined within an envelope and
oscillates between two values, see the red curve in the inset of figure 5(a) and also the discussion below for
more details.

The lower value of the two-body contact is associated with highly excited trap states. This lower bound
depends on the energy of the aforementioned eigenstates and eventually tends to zero as energetically higher
excited trap states are taken into account. This is due to the fact that for highly excited trap states, the
overall size of the three particles, as specified by the hyperradius R, increases compared to the size of the
system residing in lower-lying energy states, yielding thus weak two-body correlations. This lower value of
the contact is attained irrespectively of the value of the scattering length aBB/aBX and 1/aFX. On the other
hand, the oscillatory behavior of the Dσσ′

2 , as demonstrated by the red curve in the inset of figure 5(a),
originates from the sharp avoided-crossings of the energy levels between the type-I atom-dimer and trap
eigenstates [see the circle in figure 3(a)]. Indeed, in the vicinity of these narrow avoided-crossings the spatial
configuration of the three particles alters significantly, e.g. from a delocalized trap state into a type-I
atom-dimer, where at most two particles are close to each other. Therefore, if the system configuration is
that of an atom-dimer (trap state) it leads to an enhanced (reduced) contact due to the strong (weak) pair
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correlations. By tuning the scattering lengths aBB/aBX and 1/aFX towards the subsequent avoided-crossings
this atom-dimer (trap) state becomes again a trap (atom-dimer) state, and Dσσ′

2 approaches once more its
lower (upper) value. Notice that in figure 5 the two-body contact of the energetically lower fifty eigenstates
is presented. A larger number of energy states results in the filling of the envelope by atom-dimer and trap
states (gray lines) which exhibit an oscillatory behavior. Moreover, the lower bound of Dσσ′

2 has a value
closer to zero compared to the case with fewer considered eigenstates.

The upper value of the two-body contact is attributed to the presence of two-body correlations
stemming from type-II purely atom-dimer states. In particular, the upper value of DBX

2 [figures 5(a)–(c)]
and DFX

2 [figure 6] becomes larger for increasing scattering lengths, aBB/aBX and 1/aFX. This is associated to
the behavior of type-II purely atom-dimer states [see also the energy spectra in figure 3(a)] whose energy
increases in absolute value for larger scattering length. As a consequence, the dimer becomes strongly
bound, leading to an enhanced Dσσ′

2 . However, the upper value of DBB
2 [figures 5(d)–(f)] remains almost

constant when varying aBB/aBX. This occurs since aBB = 1. The latter implies that the second adiabatic
potential U2(R) [red dash-dotted line in figures 2(a)–(c)], which is associated with the BB + X atom-dimer
threshold, is insensitive to variations of aBB/aBX. Hence the upper bound of DBB

2 , being determined by the
BB dimer states, is constant with respect to aBB/aBX. However, two-body correlations between the identical
bosons are substantially enhanced for increasing aBB/aBX when the BBX system resides in trimer states [blue
dash-dotted lines in figures 5(d)–(f)]. This becomes more prominent in the HHL case [figure 5(f)], where
comparatively deeper bound trimer states are formed [61] [see also figure 3(c)]. In these deep trimer states,
the overall size of both species, as captured by the hyperradius R decreases for larger aBB/aBX. Therefore, the
two identical bosons approach each other and become strongly correlated.

To address the aforementioned upper bound in the two-body correlations for non-trimer states in BBX
and FFX systems, the JWKB method (see also the review of reference [87] and references therein) is
employed. Specifically, the hyperradial part of the three-body wave function [equation (13)] of the
atom-dimer states reads

FJWKB
ν (R) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
p(R)

exp

(
−

∣∣∣∣∣

∫ R

Rctp

p(R′)dR′

∣∣∣∣∣

)
, E < Uν(R)

2√
p(R)

cos

(∫ R

Rctp

p(R′)dR′ − φ

)
, E > Uν(R).

(20)

In the above equation, φ = π/2 + π(sν −
√

s2
ν − 1/4), p(R) =

√
2μ |E − Uν(R)| is the local momentum of

a fictitious particle with mass μ and Rctp is the classical turning point, where E = Uν(Rctp). Moreover, we
focus only on the adiabatic hyperspherical potential curves that support atom-dimer states. In this way, we
neglect all the involved non-adiabatic couplings such that we can neatly attribute the upper bound of the
contact to type-II atom-dimer states supported by the potentials featuring an atom-dimer threshold.
Evidently, the two-body contact [equation (18)], derived within the JWKB method [equation (20)] both for
BBX and FFX systems [black dashed lines in figures 5 and 6], accounts well for the upper bound of Dσσ′

2

independently of the value of the scattering length.
In order to demonstrate the physical origin of the upper bound in Dσσ′

2 , an approximation for the
two-body contact of type-II atom-dimer states is employed in the limit of large inverse inter- and
intraspecies scattering lengths 1/aσσ′ [for details see also appendix C]. More specifically, and similarly to the
approximation employed within the JWKB method, we single out only the adiabatic hyperspherical
potential curves supporting atom-dimer states, neglecting the corresponding non-adiabatic couplings.
Under these considerations, the two-body contact between the σσ′ species (σσ′ = B, F, X) which
characterize only atom-dimer eigenstates acquires the following compact form

Dσσ′
2 ≈ 16πe−2γ

a2
σσ′

. (21)

The prediction of the preceding analytical expression is indeed in good agreement with the upper bound
of DBX

2 and DFX
2 within 1%–2%, except for small scattering lengths aBB/aBX [see the red solid lines in

figures 5(a)–(c)] and 1/aFX [red solid lines in figures 6(a)–(c)] respectively. Deviations larger than 10%

occur up to aBB/aBX = 3 for LLH and EM, and aBB/aBX = 1.5 for HHL BBX systems. Likewise, similar
deviations are found in the range 1/aFX = [0.36, 2] for LLH and EM, and 1/aFX = [0.36, 1.4] for HHL FFX
mixtures. This discrepancy originates from the fact that the analytical expression [equation (21)] stems
from a treatment of the atom-dimer state as a product of the BX (FX) dimer and the third particle. This
approach becomes more accurate for large aBB/aBX (1/aFX), where the third particle is far away from the
strongly bound dimer. However, it fails for small aBB/aBX (1/aFX), where a product state is not adequate
anymore, since the third particle approaches the bound dimer and affects the BX (FX) two-body
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Figure 7. Two-body contact between (a) BX, (b), FX and (c) BB species with respect to the mass ratio, (a) and (b) mB/mX and
(c) mF/mX respectively. The considered scattering lengths are chosen such that (a), (c) aBB/aBX = 10 and (b) 1/aFX = 10. The
inset in panels (a), (c) present

√
DBσ

2 of the ground trimer state for σ = X, B respectively. The analytical upper bound
[equation (21)] corresponds to the red solid lines and the bound stemming from the JWKB method is showcased in black dashed
lines. The two-body contact of (non) trimer states is depicted with (gray solid) blue dash-dotted lines.

correlations. In this regime, the JWKB method [equation (20)] accounts well for the upper bound. Thus, as
suggested by equation (21), two-body correlations between the BX and FX species depend quadratically on
aBB/aBX and 1/aFX, respectively, in the limit where the latter two are large. This is a manifestation of the
universal relation connecting the energy change of an eigenstate with respect to the scattering length and
the two-body contact of this state [38, 39].

Interestingly, the analytically obtained upper bound [equation (21)], suggests that Dσσ′
2 of the

atom-dimer states does not depend on the mass ratio of the two identical particles (B,F) with respect to the
distinguishable one (X) in the limit where large scattering lengths aBB/aBX and 1/aFX are considered. To
further address this point, the two-body contact versus M =

mB/F

mX
between the BX, BB and FX species is

unraveled for large values of the involved scattering lengths i.e. aBB/aBX, 1/aFX = 10 [figure 7].
Furthermore, we investigate not only the two-body contact of the atom-dimer states but also of the trimer
ones [blue dashed-dotted lines in figure 7]. The latter are naturally included since atom-dimer states
convert to trimers in the transition from LLH to HHL of BBX and FFX settings [see also figure 4].

In the case of trimer states, the two-body contacts increase with M, see the blue dash-dotted lines in
figure 7. This behavior is expected since in the HHL scenario the trimer states become deeply bound for
both BBX and FFX systems [figures 3(c) and (f)] as M increases. Moreover, for large mass ratio additional
trimer states are formed [figure 4], whose two-body correlations subsequently shoot up [figure 7]. Indeed,
for increasing mass ratio the repulsive wall present at small R [figure 2], recedes to even smaller hyperradii
R, and so the overall system size of these newly formed trimers decreases, resulting in enhanced two-body
correlations. Turning to the two-body contact of atom-dimer states between the BX and FX species,
depicted with gray solid lines in figures 7(a) and (b), we observe a good agreement between the derived
analytical expression [red solid lines in figures 7(a) and (b)] and DBX

2 , DFX
2 , as well as with the two-body

contact obtained via the JWKB method [black dashed lines in figures 7(a) and (b)]. Hence, the two-body
contact of atom-dimer states in these systems is almost insensitive to a change in the mass ratio, mB/mX and
mF/mX.

Moreover, the response of the intraspecies two-body correlations of atom-dimer states in BBX systems as
captured by DBB

2 is studied with respect to the mass ratio [depicted with gray solid lines in figure 7(c)]. Due
to the large energy separation of the first and second adiabatic potentials [blue solid and red dash-dotted
lines respectively in figures 2(a)–(c)] at this large scattering length ratio aBB/aBX = 10, we investigate the
two-body contact of those eigenstates that lay below the BB + X atom-dimer threshold, exhibited by U2(R).
In order to observe the upper bound in the BB two-body contact,

√
DBB

2 � 4, derived in equation (21), a
larger number of excited eigenstates is required. The intraspecies two-body contact varies mainly in the
HHL scenario. At the mass ratio where new trimer states are formed,

√
DBB

2 of atom-dimer states is
enhanced, and subsequently decreases [figure 7(c)]. This behavior can be attributed to a slight energy
attraction and consequent repulsion of the atom-dimer states towards the BX + B atom-dimer threshold as
mB/mX approaches and further departs from the value where new trimer states are formed. Whenever this
slight attraction occurs, and the three-particle system approaches the threshold of trimer state formation,
the probability cloud of both species, as captured by R, shrinks. Hence, the two identical bosons come closer
signaling the increase of

√
DBB

2 . Notice that this pattern emerges also in the interspecies two-body contact,√
DBX

2 [figure 7(a)], being however less pronounced than in the case of the intraspecies one. Since aBB = 1,
the second adiabatic potential U2(R) with a BB + X atom-dimer threshold is shallower than the first one
which possesses a BX + B threshold, and thus it is more sensitive to the mass ratio. This sensitivity is
reflected to the hyperradial part of the wave function, F2(R), which in turn determines the two-body
contact between the identical bosons [see also equation (18)].
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Figure 8. Three-body contact,
√

DBBX
3 of BBX systems for mass ratio belonging to the (a) LLH (mB/mX = 0.04),

(b) EM (mB/mX = 1.16) and (c) HHL (mB/mX = 22.16) class for varying aBB/aBX. The three-body contact of (non) trimer
states is denoted by (gray solid) blue dash-dotted lines. The insets display the three-body contact of the first trimer state.

4.2. Response of the three-body correlations
As argued above [see equation (17)], in the asymptotic expansion of the σ species reduced one-body density
in momentum space there is a contribution related to three-body correlations having an explicit
dependence on the single-particle momentum pσ [equation (19)]. Indeed, as it has also been demonstrated
in references [26, 27] treating the three-body problem in momentum space, the next-to-leading order term
in the asymptotic expansion of the reduced one-body density in momentum space reads

nb
σ(pσ) =

ln3 pσ

p6
σ

D3. (22)

In this expression, D3 is the three-body contact which captures the three-body correlations between all
particles that participate in the binary 2D mixture. Herein, the three-body contact is derived by linear fitting
to nb

σ(pσ)/ln3 pσ stemming from the numerical solution of equation (19) for large pσ . For the binary
mixtures that we consider, the only relevant three-body contact is the one of BBX systems, denoted
hereafter by DBBX

3 . For the FFX setting, the three-body correlations are predominantly suppressed due to the
Pauli exclusion principle between the identical fermions [26].

Three-body correlations are greatly enhanced when two identical bosons and the third distinguishable
particle reside in a trimer state independently of the considered mass ratio [blue dash-dotted lines in
figure 8]. More specifically, in the transition from LLH to the HHL scenario, the first trimer state [insets of
figure 8] displays a substantially enhanced three-body contact,

√
DBBX

3 . This is due to the fact that for
heavier identical bosons than the third particle, trimer states become deeply bound as shown in
figures 3(a)–(c). Hence, all three particles are confined within a small hyperradius which results into large
valued three-body contacts. However, in the EM case, the three-body contact of the first trimer state is
slightly suppressed compared to the one in the LLH setting [e.g. see the insets in figures 8(a) and (b) at
aBB/aBX = 2]. This behavior will be further addressed below arguing on the dependence of

√
DBBX

3 with
respect to the mass ratio. Even though three-body correlations are significantly pronounced for trimer
states, the asymptotic expansion of the σ species one-body density nσ(pσ) in momentum space
[equation (17)] is mainly dominated by the first term attributed to two-body correlations [equation (18)].
Deviations from the first term occur at pσ � 100, and especially by considering large scattering length ratios
aBB/aBX > 6, where three-body correlations of the trimer states are more pronounced [see insets of
figure 8].

Furthermore, three-body correlations of highly excited trap states are greatly reduced, more than two
orders of magnitude compared to the three-body contact of trimer states. The large suppression of

√
DBBX

3

is due to the fact that the system size (captured by the hyperradius R) in each of these excited trap states is
large. As such, the simultaneous collisions of all three particles at small distances become very improbable.
In contrast, atom-dimer states showcase prominent three-body correlations, especially by tuning aBB/aBX to
large values. In this regime, the atom-dimers [figure 3(a)] consist of a deeply bound BX dimer accompanied
by the second identical bosonic particle. Due to the bosonic symmetry, the BX dimer involves both B atoms,
and hence

√
DBBX

3 increases with the ratio aBB/aBX, similarly to the two-body contact. Let us note that in
the case of atom-dimer and trap states, the asymptotic expansion of nσ(pσ) for large pσ is practically
dominated solely by the first term described by equation (18) being associated with two-body correlations.

Similarly to the behavior of the two-body contact, the three-body one of type-I atom-dimer and trap
states displays oscillations due to the character change of the latter at the location of the avoided-crossings
taking place at specific scattering lengths in the three-body eigenspectrum [see circle in figure 3(a)]. The
lower bound eventually approaches zero for higher lying excited trap eigenstates. Recall that an equivalent
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Figure 9. Three-body contact of the BBX system,
√

DBBX
3 , with respect to the mass ratio mB/mX. The (non) trimer states are

denoted with (gray solid) blue dash-dotted lines. The inset displays three-body correlations of the first trimer state. The
scattering length ratio reads aBB/aBX = 2.

behavior is observed for the two-body contact
√

DBX
2 [see figures 5(a)–(c)]. However, in contrast to

√
DBX

2 ,
the type-II purely atom-dimer states do not provide a well defined upper bound for

√
DBBX

3 . As the ratio
aBB/aBX increases, three-body correlations of purely atom-dimer states exhibit a state dependent growth
rate [figure 8]. The latter is larger for purely atom-dimer states lying close to the BX + B dimer threshold.
The three particles residing in these atom-dimer states, are confined within a smaller hyperradius R when
compared to excited atom-dimers, and as such they feature an enhanced three-body contact. Energetically
higher atom-dimer eigenstates are more delocalized, thus possessing a smaller

√
DBBX

3 .
The dependence of

√
DBBX

3 with respect to the mass ratio of (non) trimer states denoted by blue
dash-dotted lines (gray solid lines) is provided in figure 9 exemplarily for aBB/aBX = 2. In particular, we
observe that an enhancement of three-body correlations takes place in the LLH to the HHL transition for
trimer states [blue dash-dotted lines in figure 9], as discussed previously. For sufficiently large mB/mX,
atom-dimer states [denoted by gray lines in figure 9] change character to trimers [figure 4(a)], whose
three-body correlations subsequently become dominant [see for instance figure 9 at mB/mX � 6]. This is
similar to the enhancement of two-body correlations between both BX and BB species of atom-dimer states
when transitioning to trimers as manifested in figures 7(a) and (c). In particular, the first atom-dimer state,
possesses a dominant

√
DBBX

3 , in the LLH regime (mB/mX � 0.04), similarly to the second trimer state
[figure 9]. Later on, three-body correlations become substantial at the mass ratio where this atom-dimer
state transits into a trimer [figure 9 at mB/mX � 6]. This behavior is caused by an energy shift of both the
first atom-dimer and second trimer states towards the BX + B dimer threshold when mB/mX � 0.04
(LLH), leading to an increased (reduced) three-body contact. Notice that the aforementioned energy shift
towards the BX + B dimer threshold takes place also for the first trimer state in the LLH to EM transition,
resulting in a slight decrease of

√
DBBX

3 [see the insets of figures 9 and 8(a) and (b)]. It is also worth
mentioning that

√
DBBX

3 exhibits oscillations, due to the conversion of trap to type-I atom-dimer states
[gray lines in figure 9] and vice versa nearby the avoided-crossings.

4.3. Impact of thermal effects on the correlations
In the previous subsections, we investigated how two- and three-body correlations depend on the scattering
length and mass ratio, as well as, the statistics of the atoms. Another important issue of immense
experimental relevance is the impact of the gas temperature. Indeed, it has been experimentally and
theoretically evinced that temperature effects play a crucial role on few-body correlation properties of
bosonic and two-component fermionic thermal gases [45, 88–92]. For this reason, in the following, the
temperature dependence of the two- and three-body contacts with respect to the involved scattering lengths
is investigated exemplarily for BBX systems.

The temperature effect, in our system, can be taken into account by simply considering an ensemble of
type-I atom-dimer and trap states which are populated according to a Maxwell–Boltzmann distribution
[88]. This means that states with energy E > 0 are those which can be thermally averaged whereas type-II
atom-dimer and trimer states are excluded [see also section 3 for the classification of the participating
states]. This stems from the fact that initially a binary thermal gas consists of unbound atoms with energy
larger than zero [93]. Note that in the limit of a zero trapping frequency we recover the thermally averaged
contacts in free space. Under these considerations, any thermally averaged observable 〈O〉th is given by

〈O〉th =

∑
je

−βEjOj

∑
je

−βEj with β−1 = kBT, (23)
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Figure 10. Thermally averaged (a) two-body contact between the BX species, (b) three-body contact and (c) two-body contact
between the BB species for an EM BBX system with mass ratio mB/mX = 1.16. The thermal average is performed by employing
the Maxwell–Boltzmann distribution for several temperatures β−1 = kBT (see legend). Utilizing a radial frequency
ω = 2π × 20 Hz, the provided temperatures lie in the range T = 0.48–67.2 nK. All observables are expressed in harmonic
oscillator units.

where T is the temperature of the gas and kB is the Boltzmann’s constant. Oj is the observable associated
with the jth eigenstate of our system having an eigenvalue Ej, while the summation is performed over
eigenstates with Ej > 0. Additionally, the range of temperatures that we consider in the following is up to
70 nK referring to an experimentally relevant radial trapping frequency ω = 2π × 20 Hz [78, 79]. In this
temperature regime s-wave interactions are adequate for describing thermal effects of few-body correlation
observables [45].

The thermally averaged two- and three-body contacts, capturing the imprint of temperature on the
behavior of the two- and three-body correlations respectively, are illustrated in figure 10. We focus on a
BBX system with fixed mass ratio mB/mX = 1.16 (EM) and inspect different values of temperature within
the interval T = 0.48–67.2 nK. However, we note that mass-imbalanced BBX or FFX systems display a
qualitatively similar behavior. For all β−1 presented in figures 10(a) and (b), there is an increasing tendency
of two- (

√
〈DBX

2 〉th) and three-body (
√

〈DBBX
3 〉th) correlations between the BX species and the BBX atoms

respectively, for a larger scattering length ratio aBB/aBX. This overall behavior stems from the growth
observed in the two- and three-body zero temperature contacts [see figures 5(b) and 8(b)] associated with
type-I atom-dimer states, lying close to the zero energy threshold. These eigenstates possess energy larger
than zero and thus similarly to the zero temperature scenario they contribute to the growth of the thermally
averaged two-body contact.

In particular,
√

〈DBX
2 〉th features an oscillatory behavior with respect to aBB/aBX, whose amplitude

decreases as β−1 becomes larger. These oscillations originate from the undulations present in the
√

DBX
2

[see inset of figure 5(a)]. They are bounded above by the two-body contact of type-II atom-dimer states and
below eventually by zero, in the limit where infinitely many trap states are taken into account. In contrast, as
the temperature increases, a larger number of eigenstates contributes to the thermal average [equation (23)]
resulting in an

√
〈DBX

2 〉th free from the oscillatory fringes. Indeed, in figure 10(a), the
√

〈DBX
2 〉th at low

temperature, i.e. β−1 = 0.5 (gray solid line), exhibits prominent oscillations. However, as the temperature
increases, e.g. β−1 = 70 (blue solid line), more type-I atom-dimer and trap states participate in the thermal
average smearing out any interference feature. The same mechanism is responsible for the decay of the
oscillation fringes present in

√
〈DBBX

3 〉th for larger temperatures [figure 10(b)].
Moreover, we observe that the magnitude of the thermally averaged two-body contact between the BX

species shown in figure 10(a) decreases as the temperature of the gas increases [88]. For example, focusing
on aBB/aBX = 6,

√
〈DBX

2 〉th is approximately one order of magnitude smaller than the upper bound of√
DBX

2 [figure 5(b)] at β−1 = 70. Similarly, the amount of three-body correlations, quantified
by

√
〈DBBX

3 〉th, also becomes suppressed with increasing temperature. In particular, at β−1 = 70, the
thermally averaged three-body correlations are reduced by almost a factor of four compared to

√
DBBX

3 of
the first atom-dimer state at aBB/aBX = 6 [figure 8(b)]. Note also that both the thermally averaged two- and
three-body contacts at β−1 = 70 are suppressed by two orders of magnitude compared to the respective
correlation measures of the first trimer state. This behavior occurs due to the fact that for increasing
temperature the likelihood that the three particles occupy trap states becomes larger. These trap states
possess fairly small two- and three-body correlations. Thus, the thermal average over such states
significantly decreases the magnitude of both

√
〈DBX

2 〉th and
√

〈DBBX
3 〉th.

A similar qualitative behavior is observed for
√

〈DBB
2 〉th, where again two-body correlations are

suppressed for increasing β−1 [figure 10(c)]. In particular, the oscillation amplitude of
√

〈DBB
2 〉th reduces

with increasing temperature (β−1). Also,
√

〈DBB
2 〉th remains almost constant as a function of aBB/aBX for

β−1 > 10. This stems from the fact that the zero-temperature DBB
2 of type-I atom-dimer and trap states

does not show an increasing tendency with respect to the tuning of aBB/aBX [see figures 5(d)–(f)], in
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Figure 11. One-body reduced density of (a) and (b) the first trimer (j = 1) and (c) and (d) the first atom-dimer states (j = 3
and j = 5 respectively) for different scattering length ratios aBB/aBX (see legend). The main panels refer to the density of the B
species, nB(rB), whereas the insets to the X species, nX(rX). The mass ratio of the BBX system is (a) and (c) mB/mX = 0.04 (LLH)
and (b) and (d) mB/mX = 22.16 (HHL).

contrast to the zero-temperature contact of the BX species. Upon increasing the temperature, β−1, the
oscillations of DBB

2 are smeared out [see also the relevant discussion on
√

〈DBX
2 〉th], yielding thus a constant√

〈DBB
2 〉th. Similarly to the case of two-body correlations between the BX species, as the temperature

increases the magnitude of the thermally averaged two-body correlations between the identical bosonic
particles is further suppressed. In particular, at β−1 = 70 [blue solid line in figure 10(c)], the magnitude of√

〈DBB
2 〉th is smaller by a factor of two than the upper bound of two-body correlations between the identical

bosonic particles for aBB/aBX = [1.5, 6] [figure 5(e)].

5. Spatial configurations of the three-body states

Next, we explore the underlying spatial structure of the few-body binary systems via the corresponding σ

species one-body reduced density. This quantity is a common experimental observable which can be
measured by averaging over a sample of different single-shot realizations [6, 94, 95], shedding light into the
static and dynamical properties of a system [31, 96]. Within the used descriptive notation [see also table 1
and appendix B for details] the reduced one-body density acquires the form

nσ(rσ) =
M

π

∫
dR dΩσ′′σ′

e−G(rσ ,R,Ωσ′′σ′
) ×

∣∣∣∣∣
∑

ν

FνΦν(R; Ωσ′′σ′
)

∣∣∣∣∣

2

, (24)

where σ′ �= σ, σ′′ = B/F depending on the mixture and (rσ , φ) are the polar coordinates of the rσ 2D
vector. Moreover the expression G(rσ , R, Ωσ′′σ′

) reads

G(rσ , R, Ωσ′′σ′
) = Mr2

σ + (mσ′′ + mσ′)2 R2 cos2ασ′′σ′
μσ′′σ′

Mμ
+ 2

(mσ′′ + mσ′)
√

μσ′′σ′√
μ

rσR cos ασ′′σ′

× cos(θσ′′σ′
2 − φ). (25)

Note that the σ species one-body reduced density is normalized to unity.
Initially, we consider a BBX system with a small mass ratio mB/mX i.e. a LLH case. Characteristic

one-body densities of trimer states are provided in figure 11(a) for two representative scattering length
ratios aBB/aBX. Since the X particle is heavier than the identical bosons, it is located close to the trap center
while being insensitive to scattering length alterations as can be seen from the Gaussian profile of nX(rX) in
the inset of figure 11(a). The reduced density of the bosonic species closely resembles and encloses the one
of the distinguishable particle while it slightly shrinks as aBB/aBX becomes larger, compare nB(rB = 0) for
aBB/aBX = 6 and aBB/aBX = 2 in figure 11(a). This behavior signifies that the light bosons come very close
to the heavier distinguishable particle, which is a feature of the trimer state.
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Similar density profiles occur for trimer states in the HHL scenario [figure 11(b)]. Evidently, the
one-body densities are wider for HHL [figure 11(b)] than LLH [figure 11(a)] settings. Indeed, as mB/mX

increases the trapping potential becomes more shallow [see equation (14)] and thus it leads to a larger
spatial extent of the one-body density. Contrary to the LLH case, here the bosons are placed near the center
of the trap due to their heavier mass. Apart from this difference both nB(rB) and nX(rX) possess a Gaussian
form being almost unaffected by aBB/aBX. All particles reside close to each other since the system occupies
deep trimer states.

Turning to the first type-II atom-dimer state, see figures 11(c) and (d), we deduce that in contrast to
trimer states [figures 11(a) and (b)] the corresponding reduced one-body densities are strongly impacted by
scattering length variations. For example, in the case of a LLH BBX system [inset of figure 11(c)], nX(rX)
features a narrow Gaussian distribution which is not altered when tuning aBB/aBX due to the large mass of
the X particle. However, nB(rB) depends strongly on aBB/aBX exhibiting a large spatial extent at
aBB/aBX = 2, whereas at aBB/aBX = 6 tends to a Gaussian of small width comparable with the one of nX(rX)
[inset of figure 11(c)]. This occurs since in this regime (aBB/aBX = 6) the configuration of the type-II
atom-dimer state consists of a strongly bound BX dimer [see also figure 3(a)] which results into having a
boson localized at the trap center and lying close to the X particle. An analogous behavior of the density
takes place for the first type-II atom-dimer state in the HHL case [figure 11(d)]. Namely, for increasing
scattering length ratio (aBB/aBX = 6), the density profiles show a narrower spatial configuration.

The reduced one-body densities of FFX systems presented in figure 12 for small mass ratios
(mF/mX = 0.0451, LLH) evince a remarkable angular dependence. This is in sharp contrast to the densities
of BBX systems which are isotropic and their involved mass and scattering length ratios impact only their
radial part. This difference between the one-body densities of FFX and BBX systems mainly stems from the
fact that the total angular momentum and parity of FFX systems is Lπ = 1− whereas for BBX is equal to
Lπ = 0+. Paradigmatic densities of an FFX system occupying the eigenstates of the first atom-dimer [see
panels (a) and (b)] and two excited trap states [see panels (c) and (d)] at two different scattering lengths
1/aFX are showcased in figure 12. We should note that figure 12 presents only the fermionic density since
the one of the X particle features an angular isotropic configuration localized close to the trap center
similarly to the structure illustrated in figure 12(b). This angular isotropy originates from the fact that the X
particle interacts with an s-wave zero-range pseudopotential with the identical particles and is not
constrained by any symmetry as is the case with the identical fermions. In contrast, apart from symmetric
s-wave interactions, particle exchange antisymmetry constraints induce the angular dependence of nF(xF, yF)
by introducing a non-zero angular momentum [97].

Focusing on the first atom-dimer state [figures 12(a) and (b)], nF(xF, yF) displays an angular dependent
pattern which tends to an isotropic configuration as the interspecies scattering length 1/aFX is tuned to a
larger value [figure 12(b)]. In particular, for 1/aFX = 0.36 a small anisotropy is present in the angular
direction and nF(xF, yF) extends to larger distances compared to 1/aFX = 6 [figure 12(b)]. This is caused by
the smaller binding energy of this state compared to the type-II atom-dimer state considered at 1/aFX = 6
[see also figure 3(d)]. Therefore, the densities of type-II atom-dimer states exhibit a configuration where the
F particles reside in the vicinity of the trap center, at the location of the X particle, with a larger probability
than the respective type-I states [figure 12(a)].

The angular deformation of the densities nF(xF, yF) of trap states [figures 12(c) and (d)], becomes even
more pronounced. Specifically, for 1/aFX = 0.36 [figure 12(c)], the presented eigenstate (j = 15) is a
superposition of an atom-dimer and an excited trap state, since its energy lies close to an avoided-crossing
[figure 3(d)]. As can be seen this is directly reflected in the fermionic density which displays a peak close to
the trap center, at the location of the distinguishable particle. However, away from the peak (xF = 0, yF = 0)
the density shows prominent undulations in the angular direction. Strikingly, by singling out a particular ν

in the summation of equation (24), one can assign the observed patterns in the reduced densities to specific
states that are associated with the ν-th adiabatic hyperspherical potential [figure 2(d)]. In this way, these
undulations are attributed to the specific density patterns building upon states of the higher-lying adiabatic
hyperspherical potentials Uν(R) [figure 2(d)] with ν > 1. The configuration of the three particles associated
with these potentials consist of the X particle being located between the two fermions, which are further
separated by the former. Similarly, the lowest adiabatic hyperspherical potential U1(R), supporting
atom-dimer states, is responsible for the density peak close to the trap center [figure 12(c)].

A different angular pattern appears in the fermionic density of a trap eigenstate (j = 14) [figure 12(d)]
for larger interspecies scattering lengths e.g. 1/aFX = 6, whose energy lies away from avoided-crossings.
Here, the fermions are repelled from the trap center, where the heavy X particle is positioned. Since this is a
trap state, the attraction between the X particle and the fermions is not strong enough to localize both
species at the trap center as is the case for atom-dimer states [figures 12(a) and (b)]. Thus, the fermions
form a shell structure [98, 99] surrounding the X particle [figure 12(d)], a process being reminiscent of the
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Figure 12. One-body reduced density, nF(xF, yF) of (a) and (b) the first atom-dimer (j = 1) and (c) and (d) excited trap states
(j = 15 and 14 respectively) of a LLH FFX system (mF/mX = 0.0451). The considered interspecies scattering lengths 1/aFX read
(a) and (c) 1/aFX = 0.36 and (b) and (d) 1/aFX = 6.

phase separation mechanism emerging in many-body Bose–Fermi mixtures [100–102]. Here, this
configuration is attributed to adiabatic hyperspherical potentials with ν > 1 as can be deduced by focusing
on specific ν’s in equation (24). Notice that this pattern characterizes also other highly excited trap states as
well.

6. Summary and outlook

We have provided insights into the behavior of few-body correlations emerging in arbitrary
mass-imbalanced three-body binary mixtures confined in a 2D harmonic trap. In particular, the considered
mixtures consist of either two identical bosonic (BB) or fermionic (FF) atoms interacting with a third
distinguishable one (X) yielding two distinct physical systems, i.e. BBX and FFX respectively. Utilizing the
hyperspherical formalism we discuss the properties of the individual energy spectra and explicate that they
can be classified according to three types of energy hyperradial eigenstates. Namely, trap states describing
three weakly interacting atoms, a dimer accompanied by a spectator atom (atom-dimers), and trimer
configurations. The few-body correlation properties, as captured by the two- and three-body contacts, are
studied with respect to both the 2D scattering lengths of BBX (aBB/aBX) and FFX (1/aFX) setups as well as
the mass ratio between the species. These correlation measures are investigated for all above mentioned
energy eigenstates, distinguishing thus our treatment from previous works in 2D where correlation
properties of only the trimer states were considered for three-body binary mixtures in free space [26].

Inspecting the characteristics of two-body intra- (BB) and interspecies (BX, FX) correlations, as
encapsulated in the respective two-body contacts, we exemplify a distinction between the aforementioned
energy eigenstates. Indeed, if the system lies in deep trimer states substantial two-body correlations emerge,
which become stronger for increasing scattering lengths (either aBB/aBX or 1/aFX) or larger mass ratio
mB/mX and mF/mX. Interestingly, in the case of atom-dimer and trap states the two-body correlations
feature an upper and a lower bound while exhibiting an oscillatory behavior with respect to the scattering
length ratio. This response originates from the fact that atom-dimer and trap states change character in the
vicinity of avoided-crossings present in the energy spectra. Qualitatively, these characteristics of the
two-body correlations are of universal nature regardless the atomic species or particle exchange symmetry.

In particular, the lower bound is attributed to the presence of highly excited trap states and approaches
zero when a larger number of them is taken into account in the two-body contacts. On the other hand, the
upper bound is associated with pure atom-dimer states. This upper bound is successfully addressed by
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employing the semi-classical JWKB method, tackling both BBX and FFX systems for all considered
scattering length ratios. For large scattering lengths (aBB/aBX or 1/aFX) an analytical expression for this
upper bound is derived, stemming from the approximation of the atom-dimer wave function as a product
state describing a deep dimer and the remaining trapped particle. Interestingly, the values of the upper
bound depends solely on the considered scattering lengths aBB/aBX or 1/aFX. By comparing with the
semi-classical JWKB formula, it is possible to infer the effect of the third particle to the two-body
correlations of the dimer, especially at small scattering lengths aBB/aBX or 1/aFX. Moreover, the two-body
contact of atom-dimer states with respect to the mass ratio for large fixed aBB/aBX or 1/aFX, shows a
saturation tendency towards the analytically predicted value.

Turning to BBX mixtures a similar oscillatory behavior of three-body correlations occurs as a function
of the scattering length for atom-dimer and trap states as manifested in the three-body contact. The
corresponding lower bound is caused by the existence of energetically higher-lying trap states. Antithetically
to two-body correlations, the three-body contact of the atom-dimer states lacks an upper bound, exhibiting
a state-dependent growth rate. Three-body correlations are more enhanced for atom-dimer states residing
close to the trimer formation threshold, compared to states lying further away from it. Proceeding one step
further, the impact of thermal effects on the two- and three-body correlations of the 2D binary mixtures is
also investigated. Concretely, for thermal gases we observe that a thermally averaged two- or three-body
contact possesses an oscillatory pattern with a reduced peak-to-peak amplitude as the temperature
increases, whereas their overall magnitude is also suppressed. This behavior is attributed to a superposition
of highly excited trap and atom-dimer states weighted according to the Boltzmann distribution, which
destroys the oscillatory patterns present for zero temperature.

To comprehend the spatially resolved structure of the species in the different eigenstates we employ the
respective reduced one-body densities, an observable that has not been extensively studied in 2D three-body
binary systems [61]. For trimer and atom-dimer states of BBX systems the reduced density displays an
isotropic configuration in the angular direction, with a spatial extent characterized by the binding energy of
the state. On the other hand, for FFX systems patterns with an angular dependence appear in the fermionic
reduced density due to the non-zero total angular momentum of the system, which is particularly more
prominent for excited trap states. However, the density of the distinguishable X particle features an isotropic
configuration in the angular direction, since it is not constrained by any symmetry contrary to the case of
the fermionic particles and similarly to the distinguishable particle in BBX systems.

Concluding, there are many interesting future perspectives that are worth being studied. For instance,
the investigation of the dynamical formation of trimer and atom-dimer states [103] and in particular the
interplay and transfer efficiency of the involved two- and three-body correlations [104] by e.g. applying
interaction quenches or time-dependent pulses will yield insight into the early-time dynamics of Bose and
Fermi gases in 2D. Another aspect regards the inclusion of finite-range corrections [14] that would possibly
alter the upper bound of the two-body contact for atom-dimer states in the regime of large inverse
scattering lengths. Indeed, the adiabatic potential curves can exhibit higher-order corrections for
finite-range two-body potentials as discussed in reference [77]. For example, in the case of the EM FFX
system, finite-range effects are important in the region of 1/aFX � 55 for a trapping frequency
ω = 2π × 20 Hz, and in the interval 1/aFX � 8 for ω = 2π × 1 kHz [14]. An additional possibility for
future studies concerns the stationary properties of fermionic mixtures featuring p-wave interactions
[77, 105, 106] which will permit the exploration of unitary Fermi gases from a few-body perspective.
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Appendix A. Boundary condition of the hyperangular part in the hyperspherical
formalism

The boundary condition whenever two particles collide is expressed within the hyperspherical formalism.
Since the interparticle interaction is modelled by a delta pseudopotential [equation (2)] the hyperangular
wave functions satisfying equation (8) can be written in a closed analytical form whenever the particles i
and j collide [66], i.e. ρ(k)

1 → 0,

lim
ρ(k)

1 →0
Φν(R; Ω) =

∑

l=±L

C(k)
ν,l (R)Yl(θ

(k)
2 )Y0(θ(k)

1 ) ln

(
dkρ

(k)
1

a(k)

)
. (A1)

The above equation can be rewritten in the following form,

∑

l=±L

Yl(θ
(k′)
2 )C(k′)

ν,l = − lim
ρ(k′)

1 →0

1

ln(AΛa(k′))

×
[

1 − ln(AΛdk′ρ(k′)
1 )ρ(k′)

1

∂

∂ρ(k′)
1

]
Φν(R; Ω), (A2)

an expression which will ultimately determine the eigenvalues sν and the C(k)
ν coefficients.

Appendix B. Asymptotic expansion of the reduced one-body density

The expansion of the reduced one-body density at large single-particle momenta is derived first in a general
form in the lab frame. Subsequently, a coordinate transformation is employed so that this asymptotic
expansion is expressed within the hyperspherical formalism.

B.1. Reduced one-body density in the lab frame
The reduced one-body density of the σ = B, F or X species containing Nσ particles reads in momentum
space

nσ(pσ) =
1

Nσ

Nσ∑

i=1

∫ ∏

j�=i

drj

∣∣∣Ψ̃σ(pσ , rj�=i)
∣∣∣

2
, (B1)

with Ψ̃σ(pσ , rj�=i) being

Ψ̃σ(pσ , rj�=i) =

∫
dri e−ipσ ·riΨtot(ri, rj, rk). (B2)

In the last expression pσ is the single-particle momentum of the σ-species, and Ψtot is the total wave
function in the lab frame, including the center-of-mass contribution. Similarly, the reduced one-body
density in position space reads

nσ(rσ) =

∫
drj drk

∣∣Ψtot(rσ , rj, rk)
∣∣2

. (B3)

nσ(pσ) can be decomposed into a part where the i-th and j-th particles approach each other while j �= i and
another part where the integration is performed in the remaining space [107, 108]. In the first part, the
following 2D boundary condition is employed [38]

Ψtot(ri, rj, rk)
ri�rj−−−→ ln

(
rij

aij

)
Aij(cij, rk �=i,j), (B4)

where cij =
miri+mjrj

mi+mj
is the center-of-mass of the i-th and j-th particles, rij = ri − rj denotes their relative

position, Aij(cij, rk �=i,j) is a regular function and aij signifies the scattering length corresponding to the
interaction of the i − j pair. Thus, the reduced one-body density in momentum space acquires the following
asymptotic expansion,

nσ(pσ) ≈ na
σ(pσ) + nb

σ(pσ), (B5)

which is valid for pσ larger than all the momentum scales provided by the scattering lengths a−1
ij between

the i − j, j �= i, particle pairs. The two terms read explicitly

na
σ(pσ) =

4π2

Nσp4
σ

Nσ∑

i=1

∑

k �=i

∫ ∏

j�=i

drj

∣∣Aik(cik, rj�=i,k)
∣∣2

(B6)
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and

nb
σ(pσ) =

4π2

Nσp4
σ

Nσ∑

i=1

∑

k,j
k �=j�=i

∫ ∏

l �=i

drl exp
[
−ipσ · (rk − rj)

]
Aik(cik, rj�=i,k)A∗

ij(cij, rk �=i,j). (B7)

B.2. Transformation to the body-frame
In order to transform equations (B6) and (B7) to the body-frame, the following coordinate transformation
is employed [109]

∫
drj drk =

1

d2
j

∫
drCM dρ

(j)
2 =

1

d2
j

∫
drCM dθ

(j)
2 dR R, (B8)

where ρ
(j)
2 = dk(rk − rj) and rCM is the center-of-mass of the three particles. The norm of the second Jacobi

vector in equation (B8), ρ
(j)
2 is substituted by the hyperradius R, since the first Jacobi vector vanishes due to

the boundary condition [see also appendix A].
The boundary condition equation (B4) can be also expressed in the hyperspherical formalism, making

use of the descriptive notation σσ′, denoting the species B, F or X [see also table 1]. Thus, whenever a σ

species particle collides with a σ′ species one (ασσ ′ → 0)

ΨCM(rCM)Ψ(R; Ω)
ασσ′→0−−−−−→ΨCM(rCM) ln

( √
μRασσ′

√
μσσ′aσσ′

)

×
∑

ν

Fν(R)

R3/2

∑

l=±L

Cσσ′
ν,l (R)Yl(θ

σσ′
2 )Y0(θσσ′

1 ). (B9)

Here, μσσ′ and aσσ′ denote the two-body reduced mass and scattering length respectively between the σσ′

species. By integrating the center-of-mass, the first term, na
σ(pσ) is expressed as follows

na
σ(pσ) =

4π

μNσp4
σ

∑

σ′
μσσ′

∫ ∞

0

dR

R2

∣∣∣∣∣
∑

ν

Fν(R)
∑

l=±L

Cσσ′
ν,l (R)

∣∣∣∣∣

2

=
1

Nσp4
σ

∑

σ′
(1 + δσσ′)Dσσ′

2 , (B10)

where Dσσ′
2 is the two-body contact between the species σσ′. Similarly, the second term nb

σ(pσ) yields,

nb
σ(pσ) =

4π

Nσp4
σ

∑

σ′

μσσ′

μ

∫ ∞

0

dR

R2

{
J0

[
pσR

√
μσσ′√
μ

]
(−1)L + J2L

[
pσR

√
μσσ′√
μ

]
(1 − δ0,L)

}

×
∑

σ′′ �=σ′

∑

l=±L

(∑

ν

Fν(R)Cσσ′
ν,l (R)

)(∑

ν′
Fν′(R)Cσ′σ′′

ν′ ,l (R)

)∗

(B11)

where Jν(·) is the ν-th Bessel function of the first kind, and L is the total angular momentum of the system.
Regarding the reduced one-body density in position space, by employing the transformation from the

lab to the body-frame,
∫ ∏

j�=idrj =
∫

dρ(i)
1 dρ(i)

2 and the descriptive notation, one gets

nσ(rσ) =
M

π

∫
dR dΩσ′′σ′

e−G(rσ ,R,Ωσ′′σ′
) ×

∣∣∣∣∣
∑

ν

FνΦν(R; Ωσ′′σ′
)

∣∣∣∣∣

2

, (B12)

where

G(rσ , R, Ωσ′′σ′
) = Mr2

σ + (mσ′′ + mσ′)2 R2 cos2ασ′′σ′
μσ′′σ′

Mμ
+ 2

(mσ′′ + mσ′)
√

μσ′′σ′√
μ

rσR cos ασ′′σ′

× cos(θσ′′σ′
2 − φ). (B13)

In the above expressions, σ′ �= σ, σ′′ = B/F depending on the mixture and (rσ, φ) are the polar coordinates
of the rσ 2D vector.
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Appendix C. Derivation of the upper bound of the two-body contact

In the limit of large inter- and intraspecies scattering lengths 1/aσσ′ , an approximate analytical form of the
corresponding two-body contact of atom-dimer states is derived. The adiabatic potentials Uν(R) with ν = 1
(ν = 1, 2) at large hyperradius R and in the absence of a trap asymptote to an atom-dimer threshold in the
case of FFX (BBX) systems. This behavior is reflected to the eigenvalues sν(R), which obey the following
relations [14, 74],

s1(R)
R>R0−−−→ i

2e−γ R
√

1 + M
aσX

4
√

2M + 1
(C1)

s2(R)
R>R0−−−→ i

2
√

2e−γR

aBB
4
√

2M + 1
, (C2)

where M =
mF/B

mX
, σ = B/F and i is the imaginary unit. The value of R0 is proportional to the scattering

lengths, and so for large 1/aFX, 1/aBX, and 1/aBB, the parameter R0 becomes small. In these regimes, the
two-body contact between σσ′ species can be decomposed into two parts

Dσσ′
2 =

2πμσσ′(2 − δσσ′)

μ

∫ R0

0

dR

R2

∣∣∣∣∣Fν(R)
∑

l=±L

Cσσ′
ν,l (R)

∣∣∣∣∣

2

+
2πμσσ′ (2 − δσσ′)

μ

∫ ∞

R0

dR

R2

∣∣∣∣∣Fν(R)
∑

l=±L

Cσσ′
ν,l (R)

∣∣∣∣∣

2

. (C3)

In the above expression we take into account only the first potential (ν = 1) for FFX or the two lowest
potentials (ν = 1, 2) for BBX systems, which support atom-dimer states and neglect all the other coupling
elements with the remaining adiabatic potentials.

The Cσσ′
ν,l coefficients satisfy a semi-analytical expression [66, 74, 75], valid in the case of a zero-range

pseudopotential, relating the coefficients with the derivatives of the eigenvalues sν . By employing these
expressions we end up with the following relations in the limit where 1/aFX, 1/aBX, 1/aBB � 1,

DσX
2 =

4π
√

2M + 1

1 + M

∫ R0

0

dR

R2

∣∣∣∣∣F1(R)
∑

l=±L

CσX
1,l (R)

∣∣∣∣∣

2

+
16πe−2γ

a2
σX

∫ ∞

R0

dR |F1(R)|2 ≈ 16πe−2γ

a2
σX

. (C4)

DBB
2 =

2π
√

2M + 1

2

∫ R0

0

dR

R2

∣∣∣∣∣F2(R)
∑

l=±L

CBB
2,l (R)

∣∣∣∣∣

2

+
16πe−2γ

a2
BB

∫ ∞

R0

dR |F2(R)|2 ≈ 16πe−2γ

a2
BB

, (C5)

where σ = B/F. In the last steps of equations (C4) and (C5), we have kept only the dominant second term.
The second integral is approximated by unity since R0 is small. Hence, this yields the normalization
condition for the hyperradial part Fν(R), where ν = 1, 2.
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A scheme is proposed to dynamically excite distinct eigenstate superpositions in three-body Bose-Fermi
mixtures confined in a two-dimensional harmonic trap. The system is initialized in a noninteracting state with a
variable spatial extent, and the scattering lengths are subsequently quenched spanning the regime from weak to
strong interactions. For spatial widths smaller than the three-body harmonic oscillator length, a superposition of
trimers and atom-dimers is dynamically attained, otherwise trap states are predominantly populated, as inferred
from the frequency spectrum of the fidelity. Accordingly, the Tan contacts evince the buildup of short-range two-
and three-body correlations in the course of the evolution. A larger spatial extent of the initial state leads to a
reduction of few-body correlations, endowed, however, with characteristic peaks at the positions of the avoided
crossings in the energy spectra, thereby signaling the participation of atom-dimers. Our results expose ways to
dynamically excite selectively trimers, atom-dimers, and trapped few-body states characterized by substantial
correlations, and they are likely to be accessible within current experiments.

DOI: 10.1103/PhysRevA.106.043323

I. INTRODUCTION

The appealing feature of ultracold physics is the con-
trollability of interactions, which enables us to study a
plethora of phenomena, such as the formation of droplets
[1–3] and polarons [4,5], and to understand in depth the
buildup of few- and many-body correlations [6]. More specif-
ically, the few-body correlations can be quantified by Tan
contacts. These stem from the short-range character of the
interatomic interactions [7–15], and they are experimentally
probed through radiofrequency (rf) spectroscopy [16–18],
time-of-flight expansion [19], or Bragg spectroscopy [20,21].
Contacts interrelate macroscopic observables at equilibrium,
such as the energy and pressure of a gas, in terms of few-body
microscopic mechanisms [11,22] addressing the properties of
a gas universally, regardless of the atom number, the statistics,
or the interaction strength.

The recent realization of three-dimensional (3D) unitary
Bose gases offers the possibility to investigate the dynamical
formation of few-body correlations in strongly interacting ul-
tracold matter [23–26]. Quenching the scattering length from
the noninteracting case to unitarity enables the experimental
observation of few-body states such as the Efimov states,
i.e., an infinite geometric progression of three-body bound
levels comprised of unbound two-body subsystems [27,28].
In addition, theoretical efforts demonstrated that the quenched
dynamics of such three-body systems exhibits unique features

*gbougas@physnet.uni-hamburg.de

in the population growth of Efimov trimers and atom-dimers
[29–33]. For example, in Ref. [29] it was argued that the
two-body Tan contact is enhanced during the early stages
of the dynamics, whereas the three-body contact increases
appreciably only when the interparticle spacing matches the
size of an Efimov state [30]. However, the latter are typically
short-lived due to three-body recombination processes [34].

Promising candidates to mitigate such losses while main-
taining a high fraction of trimer states are two-dimensional
(2D) gases [35,36]. There the corresponding trimer wave
functions have a small amplitude at short distances suppress-
ing three-body recombination processes [36,37] as compared
to 3D systems. Additionally, theoretical studies in 2D three-
body systems [38–44] have addressed their time-independent
attributes in terms of their eigenspectrum as well as their
corresponding few-body correlations via Tan contacts [41,45–
47]. In particular, it was shown that mass-imbalanced mix-
tures support a multitude of trimer states with amplified two-
and three-body correlations compared to the mass-balanced
case [41,45].

In contrast to the 3D systems [29–31,48,49], the dynamical
response including the underlying excitation processes and
accompanying correlation mechanisms of 2D three-body sys-
tems is not well-understood. Importantly, the study of these
systems has thus far been restricted to their stationary cor-
relation properties [38,40,45,46] in the absence of external
confinement. In this work, a protocol is proposed for trigger-
ing specific excitation branches in 2D harmonically trapped
mixtures of two identical bosons or fermions interacting with
another atom. Apart from the particle statistics, our study
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addresses the effect of unequal massed three-body collisions.
In 3D gases, it is known that highly mass-imbalanced systems
exhibit rich resonant effects [50–55], or they favor the obser-
vation of multiple successive Efimov states [56–58], while
offering unique platforms to study reaction rates in atom-
dimer and molecule-molecule collisions [59–65]. Therefore,
the inclusion of unequal masses here provides a comprehen-
sive description of the dynamic properties of 2D three-body
collisions ranging from light-light-heavy (LLH) to heavy-
heavy-light (HHL) systems.

Initially, the three-body mixture is considered in a non-
interacting state characterized by a parameter w describing
its spatial extent. Subsequently, the interactions are turned
on abruptly (interaction quench), resulting in distinct dy-
namical response regimes characterized by specific excitation
mechanisms and correlations being imprinted in the fidelity
spectrum. The Hilbert space of the postquench three-body
system, at the final values of the scattering lengths, is mainly
partitioned into three generic types of eigenstates: trimers,
atom-dimers, and trap states. For widths w of the initial state
smaller than the harmonic-oscillator lengthscale, we observe
that the dominant excitation branches identified in the fidelity
spectrum correspond to trimers and atom-dimers. In the case
of HHL systems, however, these states are prevalent over a rel-
atively smaller range of scattering lengths. For an increasing
width w of the initial state, the trap states are predominantly
populated.

Furthermore, we show that the participation of distinct
eigenstates impacts strongly the dynamics of short-range cor-
relations quantified by the Tan contacts. In particular, both
the two- and three-body correlations become enhanced for
initial-state widths smaller than the spatial extent of the trap.
The correlations are suppressed as the width of the initial
configuration is increased since the population of trap states
becomes more dominant. In addition, distinct peaks in the
few-body correlations are observed as the scattering lengths
vary. This structure arises from the narrow avoided crossings
in the eigenspectrum where the atoms are in a superposition
of trap and atom-dimer states. The above-mentioned features
occur for both LLH and HHL settings regardless of the ex-
change symmetry of the particles. However, the enhancements
in the few-body contacts become narrower in the HHL case,
as compared to the LLH one, due to the existence of sharp
avoided crossings in the respective energy spectrum [41].

This work proceeds as follows: In Sec. II the adiabatic hy-
perspherical formalism is briefly outlined, and in Sec. III the
initial ansatz of the three-body system and the time-evolved
wave function are introduced. Subsequently, the excitation
spectra, associated modes, and correlation dynamics based
on the fidelity spectrum and Tan contacts are unveiled for
both LLH systems in Sec. IV and HHL ones in Sec. V. In
Sec. VI we briefly comment on the possible experimental real-
ization of our setup. Section VII lays out our conclusions and
provides an outlook. Moreover, Appendix A introduces the
adiabatic Hamiltonian and the 2D zero-range pseudopoten-
tial. Appendix B provides the form of the hyperangular wave
function for the noninteracting initial state. In Appendix C,
we elaborate on the excitation spectrum of the LLH BBX
system for widths of the initial state equal to the three-body
harmonic-oscillator length.

II. ADIABATIC HYPERSPHERICAL REPRESENTATION
OF THE THREE-BODY MIXTURE

In the following, we consider three-body binary mass-
imbalanced mixtures trapped in a 2D harmonic oscillator of
frequency ω. They typically consist of either two identical
bosons (BBX) or two identical noninteracting spin-polarized
fermions (FFX) interacting with a third distinguishable par-
ticle. The underlying pairwise interactions are modeled with
s-wave zero-range pseudopotentials [66] characterized by 2D
scattering lengths aFX and aBB, aBX for the FFX and BBX
systems, respectively. Here, aσσ ′ denotes the 2D scattering
length between a particle of species σ and σ ′, where σ = B, X
or σ = F, X . Below, for simplicity, we typically consider vari-
ations of 1/aFX and aBB/aBX where in the latter case aBB

is kept fixed. The magnitude of the 2D scattering lengths
can in principle be adjusted via standard Fano-Feshbach res-
onances [67], since they parametrically depend on their 3D
counterparts [68]. Let us note that by definition the 2D scat-
tering lengths can only be positive, a property stemming from
the existence of a two-body bound state always in 2D, and
the noninteracting limit occurs when they are either 0 or
+∞ [69]. Moreover, depending on the mass ratio between
the identical atom and the third particle, i.e., mB/F /mX , we
distinguish between LLH and HHL cases. In particular, the
employed mass ratios are mB/mX = 0.04, 22.16 for BBX
referring to mixtures of 7Li - 7Li - 173Yb, 133Cs - 133Cs - 6Li,
and mF /mX = 0.0451, 24.71 for FFX corresponding to
6Li - 6Li - 133Cs, 173Yb - 173Yb - 7Li systems.

The stationary properties of these mixtures are straight-
forwardly addressed within the adiabatic hyperspherical
framework [27,34,70–72], with the pairwise interactions mod-
eled via contact pseudopotentials. Due to the decoupling of
the center of mass, the hyperspherical coordinates represen-
tation is employed and the relative position of the atoms is
described by a set of three hyperangles (which collectively are
denoted by �) and the hyperradius R that controls the overall
size of the system. Hence, by employing the hyperspherical
coordinates, the relative three-body Hamiltonian [41] reads

Hrel = − h̄2

2μR3/2

∂2

∂R2
R3/2 + 1

2
μω2R2 + Had(R; �). (1)

The first term refers to the kinetic energy, while the second
one is the external trapping potential. Had(R; �) describes
the centrifugal motion of the three particles, and it contains
the pairwise s-wave contact interactions, depending on the
aforementioned 2D scattering lengths (for more details, see
Appendix A). Also, μ = mB/F /

√
2mB/F /mX + 1 is the three-

body reduced mass and mB/F stands for the mass of bosons or
fermions. Note that in the following, we employ as a char-
acteristic lengthscale of the three-body system the quantity
aho = √

h̄/μω, i.e., the three-body harmonic-oscillator length.
The eigenstates of the three-body system are determined

as follows: First, Had(R; �) is diagonalized at a fixed hyper-
radius R [72] where the eigenvalues sν (R) are associated with
the adiabatic potential curves h̄2(s2

ν (R) − 1/4)/2μR2, and the
corresponding eigenfunctions, i.e., �ν (R; �), are used as a
basis set for the three-body relative wave function. The latter
in the adiabatic hyperspherical representation is given by the
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expression �(R,�) = R−3/2 ∑
ν Fν (R)�ν (R; �).1 Fν (R) de-

notes the hyperradial component of �(R,�), which satisfies
the following system of coupled ordinary differential equa-
tions:{

− h̄2

2μ

d2

dR2
+ Uν (R)

}
Fν (R)

− h̄2

2μ

∑
ν ′

[
2Pνν ′ (R)

d

dR
+ Qνν ′ (R)

]
Fν ′ (R) = EFν (R).

(2)

Here, Uν (R) represents the νth adiabatic potential curve in-
cluding the trap, whereas the Pνν ′ (R) and Qνν ′ (R) terms denote
the nonadiabatic coupling matrix elements. More specifi-
cally, the adiabatic potential curves and the nonadiabatic
coupling matrix elements are given by the following expres-
sions [41,43,72]:

Uν (R) = h̄2

2μR2

(
s2
ν (R) − 1

4

)
+ 1

2
μω2R2, (3)

Pνν ′ (R) =
〈
�ν (R; �)

∣∣∣∣∂�ν ′ (R; �)

∂R

〉
�

, (4)

Qνν ′ (R) =
〈
�ν (R; �)

∣∣∣∣∂
2�ν ′ (R; �)

∂R2

〉
�

, (5)

where the symbol 〈· · ·〉� indicates that the integration is over
the hyperangles only. In the following, harmonic-oscillator
units are adopted, unless stated otherwise, i.e., mB/F = h̄ =
ω = 1, where mB/F is the mass of the identical bosons or
spin-polarized fermions.

III. INITIALIZATION AND QUENCH PROTOCOL

Initially the three atoms are prepared in a noninteracting
state. This situation in 2D translates to a scattering length
either 0 or +∞, which in the case of two harmonically trapped
atoms is shown to reproduce the corresponding noninteract-
ing energy spectra [69,73,74]. The state is characterized by
1/aBX = 1/aBB = 0 for BBX or 1/aFX = 0 for FFX systems,
while its spatial extent is parametrized by w; see Fig. 1(a).
The initial three-body wave function in the hyperspherical
coordinate frame reads

�(R,�, t = 0) = RL
√

2√
�(2 + L)w2+L

e− R2

2w2 �
(0)
0 (�), (6)

where �(·) is the gamma function. Also, �
(0)
0 (�) is the

noninteracting ground state of Had(R; �) [Eq. (1)] [denoted
by the (0) superscript] taking into account the total angular
momentum L and parity π of the system Lπ . In particular,
Lπ = 0+ (Lπ = 1−) for BBX (FFX) systems. The indepen-
dence of �

(0)
0 (�) on R stems from the independence of

the hyperangular eigenvalues of the noninteracting adiabatic

1We note that in the following sections and Appendices, the wave
functions with the superscripts �(R,�, t ) or � f (R,�) indicate the
time-evolved wave function at time t or the postquench f-th eigen-
state, respectively (see also Sec. III).

FIG. 1. (a) Cartoon of the quench scenario. The system consists
of either two (red particles) identical bosons (BBX) or fermions
(FFX) and a distinguishable atom (blue particle). They are initialized
(t = 0) in a noninteracting state with spatial extent w. The dynamics
is induced by a sudden change of the scattering lengths (interspecies
denoted by springs and intraspecies by wiggly lines) from their
noninteracting to finite values. (b) Schematic representation of a
typical three-body energy spectrum. In region III, below the BX
or FX bare dimer threshold (red dashed line), trimer states can
be formed, denoted by a circle. Region II signals the presence of
atom-dimers (dimers are marked by an ellipse), and in region I, trap
states appear along with atom-dimers. These two latter eigenstates
feature avoided-crossings; see, for instance, the dashed circle. The
energy dependence of the trimers, atom-dimers, and trap states on
the scattering length is schematically presented by the blue, green,
and red dash-dotted lines, respectively. Note that the horizontal axis
corresponds to a wide range of considered scattering lengths, but it
does not reach the zero limit.

Hamiltonian on this parameter; for more details, see Ap-
pendix B. The hyperradial part of �(R,�, t = 0) is the
ground state of the hyperradial equation [Eq. (2)] with zero
nonadiabatic coupling matrix elements, due to the indepen-
dence of �

(0)
0 (�) on R, and one potential curve, associated

to this ground hyperangular state, U (R) = 1/(2μR2)[(L +
1)2 − 1/4] + 1/(2μw4)R2. Its energy reads (2 + L)/(μw2),
where L = 0 (1) refers to the total angular momentum for the
BBX (FFX) system.

It should be noted that Eq. (6) is an eigenstate of the non-
interacting Hamiltonian Eq. (1) only in the case of w = aho

coinciding with the noninteracting ground trap state. The spa-
tial extent w can be adjusted experimentally, e.g., by means
of a trap frequency quench (see Sec. VI for a more detailed
discussion), however in the following we treat it as a free
parameter. This permits us to investigate the role of the spatial
extent of the initial wave function on the postquench dy-
namics. However, a detailed argumentation on the interval of
values of the width w is provided in Sec. VI. Nevertheless,
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for typical LLH settings that we shall consider below these
bounds yield, w � 0.46 while for HHL ones, w � 1.16.

A. Time evolution of the wave function

To trigger the nonequilibrium dynamics of the three-body
mixture, we perform quenches of the relevant 2D scattering
lengths aσ,σ ′ . Accordingly, their values are suddenly reduced
at t = 0 from their initial noninteracting ones. Recall that
this is experimentally feasible via appropriate Feshbach res-
onances (for more details, see also Sec. VI). Specifically, a
different quench scheme is applied for the BBX and FFX
systems since the former (latter) possesses two (one) scat-
tering lengths, i.e., aBB and aBX (aFX ). In the case of FFX
mixtures, solely 1/aFX is quenched and the consequent dy-
namics is explored over a wide range of postquench 1/aFX

[Fig. 1(a)]. On the other hand, for the BBX system both the
1/aBB and 1/aBX are changed abruptly at t = 0 from their
noninteracting values [Fig. 1(a)] towards different postquench
1/aBX and fixed 1/aBB = 1. It is worth mentioning that by
tuning the magnetic field for the quench in the experiment,
both aBX and aBB are affected, and hence broad (narrow)
intraspecies (interspecies) resonances are required such that
the variation of aBB is very small compared to that of aBX

(see also Sec. VI). We remark that aBB = 1 is chosen such
that the bosonic atoms have an intermediate repulsive interac-
tion strength.2 However, we have checked that the dynamical
processes and response of the LLH and HHL BBX systems
that are presented below (Secs. IV and V) do not change
substantially closer to the noninteracting limit, i.e., aBB > 1.
The fact that the qualitative features of the results remain
the same towards the noninteracting limit permits us to ex-
pose the role of the particle statistics between BBX and FFX
systems.

To describe the quenched dynamics of the three-body
system, the time-evolved wave function is expressed as a
projection of the initial state [Eq. (6)] onto the interacting
eigenstates of the postquench 2D scattering lengths. Specif-
ically, it acquires the form

�(R,�, t ) =
∑

f

e−iEf t cf,in�
f (R,�), (7)

where �f (R,�) = R−3/2 ∑
ν F f

ν (R)�ν (R; �) are the
postquench interacting eigenstates, and Ef are their eigenen-
ergies. Also, cf,in = ∫

dRd� R3�(R,�, t = 0)[� f (R,�)]∗
denote the overlap coefficients between the initial and
the postquench eigenstates. The overlap coefficients are
explicitly determined by the initial state and hence its width
w for a fixed postquench scattering length. This leads to a
w-dependent participation of specific postquench eigenstates,
i.e., depending on w, different eigenstates contribute in the
dynamics, whose distinct features dictate the dynamical

2The two-body interaction strength between the σ = B, F
and σ ′ species [73–75] is defined as gσσ ′ = [ln(2e−2γ (1 +
mσ /mσ ′ )/a2

σσ ′ )]−1, where γ = 0.577. This implies that when

aσσ ′ > (<)e−γ
√

2
√

1 + mσ

mσ ′ , attractive (repulsive) effective interac-

tion regimes arise.

response of the system, as will be demonstrated below
(Secs. IV and V).

B. Classification of postquench three-body eigenstates

Detailed knowledge of the three-body energy spectra
[41,69,76] will allow an in-depth understanding of the emer-
gent nonequilibrium dynamics of both the BBX and FFX
mixtures. The postquench interacting eigenstates can be cate-
gorized into the so-called trimers, atom-dimers, and trap states
[77,78]. Trimers are three-body bound states that exist below
the BX or FX dimer energies; see, in particular, the red-dashed
line and region III in Fig. 1(b). In Ref. [35] it was shown
that in the absence of a trap the BX or FX dimer energy is
given by EσX = −2e−2γ (1 + M)/a2

σX . Here, σ = B, F , γ =
0.577, and M = mσ /mX . For BBX systems there is also the
BB dimer energy determined by EBB = −4e−2γ /a2

BB, which
is constant since aBB = 1 remains fixed for all the postquench
aBX scattering lengths.3

Region II of Fig. 1(b) indicates the energies of the atom-
dimer states, which are two-body bound states interacting
with a third particle. The atom-dimer states depend strongly
on aBB/aBX (1/aFX ) in the case of the BBX (FFX) systems
having a BX+B (FX+F) character. Moreover, the region I
of Fig. 1(b) depicts the energy regime of the trap states that
are almost insensitive to scattering length variations [see the
straight lines in Fig. 1(b)] referring to three weakly interact-
ing particles. Apparently, avoided crossings occur between
BX+B or FX+F atom-dimers, also encountered in region
I, and trap states, designated by dashed circles in Fig. 1(b).
For BBX systems, apart from the aforementioned states ap-
pearing in region I, BB+X atom-dimers arise as well. Their
eigenenergies experience only small variations with respect to
aBB/aBX , similarly to the trap states, since the postquench aBB

is kept fixed. A way to distinguish them from trap states is by
inspecting their stationary two-body BB short-range correla-
tions, e.g., through the two-body BB contact. In Ref. [41] it
was shown that the latter is more pronounced in the case of
BB+X atom-dimers than for trap states.

Notably, all three types of eigenstates display a different
spatial extent in terms of the hyperradius R. Therefore, the
initial state described by Eq. (6) will eventually screen out
particular states or superpositions in the time evolution for
different widths w, and this information is encoded in the
overlap coefficients cf,in (see also Secs. IV and V).

IV. QUENCH DYNAMICS OF LLH SETTINGS

To obtain an overview of the system’s dynamical response
for different widths of the initial state and postquench scatter-
ing lengths, we employ the time-averaged fidelity [73,80,81]

〈|F |〉 = lim
T →∞

∫ T
0 dt |F (t )|

T
. (8)

3These relations are altered in the presence of a trap only for
scattering lengths comparable to or larger than the lengthscale � =√

h̄/μ2Bω (with μ2B being the two-body reduced mass) [79]. This
effect depends also on the mass ratio of the three-body system.
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The total time evolution T is considered to be long enough
such that 〈|F |〉 is converged.4 The fidelity, which essentially
estimates the deviation of the time-evolved state [Eq. (7)] from
the initial one, reads

F (t ) = 〈�(R,�, t )|�(R,�, t = 0)〉
=

∑
f

|cf,in|2e−iEf t . (9)

Here, cf,in are the overlap coefficients introduced in Eq. (7),
and Ef refer to the energies of the postquench eigenstates. As
a function of the postquench scattering length, the dynami-
cal response of the three-body system exhibits two distinct
regimes mainly determined by the width of the initial state
with respect to the three-body harmonic-oscillator length, aho.
In this section, the LLH setups that are considered have a
mass ratio mB/F /mX = 0.04 yielding a three-body harmonic-
oscillator length aho = 1.02.

Regarding the LLH BBX system, the time-averaged fi-
delity 〈|F |〉 in terms of aBB/aBX is depicted in Fig. 2(a) for
various widths of the initial state. Apparently, the qualitative
behavior of 〈|F |〉 depends strongly on w. For instance, in
the case of w/aho = 0.78 the deviation from the initial state
becomes larger for increasing aBB/aBX . Such a decrease of
〈|F |〉 holds also when w/aho = 1 as long as aBB/aBX < 4,
and beyond this interval it shows a saturation trend, due to
the amplified population of trap states; see also Appendix C.
The latter renders the response of the system more enhanced
compared to the w/aho = 0.78 case, since a larger number
of postquench eigenstates contributes in the dynamics (see
also Appendix C). However, considering an initial state with
a width at w/aho = 4.9, the response of the system is sub-
stantially enhanced as compared to the previous case, and in
particular it is almost independent of aBB/aBX . This pattern, as
will be explained in Sec. IV A, originates from the significant
population of trap states. In this sense, it becomes evident that
there are two characteristic response regimes of the system
with respect to aho.

A similar qualitative behavior of 〈|F |〉 occurs also for LLH
FFX settings [Fig. 2(b)] at w/aho < 1 or w/aho > 1. No-
tably, for w/aho = 0.78, 〈|F |〉 is almost constant in the region
1/aFX > 3. Such a response can also be observed for other
widths w/aho < 1, due to the participation of trap states for
large 1/aFX . For an initial state with w/aho = 1, we observe
that the response of the LLH FFX system is decreased for
1/aFX > 3, meaning that the deviation from the initial state
reduces progressively. This mainly occurs due to the smaller
number of contributing states in the course of the evolution (as
thoroughly discussed in the Appendix A of Ref. [82]), since
the participation of the first two atom-dimers reduces as 1/aFX

is further tuned to larger values (see also Appendix C). For
w/aho = 4.9, the time-averaged fidelity is practically constant
due to the participation of trap states during the dynamics,
whose overlap coefficients do not depend strongly on 1/aFX

(see also Sec. IV B). Note that the considered postquench

4Here we consider total evolution times T = 800, while the time-
averaged fidelity for the LLH (HHL) settings saturates already from
T = 300 (T = 500).

FIG. 2. Average dynamical response, as captured by the time-
averaged fidelity 〈|F |〉, with respect to the scattering length ratio
(a) aBB/aBX for the BBX and (b) 1/aFX for the FFX LLH systems.
Cases of different widths w (see legend) of the initial state are
presented. Apparently, in both settings the response is changed for
widths smaller or larger than aho = 1.02. In particular, it is enhanced
for wider initial states having w > aho.

1/aFX values do not include 0, and 〈|F |〉 therefore deviates
from unity in the leftmost part in Fig. 2(b) at w/aho = 1.
However, when w 	= aho, even at 1/aFX = 0 the deviation
would persist, since the initial state is not a noninteracting
eigenstate.

Evidently, regardless of the particle statistics, we observe
that the width of the initial state plays a crucial role on the
dynamical response of the three-body system. Thus, in order
to further address the physical origin of this behavior in the
following we will analyze the involved excitations, in terms
of the postquench eigenstates, that contribute in the nonequi-
librium dynamics. Their identification is indeed, in general,
tractable in few-body setups [83,84]. For this purpose, we
utilize the fidelity spectrum

|F (ω̃)| =
∣∣∣∣
∫

dt√
2π

e−iω̃t |F (t )|
∣∣∣∣. (10)

It discloses information regarding the predominantly con-
tributing final eigenstates in the dynamics via the en-
ergy differences ω̃f,f ′ = Ef − Ef ′ [recall that we work with
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FIG. 3. Fidelity spectra of the quenched (a) BBX and (d) FFX LLH systems with a narrow prequench state of w/aho = 0.78. The
circles denote frequencies associated with specific postquench eigenstates. The interaction-dependent excitation branches signal the dominant
participation of trimer and atom-dimer states in the dynamics, and they refer to their energy differences with respect to trap states. Almost
constant branches are related to trap excitations. The energy spectra of the (b) BBX and (e) FFX LLH systems, where a series of avoided
crossings among atom-dimers and trap states occurs, are marked by the dashed circles. The red dashed line indicates the bare BX or FX dimer
threshold. (c),(f) Profiles of the fidelity spectrum for the (c) BBX and (f) FFX mixture at different scattering lengths (see the legend).

dimensionless units (Sec. II)], which are identified from the
energy spectra of BBX and FFX systems [41]. Below, we
elaborate on the excitation spectrum of both LLH BBX and
FFX systems in the two above-mentioned distinct response
regimes.

A. Excitations from narrow initial states with w < aho

As a prototype LLH setup with an initial state width
w < aho, we use the case of w/aho = 0.78. To understand the
excitation processes of the quenched system, we inspect the
respective fidelity spectrum together with the energy eigen-
spectrum and the overlap coefficients. For the BBX system,
the fidelity spectrum |F (ω̃)| and the three-body postquench
eigenenergies are shown in Figs. 3(a) and 3(b), respectively.
Note that the indexing of the eigenenergies, e.g., in Fig. 3(b)
starts from the ground state, which possesses an energy way
below the displayed range, and increases as we climb the
energy ladder.

In Fig. 3, for aBB/aBX < 4 the excited frequency branches
appearing in |F (ω̃)| mainly refer to energy differences be-
tween the second trimer state (first excited trimer) f = 2, and
either the first atom-dimer (f = 3) or the trap states (f = 8);
see, e.g., ω̃3,2 and ω̃8,2, respectively, in Fig. 3(a) at aBB/aBX =
2.5. In these frequency branches, the most dominant contri-
bution in the coefficients cf,in stems mainly from the second
trimer. This occurs since both the initial state and the second
trimer are well localized at small values of the hyperradius,
i.e., for R < aho, yielding thus a large overlap. In particular,
for the frequency ω̃3,2 we observe that it remains constant as
the scattering length ratio aBB/aBX varies. This arises from
the fact that the scattering length dependence of the second
trimer and first atom-dimer eigenenergies is similar as shown

in Fig. 3(b), thus their energy difference results into an almost
constant frequency ω̃.

As aBB/aBX is tuned to larger values, the spatial extent
of the postquench eigenstates changes drastically [Fig. 3(b)],
thus affecting their overlap with the initial configuration.
Indeed, the participation of the second trimer state (f = 2)
decreases for aBB/aBX > 4. For these scattering length ratios,
the trimer and the atom-dimer states become tightly bound
[see Fig. 3(b)]. Accordingly, their wave functions are much
narrower than the initial one, which reduces the corresponding
overlap coefficients. In return, this results in a smaller ampli-
tude of ω̃3,2; see Fig. 3(c) at aBB/aBX = 4.25. This reduced
contribution in the fidelity spectrum is counterbalanced by the
enhanced population of more trap states giving rise to excita-
tion branches whose values increase with larger aBB/aBX ; see,
e.g., the scaling of ω̃8,2 in Fig. 3(a)].5 Their increasing behav-
ior reflects the growing energy difference between the second
trimer and trap states for aBB/aBX > 3 [Fig. 3(b)]. Also, the
amplitude ω̃8,2 increases with aBB/aBX since the substantial
spatial extent of the trap wave functions yields larger overlap
with the initial state. Furthermore, a larger number of branches
arises in the fidelity spectrum as can be seen by comparing
the profiles of |F (ω̃)| at aBB/aBX = 4.25 and aBB/aBX = 2.5
illustrated in Fig. 3(c). As a result, the response of the time-
averaged fidelity for w/aho = 0.78 is more enhanced (smaller
value of 〈|F |〉) for larger ratios of aBB/aBX [Fig. 2(a)]. Let us
remark that time-dependent variation protocols of the scatter-
ing lengths would be of great interest, since they could result

5Note that even if the labels of the postquench eigenstates are the
same, the frequency associated with them, ω̃8,2, acquires different
values depending on the scattering length [Fig. 3(a)], since the energy
spectrum changes drastically with respect to aBB/aBX .
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in a significant population of trimer states, even at the regimes
where trap states acquire a large contribution.

For the dynamical response of the LLH FFX system, we
observe the appearance of a larger number of excitations in
the fidelity spectrum [Fig. 3(d)] as 1/aFX increases. Notice
that this behavior is already anticipated from the enhanced
response of 〈|F |〉 presented in Fig. 2(b) for w/aho = 0.78.
However, the microscopic mechanisms behind this response
are different from the ones in the BBX system due to the dis-
tinct eigenenergy spectra, compare in particular Figs. 3(b) and
3(e). Evidently, in the case of the LLH FFX system trimers
do not form. Here, the major contribution for 1/aFX < 2 is
shared among the first two atom-dimer states, f = 1, 2, pos-
sessing a small spatial extent and mostly localized at R < aho.
This claim can be verified by the corresponding frequency
peak ω̃2,1 of |F (ω̃)| shown in Figs. 3(d) and 3(f) as well as
the contribution of the relevant overlap coefficients (with a
total contribution 90–60 % for 1/aFX ∈ [0.36, 2]). For large
scattering lengths (1/aFX > 2), the participation of atom-
dimers diminishes since their spatial extent further decreases.
This results in their reduced overlap with the initial state
and consequently to a smaller amplitude of ω̃2,1 as shown
in Fig. 3(f) for 1/aFX = 4. In this case, trap states acquire
a non-negligible population leading to interaction-dependent
frequency branches which grow with respect to 1/aFX ; see,
e.g., ω̃8,1 in Fig. 3(d).

B. Response for wide initial configurations of w > aho

Next, we examine the susceptibility of LLH three-body
setups to quenches for initial configurations characterized by
w > aho. As a representative example of this kind, we choose
w/aho = 4.9 and first investigate BBX mixtures. Recall that
in this scenario, the time-averaged response captured by 〈|F |〉
[Fig. 2(a)] is drastically enhanced as compared to w/aho =
0.78 and experiences small variations with respect to aBB/aBX .

To determine the microscopic origin of the involved excita-
tions, we resort again to the fidelity spectrum |F (ω̃)| provided
in Fig. 4(a). The almost horizontal frequency branches stem
from energy differences between trap states, e.g., ω̃12,8. This
is verified by calculating the respective overlap coefficients
and monitoring the energy spectrum [Fig. 3(b)]. Addition-
ally, since w/aho = 4.9 � 1, the postquench atom-dimers and
trimers, being naturally narrow, exhibit a reduced overlap with
the initial state. The dominant contribution in the course of
the evolution originates from the trap states whose overlap
with �(R,�, t = 0) is appreciable. Indeed, a multitude of
trap states is populated as can be inferred from the several
frequency peaks of comparable amplitude appearing in |F (ω̃)|
[Fig. 4(a)]. This fact, in turn, induces the enhanced response
identified in 〈|F |〉 [Fig. 2(a)] for w/aho = 4.9.

A similar overall phenomenology takes place also for LLH
FFX systems; see Fig. 4(b). Evidently, also here the respective
excitation branches are almost insensitive to 1/aFX variations
[Fig. 4(b)]. Notably, the postquench eigenstates responsible
for this behavior are again trap states, e.g., ω̃6,3, although
they are not the same as those identified in the BBX scenario
[Fig. 4(a)]. The reason for this change can be traced back to
the different structure of the eigenspectrum between BBX and
FFX LLH systems; compare Figs. 3(b) and 3(e).

FIG. 4. Fidelity spectra of a wide initial state, i.e., w/aho = 4.9,
for the (a) BBX and (b) FFX LLH systems following a quench of
the scattering length. The circles designate specific frequency peaks
corresponding to different postquench eigenstates. The atoms reside
in a superposition consisting predominantly of trap states. The latter
are imprinted as excitation branches being insensitive to scattering
length variations.

Focusing on the underlying selection processes according
to which specific postquench eigenstates are populated, it
is instructive to carefully study the respective overlap coef-
ficients. Of immediate interest here are the ones referring
to pairs of postquench eigenstates that experience avoided
crossings [dashed circles in Figs. 3(b) and 3(e)], namely atom-
dimers and trap states, and in particular we illuminate their
dependence on the width w of the initial states. In the vicinity
of the avoided crossings, the spatial extent of the involved
eigenstates changes abruptly, since their character alters be-
tween trap and atom-dimer states.

For a BBX setup, a characteristic example regarding the
dependence of the overlap coefficients between the initial state
and the f = 5, 6 eigenstates as a function of w and aBB/aBX is
displayed in Fig. 5(a). A transition between the different types
of eigenstates is apparent by the complementary behavior of
the respective overlap coefficients [30]. On the left of the first
avoided crossing shown in Fig. 3(b) at aBB/aBX � 3 (dashed
circle), the occupation of the trap state f = 5 [see the red
color gradient in Fig. 5(a)] prevails for a larger w when com-
pared to the atom-dimer f = 6 [see the green color gradient
in Fig. 5(a)]. This behavior arises from the mere fact that
the atom-dimer has a smaller spatial extent compared to the
trap state, thus the latter yields larger overlap compared to the
former. The opposite behavior takes place within aBB/aBX ∈
[3, 3.5], since then the f = 5, 6 states interchange their charac-
ter. After the second avoided crossing at aBB/aBX � 3.5, these
states are substantially occupied only for 0.19 < w/aho <

0.39, since then both of them are atom-dimers [Fig. 3(b)]. For
larger w/aho � 1 and around aBB/aBX ∈ [3.5, 4], a significant
contribution stems from a trap eigenstate (f = 7), not shown
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FIG. 5. Overlap coefficients |cf,in|2 between the initial state of
width w and two postquench eigenstates f as a function of w/aho

and the scattering length for the (a) BBX (f = 5, 6) and (b) FFX (f =
3, 4) LLH system. In each case, the presented pair of postquench
eigenstates experiences an avoided crossing in the respective energy
spectra [Figs. 3(b) and 3(e) with dashed circles]. A change of the
character of the state from a trap to an atom-dimer (atom-dimer to
trap) state is signified by a shift of its major contribution to smaller
(larger) values of the width of the prequench state w/aho.

in Fig. 5(a). Similar transitions occur also for the FFX LLH
system [Fig. 5(b)], where in this case the pair of eigenstates
f = 3, 4 exchange character from a trap to an atom-dimer
and vice versa through the avoided crossing at 1/aFX � 1.77
[Fig. 3(e) designated with a dashed circle].

Concluding, it is worth mentioning that upon considering
a width of the initial state being the same as the three-body
harmonic-oscillator length, namely w = aho, the original con-
figuration corresponds to the noninteracting ground trap state
(Sec. III). For this reason, the role of trimers and atom-dimers
is less important during the time evolution, and as expected
trap states have a somewhat larger population (for more de-
tails, see Appendix C). This behavior holds for both BBX and
FFX systems.

C. Buildup of two- and three-body correlations

Having established an understanding regarding the con-
tributing eigenstates for different widths of the initial state, an
intriguing question that arises is how these states influence the
associated short-range few-body correlations in the course of
the evolution. These correlations can be addressed by the ex-
perimentally measurable [17,19] two- and three-body contacts
[9,11,13,41,47,85]. The latter are defined as coefficients in a
high momentum expansion of the σ -species one-body density

in momentum space,

nσ (pσ , t ) � 1

Nσ p4
σ

∑
σ ′

(1 + δσσ ′ )Dσσ ′
2 (t ) + ln3 pσ

p6
σ

D3(t ).

(11)
This expansion pertains to the case in which pσ is significantly
larger than the momentum scales provided by the inverse scat-
tering lengths [41]. Here, Nσ is the atom number belonging
to the σ -species, while Dσσ ′

2 (t ) denotes the time-dependent
two-body contact between the species σ and σ ′. Note that
only the three-body contact D3(t ) of BBX systems [DBBX

3 (t )]
is finite, since for FFX systems three-body correlations are
suppressed6 due to the Pauli exclusion principle [45]. The
main features of these few-body correlation observables are
captured by their time-averaged measure. Namely, the time-
averaged two-body contacts are described by the following
expressions:

〈
DσX

2

〉 = lim
T →∞

1

T

∫ T

0
dt DσX

2 (t ), σ = B, F (12)

and the three-body ones read

〈
DBBX

3

〉 = lim
T →∞

1

T

∫ T

0
dt DBBX

3 (t ). (13)

These quantities assess the overall degree of dynami-
cal correlations for various widths of the initial state and
postquench scattering lengths; see Fig. 6. A detailed analysis
of the stationary three-body FFX and BBX setups reveals
a hierarchy in terms of the degree of few-body correlations
for the different types of eigenstates. Namely, as shown in
Refs. [41,85,86], trimer states possess more enhanced two-
and three-body correlations than those of the BX or FX atom-
dimer states, and, similarly, the atom-dimer contacts are larger
than those of the trap states. This hierarchy will also be appar-
ent here as the width of the initial state changes and different
eigenstates contribute in the dynamical response. Indeed, as
the width of the initial state [Eq. (6)] increases, the magnitude
of all the aforementioned correlations at any scattering length
is reduced (Fig. 6). This occurs because for larger widths, a
superposition of trap states is predominantly populated (see
also Fig. 4).

On the contrary, for w/aho = 0.78, the first two atom-
dimers (second trimer) provide the main contribution to the
postquench wave function Eq. (7) of the FFX (BBX) system.
This is confirmed through their dominant overlap coefficients
(see Sec. IV A), enhancing few-body correlations compared
to cases in which w > aho (Fig. 6). Therefore, in the limit of
small w < aho, correlations at the two- and three-body level
are, generically, enhanced due to the non-negligible involve-
ment of trimer and atom-dimer states. This amplification was
also observed for a three-boson setup in the quench dynamics
at unitarity in 3D [29], especially when the width of the initial
state matched the size of an Efimov trimer.

6The three-body contact yields the probability to detect three par-
ticles in close vicinity. As such, it is zero by construction for FFX
systems within the s-wave zero-range interaction model, where the
two identical and noninteracting fermions cannot approach one an-
other due to the Pauli principle.
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FIG. 6. Time-averaged (a) two-body
√〈DBX

2 〉 and (b) three-body contact
√〈DBBX

3 〉 of the BBX LLH setting, and (c) two-body contact√〈DFX
2 〉 of the FFX setup. Correlations at all levels increase for larger aBB/aBX or 1/aFX , and their magnitude reduces for larger widths. The

peak structure at specific scattering lengths is an imprint of the participation of atom-dimers. The widths of the initial state are provided in the
legend.

Another remarkable feature of the correlations is their
magnification at particular scattering lengths for fixed w; see
the individual peaks displayed in Fig. 6. Their amplitudes
become more prominent from the overall two- and three-body
contacts for increasing width w, where trap states contribute
substantially (see Sec. IV B). These peaks occur in the vicinity
of avoided crossings present in Figs. 3(b) and 3(e), where the
corresponding three-body wave function is predominantly in
a superposition of a trap and an atom-dimer state. Therefore,
in this range of scattering length ratios, the overall character
of the wave function abruptly changes, yielding in this man-
ner an enhanced 〈DBX

2 〉, 〈DBBX
3 〉, and 〈DFX

2 〉. This particular
property of the time-averaged two- and three-body contacts
can be utilized as an experimental probe for the formation of
atom-dimers in a 2D gas.

Furthermore, the appearance of enhanced peaks in the
two-body contacts at the avoided-crossings due to the atom-
dimer component in the time-evolved wave function is also
a manifestation of the universal Tan relations. These universal
relations exemplify that the short-range two-body correlations
are proportional to the variation of the stationary energy spec-
tra with respect to the scattering length [11,46]. Therefore,
close to the avoided-crossings the eigenenergies of the three-
body system [see Figs. 3(b) and 3(e)] strongly vary with the
scattering length, thus yielding narrow peaked two-body cor-
relations [Figs. 6(a) and 6(c)]. By this token, we can address
the main difference between the two-body contacts of BBX
and FFX systems in Figs. 6(a) and 6(c), respectively, where
the former exhibits broader peaks than the latter. This occurs
because in the FFX eigenspectra shown in Fig. 3(e) we ob-
serve much sharper avoiding crossings than in the BBX ones
[see Fig. 3(b)]. Such a universal relation is absent in the case
of the three-body contact [47] in 2D, and the peak structure is
attributed to the enhanced stationary three-body correlations
[41] of the atom-dimer component of the time-evolved wave
function.

Moreover, it is also worth mentioning that a broadening of
these correlation peaks is evident for larger widths; see, e.g.,
w/aho = 4.9 in Fig. 6. In this case, as already discussed and
observed in the fidelity spectrum (Fig. 4), a large amount of
trap states participates in the three-body time-evolved wave
function. This results in an agglomeration of avoided cross-
ings contributing to the dynamics, which are slightly displaced
horizontally from one another at a fixed scattering length
[see Figs. 3(b) and 3(e)]. The aforementioned displacement

then yields a range of scattering lengths over which the Tan
contacts display an enhanced behavior, manifested as a peak
broadening.

V. DYNAMICAL RESPONSE OF HHL MIXTURES

In this section, we address the role of the masses on the
dynamical build up of few-body correlations by considering
HHL three-body mixtures. The intrinsic dynamical behavior
of this system is explored, for widths w of the initial state
smaller or larger than the characteristic three-body harmonic-
oscillator length aho = 2.6 [Eq. (6)]. As in the LLH case in
Sec. IV, we remark that initial states with a spatial extent
smaller (larger) than aho favor the participation of trimer
and/or atom-dimer (trap) states. Our analysis on the response
of the 2D mixtures is based on the time-averaged fidelity 〈|F |〉
given in Eq. (8).

The overall response of a HHL BBX system characterized
by mB/mX = 22.16 is intensified in the case of w/aho = 0.57
[Fig. 7(a)] as compared to w > aho within aBB/aBX ∈ [0.5, 3].
This is in contrast to the susceptibility of LLH mixtures
[Fig. 2(a)]. Moreover, for w/aho = 1 a strong dependence of
〈|F |〉 is observed with respect to the scattering length ratio.
This feature of 〈|F |〉 differs dramatically from the response
for w/aho = 1.92, where it is arguably almost insensitive
within the interaction interval aBB/aBX ∈ [2, 3]. This behavior
is related to the prominent contribution of trap states. For
w/aho = 1, the system becomes less susceptible to the quench
as compared to the case of w/aho = 1.92, since fewer trap
states contribute, especially for large aBB/aBX > 2. Notably,
there are a series of peaks appearing in 〈|F |〉 at specific scat-
tering lengths, where avoided crossings among atom-dimer
and trap states exist in the few-body eigenspectrum [see also
Figs. 8(b) and 8(e)]. Their importance, especially in the rele-
vant few-body correlations, will be discussed below.

Subsequently, the susceptibility of a HHL FFX system
with mF /mX = 24.71 is illustrated in Fig. 7(b). Apparently,
the FFX mixture becomes more perturbed when considering
w/aho = 0.57. For larger widths, e.g., w/aho = 1.92, the sys-
tem experiences a weak dependence on the scattering length
within the range 1/aFX ∈ [1.5, 2]. This is linked to the dom-
inant presence of trap states during the time evolution due to
their large spatial extent. Moreover, we note that similarly to
the BBX HHL case [Fig. 7(a)], the FFX mixture is less per-
turbed for w/aho = 1.92 than in the w/aho = 0.57 scenario.
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FIG. 7. Time-averaged fidelity 〈|F |〉 of the three-body (a) BBX
and (b) FFX HHL mixture subjected to quenches of the interspecies
scattering length. Different widths of the initial state are considered
(see the legend) whose values in terms of the oscillator length (aho =
2.6) determine the degree of the system’s response. The substantial
population of atom-dimer and trimer (trap) states for w < aho (w >

aho) leads to a strongly (weakly) interaction-dependent response. In
contrast to the LLH case, trap states also have a small contribution
for w < aho in addition to trimers and atom-dimers, and the larger
number of participating eigenstates compared to the w > aho sce-
nario enhances the response of the system.

However, in contrast to the HHL BBX system, for w/aho =
1 the mixture develops a stronger response in comparison
to w/aho = 1.92, due to the more prominent population of
trimers and atom-dimers.

A. Excitation processes for w < aho

Prequenched states with a spatial extent smaller than the
three-body harmonic-oscillator length apparently exhibit a
larger overlap with the trimers and atom-dimer states of the
BBX and FFX HHL systems. The latter contribute signifi-
cantly in the underlying dynamics compared to the case in
which w > aho. In the opposite regime (w > aho), trap states
become substantially populated in the postquench dynamics
(see also Sec. IV B), a mechanism pertaining also to the HHL
mixtures. The frequency spectra will be analyzed for the w <

aho scenario, since for w > aho, the underlying microscopic
mechanisms resemble those presented in Sec. IV B. However,
the differences present in 〈|F |〉 between LLH (Fig. 2) and
HHL setups (Fig. 7) for w > aho stem mostly from the dif-
ferent number of participating trap states in the postquench
dynamics. Moreover, in the HHL scenario, in addition to the
participation of trap states, there are a few contributing atom-
dimer and trimer states especially for small values of 1/aFX

and aBB/aBX . This results in further perturbation of the system
from the initial state compared to larger scattering lengths.

Recall also here the relevant discussion in Sec. IV concerning
LLH mixtures.

Inspecting the fidelity spectrum |F (ω̃)| [Fig. 8(a)] to-
gether with the overlap coefficients and the energy spectrum
[Fig. 8(b)] for the HHL BBX system, we can infer that for
aBB/aBX < 1, the second and third trimer states are signifi-
cantly populated. This gives rise to excitation branches such
as ω̃8,3, indicating the participation of the third trimer and
the f = 8 trap state [Fig. 8(a)] for small aBB/aBX < 1. This
frequency branch shows an appreciable growth with larger
aBB/aBX due to the accompanied increasing energy difference
between trimer and trap states [Figs. 8(a) and 8(b)]. Note that
the energies of the f = 2, 3 trimers are large in magnitude and
negative and therefore lie below the energy window presented
in Fig. 8(b). Apart from trimer states, trap ones, e.g., f = 8, 10,
are occupied as well, but their respective energy differences
depend weakly on changes of aBB/aBX ; see, e.g., ω̃10,8 in
Fig. 8(a).

A further increase of the scattering length ratio aBB/aBX >

1 leads to a reduction of the amplitude and number of
the higher-lying excitation frequencies in comparison to
aBB/aBX < 1. This behavior can be readily seen in the rele-
vant profiles of the fidelity spectra depicted in Fig. 8(c) for
aBB/aBX = 2.5 and 0.8. It stems from the suppressed contri-
bution of the two trimer states for aBB/aBX > 1, resulting in a
less perturbed system as also reflected in 〈|F |〉 [Fig. 7(a)] for
w = 1.5. Similarly to the case of aBB/aBX < 1, trap states are
also populated here, imprinted in the spectrum as distinct al-
most horizontal frequency branches, e.g., ω̃52,50 in Fig. 8(c).7

A qualitatively similar dynamical response to the BBX
mixture is also observed for the HHL FFX system; see |F (ω̃)|
illustrated in Fig. 8(d) for w/aho = 0.57. Here, the heavy
fermions with respect to the third particle favor trimer for-
mation [39], a result that is in contrast to the corresponding
LLH case. These trimer states possess large negative energies
[38,41], lying beyond the values depicted in the energy spec-
trum provided in Fig. 8(e). Particularly, a superposition of the
first two trimer states (f = 1 and 2) is prevalent in the course
of the evolution for 1/aFX < 1, leading to excitation branches
such as ω̃2,1 [Fig. 8(d)]. Moreover, similar to the BBX HHL
system, trap states are also present in the dynamical response
of the corresponding FFX mixture, as identified by the energy
spectrum and the overlap coefficients. The frequency branches
associated with energy differences between these states are
almost independent of 1/aFX [Fig. 8(d)].

Tuning the inverse scattering length to larger values
1/aFX > 1, a plethora of trap states contributes in the time-
evolved three-body wave function. Accordingly, a multitude
of excitation branches arise in |F (ω̃)| whose location is almost
constant with varying 1/aFX [Fig. 8(d)] and are clustering at

7Apart from the horizontal excitation branches within aBB/aBX ∈
[2, 3], there exist also faint ones having a V-shape dependence on the
scattering length with tipping points located at aBB/aBX = 2.25 and
2.57 [Fig. 8(a)]. These are attributed to energy differences between
trap and atom-dimer states. At the tipping point of these V-shaped
branches, the energies of participating states come close together
due to the avoided crossings and are thus associated with small ω̃

in |F (ω̃)|.
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FIG. 8. Fidelity spectrum of the (a) BBX and (d) FFX HHL systems performing an interaction quench of an initial state where w/aho =
0.57. The arrows mark characteristic frequency branches ω̃ f , f ′ . Excitation branches that alter with respect to the scattering length (see the top
left corners) correspond to energy differences between trimers, atom-dimers, and trap states. Otherwise, the almost fixed frequency branches
refer to trap states. Energy spectra of (b) BBX and (e) FFX HHL mixtures. Particular eigenstates are denoted by circles and arrows. Specific
profiles of the fidelity spectrum of the (c) BBX and (f) FFX system at distinct scattering lengths (see the legends).

low ω̃ as shown in Fig. 8(f). The large number of contributing
trap states for 1/aFX > 1 is linked to the enhanced response
of the HHL FFX system, e.g., captured by the time-averaged
fidelity displayed in Fig. 7(b) for w/aho = 0.57.

B. Dynamical formation of few-body correlations

As already demonstrated in Sec. IV C for LLH systems,
the buildup of few-body correlations regardless of the particle
statistics exhibits a peak structure for scattering lengths in
the vicinity of avoided crossings appearing in the postquench
eigenspectrum (see also Fig. 6). Similarly, in this section we
focus on HHL systems in order to showcase the role of
increased mass ratio on the time-averaged Tan contacts as
illustrated in Fig. 9. In particular, the two-body BX species
contact [Fig. 9(a)] exhibits sequences of narrow peaks at
specific scattering length ratios in agreement with Tan’s
universal relation [7,10,11]. Namely, at these postquench scat-
tering lengths, the corresponding eigenspectrum possesses
narrow avoided crossings among trap states and atom-dimers
[Fig. 8(b)], thus resulting into the strong amplification of
the two-body correlations. Moreover, the amplitude of the
peaks in the 〈DBX

2 〉 decreases for large aBB/aBX independently
of w. This suppression occurs for large aBB/aBX where the
avoided crossings become increasingly narrow [Fig. 8(b)].
In this sense, they cannot be well resolved, leading to less
pronounced peaks compared to smaller aBB/aBX .

In the case of the three-body contact [Fig. 9(b)], a mul-
titude of peaks with tiny amplitude appears as w increases.
This holds even for large aBB/aBX as w increases, despite
the narrow avoided crossings present in the HHL eigenspectra
[Fig. 8(b)]. Particularly, for increasing w, trap states are pre-
dominantly populated, but in the vicinity of avoided crossings

atom-dimers contribute as well. Therefore, the amplifica-
tion of stationary three-body correlations of the atom-dimer
postquench eigenstates compared to trap states leads to the
rise of peaks in

√
〈DBBX

3 〉 at the locations of the avoided
crossings. Moreover, equivalently to the two-body BX species
contact [Fig. 9(a)], the time-averaged three-body contact is re-
duced for larger w, due to the significant participation of trap
states, whose stationary three-body correlations are greatly
suppressed.

Furthermore,
√

〈DBBX
3 〉 at w/aho = 0.57 has an overall

maximum around aBB/aBX � 1.2, and then decreases for
larger values of aBB/aBX . This behavior is related to the sig-
nificant population of the second trimer which specifically
possesses a population up to 16% until aBB/aBX � 1.2. Subse-
quently, the corresponding overlap coefficient with the initial
state decreases for aBB/aBX > 1.2, since in this range of scat-
tering length ratios the second trimer state is narrower than the
initial one. HHL BBX systems favor the existence of strongly
bound trimer states, due to the increased mass ratio [38]. The
contribution of such a trimer state (second) for w < aho results
in an augmented three-body contact, in contrast to the one
presented in LLH setups [Fig. 6(b), w/aho = 0.78], where
the small mass ratio inhibits the creation of strongly bound
trimers.

In an equal fashion to the time-averaged two-body BX con-

tact,
√

〈DFX
2 〉 [Fig. 9(c)] showcases small amplitude peaks,

arising mostly for w/aho = 0.57. Their magnitude again drops
for increasing scattering length ratio 1/aFX since sharper
avoided crossings are encountered in the eigenspectrum of the
HHL FFX system than the ones appearing in the LLH case
[compare Fig. 3(e) and Fig. 8(e)].
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FIG. 9. Time-averaged contacts revealing the enhancement of short range (a), (c) two-body and (b) three-body correlations for larger
inverse interspecies scattering lengths of HHL (a), (b) BBX and (c) FFX settings. The existence of peaks at individual scattering length ratios
reveals the population of atom-dimers due to the sharp avoided crossing taking place at the eigenspectrum [Figs. 8(b) and 8(e)]. The widths of
the initial state are shown in the legend.

VI. EXPERIMENTAL PARAMETERS FOR THE
REALIZATION OF THE DYNAMICS OF THE

THREE-BODY MIXTURE

In an experimental environment, 2D gases are realized in
quasi-2D trapping potentials where the confinement in the
transversal direction of the 2D plane is tighter than the radial
one. This transversal trapping component is characterized by
a frequency ω⊥ chosen such that the atomic motion is ener-
getically restricted to the radial confinement potential with
frequency ωr [68,87]. A comparison of the low-lying energy
states of two interacting particles in 3D and in a pure 2D
geometry [79] revealed that the aspect ratio in a quasi-2D
setup required to attain the 2D character of the relative motion
of the two particles [68] should satisfy ωr/ω⊥ < 1/10. This
is corroborated by typical quasi-2D experiments [88–90]. For
our setup, this energy requirement translates to 1/(μw2) �
0.1ω⊥, and furthermore assuming ω⊥ = 50 [91], it reduces to
w � 1/

√
5μ. As such, for the typical LLH settings that we

have considered, this condition yields w � 0.4559, while for
HHL settings it yields w � 1.16.

The dynamical protocol outlined in Sec. III relies on the
realization of a noninteracting three-body system with a tun-
able spatial extent w, and the subsequent quench of the
relevant 2D scattering lengths. The latter are related to their
3D counterparts [68], which can be tuned by means of Fesh-
bach resonances [67]. For the BBX systems, in particular, the
coexistence of broad and narrow intra- and interspecies res-
onances in a magnetic field window ensures a regime where
the postquench scattering length aBB remains almost constant
while aBX varies in magnitude and sign. For instance, for the
HHL BBX system of 133Cs - 133Cs - 6Li, such a magnetic field
window exists for [840, 845] G, i.e., around the interspecies
resonance [92–94]. Also, in the vicinity of � 880 G, both 3D
scattering lengths vanish, thus materializing a noninteracting
state.

The parameters of interest for the trapping potential are
ωr = 2π × 65 kHz and ω⊥ = 50 ωr [91]. Also, regarding the
3D counterparts of the 2D postquench scattering lengths used
herein, we discern the following values displayed in Table I.
Note that in the considered intervals of the 3D scattering
length (in atomic units), there is a sign change due to a res-
onance.

Our analysis in the previous sections illustrated the role of
the width w of the initial state in the dynamical response of the
three-body system. This w parameter can be experimentally
adjusted by the following procedure. The two identical parti-
cles (B or F ) together with the third distinguishable atom (X )
are confined in a trap with a planar frequency ωin, which are
initialized in their noninteracting ground state. A simple rela-
tion can be established between the initial state’s width and the
planar frequency, i.e., μωin = w−2, where μ is the three-body
reduced mass (see also Sec. III). Prior to the quench on the
scattering lengths, a quench on the trap frequency from ωin

to ωf is performed. This allows for the preparation of initial
states that possess widths different from the lengthscale of
the trap with final frequency ωf where the interaction quench
dynamics will take place. By setting the final radial trapping
frequency at ωf = 2π × 65 kHz, the initial frequency is deter-
mined from the relation ωin = ωf a2

ho/w
2. Thus, for the LLH

settings in Sec. IV, the widths w/aho = 0.78, 4.9 correspond
to ωin = 2π × (105.5, 2.7) kHz. For the HHL setup (Sec. V),
the initial widths w/aho = 0.57, 1.92 are obtained for ωin =
2π × (194.5, 17.5) kHz.

TABLE I. Mapping of the 2D BX, FX, and BB postquench
scattering lengths to their 3D counterparts (in atomic units with
a0 denoting the Bohr radius) for both LLH and HHL setups. The
radial and transversal trapping frequencies utilized herein are ωr =
2π × 65 kHz and ω⊥ = 50ωr .

1/aFX a3D
FX (a0)

LLH [0.36, 2.77] ([4, 5]) [−246, −3000] ([3000, 1343])
HHL [0.36, 6] ([0.82, 2.5]) [−715,−2976] ([2991, 380])

1/aBX a3D
BX (a0)

LLH [2, 2.81] ([3.94, 4.65]) [−994, 3000] ([2995, 1497])
HHL [0.85,3] [3000,380]

aBB a3D
BB (a0)

LLH 1 −421
HHL 1 1578
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VII. SUMMARY AND OUTLOOK

The quench dynamics of mass-imbalanced three-body
mixtures with either bosonic or fermionic constituents inter-
acting with a third atom is investigated. Depending on the
mass ratio, we distinguish between the LLH and HHL cases.
Initially the mixture is confined in a 2D harmonic trap and
assumed to be noninteracting. The spatial extent of the ini-
tial state and the postquench scattering length are exploited
as parameters in order to map out the buildup of two- and
three-body correlations via distinct microscopic excitation
mechanisms.

In particular, the interactions are abruptly switched on
triggering a distinct dynamical response depending on the
width of the initial state. A complete knowledge of the energy
spectra in conjunction with the fidelity spectrum allows us to
identify the prevalent microscopic mechanisms in terms of
specific postquench eigenstates. It is found that if the initial
state width is smaller than the three-body harmonic-oscillator
length aho, trimers and atom-dimers contribute predominantly
in the dynamics. In contrast, for larger widths trap states are
those that are significantly populated regardless of the mass
imbalance of the system. However, in HHL ensembles for
narrow widths, the participation of trimers and atom-dimers
prevails in a relatively smaller range of scattering lengths as
compared to LLH mixtures.

Interestingly, the participating eigenstates have a distinct
imprint on the dynamics of the underlying few-body short-
range correlations, as captured by the Tan contacts. It is
explicated that for an increasing width of the initial state,
the magnitude of both the overall time-averaged two- and
three-body correlations decreases for a fixed 2D scattering
length. For small widths, these correlations are found to be
enhanced as a result of the involvement of trimer states and
atom-dimers. The respective amplification of the Tan contacts,
due to the participation of such states, was also independently
reported following the quench dynamics of three-body sys-
tems at unitarity in 3D [29]. Strikingly, for widths larger than
the three-body harmonic-oscillator length, few-body correla-
tions display sharp peaks at certain scattering lengths. This
behavior is directly linked to the presence of avoided cross-
ings among trap and atom-dimer states taking place in the
few-body eigenspectrum, and it signifies the non-negligible
cooperation of atom-dimers in the time evolution.

Overall, our work proposes a scheme to dynamically excite
distinct superpositions of eigenstates in three-body mixtures.
Specifically, it was demonstrated that depending on the inter-
play between the three-body harmonic-oscillator length and
the width of the initial state, all three types of eigenstates, that
is, trimers, atom-dimers, and trap states, may be dominantly
populated during the nonequilibrium dynamics. Moreover,
temperature effects are expected to mitigate few-body corre-
lations, as shown in [41,95]. In this sense, the investigation
of possible smearing effects of the identified peak structures
building upon the time-averaged contacts for large w > aho is
a compelling perspective for further research.

In addition, an interesting question that arises for future
studies is how to efficiently populate individual target states,
and in particular trimers. Their properties, such as lifetimes,
are usually studied indirectly via three-body recombination

loss mechanisms [50,57]. However, many questions remain
open, especially regarding their dynamical formation in a gas
[23]. A promising route towards achieving this goal would
be to utilize time-dependent protocols in order to activate
individual target states instead of superpositions of them gen-
erated by quenches. There is currently active research for the
dynamical creation of the macroscopic population of trimer
states in cold gases [23,29,33]. A first step has already been
accomplished in Ref. [23], where an abrupt tuning of interac-
tions to unitarity and a subsequent sweep to weak repulsion
were shown to be able to produce an 8% population of
trimers.
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APPENDIX A: ADIABATIC HAMILTONIAN AND s-WAVE
PSEUDOPOTENTIAL IN TWO DIMENSIONS

The adiabatic Hamiltonian Had(R; �) as introduced in
Eq. (1) is expressed in the following way [72]:

Had(R; �) = h̄2
2(�)

2μR2
+ 3h̄2

8μR2
+

∑
k

Vk (R; �(k) ), (A1)

where 
2(�) is the hyperangular operator referring to the
centrifugal motion of the three particles [96,97]. Also, the
three-body reduced mass is μ = mB/F /

√
2mB/F /mX + 1, with

mB/F denoting the mass of the bosons or the fermions depend-
ing on the type of the mixture.

The last term of Eq. (A1) stands for the three (two) pair-
wise s-wave contact interactions among the particles in a
BBX (FFX) system. The Vk potential refers to the interaction
between the i and j particles (also known as odd-man-out
notation, where the i, j, or k indices refer to interaction pairs
of the remaining two indices [72]). In particular, the Vk in-
teraction is modeled by a 2D pseudopotential, which reads
[66,98]

Vk (R; �(k) ) = − h̄2δ(α(k) )

μ sin(2α(k) )R2 ln(Aλa(k) )

×
[

1 − ln(Aλ
√

μ/μkR sin(α(k) ))α(k) ∂

∂α(k)

]
,

(A2)

where α(k) ∈ [0, π/2] is the hyperangle describing the relative
position of two particles compared to the third one. For in-
stance, if α(k) = 0, then the particles i and j are on top of each
other, whereas for α(k) = π/2, all three particles are collinear.

043323-13

120



G. BOUGAS et al. PHYSICAL REVIEW A 106, 043323 (2022)

Moreover, μk = mimj

mi+mj
is the reduced two-body mass and A =

0.5 eγ , with γ ≈ 0.577 being the Euler-Mascheroni constant.
Importantly, a(k) ≡ ai j is the 2D scattering length between the
(i, j) pair of particles. The factor λ is an ultraviolet cutoff

for the zero-range pseudopotential, setting an upper bound in
momentum space. However, it does not affect any observable
as argued in Refs. [66,99].

APPENDIX B: HYPERANGULAR WAVE FUNCTION OF THE NONINTERACTING INITIAL STATE

The hyperangular wave function of the noninteracting initial state [denoted by the (0) superscript] can be expressed [27,100]
as follows:

�(0)
n (�) =

3∑
k=1

∑
m1,m2|m1+m2|=L

C(k)N (m1,m2 )
n sin|m1| α(k) cos|m2| α(k)Ym1

(
θ

(k)
1

)
Ym2

(
θ

(k)
2

)�(1 + n + |m1|)
�(1 + |m1|)n!

×2F1
(
1 + |m1| + |m2| + n,−n; |m1| + 1; sin2 α(k)

)
, (B1)

where N (m1,m2 )
n =

√
(2n+1+|m1|+|m2|)�(n+1)�(n+1+|m1|+|m2|)

2�(n+1+|m1|)�(n+1+|m2|) are

normalization coefficients. The above eigenfunction is the
nth eigenstate (n is a non-negative integer) of the hyperan-
gular operator 
2(�) [96,97] with eigenvalues λn(λn + 2),
where

λn = 2n + |m1| + |m2|, (B2)

and L = |m1 + m2| is the total angular momentum of the
three-body system. It is expressed in terms of the angular
quantum numbers m1, m2 related to the polar angles θ

(k)
1 and

θ
(k)
2 . The polar angles θ

(k)
1 and θ

(k)
2 refer to the orientation

of the Jacobi vectors ρ
(k)
1 , ρ

(k)
2 in the 2D plane, respectively,

where ρ
(k)
1 is the relative distance of the (i, j) pair, and ρ

(k)
2

is the relative vector of the k spectator particle relative to
the (i, j) pair’s center of mass. The summation running over
these angular quantum numbers is restricted by the condition
L = |m1 + m2|. Note that in the case of three identical parti-
cles, n = 1 gives an unphysical solution and therefore it is not
allowed [101]. Additionally, 2F1(a, b; c; ·) is the Gauss hyper-
geometric function [102], and Ym(x) = eimx/

√
2π are plane

waves. The angle α(k) determines the ratio of the measure of
the two Jacobi vectors via the relation tan α(k) = ρ

(k)
1 /ρ

(k)
2 (see

also Appendix A).
The particle statistics of the above wave function is

properly taken into account by the first summation and
the C(k) coefficients. These read explicitly (C1,−C1, 0) and
(C1,C1,C2) for FFX and BBX systems, respectively, with
the C1 and C2 terms being normalization coefficients. The
hyperangular wave functions �ν (R; �) [which are eigenstates
of Had(R; �)] correspond to the interacting postquench eigen-
states and have angular quantum numbers (m1, m2) = (0,±L)
due to the s-wave zero-range pseudopotential. As such, the
relevant subset in the summation [Eq. (B1)] will also be
(0,±L). Indeed, the remaining terms in the summation have
a zero contribution in the overlap coefficients, cf,in, since
the plane waves Ym(·) are orthonormal. Here, we focus on
n = 0, that is, the ground state. Note that the hyperangu-
lar wave function does not depend on the hyperradius R
since in the noninteracting case Had(R; �) does not depend
on R, as all interaction terms Vk (R; �(k) ) drop (see also
Appendix A).

APPENDIX C: QUENCH DYNAMICS OF THE LLH BBX
MIXTURE FOR INITIAL STATES WITH w = aho

For completeness, we shall also analyze the excitation
spectrum of three-body mixtures starting from a prequench
state of width w = aho. As characteristic system for this
investigation, we consider a LLH BBX system whose fi-
delity spectrum [Eq. (10)] is illustrated in Fig. 10 for varying
postquench aBB/aBX .

Recall that for w/aho = 0.78, the second trimer state f = 2
contributes the most in the quench dynamics of the LLH BBX
setting; see also the discussion in Sec. IV A. The predominant
population of the second trimer yields, in particular, excitation

FIG. 10. (a) Fidelity spectrum [|F (ω̃)|] for the LLH BBX system
subjected to a quench of aBB/aBX from an initial noninteracting state
with w/aho = 1. (b) Profiles of |F (ω̃)| at different scattering length
ratios aBB/aBX (see the legend). The excitation processes involve
majorly trimer and atom-dimer states which are imprinted in the
spectrum as branches that are sensitive to the scattering length. No-
tice that the participation of the second trimer is reduced compared to
the w/aho = 0.78 case, resulting in different branches than in |F (ω̃)|
depicted in Fig. 3(c).
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branches that are strongly influenced by aBB/aBX [Fig. 3(a)].
This is a consequence of the fact that the branches associated
with these transitions refer to energy differences between the
f = 2 trimer and the trap states, and they are increasing as
aBB/aBX is tuned to larger values.

These excitation branches are still present even for an
initial state width w/aho = 1 as shown in Fig. 10(a). Here,
the almost constant frequency branch located around ω̃ � 2,
stemming from the transition among the second trimer (f = 2)
and the first atom-dimer (f = 3) states, is more enhanced than
in the case where w/aho = 0.78 [compare ω̃3,2 in Fig. 10(b)
and Fig. 3(c)]. This difference is attributed to the fact that
the occupation of the first atom-dimer state is larger when
w = aho, while the one from the second trimer is reduced,
a result that is supported by the corresponding overlap co-
efficients cf,in. To be more precise, the population of the
f = 2 trimer as long as w/aho = 0.78 (w/aho = 1) ranges
from 73% (57%) to 35% (21%) within the interval aBB/aBX ∈
[2, 4.6]. Apart from the enhanced population of the first atom-
dimer, the contribution of trap states, similar to the ones

populated also for w/aho = 0.78, increases as well with re-
spect to w/aho = 0.78. This is imprinted in the spectrum by
the larger number of faint excitation branches; compare, in
particular, Fig. 10(a), where w/aho = 1 with Fig. 3(a) for
which w/aho = 0.78.

Similar observations to the above can be made for the
other types of mixtures utilized in the main text. Regarding
the LLH FFX system, the contribution of the first two atom-
dimer states at w/aho = 1 remains the same in comparison
to w/aho = 0.78 for 1/aFX < 1. Otherwise, it reduces fur-
ther from the value obtained for w/aho = 0.78 (18% versus
25% at 1/aFX = 4.5). This reduction is compensated by an
increasing population of a few trap states. Due to the reduced
number of participating postquench eigenstates compared to
smaller 1/aFX , the time-averaged fidelity possesses a smaller
magnitude for 1/aFX > 3 [see Fig. 2(b) for w/aho = 1]. In
a similar way, the population of trimers and first atom-dimers
also drops when considering w/aho = 1 for the HHL mixtures
(both BBX and FFX systems) as compared to the scenario in
which w/aho = 0.57.
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We demonstrate that an interferometer based on modulated magnetic field pulses enables precise
characterization of the energies and lifetimes of Efimov trimers irrespective of the magnitude and
sign of the interactions in 85Rb thermal gases. Despite thermal effects, interference fringes develop
when the dark time between the pulses is varied. This enables the selective excitation of coherent
superpositions of trimer, dimer and free atom states. The interference patterns possess two distinct
damping timescales at short and long dark times that are either equal to or twice as long as the
lifetime of Efimov trimers, respectively. Specifically, this behavior at long dark times provides an
interpretation of the unusually large damping timescales reported in a recent experiment with 7Li
thermal gases [Phys. Rev. Lett. 122, 200402 (2019)]. Apart from that, our results constitute a
stepping stone towards a high precision few-body state interferometry for dense quantum gases.

Efimovian trimers constitute an infinite set of particle
triplets occurring in the absence of two-body binding [1–
7]. Owing to their universal character, they have been
explored in both nuclear and atomic physics [4, 8–11]
and in the context of many-body physics as the binding
mechanism for magnons [12] and polaritons [13]. Fur-
thermore, the role of Efimov states is pivotal for some
ultracold gases in equilibrium, e.g. polarons [14–17] and
in some out-of-equilibrium [18–23], despite their short
lifetime due to collisional decay, i.e. three-body recombi-
nation processes. Recent investigations in dense gas mix-
tures demonstrate that such processes can be suppressed
due to medium effects [24]. Specifically, putting forward
the idea that the intrinsic properties of Efimov states , i.e.
the binding energies and lifetimes, are potentially mod-
ified. Hence, dynamically probing simultaneously both
intrinsic properties of Efimov trimers could provide al-
ternative ways to study the impact of an environment.

To address such effects, a promising dynamical proto-
col is to expose a many-body system in a double sequence
of magnetic field modulations (pulses). The latter has
been used successfully to precisely measure the binding
energies and lifetimes of dimers [25] near a Feshbach res-
onance [26]. Beyond two-body physics, employing this
Ramsey-type protocol for a thermal gas of 7Li atoms,
Yudkin et al. precisely probed Efimov molecules even
near the atom-dimer threshold [27, 28]; an experimen-
tally challenging region. Specifically, the surviving atom
number exhibited damped Ramsey fringes that were ro-
bust against thermal effects. However, the correspond-
ing damping timescale was found to exceed the typical
lifetime of Efimov trimers even for 85Rb3 [22]. In this re-
gard, it has remained elusive how the lifetime of Efimov

trimers emerges in the interference fringes induced by
magnetic field pulses. To address the intricate dynamics
of a three-body system requires a time-dependent the-
oretical framework establishing also a systematic path-
way to explore the role of few-body physics in out-of-
equilibrium many-body systems [20, 22].

In this Letter, such an approach is developed to investi-
gate the three-body dynamics of a thermal gas. We con-
sider 85Rb atoms since the lifetimes of the ensuing trimers
and dimers are known experimentally [22] in contrast to
7Li [27]. Our study establishes that, by implementing
double magnetic field pulses, the intrinsic properties of
Efimov trimers are readily probed regardless of the sign
or magnitude of the scattering length; at which these
states occur. Rich interferometric spectra exhibit both
low- and high-frequencies independent of the gas tem-
perature. The low-frequency components originate from
the coherent superposition of the trimer with the dimer
state, consistent with the observations in Ref. [27]. The
additional high-frequencies arise from the coherent popu-
lation of the trimer or dimer states with the ones lying at
the “at break-up” threshold. The characteristic damping
time of the field generated interference fringes is shown to
be twice the lifetime of the Efimov trimers, providing an
explanation for the unusually long decay times observed
in Ref. [27].

Our paradigm system consists of three 85Rb atoms of
mass m confined in a spherically symmetric harmonic
trap with radial frequency ωr. Following the prescription
of Refs. [29–34], we set ωr = 2π × 350Hz yielding a single

atom trap length ar = √h̵/(mωr), that compares to the

interparticle spacing (∼ ⟨n⟩−1/3) used in Ref. [22] for a
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Figure 1. (a) Energy spectrum of three harmonically trapped 85Rb particles with ωr/(2π) = 350Hz. Efimov trimer (T), atom-
dimer (AD) and trap (A) states are depicted. Initially the scattering length is set at abg = 819a0 (dashed vertical line), then
modulated with amplitude am (gray region). Note a0 is the Bohr radius. (b) A schematic illustration of the Ramsey-type
interferometer: A first pulse with envelope χ(t) associates atom-dimers and Efimov states out of trap states (first and second
sub-graphs in (b)), the system then evolves freely during the dark time td (third sub-graph in (b)), while a second pulse
further admixes the states together with their dynamical phases that were accumulated during td (fourth sub-graph in (b)).
(c) The ratio of thermally averaged (RTA) probabilities, PT (td) at abg = 819a0 and distinct temperatures (see legend). Inset:
A zoom out plot of RTA at early td. (d) [(e)] Frequency spectra referring to region I [II] of the RTA quantifying its single
[multifrequency] behavior at different values of temperature T . The vertical dotted lines correspond to the three-level model

(TLM) predictions for E
(2)
T , E

(1)
AD and a trap state (see text).

local peak density n0 = 5 ⋅ 1012 cm−3. The dynamics and
the universal characteristics of the three-body system are
addressed by employing contact interactions with a time-
dependent s-wave scattering length, i.e. a(t). The three-
body Hamiltonian reads:

H(t) = 3∑
i=1(
−h̵2∇2

i

2m
+ mω2

r

2
r2
i ) +∑

i<j
4πh̵2a(t)

m
δ(rij)Ôij ,

(1)

where ri denotes the position of the i-th atom, and
Ôij = ∂rij(rij ⋅) is the Fermi-Huang regularization opera-
tor with rij = ∣ri − rj ∣. Fig. 1(b) depicts the dynamical
profile of a(t) determined by the double pulse magnetic
field sequence used in Ref. [27], namely

a(t) = abg + am cos (Ωt)[χ(t) + χ(t − td − 2t0 − τ)], (2)

with χ(t) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin2 ( πt
2t0
) , 0 ≤ t < t0

1, t0 ≤ t < t0 + τ

sin2 (π(t−τ)
2t0
) , t0 + τ ≤ t ≤ 2t0 + τ

0, otherwise

. (3)

Here, abg indicates the background scattering length of
the time-independent system, and am is the pulse’s am-
plitude yielding ∼ 20% change to abg. Ω is the driving fre-
quency and χ(t) denotes the envelope of the pulse where
t0 and τ are the ramp on/off times and length of the pulse
envelope, respectively. The time between the two pulses
is represented by td, i.e. dark time, where the system
freely evolves.

The spectrum of the field-free Hamiltonian versus the
scattering length obtained via the adiabatic hyperspheri-
cal approach [4–7, 35] is provided in Fig. 1(a). The corre-
sponding eigenstates, ∣n⟩, fall into three classes: Efimov
trimers (T ), atom-dimers (AD) and trap (A) states [red,
blue and green lines in Fig. 1 (a)]. Furthermore, this ap-
proach allows to express the time-dependent wave func-
tion of Eq. (1) in terms of the field-free eigenstates, i.e.∣Ψ(α)3b (t)⟩ = ∑n c

(α)
n (t) ∣n⟩ with c

(α)
n (t) being the proba-

bility amplitude of the n-th stationary state. The ini-

tial boundary condition is c
(α)
n (0) = δnα where the index

α enumerates solely trap states, i.e. α ∈ A. Owing to
Eq. (2), it suffices to simulate the corresponding time-
dependent Schrödinger equation in the center-of-mass of
the three-body system [details in Supplemental Material
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(SM) [36]].
According to Fig. 1(b), initially the three particles in-

teract with a(t = 0) = abg = 819 a0 [see black solid line in
Fig. 1(a)] residing in a specific trap state. Similar to Ref.
[27], at abg the system supports two Efimov trimer states,

with the second (excited) one at energy E
(2)
T lying close to

the first atom-dimer energy in the trap, E
(1)
AD, which rep-

resents the atom-dimer threshold. At t ≠ 0 the first pulse
turns on with an envelope χ(t) of amplitude am [gray
region in Fig. 1 (a)], where a(t) modulates with angular
frequency Ω [27, 37]. The latter is equal to the energy
difference between the first trap and atom-dimer states,

i.e. Ω/2π = (E(1)A −E
(1)
AD)/h = 63.8 kHz, as in the experi-

ment of Ref. [27]. Furthermore, the pulse’s full-width-at-
half-maximum is 27µs providing an energy bandwidth of
6.5 kHz matching the energy difference between the sec-

ond trimer and first atom-dimer states, ∣E(2)T − E
(1)
AD ∣/h.

This implies that the first excited trimer E
(2)
T and atom-

dimer E
(1)
AD states are coherently populated since the

pulse cannot energetically resolve them. After the first
pulse, the system occupies several ∣n⟩ eigenstates which
freely evolve during the dark time td, each accumulating
a dynamic phase [see Fig. 1(b)]. At t = td, a second pulse,
identical to the first one, is applied, admixing different
stationary eigenstates and their corresponding dynami-
cal phases. By the end of the second pulse, we extract
the probability to occupy the Efimov trimer state as a
function td.

In a typical experiment, the three-body dynamics takes
place in a thermal gas at temperature T [27, 28]. Hence,
after the double pulse sequence the probability density
to occupy the Efimov trimer needs to be thermally aver-
aged over a Maxwell-Boltzmann ensemble of initial trap
states. For our purposes, we introduce a ratio of ther-
mally averaged (RTA) probabilities, PT (td), to populate
Efimov trimer states after two pulses (numerator) versus
one pulse (denominator),

PT (td) = ∑α∈A∑j∈T e
−E

(α)
A

kBT ∣c(α)j (2τ̃ + td)∣2
∑α∈A∑j∈T e

−E
(α)
A

kBT ∣c(α)j (τ̃)∣2
, (4a)

c
(α)
j (2τ̃ + td) = ∑

n

Ujn(2τ̃ + td, τ̃ + td)e−iE(n)td/h̵Unα(τ̃ ,0),
(4b)

where kB is the Boltzmann constant, τ̃ = 2t0 + τ is the
pulse duration, and Uij(⋅, ⋅) represents the three-body
evolution operator during a single pulse, expressed in the
field-free basis.

Fig. 1(c) depicts PT (td) for two characteristic tem-
peratures T , where oscillatory fringes are observed that
persist after thermal averaging. Namely, PT (td) ex-
hibits fast oscillations throughout regions I and II, and
additional slow ones only in region II. The contribut-
ing frequencies are identified in the Fourier spectra of
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Figure 2. (a) PT (td) for different temperatures (see legend),

taking into account the decay width, Γ(2)/h = 748Hz of the
first excited Efimov state at abg = 2030a0. The gray solid
lines outline the upper and lower peak envelopes. The in-
set presents the frequency spectrum pertaining to region II,∣FII(ω)∣. (b) The mean peak-to-peak envelope, Pp

T (td) is fit-

ted with the exponentials fi/ii(td) = gi/iie−Γi/ii(td−t0i/ii)/h̵ +
wi/ii at dark time intervals i and ii (black and green dashed
lines) with gi/ii, wi/ii representing fitting constants. The char-
acteristic decay time of the oscillations at long td is twice as
long as the intrinsic Efimov lifetime h̵/Γ(2).

RTA demonstrated in panels (d) and (e) for regions I
and II, respectively. In region I, independently of the
temperature, a single frequency dominates in PT (td) at
ω/(2π) = 71.8kHz [Fig. 1 (d)] corresponding to the en-

ergy difference ∣E(1)A −E
(2)
T ∣/h. For longer dark times (re-

gion II), three distinct frequencies occur, Fig. 1(e), with
the high ones, i.e. ω/(2π) = 63.7 and 69.9kHz, referring
to the superposition of the first trap state with the first
atom-dimer and excited Efimov states, respectively. The
low-frequency peak at ω/(2π) = 6.5kHz originates from
interfering amplitudes between the first atom-dimer and
first excited Efimov state pathways. Note that region
II (∼ 1.2kHz) shows better frequency resolution than re-
gion I (∼ 10kHz), which results in small deviations be-
tween the highest frequencies in both regions. Due to
the finite resolution, a small mismatch also occurs be-
tween the difference 69.9−63.7kHz and the low frequency
peak in region II. Similar low-frequency and temperature
independent oscillatory fringes were also experimentally
observed for 7Li atoms [27, 28]. However, the present
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analysis reveals that high-frequency interferences are also
imprinted in the RTA probability, where the early dark
time fringes can be experimentally utilized to measure
the Efimov binding energy at a given abg.

The fact that PT (td) features three main frequencies,
irrespectively of T , is traced back to the incoherent sum
of the trimer probability [see Eq. (4a)]. Namely, all con-
tributions involving higher-lying trap states peter out,

except for three arising from the ground trap state E
(1)
A ,

the first atom-dimer E
(1)
AD and the first excited Efimov

state E
(2)
T . This particular set of eigenstates survives

upon the thermal average due to the specifics of the pulse
and its envelope. Recall that the driving frequency is in

resonance between the E
(1)
A and E

(1)
AD stationary eigen-

states, whereas the duration of the pulse is short in order
to coherently populate only the first atom-dimer and first
excited Efimov states. Focusing on this aspect, a three-

level model (TLM) Hamiltonian containing E
(2)
T , E

(1)
AD

and a single trap state is constructed, and treated within
first-order perturbation theory (see details in [36]). The
TLM predictions, illustrated as vertical dotted lines in
Figs. 1 (d), (e), are found to be in excellent agreement
with the full numerical calculations.

In Fig. 1(c)-(e), our analysis neglects the decay of the
Efimov trimers and dimer states. However, in thermal
gases three-body recombination or relaxation processes
are present resulting in finite lifetimes of the trimers
and dimers. In the following, we choose abg = 2030a0

that is significantly larger than the van der Waals length
scale lV dW = 82.5a0 for 85Rb, yielding negligible finite
range effects [26]. Therefore, in this universal regime,
the zero-range theory predicts that the lifetime of the
first excited Efimov state is h̵/Γ(2) = 212µs (Γ(2) de-
notes the decay width) [22, 38–40]. Also, since the de-
cay of dimers lie within the range 2-9 ms, for local peak
density n0 = 5 ⋅ 1012 cm−3 [41–43], they can be safely
neglected within the considered range, td ≤ 1 ms, ren-
dering the lifetime of Efimov trimers the most relevant
decay mechanism. Furthermore, the pulse frequency is
Ω/2π = 10.8 kHz over a time span 2t0 + τ = 134.7µs en-
suring that the Efimov trimers do not decay during the
pulse. Under these considerations, it suffices after the

first pulse to multiply the amplitude of the E
(2)
T state

with the factor e−Γ(2)td/(2h̵), as was employed in Refs.
[44, 45].

The interference fringes of the RTA probability includ-
ing the effect of the decay at 150 and 270 nK are pro-
vided in Fig. 2(a). Owing to the large abg, the frequen-
cies are in the range of tenths of kHz adequately agreeing
with the TLM calculations [see dashed lines in the inset
Fig. 2 (a)]. Isolating the impact of the Efimov states de-
cay on the RTA probability, Fig. 2 (b) shows the mean
peak-to-peak envelopes of PT (td), i.e. Pp

T (td). Fitting

Pp
T (td) with fi/ii(td) = gi/iie−Γi/ii(td−t0i/ii)/h̵ + wi/ii at the
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Figure 3. (a) PT (td) at abg = −2030a0 and various tempera-
tures (see legend). The driving frequency is resonant with the
transition between the ground Efimov and the first trap state,
and the decay width of the former Γ(1)/h = 41kHz. The inset
presents the frequency spectrum of region I, ∣FI(ω)∣. (b) The
mean peak-to-peak envelope, Pp

T (td) at T = 270nK is fitted

with fi/ii(td) = gi/iie−Γi/ii(td−t0i/ii)/h̵ + wi/ii at the dark time
intervals i and ii. Even at attractive interactions the energy
and lifetime of Efimov states can be simultaneously assessed.

dark time intervals i and ii [see dashed lines in Fig. 2
(b)] reveals two distinct decay widths independent of the
temperature. Namely, Γi/h = 749.925(1.47)Hz close to
Γ(2)/h, while at later td, Γii/h = 375.03(1.63) Hz, ap-
proximately Γ(2)/(2h). This means that at early dark
times PT (td) falls off according to the intrinsic lifetime

of the E
(2)
T Efimov trimer. In region II, where the inter-

ference between the first atom-dimer and the first excited
trimer is pronounced, the decay of the RTA probability

is nearly twice the lifetime of the E
(2)
T state. This effect

can in principle explain the unusually long decay times
observed in the experiment [27].

Including the trimer’s lifetime in the TLM allows to
gain insights on the decay of the RTA probability, where
PT (td) becomes proportional to

PT (td) ∝ [BT,A(td) + BT,AD(td)]e−Γ(2)td
2h̵ +BAD,A(td)

+e−Γ(2)td
h̵ . (5)

The terms Bi,j(td) = Ai,j(td) sin [(E(σ)i −E
(1)
j )td/h̵] with

σ = 1+δi,T originate from the superposition of states i, j,
and Ai,j(td) refer to their amplitudes (see SM [36]). The
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first three terms correspond to the three dominant fre-
quencies shown as dashed lines in the inset of Fig. 2 (a).

The mixed contributions that involve E
(2)
T with another

state, contain only the factor e−Γ(2)td/(2h̵). Therefore,
within region II where the coherent admixture between

the E
(1)
AD and E

(2)
T states is manifested, the decay time

of PT (td) is virtually twice as long as the intrinsic Efi-
mov lifetime. The last non-oscillatory term in Eq. (5)
involves only the Efimov state and thus decays according

to e−Γ(2)td/h̵. The above expression holds in general for
any atomic species and abg > 0, provided that both the
first excited Efimov and first atom-dimer are coherently
populated.

As a generalization, the RTA probability is demon-
strated in Fig. 3 at negative scattering lengths, e.g.
abg = −2030a0, where the atom-dimer pathways are in-
trinsically absent since no universal dimer exists. The

pulse frequency Ω/2π = ∣E(1)T −E(1)A ∣/h = 232.2 kHz and its
duration is 2t0+τ = 3.7µs. Note that here the pulse reso-
nantly couples the first trap and the Efimov ground state,
whereas the pulse’s length is shorter than the ground Efi-
mov state lifetime h̵/Γ(1)=3.9 µs [46]. As expected, the
PT (td) in Fig. 3(a) oscillates with a single frequency, i.e.

ω/(2π) = ∣E(1)T −E
(1)
A ∣ /h = 233.5kHz, only in region I and

vanishes fast due to the large Γ(1) decay width. More-
over, Fig. 3(b) showcases the mean peak-to-peak ampli-
tude Pp

T (td) and their fittings at the dark time intervals
i and ii [see dashed lines in Fig. 3 (b)]. Similar to Fig. 2
(b), we extract two decay widths with their values being
Γi/h = 41.35(5.35)kHz and Γii/h = 17.56(7.02)kHz atT = 270nK, which within error bars are close to Γ(1)/h
and Γ(1)/(2h), respectively. These findings are in ac-
cordance to the description of Eq. (5), omitting terms
associated with atom-dimer transitions.

In summary, the present theory demonstrates that the
double magnetic field interferometer has broad applica-
bility. Namely, it permits the simultaneous extraction
of the binding energy and the lifetime of Efimov states
regardless the sign/magnitude of the scattering length
and the temperature of the gas. Going beyond previ-
ous studies, our analysis demonstrates that the Ramsey
fringes possess long damping times equal to twice the
intrinsic lifetime of Efimov trimers. This relation in par-
ticular provides also an upper bound to the lifetime of 7Li
Efimov trimers which has remained unknown to date.

Owing to the sensitivity of the Ramsey-type dynamical
protocol, the corresponding interferometric signals could
provide a stringent test for the Efimov universality [47–
52]. Furthermore, recent experiments explore the mod-
ifications of three-body recombination processes in mix-
tures of a bosonic thermal gas with a degenerate fermion
gas [24]. Hence, creation of dynamically coherent super-
positions between few-body states can reveal the influ-
ence of a dense many-body environment on them.
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Nägerl, F. Ferlaino, R. Grimm, P. S. Julienne, and J. M.
Hutson, Phys. Rev. Lett. 107, 120401 (2011).

[50] J. Johansen, B. J. DeSalvo, K. Patel, and C. Chin, Na-
ture Phys. 13, 731 (2017).

[51] P. Naidon, S. Endo, and M. Ueda, Phys. Rev. Lett. 112,
105301 (2014).

[52] J. Wang, J. P. D’Incao, B. D. Esry, and C. H. Greene,
Phys. Rev. Lett. 108, 263001 (2012).

131



ar
X

iv
:2

30
6.

01
19

9v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 1

 J
un

 2
02

3

Supplemental Material: Interferometry of Efimov states in thermal gases by
modulated magnetic fields

G. Bougas,1 S. I. Mistakidis,2, 3 P. Schmelcher,1, 4 C. H. Greene,5, 6 and P. Giannakeas7

1Center for Optical Quantum Technologies, Department of Physics,
University of Hamburg, Luruper Chaussee 149, 22761 Hamburg Germany

2ITAMP, Center for Astrophysics ∣ Harvard & Smithsonian, Cambridge, MA 02138 USA
3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

4The Hamburg Centre for Ultrafast Imaging, University of Hamburg,
Luruper Chaussee 149, 22761 Hamburg, Germany

5Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
6Purdue Quantum Science and Engineering Institute,

Purdue University, West Lafayette, Indiana 47907, USA
7Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden, Germany

In this supplemental material further information is
provided regarding the following aspects of the main text:

• Details on the three-body time-dependent
Schrödinger equation using the split-step op-
erator method.

• Evaluation of the matrix elements of the contact
interaction potential pertaining to the pulse ampli-
tude scattering length with respect to the field-free
eigenstates.

• Derivation of the ratio of the thermally averaged
probability within the three-level model in conjunc-
tion with first-order time-dependent perturbation
theory.

THE THREE-BODY TIME-DEPENDENT
SCHRÖDINGER EQUATION

According to Eq. (1) in the main text, the three-body
Hamiltonian in the laboratory frame reads

H(t) = 3∑
i=1(
−h̵2∇2

i

2m
+ mω2

r

2
r2
i ) +∑

i<j
4πh̵2a(t)

m
δ(rij)Ôij ,

(S1)

where a(t) = abg +amf(t), f(t) = cos(Ωt)[χ(t)+χ(t−td−
2t0+τ)], [see Eqs. (2) and (3) in the main text]. abg is the
background scattering length, am is the pulse amplitude,
and Ω is the driving frequency. For the pulse, we consider
t0 as the ramp on/off time, whereas τ is the length of the
pulse envelope, and td is the dark time between the two
pulses. Finally, ωr denotes the radial frequency of the
spherically symmetric trap. The ri indicates the position
of the i-th particle and rij = ri−rj is the relative distance
between the (i, j) pair of particles.

In order to simplify Eq. (S1) we perform a transfor-
mation from the laboratory to the center-of-mass frame.
This will allow to eliminate the three degrees of free-
dom associated to the center-of-mass Hamiltonian. More

specifically, H(t) splits into a time-independent part de-
scribing the center-of-mass and a time-dependent part for
the relative degrees of freedom, i.e. H(t) = Hcm+Hrel(t).
Evidently, Hrel(t) encapsulates the relevant three-body
dynamics, which we express in hyperspherical coordi-
nates, [S1–S3] yielding the expression

Hrel(t) = − h̵2

2µ

1

R5/2
∂2

∂R2
(R5/2⋅) + 15h̵2

8µR2
+ h̵2Λ2

2µR2

+1

2
µω2

rR
2 + Vbg(R;̟) + V (R;̟)f(t). (S2)

In this coordinate system, R describes the overall sys-
tem size, and the five hyperangles collectively indicated
by ̟ address the relative particle positions. Vbg(R;̟)
and V (R;̟) are the contact interaction potentials as-
sociated to the background (abg) and amplitude scatter-
ing length (am) respectively, expressed in hyperspherical
coordinates. Λ2 is the grand angular momentum opera-
tor describing the total angular momentum of the three
atoms [S4], and µ is the three-body reduced mass.

According to Eq. (S2), Hrel(t) splits into a field-free
Hamiltonian that describes three particles interacting
with abg scattering length and a time-dependent part
which contains the pulse field, i.e. Hrel(t) = Hbg +
V (R;̟)f(t). This particular structure of Hrel(t) sug-
gests that the time-dependent three-body relative wave
function can be conveniently expanded on a basis such
that Hbg is a diagonal matrix. Therefore, in order to
obtain the eigenstates {∣n⟩} of Hbg, we employ the adi-
abatic hyperspherical representation [S2, S5], where the
hyperradius R is treated as an adiabatic parameter. For
completeness reasons, below will provide a brief descrip-
tion on the calculation of ∣n⟩ in this formalism. Namely,Hbg is recasted as follows:
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Hbg = − h̵2

2µ

1

R5/2
∂2

∂R2
(R5/2⋅)

+ 15h̵2

8µR2
+ h̵2Λ2

2µR2
+ 1

2
µω2

rR
2 + Vbg(R;̟)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶Had(R;̟)))
, (S3)

where Had(R;̟) refers to the adiabatic hyperangular
Hamiltonian which parametrically depends on the hyper-
radius R. In addition, the eigenstates ∣n⟩ are expressed
by the ansatz

⟨R,̟∣n⟩ = R−5/2∑
ν

F (n)ν (R)Φν(R;̟), (S4)

where F
(n)
ν (R) [Φν(R;̟)] denotes the hyperradial

(hyperangular) component of ∣n⟩. More specifically,
Φν(R;̟) are obtained by diagonalizing Had(R;̟) at
fixed hyperradius R [S1, S3] according to the expression

Had(R;̟)Φν(R;̟) = Uν(R)Φν(R;̟), (S5)

where Uν(R) represents the ν-th hyperspherical potential
curve that depends only on R. The hyperradial functions

F
(n)
ν (R) are determined by acting with Hbg on ∣n⟩ and

integrating over all the hyperangles ̟. This yields a
system of coupled hyperradial equations that include the
non-adiabatic couplings [S1, S2]. By diagonalizing the
resulting matrix equations we obtain the eigenenergies

E(n) and hyperradial wave functions F
(n)
ν (R) [S1, S2].

According to the above mentioned prescription the
eigenstates ∣n⟩ are uniquely defined and they fall into
three classes: Efimov trimer, atom-dimer and trap states
[see the discussion regarding Fig. 1 (a) in the main text].
Expanding the time-dependent three-body wave function
in terms of ∣n⟩ yields the following relation:

∣Ψ(α)3b (t)⟩ = ∑
n

c(α)n (t) ∣n⟩ , (S6)

where the time-dependent coefficients initially satisfy

c
(α)
n (t = 0) = δnα, and the α index refers to an initial

trap state.
Plugging Eq. (S6) into the TDSE under the Hamilto-

nian of Eq. (S2) leads to a matrix differential equation
for the time-dependent expansion coefficients,

ih̵
dc(α)(t)

dt
= (Hbg + f(t)V ) ⋅ c(α)(t). (S7)

Eq. (S7) is solved numerically by utilizing the second-
order split-operator method [S6]. Namely, the propaga-
tor of the c(α)(t) vectors within the time interval (t, t+dt)
reads

c(α)(t + dt) = e−iHbgdt/(2h̵)e−iV /h̵ ∫ t+dt
t

dt′ f(t′)e−iHbgdt/(2h̵)
×c(α)(t) +O(dt3). (S8)

MATRIX ELEMENTS OF THE INTERACTION
POTENTIAL WITH THE FIELD-FREE

EIGENSTATES

Having at hand the set of field-free eigenstates {∣n⟩},
obtained from the adiabatic hyperspherical formalism,
the matrix elements of the interaction potential associ-
ated to am, Vn′n, can be evaluated as

Vn′n = ∑
ν,ν′ ∫ dR F

(n′)∗
ν′ (R)Mν′ν(R)F (n)ν (R), (S9)

Mν′ν(R) = ⟨Φν′(R)∣V ∣Φν(R)⟩̟ , (S10)

where ⟨⋅⟩̟ indicates that the integral is performed over
the hyperangles.

Eq. (S10) can be recasted in a simple form by exploit-
ing the property V (R;̟) = −(am/abg)R3 ∂RVbg(R;̟)
between the contact potentials and utilizing the Hellman-
Feynman theorem [S7]. Namely, for ν ≠ ν′ the relationMν′ν(R) = −(am/abg)R ⟨Φν′(R)∣∂RΦν(R)⟩̟ [Uν′(R) −
Uν(R)] holds. Similar expressions are derived for ν = ν′
which can be regrouped as follows

Mν′ν(R) = am

abg

h̵2

2µR
(−)1+sgn(ν−ν′)√∂Rs2

ν(R)∂Rs2
ν′(R).

(S11)
Here, s2

ν(R) are related to the potential curves, i.e.
2µR2/h̵2Uν(R) = s2

ν(R)−1/4, and sgn(⋅) denotes the sign
function.

THREE-LEVEL MODEL AND PERTURBATION
THEORY

To provide a simplified picture of the full dynamics of
the few-body bound states we next construct an effective
three-level model [S8]. Within this model, we consider
only three field-free eigenstates, the first excited Efimov
trimer (T), the first atom-dimer (AD) and an initial trap
state α. The system is initialized in the single trap state
and we apply square pulses of the scattering length [see
Eqs. (2), (3) in the main text] to trigger the nonequilib-
rium dynamics of the three-body system.

At the end of the first pulse, the probability ampli-

tude to occupy the T state, c̄
(α)
T , within first-order time-

dependent perturbation theory [S9], reads

c̄
(α)
T (t0 + τ) = VT,αRT,α(t0 + τ), (S12a)

Rn,m(t0 + τ) = −ei(ωn,m+Ω)(t0+τ)/2 sin [(ωn,m +Ω) t0+τ
2
]

h̵(ωn,m +Ω)−(Ω↔ −Ω), (S12b)

where ωn,m ≡ (E(n) −E(m))/h̵.
During the dark time td, the probability ampli-

tude of the n-th state acquires the phase factor
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e−iE(n)td/h̵c̄
(α)
n (t0 + τ). In particular, the amplitude of

the first excited Efimov state is supplemented with the

factor e−Γ(2)td/(2h̵), due to the width Γ(2) of the Efimov
state, leading to the decay of the latter during td.

The second pulse mixes all states together, and the
probability amplitude to occupy the T state at the end
of this pulse reads,

d̄
(α)
T (2t0 + 2τ + td) = ∑

j=T,AD

[VT,jRT,j(t0 + τ)
×c̄(α)j (t0 + τ)e−iE(σ)j td/h̵−Γ(2)td/(2h̵)δT,j]

+VT,αRT,α(t0 + τ)c̄(α)A (t0 + τ)e−iE(α)A
td/h̵, (S13)

where σ = 1 + δj,T .
To obtain the ratio of the thermally averaged

probability PT (td), we weight the probabilities

∣d̄(α)T (2t0 + 2τ + td)∣2 and ∣c̄(α)T (t0 + τ)∣2 according to

the Maxwell-Boltzman distribution for the trap states of

energy E
(α)
A at temperature T ,

PT (td) = ∑α∈A e
−E

(α)
A

kBT ∣d̄(α)T (2t0 + 2τ + td)∣2
∑α∈A e

−E
(α)
A

kBT ∣c̄(α)T (t0 + τ)∣2
, (S14)

where kB is the Boltzmann constant.

In order to derive an analytical expression for Eq. (S14)
additional approximations are used. Namely, the expres-

sions for d̄
(α)
T (2t0+2τ +td) and c̄

(α)
T (t0+τ) can be further

simplified by employing the rotating-wave approximation
[S9].

Furthermore, the energy of the α-th trap state is
roughly approximated by the non-interacting energy

spectrum, E
(α)
A = E

(1)
A + 2αh̵ωr, where E

(1)
A is the en-

ergy of the first trap state. In addition, we approximate
the VT,α matrix elements with a quartic root of the en-
ergy of the α-th trap state, a dependence corroborated
by a fitting procedure. Under these considerations, Eq.
(S14) obtains the same form as Eq. (5) in the main text,

PT (td) ∝ [BT,A(td) + BT,AD(td)]e−Γ(2)td/(2h̵) +BAD,A(td) + e−Γ(2)td/h̵, (S15)

where the B-terms are given by the expressions

BT,A(td) = C1 I

⎡⎢⎢⎢⎢⎣e
−i∆φ1Φ

⎛⎝ef(kBT ,td,ωr),−0.5,
E
(1)
A

2h̵ωr

⎞⎠
⎤⎥⎥⎥⎥⎦ (S16a)

BT,AD(td) = ∑± (−)±C±2 sin [(E(2)T −E
(1)
AD)td/h̵ ±Ω(t0 + τ)/2] (S16b)

BAD,A(td) = ∑± C±3 R

⎡⎢⎢⎢⎢⎣e
−i∆φ2±iΩ(t0+τ)/2Φ⎛⎝ef(kBT ,td,ωr),−0.5,

E
(1)
A

2h̵ωr

⎞⎠
⎤⎥⎥⎥⎥⎦ (S16c)

f(kBT , td, ωr) = −2h̵ωr

kBT + 2iωr[td + 1.5(t0 + τ)]. (S16d)

Φ(a, b, z) is the Hurwitz-Lersch zeta function [S10] and
the phases ∆φ1 and ∆φ2 are defined as follows,

∆φ1 ≡ (E(2)T −E
(1)
A )td

h̵
− 3E

(1)
A

t0 + τ

2h̵
(S17)

∆φ2 ≡ (E(1)AD −E
(1)
A )td

h̵
− 3E

(1)
A

t0 + τ

2h̵
. (S18)

The explicit form of the prefactors C1,C
±
2 ,C±3 is given

by,

C1 = h̵Ω

VT,T

Φ−1 (e−2h̵ωr/(kBT ),−0.5,
E
(1)
A

2h̵ωr
)

sin2[Ω(t0 + τ)/2] , (S19)

C±2 = VT,AD

VT,T

h̵Ω

sin2[Ω(t0 + τ)/2]
× sin[(ωT,AD ±Ω)(t0 + τ)/2]

h̵(ωT,AD ±Ω) , (S20)
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C±3 = (−)± VT,AD∣VT,T ∣2
sin[(ωT,AD ±Ω)(t0 + τ)/2]

2h̵(ωT,AD ±Ω)
h̵2Ω2

sin4[Ω(t0 + τ)/2] ×Φ−1 ⎛⎝e−2h̵ωr/(kBT ),−0.5,
E
(1)
A

2h̵ωr

⎞⎠ ,

(S21)

Note that there are revivals of the oscillatory signals
BT,A(td) and BAD,A(td) at later dark times nπ

ωr
−1.5(t0+

τ), which are attributed to the trap [S11].
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4.2 Dynamics of few particles in a many-body environ-
ment

4.2.1 Pattern formation of correlated impurities subjected to an
impurity-medium interaction pulse
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We study the correlated dynamics of few interacting bosonic impurities immersed in a one-dimensional
harmonically trapped bosonic environment. The mixture is exposed to a time-dependent impurity-medium
interaction pulse moving it across the relevant phase-separation boundary. For modulation frequencies smaller
than the trapping one, the system successively transits through the miscible and immiscible phases according
to the driving of the impurity-medium interactions. For strong modulations, and driving from the miscible to
the immiscible regime, a significant fraction of the impurities is expelled to the edges of the bath. They exhibit
a strong localization behavior and tend to equilibrate. Following the reverse driving protocol, the impurities
perform a breathing motion while featuring a two-body clustering and the bath is split into two incoherent
parts. Interestingly, in both driving scenarios, dark-bright solitons are nucleated in the absence of correlations.
A localization of the impurities around the trap center for weak impurity-impurity repulsions is revealed, which
subsequently disperse into the bath for increasing interactions.

DOI: 10.1103/PhysRevA.103.023313

I. INTRODUCTION

Ultracold atoms serve as an excellent platform to monitor
the nonequilibrium dynamics of quantum many-body (MB)
systems [1], due to the extraordinary experimental tunability
of their intrinsic parameters. For instance, the interparticle
interactions can be adjusted by means of Feshbach [2,3] or
confinement induced resonances [4–6], and it is possible to
realize systems of different dimensionality with arbitrarily
shaped trapping potentials [7]. Moreover, remarkable progress
has been achieved in realizing multicomponent quantum gases
[8–12]. A particular focus has been placed on mobile impuri-
ties immersed in a MB environment which are consecutively
dressed with the collective excitations of the latter thereby
forming quasiparticles [13–17]. The stationary properties of
impurity atoms in a Bose or a Fermi medium [18–23], such as
their effective mass [21,23,24], lifetime [14,17], and induced
interactions [25–27], have been extensively studied. Recently
the emergent dynamics of these settings has been investigated
[28–34], e.g., by dragging impurities in a MB environment
[35,36], quenching the impurity-medium interaction strength
[33,37], and modifying the external potential experienced
by the impurities [38,39]. The aforementioned quench pro-
tocols have led to dynamical phenomena such as entropy
exchange processes between the impurity and the bath [38],
dissipative motion of impurities inside Bose-Einstein con-
densates (BECs) [31,36], slow relaxation dynamics [35,40],
the breakdown of the quasiparticle picture for near resonant
impurity-bath interactions [41], and the emergence of tempo-
ral orthogonality catastrophe phenomena [33,34].

Independently and in a completely different context,
nonequilibrium periodic driving protocols of the involved

scattering lengths or the trapping potential have been uti-
lized in order to generate and stabilize nonlinear excitations
such as solitons in one-dimensional (1D) single [42–45], and
two-component BECs [46–48], as well as higher-dimensional
settings [49,50], and also unravel their collisions in a control-
lable manner [46,48]. Interestingly, it has been showcased that
the periodic modulation of the interatomic interactions leads
to parametrically excited resonant modes and pattern forma-
tion in BECs, such as Faraday waves [51–57], resembling
the response of fluids subjected to a vertical oscillatory force.
Moreover, a plethora of additional intriguing phenomena have
been exemplified, including the ejection of matter-wave jets
in a two-dimensional (2D) cesium BEC [58–60], which carry
information regarding the phase of the condensate [60], and
the emission of correlated atom jets from a bright soliton [61].

Motivated by the above-described phenomena the periodic
driving of the impurity-medium interactions provides an in-
teresting avenue to unravel the dynamical response of both
subsystems. Given the advances that have been put forward
with time-periodic quench protocols, we expect to identify
a variety of dynamical response regimes depending on the
characteristics of the driving, where for instance spatial local-
ization of the impurities might occur [62], phase-separation
phenomena can be manifested, and specific patterns can be
imprinted in the bath, being inherently related to its coherence
properties [63]. For instance, it has been shown that shaking
the impurities harmonic trap and depending on the driving fre-
quency leads to intriguing collisional aspects with their host
such as a distorted collective dipole motion, their effective
trapping, or escape from the medium [39]. In this sense, non-
linear structures can be spontaneously generated [23,64], with
the time-periodic driving favoring pattern formation in both
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components of the system [54]. Additionally the response of
few instead of one or two impurities during the dynamics is
certainly an interesting aspect. In the present paper a pulse
of the impurity-medium interactions is employed in order to
study the nonequilibrium correlated dynamics of few inter-
acting bosonic impurities embedded in a MB bosonic gas,
driving the mixture across its miscibility-immiscibility phase
boundary. We track the correlated dynamics of the bosonic
mixture by utilizing a variational approach, namely, the mul-
tilayer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [65–67].

First, the particle imbalanced system is driven from the
miscible to the immiscible phase and two distinct response
regimes are identified. For modulation frequencies smaller
than the trapping one, the impurities and the bath successively
transit in time through the miscible and immiscible phases
according to the temporal driving of their mutual interactions.
Turning to larger modulation frequencies, dark-bright (DB)
soliton pairs emerge in the absence of correlations forming
after half an oscillation period an almost steady bound state
around the trap center [43,64]. Taking correlations into ac-
count, these pairs travel towards the edges of the cloud of their
environment, where they remain while oscillating [33,36,37].
Simultaneously they feature a spatial localization tendency
and are two-body correlated between each other. Moreover
a density dip (hump) around the trap center is formed for
the bath (impurities). Two-body correlations develop for bath
particles residing between the two distinct spatial regions sep-
arated by the central hump. Employing an effective potential
picture [33,36], it is found that the impurities reside in a
superposition of its lowest-lying eigenstates. In the opposite
modulation scenario, where the system is driven to its misci-
ble phase, the two previously mentioned regimes can still be
captured. For modulation frequencies larger than the trapping
one, oscillating DB solitons emerge within the mean-field
(MF) framework [64], which at long evolution times gradually
fade away. In sharp contrast within the MB scenario a splitting
of the quantum DB soliton pair [68] into two fragments occurs
at the initial stages of the dynamics which subsequently fluc-
tuate near the trap center. Accordingly, coherence is almost
completely lost for the MB environment. The impurities ex-
hibit a breathing motion, the frequency of which is in good
agreement with the predictions of the effective potential, and
for longer times they exhibit a two-body clustering [15,25,33].

Moreover, we inspect the role of impurity-impurity inter-
actions for the cases of two and ten impurity atoms following
an impurity-bath interaction pulse from the immiscible to
the miscible phase and vice versa. For weak repulsions, the
impurities majorly reside in both cases around the trap center,
occupying predominantly the ground state of their effective
potential [39]. Outer density branches become pronounced
only when the particle number or the impurity-impurity re-
pulsion increases.

This paper unfolds as follows. Section II introduces our
system, and describes the employed driving protocol, the used
MB Ansatz, and the observables which will be employed to
track the dynamics. Subsequently, in Sec. III the nonequilib-
rium dynamics of the bath-impurity system is explored for
a driving from the miscible to the immiscible phase and the
reverse scenario is deployed in Sec. IV. Section V elaborates

on the dynamical response of the impurities for different
particle numbers and impurity-impurity interactions, in both
driving scenarios. Finally, in Sec. VI we summarize our main
results and suggest possible future extensions of our paper.
In Appendix A we briefly discuss the energy exchange pro-
cesses taking place between the two components, while in
Appendix B, the breathing frequency of the impurities is in-
vestigated as a function of the modulation frequency within
the MF approach for a driving to the miscible phase.

II. THEORETICAL FRAMEWORK

A. Hamiltonian and driving protocol

We consider a particle imbalanced bosonic mixture con-
taining NA = 100 atoms forming the environment and NB =
10 impurities. The system is mass balanced, i.e., MA = MB =
M, and it is confined within an elongated harmonic trap
of frequency ωA = ωB = ω. Such a mixture can be real-
ized experimentally, by employing two hyperfine states of
87Rb, e.g., the |F = 1, mF = −1〉 for the environment and
|F = 2, mF = 1〉 for the impurities [10]. The MB Hamilto-
nian of this system reads

H =
∑

σ=A,B

Nσ∑
i=1

[
− h̄2

2Mσ

∂2

∂
(
xσ

i

)2 + 1

2
Mσω2

σ

(
xσ

i

)2

]

+
∑

σ=A,B

gσσ

∑
i< j

δ
(
xσ

i − xσ
j

)

+ gAB(t )
NA∑
i=1

NB∑
j=1

δ
(
xA

i − xB
j

)
, (1)

where gσσ denotes the two involved intraspecies interac-
tion strengths, gAB(t ) is the impurity-medium coupling, and
xσ = (xσ

1 , . . . , xσ
Nσ

) are the spatial coordinates of the σ = A, B
species. The mixture consists of ultracold 87Rb atoms, and
hence its interparticle interactions occur predominantly via
s-wave scattering [2]. All the involved effective coupling
strengths can be expressed in terms of the corresponding
three-dimensional s-wave scattering lengths, aσσ ′ , and the
harmonic oscillator length in the transverse direction a⊥ =√

h̄/μω⊥ [4,5]. Namely, gσσ ′ = 2h̄2aσσ ′
μa2

⊥
[1 − |ζ (1/2)| aσσ ′

a⊥
]−1,

where μ = M/2 is the two-body reduced mass and ζ is the
Riemann zeta function. It is convenient to recast the MB
Hamiltonian of Eq. (1) in terms of h̄ω⊥, and in what fol-
lows we express all the relevant length, time, and coupling
strength scales in units of

√
h̄/Mω⊥, ω−1

⊥ , and
√

h̄3ω⊥/M,
respectively. The trapping frequency is ωA = ωB = ω = 0.1
and the involved intraspecies coupling constants gAA = 1.004
and gBB = 0.9544 are kept fixed to mimic the experimentally
relevant interactions of the above-mentioned 87Rb, unless it is
stated otherwise. To limit the spatial extent of our system, we
impose hard-wall boundary conditions at x = ±40, thereby
ensuring that their location does not affect the emergent dy-
namics. It is also worth commenting that experimentally using
for instance ω � 2π × 100 Hz the 1D description holds for
ω⊥ � 2π × 5 kHz whereas temperature effects are negligible
for kBT � 1.5μK.
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FIG. 1. Time-periodic modulation protocol of the impurity-
medium interaction strength gAB(t ) [Eq. (2)] for the two relevant
driving scenarios across the phase-separation boundary, namely,
starting from gin

AB = 0.2 to gf
AB = 1.2 and from gin

AB = 1.4 to gf
AB =

0.6.

The employed time-periodic pulse protocol involves solely
gAB(t ), which is sinusoidally modulated in time (for t � 0),
according to

gAB(t ) = [
gin

AB + (
gf

AB − gin
AB

)
sin2(�t )

]
θ

(
5π

2�
− t

)

+ gf
ABθ

(
t − 5π

2�

)
, (2)

for a time span of T = 5π/(2�), with an amplitude of |gf
AB −

gin
AB| and frequency � starting from gAB(0) = gin

AB. Subse-
quently gAB(t ) is held constant at gAB(t ) = gf

AB, for t > T ,
while θ (x) is the Heaviside function. For T → 0, the driving
of gAB(t ) occurs only at small time scales, and the protocol
effectively reduces to a simple interaction quench, whereas in
the limit T → ∞, the bosonic system is subjected to a contin-
uous driving of a small frequency. Furthermore, if � > ω the
system is strongly driven, whereas for � < ω, the pulse lies
in the weak driving regime.

The considered interaction pulse is schematically shown in
Fig. 1 when crossing the miscible to the immiscible phase and
vice versa. In the following, we will consider two interaction
pulse scenarios, both of them driving the impurity-medium
interaction strength across the phase-separation boundary. For
this reason we choose a fixed driving amplitude, namely,
|gf

AB − gin
AB|=1. Naturally, a larger driving amplitude crossing

the phase-separation boundary leads to the same behavior as
below, while a smaller amplitude which does not cross the
relevant threshold is another interesting case which we do
not address in the present paper. Recall that phase separation
occurs whenever gAB >

√
gAAgBB, a condition that is also ad-

equate in the trapped scenario, and then the wave functions of
the two species have minimal spatial overlap [69,70]. In our
case, the threshold takes place at gAB = 0.9789. In Sec. III,
the dynamics is explored as the impurity-medium coupling
strength is driven according to Eq. (2) to the immiscible phase
(gf

AB = 1.2) starting from the system’s ground state in the
miscible regime, characterized by gin

AB = 0.2. Subsequently,
in Sec. IV the reverse driving scenario is investigated, and
in particular gin

AB = 1.4 with the system being initialized in

its ground state is modulated to gf
AB = 0.6, i.e., towards the

miscible regime. More precisely, we aim to understand the
driven phase-separation process and associated pattern forma-
tion in both species depending on the initial phase and the
related driving frequency. We shall also briefly comment on
the impact of different pulse durations and large modulation
frequencies on the driven dynamics. However, a more thor-
ough analysis on this issue, leading possibly to the control
of the participating correlations of the emergent patterns, is
desirable, and is left for future investigations.

B. Many-body wave-function Ansatz

In order to simulate the nonequilibrium driven dynamics
of the bosonic mixture, as the impurity-medium interaction
strength is sinusoidally modulated, the wave function is ex-
panded in a time-dependent and variationally optimized basis,
deploying the ML-MCTDHX variational method [65–67].
Importantly, this wave-function Ansatz involves two major
stages in order to adequately capture the system’s correlations.
The full wave function residing in the composite Hilbert space
HAB = HA ⊗ HB, with HA and HB being the Hilbert spaces of
the environment and the impurities, respectively, is expressed
in the form of a truncated Schmidt decomposition of rank D
[71]:


MB(xA, xB; t ) =
D∑

k=1

√
λk (t )
A

k (xA; t )
B
k (xB; t ). (3)

Here D � min (dim(HA), dim(HB)) and λk (t ) are the well-
known time-dependent Schmidt coefficients. The species
functions 
σ

k (xσ ; t ) serve as an orthonormal basis for the
σ = A, B species and signify the kth mode of entanglement
between the two subsystems. If at least two distinct Schmidt
coefficients λk (t ) are nonzero, then the two species are en-
tangled since the MB wave function 
MB of Eq. (3) cannot
be expressed as a direct product of two states [71,72] as for
instance in the MF case (see below).

At a next step each species function is accordingly ex-
panded in terms of the permanents of dσ time-dependent
single-particle functions (SPFs) ϕi, as follows:


σ
k (xσ ; t )

=
∑

n1, . . . , ndσ∑
ni = Nσ

Ck,(n1,...,ndσ )(t )

×
Nσ !∑
i=1

Pi

[
n1∏

j=1

ϕ1
(
xσ

j ; t
) · · ·

ndσ∏
j=1

ϕdσ

(
xσ

n1+...ndσ−1 + j ; t
)]

.

(4)

Here Ck,(n1,...,ndσ )(t ) denotes the time-dependent expansion
coefficients, with ni being the population of particles occu-
pying the ith SPF, ϕi. The species function, 
σ

k (xσ ; t ), is
thus expanded over all

(Nσ +dσ −1
dσ −1

)
permanents, subject to the

constraint
∑dσ

i=1 ni = Nσ . P is the permutation operator, ex-
changing two particles among the SPFs. The above-described
variational Ansatz captures the presence of interspecies
[Eq. (3)] and intraspecies [Eq. (4)] correlations, thus testifying
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the appearance of MB effects that are naturally absent, e.g., in
a MF treatment.

Employing the Dirac-Frenkel variational principle [73,74]
for the above-described MB variational Ansatz [see Eqs. (3)
and (4)], the ML-MCTDHX equations of motion are de-
rived [67]. These equations consist of D2 linear differential
equations for λk (t ), which are coupled to D[

∑
σ ( Nσ +dσ −1

dσ −1 )]
nonlinear integrodifferential equations for the coefficients
Ck,(n1,...,ndσ )(t ), and (mA + mB) nonlinear integrodifferential
equations for the SPFs. For further details regarding the
derivation of the ML-MCTDHX equations of motion, we refer
the reader to Refs. [65–67]. We should note that employing
only a single Schmidt coefficient, λ1(t ) = 1, i.e., using D = 1,
and one SPF per species, i.e., dσ = 1, results in a product MF
state among the two species [68,72]. In this sense all particles
of a particular species occupy solely a single wave function,
namely,


MF(xA, xB; t ) = 
A
MF(xA; t )
B

MF(xB; t )

=
NA∏
j=1

ϕA
(
xA

j ; t
) NB∏

k=1

ϕB
(
xB

k ; t
)
. (5)

This yields a set of coupled Gross-Pitaevskii equations for
the bosonic mixture [72]. Evidently, within this framework
all particle correlations are ignored. Therefore, the compar-
ison of the dynamics of the mixture between the above MF
state and the variational Ansatz as described by Eqs. (3) and
(4) sheds light onto the impact of interparticle correlations.
Herein we explicate their role in the different driving regions
defined with respect to the trap frequency. Note that since the
bosonic bath consists of NA = 100 atoms its initial (ground
state) density profile has a Thomas-Fermi (TF) shape, which
is well captured by the MF product state. In this way, at least
for the used interaction parameters, the dominant effect of
correlations is expected to manifest during the dynamics due
to their buildup.

C. Relevant correlation measures

In order to monitor the overall dynamical response of the
impurities and their environment as well as to identify their
emergent pattern formation, we employ the σ -species one-
body reduced density matrix [75]:

ρ (1),σ (x, x′; t ) = Nσ

∫ Nσ −1∏
j=1

dx̃σ
j

Nσ̄∏
k=1

dxσ̄
k 
∗

MB(x, x̃σ , xσ̄ ; t )

×
MB(x′, x̃σ , xσ̄ ; t ), (6)

where σ = A, B and x̃σ = (xσ
1 , . . . , xσ

Nσ −1), and σ �= σ̄ . Ac-
cordingly, the one-body density of the σ species is the diago-
nal of the one-body reduced density matrix, i.e., ρ (1),σ (x; t ) =
ρ (1),σ (x, x′ = x; t ), and herein it is normalized such that∫

dx ρ (1),σ (x; t ) = Nσ . This observable is experimentally ac-
cessible via averaging over several single-shot realizations
[76,77]. The eigenfunctions of ρ (1),σ (x, x′; t ), φσ

j (x; t ), j =
1, . . . , dσ , are termed natural orbitals [67], and they are
normalized to their corresponding eigenvalues dubbed natu-
ral populations nσ

j , i.e.,
∫

dx |φσ
j (x; t )|2 = nσ

j . Recall that in
the MF case nA

1 = nB
1 = 1, nA

j>1 = nB
j>1 = 0, and hence the

population of more than a single natural orbital manifests the
existence of intraspecies correlations [72].

To evince the occurrence of intraspecies correlations of the
bath and the impurities we invoke the first-order coherence
function [72,75,78]:

g(1),σ (x, x′; t ) = ρ (1),σ (x, x′; t )√
ρ (1),σ (x; t )ρ (1),σ (x′; t )

. (7)

It takes values in the interval [0,1], and provides a measure
of the proximity of the MB state to a MF product state, for a
specific set of spatial coordinates, x and x′. Two distinct spatial
regions are dubbed fully coherent or perfectly incoherent if
|g(1),σ (x, x′; t )| = 1 or 0, respectively. When 0 < g(1),σ < 1,
we can infer the presence of intraspecies correlations [72,78].
Recall that for a MF product state [Eq. (5)] g(1),σ (x, x′; t ) =
1, ∀ x, x′ and ∀ t .

To capture the appearance of two-body impurity-impurity
and bath correlations in a time-resolved manner, we inspect
the second-order noise correlation function, g(2),σσ (x, x′; t )
[78–80], defined as

g(2),σσ (x, x′; t ) = ρ (2),σσ (x, x′; t )

− ρ (1),σ (x; t )ρ (1),σ (x′; t ). (8)

Here, in second quantization ρ (2),σσ (x, x′; t ) =
〈
MB(t )|
̂†,σ (x′)
̂†,σ (x)
̂σ (x)
̂σ (x′)|
MB(t )〉 is the
diagonal two-body density matrix, and 
̂σ (x)[
̂†σ (x)] is
the bosonic operator that annihilates [creates] one particle of
species σ at position x. The diagonal two-body density matrix
ρ (2),σσ (x, x′; t ) provides the probability of simultaneously
finding two particles of species σ at positions x and x′,
respectively. Accordingly, the noise correlation function
quantifies the presence of two-body correlations between two
particles of species σ at positions x and x′, respectively. The
σ -species MB state is termed two-body correlated [anticor-
related], when g(2),σσ (x, x′; t ) > 0, [g(2),σσ (x, x′; t ) < 0]. If
g(2),σσ (x, x′; t ) = 0, then perfect second-order coherence can
be inferred. We remark that g(2),σσ (x, x′; t ) is experimentally
probed via in situ density-density fluctuation measurements
[81]. Moreover, let us note that a MF product state ensures
that g(2),σσ (x, x′; t ) = 0 ∀ x, x′ and ∀ t .

Another important observable, which yields information
regarding the spatial extent of each species cloud and thus for
its breathing motion, is the position variance [82]:

〈(xσ )2〉 =
∫ Nσ∏

j=1

dxσ
j

Nσ̄∏
k=1

dxσ̄
k (xσ )2 |
MB(xσ , xσ̄ ; t )|2, (9)

where σ̄ �= σ . This quantity is experimentally accessible via
time-of-flight imaging [83].

III. DRIVEN DYNAMICS TO THE IMMISCIBLE PHASE

Below, we discuss the nonequilibrium periodically driven
dynamics of the bosonic mixture consisting of a bath with
NA = 100 atoms and NB = 10 impurities. The mixture is
initialized in its ground state characterized by gAA = 1.004,
gBB = 0.9544, and gin

AB = 0.2. Then, the impurity-medium in-
teraction strength is sinusoidally modulated with frequency
� for a time span of T = 5π

2�
according to the protocol
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FIG. 2. Spatiotemporal evolution of the one-body density
ρ (1),σ (x; t ) of the impurities (B) and the bosonic bath (A) consid-
ering a time-periodic modulation of the impurity-medium coupling
[depicted with the solid line in (b), (d), (f), and (g)] from gin

AB = 0.2
to gf

AB = 1.2 for driving frequencies (a–d) � = 0.05 and (e–h) � =
0.5. The driven dynamics is showcased in the MF approximation in
(a), (b), (e), and (f) and in the MB approach in (c), (d), (g), and (h).
The mixture consists of NA = 100 and NB = 10 particles while it is
initialized in its ground state with gAA = 1.004, gBB = 0.9544, and
gin

AB = 1.2.

introduced in Eq. (2). The modulation drives the mixture into
its immiscible phase since the final interaction is gf

AB = 1.2.
To unveil the correlated character of the dynamics we utilize
the variational Ansätze of Eqs. (3) and (4), and compare with
the MF approximation within the ML-MCTDHX framework.

A. One-body density evolution for a pulse with � < ω

The dynamical response of the bosonic bath and the im-
purities as captured by the corresponding density evolution
is shown in Figs. 2 and 3 for some exemplary modulation
frequencies of the impurity-medium pulse protocol of Eq. (2).
As we shall argue below the systems’ response is significantly
altered for modulation frequencies above (� > ω) and below
(� < ω) the trapping frequency. First, we focus on the weak
pulse case with � = 0.05 < ω, presented in Figs. 2(a)–2(d).
The dynamics within the MF approach [Figs. 2(a) and 2(b)]
can be divided into two temporal regimes: one where gAB(t )
is modulated across the miscibility threshold (which occurs
here at gAB = 0.9789) for t � 157 and the other for t > 157,
where gf

AB = 1.2 is constant and the mixture lies in its im-
miscible phase. In the first regime the impurities and the bath
develop simultaneously density humps and dips, respectively,
when gAB(t ) > 1, i.e., within the immiscible phase [see, e.g.,
Fig. 2(b) at 85 < t < 108]. In contrast, the impurities feature a
diffusive behavior when the bosonic mixture lies in its misci-
ble phase [e.g., at 117 < t < 138 in Fig. 2(b)]. As long as the

FIG. 3. Temporal evolution of the density ρ (1),σ (x; t ) of the
bath (A) and the impurities (B) following a modulation of the
impurity-medium interaction strength from gin

AB = 0.2 to gf
AB = 1.2

with driving frequency � = 1.5. The dynamics is compared between
(a, b) the MF approach and (c, d) the MB method. The inset of
(a) illustrates the phase of the bath in the course of the dynamics.
The long-time evolution of the impurities for the same modulation
and within the MF approximation is presented in (b).

modulation is terminated, i.e., t > 5π
2�

, we observe the emis-
sion of two counterpropagating impurity density branches,
which travel towards the edges of the bath cloud. At later
evolution times t > 300 (not shown here), these branches turn
back and collide, forming a density dip at the trap center.
Accordingly, since gf

AB = 1.2, the bath density exhibits dips
at the locations of the impurities branches as a result of the
impurity-medium phase separation [72] [see Fig. 2(a)].

In the presence of correlations [Figs. 2(c) and 2(d)], the
density of both components exhibits the same qualitative be-
havior as for the MF evolution, but with some differences
which are mainly manifested at later evolution times (t > 40).
Density humps and dips form on top of the density profiles
of the impurities and the bath, respectively. These structures
differ in their number, position, and amplitude from the ones
identified within the MF approach as can be seen by compar-
ing Figs. 2(a) and 2(c) as well as Figs. 2(b) and 2(d), e.g., at
t � 100.

More precisely the aforementioned dips and humps present
in the MF scenario [see, e.g., Figs. 2(a) and 2(b) at t = 98] re-
semble the formation of DB solitons in binary mixtures, where
the bright solitons are effectively trapped by the dark ones
building upon the bath density [84–89]. To further support this
argument, we perform a fit on the densities of both species at
t = 98 with � = 0.05, i.e., in the immiscible phase, using the
exact single DB soliton wave function in the limit where all
interactions among and within the species are equal, i.e., the
so-called Manakov limit [89,90]. The corresponding Ansatz
for the dark soliton reads


±
DS (x, t ) = cos ϕ tanh {d[x ± x0(t )]} + i sin ϕ, (10)

while for the bright component it has the following form:


±
BS (x, t ) = Bsech{d[x ± x0(t )]}eikx+iθ (t ). (11)

In these expressions ±x0(t ) are the positions of the dark and
bright solitons; cos ϕ and B denote the amplitudes of dark
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and bright entities, respectively; whereas d is their common
inverse width. Moreover, sin ϕ denotes the dark soliton’s ve-
locity, k = d tan ϕ is the constant wave number of the bright
soliton, and θ (t ) is its phase. For the fitting of these wave-
forms to our data we employ ρ (1),A(x; t ) = Q(R2 − x2)θ (R2 −
x2)|
+

DS (x, t )|2|
−
DS (x, t )|2 for the bosonic medium, where we

assume that the dark solitons are formed on top of a TF profile
and ρ (1),B(x; t ) = |
+

BS (x; t )|2 + |
−
BS (x, t )|2 for the impurity

subsystem. The agreement between the theoretical Ansatz and
the MF calculations at t = 98 is adequate, having a standard
deviation of the order of 0.038 42 for the dark soliton fit and
0.0847 for the bright component. At later evolution times
t > 150 [Figs. 2(a) and 2(b)], the density profiles are again
reminiscent of DB solitons, however on top of a distorted TF
background.

Interestingly, after the termination of the modulation, the
density humps (dips) building on top of the density of the
impurities (bath) in the MB case [Figs. 2(c) and 2(d)] are
less pronounced than the corresponding ones within the MF
approach [Figs. 2(a) and 2(b)]. A similar effect, induced by
MB correlations, has been reported in the case of quantum
DB solitons imprinted on BECs, where depleted atoms fill the
notch of the dark soliton [91–96].

B. Density evolution for modulations characterized by � > ω

As the modulation frequency becomes larger than the trap-
ping one, the patterns appearing in the one-body density of
each component are significantly altered compared to the
� � ω case. Characteristic case examples are showcased in
Figs. 2(e)–2(h) and Fig. 3 for � = 0.5 and 1.5, respectively.
This difference to the � � ω scenario is in part due to the fact
that the modulation of gAB(t ) occurs at very short timescales
and the system cannot adjust to its very fast external pertur-
bation. Indeed, during the modulation, e.g., until t � 15 in
Figs. 2(e)–2(h) and t � 5 in Fig. 3, ρ (1),σ (x; t ) exhibits a weak
amplitude expansion compared to ρ (1),σ (x; 0). The magnitude
of this expansion is of the order of 3 and 9% for the bath
and the impurities, respectively, for � = 1.5 which is in sharp
contrast to the � = 0.05 case [Figs. 2(a)–2(d)].

In particular, within the MF approach and for � = 0.5
[Figs. 2(e) and 2(f)] a central density hump forms on top of
ρ (1),B at the initial stages of the dynamics (0 < t < 20) and
subsequently (t > 34) splits into two density branches, which
later on (t > 66) merge into a central branch propagating
undistorted for long evolution times. During the latter process
small density portions are emitted traveling towards the edges
of the cloud of the bath and back to the trap center. As a
consequence of the underlying phase-separation mechanism,
ρ (1),A displays density dips at the very same positions where
the impurities density branches appear [Fig. 2(e)]. Turning
to a larger driving frequency [Fig. 3(b), � = 1.5], the im-
purities density exhibits a two hump structure after t � 12,
the humps of which subsequently collide around t ≈ 33, and
afterwards again split moving towards the edges of the bath.
These branches collide again at a much later time instant
[t � 180 in Figs. 3(b) and 4(c)]. In this case a significant
portion of energy is pumped into the system and thus both
species gain more energy from the modulation compared
to the � = 0.5 scenario, resulting in a larger amount of

FIG. 4. Profile snapshots of the one-body density of the impu-
rities (B) and the bath (A) following a time-periodic modulation of
the impurity-bath coupling with frequency � = 1.5 within the (a–c)
MF and (d–f) MB approach (see legend). The dashed green lines in
(a) and (b) represent fittings of the DB soliton Ansatz [Eqs. (10) and
(11)] on ρ (1),σ (x; t ).

excitations (see also Appendix A). As a consequence, for
instance, the impurities have enough energy to reach the edges
of the bath before colliding again at the trap center. It is
also worth mentioning that in the long-time dynamics [see
Fig. 3(b)] the impurities density branches merge after t � 180
into a single central hump, which stays unperturbed through-
out evolution. This hump comes along with small fluctuating
emitted density branches, which diffuse within the back-
ground density of the medium [hardly visible in Fig. 3(b)].
We note that the aforementioned merger of the impurities den-
sity branches occurs at earlier times accompanied by a larger
amount of excitations in the BEC background as the pulse du-
ration increases since more energy is pumped into the system.

The above-described density dips (peaks) displayed in the
bath cloud (impurities) [see Figs. 3(a) and 3(b)] are once
more reminiscent of the dynamical formation of DB solitons.
Indeed, the DB soliton waveform [Eqs. (10) and (11)] serves
as a good candidate to the density profiles of both components
[see the dashed green lines in Figs. 4(a) and 4(b)] with the cor-
responding fit exhibiting a standard deviation of the order of
0.07. Moreover, the spatiotemporal evolution of the phase
of the MF bath wave function displays jumps being multiples
of π , as can be seen in the inset of Fig. 3(a) at t > 100, which
is a characteristic feature of dark solitons.

The inclusion of correlations leads to a drastically differ-
ent time evolution of both the impurities and the medium
than in the MF approach [see Figs. 2(g), 2(h), 3(c), and 3(d)
for t > 5]. Indeed the impurities density branches formed
after the modulation move to the edges of the bath cloud,
where they perform a weak amplitude oscillatory motion
having an equilibration tendency. We remark that an anal-
ogous response of the impurities has been demonstrated in
the impurity-medium interaction quench dynamics of two
spin-polarized fermions inside a Bose gas [64]. Also simi-
lar dynamical phase-separation phenomena have been shown
to occur for strong impurity-medium interactions signifying
temporal orthogonality catastrophe phenomena of the Bose
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polaron [33,36,37]. Moreover, there is a central density hump
(dip) in the density of the impurities (bath). The major differ-
ence between � = 0.5 and 1.5 within the MB framework is
that the density branches in the former case [Fig. 2(h)] reach
the edges of the bosonic medium, their amplitude decreases,
and they undergo smaller amplitude oscillations than the ones
for � = 1.5 [Fig. 3(d)]. Inspecting the instantaneous MB den-
sity profiles ρ (1),σ (x; t ) [Figs. 4(d)–4(f)] when � = 1.5, we
observe that the side humps (dips) for the impurities (bath)
appearing around x � 16 have a smaller amplitude and are
displaced with respect to the ones emerging within the MF
approach. Another difference occurring between the MF and
the MB evolution is the formation of a central density hump
(dip) for the impurities (bath), in addition to the side humps
and dips when correlations are present, as can be seen in
Figs. 4(d)–4(f). We should note that as we increase the modu-
lation frequency � and thus tend to the abrupt quench scenario
[Eq. (2)], a similar dynamics to the one illustrated in Figs. 3(c)
and 3(d) for � = 1.5 takes place for both components. The
most notable difference is that the separation of the outer
ρ (1),B(x; t ) branches becomes slightly larger.

An intuitive understanding of the response of the impuri-
ties is provided by constructing an effective potential picture
[33,97]. The latter is derived from the impurities external
trapping potential, and the one-body density of their bosonic
medium [33,97,98], namely,

Veff(x; t ) = 1
2 Mω2x2 + gAB(t )ρ (1),A(x; t ). (12)

Evidently Veff(x; t ) is a time-dependent single-particle poten-
tial, which is in general different from the external harmonic
trap due to its second contribution accounting for the bath
and the impurity-medium interactions. Before proceeding we
should clarify that Veff(x; t ) is not able to account for impurity-
medium correlations and as a consequence it does not provide
insights into, e.g., two-body mechanisms such as the emergent
impurity-impurity induced correlations as has been argued
in Refs. [33,37]. Of course, all these processes are naturally
included within our MB treatment performed within the ML-
MCTDHX approach.

For instance, Veff(x; t ) for � = 1.5 features a deep central
well, present throughout the evolution, and additional shal-
lower side wells the depths and positions of which change
with time [Figs. 5(a) and 5(c)]. These potential wells are
a manifestation of the density dips of the bath displayed
for instance in Fig. 3(c). Even though the effective poten-
tial yields a single-particle picture, one can readily see that
ρ (1),B(x; t = 182) in Fig. 3(d) mainly resides in a superposi-
tion of the ground and the first two excited states of Veff(x; t ),
with corresponding participation weights 41, 23.6, and 23.6%,
respectively. There are also additional density modulations
[hardly visible in Fig. 3(d)], which suggest the occupation
of higher-lying excited states as well, with a small nonva-
nishing population up to the 18th excited state. At other
time instants [Fig. 5(c)], the depth of the central well of
Veff(x; t ) changes slightly with time and the outer wells are
displaced, accounting thus for the oscillations of the outer
density branches shown in Fig. 3(d). Apart from the afore-
mentioned undulations during the time evolution, the effective
potential changes also with respect to the driving frequency
�, since the density profile of the medium is accordingly

FIG. 5. (a) Instantaneous effective potential at t = 182 for a
modulation frequency � = 1.5. On top of Veff(x; t ) its single-particle
eigenstates are depicted together with their energies. (b) The effec-
tive potential for other driving frequencies (see legends) at t = 182.
(c) Veff(x; t ) at distinct time instants for � = 1.5. The effective po-
tential is measured in units of h̄ω⊥.

modified. For instance, the central potential dip is absent in
the case of � = 0.05 [Fig. 5(b)] and the effective potential
displays a double-well structure accounting for the impurities
density peaks [Fig. 2(d)]. For � = 0.5, the central density dip
of ρ (1),A forms, which mainly attracts the impurity atoms since
its depth is larger than the one of the outer wells.

C. Correlation dynamics and impurities antibunching

Having explicated the imprint of correlations in the density
evolution of both the impurities and the bath we subsequently
inspect the first- and second-order correlation functions as
introduced in Eqs. (7) and (8), respectively. In this way, we
will be able to demonstrate from g(1),σ the possibly emergent
coherence losses of each species when g(1),σ < 1. Along the
same lines, utilizing g(2),σσ the two-body correlation prop-
erties of the impurities and the bath can be identified for
g(2),σσ �= 0. Initially, the first-order coherence g(1),σ (x, x′; t ) is
examined [Eq. (7)], from which one can infer the proximity
of a MB to a MF product state for a specific set of spatial
coordinates x and x′ at time t . Instantaneous profile snapshots
of g(1),A(x, x′; t ) and g(1),B(x, x′; t ) are shown in Fig. 6 exem-
plarily for � = 0.5.

At early evolution times (t � 40), where the two impu-
rity density branches travel to the edges of the bath cloud
[Figs. 2(g) and 2(h)], the BEC background exhibits rela-
tively small coherence losses; see the off-diagonal of g(1),A

[Fig. 6(a)]. Indeed, it appears that the two separate spatial
intervals of the medium enclosed by the central and the
outer density dips [see Fig. 2(g)], namely, D+ = (0,+10.56)
and D− = (−10.56, 0), are slightly off-coherent between
each other as well as with the regions from the outer
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FIG. 6. Snapshots of the first-order coherence function of the (a–
c) bath g(1),A and the (d–f) impurities g(1),B for a driving frequency
� = 0.5. Other system parameters are the same as in Figs. 2(g) and
2(h).

density dips until the edges of the bath cloud; see, e.g.,
g(1),A(6.02,−6.02; t = 40) � 0.8 [Fig. 6(a)]. At later times
[see for instance Figs. 6(b) and 6(c)], the spatial domains
separated by the central dip at x = 0, namely, D+ = (0, 19)
and D− = (−19, 0), become less coherent with respect to one
another and, e.g., g(1),A(12.17,−12.17; t = 160) � 0.75. On
the other hand, the two density branches of the impurities
[Fig. 2(h)] are entirely noncoherent throughout the time evolu-
tion [see in particular Figs. 6(d)–6(f) where gB(x, x′ �= x; t >

40) is vanishing]. Therefore, the impurities develop Mott-like
correlations, suggesting their spatial localization tendency in
the two separate density branches [72,99]. When the impurity
density branches lie at the edges of their background for
t � 62 and are weakly oscillating, a small amount of co-
herence is restored, e.g., g(1),B(12.17,−12.17; t = 100) � 0.4
between the emitted faint density peaks located in the spatial
regions x ∈ [9, 13], x′ ∈ [−13,−9] [Fig. 2(h)]. We remark
that a similar coherence behavior occurs also for other mod-
ulation frequencies larger than the trapping one. For � < ω

the medium remains almost perfectly coherent throughout the
time evolution and the impurities are localized either in x > 0
or x < 0.

Next, we discuss the two-body correlation characteristics
of the impurities and their BEC background, by monitoring
g(2),AA and g(2),BB, respectively (Fig. 7), for � = 0.5. Fo-
cusing on the BEC medium, we observe that for t � 100
where the impurities density humps travel to the edges of
the medium cloud [Figs. 7(a) and 7(b)], two particles of
the environment tend to avoid each other within the two
spatial intervals enclosed by the central and outer density
dips of ρ (1),A(x; t ), i.e., D+ � (0, 20) and D− � (−20, 0)
[Fig. 2(g)], since g(2),AA(x, x′ = x; t � 100) < 0. However,
there is an increased probability of finding one of the par-
ticles in one of those intervals, e.g., in D+, and the other
particle being symmetrically placed with respect to the trap
center, e.g., in D−. This behavior persists at later evolu-
tion times, as can be seen in Figs. 7(b) and 7(c), where
two-body correlations build up for particles residing in op-
posite spatial regions with respect to the trap center; see
the antidiagonal of g(2),AA(x; t ). Moreover, a two-body an-
ticorrelation tendency occurs between D+ and D− since
g(2),AA(x, x′ �= x; t ) < 0.

FIG. 7. Instantaneous profiles of the second-order noise correla-
tion of (a–c) the bath particles g(2),AA(x, x′; t ) and (d–f) the impurities
g(2),BB(x, x′; t ). In all cases the modulation frequency is � = 0.5,
while other system parameters are the same as in Figs. 2(g) and 2(h).

Turning to the impurities, anticorrelations appear for par-
ticles occupying the same position for t � 100 where the
impurities move to the edges of the background cloud
[Figs. 7(d) and 7(e)]. However, two particles residing
in different density branches [Fig. 7(d)] display a corre-
lated character, e.g., g(2),BB(−10.84,−10.84; 40) � −0.0345
and g(2),BB(−10.84, 10.84; 40) � 0.012. For longer evolution
times [Fig. 7(f)] two-body correlations build among particles
occupying the three distinct density branches; see for in-
stance g(2),BB(22.61, 22.61; t = 160) � 0.01 [72,82,100]. In
contrast, two particles are anticorrelated when they both lie
in the same density hump, e.g., the one close to the trap center
where g(2),BB(−0.94,−0.94; 160) � −0.05.

IV. DRIVEN DYNAMICS TO THE MISCIBLE PHASE

We proceed by analyzing the reverse pulse driving sce-
nario, namely, the one where the mixture is driven from
the immiscible to the miscible phase, according to the time-
dependent protocol of Eq. (2). More specifically, the mixture
is initially prepared in its ground state, characterized by gAA =
1.004, gBB = 0.9544, and gin

AB = 1.4. The final impurity-
medium interaction strength is gf

AB = 0.6. As before, the
nonequilibrium dynamics is investigated, while it is compared
and contrasted between the MF and the MB framework.

A. Dynamical response for � < ω

As explicated in Sec. III, monitoring the one-body den-
sity evolution of the participating components, it is possible
to distinguish two driving related response regimes, namely,
� < ω and � > ω (see Figs. 8 and 9, respectively). First, let
us focus on the case of � = 0.05 < ω [Figs. 8(a) and 8(b)],
and inspect the dynamical behavior of the bath and the impu-
rities within the MF framework. As it can be readily seen in
Fig. 8(b), ρ (1),B(x; t ) exhibits density humps filling the dips of
the bosonic medium, within the time intervals where gAB > 1,
and diffusive patterns as the system is driven to its miscible
phase [39], i.e., gAB < 1. To facilitate this observation, a white
solid line indicating the modulation of the impurity-medium
coupling is depicted in Fig. 8(b). The inclusion of correla-
tions results in a similar dynamical response of the mixture
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FIG. 8. Time evolution of the one-body density of (a, c, e, g) the
bosonic bath and (b, d, f, h) the impurities following a modulation of
the impurities-medium coupling from gin

AB = 1.4 to gf
AB = 0.6. The

modulation is exemplarily depicted with the white solid line in (b),
(d), (f), and (h). The dynamics is tracked for two driving frequencies
(a–d) � = 0.05 and (e–h) � = 0.5 within the (a, b, e, f) MF ap-
proach and (c, d, g, h) the MB method. The mixture is composed of
NA = 100 bath and NB = 10 impurity atoms, characterized initially
(ground state) by gAA = 1.004, gBB = 0.9544, and gin

AB = 1.4.

at early evolution times (t < 40) but subsequently significant
alterations take place [Figs. 8(c) and 8(d)].

Concretely, in the MB approach [Figs. 8(c) and 8(d)]
a smaller number of generated density dips and humps in

FIG. 9. Spatiotemporal evolution of the one-body density of (a,
c) the bosonic environment and (b, d) the impurities applying a mod-
ulation of the impurity-medium interaction from gin

AB = 1.4 to gf
AB =

0.6 with frequency � = 1. The dynamics is displayed both within
the (a, b) MF and (c, d) MB approaches. The inset of (a) showcases
the phase of the bath throughout the time evolution. The long-time
evolution of the impurities within the MF approach is presented in
(b).

FIG. 10. (a) Instantaneous effective potential at t = 60 and mod-
ulation frequency � = 0.05. On top of Veff(x; t ), its eigenstates are
displayed together with their energy. (b) The effective potential for
other driving frequencies (see legends) at t = 150. (c) Veff(x; t ) at
other time instants for � = 0.05. The effective potential is measured
in units of h̄ω⊥.

ρ (1),A(x; t ) and ρ (1),B(x; t ), respectively, is observed compared
to the MF case [72,100,101]; see, e.g., ρ (1),B(x; t ) at t � 97.
Later on, the diffusive character of ρ (1),B(x; t ) is more pro-
nounced than within the MF treatment; compare for instance
Figs. 8(b) and 8(d) around t � 157. When correlations are
present, the impurities are effectively trapped at the density
dips developed in the bosonic bath [Fig. 8(d)]. The medium
thus provides an effective potential experienced by the impu-
rities, and their density profile can be understood by resorting
to the potential defined in Eq. (12). As shown in Fig. 10(a),
the underlying Veff(x; t = 60) features four deep wells, caused
by the density profile of the medium. Inspecting the density
profile of the impurities [Fig. 8(d)] and the form of the effec-
tive potential [Fig. 10(a)], one can infer that ρ (1),B(x; t = 60)
mainly resides in a superposition of the four lowest-lying
eigenstates, E1, . . . E4 of Veff(x; t ) [33]. At later time instants
ρ (1),B(x; t = 150) presents a diffusive behavior throughout the
environment, with a small portion of its density lying outside
of the cloud of the bath [Fig. 8(d)]. The density of the latter
resembles a distorted TF profile, in sharp contrast to the MF
case [Fig. 8(a)], where ρ (1),A develops a three-dip structure
which suggests a significantly more excited background than
the MB case. The distorted TF profile then provides an effec-
tive potential for the impurities, which resembles a harmonic
trap, as can be seen in Fig. 10(c) at later times t = 170. The
absence of any potential wells is a signature of the miscible
character of the impurity-medium interactions. In that case
a superposition of many excited states is needed in order
to properly account for the density profiles similar to those
displayed in Fig. 8(d) [37,97].
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FIG. 11. Profile snapshots of the one-body density of the bath
(A) and the impurities (B) following a modulation of the impurity-
medium coupling with � = 0.5 within the (a–c) MF and (d–f) MB
frameworks. The dashed green lines in (a) and (b) present DB soliton
fits on the density of both components.

B. Dynamical response for � > ω

Turning to larger modulation frequencies, the dynamical
response of both components is substantially different from
the previous case where � < ω. More precisely, the spon-
taneously generated patterns emerging in the course of the
MF evolution clearly resemble DB solitons, as is presented
in Figs. 8(e) and 8(f) for � = 0.5. Recall that similar struc-
tures have been shown to be nucleated in the reverse driving
scenario for strong driving frequencies, however they were
shown to be not as robust as here and to form a bound pair
(Sec. III). Moreover, the oscillation frequency of these struc-
tures is much larger than the one associated to the entities in
the reverse driving scenario [see Figs. 3(a) and 3(b)], and im-
portantly it crucially depends on �, as can be easily deduced
by inspecting Figs. 8(e) and 8(f) (� = 0.5) and Figs. 9(a) and
9(b) (� = 1). Also, their oscillation amplitude changes with
respect to � and in particular it increases from � = 0.5 to 1
by approximately 59%. Another difference that occurs with
the respective structure formation within the MF approach
for � > ω compared to the reverse modulation discussed in
Sec. III [Figs. 3(a) and 3(b)] is the existence of a larger
amount of excitations, which consequently alter the shape of
the pronounced oscillating humps during the time evolution
[Fig. 9(b)]. For sufficiently long evolution times (t > 300),
these oscillating density humps increase in amplitude and
gradually fade away, as a result of the prominent interference
processes caused by the miscible nature of the bosonic mix-
ture, as can be seen in Fig. 9(b).

To further support our argument regarding the character
of these structures, we employ the known DB soliton wave-
forms [Eqs. (10) and (11)], denoted by dashed green lines in
Figs. 11(a) and 11(b). As already mentioned, however, there
are excitations on top of ρ (1),B(x; t ), which render the fitting
of the bright soliton waveform not so accurate. Regarding
the bath, the spatiotemporal evolution of its phase [inset of
Fig. 9(a)] displays phase jumps at the positions of the density
dips. These jumps, being multiples or less than π , are of

course indicative of the presence of moving dark (i.e., gray)
solitons [43,89,90]. Moreover, the oscillation period of the DB
structures that we obtain for � = 1 is T osc = 112.4, whereas
the theoretical prediction yields T DB = 108.7154 [85,89].
This discrepancy is predominantly attributed to the interac-
tions among the solitons and the background excitations of the
impurities [43]. Let us finally mention that for a larger pulse
duration the period and amplitude of the above-described
DB solitons remain almost unaffected while the background
becomes more excited because a larger amount of energy is
introduced into the system.

Incorporating correlations, the behavior of the density of
the bath and the impurities for � = 0.5 and 1 [Figs. 8(g)
and 8(h) and Figs. 9(c) and 9(d)], is evidently altered from
the respective MF time evolution for t > 5. Focusing on the
impurities, ρ (1),B(x; t ) displays initially a density hump for
both modulation frequencies close to the trap center, which
reflects the immiscible character of the system since at t =
0 gin

AB = 1.4, and later on it diffuses within the medium suf-
fering enhanced interference phenomena due to the miscible
character of the system. The initial density hump subsequently
splits, a process which is more prominent in the case of the
initial density dip of the bath, as we shall discuss later on
[Figs. 8(g) and 9(c)]. The impurities cloud undergoes a large
amplitude breathing motion with frequency ωbr � 0.157 for
both � = 0.5 and 1. This frequency is extracted by calculating
the impurities position variance, 〈(xB)2〉 [25,31]. To explain
such a breathing frequency, we resort to the effective potential
experienced by the impurities due to the presence of the bath
[Eq. (12)]. By inspecting the density snapshots of the bosonic
environment in Figs. 11(d)–11(f), the time-averaged profile
ρ̄ (1),A(x) = 1

T

∫ T
0 gAB(t )ρ (1),A(x; t ) smears out small density

fluctuations and resembles a TF profile, ρ̄ (1),A(x) = Q(R2 −
x2)θ (R2 − x2), with θ (x) being the Heaviside function and
T = 200. Therefore, the small density undulations caused by
the impurity motion, present in the instantaneous profiles of
ρ (1),A(x; t ), are now eliminated. We remark that in the case
of � = 0.5 (� = 1) ρ̄ (1),A saturates for T > 195 (T > 180).
On top of the time-averaged density of the medium there
are small density humps at x = ±5, which will be discussed
later on. The effective potential is a deformed harmonic trap

with a renormalized frequency ωeff =
√

ω2 − 2Q
M [37,98,101].

Therefore, the corresponding effective breathing frequency is
ωbr

eff = 2ωeff = 0.1328 for � = 1, with a 1% relative deviation
for � = 0.5. The discrepancy between ωbr and ωbr

eff arises due
to the presence of correlations [68], which alter the TF profile
and are imprinted as small density humps on top of ρ (1),A(x; t )
at x = ±5 [Figs. 8(g) and 9(c)].

Turning to the dynamical response of the bath, ρ (1),A(x; t )
features structural changes compared to its MF analog
[Figs. 8(e) and 9(a)] especially right after the termination of
the impurities-bath interaction modulation, namely, at t � 15
for � = 0.5 and at t � 7 for � = 1. Initially (0 < t < 2.5)
there is a density dip localized at x = 0, which splits into two
repelling density branches; see the black-dashed ellipses in
Figs. 8(g) and 9(c). Subsequently each of these branches splits
further into two shallower density dips, with one traveling
towards the edges of the medium and the other one having
a significantly smaller amplitude, and remaining almost un-
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FIG. 12. Snapshots of the first-order coherence of (a–c) the bath,
g(1),A(x, x′; t ), and (d–f) the impurities, g(1),B(x, x′; t ). The modulation
frequency is � = 0.5 and all other system parameters are the same
as in Figs. 8(g) and 8(h).

affected throughout time evolution. The amplitude of these
dips increases slightly in time but their position stays the
same at x � ±5, as can be seen in Figs. 11(d)–11(f). This
process together with the splitting of the bright component
is reminiscent of the splitting of a quantum DB soliton pair
in the presence of correlations, into a fast and a slower mov-
ing solitary wave, as reported in Ref. [68]. A similar to the
above-described phenomenology occurs for larger modulation
frequencies � and therefore also for the case of an impurity-
medium interaction quench; see Eq. (2). However, in the latter
case the outer ρ (1),A shallow dips when reaching the trap edges
are reflected back and robustly propagate within the medium
displaced from the trap center while the inner ρ (1),A dips
collide at t ≈ 80 and merge into a single one. Moreover, the
impurities exhibit a somewhat larger spatial extent.

The small density dips which remain almost unaffected in
the course of the time evolution manifest themselves in the
effective potential [Eq. (12)] for both modulation frequencies
[Fig. 10(b)]. They form shallow potential wells, and in their
positions the impurities showcase small amplitude humps; see
for instance Fig. 11(f). Apart from these dips, the density of
the bosonic medium resembles a TF profile as we have dis-
cussed before, and therefore Veff(x; t ) is similar to a harmonic
trap. Hence a multitude of its eigenstates is needed in order to
at least qualitatively account for the impurities density profiles
in the course of the evolution [Fig. 11(f)].

C. Correlation patterns and the bunching of impurities

To expose the role of correlations for the bath and the
impurities subsystems, in the driven dynamics to the mis-
cible regime, we employ the first-order coherence function
[Eq. (7)], measuring the underlying coherence losses, and
the second-order noise correlation function [Eq. (8)], cap-
turing the emergent two-body correlation processes. Initially,
the first-order coherence g(1),σ (x, x′; t ) is exemplarily studied
during the time evolution for � = 0.5 (Fig. 12). At the early
stages of the dynamics (0 < t < 10) the two narrow density
dips at x � ±3 [see Fig. 8(g)] experience a localization trend;
see for instance g(1),A(3.3,−3.6; t = 7) � 0.47 [Fig. 12(a)].

FIG. 13. Instantaneous profiles of the second-order coherence of
(a–c) the bath particles and (d–f) the impurities. In all cases the
modulation frequency is � = 0.5, while all other parameters are the
same as in Figs. 8(g) and 8(h).

At later evolution times [Figs. 12(b) and 12(c)], coherence
is almost completely lost for the two symmetric spatial in-
tervals D+ = (5, 22) and D− = (−22,−5) delimited by the
mainly stationary density dips, located at x � ±5 and the
outer edges of the medium cloud, with g(1),A(−15.9, 14.6; t =
160) � 0.1. The aforementioned behavior signals the appear-
ance of Mott correlations meaning that the bath particles tend
to be localized in either one of those spatial intervals. Turning
to the impurities, we observe that at short evolution times,
similarly to the bosonic medium, coherence is significantly
reduced between the spatial regions corresponding to the den-
sity humps [Fig. 8(h) at t � 7], with g(1),B(2.54,−3; t = 7) �
0.53 [Fig. 12(d)]. Later on, the impurities undergo a breathing
motion. Upon contraction of the impurity cloud, e.g., at t = 65
[Fig. 8(h)], the impurity particles are localized in either of the
two spatial intervals D+ � (0, 12) and D− � (−12, 0), with
g(1),B(5,−5.5; t = 65) � 0.01 [Fig. 12(e)]. However, when
the impurity cloud expands, e.g., at t = 160, there is still a
loss of coherence between the spatial regions away from the
trap center, with g(1),B(−8.7, 7.6; t = 160) � 0.15. It is also
worth mentioning that for � < ω the same qualitative picture
holds and there is loss of coherence between the outer spatial
regions delimited by the small density dips of the bosonic
medium cloud.

Moving to the investigation of two-body correlations,
we invoke the second-order noise correlation function
g(2)(x, x′; t ) [Eq. (8)], for the same driving frequency, namely,
� = 0.5. Initially, e.g., at t = 7, there is a probability for two
particles of the environment to cluster together in the den-
sity dips located at x � ±3; see, e.g., g(2),AA(2.5,−2.8; t =
7) � 0.65 [Fig. 13(a)]. Moreover, anticorrelations build up
for particles occupying the same spatial regions enclosed by
the density dips and the edges of the cloud of the bath, e.g.,
g(2),AA(−6.56,−6.56; t = 7) � −0.17. Later on, two particles
of the bath residing in the two shallow and almost stationary
density dips of ρ (1),A located at x � ±5 exhibit two-body cor-
relations since g(2),AA(−5.217,−5.217; t = 65) � 0.58 and
g(2),AA(−5.8 − 5.8; t = 160) � 0.64 [Figs. 13(b) and 13(c),
respectively], while opposite spatial regions between the den-
sity dips at x � ±5 and the edges of the medium cloud
are anticorrelated [Fig. 12(c), g(2),AA(−9, 8.7; t = 160) �
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−0.12]. Turning to the impurity atoms, we observe that
initially two-body correlations build up for particles lying on
top of the ρ (1),B density humps at x � ±3, similarly to the
case of the bosonic medium, with g(2),BB(−3.08,−3.08; t =
7) � 0.15 [Fig. 13(d)]. Moreover, anticorrelations develop
among impurity atoms occupying each of the two distinct den-
sity humps, for instance g(2),BB(−2.54, 2.54; t = 7) � −0.21.
At later time instants, impurities cluster [25,26,37] and
tend to occupy the same position inside the impurity cloud
[Figs. 13(e) and 13(f), g(2),BB(−0.14,−0.14; t = 65) � 0.21].
The second-order noise correlation acquires small negative
values (anticorrelations), when the impurities do not reside
in the same position, for instance g(2),BB(1.74,−6.29; t =
160) � −0.01.

V. IMPACT OF THE IMPURITIES INTERACTIONS
AND CONCENTRATION

Having addressed the impurity-medium pulse dynamics we
now demonstrate its dependence on the number of impurities
and the impurity-impurity interaction strength. The remaining
system parameters are considered to be the same as in the
two previous sections (Secs. III and IV), i.e., NA = 100 while
gAA = 1.004. The impurity-bath interaction strength gAB is
driven first from gin

AB = 0.2 to gf
AB = 1.2, with modulation fre-

quency � = 1.5, and subsequently from gin
AB = 1.4 to gf

AB =
0.6 with � = 1, according to the pulse protocol introduced in
Eq. (2).

Initially, we explore the impurities dynamical response
by considering NB = 2 noninteracting (gBB = 0) ones while
driving the impurities-bath interaction strength to the immis-
cible phase, i.e., from gin

AB = 0.2 to gf
AB = 1.2 exemplarily

with � = 1.5. The two impurities display mainly a Gaus-
sian profile during the time evolution and reside around the
trap center [Fig. 14(a)], where a density dip is present in
ρ (1),A(x; t ) of the bosonic medium. Moreover, faint density
branches of ρ (1),B(x; t ) are emitted and subsequently disperse
within the medium [39]. Employing the effective potential
picture [Eq. (12)], we deduce that the two particles occupy
its ground state with a probability of 93%. For an increasing
number of impurities, the time-evolved density of NB = 10
noninteracting ones [Fig. 14(b)] is different from the density
of NB = 10 interacting impurity atoms [Fig. 3(d)]. Indeed, for
gBB = 0 there are no prominent outer density humps but rather
fragmented faint ones, which after their emission from the
central branch oscillate back and forth from the trap center
to the edges of the bosonic medium diffusing within the lat-
ter. Recall that in the case of NB = 10 interacting impurities
[Fig. 3(d)], the corresponding humps, possessing a significant
population, travel away from the trap center and remain at
the edges of the environment while oscillating with a small
amplitude. This distinct behavior is due to the the presence of
repulsive impurity-impurity interactions. The central density
hump, which corresponds to the ground state of the effective
potential, is present both in the interacting and the noninter-
acting case. The outer faint humps when gBB = 0 [Fig. 14(b)]
refer to higher-lying excited states of Veff(x; t ), localized in
its respective outer potential wells, which are shallower com-

FIG. 14. Time evolution of the one-body density for (a) NB = 2
and (b) NB = 10 noninteracting impurity atoms, and density evo-
lution for NB = 10 impurities with (c) gBB = 0.2 and (d) gBB =
0.5 impurity-impurity interactions. The impurity-bath interaction
strength is driven from gin

AB = 0.2 to gf
AB = 1.2 with frequency � =

1.5 according to Eq. (2).

pared to the ones of Veff(x; t ) in the interacting case due to the
different shape of ρ (1),A(x; t ) [Fig. 5(a)].

We then move on to study the effect of impurity-impurity
interactions on the dynamics in the presence of the pulse [39].
The cases of gBB = 0.2 [Fig. 14(c)] and gBB = 0.5 [Fig. 14(d)]
with NB = 10 feature a similar dynamical behavior to the non-
interacting (gBB = 0) scenario [Fig. 14(b)]. Upon increasing
gBB, the ground state of ρ (1),B(x; t ) exhibits a larger spatial
extent due to the stronger repulsion [see, e.g., Fig. 14(d)
with gBB = 0.5 and Fig. 3(d) with gBB = 0.9544] and the
impurities ground state displays a TF profile. The dynamical
response of the impurities as quantified by ρ (1),B(x; t ) is very
similar for gBB = 0 and 0.2 in the sense that there exist faint
emitted density branches that oscillate back and forth between
the edges of the bosonic bath and x = 0. These are emitted
at later evolution times for a stronger gBB, e.g., gBB = 0.2
[Fig. 14(c)] compared to gBB = 0 [Fig. 14(b)]. After their
creation, they immediately disperse within the cloud of the
bath while stronger repulsive interactions lead to larger por-
tions of the impurities occupying the outer density branches
[Figs. 14(b) and 14(c)].

Furthermore we investigate the impurities response in the
reverse pulse scenario, i.e., when the impurity-bath interac-
tion strength drives the system into the miscible phase, with
gin

AB = 1.4 to gf
AB = 0.6, and � = 1. Focusing on NB = 2

and 10 noninteracting impurities [Figs. 15(a) and 15(b), re-
spectively], a breathing motion is apparent with the most
prominent frequency being ωbr = 0.157 in both cases. Note
that the latter coincides with ωbr for NB = 10 and gBB =
0.9544 [Fig. 9(d)]. Moreover, there is a central density hump
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FIG. 15. Spatiotemporal evolution of the one-body density for
(a) NB = 2 and (b) NB = 10 noninteracting impurities, and density
evolution for NB = 10 impurities with (c) gBB = 0.2 and (d) gBB =
0.5. The impurity-bath interaction is driven from gin

AB = 1.4 to gf
AB =

0.6 with the modulation frequency � = 1 according to Eq. (2).

building upon ρ (1),B(x; t ), which is especially pronounced for
NB = 2 [Fig. 15(a)]. This density structure is similar to the
case of NB = 2 impurities in the reverse pulse scenario, i.e.,
from the miscible to the immiscible phase [Fig. 14(a)], where
the two impurities are predominantly localized around the trap
center. In this latter case, however, the two particles exhibit a
weaker breathing motion compared to the one triggered by
the driven dynamics to the miscible regime [Fig. 15(a)]. This
is due to the immiscible character of the system following
the reverse pulse scenario. Utilizing once more the effective
potential picture [Eq. (12)], we can infer that both the NB = 2
and 10 impurities occupy predominantly its ground state, a
result that is manifested by the presence of the central density
hump in ρ (1),B(x; t ) [Figs. 15(a) and 15(b)].

As the interactions increase, i.e., gBB = 0.2 and gBB = 0.5
[Figs. 15(c) and 15(d), respectively], ρ (1),B shows similar
patterns to the one emerging for gBB = 0.9544, especially
for gBB = 0.5 [Fig. 9(d)]. Note that this is in contrast to the
reverse scenario to the immiscible phase [Figs. 14(c) and
14(d)], where there is a generic diffusive pattern being appar-
ently different from the localized outer density branches when
gBB = 0.9544 [Fig. 9(d)]. The central density hump present
for gBB = 0 and 0.2 [Figs. 15(b) and 15(c)] corresponds again
to the ground state of the respective Veff(x; t ), and becomes
less prominent for a larger gBB as depicted in Fig. 15(d). In
the latter case, the effective potential resembles the structure
illustrated in Fig. 10(b), displaying two shallow wells ac-
counting for the two density humps close to the trap center
in the case of gBB = 0.5 [Fig. 15(d)]. Furthermore, both for
gBB = 0.2 and 0.5 [Figs. 15(c) and 15(d)], the cloud performs
a breathing motion, with the most prominent frequency being

ωbr = 0.157, i.e., the same as in the noninteracting case [see
Fig. 15(b)].

VI. SUMMARY AND CONCLUSIONS

We have investigated the nonequilibrium quantum dy-
namics of few repulsively interacting harmonically trapped
bosonic impurities immersed in a MB bosonic bath, sub-
jected to a time-periodic pulse of the impurity-bath interaction
strength. Importantly, the effect of the driving frequency
on the emergent dynamical response of both components is
studied in detail ranging from weak to strong driving. The
amplitude of the modulation is large enough to drive the two-
component system across its phase-separation boundary. In
this sense, we examine the driven impurity-medium dynamics
from the miscible to the immiscible phase and vice versa.

Focusing on the driving to the immiscible phase, two
distinct response regimes are identified. Namely, if the modu-
lation frequency is smaller than the trapping one, the system
transits successively in the course of time from the miscible
to the immiscible regime, according to the phase in which
it is driven by the impurity-bath coupling. Turning to larger
modulation frequencies than the trapping one, DB soliton
pairs emerge within the MF approach, which subsequently
merge after half of an oscillation period forming a bound state
around the trap center. Taking correlations into account, these
pairs are expelled towards the edges of the bath cloud, where
they equilibrate by performing small-amplitude oscillations.
In particular, by comparing the MF and the MB dynamics
we conclude that at early evolution times both descriptions
yield similar results, but subsequently correlations become
important and hence the MF product state does not provide
an adequate description. Interestingly, for an increasing mod-
ulation frequency we demonstrate that the MF framework
is valid only at the very initial stages of the dynamics. The
impurity atoms exhibit Mott-like correlations, thus being spa-
tially localized in these outer density branches, which develop
two-body correlations among each other. Moreover, a stable
density dip (hump) is formed around the trap center in the
bath (impurities). This dip splits the bath into two spatial
regions which feature two-body correlations. The impurities
motion can be intuitively understood in terms of an effective
potential picture, unveiling that they predominantly reside in
a superposition of its ground and first two excited states.

In the reverse driving scenario, i.e., following an inter-
action pulse from the immiscible to the miscible phase, we
again capture two distinct dynamical regimes, depending on
the modulation frequency. For small driving frequencies, the
mixture transits consecutively in time from the immiscible
to the miscible phase according to the modulation of the
impurity-bath coupling. In the time interval that the system
lies into its immiscible phase, the impurities reside in a super-
position of their lowest-lying effective potential eigenstates.
For larger modulation frequencies DB soliton pairs are gener-
ated within the MF framework possessing a larger oscillation
frequency compared to the previous driving scenario. Incorpo-
rating correlations, the impurities perform a breathing motion,
the frequency of which is in good agreement with the one
predicted by their effective potential. We also argue that the
dynamical response of the mixture can be well described
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within the MF approximation only at early evolution times, a
result that becomes more pronounced for an increasing modu-
lation frequency where correlation effects are more enhanced.
Furthermore, it is found that a multitude of excited eigenstates
of their effective potential participate in the dynamics. Re-
garding the bosonic bath, two small density dips are nucleated,
originating from the splitting of the spontaneously generated
quantum DB soliton pairs, which are symmetric with respect
to the trap center and are almost stable throughout the time
evolution. These dips split the bath into two incoherent parts
featuring two-body anticorrelations.

The role of different impurity particle numbers and
impurity-impurity interactions is also explored. It is found
that for weak repulsions, the impurities are mainly trapped
by the bath around the trap center, occupying predominantly
the ground state of their effective potential. This behavior is
especially pronounced for two noninteracting particles. By
increasing the impurity-impurity interactions or their particle
number, weak amplitude emitted density humps form and os-
cillate between the edges of the cloud of the bath and the trap
center. They also exhibit a dispersion within the bath density,
mostly for strong repulsions. In particular, when driving the
impurity-bath interactions from the immiscible to the miscible
phase, it is showcased that the impurities perform a breathing
motion with the same prominent frequency regardless of their
inherent repulsion.

The present paper can inspire several promising and inter-
esting future research directions. An extension of immediate
interest is to consider the 2D analog of the current setup,
where the ejection of correlated jet structures [58–60] and
the emergence of star-shaped patterns has been reported
upon modulating the scattering length [54]. Additionally,
the driving of the impurity-bath coupling strength in the
presence of fermionic impurities immersed in a Bose or
Fermi gas is an interesting prospect for studying the in-
duced interactions between the impurities and the impact
of their flavor in the dynamical response of the system. In
a similar vein, the dynamics of bosonic impurities embed-
ded in a fermionic bath with a similar driving protocol will
highlight the role of induced correlations mediated by the
fermionic bath [102]. Certainly, the study of modulated in-
teraction pulses in the presence of dipolar couplings is highly
desirable.
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APPENDIX A: ENERGY EXCHANGE PROCESSES

To elucidate the underlying energy exchange processes
between the different components [22,36,38] of the system in
both driving scenarios addressed in Secs. III and IV we invoke
the corresponding energy contributions of three different com-

ponents, namely, the one of the bath (EA), the impurities (EB),
and their mutual interactions (EAB). In particular the energy of
the bath is given by

EA(t ) = 〈
MB(t )|T̂A + V̂A(x) + ĤAA|
MB(t )〉
− 〈
MB(0)|T̂A + V̂A(x) + ĤAA|
MB(0)〉 , (A1)

while the energy of the impurities is

EB(t ) = 〈
MB(t )|T̂B + V̂B(x) + ĤBB|
MB(t )〉 , (A2)

and the impurity-medium interaction energy reads

EAB(t ) = 〈
MB(t )|ĤAB(t )|
AB(t )〉 . (A3)

In these expressions, the kinetic, potential, and impurity-bath
interaction operators have the form T̂σ = − h̄2

2M

∫
dx 
̂σ† d2

dx2


̂σ (x), V̂σ (x) = 1
2 Mω2

∫
dx 
̂σ†(x)x2
̂σ (x), and Ĥσσ ′ (t ) =

gσσ ′ (t )
∫

dx 
̂σ†(x)
̂σ ′†(x)
̂σ (x)
̂σ ′
(x), respectively, with

σ = A, B. Also, 
̂σ (x) [
̂σ†(x)] denotes the operator that an-
nihilates [creates] a σ -species particle at position x. Note that
the initial energy of the bath, which is large due to its substan-
tial spatial extent and particle number, is subtracted in order
to render EA comparable with the other energy contributions.

Focusing on the driving of the system from the miscible
to the immiscible phase with modulation frequency � = 1.5,
the interaction energy EAB(t ) initially oscillates according to
the quench protocol of Eq. (2) and subsequently decreases
[Fig. 16(a)]. Since energy is pumped into the system after
the pulse the energy of both components, EA and EB, in-
creases. The impurities acquire more energy than the bath and
this reflects the fact that the outer impurity density branches
[Fig. 3(d)] reach the edges of the cloud of the bath and re-
main there while oscillating [39,64]. At later time instants
EB features maxima whenever the outer density branches of
ρ (1),B [see Figs. 3(d) and 16(a) at t ≈ 85] tend to the edges
of the bath cloud, acquiring thus maximal potential energy,
and minima when the ρ (1),B branches approach the trap center
[Fig. 16(a), t ≈ 111]. EA exhibits a similar behavior and its
minima and maxima occur simultaneously with the minima
and maxima of EB, since the dips formed in the bath density
move in phase with the outer impurity density branches. The
impurity-bath interaction energy exhibits out-of-phase oscil-
lations with EA and EB, which is a manifestation of the energy
exchange process between the two components [33,64]. To
infer the behavior of the bath energy with respect to � we
present EA for � = 0.05, 0.5, and 1.5 [inset of Fig. 16(a)].
Evidently, there is a growth tendency of EA with increasing
�, since for larger modulation frequencies more energy is
pumped into the system. However for � = 1.5, EA is energet-
ically close to the case � = 0.5. For even larger modulation
frequencies, the energy of the bath displays a similar behavior
as for � = 1.5 because for large driving frequencies the effect
of the pulse is averaged out [39]. Turning to small � [� =
0.05 in the inset of Fig. 16(a)], EA performs small amplitude
oscillations, which are in phase with the oscillations of EAB(t )
and consequently with the modulation of gAB(t ).

Turning to the reverse pulse scenario, namely, from gin
AB =

1.4 to gf
AB = 0.6 with � = 1, the impurity-bath interaction

energy EAB(t ) now increases and afterwards oscillates around
a mean value. This behavior is attributed to the fact that the
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FIG. 16. (a) Energy contributions of the bath (EA), the impurities
(EB), and their mutual interaction (EAB) following a time-periodic
pulse of the impurity-bath coupling from gin

AB = 0.2 to gf
AB = 1.2

with � = 1.5. (b) The same as in (a) but for gin
AB = 1.4, gf

AB = 0.6,
and modulation frequency � = 1. The insets display the energy of
the bath for other modulation frequencies (see legend). The energies
are given in terms of h̄ω⊥.

system is driven into the miscible phase where the overlap
between the two components is large, compared to the driving
to the immiscible regime. The energy of the impurities os-
cillates around a mean value reflecting their breathing motion
[see Fig. 9(d)], with maxima at the positions where ρ (1),B(x; t )
expands [Fig. 9(d) at t � 25], possessing maximal potential
energy, and minima at the locations where ρ (1),B(x; t ) con-
tracts [see Fig. 9(d) at t � 60]. Since the impurities energy
remains roughly the same and oscillates around a mean value
while EAB increases with time due to the miscible character
of the system, the bath energy decreases due to energy con-
servation until t � 25 and thereafter oscillates with a small
amplitude around a constant value. As can be seen from the
inset of Fig. 16(b), EA becomes negative for other modulation
frequencies as well.

FIG. 17. Impurities breathing frequency following a pulse to the
miscible phase, i.e., gin

AB = 1.4 and gf
AB = 0.6 when varying gAA while

keeping gBB = 0.9544 fixed (see legend). The rhombi present the
numerically obtained breathing frequency in the MB evolution with
gAA = 1.004.

APPENDIX B: IMPURITIES BREATHING FREQUENCY
FOLLOWING A PULSE TO THE MISCIBLE REGIME

For consistency, let us finally investigate within the MF
approximation the role of the driving frequency on the im-
purities breathing frequency ωbr as the system is driven from
the immiscible to the miscible phase, i.e., gin

AB = 1.4 and
gf

AB = 0.6. The breathing frequency is derived by examining
the impurities position variance, 〈(xB)2〉 [31,101]. Apart from
� the impact of different bath interactions is also explored
(Fig. 17). By fixing gBB = 0.9544, ωbr eventually saturates for
sufficiently large driving frequencies (� > 5). More precisely,
ωbr = 0.1194 in the case of gAA = 1.004 and ωbr = 0.1521 in
the case of gAA = 2 (Fig. 17). Indeed for large �, the effect of
the pulse is averaged out (Sec. II A) and hence the dynamical
response of the impurities is unaffected. To explain these
breathing frequency values we resort to the effective potential
experienced by the impurities for large � [Eq. (12)]. A time
averaging is performed on the medium density, ρ̄ (1),A(x) =
1
T

∫ T
0 gAB(t )ρ (1),A(x; t ) for sufficiently long evolution times

T , in order to eliminate small density fluctuations [36,37].
For gAA = 1.004 and 2, the time-averaged density resem-
bles a TF profile ρ̄ (1),A(x) = Q(R2 − x2)θ (R2 − x2), and the

breathing frequency is then given by ωbr = 2
√

ω2 − 2Q
M [101].

According to the theoretical predictions [37,98,101] the lat-
ter provides ωbr = 0.13 and 0.1689 for gAA = 1.004 and 2,
respectively, when � = 10. The relative error of these the-
oretically anticipated values with the numerically predicted
values is of the order of 10% in both cases. Taking correlations
into account for gAA = 1.004, already from � = 0.05, ωbr

saturates to 0.157 (rhombi in Fig. 17), a value well above the
MF case where ωbr = 0.1194, thus suggesting the importance
of impurity-impurity correlations [25,37].
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Chapter 5

Conclusions and Outlook

T
he present cumulative thesis dealt with the correlated dynamics of few atoms
in the ultracold regime by considering time-dependent protocols such as
quenches or modulations of the interaction strengths. First, we have em-
ployed two- and three atom setups trapped in harmonic oscillators, and uti-

lized the available analytical solutions to obtain further insights about their dynamical
response. Second, the correlated dynamics of few interacting impurities embedded in
a mesoscopic cold bosonic environment has been investigated, induced by the driving
of the impurity-medium interaction strength. In this section we briefly summarize the
main findings of the above investigations and outline interesting future perspectives.

Correlations and dynamical response of few-body trapped systems

The stationary properties of two trapped ultracold atoms in two dimensions have
been thoroughly examined in [B1, B2]. In particular we have provided analytical ex-
pressions for the short-range two-body correlations for all eigenstates and interaction
strengths. Moreover, by tightly confining the atoms along a single dimension, we were
able to probe the not so explored crossover from two dimensions to one [408]. Ana-
lytical expressions were derived for the relative wavefunctions in real and momentum
space. We have also determined the energy level structure over a wide range of the
aspect ratios between the trapping frequencies.

Subsequently, these analytical solutions were employed to track the correlated
dynamics of two particles in a harmonic trap in two dimensions, by considering inter-
action quenches. In three dimensions [245], but mostly in one [244, 376], the response
of two particles to such protocols has been explored extensively. In two dimensions
however, their out-of-equilibrium dynamics has not been so far studied, despite the
inherent differences with other dimensionalities, such as the existence of a two-body
bound state regardless of the interaction. Indeed, by inspecting the post-quench pop-
ulations we have observed a significant contribution of the two-body bound state for
quenches from the repulsive to the attractive regime and vice versa. Signatures of this
state have also been unveiled by the evolution of the two-body contact, which exhibited
an oscillatory behavior with a plethora of frequencies present in the Fourier spectra
analysis. Overall, it was found that the system of two atoms was efficiently driven
out-of-equilibrium by initializing it in the two-body bound state compared to other ini-
tializations such as the ground atom-atom eigenstate. Moreover, the setup exhibited
an enhanced dynamical response when considering quenches from finite interaction
strengths, either repulsive or attractive, towards the vicinity of zero interactions.

The same response was also observed when considering interaction quenches of
two particles confined in an anisotropic two dimensional harmonic oscillator. The
system was perturbed the most for small trapping frequency aspect ratio, i.e. close
to an isotropic two dimensional harmonic oscillator. This occurred independently of
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the post-quench interaction strength. For larger trapping frequency aspect ratio, i.e.
close to the one dimensional case, the dynamics along the strongly confined dimension
was essentially frozen. Such behavior was clearly illustrated in the evolution of the
one-body reduced density, which exhibited a breathing pattern only along the weakly
confined direction.

An intriguing extension of the quench dynamics of two ultracold atoms would be to
consider particles possessing long range interactions, such as dipole-dipole interactions.
Ultracold dipolar gases are being currently explored [409–413] and the competition
between the dipolar and the s-wave scattering length results in a rich phase diagram
[414–416]. In the two atom level, the energy spectrum in a trap is far more rich than
considering solely short-range interactions [417]. A multitude of two-body bound
states appears, displaying avoided crossings with atom-atom eigenstates, reminiscent
of the three particle energy structure. Moreover, recently there was an extension of
the two-body contact for dipolar interactions [418], and a set of new universal relations
was derived. These involved a generalized form of the two-body contact, but also a
new one associated to the dipolar length. Exploring the dynamical behavior of these
generalized contacts for two dipoles following an interaction quench is an interesting
research path. The time evolution of the contacts could reveal dynamical regimes
where two-body bound states with a long range character are efficiently populated.

Another promising research path would be to investigate the recently explored
two dimensional breathers in box potentials [419–422] from a few-body perspective.
The two atoms are initialized such that their density obtains a triangular or circular
shape, enforced by a box potential. Subsequently, the latter is turned off and the
atoms perform breathing dynamics in a loose harmonic trap in two dimensions. It
would certainly be interesting to explore whether the dynamical breathing symmetry
persists or not on the two-body level.

Extending our analysis of two cold particles, we have then considered three-body
binary mixtures confined in two dimensional harmonic traps [B3]. The mixtures con-
sist of either two bosonic particles or two spin polarized fermions, interacting with a
third distinguishable one. We have examined their short-range two- and three-body
correlation properties for a wide range of interspecies scattering lengths and for all
classes of eigenstates. In order to do so, we have developed a theoretical framework
for examining the three-body contact in trapped three-particle binary mixtures at any
interaction strength in two dimensions. This is an extension of the usual description
of the three-body contact, relying on the Faddeev components formalism in free space
[302, 303].

It is found that the contacts of atom-dimer and atom-atom-atom eigenstates dis-
play an oscillatory behavior with respect to the interspecies scattering length. This
behavior is attributed to the avoided crossings present in the energy spectra, where
atom-dimers are converted to atom-atom-atom eigenstates and vice versa. These two
types of states feature different correlation properties. Atom-dimers exhibit larger
values of two- and three-body contacts compared to atom-atom-atom eigenstates, due
to the strongly correlated nature of the dimer. In the vicinity of an avoided cross-
ing these differences are manifested as a sharp increase or decrease of the contacts,
induced by transitions among these two classes of eigenstates as one tunes the inter-
species scattering length. This behavior holds independently of the statistics of the
identical particles or the mass ratio with respect to the third distinguishable atom.

At the limit of small interspecies scattering lengths we are able to derive analytical
expressions for the two-body contact of atom-dimers. These expressions stem from
the separation of the three-body wavefunction into a part treating the strongly bound
dimers, and another one taking into account the third atom. These analytical limits
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provide an upper bound for the two-body contact of atom-dimers. For large inverse
scattering lengths the contacts of all of these states saturate the bound. Larger values
of the two-body contact than these limits correspond to three-body bound states,
exhibiting enhanced two-body correlations. Turning to the three-body contact of
atom-dimers, such an upper bound is absent. At small interspecies scattering lengths,
the atom-dimers lying energetically close to the atom-dimer threshold feature stronger
three-body contacts compared to atom-dimers further away from the threshold. The
strongest three-body correlations are displayed by trimers, and this occurs for any
interspecies scattering length.

As mentioned in Sec. 2.4.2, the two dimensional three-body contact does not
satisfy any universal relation, in stark contrast to the three dimensional one. As an
extension of our theoretical treatment of short-range three-body correlations in two
dimensions, we could further explore the asymptotic expansion of the one-body density
in momentum space from where the three-body contact is defined. For instance, an
expression could be derived relating the number of trimers in a gas to the three-body
contact, in analogy to the already existing formulas in three dimensions [123, 423].
The fact that there is no need to introduce any additional length scale to describe
three-body physics in two dimensions, could lead to a formula that depends only on
a few parameters, such as the three-body contact and the two dimensional scattering
length.

Having at hand the correlation properties of trapped three-body binary mixtures,
we set on to investigate their out-of-equilibrium dynamics by quenching the inter-
species scattering lengths [B4]. The few-body setups are initialized in a non-interacting
eigenstate with a variable spatial extent. An interaction quench is performed subse-
quently, and the system evolves in a two dimensional harmonic trap. Its dynamical
response is evaluated for spatial extents smaller or larger than the three-body har-
monic oscillator length. It is found that when the initial extent is smaller than the
oscillator length, a superposition of trimers and atom-dimers is dynamically gener-
ated. These states are identified both from the overlap coefficients of the initial with
the final state, and the Fourier spectra of the fidelity. For initial widths larger than the
oscillator length, mostly atom-atom-atom eigenstates are contributing in the quench
dynamics. This behavior is independent of the quantum statistics of the mixture.

This selective excitation process relies on the following observation. The three
classes of three-body eigenstates possess distinct spatial extents. The width of atom-
atom-atom states is essentially of the order of the oscillator length. In contrast, trimers
and atom-dimers are localized to much smaller distances, due to their bound state
characteristics. By tuning the spatial extent of the initial three-body wavefunction,
we maximize the overlap of the initial state with certain classes of eigenstates, hence
the observed superpositions.

The signatures of few-body bound states are readily appreciated by the evolution of
the contacts. For small initial spatial widths, the latter are substantially enhanced in
comparison to the other scenario. For spatial extents larger than the oscillator length,
the contacts feature a peak structure with respect to the post-quench inverse inter-
species scattering lengths. At certain values of the latter, the time-evolved contacts
acquire very large values, and subsequently decrease as the inverse scattering lengths
are tuned further away. This enhancement stems from the participation of atom-
dimers in the vicinity of avoided crossings. In these regions, the predominantly pop-
ulated atom-atom-atom eigenstates change character, transitioning to atom-dimers.
The latter as we know already from [B3] exhibit greater two-body short-range corre-
lations compared to the other eigenstate type. The peaked structure of the contacts
is therefore an indication of the contribution of atom-dimers in the dynamics.
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As discussed earlier, this selective dynamical excitation process is similar for both
identical bosonic and fermionic particles. Differences however occur when considering
different mass ratio between the identical atoms and the distinguishable one. For
heavy identical particles, atom-atom-atom eigenstates are also populated when the
initial spatial extent is smaller than the oscillator length. Moreover, the peaks in
the contacts with respect to the scattering lengths are more sharp compared to the
case of light identical atoms. This discrepancy can be traced back to the different
energy structure around the avoided crossings [B3]. For heavy bosons or fermions, the
avoided crossings between atom-dimers and atom-atom-atom eigenstates are sharper
compared to the case of light identical particles.

By varying the initial spatial extent of the three-body wavefunction, we were able
to selectively excite distinct classes of eigenstates, such as trimers or atom-atom-atom
eigenstates. In all scenarios however, a superposition of eigenstates belonging to a
certain class was dynamically generated. In [424] selective eigenstates of a three-
body binary mixture trapped in one dimension were dynamically populated with
high fidelity by considering time-dependent interaction strengths. This process relied
on shortcut-to-adiabaticity protocols [425–430] for driving the interaction strengths
such that the final target state is reached. Employing such protocols could help
us populate specific few-body bound eigenstates for our two dimensional three-body
binary mixtures.

Time-dependent protocols of interaction strengths were very successful in creating
a coherent superposition of the first excited Efimov trimer with atom-dimers in three
dimensional thermal gases with repulsive interactions [118, 119]. Such superposition
was achieved by considering a sequence of modulated magnetic fields (pulses) delayed
by a variable free evolution time (dark time), in analogy to the Ramsey scheme.
The binding energy of the Efimov trimer was measured with high precision from the
particle loss signal, which displayed interference fringes. Moreover, the signal displayed
a decay, that could not be properly identified. In [B5] we solve the time-dependent
three boson problem in a trap to provide insights about the association and decay
mechanisms of the aforementioned dynamical protocol.

We start our analysis by investigating solely the impact of thermal effects. By
inspecting the scaled probability to populate Efimov trimers at the end of the second
magnetic field pulse, two regimes can be identified. The first one occurs at early dark
times, where high amplitude high frequency oscillations are observed. The Fourier
analysis reveals a single dominant frequency matching the energy difference of the
first excited Efimov trimer and the first atom-atom-atom eigenstate. The frequency
is robust against high temperatures. At later dark times the amplitude of oscillations
drastically drops, and the decay is assigned to the temperature of the system. The
Fourier spectra however now reveal three prevailing frequencies. The highest one
corresponds to the one identified in the early dark time regime. The other two stem
from the energy gap between the first atom-atom-atom eigenstate and first atom-
dimer, and between the latter and the Efimov trimer. The frequency between such
two states was measured in the experimental works for 7Li thermal gases [118, 119].
In addition to that we find that higher frequencies involving the first atom-atom-atom
eigenstate also persist despite thermal effects.

We now set to investigate the role of the decay width of the Efimov state. In order
to accurately assess it within the zero-range model, we park at a large scattering
(positive) scattering length. The width is taken into account only during the dark
time because the length of the pulses is shorter than the lifetime of the Efimov trimers.
It is found that the signal stemming from the probability to occupy Efimov trimers
possesses two distinct decay widths. At early dark times, the oscillatory signal decays
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according to the inherent decay width of the Efimov trimer. At later dark times
however, the signal has a characteristic decay time, being twice as long as the Efimov
lifetime. This behavior originates from the coherent superposition of the Efimov trimer
with the first atom-dimer and atom-atom-atom eigenstate. The decay widths of the
two latter eigenstates are at least one order of magnitude smaller than the one of the
trimer and can be safely neglected. The identified factor of two in the decay width
sets a new perspective on the decay mechanisms reported in [118].

Moreover, we extend the dynamical protocol to associate Efimov trimers at attrac-
tive interactions as well. Despite the absence of atom-dimers, the first atom-atom-
atom eigenstate is sufficient for creating a coherent superposition of the latter with the
Efimov trimer. As expected, this single superposition manifests in a single dominant
frequency in the frequency spectrum. Similarly to the case of repulsive interactions,
the oscillatory signal of the trimer probability at later dark times possesses a decay
time twice as long as the lifetime of the Efimov state.

Overall, the results stemming from the time-dependent three-body problem with
modulated interactions lead to two conclusions. First, that the Efimov trimer is indeed
associated by the protocol for all interaction strengths despite thermal effects. Second,
that the manifested interference fringes of the Efimov trimer probability possess a
decay time which is twice as long as the lifetime of the Efimov trimer. Therefore,
apart from the binding energy, the lifetime of the trimer can also be assessed.

Our work sets new perspectives for assessing the properties of Efimov trimers
in a precise way. The dynamical protocol with modulated magnetic fields can be
employed to measure the binding energy and lifetime of Efimov trimers at all in-
teraction strengths. It can be especially utilized in the attractive regime, providing
high precision tests of the Efimov universality [112, 431–433]. The latter refers to the
observation, and later theoretical vindication [434–436], that the negative scattering
length at which the ground Efimov state dissociates, depends solely on the van der
Waals length, and not on the interaction characteristics of the considered species.

Moreover, the shape of the pulses employed in the dynamical protocol can be
optimized so that a higher population of associated Efimov trimers can be achieved,
compared to the one reported in [118], or even in the experiment employing quenches
to strong interactions [79]. In that regard, one could generate a gas with a macroscopic
fraction of Efimov trimers at finite negative or positive scattering lengths, without the
additional complications arising from a strongly interacting quantum gas. Apart from
observing trimers, one could investigate the possibility of creating dressed Efimov
states. This could be achieved by driving the interactions sinusoidally, resulting in
dressing of their properties, such as the lifetime. Such prospect could lead to long-lived
dressed Efimov trimers, bypassing the problem of strong losses due to their inherently
short lifetimes. Signatures of dressing and lifetime modification have already been
observed in mass imbalanced settings [437].

Dynamics of few particles in a many-body environment

Turning to the problem of interacting impurities in a many-body environment, we have
investigated their correlated dynamics upon modulating the interspecies interactions.
We have considered 10 impurities in a mesoscopic medium, consisting of 100 bosons,
all of the setups trapped in a one dimensional harmonic oscillator. We have examined
two scenaria, one in which the system lies initially in its miscible phase and is driven
to the immiscible phase, and one where the reverse transition takes place. In all cases,
it is found that when the interspecies interaction is driven with a smaller frequency
compared to the trapping one, the system goes through a sequence of dynamical
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transitions from the miscible to the immiscible phase and vice versa. The frequency
of these transitions matches the driving frequency. However, when the latter is larger
than the trapping frequency, the initial condition plays a major role.

When the system is initialized in its miscible phase, a significant fraction of im-
purities is expelled from the medium, performing small amplitude oscillations at the
edges of the bosonic cloud. The remaining impurities are simultaneously localized
at the trap center with a considerable probability. To better grasp their behavior,
an effective potential is constructed, taking into account the trapping one, and the
instantaneous density of the majority species weighted with the interspecies interac-
tion. We see that during the time evolution the impurities reside mostly at the three
lowest eigenstates. To evaluate the degree of correlations, we have also determined
the dynamics of the impurities within a strict mean-field approximation. It is found
that pairs of dark-bright solitons are formed. After a quarter of an oscillation period,
the two pairs merge at the trap center, in a single solitonic bound state.

When the system lies initially in its immiscible phase, a breathing motion of the
impurities is observed. Employing the effective potential once again, we can reproduce
the breathing frequency of that motion to a very good extent. The bath also performs
a breathing movement, but most importantly, two small symmetric dips develop in
the vicinity of the trap center. These structures separate the bath into two disjoint
regions, where one-body coherence is lost, meaning that one particle is localized on
either sides of these regions. In the absence of correlations, pairs of dark-bright solitons
form similarly to the opposite driving scenario. The difference is that the pairs perform
a breathing motion of much smaller period and do not merge at the trap center, even
at very large evolution times. The breathing frequency lies very close to the theoretical
prediction for such pairs of solitonic structures confined in a trap.

Subsequently, we study the effect of the impurity number as well as their in-
traspecies interactions in their dynamical behavior. For two non-interacting impu-
rities we observe that they mainly reside at the trap center throughout the entire
time evolution, regardless of the initialization protocol. This is the case even for 10
non-interacting impurities. Only by increasing the intraspecies repulsion do we start
discerning differences between the two initializations. In particular, when the system
lies initially in its miscible phase, signatures of the expelled impurities at the edges of
the bosonic cloud appear in their one-body reduced density. For the inverse initial-
ization, the breathing motion of the impurities becomes visible upon increasing their
intraspecies repulsion.

Considering binary ultracold mixtures, there is a challenging regime where the
interspecies attraction is slightly dominating over the intraspecies repulsion. From a
mean-field perspective, the binary mixture is unstable due to the net attraction, and
the whole system collapses [47, 438, 439]. Quantum fluctuations however arrest this
collapse from happening, and the binary mixture forms a quantum droplet. One of the
main tell-tale signatures of droplet formation is the flat-top profile appearing in the
one-body density. A challenging yet exciting direction is to investigate the dynamics
of these quantum droplets in low dimensions. In two dimensions for instance, one can
study whether embedding soliton stripes on top of the quantum droplet will result in
the so-called snake instability [440–444]. This is the process of vortex pair formation,
each with opposite circulation. Furthermore, the recent realization of dipolar binary
mixtures [445, 446] sets the stage for exploring novel aspects of quantum droplets
[447], this time occurring due to the competition of the dipolar and the scattering
length.
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