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“Nothing in life is to be feared, it is only to be understood. Now is the time to understand 
more, so that we may fear less.” 

– Marie Curie 

 

1 Introduction 

There are certainly things in our world that are rightly feared, such as the acute climate crisis 

or the current war in Ukraine – however, I believe that the central point of Marie Curie’s quote is 

surely true: the more we understand, the less we have to fear. In the context of anxiety- and fear-

related disorders, we could also frame it this way: The more we understand underlying mechanisms 

through fear-, anxiety- and stress-related research, the better equipped we are to prevent or combat 

psychopathologies, and the fewer individuals have to experience and suffer from magnified anxiety 

and fears. The number of individuals affected by these conditions is tremendous: According to a 

nationwide survey conducted by Jacobi et al. (2014), around one-third of the participants fulfilled 

the criteria for at least one psychological disorder in the previous 12 months, with anxiety disorders 

being the most prevalent at 15.3%. This high prevalence is not only associated with considerable 

suffering for an enormous number of affected individuals, but also with high costs that burden the 

healthcare system arising directly from anxiety disorders themselves, but also indirectly from 

several physical diseases that are associated with anxiety disorders (Bandelow & Michaelis, 2015; 

Härter et al., 2003; Sareen et al., 2005). 

To study fear- and anxiety-related processes in the laboratory, the fear conditioning 

paradigm, which is considered to be one of the most promising paradigms for translating basic 

research findings into clinical practice (Anderson & Insel, 2006; Beckers et al., 2023), is commonly 

used in humans and animals. Even though fear conditioning research has a long tradition (Milad & 

Quirk, 2012), open questions regarding its optimal experimental parameters, operationalization, and 

measurements remain. These questions are addressed in meta-science or meta-research, which aims 

at the pursuit of the scientific process by ensuring the protection of and adherence to research 

methods and standards of analysis (Ioannidis, 2018). 
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1.1 Meta-science and the three ‘R-terms’  

In the field of meta-science, science investigates its own methods and practices (Ioannidis, 

2018; Ioannidis et al., 2015). In essence, meta-science can be described as research on research. 

More precisely, the aim of meta-science is “the study of research itself: its methods, reporting, 

reproducibility, evaluation, and incentives.” (cf. Ioannidis, 2018, page 1). 

There are three important and related ‘R-terms’ (McIntosh & Chambers, 2020) linked to 

meta-science. Even though they are sometimes used interchangeably in the literature, they differ in 

important aspects and should therefore be differentiated: reproducibility, robustness, and, 

replication (Nosek et al., 2022). Reproducing a prior finding refers to applying the same analysis 

to the same data whereas testing the robustness of a prior finding refers to the application of 

different analysis specifications to the same data to answer the same research question. In order to 

replicate a prior finding, the same analysis is applied to a different data set acquired using the same 

data recording and study design specifications (i.e., collection of new data in a new study; National 

Academies of Sciences, Engineering, and Medicine, 2019). With respect to replication, it is 

important to differentiate between direct and conceptual replications (Earp & Trafimow, 2015): 

Direct replication involves repeating the methods and procedures of an experiment as similar as 

possible to the original study, while conceptual replication involves using somewhat different 

methods and/or procedures (Schmidt, 2009). Both replication types serve different purposes: While 

a direct replication is more concerned with confirmation, a conceptual replication goes further by 

investigating generalizability and contributing to the theoretical understanding (Schmidt, 2009). 

However, replications also pose challenges in terms of their definition - or more precisely, it is still 

an open question when exactly a finding is considered to be replicated (e.g., LeBel et al., 2018). 

All these aspects have received growing attention in recent years as they are fundamentally 

important for the credibility of scientific findings (Nosek et al., 2022; Simmons et al., 2011) and 

have been examined in detail in several studies: As an example, in a work on (computational) 

reproducibility of Artner et al., (2021), 30% of 232 identified findings in the field of psychology 

could not be reproduced. This is an alarming amount, considering that the identical analysis of 

identical data should invariably generate identical results. Other studies on this topic have reported 

similar rates of unsatisfying (computational) reproducibility (Hardwicke et al., 2021; Maassen et 

al., 2020). These studies also showed that the lack of reproducibility was either related to the fact 

that the original results were incorrect or that the analysis was not performed as described – both of 

which are a threat to the credibility of the findings. 
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Similarly, testing robustness in psychological research by supplying the same data and the 

same research question to different researchers yielded significantly different results, illustrating 

the strong dependence of results on the type of analysis selected and performed (Botvinik-Nezer et 

al., 2020; Silberzahn et al., 2018). The variability in both the significance of results and effect sizes 

was evident. Strikingly, none of the 70 teams included in the study of Botvinik-Nezer et al. (2020) 

used the same analytical approach. Neither level of expertise nor peer assessment of analysis quality 

explained the variability in approaches (Silberzahn et al., 2018). This concerning observation of 

limited robustness might signify that some findings are rather fragile, which might pose a threat to 

replicability and generalizability (Nosek et al., 2022) as results may be confined within specific 

experimental boundary conditions or in specific samples. In the studies by Botvinik-Nezer et al. 

(2020) and Silberzahn et al. (2018), the robustness of results was investigated across multiple 

individuals or laboratories, but it can also be assessed at other levels, such as using different types 

of data analysis for the same data. 

The results of the direct replication attempts of psychological studies by the Open Science 

Collaboration (2015) are probably best known (but also criticized for underestimating replication 

rates, see Anderson et al., 2016; Gilbert et al., 2016): More than one-half of the studies examined 

could not be replicated. Other psychological or social science projects have undertaken similar 

replication attempts (Camerer et al., 2018; Protzko et al., 2020; Soto, 2019) – with some studies 

showing even relatively high replication rates (Protzko et al., 2020). Taken together, the results of 

these replication projects conducted by Camerer et al. (2018), Open Science Collaboration (2015), 

Protzko et al. (2020), and Soto (2019) and various multisite replications (i.e., Many Labs projects) 

revealed that only 64% of the studies showed statistically significant results in the same direction 

(Nosek et al., 2022) – even though these projects have been methodologically criticized for the 

definition and operationalization of a successful replication (e.g., the significance of p-values; 

LeBel et al., 2018). 

In sum, these findings emphasize the importance of meta-science and the continuing 

challenges of producing reproducible, robust, and replicable results in psychological research. An 

important aspect that accentuates this challenge is the high degree of methodological flexibility that 

researchers encounter throughout the research process: With numerous decisions to be made during 

this process, a plethora of options arise at each decision point, resulting in substantial 

methodological heterogeneity in the literature. This considerable number of decisions involved in 

the research process is also known as ‘researcher degrees of freedom’ (Simmons et al., 2011) or the 

‘garden of forking paths’ (Gelman & Loken, 2013).  
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1.2 The garden of forking paths 

The term ‘garden of forking paths’ (Gelman & Loken, 2013) derives from the idea that with 

each decision, the researcher enters a path from which, in turn, further paths branch off (for an 

illustration, see Figure 1). Researchers frequently opt for a specific path concerning for instance 

the selection of a specific study design as well as the sample and outcome measures, data collection, 

and analysis types. This is done in good faith and with a rationale behind it, such as choosing the 

most apparent path, unfamiliarity with alternative paths, or relying on paths taken by the majority 

of the field. In addition to the difficulty of keeping track of all the options, making these choices is 

further complicated by the fact that there may not be a clear “best path” to answer a specific research 

question, and that none of the options may necessarily be wrong, but even equally justifiable 

(Silberzahn et al., 2018; Simmons et al., 2011). Yet, the consequences of choosing different paths 

may be substantial. 

However, the impact of this heterogeneity can be systematically investigated in so-called 

manyverse- or multiverse approaches, in which some (i.e., manyerse, Kuhn et al., 2022) or most to 

all (i.e., multiverse, Del Giudice & Gangestad, 2021; Steegen et al., 2016) different plausible and 

equally justifiable options are investigated simultaneously (see Figure 1B and C). In contrast, 

opting solely for one specific path is also referred to as ‘universe’ (see Figure 1A). The many- and 

multiverse analyses might serve as a compass for the garden of forking paths. Their application is 

described in more detail in sections 1.9 – 1.11. 

 

  

Figure 1   Illustration of the ‘garden of forking paths’ (Gelman & Loken, 2013) visualized through ellipses representing various 
decisions made (in green) throughout the research process. Typically, researchers follow one path resulting in a single universe 
as depicted in A. The manyverse includes several, but not all possible options (B) while the multiverse approach explores most 
or all potential and equally justifiable choices simultaneously (C). 
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1.3 Overarching aims 

In this thesis, the meta-scientific topics of methodological heterogeneity, reproducibility, 

replicability, and in particular robustness are systematically addressed in four different fear 

conditioning studies, which will be discussed in more detail below. Even though this thesis does 

not address (computational) reproducibility empirically, the work included here takes 

(computational) reproducibility into account as two studies (i.e., Study III and Study IV) have 

been written as reproducible manuscripts using the open-source software R Markdown 

(https://rmarkdown.rstudio.com/). This allows others to generate the full manuscript file from the 

data and code shared publicly. Three of the here included studies focus on different aspects of 

robustness (Studies II – IV), and one study concentrates on conceptual replicability (Study I). 

More specifically, Study I attempts to conceptually replicate specific previously reported brain-

behavior associations, while Studies II – IV focus on the robustness of results by examining the 

reliability of commonly used outcome measures in fear conditioning (Study II), and by addressing 

the impact of methodological heterogeneity related to exclusion criteria (Study II) and analytical 

approaches (Study IV) in fear conditioning research. In sum, the overall objective of this thesis was 

to elucidate the challenges produced by the high amount of methodological heterogeneity and work 

out potential remedies in fear conditioning research. 

In the field of fear conditioning, meta-science has gained momentum with a growing body 

of meta-scientific studies contributing to methodological and theoretical knowledge. However, 

meta-science in the fear conditioning field is still in its infancy with only a few studies focusing on 

methodological heterogeneity or robustness (Haaker et al., 2014; Kuhn et al., 2022; Lonsdorf et al., 

2019; Ney et al., 2020, 2022; Sjouwerman et al., 2022; Sjouwerman & Lonsdorf, 2020), replication 

(Bauer et al., 2020; Chalkia et al., 2020; Luyten & Beckers, 2017) and – to my knowledge – no 

study on (computational) reproducibility. Prior to introducing the studies included in this thesis, I 

will provide a comprehensive overview and explanation of fear and anxiety as well as the fear 

conditioning paradigm. 

1.4 Fear, anxiety, and pathology 

Fear is – despite being intensely unpleasant – a crucial emotion from an evolutionary 

perspective, as it is a fundamental aspect of survival (Ekman & Cordaro, 2011) and plays a central 

role in adapting to an ever-changing environment. When confronted with a predator, fear triggers a 

physical response that prepares the body for an adaptive defensive reaction: pulse and breathing 
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rates increase to supply optimal oxygen to the muscles, and adrenaline is released to prime the body 

for either fight or flight (Cannon, 1929; Lang et al., 2000). After defeating or escaping the predator, 

fear unfolds its second critical learning function by teaching us to recognize and respond to similar 

threats in the future. Consequently, fear has two essential functions: to react appropriately to current 

dangerous situations and to anticipate or avoid future hazardous situations by applying prior 

experiences to comparable stimuli or situations.  

Whereas the fear described above is thought to be elicited by a specific threatening, time-

locked stimulus, i.e. a ‘phasic response’, anxiety is considered to be more long-lasting and evoked 

by less specific stimuli or by anticipated threatening experiences in the future, i.e. a ‘sustained 

response’ (Davis et al., 2010; Lang et al., 2000). Most importantly, this distinction – although not 

necessarily mutually exclusive (Bublatzky et al., 2013; Stegmann et al., 2022) – provides a basis 

for the theoretical mechanisms behind different anxiety- and stress-related disorders: Phobias and 

post-traumatic stress disorder (PTSD), for instance, appear to be more associated with phasic fear 

processes, while generalized anxiety and panic disorder may be more related to sustained anxiety 

processes (Grillon, 2008).  

These disorders relate to the dark side of fear, where magnified anxiety and fear lead to 

pathological conditions (for review, see Rosen & Schulkin, 1998). Fear then no longer fulfills its 

adaptive functions, but becomes dysfunctional by occurring in innocuous situations. The spectrum 

of innocuous situations that can potentially trigger fear is wide, and the resulting anxiety- and stress-

related disorders range from specific phobias over post-traumatic stress disorder to generalized 

anxiety disorder. If left untreated, pathological fear is not only likely to persist, but also tends to 

generalize to similar stimuli (Cooper, van Dis, et al., 2022; Lissek, 2012), intensifying the personal 

burden by occurring in an increasing number of situations. 

Fortunately, several treatment options exist that are highly effective – including, most 

notably, cognitive behavioral therapy (CBT; Barlow et al., 2007; Hofmann & Smits, 2008; Olatunji 

et al., 2013) the key component of which is believed to be exposure (Dunsmoor et al., 2015; Milad 

& Quirk, 2012; Rachman, 1989; Sánchez-Meca et al., 2010; Wolitzky-Taylor et al., 2008). Most 

critically, however, these therapeutic gains are often not long-lasting and patients frequently 

experience an increase of fear after a period of time, which can result in a full-blown relapse 

(Vervliet et al., 2013). Investigating the conditions under which therapeutic effects are preserved is 

therefore of major interest (Vervliet et al., 2013), but also answering other related clinical questions 

such as “Why do some people develop an anxiety disorder and others do not? What factors 

contribute to the perpetuation of the disorder and generalization of fear? Which individuals benefit 
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from which treatment?” The majority of fundamental anxiety and fear-related mechanisms – 

particularly at the individual level – are still unclear and urgently need to be studied in more detail 

(Lonsdorf & Merz, 2017). An important experimental tool for investigating these mechanisms 

constitutes the classical fear conditioning paradigm. 

1.5 The fear conditioning paradigm 

The acquisition, treatment, and relapse of (pathological) fear can be experimentally modeled 

in the laboratory by implementing the classical fear conditioning paradigm which can comprise the 

experimental phases fear acquisition training, extinction training, return of fear (ROF) 

manipulation, and ROF-test. These are described in more detail in the following sections.  

1.5.1 Fear acquisition training 

One assumed mechanism for the acquisition of (pathological) fear is Pavlovian 

conditioning, which is modeled in the first experimental phase - the acquisition training phase 

(Mineka & Oehlberg, 2008; Mineka & Zinbarg, 2006; Öhman & Mineka, 2001): In cue 

conditioning paradigms, an initially neutral stimulus (NS), e.g. a geometric shape (see Figure 2), is 

repeatedly paired with an unpleasant stimulus, the unconditioned stimulus (US), such as an electro-

tactile stimulation, which represents a threat to the individual and elicits an unconditioned (fear) 

reaction (UR). Through repeated pairing, the NS gains the power to predict the US and becomes a 

conditioned stimulus (CS+). The CS+ thus serves as a danger cue that elicits the anticipatory, now 

conditioned, reaction (CR). CRs encompass orienting, fear, or defensive responses to threat 

(Lonsdorf et al., 2017), and to be elicited, a new memory trace has to be formed in an excitatory 

learning process that consists of three elements: mental representations of the CS+, of the US and 

their relation (Vervliet et al., 2013). This excitatory learning process results in a CS-US association 

which is stored in the new memory trace – the conditioned memory. 

Another stimulus, the CS-, is never paired with the US, but instead of being a neutral control 

stimulus, it is assumed to gain the power to predict the absence of danger and to become a signal of 

safety in an inhibitory learning process (Lissek, Baas, et al., 2005; Lissek, Powers, et al., 2005). 

The implementation of two different stimuli refers to the so-called differential fear conditioning 

paradigm, which is the most commonly used paradigm in humans, whereas in rodents, single cue 

paradigms are frequently employed, in which the CS+ is presented without the CS- (Lonsdorf et al., 

2017). An advantage of the differential fear conditioning paradigm is that the CRs can be quantified 
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as amplitude/strength differences between CS+ and CS- responses while controlling for differences 

between subjects in general response levels. Another advantage over the single-cue protocol is that 

there is no necessity for a control group, and within-subject designs are associated with increased 

statistical power and time efficiency (Lonsdorf et al., 2017).  

 

  

1.5.2 Extinction training 

The extinction training phase serves as an experimental model for a secondary learning 

process (i.e., extinction learning) in which the contingencies change such that the CS+ no longer 

predicts the US and, as a result, the CR gradually wanes. Extinction learning appears to be the 

crucial ingredient in exposure interventions (Graham & Milad, 2011; Milad & Quirk, 2012; 

Rachman, 1989; Vervliet et al., 2013), proposing extinction training as a translational model for the 

treatment of anxiety- and stress-related disorders in the clinical context (Craske et al., 2018). The 

validity of extinction training as a translational model may be, however, less established than 

previously assumed (Scheveneels et al., 2016) implying the need for more extinction research in 

depth. 

Figure 2   Illustration of the presented stimuli and ROF manipulation types (upper panel) as well as conditioned responses 
and memory traces across experimental phases (lower panel). Upper panel: The ROF manipulation types presented here 
include spontaneous recovery (depicted as a clock), contextual change (depicted as two circular arrows) and reinstatement 
(depicted as a flash). Lower panel: Darker, non-transparent lines represent conditioned responses to the CS+ (red) and CS-
(blue), while lighter, transparent lines represent fear (red) and extinction (blue) memory traces. Note that after successful
acquisition and extinction training, responding during ROF test can be either generalized with increased responses to the CS+ 
and the CS- or differential with increased responses solely to the CS+. CS = conditioned stimulus, ROF = return of fear,
gen. = generalized, diff. = differential. 
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During extinction training, both CSs are presented again, however, in an absence of the US, 

typically resulting in a stepwise reduction of the CR over time or trials. Throughout this phase, a 

CS-noUS association is thought to be formed through an inhibitory learning process, producing a 

new memory trace: the extinction memory. Thus, it is assumed that the initial conditioning memory 

trace is not erased and remains intact, but is in conflict with the extinction memory (Bouton, 1993, 

2004, 2014; Kim & Richardson, 2007; Myers & Davis, 2002, 2007; Rescorla, 1993, 2001). Thus, 

after successful extinction training, the CS+ includes both excitatory and inhibitory information. 

According to this retrieval model (Bouton, 2002; Craske et al., 2018), the dominance of one 

memory trace over the other determines which association (i.e., CS-US or CS-noUS) is retrieved 

resulting in the expression or suppression of the CR. In line with this, manipulations that undermine 

the CS-noUS association such as a change of context (Bouton & Bolles, 1979b; Bouton & 

Swartzentruber, 1989, see section 1.5.3) appear to weaken the inhibitory memory retrieval and 

facilitate ROF.  

Extinction training can either follow immediately after acquisition training (i.e., immediate 

extinction) or with a certain time delay (i.e., delayed extinction). Most human work employs 

immediate extinction, which is more time and cost-efficient (for an overview, see Lonsdorf et al., 

2017). Yet, there is also some evidence that immediate extinction may promote fragmented and 

slower extinction learning and reduce ROF effects (Golkar & Öhman, 2012; Norrholm et al., 2008) 

– a phenomenon termed immediate extinction deficit (Chang & Maren, 2009; Maren, 2014) – which 

is, however, not consistently observed across studies (Huff et al., 2009; Merz et al., 2016). On the 

contrary, allowing the fear memory to consolidate prior to extinction training is thought to be a 

more naturalistic model for the treatment of anxiety- and stress-related disorders, as there is usually 

a time delay between the acquisition and treatment of pathological fear (Haaker et al., 2014; 

Lonsdorf et al., 2017), and may thus enhance ecological validity (for discussion, see Maren, 2014). 

In addition, delayed extinction provides the opportunity to investigate another phenomenon called 

fear recall, which refers to the increased responses to the CS+ (i.e., differential fear recall) or to 

both CSs (i.e., generalized fear recall) during the first extinction training trials (Scharfenort et al., 

2016). Delayed extinction training thus has a number of advantages – particularly for clinical 

translation (Lonsdorf et al., 2017).  

1.5.3 ROF manipulation and test 

Experimentally induced ROF, which can be implemented to probe retention of fear in the 

laboratory, has been proposed to model clinical relapse and is therefore employed systematically to 

investigate mechanisms that promote or prevent ROF (Scharfenort et al., 2016; Vervliet et al., 
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2013). Following successful extinction training, ROF can be induced in the laboratory by i) the 

mere passage of time (spontaneous recovery), ii) contextual change (renewal), or iii) an 

unannounced re-exposure to the US (reinstatement). The subsequent paragraph provides brief 

explanations of spontaneous recovery and renewal, but a more detailed explanation of 

reinstatement, as this manipulation of the ROF was included in the study this thesis is based on. It 

is assumed that these ROF manipulations promote the dominance of the conditioned memory over 

the extinction memory, resulting in the re-occurrence of the CR. The success of ROF induction can 

be tested in the following phase, the ROF test phase, in which both CSs are presented again without 

US delivery. Similar to fear recall, ROF phenomena can be CS+ specific (Dirikx et al., 2007; 

Hermans et al., 2005; LaBar & Phelps, 2005) or non-specific, with the latter manifesting in an 

increased response to both CSs (Dirikx et al., 2009; Kull et al., 2012). These different response 

patterns are crucial as the tendency to generalize across safety and danger cues has been shown to 

be associated with pathological fear whereas intact discrimination between these cues is linked to 

resilience (Cooper, van Dis, et al., 2022; Craske et al., 2012; Duits et al., 2015; Lissek, Powers, et 

al., 2005).  

Among these ROF manipulations, spontaneous recovery refers to the observable 

phenomenon of CR re-occurrence elicited by the mere passage of time – without any experimental 

manipulation – following successful extinction training and indexing retrieval of the fear memory 

which is also referred to as ROF expression. In contrast, extinction retention, whose examination is 

procedurally identical to that of spontaneous recovery, describes the absence of CR re-occurrence 

and indicates successful retrieval of the extinction memory (Lonsdorf et al., 2017). Renewal, as a 

further ROF phenomenon, describes the return of the CR following a change of context throughout 

the different experimental phases and after successful extinction training (Bouton, 2002).  

Pavlov (1927) was the first to report the third ROF phenomenon described here, the 

reinstatement, which refers to the CR re-occurrence following an unsignalled representation of the 

US. While reinstatement has been examined in rodents since the 1970s, its studies in humans have 

only recently begun (Haaker et al., 2014). The retrieval model (described above, see section 1.5.2) 

provides a possible explanation for the emergence of the reinstatement phenomenon: The reinstated 

US is assumed to elicit contextual fear by retrieving the CS-US association that was formed during 

acquisition training. The context, which serves as an “occasion setter” (Holland, 1992; Schmajuk 

& Holland, 1998), is crucial as it conveys the re-validity of the CS-US association and promotes its 

dominance over the CS-noUS association acquired during extinction training (Bouton, 2004). 

Consistent with the retrieval model, experiments on the impact of contextual information support 

its pivotal role: the ROF appears to be stronger when the reinstatement context is identical to the 
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context of fear acquisition (Bouton, 2002) and extinction (Bouton & Bolles, 1979a; LaBar & Phelps, 

2005). However, some findings challenge the retrieval model, such as the emergence of ROF in the 

case where the test context differs from the identical context of extinction and reinstatement (i.e., 

the absence of an occasion setter during the test phase; Westbrook et al., 2002). Nevertheless, the 

retrieval model can explain the majority of reinstatement findings in rodents and is the prevailing 

theory behind reinstatement effects (Haaker et al., 2014). 

The fear conditioning paradigm is currently viewed as the most promising approach for 

transferring empirical findings on fear- and anxiety-related processes into clinical practice 

(Anderson & Insel, 2006; Beckers et al., 2023) and is therefore of great importance for anxiety- and 

stress-related research. In the following, fear conditioning will be used as an umbrella term 

encapsulating the different experimental stages (Lonsdorf et al., 2017). 

1.6 Quantifying the conditioned response 

As described above, differential fear conditioning protocols include both the CS+, which 

serves as a danger cue, and the CS-, which signals safety. The CR can be quantified as the difference 

between responses to the CS+ and CS-, also referred to as CS discrimination which ultimately 

reflects the associative learning process of interest (Lonsdorf et al., 2017). 

As a multimodal and multidimensional construct, the defensive (conditioned) response to 

threat is experienced and expressed at different experiential and behavioral levels (Lonsdorf et al., 

2017). Hence, it can be quantified at multiple response levels including i) subjective reports about 

experiences, ii) behavioral expression, and as changes in iii) physiological, and iv) neurobiological 

processes (Bradley & Lang, 2000). Typical outcome measures employed in human fear 

conditioning studies include the skin conductance response (SCR), fear ratings, and BOLD fMRI 

(blood oxygen level-dependent functional magnetic resonance imaging; Lonsdorf et al., 2017) 

which will be explained in more detail below, as they were obtained in the study upon which this 

thesis is primarily based. 

1.6.1 Skin conductance response (SCR) 

In the presence of unexpected, novel, presumably important, discrete stimuli – such as a 

threat in the form of the CS+ predicting the US – human sweat glands in the skin are filled with 

sweat, resulting in a lower resistance of the skin and hence better electrical conductance. These 

changes in electrodermal activity (EDA) can be measured as skin conductance responses (SCRs). 



 
INTRODUCTION 

12 
 

SCRs are directly related to sympathetic activity and thus reflect arousal processes (Hamm & 

Weike, 2005; Lipp, 2006), but also other processes or stimuli/task characteristics such as 

orientation, activation, attention, task significance, and affective stimulus intensity (Dawson et al., 

2007). 

More precisely, SCRs represent a phasic increase in EDA that typically emerges 0.5–5 s 

after stimulus onset (Boucsein et al., 2012) and can be quantified as the amplitude difference 

between the trough and the peak of this increase (Lykken & Venables, 1971). Typically, the CS+ 

as a danger cue elicits a larger SCR amplitude, whereas SCRs to the CS- – the safety cue – are lower 

(Lonsdorf et al., 2017). As explained above, the difference between responses to the CS+ and CS- 

yields CS discrimination. Taken together, SCRs are optimal for capturing defensive responding to 

discrete stimuli (Dawson et al., 2007) and are therefore predominantly employed in cue 

conditioning paradigms. Physiological responses such as SCRs have the additional advantage of 

being more objective and less prone to bias than verbal self-reports (Lonsdorf et al., 2017). 

1.6.2 Verbal reports 

Another commonly used measure to capture conditioned responding is to collect verbal self-

reports that address subjective experiences of more affective aspects such as fear and distress (i.e., 

fear ratings), valence or arousal (i.e., valence or arousal ratings), or more cognitive aspects such as 

the expectancy/risk/probability of receiving the US (i.e., expectancy/risk/probability ratings) in the 

presence of CS+ and CS-. The latter also indicates the extent to which the contingency of CS and 

US co-occurrence has been learned. Alternatively, the awareness of this CS-US contingency can be 

explicitly checked retrospectively – e.g., in a post-experimental interview (for discussion, see 

Lonsdorf et al., 2017). These ratings are typically expressed on a visual analog scale (VAS), as 

forced choices (e.g., expected/not expected), or on another device, depending on the study design 

and apparatus. They can be provided either after each trial, after a block of trials, or after specific 

phases (for a discussion of the advantages and disadvantages of each procedure, see Lonsdorf et al., 

2017), illustrating the learning progress in acquisition, extinction, and return of fear test at different 

resolutions. 

Ratings are a common measure in fear conditioning studies as they can be easily obtained. 

They might, however, have the disadvantage of being susceptible to subjective biases that are 

generally present in self-reports (Choi & Pak, 2005), e.g. due to demand effects related to 

participants’ assumption about the purpose of the experiment (Lipp, 2006). Furthermore, ratings 

may attenuate the learning progress during acquisition training (Atlas et al., 2022; Sjouwerman et 



 
INTRODUCTION 

13 
 

al., 2016). However, ratings contribute to the understanding of fear- and stress-related mechanisms 

as a multidimensional concept and are thus a valuable contribution to the overall picture.  

1.6.3 Neuroimaging: fMRI 

Functional magnetic resonance imaging (fMRI) is a complex procedure that – through 

further computational steps – results in functional images of the brain. As a detailed description 

would be beyond the scope of this thesis, only the general principles of this procedure will be 

outlined below. 

fMRI is an imaging technique that takes advantage of the fact that neuronal activation is 

associated with increased blood flow (Fox et al., 1988; Fox & Raichle, 1986). When a specific brain 

region is activated, oxygen in the blood is expended resulting in an imbalance between 

deoxygenated and oxygenated blood. Deoxygenated and oxygenated blood have different magnetic 

properties which can be translated into an image contrast (i.e., blood oxygenation level dependent 

= BOLD contrast) which serves as an indirect measure of brain activation. Because of the need for 

a contrast between two experimental conditions, the CR as quantified by functional brain activation 

can only be determined for CS discrimination, but not for responses to CS+ or CS- alone. 

In the following, I present some basic fMRI findings related to acquisition and extinction 

training as well as reinstatement, as these experimental phases were included in the design of the 

experiment which is the primary basis of this thesis. In a meta-analysis of Fullana et al. (2016), 

differential (i.e., CS+ vs. CS-) functional changes in neuronal activity were reported during fear 

acquisition in the insula, putamen, pallidum, caudate nucleus, nucleus accumbens, thalamus, 

precuneus, dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dlPFC), 

ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), hippocampus, somatosensory 

and motor areas as well as in the cerebellum. Surprisingly, the amygdala was not observed to be 

robustly involved as unanimously assumed (LeDoux, 2003; Öhman, 2009; Phelps et al., 2004), 

although there are potential explanations for these findings (Fullana et al., 2019). In another meta-

analysis of Fullana et al. (2018) on differential neuronal involvement during extinction learning, 

the robustly identified regions encompassed dACC, mPFC, insula, dlPFC, putamen, caudate 

nucleus, pallidum, thalamus, motor cortical regions, and the pons. During differential and 

generalized reinstatement, distinct, but partially overlapping regions were activated. More 

precisely, the vmPFC, hippocampus, rectal gyrus, parietal operculum, and dorsal inferior temporal 

lobe were observed to be activated during differential reinstatement, and the thalamus, insula, 

occipital lobe, parietal operculum, inferior parietal lobe, supplementary motor area, cuneus, 
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cerebellum and bed nucleus of the stria terminalis (BNST) during generalized reinstatement 

suggesting distinct, but also intertwined functional processes (Scharfenort & Lonsdorf, 2016).  

1.6.4 Further readout measures and multivariate testing 

Other important measures, which will only be briefly explained here as they were not part 

of the present work, include fear-potentiated startle (FPS), heart rate (HR) and the pupillary 

response. 

The startle reflex represents a defensive response that occurs during intense and abrupt 

auditory, visual or tactile events (Ramirez-Moreno & Sejnowski, 2012). Eyeblink responses are the 

most frequently measured electromyographic (EMG) changes among the startle reflex (Blumenthal 

et al., 2005). FPS describes the phenomenon of increased eyeblink responses under threat as 

compared to non-threatening stimuli (Brown et al., 1951; Davis & Astrachan, 1978; Hamm et al., 

1993). It is considered to be an indicator of the valence of a stimulus (Lang et al., 1990; Lipp, 2006) 

and to have a strong translational value as the startle reflex is often used in rodent work (Kong et 

al., 2014). 

In earlier and also more recent studies, HR has been demonstrated to be a useful, but also 

challenging tool in fear conditioning research (Castegnetti et al., 2016; Liu et al., 2013; Pappens et 

al., 2014; Tzovara et al., 2018) with HR showing both conditioned decelerations and accelerations 

(Castegnetti et al., 2016). While the (earlier) HR decelerations are assumed to reflect rather 

orienting responses (Hamm et al., 1993), HR accelerations appear to be related to defensive 

responding to the US predicted by the CS+ mirroring fear learning (Dimberg, 1987; Hamm et al., 

1993; Moratti & Keil, 2005). Moreover, HR decelerations may be more likely to occur in the 

presence of neutral (Lipp & Vaitl, 1990) or safety stimuli (i.e., CS-; Ahrens et al., 2016), and some 

individuals habitually accelerate while others show decelerations. Thus, there is a multitude of 

individual, stimulus, and temporal factors to consider when designing or interpreting (the results 

of) a study employing HR (Lonsdorf et al., 2017).  

Similar to SCRs, the pupillary response has been suggested to be linked to psychological 

arousal, but emerges comparably faster (Granholm & Steinhauer, 2004). It can be obtained in the 

behavioral laboratory by pupillometry or eye-tracking and represents a suitable CR indicator 

(Bitsios et al., 2004; Reinhard et al., 2006). 

The majority of fear conditioning studies employ multiple read-out measures to capture 

defensive responding to threat at different response levels and as a multidimensional construct, 
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since different outcome measures are thought to tap into different anxiety- and stress-related 

processes in terms of content and timing: SCRs are presumed to reflect arousal and unfold rather 

slowly over seconds after CS onset, whereas FPS responses are thought to mirror valence and occur 

rather rapidly subsequent to the startle probe in the middle of CS presentations, close to the US, for 

a very short duration (Hamm & Weike, 2005; Lang et al., 1990; Lipp, 2006; Vrana et al., 1988). 

Thus, results obtained in the same study but at different response levels do not necessarily converge 

(for discussion, see Lonsdorf et al., 2017). Overall, the application of different outcome measures 

is recommended to capture the multidimensional nature of defensive responding (Haaker et al., 

2014; Lonsdorf & Merz, 2017). However, as there is also evidence of mutual interference 

(Sjouwerman et al., 2016), a myriad of potential readout measures warrants a thoughtful selection 

and/or combination depending on the study design and goal (Lonsdorf et al., 2017). 

1.7 The shift toward individual differences 

Fear conditioning research to date has predominantly focused on general, basic mechanisms 

that reflect group-level effects such as the manipulation of experimental conditions (Lonsdorf & 

Merz, 2017). Tackling important – and still largely unanswered – clinical questions, such as why 

some individuals do not respond to treatment or experience relapse after successful treatment, 

requires a shift toward research that addresses individual differences, or more precisely, predictions 

at the individual level (Craske & Mystkowski, 2006; Fava et al., 2001; Yonkers et al., 2003).  

The research of individual differences is part of a sub-discipline of psychology called 

differential psychology, which focuses, among other topics, on aspects in which individuals differ 

from each other or from themselves over time. Hence, individual differences can refer to differences 

between individuals (i.e., inter-individual differences), within an individual over time (i.e., intra-

individual differences), or between individuals over time (inter-individual differences of intra-

individual differences). This work will focus on inter-individual differences as these relate to the 

most pressing clinical questions outlined above. Unless otherwise indicated, the term individual 

differences will be used throughout this thesis to refer to inter-individual differences.  

In fear conditioning research, individual differences have been largely neglected for 

decades, or considered “noise” or “unexplained variance” that needs to be eliminated in experiments 

to obtain robust group effects (Lonsdorf & Merz, 2017). These deviations from group average 

responding, which may contain important individual information, have only recently come into 

focus.  
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These individual differences might affect individual fear conditioning processes, which in 

turn may translate to and shed light on individual differences in clinical settings, such as the (non-) 

responsiveness to specific intervention programs, and thus can be assigned a key role in attempts to 

translate empirical findings into clinical applications. Recent work on individual differences has 

focused on temperamental factors such as trait anxiety (e.g., see Sjouwerman et al., 2020; 

Wroblewski et al., 2022; for review, see Lonsdorf & Merz, 2017; ) or intolerance of uncertainty 

(e.g., Klingelhöfer-Jens et al., 2022; Mertens et al., 2022; for review, see Morriss et al., 2021), 

biological factors such as brain morphology (e.g., Abend et al., 2020; Cacciaglia et al., 2015) or 

genetic polymorphisms (e.g., Kastrati et al., 2022; Klumpers et al., 2015; Lonsdorf & Baas, 2017), 

experiential factors such as life adversity (e.g., Machlin et al., 2019; Scharfenort et al., 2016) and 

situational factors such as state anxiety (e.g., Glotzbach-Schoon et al., 2015; Kuhn et al., 2016) in 

order to unravel their contribution to the etiology and relapse of anxiety, but also to resilience 

mechanisms (Lonsdorf & Merz, 2017). These factors have been observed to be linked to altered 

fear processing mechanisms such as aberrant processing of the threat signal, decreased processing 

of the safety signal, reduced discrimination between threat and safety signals, impaired awareness 

of the CS-US coupling, or the tendency to generalize fear, all of which might be associated with 

increased anxiety to the point of psychopathology (e.g., Baas et al., 2008, Lissek et al., 2005; Lueken 

et al., 2014; for meta-analyses, see Duits et al., 2015; Lissek et al., 2009; for reviews, see Cooper, 

van Dis, et al., 2022; Lonsdorf & Merz, 2017; Nees et al., 2015). 

Ultimately, a better understanding of individual difference factors might help us to identify 

individuals at risk or predict resilience, and may aid to develop individually tailored prevention and 

intervention programs, as has been done, for example, in medical disciplines (Insel, 2014). For 

instance, breast cancer patients could be assigned to different therapies based on genomic profiling 

to increase treatment success (i.e., precision medicine; Jiang et al., 2021). 

However, while human fear conditioning research on individual difference factors is a 

growing field, there is still a need for improved study design, methodological procedures, and data 

analysis strategies that are tailored to this field. Apart from its meta-scientific objectives, this thesis 

will also examine several significant factors that might provide ideas and guidance for filling this 

room for improvement: While Study I investigates previously reported associations between 

individual differences in brain structure and defensive responding, Study II examines the extent of 

the feasibility of individual-level predictions using measures typically employed in the field. Study 
III explores the impact of excluding participants with specific individual differences on the 

outcomes, and finally, Study IV proposes a comprehensive and efficient method for testing various 
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analytic approaches which can be employed in individual difference research. In the next four 

sections 1.8 – 1.11, Studies I – IV and their specific aims are introduced in more detail. 

1.8 The difficulty of conceptual replication attempts in an example (Study I) 

The fundamental processes of fear conditioning and extinction, as well as the significance 

of individual differences in defensive reactions, are widely acknowledged, and the field of 

psychology and neuroscience has a rich tradition of exploring associations between brain 

morphology and behavior or physiology – known as structural-brain-behavior associations. It is 

therefore surprising that there has been so little research into how such differences in defensive 

responses might correspond to variations in brain structure, whose individual differences are 

commonly extracted from anatomical scans using magnetic resonance imaging (MRI) in human 

studies. However, structural-brain-behavior associations have been challenged by recent findings 

from a large cohort of healthy adults: It was demonstrated that significant associations are scarce 

and that the replication rates of such associations across various psychological measures appear to 

be low (Boekel et al., 2015; Genon et al., 2017; Kharabian Masouleh et al., 2019). 

Previous studies on fear conditioning have shown that variations in brain morphology are 

linked to differences in conditioned responding during fear acquisition and extinction learning, as 

well as during retention test. While SCRs have been the most commonly used measure in these 

studies, a smaller number have employed FPS, ratings of valence, arousal, or awareness of CS-US 

contingency (Abend et al., 2020; Cacciaglia et al., 2015; Pohlack et al., 2012; Winkelmann et al., 

2016). However, these studies investigating the link between brain morphology and individual 

differences in conditioned responding have produced inconsistent results: For instance, amygdala 

volume was associated with differential SCRs, but not arousal, valence, or CS-US contingency 

ratings during acquisition training in studies using cue conditioning paradigms (Cacciaglia et al., 

2015; Winkelmann et al., 2016). More precisely, Winkelmann et al. (2016) showed effects for the 

right amygdala, and Cacciaglia et al. (2015) for the left amygdala. In these two studies, the 

association between amygdala volume and differential conditioned responding during acquisition 

training was positive, whereas, in another study, researchers reported an (although not significant) 

negative relationship (Hartley et al., 2011). Moreover, Winkelmann et al. (2016) observed the 

association between amygdala volume and differential conditioned responding in one sample for 

the early acquisition phase and in another sample for the late acquisition phase. Other brain 

structures associated with conditioned responding during acquisition training include the insula 

(Hartley et al., 2011), dACC (Milad, Quirk, et al., 2007), and dm/dlPFC (Abend et al., 2020). A 
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study using a contextual fear conditioning paradigm reported also an involvement of the 

hippocampus (Pohlack et al., 2012). During extinction training and extinction retention, differential 

responding was related to the thickness of the vmPFC (Hartley et al., 2011; Rauch et al., 2005; 

Winkelmann et al., 2016).  

Of note, in most of these studies, sample sizes were rather small with a range of 14 (Milad 

et al., 2007; Rauch et al., 2005) to 52 participants (Cacciaglia et al., 2015). An exception to this 

constitutes the study of Abend et al. (2020) which included a larger sample of 351 participants. 

However, they focused on general reactivity rather than associative learning processes such as CS 

discrimination, as SCRs were averaged across CS+ and CS-. Despite the small sample sizes in most 

previous studies, which would be considered underpowered today, surprisingly strong correlations 

are reported. 

Given that the robustness of structural brain-behavior associations has been recently called 

into question (Kharabian Masouleh et al., 2019; Masouleh et al., 2020), the aim of Study I was to 

conceptually replicate previous findings linking cortical thickness/subcortical volume to 

conditioned responding in SCRs and fear ratings, both in a large sample and within a single study. 

In general, several factors appear to contribute to the success or failure of replication 

attempts. These include aspects such as operationalization of the constructs under study, but also 

methodological aspects, such as study design or type of data analysis. Whereas these aspects depend 

on decisions made across the research process, one important but often neglected aspect impacting 

replicability arises from the outcome measure itself: measurement reliability. 

1.9 Reliability as a prerequisite for robustness and replicability (Study II) 

Measurement reliability has gained momentum in the recent past, resulting in a growing 

demand for increased attention for and research in this domain (Fröhner et al., 2019; Hedge et al., 

2018; Zuo et al., 2019). One reason might be that measurement reliability is central to meeting the 

challenges of robustness and replicability of results – what some researchers refer to as ‘replication 

crisis’ (Open Science Collaboration, 2015; Stroebe & Strack, 2014): Reliable measures increase the 

likelihood of replicating previous findings (LeBel & Paunonen, 2011), as reliable measures provide 

consistent data and produce similar results each time they are employed under the same conditions 

(Heale & Twycross, 2015). Yet another reason may be that the field of fear conditioning has shifted 

from investigating rather basic general principles derived from group averages to questions and 

processes at the individual level (Lonsdorf & Merz, 2017), for which measurement reliability is an 
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important prerequisite. Individual-level predictions are essential because studies using fear 

conditioning paradigms have significant potential to translate neuroscientific discoveries into 

clinical applications (Anderson & Insel, 2006; Cooper, van Dis, et al., 2022; Fullana et al., 2020; 

Milad & Quirk, 2012), where important potential for improvement remains, such as individual 

treatment progression and therapeutic efficacy. Although reliability is also important at the group 

level to safeguard group findings such as the effects of experimental manipulations (Lonsdorf & 

Merz, 2017). Furthermore, the reliability of a given measure is also crucial for investigating its 

correlations with other (individual difference) variables. This is because the reliability of a given 

measure sets an upper limit to the maximum observable correlation between that measure and 

another measure or (individual difference) variables (Spearman, 1910). 

Study II aims to explicitly tackle reliability in fear conditioning research, as there has been 

surprisingly little effort in scrutinizing reliability in the field. To date, there are only five studies 

that addressed longitudinal reliability (Cooper, Dunsmoor, et al., 2022; Fredrikson et al., 1993; 

Ridderbusch et al., 2021; Torrents-Rodas et al., 2014; Zeidan et al., 2012), which in the literature is 

also referred to as test-retest reliability, and only one that has examined internal consistency 

(Fredrikson et al., 1993). While longitudinal reliability provides information about the extent to 

which responses of an individual (individual-level longitudinal reliability) or a group (group-level 

longitudinal reliability) are stable over time, internal consistency mirrors the extent to which items 

– or trials – measure the same construct. However, it is difficult to draw a consistent picture from 

these studies because they differ widely in types of outcome measures and reliability estimates 

included, as well as lengths of retest intervals and sample sizes.  

The lack of empirical investigations is also true for the relationship of conditioned 

responding across very short intervals – or more precisely, between individual experimental phases. 

Interestingly, such relationships are often implicitly assumed – for instance, some researchers 

“control” responding in later experimental phases for responding in earlier experimental phases 

(e.g., see Milad et al., 2009, critically discussed in Lonsdorf et al., 2019). Both the presence (Foa et 

al., 1983; Gershman & Hartley, 2015; Rauch et al., 2004) and the absence of associations between 

responding across different experimental phases (Bouton et al., 2006; Plendl & Wotjak, 2010; 

Prenoveau et al., 2013; Shumake et al., 2014) or therapeutic sessions (Kozak et al., 1988; Pitman et 

al., 1996; Riley et al., 1995) have been supported by direct findings from animal studies or indirect 

findings from patient research. In human fear conditioning paradigms, however, these associations 

of responding across different experimental phases have rarely been directly investigated. 
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To address these gaps in the literature, the aims of Study II were to investigate i) 

longitudinal reliability of conditioned responding at the individual and the group level, ii) internal 

consistency as well as iii) the association of conditioned responding across experimental phases. 

This was done for different data specifications such as different phase operationalizations (e.g., the 

operationalization of acquisition training as averaged across all acquisition training trials or across 

the last two acquisition training trials), data transformations (e.g., log-transformation and range 

correction of SCR data), and reliability measures to account for the high level of methodological 

heterogeneity in the literature in a small manyverse approach. 

In addition to reliability, another important aspect that is crucial for the robustness and the 

generalizability of results is the composition of the sample, which is – among other factors – 

influenced by the exclusion of specific individuals. The criteria for participant exclusion can be 

very heterogeneous. Possible procedures and rationales underlying these exclusions will be 

presented in the next section. 

1.10 The garden of forking participant exclusions (Study III) 

In the human fear conditioning field, research questions frequently focus on objectives such 

as modification of conditioned responses, generalization, consolidation, or retrieval. It has been 

commonly assumed that studying these processes necessitates acquiring a strong conditioned 

response in the first place. As a result, one of the researcher’s decisions concerns the (often routinely 

conducted) exclusion of participants due to ‘non-learning’ or ‘non-responding’ in SCRs – the most 

frequently used outcome measure in fear conditioning (Lonsdorf et al., 2017): While ‘non-learning’ 

refers to the absence of physiological CS discrimination (i.e., in SCRs) during acquisition training, 

‘non-responding’ refers to the absence of a stimulus-driven physiological response. 

However, the exclusion of ‘non-learners’ and ‘non-responders’ poses a number of 

challenges: First, the definition of ‘non-learners’ and ‘non-responders’ vary considerably across 

studies: e.g., the exclusion of ‘non-learners’ is also referred to as ‘performance-based exclusion’ or 

‘exclusion of outliers’. Second, there is no consistent procedure for handling ‘non-learners’ and 

‘non-responders’ as some researchers exclude ‘non-learners’ (e.g., Ahmed & Lovibond, 2019), 

while some exclude ‘non-responders’ (e.g., Morriss et al., 2018), and some exclude both (e.g., 

Hartley et al., 2014). Third, ‘non-learners’ are typically excluded based on a lack of CS 

discrimination in a single outcome measure (i.e., SCR), but it is common practice to exclude them 

from all analyses. However, as SCR serves only as one proxy to measure fear learning, this 
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procedure disregards the fact that CS discrimination might be evident in other simultaneously 

acquired outcome measures such as FPS or ratings. Fourth, the extent of CS discrimination was 

observed to vary as a function of individual difference factors such as intolerance of uncertainty 

(e.g., Johnson et al., 2022; Klingelhöfer-Jens et al., 2022; Morriss et al., 2021; Wroblewski et al., 

2022) or trait anxiety (e.g., Gazendam et al., 2013; Indovina et al., 2011; Sjouwerman et al., 2020; 

Staples-Bradley et al., 2018) – even though results are mixed (e.g., Mertens et al., 2022; Torrents-

Rodas et al., 2013; for an overview, see Lonsdorf & Merz, 2017;). Thus, excluding participants 

based on their ability to physiologically discriminate between conditioned stimuli (CSs) could lead 

to the exclusion of relevant subpopulations, including participants with subclinical symptoms. 

Taken together, excluding ‘non-learners’ and/or ‘non-responders’ might lead to a substantial sample 

bias. This would not only compromise the generalizability of results, as specific subpopulations 

could be overlooked, but also impede research on individual differences and the transfer into clinical 

applications. 

As the concerns raised above are primarily of theoretical nature, we wanted to empirically 

approach the relevant topics of ‘non-learners’ and ‘non-responders’ in two different data sets (i.e., 

one main data set, which was obtained in the framework of this thesis and a complementary data 

set, see section 2.8) in Study III by i) systematically identifying the criteria of ‘non-learners’ and 

‘non-responders’, ii) investigating the consequences of the exclusion of ‘non-learners’ and ‘non-

responders’ according to different criteria on results and their interpretation and iii) elaborating our 

specific recommendations for future definition and handling ‘non-responders’ and ‘non-learners’ 

based on empirical evidence.  

Navigating the complex garden of forking paths requires careful consideration of many 

decision points, including how to handle ‘non-responders’ and ‘non-learners’. The decision at this 

specific forking path predominantly concerns the pre-processing of the data. Selecting an 

appropriate statistical analysis model to follow the pre-processing step is equally crucial, but 

represents a similar significant challenge due to the multitude of options available and the 

heterogeneity in the literature. To effectively explore (most to) all possible paths simultaneously, a 

multiverse analysis (Del Giudice & Gangestad, 2021; Steegen et al., 2016), as demonstrated in 

Study IV and described in the following section, is a valuable tool. 
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1.11 Introducing the multiverse idea: A compass for the garden of forking paths 
(Study IV) 

In the fear conditioning field, the garden of forking paths has been mainly scrutinized by 

focusing on heterogeneity in the operationalization of constructs or data pre-processing such as the 

impact of different definitions of ‘non-learners’/‘non-responders’ (see Study III), ‘extinction 

retention’ (Lonsdorf et al., 2019) or SCR quantification approaches (Kuhn et al., 2022; Sjouwerman 

et al., 2022). However, a systematic assessment of the impact of heterogeneity in the choice of 

statistical models is lacking so far. This choice concerns, for example, the use of a specific statistical 

procedure (e.g., analysis of variance [ANOVA] or mixed model), the inclusion of covariates, or 

how many trials are included in the analyses. Even though these decisions may be equally valid 

options, they might produce different outcomes resulting in different or even contrasting 

conclusions (Botvinik-Nezer et al., 2020; Dutilh et al., 2019; Kuhn et al., 2022; Lonsdorf et al., 

2019; Silberzahn et al., 2018). This not only impedes the comparison of studies, but also 

complicates the integration of different study results, for instance within the framework of meta-

analytical approaches. 

The degrees of freedom in the choice of statistical models are enhanced by the frequent lack 

of formalization of psychological theories: These are predominantly verbally formulated in the form 

of a verbal description of latent constructs and their associations (Farrell & Lewandowsky, 2018; 

Lewandowsky & Farrell, 2010). As an example, a theory in the fear conditioning field might predict 

that the repeated pairing of CS+ and US will result in elevated SCRs to the CS+ compared to the 

CS-. This theory, however, does not define the magnitude of this response difference or the number 

of trials needed to observe this difference. The exact assumptions about this reside in the researcher 

degrees of freedom (Simmons et al., 2011) and thus, this theory may be translated into different 

statistical models (Muthukrishna & Henrich, 2019).  

The missing ingredient to formalize verbal theories in the fear conditioning field constitutes, 

however, a deep understanding of how individual methodological specifications affect the results. 

A promising path to improve this understanding could be the implementation of a multiverse 

approach (Del Giudice & Gangestad, 2021; Steegen et al., 2016). The multiverse approach can 

include either all different plausible and equally justifiable i) preprocessing pipelines of the data 

(i.e., ‘data multiverse’), ii) applications of different statistical models (i.e., ‘model multiverse’), or 

iii) a combination of both. These multiverses consist of numerous universes which are generated 

based on the specific decisions for certain preprocessing or analysis pipelines (see Figure 1C). The 

multiverse approach aims to obtain better estimators of potential effects by including the full range 
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of possible decisions because these decisions are frequently made arbitrarily. Convergence of 

results based on different pipelines would suggest a rather robust effect. In contrast, heterogeneous 

results might indicate a systematic dependence of the effect on the precise pipeline specification 

putatively providing information on which boundary conditions may scale the effect size. 

Thus, the aims of Study IV were to i) import the multiverse idea into the fear conditioning 

field, ii) demonstrate how the implementation of different statistical models (as identified via a 

systematic literature search) can affect the results in two independent data sets, and finally, iii) to 

introduce the open software R package multifear (https://github.com/AngelosPsy/multifear) with 

which such multiverse analyses can be conducted by typing a single line of code. Of note, the 

statistical models incorporate data that have undergone distinct data reduction approaches such as 

including single trial data or averages across all trials or specific blocks of an experimental phase. 

These data reduction approaches were also determined through the systematic literature review. 

 

 

 

 



 
MATERIALS AND METHODS 

24 
 

2 Materials and methods 

2.1 Participants 

Participants of the study on which this thesis is based were pre-selected from a larger cohort 

of the Collaborative Research Center CRC 58 on the basis of the absence of childhood maltreatment 

according to the Childhood Trauma Questionnaire and applying critical cut-offs (Bernstein & Fink, 

1998; Häuser et al., 2011). Participants were contacted via phone and screened for exclusion criteria 

which comprised left-handedness, claustrophobia, cardiac pacemaker, non-MR-compatible metal 

implants, brain surgery, participation in pharmacological studies within the past 2 weeks, 

medication except for oral contraceptives, internal medical disorders, chronic pain, neurological 

disorders, psychiatric disorders, metabolic disorders, acute infections, complications with 

anesthesia in the past, and pregnancy. All participants were right-handers and had corrected to 

normal or normal vision. The Ethics Committee of the General Medical Council Hamburg (PV 

5157) had approved the experimental protocol, to which all participants gave written informed 

consent prior to the study. The study was performed in conformity with the Declaration of Helsinki. 

All participants were unfamiliar with the experimental setup. In the case of participation at all 

measurement time points (T0 – T5, see next section 2.2), participants received 300 € as financial 

compensation of which 40 € were handed out in the form of 10 euro vouchers. 

For Studies I, III and IV, data from the first measurement time point (T0) were included, 

and a different, albeit strongly overlapping, sample of participants was excluded because i) different 

phases and ii) outcome measures were involved in the analyses and iii) different research questions 

were addressed. For instance, non-responders (for a definition in this study, see section 1.6.1) who 

were excluded in Study I, were retained in the sample of Study III as they were subjects of interest. 

In Study I, participants were excluded due to a deviating protocol (n = 1), missing data (n = 1), 

technical issues (n = 3), and SCR non-responding (n = 8) resulting in N = 107 participants from 

whom MRI and SCR data were analyzed (femaleN = 71, maleN = 36, ageM = 24.4, ageSD = 3.7). 

Another n = 4 and n = 12 participants were excluded from analyses due to missing fear rating data 

on day 1 and day 2 respectively. For analyses in Study III, one participant was excluded due to a 

deviating protocol, yielding N = 119 participants (femaleN = 79, maleN = 40, ageM = 25, ageSD = 4), 

and in Study IV, four participants were excluded due to deviating protocol and technical issues 

leaving N = 116 participants for analyses (femaleN = 77, maleN = 39, ageM = 24.38, ageSD = 0.34). 
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For cross-sectional analyses in Study II, the identical sample as in Study I was used. For 

longitudinal analyses, 16 participants were excluded due to technical issues, three participants due 

to a deviating protocol, and eleven participants due to SCR non-responding. In Study II, the same 

non-responder criteria were applied as in Study I. In addition, 21 participants dropped out during 

the time interval between T0 and T1 leaving 71 participants for longitudinal analyses (femaleN = 

41, maleN = 30, ageM = 24.6, ageSD = 3.8). 

2.2 Experimental design 

This work includes data from the first two measurement time points of a larger longitudinal 

study which comprised a total of six time points (T0 – T5) that were all approximately six months 

apart. At the first two measurement time points, a differential fear conditioning paradigm was 

conducted on two consecutive days in MR environment. Stimuli and the experimental procedure 

were identical at these two time points. A battery of questionnaires was completed at all time points. 

At the last time point T5, participants returned to the laboratory and a structural MR scan was 

obtained. As T5 data are not included in the studies of this thesis, no further details are provided 

here. 

2.3 Experimental fear conditioning protocol and stimuli 

The fear conditioning experiment started on day 1 with a habituation phase followed by an 

acquisition training phase in which CS+ and CS- were each presented 7 and 14 times (with a total 

of 14 and 28 trials) respectively. During extinction training and reinstatement-test phase on day 2, 

CS+ and CS- were each presented 14 and 7 times (with a total of 28 and 14 trials) respectively. 

Following a delay conditioning protocol during acquisition training, the CS+ co-terminated with an 

electro-tactile stimulation serving as US delivered 0.2s before CS+ offset which corresponds to a 

100% reinforcement rate. During reinstatement, which followed the extinction training and 

preceded the reinstatement-test, three USs were delivered unannounced with 5s intervals between 

each US.  

Two light gray fractals served as CSs (RGB [230, 230, 230]), 492*492 pixels), which were 

pseudo-randomly presented for 6 – 8s (mean: 7s) with no more than two identical stimuli in 

succession. CS presentations were interleaved by an intertrial-interval (ITI) during which a white 

fixation cross was displayed for 10 – 16s (mean: 13s). ITIs before and after the delivery of the 

reinstatement USs were 10s and 13s respectively.  
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The electro-tactile US was delivered via a Digitimer DS7A constant current stimulator 

(Welwyn Garden City, Hertfordshire, UK) as a train of three 2ms rectangular pulses interleaved by 

a 50ms interpulse interval. It was administered via a 1cm diameter platinum pin surface electrode 

which was fixated on the back of the right hand or more precisely, between the metacarpal bones 

of the middle and the index finger. Prior to the start of the experiment on day 1, the US was 

individually calibrated in a standardized stepwise procedure instructed by the experimenter. On a 

verbal scale ranging from zero (= stimulus was not unpleasant at all) to ten (= stimulus is the worst 

imaginable in the context of this study), it was aimed at an US aversiveness rating between 7 and 8 

(unpleasant, but tolerable level). Participants were, however, not informed about this target level. 

The US amplitude was kept constant across experimental days within one measurement time point 

but was re-calibrated at T1. 

Presentation Software (2010, Version 14.8, Neurobehavioral Systems, Inc., Albany 

California, USA) was used for stimulus presentation with all stimuli being displayed on a gray 

background (RGB [100, 100, 100]). In order to prevent renewal effects, the background color was 

kept constant across experimental phases including reinstatement-test and the ITI (Haaker et al., 

2014). Allocation of CS types to CS+ and CS- and the presentation of the first CS type during 

acquisition and extinction training were counterbalanced across participants, but stimuli were 

identical for all participants. 

2.4 Fear ratings and contingency awareness 

Prior and subsequent to acquisition and extinction training as well as after the reinstatement-

test, participants were asked to rate “how much stress, fear, and tension” they experienced when 

CS+ and CS- were last presented. These fear ratings of the CSs were obtained on a VAS with the 

poles zero (answer = none) and 100 (answer = maximum). After reinstatement-test, participants 

underwent two fear ratings with one rating referring retrospectively to the first presentations of the 

CSs directly after reinstatement and the other rating referring to the last presentation of each CS 

type during reinstatement-test. Prior to the experimental session, participants were familiarized with 

the rating procedure to ensure correct handling. Participants also had to rate the aversiveness of the 

US after acquisition training on day 1 and after reinstatement-test on day 2. Answers were given on 

the identical VAS as described for fear ratings. For analysis purposes, all ratings were transformed 

to a scale ranging from zero to 25. All ratings had to be confirmed via button press. Unconfirmed 

ratings were excluded from all analyses. 
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After the experimental procedures on day 1 and day 2, CS-US contingency awareness was 

assessed in a standardized post-experimental interview (adapted from Bechara et al., 1995). Based 

on this interview, participants were classified as aware, unaware, or uncertain of CS-US 

contingency. 

2.5 Skin conductance response 

During each phase of the experiment, SCRs were recorded continuously by a BIOPAC MP 

100 amplifier (BIOPAC Systems, Inc., Goleta, California, USA) and Spike 2 software (Cambridge 

Electronic Design, Cambridge, UK). Data were converted from analog to digital using a CED2502-

SA (Cambridge Electronic Design Limited, Cambridge, UK). Two self-adhesive hydrogel 

Ag/AgCl-sensor recording SCR electrodes (diameter = 55 mm) were fixed on the distal and 

proximal hypothenar of the left hand. A gain of 5 Ω and a 10 Hz lowpass filter were used. Data 

were acquired at 1000 Hz and afterwards down-sampled to 10 Hz. 

Semi-manual scoring of the SCRs was performed using the custom-made software EDA 

View (developed by Prof. Dr. Matthias Gamer, University of Würzburg, Germany), which is based 

on SCR quantification using the trough-to-peak method. The settings of the program were specified 

as the trough emerging in the range of 0.9 to 3.5s after CS onset or 0.9 to 2.5 s after US onset 

(Boucsein et al., 2012; Sjouwerman & Lonsdorf, 2019) with the peak occurring within subsequent 

5 s (maximum rise time; Boucsein et al., 2012).  

Confounded SCRs (e.g. due to recording artifacts caused by electrode detachment) and 

SCRs exceeding the defined time window were classified as missing values and excluded from 

analyses. SCRs under 0.01 ߤS occurring in the specified time window were classified as zero-

responses. Non-responding on day 1 was defined as zero-responses in more than two-thirds of 

responses to the US (i.e., more than 9 out of 14). On day 2, participants who did not respond to any 

of the three reinstatement USs were classified as non-responders. SCR data were preprocessed for 

the following analyses with MATLAB (2016, Mathworks, Natick, Massachusetts, USA) version 

R2016b. In Study I and Study III, raw SCRs were log-transformed (log10[1 + raw amplitude]) 

and range corrected to account for inter-individual variability by dividing each SCR by the 

maximum SCR per participant and day (Lykken & Venables, 1971), whereas in Study IV, SCRs 

were solely log-transformed. In Study II, different SCR data transformation types were 

implemented (i.e., none, log-transformation, log-transformation and range correction). 
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2.6 Brain imaging 

Brain imaging data were recorded during experimental sessions at T0 and T1 (functional 

and structural data) as well as at T5 (structural data only). Aside from the fear conditioning task, 

participants underwent a resting state scan (T0 and T1) and a face-matching task (T0, T1, and T5; 

Hariri et al., 2002). However, these tasks were not part of this thesis project and will hence not be 

discussed in detail. 

2.6.1 Study I: MRI data acquisition and analysis 

On day 2, T1-weighted structural images (1 × 1 × 1 mm) were recorded with a 3T PRISMA 

whole body scanner (Siemens Medical Solutions, Erlangen, Germany) by using magnetization 

prepared rapid gradient echo (MPRAGE) sequence (TR = 2300 ms, TE = 2.98 ms, field of 

view = 192 × 256 mm, 240 slices, slice thickness: 1 mm) and a 64-channel head coil. 

The brain imaging software Freesurfer 6.0.1 (https://surfer.nmr.mgh.harvard.edu/) was used 

to reconstruct the volume of subcortical brain regions and cortical thickness. Regions of interest 

(ROIs) in Study I correspond to those regions as defined in Freesurfer (for a visualization, see 

https://surfer.nmr.mgh.harvard.edu/). The subcortical or volume-based stream included an initial 

Talairach registration, initial volumetric labeling, bias field correction, nonlinear volumetric atlas 

registration, and volumetric labeling of subcortical structures (Fischl et al., 2002). Likewise, the 

surface-based stream obtaining quantifications of cortical thickness encompassed an initial 

Talairach registration, then bias field correction, skull stripping, white matter classification, surface 

generation, and gyral labeling (Dale et al., 1999). Parcellation of the cortex was accomplished 

according to Freesurfer’s Desikan-Killiany cortical atlas (Desikan et al., 2006). 

2.6.2 Study II: fMRI data acquisition and analysis 

For functional data acquisition, the identical 3 Tesla PRISMA whole body scanner (Siemens 

Medical Solutions, Erlangen, Germany), a 64-channel head coil, and an echo planar imaging (EPI) 

sequence (repetition time (TR): 1980 ms, echo time (TE): 30 ms, number of slices: 54, slice 

thickness: 1.7 mm (1 mm gap), field of view = 132 x 132 mm) were used. For analyses of functional 

data, SPM12 (Wellcome Department of Neuroimaging, London, United Kingdom), and MATLAB 

(2019, Mathworks, Natick, Massachusetts, USA) were used. Functional data were preprocessed by 

involving realignment, coregistration, normalization to a group-specific DARTEL template, and 

smoothing (6 mm full width at half maximum, FWHM). 
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Since participants could not have learned the CS-US association during the first CS trials 

due to delay conditioning (i.e., the US occurring subsequent to the CS+), separate regressors for the 

first CS+ and CS- trials and the subsequent trials were implemented for first-level acquisition 

training analyses. Motion parameters, habituation trials, US, and rating onset were integrated as 

nuisance regressors. Similarly, extinction could not have occurred during the first two CS trials of 

extinction training. Thus, separate regressors of interest were defined for the first CS+ and CS- trial 

and all subsequent extinction training trials. Motion parameters, US presentation, and fear ratings 

served as regressors of no interest. Different statistical analyses were conducted on first-level 

models only (see section 2.9). Thus, no second-level analysis was carried out. 

The eleven ROIs encompassed the amygdala, caudate nucleus, dACC, dlPFC, 

hippocampus, bilateral anterior insula, nucleus accumbens (NAcc), pallidum, putamen, thalamus, 

and vmPFC. Amygdala, hippocampus, caudate nucleus, pallidum, putamen, NAcc, and thalamus 

anatomical masks were applied based on the Harvard-Oxford atlas (Desikan et al., 2006) by using 

a 0.5 maximum probability threshold. The anterior insula was designated to the alignment of a box 

of size 60 x 30 x 60 mm centered around MNIxyz = 0, 30, 0 extracted from anatomical subdivisions 

(Nieuwenhuys, 2012) and the 0.5 thresholded anatomical mask from the Harvard Oxford atlas.  

The cortical ROIs dACC and dlPFC were defined by creating a box of size 20 x 16 x 16 mm 

around peak voxels as derived from a meta-analysis (Fullana et al., 2016). For the dACC, the x 

coordinate was set to 0: dACC: MNIxyz = 0, 18, 42; left dlPFC: MNIxyz = -36, 44, 22, right dlPFC: 

MNIxyz = 34, 44, 32 (Fullana et al., 2016). As described in previous work (Lonsdorf et al., 2014), 

the cortical vmPFC was defined by building a 20 x 16 x 16 mm box based on peak coordinates 

applied in prior fear learning studies (vmPFC: MNIxyz = 0, 40, -12, e.g., Kalisch et al., 2006; Milad, 

Wright, et al., 2007). The x coordinate was set to 0 to symmetrize masks along the midline. 

2.7 Further outcome measures of no interest 

2.7.1 Questionnaires 

Participants filled in the state scale of the State-Trait Inventory (STAI-S; Spielberger et al., 

1983) as paper-pencil version on all days involving an experimental session (day 1 and day 2 of T0 

and T1 as well as on T5). At T0 and T1, participants also completed the paper-pencil version of the 

Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989). Additionally, at T0, T1 and T2, 

participants completed a battery of the following questionnaires, always presented in the identical 
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order computerized via LimeSurvey including the Kurzer Fragebogen zur Erfassung von 

Belastungen (KFB; Flor, 1991), the German versions of the Social Support Appraisal Scale (SS-A-

d; Laireiter, 1993), the Trier Inventory for Chronic Stress (TICS; Schulz et al., 2004), 

Stressverarbeitungsfragebogen (SVF 78; Janke & Erdmann, 2002), Berliner Social-Support Scales 

(BSSS; Schwarzer & Schulz, 2003), brief Coping Orientation to Problems Experienced Inventory 

(Brief COPE; Carver, 1997), List of Threatening Experiences (LTE, modified version; Brugha et 

al., 1985), Cognitive Emotion Regulation Questionnaire (CERQ short; Garnefski & Kraaij, 2006), 

Generalized Self-Efficacy Scale (GSE; Schwarzer & Jerusalem, 1995), Life Events Checklist (LEC, 

modified version; Canli et al., 2006; Caspi et al., 1996), Perceived Stress Questionnaire (PSQ; 

Fliege et al., 2009) and self-constructed questions addressing cortisol. At T3 and T4, the 

questionnaire battery was complemented by the trait scale of the STAI (STAI-T; Spielberger et al., 

1983) and the Beck Depression Inventory 2nd Edition (BDI-II; Beck et al., 1996). At T5, the 

participants filled in the following questionnaires: BSSS, LTE, CERQ short, GSE, LEC, PCQ, 

STAI-T, BDI-II, Intolerance of Uncertainty Scale (IUS; Freeston et al., 1994), NEO-Five-Factor-

Inventory neuroticism (NEO-FFI neuroticism; Kanning, 2009) and the PROMIS-scales (Patient-

Reported Outcomes Measurement Information System; https://www.healthmeasures.net/explore-

measurement-systems/promis). For approximately half of the subjects, the last T5 appointment fell 

during the lockdown due to the COVID-19 pandemic. These participants additionally completed a 

self-constructed questionnaire about their experiences during the lockdown. At T0, T1, and T5, 

participants used the computer in the laboratory, whereas at T2 – T4 participants completed the 

questionnaires remotely. 

2.7.2 Other physiological outcomes 

Further physiological outcome measures that were obtained during the experimental days at 

T0 and T1 were saliva samples, hair samples, and blood samples. During all experimental sessions 

within the MR scanner, respiration, pulse, and eye tracking data were recorded (EyeLink 1000 

device, SR Research Ltd., Mississauga, Ontario, Canada). To track sleep overnight, participants 

were equipped with wrist-activity monitors (Actiwatch; Philips Respironics, 2009) after the 

experiment on day 1 which they returned on day 2. 
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2.8 Additional complementary data sets 

Two additional data sets were used to complement the data set on which this thesis is 

primarily based. In Study III, the additional data set was used as a case example to illustrate the 

association between trait anxiety and CS discrimination observed in this data set, and the 

consequential sample bias that results from performance-based exclusion of participants. In Study 
IV, the additional data set was used for the same purpose as the main data set: to illustrate the extent 

to which the application of multiple statistical models impacts on the results and to demonstrate the 

application of the new R package multifear in more than one data set. 

2.8.1 Additional data set used in Study III 

In Study III, the additional data set which included 268 participants (femaleN = 195, maleN 

= 73, ageM = 25, ageSD = 4) originates from a study investigating the impact of individual emotional 

negativity, as assessed by various questionnaires, on CS discrimination across several outcome 

measures (Sjouwerman et al., 2020). All participants provided written informed consent. The study 

was conducted according to the Declaration of Helsinki and the ethical approval was granted by the 

Ethical Review Board of the German Psychological Association (DGPS). 

Participants completed a battery of questionnaires, including the STAI prior to the 

experiment. The conducted fear conditioning paradigm included acquisition and extinction training 

as well as a return of fear phase. However, exclusively data from acquisition training were analyzed 

in Study III. CSs were a black colored rectangle and ellipse presented via Presentation Software 

(Version 14.8, Neurobehavioral Systems, Inc, Albany California, USA) on a yellow, green, blue, 

or purple computer screen for 6 s and 9 times each with not more than two identical stimuli in a 

row. Background colors served as context, but had no further meaning for the acquisition training. 

The reinforcement rate was 100%. Allocation of shapes to CS+ and CS-, order appearance of 

CS+/CS- and background color were counterbalanced across participants. A white fixation cross 

presented for 11.5 s (± 1.5 s) on a black background served as ITI.  

The constitution and apparatus of the US/US delivery and its calibration correspond to the 

description in section 2.3. The apparatus and procedure to acquire and preprocess SCR data as well 

as the criteria of non-responding were identical to those described in section 2.5 except that the 

scoring window ranged from 0.9 to 4.0 s (Boucsein et al., 2012) and SCRs < 0.02 ߤS were classified 

as zero responses. SCRs were log-transformed and range corrected to approach a normal 

distribution. 
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2.8.2 Additional data set used in Study IV 

The additional data set used in Study IV originated from a study in which the impact of 

dopamine-induced prefrontal reactivations on extinction learning was investigated (Gerlicher et al., 

2018). Participants (N = 40 male subjects, ageM = 28.1 years, ageSD = 2.7 years) provided written 

informed consent and the local ethics committee had approved the experimental protocol (Ethics 

Committee of the State Medical Association, Rheinland-Pfalz, Germany). 

A black square and a black rhombus were shown for 4.5 s as CSs in front of two different 

contexts A and B (living room or kitchen) by using Presentation Software (Version 14.8, 

Neurobehavioral Systems, Inc, Albany California, USA). Allocation of geometric shapes to CS+ 

and CS- and contexts were randomized across participants. Three square-wave pulses of 2 ms (50 

ms interstimulus interval; generated by a DS7A Digitimer, Weybridge) served as electro-tactile US 

which occurred simultaneously with the CS+ and was delivered through a surface electrode with a 

platinum pin on the back of the right hand. The US was calibrated individually aiming at a painful, 

but tolerable level. CS presentations were interleaved by 17 – 19 s ITIs (mean = 18.5 s). CSs were 

pseudo-randomly presented with not more than two trials in succession. 

The paradigm was conducted in MR environment and encompassed three days including 

fear acquisition training on day 1 (presentation of ten CS+ and CS- each in context A, reinforcement 

rate = 50%), extinction training (presentation of 15 CS+ and CS- each in context B) and a following 

drug administration on day 2 as well as a drug manipulation test on day 3. 

SCRs were captured via self-adhesive Ag/AgACl electrodes from the thenar and hypothenar 

of the non-dominant hand. Data were obtained by using the BIOPAC MP150 with EDA100C. An 

offline low-pass filter was applied (second-order Butterworth filter, cut-off frequency: 1 Hz) by 

using MATLAB (Mathworks, Natick, Massachusetts, USA). Mostly, the response quantification 

followed that of the main data set except that the identification of the response trough was 

determined 0.9 – 4 s after stimulus onset (Boucsein et al., 2012) and the usage of a 0.02 μS minimum 

amplitude criterion. Two participants were excluded due to recording artifacts during acquisition 

and extinction training resulting in a final sample of N = 38 participants for both days. 

2.9 Statistical analyses 

This paragraph only covers the primary analyses. For more comprehensive information, 

please consult the published studies. To test associations of cortical thickness (dACC, insula, and 

mODF) or subcortical volume (amygdala) and differential SCRs (averaged across phases) and fear 
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ratings (operationalized as post-acquisition and pre- minus post-extinction) in Study I, simple linear 

regressions were calculated by using the T0 data. Moreover, Bayes factors were calculated for all 

analyses to complement the traditional null hypothesis significance testing (NHST). For reasons of 

robustness, the last two analyses were repeated with the inclusion of solely the first or second half 

of phases (SCR) or ratings prior to/after phases, as well as the inclusion of sex and total intracranial 

volume (TIV) as covariates, and with the exclusion of outliers (+/- 3 SDs above/below the mean). 

To assess the moderating role of CS-US contingency awareness in the putative association of dACC 

thickness, exploratory moderated regression analyses were performed. Partial correlations were 

computed to investigate the relationship between amygdala volume and trait as well as state anxiety. 

To calculate reliability as well as predictability across experimental phases in Study II, 

SCRs, fear ratings, and BOLD fMRI at time points T0 and T1 were taken into account: At both 

time points, internal consistency was calculated by applying the odd-even approach. To determine 

longitudinal reliability at the individual level, intra-class correlation coefficients (ICCs) were 

calculated. Moreover, within-subject similarity (i.e., the correlation of responses within each 

individual across T0 and T1) was compared to between-subject similarity (i.e., the averaged 

correlation of responses of one individual at T0 and responses of all other individuals at T1), and 

the overlap of individual significant voxels as measured with BOLD fMRI at T0 and T1 were 

examined. For investigations of longitudinal reliability at the group level, the overlap of group 

averaged significant voxels and the explained variance in SCRs at T1 by the variance of T0 (i.e., R 

squared) were investigated for BOLD fMRI and for SCRs respectively. To assess if responding in 

a given experimental phase can be predicted by responding in a preceding experimental phase, 

several simple linear regressions were calculated with the given phase as the dependent variable 

and the preceding phase as the independent variable. All reliability measures were calculated 

involving different data specifications encompassing stimulus type (CS+, CS-, CS discrimination, 

US), different operationalizations of experimental phases (e.g., average acquisition training, last 

two trials of acquisition training) and different data transformations such as ranking or log-

transformation and range correction of the data (exclusively SCR data). 

Study III aimed to investigate the impact of methodological heterogeneity in the definition 

and exclusion of ‘non-learners’ and ‘non-responders’. To extract criteria of ‘non-learners’ and ‘non-

responders’ based on SCR performance, a systematic literature search was conducted following the 

PRISMA guidelines (Moher et al., 2009) including all publications within a 6 months period prior 

to the beginning of the study. 
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Exclusion rates due to ‘non-learning’ and ‘non-responding’ were extracted from the 

literature. To statistically compare CS discrimination between groups of the sample that were built 

on the basis of different exclusion ‘non-learner’ criteria in the literature (here referred to as 

‘exclusion groups’), a mixed ANOVA with CS discrimination in SCRs and fear ratings as 

dependent variables and the between-subjects factor ‘Exclusion group’ as well as the within-subject 

factor ‘CS type’ was conducted. For this analysis, the main data set 1 (i.e., T0 data) was taken into 

account. It is important to note that this calculation involves a degree of circularity, as the exclusion 

groups were based on CS discrimination abilities. However, it is even more important to check 

whether there was in fact no CS discrimination according to the criteria often used in the literature. 

Post hoc t-tests were performed to investigate which exclusion groups differed from each other. To 

examine how the exclusion of ‘non-learners’ impacts the participant pre-selection for specific 

individual differences such as trait anxiety, a univariate ANOVA including STAI-T score serving 

as dependent and ‘Exclusion group’ as independent variable was performed by using the 

complementary data set 2. To compare STAI-T scores in different exclusion groups, post hoc 

pairwise t-tests were computed. To assess the distribution of ‘non-responding’ across stimuli, 

percentages of ‘non-responses’ were extracted for CS+, CS-, US, and CS discrimination. 

Furthermore, Spearman rank correlations were calculated to examine the relationship between the 

non-responses to the US and the non-responses to the CSs. 

To investigate the heterogeneity in the statistical model selection in the field of fear 

conditioning, the first step in Study IV was to extract relevant statistical models and data reduction 

approaches (i.e., processing of the data prior to inclusion in the statistical model, such as averaging 

all trials or specific blocks of trials of an experimental phase) typically applied in the field. 

Therefore, a systematic literature search was conducted according to the PRISMA guidelines 

(Moher et al., 2009) covering a time period of six months prior to the beginning of the project. For 

calculations of the multiverse analyses, the R package multifear was used, which was also 

introduced in Study IV. Mean and median p-values were calculated for NHST analyses 

(significance level α = .05) while Bayes factors were computed for Bayesian analyses. Forest plots 

were created to illustrate the effect sizes of all the different frequentist ANOVAs and t-tests 

including the different types of data reduction approaches. 

All statistical analyses were conducted using different software versions of R (R Core 

Team) and MATLAB (Mathworks, Natick, Massachusetts, USA). 
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3 Results and brief discussions 

3.1 Study I: Revisiting potential associations between brain morphology, fear 
acquisition, and extinction through new data and a literature review 

The ongoing challenges in obtaining robust and replicable results (Open Science 

Collaboration, 2015; Stroebe & Strack, 2014) underscores the necessity for additional attempts to 

replicate empirical findings – also in the field of fear conditioning. In line with this, recent findings 

have challenged the robustness of structural-brain-behavior associations, whose investigation have 

a long-standing tradition in psychological and neuroscientific research, with low replication rates 

observed across various psychological measures (Boekel et al., 2015; Genon et al., 2017; Kharabian 

Masouleh et al., 2019). Research into how individual differences in defensive responding 

correspond to variations in brain structure is limited involving few studies investigating fear 

acquisition and extinction learning, as well as retention test, with inconsistent results reported 

(Cacciaglia et al., 2015; Hartley et al., 2011; Milad, Quirk, et al., 2007; Pohlack et al., 2012; 

Winkelmann et al., 2016). Most studies have small sample sizes but report surprisingly strong 

correlations (see Figure 3). Since the robustness of structural brain-behavior associations has 

recently been called into question (Kharabian Masouleh et al., 2019; Masouleh et al., 2020), Study 
I attempted to conceptually replicate previous findings of associations between cortical 

thickness/subcortical volume and defensive responding in SCRs and fear ratings, both in a large 

sample and within a single study. 

Based on previously reported associations in the literature, cortical thickness of the dACC 

and insula as well as the amygdala volume was assessed during acquisition training, and for 

extinction training, mOFC thickness, and amygdala volume were included in the analyses. 

Exploratory analyses focused on the moderating role of CS-US contingency awareness regarding 

putative associations of dACC thickness and differential responding and on the replication attempt 

of previously reported associations of amygdala volume and self-reported trait as well as state 

anxiety. 

Neither NHST nor Bayesian results provided evidence for an association of differential 

responding and cortical thickness or subcortical volume. In fact, there was evidence to the contrary: 

Bayes factors yielded mostly moderate to strong relative evidence in favor of the null hypotheses 

indicating that such relationships are likely absent. This was true for SCRs as well as fear rating 

during acquisition (see Figure 4) and extinction training and for all brain regions under 



 
RESULTS AND BRIEF DISCUSSIONS 

36 
 

investigation. Additional robustness analyses including solely the first or second half (SCR) or the 

pre/post ratings instead of the complete phases and gender or TIV as covariates did not yield 

substantially different results. Furthermore, CS-US contingency awareness did not have a 

moderating role in the putative association of dACC thickness and differential responding, and no 

significant relationships between amygdala volume and trait as well as state anxiety were observed.  

In sum, previous findings on the association between individual differences in brain 

morphology and differential physiological or subjective conditioned responding during acquisition 

and extinction could not be replicated (Abend et al., 2020; Cacciaglia et al., 2015; Hartley et al., 

2011; Milad, Quirk, et al., 2007; Rauch et al., 2005; Winkelmann et al., 2016). However, it should 

be highlighted that Study I represents a conceptual replication attempt with procedural differences 

in comparison with previous work such as i) the application of a partial instead of 100% 

reinforcement rate, ii) the number of trials included, iii) the implementation of immediate vs. 24-h-

delayed extinction training, or iv) differences in data analyses, such as the usage of different 

software tools. These procedural and methodological differences might have contributed to these 

divergent results and may represent boundary conditions under which a significant effect does not 

occur. This would imply that the generalizability of results may be limited. 

Yet, there might be another often overlooked explanation for the lack of associations 

observed in Study I: While the reliability of structural MRI was reported to be excellent (Elliott et 

al., 2020; Han et al., 2006), the reliability of SCRs and fear ratings is alarmingly understudied (see 

next section on Study II). Most importantly, reliability puts an upper bound to correlations as the 

correlation between two variables cannot exceed the correlation within these two variables (i.e., the 

reliability; Spearman, 1910). Thus, the absence of a significant relationship between brain 

morphology and conditioned responding might be also due to unreliable physiological and 

behavioral measures (i.e., SCR and fear ratings). Yet, little is known about the reliability of 

measures commonly used in fear conditioning research. To fill this gap, measurement reliability 

was investigated in Study II. 
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Figure 3   Illustration of effect sizes as reported in previous and current work 
as a function of sample size. Note that while some previous studies used 
regressions instead of correlations, all effect size measures were converted to 
correlation coefficients for comparability. Blue dots represent significant 
results while red dots represent non-significant ones. Note also that some 
studies report multiple associations, and thus are depicted by multiple dots. 
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Figure 4   Illustration of the (absence of) a relationship of cortical thickness of the dACC (A and B) and amygdala volume 
(C and D) with CS discrimination [(CS+) – (CS-)] in SCRs (A and C) and fear ratings (B and D) during acquisition training 
across participants. The curves above and to the right of the scatterplots illustrate marginal densities.  
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3.2 Study II: Robust group- but limited individual-level (longitudinal) reliability 
and insights into cross-phases response prediction of conditioned fear 

Whereas the scientific focus in the past has been primarily on basic, generic mechanisms 

underlying conditioned responding and drawing conclusions about different groups, there is 

currently a shift in emphasis toward individual difference research (Lonsdorf & Merz, 2017). To 

answer important clinical questions, such as why some individuals respond to treatments while 

others do not, or why some individuals relapse, measures that model these processes in the 

laboratory are required that allow prediction at an individual level beyond the group mean (Fröhner 

et al., 2019; Hedge et al., 2018; Lonsdorf & Merz, 2017). An important prerequisite for this is that 

the employed measures are reliable. However, the reliability of conditioned responding in fear 

conditioning paradigms is heavily understudied with only five studies addressing this topic (Cooper, 

Dunsmoor, et al., 2022; Fredrikson et al., 1993; Ridderbusch et al., 2021; Torrents-Rodas et al., 

2014; Zeidan et al., 2012) and hence requires more attention. 

Similarly, there is also a lack of empirical investigations into the relationship of conditioned 

responding at different time points of very short intervals, i.e. across different experimental phases. 

This relationship is often implicitly assumed by researchers who ‘control’ responding in later 

experimental phases for responding in earlier phases (e.g., see Milad et al., 2009, critically discussed 

in Lonsdorf et al., 2019). However, these associations of conditioned responding are rarely directly 

investigated and lack consistency in findings: Evidence from animal studies or indirectly from 

patient research supports both the presence (Foa et al., 1983; Gershman & Hartley, 2015; Rauch et 

al., 2004) and absence (Bouton et al., 2006; Kozak et al., 1988; Pitman et al., 1996; Plendl & 

Wotjak, 2010; Prenoveau et al., 2013; Riley et al., 1995; Shumake et al., 2014) of these associations.  

Study II aimed to fill these gaps in the literature by investigating i) longitudinal reliability 

of conditioned responding at the individual and the group level, ii) internal consistency, and iii) the 

association of conditioned responding across different experimental phases. To account for 

methodological heterogeneity in the literature, we followed a manyverse-inspired approach and 

included different outcome measures (i.e., BOLD fMRI, SCR, and fear ratings) as well as data 

specifications such as phase operationalizations (e.g., responding averaged across the phase or the 

last two trials), data transformations (e.g., log-transformation and range correction of the data), 

different stimulus types (i.e., CS+, CS-, US, and CS discrimination), and reliability measures (i.e., 

ICCs, similarity, or overlap). 
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Across most data specifications, internal consistency of SCRs (see Figure 5A-B) as well as 

longitudinal reliability at the group level for SCRs (see Figure 6) and BOLD fMRI were robust 

whereas individual-level longitudinal reliability of SCRs, fear ratings (see Figure 5C-F) and BOLD 

fMRI was somewhat limited. The latter was evident in more traditional approaches such as ICCs, 

but also in more advanced reliability measures such as overlap or similarity (see Figure 7) with the 

exception of individual BOLD activation patterns at T0 being more similar to their own activation 

patterns at T1 than to those of others. The limited reliability was particularly true for responding 

during extinction training and was apparent across different data specifications such as ranking or 

log-transformation and range correction of the data (SCR only) of the data. Adding more trials did 

not significantly improve reliability. Taken together, these findings suggest that the individual-level 

longitudinal reliability remains relatively consistent, regardless of changes in data transformations 

or paradigm specifications. This simplifies the integration of prior research that employed different 

time intervals, reliability metrics, and paradigms.  

Regarding predictions over relatively brief time intervals, significant associations between 

responses across different experimental phases were observed for SCR, fear ratings, and BOLD 

fMRI. Higher responses in previous phases were generally linked with slightly higher responses in 

subsequent phases for all outcome measures. The strength of predictions, however, depended on 

data specifications. More precisely, several predictions were not significant, specifically for CS 

discrimination in SCRs and BOLD fMRI. This may be attributed to less reliable difference scores 

(i.e., CS+ minus CS-; Infantolino et al., 2018; Lynam et al., 2006), where meaningful variance is 

subtracted (Moriarity & Alloy, 2021).  

In sum, predictions at the individual level might be more feasible for shorter time intervals 

while at the group level, predictions may be also plausible for longer time intervals. However, the 

benchmarks used in this study originate from psychometric research and should be interpreted with 

caution as the definition of “good” reliability in an experimental context is still unclear (Parsons et 

al., 2019). Nevertheless, these findings prompt the inquiry of whether conditioned responses are 

adequate for making long-term individual predictions and what steps could be taken to obtain more 

robust results. 

A promising solution for the limited individual long-term predictions might be the 

application of homogenous (latent) subgroups that share a certain similarity in aspects such as rapid 

or slow response profiles (Galatzer-Levy et al., 2013). This approach exploits the advantage of 

robust group reliability but also allows conclusions to be drawn about individual differences. 

Furthermore, reliability might be enhanced by utilizing more sophisticated approaches such as intra-
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individual neural response variability (Månsson et al., 2021) or multivariate imaging techniques, 

which have been proposed to be more reliable than traditional analysis methods (Kragel et al., 2021; 

Marek et al., 2020; Noble et al., 2021; Visser et al., 2021). 

Measures that lack reliability represent a challenge for the robustness and replicability of 

results as reliability ensures that the employed measures generate stable data, i.e. producing the 

same results for the same participants over time (Heale & Twycross, 2015). However, we need to 

deepen our understanding of which methodological choices lead to more robust results. One such 

choice involves the exclusion of specific participants, which can have major consequences for the 

generalizability and robustness of results, as demonstrated in Study III.  

 

 

Figure 5   Demonstration of internal consistency (at T0: A and at T1: B), absolute agreement ICCs (C and E) as well as 
consistency ICCs (D and F) for SCRs (A, B, C, and E) and fear ratings (D and F). Internal consistency mirrors the reliability 
within one time point, whereas ICCs mirror the reliability across time points. Colors indicate different stimulus types (red 
= CS+, blue = CS-, yellow = US) or CS discrimination (black). The y-axes comprise different (operationalizations of) 
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experimental phases. Error bars represent 95% confidence intervals which indicate significance when zero is not included. 
For internal consistency, benchmarks are depicted as determined by Kline (2013) with cut-offs for unacceptable (<0.5), 
poor (>0.5 but <0.6), questionable (>0.6 but <0.7), acceptable (>0.7 but <0.8), good (>0.8 but <0.9), and excellent (≥0.9). 
Accordingly, the benchmarks for ICCs were poor (<0.5), moderate (>0.5 but <0.75), good (>0.75 but <0.9), and excellent 
(≥0.9) as stipulated by Koo and Li (2016). It should be noted that these benchmarks origin from psychometric work on 
questionnaires and thus, completely different benchmarks could be applicable for fear ratings and especially for SCRs. 
Thus, these benchmarks rather serve as rough guidance and should not be overinterpreted for experimental data which are 
inherently more noisy (Parsons, 2020). 

 

 

Figure 6   Illustration of the longitudinal reliability at the group level of SCRs during acquisition (A) and extinction training 
(B) color coded for stimulus type (red = CS+, blue = CS-, yellow = US) and CS discrimination (black). Longitudinal 
reliability at the group level of SCRs was determined by R squared as extracted from simple linear regression including 
group average trials-by-trial SCRs at T0 as predictor and group average trial-by-trial SCRs at T1 as criterion. 
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Figure 7   Comparison of within- and between-subject similarity for raw SCRs during 
(A) acquisition and (B) extinction training separately for CS discrimination (gray), CS+ 
(red), CS− (blue), and US (yellow). Each data point represents the correlation between 
trial-by-trial SCRs of each participant at T0 and T1. The within-subject similarity is the 
correlation between the same subject's SCRs at T0 and T1, while the between-subject 
similarity is the average correlation between one subject's SCRs at T0 and all other 
subjects' SCRs at T1. The triangles represent the mean correlations, and the error bars 
indicate the 95% confidence intervals. The boxplots show the distribution of the data, 
with the median represented by a bold line and the interquartile range (IQR) indicated 
by the box. The whiskers extend to the minimum and maximum values within the range 
of 25th/75th percentiles ±1.5 IQR. The densities next to the boxplots represent the data 
distributions. One data point was excluded from the figure because its similarity was 
above 3.5 (within-subject similarity for the CS+). The variance differs considerably 
between within- and between-subject similarity because between-subject similarity is 
based on correlations averaged across participants, while within-subject similarity is 
based on non-averaged correlations calculated for each participant. within-sub = within-
subject; between-sub = between-subject. *p < 0.05. 
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3.3 Study III: Navigating the garden of forking paths for data exclusions in fear 
conditioning research 

In fear conditioning paradigms, a possible option for participant exclusion pertains to how 

to handle individuals who are labeled as SCR 'non-learners' or 'non-responders', which refer to 

participants who are classified as physiologically showing no or “insufficient” CS discrimination 

(i.e., ‘non-learners’) or stimulus-driven responses (i.e., ‘non-responders’). Although they are often 

routinely excluded due to the common belief that investigations within fear conditioning paradigms 

require a strong conditioned response, consistent definitions of ‘non-learners’ and ‘non-responders’ 

are lacking. Related challenges also involve their exclusion often being based on a single outcome 

measure (i.e., SCRs), while excluding them from analyses of all outcome measures. Moreover, CS 

discrimination – as an important criterion for ‘non-learning’ – appears to vary as a function of 

individual differences such as trait anxiety (e.g., Gazendam et al., 2013; Sjouwerman et al., 2020; 

Staples-Bradley et al., 2018), and thus, the exclusion of ‘non-learning’ subgroups might result in a 

substantial sample bias. 

To address these theoretical concerns empirically in two data sets, the aims of Study III 
were to i) identify ‘non-learner’/’non-responder’ criteria based on a systematic literature search, ii) 

showcase the impact of these criteria on results and their interpretation and iii) illustrate which 

empirical recommendations can be derived. 

The systematic literature search revealed substantial heterogeneity in exclusion criteria of 

‘non-learners’ with exclusion rates ranging from 2% up to 74% (see Figure 8A). Definitions of 

what constitutes a ‘non-learner’ involved variables such as the number of included trials or a varying 

pre-specified CS discrimination cutoff (see Figure 8B). The cutoffs at which participants were 

excluded for ‘non-learning’ ranged from < 0 µS to < 0.1 µS with the majority of participants being 

excluded when SCRs to the CS- were equal to or greater than responses to the CS+ (i.e., cutoff ≤.0). 

Moreover, we illustrate the different portions of the sample in data set 1 which would be 

excluded according to these different cutoffs (see Figure 9) including two case examples (ID#1 and 

ID#2), which differ in their SCR magnitude of CS discrimination, but – most importantly – exhibit 

the identical CS discrimination ratio of .04. Thus, cutoffs that require a strong CS discrimination 

(e.g., < 0.1) might disregard individuals who show weak SCR amplitudes, but similar CS 

discrimination ratios. Of note, most of the exclusion groups as defined by different CS 

discrimination cutoffs showed indeed significant CS discrimination in SCRs when tested 
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statistically, and – even more strikingly – all exclusion groups discriminated in fear ratings, 

although they would have been excluded as non-learners based on SCRs. 

The examination of how the exclusion of ‘non-learners’ affects the pre-selection of 

participants for particular individual differences, such as trait anxiety, uncovered that individuals 

with higher levels of trait anxiety exhibited poorer CS discrimination. Consequently, these 

individuals are more prone to exclusion as a function of increasing cut-offs (data set 2). This is of 

great relevance as i) this procedure may result in limited generalizability of findings due to a 

generally restricted sample and ii) response patterns of anxious individuals such as deficient safety 

learning appear to be similar to those of anxiety patients (Duits et al., 2015; Gazendam et al., 2013). 

Hence, their exclusion might be a threat to the translation of empirical findings into clinical 

applications. 

The definitions of ‘non-responding’ (i.e., lacking physiological responses), which varied 

substantially according to the criteria of i) stimulus type (i.e., CS+, CS-, or US), ii) minimum SCR 

amplitude and iii) the percentage of trials which met these criteria, led to exclusions of 0% to 14% 

of participants in the systemically identified studies. The number of SCR non-responses to the US 

was substantially lower compared to non-responses to the CSs (see Figure 10A). Furthermore, US 

non-responses significantly predicted CS non-responses (see Figure 10B), but not vice versa, 

suggesting that specifically US non-responses may be more appropriate for classifying 

physiological SCR 'non-responders' than CS responses. Yet, it is difficult to formulate a generally 

valid criterion as its definition also hinges on experimental variables such as design (e.g., single- 

vs. multiple-day paradigm), hardware, or sampling rate. 

However, several recommendations can be derived from the results of Study III: First, 

researchers should critically evaluate whether ‘non-learning’ and ‘non-responding’ criteria 

correspond to their specific study context or consider whether they could empirically derive criteria 

from their own study. Second, as the majority of participants indeed showed significant 

discrimination by applying different criteria of ‘non-learning’, a post-hoc check could be conducted 

to assure that the applied criteria worked as intended. Third, the identified ‘non-learners’ 

particularly discriminated between CSs in fear ratings. Thus, participants should not be excluded 

on the basis of one outcome measure alone. Fourth, while it might be meaningful to exclude physical 

‘non-responders’ as they do not react in general in SCR, other exclusions can be a threat to the 

generalizability of findings. Finally, for reasons of transparency, we recommend that researchers 

should also report results in the absence of the application of these criteria – at least in the 

supplementary material. Fearing divergent results is unwarranted, as they hold the informative 
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potential to reveal possible boundary conditions under which the effects emerge (or not). In sum, 

an informed approach to treating ‘non-learners’ and ‘non-responders’ might protect against relying 

on an effect that is only present in a specific subgroup or missing a significant effect because a 

relevant subgroup was excluded. 

To navigate the garden of forking paths, many decisions must be carefully made, including 

how to handle 'non-responders' and 'non-learners'. This key decision point concerns the pre-

processing of data which was addressed in Study III in a small (data) manyverse. Another crucial 

decision following the pre-processing steps involves the selection of an appropriate statistical 

analysis model – the selection of which is similarly rendered difficult by a substantial number of 

options and heterogeneity in the literature. A model multiverse, as used in Study IV, is an effective 

tool for exploring the impact of this heterogeneity on results. 

 

Figure 8   Illustration of the percentage of participants excluded as ‘non-learners’ across 14 individual studies derived from 
11 different records (A). The percentages shown do not necessarily reflect the total number of participants excluded per 
study as some studies excluded participants on the basis of both, ‘non-learning’ and ‘non-responding’, e.g. the study with 
the highest percentage of exclusions (74%). The sanky plot (B) illustrates the different paths and combinations of CS+ 
types used, experimental phases, number of trials, and SCR CS discrimination cut-off scores defining ‘non-learners’ across 
studies. The width of the paths is scaled according to the frequency of the combinations used. Some percentages for certain 
combinations may not add up to 100% due to rounding. 
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Figure 9.   Illustration of the density distribution of CS discrimination [(CS+) – (CS-)] in raw SCRs 
(data set 1). Different colored areas represent parts of the sample that would be excluded by applying 
different cutoff criteria (see legend). Two participants are depicted as case examples (ID#1 and ID#2) 
who are part of different exclusion groups but – most importantly – show an identical discrimination 
ratio (4:1) indicating the higher probability of participants exhibiting stronger SCR amplitudes to 
remain in the final sample. Please note that in practice, the groups are cumulative, implying that the 
groups depicted in lighter shades always include the groups illustrated in darker shades. They are, 
however, considered distinct groups for illustrative purposes. 

 

 

 

Figure 10   Illustration of percentage of SCR ‘non-responses’ across stimuli (A) and the correlation (Spearman) of US 
‘non-responses’ and CS ‘non-responses’ (B) across all participants (data set 1). Colors indicate the type of stimulus 
(red = CS+, blue = CS-, gray = both CSs, black = US). In this study, ‘non-responses’ were defined as responses with 
an amplitude < 0.01 mS. 
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3.4 Study IV: Multiverse analyses in fear conditioning research 

In fear conditioning research, the exploration of the garden of forking paths mainly focused 

on data manyverses or multiverses including assessments of the effects of different definitions of 

‘non-learners’/‘non-responders’ (see Study III), ‘extinction retention’ (Lonsdorf et al., 2019) or 

SCR quantification approaches on results (Kuhn et al., 2022; Sjouwerman et al., 2022). However, 

there is also a wide variety of approaches to aggregate and analyze data by using different data 

reduction procedures and statistical models (e.g., t-tests, ANOVAs, or mixed models) respectively. 

Data reduction procedures refer to data processing steps such as the inclusion of single trial data, 

averaging across all trials, or specific blocks of an experimental phase prior to the data integration 

into a statistical model. These data reduction procedures and statistical models are often equally 

plausible and justifiable but have been shown to produce substantially different results and 

conclusions (Botvinik-Nezer et al., 2020; Dutilh et al., 2019; Kuhn et al., 2022; Silberzahn et al., 

2018).  

Presumably, researchers are provided with more degrees of freedom in choosing statistical 

models due to a lack of formalization of psychological theories as these are often verbally described 

as latent constructs and their associations (Farrell & Lewandowsky, 2018; Lewandowsky & Farrell, 

2010). The specific assumptions and details of the theory may be left to the researcher, which can 

result in the translation of a single theory into different statistical models. To formalize verbal 

theories in fear conditioning, understanding how specific methods – or more precisely specific 

statistic models – affect results is crucial. A multiverse approach, in which all possible statistical 

models are applied in one step in the context of a single analysis, shows promise for improving this 

understanding. Thus, the aims of Study IV were to i) introduce the model multiverse concept in the 

field of fear conditioning, ii) illustrate the impact of utilizing various statistical models (as identified 

previously through a systematic literature review) on the outcomes of two distinct data sets; and iii) 

present the user-friendly R software package multifear which allows for the execution of multiverse 

analyses with a single line of code. 

In the literature, a wide variety of data reduction approaches (depicted in Figure 12) as well 

as statistical models were identified. The identified statistical models include frequentist as well as 

Bayesian approaches (i.e., ANOVA, t-tests, and mixed models). Among these models, repeated 

measures ANOVA was the most commonly used. 

All different combinations of these data reduction procedures and statistical models 

identified in the literature were included in the following multiverse analysis, also referred to as 
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model multiverse, which was calculated for SCRs during acquisition and extinction training. The 

mean p-values across all identified statistical models and data reduction procedures (see Figure 11) 

indicated significant CS discrimination during acquisition in data set 1 but was only marginal in 

data set 2. For extinction training, the mean p-values were non-significant in both data sets. 

Similarly, for acquisition training, the proportions of the Bayes factor above 1 were 70 – 100%, 

indicating that there was stronger evidence for the alternative hypothesis than for the null 

hypothesis, while for extinction training, these proportions were 50% or lower. The inspection of 

CS discrimination (i.e., “CS effect”) during acquisition training yielded medium to large effect sizes 

while the interaction of CS type and time showed small to medium effects in data set 1 (see Figure 
12). Contrarily, in data set 2, effect sizes for CS discrimination were rather inconsistent and ranged 

from approaching zero to large effects. The addition of the time factor (CS by time interaction) 

resulted in (very) low effect sizes. For extinction training, effect sizes were expectedly low in data 

set 2 as SCRs to the CS+ typically wane throughout the extinction phase resulting in lower CS 

discrimination. Surprisingly, substantial CS discrimination was observed in data set 1 for the 

majority of the models. This might be attributed to the use of different reinforcement rates in data 

set 1 (partial reinforcement) and data set 2 (continuous pairing) as partial reinforcement is linked to 

a slower process of extinction learning (Dunsmoor et al., 2007; Haselgrove et al., 2004). 

Size and direction (i.e., significant vs. non-significant) of effects appeared to hinge on the 

selection of the statistical model and the choice of included (blocks of) trials. Hence, while multiple 

valid options may exist that could be equally justifiable, choosing one particular analytical option 

over the other might result in different findings and conclusions questioning the robustness of 

effects. 

In future fear conditioning studies, reporting multiverse analyses, at minimum in the 

supplement, could enhance our comprehension of experimental boundary conditions (e.g., the 

inclusion of specific trial numbers or covariates), that significantly affect the magnitude of the effect 

under investigation. Thus, multiverse studies can aid to unravel which model generates robust 

effects. In this context, the outcomes obtained from conducting multiverse analyses might offer an 

ideal foundation for constructing more sophisticated formal theoretical frameworks (Oberauer & 

Lewandowsky, 2019). These formal theories can then be tested more directly by implementing a 

specific statistical model and thereby reducing methodological heterogeneity and producing more 

consistent results. As fear conditioning procedures hold significant translational relevance in 

shaping future clinical intervention and prevention programs, it is crucial to align analytical 

techniques across studies. This would enable comparisons between study results, enhance 
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replicability, and ultimately accelerate the translation of fear conditioning research into clinical 

practice. 

 

 
Figure 11   Histograms illustrating the amount of various p-values resulting from the classic NHST (left panel) and Bayes 
factors according to the Bayesian approach (right panel) resulting from the multiverse calculations for data set 1 (A: 
acquisition training and B: extinction training) and data set 2 (C: acquisition training and D: extinction training). Bayes 
factors above 1 point toward evidence for the alternative hypothesis relative to the null hypothesis while for factors below 
1 the opposite is true. 
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Figure 12   Forest plot illustrating the effect sizes that result from different analyses as conducted within the multiverse analyses for acquisition training (data set 1: A, data set 2: C) 
and extinction training (data set 1: B, data set 2: D). To render effect sizes more comparable, effect sizes resulting from t-tests were transformed into eta squared as extracted from 
ANOVAs. Error bars represent 90% confidence intervals indicating significance when zero is not included. 
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4 General discussion 

The overall objective of this thesis was to deepen our understanding of the methodological 

heterogeneity involved in fear conditioning research, with the ultimate goal of contributing to the 

ongoing generation of cumulative knowledge on result robustness. This was accomplished through 

a comprehensive series of four studies. Most of the data analyzed in the four presented studies 

originate from a longitudinal investigation in a large sample that spanned six measurement time 

points. Among these time points, two comprised a two-day differential fear conditioning paradigm 

in which several outcome measures was acquired including physiological (e.g., fMRI and SCR) and 

self-report data (e.g., fear ratings and questionnaires). 

Although the studies collectively indicated limited robustness of results, they offer valuable 

insights into the complexities of the topic. These insights can be leveraged to apply existing or to 

develop novel methods that promote greater robustness in future research. While Study I did raise 

questions about the robustness of specific brain-behavior interactions, as they could not be 

conceptually replicated, these insights serve as an important starting point for further investigation. 

Moreover, individual differences in conditioned responding in outcome measures that are 

commonly used in the field are robust at short time intervals but less so over longer time intervals 

(Study II). Furthermore, the exclusion of specific subsets of participants (Study III) and the choice 

of specific statistical models (Study IV) substantially affected the results and their interpretation. 

Importantly, all of the studies included in this thesis revealed substantial methodological 

heterogeneity in the literature at several steps of the research process with regard to experimental 

design (Study I), operationalization of experimental phases, data specifications, and reliability 

measures (Study II), the criteria for excluding specific participants (Study III), and the statistical 

approaches employed (Study IV). Through the application of these various methodological 

approaches in each study, it has become clear that there are opportunities for improving the 

robustness and facilitating the integration and literature embedding of study outcomes. By 

addressing methodological heterogeneity and robustness, researchers can work toward developing 

a more comprehensive understanding of these important topics. These efforts will ultimately 

contribute to increased comparability, integrability, and generalizability of findings, supporting 

greater replication and advancing our knowledge in fear conditioning research. 

The findings of the studies included in this thesis, as outlined above, align well with 

previous work demonstrating that methodological heterogeneity can result in significant variations 

in outcomes and their interpretation when identical data was submitted to various analysts, despite 

initially sharing identical raw data (Botvinik-Nezer et al., 2020; Silberzahn et al., 2018). In fear 
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conditioning research, there have been empirical investigations and discussions on definitions and 

applications of analytical approaches as in Study IV (Ney et al., 2020, 2022), different ‘extinction 

retention indices’ (Lonsdorf et al., 2019), and SCR quantification approaches (Kuhn et al., 2022; 

Sjouwerman et al., 2022) as well as the procedural heterogeneity and robustness in studies 

scrutinizing reinstatement-dependent ROF (Haaker et al., 2014; Sjouwerman & Lonsdorf, 2020). 

These studies have collectively highlighted that greater methodological homogeneity may 

be worth striving for in order to promote the robustness of results. To date, only a few steps in the 

scientific process of conducting and analyzing fear conditioning experiments have been 

investigated meta-scientifically (Nebe et al., 2023). As such, my thesis aims to contribute to the 

meta-scientific understanding of fear conditioning research and provides implications and potential 

remedies that address both challenges of decreasing methodological heterogeneity and improving 

the robustness of results. These remedies, which are detailed below, include the direct and indirect 

enhancement of robustness by increasing reliability and precision, reducing methodological 

heterogeneity, developing and refining theories, promoting transparency in reporting and in visual 

data presentation, and, in a broader sense, a change of the scientific culture (Ney et al., 2018, 2020; 

Nosek et al., 2022; Zorowitz & Niv, 2023).  

In the recent past, there have been several suggestions to increase robustness of fear 

conditioning results directly (Ney et al., 2018), which are also frequently recommended for 

increasing reliability, such as augmenting the sample size (Ney et al., 2020; Zorowitz & Niv, 2023). 

In Study I, in which we could not conceptually replicate specific brain-morphology interactions, 

the sample was quite large. However, we cannot rule out the possibility that the brain-morphology 

interaction would have been significant in an even larger sample. Yet, this would be rather unlikely, 

as an inspection of the literature has shown that significant effects were mainly observed in studies 

using smaller samples (e.g., Hartley et al., 2011; Rauch et al., 2005). Future replication studies could 

show, whether increasing the sample size may also enhance the robustness of the absence of effects.  

A further proposal to enhance robustness and reliability would be to optimize the 

experimental design, e.g. by increasing the number of trials (Ney et al., 2020; Zorowitz & Niv, 

2023). However, we did not observe a significant effect of raising the number of trials on reliability 

in Study II. Zorowitz and Niv (2023) proposed another approach to improve reliability which 

involves increasing the variability between participants. One way to achieve this in SCRs might be 

refraining from adjustments for individual differences (i.e., range correction) as suggested by 

Lykken and Venables (1971). In Study II, however, the utilization of different SCR transformation 

types, including range correction, in estimating reliability did not result in significant changes in 



 
GENERAL DISCUSSION 

54 
 

reliability. In sum, the results of Study II do not indicate a benefit from increasing the number of 

trials or enhancing the between-participant variance by the use of specific data transformations. 

Nevertheless, these findings are encouraging for the fear conditioning field, as they suggest that 

previous research using different experimental designs and data transformations can still be 

integrated. 

Another proposal to boost reliability is optimizing parameter estimation through the use of 

advanced analytical methods (Zorowitz & Niv, 2023), which is demonstrated to be beneficial in 

Study II: While more traditional reliability estimates for fMRI suggested limited reliability, more 

sophisticated techniques such as the similarity approach (Fröhner et al., 2019) indicated higher 

reliability. It may be generally advantageous for the enhancement of robustness to move away from 

traditional methods, as has been proposed for the practice of routinely discarding trials (Ney, 2018), 

but which might also apply to other routines: Study III demonstrates that routine practices of 

participant exclusion can overlook significant individuals, thereby reducing the generalizability of 

the results, and hence should be avoided. Additional suggestions for improving robustness comprise 

reducing the level of noise present in psycho(physio)logical data or utilizing appropriate estimates 

of individual differences (Ney et al., 2018). However, these recommendations remain suggestions 

in the first place and require further exploration and analysis on how to implement them and whether 

they work. 

Yet another suggestion, which was actually formulated to increase replicability, but which 

also applies to robustness due to their interdependence, involves strengthening the methods utilized 

to amplify the signal and minimize error (Nosek et al., 2022). This may be accomplished by, for 

instance, using more robust manipulations, enhancing experimental effects, or choosing the most 

appropriate analytical approach (see Study IV; Nosek et al., 2022; Smith & Little, 2018; Vazire et 

al., 2020; Zorowitz & Niv, 2023). However, identifying the most effective and appropriate methods 

to implement these proposals can be challenging due to the substantial methodological 

heterogeneity in psychological research. How this methodological heterogeneity can be addressed 

is discussed below, subsequent to another important and related, but mostly neglected, remedy to 

gain more robust results: enhancing the precision of measures (Nebe et al., 2023). For instance, 

when analyzing continuously recorded stimulus-evoked skin conductance responses (SCRs), 

several procedures must be carried out, all of which can affect the precision of the measurements. 

These include determining the magnitude of the responses (see Kuhn et al., 2022; Pineles et al., 

2009; Sjouwerman et al., 2016) and the aforementioned adjustment for inter-individual differences 

(such as range correction; Lykken & Venables, 1971) to allow for comparisons between 

participants. However, only a small number of these procedures have been systematically 
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investigated for their impact on measurement precision (Nebe et al., 2023). Therefore, it is crucial 

to assess how these proposed strategies for improving precision and reliability can be adapted to 

fear conditioning research and if they offer any benefits. Thus, an additional solution to foster 

robustness might be the decrease of methodological heterogeneity in the long run. How can this be 

accomplished? The answer lies in exploring it. Although it may seem paradoxical, the initial step 

would be to enhance methodological heterogeneity – but within a single study. In other words, we 

need to thoroughly investigate this heterogeneity through approaches such as the many- or 

multiverse analyses as conducted in Studies II, III, and IV. It is these meta-science practices that 

provide information on how we can create research practices that are more efficient, and less prone 

to bias, yielding reliable and replicable results (Ioannidis, 2018; Ioannidis et al., 2015). These 

approaches can be thought of as massive and comprehensive robustness analyses (see Study IV). 

Another solution that aids to explore methodological heterogeneity is the use of 

specification curve approaches (Simonsohn et al., 2020). In this approach, identical to the 

multiverse technique, the results of all combinations of reasonable paths – or specifications in this 

approach – are calculated and graphed in a so-called specification curve in which the effect sizes of 

all results are plotted next to each other in ascending order of magnitude. This specification curve 

allows specific patterns to be identified – for example, it indicates which specifications lead to 

higher effect sizes and thus, presumably, which specifications might boost result robustness. 

With the development of multiverse and specification curve approaches, the response to the 

call for the development of more advanced statistical tools (Ioannidis, 2014) had already begun. 

Additionally, it may be beneficial to introduce and enhance the utilization of existing advanced 

techniques, much like in Study IV where the multiverse approach was employed for the first time 

in fear conditioning research. More sophisticated analyses such as multivariate imaging techniques 

(Kragel et al., 2021; Noble et al., 2021; Visser et al., 2021) or intra-individual neural response 

variability (Månsson et al., 2021) were demonstrated to result in comparably higher reliability 

estimates which in turn should foster Open field needs to enhance the understanding of the extent 

to which common, but also novel analytical approaches are robust. Once we have achieved this, we 

can devote ourselves to the development and refinement of theories.  

Methodological flexibility appears to originate from ambiguity to find the “best” solution 

or might be more related to the lack of formal theories in the field, rather than to Questionable 

Research Practices (QRP) such as “p-hacking” (Simmons et al., 2011). If formal theories are absent, 

it is unclear how they can be translated into statistical models and directly tested. Multiverse or 

specification curve approaches focus on the consequences of this flexibility: The comprehensive 
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collection of all possible and putatively equally justifiable models resulting from the multiverse 

analyses might be used as a basis not only for calibration studies (Bach et al., 2020), but also 

improved theoretical frameworks (Oberauer & Lewandowsky, 2019) as well as computational 

models (Krypotos et al., 2020). Formal theories can then be tested with a more specific selection of 

methodologies. Consequently, we can offer particular recommendations on how to design, conduct, 

and analyze fear conditioning studies. This could lead to greater methodological consistency in fear 

conditioning research by providing empirical evidence for the “best” methods to be employed in a 

specific application and thus to a more successful comparison, integration, and replication of results. 

A further proposal as a means to promote the ‘R-terms’ is to increase openness, which 

includes both transparency and accessibility (Nosek & Bar-Anan, 2012). This transparency and 

accessibility can be realized, if applied properly, by open science tools, such as pre-registration of 

studies, registered reports, reporting standards, sharing of experimental protocols, data, and 

analytical code as applied in Studies I – IV (Ioannidis, 2014; Nebe et al., 2023; Nosek et al., 2022). 

There is already empirical evidence suggesting that pre-registration of studies may enhance 

replication success (Protzko et al., 2020). The use of these tools has grown in popularity in recent 

years (Wallach et al., 2018), but for their application, there is still some room for improvement.  

Transparency does not only concern the written report, but also the visual representation of 

the data which should be refined (Larson-Hall, 2017; Weissgerber et al., 2019): To present a more 

comprehensive view of the data and uncover patterns that may be obscured by averaged data, it is 

important to include not only summary statistics such as in bar graphs, but also trial-by-trial data 

(Ney et al., 2020), or individual data points and their distributions as realized, for instance, in 

beeswarm- and piratplots (Larson-Hall, 2017), or in scatter- or box plots (Weissgerber et al., 2015), 

particularly with included marginal densities (see Study I). A combination of different relevant 

graphs is achieved in so-called rain cloud plots, which integrate not only mean and standard 

deviation (or CI), but also box plots with median and quartiles, density, and individual data points 

(Allen et al., 2021, see also Study II). Such figures including multiple illustrations of the data might 

also contribute to the transparency of scientific results. 

From a broader perspective, fostering the ‘R-terms’ also entails addressing the structural, 

social, and individual factors that impede their implementation (Nosek et al., 2022). These structural 

and social factors may include the absence of incentives for replication work and the tendency for 

novelty to overshadow "boring" replications. Consequently, there is a need for incentives and a shift 

in culture toward valuing transparency and scientific rigor over the pure number of publications. 

Individual factors, such as confirmation bias (Nickerson, 1998) and outcome bias (Baron & 
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Hershey, 1988; Nosek & Errington, 2020), may also hinder progress. These refer to the tendency 

of researchers to selectively focus on evidence that supports their existing beliefs (i.e., confirmation 

bias) or to assess replication designs based on whether the results align with their desired outcomes 

(i.e., outcome bias) respectively and need to be addressed in a personal endeavor. Nonetheless, there 

are signs of a changing research culture, with a growing ease of sharing primary data and code on 

platforms like Open Science Framework (OSF, osf.org), or Zenodo (zenodo.org; Nosek, 2022), and 

an increasing availability of open data sets, also in the field of fear conditioning (Ehlers & Lonsdorf, 

2022).  

However, this thesis has its limitations as it does not incorporate some of the commonly 

used outcome measures in fear conditioning research, apart from SCR, fear ratings, and fMRI as 

included here. Further important measures involve FPS, different rating types (e.g., arousal, 

valence, or contingency ratings), heart rate, and pupillary response (Lonsdorf et al., 2017). Although 

this thesis did not encompass all outcome measures, it still included several crucial ones ensuring 

that defensive responding was captured as a multidimensional construct, as different outcome 

measures are thought to touch on different mechanisms of stress- and fear-related processes (Hamm 

& Weike, 2005; Lipp, 2006; Vrana et al., 1988).  

Another related limitation is that the functionality of the multifear package is currently 

restricted to SCRs and experimental phases such as acquisition and extinction training, but should 

be rapidly extended to include other outcome measures such as FPS or ratings, and other 

experimental phases such as fear generalization as well as other conditioning procedures, different 

data transformations, different participant exclusion criteria, and the integration of covariates. In 

addition, model multiverses as implemented in the package could be complemented by other 

multiverses such as data multiverses or even – and even more demanding – design multiverses 

(Harder, 2020). 

An additional constraint of this thesis is, that it focused exclusively on a single path in the 

garden of forking paths up to a certain decision point (i.e., the exclusion of participants, see Study 
III) from which the many- or multiverses branched off. Ideally, however, a full multiverse should 

incorporate all equally reasonable alternatives for each decision point, such as study design, data 

collection, and SCR pre-processing. However, this approach may pose some computational 

challenges, and the task of identifying and determining the relative justifiability of all reasonable 

alternatives remains a complex and challenging one – but the acceptance of which might show us 

how to achieve the most robust results possible. 



 
GENERAL DISCUSSION 

58 
 

However, even though a full multiverse was not carried out within the framework of this 

thesis, it is not only dedicated to meta-science but also the work conducted in the context of this 

thesis employed a considerable number of meta-science and also open science tools. Studies I, II, 
and III were pre-registered and the data as well as code that was used for data analysis of Study III 

and IV are openly shared online (Study I: OSF, Study II: Zenodo, Study III: OSF). The R package 

multifear, introduced in Study IV, is available for downloading and testing on GitHub 

(https://github.com/AngelosPsy/multifear), where a sample code is also provided. Furthermore, 

manuscripts of Study II and Study IV were written as reproducible manuscripts in R Markdown, 

which can be accessed on Zenodo (Study II). Even though a full multiverse was only used in Study 
IV, the methodological heterogeneity in the literature was taken into account with manyverse like 

approaches (Studies II and III), and the robustness of the results was examined in additional 

analyses (Study I). Although I have addressed several meta-scientific issues in this thesis, there are 

still several future directions we could go from here. 

If resources and time were infinite, my vision would be to rerun all the studies included in 

this thesis with outcome measures that have not yet been incorporated, such as FPS and heart rate. 

It would be particularly intriguing to investigate the reliability of these measures, given the limited 

amount of research on this topic. Additionally, since there is currently no published study on 

reproducibility of fear conditioning research to my knowledge, I would like to conduct a meta-study 

to determine whether previous fear conditioning results can be (computationally) reproduced by 

using the same data and methodology employed in the original studies. This would not only 

strengthen the credibility of previous findings but also provide information on which 

methodological approaches are particularly promising for further increasing reproducibility. 

In terms of following up on the individual studies included in this thesis, my vision would 

be to perform a direct replication of previously reported links between brain morphology and 

individual differences in defensive responding in a large sample, rather than a conceptual replication 

as was done in Study I, to inspect whether the effect holds under (almost) identical conditions. 

Regarding Study II, I propose to incorporate a multiverse analysis with several conceivable time 

spans between measurement time points to assess at what point the reliability starts to be low. 

Furthermore, I would aim to integrate a multiverse of results obtained by excluding each exclusion 

group as identified in Study III from analyses of a specific data set and comparing these findings. 

In continuation of Study IV, in which a model multiverse analysis was conducted, I would intend 

to utilize the specification curve approach by considering all plausible specifications of a fear 

conditioning paradigm, including experimental design, outcome measures, pre-processing steps, 
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and statistical analyses, to determine which specifications yield the strongest and therefore 

presumably the most robust effects.  

In conclusion, the fear conditioning paradigm is considered to hold strong potential for 

successfully translating empirical discoveries into clinical practices (Anderson & Insel, 2006; 

Beckers et al., 2023) but the current challenges posed by methodological heterogeneity and limited 

robustness of findings in the fear conditioning provide opportunities for improvement. Addressing 

these challenges through further research on fear conditioning research and can help reduce 

methodological heterogeneity, enhance robustness, and pave the way for successful replication. By 

embracing open science and meta-science practices more widely, we can empower scientific 

progress and the advancement of knowledge. Finally, reproducible, robust, and replicable findings 

in the field that contribute to the cumulative generation of knowledge may promote what is 

ultimately important: the accelerated translation of empirical fear conditioning findings into clinical 

applications in order to improve existing and create novel successful interventions.  
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5 List of Abbreviations 

ANOVA  Analysis of Variance 

BNST   Bed Nucleus of the Stria Terminalis 

BOLD   Blood Oxygenation Level Dependent  

CBT   Cognitive Behavioral Therapy 

CR   Conditioned Reaction 

CS   Conditioned Stimulus 

dACC   dorsal Anterior Cingulate Cortex 

dlPFC   dorsolateral Prefrontal Cortex 

EMG   Electromyography 

FPS   Fear Potentiated Startle 

fMRI   functional Magnetic Resonance Imaging 

HR   Heart Rate 

ICC   Intra-class correlation coefficient 

ITI   Inter-Trial Interval 

MPRAGE  Magnetization Prepared Rapid Gradient Echo  

MRI   Magnetic Resonance Imaging 

NAcc   Nucleus Accumbens 

NHST   Null Hypothesis Significance Testing 

NS   Neutral Stimulus 

OFC   Orbitofrontal Cortex 

QRP   Questionable Research Practices 

ROF   Return of Fear 

SCL   Skin Conductance Level 
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SCR   Skin Conductance responses 

SD   Standard Deviation 

TIV   Total Intracranial Volume 

UR   Unconditioned reaction 

US   Unconditioned Stimulus 

VAS   Visual Analogue Scale 

vmPFC  ventromedial Prefrontal Cortex 
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Marked inter-individual di�erences in defensive responding have been suggested to be the result of underlying 
neurobiological di�erences that manifest as stable trait-like characteristics  (rodents1,  humans2). Defensive con-
ditioned responding can be investigated in the laboratory by means of fear conditioning protocols.

Generally, the fear conditioning procedure comprises di�erent experimental  phases2: throughout acquisi-
tion training an innately aversive stimulus, the unconditioned stimulus (US), is paired with an initially neutral 
stimulus, the conditioned stimulus (CS+), producing a conditioned response (CR) to the CS+ while a second 
control stimulus (CS−) is never paired with the US. Hence, a fear memory is formed as the CS+ gains predictive 
power of the appearance of a US and comes to elicit a defensive conditioned response by itself. In the laboratory, 
di�erent outcome measures such as skin conductance response (SCR), fear potentiated startle (FPS), ratings of 
fear and/or US expectancy as well as BOLD fMRI can be used as proxies thereof. �e di�erence in responding 
to the CS+ and the CS− (i.e., CS discrimination) is taken as an approximation for the strength of fear learning. 
During extinction training, the CS+ is no longer coupled with the US and a plethora of results suggest that an 
inhibitory extinction memory is formed as a  consequence3. As a result, conditioned responding is reduced. When 
at a later time exposed to the CS+ (i.e., ‘retention test’ or ‘return of fear test’, for an overview  see3) one can either 
observe a ‘retention of the extinction memory’ indicating dominance of the extinction memory or the return 
of conditioned responding (i.e., ‘return of fear’) indicating dominance of the fear over the extinction memory.
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While the basic mechanisms of fear conditioning and extinction and the importance of inter-individual 
di�erences in defensive responding are well recognized, research concerning a potential mapping of such inter-
individual di�erences onto variability in brain morphology is sparse. Structural-brain-behavior associations 
(i.e., associations between inter-individual variability in brain morphology and behavior or physiology) have 
a long history in psychology and  neuroscience4,5. In in vivo human studies inter-individual variability in brain 
structure is commonly extracted from anatomical scans acquired through magnetic resonance imaging (MRI). 
�e most common methods include measures of grey matter tissue such as grey matter volume using the Com-
putational Anatomy  Toolbox6 and measures of cortical thickness and subcortical volume using the so�ware 
 Freesurfer7–10. Yet, structural-brain-behavior associations were recently scrutinized as it was shown in a large 
sample of healthy adults that signi�cant associations are rare and also show low replication rates across a range 
of psychological  measures11–13.

Previous work in fear conditioning research has reported individual di�erences in brain morphology to be 
associated with di�erences in conditioned responding during fear and extinction learning as well as retention of 
extinction. Most of these studies have focused on skin conductance response (SCR) while fewer studies investi-
gated associations with ratings of valence, arousal or CS–US contingency  awareness14–16 and a single study with 
fear potentiated  startle17 (see Table 1). Of note, all areas that have been reported to show structural associations 
with inter-individual di�erences in defensive responding during fear and/or extinction learning have been linked 
to group averages in functional brain activation as assessed by BOLD fMRI during learning and expression of 
fear and  extinction18,19: the amygdala, insula and prefrontal areas (dorsal anterior cingulate cortex (dACC), and 
medial orbitofrontal cortex (mOFC) in cue conditioning as well as the hippocampus in context conditioning.

Morphological variability within the amygdala has been positively related to average di�erential respond-
ing during acquisition training in SCR [(CS+) – (CS−)] but not ratings of arousal and  valence16 or CS–US 
 contingency14,16. More precisely, this association was reported for the volume of the right amygdala during early 
acquisition in sample 1 but during late acquisition in sample 2 despite the identical experimental  protocol16 
while a smaller earlier study with a largely overlapping sample reported a positive correlation with le� amygdala 
volume in early but not late  acquisition14. �ese discrepancies might be explained by di�erences in analyses such 
as segmentation approaches, di�erent SCR quanti�cation approaches, di�erent scoring criteria for SCR as well as 
the inclusion of a large number of covariates as well as correction of di�erential SCR responding by responding 
during preceding experimental phases (see Table 1). In contrast to these studies, others did not �nd signi�cant 
positive associations between di�erential [(CS+) − (CS−)] autonomic conditioned responding during acquisition 
training and amygdala volume but report an insigni�cant negative relationship in two small samples for both 
right and le�  amygdala20. It should be noted however that due to di�erent numbers of trials included in these 
studies (see Table 1), the full acquisition phase in this study, corresponds largely to the �rst half of acquisition 
training in the studies by Cacciaglia et al.14 and Winkelmann et al.16.

In addition to the amygdala, the volume in the right posterior insula/posterior operculum was reported to 
show a positive association with di�erential SCR during fear acquisition training in two samples—although this 
did not survive correction for multiple comparisons in the smaller  sample20.

Furthermore, SCR to the CS+, but not to the CS− or di�erential SCR responding during acquisition training 
were reported to be positively correlated with thickness of the dorsal anterior cingulate cortex (dACC)21 in a 
100% reinforcement protocol which was, however, not replicated in two samples in a study employing partial 
 reinforcement20. A recent  study17 with a large sample of anxiety patients and healthy controls (N = 351) includ-
ing children and adults, reported the dorsomedial/dorsolateral prefrontal cortex (dm/dlPFC)—a region located 
substantially more lateral than the area identi�ed by Milad et al.21—to be negatively correlated with a measure 
of general SCR averaged across both CS types (i.e., CS+ and CS−) and experimental phases (i.e., fear acquisi-
tion and extinction training). �e interpretation of this aggregate SCR measure, however, is not straightforward 
with respect to associative learning processes. While Abend et al. interpret the observed association in terms 
of aberrant threat and safety learning, alternatively this aggregate measure may as well re�ect general arousal 
or the reactivity in SCR independent of associative learning processes. Future studies employing experimental 
paradigms to capture generalization of fear may clarify whether the association reported by Abend et al. could 
also be interpreted in terms of fear generalization. In another publication, computational modeling was applied 
to SCR to the CS+ which reveal that learning rate correlates positively with cortical thickness of the ventromedial 
prefrontal cortex (vmPFC), dACC and anterior  insula22. In addition to these �ndings from cue-conditioning 
studies, a positive association between total hippocampal but not amygdala volume and di�erential second 
interval but not �rst interval SCR,  see23 was reported during context  conditioning15. No signi�cant associations 
were observed with SCR during  extinction15. In this study, CS–US contingency awareness showed a relationship 
with total brain volume, but not hippocampal or amygdala volume. Another study from the same research group 
reported an association between bilateral hippocampus volume and di�erential CS–US contingency ratings in 
late but not early acquisition training in a cue-conditioning paradigm—which seemed to be driven by a negative 
correlation with ratings to the CS−14. Di�erences in results might be attributable to the fact that the studies used 
a contextual and a cued fear conditioning paradigm respectively.

While the work summarized above focused on acquisition training, some studies have also investigated 
structural brain-behavior associations during extinction training and extinction retention. During immediate, 
early but not late extinction training, di�erential [(CS+) – (CS−)] SCR was correlated with the thickness of three 
clusters of the right  vmPFC16. Notably, however, earlier  studies20,24 did not test for any associations between 
prefrontal thickness and di�erential SCR during extinction training as they focused on 24 h extinction retention.

During a 24-delayed retention test (also o�en referred to as ‘extinction recall’, for a discussion on termi-
nology  see4), a positive correlation between a non-di�erential (i.e., CS+ speci�c) ‘extinction retention index’ 
in SCR and thickness of the medial OFC was observed when tested in the extinction context (i.e. ‘extinction 
retention’23) as well as in the mOFC portion of the vmPFC when tested in both the acquisition (i.e., ‘renewal’) 
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and extinction context (i.e. ‘extinction retention’22). Another study reported a positive correlation between con-
ditioned responding during a retention test and thickness of the vmPFC at a very lenient statistical threshold of 
p < 0.003 uncorrected following extinction training but not following cognitive  regulation20. �ese  studies20,24,25 
quanti�ed (extinction) retention in SCR through versions of the non-di�erential (i.e., CS+ speci�c) “Extinction 
retention index (ERI)”, which has recently been challenged from both a theoretical and empirical perspective for 
lacking construct validity: More speci�cally, non-di�erential ERIs likely measure general arousal or orienting 
responding rather than associative processes such as the retention of extinction  memory26. As these studies did 
not investigate brain morphological associations during the preceding extinction training phase, the speci�c-
ity of the �ndings pertaining to the retention test phase also remains unclear—in particular given the reported 
associations between volume in ventromedial prefrontal areas and di�erential SCR responding during extinction 
training itself—which always precedes a retention test.

To date, only a limited number of studies has linked inter-individual di�erences in brain morphology in areas 
known to be generally implicated in fear acquisition, extinction and extinction recall to conditioned autonomic 
(SCR) and subjective (valence and arousal ratings, fear ratings and CS–US awareness) measures of defensive 
responding.

Table 1.  Experimental design overview of studies investigating associations between brain morphology 
and associative processes during fear acquisition training and extinction in human participants. Two studies 
(Abend et al. 2019, Abend et al. 2020) that did not investigate associative processes during fear acquisition 
training but average responding to the CS+ and CS− across experimental phases are included for completeness. 
None of the studies explicitly instructed the participants with regard to the CS/US contingencies, Abend 
et al. (2019) and Hartley et al. (2011), however, informed participants about the fact that association can be 
learning during the experiment. RIR reinforcement rate, N/A information not available, CSdi� di�erential SCR 
[(CS+) – (CS−)], CSavg SCR averaged across the CS+ and CS− as well as across fear acquisition and extinction 
training, TTP trough to peak, b.c. baseline correction, TIV total intracranial volume. a In Abend et al. (2020) 
computational modeling of SCR to the CS+ was used to predict SCR over the course of learning and assess 
learning rate during acquisition and extinction.

References N

Segmenta-
tion 
approach RIR (%) Extinction

# of Acq 
trials 
for CS+/
CS−

# of Ext 
trials 
for CS+/
CS−

Outcome 
measures Tested associations with

SCR quanti-
�cation via

SCR scoring 
criteria; CS 
duration CovariatesSCR

Fear 
rating CSdi� CS+ CS− CSavg

Abend 
et al., 
 201917

250 Freesurfer 80 Immediate 10/10 8/8 ✓ ✓ ✗ ✗ ✗ ✓ TTP
0–5 s post 
CS onset; 
7 s CS

Age, anxiety

Abend 
et al., 
 202022

351 Freesurfer 80 N/A 10/10 8/8 ✓ ✓ ✗ ✓a ✗ ✗ TTP
1–5 s post 
CS onset; 
7 s CS

Age, anxiety

Cacciaglia 
et al., 
 201314

52 Manual 50 Immediate 36/36 18/18
✓
✓ ✓ ✓ ✓ ✓ ✗ TTP

1–9 s post 
CS onset; 
6 s CS

Age, gender, 
anxiety, 
education

Ehlers et al. 
(current 
study)

107 Freesurfer 100 Delayed 14/14 14/14 ✓ ✓ ✓ ✓ ✓ ✗ TTP
0.9–3.5 s 
post CS 
onset; 6 s CS

TIV, sex

Hartley 
et al., 
 201120

18 Freesurfer 17 N/A 21/15; N/A ✓ ✗ ✓ ✗ ✗ ✗ TTP
0.5–4.5 s 
post CS 
onset; 4 s CS

Sex, anxiety

12 Freesurfer 35 Immediate 23/15 15/15 ✓ ✗ ✓ ✗ ✗ ✗ TTP
0.5–4.5 s 
post CS 
onset; 4 s CS

Sex, anxiety

Milad et al., 
 200524 14 Freesurfer 100 Immediate 5/5 10/10 ✓ ✗ ✓ ✓ ✓ ✗ b.c.

Max (12 s 
post CS 
onset)-mean 
(2 s pre CS 
onset); 12 s 
CS

N/A

Milad et al., 
 200721 14 Freesurfer 100 Immediate 5/5 10/10 ✓ ✗ ✓ ✗ ✗ ✗ b.c.

Max (12 s 
post CS 
onset)-mean 
(2 s pre CS 
onset); 12 s 
CS

N/A

Rauch 
et al., 
 200525

14 Freesurfer 100 Immediate 5/5 10/10 ✓ ✗ ✗ ✓ ✗ ✗ b.c.

Max (12 s 
post CS 
onset)-mean 
(2 s pre CS 
onset); 12 s 
CS

Sex, extra-
version, 
neuroticism

Winkel-
mann et al., 
 201516

68; 53 Freesurfer 50 Immediate 36/36 18/18 ✓ ✓ ✓ ✗ ✗ ✗ Ledalab

Sum (SCRs 
1–7 s post 
CS onset); 
6 s CS

TIV, age, 
gender
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From the perspective of the research standards in 2020, particularly the early studies report rather implausibly 
high correlation coe�cients (illustrated in Fig. 1A) and partly employ (very) lenient statistical thresholds origi-
nating from what now has to be considered massively underpowered sample  sizes27,28 (see Fig. 1B for a power 
curve plot) with only 10–18  participants20,21,24,25 (see Table 1).

While structural MRI measures themselves have been shown to have excellent  reliability28,29 (minimal 
test–retest reliability 0.8230), the robustness of structural brain-behavior associations in general has been chal-
lenged  recently5,13 and given this, the aim of the current pre-registered study (https ://doi.org/10.17605 /osf.io/
y73qw ) is to replicate previously reported associations between individual di�erences in brain morphology and 
physiological (i.e., SCR) and subjective (i.e., fear ratings) measures of defensive responding during fear acquisi-
tion and delayed extinction in a larger sample of healthy adults (N = 107). More precisely, we aim to investigate 
previously reported associations between the cortical thickness of the dACC and insula as well as amygdala 
volume during acquisition training and the association between amygdala volume and mOFC thickness and 
extinction.

Successful acquisition training is re�ected in signi�cantly larger average SCR (see 
Fig. 2A) elicited by the CS+ than those elicited by the CS− (t(106) = 12.81, p < 0.001, 95% CI [0.11, 0.15]). Simi-
larly, ratings of fear, anxiety and tension (see Fig. 2B) were signi�cantly higher to the CS+ relative to the CS− a�er 
acquisition training (t(102) = 19.74, p < 0.001, 95% CI [13.08, 16.00]).

During extinction, the CS+, on average, still elicited larger SCR (see Fig. 2A) prior to extinction as compared 
to the CS− (t(106) = 3.94, p < 0.001, 95% CI [0.01, 0.03]). At the end of extinction, however (last �ve trials in SCR 
for both CS types), SCR elicited by the CS+ and CS− did not di�er signi�cantly (t(106) = 1.57, p = 0.12, 95% CI 
[− 0.003, 0.024]).

For extinction, a two-way ANOVA for fear ratings revealed a main e�ect of time (pre vs post extinction) (F(1, 
412) = 25.06, p < 0.001), a main e�ect of CS type (F(1, 412) = 108.65, p < 0.001) as well as a signi�cant interaction 
(F(1, 412) = 37.45, p < 0.001). Pairwise comparisons showed that the CS+ elicited higher ratings relative to the 
CS− prior to extinction (ps < 0.001) as well post extinction (ps = 0.010). Extinction success indicated by fear 
ratings is however supported by the observation that ratings of the CS+ dropped signi�cantly from pre to post 
extinction (ps < 0.001), but not for the CS− (ps = 0.892).

Signi�cant di�erences between 
volumina and cortical thickness in le� and right hemisphere were observed for most regions: dACC (t(106) = 4.80, 

Figure 1.  Illustration of (A) estimated power of correlation studies given a certain sample size. Dotted 
grey lines indicate sample sizes of previous studies investigating di�erential or CS-speci�c associations with 
brain morphological measures. Note that in some previous studies regressions were performed rather than 
correlations. For comparability all e�ects size measures were transformed to correlation coe�cients. �e red 
line indicates the sample size of the current study. (B) E�ect sizes expressed as correlation coe�cients obtained 
in previous studies and the current study plotted by sample size. Note that in some previous studies regressions 
were performed instead of correlation. For comparability all e�ects size measures were transformed to 
correlation coe�cients. Red dots indicate non-signi�cant and blue dots indicate signi�cant �ndings. Note that 
some studies report more than one association and are hence represented with multiple dots.

https://doi.org/10.17605/osf.io/y73qw
https://doi.org/10.17605/osf.io/y73qw
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p < 0.001, d = 0.46), mOFC (t(106) = − 5.05, p < 0.001, d = 0.49) and amygdala (t(106) = − 14.89 , p < 0.001, d = 1.44) 
except for the insula (t(106) = 0.97, p = 0.33, d = 0.10) (see Fig.  3). Robustness analyses performing the main 
analyses reported here (see below) separately for the le� and right hemisphere yielded comparable results (see 
Supplementary Material Section 2.1 for details).

Our analyses did not replicate previous reports of a signi�cant positive association 
between the cortical thickness of the dACC and subcortical volume of the amygdala during fear acquisition 
training as assessed through mean di�erential SCR and post-acquisition di�erential fear ratings (see Fig. 4). �is 
was true either when considering the full acquisition phase or the �rst and second half of acquisition training 
separately (see Fig. 5A,B; Table 2). Similarly, our additional non-preregistered analyses aiming to replicate previ-
ous �ndings did not provide evidence for a signi�cant association between SCR to the CS+ and CS− separately 
and thickness of the dACC (see Supplementary Material Section 3.1) or between di�erential SCR or post-acqui-
sition fear ratings and thickness of the insula (see Supplementary Material Section 3.2). Likewise, no signi�cant 
association was observed between amygdala volume or mOFC thickness and di�erential SCR (full phase, �rst 
and second half, see Figs. 5C,D, 6A,C) as well as di�erential ratings during extinction ([pre-post extinction rat-
ings], pre ratings, post ratings, see Figs. 6B,D, 7) see Table 2). For robustness, we checked whether the exclusion 
of outliers (> 3 SD below or above mean), in fear ratings or SCR a�ects the results. �e analyses were rerun a�er 
excluding one participant based on post-acquisition fear ratings, one based on pre-post extinction fear ratings 
and four based on di�erential SCR during extinction. �e pattern of results remains comparable a�er excluding 
outliers for the respective analyses, i.e. all results remained non-signi�cant. For full results see Supplementary 
Table 4.    

In addition to traditional null hypothesis signi�cance testing (NHST), we computed Bayes factors in order to 
obtain relative evidence against a signi�cant relationship between brain morphology and indices of fear learning. 
�e calculated Bayes factors indicate moderate to strong evidence  (BF01 > 3) for the null or intercept-only model. 
For one of the tested regression models, only weak evidence for the null model was found  (BF01 = 1.99). Overall, 
these results demonstrate that there is little reason to believe that morphology in these regions is a signi�cant 
predictor of conditioned responding during acquisition or extinction training in our study.

Robustness analyses considering data derived from the le� and right hemisphere separately (Supplementary 
Section 2.1, Supplementary Table 1), without the pre-registered covariates (see Supplementary Material Sec-
tion 2.2, Supplementary Table 2), with raw instead of log-transformed and range corrected SCR scores (see Sup-
plementary Material Section 2.3, Supplementary Table 3) and a�er removing outliers (see Supplementary Mate-
rial Section 2.4, Supplementary Table 4) yielded comparable results for both acquisition and extinction training.

Analyses did not con�rm our pre-registered exploratory hypothesis of a signi�cant mod-
eration of a putative association between dACC thickness and fear learning proxies (di�erential SCR and dif-
ferential subjective fear ratings) during fear acquisition training by contingency awareness (aware, unaware, 
uncertain). �e analysis unsurprisingly revealed that awareness is a signi�cant predictor for di�erential SCR and 
fear ratings during fear acquisition training (SCR: β = 0.08, p = 0.01, ratings: β = 4.45, p = 0.02) which, however, 

Figure 2.  (A) SCR to the CS+ as compared to the CS− as well as the US during acquisition and extinction 
training (illustrated trial-by-trial) as well as (B) fear ratings in response to CS+ and CS− prior to and a�er fear 
acquisition training and extinction as well as aversiveness ratings to the US a�er acquisition training. 95% 
con�dence intervals are illustrated by coloured bands. Note that a linear learning process is not assumed, the 
lines are meant to facilitate the visualization of the general trend from pre to post acquisition and extinction.
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does not moderate the putative relationship between dACC thickness and fear learning proxies (for full results 
see Supplementary Material Section 1.1).

Non-
preregistered analyses in the current sample did not replicate previous reports of a signi�cant association 
between amygdala volume—considering averaged values as well as le� and right hemisphere separately—and 
trait or state anxiety as measured prior to acquisition training or prior to extinction training (for full results see 
Supplementary Material Section 3.3).

Research regarding a potential association between physiological and subjective measures of conditioned 
responding during acquisition and/or extinction and its retention and inter-individual di�erences in brain 
morphology is sparse to date and most of the few inconsistent results originate from early studies in extremely 
small samples.

Here, we attempted to (conceptually) replicate these previous �ndings in a large sample. Our results do not 
provide support for structural brain-behavior relationships during fear acquisition training and extinction. More 
precisely, we did not replicate previously reported signi�cant associations between di�erential SCR or fear rat-
ings and cortical thickness of the dACC, the insula or volume of the amygdala during fear acquisition training 
or between amygdala volume and mOFC thickness during extinction. Bayes factors provide moderate to strong 

Figure 3.  Illustration of (A) cortical thickness of the dACC, (B) volume of the amygdala, (C) cortical thickness 
of mOFC, and (D) cortical thickness of the insula in le� (red) and right (blue) hemisphere. Data are illustrated 
by smoothed density distributions, individual subject means (dots), medians (boxplots) and interquartile ranges 
(boxes depict interquartile range and whiskers depict 1.5 × the interquartile range) for each hemisphere with 
data points derived from a single individual connected through grey lines.
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evidence against a relationship between brain morphology in these regions and physiological or subjective 
measures of conditioned responding during acquisition or extinction training. Yet, it should be acknowledged 
that we do not provide a formal close or direct replication as we tested these previously reported associations in 
a fear conditioning paradigm in which procedural features di�er from those in previous work in several ways 
(i.e., conceptual replication) (see Table 1): the reinforcement ratio, the number of trials, immediate vs. delayed 
extinction as well as measurement procedures to quantify SCR and estimates of brain morphology.

In more detail, the current study employed a 100% reinforcement rate while many previous studies used 
partial reinforcement (17–80%)14–17,20 and only three studies also employed a 100% reinforcement  rate20,22,23. �e 
probability with which the CS+ is coupled with the US during fear acquisition training contributes to the speed 
of fear acquisition and subsequent extinction learning, with partial reinforcement slowing both the develop-
ment of conditioned responding and extinction  learning4,31,32. It has also been argued that partial reinforcement 
rate may promote the manifestation of individual di�erences as opposed to the ‘strong experimental situation’ 
induced by 100% reinforcement  rate32, but this ideas still needs to be tested empirically.

Also the number of trials included in the experimental phases di�ers substantially among previous work 
(range acquisition: 5–36 trials; range extinction: 8–18 trials per CS type, see Table 1) which renders classi�ca-
tions into ‘�rst half ’ and ‘second half ’ inherently ambiguous and di�cult to interpret across studies without 
considering procedural speci�cations.

In the current study, we aimed to replicate a positive association between amygdala volume and di�erential 
SCR observed during the �rst but not the second half of acquisition  training14. Critically however, Cacciaglia 

Figure 4.  Scatterplots with marginal densities illustrating the (absence of) associations between average 
di�erential SCR [(CS+) − (CS−)] during acquisition training and (A) cortical thickness of the dACC and (B) the 
amygdala as well as between di�erential post acquisition fear ratings and (C) the dACC and (D) the amygdala.
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et al.14 presented a total of 36 trials per CS type during acquisition training (i.e., 18 CS+ and CS− during both 
the �rst and second half of acquisition training), while the current study design included a total of 14 CS+ and 
CS− trials during acquisition training. Consequently, the total number of trials during fear acquisition training in 
the present study was shorter than the �rst half of the previous study. We did, however, employ 100% compared 
to 50% reinforcement  rate14, which likely led to faster fear acquisition in our study. Yet, we did not observe a 
signi�cant association between amygdala volume and di�erential SCR or di�erential post-acquisition ratings 
when considering the full acquisition training phase—largely overlapping with the �rst half of acquisition train-
ing  in14—or the �rst or second half of our acquisition training phase (6 and 7 trials per CS type respectively).

Another important di�erence that should be acknowledged when interpreting the current results is whether 
extinction took place immediately a�er fear acquisition training (i.e., immediate extinction) or a�er a time delay 
(i.e., delayed extinction) such as 24 h. Previous studies reporting a relationship between prefrontal thickness 
and fear learning proxies during extinction  learning14,16, extinction  recall20,25 or  renewal24 have all employed an 
immediate extinction paradigm, while our own data as well as those by Hartley et al.20 (sample 2) are based on 
a 24 h-delayed extinction procedure.

Figure 5.  Scatterplots with marginal densities illustrating the (absence of) associations between average 
di�erential SCR [(CS+) − (CS−)] during acquisition training (illustrated also for the �rst and second half of 
acquisition separately) and (A) cortical thickness of the dACC and (B) amygdala volume as well as between 
di�erential SCR [(CS+) − (CS−)] during extinction (illustrated also for the �rst and second half of acquisition 
separately) and (C) amygdala volume as well as (D) cortical thickness of the mOFC. Data points are color-coded 
depending on the �rst half (light blue), second half (blue).
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None of the studies considered here employed fear learning paradigms explicitly instructing the CS–US 
 relationship14–16,20,21,24,25, but reinforcement rate is another factor known to in�uence CS–US contingency 
 awareness2,4,33. �us, we explored whether the previously reported relationship between fear learning proxies 
and brain morphology is masked by a modulation by contingency awareness. Our results, however, show that 
awareness a�ects di�erential SCR during fear acquisition training, but does not modulate a hypothesized brain 
behavior relationship. It should be noted though that the group of participants who were unaware was very small 
(N = 7) and hence this putative null �nding needs to be interpreted with caution.

Besides di�erences in the experimental paradigms across studies, methods for measuring cortical thickness 
and subcortical volumes as well as SCR quanti�cation di�ered between previous studies as well as previous work 
and our work. Assessment of cortical thickness and brain volume was nearly exclusively performed through 
automated methods as implemented in the so�ware  Freesurfer16,17,20,21,24,25 while only a single study employed 
manual segmentation of subcortical  structures14. It can be speculated that employing di�erent methods to assess 
brain morphology might have contributed to the non-identical results obtained in two previous studies which 
were based on largely overlapping  samples14,16. In contrast to the brain morphometry analyses, a plethora of dif-
ferent SCR quanti�cation approaches was employed in previous work, most of which di�ered from our approach 
(see Table 1).

In sum, experimental paradigms and methodological procedures di�er substantially between the studies in 
the �eld including ours. Yet, “It is tempting to explain away nonsigni�cant results in a line of studies by minor 
di�erences in the method, even when random variation is a much more likely explanation.” cf.34—in particular in 
small, sub optimally powered studies which represent the major share of the work we based our hypotheses on.

While we were not able to (conceptually) replicate any of the previously reported structural brain behavior 
associations in a large sample of healthy adults, general functional brain activation patterns during fear acquisi-
tion and extinction training are relatively well  established18,19. Of note, functional activation patterns during fear 
acquisition, extinction or retention of  extinction18,19 involve all brain regions that have been reported previously 
to show structural brain-behavior associations during fear conditioning  studies14–17,20,21,24,25. However, it is unclear 
whether and how inter-individual di�erences in structural characteristics relate to inter-individual di�erences in 
functional activation during di�erent phases of a fear conditioning paradigm (as discussed  by16). Furthermore, it 
has been suggested that brain structure and function may not be uniformly related but may show high coupling 
in sensory areas and particularly low coupling in the default mode or salience  network35. Critically, the so-called 
salience network comprises the dACC, orbital frontoinsular as well as limbic regions such as the  amygdala36—all 
regions functionally related to fear  processing18,19 and serving as regions of interest in this study. In sum, while 
functional brain activation patterns underlying fear conditioning are well established, associations with brain 
morphology in the same regions seem questionable. One possible reason could be the low association of brain 
structure and function especially in neural circuitry underlying fear learning. Moreover, a recent systematic 
attempt to replicate a number of reported associations between cortical thickness or grey matter volume and 
psychometric variables and psychological measurements in a large sample of healthy adults showed no signi�-
cant associations in more than 90% of the performed  analyses5,13. �is led the authors to conclude that such 
associations are unlikely to be found and that—even with identical experimental designs—it is highly unlikely 
to replicate associations between brain morphology and psychometric variables. Importantly, replication rates 
decreased with decreasing sample size of the replication  sample5 and associations have been shown to stabilize 
and become more reproducible in very large samples with N = ~  200037. It is well recognized that also in initial 
studies, small sample sizes are generally linked to low statistical power and in�ated e�ect sizes. Low statistical 

Table 2.  Results of regression analyses with cortical thickness/subcortical volume and di�erential SCR and 
fear ratings during fear acquisition and extinction training (controlled for sex and TIV) and Bayes factor  BF01 
providing relative evidence for the intercept-only against the hypothesis based regression model. Bold values 
indicate pre-registered hypotheses.

dACC Amygdala mOFC

Regression BF01 Regression BF01 Regression BF01

Fear acquisition training

Di�erential SCR: full phase F(3,103) = 1.93, p = 0.13 R2 = 0.05 5.00 F(3,103) = 0.93, p = 0.43, R2 = 0.03 18.18 – –

Di�erential SCR: �rst half F(3,103) = 0.50, p = 0.68, R2 = 0.01 32.26 F(3,103) = 0.22, p = 0.89, R2 = 0.01 47.62 – –

Di�erential SCR: second half F(3,103) = 2.66, p = 0.052, R2 = 0.07 1.99 F(3,103) = 1.61, p = 0.19, R2 = 0.04 7.52 – –

Di�erential post acquisition fear ratings F(3,99) = 2.49, p = 0.06, R2 = 0.07 3.01 F(3,99) = 1.51, p = 0.22, R2 = 0.04 11.24 – –

Extinction training

Di�erential SCR: full phase – F(3,103) = 0.05, p = 0.99, R2 < 0.01 58.82 F(3,103) = 0.04, p = 0.99, R2 < 0.01 58.82

Di�erential SCR: �rst half – F(3,103) = 0.15, p = 0.93, R2 < 0.001 52.63 F(3,103) = 0.08, p = 0.97, R2 < 0.01 58.82

Di�erential SCR: second half – F(3,103) = 0.07, p = 0.98, R2 < 0.001 55.56 F(3,103) = 0.03, p = 0.99, R2 < 0.01 62.50

Di�erential fear ratings [pre–post 
extinction]

– F(3,93) = 0.23, p = 0.88, R2 = 0.01 43.48 F(3,93) = 0.23, p = 0.88, R2 = 0.01 45.45

Di�erential pre extinction fear ratings 
(fear recall)

– F(3,94) = 0.89 p = 0.45, R2 = 0.03 20.41 F(3,94) = 0.89, p = 0.45, R2 = 0.03 21.28

Di�erential post extinction fear ratings – F(3,100) = 0.62 p = 0.60, R2 = 0.02 30.30 F(3,100) = 0.79, p = 0.50, R2 = 0.02 24.39
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power does, however, not only reduce the likelihood to detect a true e�ect but also reduces the likelihood with 
which a signi�cant �nding actually re�ects a true population e�ect. Consequently, small sample sizes are assumed 
to lead to low replication rates, as discussed for task-based  fMRI27,38. In light of this, it is maybe not surprising 
that we were unable to (conceptually) replicate previous �ndings which are o�en derived from extremely small 
sample sizes with 10–14  participants20,21,24,25. Yet, we were also unable to (conceptually) replicate �ndings derived 
from (somewhat) larger  samples16,17.

While structural MRI measures themselves have been shown to have excellent test–retest  reliability28,29, the 
reliability of measures of defensive responding, such as SCR and fear ratings during fear acquisition and extinc-
tion training remains understudied and underreported. While within-subject reproducibility and test–retest 
reliability has been established with intermediate reliability coe�cients for conditioned SCR across time inter-
vals ranging from 3 weeks to 8 months (8 months39, 3 weeks40, 8–12 weeks41) for maximum CS+ responding, 
CS− responding and CS+/CS− discrimination in  SCR39–41. Reliability of other measures of defensive responding 
should also be systematically investigated in order to draw conclusions about potential reasons for the lack of 
associations presented here. �is is important, as measurement reliability puts an upper bound to the maximum 
correlation that can be  observed42 and it is likely that early reports of correlation coe�cients as high as 0.8 (see 
Fig. 1A) might be in�ated and implausibly high.

Figure 6.  Scatterplots with marginal densities illustrating the (absence of) associations between average 
di�erential SCR [(CS+) − (CS−)] during extinction training and (A) amygdala volume and (C) cortical thickness 
of the mOFC and (B) (illustrated also for the �rst and second half of acquisition separately in Fig. 5) as well as 
between di�erential pre–post extinction fear ratings [[(CS+pre) − (CS−pre)] − [(CS+post) − (CS−post)] and (B) the 
amygdala and (D) the mOFC thickness.
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In conclusion, in line with recent studies questioning the existence and robustness of structural brain-behavior 
associations in healthy adults, we did not observe any associations between cortical thickness or subcortical 
volume in a number of brain regions and di�erential SCR and fear ratings as proxies for the acquisition and 
extinction of conditioned fear. Yet, if a �nding cannot be replicated conceptually this may indicate that the asso-
ciation may only be observable under very speci�c boundary conditions. If true, this hampers the generalizability 
of the �ndings substantially. It is important to point out, however, that our work cannot be taken as evidence 
against the �ndings reported previously for several reasons: First, we do not provide a close or direct replication 
of any of these previous studies and second, the absence of a signi�cant p-value in our study and the presence 
of a signi�cant p-value in a given previous study cannot be taken to infer non-replication of an e�ect in absence 
of a formal statistical evaluation of replication  (see43 for a formal framework on replicability). Nevertheless, 
the current results cast some doubt on the idea that di�erences in brain morphology are likely to contribute to 
inter-individual di�erences in fear learning processes.

Future studies should employ longitudinal designs in order to investigate whether changes in brain morphol-
ogy over time or measures of structural connectivity may have greater predictability for inter-individual di�er-
ences in defensive responding. Most importantly, however, a focus on measures in  general26,44 and the reliability 
of the measures used in studies on inter-individual di�erences in conditioned responding as well as structural 
and functional brain imaging are key and need to be scrutinized. In fact, the best research idea and the most 
transparent reporting methods cannot make up for inappropriate and/or unreliable measures employed. It may 
be time to take a step back and focus more on our measures because the reliable and reproducible quanti�cation 
of measurements is fundamental to research in general and individual di�erence research in particular.

�e data set is part of the baseline measurement of a longitudinal fear conditioning study. For 
the current study, fear ratings, SCR and structural neuroimaging data from the �rst test-timepoint (T0) which 
consisted of two experimental days (Day 1: habituation, acquisition, Day 2: extinction) were included whereas 
reinstatement test (Day 2) and fMRI data were not analyzed here. All methods were carried out in accordance 
with relevant ethical guidelines and regulations. All experimental protocols were approved by the local ethics 
committee (PV 5157, Ethics Committee of the General Medical Council Hamburg). All participants gave writ-
ten informed consent before participation. �e current data set as well as the analysis code are made publicly 
available (https ://doi.org/10.17605 /osf.io/y2jv9 ). �e data set has also been used as a case example in our previ-
ous publication on a methodological question di�erent from the question addressed  here45. As pre-registered, 
several participants had to be excluded from the initial sample (N = 120) due to the following reasons: For Day 
1, one participant had to be excluded due to missing data, three participants due to non-responding (no SCR 
response to the US on more than 9 out of 14 occasions) and an additional participant due to a deviating proto-
col on both days. Moreover, one participants was excluded due to technical issues on Day 2 in addition to �ve 
participants due to non-responding in SCR on Day 2 (see ‘Physiological Measurements—SCR’ for de�nition). 
Two participants were, as pre-registered, excluded from the analysis due to assumed technical issues on Day 
2. Only a�er the data analysis did we realize that data for these participants was complete for fear acquisition 
and extinction training as technical issues only occurred in the subsequent reinstatement phase. Hence, these 
two participants could have been included but were excluded as pre-registered. A�er exclusions, structural and 

Figure 7.  Scatterplots with marginal densities illustrating the (absence of) associations between di�erential 
pre, post and pre–post extinction fear ratings for (A) amygdala and (B) mOFC. Data points are color-coded to 
show fear ratings pre (light blue) and post (blue) extinction as well as the pre–post extinction di�erence score 
[[(CS+pre) − (CS−pre)] − [(CS+post) − (CS−post)] (black).

https://doi.org/10.17605/osf.io/y2jv9
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psychophysiological data of N = 107 participants (71 females, mean ± SD age of 24.4 ± 3.7 years, age range 18–34, 
state-trait anxiety inventory (STAI)46 mean ± SD of 34.6 ± 7.2, range of 24–55) were included in the analyses. Due 
to missing data in fear ratings from fear acquisition training, N = 103 participants (67 females) were included 
into the analyses of fear ratings. Fear ratings pre extinction are missing from nine and ratings post extinction are 
missing from three participants, resulting in a total of N = 95 participants (64 females) for the comparison of pre 
and post extinction ratings.

An electrotactile stimulus administered to the back of the participant’s right hand served as the 
US. �e stimulus comprised three 2 ms electrotactile rectangular pulses with an interpulse interval of 50 ms 
delivered 200 ms before CS+ o�set. �e pulse was generated by a Digitimer DS7A constant current stimulator 
(Welwyn Garden City, Hertfordshire, UK) and delivered through a 1 cm diameter platinum pin surface electrode 
(Specialty Developments, Bexley, UK) placed between the metacarpal bones of the index and middle �nger. US 
intensity was individually calibrated in a step-wise procedure to reach an unpleasant, but not painful level for 
each participant.

Two light grey fractals served as conditioned stimuli, the allocation of which to CS+ and CS− as well as the 
order was counterbalanced across participants. All stimuli were presented on grey background.

Participants completed a two-day paradigm consisting of habituation and acquisi-
tion training on Day 1 and extinction training, reinstatement administration and reinstatement test on Day 2. 
In the current study, only data from acquisition and extinction training are presented. For both acquisition and 
extinction training, CS+ and CS− were each presented 14 times in pseudo-randomized order for a duration of 
6–8 s (mean duration: 7 s). Inter-trial intervals (ITIs) consisted of a white �xation cross presented for 10–16 s 
(mean duration: 13 s). Presentation of all stimuli on a grey background and stimulus timing were controlled by 
Presentation so�ware (Version 14.8, Neurobehavioral Systems, Inc, Albany California, USA).

Fear ratings were completed a�er habituation and acquisi-
tion training on Day 1 as well as before extinction training and a�er reinstatement on Day 2. Participants were 
asked how much ‘stress, fear and tension’ they experienced when they last saw the CS+ and CS−. �e ratings 
a�er reinstatement test referred to the �rst CS presentation per CS type a�er reinstatement administration and 
the last presentation during the test phase respectively (note that this phase was, however, not analyzed here). 
Answers were given within a 5 s time window on a visual analog scale (VAS) ranging from zero (answer = none) 
to 100 (answer = maximum), re-scaled to 0–25. A standardized post-experimental awareness interview adapted 
 from47 was conducted a�er acquisition training in order to assess CS–US contingency awareness. Subsequently, 
participants were classi�ed as aware, unaware or uncertain of CS–US contingencies by the experimenter.

Physiological data were recorded with a Biopac MP100-ampli�er 
system (BIOPAC Systems Inc, Goleta, California, USA) and AcqKnowledge 3.9.2 so�ware and converted from 
analog to digital using a CED2502-SA with Spike 2 so�ware (Cambridge Electronic Design, Cambridge, UK). 
Skin conductance response was measured by placing two self-adhesive, hydrogel Ag/AgCl electrodes on the 
distal and proximal hypothenar on the palmar side of the le� hand. Data was continuously recorded at 1000 Hz 
with a gain of 5 or 10 µΩ and down-sampled to 10 Hz.

In line with previous  recommendations48,49, data were scored semi-manually as a trough to peak (TTP) 
response between 0.9 and 3.5 s a�er CS onset using the custom-made program EDA view (developed by Prof. 
Dr. Matthias Gamer, University of Würzburg). Rise time was set to a maximum of 5 s. Each scored SCR was 
checked visually, and the scoring suggested by EDA View was corrected if necessary. For example, the algorithm 
sometimes suggested an SCR outside the scoring window or the foot or trough were misclassi�ed especially when 
several responses overlapped. Data with recording artifacts or excessive baseline activity (more than half of the 
response amplitude) were scored as missing values and excluded from the analysis. Response increases smaller 
than 0.01 μS in the pre-de�ned time window were set to zero, for a justi�cation  see45. Raw SCR amplitudes were 
log transformed for purposes of normalization and range corrected by dividing each SCR by the maximum SCR 
(to CS or US) for each participant and day.

Physiological ‘non-responding’ on Day 1 was de�ned as no SCR response to the US on more than 9 out of 14 
occasions. On Day 2, ‘non-responding’ was de�ned as no SCR response to any of three USs during reinstatement. 
A total of eight participants was classi�ed as ‘non-responders’45.

T1-weighted structural images (1 × 1 × 1 mm) were acquired on Day 
2 with a 3T PRISMA whole body scanner (Siemens Medical Solutions, Erlangen, Germany) using a 64-channel 
head coil and magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2300 ms, TE = 2.98 ms, 
�eld of view = 192 × 256 mm, 240 slices).

Cortical thickness and volume of subcortical brain regions were reconstructed using the brain imaging so�-
ware Freesurfer 6.0.17–9. �us, the regions of interest used in the current study are de�ned based on the areas 
implemented in Freesurfer and visualizations can be found online (https ://surfe r.nmr.mgh.harva rd.edu/). �e 
surface-based stream that yields measures of cortical thickness includes an initial Talairach registration, bias 
�eld correction, skull stripping, white matter classi�cation, surface generation and gyral  labeling7. Similarly, the 
volume-based or subcortical stream involves an initial Talairach registration, initial volumetric labeling, bias �eld 
correction, nonlinear volumetric atlas registration and volumetric labeling of subcortical  structures50. Cortical 
parcellation is based on the Desikan-Killiany cortical  atlas51 implemented in Freesurfer.

https://surfer.nmr.mgh.harvard.edu/
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�e success of fear acquisition and extinction training was assessed by performing 
t tests and ANOVAs comparing averaged SCR elicited by the CS+ and CS− during acquisition and extinction 
training and fear ratings to the CS+ and CS− a�er acquisition as well as before and a�er extinction training. 
�e SCR to the �rst CS+ and CS− of acquisition training were excluded from all analyses as no learning could 
possibly have taken place as the �rst CS+ presentation and the corresponding SCR occur prior to the �rst US 
presentation. Paired samples t tests were conducted to test for signi�cant di�erences in cortical thickness and 
subcortical volume between the le� and right hemisphere for the dACC, mOFC, insula and amygdala. For all 
other analyses, volumina of both hemispheres of a region were averaged and, as pre-registered, sex and total 
intracranial volume (TIV) were included as covariates.

To test the hypothesis that dACC thickness and amygdala volume predict conditioned responding during 
acquisition training, separate linear regressions predicting average di�erential [(CS+) – (CS−)] SCR during acqui-
sition training and di�erential [(CS+) – (CS−)] post-acquisition fear ratings from dACC thickness and amygdala 
volume were conducted. Please note that the pre-registration used an ambiguous formulation regarding the 
ratings. We had used the term “mean di�erential fear rating” but there was only one rating a�er the acquisition 
phase. Additional analyses used average SCR responding during the �rst half (i.e. trials two to seven for acquisi-
tion training and trials one to seven for extinction) and second half (i.e., trials eight to fourteen for acquisition 
training and extinction) of acquisition and extinction training (pre-registered for amygdala, also performed for 
dACC for completeness).

For extinction, equivalent analyses were set up with average di�erential [(CS+) – (CS−)] SCR across all trials 
during extinction learning and fear ratings as outcome variables and amygdala volume and mOFC thickness as 
predictors. Regarding the fear ratings, our pre-registration used an ambiguous formulation (“mean di�erential 
fear ratings”). As we, in contrast to SCR, did only assess ratings prior to and a�er but not during extinction train-
ing, we specify here that we used the di�erence in ratings pre and post extinction [pre extinction − post extinc-
tion]. For completeness, exploratory analyses were also performed with pre and post extinction ratings instead 
of the di�erence score. As pre-registered, mOFC thickness was also tested as a predictor for average di�erential 
SCR during �rst and second half of extinction.

Pre-registered exploratory moderated regression analyses were conducted with dACC as predictor, averaged 
di�erential [(CS+) − (CS−)] SCR during fear acquisition training and di�erential [(CS+) − (CS−)] fear ratings 
a�er acquisition training as outcome and contingency awareness as moderator variables (reported in the Sup-
plementary Material Section 1.1, Supplementary Figure 1).

Additionally, some non-preregistered analyses were performed for completeness, as additional robustness 
checks to the main analyses (because signi�cant di�erences between volumina/thickness emerged between both 
hemispheres) and in order to replicate speci�c �ndings from individual  studies16,20,21. �e results of these analyses 
can be found in the Supplementary Material.

1. �e regression analyses testing for the main pre-registered hypotheses were also performed separately for 
le� and right hemisphere. Full results are reported in the Supplementary Material (see Section 2.1 and Sup-
plementary Figures 2 and 3 as well as Supplementary Table 1).

2. Robustness analyses were performed for all main pre-registered analyses including sex as covariate and 
no covariates in order to ensure that the current results can be generalized to di�erent combinations of 
 covariates52. Model �t comparisons were further performed in order to show whether including covariates 
added predictive power. Full results can be found in the Supplementary Material (see Section 2.2 and Sup-
plementary Table 2).

3. As Milad et al.21 reported a correlation of cortical thickness of the dACC with SCR to CS+ and CS− only, we 
performed correlations with dACC thickness and CS+ and CS− elicited SCR. Additionally, we computed 
partial correlations controlling for sex and TIV. Results are reported in the Supplementary Material (see 
Section 3.1, Supplementary Figure 4 and Supplementary Table 5).

4. As Hartley et al.20 reported an association between the right posterior insula and CS+/CS− discrimination 
during acquisition training, we conducted a correlational analysis for le�, right and average insula thickness 
and di�erential SCR and fear ratings during acquisition training. Results are reported in the Supplementary 
Material (see Section 3.2, Supplementary Figure 5 and Supplementary Table 6).

5. As  some53,54 but not  all16 previous studies reported an association between trait anxiety and amygdala volume, 
partial correlations were calculated in order to test for a relationship between trait anxiety as well as state 
anxiety prior to acquisition and extinction training and amygdala volume in addition to amygdala volume 
and state anxiety one day a�er acquisition training. Results are reported in the Supplementary Material (see 
Section 3.3, Supplementary Figure 6 and Supplementary Table 7).

In addition to traditional null hypothesis signi�cance testing (NHST), we computed Bayes factors for all 
analyses, allowing us to not only to �nd evidence for our tested hypotheses but to quantify the evidence in favor 
of the null hypotheses. In the current study, we used the R package “BayesFactor”55 in order to calculate Bayes 
factors to obtain relative evidence for the tested regression (or correlation) model against a null or intercept-only 
model. Here, we report the Bayes Factor  BF01 to directly show how much more likely the null hypothesis is relative 
to the alternative hypothesis given the data. Bayes factors  (BF01) > 1 are generally considered as evidence against 
the alternative hypothesis or for the null  hypothesis56. More speci�cally, weak evidence for the null hypothesis is 
de�ned as  BF01 = 1–3, moderate evidence as  BF01 = 3–20 and strong evidence as  BF01 = 20–15057.

All analyses and data visualizations were performed with the So�ware package R (Version 1.2.5033) using the 
following packages:  ggpubr58,  ggplot259,  cowplot60,  writexl61,  car62,  jtools63,  readr64,  broom65,  ggfortify66,  tidyr67, 
 scales68,  plyr69,  RColorBrewer70,  reshape271,  tidyverse72,  grid73,  gridExtra74,  ggExtra75,  patchwork76,  apaTables77, 
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 MBESS78,  egg79,  ggm80,  e�ectsize81,  ppcor82,  GGally83,  psychReport84,  lsr85,  ez86,  lattice87,  dplyr88,  rmarkdown89, 
 Rmisc90,  gghalves91,  BayesFactor55. Power curves were plotted using open code https ://www.statm ethod s.net/stats 
/power .html. Predictors for all linear regressions were centered in order to be able to investigate interactions and 
for easier interpretability. All e�ects are reported at signi�cant level p < 0.05 unless indicated otherwise. E�ect 
sizes are reported as Cohen’s d. No follow-up analyses were conducted since the pre-registered analyses did not 
yield any signi�cant results.
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1. Pre-registered exploratory analyses 

1.1 Contingency awareness does not moderate the association between dACC thickness 

and defensive responding during fear acquisition training 

Contingency awareness has been identified as one factor contributing to inter-individual 

differences in defensive responding during fear acquisition training (Mertens & Engelhard, 2020; 

Tabbert et al., 2011). Here, we wanted to explore the pre-registered hypothesis that a potential 

association between dACC thickness and differential SCR and differential fear ratings during 

acquisition training might be moderated by contingency awareness. 

A regression analysis with dACC thickness, contingency awareness as well as the pre-

registered covariates sex and total intracranial volume (TIV) as predictors significantly predicted 

differential SCR (F(4,101) = 3.52, p = .01, R2  = .12) and differential ratings (F(4,97) = 3.65, p = .01, R2 = 

.13) during acquisition training. Adding the interaction term between contingency awareness and 

dACC thickness to the analysis still yielded a significant regression (SCR: F(5,100) = 2.79, p = .02, R2  = 

.12, ratings: F(5,96) = 3.24, p = .01, R2 = .14, see Supplementary Figure 1). The interaction between 

dACC thickness and contingency awareness was, however, not a significant predictor for differential 

SCR (β = -.03, p = .86) or ratings (β = -15.86, p = .22), rather the significant association was driven by 

awareness alone (SCR: β = .08, p = .01, ratings: β = 4.45, p = .02). These results should, however, be 

treated with caution since the group sizes differed substantially and were as low as 7 for the unaware 

group. 

 

 
Supplementary Figure 1. Scatterplot with marginal densities illustrating the (absence of an) 

association between dACC thickness and (A) differential SCR and (B) differential fear ratings during 

acquisition training. Different awareness groups [“not aware” (N = 7), “aware” (N = 89) and 
“uncertain” (N = 10)] are color coded. 
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2. Non-pre-registered robustness analyses  
For full transparency, we report robustness analyses to demonstrate that the results 

presented in the main manuscript (i.e., pre-registered analyses) are not contingent on specific analysis 

choices, such as using averaged values over both hemispheres (see 2.1), the choice of specific – albeit 

pre-registered – covariates (see 2.2), transformation of raw scores (see 2.3) or not removing outliers 

(see 2.4). 

2.1  Robustness analyses considering data from right and left hemisphere separately 

Previous research reported inconsistent lateralization (i.e., left or right lateralization) of the 

association of volume or cortical thickness and defensive responding during acquisition and extinction 

training. For instance, despite largely overlapping samples, Cacciaglia and colleagues observed a 

positive correlation between differential SCR and left amygdala volume, while Winkelmann and 

colleagues reported a positive correlation between differential SCR and right amygdala volume 

(Cacciaglia et al., 2014; Winkelmann et al., 2015). Further, effects were observed for right but not left 

insula and differential SCR during acquisition training (Hartley et al., 2011) and right but not left vmPFC 

and differential SCR during extinction training (Winkelmann et al., 2015). Hence, all major, 

preregistered analyses were also performed separately for left and right hemisphere for full 

transparency.  

For that purpose, separate regression analyses with subcortical volume/cortical thickness 

derived from left and right hemisphere as predictor and differential SCR or differential fear ratings as 

outcome variables were performed for acquisition and extinction training for each brain region of 

interest (see methods, main manuscript). The pre-registered covariates sex and TIV were included as 

covariates for all analyses.  

Similar to the results reported in the main manuscript, no significant association between any 

of the regions in any hemisphere was observed with either differential SCR or differential fear ratings 

during acquisition (see Supplementary Figure 2) or extinction training (see Supplementary Figure 3) 

(for full results see Supplementary Table 1) apart from a significant association between right dACC 

thickness and post-acquisition fear ratings (F(3,99) = 2.73,  p = .048 R2  = .08). However, the Bayes 

factor, BF01 = 2.23, for this association actually provides support for the null hypothesis (i.e. no 

significant relationship). Similarly, Bayes factors for all other analyses indicate that there is moderate 

to strong evidence (BF01 > 3) for the null or intercept-only model (see Supplementary Table 1). 
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Supplementary Figure 2. Scatterplot and marginal densities illustrating the (absence of) associations 

between differential SCR during acquisition training with (A) dACC thickness and (B) amygdala volume 

as well as differential fear ratings post acquisition training with (C) dACC thickness and (D) amygdala 

volume. Data are illustrated separately for left (red) and right (blue) hemisphere. Regression lines are 

presented for both hemispheres (red and blue) as well as averages across both (dark grey). 
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Supplementary Figure 3. Scatterplot and marginal densities illustrating the (absence of) associations 

of differential SCR during extinction training with (A) dACC thickness and (B) amygdala volume as well 

as of the difference between pre and post extinction differential ratings with (C) dACC thickness and 

(D) amygdala volume. Data are illustrated separately for left (red) and right (blue) hemisphere. 

Regression lines are presented for both hemispheres (red and blue) as well as averages across both 

(dark grey). 
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Supplementary Table 1. Results of regression analyses with left and right hemisphere cortical thickness/subcortical volume and differential 

SCR and fear ratings during fear acquisition and extinction training (controlled for sex and TIV) and Bayes factor BF01 providing relative evidence 

for the intercept-only model against the hypothesis based regression model.  

(A) Fear acquisition training dACC Amygdala 

 left right   left right 

 Regression BF01 Regression BF01 Regression BF01 Regression BF01 

Differential SCR  F(1,103) = 1.28, 

p = .29,  R2 = .04 

11.90 F(3,103) = 1.92, 

p = .13, R2 = .05 

5.15 F(3,103) = .88,  

p = .45, R2  = .03 

19.23 F(3,103) = .99,  

p = .40, R2 = .03 

16.95 

Differential post acquisition 

fear ratings  

F(3,99) = 1.74,  

p = .16, R2 = .05 

7.94 F(3,99) = 2.73, 

p = .048, R2 = .08 

2.23 F(3,99) = 1.50,  

p = .22, R2  = .04 

11.11 F(3,99) = 1.55,  

p = .21, R2 = .04 

10.42 

(B) Extinction training mOFC  Amygdala 

  left right left right 

 Regression   BF01 Regression BF01 Regression BF01 Regression BF01 

Differential SCR  F(3,103) = .08,  

p = .97, R2 < .01 

58.82 F(3,103) = .06,  

p = .98, R2 < .01 

58.82 F(3,103) = .04,  

p = .99, R2 < .01 

62.50 F(3,103) = .09, 

p = .96, R2 < .01 

52.63 

Differential [pre – post 

extinction] fear ratings  

F(3,93) = .27,  

p = .85, R2 < .01 

43.48 F(3,93) = .24,  

p = .87, R2 = .01 

45.45 F(3,93) = .25,  

p = .86, R2 = .01 

43.48 F(3,93) = .27,  

p = .85, R2 < .01 

41.67 
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2.2  Robustness analyses including no covariates  

 Our pre-registered analyses presented in the main manuscript included sex and TIV as 

covariates. It has been suggested to always include robustness analyses without covariates for full 

transparency (Simmons et al., 2011) and to ensure that presented results are not contingent on the 

covariates included. 

Consequently, all main pre-registered analyses were also completed with either sex only or no 

covariates. In addition, for all analyses, the model fit of a regression with sex only or with sex and TIV 

as covariates was compared to a regression with morphometric estimates as the only predictor and 

no covariates. This serves the purpose to identify the best fitting model among those included and to 

determine whether the inclusion of specific covariates significantly alters model fit. 

 In brief, including only sex as covariate or no covariates yielded comparable results to those 

reported in the main manuscripts as no significant associations between brain morphology in any of 

the regions of interest and defensive responding in SCR and fear ratings during fear acquisition or 

extinction training were observed. Moreover, including covariates did not significantly improve model 

fit of the regression analyses.  

 More specifically, for acquisition training (for full results see Supplementary Table 2A), no 

significant associations between dACC thickness or amygdala volume and differential SCR or 

differential post acquisition fear ratings were observed with different combinations of covariates – 

with the exception of a significant association of amygdala volume and differential SCR during the 

second half of acquisition training when no covariates were included (F(1,105) = 4.55, p = .04, R2 = .04) 

and Bayes factor of BF01 = 0.65 indicating moderate support for H1. However, it should be noted that 

applying a simple Bonferroni correction for multiple comparisons would render this result no longer 

significant (i.e., correcting for 9 tests concerning the amygdala and SCR would result in an alpha level 

of α = .006). Importantly, the regression model of interest only becomes significant when no covariates 

are included but not with any other combination of covariates further questioning the robustness of 

this single positive result.  

Overall, model fit was not significantly improved by including covariates with the exception of 

including sex and TIV as covariates in the analysis of the relationship between dACC thickness and fear 

ratings (F(1,99) = 5.38, p = .02).  

 For extinction training, neither amygdala volume nor mOFC thickness could be significantly 

predicted from differential SCR or fear ratings regardless of the covariates included. In line with this, 

model fit was not significantly improved by the addition of covariates (for full results see 

Supplementary Table 2B).   
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Supplementary Table 2. Results of robustness analyses for morphology and indices of fear learning including different covariates 

(A) Fear acquisition training  

Structure 
Outcome 

measure 

Phase  Covariates  Model fit compared to analysis with no covariates 

 Sex  None  Sex Sex and TIV 

   Regression BF01 Regression BF01   

dACC 

SCR Full F(2,104) = 1.90, p = .15, R2 = .04 4.37 F(1,105) = 1.61, p = .21, R2 = .02 2.38 F(1,104) = 2.19 , p = .14 F(1,103) = 1.95, p = .17 

1st half F(2,104) = .44, p = .65, R2  = .01 15.15 F(1,105) = .62, p = .43, R2  = .01 3.70 F(1,104) = .26, p = .61 F(1,103) = .63, p = .43 

2nd half F(2,104) = 2.77, p = .07, R2  = .03 2.11 F(1,105) = 1.81, p = .18, R2  = .02 2.18 F(1,104) = 3.73, p = .06 F(1,103) = 2.35, p = .13 

ratings Post F(2,100) = 1.01, p = .37, R2 = .02 8.77 F(1,101= 1.99, p = .16, R2 = .02 1.98 F(1,100) = .04, p = .85  F(1,99) = 5.38, p = .02 

Amygdala 

SCR Full F(2,104) = 1.19, p = .31, R2 = .02 6.85 F(1,105) = 2.27, p = .13, R2 = .02 1.78 F(1,104) = .13, p = .72 F(1,103) = .42, p = .52 

1st half F(2,104) = .07, p = .93, R2 = < .01 18.87 F(1,105) = .12, p = .73, R2 = < .01 4.63 F(1,104) = .02, p = .89 F(1,103) = .51, p = .48 

2nd half F(2,104) = 2.36, p = .10, R2 = .04 2.27 F(1,105) = 4.55, p = .04, R2 = .04 0.65 F(1,104) = .21, p = .65 F(1,103) = .16, p = .69 

ratings Post F(2,100) = .80, p = .45, R2 = .02 1.03 F(1,101) = .98, p = .33, R2 = .01 3.11 F(1,100) = .64, p = .43 F(1,99) = 2.90, p = .09 

(B) Extinction training  

Structure 
Outcome 

measure 

Phase  Covariates  Model fit compared to analysis with no covariates 

 Sex   None  Sex  Sex and TIV 

Amygdala 

SCR Full F(2,104) = .07, p = .93, R2  < .01 18.18 F(1,105) = .02, p = .70, R2  < .01 4.59 F(1,104) = .005, p = .95 F(1,103) = .003, p = .96 

 1st half F(2,104) = .23, p = .80, R2  < .01 16.39 F(1,105) = .42, p = .52, R2  < .01 4.05 F(1,104) = .03, p = .85 F(1,103) = .004, p = .95 

 2nd half F(2,104) = .09, p = .91, R2  < .01 19.23 F(1,105) = .06, p = .81, R2  < .01 4.76 F(1,104) = .13, p = .72 F(1,103) = .03, p = .86 

ratings pre-post F(2,94) = .22, p = .88,  R2 < .01 16.13 F(1,95) = .04, p = .84,  R2 < .01 4.59 F(1,94) = .40, p = .53 F(1,93) = .24, p = .62 

Pre F(2,95) = .78, p = .46,  R2 = .02 9.90 F(1,96) < .01, p = .98,  R2 < .01 4.69 F(1,95) = 1.56, p = .22 F(1,94) = 1.10, p = .30 

Post F(2,101) = .40, p = .67,  R2 = .01 14.08 F(1,102) < .01, p = .98,  R2 < .01 4.83 F(1,101) = .81, p = .37 F(1,100) = 1.06, p = .31 

mOFC 

SCR Full F(2,104) = .04, p = .96, R2  < .01 21.74 F(1,105) = .92, p = .88, R2  < .01 4.83 F(1,104)= .07, p = .81 F(1,103) = .04, p = .84 

1st half F(2,104) = .07, p = .93, R2  < .01 20.83 F(1,105) = .13, p = .72, R2  < .01 4.61 F(1,104) = .02, p = .90 F(1,103) = .09, p = .77 

2nd half F(2,104) = .05, p = .95, R2  <.01 21.28 F(1,105) = .05, p = .82, R2  < .01 4.78 F(1,104) = .05, p = .83 F(1,103) < .01, p = .95 

ratings pre-post F(2,94) = .09, p = .91,  R2 < .01 18.87 F(1,95) < .01, p = .98,  R2 < .01 4.67 F(1,94) = .18, p = .67 F(1,93) = .50, p = .48 

Pre F(2,95) = .70, p = .50,  R2 = .01 11.49 F(1,96) = .11, p = .74,  R2 <. 01 4.46 F(1,95) = 1.28, p = .26 F(1,94) = 1.27, p = .26 

Post F(2,101) = .78, p = .46,  R2 = .02 11.11 F(1,102) = .82, p = .37,  R2 = .01 3.36 F(1,101) = .74, p = .39 F(1,100) = .83, p = .37 
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2.3  Robustness analyses with raw SCR 

 All main pre-registered hypotheses regarding the association of SCR and brain morphology 

were also performed with raw SCR scores instead of log-transformed and range corrected SCR scores 

that were included in the analysis of the main manuscript.  

 In brief, the analyses reveal a very similar pattern of results to that presented in the main 

manuscript suggesting no relationship between differential SCR during fear acquisition and extinction 

training and brain morphology with both traditional NHST and a Bayesian approach.  

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3. Results of regression analyses with cortical thickness/subcortical volume and raw 

differential SCR during fear acquisition and extinction training (controlled for sex and TIV) and Bayes factor 

BF01 providing relative evidence for intercept-only model against the regression model.  

 dACC Amygdala mOFC 

(A) Fear acquisition 

training 

Regression BF01 Regression BF01 Regression BF01 

Differential SCR:  

Full phase  

F(3,103) = 2.55,  

p = .06 R2= .07 

2.31 F(3,103) = 1.23,  

p = .3, R2 = .03 

12.82 --- --- 

 

Differential SCR:  

First half  

F(3,103) = .94,  

p = .42 R2  = .03 

18.18 F(3,103) = .05,  

p = .98, R2 < .01 

62.50 --- --- 

Differential SCR:  

Second half 

F(3,103) = 2.67,  

p = .051, R2  = .07 

1.92 F(3,103) = 1.68,  

p = .18, R2 = .05 

7.04 --- --- 

(B) Extinction training 

Differential SCR:  

Full phase 

---  F(3,103) = .16,  

p = .92, R2 < .01 

50.00 F(3,103) = .13,  

p = .94, R2 < .01 

55.56 

Differential SCR:  

First half 

---  F(3,103) = .17, 

p = .92, R2 < .01 

52.63 F(3,103), .11,  

p = .95, R2  < .01 

55.56 

Differential SCR:  

Second half 

---  F(3,103) = .11,  

p = .95, R2 < .01 

58.82 F(3,103) = .18,  

p = .91, R2  = .01 

52.63 
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2.4  Robustness analyses – outliers removed 

 We checked the data for outliers (> 3 SD below or above mean, see for example Winkelmann 

et al., 2015) in fear ratings and SCR. One participant was excluded based on post-acquisition fear 

ratings, one based on pre-post extinction fear ratings and four based on differential SCR during 

extinction. The affected analyses were rerun after exclusions and the full results can be found in 

Supplementary Table 4. In summary, the general pattern of results remained the same with no 

significant associations.  

 
 

Supplementary Table 4. Results of regression analyses with cortical thickness/subcortical volume 

and differential SCR and fear ratings during fear acquisition and extinction training (controlled for 

sex and TIV) with outliers (> 3 SD below or above mean) removed. Bayes factor BF01 provides 

relative evidence for intercept-only model against the regression model.  

 dACC Amygdala 

(A) Fear acquisition 

training 

Regression BF01 Regression BF01 

Differential post 

acquisition fear ratings 

F(3,98) = 1.45,  

p = .23,  R2 = .04 

1.08 F(3,98) = 0.99,  

p = .40, R2 = .03 

19.61 

 Amygdala OFC 

(B) Extinction training Regression BF01 Regression BF01 

Differential SCR:  

Full phase 

F(3,99) = .16,  

p = .93,  R2 < .01 

52.63 F(3,99) = .25,  

p = .86, R2 = .01 

45.45 

Differential SCRs  

First half 

F(3,99) = .21,  

p = .89,  R2 = .01 

47.62 F(3,99) = .78,  

p = .51, R2 = .02 

23.26 

Differential SCR:  

Second half 

F(3,99) = 1.45,  

p = .20,  R2 = .05 

76.92 F(3,99) = .14,  

p = .94, R2 < .01 

52.63 

Differential fear ratings 

[pre-post extinction] 

F(3,92) = .28,  

p = .84,  R2 = .01 

41.67 F(3,92) = .33,  

p = .81, R2 = .01 

38.46 
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3. Additional, non-pre-registered analyses aiming to (conceptually) 

replicate previously reported findings 

3.1  No association of dACC cortical thickness and SCR to the CS+ and CS- during 

acquisition training 

 In a non-pre-registered analysis we aimed to replicate the previous finding of a significant 

correlation between dACC thickness and SCR to the CS+ but not the CS- during fear acquisition training 

(Milad et al., 2007). To be consistent with our previous analyses, we additionally computed partial 

correlations with sex as well as sex and TIV.  

None of these analyses revealed a significant correlation between dACC thickness and SCR to 

either the CS+ or the CS- irrespective of covariates included and Bayes factors provide further evidence 

for the null hypothesis (for full results see Supplementary Table 5 and Supplementary Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

Note. a corrected for sex, b corrected for sex and TIV 

 

 

Supplementary Figure 4. Scatterplots with marginal densities illustrating the (absence of) associations 

between dACC thickness and SCR during acquisition training (A) to the averaged CS+ trials and (B) the 

averaged CS- trials. 

 

 

Supplementary Table 5. (Partial) Correlations between dACC thickness and CS+ 

and CS- and Bayes factor BF01 providing relative evidence for the full correlation 

against a null model. 

 dACC dACCa dACCb  

 r p r p r p BF01 

CS+ .11 .27 .16 .11 .16 .10 2.51 

CS- .04 .65 .08 .39 .08 .43 4.07 
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3.2  No association between thickness of the insula and differential SCR and ratings during 

fear acquisition and extinction  

 Hartley et al. (2011) reported a positive correlation between right (posterior) insula thickness 

and differential SCRs during acquisition training – even though in one out of two data sets, the 

correlation did not survive correction for multiple comparisons. In the current study, we aimed to 

replicate this finding in a substantially larger sample and for completeness extend them to differential 

fear ratings as well as extinction training. These analyses were not pre-registered. 

  We did not observe any significant correlations between differential SCRs or post acquisition 

ratings during acquisition training (see Supplementary Figure 5A and B) or differential SCRs and ratings 

(pre – post extinction) during extinction (Supplementary Figure 5C and D) for either right or left 

hemisphere or averaged insula thickness (for full results see Supplementary Table 6). Bayes factors 

further provide moderate evidence for the null hypothesis. 

 

 

 

Supplementary Table 6.  

 Left Insula Right Insula Averaged Insula 

(A) Fear acquisition training 

 r p BF01 r p BF01 r p BF01 

Differential SCR .03 

.02 

.79 

.84 

4.35 .12 

.07 

.21 

.50 

2.14 .08 

.05 

.43 

.64 

3.34 

Differential post acquisition fear 

ratings 

4.33 3.55 3.98 

(B) Extinction training 

Differential SCR .03 .74 4.27 .04 .72 4.22 .04 .70 4.18 

Differential fear ratings [pre-post 

extinction] 
 

.06 .26 3.65 .05 .63 3.82 .06 .54 3.60 

Differential pre extinction fear 

ratings 
 

.03 .74 4.08 .12 .25 2.29 .08 .43 3.23 

Differential post extinction fear 

ratings 

-.04 .72 4.17 .13 .18 1.89 .04 .67 4.07 

Correlations between thickness of the insula (averaged over both hemispheres, left and right) with differential 

SCRs and differential ratings (post acquisition and pre – post extinction) during acquisition and extinction 

training and Bayes factor BF01 providing relative evidence for the null model against the tested correlation. 
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Supplementary Figure 5. Scatterplot with marginal densities illustrating the (absence of) associations 

between (A) differential SCR during and (B) differential fear ratings after acquisition training as well as (C) 

differential SCR during and (D) differential pre - post extinction fear ratings [[(CS+pre)-(CS- pre)] - [(CS+post)-(CS- 

post)] and left (red), right (blue) insula as well as averaged between hemispheres (dark grey regression line 

only). 
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3.3  No association of amygdala volume with trait and state anxiety  

 Previously, a negative correlation between left amygdala volume and state and trait anxiety 

(Blackmon et al., 2011), as well as a positive correlation between left amygdala volume and trait 

anxiety (Baur et al., 2012) has been reported while a third study (Winkelmann et al., 2015) did not 

observe any association between amygdala volume and trait anxiety. 

 In the current study, we adopted the approach of Winkelmann et al. (2015) and calculated 

partial correlations between amygdala volume and trait anxiety as well as state anxiety (assessed prior 

to Day 1 acquisition training and Day 2 extinction training respectively) while controlling for the pre-

registered covariates age, sex and TIV. We did not observe any significant associations between state 

or trait anxiety and averaged amygdala volume or right or left amygdala volume (for full results see 

Supplementary Table 7 and Supplementary Figure 6), which is further supported by Bayes factors 

suggesting support for the null hypothesis. 

Supplementary Table 7.   

Partial correlations of subcortical volume and STAI Trait/STAI State as indicator for anxiety and Bayes 

factor BF01 providing relative evidence for the null model against the full correlation. 

Note. a corrected for age, sex and TIV 

 Left Amygdalaa Right Amygdalaa Averaged Amygdalaa 

 

M (SD) 

[range] 

r p 

 

BF01 

 

r p 

 

BF01 

 

r p 

 

BF01 

 

 

STAI Trait 

 

34.61 (7.19) 

[24, 55] 
.09 .40 

 

4.10 .02 .83 

 

2.92 .06 .55 

 

3.53 

 

STAI State (Day 1) 

 

35.25 (5.25) 

[24, 48] 
.05 .64 

 

3.36 .10 .35 

 

3.65 .07 .45 

 

3.44 

 

STAI State (Day 2) 

 

35.53 (6.77) 

[23, 52] 
.04 .71 

 

3.79 .06 .58 

 

3.79 .05 .61 

 

3.75 

 

 



15 

 

 
Supplementary Figure 6. Scatterplots with marginal densities illustrating the lack of an association 

between trait anxiety (STAI-T) as well as state anxiety (STAI-S) prior to acquisition training (Day 1), 

and prior to extinction training (Day2) and amygdala volume (centered, for averaged, left and right 

volume). 
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Robust group- but limited individual- 

level (longitudinal) reliability and insights 

into cross- phases response prediction of 

conditioned fear
Maren Klingelhöfer- Jens1*, Mana R Ehlers1, Manuel Kuhn1,2, Vincent Keyaniyan1, 
Tina B Lonsdorf1

1Institute for Systems Neuroscience, University Medical Center Hamburg- Eppendorf, 
Hamburg, Germany; 2Department of Psychiatry, Harvard Medical School, and Center 
for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, United 
States

Abstract Here, we follow the call to target measurement reliability as a key prerequisite for 
individual- level predictions in translational neuroscience by investigating (1) longitudinal reliability 
at the individual and (2) group level, (3) internal consistency and (4) response predictability across 
experimental phases. One hundred and twenty individuals performed a fear conditioning paradigm 
twice 6 months apart. Analyses of skin conductance responses, fear ratings and blood oxygen level 
dependent functional magnetic resonance imaging (BOLD fMRI) with different data transformations 
and included numbers of trials were conducted. While longitudinal reliability was rather limited 
at the individual level, it was comparatively higher for acquisition but not extinction at the group 
level. Internal consistency was satisfactory. Higher responding in preceding phases predicted higher 
responding in subsequent experimental phases at a weak to moderate level depending on data 
speci�cations. In sum, the results suggest that while individual- level predictions are meaningful for 
(very) short time frames, they also call for more attention to measurement properties in the �eld.

Editor's evaluation
The authors assess the psychometric properties of behavioral, psychophysiological, and brain 
imaging measures of fear conditioning. Six- month retest reliability was generally low, whereas 
internal- consistency reliability was generally high. At the group level, reliability and criterion validity 
were generally good. Most measurements proved sensitive to data analytical choices. Results are 
framed within a larger discussion of the role of measurement properties in individual difference 
research and clinical translation and have the potential to serve as an important building block 
towards improvement in both these areas.

Introduction
The increasing incidence (e.g., Xiong et al., 2022) and high relapse rates (Essau et al., 2018; Yonkers 

et al., 2003) of anxiety- related disorders call for a better understanding of anxiety- and stress- related 
processes which might contribute to improving existing treatments or developing more effective 
interventions. In the laboratory, these processes can be studied using fear conditioning paradigms 
(Dunsmoor et al., 2022; Fullana et al., 2020; Milad and Quirk, 2012).
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In differential fear conditioning protocols (see Lonsdorf et al., 2017a) one stimulus is repetitively 
paired with an aversive unconditioned stimulus (US; e.g., electrotactile stimulation), and as a conse-
quence becomes a conditioned stimulus (CS+) while another stimulus, the CS−, is never paired with 
the US. After this acquisition training phase, CSs are presented without the US (extinction training) 
leading to a gradual waning of the conditioned response. Critically, the fear memory (CS+/US associa-
tion) is not erased, but a competing inhibitory extinction memory (CS+/no US association) is assumed 
to be formed during extinction training (Milad and Quirk, 2012; Myers and Davis, 2007). Subse-
quently, return of fear (RoF) can be induced by procedural manipulations such as a time delay (spon-
taneous recovery), a contextual change (renewal, Vervliet et al., 2013a), or a (re- )presentation of an 
aversive event (reinstatement, Haaker et al., 2014). Conditioned responding can be subsequently 
probed in an RoF test phase during which either the absence (i.e., extinction retention) or the return 
of conditioned responding (i.e., RoF) can be observed (Bouton, 2004; Lonsdorf et al., 2017a).

Findings from studies employing fear conditioning paradigms hold strong potential for translating 
neuroscienti�c �ndings into clinical applications (Anderson and Insel, 2006; Cooper et al., 2022a; 
Fullana et al., 2020; Milad and Quirk, 2012). More precisely, extinction learning is assumed to be the 
active component of exposure- based treatment (Graham and Milad, 2011; Milad and Quirk, 2012; 
Rachman, 1989; Vervliet et al., 2013b) and experimental RoF manipulations have been suggested 
to serve as a model of clinical relapse (Scharfenort et al., 2016; Vervliet et al., 2013a). Important 
�ndings in the fear conditioning �eld include the de�cient learning of the safety signal (CS−) during 
acquisition training, impaired extinction learning (Duits et al., 2015) and the tendency of fear general-
ization to innocuous stimuli (Cooper et al., 2022a) in patients suffering from anxiety- related disorders 
as compared to healthy controls.

To date, both clinical and experimental research using the fear conditioning paradigm have 
primarily focused on group- level, basic, general mechanisms such as the effect of experimental 
manipulations – which is important to investigate (Lonsdorf and Merz, 2017b). Successful clinical 
translation (e.g., ‘Why do some individuals develop pathological anxiety while others do not?’) and 
particularly treatment outcome prediction (e.g., ‘Why do some patients bene�t from treatment while 
others relapse?’), however, requires that both the experimental paradigm and the measures employed 
allow for individual- level predictions over and above prediction of group averages (Fröhner et al., 

2019; Hedge et al., 2018; Lonsdorf and Merz, 2017b). A prerequisite for this is that the measures 
show stability within and reliable differences between individuals over time. Hence, tackling clinical 
questions regarding individual- level predictions of symptom development or treatment outcome 
requires a shift toward and a validation of research methods tailored to individual differences – such 
as a focus on measurement reliability (Zuo et al., 2019). This is a necessary prerequisite for the long- 
term goal of developing individualized intervention and prevention programs. This further relates 
to the pronounced heterogeneity in symptom manifestation among individuals diagnosed with the 
same disorders (e.g., post- traumatic stress disorder, PTSD, Galatzer- Levy and Bryant, 2013b) which 
cannot be captured in binary clinical diagnoses as two patients with for example a PTSD diagnosis 
may not share a single symptom (Galatzer- Levy and Bryant, 2013b).

Measurement reliability has only recently gained momentum in experimental cognitive research 
(Fröhner et al., 2019; Hedge et al., 2018; Zuo et al., 2019) and can be assessed through test–retest 
and longitudinal reliability (i.e., test–retest reliability over longer time intervals, typically assessed 
through e.g., intraclass correlation coef�cients, ICCs, see Table 1). Importantly, longitudinal reliability 
(for de�nitions and terminology, see Table 1) also has implications for the precision with which associ-
ations of one variable (e.g., conditioned responding) with another (individual difference) variable can 
be measured because the correlation between those two variables cannot exceed the correlations 
within, that is the reliability, of these two variables (Spearman, 1910).

Yet, in fear conditioning research, surprisingly little is known about longitudinal reliability at the 
individual level with time intervals ranging from 9 days to 8 months in prior work (Supplementary �le 

1; Cooper et al., 2022b; Fredrikson et al., 1993; Ridderbusch et al., 2021; Torrents- Rodas et al., 

2014; Zeidan et al., 2012). Generally (details in Supplementary �le 1), individual- level longitudinal 
reliability of risk ratings, skin conductance responses (SCRs), and fear potentiated startle (FPS) was 
within the same range (Cooper et al., 2022b; Torrents- Rodas et al., 2014) whereas it was numer-
ically somewhat lower for the BOLD response as compared to different rating types (Ridderbusch 

et al., 2021). Longitudinal reliability at the individual level appeared higher for acquisition training 

https://doi.org/10.7554/eLife.78717
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Table 1. De�nitions of key terms (A) and data speci�cations applied across analyses (B).

(A)

Term De�nition

Internal consistency
In our study, internal consistency refers to the reliability of conditioned responding within experimental phases at both time points, 
respectively. It provides information on the extent to which items – or in our case – trials measure the same construct (e.g., fear acquisition). 
Odd and even trials were splitted (i.e., split- half method), averaged per subject and correlated across the sample.

Longitudinal reliability at the individual level
Longitudinal reliability at the individual level indicates to which extent responses within the same individuals are stable over time. It takes 
into account the individual responses of participants, which are then related across time points. Longitudinal reliability at the individual level 
inherently includes the group level, as it is calculated for the sample as a whole, but the individual responses are central to the calculation.

•	 Intraclass correlation coefficients (ICCs)

‘ICC coef�cients quantify the extent to which multiple measurements for each individual (within individuals) are statistically similar enough 
to discriminate between individuals’ (Aldridge et al., 2017). Here, we calculated two types of ICCs, namely absolute agreement and 
consistency. To illustrate the difference between absolute agreement and consistency in a short example (Koo and Li, 2016), consider an 
interrater reliability study with two raters: Consistency indicates the extent to which the score of one rater (y) is equal to the score of another 
rater (x) plus a systematic error (c) (i.e., y = x + c). In contrast, absolute agreement indicates to which degree y equals x. As ‘two raters’ can be 
replaced by ‘two time points’ and individual responses were taken into account here, we used ICCs to determine longitudinal reliability at the 
individual level.

•	 Within- and between- subject similarity

Similarity analyses provide information on the extent to which trial- by- trial responses of one individual at one time point are comparable to 
responses of

•	 the same individual at a later time point (i.e., within- subject similarity) and
•	 all other individuals at a later time point (i.e., between- subject similarity).

Comparisons of within- and between- subject similarity were used here to determine longitudinal reliability at the individual level.

•	 Overlap at the individual level (applied for BOLD fMRI only)
Overlap at the individual level re�ects the degree of overlap of signi�cant voxels between both time points for single subject- level 
activation patterns.

Longitudinal reliability at the group level

Longitudinal reliability at the group level indicates to which degree responses within the group as a whole are stable over time. More 
precisely, longitudinal reliability at the group level relies on �rst averaging all individuals responses for each trial (for SCR) or voxel (for fMRI) 
yielding a group average for each trial/voxel. These are then related across time points, that is the calculation is carried out using the trial- 
wise (for SCR) or voxel- wise (for fMRI) group averages.

•	 Overlap at the group level (applied for BOLD fMRI only) Overlap at the group level re�ects the degree of overlap of signi�cant voxels between both time points for aggregated group- level 
activations.

Table 1 continued on next page

https://doi.org/10.7554/eLife.78717
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(B)

Measure Internal consistency Longitudinal reliability at the individual level
Longitudinal reliability 

at the group level Cross- phases predictability

ICCs
Within- and between- 

subject similarity Overlap
Overlap (BOLD fMRI) 
or R squared (SCR)

Included time points All T0 and T1 separately T0 and T1 T0 and T1 T0 and T1 T0 and T1 T0

Included stimuli

SCR
CS+, CS−, CS discrimination, 
US

CS+, CS−, CS discrimination, US* CS+, CS−, CS 
discrimination, US

–
CS+, CS−, CS 
discrimination, US

CS+, CS−, CS discrimination

Fear 
ratings

– CS+, CS−, CS discrimination, US* – – – CS+, CS−, CS discrimination

BOLD fMRI – CS discrimination† CS discrimination† CS discrimination† CS discrimination† CS+, CS−, CS discrimination

Phase 
operationalizations

SCR
Entire phases (ACQ, EXT, RI- 
Test; except �rst trials of ACQ 
and EXT)

CS+, CS−, and CS discrimination: 
average ACQ, last two trials ACQ‡,
�rst trial EXT§, average EXT, last two 
trials EXT‡¶, �rst trial RI- Test§

US: average RI

Average ACQ**, 
average EXT

–
Average ACQ, average 
EXT

Average ACQ, last two trials 
ACQ‡, �rst trial EXT§, average 
EXT, last two trials EXT‡ ¶, �rst 
trial RI- Test§

Fear 
ratings

–

CS+, CS−, and CS discrimination: post–
pre ACQ, post ACQ, pre EXT, pre–post 
EXT, post EXT, �rst trial RI- Test
US: post RI- Test

– – –
post–pre ACQ, post ACQ, pre 
EXT, pre–post EXT, post EXT, 
�rst trial RI- Test

BOLD 
fMRI†† – Average ACQ, average EXT

Average ACQ, average 
EXT

Average ACQ, 
average EXT

Average ACQ, average 
EXT

Average ACQ, average EXT

Transformations ‡ ‡

SCR

None,
log- transformation§ §,
log- transformation and range 
correction¶ ¶

None,
log- transformation§ §,
log- transformation and range 
correction¶ ¶

None*** –

None,
log- transformation§ §,
log- transformation and 
range correction¶ ¶

None,
log- transformation§ §,
log- transformation and range 
correction¶ ¶

Fear 
ratings

– None – – – None

BOLD fMRI – None None None None None

Table 1 continued

Table 1 continued on next page
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(B)

Measure Internal consistency Longitudinal reliability at the individual level
Longitudinal reliability 

at the group level Cross- phases predictability

ICCs
Within- and between- 

subject similarity Overlap
Overlap (BOLD fMRI) 
or R squared (SCR)

Ordinal ranking†††

SCR No ranking No ranking‡ ‡ ‡ No ranking – No ranking
No ranking and ordinal  
ranking § § §

Fear 
ratings

– No ranking‡ ‡ ‡ – – – No ranking and ordinal ranking

BOLD fMRI – No ranking No ranking No ranking No ranking No ranking

The speci�cations we used here are exemplary and are not intended to cover all possible data speci�cations. Note that internal consistency, within- and between- subject similarity and reliability at the group level could not be 
calculated for fear ratings due to the limited number of trials. ACQ = acquisition training, EXT = extinction training, RI = reinstatement, RI- Test = reinstatement- test.

*Non- pre- registered ICCs for SCRs to the USs and US aversiveness ratings were calculated as we considered these informative.
†For BOLD fMRI, ICCs were calculated only for CS discrimination and not for CS+ and CS− given the fact that the calculations are based on �rst- level T contrast maps and contrasts against baseline are not optimal.
‡In addition to the averaged acquisition and extinction training performance, the last two SCR trials of acquisition (pre- registered) and extinction training (not pre-registered) were separated from the previous trials and averaged 
as equivalent to the post- acquisition/-extinction ratings. The �rst extinction trial was taken into account separately as fear recall.
§Fear recall and reinstatement- test were operationalized as the �rst extinction training trial and the �rst reinstatement- test trial (since the reinstatement effect fades away relatively quickly, Haaker et al., 2014), respectively.
¶The operationalization of extinction training as the last two trials was not pre- registered and included for completeness. In cases where phase operationalizations included more than one SCR trial, trials were averaged.

**Note that reliability at a group level for SCRs during reinstatement- test was not calculated as correlations between two SCR data points are not meaningful.
††fMRI data for the reinstatement- test were not analyzed in the current study since data from a single trial do not provide suf�cient power.
‡ ‡The pre- registered transformation types were identi�ed to be typically employed data transformations in the literature by for example Sjouwerman et al., 2022 who also pre- registered these transformation types.
§ §Raw SCR amplitudes were log- transformed by taking the natural logarithm to normalize the distribution (Levine and Dunlap, 1982).
¶ ¶Log- transformed SCR amplitudes were range corrected by dividing each individual SCR trial by the maximum SCR trial across all CS and US trials. Due to potentially different response ranges, the maximum SCR trial was 
determined separately for experimental days as recommended by Lonsdorf et al., 2017a. Range correction was recommended to control for interindividual variability (Lykken, 1972; Lykken and Venables, 1971).

***We also carried out similarity analyses for log- transformed as well as for log- transformed and range corrected data. However, results were almost identical to the results from the raw data. For reasons of space, we only report 
results for raw data.
†††Ranking of the data was included to investigate to which degree individuals occupy the same ranks at both time points as pre- registered or put differently, whether the quality of predictions changes when the predictions were 
not based on the absolute values but on a coarser scale.
‡ ‡ ‡As opposed to what was pre- registered, in ICC analyses, we included non- ranked data only as closer inspection of the conceptualization of ICCcon revealed that it would be redundant to calculate both ICCabs and ICCcon with 
ranked and non- ranked data as ICCcon itself ranks the data.
§ § §Ranks of SCRs were built upon raw, log- transformed as well as log- transformed and range corrected values.

Table 1 continued
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than for extinction training (SCRs: Fredrikson et al., 1993; Zeidan et al., 2012), but comparable to 
generalization (Cooper et al., 2022b; Torrents- Rodas et al., 2014). Moreover, it appeared higher for 
extinction training than for reinstatement- test (for BOLD fMRI but not ratings: Ridderbusch et al., 

2021) and higher for CS+ than CS− responses (SCRs: Fredrikson et al., 1993) and CS discrimination 
(ratings and BOLD fMRI: Ridderbusch et al., 2021; SCRs: Zeidan et al., 2012).

However, it is dif�cult to extract a comprehensive picture from these �ve studies as they differ 
substantially in sample size (N = 18–100), paradigm speci�cations, experimental phases reported, 
outcome measures, time intervals, and employed reliability measures (see Supplementary �le 1).

Given that the predominance of research on group- level generic mechanisms in fear conditioning 
research, it is even more surprising that, to our knowledge, no study to date has investigated longitu-
dinal reliability at the group level and only few studies have (Fredrikson et al., 1993) targeted internal 
consistency (i.e., the degree to which all test items capture the same construct, see Table 1). More 
precisely, longitudinal reliability at the group level indicates the extent to which responses averaged 
across the group as a whole are stable over time, which is important to establish when investigating 
basic, generic principles such as the impact of experimental manipulations. Even though it has to be 
acknowledged that the group average is not necessarily representative of any individual in the group 
and the same group average may arise from different and even opposite individual responses at both 
time points in the same group, group- level reliability is important to establish in addition to individual- 
level reliability. Group- level reliability is relevant not only to work focusing on the understanding of 
general, generic processes but also for questions about differences between two groups of individuals 
such as patients vs. controls (e.g., see meta- analyses of Cooper et al., 2022a; Duits et al., 2015). 
Of note, many fear conditioning paradigms were initially developed to study general group- level 
processes and to elicit robust group effects (Lonsdorf and Merz, 2017b). Hence, it is important to 
investigate both group- and individual- level reliability given the challenges of attempts to employ 
cognitive tasks that were originally designed to produce robust group effects in individual difference 
research (Elliott et al., 2020; Hedge et al., 2018; Parsons, 2020; Parsons et al., 2019).

As pointed out above, individual- level reliability is a prerequisite for individual- level predictions 
such as treatment outcomes. Since the different experimental phases of fear conditioning paradigms 
serve as experimental models for the development, treatment, and relapse of anxiety- and stress- 
related disorders, it is also an important question whether responding across phases can be reli-
ably predicted at the individual level. Interestingly, it is often implicitly assumed that responding in 
one experimental phase reliably predicts responding in a subsequent phase (e.g., see Milad et al., 

2009; critically discussed in Lonsdorf et al., 2019a) even though empirical evidence is lacking. As 
a result it has been suggested to routinely ‘correct for responding’ during fear acquisition training 
when studying performance in later experimental phases such as extinction training or retention/RoF 
test (critically discussed in Lonsdorf et al., 2019a). However, empirical evidence on this cross- phases 
predictability (for de�nition and terminology, see Table 1) is scarce to date.

Evidence from experimental work on cross- phase predictability in rodents and humans is mixed. 
In rodents, freezing during acquisition training and 24- hrs- delayed extinction training were uncor-
related (Plendl and Wotjak, 2010) and responding during extinction training did not predict extinc-
tion retention (i.e., lever- pressing suppression: Bouton et al., 2006; or freezing behavior: Shumake 

et al., 2014). Similarly, in humans, extinction performance (FPS, SCRs, and US expectancy ratings) 
did not predict performance at 24- hrs- retention test (Prenoveau et al., 2013). Yet, a computational 
modeling approach suggests that the mechanism of extinction learning (i.e., the formation of a new 
extinction memory trace in comparison to an update of the original fear memory trace) predicts the 
extent of spontaneous recovery in SCRs (Gershman and Hartley, 2015).

Also evidence from work in patient samples is mixed (for a review, see Craske et al., 2008). The 
extent of fear reduction within therapeutic sessions was unrelated to overall treatment outcome in 
some studies (Kozak et al., 1988; Pitman et al., 1996; Riley et al., 1995), while others observed an 
association (Foa et al., 1983). Similarly, signi�cant correlations of fear reduction between therapeutic 
sessions with treatment outcome were observed for reported distress (Rauch et al., 2004) and heart 
rate, but not for SCR (Kozak et al., 1988; Lang et al., 1970) and for self- reported fear post treatment, 
but not at follow- up (Foa et al., 1983). In addition, evidence that responding in different phases is 
related comes from pharmacological manipulations with the cognitive enhancer D- cycloserine which 
facilitates learning and/or consolidation. D- cycloserine promoted long- term extinction retention 

https://doi.org/10.7554/eLife.78717
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(Rothbaum et al., 2014; Smits et al., 2013a; Smits et al., 2013b) only if within- session learning was 
achieved.

With this pre- registered study, we follow the call for a stronger appreciation and more systematic 
investigations of measurement reliability (Zuo et al., 2019). We address longitudinal reliability and 
internal consistency as well as predictability of cross- phase responding in SCRs, fear ratings, and the 
BOLD response. For this purpose, we reanalyzed data from 120 participants that underwent a differ-
ential fear conditioning paradigm twice (at time points T0 and T1, 6 months apart) – with habituation 
and acquisition training on day 1 and extinction, reinstatement and reinstatement- test on day 2 to 
allow for fear memory consolidation prior to extinction. Part of the data have been used previously 
in method focused work (Kuhn et al., 2022; Lonsdorf et al., 2022; Lonsdorf et al., 2019a; Sjou-

werman et al., 2022) and work investigating the association of conditioned responding with brain 
morphological measures (Ehlers et al., 2020).

Speci�cally, we (1) estimated internal consistency of SCRs at both time points and (2) systemati-
cally assessed longitudinal reliability of SCRs, fear ratings and BOLD fMRI at the individual level by 
calculating ICCs. This was complemented by investigations of response similarity (SCR and BOLD 
fMRI) and the degree of overlap of activated voxels at both time points (BOLD fMRI) as additional 
measurements of longitudinal reliability at the individual level that allow for a more detailed picture 
than the coarser ICCs (see Table 1 for terminology and de�nitions). We also (3) assessed whether 
SCR and BOLD fMRI show longitudinal reliability at the group level. Finally, we (4) investigated if 
individual level responding during an experimental phase is predictive of individual- level responding 
during subsequent experimental phases. All hypotheses are tested across different pre- registered 
data speci�cations to account for procedural heterogeneity in the literature (see Supplementary �le 

1): More precisely, we follow a pre- registered multiverse- inspired approach and include (1) responses 
to the CS+, CS−, US, and CS discrimination, (2) different phase operationalizations, (3) different 
data transformations none, log- transformed, log- transformed and range- corrected, and (4) ordinally 
ranked vs. non- ranked data (for justi�cation of these choices, see Table 1). We acknowledge that 
the speci�cations used here are not intended to cover all potentially meaningful combinations as in 
a full multiverse study (Lonsdorf et al., 2022; Sjouwerman et al., 2022; Steegen et al., 2016) but 
can be viewed as a manyverse (Kuhn et al., 2022) in which we a priori pre- registered a number of 
meaningful combinations.

Results
For a comprehensive overview of the different reliability measures used here and of the analyses 
conducted, see Table 1.

Satisfactory internal consistency
To assess internal consistency of SCRs, trials were split into odd and even trials (i.e., odd–even 
approach), averaged for each individual subject and then correlated (Pearson’s correlation coef�cient). 
This was done separately for each time point and experimental phase. Internal consistency at T0 (see 
Figure 1A) and T1 (see Figure 1B) of raw SCRs to the CS+ and CS− ranged from 0.54 to 0.85 and for 
raw SCRs to the US from 0.91 to 0.94 for all phases. In comparison, internal consistency was lower for 
CS discrimination with values ranging from −0.01 to 0.60. Log- transformation did not impact internal 
consistency but log- transformation in combination with range correction largely resulted in reduced 
reliability (see Figure 1—�gure supplement 1).

Longitudinal reliability at the individual level
Longitudinal reliability at the individual level refers to the time stability of individual responses which 
we assessed through several measures (see Table 1).

As a �rst measure, absolute agreement ICCs (ICCabs) and consistency ICCs (ICCcon) were calculated 
across both time points (T0, T1) for all data speci�cations (see Figure 1) while for BOLD fMRI these 
were only calculated for CS discrimination (see Materials and methods for justi�cation). While ICCabs 
refers to the extent to which measurements at T0 correspond with measurements at T1 in absolute 
terms, ICCcon allows for deviations at T1 due to systematic error (Koo and Li, 2016).

https://doi.org/10.7554/eLife.78717
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Figure 1. Illustration of internal consistency for skin conductance responses (SCRs) at T0 (A) and T1 (B) as well as 

ICCabs and ICCcon for SCRs (C, D) and fear ratings (E, F) color coded for stimulus type. Internal consistency indicates 

the reliability of responses within each time point, while intraclass correlation coef�cients (ICCs) indicate the 

reliability across both time points. Note that assessment of internal consistency was not possible for fear ratings as 

only two ratings (pre, post) were available. Error bars represent 95% con�dence intervals and indicate signi�cance, 

when zero is not included in the interval. The y- axis comprises the different phases or phase operationalizations. 

In the literature, internal consistency is often interpreted using benchmarks (Kline, 2013) for unacceptable (<0.5), 

poor (>0.5 but <0.6), questionable (>0.6 but <0.7), acceptable (>0.7 but <0.8), good (>0.8 but <0.9), and excellent 

(≥0.9). Common benchmarks in the literature for ICCs are poor (<0.5), moderate (>0.5 but <0.75), good (>0.75 

but <0.9), and excellent (≥0.9) (Koo and Li, 2016). These benchmarks are included here to provide a frame of 

reference but we point out that these benchmarks are arbitrary and most importantly derived from psychometric 

work on trait self- report measures and should hence not be overinterpreted in the context of responding in 

experimental paradigms which bear more sources of noise (Parsons, 2020). ACQ = acquisition training, EXT = 

extinction training, RI = reinstatement, RI- Test = reinstatement- test, pre = prior to the experimental phase, post = 

subsequent to the experimental phase.

The online version of this article includes the following �gure supplement(s) for �gure 1:

Figure supplement 1. Illustration of (A, B) internal consistency for log- transformed (log) as well as (C, D) log- 

transformed and range corrected (log rc) skin conductance responses (SCRs) at T0 and T1 color coded for stimulus 

type.

Figure supplement 2. Illustration of (A, B) intraclass correlation coef�cients (ICCs) of log- transformed (log) as well 

as (C, D) log- transformed and range corrected (log, rc) skin conductance responses (SCRs) color coded for stimulus 

type.

Figure supplement 3. Illustration of ICCabs of trial- by- trial raw skin conductance responses (SCRs) for phases (A–D: 

Acquisition, E–G: Extinction, H–J: Reinstatement- Test, K: Reinstatement) and stimulus types separately.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.78717
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Note that internal consistency and ICCs for SCRs are shown for raw data only. Results of log- 
transformed as well as log- transformed and range corrected data are presented in Figure 1—�gure 

supplement 1 and Figure 1—�gure supplement 2 for completeness.

SCR and fear ratings
Across data speci�cations, ICCabs and ICCcon ranged from 0.03 to 0.58 and 0.03 to 0.61 for SCRs and 
from -0.16 to 0.70 as well as from -0.19 to 0.70 for fear ratings respectively (see Figure 1, for detailed 
results see also Supplementary �le 3 and Supplementary �le 4). ICCs for log- transformed and 
raw SCRs were similar (see Figure 1—�gure supplement 2A- B) while log- transformation and range 
correction resulted in increased reliability for some data speci�cations (e.g., CS+ and CS- responses 
averaged across acquisition training, see Figure 1—�gure supplement 2C- D) but in reduced reli-
ability for others (e.g., CS- responses during fear recall, i.e., the �rst extinction trial).

Exploratory, non- pre- registered analyses of trial- by- trial SCRs revealed, overall, only minor changes 
in ICCs upon stepwise inclusion of additional SCR trials (see Figure 1—�gure supplements 3–8) with 
few exceptions: Including more trials resulted in an increase of ICC point estimates for SCRs to the 
CS+ and CS− during acquisition (log- transformed and range corrected data) and extinction training 
(all transformation types). Note, however, that this was – at large – only statistically signi�cant when 
comparing ICCs based on the �rst (i.e., single trial at T0 and T1) and the maximum number of trials 
(as indicated by non- overlapping 95% con�dence interval [CI] error bars). Interestingly, ICC point 
estimates for reinstatement- test (all transformation types) were numerically lower with an increasing 
number of trials, likely because of the transitory nature of the reinstatement effect (Haaker et al., 

2014).

BOLD fMRI
For BOLD fMRI, both ICC types suggest rather limited reliability for CS discrimination during acqui-
sition (both ICCabs and ICCcon = 0.17) and extinction training (both ICCabs and ICCcon = 0.01). For indi-
vidual regions of interest (ROIs: anterior insula, amygdala, hippocampus, caudate nucleus, putamen, 
pallidum, nucleus accumbens [NAcc], thalamus, dorsal anterior cingulate cortex [dACC], dorsolateral 
prefrontal cortex [dlPFC], and ventromedial prefrontal cortex [vmPFC]), ICCs were even lower (all ICCs 
≤0.001; for full results see Supplementary �le 5).

Higher within- than between-subject similarity in BOLD fMRI but not 
SCRs
While ICCs provide information on the absolute quantity of longitudinal reliability at the individual 
level, comparison of within- and between- subject similarity as a complementary measure of longitu-
dinal reliability at the individual level (see Table 1) re�ects the extent to which responses in SCR and 
BOLD activation of one individual at T0 were more similar to themselves at T1 than to other individuals 
at T1 (see Figures 2 and 3).

Figure supplement 4. Illustration of ICCcon of trial- by- trial raw skin conductance responses (SCRs) for phases (A–D: 

Acquisition, E–G: Extinction, H–J: Reinstatement- Test, K: Reinstatement) and stimulus types separately.

Figure supplement 5. Illustration of ICCabs of trial- by- trial log- transformed skin conductance responses (SCRs) 

for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement- Test, K: Reinstatement) and stimulus types 

separately.

Figure supplement 6. Illustration of ICCcon of trial- by- trial log- transformed skin conductance responses (SCRs) 

for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement- Test, K: Reinstatement) and stimulus types 

separately.

Figure supplement 7. Illustration of ICCabs of trial- by- trial log- transformed and range corrected skin conductance 

responses (SCRs) for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement- Test, K: Reinstatement) and 

stimulus types separately.

Figure supplement 8. Illustration of ICCcon of trial- by- trial log- transformed and range corrected skin conductance 

responses (SCRs) for phases (A–D: Acquisition, E–G: Extinction, H–J: Reinstatement- Test, K: Reinstatement) and 

stimulus types separately.

Figure 1 continued

https://doi.org/10.7554/eLife.78717
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Figure 2. Illustration of within- and between- subject similarity for raw skin conductance responses (SCRs) during 

(A) acquisition and (B) extinction training separately for CS discrimination (gray), CS+ (red), CS− (blue), and 

unconditioned stimulus (US) responses (yellow). Results for log- transformed as well as log- transformed and range 

corrected SCRs were almost identical to the results from raw data and are hence not reported here. Single data 

points represent Fisher r- to- z transformed correlations between single trial SCRs of each subject at T0 and T1 

(within- subject similarity) or averaged r- to- z transformed correlations between single trial SCRs of one subject at 

T0 and all other subjects at T1 (between- subject similarity). Triangles represent mean correlations, corresponding 

error bars represent 95% con�dence intervals. Boxes of boxplots represent the interquartile range (IQR) crossed 

by the median as bold line, ends of whiskers represent the minimum/maximum value in the data within the range 

of 25th/75th percentiles ±1.5 IQR. Distributions of the data are illustrated by densities next to the boxplots. 

One data point had a similarity above 3.5 (within- subject similarity of SCRs to the CS+) and is not shown in the 

�gure. *p < 0.05. Note that the variances differ strongly between within- and between- subject similarity because 

between- subject similarity is based on correlations averaged across subjects, whereas within- subject similarity is 

based on non- averaged correlations calculated for each subject. Note also that similarity calculations were based 

on different sample sizes for acquisition and extinction training and CS discrimination as well as SCRs to the CS+, 

CS−, and US, respectively (for details, see Materials and methods). within- sub = within- subject; between- sub = 

between- subject.

https://doi.org/10.7554/eLife.78717
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SCR
For SCRs, within- subject similarity (i.e., within- subject correlation of trial- by- trial SCR across time 
points) and between- subject similarity (i.e., correlation of trial- by- trial SCR between one individual 
at T0 and all other individuals at T1; see Figure 2) did not differ signi�cantly for most data speci�ca-
tions. This was true for CS discrimination (t(64) = 1.78, p = 0.079, d = 0.22) as well as for SCRs to the 
CS+ (t(61) = 0.84, p = 0.407, d = 0.11) and CS− (t(55) = 1.50, p = 0.138, d = 0.20) during acquisition 
training and for CS discrimination (t(44) = −0.23, p = 0.823, d = −0.03) and SCRs to the CS+ (t(39) = 
0.25, p = 0.801, d = 0.04) during extinction training. This indicates that SCRs of one particular indi-
vidual at T0 were mostly not more similar to their own SCRs than to those of other individuals at T1. 
The only exceptions where within- subject similarities were signi�cantly higher than between- subject 
similarity were SCRs to the US during acquisition training (t(70) = 2.54, p = 0.013, d = 0.30) and to the 
CS− during extinction training (t(31) = 2.05, p = 0.049, d = 0.36). Note, however, that within- subject 
similarity had a very wide spread pointing to substantial individual differences (while this variance is 
removed in calculations of between- subject similarity).

fMRI data
In contrast to what was observed for SCRs, within- subject similarity was signi�cantly higher than 
between- subject similarity in the whole brain (p < 0.001) and most of the ROIs for fear acquisition 
training (see Figure 3A and Supplementary �le 6). This suggests that while absolute values for simi-
larity might be low, individual brain activation patterns during fear acquisition training at T0 were – at 
large – still more similar to the same subject’s activation pattern at T1 than to any others at T1. For 
extinction training, however, no signi�cant differences between within- and between- subject similarity 
were found for any ROI or the whole brain (all p’s > 0.306; see Figure 3B and Supplementary �le 6).

Figure 3. Acquisition (A) and extinction (B) training within- and between- subject similarities (Fisher r- to- z 

transformed) of voxel- wise brain activation patterns (based on beta maps) for CS discrimination at T0 and T1 for 

the whole brain and different regions of interest (ROIs). Triangles represent mean correlations, corresponding 

error bars represent 95% con�dence intervals. Single data points represent Fisher r- to- z transformed correlations 

between the �rst- level response patterns of brain activation of each subject at T0 and T1 (within- subject similarity) 

or averaged r- to- z transformed correlations between the �rst- level response patterns of brain activation of one 

subject at T0 and all other subjects at T1 (between- subject similarity). Boxes of boxplots represent the interquartile 

range (IQR) crossed by the median as bold line, ends of whiskers represent the minimum/maximum value in the 

data within the range of 25th/75th percentiles ±1.5 IQR. Distributions of the data are illustrated with densities 

next to the boxplots. fMRI data for the reinstatement- test were not analyzed in the current study since data from a 

single trial do not provide suf�cient power. *p < 0.05, **p < 0.01, ***p < 0.001. NAcc = nucleus accumbens; dACC 

= dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal cortex; 

within- sub = within- subject; between- sub = between- subject.

Table 2. Overlap in signi�cantly activated voxels at the individual and group level across both time points for CS discrimination.

Level Phase Coeff.

ROI

Whole 
brain Insula Amygdala Hippocampus Caudate Putamen Pallidum Accumbens Thalamus dACC dlPFC vmPFC

(A) 
Individual

Acq

Jaccard 0.076 0.075 0.011 0.012 0.039 0.037 0.018 0.017 0.033 0.132 0.080 0.039

Dice 0.131 0.121 0.018 0.021 0.057 0.058 0.029 0.024 0.055 0.189 0.118 0.061

Ext

Jaccard 0.007 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.003 0.001 0.005

Dice 0.014 0.001 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.006 0.002 0.009

(B) Group

Acq

Jaccard 0.620 0.595 0.294 0.323 0.613 0.740 0.747 0.441 0.834 0.898 0.895 0.045

Dice 0.765 0.745 0.448 0.472 0.760 0.847 0.855 0.595 0.910 0.946 0.944 0.086

Ext

Jaccard 0.057 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.014 0.000

Dice 0.108 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085 0.028 0.000

Note. Results are shown for the whole brain as well as for selected regions of interest (ROIs) for fear acquisition training and extinction training. Both coef�cients range from 0 (no overlap) to 1 (perfect 
overlap). Note that the Jaccard can be interpreted as % (Maitra, 2010). NAcc = nucleus accumbens; dACC = dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial 
prefrontal cortex.
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Low overlap at the individual level between both time points
As opposed to similarity measures (see above) which re�ect the correlation of activated voxels 
between time points, overlap at the individual level denotes the degree of overlap of signi�cantly 
activated voxels.

The overlap at the individual level was low with the Jaccard coef�cient indicating 7.60% and 0.70% 
whole brain overlap for acquisition and extinction training, respectively (see Table 2A). Of note, indi-
vidual values ranged from 0% to 39.65% overlap during acquisition, suggesting large interindividual 
differences in overlap.

While overlap during acquisition for individual ROIs was comparable to the whole brain, Jaccard 
and Dice coef�cients indicate close to 0 overlap at extinction (see Table 2A).

Robust longitudinal reliability at the group level
While longitudinal reliability at the individual level relies on (mean) individual subject responding at 
both time points, longitudinal reliability at the group level relies on the percentage of explained 
variance of group averaged trials at T1 by group averaged trials at T0 (i.e., R squared for SCR) or the 
degree of group level overlap of signi�cant voxels expressed as Dice and Jaccard indices (i.e., BOLD 
fMRI).

SCR
For acquisition training (see Figure 4A), 40.66% ( F

(

1, 11
)

= 7.54 ,  p = 0.019 ), 63.59% ( F
(

1, 11
)

= 19.21 , 

 p = 0.001 ) and 75.67% ( F
(

1, 11
)

= 34.20 ,  p < 0.001 ) of the variance of SCRs at T1 could be explained 
by SCRs at T0 for CS discrimination, CS+ and CS−, respectively, indicating robust longitudinal reli-
ability of SCRs at the group level for CS responding during acquisition. Interestingly, only 19.53% 
( F

(

1, 12
)

= 2.91 ,  p = 0.114 ) of the variance of SCRs to the US could be explained. For extinction training, 
in contrast, only 19.58% ( F

(

1, 11
)

= 2.68 ,  p = 0.130 ) and 21.70% ( F
(

1, 11
)

= 3.05 ,  p = 0.109 ) of the SCR 
variance at T1 could be explained by SCRs at T0 for CS discrimination and CS+, respectively, indi-
cating only limited longitudinal reliability at the group level. However, with 67.35% ( F

(

1, 11
)

= 22.69 , 

Figure 4. Scatter plots illustrating longitudinal reliability at the group level during (A) acquisition and (B) extinction 

training for raw skin conductance responses (SCRs) (in μS). Results for log- transformed as well as log- transformed 

and range corrected data are presented in Figure 4—�gure supplement 1. Longitudinal reliability at the group 

level refers to the extent of explained variance in linear regressions comprising SCRs at T0 as independent and 

SCRs at T1 as dependent variable. Results are shown for trial- by- trial group average SCRs to the CS+ (red), CS− 

(blue), the unconditioned stimulus (US; yellow), and CS discrimination (black). Single data points represent pairs of 

single trials at T0 and T1 averaged across participants. Note that no US was presented during extinction training 

and hence, no reliability of the US is shown in (B).

The online version of this article includes the following �gure supplement(s) for �gure 4:

Figure supplement 1. Scatter plots illustrating longitudinal reliability at the group level during (A, C) acquisition 

and (B, D) extinction training for log- transformed (A, B) as well as log- transformed and range corrected (C, D) skin 

conductance responses (SCRs).

https://doi.org/10.7554/eLife.78717
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 p = 0.001 ) explained variance at T1, longitudinal reliability of SCRs to the CS− appeared to be more 
robust as compared to CS discrimination and responses to the CS+ (see Figure 4B).

BOLD fMRI
In stark contrast to the low overlap of individual- level activation (see Table 2A), the overlap at the 
group level was rather high with 62.00% for the whole brain and up to 89.80% for individual ROIs (i.e., 
dACC and dlPFC; Jaccard) for CS discrimination during acquisition training (see Table 2B). Similar to 
what was observed for overlap at the individual level, a much lower overlap for extinction training as 
compared to acquisition training was observed for the whole brain (5.70% overlap) and all ROIs (all 
close to zero).

Cross-phases predictability of conditioned responding
Finally, we investigated if responding in any given experimental phase predicted responding in subse-
quent experimental phases. To this end, simple linear regressions with robust standard errors were 
computed for both SCRs and fear ratings and all data speci�cations (see Figure 5 and Supplementary 

�le 7, Supplementary �le 8). To approximate these analyses, correlations of patterns of BOLD brain 
activation between experimental phases were calculated (see Figure 6).

SCR
Stronger CS discrimination in SCRs during (delayed) fear recall (i.e., �rst trial of extinction training) 
was signi�cantly predicted by both average and end- point performance (i.e., last two trials) during 
acquisition training for most data speci�cations (Figure 5A, columns 1 and 2). In contrast, average 
CS discrimination during extinction training was signi�cantly predicted by acquisition training perfor-
mance only if data were ordinally ranked (columns 3 and 4). Strikingly, all predictions of extinction 
end- point performance (columns 5 and 6) as well as performance at reinstatement- test (columns 7–11) 
were non- signi�cant – irrespective of phase operationalizations and data transformation.

The majority of predictions of SCRs to the CS+ and CS− were signi�cant with few exceptions (see 
white cells in Figure  5A) – irrespective of experimental phases, their operationalization and data 
transformation. Most non- signi�cant regressions included log- transformed and range corrected data. 
Strikingly, extinction end- point performance never predicted performance at reinstatement- test – irre-
spective of data transformation (column 11).

Fear ratings
Higher ratings for the CS+ as well as higher CS discrimination during acquisition training predicted 
higher CS+ ratings and CS discrimination at fear recall (Figure  5B, columns 1 and 2), extinction 
training (columns 3 and 4), and at reinstatement- test (columns 7 and 8). Higher responding to the CS+ 
and higher CS discrimination at fear recall predicted higher responding at reinstatement- test (column 
9) – irrespective of data transformations. In contrast, predictions of CS discrimination and CS+ ratings 
after extinction training were mostly non- signi�cant (columns 5 and 6). Higher CS+ ratings during 
extinction training signi�cantly predicted higher ratings at reinstatement- test which was not true for 
CS discrimination (columns 10 and 11).

Higher CS− ratings after acquisition training predicted higher CS− ratings at fear recall as well 
as after extinction training and CS− ratings after extinction training predicted the performance at 
reinstatement- test – irrespective of ranking of the data (columns 2, 6, and 11). Furthermore, when 
based on ordinally ranked data, the difference between ratings prior to and after acquisition 
predicted CS− ratings at fear recall and CS− ratings after acquisition training predicted the difference 
between CS− ratings prior to and after extinction training (columns 1 and 4). All other predictions 
were non- signi�cant.

In sum, all signi�cant predictions observed were positive with weak to moderate associations and 
indicate that higher responding in preceding phases predicted higher responding in subsequent 
phases for both SCRs and fear ratings.

BOLD fMRI
In short, all but one association (CS discrimination in the NAcc) was positive, showing that higher 
BOLD response during acquisition was associated with higher BOLD responding during extinction 

https://doi.org/10.7554/eLife.78717
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Figure 5. Illustration of standardized betas derived from regressions including skin conductance responses (SCRs) 

(A) and fear ratings (B) for all data speci�cations. Colored cells indicate statistical signi�cance of standardized 

betas, non- colored cells indicate non- signi�cance. Standardized betas are color coded for their direction and 

magnitude showing positive values from yellow to red and negative values from light blue to dark blue. Darker 

colors indicate higher betas. On the y- axis, the following data speci�cations are plotted from left to right: CS type, 

ranking of the data and transformation of the data. On the x- axis, the following information is plotted: Number 

of the columns for better orientation, predictor, and criterion included in the regression. For example, the beta 

value at the top left in (A) (i.e., 0.196) is the standardized beta as retrieved from the linear regression including 

CS discrimination in non- ranked and raw SCRs during average acquisition as predictor and the �rst extinction 

trial as criterion. For exploratory non- preregistered regressions including a small manyverse of approximations 

of SCR extinction training learning rates, see Figure 5—�gure supplement 1. Tables containing regression 

parameters beyond the standardized betas depicted in panels A and B are presented in Supplementary �le 7 

and Supplementary �le 8. AVE = average, LOG = log- transformed data, LOG.RC = log- transformed and range 

corrected data, not ordinal = not ordinally ranked data, ordinal = ordinally ranked data.

The online version of this article includes the following �gure supplement(s) for �gure 5:

Figure supplement 1. As per reviewer’s request, we illustrate standardized betas derived from non- pre- registered 

regressions including skin conductance response (SCR) extinction training learning rates (LR EXT).

https://doi.org/10.7554/eLife.78717
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training (see Figure 6). However, the standardized beta coef�cients are mostly below or around 0.3 
except for CS+ associations in the dACC, indicating non- substantial associations for all ROIs and CS 
speci�cations that were near absent for CS discrimination. Analysis of CS+ and CS− data was included 
here as the analysis is based on beta maps and not T- maps (as in previous analyses) where a contrast 
against baseline is not optimal.

Cross-phases predictability depends on data speci�cations
Pooled across all other data speci�cations, some interesting patterns can be extracted: First, stan-
dardized betas were signi�cantly lower for raw (t(65) = 8.08, p < 0.001, d = 0.99) and log- transformed 
(t(65) = 8.26, p < 0.001, d = 1.02) as compared to log- transformed and range corrected SCRs while 
standardized betas derived from the former did not differ signi�cantly (t(65) = −0.26, p = 0.794, d = 
−0.03). Second, standardized betas derived from ranked and non- ranked analyses were comparable 
for fear ratings (t(32) = 1.26, p = 0.218, d = 0.22) but not for SCRs with signi�cantly higher betas 
for non- ranked as opposed to ranked SCRs (t(98) = 2.37, p = 0.020, d = 0.24). Third, standardized 
betas for CS discrimination were signi�cantly lower than for CS+ and CS− for both SCRs (CS+: t(65) 
= −15.31, p < 0.001, d = −1.88 and CS−: t(65) = −12.34, p < 0.001, d = −1.52) and BOLD fMRI (CS+: 
t(11) = −4.65, p < 0.001, d = −1.34 and CS−: t(11) = −3.05, p = 0.011, d = −0.88), while for ratings, 
standardized betas for CS discrimination were higher than for the CS− (t(21) = 3.11, p = 0.005, d = 
0.66) and comparable to those for the CS+ (t(21) = −0.57, p = 0.572, d = −0.12). Furthermore stan-
dardized betas were larger for the CS+ than for the CS− for SCRs (t(65) = 3.79, p < 0.001, d = 0.47), 
ratings (t(21) = 3.12, p = 0.005, d = 0.67) and BOLD fMRI (t(11) = 4.34, p = 0.001, d = 1.25). Fourth, 
standardized betas derived from regressions predicting fear recall were signi�cantly higher than for 
reinstatement- test for both SCRs (t(124) = 4.35, p < 0.001, d = 0.86) and fear ratings (t(40) = 5.15, p 
< 0.001, d = 1.76).

Discussion
In fear conditioning research, little is known about longitudinal reliability (in the literature often referred 
to as test–retest reliability) for common outcome measures and almost nothing is known about their 
internal consistency and to what extent predictability across experimental phases is possible.

Here, we aimed to �ll this gap and complement traditionally used approaches focusing on ICCs 
(summarized in Supplementary �le 1) with (1) analyses of response similarity, (2) the degree of overlap 
of individual- level brain activation patterns as well as (3) by exploring longitudinal reliability at the 
group level in addition to (4) internal consistency across outcome measures.

Figure 6. Illustration of standardized betas derived from correlation analyses between brain activation patterns 

during acquisition and extinction training in different regions of interest (ROIs) and different data speci�cations. 

Standardized betas are color coded for their direction and magnitude showing positive values from yellow to red 

and negative values from light blue to dark blue. Darker colors indicate higher betas. NAcc = nucleus accumbens; 

dACC = dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal 

cortex.

https://doi.org/10.1177/0956797611417632
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Moreover, we also directly investigated predictability of responding from one experimental phase 
to subsequent experimental phases. For all analyses, we followed a multiverse- inspired approach 
(Parsons, 2020) by taking into account different data speci�cations.

Overall, longitudinal group- level reliability was robust for SCRs (see Figure  4) and the BOLD 
response (see Table  2B) while longitudinal individual- level reliability as assessed by ICCs (see 
Figure 1C–F), and individual- level BOLD activation overlap (see Table 2A) was more limited across 
outcome measures and data speci�cations – particularly during extinction training. This is in line with 
previous work in fear conditioning (Cooper et  al., 2022b; Fredrikson et  al., 1993; Ridderbusch 

et  al., 2021; Torrents- Rodas et  al., 2014; Zeidan et  al., 2012) reporting �gures for longitudinal 
individual- level reliability comparable to ours across outcome measures (SCRs, fear ratings, BOLD 
fMRI) and experimental phases. Importantly, however, it remains a challenge to interpret the results as 
benchmarks for ICCs are derived from psychometric work on trait self- report measures and it is plau-
sible that what is interpreted as ‘low’ and ‘high’ reliability in experimental work should be substantially 
lower (Parsons et al., 2019).

Our complementary analyses beyond traditional ICCs indicate that SCRs of one individual at T0 
were not more similar to responses of the same individual at T1 than compared to others at T1 (see 
Figure 2). For BOLD fMRI, however, acquisition- related individual BOLD activation patterns at T0 
were more similar to their own activation patterns at T1 than to other individuals’ activation patterns 
(see Figure 3). This was, however, not the case for extinction. Hence, this may suggest that BOLD 
fMRI might be more sensitive to detect similarity at individual- level responses within participants than 
SCRs in our data – maybe due to the dependence on spatial (i.e., voxel- by- voxel) rather than temporal 
(i.e., trial- by- trial) patterns.

Furthermore, we observed a few differences in longitudinal reliability at the individual level 
depending on data processing speci�cations (see also Parsons, 2020). For most data speci�ca-
tions, reliability was slightly higher for log- transformed and range- corrected SCRs (as opposed to 
raw and only log- transformed data) while – in contrast to what has been shown for other paradigms 
and outcome measures (Baker et al., 2021; see also https://shiny.york.ac.uk/powercontours/) – an 
increasing number of trials included in the calculation of ICCs did not generally improve reliability 
(see Figure 1—�gure supplements 3–8). Together, this suggests that longitudinal reliability at the 
individual level is relatively stable across different data transformations and paradigm speci�cations 
(e.g., number of trials within the range used here, i.e., 1 to maximum 14) which is important informa-
tion facilitating the integration of previous work using different time intervals, reliability indices, and 
paradigms (see Supplementary �le 1; Cooper et al., 2022b; Fredrikson et al., 1993; Ridderbusch 

et al., 2021; Torrents- Rodas et al., 2014; Zeidan et al., 2012).
In contrast, we observed quite robust longitudinal reliability at the group level for both SCRs (see 

Figure 4) and BOLD fMRI (see Table 2B) between both time points with substantial (i.e., up to 90%) 
overlap in group- level BOLD fMRI activation patterns (whole brain and ROI based) as well as substantial 
(i.e., up to 76%) explained variance at T1 by variance at T0 for SCRs. However, this was generally only true 
for acquisition but not extinction training. This pattern of higher reliability during acquisition compared 
to extinction training has been described in the literature (SCRs: Fredrikson et al., 1993; Zeidan et al., 

2012) and was also evident in the similarity analyses of BOLD fMRI and the group- level reliability of 
SCRs. While this pattern did not emerge across all analyses, it appears to be particularly present when 
examining reliability of CS discrimination as it was the case for BOLD fMRI and as it also emerged in 
individual- level reliability analyses of CS discrimination in SCRs (internal consistency and ICCs) and fear 
ratings (ICCs). Since CS discrimination is typically lower during extinction as compared to acquisition 
training, this restriction of variance potentially resulted in a �oor effect which might have lowered the 
internal consistency and longitudinal reliability of CS discrimination during extinction training.

Reports regarding this discrepancy between group- and individual- level longitudinal reliability were 
recently highlighted for a number of (classic) experimental paradigms (Fröhner et al., 2019; Hedge 

et al., 2018; Herting et al., 2018; Plichta et al., 2012; Schümann et al., 2020). Our results add fear 
conditioning and extinction as assessed by SCRs and BOLD fMRI to this list and have important impli-
cations for translational questions aiming for individual- level predictions – particularly since �ndings 
obtained at the group level are not necessarily representative for any individual within the group 
(Fisher et al., 2018).

In addition to these methods- focused insights, we observed signi�cant associations between 
responding in different experimental phases for SCR (see Figure 5A), fear ratings (see Figure 5B) and 

https://doi.org/10.7554/eLife.78717
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BOLD fMRI (see Figure 6) revealing that higher responses in previous phases were generally modestly 
associated with higher responses in subsequent phases in all outcome measures. However, a remark-
able amount of predictions were non- signi�cant – which was particularly true for CS discrimination 
in SCRs and BOLD fMRI. This may be explained by difference scores (i.e., CS+ minus CS−) being 
generally less reliable (Infantolino et al., 2018; Lynam et al., 2006) due to a subtraction of mean-
ingful variance (Moriarity and Alloy, 2021) particularly in highly correlated predictors (Thomas and 

Zumbo, 2012). Especially at the end of the extinction, CS discrimination is low and hence, variance 
limited. Therefore, �oor effects may contribute to the non- signi�cant effects for extinction end- point 
performance.

Mixed �ndings in the literature support both the independence of conditioned responding in 
different experimental phases (Bouton et al., 2006; Plendl and Wotjak, 2010; Prenoveau et al., 

2013; Shumake et al., 2014) but also their dependence – particularly in clinical samples (Foa et al., 

1983; Rauch et al., 2004; Rothbaum et al., 2014; Smits et al., 2013a; Smits et al., 2013b). These 
diverging �ndings in experimental and clinical studies might point toward a translational gap. 
However, our work may suggest that the strengths of associations between responding in different 
phases depended on the speci�c outcome measure and its speci�cations (e.g., responses speci�ed 
as CS discrimination, CS+, or CS−). Yet another explanation – in particular for predictions spanning 
a 24 hrs delay in experimental phases − might be that individual differences in consolidation ef�cacy 
(e.g., how ef�ciently the fear and extinction memories are consolidated after performing acquisition 
and extinction training, respectively) may underlie differences in predictability. For example, the 
performance during a retention or RoF test phase is considered to be determined by the strength 
of the fear and extinction memory, respectively. Memory strength, however, is not only determined 
by the strength of the initially acquired memory but also by its consolidation (discussed in Lonsdorf 

et al., 2019b). Thus, as acquisition training preceded the extinction training and reinstatement- test 
by 24 hrs, it is highly likely that individual differences in consolidation ef�cacy also impact on perfor-
mance at test. This has also implications for the common practice of correcting responses during one 
experimental phase for responding during preceding experimental phases (discussed in Lonsdorf 

et al., 2019b).
Importantly, together with our observation of robust internal consistency (see Figure 1 and also 

Fredrikson et al., 1993), this pattern of �ndings suggests that individual- level predictions at short 
intervals are plausible but might be more problematic for longer time periods as suggested by the 
limited stability over time in our data.

Yet, we would like to point out that the values we report may in fact point toward good and not 
limited longitudinal individual- level reliability as our interpretation is guided by benchmarks that were 
not developed for experimental data but from psychometric work on trait self- report measures. We 
acknowledge that the upper bound of maximally observable reliability may differ between both cases 
of application as empirical neuroscienti�c research inherently comes with more noise. The problem 
remains that predictions in fear conditioning paradigms appear to not be meaningful for longer 
periods of time (~6 months). Thus, a key contribution of our work is that it highlights the need to pay 
more attention to measurement properties in translational research in general and fear conditioning 
research speci�cally (e.g., implement reliability calculations routinely in future studies). To date, it 
remains an open question what ‘good reliability’ in experimental neuroscienti�c work actually means 
(Parsons et al., 2019).

Yet, before discussing implications of our results in detail, some re�ections on potential (method-
ological) reasons for (1) limited individual- level but robust group- level reliability and (2) on the role of 
time interval lengths deserve attention:

First, the limited longitudinal individual- level reliability might indicate that the fear conditioning 
paradigm employed here – which is a rather strong paradigm with 100% reinforcement rate – may be 
better suited for investigations of group effects and to a lesser extent for individual difference ques-
tions – potentially due to limited variance between individuals (Hedge et al., 2018; Parsons, 2020; 
Parsons et al., 2019). However, high reliability appears to be possible in principle, as we can conclude 
from the robust internal consistency of SCRs that we observed. This speaks against a limited between- 
subject variance and a general impracticability of the paradigm for individual difference research. 
Hence, we call for caution and warn against concluding from our report that fear conditioning and our 
outcome measures (SCRs, BOLD fMRI) are unreliable at the individual level.

https://doi.org/10.1016/j.ijpsycho.2020.06.016
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Second, limited individual- level but robust group- level longitudinal reliability might be (in part) 
due to different averaging procedures which impacts error variance (Kennedy et al., 2021). More 
precisely, compared to individual- level data, group- level data are based on highly aggregated data 
resulting in generally reduced error variance which increases group- level reliability.

Third, different operationalizations of the same measurement might have different reliabilities 
(Kragel et al., 2021). For instance, amygdala habituation has been shown to be a more reliable measure 
than average amygdala activation (Plichta et al., 2014) and more advanced analytical approaches 
such as intraindividual neural response variability (Månsson et al., 2021) and multivariate imaging 
techniques Kragel et al., 2021; Marek et al., 2020; Noble et al., 2021; Visser et al., 2021 have been 
suggested to have better (longitudinal) reliability than more traditional analyses approaches. Similarly, 
methodological advances (e.g., techniques to adjust the functional organization of the brain across 
participants, Kong et al., 2021; or hyperalignment, Feilong et al., 2021) in measurement quality and 
tools may ultimately result in better reliability estimates (DeYoung et al., 2022).

Fourth, as discussed above, caution is warranted as traditional benchmarks for ‘good’ reliability 
were not developed for experimental work but mainly from psychometric work on trait self- report 
measures (see above).

Finally, longitudinal reliability refers to measurements obtained under the same conditions and 
hence it is both plausible and well established that higher reliability is observed at short test–retest 
intervals (see also Noble et al., 2021; Werner et al., 2022). Longer intervals are more susceptible 
to true changes of the measurand – for instance due to environmental in�uences such as seasonality, 
temperature, hormonal status, or life events (see Specht et al., 2011; Vaidya et al., 2002). Indeed 
most longitudinal reliability studies in the fMRI �eld used shorter intervals (<6 months, see Elliott 

et al., 2020; Noble et al., 2021) than our 6- month interval and hence our results should be concep-
tualized as longitudinal stability rather than a genuine test–retest reliability. The satisfactory internal 
consistency speaks against excessive noisiness inherent to our measures as a strong noisiness would 
also be evident in measurements within one time point and not only emerge across our retest interval. 
Thus, we rather suggest a true change of the measurand during our retest interval and hence a poten-
tially stronger state than trait dependency.

What do our �ndings imply? Fear conditioning research has been highlighted as a particularly 
promising paradigm for the translation of neuroscienti�c �ndings into the clinics (Anderson and Insel, 

2006; Cooper et al., 2022a; Fullana et al., 2020; Milad and Quirk, 2012) and some of the most 
pressing translational questions are based on individual- level predictions such as predicting treat-
ment success. Our results, however, suggest that measurement reliability may allow for individual- 
level predictions for (very) short but potentially less so for longer time intervals (such as our 6 months 
retest interval). Importantly, however, robust group- level reliability appears to allow for group- level 
predictions over longer time intervals. This applies to SCRs and BOLD fMRI in our data but note that 
the latter was not investigated for fear ratings. A potential solution and promising future avenue to 
make use of both good group- level reliability and individual- level predictions might be the use of 
homogenous (latent) subgroups characterized by similar response pro�les (e.g., rapid, slow or no 
extinction, Galatzer- Levy et al., 2013a) – to exploit the fact that reliability appears to be higher for 
more homogenous samples (Gulliksen, 1950).

While general recommendations and helpful discussions on the link between reliability and 
number of trials (Baker et  al., 2021), statistical power (Parsons, 2020), maximally observable 
correlations (Parsons, 2020), sample and effect size (Hedge et al., 2018; Parsons, 2020) consid-
erations exist, our results highlight the need for �eld and subdiscipline speci�c considerations. Our 
work allows for some initial recommendations and insights. First, we highlight the value of using 
multiple, more nuanced measures of reliability beyond traditional ICCs (i.e,. similarity, overlap, 
Fröhner et al., 2019) and second, the relation between number of trials and reliability in an exper-
iment with a learning component (i.e., no increase in reliability with an increasing number of trials). 
Importantly, our work can also be understood as an empirically based call for action, since more 
work is needed to allow for clear- cut recommendations, and as a starting point to develop and 
re�ne comprehensive guidelines in the future. We also echo the cautionary note of Parsons that 
‘estimates of reliability refer to the measurement obtained – in a speci�c sample and under partic-
ular circumstances, including the task parameters’ (cf. Parsons, 2020). Hence, it is important to 
remember that reliability is a property of a measure that is not �xed and may vary depending on 
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task speci�cations and samples. In other words, reliability is not a �xed property of the task itself, 
here fear conditioning.

We argue that we may need to take a (number of) step(s) back and develop paradigms and data 
processing pipelines explicitly tailored to individual difference research (i.e., correlation) or exper-
imental (i.e., group level) research questions (e.g., Parsons, 2020) and focus more strongly on 
measurement reliability in experimental work – which has major consequences on effect sizes and 
statistical power (Elliott et al., 2020). More precisely, multiverse- type investigations (Parsons, 2020; 
Steegen et al., 2016) that systematically scrutinize the impact of several alternative and equally justi-
�able processing and analytical decisions in a single dataset (Kuhn et  al., 2022; Lonsdorf et  al., 

2022; Sjouwerman et al., 2022) – as also done here for transformations and number of trials – may 
be helpful to ultimately achieve this overarching aim. This could be complemented by systematically 
varying design speci�cations (Harder, 2020) which are extensively heterogeneous in fear conditioning 
research (Lonsdorf et al., 2017a). Calibration approaches, as recently suggested Bach et al., 2020 
follow a similar aim.

Such work on measurement questions should be included in cognitive- experimental work as a 
standard practice (Parsons, 2020) and can (often) be explored in a cost and resource effective way 
in existing data which in the best case are openly available – which, however, requires cross- lab data 
sharing and data management homogenization plans. Devoting resources and funds to measurement 
optimization is a valuable investment into the prospect of this �eld contributing to improved mental 
health (Moriarity and Alloy, 2021) and to resume the path to successful translation from neuroscience 
discoveries into clinical applications.

Materials and methods
Pre-registration
This project has been pre- registered on the Open Science Framework (OSF) (August 03, 2020; 
retrieved from https://doi.org/10.17605/OSF.IO/NH24G). Deviations from the pre- registered protocol 
are made explicit in brief in the methods section and reasons are speci�ed in Supplementary �le 2 as 
recommended by Nosek et al., 2018, who note that such deviations are common and occur even in 
the most predictable analysis plans.

Participants
Participants were selected from a large cohort providing participants for subsequent studies as part of 
the Collaborative Research Center CRC 58. Participants from this sample were recruited for this study 
through a phone interview. Only healthy individuals between 18 and 50 years of age without a history 
of childhood trauma according to the Childhood Trauma Questionnaire (CTQ, critical cutoffs as identi-
�ed by Bernstein et al., 2003; Häuser et al., 2011). Additional exclusion criteria were claustrophobia, 
cardiac pacemaker, non- MR- compatible metal implants, brain surgery, left handedness, participation 
in pharmacological studies within the past 2 weeks, medication except for oral contraceptives, internal 
medical disorders, chronic pain, neurological disorders, psychiatric disorders, metabolic disorders, 
acute infections, complications with anesthesia in the past and pregnancy. Participants were right 
handed and had normal or corrected to normal vision. All participants gave written informed consent 
to the protocol which was approved by the local ethics committee (PV 5157, Ethics Committee of the 
General Medical Council Hamburg). The study was conducted in accordance with the Declaration of 
Helsinki. All participants were naive to the experimental setup and received a �nancial compensation 
of 170€ for completion of experiments at both time points (T0 and T1).

The total sample consisted of 120 participants (femaleN = 79, maleN = 41, ageM = 24.46, ageSD = 
3.73, agerange = 18–34). At T0 on days 1 and 2, in total 13 participants were excluded due to technical 
issues (day 1: N = 0; day 2: N = 3), deviating protocols (day 1: N = 2; day 2: N = 0) and SCR non- 
responding (day 1: N = 3; day 2: N = 5, see below for de�nition of ‘non- responding’). Accordingly, the 
�nal dataset for the cross- sectional analysis of T0 data consists of 107 subjects (femaleN = 70, maleN = 
37, ageM = 24.30, ageSD = 3.68, agerange = 18–34). 84.11% of these participants were aware and 6.54% 
were unaware of CS–US contingencies. The remaining 9.35% subjects uncertain of the CS–US contin-
gencies were classi�ed as semi- aware. CS–US contingency awareness of participants was assessed 
with a standardized post- experimental awareness interview (adapted from Bechara et al., 1995). On 
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average, the US aversiveness was rated on day 1 with a value of 19.82 (SD = 3.28) and on day 2 with 
a value of 16.46 (SD = 4.75) on a visual analog scale (VAS) ranging from 0 to 25. The US intensity was 
8.04 mA (SD = 8.28) on average. Averaged STAI- S (Strait- Trait Anxiety Inventory – State; Spielberger, 

1983) scores were 35.38 (SD = 5.26) on day 1 and 35.57 (SD = 6.69) on day 2.
At T1, 16 subjects were excluded due to technical issues (day 1: N = 1; day 2: N = 1), deviating 

protocols (day 1: N = 3; day 2: N = 0) and SCR non- responding (day 1: N = 5; day 2: N = 6; see below 
for de�nition of ‘non- responding’). Additionally, 20 participants dropped out between T0 and T1 
leaving 71 subjects for longitudinal analyses (femaleN = 41, maleN = 30, ageM = 24.63, ageSD = 3.77, 
agerange = 18–32). 88.73% of the participants were aware and 1.41% were unaware of CS–US contin-
gencies. The remaining 9.86% were classi�ed as semi- aware. US aversiveness was rated with M = 
19.96 (SD = 2.99) on day 1 and with M = 17.73 (SD = 3.90) on day 2 (VAS = 0–25). On average, the US 
intensity amounted to 9.76 mA (SD = 13.18). Averaged STAI- S scores were 36.33 (SD = 6.09) on day 
1 and 35.83 (SD = 7.10) on day 2.

Experimental design
Here, we reanalyzed pre- existing data that are part of a larger longitudinal study that spanned six time 
points. In the current study, we included data from a 2- day fear conditioning experiment which were 
collected at two time points (T0 and T1) 6 months apart. The 2- day experimental procedure and the 
stimuli were identical at both time points. Measures acquired during the full longitudinal study that are 
not relevant for the current work such as questionnaires, hair, and salivary cortisol are not described in 
detail here. For an illustration of the experimental design, see also Figure 7.

Experimental protocol and stimuli
The protocol consisted of a habituation and a fear acquisition training phase on day 1 and an extinc-
tion training, reinstatement, and reinstatement- test phase on day 2. Acquisition and extinction training 
included 28 trials each (14 CS+/14 CS−), habituation and the reinstatement- test phase 14 trials each 
(7 CS+/7 CS−). Acquisition training was designed as delay conditioning with the US being presented 
0.2  s before CS+ offset with 100% reinforcement rate (i.e., all CS+ presentations followed by the 
US). CSs were two light gray fractals (RGB [230, 230, 230]), 492*492 pixels presented in a pseudo- 
randomized order, with no more than two identical stimuli in a row, for 6–8  s (mean: 7  s). During 
the intertrial interval (ITI), a white �xation cross was shown for 10–16 s (mean: 13 s). Reinstatement 
consisted of three trials with a duration of 5 s each presented after a 10 s ITI. Reinstatement USs were 
delivered 4.8 s after each trial onset. The reinstatement phase was followed by a 13 s ITI before the 
next CS was presented during reinstatement- test. All stimuli were presented on a gray background 
(RGB [100, 100, 100]) using Presentation software, 2010 (Version 14.8, Neurobehavioral Systems, 
Inc, Albany, CA USA) keeping the context constant to avoid renewal effects (Haaker et al., 2014). 
Visual stimuli were identical for all participants, but allocation to CS+/CS− and CS type of the �rst trial 
of each phase were counterbalanced across participants.

The electrotactile US consisted of a train of three 2 ms electrotactile rectangular pulses with an 
interpulse interval of 50 ms generated by a Digitimer DS7A constant current stimulator (Welwyn 
Garden City, Hertfordshire, UK) and was administered to the back of the right hand of the participants 
through a 1- cm diameter platinum pin surface electrode. The electrode was attached between the 
metacarpal bones of the index and middle �nger. The US was individually calibrated in a standardized 
stepwise procedure controlled by the experimenter aiming at an unpleasant, but still tolerable level 
rated by the participants between 7 and 8 on scale from zero (=stimulus was not unpleasant at all) to 
10 (=stimulus was the worst one could imagine within the study context). Participants were, however, 
not informed that we aimed at a score of 7–8.

Outcome measures
Skin conductance responses
SCRs were acquired continuously during each phase of conditioning using a BIOPAC MP 100 ampli-
�er (BIOPAC Systems, Inc, Goleta, CA, USA) and Spike 2 software (Cambridge Electronic Design, 
Cambridge, UK). For analog to digital conversion, a CED2502- SA was used. Two self- adhesive 
hydrogel Ag/AgCl- sensor recording SCR electrodes (diameter = 55 mm) were attached on the palm 
of the left hand on the distal and proximal hypothenar. A 10 Hz lowpass �lter and a gain of 5Ω were 
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applied. Data were recorded at 1000 Hz and later downsampled to 10 Hz. Subsequently, SCRs were 
scored semi- manually using the custom- made computer program EDA View (developed by Prof. Dr. 
Matthias Gamer, University of Würzburg). The program is used to quantify the SCR amplitude based 
on the trough- to- peak method with the trough occurring at 0.9–3.5 s after CS onset and 0.9–2.5 s 
after US onset (Boucsein et al., 2012; Sjouwerman and Lonsdorf, 2019). The maximum rise time 
was set to maximally 5 s (Boucsein et al., 2012) unless the US occurred earlier. SCRs confounded 
by recording artifacts due to technical reasons, such as electrode detachment or responses moving 
beyond the sampling window, were discarded and scored as missing values. SCRs smaller than 0.01 

Figure 7. Illustration of the experimental design (A) and of the calculations of different measures for skin 

conductance responses (SCRs) including (averaged) acquisition trials (B). Note that the habituation phase is not 

shown in the �gure, but described in the text.
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μS within the de�ned time window were de�ned as zero responses. Participants with zero responses 
to the US in more than two- thirds (i.e., more than 9 out of 14) of US acquisition trials were classi�ed as 
non- responders on day 1. On day 2, non- responding was de�ned as no response to any of the three 
reinstatement USs.

SCR data were prepared for response quanti�cation by using MATLAB, 2016 version R2016b. 
No learning could have possibly taken place during the �rst CS presentations as the US occurred 
only after the CS presentation. Consequently, the �rst CS+ and CS− trials during acquisition training 
were excluded from analyses. Hence, a total of 26 trials (13 differential SCRs) for the acquisition 
training phase were included in the analyses. For US analyses, all 14 trials were entered into the 
analyses.

Similarly, responses to the �rst CS+ and CS− during extinction training have to be considered a 
24 hrs delayed test of fear recall as no extinction learning could have taken place. Hence, the �rst trial 
and the remaining trials of the extinction were analyzed separately. CS discrimination was computed 
by subtracting (averaged) CS− responses from (averaged) CS+ responses.

Fear ratings
Fear ratings to the CSs were collected prior to and after acquisition and extinction training as well as 
after the reinstatement- test. Participants were asked ‘how much stress, fear and tension’ they experi-
enced when they last saw the CS+ and CS−. After reinstatement- test, ratings referred to (1) the �rst 
CS presentation per CS type directly after reinstatement as well as (2) the last CS presentation during 
reinstatement- test. After acquisition training and the reinstatement- test, subjects were also asked 
how uncomfortable they experienced the US itself. All ratings were given on a VAS ranging from zero 
(answer = none) to 100 (answer = maximum). For analyses, the rating scale was reduced to 0–25. 
Participants had to con�rm the ratings via button press. A lack of con�rmation resulted in exclusion of 
the trial from analyses. CS discrimination was computed by subtracting CS− from CS+ ratings.

BOLD fMRI: data acquisition, preprocessing, and �rst-level analysis
The inclusion of BOLD fMRI data was not initially planned and is included here as an additional non- 
pre- registered outcome measure.

Data acquisition
Functional data were acquired with a 3 Tesla PRISMA whole body scanner (Siemens Medical Solutions, 
Erlangen, Germany) using a 64- channel head coil and an echo planar imaging sequence (repetition 
time: 1980 ms, echo time: 30 ms, number of slices: 54, slice thickness: 1.7 mm [1 mm gap], �eld of view 
= 132 × 132 mm). T1- weighted structural images were acquired using a magnetization prepared rapid 
gradient echo (MPRAGE) sequence (TR: 2300 ms, TE: 2.98 ms, number of slices: 240, slice thickness: 
1 mm, �eld of view = 192 × 256 mm).

Preprocessing
fMRI data analysis was performed using SPM12 (Wellcome Department of Neuroimaging, London, 
UK) and MATLAB, 2019. Preprocessing included realignment, coregistration, normalization to a 
group- speci�c DARTEL template and smoothing (6 mm full width at half maximum, FWHM).

First-level analysis
Regressors for the �rst- level analysis of acquisition training data included separate regressors for 
the �rst CS+ and CS− trials and the remaining CS+ and CS− trials because no learning could have 
occurred at the �rst presentation of the CSs. Nuisance regressors included habituation trials, US 
presentation, fear ratings and motion parameters. Likewise, separate regressors for the �rst CS+ and 
CS− trials of extinction (because no extinction has taken place yet) as well as the remaining CS+ and 
CS− trials were included as regressors of interest in the �rst- level analysis of extinction data acquired 
on day 2, while US, rating onset and motion parameters were included as regressors of no interest. No 
second- level analysis was completed in the current study, instead different analyses were carried out 
based on �rst- level models as further detailed in the statistical analysis section.
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Regions of interest
A total of 11 ROIs (i.e., bilateral anterior insula, amygdala, hippocampus, caudate nucleus, putamen, 
pallidum, NAcc, thalamus, dACC, dlPFC, and vmPFC) were included in the current study. Amyg-
dala, hippocampus, caudate nucleus, putamen, pallidum, ventral striatum (i.e., NAcc), and thalamus 
anatomical masks were extracted from the Harvard- Oxford atlas (Desikan et al., 2006) at a maximum 
probability threshold of 0.5. The anterior insula was de�ned as the overlap between the thresholded 
anatomical mask from the Harvard- Oxford atlas (threshold: 0.5) and a box of size 60 × 30 × 60 mm 
centered around MNIxyz = 0, 30, 0 based on anatomical subdivisions (Nieuwenhuys, 2012). The 
cortical ROI dlPFC and dACC were created by building a box of size 20 × 16 × 16 mm around peak 
voxels obtained in a meta- analysis (with the x coordinate set to 0 for the dACC) (left dlPFC: MNIxyz 
= −36, 44, 22, right dlPFC: MNIxyz = 34, 44, 32, dACC: MNIxyz = 0, 18, 42, Fullana et al., 2016). As 
previously reported (Lonsdorf et al., 2014), the cortical ROI vmPFC was created by using a box of 
size 20 × 16 × 16 mm centered on peak coordinates identi�ed in prior studies of fear learning (vmPFC: 
MNIxyz = 0, 40, −12, e.g., Kalisch et al., 2006, Milad et al., 2007) with the x coordinate set to 0 to 
obtain masks symmetric around the midline.

All analyses of BOLD fMRI as described below were conducted separately not only for the whole 
brain but also for these 11 selected ROIs.

Statistical analyses
For a comprehensive overview of which analysis was carried out for which outcome measures, stimuli, 
phases and data transformations (see Table 1). For an illustration of which data were included in the 
different analyses, see also Figure 7B.

Internal consistency
We assessed the internal consistency of SCRs for both time points and experimental phases separately 
(for details, see Table 1): trials of the respective time point and phase were split into odd and even 
trials (i.e., odd–even approach) and averaged for each individual subject. Averaged odd and even 
trials were then correlated by using Pearson’s correlation coef�cient. To obtain a rather conserva-
tive result, we refrained from applying the Spearman–Brown prophecy formula. We considered the 
odd–even approach as the most appropriate since our paradigm constitutes a learning experiment 
and we suggest that adjacent trials measure a more similar construct compared to other possible 
splits of trials such as a split into halves or a large number of random splits as implemented in the 
permutation- based approach recommended by Parsons et al., 2019. Calculations of internal consis-
tency were not possible for fear ratings and BOLD fMRI due to the limited number of data points for 
fear ratings and an experimental design that did not allow for a trial- by- trial analysis of BOLD fMRI 
data. Internal consistency was interpreted using benchmarks for unacceptable (<0.5), poor (>0.5 but 
<0.6), questionable (>0.6 but <0.7), acceptable (>0.7 but <0.8), good (>0.8 but <0.9), and excellent 
(≥0.9) (Kline, 2013).

Longitudinal reliability at the individual and group level
While internal consistency indicates the extent to which all items of a test or – here, trials of an 
experimental phase – measure the same construct (Revelle, 1979), longitudinal reliability re�ects the 
variability across two or more measurements of the same individual under the same conditions and is 
therefore indicative of the degree of correlation and agreement between measurements (Koo and Li, 

2016). For calculations of longitudinal reliability, we included data from both time points T0 and T1 
from the same experimental phase. To capture different aspects of longitudinal reliability, we chose a 
dual approach of calculating longitudinal reliability at both (1) the individual level and (2) at the group 
level (for details see also Table 1). To this end, longitudinal reliability at the individual and group 
level indicates to which extent responses within the same individual and within the group as a whole 
are stable over time. More precisely, whereas longitudinal reliability at the individual level takes into 
account the individual responses of participants, which are then related across time points, reliability 
at the group level �rst averages the individual responses across the group and then relates them 
across time points. Reliability at the individual level inherently includes the group level, as it is calcu-
lated for the sample as whole, but the individual responses are central to the calculation. Contrarily, 
for reliability at the group level, the calculation is carried out using group averages.

https://doi.org/10.7554/eLife.52465
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Reliability at the individual level was investigated as (1) ICCs encompassing both time points, (2) 
within- and between- subject similarity of individual trial- by- trial responding (i.e., SCRs) or BOLD fMRI 
activation patterns between time points, and (3) as the degree of overlap of signi�cant voxels between 
time points within an individual (for methodological details see below). Reliability at the group level 
was investigated as (1) trial- by- trial group average SCRs and (2) the degree of overlap of signi�cant 
voxels between time points within the group as a whole (for methodological details see below).

Assessments of internal consistency, within- and between- subject similarity, overlap at the individual 
and group level as well as longitudinal reliability of SCRs at the group level were not pre- registered 
but are included as they provide valuable additional and complementary information. Overlap and 
similarity analyses follow the methodological approach of Fröhner et al., 2019.

Longitudinal reliability at the individual level
Intraclass correlation coefficients
ICCs were determined separately for each experimental phase by including data from both time 
points T0 and T1. Generally, larger ICCs indicate higher congruency of within- subject responding 
between time points and increased distinction of subjects from each other (Noble et  al., 2021). 
Parsons et al., 2019 recommend the calculations of ICCs in cognitive- behavioral tasks through a two- 
way mixed- effects model of single rater type labeled ICC(2,1) (absolute agreement, in the following 
referred to as ICCabs) and ICC(3,1) (consistency, in the following referred to as ICCcon) according to 
Shrout and Fleiss, 1979 convention and to report their 95% CIs. Due to their slightly different calcu-
lations, ICCabs tends to be lower than ICCcon (see Table 1).

However, as the pre- registered mixed- effects approach resulted in non- convergence of some 
models for SCRs and ratings, we implemented an analysis of variance (ANOVA) instead of the mixed- 
effects approach to calculate ICCabs and ICCcon (Shrout and Fleiss, 1979). To calculate ICCs for BOLD 
fMRI (additional not pre- registered analyses), the SPM- based toolbox fmreli (Fröhner et al., 2019) 
was used. BOLD fMRI ICCs were determined for each voxel and averaged across the whole brain and 
for selected ROIs.

Furthermore, we investigated whether or to what extent ICCs change when ICC calculations were 
based on different numbers of trials. To this end, we included (additional non- pre- registered) analyses 
of trial- by- trial ICCs for SCRs in the supplementary material: First, ICCs were only computed for the 
�rst trial. Then, all subsequent trials of the respective phase were added stepwise to this �rst trial. 
After each step, trials were averaged and ICCs were calculated (see Figure 1—�gure supplements 

3–8).
Within the �gures, values less than 0.5 are classi�ed as poor reliability, values between 0.5 and 

0.75 as indicative of moderate reliability, values between 0.75 and 0.9 are classi�ed as good reliability 
and values greater than 0.9 as excellent reliability, as suggested by Koo and Li, 2016. These bench-
marks are included here to provide a frame of reference but we point out that these benchmarks 
are arbitrary and should hence not be overinterpreted in particular in the context of responding in 
experimental paradigms as these benchmarks have been developed in different contexts (i.e., trait 
self- report measures).

Within- and between-subject similarity
Both ICCs and within- subject similarity indicate to which extent responses of an individual at one 
time point are comparable to responses of the same individual at a later time point. Both were calcu-
lated separately for each experimental phase by including data from both time points. There are, 
however, two main differences: First, ICCs were calculated by decomposition of variances as applied 
for ANOVA, whereas similarity was calculated as correlation of responses between both time points 
(1) within one individual (within- subject similarity) and (2) between this individual and all other individ-
uals (between- subject similarity). Second, while ICCs are interpreted in terms of absolute values using 
cutoffs that provide information on the quantity of longitudinal reliability, within- subject similarity was 
compared to between- subject similarity showing if responses of one subject at T0 were more similar 
to themselves at T1 than to responses of all others at T1. The approach to the assessment of similarity 
was derived from the idea of representational similarity analysis (RSA) introduced by Kriegeskorte 

et al., 2008 and previously used by Fröhner et al., 2019 for the comparison of fMRI BOLD activation 
patterns between different sessions.
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Here, within- subject similarity was calculated by correlating (Pearson’s correlation coef�cient) (1) 
individual trial- by- trial SCRs and (2) the �rst- level response patterns of brain activation for CS discrim-
ination (i.e., CS+ > CS−) of each individual subject between T0 and T1 resulting in one value of 
within- subject similarity per subject (e.g., SCR acquisition trials of subject 1 at T0 were correlated with 
SCR acquisition trials of subject 1 at T1). Between- subject similarity was calculated by correlating trial- 
by- trial SCRs or the �rst- level response patterns of brain activation of each individual subject at T0 
with those of all other individuals at T1 (e.g., SCR acquisition trials of subject 1 at T0 were correlated 
with SCR acquisition trials of subject 2–71 at T1). This resulted in 70 correlation coef�cients for each 
subject. These correlation coef�cients were then averaged to yield one correlation coef�cient per 
subject as an indicator of between- subject similarity.

For comparisons of within- and between- subject similarity in SCR and BOLD fMRI, similarities were 
Fisher r- to- z transformed and compared using paired t- tests or Welsh tests in cases where the assump-
tion of equal variances was not met. Cohen’s d is reported as effect size.

Note that within- subject similarities of SCRs could not be calculated for participants with a single 
non- zero response at the same trial (e.g., trial 1) at both time points or only zero responses to the CS+ 
or CS− in one particular phase. This is because arrays that include only zeros can not be correlated 
and correlations of 1 (e.g., resulting from non- zero responses at the same trial at both time points) 
result in in�nite Fisher r- to- z transformed correlations. Thus, different numbers of participants had to 
be included in the analyses of SCRs during acquisition (NCS discrimination = 65, NCS+ = 62, NCS− = 56, NUS = 
71) and extinction training (NCS discrimination = 45, NCS+ = 40, NCS− = 32).

Overlap at the individual level
For BOLD fMRI, overlap in individual subject activation patterns across both time points was calcu-
lated as a third indicator of reliability at the individual level. Thus, overlap was determined separately 
for experimental phases by including data from both time points T0 and T1. To this end, activation 
maps from �rst- level contrasts (here CS+ > CS or CS discrimination) were compared such that the 
degree of overlap of signi�cant voxels at a liberal threshold of puncorrected < 0.01 between T0 and T1 
was determined and expressed as the Dice and Jaccard coef�cients (Fröhner et al., 2019). Both coef-
�cients range from 0 (no overlap) to 1 (perfect overlap), with the Jaccard index being easily interpre-
table as percent overlap (Fröhner et al., 2019). While overlap re�ects the degree of voxels activated 
at both time points, similarity measures (see above) are based on the correlation of activated voxels 
between time points and can be considered a continuous approach based on CS+ > CS− contrast 
speci�c beta values and not thresholded T- maps.

Longitudinal reliability at the group level
As opposed to longitudinal reliability at the individual level which indicates the stability of individual 
responses across time points, longitudinal reliability at the group level refers to how stable group 
average responding is over time. Longitudinal reliability at the group level was calculated separately 
for experimental phases by including data from both time points T0 and T1.

We de�ne longitudinal reliability at the group level (1) for SCRs as the percentage of explained vari-
ance of group averaged trials at T1 by group averaged trials at T0 (i.e., R squared) and (2) for BOLD 
fMRI as the degree of overlap of group averaged activated voxels between both time points. Different 
analysis approaches were chosen as SCR and BOLD fMRI data are inherently different measures: trial- 
by- trial analyses in fMRI require slow- event related designs with long ITIs as well as �xed trial orders 
and ideally partial reinforcement rate to not confound CS and US responses (Visser et al., 2016). 
Hence, trial- by- trial analyses were not possible given our design and thus overlap at a group level was 
de�ned as overlap at voxel rather than at trial level.

For SCRs, simple linear regressions were computed with group averaged SCR trials at T0 as inde-
pendent and group averaged SCR trials at T1 as dependent variable and R squared was extracted. 
This was done separately for experimental phases. Although the Pearson’s correlation coef�cient 
is often calculated to determine longitudinal reliability, R squared, which like overlap can also be 
expressed as a percentage, appears closest to the concept of overlap of signi�cant voxels at T0 and 
T1 as applied to BOLD fMRI data.

For overlap in BOLD fMRI at the group level, the degree of overlap of signi�cant voxels between 
both time points was determined for aggregated group- level activations instead of single subject- level 
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activation patterns (see ‘Overlap at the individual level’) and expressed using the Dice and Jaccard 
indices as described above.

Cross-phases predictability of conditioned responding
Simple linear regressions were calculated to assess the predictability of SCRs and fear ratings across 
experimental phases at T0. During data analysis, inspection of the data revealed heteroscedasticity. 
Therefore and deviating from the pre- registration, regressions with robust standard errors were calcu-
lated by using the HC3 estimator (Hayes and Cai, 2007). Two consecutive phases represent the 
independent and the dependent variable, respectively, with the preceding phase as the independent 
variable and the following phase as the dependent variable. For SCR and fear ratings, standardized 
betas as derived from linear regressions are reported. In simple linear regression, as implemented 
here, standardized betas can be also interpreted as Pearson’s correlation coef�cients.

For fMRI data, we adopted the cross- phases predictability analysis of SCR and fear ratings by 
calculating Pearson’s correlation coef�cients between patterns of voxel activation (i.e., �rst- level beta 
maps). Correlations were �rst calculated at the individual subject level and subsequently averaged.

Standardized betas (resulting from SCR and fear rating regressions) and correlation coef�cients 
(resulting from BOLD fMRI correlational tests) were interpreted as demonstrating weak, moderate, 
or strong associations between variables with values of <0.4, ≥0.4, and ≥0.7, respectively (Dancey 

and Reidy, 2007). Tables containing regression parameters beyond the standardized betas depicted 
in Figure 5A, B are presented in the Supplement (see Supplementary �le 7, Supplementary �le 8).

For SCR and fear rating predictions, we assessed if predictions differ in their strength or direction 
when they are summarized across certain data speci�cations (see Table 1). For BOLD fMRI, correlation 
coef�cients were pooled across ROIs. T- tests or Welch tests in cases where the assumption of equal 
variances was not met were performed on individual Fisher r- to- z transformed standardized betas 
(SCR and fear ratings) or correlation coef�cients (BOLD fMRI). We highlight that these analyses can be 
interpreted as an example for predictive validity (i.e., the extent to which a score on a test predicts a 
score on a criterion measure). As our aim here is, however, not validation, we use the term cross- phase 
prediction throughout. (More precisely, we believe that ‘cross- phase predictions’ in our study cannot 
be used interchangeably with ‘criterion or predictive validity’ since our aim was not to validate one 
experimental phase against the other. Predictive validity in psychometrics is de�ned as ‘the extent 
to which a score on a scale (or test) predicts scores on some criterion measure’ (cf. Cronbach and 

Meehl, 1955). For instance, a cognitive test for job performance would have predictive validity if the 
observed correlation between the test score and the performance rating by the company were statis-
tically signi�cant. Rather, we investigated whether responses in earlier experimental phases could 
predict responses in later experimental phases – both of which cannot be expected to ‘measure the 
same thing’.)

For all statistical analyses described above, a level of p < 0.05 (two- sided) was considered signi�-
cant. Since we were more interested in patterns of results and less in the result of one speci�c test, it 
was not necessary to correct for multiple comparisons. Moreover, multiverse approaches, as approx-
imated in our study, are assumed to be insensitive to multiple comparisons (Lonsdorf et al., 2022).

For data analyses and visualizations as well as for the creation of the manuscript, we used R (Version 
4.1.3; R Development Core Team, 2020) and the R- packages apa (Aust and Barth, 2020; Version 
0.3.3; Gromer, 2020), car (Version 3.0.10; Fox and Weisberg, 2019; Fox et  al., 2020), carData 
(Version 3.0.4; Fox et al., 2020), cowplot (Version 1.1.1; Wilke, 2020), DescTools (Version 0.99.42; 
Andri mult, 2021), dplyr (Version 1.0.8; Wickham et al., 2021), effsize (Torchiano, 2020), �extable 
(Version 0.6.10; Gohel, 2021), gghalves (Version 0.1.1; Tiedemann, 2020), ggplot2 (Version 3.3.5; 
Wickham, 2016), ggpubr (Version 0.4.0; Kassambara, 2020), ggsignif (Version 0.6.3; Constantin and 

Patil, 2021), gridExtra (Version 2.3; Auguie, 2017), here (Version 1.0.1; Müller, 2020), kableExtra 
(Version 1.3.1; Zhu, 2020), knitr (Version 1.37; Xie, 2015),  lm. beta (Version 1.5.1; Behrendt, 2014), 
lmtest (Version 0.9.38; Zeileis and Hothorn, 2002), of�cedown (Version 0.2.4; Gohel and Ross, 2022), 
papaja (Version 0.1.0.9997; Aust and Barth, 2020), patchwork (Version 1.1.0; Pedersen, 2020), psych 
(Version 2.0.9; Revelle, 2020), renv (Version 0.13.2; Ushey, 2020), reshape2 (Version 1.4.4; Wickham, 
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Supplementary file 1:   Overview of experimental specifications and results of five previous studies reporting test-retest reliabilities in 

human fear conditioning research. 

 Fredrikson et al., 1993 Zeidan et al., 2012 Torrents-Rodas et al., 

2014 

Ridderbusch et al., 2021 Cooper et al., PREPRINT 

N/female/male/age 28/14/14/M = 28.5 (± 1.42) 18/9/9/M = 38.0 (± 12.7) 71/52/19/M = 22.4 (± 2.61) 100/46/54/M = 33.1 (± 

10.7) 

51/39/12/ M = 20.0 (± 2.88) 

Reinforcement rate 

(%) 

100 100 Acquisition training: 75 

Generalization: 50 

60 40 

Acquisition type Not reported Not reported Uninstructed but informed 

about the existence of 

contingencies3 

Instructed (but not 

informed about the 

reinforcement rate) 

Instructed (but not 

informed about the 

reinforcement rate) 

Extinction type Immediate Immediate; 

Extinction training consisted 

None 24h delayed; Extinction 

training consisted of 2 

subphases (Ex1 and Ex2) 

None 
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of 2 subphases separated by 

a 1-min rest period 

Additional phase(s) None 24h delayed extinction 

recall immediately followed 

by renewal  

Generalization (10 min. 

after acquisition training) 

One re-acquisition trial 

prior to extinction training 

Reinstatement-test 

(immediately after 

extinction training and 

reinstatement) 

Generalization 

CS quality Geometric shapes Lamp in a room (2 colors) 2 rings as CSs and 8 rings as 

GSs 

Neutral faces on colored 

background (background 

color = CS type) 

Auditory (pure tone sine 

waves < 60 decibels): CS+ 

and CS- = 1000 and 550 Hz; 

6 GSs = 650, 800, 900, 1100, 

1200 and 1350 Hz 

CS duration (s) 8 12 8 6 2.5 

ITI duration (s) 20 – 40 12 – 21 9 – 17 6 – 10 7 – 8  

US type Auditory (110 dB white 

noise) Electrotactile Electrotactile Electrotactile 

Electrotactile 

# of habituation trials 

CS+/CS- 4/4 4/4 6/6 2/2 

 

No habituation phase 

# of acquisition trials  

CS+/CS- 

8/8 5/5 12/12 10/10 20/12 

# of extinction trials  

CS+/CS- 

8/8 5/5 (in each of the 2 

subphases) 

No extinction phase Extinction phase 1 (Ex1): 

10/10 

Extinction phase 2 (Ex2): 

10/10 

No extinction phase 

# of trials add. phase  

CS+/CS- 

No additional phase Extinction recall: 5/5 

Renewal: 5/5 

12/12 

6 times each GS 

Re-acquisition: 1/0 

Reinstatement-test: 10/10 

Generalization: 12/7 

7 times each GS 

SCR Yes Yes Yes Yes Yes 

FPS No No Yes Yes No 
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Ratings No No Risk ratings Expectancy, arousal, 

valence ratings 

Shock risk ratings 

fMRI No No No Yes No 

Reported measure(s) SCR SCR SCR, FPS, ratings fMRI, ratings SCR, ratings 

# of measurement 

time points 

2 3 2 2 2 

Time gap between 

measurement time 

points 

20 days Time points 1 and 2: 

17.9 ± 2.1 weeks 

Time points 2 and 3: 

14.5 ± 0.7 weeks 

5.8 - 9.0 months (M = 7.7) 13 weeks 9 days 

Same stimuli used in 

retest 

Not reported No1 Yes (half of the participants) 

New set (other half of the 

participants 

(new stimuli = lines with 

varying slopes) 

No5 Yes 

Same allocation of 

stimuli to CSs 

Not reported No2 

 

Yes (applies to the use of 

the same stimulus set) 
No5 Yes 

Reliability measure Pearson’s r ICC (no type specified) G coefficient (range = 0 - 1) 

4 

ICC(1,1)6 G coefficient (range = 0 - 1) 

4 

Included trials All All All See results and notes below All 

Test-Retest 

Habituation 

         

CS+ SCR (FIR): 0.62 SCR (time points 1-3): 0.10 

SCR (time points 1-2): 0.16 

Not reported fMRI 

No fMRI data for 

habituation 

Ratings 

No rating data for 

habituation 

No habituation phase 

CS- SCR (FIR): 0.72 Not reported 
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Test-Retest 

Acquisition 

         

CS+ SCR (FIR): 0.85 

SCR (SIR): 0.51 

SCR (TIR): 0.65 

SCR (time points 1-3): 0.68 

SCR (time points 1-2): 0.64 
Same stimulus set4 

SCR: 0.27 

FPS: 0.34 

Ratings: 0.23 

New stimulus set4 

SCR: 0.39 

FPS: 0.40 

Ratings: 0.46 

fMRI 

No fMRI data for acquisition 

training 

Ratings 

Expectancy: not reported 

Arousal: no data for 

acquisition training 

Valence: no data for 

acquisition training 

SCR4: 0.50 

Ratings4: 0.47 

CS- SCR (FIR): 0.57 

SCR (SIR): 0.27 

SCR (TIR): 0.29 

Not reported 

CS discrimination Not included SCR (time points 1-3): 0.43 

Test-Retest Extinction          

CS+ SCR (FIR): 0.62 

SCR (SIR): 0.27 

SCR (TIR): 0.83 

SCR (time points 1-3): -0.19 

SCR (time points 1-2): -0.24 

No extinction phase fMRI 

Ex1 

Right insula: 0.54 

Left insula: 0.57 

Middle cingulate cortex: 

0.40 

Ex1 > Ex2 

Left insula: 0.22 

Right insula: 0.14 

Middle cingulate cortex: 

0.29 

Ratings 

pre Ex1 

Expectancy: no data for pre 

Ex1 

Arousal: not reported 

Valence: not reported 

Post Re-Acq, post Ex1 and 

post Ex27 

Expectancy: 0.66 

Arousal: 0.63 

Valence: 0.56 

No extinction phase 
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CS- SCR (FIR): 0.37 

SCR (SIR): -0.05 

SCR (TIR): 0.09 

Not reported Not reported 

CS discrimination Not included Not reported fMRI 

Ex1 

Right insula: 0.44 

Left insula: 0.39 

Middle cingulate cortex: 

0.34 

Ex1 > Ex2 

Left insula: 0.20 

Right insula: 0.01 

Middle cingulate cortex: 

0.13 

Ratings 

pre Ex1 

Expectancy: no data for pre 

Ex1 

Arousal: 0.42 

Valence: 0.02 

Post Re-Acq, post Ex1 and 

post Ex27 

Expectancy: 0.64 

Arousal: 0.43 

Valence: 0.25 

Test-Retest 

additional phase 

  Extinction recall 

Renewal 

Generalization Re-Acquisition 

Reinstatement-Test 

Generalization 

CS+ No additional phase Extinction recall: 

SCR (time points 1-3): 0.46 

SCR (time points 1-2): 0.72 

Renewal: 

SCR (time points 1-3): 0.67 

SCR (time points 1-2): 0.66 

Same stimulus set4 

SCR: 0.44 

FPS: 0.22 

Ratings: 0.22 

New stimulus set4 

SCR: 0.21 

fMRI 

Not reported 

Ratings 

post Re-Acquisition 

Expectancy: 0.51 

Arousal: 0.53 

Valence: 0.49 

SCR4: 0.39 

Ratings4: 0.36 
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CS- Not reported 
FPS: 0.16 

Ratings: 0.25 
Not reported 

CS discrimination Extinction Recall 

SCR (time points 1-3): 0.23 

Renewal 

SCR (time points 1-3): 0.50 

fMRI 

RI-T: 

Cingulate cortex cluster 

pre RI8: 0.01 

post RI9: -0.05 

pre vs. post RI8,9: -0.12 

Ratings 

post Re-Acquisition 

Expectancy: 0.49 

Arousal: not reported 

Valence: not reported 

 

pre RI10 

Expectancy: 0.67 

Arousal: 0.53 

Valence: 0.39 

post RI 

Expectancy: 0.52 

Arousal: 0.55 

Valence: 0.34 

pre vs. post RI10 

Expectancy: 0.22 

Arousal: 0.19 

Valence: -0.03 

Physiological 

response 

quantification 

         

SCR quantification Trough-to-peak (TTP) Baseline correction Baseline correction Trough-to-peak (TTP) Trough-to-peak (TTP) 

SCR scoring criteria FIR: 1-4 s after CS onset 

SIR: 5-9 s after CS onset 

TIR: 1-4 s after CS 

termination 

Baseline: means SCL during 

2 s before trial 

onset  subtracted from the 

Value at stimulus onset 

subtracted from the 

maximum value during 1-5 

s after stimulus onset (only 

First response occurring 

0.9-4 s after stimulus onset 

First response occurring 

0.5-3 s after stimulus onset, 

lasting for 0.5 and 5.0 s, > 

0.02 µS 
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highest SCL within the 12 s 

CS duration 

trials without risk ratings 

analyzed) 

FPS specifications No FPS applied No FPS applied 5s after onset of odd trials 

and during ITIs (6 times per 

phase, IPIs 18-25 s) 

Either 4.5 or 5 s after CS 

onset and during ITI (2, 3, 4, 

5, or 6 s after CS offset); 

presented during all CS 

trials during habituation 

and during 8 of 10 CS trials 

during fear acquisition 

training  

No FPS applied 

FPS quantification Baseline correction Trough-to-peak (TTP) 

FPS scoring criteria Value at response peak 

(Response onset in a time 

window 20-100 ms after 

probe onset with a peak 

between 20 and 150 ms 

after probe onset) 

subtracted from a baseline 

value (averaged during the 

50 ms preceding the probe) 

Response in a time window 

20-120 ms after probe 

onset with a maximum peak 

within 150 ms after onset 

Ratings provided No ratings provided No ratings provided During even trials Expectancy: before each CS 

trial 

Arousal and Valence: post 

Re-Acq, pre Ex1, post Ex1, 

post Ex2, post RI, post RIT  

Trial-by-trial shock 

expectancy 

Note.   We are aware that there is another study by Savage et al (2019) which investigated the test-retest reliability of fear potentiated 

startle in a differential fear conditioning paradigm. But since the participants of this study were twins and relatively young (ageM = 11.5, 

ageSD = 1.5), we have not included them in the table due to reduced comparability. # = number; FIR = first interval response, occurring 

1-4s after CS onset; SIR = second interval response, occurring 5-9s after CS onset; TIR = third interval response, occurring 1-4s after CS 

termination; GS = generalization stimulus; Ex1 = first extinction phase; Ex2 = second extinction phase; pre/post = prior and subsequent 

to respective phases; Re-Acq = re-acquisition; RI-T = reinstatement-test; RI = reinstatement. 
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1 “Conditioning context and color of the CS+ were different for each of the 3 sessions and counterbalanced across visits.” (Zeidan et al., 2012, p. 314) 
2 “The conditioning context and the color of the CS+ were different for each of the three test sessions and counterbalanced across visits.” (Zeidan et al., 2012, p. 
315) 
3 “They were not instructed about the CS−US contingency, but were told that they might learn to predict the shock if they pay attention to the presented stimuli.” 
(Torrents-Rodas et al., 2014, p. 699) 
4 The calculation of the G coefficient includes both responses to the CS+ and CS-. Thus, results are not separated for stimulus types. 
5 “The whole experimental protocol (t1) was repeated after an interval of an average of 13 weeks (second measurement: t2), using two different visual stimuli as 

CSs to avoid re ‐acquisition.” (Ridderbusch et al., 2021, p. 3) 
6 One-way random effects model with single measures. 
7 Post re-acq, post Ex1 and post Ex2 = “extinction training effect” (see Ridderbusch et al., 2021). 
8 Pre RI means for fMRI: last half of Ex2 trials (5 trials). 
9 Post RI means for fMRI: first half of RI-T (5 trials). 
10 Pre RI means for ratings: post Ex2. 

 

 



Running head: RELIABILITY AND PREDICTABILITY OF CONDITIONED FEAR 

 

 

9 

Deviations from the pre-registration 

Supplementary file 2:   Deviations from pre-registration. 

Pre-registration Deviation 

type 

Manuscript Justification 

Not pre-registered Additional 

analyses 

Analyses of cross-sectional reliability Considered to provide additional 

valuable information 

Mixed-effects approach for 

calculation of ICCS 

Changes 

analysis 

approach 

ANOVA approach for calculation of ICCS Statistical approach changed due to 

model non-convergence problems 

Calculate ICCs for ranked 

and non-ranked data 

Omitted pre-

registered 

specification 

Non-ranked ICCs only During closer inspection of the 

conceptualization of ICCcon, we realised 

that it would be redundant to calculate 

both ICCabs and ICCcon with ranked and 

non-ranked data as ICCcon itself ranks 

the data. Hence, we decided to 

calculate ICCs based on non-ranked 

data only. 

Not pre-registered Additional 

analyses 

Inclusion of ICC for SCRs to the US and US 

aversiveness ratings 

Considered to provide valuable 

information 

Not pre-registered Additional 

analyses 

Additional phase operationalization: last two 

extinction trials 

Considered to provide valuable 

information for completeness 

Not pre-registered Additional 

analyses 

Trial-by trial ICCs for SCRs Considered to provide additional 

valuable information 

Not pre-registered Additional 

analyses 

Inclusion of analysis focusing on reliability at the 

group level for SCRs 

Considered to provide additional 

valuable information 

Not pre-registered Additional 

outcome 

measure 

Inclusion of fMRI as an outcome measure and 

corresponding reliability analyses as well as 

within-session predictability analyses 

Considered to provide valuable 

information 

Multiple linear regression 

with SCRs or fear ratings 

during both acquisition and 

extinction training as 

multiple predictors for 

responses at 

reinstatement-test 

Changes in 

analysis 

approach 

Simple linear regressions including SCRs or fear 

ratings during acquisition training as predictors 

and responding during reinstatement-test as 

criterion. Further checks of statistical 

assumptions revealed heteroscedasticity of the 

data. Therefore, we conducted simple linear 

regressions with robust standard errors instead 

of using classical OLS estimators 

Due to multicollinearity of the 

predictors resulting from significant 

associations of responding during 

acquisition and extinction training the 

pre-registered analyses were not 

suitable 

Not pre-registered Additional 

analyses 

We compare different patterns of SCR, fear 

rating and fMRI data after pooling them for 

certain data specifications/ROIs in predictability 

analyses 

Considered to provide additional 

valuable information 
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Internal consistency of log-transformed as well as log-transformed and range corrected 

SCRs 

 

Figure 1 – figure supplement 1.  Illustration of (A-B) internal consistency for log-transformed 

(log) as well as (C-D) log-transformed and range corrected (log rc) SCRs at T0 and T1 color 

coded for stimulus-type. Error bars represent 95% confidence intervals indicating significance, 

when zero is not included in the interval. The y-axis comprises the different experimental phases. 

Internal consistency is interpreted using benchmarks (Kline, 2013) for unacceptable (< 0.5), poor 

(> 0.5 but < 0.6), questionable (> 0.6 but < 0.7), acceptable (> 0.7 but < 0.8), good (> 0.8 but < 
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0.9) and excellent (≥ 0.9). ACQ = acquisition training, EXT = extinction training, RI-Test = 

reinstatement-test. 

Detailed results of ICC calculations: SCR 

Supplementary file 3: ICCabs and ICCcon for all data specifications of SCRs. 

Outcome Ampl.-

type 
Stim.-

type Phase Op. 

ICCabs ICCcon 

Value  Lower 

95% CI  
Upper 

95% CI  
p-

value  Value Lower 

95% CI 
Upper 

95% CI 
p-

value 

SCR raw CS dis. Acq average 0.160 -0.020 0.340 .077 0.170 -0.030 0.350 .077 

SCR raw CS+ Acq average 0.270 0.090 0.440 .006 0.300 0.110 0.460 .006 

SCR raw CS- Acq average 0.390 0.210 0.540 .000 0.410 0.230 0.560 .000 

SCR raw US Acq average 0.317 0.133 0.481 .003 0.322 0.135 0.487 .003 

SCR raw CS dis. Acq last 2 

trials 0.240 0.060 0.420 .017 0.250 0.060 0.430 .017 

SCR raw CS+ Acq last 2 

trials 0.220 0.040 0.390 .025 0.230 0.040 0.410 .025 

SCR raw CS- Acq last 2 

trials 0.190 0.000 0.370 .055 0.190 -0.010 0.370 .055 

SCR raw CS dis. Ext 1st trial 0.190 0.010 0.360 .044 0.200 0.010 0.380 .044 

SCR raw CS+ Ext 1st trial 0.320 0.140 0.490 .003 0.330 0.140 0.490 .003 

SCR raw CS- Ext 1st trial 0.040 -0.120 0.210 .331 0.050 -0.140 0.250 .331 

SCR raw CS dis. Ext average 0.070 -0.130 0.270 .272 0.070 -0.120 0.260 .272 

SCR raw CS+ Ext average 0.480 0.320 0.620 .000 0.500 0.340 0.630 .000 

SCR raw CS- Ext average 0.580 0.430 0.700 .000 0.610 0.470 0.720 .000 

SCR raw CS dis. Ext last 2 

trials 0.060 -0.140 0.250 .321 0.060 -0.140 0.250 .321 

SCR raw CS+ Ext last 2 

trials 0.170 -0.020 0.360 .073 0.170 -0.020 0.360 .073 

SCR raw CS- Ext last 2 

trials 0.200 0.000 0.380 .048 0.200 0.000 0.380 .048 

SCR raw CS dis. RI-T 1st trial 0.140 -0.050 0.320 .119 0.140 -0.060 0.330 .119 

SCR raw CS+ RI-T 1st trial 0.150 -0.040 0.330 .098 0.150 -0.040 0.340 .098 

SCR raw CS- RI-T 1st trial 0.030 -0.130 0.200 .389 0.030 -0.160 0.230 .389 
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Outcome Ampl.-

type 
Stim.-

type Phase Op. 

ICCabs ICCcon 

Value  Lower 

95% CI  
Upper 

95% CI  
p-

value  Value Lower 

95% CI 
Upper 

95% CI 
p-

value 

SCR raw US RI average 0.271 0.085 0.440 .009 0.278 0.087 0.449 .009 

SCR log CS dis. Acq average 0.180 0.000 0.350 .054 0.190 0.000 0.370 .054 

SCR log CS+ Acq average 0.290 0.100 0.450 .004 0.310 0.130 0.480 .004 

SCR log CS- Acq average 0.400 0.230 0.550 .000 0.420 0.250 0.570 .000 

SCR log US Acq average 0.320 0.137 0.482 .003 0.327 0.140 0.491 .003 

SCR log CS dis. Acq last 2 

trials 0.230 0.040 0.400 .024 0.230 0.040 0.410 .024 

SCR log CS+ Acq last 2 

trials 0.210 0.020 0.380 .032 0.220 0.030 0.400 .032 

SCR log CS- Acq last 2 

trials 0.190 0.000 0.370 .052 0.190 0.000 0.370 .052 

SCR log CS dis. Ext 1st trial 0.180 0.000 0.350 .052 0.190 0.000 0.370 .052 

SCR log CS+ Ext 1st trial 0.310 0.120 0.470 .004 0.310 0.120 0.480 .004 

SCR log CS- Ext 1st trial 0.030 -0.130 0.200 .368 0.040 -0.160 0.230 .368 

SCR log CS dis. Ext average 0.060 -0.140 0.260 .301 0.060 -0.130 0.250 .301 

SCR log CS+ Ext average 0.490 0.320 0.620 .000 0.500 0.340 0.640 .000 

SCR log CS- Ext average 0.590 0.430 0.710 .000 0.620 0.480 0.720 .000 

SCR log CS dis. Ext last 2 

trials 0.070 -0.130 0.260 .283 0.070 -0.130 0.260 .283 

SCR log CS+ Ext last 2 

trials 0.200 0.010 0.380 .044 0.200 0.010 0.380 .044 

SCR log CS- Ext last 2 

trials 0.230 0.040 0.410 .027 0.230 0.030 0.410 .027 

SCR log CS dis. RI-T 1st trial 0.170 -0.020 0.350 .076 0.170 -0.030 0.350 .076 

SCR log CS+ RI-T 1st trial 0.160 -0.030 0.340 .083 0.160 -0.030 0.350 .083 

SCR log CS- RI-T 1st trial 0.040 -0.120 0.210 .337 0.050 -0.150 0.240 .337 

SCR log US RI average 0.299 0.116 0.464 .004 0.308 0.120 0.475 .004 

SCR log rc CS dis. Acq average 0.230 0.050 0.410 .018 0.250 0.050 0.420 .018 

SCR log rc CS+ Acq average 0.490 0.310 0.630 .000 0.530 0.370 0.660 .000 

SCR log rc CS- Acq average 0.610 0.470 0.730 .000 0.630 0.500 0.740 .000 

SCR log rc US Acq average 0.112 -0.086 0.301 .176 0.111 -0.086 0.300 .176 

SCR log rc CS dis. Acq last 2 

trials 0.050 -0.150 0.240 .337 0.050 -0.150 0.240 .337 
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Outcome Ampl.-

type 
Stim.-

type Phase Op. 

ICCabs ICCcon 

Value  Lower 

95% CI  
Upper 

95% CI  
p-

value  Value Lower 

95% CI 
Upper 

95% CI 
p-

value 

SCR log rc CS+ Acq last 2 

trials 0.300 0.120 0.470 .004 0.310 0.120 0.480 .004 

SCR log rc CS- Acq last 2 

trials 0.190 -0.010 0.370 .056 0.190 -0.010 0.370 .056 

SCR log rc CS dis. Ext 1st trial 0.200 0.020 0.370 .033 0.220 0.020 0.400 .033 

SCR log rc CS+ Ext 1st trial 0.270 0.080 0.440 .012 0.270 0.070 0.440 .012 

SCR log rc CS- Ext 1st trial -0.090 -0.250 0.090 .804 -0.100 -0.290 0.090 .804 

SCR log rc CS dis. Ext average 0.350 0.160 0.510 .002 0.340 0.160 0.510 .002 

SCR log rc CS+ Ext average 0.540 0.380 0.670 .000 0.560 0.410 0.680 .000 

SCR log rc CS- Ext average 0.620 0.440 0.740 .000 0.660 0.530 0.760 .000 

SCR log rc CS dis. Ext last 2 

trials 0.210 0.020 0.390 .037 0.210 0.020 0.390 .037 

SCR log rc CS+ Ext last 2 

trials 0.360 0.170 0.520 .001 0.350 0.170 0.510 .001 

SCR log rc CS- Ext last 2 

trials 0.440 0.270 0.590 .000 0.440 0.270 0.590 .000 

SCR log rc CS dis. RI-T 1st trial 0.230 0.040 0.410 .023 0.240 0.040 0.410 .023 

SCR log rc CS+ RI-T 1st trial 0.170 -0.020 0.360 .071 0.170 -0.020 0.360 .071 

SCR log rc CS- RI-T 1st trial 0.150 -0.030 0.330 .086 0.160 -0.030 0.350 .086 

SCR log rc US RI average 0.093 -0.106 0.284 .221 0.092 -0.105 0.282 .221 

Note.   Ampl. = Amplitude, Stim. = Stimulus, Op. = Operationalization, CI = Confidence Interval, CS dis. = CS discrimination, log = log-

transformed, log rc = log-transformed and range corrected, Acq = Acquisition training, Ext = Extinction training, RI = Reinstatement, RI-T = 

Reinstatement-Test. 
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Figure 1-figure supplement 2.  Illustration of (A-B) ICCs of log-transformed (log) as well as (C-

D) log-transformed and range corrected (log, rc) SCRs color coded for stimulus-type. The y-axis 

comprises the different phase operationalizations. A and C display ICCabs, B and D display 

ICCcon. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 were interpreted as poor, moderate, good and 

excellent respectively (Koo & Li, 2016). Error bars represent 95% confidence intervals indicating 
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significance of ICCs, when zero is not included in the interval. ACQ = acquisition training, EXT 

= extinction training, RI = reinstatement, RI-Test = reinstatement-test. 

ICCs of trial-by-trial SCRs 

ICCs of trial-by-trial raw SCRs 

 

 

Figure 1-figure supplement 3.  Illustration of ICCabs of trial-by-trial raw SCRs for phases (A-D: 

Acquisition, E-G: Extinction, H-J: Reinstatement-Test, K: Reinstatement) and stimulus-types 

separately. Trials were averaged starting with the first (i.e., reinstatement-test and US trials) or 

second trial (i.e., acquisition and extinction training), adding all preceding trials trial-by-trial and 

averaged. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 (Koo & Li, 2016) were interpreted as poor, 

moderate, good and excellent respectively. Error bars represent 95% confidence intervals. Non-

overlapping error bars indicate significant differences between ICCs within one figure. RI-Test = 

reinstatement-test. 
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Figure 1-figure supplement 4.  Illustration of ICCcon of trial-by-trial raw SCRs for phases (A-D: 

Acquisition, E-G: Extinction, H-J: Reinstatement-Test, K: Reinstatement) and stimulus-types 

separately. Trials were averaged starting with the first (i.e., reinstatement-test and US trials) or 

second trial (i.e., acquisition and extinction training), adding all preceding trials trial-by-trial and 

averaged. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 (Koo & Li, 2016) were interpreted as poor, 

moderate, good and excellent respectively. Error bars represent 95% confidence intervals. Non-

overlapping error bars indicate significant differences between ICCs within one figure. RI-Test = 

reinstatement-test. 
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ICCs of trial-by-trial log-transformed SCRs 

 

Figure 1-figure supplement 5.  Illustration of ICCabs of trial-by-trial log-transformed SCRs for 

phases (A-D: Acquisition, E-G: Extinction, H-J: Reinstatement-Test, K: Reinstatement) and 

stimulus-types separately. Trials were averaged starting with the first (i.e., reinstatement-test and 

US trials) or second trial (i.e., acquisition and extinction training), adding all preceding trials 

trial-by-trial and averaged. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 (Koo & Li, 2016) were interpreted 

as poor, moderate, good and excellent respectively. Error bars represent 95% confidence 

intervals. Non-overlapping error bars indicate significant differences between ICCs within one 

figure. RI-Test = reinstatement-test. 
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Figure 1-figure supplement 6.  Illustration of ICCcon of trial-by-trial log-transformed SCRs for 

phases (A-D: Acquisition, E-G: Extinction, H-J: Reinstatement-Test, K: Reinstatement) and 

stimulus types separately. Trials were averaged starting with the first (i.e., reinstatement-test and 

US trials) or second trial (i.e., acquisition and extinction training). All preceding trials were 

added trial-by-trial and averaged. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 (Koo & Li, 2016) were 

interpreted as poor, moderate, good and excellent respectively. Error bars represent 95% 

confidence intervals. Non-overlapping error bars indicate significant differences between ICCs 

within one figure. RI-Test = reinstatement-test. 
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ICCs of trial-by-trial log-transformed and range corrected SCRs 

 

Figure 1-figure supplement 7.  Illustration of ICCabs of trial-by-trial log-transformed and range 

corrected SCRs for phases (A-D: Acquisition, E-G: Extinction, H-J: Reinstatement-Test, K: 

Reinstatement) and stimulus types separately. Trials were averaged starting with the first (i.e., 

reinstatement-test and US trials) or second trial (i.e., acquisition and extinction training). All 

preceding trials were added trial-by-trial and averaged. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 (Koo 

& Li, 2016) were interpreted as poor, moderate, good and excellent respectively. Error bars 

represent 95% confidence intervals. Non-overlapping error bars indicate significant differences 

between ICCs within one figure. RI-Test = reinstatement-test. 
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Figure 1-figure supplement 8.  Illustration of ICCcon of trial-by-trial log-transformed and range 

corrected SCRs for phases (A-D: Acquisition, E-G: Extinction, H-J: Reinstatement-Test, K: 

Reinstatement) and stimulus types separately. Trials were averaged starting with the first (i.e., 

reinstatement-test and US trials) or second trial (i.e., acquisition and extinction training). All 

preceding trials were added trial-by-trial and averaged. ICCs < 0.5, < 0.75, < 0.9 and > 0.9 (Koo 

& Li, 2016) were interpreted as poor, moderate, good and excellent respectively. Error bars 

represent 95% confidence intervals. Non-overlapping error bars indicate significant differences 

between ICCs within one figure. RI-Test = reinstatement-test. 
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Detailed results of ICC calculations: fear ratings 

Supplementary file 4: ICCabs and ICCcon for all data specifications of fear ratings. 

Outcome Stim.-

type Phase Op. 

ICCabs ICCcon 

Value  Lower 

95% CI  
Upper 

95% CI  p-value  Value Lower 

95% CI 
Upper 

95% CI p-value 

Ratings CS dis. Acq post-

pre 0.190 0.007 0.364 .043 0.203 0.008 0.384 .043 

Ratings CS+ Acq post-

pre 0.436 0.262 0.582 < .001 0.433 0.260 0.579 < .001 

Ratings CS- Acq post-

pre -0.162 -0.328 0.018 .945 -0.190 -0.372 0.005 .945 

Ratings CS dis. Acq post 0.424 0.230 0.581 < .001 0.470 0.302 0.609 < .001 

Ratings CS+ Acq post 0.343 0.163 0.502 .001 0.362 0.179 0.521 .001 

Ratings CS- Acq post 0.228 0.045 0.400 .020 0.242 0.049 0.417 .020 

Ratings US Acq post 0.310 0.120 0.470 .005 0.300 0.110 0.470 .005 

Ratings CS dis. Ext pre 0.459 0.250 0.617 < .001 0.516 0.357 0.646 < .001 

Ratings CS+ Ext pre 0.485 0.266 0.643 < .001 0.548 0.395 0.671 < .001 

Ratings CS- Ext pre 0.702 0.587 0.789 < .001 0.700 0.585 0.788 < .001 

Ratings CS dis. Ext pre-

post 0.482 0.308 0.623 < .001 0.512 0.352 0.643 < .001 

Ratings CS+ Ext pre-

post 0.494 0.282 0.648 < .001 0.552 0.400 0.675 < .001 

Ratings CS- Ext pre-

post 0.188 0.003 0.363 .048 0.198 0.002 0.378 .048 

Ratings CS dis. Ext post 0.165 -0.025 0.345 .078 0.169 -0.027 0.353 .078 

Ratings CS+ Ext post 0.474 0.307 0.613 < .001 0.472 0.305 0.611 < .001 

Ratings CS- Ext post 0.686 0.563 0.779 < .001 0.700 0.584 0.787 < .001 

Ratings US RI post 0.430 0.260 0.580 < .001 0.450 0.280 0.590 < .001 

Ratings CS dis. RI-T pre 0.172 -0.021 0.354 .072 0.174 -0.022 0.357 .072 

Ratings CS+ RI-T pre 0.437 0.264 0.582 < .001 0.436 0.263 0.582 < .001 

Ratings CS- RI-T pre 0.538 0.382 0.663 < .001 0.536 0.381 0.662 < .001 

Note.   Stim. = Stimulus, Op. = Operationalization, CI = Confidence Interval, CS dis. = CS discrimination, Acq = Acquisition training, Ext = 

Extinction training, RI = Reinstatement, RI-T = Reinstatement-Test, pre = prior to the experimental phase, post = subsequent to the 

experimental phase. 
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Detailed results of ICC and similarity calculations: BOLD fMRI 

Supplementary File 5: ICCabs and ICCcon for CS discrimination during fear acquisition (Acq) and extinction training (Ext). 

Phase ICC-type 
Whole 

Brain 
Anterior 

Insula 
Amygdala 

Hippocam

pus 
Caudate 

Nucleus 
Putamen Pallidum NAcc Thalamus dACC dlPFC vmPFC 

Acq 
ICCabs 0.175 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 

ICCcon 0.175 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 

Ext 
ICCabs 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

ICCcon 0.008 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Note.   NAcc = nucleus accumbens; dACC = dorsal anterior cingulate cortex; dlPFC = dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal cortex. 
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Supplementary File 6: Paired sample t-tests comparing between- and within-subject similarity 

for whole brain activation pattern as well as activation pattern in the ROIs for acquisition 

training (Acq) and extinction training (Ext). 

Phase ROI t df p Cohen's d 

Acq 

Whole Brain 4.09 70 < .001 0.49 

Anterior Insula 4.33 70 < .001 0.51 

Amygdala 2.01 70 .048 0.24 

Hippocampus 2.18 70 .033 0.26 

Caudate Nucleus 2.27 70 .026 0.27 

Putamen 2.42 70 .018 0.29 

Pallidum 1.84 70 .070 0.22 

NAcc -0.18 70 .857 -0.02 

Thalamus 3.20 70 .002 0.38 

dACC 3.75 70 < .001 0.44 

dlPFC 4.71 70 < .001 0.56 

vmPFC 2.39 70 .019 0.28 

Ext 

Whole Brain 1.44 70 .154 0.17 

Anterior Insula 0.63 70 .531 0.07 

Amygdala -0.35 70 .726 -0.04 

Hippocampus 0.89 70 .379 0.11 

Caudate Nucleus -0.65 70 .520 -0.08 

Putamen -0.63 70 .528 -0.08 

Pallidum 0.34 70 .733 0.04 

NAcc 1.03 70 .306 0.12 

Thalamus -0.84 70 .401 -0.10 

dACC 0.05 70 .956 0.01 
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Phase ROI t df p Cohen's d 

dlPFC -0.39 70 .697 -0.05 

vmPFC -0.06 70 .955 -0.01 

Note.   NAcc = nucleus accumbens; dACC = dorsal anterior cingulate cortex; dlPFC = 

dorsolateral prefrontal cortex; vmPFC = ventromedial prefrontal cortex. 
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Longitudinal reliability at the group-level: log-transformed as well as log-transformed and 

range corrected SCRs 

 

Figure 4-figure supplement 1.  Scatter plots illustrating longitudinal reliability at the group level 

during (A,C) acquisition and (B,D) extinction training for log-transformed (A,B) as well as log-

transformed and range corrected (C,D) SCRs. Longitudinal reliability at the group level refers to 
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the explained variance in linear regressions comprising SCRs at T0 as independent and SCRs at 

T1 as dependent variable. Results are shown for trial-by-trial group average SCRs to the CS+ 

(red), CS- (blue), the US (yellow) and CS discrimination (black). Single data points represent 

pairs of single trials at T0 and T1 averaged across participants. Note that no US was presented 

during extinction training and hence, no reliability of the US is shown in (B) and (D). 
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Detailed results of predictability analysis: SCR and fear ratings 

Cohen’s f2 (formula: f2 = R2/1 – R2) was calculated as effect size. According to the 

guidelines of Cohen (1988), f2 ≥ .02, f2 ≥ .15 and f2 ≥ .34 represent small, medium and large 

effect sizes respectively. Since Cohen’s f2 is informative, but less common (Selya, Rose, Dierker, 

Hedeker, & Mermelstein, 2012), additionally R squared is reported as effect size. 

Supplementary File 7: Detailed results of linear regressions: SCR. 

Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS dis. raw not 

ranked AVE ACQ 1st trial EXT 0.329 0.129 0.076 0.582 2.543 105 0.012 0.038 0.040 

SCR CS dis. raw not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.264 0.080 0.107 0.421 3.288 105 0.001 0.066 0.071 

SCR CS dis. raw not 

ranked AVE ACQ AVE EXT 0.109 0.062 -0.013 0.231 1.762 105 0.081 0.050 0.052 

SCR CS dis. raw not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.031 0.031 -0.030 0.092 0.986 105 0.327 0.011 0.011 

SCR CS dis. raw not 

ranked AVE ACQ AVE last 2 

trials EXT 0.081 0.115 -0.144 0.306 0.705 105 0.483 0.007 0.007 

SCR CS dis. raw not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT -0.039 0.105 -0.245 0.167 -0.371 105 0.711 0.005 0.005 

SCR CS dis. raw not 

ranked AVE ACQ 1st trial RI-

Test 0.195 0.276 -0.346 0.736 0.708 105 0.480 0.008 0.008 

SCR CS dis. raw not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.218 0.230 -0.233 0.669 0.945 105 0.347 0.028 0.029 

SCR CS dis. raw not 

ranked 1st trial EXT 1st trial RI-

Test 0.038 0.165 -0.285 0.361 0.231 105 0.817 0.001 0.001 

SCR CS dis. raw not 

ranked AVE EXT 1st trial RI-

Test 0.222 0.501 -0.760 1.204 0.443 105 0.659 0.003 0.003 

SCR CS dis. raw not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test -0.316 0.824 -1.931 1.299 -0.384 105 0.702 0.020 0.020 

SCR CS+ raw not 

ranked AVE ACQ 1st trial EXT 0.686 0.128 0.435 0.937 5.347 105 0.000 0.291 0.410 

SCR CS+ raw not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.508 0.130 0.253 0.763 3.909 105 0.000 0.212 0.269 

SCR CS+ raw not 

ranked AVE ACQ AVE EXT 0.283 0.076 0.134 0.432 3.705 105 0.000 0.273 0.375 

SCR CS+ raw not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.216 0.077 0.065 0.367 2.827 105 0.006 0.212 0.270 

SCR CS+ raw not 

ranked AVE ACQ AVE last 2 

trials EXT 0.200 0.099 0.006 0.394 2.006 105 0.047 0.120 0.137 

SCR CS+ raw not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.143 0.092 -0.037 0.323 1.550 105 0.124 0.082 0.089 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS+ raw not 

ranked AVE ACQ 1st trial RI-

Test 0.676 0.132 0.417 0.935 5.099 105 0.000 0.213 0.270 

SCR CS+ raw not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.434 0.147 0.146 0.722 2.956 105 0.004 0.117 0.132 

SCR CS+ raw not 

ranked 1st trial EXT 1st trial RI-

Test 0.608 0.101 0.410 0.806 5.993 105 0.000 0.279 0.386 

SCR CS+ raw not 

ranked AVE EXT 1st trial RI-

Test 1.123 0.250 0.633 1.613 4.486 105 0.000 0.172 0.208 

SCR CS+ raw not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test 0.386 0.238 -0.080 0.852 1.627 105 0.107 0.023 0.024 

SCR CS- raw not 

ranked AVE ACQ 1st trial EXT 0.728 0.193 0.350 1.106 3.774 105 0.000 0.132 0.152 

SCR CS- raw not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.520 0.150 0.226 0.814 3.469 105 0.001 0.086 0.094 

SCR CS- raw not 

ranked AVE ACQ AVE EXT 0.369 0.082 0.208 0.530 4.518 105 0.000 0.280 0.390 

SCR CS- raw not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.231 0.074 0.086 0.376 3.126 105 0.002 0.140 0.163 

SCR CS- raw not 

ranked AVE ACQ AVE last 2 

trials EXT 0.370 0.148 0.080 0.660 2.495 105 0.014 0.165 0.197 

SCR CS- raw not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.265 0.107 0.055 0.475 2.475 105 0.015 0.107 0.120 

SCR CS- raw not 

ranked AVE ACQ 1st trial RI-

Test 0.640 0.240 0.170 1.110 2.661 105 0.009 0.086 0.094 

SCR CS- raw not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.449 0.239 -0.019 0.917 1.878 105 0.063 0.054 0.057 

SCR CS- raw not 

ranked 1st trial EXT 1st trial RI-

Test 0.336 0.118 0.105 0.567 2.849 105 0.005 0.096 0.106 

SCR CS- raw not 

ranked AVE EXT 1st trial RI-

Test 0.584 0.299 -0.002 1.170 1.953 105 0.054 0.035 0.036 

SCR CS- raw not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test 0.145 0.319 -0.480 0.770 0.453 105 0.651 0.004 0.004 

SCR CS dis. log not 

ranked AVE ACQ 1st trial EXT 0.328 0.134 0.065 0.591 2.446 105 0.016 0.037 0.039 

SCR CS dis. log not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.260 0.085 0.093 0.427 3.045 105 0.003 0.062 0.066 

SCR CS dis. log not 

ranked AVE ACQ AVE EXT 0.109 0.056 -0.001 0.219 1.956 105 0.053 0.047 0.050 

SCR CS dis. log not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.031 0.031 -0.030 0.092 1.000 105 0.320 0.010 0.010 

SCR CS dis. log not 

ranked AVE ACQ AVE last 2 

trials EXT 0.074 0.103 -0.128 0.276 0.719 105 0.474 0.006 0.006 

SCR CS dis. log not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT -0.039 0.105 -0.245 0.167 -0.373 105 0.710 0.004 0.004 

SCR CS dis. log not 

ranked AVE ACQ 1st trial RI-

Test 0.135 0.259 -0.373 0.643 0.521 105 0.603 0.004 0.004 

SCR CS dis. log not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.173 0.221 -0.260 0.606 0.784 105 0.435 0.018 0.018 

SCR CS dis. log not 

ranked 1st trial EXT 1st trial RI-

Test 0.043 0.149 -0.249 0.335 0.291 105 0.771 0.001 0.001 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS dis. log not 

ranked AVE EXT 1st trial RI-

Test 0.149 0.450 -0.733 1.031 0.331 105 0.741 0.001 0.001 

SCR CS dis. log not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test -0.282 0.685 -1.625 1.061 -0.412 105 0.681 0.017 0.017 

SCR CS+ log not 

ranked AVE ACQ 1st trial EXT 0.679 0.115 0.454 0.904 5.906 105 0.000 0.297 0.423 

SCR CS+ log not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.502 0.117 0.273 0.731 4.305 105 0.000 0.210 0.265 

SCR CS+ log not 

ranked AVE ACQ AVE EXT 0.294 0.074 0.149 0.439 3.995 105 0.000 0.277 0.383 

SCR CS+ log not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.232 0.074 0.087 0.377 3.145 105 0.002 0.223 0.287 

SCR CS+ log not 

ranked AVE ACQ AVE last 2 

trials EXT 0.202 0.094 0.018 0.386 2.158 105 0.033 0.117 0.133 

SCR CS+ log not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.149 0.088 -0.023 0.321 1.686 105 0.095 0.082 0.089 

SCR CS+ log not 

ranked AVE ACQ 1st trial RI-

Test 0.659 0.123 0.418 0.900 5.361 105 0.000 0.216 0.275 

SCR CS+ log not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.418 0.135 0.153 0.683 3.106 105 0.002 0.112 0.126 

SCR CS+ log not 

ranked 1st trial EXT 1st trial RI-

Test 0.603 0.096 0.415 0.791 6.255 105 0.000 0.280 0.390 

SCR CS+ log not 

ranked AVE EXT 1st trial RI-

Test 1.032 0.219 0.603 1.461 4.706 105 0.000 0.165 0.198 

SCR CS+ log not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test 0.364 0.214 -0.055 0.783 1.701 105 0.092 0.023 0.024 

SCR CS- log not 

ranked AVE ACQ 1st trial EXT 0.712 0.183 0.353 1.071 3.904 105 0.000 0.133 0.154 

SCR CS- log not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.518 0.146 0.232 0.804 3.546 105 0.001 0.089 0.098 

SCR CS- log not 

ranked AVE ACQ AVE EXT 0.384 0.081 0.225 0.543 4.729 105 0.000 0.295 0.418 

SCR CS- log not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.245 0.073 0.102 0.388 3.356 105 0.001 0.152 0.179 

SCR CS- log not 

ranked AVE ACQ AVE last 2 

trials EXT 0.379 0.145 0.095 0.663 2.608 105 0.010 0.175 0.213 

SCR CS- log not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.285 0.106 0.077 0.493 2.687 105 0.008 0.126 0.144 

SCR CS- log not 

ranked AVE ACQ 1st trial RI-

Test 0.612 0.216 0.189 1.035 2.833 105 0.006 0.086 0.094 

SCR CS- log not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.449 0.213 0.032 0.866 2.108 105 0.037 0.058 0.062 

SCR CS- log not 

ranked 1st trial EXT 1st trial RI-

Test 0.341 0.113 0.120 0.562 3.021 105 0.003 0.101 0.113 

SCR CS- log not 

ranked AVE EXT 1st trial RI-

Test 0.578 0.280 0.029 1.127 2.066 105 0.041 0.038 0.040 

SCR CS- log not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test 0.163 0.287 -0.400 0.726 0.568 105 0.571 0.005 0.005 

SCR CS dis. log rc not 

ranked AVE ACQ 1st trial EXT 0.378 0.200 -0.014 0.770 1.894 105 0.061 0.030 0.031 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS dis. log rc not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.298 0.109 0.084 0.512 2.733 105 0.007 0.046 0.049 

SCR CS dis. log rc not 

ranked AVE ACQ AVE EXT 0.071 0.054 -0.035 0.177 1.328 105 0.187 0.017 0.017 

SCR CS dis. log rc not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.022 0.038 -0.052 0.096 0.572 105 0.568 0.004 0.004 

SCR CS dis. log rc not 

ranked AVE ACQ AVE last 2 

trials EXT 0.103 0.106 -0.105 0.311 0.974 105 0.332 0.010 0.010 

SCR CS dis. log rc not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT -0.007 0.093 -0.189 0.175 -0.073 105 0.942 0.000 0.000 

SCR CS dis. log rc not 

ranked AVE ACQ 1st trial RI-

Test -0.212 0.225 -0.653 0.229 -0.943 105 0.348 0.009 0.009 

SCR CS dis. log rc not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test -0.041 0.158 -0.351 0.269 -0.259 105 0.796 0.001 0.001 

SCR CS dis. log rc not 

ranked 1st trial EXT 1st trial RI-

Test 0.032 0.112 -0.188 0.252 0.290 105 0.773 0.001 0.001 

SCR CS dis. log rc not 

ranked AVE EXT 1st trial RI-

Test -0.025 0.381 -0.772 0.722 -0.066 105 0.948 0.000 0.000 

SCR CS dis. log rc not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test -0.360 0.376 -1.097 0.377 -0.958 105 0.340 0.027 0.028 

SCR CS+ log rc not 

ranked AVE ACQ 1st trial EXT 0.435 0.122 0.196 0.674 3.564 105 0.001 0.108 0.121 

SCR CS+ log rc not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.320 0.111 0.102 0.538 2.886 105 0.005 0.069 0.074 

SCR CS+ log rc not 

ranked AVE ACQ AVE EXT 0.267 0.058 0.153 0.381 4.578 105 0.000 0.215 0.274 

SCR CS+ log rc not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.239 0.059 0.123 0.355 4.069 105 0.000 0.204 0.256 

SCR CS+ log rc not 

ranked AVE ACQ AVE last 2 

trials EXT 0.181 0.073 0.038 0.324 2.495 105 0.014 0.079 0.086 

SCR CS+ log rc not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.157 0.069 0.022 0.292 2.268 105 0.025 0.070 0.075 

SCR CS+ log rc not 

ranked AVE ACQ 1st trial RI-

Test 0.233 0.138 -0.037 0.503 1.681 105 0.096 0.023 0.024 

SCR CS+ log rc not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.070 0.130 -0.185 0.325 0.543 105 0.588 0.003 0.003 

SCR CS+ log rc not 

ranked 1st trial EXT 1st trial RI-

Test 0.403 0.103 0.201 0.605 3.910 105 0.000 0.122 0.138 

SCR CS+ log rc not 

ranked AVE EXT 1st trial RI-

Test 0.500 0.206 0.096 0.904 2.425 105 0.017 0.035 0.037 

SCR CS+ log rc not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test -0.021 0.196 -0.405 0.363 -0.106 105 0.916 0.000 0.000 

SCR CS- log rc not 

ranked AVE ACQ 1st trial EXT 0.247 0.193 -0.131 0.625 1.278 105 0.204 0.014 0.014 

SCR CS- log rc not 

ranked 
AVE last 2 

trials ACQ 1st trial EXT 0.192 0.150 -0.102 0.486 1.275 105 0.205 0.010 0.011 

SCR CS- log rc not 

ranked AVE ACQ AVE EXT 0.370 0.078 0.217 0.523 4.719 105 0.000 0.272 0.375 

SCR CS- log rc not 

ranked 
AVE last 2 

trials ACQ AVE EXT 0.246 0.069 0.111 0.381 3.577 105 0.001 0.151 0.178 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS- log rc not 

ranked AVE ACQ AVE last 2 

trials EXT 0.310 0.104 0.106 0.514 2.971 105 0.004 0.125 0.143 

SCR CS- log rc not 

ranked 
AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.246 0.078 0.093 0.399 3.143 105 0.002 0.099 0.110 

SCR CS- log rc not 

ranked AVE ACQ 1st trial RI-

Test 0.397 0.240 -0.073 0.867 1.654 105 0.101 0.031 0.032 

SCR CS- log rc not 

ranked 
AVE last 2 

trials ACQ 
1st trial RI-

Test 0.255 0.216 -0.168 0.678 1.179 105 0.241 0.016 0.017 

SCR CS- log rc not 

ranked 1st trial EXT 1st trial RI-

Test 0.192 0.118 -0.039 0.423 1.619 105 0.108 0.032 0.033 

SCR CS- log rc not 

ranked AVE EXT 1st trial RI-

Test 0.178 0.278 -0.367 0.723 0.639 105 0.524 0.003 0.003 

SCR CS- log rc not 

ranked 
AVE last 2 

trials EXT 
1st trial RI-

Test -0.108 0.189 -0.478 0.262 -0.569 105 0.571 0.002 0.002 

SCR CS dis. raw ranked AVE ACQ 1st trial EXT 0.180 0.089 0.006 0.354 2.009 105 0.047 0.032 0.033 

SCR CS dis. raw ranked AVE last 2 

trials ACQ 1st trial EXT 0.273 0.086 0.104 0.442 3.167 105 0.002 0.087 0.095 

SCR CS dis. raw ranked AVE ACQ AVE EXT 0.211 0.097 0.021 0.401 2.169 105 0.032 0.043 0.045 

SCR CS dis. raw ranked AVE last 2 

trials ACQ AVE EXT 0.228 0.092 0.048 0.408 2.489 105 0.014 0.059 0.063 

SCR CS dis. raw ranked AVE ACQ AVE last 2 

trials EXT 0.125 0.120 -0.110 0.360 1.045 105 0.299 0.012 0.012 

SCR CS dis. raw ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.200 0.106 -0.008 0.408 1.888 105 0.062 0.036 0.038 

SCR CS dis. raw ranked AVE ACQ 1st trial RI-

Test 0.037 0.103 -0.165 0.239 0.362 105 0.718 0.001 0.001 

SCR CS dis. raw ranked AVE last 2 

trials ACQ 
1st trial RI-

Test -0.071 0.096 -0.259 0.117 -0.740 105 0.461 0.006 0.006 

SCR CS dis. raw ranked 1st trial EXT 1st trial RI-

Test 0.034 0.112 -0.186 0.254 0.303 105 0.763 0.001 0.001 

SCR CS dis. raw ranked AVE EXT 1st trial RI-

Test 0.017 0.109 -0.197 0.231 0.154 105 0.878 0.000 0.000 

SCR CS dis. raw ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.068 0.087 -0.103 0.239 0.773 105 0.442 0.006 0.006 

SCR CS+ raw ranked AVE ACQ 1st trial EXT 0.594 0.075 0.447 0.741 7.958 105 0.000 0.319 0.469 

SCR CS+ raw ranked AVE last 2 

trials ACQ 1st trial EXT 0.381 0.078 0.228 0.534 4.860 105 0.000 0.187 0.230 

SCR CS+ raw ranked AVE ACQ AVE EXT 0.607 0.071 0.468 0.746 8.500 105 0.000 0.324 0.480 

SCR CS+ raw ranked AVE last 2 

trials ACQ AVE EXT 0.451 0.077 0.300 0.602 5.852 105 0.000 0.256 0.343 

SCR CS+ raw ranked AVE ACQ AVE last 2 

trials EXT 0.364 0.125 0.119 0.609 2.912 105 0.004 0.072 0.078 

SCR CS+ raw ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.281 0.108 0.069 0.493 2.608 105 0.010 0.061 0.065 

SCR CS+ raw ranked AVE ACQ 1st trial RI-

Test 0.485 0.083 0.322 0.648 5.828 105 0.000 0.215 0.274 

SCR CS+ raw ranked AVE last 2 

trials ACQ 
1st trial RI-

Test 0.216 0.088 0.044 0.388 2.441 105 0.016 0.061 0.064 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS+ raw ranked 1st trial EXT 1st trial RI-

Test 0.518 0.083 0.355 0.681 6.282 105 0.000 0.272 0.374 

SCR CS+ raw ranked AVE EXT 1st trial RI-

Test 0.340 0.097 0.150 0.530 3.507 105 0.001 0.120 0.136 

SCR CS+ raw ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.009 0.075 -0.138 0.156 0.113 105 0.910 0.000 0.000 

SCR CS- raw ranked AVE ACQ 1st trial EXT 0.388 0.096 0.200 0.576 4.057 105 0.000 0.129 0.148 

SCR CS- raw ranked AVE last 2 

trials ACQ 1st trial EXT 0.196 0.078 0.043 0.349 2.507 105 0.014 0.056 0.060 

SCR CS- raw ranked AVE ACQ AVE EXT 0.670 0.070 0.533 0.807 9.586 105 0.000 0.384 0.623 

SCR CS- raw ranked AVE last 2 

trials ACQ AVE EXT 0.353 0.072 0.212 0.494 4.905 105 0.000 0.184 0.225 

SCR CS- raw ranked AVE ACQ AVE last 2 

trials EXT 0.427 0.115 0.202 0.652 3.702 105 0.000 0.109 0.122 

SCR CS- raw ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.388 0.094 0.204 0.572 4.117 105 0.000 0.155 0.183 

SCR CS- raw ranked AVE ACQ 1st trial RI-

Test 0.340 0.104 0.136 0.544 3.281 105 0.001 0.099 0.110 

SCR CS- raw ranked AVE last 2 

trials ACQ 
1st trial RI-

Test 0.206 0.080 0.049 0.363 2.567 105 0.012 0.062 0.067 

SCR CS- raw ranked 1st trial EXT 1st trial RI-

Test 0.327 0.100 0.131 0.523 3.265 105 0.001 0.107 0.119 

SCR CS- raw ranked AVE EXT 1st trial RI-

Test 0.298 0.096 0.110 0.486 3.096 105 0.003 0.089 0.097 

SCR CS- raw ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.110 0.069 -0.025 0.245 1.583 105 0.117 0.017 0.018 

SCR CS dis. log ranked AVE ACQ 1st trial EXT 0.177 0.090 0.001 0.353 1.971 105 0.051 0.031 0.032 

SCR CS dis. log ranked AVE last 2 

trials ACQ 1st trial EXT 0.269 0.086 0.100 0.438 3.135 105 0.002 0.084 0.092 

SCR CS dis. log ranked AVE ACQ AVE EXT 0.206 0.098 0.014 0.398 2.108 105 0.037 0.041 0.043 

SCR CS dis. log ranked AVE last 2 

trials ACQ AVE EXT 0.214 0.092 0.034 0.394 2.319 105 0.022 0.052 0.055 

SCR CS dis. log ranked AVE ACQ AVE last 2 

trials EXT 0.132 0.120 -0.103 0.367 1.102 105 0.273 0.014 0.014 

SCR CS dis. log ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.194 0.106 -0.014 0.402 1.838 105 0.069 0.034 0.036 

SCR CS dis. log ranked AVE ACQ 1st trial RI-

Test 0.039 0.103 -0.163 0.241 0.380 105 0.704 0.002 0.002 

SCR CS dis. log ranked AVE last 2 

trials ACQ 
1st trial RI-

Test -0.081 0.096 -0.269 0.107 -0.845 105 0.400 0.008 0.008 

SCR CS dis. log ranked 1st trial EXT 1st trial RI-

Test 0.030 0.110 -0.186 0.246 0.270 105 0.787 0.001 0.001 

SCR CS dis. log ranked AVE EXT 1st trial RI-

Test 0.009 0.109 -0.205 0.223 0.084 105 0.933 0.000 0.000 

SCR CS dis. log ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.060 0.087 -0.111 0.231 0.696 105 0.488 0.005 0.005 

SCR CS+ log ranked AVE ACQ 1st trial EXT 0.591 0.075 0.444 0.738 7.906 105 0.000 0.316 0.462 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS+ log ranked AVE last 2 

trials ACQ 1st trial EXT 0.382 0.078 0.229 0.535 4.880 105 0.000 0.188 0.231 

SCR CS+ log ranked AVE ACQ AVE EXT 0.606 0.073 0.463 0.749 8.363 105 0.000 0.324 0.479 

SCR CS+ log ranked AVE last 2 

trials ACQ AVE EXT 0.455 0.077 0.304 0.606 5.942 105 0.000 0.260 0.351 

SCR CS+ log ranked AVE ACQ AVE last 2 

trials EXT 0.375 0.125 0.130 0.620 3.003 105 0.003 0.077 0.083 

SCR CS+ log ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.285 0.108 0.073 0.497 2.646 105 0.009 0.063 0.067 

SCR CS+ log ranked AVE ACQ 1st trial RI-

Test 0.484 0.084 0.319 0.649 5.789 105 0.000 0.214 0.272 

SCR CS+ log ranked AVE last 2 

trials ACQ 
1st trial RI-

Test 0.221 0.088 0.049 0.393 2.514 105 0.013 0.063 0.068 

SCR CS+ log ranked 1st trial EXT 1st trial RI-

Test 0.518 0.083 0.355 0.681 6.282 105 0.000 0.272 0.374 

SCR CS+ log ranked AVE EXT 1st trial RI-

Test 0.337 0.097 0.147 0.527 3.488 105 0.001 0.118 0.134 

SCR CS+ log ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.008 0.075 -0.139 0.155 0.110 105 0.912 0.000 0.000 

SCR CS- log ranked AVE ACQ 1st trial EXT 0.387 0.095 0.201 0.573 4.057 105 0.000 0.128 0.147 

SCR CS- log ranked AVE last 2 

trials ACQ 1st trial EXT 0.197 0.078 0.044 0.350 2.520 105 0.013 0.057 0.060 

SCR CS- log ranked AVE ACQ AVE EXT 0.674 0.070 0.537 0.811 9.688 105 0.000 0.388 0.634 

SCR CS- log ranked AVE last 2 

trials ACQ AVE EXT 0.356 0.072 0.215 0.497 4.959 105 0.000 0.187 0.230 

SCR CS- log ranked AVE ACQ AVE last 2 

trials EXT 0.432 0.115 0.207 0.657 3.751 105 0.000 0.111 0.125 

SCR CS- log ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.391 0.094 0.207 0.575 4.151 105 0.000 0.157 0.186 

SCR CS- log ranked AVE ACQ 1st trial RI-

Test 0.341 0.104 0.137 0.545 3.289 105 0.001 0.099 0.110 

SCR CS- log ranked AVE last 2 

trials ACQ 
1st trial RI-

Test 0.206 0.080 0.049 0.363 2.573 105 0.011 0.063 0.067 

SCR CS- log ranked 1st trial EXT 1st trial RI-

Test 0.327 0.100 0.131 0.523 3.265 105 0.001 0.107 0.119 

SCR CS- log ranked AVE EXT 1st trial RI-

Test 0.298 0.096 0.110 0.486 3.108 105 0.002 0.089 0.097 

SCR CS- log ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.109 0.069 -0.026 0.244 1.578 105 0.118 0.017 0.017 

SCR CS dis. log rc ranked AVE ACQ 1st trial EXT 0.150 0.096 -0.038 0.338 1.571 105 0.119 0.023 0.023 

SCR CS dis. log rc ranked AVE last 2 

trials ACQ 1st trial EXT 0.248 0.085 0.081 0.415 2.930 105 0.004 0.071 0.077 

SCR CS dis. log rc ranked AVE ACQ AVE EXT 0.136 0.096 -0.052 0.324 1.411 105 0.161 0.018 0.018 

SCR CS dis. log rc ranked AVE last 2 

trials ACQ AVE EXT 0.164 0.094 -0.020 0.348 1.739 105 0.085 0.031 0.032 

SCR CS dis. log rc ranked AVE ACQ AVE last 2 

trials EXT 0.135 0.120 -0.100 0.370 1.130 105 0.261 0.014 0.015 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS dis. log rc ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.167 0.105 -0.039 0.373 1.594 105 0.114 0.025 0.026 

SCR CS dis. log rc ranked AVE ACQ 1st trial RI-

Test -0.038 0.100 -0.234 0.158 -0.381 105 0.704 0.001 0.001 

SCR CS dis. log rc ranked AVE last 2 

trials ACQ 
1st trial RI-

Test -0.099 0.093 -0.281 0.083 -1.064 105 0.290 0.011 0.012 

SCR CS dis. log rc ranked 1st trial EXT 1st trial RI-

Test 0.040 0.100 -0.156 0.236 0.399 105 0.691 0.002 0.002 

SCR CS dis. log rc ranked AVE EXT 1st trial RI-

Test -0.014 0.101 -0.212 0.184 -0.137 105 0.892 0.000 0.000 

SCR CS dis. log rc ranked AVE last 2 

trials EXT 
1st trial RI-

Test -0.010 0.084 -0.175 0.155 -0.121 105 0.904 0.000 0.000 

SCR CS+ log rc ranked AVE ACQ 1st trial EXT 0.358 0.096 0.170 0.546 3.722 105 0.000 0.116 0.131 

SCR CS+ log rc ranked AVE last 2 

trials ACQ 1st trial EXT 0.244 0.082 0.083 0.405 2.957 105 0.004 0.076 0.083 

SCR CS+ log rc ranked AVE ACQ AVE EXT 0.558 0.089 0.384 0.732 6.264 105 0.000 0.274 0.377 

SCR CS+ log rc ranked AVE last 2 

trials ACQ AVE EXT 0.437 0.076 0.288 0.586 5.786 105 0.000 0.240 0.316 

SCR CS+ log rc ranked AVE ACQ AVE last 2 

trials EXT 0.397 0.131 0.140 0.654 3.044 105 0.003 0.086 0.094 

SCR CS+ log rc ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.299 0.110 0.083 0.515 2.729 105 0.007 0.069 0.075 

SCR CS+ log rc ranked AVE ACQ 1st trial RI-

Test 0.200 0.097 0.010 0.390 2.058 105 0.042 0.037 0.038 

SCR CS+ log rc ranked AVE last 2 

trials ACQ 
1st trial RI-

Test 0.074 0.085 -0.093 0.241 0.869 105 0.387 0.007 0.007 

SCR CS+ log rc ranked 1st trial EXT 1st trial RI-

Test 0.349 0.097 0.159 0.539 3.587 105 0.001 0.124 0.141 

SCR CS+ log rc ranked AVE EXT 1st trial RI-

Test 0.161 0.096 -0.027 0.349 1.681 105 0.096 0.027 0.028 

SCR CS+ log rc ranked AVE last 2 

trials EXT 
1st trial RI-

Test -0.067 0.071 -0.206 0.072 -0.937 105 0.351 0.007 0.008 

SCR CS- log rc ranked AVE ACQ 1st trial EXT 0.244 0.100 0.048 0.440 2.446 105 0.016 0.051 0.053 

SCR CS- log rc ranked AVE last 2 

trials ACQ 1st trial EXT 0.111 0.078 -0.042 0.264 1.418 105 0.159 0.018 0.018 

SCR CS- log rc ranked AVE ACQ AVE EXT 0.682 0.072 0.541 0.823 9.479 105 0.000 0.397 0.659 

SCR CS- log rc ranked AVE last 2 

trials ACQ AVE EXT 0.347 0.071 0.208 0.486 4.913 105 0.000 0.177 0.215 

SCR CS- log rc ranked AVE ACQ AVE last 2 

trials EXT 0.487 0.117 0.258 0.716 4.148 105 0.000 0.141 0.164 

SCR CS- log rc ranked AVE last 2 

trials ACQ 
AVE last 2 

trials EXT 0.383 0.093 0.201 0.565 4.107 105 0.000 0.150 0.177 

SCR CS- log rc ranked AVE ACQ 1st trial RI-

Test 0.251 0.097 0.061 0.441 2.582 105 0.011 0.054 0.057 

SCR CS- log rc ranked AVE last 2 

trials ACQ 
1st trial RI-

Test 0.146 0.080 -0.011 0.303 1.815 105 0.072 0.031 0.032 

SCR CS- log rc ranked 1st trial EXT 1st trial RI-

Test 0.189 0.104 -0.015 0.393 1.822 105 0.071 0.036 0.037 
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Outcome Stim.-

type 
Ampl.-

type Ranking Predictor Criterion b SEb Lower 

95% CI 
Upper 

95% CI t df p R2 Cohen's 

f2 

SCR CS- log rc ranked AVE EXT 1st trial RI-

Test 0.145 0.100 -0.051 0.341 1.454 105 0.149 0.021 0.022 

SCR CS- log rc ranked AVE last 2 

trials EXT 
1st trial RI-

Test 0.039 0.070 -0.098 0.176 0.556 105 0.579 0.002 0.002 

Note.   Ampl. = Amplitude, Stim. = Stimulus, CI = Confidence Interval, CS dis. = CS discrimination, log = log-transformed, log rc = log-transformed and range corrected, AVE = average, ACQ = 

Acquisition training, EXT = Extinction training, RI = Reinstatement, RI-Test = Reinstatement-Test. 

 

 

Supplementary File 8: Detailed results of linear regressions: fear ratings. 

Outcome Stim.-

type Ranking Predictor Criterion b SEb Lower 95% 

CI 
Upper 95% 

CI t df p R2 Cohen's f2 

Fear Ratings CS dis. not ranked post-pre 

ACQ pre EXT 0.519 0.094 0.335 0.703 5.543 77 0.000 0.270 0.369 

Fear Ratings CS dis. not ranked post ACQ pre EXT 0.570 0.088 0.398 0.742 6.454 92 0.000 0.265 0.360 

Fear Ratings CS dis. not ranked post-pre 

ACQ pre-post EXT 0.372 0.132 0.113 0.631 2.827 76 0.006 0.175 0.213 

Fear Ratings CS dis. not ranked post ACQ pre-post EXT 0.413 0.107 0.203 0.623 3.851 91 0.000 0.177 0.215 

Fear Ratings CS dis. not ranked post-pre 

ACQ post EXT 0.144 0.087 -0.027 0.315 1.648 79 0.103 0.076 0.082 

Fear Ratings CS dis. not ranked post ACQ post EXT 0.139 0.077 -0.012 0.290 1.818 98 0.072 0.063 0.068 

Fear Ratings CS dis. not ranked post ACQ 1st trial RI-

Test 0.257 0.084 0.092 0.422 3.056 74 0.003 0.099 0.110 

Fear Ratings CS dis. not ranked post-pre 

ACQ 
1st trial RI-

Test 0.240 0.081 0.081 0.399 2.967 60 0.004 0.117 0.132 

Fear Ratings CS dis. not ranked pre EXT 1st trial RI-

Test 0.236 0.086 0.067 0.405 2.739 69 0.008 0.112 0.127 

Fear Ratings CS dis. not ranked pre-post EXT 1st trial RI-

Test 0.187 0.104 -0.017 0.391 1.793 68 0.077 0.052 0.055 

Fear Ratings CS dis. not ranked post EXT 1st trial RI-

Test 0.301 0.187 -0.066 0.668 1.610 71 0.112 0.043 0.045 

Fear Ratings CS+ not ranked post-pre 

ACQ pre EXT 0.509 0.095 0.323 0.695 5.365 91 0.000 0.208 0.263 

Fear Ratings CS+ not ranked post ACQ pre EXT 0.655 0.090 0.479 0.831 7.307 97 0.000 0.319 0.469 

Fear Ratings CS+ not ranked post-pre 

ACQ pre-post EXT 0.425 0.081 0.266 0.584 5.218 90 0.000 0.194 0.241 

Fear Ratings CS+ not ranked post ACQ pre-post EXT 0.461 0.083 0.298 0.624 5.547 96 0.000 0.209 0.263 

Fear Ratings CS+ not ranked post-pre 

ACQ post EXT 0.084 0.069 -0.051 0.219 1.212 92 0.229 0.011 0.011 

Fear Ratings CS+ not ranked post ACQ post EXT 0.172 0.073 0.029 0.315 2.370 101 0.020 0.042 0.044 

Fear Ratings CS+ not ranked post ACQ 1st trial RI-

Test 0.503 0.102 0.303 0.703 4.928 85 0.000 0.171 0.207 

Fear Ratings CS+ not ranked post-pre 

ACQ 
1st trial RI-

Test 0.330 0.105 0.124 0.536 3.153 79 0.002 0.091 0.100 
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Outcome Stim.-

type Ranking Predictor Criterion b SEb Lower 95% 

CI 
Upper 95% 

CI t df p R2 Cohen's f2 

Fear Ratings CS+ not ranked pre EXT 1st trial RI-

Test 0.430 0.093 0.248 0.612 4.630 82 0.000 0.184 0.226 

Fear Ratings CS+ not ranked pre-post EXT 1st trial RI-

Test 0.293 0.119 0.060 0.526 2.455 81 0.016 0.060 0.064 

Fear Ratings CS+ not ranked post EXT 1st trial RI-

Test 0.352 0.134 0.089 0.615 2.615 84 0.011 0.072 0.077 

Fear Ratings CS- not ranked post-pre 

ACQ pre EXT 0.077 0.099 -0.117 0.271 0.773 86 0.442 0.019 0.020 

Fear Ratings CS- not ranked post ACQ pre EXT 0.244 0.101 0.046 0.442 2.423 98 0.017 0.130 0.150 

Fear Ratings CS- not ranked post-pre 

ACQ pre-post EXT -0.197 0.120 -0.432 0.038 -1.638 85 0.105 0.061 0.065 

Fear Ratings CS- not ranked post ACQ pre-post EXT -0.147 0.123 -0.388 0.094 -1.198 97 0.234 0.030 0.031 

Fear Ratings CS- not ranked post-pre 

ACQ post EXT 0.236 0.138 -0.034 0.506 1.708 88 0.091 0.090 0.099 

Fear Ratings CS- not ranked post ACQ post EXT 0.386 0.140 0.112 0.660 2.753 100 0.007 0.217 0.278 

Fear Ratings CS- not ranked post ACQ 1st trial RI-

Test 0.270 0.176 -0.075 0.615 1.534 88 0.129 0.039 0.040 

Fear Ratings CS- not ranked post-pre 

ACQ 
1st trial RI-

Test 0.082 0.160 -0.232 0.396 0.513 78 0.610 0.004 0.004 

Fear Ratings CS- not ranked pre EXT 1st trial RI-

Test 0.493 0.275 -0.046 1.032 1.788 86 0.077 0.043 0.045 

Fear Ratings CS- not ranked pre-post EXT 1st trial RI-

Test -0.279 0.213 -0.696 0.138 -1.308 85 0.194 0.028 0.029 

Fear Ratings CS- not ranked post EXT 1st trial RI-

Test 0.582 0.193 0.204 0.960 3.010 87 0.003 0.109 0.122 

Fear Ratings CS dis. ranked post-pre 

ACQ pre EXT 0.664 0.112 0.444 0.884 5.936 77 0.000 0.299 0.427 

Fear Ratings CS dis. ranked post ACQ pre EXT 0.534 0.081 0.375 0.693 6.569 92 0.000 0.300 0.428 

Fear Ratings CS dis. ranked post-pre 

ACQ pre-post EXT 0.595 0.117 0.366 0.824 5.082 76 0.000 0.241 0.317 

Fear Ratings CS dis. ranked post ACQ pre-post EXT 0.461 0.084 0.296 0.626 5.461 91 0.000 0.231 0.301 

Fear Ratings CS dis. ranked post-pre 

ACQ post EXT 0.269 0.167 -0.058 0.596 1.613 79 0.111 0.033 0.034 

Fear Ratings CS dis. ranked post ACQ post EXT 0.241 0.120 0.006 0.476 2.003 98 0.048 0.040 0.042 

Fear Ratings CS dis. ranked post ACQ 1st trial RI-

Test 0.213 0.086 0.044 0.382 2.471 74 0.016 0.072 0.078 

Fear Ratings CS dis. ranked post-pre 

ACQ 
1st trial RI-

Test 0.236 0.116 0.009 0.463 2.043 60 0.045 0.066 0.071 

Fear Ratings CS dis. ranked pre EXT 1st trial RI-

Test 0.217 0.094 0.033 0.401 2.309 69 0.024 0.075 0.082 

Fear Ratings CS dis. ranked pre-post EXT 1st trial RI-

Test 0.138 0.097 -0.052 0.328 1.417 68 0.161 0.029 0.030 

Fear Ratings CS dis. ranked post EXT 1st trial RI-

Test 0.143 0.081 -0.016 0.302 1.769 71 0.081 0.047 0.050 

Fear Ratings CS+ ranked post-pre 

ACQ pre EXT 0.516 0.101 0.318 0.714 5.107 91 0.000 0.215 0.274 

Fear Ratings CS+ ranked post ACQ pre EXT 0.584 0.087 0.413 0.755 6.675 97 0.000 0.326 0.484 
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Outcome Stim.-

type Ranking Predictor Criterion b SEb Lower 95% 

CI 
Upper 95% 

CI t df p R2 Cohen's f2 

Fear Ratings CS+ ranked post-pre 

ACQ pre-post EXT 0.497 0.094 0.313 0.681 5.267 90 0.000 0.202 0.253 

Fear Ratings CS+ ranked post ACQ pre-post EXT 0.442 0.090 0.266 0.618 4.930 96 0.000 0.191 0.236 

Fear Ratings CS+ ranked post-pre 

ACQ post EXT 0.070 0.136 -0.197 0.337 0.517 92 0.607 0.003 0.003 

Fear Ratings CS+ ranked post ACQ post EXT 0.208 0.119 -0.025 0.441 1.744 101 0.084 0.029 0.030 

Fear Ratings CS+ ranked post ACQ 1st trial RI-

Test 0.364 0.087 0.193 0.535 4.192 85 0.000 0.162 0.193 

Fear Ratings CS+ ranked post-pre 

ACQ 
1st trial RI-

Test 0.286 0.096 0.098 0.474 2.985 79 0.004 0.092 0.102 

Fear Ratings CS+ ranked pre EXT 1st trial RI-

Test 0.382 0.081 0.223 0.541 4.732 82 0.000 0.198 0.247 

Fear Ratings CS+ ranked pre-post EXT 1st trial RI-

Test 0.228 0.089 0.054 0.402 2.568 81 0.012 0.066 0.071 

Fear Ratings CS+ ranked post EXT 1st trial RI-

Test 0.166 0.076 0.017 0.315 2.199 84 0.031 0.056 0.059 

Fear Ratings CS- ranked post-pre 

ACQ pre EXT 0.430 0.169 0.099 0.761 2.552 86 0.012 0.090 0.098 

Fear Ratings CS- ranked post ACQ pre EXT 0.558 0.093 0.376 0.740 5.965 98 0.000 0.276 0.381 

Fear Ratings CS- ranked post-pre 

ACQ pre-post EXT 0.086 0.136 -0.181 0.353 0.629 85 0.531 0.006 0.006 

Fear Ratings CS- ranked post ACQ pre-post EXT 0.192 0.080 0.035 0.349 2.405 97 0.018 0.059 0.062 

Fear Ratings CS- ranked post-pre 

ACQ post EXT 0.250 0.167 -0.077 0.577 1.500 88 0.137 0.030 0.031 

Fear Ratings CS- ranked post ACQ post EXT 0.443 0.098 0.251 0.635 4.512 100 0.000 0.171 0.206 

Fear Ratings CS- ranked post ACQ 1st trial RI-

Test 0.144 0.081 -0.015 0.303 1.775 88 0.079 0.037 0.038 

Fear Ratings CS- ranked post-pre 

ACQ 
1st trial RI-

Test 0.050 0.123 -0.191 0.291 0.411 78 0.682 0.002 0.002 

Fear Ratings CS- ranked pre EXT 1st trial RI-

Test 0.148 0.075 0.001 0.295 1.979 86 0.051 0.043 0.045 

Fear Ratings CS- ranked pre-post EXT 1st trial RI-

Test 0.003 0.103 -0.199 0.205 0.025 85 0.980 0.000 0.000 

Fear Ratings CS- ranked post EXT 1st trial RI-

Test 0.249 0.071 0.110 0.388 3.503 87 0.001 0.126 0.145 

Note.   Stim. = Stimulus, CI = Confidence Interval, CS dis. = CS discrimination, pre = prior to the experimental phase, post = subsequent to the experimental phase, ACQ = Acquisition training, 

EXT = Extinction training, RI = Reinstatement, RI-Test = Reinstatement-Test. 
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Regressions including extinction learning rates by using different operationalizations 

 

Figure 5-figure supplement 1.  As per reviewer’s request, we illustrate standardized betas derived 

from non-preregistered regressions including SCR extinction training learning rates (LR EXT). 

As there is no agreed upon approach, we provide a small manyverse of approximations of 

extinction learning rates: We subtracted i) the last extinction trial from the first extinction trial 

(i.e., for CS-discrimination during the first and last trial, for CS+ and for CS- respectively; LR 

EXT 1, columns 1 - 3), ii) the last two extinction trials from the first two extinction trials (LR 

EXT 2, columns 4 - 6), iii) the last quarter of trials from the first quarter of trials (i.e., 4 trials; LR 

EXT 4, columns 7 - 9) and iv) the last half from the first half of trials (i.e., 7 trials; LR EXT H, 

columns 10 - 12). We acknowledge that learning rates have been inferred through different 

approaches in the literature (see e.g., Ney et al., 2020, Ney et al., 2022) and are often calculated 

from model-based approaches such as Rescorla Wagner Model (Seel, 2012) and hence our 
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operationalizations are only four out of multiple equally justifiable options. Colored cells indicate 

statistical significance of standardized betas, non-colored cells indicate non-significance. 

Standardized betas are color-coded for their direction and magnitude showing positive values 

from yellow to red and negative values from light blue to dark blue. Darker colors indicate higher 

betas. AVE = average, LOG = log-transformed data, LOG.RC = log-transformed and range 

corrected data, not ordinal = not ordinally ranked data, ordinal = ordinally ranked data. 
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Abstract In this report, we illustrate the considerable impact of researcher degrees of freedom

with respect to exclusion of participants in paradigms with a learning element. We illustrate this

empirically through case examples from human fear conditioning research, in which the exclusion of

‘non-learners’ and ‘non-responders’ is common – despite a lack of consensus on how to define

these groups. We illustrate the substantial heterogeneity in exclusion criteria identified in a

systematic literature search and highlight the potential problems and pitfalls of different definitions

through case examples based on re-analyses of existing data sets. On the basis of these studies,

we propose a consensus on evidence-based rather than idiosyncratic criteria, including clear

guidelines on reporting details. Taken together, we illustrate how flexibility in data collection and

analysis can be avoided, which will benefit the robustness and replicability of research findings and

can be expected to be applicable to other fields of research that involve a learning element.

Introduction
In the past decade, efforts to understand the impact of undisclosed flexibility in data collection and

analysis on research findings have gained momentum – for instance in defining and excluding ‘out-

liers’ (Simmons et al., 2011). This flexibility has been referred to as ‘researcher degrees of freedom’

(Simmons et al., 2011) or ‘the garden of forking paths’ (Gelman and Loken, 2013) to reflect the

fact that each decision during data processing and/or analysis will take the researcher down a differ-

ent ‘path’. Importantly and concerningly, these different paths can lead to fundamentally different

end-points (i.e., results and associated conclusions) despite an identical starting point (i.e., raw data)

(Silberzahn et al., 2018). Often, researchers take a certain path without malicious intent to obtain
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favorable results (e.g., ‘p-hacking’; Head et al., 2015): the decision to follow a certain path may be

based on unawareness of alternative paths (due to lack of specific background knowledge) or the

researcher following the most obvious path from an individual perspective. The latter is influenced

by the scientific environment, the research question at stake or practices previously published by

researchers in the field.

Admittedly, there is substantial ambiguity in what constitutes ‘the best decision’ for data analysis,

and none of the available options may be necessarily incorrect (Simmons et al., 2011;

Silberzahn et al., 2018). More precisely, different paths in the garden of forking paths may be more

or less appropriate for different research questions, experimental designs, outcome measures or

samples. Consequently, it is notoriously difficult for researchers, particularly those new to a field, to

make informed and hence appropriate decisions. As a matter of fact, it is difficult to anticipate the

number of different paths available and the consequences of choosing one over the other,

or to come up with facts that truly justify choosing one path over the other – even for experts in a

field. However, simply choosing a particular path because others chose it before (i.e., adopting pub-

lished exclusion criteria) can also be highly problematic, as decisions often hinge on study-specific

characteristics that do not invariantly apply to other studies.

We argue that it is important to raise awareness to this issue. Specifically, we think that it is critical

to discuss both the rationale behind and the consequences associated with taking different analytical

paths in general and in specific sub-fields of research. Here, we exemplarily take up this discussion

for human fear conditioning research as a case example for tasks with a learning element grounded

in recent discussions in science in general (Flake and Fried, 2019; John et al., 2012) and in fear

conditioning research specifically (Lonsdorf et al., 2017; Lonsdorf et al., 2019). Fear conditioning is

a typical paradigm employed to study (emotional) learning and memory processes with a particularly

strong translational perspective (Lonsdorf et al., 2017; Vervliet et al., 2013). Questions addressed

in the field of human fear conditioning are often concerned with consolidation, retrieval, generaliza-

tion or modification of conditioned responses. Hence, it has often been claimed that the study of

these processes requires the acquisition of a robust conditioned response as a precondition. There-

fore, participants are often (routinely) excluded from analyses if they appear to not have learned

(‘non-learners’) or not have been responsive to the experimental stimuli (‘non-responders’) during

fear acquisition training, in which one conditional stimulus (CS+) predicts an upcoming aversive

unconditioned stimulus (US) and another conditional stimulus does not (CS–) (Lonsdorf et al., 2017;

Pavlov, 1927).

Critically, ‘non-learning’ is most often defined as a failure to show discrimination between the CS

+ and CS– in skin conductance responses (SCRs) – the most common outcome measure in the field

(Lonsdorf et al., 2017). This practice may seem trivial at first glance and has been referred to as

exclusion of ‘non-learners’, ‘performance-based exclusion’ or even ‘exclusion of outliers’. Yet, defin-

ing a set of characteristics to identify individuals who ‘did not learn’ is operationalized in very hetero-

geneous ways across studies. The same applies to the criteria that determine what constitutes a’

non-responder’ during fear acquisition training.

In addition to the heterogeneity in operationalization, other problems of performance-based

exclusion of participants are worth noting: definitions of ‘non-learners’ are typically based on SCRs

only (for exceptions see Ahmed and Lovibond, 2019; Oyarzún et al., 2019) and ‘non-learners’ are

typically excluded from all analyses, that is, all experimental phases and outcome measures of a

study. As SCRs are not a pure measure of either learning or fear, but rather reflect arousal levels

(Hamm et al., 1993) that serve as proxies for fear learning, classification into ‘learners’ and ‘non-

learners’ on the basis of this single outcome measure may induce substantial sample bias. First,

defining ’non-learning’ on one single outcome measure, such as SCRs, ignores the fact that success-

ful CS+/CS– differentiation may be present in other outcome measures (Hamm et al., 1993) such as

fear potentiated startle (FPS) or ratings of fear and contingencies (i.e., cognitive awareness of the CS

+/US contingencies). As such, ‘non-learning’ as defined on a single outcome measure such as SCRs

cannot comprehensively capture ‘non-learning’. Second, the level of responding in SCRs and CS+/

CS– discrimination has been shown to be associated with a vast number of individual difference fac-

tors (Lonsdorf and Merz, 2017; Boucsein et al., 2012) such as age and sex (for a discussion see

Boucsein et al., 2012), ethnicity (Alexandra Kredlow et al., 2017; Boucsein et al., 2012), genetic

make-up (Garpenstrand et al., 2001), use of oral contraceptives (Merz et al., 2018b) or personality

traits (Naveteur and Freixa I Baque, 1987). Consequently, excluding participants from an
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experiment as ’non-learners’ may pre-select specific sub-samples and thus may thus severely hamper

the generalizability and interpretation of the findings. Importantly, this practice may be a threat to

and a limitation of the clinical translation of findings because it potentially leads to the selective

exclusion of specific and highly relevant sub-groups. In fact, a recent meta-analysis suggests that

patients suffering from anxiety disorders show overgeneralization of fear responding, which is

enhanced when responding to the CS– (Duits et al., 2015), which may lead to reduced CS+/CS– dis-

crimination if the response to the CS+ is comparable.

The concerns discussed above are merely based on theoretical considerations. Below, we aim to

address the important and controversial topic of exclusion of ‘non-learners’ and ‘non-responders’ in

human fear conditioning research empirically. We set out to provide an overview and inventory of

the exclusion criteria that are currently employed in the field by means of a systematic literature

search following PRISMA guidelines (Moher et al., 2009), covering a publication period of six

months. Importantly, we distinguish between ‘non-learners’ (based on task performance, that is, CS

+/CS– discrimination) and ‘non-responders’ (based on a lack of responsiveness) as assessed using

SCRs. We expect the identified criteria for ‘non-learners’ and ‘non-responders’ to be characterized

by noticeable heterogeneity (thus allowing for considerable researcher degrees of freedom) across

studies. We thus aim to (1) raise awareness and (2) illustrate the impact of applying different exclu-

sion criteria features (i.e., forking paths) on results and interpretation through case examples exem-

plified by the re-analyses of existing data sets. Finally, we aim to (3) provide

Figure 1. Flow chart illustrating the selection of records according to PRISMA guidelines (Moher et al., 2009).

Note that seven records (14%) employed the definition and exclusion of both ‘non-learners’ and ‘non-responders’.

Examples of irrelevant topics included studies that did not use fear conditioning paradigms (see https://osf.io/

uxdhk/ for a documentation of excluded publications).
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methodologically informed, evidence-based recommendations for future studies with respect to

defining and handling ‘non-learners’ and ‘non-responders’.

Results

Definition of performance-based exclusion of participants (‘non-
learners’) and number of participants excluded across studies
Slightly fewer than one fourth of the records (i.e., 22%; 11 out of 50 records comprising 14 individual

studies as three records reported two studies each) included in the systematic literature search

employed performance-based exclusion of participants (i.e., SCR ‘non-learners’, Figure 1).

Strikingly, every single one of these records used an idiosyncratic definition to define ‘non-learn-

ers’, yielding a total of eleven different definitions in the short period of six months (see Appen-

dix 1—table 1). The percentages of excluded participants varied from 2% to 74% (Figure 2A) of the

respective study sample. Definitions differed in i) the experimental (sub-)phases to which they were

applied (i.e., whether the full phase or only the first half, second half or even single trials were con-

sidered), ii) the number of trials that the exclusion was based on (varying between one and eight sin-

gle trials), iii) the CS+/CS– discrimination cutoff applied (varying between <0 mS and <0.1

mS), and iv) the CS+ type (only non-reinforced or all CS+ trials) considered. The different forking

paths and their frequency resulting from these combinations are displayed in Figure 2B.

The cutoff for CS+ versus CS– discrimination used to identify a ‘non-learner’ varied between <0

mS and <0.1 mS, with most records excluding participants as ‘non-learners’ if they showed either a

negative discrimination (<0 mS) and/or no discrimination (�0 mS). These criteria apply if the SCR

amplitude in response to the CS– was higher than and/or equal to the amplitude elicited by the CS

+. Furthermore, most records required this criterion to be fulfilled only during the last half or the full

fear acquisition training phase. Of note, the number of trials included in the same ‘phase’ category is

contingent on the experimental design and hence does not represent a homogeneous category

Figure 2. Graphical illustration of the percentage of ‘non-learners’ and forking path analysis across studies. (A)

Illustration of the percentage of participants excluded (‘non-learners’) based on SCR CS+/CS–discrimination scores

across studies included in the systematic literature search (note that these 14 individual studies are derived from

11 different records, as three records reported two individual studies each). Please note that some studies

excluded participants on the basis of ‘non-learning’ as well as ‘non-responding’ (cf. Figure 1), and hence

the percentages displayed here do not necessarily map onto the percentage of total participants excluded per

study. Also note that the study with the highest percentage of excluded participants (i.e., 74%) reported the

percentage of excluded participants as a single value that included ‘non-learners’ and ‘non-responders’. This study

is only included here because the largest proportion of exclusions can be expected to result from ‘non-learning’.

(B) Sanky plot showing the ‘forking paths’ of performance-based exclusion of participants as ’non-learners’,

illustrating differences in the experimental phase, number of trials, the SCR CS+/CS– discrimination score in mS

used to define a ‘non-learner’, the CS+ type considered (illustrated as the nodes in graded colors) and their

combinations used to define ’non-learners’ across studies. Path width was scaled in relation to frequency of the

combinations. Note that for some ‘nodes’ the percentages do not add up to 100% because of rounding.
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(‘last half’ may include five trials for one study comprising 10 trials in total but 10 trials for a different

study employing 20 trials in total.

Applying the identified performance-based exclusion criteria to existing
data: a case example
We applied the identified cutoff criteria to an existing data set (Data set 1) to exemplify the part of

the sample that would be excluded when applying different cutoff criteria (shown in different colors

from yellow to dark blue in Figure 3) based on the most frequently used phase restriction: the last

half of fear acquisition training. CS+/CS– discrimination was calculated on the basis of raw (A) or

log-transformed, range-corrected (log, rc) scores (B), because it is not usually reported which data

are used to classify ‘learners’ vs. ‘non-learners’. Strikingly, the proportion of participants

that are excluded is higher when CS+/CS– discrimination is calculated on the basis of raw data

rather than log-transformed and range-corrected data (despite employing the same criteria) in par-

ticular for the highest ‘non-learner’ <0.01 mS cutoff (76.7% versus 52.6%, respectively) (see Fig-

ure 3—figure supplement 1 for details).

In addition, we included a case example of two hypothetical individuals that differ in raw SCR

amplitudes (ID#1: low and ID#2: high), but importantly show the same discrimination ratio (4:1)

between CS+ and CS–(see Figure 3A). These two case examples illustrate that high CS+/CS– dis-

crimination cutoffs, such as excluding individuals with discrimination scores < 0.1 mS as ‘non-learn-

ers’, favor individuals with high SCR raw amplitudes.

Unsurprisingly, the exclusion group defined by a CS+/CS– discrimination cutoff <0 mS showed

inverse discrimination (CS–>CS+, not significant in raw SCRs [p=0.117]; significant in log,rc

SCRs [p = 0.021]). Strikingly and more importantly, most cumulative exclusion groups, as established

by defining ‘non-learners’ by the CS+/CS– discrimination different cutoffs in SCRs in the literature, in

fact show statistically significant CS+/CS– discrimination (see Appendix 2 for details and a brief

discussion).

Note that despite the different color coding, which serves illustrative purposes only, the groups

are in practice cumulative. More precisely, the groups illustrated by lighter colors are always

Figure 3. Density plots illustrating the frequency of CS+/CS– discrimination scores in a sample of N = 116 (Data

set 1) based on the last half of the acquisition phase (including 7 CS+ and 7CS–, 100% reinforcement rate) for (A)

SCR raw data and (B) logarithmized and range-corrected (rc; individual trial SCR/SCRmax_across_all_trials) SCR data (as

it is typically not reported to which data exclusion criteria are applied). Color coding (yellow to blue) illustrates

which part of the sample would be excluded when applying the performance-based exclusion criteria (i.e. CS+/

CS– discrimination) as identified by the systematic literature search. Panel (A) also illustrates two case examples

(ID#1 and ID#2) that differ in SCR amplitudes but importantly show the same discrimination ratio between CS+

and CS– (4:1). These two case examples illustrate that high CS+/CS– discrimination cutoffs favor individuals with

high SCR amplitudes to remain in the final sub-sample. Data are based on a re-analysis of an unpublished data set

recorded in the fMRI environment (Klingelhöfer-Jens M., Kuhn, M. and Lonsdorf, T.B.; unpublished).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Percentages of participants excluded (Data set 1) when employing the different CS+/CS–

discrimination cutoffs (as identified by the systematic literature search and graphically shown in Figure 3B) which

are illustrated as density plots in Figure 3.
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contained in the darker colored groups when applying the respective cutoffs. For example, the

group excluded when employing a cutoff of <0.1 mS (mid blue) also comprises the groups already

excluded for the lower cutoffs of = 0.05 mS (light blue),<0.05 mS (turquoise), = 0 mS (light green)

and <0 mS (yellow). For illustrative purposes, the different groups are treated as separate groups in

this figure.

Exploratory analyses of consistency of classification (‘learners’ vs. ‘non-
learners’) across outcome measures and criteria employed
The convergence of non-discrimination across different outcome measures was investigated by test-

ing for CS+/CS– discrimination in fear ratings in individuals with different amounts of CS+/CS– dis-

crimination in SCRs as defined by the criteria described above. In fact, individuals with non-

significant and inverse CS+/CS– discrimination (i.e., �0 mS) in SCRs showed significant CS+/CS– dis-

crimination in fear ratings (t31 = 9.69, pbonf_corr < 0.000000001, d = 1.71, see Figure 4—figure

Figure 4. Exemplary illustration of individuals (Data set 1) that switch from being classified as ‘learners’ vs. ‘non-

learners’ depending on the different CS+/CS– discrimination cutoff level (panels A–D), when calculation of CS+/

CS– discrimination is based on either the full fear acquisition phase or the second half of the fear acquisition

training (left and right part of each panel, respectively).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Bar plots (mean ± SE) on which the superimposed individual data points show CS+ and

CS– amplitudes (of raw SCR values) and CS+/CS– discrimination in (A) fear ratings and (B) SCRs raw values in the

group of ‘non-learners’, as exemplarily defined for this example as a group consisting of individuals in the two

lowest SCR CS+/CS– discrimination cutoff groups (i.e., �0) in Data set 1.
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supplement 1). Importantly, all cumulative exclusion groups showed significant CS+/CS– discrimina-

tion in fear ratings (all p ’s< 0.002, see Appendix 3—table 1).

We also illustrate (Figure 4) that the classification as ‘learners’ and ‘non-learners’ changes if two

features (CS+/CS- discrimination cutoff and full vs. last half of acquisition training phase) of the crite-

ria are changed (as illustrated in their full variation in Figure 2B).

The potential sample bias with respect to individual differences induced
by employing different performance-based exclusion criteria: a re-
analysis of existing data and a case example
Regarding the impact of performance-based exclusion on the pre-selection for certain individual dif-

ferences, Figure 5 shows that the distributions of trait anxiety were shifted to the left (i.e., towards

lower scores) with higher SCR CS+/CS– discrimination cutoffs. More precisely, this means that, in

this sample, highly anxious individuals display smaller CS+/CS– discrimination in SCRs, and that

excluding individuals who display low discrimination scores will lead to the exclusion of anxious

individuals.

In fact, we observed a main effect of ‘Exclusion group’ on trait anxiety score (F[4,263] = 219.2,

p<0.001, ƞP
2 = 0.77). All exclusion groups (corresponding to the color coding in Figure 5) differ sig-

nificantly from each other in their trait anxiety scores (all pbonf_corr � 0.001), except for the group

that did not show any CS+/CS– discrimination (=0 mS, light green, however n = 6 only), which

showed significantly higher trait anxiety scores (mean ± SD STAI score: 43.8 ± 6.1) than the group

Figure 5. A case example illustrating potential sample bias induced by excluding individuals on the basis of CS+/

CS– discrimination scores (based on logarithmized, range-corrected (rc) SCR data). Scatterplot illustrating the

association between trait anxiety (measured via the trait version of the State-Trait Anxiety Inventory, STAI-T) and

CS+/CS– discrimination scores in a sample of N = 268 (Data set 2). Color coding (yellow to blue) illustrates which

part of the sample would be excluded when applying the performance-based exclusion criteria (i.e. CS+/CS–

discrimination) as identified by the systematic literature search. Note that within this sample, no individuals were

identified with CS+/CS– discrimination equaling 0.05 mS. The upper panel illustrates densities for trait anxiety for

the different CS+/CS–discrimination groups. The rightmost panel illustrates the density for CS+/CS– discrimination

in the full sample. Data are based on a re-analysis of a data set recorded in the behavioral environment

(Schiller et al., 2010). Note that despite the different color coding, which serves illustrative purposes only, the

groups are in practice cumulative. More precisely, the groups illustrated by lighter colors are always contained in

the darker colored groups when applying the respective cutoffs. For example, the group excluded when

employing a cutoff of <0.1 mS (mid blue) also comprises the groups already excluded for the lower cutoffs

of = 0.05 mS (light blue), <0.05 mS (turquoise), = 0 mS (light green) and <0 mS (yellow). For illustrative purposes, the

different groups are treated as separate groups in this figure.
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Figure 6. Graphical illustration of the percentage of ‘non-responders’ and forking path analysis across studies. (A)

Illustration of the percentage of participants excluded from each study as a result of ‘ SCR non-responding’ to

(i) the conditioned stimuli (i.e., CS+ and CS–), (ii) the US, (iii) the CS+ (which also comprises a study that used the

CXT+, i.e. context), (iv) the CS+, CS– and US or (v) a pre-experimental test. Note that these 18 individual studies

are derived from 16 different records, two of which included two different studies that used the same criteria. Note

that some studies excluded participants on the basis of ‘non-learning’ as well as ‘non-responding’, and hence

the percentages displayed here do not necessarily map onto the percentage of total participants excluded

from each study. Also note that a single study (Schiller et al., 2018) is not included in this visualization because it

reported % ‘non-learners’ and % ‘non-responders’ as a single value. This value has been included in the

visualization of ‘non-learners’ (Figure 2) as these are expected to represent the largest proportion. (B) Sanky plot

illustrating the stimulus type (pre-experiment refers to determination of ’responding’ in an unrelated phase prior

to the experiment), the minimally required response amplitude in mS (note that ‘visual’ refers to visual inspection of

the data without a clear-cut amplitude cutoff, NA refers to no criterion applied) illustrated as the nodes in graded

colors and their combinations that lead to classification as a ‘non-responder’. Path width was scaled in relation to

frequency of the combinations. Note that for some ‘nodes’ the percentages do not add up to 100% because of

rounding.

Figure 7. Percentage of no-responses across stimuli and correlation between CS and US non-responses. (A) Bar

plot displaying the number of ‘non-responses’ to the CS+, CS–, across both CS and to the US across all

participants in Data set 1 (see Appendix 4—table 1 for percentages across different data sets). (B) Scatterplot

illustrating the number of ‘non-responses’ (i.e., zero-responses, here defined by an amplitude <0.01 mS) to the US

presentations (total of 14 presentations) and the CS+ (red) and CS– (blue) responses (14 presentations each) for

each participant in Data set 1. For completeness sake, ‘non-responses’ across CS types are illustrated in gray (CS+

and CS– combined, total of 28 presentations). Lines illustrate the Spearman correlation (rs) between ‘non-

responses’ to the US and ‘non-responses’ to the CS+, CS– and both CS, with corresponding correlation

coefficients (font color corresponds to CS type) included in the figure.
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with the largest CS+/CS– discrimination only (i.e., �0.1 mS, dark blue, n = 88, mean ± SD STAI score:

36.6 ± 8.5, pbonf_corr � 0.001, CI [0.133 to 0.279]). Nevertheless, trait anxiety scores in this group

(light green) were not significantly larger than those in the group with the negative discrimination (i.

e., <0 mS, yellow, n = 89, mean ± SD STAI score: 40.5 ± 9.7, pbonf_corr = 0.10, CI [�0.004 to 0.142]),

the group with a small discrimination score (i.e.,>0 mS but <0.05 mS, light blue, n = 43, mean ± SD

STAI score 37.9 ± 7.9, pbonf_corr = 1.0, CI [�0.054 to 0.094]) or the group with the middle discrimina-

tion score (i.e., >0.05 mS but <0.1 mS, mid blue, n = 42, mean ± SD STAI score 38 ± 10.2, pbonf_-

corr = 0.11, CI [�0.005 to 0.145]).

Definition of ‘non-responders’ and numberof participants excluded
across studies
Thirty-two percent (i.e., 16 records) of the records in our systematic literature search included a defi-

nition and exclusion of ‘non-responders’, with percentages of participants excluded as a result of

non-responding ranging between 0% and 14% (see Figure 6A). A single study (Chauret et al.,

2014; Oyarzún et al., 2012) reported % ‘non-learners’ and % ‘non-responders’ as a single value

(see Appendix 1—table 2). The definitions differed in: i) the stimulus type(s) used to define ‘non-

responding’ (CS+ reinforced, CS+ unreinforced, all CS+s, CS–, US), ii) the SCR minimum amplitude

criterion used to define a responder (varying between 0.01 mS and 0.05 mS; visual inspection), and iii)

the percentage of trials for which these criteria have to be met (see Figure 6B and Appendix 1—

table 2), as well as a combination thereof.

‘Non-responding’ was most commonly defined as not showing a sufficient number of responses

to the conditioned stimuli (CS+ and CS–), less frequently by the absence of responses to the US or

any stimulus (CS+, CS- or US), and in two cases by the absence of responses to the CS+ or context

(CXT+) specifically (see Figure 6B). Not surprisingly, the percentage of excluded participants dif-

fered substantially depending on the stimulus type used to define ‘non-responding’ (CS based, 0–

10%; CS+/CXT+ based, 10–11%; US based, 0–4%; CS and US based, 11–14%; pre-experimental test

based, 5%; Figure 6A).

Despite these differences in the stimulus types used to define ‘non-responding’ in the first place,

studies differed widely in the amplitude cutoff criterion to be exceeded in order to qualify as a

response (see Figure 6B) as well as in the percentage of trials in which this cutoff had to be met (see

Appendix 1—table 2).

The question of what (physiological) ‘non-responders’ during fear acquisition training are and

how to identify them might be elucidated by investigating the number of ‘non-responses’ across trial

types (CS and US) across data sets, and whether ‘non-responding’ to the US predicts ‘non-respond-

ing’ to the CS or vice versa. As expected from Figure 6A, the number of ‘non-responses’ to the US

was low (as was also the case in our data [10%, Data set 1]), while the number of ‘non-responses’ to

the CS (48.29%) was substantially higher – in particular for the CS– (58.6%; CS+ ‘non-responses’:

37.9%, see Figure 7A). This pattern, exemplarily illustrated here in one data set is representative of

a larger number of data sets (see Appendix 4, table 1 for details). Furthermore, in our data (Data set

1), all individuals that did not react to the US in more than two thirds of the US trials also

showed no responses to the CS (n = 3 of N = 119). To summarize, this provides the first evidence

that ‘non-responding’ to the US may predict ‘non-responding’ to the CS but not vice versa. Further-

more, our data also suggest a positive correlation between the number of ‘non-responses’ to the US

and the number of ‘non-responses’ to the CS (see Figure 7B for statistics).

Discussion
In this article, we showed that participant exclusion in fear conditioning research is common (i.e.,

40% of records included) and characterized by substantial operationalizational heterogeneity of defi-

nitions for ‘non-learners’ and (physiological) ‘non-responders’. Furthermore, we provide case-exam-

ples that illustrate: i) the futility of some definitions of ‘non-learners’ (i.e., when those classified as

‘non-learners’ in fact show significant discrimination on both ratings and SCRs as illustrated in

Appendix 3 and Appendix 2, respectively) when applied to our data; and ii) the potential sample

bias induced by excluding ‘non-learners’ with respect to individual differences. Furthermore, we pro-

vide an overview of SCR ‘non-responses’ to different stimulus types (CS+, CS– and US) across differ-

ent data sets (see Appendix 4—tables 1 and 2) as a guide for developing evidence-based criteria
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Box 1. List of reporting details, potential difficulties and recommendations

when excluding ‘non-learners’ (performance-based exclusion) and/or ‘non-

responders’ with a focus on SCRs.

Please note that this Box can be annotated online.

(A) General reporting details

What to report? Why is this considered important?
What can go wrong or be
ambiguous?

Recommendations on how to
proceed

Details on data recording and
response quantification pipeline

. because differences in data
recording and quantification (i.e.,
response scoring) can make a
substantial difference

. report recording equipment and
all settings used (e.g., filter)
. report software used for response
quantification
. report precise details of response
quantification

Minimal response criterion (mS) to
define a valid SCR

. to define valid responses . minimally detectable amplitude (e.
g., 0.01, 0.02, 0.03, 0.05 mS, etc.)
may be sample- and equipment-
specific
. no clear recommendations
(existing guidelines provide a range
of 0.01 to 0.05 mS) because this is
influenced by noise level and
equipment

. test different minimal response
criteria in the data set and define
the cutoff empirically. In our
experience (Data set 1), a cutoff was
easily determined empirically by
visually inspecting responses at
different cutoffs (e.g., <0.01 mS,
between 0.01 mS and 0.02 mS) and
by evaluating their discrimination
from noise

Whether the first CS+ and/or the
first CS– trial is included or not, and
information on trial sequence

. no learning can be evident in the
first trial, as the first US may occur at
the earliest at the end of the CS+
and hence after the scoring window
for the CS+-induced SCR
. if the first trial is a CS–, no learning
can have taken place as the US has
not been presented yet
. inclusion of the first trial (or the
first trials in partial reinforcement
protocols) may thus artificially
reduce CS+/CS– discrimination

. in fully randomized partial
reinforcement protocols, US
presentations may cluster in the first
or last half of the acquisition
training, which will impact on CS+/
CS–discrimination in SCRs

. careful experimental design with
respect to trial-sequences (in
particular in partial reinforcement
protocols)
. report whether the first trial for
both CS+ and CS– is excluded
because it may induce noise and
bias CS+/CS– discrimination
towards non-discrimination and as
the first trial is sensitive to trial
sequence effects

Precise number of trials considered
(if applicable for each trial type
including reinforced and non-
reinforced CS+ trials in case of
partial reinforcement)

. often difficult/ambiguous to infer
this information from the
’Materials and methods’ section of
a reporta

. number of trials that the ‘last half’
or ‘full phase’ refers to is contingent
on experimental design and hence
ambiguous and imprecise (see
Figure 2B)

. precision in reporting rather than
relying on the reader making the
right inferences
. specify clearly the number of trials
per stimulus type that are
comprised in the ‘last half’ or ‘full
phase’
. provide a justification (theoretical
and/or empirical) for this decisionb

Details of whether results were
based on raw or transformed data

. typically, transformations are
required to allow interpretation of
the reported results and to meet
the assumptions of commonly
statistical models

. report details of transformation (e.
g., logarithmized [log/LN], range-
corrected, square-root) including
the number of trials considered (for
each stimulus type) and the
sequence of transformations
applied and specific formula (e.g.,
for range-correction)
. provide justification for
any applied transformation (e.g.,
violation of assumption of normal
distribution of residuals)
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Precise number of excluded
participants and specific reasons

. often difficult/ambiguous to infer
this information from the
’Materials and methods’ section of
a reporta

. different researchers have
different opinions on what
‘exclusion’ is (e.g., having
individuals discontinue after a first
experimental day based on
performance should be considered
and reported as exclusion)

. report a breakdown of specific
reasons for exclusions with
respective n’s

(B) Specific reporting details for exclusion of ‘non-learners’

What to report? Why is this considered important?
What can go wrong or be
ambiguous?

Recommendations on how to
proceed

CS+/CS– discrimination is
calculated on the basis of raw SCR
or transformed (e.g., logarithmized
[log/LN], range-corrected, square-
root) scores

. the same criteria lead to different
proportions of excluded individuals
when applying them to raw or
transformed data (see Figure 3A
and B)

. exact details of transformations
(optimally calculation formulas)
need to be included for full
transparency and reproducibility

Minimal differential (CS+ vs. CS)
cutoff for ‘non-learning’ in mS

. different cutoffs lead to very
different proportions of individuals
excluded (see Figure 3)

. exact details on cutoffs need to be
included for full transparency and
reproducibility

On what outcome measures is ‘non-
learning’ determined?

. ‘non-learners’ do not necessarily
converge across different outcome
measures (Appendix 3, Figure 4—
figure supplement 1)

. all outcome measures recorded
need to be reported

. ‘non-learning’ should not be
based on a single outcome
measure or a clear justification
needs to be provided as to why a
single measure is considered
meaningful

If ‘non-learning’ is determined by
responding during fear acquisition
training, which trial types and
number of trials per trial type were
considered?

. depending on the criteria
employed, the same individual may
be classified as ‘learner’ or ‘non-
learner’ (see Figure 4)

. classification as ‘non-learner’
should be based on differential
scores (CS+ vs. CS–), and the
number of trials included for this
calculation should be clearly
justified. Providing a generally valid
recommendation regarding the
number of trials to be included is
difficult because it critically
depends on experimental design
choices

If ‘non-learning ‘criteria are used, do
they differ from criteria that the
researcher or the research group
used in previous publications? If
yes, why were the criteria changed?

. provide explicit justifications on
why different criteria were used
previously and presently

. report differences between
present and previous criteria used
including references and
justifications

Did ‘non-learners’ really fail to
learn?

. important as a manipulation check
but note that the absence of a
statistically significant CS+/CS–
discrimination effect in a group on
average cannot be taken to imply
that all individuals in this group do
not show meaningful CS+/CS–
discrimination

. individuals classified as ‘non-
learners’ may in fact show
significant CS+/CS– discrimination
in SCRs (see Appendix 2) or in other
outcome measures (see Figure 3—
figure supplement 1 and
Appendix 4) and hence fail the
manipulation check

. do the groups classified as ‘non-
learners’ and ‘learners’ differ
significantly in discrimination, and
do ‘non-learners’ really not
discriminate in SCRs and other
outcome measures? Report the
data on this group graphically and/
or statistically in the supplementary
material (do not report the full
sample with and without exclusions
only)
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Are results contingent on
the exclusion of ‘non-learners’?

. important to allow for
transparency and to evaluate the
impact of the results

. it is not clearly defined when
results differ meaningfully when
excluding and including ‘non-
learners’

. provide results with and without
exclusion of ‘non-learners’
. additional analyses can be
provided as supplementary
material. When results are not
contingent on the exclusion of ‘non-
learners’, it is sufficient to mention
this briefly in the results of the main
manuscript (e.g., results are not
contingent on the exclusion of ‘non-
learners’)
. if the results of the main analyses
and hence the main conclusions
change when ‘non-learners’ are
excluded, this needs to be included
in the main manuscript , and the
implications need to be adequately
discussed. Please note that this
does not necessarily invalidate
findings but can refine them

Descriptive statistics for excluded
‘non-learners’

. important to allow for
transparency and evaluation of the
potential sample biases introduced

. report sex, age, anxiety levels,
awareness

(C) Specific reporting details for exclusions of ‘non-responders’

What to report? Why is this considered important?
What can go wrong or be
ambiguous?

Recommendations on how to
proceed

Whether ‘non-responses’ are
calculated on the basis of raw SCR
or transformed (e.g., logarithmized
[log/LN], range-corrected, square-
root) scores

. the same criteria lead to different
proportions of excluded individuals
when applying to raw or
transformed data (see Figure 3A
and B)

. exact details of transformations
(optimally calculation formulas)
need to be included for full
transparency and reproducibility

Minimal cutoff for ‘non-responses’
in mS

. it is often difficult/ambiguous to
infer this information from the
’Materials and methods’ section of
a reporta

. higher cutoffs could unnecessarily
reduce the sample size

. exact details on cutoffs need to be
included for full transparency and
reproducibility

Was ‘non-responding’ determined
in a pre-experimental phase such as
forced-breathing or US calibration?

. determining ‘non-responding’
during a pre-experimental phase
may help to detect malfunctioning
of the equipment and allow this to
be corrected prior to data
acquisition
. classification of ‘non-responders’
independent of the experimental
task and its specifications (e.g.,
number of US presentations)

. electrodes may detach between
the pre-experimental phase and
fear acquisition training

. report details of pre-experimental
phase
. classification in SCR ‘non-
responders’ should be based on a
pre-experimental phase if no US
presentations occur during the
experiment, such as in case of
threat of shock experiments,
observational conditioning,
extinction or return of fear tests

If ‘non-responding’ is determined
by responding during fear
acquisition training, what trial types
are considered?

. frequency of ‘non-responding’
differs substantially between
different stimuli (CS and US) but
also between CS+ and CS– (see
Figure 7A)

. ‘non-responding’ to the US may
be due to technical failure (i.e., no
US was administered)

. classification in SCR ‘non-
responders’ should not be based
on SCRS elicited by CS (CS+, CS– or
both), but should be based on US
responding
. a question on the estimated
number of US presented during fear
acquisition training (and all other
phases) may serve as a
manipulation check

Descriptive statistics for excluded
‘non-responder’

. important to allow for
transparency and evaluation of the
potential sample biases introduced

. report sex, age, anxiety levels,
awareness

a based on our experience with extracting this information from literature identified in the systematic literature search reported in this manuscript.
b ‘others have done this previously’ is not an acceptable justification in our point of view.

Lonsdorf et al. eLife 2019;8:e52465. DOI: https://doi.org/10.7554/eLife.52465 12 of 36

Research article Neuroscience

https://doi.org/10.7554/eLife.52465


to define ‘non-responders’. Together, we believe that this work contributes to: i) raising awareness

of some of the problems associated with performance-based exclusion of participants (‘non-learn-

ers’) and of how this exclusion is implemented, ii) facilitating decision-making on which criteria to

employ and not to employ, iii) enhancing transparency and clarity in future publications, and thereby

iv) fostering reproducibility and robustness as well as clinical translation in the field of fear condition-

ing research and beyond.

‘Non-learners’: conclusions, caveats and considerations
Operationalizational heterogeneity is illustrated by every single record in our systematic literature

search (covering a six months period) that employed definitions of ‘non-learners’ using a set of idio-

syncratic criteria. The true number of definitions in the field applied over decades will be even sub-

stantially larger. In the records included here, 6–52% of participants were excluded (disregarding

one study reporting percentages of ‘non-learners’ and ‘non-responders’ together with 74%; cf.

Figure 2A), which substantially exceed the percentages recently put forward for ‘non-learning’

exclusions (Marin et al., 2019) that were suggested to lie between 4% (Chauret et al., 2014) and

19% (Oyarzún et al., 2012).

If several thousand analytical pipelines can be applied, the likelihood of false positives is high

(Munafò et al., 2017) and the temptation of their opportunistic (ab)use must be considered a threat.

Hence, a constructive discussion on where to go from here and how to not get lost in the garden of

forking paths is important. This being said, we do acknowledge that certain research questions or

the use of different recording equipment (robust lab equipment vs. novel mobile devices such as

smartwatches) may potentially require distinct data-processing pipelines and the exclusion of certain

observations (Silberzahn et al., 2018; Simmons et al., 2011), and hence it is not desirable to pro-

pose rigid and fixed rules for generic adoption. Procedural differences, in particular the inclusion of

outcome measures that require certain triggers to elicit a response (such as startle responses or rat-

ings) have also been shown to impact on the learning process itself (Sjouwerman et al., 2016).

Rather, we call for a reconsideration of methods in the field and want to raise awareness to the pit-

falls of adopting exclusion criteria from previously published work without critical evaluation

of whether these apply meaningfully to one’s own research. Furthermore, we want to promote the

adoption of transparent reporting of data processing, recording and analyses and strive to suggest

standards in the field to reduce heterogeneity based on idiosyncratic customs rather than methodo-

logical and theoretical considerations (see Box 1).

Yet, there are many other critical considerations worth discussing beyond the heterogeneous cri-

teria used to define ‘non-learners’ and their impact on the outcome of statistical tests:

First, ‘performance-based exclusion of participants’ is often based on a single outcome measure

(typically SCRs), despite multiple measures being recorded (for exceptions see Ahmed and Lovi-

bond, 2019; Belleau et al., 2018; Oyarzún et al., 2012). Importantly, ‘fear learning’ cannot be reli-

ably inferred by means of SCRs, because SCRs capture arousal-related processes and can only be

used as a proxy to infer ‘fear learning’ as fear is closely linked to arousal (Hamm and Weike, 2005).

Relatedly, the fact that physiological proxies of ‘fear’ do not map onto ‘fear’ itself has been dis-

cussed extensively (LeDoux, 2012; LeDoux, 2014).

Second, but related, individuals that fail to show CS+/CS– discrimination in SCRs may show sub-

stantial discrimination, as an indicator of successful learning, in other outcome measures such as rat-

ings of fear, US expectancy or fear potentiated startle (Hamm and Weike, 2005; Marin et al.,

2019), as illustrated here for fear ratings (see Figure 4—figure supplement 1 and Appendix 3—

table 1).

Third, a common justification for excluding ‘non-learners’ is that it is not possible to investigate

extinction- or return-of-fear-related phenomena in individuals who ‘did not learn’. To our knowledge,

there is some evidence (Craske et al., 2008; Plendl and Wotjak, 2010; Prenoveau et al., 2013)

that this theoretical assumption does not necessarily hold true, (i.e., CS+/CS– discrimination during

fear acquisition training does not necessarily predict CS+/CS– discrimination during other experi-

mental phases) (Gerlicher et al., 2019). An empirical investigation of this, however, would go

beyond this manuscript’s scope.

Fourth, we provided empirical evidence that those classified as a group of ‘non-learners’ in SCRs

in the literature (sometimes referred to as ‘outliers’) on the basis of the identified definitions in fact

displayed significant CS+/CS– discrimination when applied to our own data. An exception to this
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was using cut offs in differential responding of <0.05 mS (note, however, that a non-significant CS+/

CS– discrimination effect in the group of ‘non-learners’ as a whole cannot be taken as evidence that

all individuals in this group do not in fact display meaningful or statistically significant CS+/CS– dis-

crimination). Hence, in addition to the many conceptual problems we raised here, the operationaliza-

tion of ‘non-learning’ in the field failed its critical manipulation check given that those classified as

‘non-learners’ show clear evidence of learning as a group (i.e., CS+/CS– discrimination, see Appen-

dix 2—table 1).

Fifth, we illustrate a concerning sample bias that is introduced by performance-based participant

exclusion. CS+/CS– discrimination in SCRs during fear acquisition training has been linked to a num-

ber of individual difference factors (Lonsdorf and Merz, 2017) and, naturally, selecting participants

on the basis of SCR CS+/CS– discrimination will also select them on the basis of these individual dif-

ferences (illustrated by our case example on trait anxiety, Figure 5). In our case example, we illus-

trate that excluding ‘non-learners’ biases the sample towards low anxiety scores, which hampers

the generalizability and replicability of findings: i) the effect may only exist in low-anxiety individuals

but not in the general population, and ii) as fear acquisition is a clinically relevant paradigm, pre-

selection in favor of low-anxiety individuals might represent a threat to the clinical translation of the

findings. Many studies in the field of fear conditioning research aim to develop behavioral or phar-

macological manipulations to enhance treatment effects or aim to study mechanisms

that are relevant for clinical fear and anxiety. Hence, it is highly problematic that these studies may

exclude individuals who show response patterns that mimic responses typically observed in anxiety

patients when excluding ‘non-learners’. In fact, patients suffering from anxiety disorders have been

shown to be characterized by generalization of fear from the CS+ to the CS– (Duits et al., 2015).

Sixth, as illustrated by our case example (Figure 3), high CS+/CS– discrimination cutoffs generally

favor individuals with high SCR amplitudes despite potentially identical ratios between CS+ and CS–

amplitudes, which may introduce a sampling bias for individuals characterized by high arousal levels

that probably have biological underpinnings. Relatedly, future studies need to empirically address

which criteria for SCR transformation and exclusions are more or less sensitive to baseline differences

(for an example from startle responding see Bradford et al., 2015; Grillon and Baas, 2002).

In summary, in light of the many (potential) problems associated with performance-based exclu-

sion of participants, we forcefully echo Marin et al.’s conclusion that one needs "to be cautious

when excluding SCR non-learners and to consider the potential implications of such exclusion when

interpreting the findings from studies of conditioned fear" (Marin et al., 2019, abstract). Routinely,

excluding participants who are intentionally or unintentionally characterized by specific individual dif-

ferences represents a major threat to generalizability, replicability and potentially clinical translation

of findings, as results might be contingent on a specific sub-sample and specific sample characteris-

tics. This is also true when researchers are interested in the study of general processes. Furthermore,

by excluding these individuals from further analyses, we may miss the opportunity to understand

why some individuals do not show discrimination between the CS+ and the CS– in SCRs (or other

outcome measures) or whether this lack of discrimination is maintained across subsequent experi-

mental phases. It can be speculated that this lack of discrimination may carry meaningful information

– at least for a subsample.

‘Non-responders’: conclusions, caveats and considerations
In addition to ‘non-learners’, ‘non-responders’ are also often excluded during fear conditioning

research. We showed that the definition of ‘non-responders’, like that of ‘non-learners’, varies widely

across studies. Heterogeneity in definitions manifests in different cutoff criteria for what is consid-

ered a valid response, the number of trials and the stimulus type(s) considered (Appendix 1—table

2, Figure 6). Surprisingly, most definitions are based on CS responses (i.e., SCRs to the CS+ and/or

CS–) and only few are based on US responses. This highlights a potentially problematic overlap

between ‘non-learners’ and ‘non-responders’: ‘non-responding’ to the CS (i.e., CS+ and CS– or CS+

only) is not necessarily indicative of physiological ‘non-responding’ – especially if high cutoffs are

used. In fact, ‘non-responding’ to the CS may, or at least in some cases, reflect the absence of learn-

ing-based patterns in physiological responding – which may carry important information.

Having observed the striking differences in percentages of ‘non-responses’ to the US (10%) and CS

(48%) observed in our data (see Figure 7 and Appendix 4—table 1), we suggest that physiological
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‘non-responding’ cannot and should not be determined on the basis of the absence of responding

to the CS.

More globally, the group of ‘non-responders’, as defined by the criteria identified here, probably

lumps together several sub-groups: individuals (1) for whom technical problems resulted in no valid

SCRs, (2) who fell asleep or did not pay attention, (3) who cognitively learned the CS+/US contingen-

cies but did not express the expected corresponding responses in SCRs, and (4) who were attentive

to the experiment but did not learn the contingencies (i.e., unaware participants) and hence did not

show the expected SCR patterns (Tabbert et al., 2011).

In summary, although excluding physiological ‘non-responders’ makes sense (in terms of a manip-

ulation check and independent of the hypothesis), we consider defining ‘non-responders’ on the

basis of the absence of SCRs to the CS as problematic (dependent on the hypothesis). We suggest

that physiological SCR ‘non-responders’ should be defined on the basis of US responses during fear

acquisition training or to strong stimuli during pre-conditioning phases such as US calibration, startle

habituation or forced breathing (reliably eliciting strong SCRs). If ‘non-responding’ to the US (during

fear acquisition training) is used, it is difficult to suggest a universally valid cutoff with respect to the

number or percentage of required valid US responses, because this critically depends on a number

of variables such as hardware and sampling rate used. It remains an open question for future work

whether data quality of novel mobile devices (e.g., smartwatches) for the acquisition of SCRs differs

from traditional, robust lab-based recordings and how this would impact on the frequency of exclu-

sions based on SCRs. Appendix 4 suggests that the cutoff may typically range between 1/3 and 2/3

of valid responses but may be data-set specific. US-based criteria are of course not trivial in multi-

ple-day experiments, in which certain experimental days do not involve the presentation of

US or involve few temporally clustered US presentations (i.e., reinstatement), or in paradigms not

involving direct exposure to the US (i.e., observational or instructional learning; Haaker et al.,

2017). In these cases, the other options listed above are strongly preferred to CS based criteria.

Where do we go from here?
In this work, we have comprehensively illustrated and argued that most of the current definitions

employed to define ‘non-learners’ and ‘non-responders’ have to be considered as theoretically and

empirically problematic. It is not sufficient, however, to raise awareness to these problems and the

practical question of ‘Where do we go from here?’ remains to be addressed. What can we do to

avoid getting lost in the garden of forking paths of exclusion criteria? Here, we would like to offer

several solutions to improve practices in the field, which we expect to foster robustness, replicability

and potentially clinical translation of findings: (1) transparency in reporting, (2) adopting open sci-

ence practices, (3) increasing the level and quality of reporting and (4) graphical data presentation,

(5) manipulation checks, and (6) fostering critical evaluation. We refer to see Box 1 for specific

recommendations.

More precisely, transparency can be enhanced ‘if observations are eliminated, authors must also

report what the statistical results are if those observations are included’, as suggested by Simmons

and colleagues, nearly a decade ago (Simmons et al., 2011, Table 2). Here, we echo this call that

this recommendation should be implemented routinely in data reporting pipelines when employing

performance-based participant exclusions (‘non-learners’) in fear conditioning research. We also call

for a transparent and adequate reporting in the results (in brief) and discussion section rather than

providing this information exclusively in the appendix. This being said, it is important to point out

that should a finding turn out to be contingent on the exclusion of ‘non-learners’, this does not nec-

essarily invalidate this finding. On the contrary, it may further specify the finding or hint to possible

mechanisms and/or boundary conditions – yet inferences on boundary conditions should be

made carefully (Hardwicke and Shanks, 2016). Relatedly, adopting an open science culture will

facilitate transparent reporting of exclusion criteria (Nosek et al., 2015) and will minimize the risk of

exploiting heterogeneous definitions in the field. Registered reports (Hardwicke and Ioannidis,

2018), publicly available data including those from excluded participants and pre-registration

(Munafò et al., 2017) of definitions and analysis pipelines (Ioannidis, 2014), as well as openly acces-

sible lab-specific standard operational protocols (SOPs), may also be helpful.

We acknowledge, however, that transparent reporting and particularly pre-registration of exclu-

sion criteria is not trivial in light of the unsatisfactory quality and level of detail in reporting in the

field of fear conditioning research. It was striking that the compilation of exclusion criteria (‘non-
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learners’ and ‘non-responders’, see Appendix 1—tables 1 and 2) employed in the records included

in our systematic literature search required extensive personal exchange with the authors because

the definitions provided were often insufficient, ambiguous or incorrect. It is our responsibility as

authors, reviewers and editors to improve these reporting standards to an acceptable level. As a

guidance, Box 1 provides a compilation of reporting details that we consider important to include in

both pre-registered protocols and publications (an editable online version of Box 1 is available to

allow for further development, see Box caption).

Our recommendations to improve the level of reporting details and transparency extends to the

graphical illustration of results, which should optimally allow for a complete presentation of data

(Weissgerber et al., 2015) without risking obscuring important patterns, providing detailed distribu-

tional information rather than merely presenting summary statistics (see Weissgerber et al.,

2015 for a discussion). Such visualization options include, for instance, scatterplots, box plots, histo-

grams, violin plots as well as their combination (see also Figure 5) in so called ‘rain cloud plots’

(see Allen et al., 2018 for a tutorial in R, Matlab and Phyton) and utilizing colors or color gradients

to visualize different groups of individuals (for instance ‘learners’ and ‘non-learners’) or discrimination

scores. This will provide readers with the opportunity to evaluate the presented results and

conclusions independently and comprehensively.

Finally, if criteria for ‘non-learners’ or ‘non-responders’ are employed to exclude participants from

data analyses (or continuation of the experiment), we recommend that a sanity or manipulation

check should be performed to determine whether – for instance - ‘non-learners’ really did not learn

(i.e., really do not show significant CS+/CS– discrimination). We have empirically illustrated that

most definitions of ‘non-learners’ fail this manipulation check (Appendix 2—table 1). Yet, it may not

be feasible in all cases to determine such statistics, as these may not be appropriate for small sam-

ples and correspondingly small sub-groups of ‘non-learners’. Relatedly, we urge authors to justify

adequately all details of the exclusion criteria (if applied) – both theoretically and

practically. Furthermore, we encourage authors, reviewers and editors alike to critically evaluate

whether exclusions and applied criteria are warranted in the first place and appropriate in the spe-

cific context (vs. mere adopting published or previously employed criteria) and whether these exclu-

sion criteria are transparently reported and discussed if results hinge on them (Steegen et al.,

2016).

Furthermore, future work should empirically address the question of how to best define ‘non-

learning’ in particular in light of different outcome measures in fear conditioning studies, which cap-

ture different aspects of defensive responding (Jentsch et al., 2020; Lonsdorf et al., 2017).

Final remarks
In closing, the field of fear conditioning has been plagued with a lack of consensus on how to define

and treat ‘non-learners’ and ‘non-responders’, which not seldomly impacts review processes and

generates unnecessary lengthy discussions for editors, reviewers and authors. We argue that it is nei-

ther ethical (due to an excessive waste of tax money and human resources) nor scientifically mean-

ingful to exclude up to two thirds of a sample. If only one third of the population performs ‘as

expected’ in the experiment, experimental designs, data recording and processing techniques as

well as definitions need to be reconsidered. We have shown that findings derived from such highly

selective sub-samples may not generalize to other samples or to the general population, and as a

consequence might be a threat to clinical translation. Most problematically, however, findings

derived from such highly selective samples have been routinely and invariantly generalized to reflect

‘general principles’ and ‘processes’ in the past. Not surprisingly, such findings have also suffered

replication failures. As such, exclusions of ‘non-learners’ can in fact be dangerous if not handled

transparently (as suggested above), because they may bias and confuse a whole research field and

may push research along a misleading path. Thus, we suggest recommendations and consensus sug-

gestions, and recommend that common practices should be critically evaluated before we adopt

them in future work, so that the field follows a path towards more robust and replicable research

findings.
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Materials and methods
This project has been pre-registered on the Open Science Framework (OSF) (Lonsdorf et al., 2019,

March 22; retrieved from https://osf.io/vjse4).

A systematic literature search was performed according to PRISMA guidelines (Moher et al.,

2009) covering all publications (including e-pubs ahead of print) in PubMed during the six months

prior to the 22nd March 2019, using the following search terms: threat conditioning OR fear condi-

tioning OR threat acquisition OR fear acquisition OR threat learning OR fear learning OR threat

memory OR fear memory OR return of fear OR threat extinction OR fear extinction. In case of author

corrections, we included the original study that the correction referred to unless this study itself was

already included on the basis of the publication date.

From the identified 854 records listed in PubMed, 152 were included in stage 2 screening

(abstract) and 86 were retained for stage 3 screening (full text). Finally, 50 records were included

(see Figure 1 for details) that reported results for (1) SCRs as an outcome measure from (2) the fear

acquisition training phase (3) in human participants.

Extraction of criteria for ‘non-learners’ and ‘non-responders’
The 50 records were screened in-depth and information derived from each record was entered into

a template file agreed on by the authors prior to literature screening (available from the OSF pre-

registration https://osf.io/vjse4). We distinguished between ‘non-learners’ and ‘non-responders’. We

considered an exclusion to be an exclusion of ‘non-learners’ if it was based on the key task perfor-

mance –that is, CS+/CS– discrimination in SCRs. Exclusions were considered as exclusion of ‘non-res-

ponders’ when based on general (physiological) responding (i.e., not based on CS+/CS–

discrimination). Participants who were explicitly excluded because of clear-cut and well-described

technical problems, such as abortion of data recording or electrode disattachment, were not

included in any definition. Criteria for defining ‘non-learners’ (see Appendix 1—table 1) and ‘non-

responders’ (see Appendix 1—table 2) were extracted if applicable for the respective study. In case

information in the publication was insufficient or ambiguous, the corresponding authors were con-

tacted and asked for clarification.

Re-analysis of existing data applying the identified exclusion criteria
One aim of this work was to illustrate empirically the impact of different exclusion criteria on the

study outcome and interpretation. To achieve this aim, we initially planned to re-analyze existing

data sets and to exclude participants on the basis of the identified definitions, which was expected

to demonstrate that results are not robust across the various definitions of ‘non-learners’ and ‘non-

responders’ employed. More precisely, we planned to calculate CS+/CS– discrimination across dif-

ferent data sets for all definitions identified by the systematic literature search and to generate cor-

responding correlation matrices as well as the percentages of zero and non-responses (see pre-

registration: https://osf.io/vjse4). Because the exclusion criteria identified through the systematic lit-

erature search were even more heterogeneous than expected, and as it was difficult to agree on a

key outcome to quantify the impact of exclusion criteria, we eventually concluded that such exten-

sive re-analyses would not add much to the tabular and graphical illustration of this heterogeneity.

Instead, we provide illustrative case examples for: (i) the proportion of individuals excluded on the

basis of the identified exclusion criteria for ‘non-learners’ (Figure 3) and (ii) the potential sample bias

with respect to individual differences (exploratory aim) induced by employing different exclusion cri-

teria features (i.e., discrimination cutoff; Figure 5). As planned, (iii) we provide the percentage of

non-responses to the CS+, CS–, CS+ and CS– combined, and the US across different studies, as well

as empirical information on the association between CS and US based non-responding as a base to

guide empirical recommendations.

Data processing, statistical analyses and figures were generated with R version 3.6.0 (2019-04-26)

using the following packages: cowplot, dplyr, ggplot2 (Wickham, 2009), ggrigdes, car, ez, lsr, psy-

chReport, lubridate, RColorBrewer and flipPlot packages. Sanky plots were generated with help of

https://app.displayr.com.
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Data sets
Data set 1
Data set 1 is part of the baseline measurement of an ongoing longitudinal fear conditioning study.

Here, fear ratings and SCR data from the first test-timepoint (T0) were included (N = 119, 79 females,

mean ± SD age of 25 ± 4 years) whereas fMRI data were not used. All participants gave written

informed consent to the protocol which was approved by the local ethics committee (PV 5157, Ethics

Committee of the General Medical Council Hamburg).

Data set 1 is employed to illustrate a case example for the proportion of participants excluded

when employing different CS+/CS– discrimination cutoffs (‘non-learners’, Figure 3) as well as the

number of zero-responses across different stimulus types (‘non-responders’) and their association

(Figure 7). Furthermore, we aimed to test exploratively whether even in groups defined as ‘non-

learners’ a significant CS+/CS– discrimination on SCR and fear ratings can be detected (all results

presented in the Appendix are based on Data set 1).

Paradigm and stimuli
The two-day paradigm consisted of habituation and acquisition training (day 1) and extinction train-

ing and recall testing (day 2) without any contingency instructions provided. Here, only data from

the acquisition training phase (100% reinforcement rate) were used. CS were two light grey fractals,

presented 14 times each in a pseudo-randomized order for 6–8 s (mean: 7 s). Visual stimuli were

identical for all participants, but allocation to CS+ and CS– was counterbalanced between partici-

pants. During inter-trial intervals (ITIs), a white fixation cross was shown for 10–16 s (mean: 13 s). All

stimuli were presented on a light gray background and controlled by Presentation software (Version

14.8, Neurobehavioral Systems, Inc, Albany California, USA).

The electrotactile stimulus, serving as US, consisted of three 10 ms electrotactile rectangular

pulses with an interpulse interval of 50 ms (onset: 200 ms before CS+ offset) and was administered

to the back of the right hand of the participants. It was generated by a Digitimer DS7A constant cur-

rent stimulator (Welwyn Garden City, Hertfordshire, UK) and delivered through a 1 cm diameter plat-

inum pin surface electrode (Speciality Developments, Bexley, UK). The electrode was attached

between the metacarpal bones of the index and middle finger. US intensity was individually cali-

brated in a standardized step-wise procedure aiming at an unpleasant, but still tolerable level.

SCRs
SCRs were semi-manually scored by using a custom-made computer program (EDA View) as the first

response from trough to peak 0.9–3.5 s after CS onset (0.9–2.5 s after US onset) as recommended

(Boucsein et al., 2012; Sjouwerman and Lonsdorf, 2019). The maximum rise time was set to 5 s.

Data were down-sampled to 10 Hz. Each scored SCR was checked visually, and the scoring sug-

gested by EDA View was corrected if necessary (e.g., the foot or trough was misclassified by the

algorithm). Data with recording artifacts or excessive baseline activity (i.e., more than half of the

response amplitudes) were treated as missing data points and excluded from the analyses. SCRs

below 0.01 mS or the absence of any SCR within the defined time window were classified as non-

responses and set to 0. The threshold of 0.01 mS for this data set was determined empirically by visu-

ally inspecting response specifically above and below this cutoff, which suggested that in this data

set, responses > 0.01 mS can be reliably identified. ‘Non-responders’ (N = 3) were defined as individ-

uals who showed more than two thirds of non-responses to the US (10 or more non-responses out of

14 US trials, see Appendix 4—table 2). Three individuals were classified as ‘non-responders’ and

these individuals did not show any responses to the CS either. The three participants classified as

‘non-responders’ (see above) were only excluded for the analyses of ‘non-learners’. Raw SCR ampli-

tudes were normalized by taking the natural logarithm and range-corrected by dividing each loga-

rithmized SCR by the maximum amplitude (maximum SCR to a CS or a US) per participant and day.

Fear ratings
Fear ratings were provided by participants through ratings on a visual analog scale (VAS) on the

screen asking ‘how much stress, fear, and tension’ they experienced when they last saw the CS+ and

CS–. The fear ratings used for the purpose of this manuscript are those obtained after fear acquisi-

tion training (no ratings were acquired during this phase). Answers were given within 5 s on the VAS,
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which ranged from 0 (answer = none) to 25 (answer = maximum) by using a button box. Pressing the

buttons moved a bar on the VAS to the aimed value and answers were logged in by pressing

another button. Non-registered ratings were considered as missing values (8.4%).

Statistical analysis
To test whether exclusion groups differ in CS+/CS– discrimination, a mixed ANOVA with CS+/CS–

discrimination in SCR or fear ratings as the dependent variable and the between-subjects factor

‘Exclusion group’ and the within-subject factor ‘CS-type’ was performed. Note that it is circular to

test for differences in SCR CS+/CS– discrimination between groups that were selected on the basis

of different SCR CS+/CS– discrimination cutoffs in the first place. Still, it is relevant to test whether

all groups classified as ‘non-learners’ in the literature do indeed fail to show evidence of learning,

which would be indicated by a lack of significant CS+/CS– discrimination in SCRs in this case. In

essence, this is a test to evaluate whether the exclusion criteria used in the literature do indeed

achieve what they purport to do, that is, classify a group of participants that do not show evidence

of learning. To test whether these exclusion groups discriminated in SCRs and fear ratings, exclusion

groups were cumulated, and t-tests were performed for each cumulative group (see Appendices 2

and 3, respectively). We acknowledge, however, that the absence of a statistically significant CS+/

CS– discrimination effect in a group on average cannot be taken to imply that all individuals in this

group do not show meaningful CS+/CS– discrimination. As such, this is a rather conservative test. To

correct for multiple testing, all p-values deriving from t-tests were adjusted using the Bonferroni pro-

cedure. As effect size, Cohen’s d was reported for t-tests and partial eta-squared for ANOVAs. To

illustrate the association between the non-responses to the US and the non-responses to the CS, a

Spearman rank correlation test was computed.

Data set 2
For the purpose of this manuscript, a final sample of 268 individuals (195 female, mean ± SD age of

25 ± 4 years) was re-analyzed. This sample is reported in a recent pre-print (Sjouwerman et al.,

2018) in which we observed an association between trait anxiety and CS+/CS– discrimination in

SCRs. Here, the re-analysis and graphical illustration of these data serve the purpose of a case exam-

ple to illustrate the potential sample bias that may be induced by employing performance-based

exclusion (Figure 5).

Paradigm and stimuli
A detailed experimental description is included in the preprint Sjouwerman et al. (2018). In brief,

participants underwent a 100% reinforcement fear acquisition training phase in a behavioral labora-

tory setting, including 9 CS+ and 9 CS– trials, presented for 6 s each. Consequently, 9 US presenta-

tions were included that coincided 100 ms prior to CS+ offset. Trials were interleaved by 10–13 s

ITIs with a white fixation cross presented on a black background. Black geometrical shapes served as

CS, and electrical stimulation delivered by a DS7A electrical stimulator (Digitimer, Welwyn Garden

City, UK) onto the outer surface of the right hand served as US. The intensity of the US was individu-

ally calibrated with a stair-case procedure in order to reach an unpleasant but tolerable level. Not of

interest to the current case example were the acoustic startle probes (95 dB(A) burst of white noise)

presented to elicit a startle response in two thirds of all acquisition trials, as well as three fear-rating

blocks probed intermittently during fear acquisition training. Startle probes were presented 4 or 5 s

post-CS onset, and 5 or 7 s post-ITI onset. No contingency instructions were given.

SCRs
SCRs were quantified as the first SCR within 0.9–4.0 s after stimulus onset (CS or US) and were

scored semi-manually from trough-to-peak using a custom-made program. Signal increases smaller

than 0.02 mS were treated as non-responses, that is set to 0. (Please note that this cut-off was not

empirically determined as in Data set 1 but adopted from the previous publication of Data set 2. As

we present re-analyses here, we decided not to change the cut-off to maintain comparability.)

Responses confounded by recording artifacts, such as responses moving beyond the sampling win-

dow, excessive baseline activity, or electrode detachment were treated as missing values. Raw

response amplitudes per trial were log-transformed and range-corrected for the maximum CS or US

response per participant. Individuals not showing any valid SCR (i.e., missing or zero responses) in
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more or equal than two thirds (�6 out of 9, see Appendix 4—table 2) of US trials were treated as

physiological ‘non-responders’ (n = 19) and were consequently excluded from graphical illustration

and the statistical analysis. In addition, 31 participants were excluded prior to physiological process-

ing, either because of abortion of the experiment or due to technical failures during data acquisition

(e.g. errors during saving, overwritten logfile, or missing markers), leaving 307 out of 357 individuals

with valid SCR data for fear acquisition training. Of these 307 participants, 39 had incomplete STAI-T

data (Spielberger et al., 1983) resulting in a final sample size for this case example of 268 individu-

als (195 female, mean ± SD age of 25 ± 4 years).

Statistical analysis
To test whether different exclusion groups differ in their mean trait anxiety levels, a univariate

ANOVA with STAI-T score as the dependent variable and exclusion group as the independent vari-

able was carried out. Post hoc pairwise t-tests were conducted to compare trait anxiety scores

between the different exclusion group levels. The post hoc tests were corrected for multiple testing,

using the Bonferroni correction method. 95% family wise confidence levels were determined using

TukeyHSD tests.
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Appendix 1—table 1. Summary of criteria used to define ‘non-learners’ across records included in the systematic literature search.

Criteria used to define ‘non-learners’ were identified in eleven records reported in a total of 14 individual studies.

Reference

% excluded
participants
(‘non-learners’)

CS+/CS–
cut-off (in
mS) for ‘non-
learners’

N trialsacq total
CS+/CS–

N trialsacq
considered
CS+/CS–

Trials phase (unless otherwise
stated, this refers to fear
acquisition training) Additional criteria/notes

Ahmed and Lovibond,
2019, Exp. 1

24% <or = 0 3/3 2/2 last two thirds only considered as ‘non-learners’ if applicable to both SCL
and ratings

Ahmed and Lovibond,
2019, Exp. 2

16%

Reddan et al., 2018a 35% <or = 0 16/8 8b/8 full phase

Grégoire and
Greening, 2019

16% <0.1 13c/8 4c/4 last third participants were also excluded if they did not show
equivalent responding to both CS+s (difference > 0.1 mS)
or when not showing equal extinction to both CS+s or
complete differential extinction to both CS+s vs. CS–
(difference > 0.1 mS)

Hu et al., 2018 6% <or = 0 16/10 5/5d

OR 1/1
second halfd

OR last triald
‘non-learners’ discontinued after day 1 of the experiment

Oyarzún et al., 2019,
Exp. 1

27% <or = 0e eightc/8 4c/4 second half only considered as ‘non-learners’ if applicable to both SCR
and fear-potentiated startle

Oyarzún et al., 2019,
Exp. 2

41%

Belleau et al., 2018 2% <0.05 5/5 5/5 full phase only considered as ‘non-learners’ when also failing to show
any differential ratings (i.e.,<or = 0 in discrimination)f

Morriss et al., 2018 6% g < or = 0h 12/6 6b/6 full phase only considered as ‘non-learners’ if applicable across all
phases (fear acquisition and extinction training, avoidance
acquisition and extinction)

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Reference

% excluded
participants
(‘non-learners’)

CS+/CS–
cut-off (in
mS) for ‘non-
learners’

N trialsacq total
CS+/CS–

N trialsacq
considered
CS+/CS–

Trials phase (unless otherwise
stated, this refers to fear
acquisition training) Additional criteria/notes

Schiller et al., 2018;
Schiller et al., 2010,
Exp. 1

48%i <0.1/mean
SCR to the
US

16c/10
13c/8

5b /5
OR 5b /5
OR 1b /1
OR increase from
first to last trial
4b /4 OR 4b /4 OR
1b /1
OR increase from
first to last trial

first half of acquisition
OR second half OR last trial
of acquisition, OR the increase
from the first to last trial of
acquisitionSchiller et al., 2018;

Schiller et al., 2010,
Exp. 2

74%i

Nitta et al., 2018 52% <0 13c/8 2c /2 last two trials one additional participant showed strong SCR during re-
extinction phase to CS+ and was therefore excluded

Hartley et al., 2019 16% <or = 0.05 6/6 3/3 last half

Hu et al., 2019 16% < 0k 8b/8 4b/4 second half

aPersonal communication with D. Schiller (20.5.2019 and 30.8.2019) confirmed that individuals were classified as ‘non-learners’ when they ‘did not demonstrate greater SCRs to the CS+ relative

to the CS– on average across all acquisition trials (n = 24)’ (see ’Materials and methods’ section). The personal communication clarified that the statement included in the results section that

defines ‘non-learners’ as individuals that “did not demonstrate a discriminatory SCR during acquisition, defined as greater SCR to the CS+ relative to the CS– during either the first or last half

of threat-acquisition on average’ was intended to refer to the same procedure (i.e., the full acquisition phase).
bRefers to unreinforced CS+ trials (CS+ trials not followed by the US) only.
cFor each CS+1 and CS+2.
dPersonal communication with D. Schiller (1.5.2019): late acquisition as reported in the publication refers to the last half or last trial. Anyone that had a positive difference (>0.000 mS) in either

the second half or last trial of acquisition was kept.
ePersonal communication with J. Oyarzun (21.5.2019): all difference scores > 0 mS were considered as CS+/CS– discrimination.
fPersonal communication with E. Balleau, PhD (5.5.2019): ‘differential ratings’ means that CS+>CS is equal to or below 0 mS was non-differentiation.
gThese were not excluded as results did not change.
hPersonal communication with J. Morriss (15.4.2019): no positive differential response is defined as any number <0 mS.
iPercentages for ‘non-learners’, ‘non-extinguishers’ and ‘non-responders’ reported together.
kPersonal communication with D. Schiller (21.5.2019): zero differences were kept.
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Appendix 1

Definition of performance-based exclusion of participants
(‘non-learners’) and numbers of participants excluded
across studies

Appendix 1—table 2. Summary of criteria used to define ‘non-responders’ across records

included in the systematic literature search. Fifteen records, reporting a total of 17 studies,

were identified.

Record

% excluded
participants

(‘non-
responders’)

Cut-off
(in mS)
for a
valid
SCR

Valid
responses
in at least
% of trials

Stimulus type (also
referred to as ‘trial’)
on which the
exclusion is based

Additional
criteria/notes

Baeuchl et al.,
2019

10% >0.01 �66% CXT+

Tuominen et al.,
2019

12% >0.05 �13% CS+ and CS–

Gruss and Keil,
2019

11% visual inspectiona CS+, CS–and US

Sjouwerman and
Lonsdorf, 2019

14% �0.02 US:�67%
CS: no valid
response in
each CS
modality

CS+, CS– and US

Grégoire and
Greening, 2019

8% >0.02 �25%b CS+ and CS–c

Hu et al., 2018 3% �0.02 100% CS+ and CS–c ‘non-responders’
discontinued
after day 1 of the
experiment

Oyarzún et al.,
2019, Exp. 1

0% �0.02 �25% CS+d and CS–c

Oyarzún et al.,
2019, Exp. 2

9%

Tani et al., 2019 10% >0.03e 100% CS+

Marin et al., 2019 0%f
�0.03 �10% US

Taylor et al.,
2018

5% NA 100% motor testg

Morriss et al.,
2018

6% >0.03 �90% CS+d and CS–c only applicable if
true across all
phases/days of
the experiment

Schiller et al.,
2018;
Schiller et al.,
2010, Exp. 1

48%h
�0.02 �25% CS+d and CS–

Schiller et al.,
2018;
Schiller et al.,
2010, Exp 2

74%h

Appendix 1—table 2 continued on next page
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Appendix 1—table 2 continued

Record

% excluded
participants

(‘non-
responders’)

Cut-off
(in mS)
for a
valid
SCR

Valid
responses
in at least
% of trials

Stimulus type (also
referred to as ‘trial’)
on which the
exclusion is based

Additional
criteria/notes

Morriss and van
Reekum, 2019,
Exp. 1

2% >0.03 >90% CS+d and CS–

Morriss and van
Reekum, 2019,
Exp. 2

2%

Hartley et al.,
2019

6% <0.05i �33 %i CS+ and CS–c

Hu et al., 2019 4% k
�0.02 100% k US

Leuchs et al.,
2019

4% NA �33% CS+ and CS–c only applicable if
true across both
days of the ex-
periment

aPersonal communication with L. Forest Gruss (29.4.2019): “the determination of non-responders

was done, this was done on visual inspection by me through all trials of all individuals. I verified

after determining who the lowest, i.e. non-responders were, in the same fashion as the startle

non-responders in summing responding over the entire experiment, and this responding falling

below a threshold of overall response (�<10%) AND one individual due to lack of response at the

end of the trial to the UCS specifically".
bPersonal communication with S.G. Greening (24.4.2019): “non-responders if more than 75% of

data were missing (i.e., SCR <0.02 �S) during the training phase. So, that means, if a participant

had at least six trials (out of 24) with measurable SCRs (whatever the condition), we kept them (if

the other acquisition criteria were OK, see below). If they had five trials or fewer with measurable

GSR, we considered them a non-responder and removed them".
cPersonal communications that ‘trial’ or this statement refers to CS+ and CS– trials: S. Greening

(24.4.2019), D. Schiller (1.5.2019), J. Oyarzun (21.5.2019), J. Morriss (15.4.2019), C. Hartley

(2.5.2019), V. Spoormaker (18.4.2019).
d CS+ unpaired.
ePersonal communication with H. Tani (2.5.2019): only CS+ trials were considered (here as

response to the sound or the intrapersonal stimulus).
fPersonal communication with M.-F. Marin (23.4.2019): exclusion criteria were defined, but no

participant met these criteria and hence none was excluded.
gPersonal communication with V. Taylor (6.6.2019): clarified that "non-responders’ were

identified in a “motor test of SCR responding during the preliminary session. Essentially, they

had to compress a ball with the right hand with maximal physical force for a few seconds on

about 10 trials, which typically elicits quite large SCRs in subjects. Failure to respond to an SCR to

all of these trials was considered a non-responder".
hPercentages for ‘non-learners’, ‘non-extinguishers’ and ‘non-responders’ reported together.
iPersonal communication with C. Hartley (2.5.2019): clarified that “participants were considered

non-responder if they had SCR values of 0 for more than 8 of the 12 trials in acquisition (<4

responsive trials)”.
k The percentage of ‘non-responders’ and ‘non-learners’ was reported together without

percentages for each category; personal communication with D. Schiller (21.5.2019): in the paper,

it is reported that five individuals ‘were excluded due to equipment malfunction (N = 2) or had

non-measurable skin conductance response (SCR) to the shock (N = 3)”. It was confirmed that

these individuals excluded for non-measurable SCR did not show any responses to any stimulus.
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Appendix 2

Applying the identified performance-based exclusion
criteria to existing data: a case example
In this case example based on Data set 1 (see main manuscript), we tested whether CS+/CS–

discrimination in SCRs does indeed differ between the different exclusion groups as defined

by the cut-offs retrieved from the literature (see Figure 2B). Note that this is somewhat

circular as exclusion groups are defined by different SCR CS+/CS– cutoffs, which then are

used in an analysis in which differential SCRs are the dependent measure. However, that this is

exactly what is sometimes done in the literature (see main manuscript).

Still, this is an important manipulation check to test empirically whether those classified in a

group of ‘non-learners’ in the literature do indeed show no evidence of learning, which would

be indicated by comparable SCRs to the CS+ and the CS– (i.e., no significant discrimination).

Here, we test this for cumulative exclusion groups. Note that this is only a rough manipulation

check, as a non-significant CS+/CS– discrimination effect in the whole group (e.g., those

showing a CS+/CS– discrimination <0.05 mS based on raw scores) cannot be taken as evidence

that all individuals in this group do not display meaningful or statistically significant CS+/CS–

discrimination. More precisely, half of this group who did not meet the cut-off of 0.05mS in CS

+/CS– discrimination do show a negative or zero discrimination score, which may bias the

group average score towards non-discrimination. Yet, statistically testing for discrimination

within each exclusion group (e.g. specifically in the group showing a discrimination

between >0 and < 0.05 mS) is not unproblematic.

Appendix 2—table 1. Results of two-tailed t-tests for differences in SCR CS+/CS–

discrimination in Data set 1 for the different cumulative exclusion groups (indicated by the + in

the table) based on the criteria identified in the literature with respect to CS+/CS–

discrimination cutoffs (in mS). For completeness sake and as it is not always clear whether CS+/

CS– discrimination is based on raw or transformed values, we report results based on analyses of

both raw (A) and transformed values (B). P-values for these post-hoc tests are Bonferroni

corrected.

A) t-tests: CS+/CS– discrimination based on raw values

Exclusion group
(cumulative)

CS+
M (SD)

CS–
M (SD) df t pbonf_corr d

<0 0.04 (0.04) 0.07 (0.07) 10 �2.67 .140 0.81

+ = 0 0.02 (0.04) 0.03 (0.05) 33 �2.24 .193 0.38

+ > 0 and < 0.05 0.04 (0.05) 0.03 (0.05) 66 2.14 .219 0.26

+ = 0.05 0.04 (0.05) 0.03 (0.05) 70 2.88 .031 0.34

+ > 0.05 and < 0.1 0.06 (0.06) 0.04 (0.05) 88 5.87 .0000005 0.62

+ � 0.1 0.10 (0.10) 0.04 (0.06) 115 7.87 <0.000000001 0.73

B) t-tests: CS+/CS– discrimination based
on log-transformed and range-corrected values

Exclusion group
(cumulative)

CS+
M (SD)

CS–
M (SD) df t pbonf_corr d

<0 0.09 (0.10) 0.13 (0.11) 13 �3.46 0.025 0.93

+ = 0 0.04 (0.08) 0.06 (0.10) 28 �2.90 0.043 0.54

+ > 0 and < 0.05 0.06 (0.10) 0.07 (0.11) 42 �0.88 >0.999 0.13

+ = 0.05 0.07 (0.10) 0.07 (0.11) 46 �0.06 >0.999 0.01

+ > 0.05 and < 0.1 0.09 (0.11) 0.07 (0.11) 60 2.81 .040 0.36

+ � 0.1 0.21 (0.19) 0.10 (0.11) 115 9.56 <0.000000001 0.89
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Appendix 3

Exploratory analyses on consistency of classification
(‘learners’ vs. ‘non-learners’) across outcome measures
and criteria employed
Throughout the main manuscript and particularly in the discussion, we highlight that

differential (CS+>CS–) SCRs alone cannot be taken to infer ‘learning’ (Figure 4—figure

supplement 1).

Appendix 3—table 1 provides statistical information on CS+/CS– discrimination in fear

ratings in (cumulative) exclusion groups as defined by CS+/CS– discrimination in SCRs.

Appendix 3—table 1. CS+/CS– discrimination in fear ratings in (cumulative) exclusion groups

(indicated by the + in the table) as defined by CS+/CS– discrimination in SCRs (based on raw

scores).

Exclusion group (cumulative)
CS+
M (SD)

CS–
M (SD) df t pbonf_corr d

<0 15.8 (8.94) 2.45 (4.70) 10 5.37 0.002 1.62

+ = 0 16.6 (7.73) 3.15 (5.82) 31 9.69 <0.000000001 1.71

+ > 0 and < 0.05 16.2 (7.37) 3.06 (5.86) 64 12.8 <0.000000001 1.59

+ = 0.05 16.3 (7.26) 2.96 (5.75) 67 13.4 <0.000000001 1.62

+ > 0.05 and < 0.1 16.5 (6.97) 2.94 (5.47) 84 16.0 <0.000000001 1.74

+ >= 0.1 17.3 (6.64) 3.08 (5.04) 110 20.2 <0.000000001 1.92
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Appendix 4—table 1. Overview of SCR response quantification specifications (i.e., min. amplitude, scoring approach) and procedural details during fear acquisition

training (i.e., number of CS and US presentations) as well as number (mean and range) and percentage of SCR non-responses towards the different stimuli (US, CS+,

CS–, CS).

TTP: trough-to-peak; CS+E: CS+ extinguished; CS+U: CS+ unextinguished, CS: for both the CS+ and CS–.

Reference N

Minimum

amplitude

cutoff (in mS)

for valid SCRs Scoring details

Number of. . . ‘Non-responses’ towards. . .

US CS (CS+/CS–) US (M ± SD, range)

US

(%) CS+ (M ± SD, range) CS+ (%)

CS– (M ± SD,

range)

CS–

(%) CS (M ± SD, range)

CS

(%)

Jentsch et al., 2020 41 �0.02 TTP (max peak),

latency 0.5–4 s/

1–80.5 s (US/CS)

10 16/16 1.12 ± 1.66

(0–10)

11.22 2.22 ± 3.31

(0–16)

13.87 4.49 ± 3.92

(0–16)

28.05 6.71 ± 6.68

(0–32)

20.96

Hermann et al., 2016 45 �0.02 TTP (max peak),

latency 0.5–6 s/

1–60.5 s (US/CS)

10 (5 for CS+E,

5 for CS+U)

8 CS+E/8

CS+U/16 CS–

0.24 ± 0.88

(0–5)

2.44 2.64 ± 3.49 (0–13);

CS+E: 1.47 ± 2.19 (0–8);

CS+U: 1.18 ± 1.80 (0–7)

16.53

CS+E:

18.33;

CS+U: 14.72

8.07 ± 4.14

(0–16)

50.42 10.71 ± 6.65

(0–26)

33.47

Merz et al., 2018a 39 �0.02 TTP (max peak),

latency 0.5–6 s/

1–60.5 s (US/CS)

10 (5 for CS+E,

5 for CS+U)

8 CS+E/8

CS+U/8 CS–

2.08 ± 1.98

(0–8)

20.77 3.36 ± 4.55 (0–16);

CS+E: 1.59 ± 2.35 (0–8);

CS+U: 1.77 ± 2.32 (0–8)

21.00;

CS+E:

19.87;

CS+U: 22.12

2.41 ± 2.27

(0–8)

30.13 5.77 ± 6.49

(0–24)

24.04

Merz et al., 2014 40 �0.02 TTP (max peak),

latency 0.5–6 s/

1–60.5 s (US/CS)

10 (5 for CS+E,

5 for CS+U)

8 CS+E/8

CS+U/16 CS–

0.13 ± 0.33

(0–1)

1.25 1.08 ± 2.04 (0–11);

CS+E: 0.58 ± 1.08 (0–5);

CS+U: 0.50 ± 1.11 (0–6)

6.72;

CS+E: 7.19

CS+U: 6.25

3.13 ± 2.96

(0–11)

19.53 4.20 ± 4.39

(0–21)

13.13

Hamacher-Dang et al., 2015 39 �0.02 TTP (max peak),

latency 0.5–6 s/

1–60.5 s (US/CS)

10 (5 for CS+E,

5 for CS+U)

8 CS+E/8

CS+U/16 CS–

0.23 ± 0.48

(0–2)

2.31 2.33 ± 3.77

(0–12);

CS+E: 1.31 ± 2.21 (0–8);

CS+U: 1.03 ± 1.81 (0–7)

14.58;

CS+E:

16.35;

CS+U: 12.82

3.77 ± 4.20

(0–14)

23.56 6.10 ± 7.71

(0–26)

19.07

Mertens et al., 2019 59 �0.02 TTP (max peak),

latency 1–8 s

(baseline 0–2 s)

10 10/5 0.78 ± 1.69

(0–6)

7.8 4.75 ± 2.97 (0–10) 47.5 2.93 ± 1.66

(0–5)

58.6 7.68 ± 4.30

(0–15)

51.2

Klingel-höfer-Jens et al.,

unpublished

119 �0.01 TTP (first peak),

latency 0.9–

2.5 s/

3.5 s (US/CS)

14 14/14 1.40 ± 2.47

(0–14)

10.0 5.30 ± 4.42

(0–14)

37.9 8.20 ± 3.99

(0–14)

58.6 6.75 ± 4.44

(0–14)

48.2

Gerlicher et al. unpublished 52 �0.02 TTP (first peak)

latency 0.9–4 s

6 6/6 0.73 ± 1.39

(0–6)

12.18 2.73 ± 2.06

(0–6)

45.5 3.54 ± 1.82

(0–6)

59.0 6.27 ± 3.54

(0–12)

52.24
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Appendix 4—table 1 continued

Reference N

Minimum

amplitude

cutoff (in mS)

for valid SCRs Scoring details

Number of. . . ‘Non-responses’ towards. . .

US CS (CS+/CS–) US (M ± SD, range)

US

(%) CS+ (M ± SD, range) CS+ (%)

CS– (M ± SD,

range)

CS–

(%) CS (M ± SD, range)

CS

(%)

Gerlicher et al., 2018 39 �0.02 TTP (first peak)

latency 0.9–4 s

5 10/10 0.33 ± 0.93

(0–5)

6.67 1.05 ± 2.21

(0–10)

10.51 2.36 ± 2.49

(0–10)

23.59 3.41 ± 4.48

(0–20)

17.05

Andreatta et al. unpublished 76 �0.02 TTP (first peak)

latency 0.8–4 s

16 (8 in analysis

due to startle

probes)

16/16

(8/8 in

analysis due to

startle probes)

1.34 ± 1.69

(0–8)

16.78 4.17 ± 2.30

(0–8)

52.14 5.00 ± 1.98

(0–8)

62.50 9.17 ± 3.77

(0–16)

57.32

Wendt et al., 2020 112 �0.04 TTP (first peak),

latency 0.9–4 s

9 12/12 0.46 ± 1.15

(0–7)

5.06 5.88 ± 3.63

(0–12)

48.96 7.06 ± 3.19

(0–12)

58.85 12.94 ± 6.39

(0–24)

53.91

Wendt et al., 2015 108 �0.04 TTP (first peak),

latency 0.9–4 s

12 12/12 0.27 ± 0.99

(0–8)

2.24 6.44 ± 3.81

(0–12)

53.63 8.53 ± 2.65

(0–12)

71.06 14.96 ± 6.04

(0–24)

62.35

Drexler et al., 2015 46 �0.02 TTP (max peak),

latency 1–4.5 s

18 13 CS1+/13

CS2+/13 CS–

2.8 ± 4.18

(0–16)

15.57 9.67 ± 7.64 (0–26);

CS1+: 4.87 ± 4.07 (0–

13);

CS2+: 4.80 ± 3.78 (0–13)

37.20;

CS1+:37.45;

CS2+: 36.95

5.26 ± 3.95

(0–13)

40.46 14.93 ± 11.37

(0–39)

38.29

Meir Drexler et al., 2016 73 �0.02 TTP (max peak),

latency 1–4.5 s

18 13 CS1+/13

CS2+/13 CS–

3.37 ± 4.72

(0–18)

18.72 11.51 ± 7.96 (0–25);

CS1+: 5.78 ± 3.97 (0–

13);

CS2+: 5.73 ± 4.22 (0–13)

44.25;

CS1+:44.67;

CS2+:44.04

6.29 ± 3.94

(0–13)

48.36 17.79 ± 11.67

(0–37)

45.62

Meir Drexler and Wolf, 2017 72 �0.02 TTP (max peak),

latency 1–4.5 s

18 13 CS1+/13

CS2+/13 CS–

1.92 ± 2.96

(0–11)

10.64 9.65 ± 7.21 (0–25);

CS1+: 4.78 ± 3.72 (0–

12);

CS2+: 4.88 ± 3.85 (0–13)

37.12;

CS1

+: 36.75;

CS2+: 37.50

5.42 ± 3.54

(0–12)

41.66 15.07 ± 10.40

(0–36)

38.63

Drexler et al., 2018 40 �0.02 TTP (max peak),

latency 1–4.5 s

10 (5 for CS+E,

5 for CS+U)

8 CS+E/8

CS+U/16 CS–

0.32 ± 0.69

(0–3)

3.25 4.17 ± 4.45 (0–16);

CS+E: 2.02 ± 2.47 (0–8);

CS+U: 2.15 ± 2.38 (0–8)

26.09;

CS

+E: 25.31;

CS+U: 26.87

6.07 ± 4.37

(0–16)

37.96 10.25 ± 8.24

(1-27)

32.03

Meir Drexler et al., 2019 75 �0.02 TTP (max peak),

latency 0.5–6 s/

1–80.5 s (US/CS)

6 10/10 0.89 ± 01.57

(0–6)

14.88 4.07 ± 3.40

(0–10)

40.66 4.68 ± 3.23

(0–10)

46.8 8.75 ± 6.41

(0–20)

43.73
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Appendix 4—table 1 continued

Reference N

Minimum

amplitude

cutoff (in mS)

for valid SCRs Scoring details

Number of. . . ‘Non-responses’ towards. . .

US CS (CS+/CS–) US (M ± SD, range)

US

(%) CS+ (M ± SD, range) CS+ (%)

CS– (M ± SD,

range)

CS–

(%) CS (M ± SD, range)

CS

(%)

Chalkia et al., unpublished 238 �0.02 TTP (first peak),

latency 0.5–4.5 s

6 16/10 (10/10 in

analysis, only

unrein-forced

trials)

0 (0–6) 0 0.03 ± 0.19

(0–10)

0.29 0.05 ± 0.29

(0–10)

0.50 0.08 ± 0.42

(0–20)

0.40

Hollandt et al., unpublished 30 >0.04 TTP (first peak),

latency 0.9–4 s

6 10/10 0 0 2.97 ± 2.81

(0–10)

29.67 7.23 ± 2.61

(0–10)

72.33 10.20 ± 4.72 51.0

Sjouwerman et al., 2018 326 �0.02 TTP (first peak),

latency 0.9–4.5 s

9 9/9 1.38 ± 1.73

(0–9)

15.37 3.11 ± 2.69

(0–9)

34.59 3.77 ± 2.68

(0–9)

41.92 6.87 ± 5.01

(0–18)

38.26
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Appendix 4

Definition of ‘non-responders ‘and amount of participants
excluded across studies
In the main manuscript, we discuss different frequencies of ‘non-responding’ to different

experimental stimuli (e.g., US, CS+ and CS– in isolation or in combination), which inherently

lead to different exclusion frequencies when classifying ‘non-responders’ on the basis of

different types of stimuli. As there is little empirical work on the frequency of ‘non-responses’

to the US, CSs (i.e., CS+ and CS–) and CS+ only to base recommendations on, we compiled

this information across 20 different data sets (see Appendix 4—table 1), including information

on SCR response quantification specifications (i.e., minimum amplitude, scoring approach) and

procedural details during fear acquisition training (i.e., number of CS and US presentations).

These data sets were provided by different co-authors involved in this manuscript.

In addition, Appendix 4—table 2 provides information on the number and percentage of

individuals in a sample showing SCR ‘non-responses’ to a certain number of US presentations

during fear acquisition training as well as mean number and percentage of CS responses (CS

refers to the CS+ and CS– combined) in these individuals to guide the development of

empirically based criteria to define SCR ‘non-responders’.

Appendix 4—table 2. Number and percentage of individuals in a sample showing SCR non-

responses to a certain number of US presentations during fear acquisition training (exemplarily

for one to eight USs#), as well as mean number of and percentage of CS responses (CS refers to

the CS+ and CS– combined) in these individuals. #Here only up to eight USs are included as

eight is half of the maximum number of US presentations in the samples included here.

Reference

a) n (%) of individuals with 0, 1, 2, 3, 4, 5, 6, 7, and 8 SCRs towards the US. b) M (%) of valid CS responses for

these individuals.

0 US 1 US 2 US 3 US 4 US 5 US 6 US 7 US 8 US

Jentsch et al., 2020 a) 1

(2.4%) b)

0 (0%)

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 2

(4.9%) b)

27.5

(85.9%)

a) 7

(17.1%) b)

25.4

(79.5%)

Hermann et al.,

2016

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 1 (2%) b)

12 (37.5%)

a) 0 (0%)

b) NA

a) 1 (2%)

b) 14

(43.7%)

a) 0 (0%)

b) NA

Merz et al., 2018a a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 1

(2.6%) b)

23.0

(95.8%)

a) 0 (0%)

b) NA

a) 2

(5.1%) b)

20.0

(83.3%)

a) 3 (7.7%)

b) 23.0

(95.8%)

a) 1 (2.6%)

b) 21.0

(87.5%)

a) 5

(12.8%)

b) 21.4

(89.1%)

a) 9

(23.1%) b)

21.6

(85.6%)

Merz et al., 2014 a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

Hamacher-

Dang et al., 2015

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 1 (3%)

b) 24

(75.0%)

Mertens et al., 2019 a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 4

(6.78%) b)

1.75

(11.67%)

a) 0 (0%) b)

NA

a) 2

(3.39%) b)

3.5

(23.33%)

a) 2

(3.39%)

b) 9

(60%)

a) 0 (0%)

b) NA

Klingelhöfer-Jens

et al., unpublished

a) 2

(1.68%)

b) 0 (0%)

a) 0 (0%)

b) NA

a) 1

(0.84%)

b) 10

(35.7%)

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 1

(0.84%) b)

1 (3.57%)

a) 2

(1.68%)

b) 2

(7.14%)

a) 1

(0.84%) b)

0 (0%)

Appendix 4—table 2 continued on next page
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Appendix 4—table 2 continued

Reference

a) n (%) of individuals with 0, 1, 2, 3, 4, 5, 6, 7, and 8 SCRs towards the US. b) M (%) of valid CS responses for

these individuals.

0 US 1 US 2 US 3 US 4 US 5 US 6 US 7 US 8 US

Gerlicher et al., un-

published

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 3

(5.77%)

b) 4

(33.33%)

a) 5

(9.62%) b)

4.8 (40%)

a) 7

(13.46%)

b) 6.7

(55.91%)

a) 35

(67.31%)

b) 6.15

(51.25%)

NA NA

Gerlicher et al.,

2018

a) 1

(2.56%)

b) 0 (0%)

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 2

(5.13%)

b) 19.5

(97.5%)

a) 4

(10.26%)

b) 17.5

(87.50%)

a) 32

(82.05%)

b) 16.81

(84.05%)

NA NA NA

Wendt et al., 2020 a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 1

(0.9%) b)

18 (75%)

a) 1

(0.9%) b)

24 (100%)

a) 1

(0.9%) b)

0 (0%)

a) 0 (0%) b)

NA

a) 2 (1.8%)

b) 12

(50%)

a) 8

(7.1%) b)

13.13

(54.69%)

a) 11

(9.9%) b)

11.09

(46.21%)

Wendt et al., 2015 a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 1

(0.9%) b)

18 (75%)

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 1

(0.9%) b)

17

(70.83%)

a) 0 (0%)

b) NA

Drexler et al., 2015 a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 2

(4.3%) b)

0.5

(1.28%)

a) 1

(2.2%) b)

0.0 (0.0%)

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 1

(2.2%) b)

7.0

(17.94%)

a) 0 (0%)

b) NA

Meir Drexler et al.,

2016

a) 1

(1.4%) b)

29.00

(74.35%)

a) 0 (0%)

b) NA

a) 2

(2.7%) b)

2.0

(5.12%)

a) 1

(1.4%) b)

9.0

(23.07%)

a) 1

(1.4%) b)

2.0

(5.12%)

a) 1 (1.4%)

b) 3.0

(7.69%)

a) 0 (0%)

b) NA

a) 4

(5.5%) b)

5.0

(12.82%)

a) 2

(2.7%) b)

6.50

(16.66%)

Meir Drexler and

Wolf, 2017

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 1

(1.4%) b)

5.0

(12.82%)

a) 1

(1.4%) b)

5.0

(12.82%)

Drexler et al., 2018 a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 1

(2.5%) b)

8 (25%)

a) 2

(5.0%) b)

12.5

(39.06%)

Meir Drexler et al.,

2019

a) 3

(4.0%) b)

0.33

(1.66%)

a) 1

(1.3%) b)

1 (5.0%)

a) 4

(5.3%) b)

4.25

(21.25%)

a) 2

(2.7%) b)

3.0

(15.0%)

a) 3

(4.0%) b)

1.33

(6.66%)

a) 19

(25.3%) b)

12.63

(63.15%)

a) 43

(57.3%) b)

13.21

(66.04%)

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

Chalkia et al., un-

published

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 238

(100%) b)

19.92

(99.6%)

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

Hollandt

et al., unpublished

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

NA NA

Sjouwerman et al.,

2018

a) 4

(1.23%)

b) 0.5

(2.78%)

a) 2

(0.61%)

b) 2.5

(13.89%)

a) 4

(1.23%)

b) 4.13

(22.92%)

a) 2

(0.61%)

b) 7.25

(40.28%)

a) 0 (0%)

b) NA

a) 0 (0%) b)

NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA

a) 0 (0%)

b) NA
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Figure 1. Flow chart illustrating the selection of records according to PRISMA guidelines (Moher et al., 2009).

Note that seven records (14%) employed the definition and exclusion of both ‘non-learners’ and ‘non-responders’.

Examples of irrelevant topics included studies that did not use fear conditioning paradigms (see https://osf.io/

uxdhk/ for a documentation of excluded publications).
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Figure 2. Graphical illustration of the percentage of ‘non-learners’ and forking path analysis across studies. (A)

Illustration of the percentage of participants excluded (‘non-learners’) based on SCR CS+/CS–discrimination scores

across studies included in the systematic literature search (note that these 14 individual studies are derived from

11 different records, as three records reported two individual studies each). Please note that some studies

excluded participants on the basis of ‘non-learning’ as well as ‘non-responding’ (cf. Figure 1), and hence

the percentages displayed here do not necessarily map onto the percentage of total participants excluded per

study. Also note that the study with the highest percentage of excluded participants (i.e., 74%) reported the

percentage of excluded participants as a single value that included ‘non-learners’ and ‘non-responders’. This study

is only included here because the largest proportion of exclusions can be expected to result from ‘non-learning’.

(B) Sanky plot showing the ‘forking paths’ of performance-based exclusion of participants as ’non-learners’,

illustrating differences in the experimental phase, number of trials, the SCR CS+/CS– discrimination score in mS

used to define a ‘non-learner’, the CS+ type considered (illustrated as the nodes in graded colors) and their

combinations used to define ’non-learners’ across studies. Path width was scaled in relation to frequency of the

combinations. Note that for some ‘nodes’ the percentages do not add up to 100% because of rounding.
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Figure 3. Density plots illustrating the frequency of CS+/CS– discrimination scores in a sample of N = 116 (Data

set 1) based on the last half of the acquisition phase (including 7 CS+ and 7CS–, 100% reinforcement rate) for (A)

SCR raw data and (B) logarithmized and range-corrected (rc; individual trial SCR/SCRmax_across_all_trials) SCR data (as

it is typically not reported to which data exclusion criteria are applied). Color coding (yellow to blue) illustrates

which part of the sample would be excluded when applying the performance-based exclusion criteria (i.e. CS+/

CS– discrimination) as identified by the systematic literature search. Panel (A) also illustrates two case examples

(ID#1 and ID#2) that differ in SCR amplitudes but importantly show the same discrimination ratio between CS+

and CS– (4:1). These two case examples illustrate that high CS+/CS– discrimination cutoffs favor individuals with

high SCR amplitudes to remain in the final sub-sample. Data are based on a re-analysis of an unpublished data set

recorded in the fMRI environment (Klingelhöfer-Jens M., Kuhn, M. and Lonsdorf, T.B.; unpublished).
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Figure 3—figure supplement 1. Percentages of participants excluded (Data set 1) when employing the different

CS+/CS– discrimination cutoffs (as identified by the systematic literature search and graphically shown in

Figure 3B) which are illustrated as density plots in Figure 3. Percentages are calculated on the basis of (A) raw

SCR scores or (B) logarithmized and range-corrected scores in Data set 1. Note that the different groups are

cumulative (i.e., the darker colored groups also comprise the lighter colored groups).
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Figure 4. Exemplary illustration of individuals (Data set 1) that switch from being classified as ‘learners’ vs. ‘non-

learners’ depending on the different CS+/CS– discrimination cutoff level (panels A–D), when calculation of CS+/

CS– discrimination is based on either the full fear acquisition phase or the second half of the fear acquisition

training (left and right part of each panel, respectively).
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Figure 4—figure supplement 1. Bar plots (mean ± SE) on which the superimposed individual data points show

CS+ and CS– amplitudes (of raw SCR values) and CS+/CS– discrimination in (A) fear ratings and (B) SCRs raw

values in the group of ‘non-learners’, as exemplarily defined for this example as a group consisting of individuals

in the two lowest SCR CS+/CS– discrimination cutoff groups (i.e., �0) in Data set 1. This illustrates that individuals

who fail to show CS+/CS– discrimination in SCRs (B) may in fact show substantial CS+/CS– discrimination (as an

indicator for successful learning) in other outcome measures, as exemplarily illustrated here for fear ratings (A).
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Figure 5. A case example illustrating potential sample bias induced by excluding individuals on the basis of CS+/

CS– discrimination scores (based on logarithmized, range-corrected (rc) SCR data). Scatterplot illustrating the

association between trait anxiety (measured via the trait version of the State-Trait Anxiety Inventory, STAI-T) and

CS+/CS– discrimination scores in a sample of N = 268 (Data set 2). Color coding (yellow to blue) illustrates which

part of the sample would be excluded when applying the performance-based exclusion criteria (i.e. CS+/CS–

discrimination) as identified by the systematic literature search. Note that within this sample, no individuals were

identified with CS+/CS– discrimination equaling 0.05 mS. The upper panel illustrates densities for trait anxiety for

the different CS+/CS–discrimination groups. The rightmost panel illustrates the density for CS+/CS– discrimination

in the full sample. Data are based on a re-analysis of a data set recorded in the behavioral environment

(Schiller et al., 2010). Note that despite the different color coding, which serves illustrative purposes only, the

groups are in practice cumulative. More precisely, the groups illustrated by lighter colors are always contained in

the darker colored groups when applying the respective cutoffs. For example, the group excluded when

employing a cutoff of <0.1 mS (mid blue) also comprises the groups already excluded for the lower cutoffs

of = 0.05 mS (light blue), <0.05 mS (turquoise), = 0 mS (light green) and <0 mS (yellow). For illustrative purposes, the

different groups are treated as separate groups in this figure.
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Figure 6. Graphical illustration of the percentage of ‘non-responders’ and forking path analysis across studies. (A)

Illustration of the percentage of participants excluded from each study as a result of ‘ SCR non-responding’ to

(i) the conditioned stimuli (i.e., CS+ and CS–), (ii) the US, (iii) the CS+ (which also comprises a study that used the

CXT+, i.e. context), (iv) the CS+, CS– and US or (v) a pre-experimental test. Note that these 18 individual studies

are derived from 16 different records, two of which included two different studies that used the same criteria. Note

that some studies excluded participants on the basis of ‘non-learning’ as well as ‘non-responding’, and hence

the percentages displayed here do not necessarily map onto the percentage of total participants excluded

from each study. Also note that a single study (Schiller et al., 2018) is not included in this visualization because it

reported % ‘non-learners’ and % ‘non-responders’ as a single value. This value has been included in the

visualization of ‘non-learners’ (Figure 2) as these are expected to represent the largest proportion. (B) Sanky plot

illustrating the stimulus type (pre-experiment refers to determination of ’responding’ in an unrelated phase prior

to the experiment), the minimally required response amplitude in mS (note that ‘visual’ refers to visual inspection of

the data without a clear-cut amplitude cutoff, NA refers to no criterion applied) illustrated as the nodes in graded

colors and their combinations that lead to classification as a ‘non-responder’. Path width was scaled in relation to

frequency of the combinations. Note that for some ‘nodes’ the percentages do not add up to 100% because of

rounding.
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Figure 7. Percentage of no-responses across stimuli and correlation between CS and US non-responses. (A) Bar

plot displaying the number of ‘non-responses’ to the CS+, CS–, across both CS and to the US across all

participants in Data set 1 (see Appendix 4—table 1 for percentages across different data sets). (B) Scatterplot

illustrating the number of ‘non-responses’ (i.e., zero-responses, here defined by an amplitude <0.01 mS) to the US

presentations (total of 14 presentations) and the CS+ (red) and CS– (blue) responses (14 presentations each) for

each participant in Data set 1. For completeness sake, ‘non-responses’ across CS types are illustrated in gray (CS+

and CS– combined, total of 28 presentations). Lines illustrate the Spearman correlation (rs) between ‘non-

responses’ to the US and ‘non-responses’ to the CS+, CS– and both CS, with corresponding correlation

coefficients (font color corresponds to CS type) included in the figure.

Lonsdorf et al. eLife 2019;8:e52465. DOI: https://doi.org/10.7554/eLife.52465 10 of 10

Research article Neuroscience

https://doi.org/10.7554/eLife.52465


 

STUDY IV 

88 

 

10 Study IV 

 

This article was published in Behaviour Research and Therapy, 153, Lonsdorf, T. B., Gerlicher, 

A., Klingelhöfer-Jens, M., & Krypotos, A.-M., Multiverse analyses in fear conditioning 

research, 104072, no changes have been implemented, Copyright Elsevier (2022).    

 

 



Behaviour Research and Therapy 153 (2022) 104072

Available online 21 March 2022
0005-7967/© 2022 Elsevier Ltd. All rights reserved.

Multiverse analyses in fear conditioning research 
Tina B. Lonsdorf a,*, Anna Gerlicher b, Maren Klingelhöfer-Jens a, Angelos-Miltiadis Krypotos c,d 
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A B S T R A C T   

There is heterogeneity in and a lack of consensus on the preferred statistical analyses in light of a multitude of 
potentially equally justi昀椀able approaches. Here, we introduce multiverse analysis for the 昀椀eld of experimental 
psychopathology research. We present a model multiverse approach tailored to fear conditioning research and, 
as a secondary aim, introduce the R package ‘multifear’ that allows to run all the models though a single line of 
code. Model speci昀椀cations and data reduction approaches were identi昀椀ed through a systematic literature search. 
The heterogeneity of statistical models identi昀椀ed included Bayesian ANOVA and t-tests as well as frequentist 
ANOVA, t-test as well as mixed models with a variety of data reduction approaches. We illustrate the power of a 
multiverse analysis for fear conditioning data based on two pre-existing data sets with partial (data set 1) and 
100% reinforcement rate (data set 2) by using CS discrimination in skin conductance responses (SCRs) during 
fear acquisition and extinction training as case examples. Both the effect size and the direction of effect was 
impacted by choice of the model and data reduction techniques. We anticipate that an increase in multiverse- 
type of studies will aid the development of formal theories through the accumulation of empirical evidence 
and ultimately aid clinical translation.   

1. Introduction 

Scienti昀椀c work - also in experimental psychopathology - consists of 
multiple steps including data recording, measurement, processing, 
analysis, illustration, and interpretation. Yet, every single step during 
the scienti昀椀c process inherently involves a plethora of decisions in light 
of a large pool of potentially equally justi昀椀able options with respect to 
data recording, response quanti昀椀cation, data processing and statistical 
analysis. This has been referred to as “researchers degrees of freedom” 

(Simmons, Nelson, & Simonsohn, 2011) or the “garden of forking paths” 

(Gelman & Loken, 2014), the navigation of which can be challenging in 
absence of empirical evidence and/or precise (formal) theories 
providing a justi昀椀cation for one speci昀椀c choice. As a result, many de-
cisions are more or less arbitrary and potentially equally justi昀椀able, even 
though it remains unclear if all different paths converge in the identical 
statistical result and interpretation or to what extent they diverge. This 
often results in extensive discussions both during data analyses as well as 
during peer-review and generally hampers the translation of basic 
research 昀椀ndings to the clinics. 

The consequences and implications resulting from this plethora of 

alternative choices at each step of the scienti昀椀c process as well as po-
tential remedies have been discussed intensively in psychology recently 
(Botvinik-Nezer et al., 2020; Sandre et al., 2020; Silberzahn et al., 2018; 
Simmons et al., 2011). These meta-scienti昀椀c topics have been high-
lighted in the past years also for fear conditioning research in humans 
with a focus on procedural heterogeneity and construct operationaliza-
tion: More precisely, the role of procedural heterogeneity has been 
discussed for the reinstatement-induced return of fear (Haaker, Golkar, 
Hermans, & Lonsdorf, 2014; Sjouwerman & Lonsdorf, 2020), the impact 
of inconsistent de昀椀nitions of key learning indices such as “extinction 
retention” (Lonsdorf, Merz, & Fullana, 2019) as well as the de昀椀nition of 
“learning” vs. “non-learning” and “responding” vs. “non-responding” 

(Lonsdorf et al., 2019) as well as skin conductance response quanti昀椀-
cation (Kuhn, Gerlicher, & Lonsdorf, 2022; Sjouwerman, Illius, Kuhn, & 
Lonsdorf, 2021). 

A multiverse of statistical models. What has not yet been sys-
tematically addressed in the 昀椀eld of fear conditioning research are the 
many decisions required when planning statistical analyses of a fear 
conditioning study (Ney et al., 2020) which involves questions, such as: 
Shall I run a t-test or an Analysis of Variance (ANOVA)? Shall I use 
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p-values or Bayes factors? Do I need to include covariates in my ana-
lyses? Shall I use aggregated scores across an experimental phase or 
should I consider each trial separately? Different decisions for each of 
these data analytical questions and their combinations lead to different, 
yet often equally justi昀椀able data analytical pipelines which hampers 
comparability across studies and also leaves room for potential Ques-
tionable Research Practices (QRP) engaged in unintentionally or inten-
tionally (Simmons et al., 2011). In absence of precisely formalized 
theories and hypotheses, different researchers are likely to pick different 
– often equally justi昀椀able – analytical pipelines to answer the same 
research question. This has been impressively illustrated across a num-
ber of studies in different research 昀椀elds in the past years that showed 
the different paths can lead to substantially different conclusions (e.g., 
Boehm et al., 2018; Botvinik-Nezer et al., 2020; Dutilh et al., 2019; Kuhn 
et al., 2022; Lonsdorf et al., 2019a, 2019b; Silberzahn et al., 2018). 

In psychology, verbal theories dominate. With the term “verbal 
theories” we refer to the description of different latent constructs and 
their relationships in natural language only (Farrell & Lewandowsky, 
2018; Lewandowsky & Farrell, 2010). This type of descriptions inher-
ently gives room for statistical 昀氀exibility: For example, a theory may 
predict that after reliable pairing of a neutral stimulus (Conditioned 
Stimulus or CS+) with an unpleasant event (Unconditioned Stimulus, 
US) while a second neutral stimulus (CS-) is not paired with the US, the 
CS + but not the CS- will elicit an anticipatory fear reaction (i.e., 
conditioned response, CR). This anticipatory fear reaction will manifest 
as larger skin conductance responses (SCRs) to the CS + as compared to 
the CS-, referred to as CS discrimination. Yet, this verbal theory is 
ill-de昀椀ned as it does not specify for instance a) how high those responses 
will be (e.g., 10, 20, 50 point differences), and b) how many pairings 
between the CS+ and the US are required for differential responses will 
be expressed (e.g., after 2, 3, or 10 trials). This imprecision in theory 
results in a multitude of different statistical models that may be used 
(Muthukrishna & Henrich, 2019), idiosyncratic criteria about how large 
CS discrimination needs to be (Lonsdorf et al., 2019), or to consider 
different amounts of trials in analyses (Lonsdorf et al., 2019, 2019; Ney 
et al., 2020). The decisions to choose a speci昀椀c statistical analysis from a 
set of plausible analyses can be considered to occur mostly in good faith. 
Yet, even for models intended to test the same predictions it remains 
unclear if the statistical results derived from different statistical ap-
proaches or processing pipelines and the interpretation based on them 
are comparable and converge across data analytical pipelines. Recently, 
Ney et al. (2020) described inconsistent statistical strategies when 
analyzing skin conductance data in fear extinction training. Their results 
suggest unsatisfying correlations between the different analysis ap-
proaches as applied to the same data-set which were mainly attributable 
to the selection of trials from different stages of the experimental phases 
and employment of trial-by-trial analyses vs. averaged scores (Ney et al., 
2020). This may not be particularly surprising as different analytic 
strategies may not test exactly the same underlying hypothesis but may - 
intentionally or unintentionally - test different hypotheses. This is true 
for models with and without covariates (Del Giudice & Gangestad, 
2021) but also for models using different numbers of trials. Including 
only the 昀椀rst 2 trials of a (delayed) extinction phase tests for fear recall, 
while including only the last two trials tests for end-point extinction 
learning successes and trial-by-trial analyses test for temporal dynamics 
during extinction learning. In sum, model speci昀椀cation is a major issue 
and often characterised by uncertainty about which variables to include, 
how to operationalize them and their interrelations with associated 
variables. Hence, it is desirable to formalize the to date predominantly 
verbal theories. This, however, requires a deep understanding on the 
impact of individual speci昀椀cations which must be considered a stopover 
on the path towards more formalized models. 

How to navigate the multiverse of statistical analyses. A prom-
ising approach to systematically and comprehensively explore the 
impact of such methodological heterogeneity in the data processing or 
statistical analyses, is a multiverse-type analysis (Steegen, Tuerlinckx, 

Gelman, & Vanpaemel, 2016) or the related speci昀椀cation curve analyses 
(Simonsohn, Simmons, & Nelson, 2020). Multiverse-type analyses 
consider the i) multiverse of justi昀椀able data sets that can be generated 
from a single set of raw data through reasonable data processing de-
cisions (i.e., “data multiverse”) or considers ii) the multiverse of 
different reasonable statistical models applied to a single data set to 
answer a single research question (i.e., “model multiverse”) or iii) their 
combinations. The multiverse approach thus systematically generates a 
set of universes for alternative data processing and/or statistical pipe-
lines. This holds promise to achieve a better estimate of a given effect as 
well as its robustness as compared to the standard approach of analyzing 
and reporting results based on a single processing and analytical pipe-
line which is often selected based on more or less arbitrary decisions. 
Thus, in case the results of a multiverse analysis show convergence 
across the different processing and/or analytical choices (i.e., forking 
paths), the robustness of an effect independent of the used preprocessing 
pipeline (for a data multiverse) or statistical pipeline (for a model 
multiverse), can be assumed. However, if divergence is observed, this 
may inform us on potential boundary conditions (for instance inclusion 
of speci昀椀c covariates or trial numbers) that may systematically impact 
the strength of the effect under study. 

The main aims of the current work are: a) to introduce the readers to 
the idea of multiverse-type of studies by focusing on fear conditioning 
research and b) to showcase an illustrative application example on the 
(degree of) impact of different data analysis choices when applying 
different statistical models to the same data set (i.e., model multiverse 
analysis; Steegen et al., 2016) based on two pre-existing datasets. Of 
note, the choice of the different statistical models included was guided 
by a systematic literature search covering a representative 6-month 
period which hence re昀氀ects which statistical analyses are typically 
performed in the 昀椀eld. A secondary aim of this work is to introduce, via a 
short tutorial, a new open software package, named ‘multifear,’ that 
allows researchers in the 昀椀eld of fear conditioning to employ this 
computationally demanding approach of running all the models (as 
identi昀椀ed in the literature) with ease and through a single line of code to 
their own data - for both Null Hypothesis Signi昀椀cance Testing (NHST) as 
well as Bayesian statistics using Bayes factors. 

2. Methods 

Systematic literature search: A systematic literature search was per-
formed as suggested by the PRISMA guidelines (Moher et al., 2009). The 
search covered all publications (including e-pubs ahead of print) in 
PubMed in a six months period (22.9.2018 to 22.3.2019) and served the 
purpose to extract procedural and statistical speci昀椀cations employed in 
the 昀椀eld of fear conditioning relevant for a number of planned research 
projects (e.g., Lonsdorf et al., 2019). As described previously (Lonsdorf 
et al., 2019), the following search terms were employed: threat condi-
tioning OR fear conditioning OR threat acquisition OR fear acquisition 
OR threat learning OR fear learning OR threat memory OR fear memory 
OR return of fear OR threat extinction OR fear extinction. In case, the 
search included author corrections published within the search period, 
the original study was included unless already included. A total of 854 
records as listed in PubMed were identi昀椀ed, stage 2 screening of the 
abstract yielded 152 records. Eighty-six publications were retained at 
stage 3 screening of the full text. The 昀椀nal set of publications consisted of 
50 records which all reported Results for (1) SCRs as an outcome mea-
sure from (2) the fear acquisition training phase (3) in human partici-
pants. From those records we selected all the analyses that tested the 
hypothesis of differences between the CS+ and the CS-. This included 
also the statistical models that in addition to CS differences included also 
the factor time or a between group factor. As such, we excluded any 
analysis that included the use of a computational model. Also, in case 
covariates were included in a statistical model, the model was catego-
rized without these covariates to increase the generalizability of the 
昀椀ndings. A 昀氀ow chart and more details are provided in our previous 
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publication (Lonsdorf et al., 2019). 

2.1. Data-set 1 

Participants Data from a previous publication of N = 40 male par-
ticipants (Age: mean = 28.1 years; SD = 2.7 years) were re-analyzed 
(Gerlicher, Tüscher, & Kalisch, 2018). Written informed consent was 
provided by all participants and the protocol was approved by the local 
ethics committee (Ethikkommission der Landesärztekammer, 
Rheinland-Pfalz). 

Stimuli In brief, two black geometric symbols (square, rhombus), 
presented for 4.5s, served as CS+ and CS- superimposed on two different 
background context pictures (A, B; kitchen or a living room). Assign-
ment of the symbols to CS + or CS- and the rooms to contexts A or B was 
randomized between participants. The US consisted of an electrical 
stimulus (three square-wave pulses of 2 ms, 50 ms interstimulus inter-
val) generated by a DS7A electrical stimulator (Digitimer, Weybridge) 
and applied to the right dorsal hand via a surface electrode with plat-
inum pin (Specialty Developments, Bexley, UK). US delivery terminated 
with CS + presentation. Inter-trial intervals lasted 17, 18, or 19 s (mean 
of 18.5 s). Trial order was randomized with the restriction that not more 
than two trials of the same type (i.e., CS+, CS-) followed each other. 

Procedure Data were recorded in a three-day fMRI paradigm 
comprising fear acquisition on day 1, extinction and subsequent drug 
administration on day 2, and a test of the effect of the drug manipulation 
on day 3. For the purpose of the present work, only SCR data recorded 
prior to drug intake during fear acquisition and extinction are re- 
analyzed. US intensity was calibrated to a level described as painful, 
but still tolerable by the participant prior to the experiment. During fear 
acquisition training on day 1, ten CS+ and ten CS- trials were presented 
in context A. Five out of ten CS + presentations (i.e., 50%) were rein-
forced with an electric stimulus. During extinction training on day 2, 
昀椀fteen CS+ and CS- trials were presented in context B. Stimulus pre-
sentation was controlled by Presentation software (Version 14.8, Neu-
robehavioral Systems, Inc, Albany California, USA). 

Skin conductance recording Electrodermal activity was recorded from 
the thenar and hypothenar of the non-dominant hand using self- 
adhesive Ag/AgACl electrodes (EL-509, BIOPAC Systems Inc., Goleta, 
CA, USA) 昀椀lled with an isotonic electrolyte medium. The signal was 
recorded using the Biopac MP150 with EDA100C. We low-pass 昀椀ltered 
the raw signal of昀氀ine with a second-order Butterworth 昀椀lter with a cut- 
off frequency of 1 Hz in Matlab (Mathworks, Natick, Massachusetts, 
USA). 

2.2. Data-set 2 

Participants Participants from the baseline-time point (T0) of a lon-
gitudinal fear conditioning study in 120 participants were included 
whereof data from four participants were excluded due to protocol de-
viations leaving 116 participants for analyses (77 females; age: mean =
24.38 years; SD = 0.34 years). These data have been included as a case 
example in a previous publication focusing on the methodological 
question of de昀椀ning ‘no-responder’ and ‘non-learner’ (Lonsdorf et al., 
2019), the impact of different SCR quantication appraoches (Kuhn et al., 
2022, Sjouwerman et al., 2021), have been analyzed with respect to 
temporal stability (i.e., test-retest for a six month period, Klin-
gelhöfer-Jens, Ehlers, Kuhn, Keyaniyan, & Lonsdorf, 2022), and asso-
ciations between conditioned responding and brain morphology (Ehlers, 
Nold, & Kuhn, 2020). All participants gave written informed consent to 
the protocol which was approved by the local ethics committee (PV 
5157, Ethics Committee of the General Medical Council Hamburg). 

Stimuli The US was an electrotactile stimulus consisting of three 2 ms 
electrotactile rectangular pulses with an interpulse interval of 50 ms 
(onset: 200 ms before CS + offset) and was administered to the back of 
the right hand of the participants. It was generated by a Digitimer DS7A 
constant current stimulator (Welwyn Garden City, Hertfordshire, UK) 

and delivered through a 1 cm diameter platinum pin surface electrode 
(Speciality Developments, Bexley, UK). The electrode was attached be-
tween the metacarpal bones of the index and middle 昀椀nger. US intensity 
was individually calibrated in a standardized step-wise procedure aim-
ing at an unpleasant, but still tolerable level. 

Two light grey fractals served as conditioned stimuli which were 
presented 14 times in a pseudo-randomized order for 6–8 s (mean: 7 s). 
Allocation to CS+ and CS- was counterbalanced between participants 
and the CS+ was followed by the US in all cases during fear acquisition 
training. A white 昀椀xation cross was shown for 10–16 s (mean: 13 s) 
which served as the inter-trial intervals (ITIs). All stimuli were presented 
on a dark grey background and controlled by Presentation software 
(Version 14.8, Neurobehavioral Systems, Inc, Albany California, USA). 

Procedure The paradigm (for details see Lonsdorf, Klingelhöfer-Jens 
et al., 2019) consisted of a two-day uninstructed fear conditioning 
paradigm with habituation and acquisition training (100% reinforce-
ment rate) taking place on day 1 and extinction training and reinstate-
ment test taking place on day 2. The study included a baseline 
measurement (T0) and a follow-up measurement (T1) six month later 
when the identical paradigm was conducted again. Only data from T0 
are included here. During all experimental phases, BOLD fMRI, fear 
ratings (prior to and after each experimental phase) and skin conduc-
tance responses were acquired. BOLD fMRI as well as fear ratings are, 
however, not included in the present work, as it focuses on different 
statistical models using skin conductance as a case exemplary outcome 
measure. 

Skin conductance recording Skin conductance response was measured 
via self-adhesive Ag/AgCl electrodes placed on the palmar side of the 
left hand on the distal and proximal hypothenar. Data were recorded 
with a skin conductance unit together with a Biopac MP100-ampli昀椀er 
system (BIOPAC® Systems Inc., Goleta, CA, USA) and converted from 
analog to digital using a CED2502-SA with Spike 2 software (Cambridge 
Electronic Design, Cambridge, UK). 

Skin conductance response quanti昀椀cation and processing (data set 1 and 
2) SCRs were scored computer-assisted by using a custom-made com-
puter program (EDA View, developed by Prof. Dr. Matthias Gamer, 
University of Würzburg) according to published guidelines (Boucsein 
et al., 2012) and while being blind to stimulus type associated with a 
given SCR. More precisely, the trough was identi昀椀ed in a post stimulus 
onset latency window (OLW) of 0.9–4s for data-set 1 (Boucsein et al., 
2012) and 0.9–3.5s for data set 2 (Sjouwerman & Lonsdorf, 2019). The 
peak was identi昀椀ed in a peak detection window (PDW) of maximally 5s 
post SCR onset. In case of multiple peaks in the PDW, the 昀椀rst peak was 
considered. 

Data were down-sampled to 10 Hz. Each scored SCR was checked 
visually, and the scoring suggested by the algorithm was corrected if 
necessary (e.g., the foot or trough was misclassi昀椀ed by the algorithm). 
Data with recording artifacts or excessive baseline activity (i.e., more 
than half of the response amplitudes) were treated as missing data points 
and excluded from the analyses. For data set 2, SCRs below 0.01 μS or 
the absence of any SCR (i.e., 昀氀at line or habituation drift) within the 
de昀椀ned time window were classi昀椀ed as non-responses and set to 0. The 
threshold of 0.01 μS for this data set was determined empirically by 
visually inspecting responses speci昀椀cally above and below this cutoff 
(Lonsdorf et al., 2019), which suggested that in this data set, responses 
>0.01 μS can be reliably identi昀椀ed. For data set 1, a minimum amplitude 
criterion of 0.02 μS was used. 

In contrast to the original analysis for data set 1 (Gerlicher et al., 
2018) where data was excluded when more than 75% of CS-evoked SCR 
were scored as zero, we here only excluded trials when it was affected by 
recording artifacts. This led to the exclusion of data of four participants 
during fear conditioning and two participants during extinction, leaving 
data of N = 38 participants for statistical analysis, respectively. Raw 
data were log transformed using the formula log(1 + raw value). 
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2.3. Statistical analyses 

Multiverse analyses can be run in any statistics software. Given the 
volume of analyses, though, a scripting language seems less time 
consuming and error prone than click-based statistical softwares. Here, 
we used the R software language (R Core Team, 2013). To enable re-
searchers in fear conditioning research to easily adopt a multiverse 
approach, we present the freely available R package named ‘multifear’ 

available at https://github.com/AngelosPsy/multifear. The R package is 
able to run all the analyses described in the manuscript in a single line of 
code, with the researcher having to only load their data in R, name the 
columns names for each CS, and the column name for the groups (if 
different groups were tested). The package is also able to generate plots 
as well as a summary of results (see main results for examples). For 
NHST analyses, we computed the mean and median of p-values across all 
tests, proportion of p values below the chosen alpha level (using an alpha 
level of 0.05 as it is common in the literature), as well as plotted a his-
togram of all p-values. We did the same separately for Bayes factors, with 
Bayes factors above 1 indicating that there is relatively more evidence 
that the data came from the alternative compared to the null hypothesis, 
and the reversed for values below 1. We also plotted a histogram for 
Bayes factors. Lastly, we have created different forest plots separately for 
the acquisition and extinction phase, plotting the Cohen’s d effect size 
for each test.1 Note that the computed effect sizes are based on the 
collected data and they cannot answer the question as to whether the 
observed effects are substantial or not. This is something that is purely 
based on a study’s research questions, as, for example, when evaluating 
the effectiveness for a drug a larger effect may be thought to be sub-
stantial compared to when comparing two conditions in a fear condi-
tioning study. A detailed vignette about how to install and use the R 
package is available at https://angelospsy.github.io/multifear/. We 
have also created a vignette, available within the package as well as htt 
ps://htmlpreview.github.io/?https://github.com/AngelosPsy/multi 
fear/blob/master/doc/internals.html, that describes in plain words the 
internals of the package. As the major aim of the present work is to 
showcase the idea and value of multiverse-type of analyses for the 昀椀eld 
of experimental psychopathology, we refrain from providing speci昀椀c 
details on the steps from entering data to getting results in the ‘multifear’ 

package and refer to the online vignette for these details. 

3. Results 

Results of the systematic literature search. Table 1, shows the 
frequencies with which each statistical model was used in the publica-
tions included in the systematic literature review. The most common 
statistical analysis employed in the 昀椀eld is a repeated measures ANOVA 

with a test of CS × Trial interaction or without the Trial factor being 
included. In case between group differences were tested, an extra be-
tween group factor was included. Mixed models and paired t-tests were 
also used in the literature, although sparingly. 

Importantly, the different statistical models described above include 
data processed through different data reduction procedures as identi昀椀ed 
from the systematic literature search. Speci昀椀cally the identi昀椀ed statis-
tical models for the repeated measures ANOVA and the mixed models 
included (a) single trial SCRs to CS+ and CS-, or (b) SCRs evoked by the 
昀椀rst and last CS+ and CS- trials (i.e. 昀椀rst vs. last trial), or (c), the SCR 
averaged across the 昀椀rst minus the last two CS+ and CS- trials (i.e., 昀椀rst 
2 vs. last 2 trials), or (d) SCRs averaged across two succeeding CS+ and 
CS- trials (i.e., averages per 2 trials), respectively. Similarly, SCRs were 
averaged across succeeding blocks of (e) 10%, (f) 20%, (g) 33%, or (h) 
50% (i.e., half of the trials) of CS+ and CS- trials, respectively, and the 
SCR averages of all 10%, 20%, 33% and 50% trial-blocks per CS type 
were subjected to the analysis. Lastly (i), SCRs were averaged across all 
trials except for the 昀椀rst CS+ and CS- trial (as no learning could possibly 
have taken place), respectively, and the CS+ and CS- averages were 
entered into the analysis.2 For the repeated measures ANOVAs the CS 
and trial were included as repeated measures factors. For the present 
analyses we did not include group as a factor in any of our analyses. For 
the t-tests analyses we used the same data reduction procedures as 
described above (a - i) but we averaged across the CS+ and CS- trials. 
This means, for example, that in case we had averaged across succeeding 
blocks of 20% of the trials, those blocks were then averaged again 
separately for CS+ and CS-. 

We now turn to showcasing a model multiverse analysis based on the 
speci昀椀cations derived from the systematic literature search by using two 
pre-existing data sets as case examples. Based on this principled 
approach we offer and showcase a tool (the ‘multifear’ R package) that 
allows to run this model multiverse covering the typically used statis-
tical models with as little as a single line of code. 

Multiverse Results. The top panel of Fig. 1 depicts log-transformed 
SCRs (+se), averaged across participants per trial, for the acquisition 
training and (delayed) extinction training phases for data set 1 (50% 
reinforcement rate), and the bottom panel shows the same for data set 2 
(100% reinforcement rate). In both data sets, we observe the expected 
pattern indicating successful fear acquisition and extinction training: 
participants exhibit stronger SCRs to the CS + than to the CS- in the 
acquisition training phase. In the delayed extinction training phase, we 
see a pattern of incomplete extinction for data set 1, with responses to 
the CS + remaining higher than the responses to the CS- even after 15 
trials (data set 1). For data set 2, we observe a different pattern with 
comparable response SCR amplitudes to both CS types throughout 
delayed extinction which is already evident from the very 昀椀rst trial of 
the extinction training phase. Note, SCRs were relatively larger in data 
set 1 than data set 2. While the reason for this is unclear, a potential 
explanation might be the usage of a more aversive US in data set 1: US 
intensity was calibrated to a level perceived as ‘maximally painful, but 
still tolerable’ in data set 1 compared to ‘maximally uncomfortable, but 
not painful’ in data set 2. Empirical and theoretical work suggests that 
stronger US intensity is associated with larger conditioned responses (e. 
g., Morris & Bouton, 2006; Rescorla & Wagner, 1972). An alternative 
explanation might be by the different reinforcement rates employed in 
data set 1 (partial) and 2 (100%). That is, SCRs have been suggested to 
re昀氀ect the associability of a stimulus (e.g., Li, Schiller, Schoenbaum, 
Phelps, & Daw, 2011; Seymour et al., 2005; Tzovara, Korn, & Bach, 
2018; Zhang, Mano, Ganesh, Robbins, & Seymour, 2016). In a paradigm 

Table 1 
Number of studies that used any one of the statistical models (i.e., repeated 
measures analysis of variance with different factors, t-test, mixed models). Note 
that the sum of studies is higher than 50 (i.e., the number of records of our re-
view), because some publications reported multiple experiments or analyses.   

Acquisition Extinction 
Repeated Measures ANOVAof CS (+group) 11 6 
Repeated Measures ANOVA of CS x Trial(/Block) 

(+group) 
29 21 

Paired t-test 5 1 
Mixed Models(including Multilevel Models) 4 2  

1 Please note that for some effects the whiskers were too small to plot and 
they are hidden by the size of the box. Also, it is not uncommon for η2 to have 
asymmetric con昀椀dence intervals, given that by de昀椀nition the effect cannot be 
lower than zero. 

2 Based on the number of trials included in each phase, there could be overlap 
between the different data reduction methods. To illustrate, in case 10 trials are 
used and a repeated measures ANOVA is used with cs as the main effect, then 
methods (d) and (f) will return identical Results (see results of acquisition phase 
for data set 1). 
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with 100% reinforcement rate (data set 2) the associability of the CS 
rapidly decreases over the course of acquisition, whereas the associ-
ability of the CS, and with it SCRs in general, may stay comparably 
higher in paradigms with 50% reinforcement rate (data set 1). 

We then performed the full multiverse (i.e., all different combina-
tions of models and procedures) separately for the acquisition and the 
extinction training phases. The multifear package allows such extensive 
analyses in a single line of code (see below for an illustrative example). 
[footnote] Please note that although here we present for illustrative 
purposes an example with a single group, the multifear package can also 
accommodate group analyses with just specifying the name of the col-
umn that includes the group data. We point to our github page for more 
examples. The function runs all the relevant models as derived from the 
literature using both Null Hypothesis Signi昀椀cance Testing (NHST) as 
well as Bayesian statistics using Bayes factors. The output is a data 
frame, with each line including the Results of the different models (e.g., 
t-test, ANOVA), the different data reduction procedures employed (e.g., 
means per whole block), as well as the relevant inferential statistics (e. 
g., p-values, Bayes factors). In the code line below we see that the mul-
tifear package is able to generate a data frame with all test by simply 
de昀椀ning the data set (here named ‘my_data’), the column names for the 
CS+ (here ‘csp’), the column names for CS- (here ‘csm’), and the name of 
the column including the participant number (here ‘id’). 

multifear::multiverse_cs(cs1 = csp, cs2 = csm, data = my_data, subj 
= "id") 

Fig. 2 includes a histogram of p-values and Bayes factors for the 
acquisition (data set 1: panel A, data set 2: panel C) and the extinction 
data (data set 1: panel B, data set 2: panel C), for each model and data 
reduction procedure used in the multiverse. Our analyses returned 116 
lines for the results from the acquisition training data and 116 lines for 
the results from the extinction training data. Regarding the acquisition 
training data of data set 1, the mean p-value was smaller than 0.001, 
with the 100% of the values falling below the alpha level of 0.05. For the 
Bayes factors, the mean Bayes factor was above 1000 and the proportion 
of Bayes factors above 1 was equal to 100%. Note that we abstain from 
evaluating whether Bayes factors provide evidence that is weak or 
strong or even anecdotal. We refer researchers to commonly used cat-
egories of the interpretation of Bayes factors (Wethzels, 2011). For data 
set 2, the mean p-value was equal to 0.06, with the 73.53% of the values 
falling below the alpha level of 0.05. For the Bayes factors, the mean 

Bayes factor was above 1000 and the proportion of Bayes factors above 1 
was equal to 70.59%. Fig. 2 shows which models results in 
non-signi昀椀cant results and detailed information can be returned from 
the data frame returned with the results. 

For the extinction training data of the 昀椀rst data set, the mean p-value 
was equal to 0.41, with the 50% of the values falling below the alpha 
level of 0.05. For the Bayes factors, the mean Bayes factor was above 
1000 and the proportion of Bayes factors above 1 was equal to 50%. 
Similarly, for the second data set, the mean p-value was equal to 0.36, 
with the 38.24% of the values falling below the alpha level of 0.05. For 
the Bayes factors, the mean Bayes factor was equal to 8.47 and the 
proportion of Bayes factors above 1 was equal to 29.41%. 

Apart from inferential statistics, researchers may be interested in the 
size of the effect. Although the package provides Cohen’s d for the t-tests 
and omega squared for the repeated measures ANOVA, we strived to 
provide a common effect measure so that we can readily compare the 
results with each other. As such, we transformed the effect sizes of the 
ANOVAs and the t-tests, and their con昀椀dence intervals, to η2 effect size.3 

The left panel of Fig. 3 plots η2 (and corresponding .90 con昀椀dence in-
tervals indicated by the whiskers)4 for the acquisition training (data set 
1: Panel A, data set 2: Panel C) and extinction training (data set 1: Panel 
B, data set 2: Panel D) phases. Each square represents the mean estimate 
of the effect, and the whiskers the 90% con昀椀dence intervals around that 
effect (for the data that were used for each test see review analysis 
section). For acquisition training data in data set 1, the effect sizes for CS 
discrimination (“CS” effect; CS + vs. CS-) are medium to large and the CS 
× time interaction small to medium. In data set 2, the effect sizes for CS 
discrimination vary between effects close to 0 and large effects. For the 
CS× time interaction, effects are either close to 0 or small. 

Fig. 1. Depiction of log transformed SCRs per CS (i.e., CS+, CS-) and trial for the Acquisition (i.e., A) and Extinction (i.e, E) training phase for study 1 (A) and study 
2 (B). 

3 For the t-test, we transformed the t-values to η2 values using the formula: η2 

= t2/(t2 
+ df), and bootstrapped the con昀椀dence intervals using the same 

function We did not report the effect sizes for the multilevel models, as, to our 
knowledge, there is not a consensus as to the report of effect sizes for the in-
dividual terms of each model.  

4 Please note that for some effects the whiskers were too small to plot and 
they are hidden by the size of the box. Also, it is not uncommon for η2 to have 
asymmetric con昀椀dence intervals, given that by de昀椀nition the effect cannot be 
lower than zero. 
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While, for simplicity, we here highlight CS+/CS- discrimination ef-
fects only, the R package we introduce also allows for the integration of a 
group factor, as this is relevant to many research questions. For 
simplicity, we refrain from showcasing additional analyses including a 
group factor but refer the interested reader to https://github.com/A 
ngelosPsy/multifear for more details. 

4. Discussion 

In light of a multitude of potentially equally justi昀椀able approaches, 
there is heterogeneity in and a lack of consensus on the preferred sta-
tistical analyses for fear conditioning effects. Typically, researchers 
select one of these approaches which - in absence of strong empirical and 
theoretical justi昀椀cations - result in ambiguity with respect to the 
robustness of results. Questions like “Would the employment of different 
exclusion criteria still yield a comparable result” often come to the re-
searcher’s own mind and not seldomly lead to lengthy discussions at the 
level of peer-review. In this context, “exclusion criteria” can be replaced 
by “statistical models” (which is the focus of this work), “covariates,” 

“number of trials” and many other decision nods a researcher is facing 
during the scienti昀椀c process from designing a study, processing the data 
and selecting a statistical model. Multiverse-type of approaches (Steegen 
et al., 2016) or speci昀椀cation curve approaches (Simonsohn et al., 2020) 
meet this challenge by including all (or many) reasonable or equally 
justi昀椀able decisions in a massive set of tailored robustness analyses. 

Model multiverse analyses reveal heterogeneity in results and 
precision of results: Where to go from here. Here, we present a model 
multiverse approach speci昀椀cally tailored to fear conditioning research 
and as a secondary aim introduce the novel and easy to use R package 
‘multifear’ that allows to run the multiverse of plausible models (as 
derived from a systematic literature search) through a single line of code 
in R. We showcase the idea and value of multiverse-type of studies for 
the 昀椀eld based on two pre-existing data sets with partial (data set 1) and 

100% reinforcement rate (data set 2) by using CS discrimination in skin 
conductance responses (SCRs) during fear acquisition and extinction 
training as a case example. Model speci昀椀cations and data reduction 
approaches were identi昀椀ed through a representative systematic litera-
ture search, which revealed substantial heterogeneity in statistical 
models employed which we hope to tackle through the ‘multifear’ 

package in the future. Model multiverse results for both fear acquisition 
and extinction training showed that a) both the size of the effect as well 
as the direction of effects (i.e., statistically signi昀椀cant or not) is based on 
the model that is used, b) that the choice of trials used in the analyses 
in昀氀uenced the direction of the results. Even though these results them-
selves are not utterly surprising, they demonstrate empirically and sys-
tematically that indeed analytic 昀氀exibility in the analysis of conditioning 
results in昀氀uences the direction of the results. This is valuable informa-
tion that aids 昀椀ne-tune for future work in the 昀椀eld. To this end, multi-
verse type of analyses can be seen as a stopover on the way to develop a 
formal model that will by consequence result in less heterogeneous 
approaches for the research 昀椀eld. More precisely, we propose that the 
results of large-scale multiverse type of work can serve as an optimal 
starting point for experimental measurement calibration (Bach, 
Melinščak, Fleming, & Voelkle, 2020), the development of more re昀椀ned 
(formal) theoretical frameworks (Oberauer & Lewandowsky, 2019) and 
the development of formalized computational models (Krypotos, 
Crombez, Meulders, Claes, & Vlaeyen, 2020). To this end, 
multiverse-type of analyses are more a means to the end than a end in 
itself because we need a principled approach that allows us to extract 
and deliver the information we need to develop a) better theories, b) 
formal models and identify c) the "best" measure for a given application. 
The approach we followed here is related to what is referred to as 
“many-analysts” (Botvinik-Nezer et al., 2020; Silberzahn et al., 2018) 
approaches which relies on many (teams of) analysts analyzing the same 
data which typically resulted in a heterogeneous collection of ap-
proaches that do not necessarily converge. Here, we have used a related 

Fig. 2. Histogram of p-values (left panel) and Bayes factors (right panel) of the multiverse analyses for the acquisition training (panel A) and extinction training 
(panel B) phases of the data set 1, as well as for acquisition training (panel C) and extinction training (panel D) data set 2. 
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approach and extracted the approaches typically chosen in the 昀椀eld from 
the literature which also results in a set of heterogeneous approaches 
that we then combined into a multiverse analysis and related R package 
to allow to run all these models with ease. At the 昀椀rst glance, it may seem 
counterintuitive how adding heterogeneity at the single-study level may 
be helpful to solve the problem of between-study heterogeneity. Before 
going into detail on the answers to this question, we 昀椀rst provide some 
thoughts on how to interpret the results of a multiverse analysis which is 
a precondition to make use of its results. 

How to interpret the outcome of a multiverse-type of analysis? 
More precisely, the results of the multiverse of model robustness ana-
lyses presented here provide information to what degree different 
justi昀椀able analytical pipelines yield comparable results - yet it needs to 
be de昀椀ned how comparability is de昀椀ned and consequently evaluated. To 
our knowledge, such a framework for the evaluation of robustness an-
alyses does not exist yet, but, we may borrow some criteria from a 
framework suggested for the evaluation of replicability (LeBel, McCar-
thy, Earp, Elson, & Vanpaemel, 2018) to the interpretation of the 
outcome of robustness analyses: LeBel et al. (2018) suggests several 
criteria for the evaluation of a replication outcome (i.e., applying identical 
methods and analyses to different data derived from a closely identical 
experiment). The analyses included in the model multiverse presented 
here may be viewed as different replication attempts by using the same 
data but applying slightly different procedures (i.e., robustness analyses). 
LeBel suggested to evaluate replication outcomes in terms of there being 
a ‘signal’ (i.e., effect de昀椀ned as 90% of the CI includes zero) or not, 
whether this signal is consistent (i.e., whether the replication’s CI in-
cludes the original effect size point estimate) across analyses and its 
precision (i.e., the width of the CI of the different effects across ana-
lyses). From these criteria we can borrow and apply the criteria of 
precision and consistency5 to evaluate the robustness analyses in the 
multiverse approach presented here. 

Evaluating the data presented in Fig. 3 with respect to precision and 
consistency, we can conclude that the main effect of CS type for acqui-
sition and extinction training (less so the CS × trial effect) provides a 
rather consistent effect in both data sets. When using the results from the 
t-test with full data as a reference, only results generated by t-tests (and 
rmANOVAs in data set 2) with trials divided by 10% and with 昀椀rst vs. 
last trial (as well as with 昀椀rst 2 vs. last 2 trials in data set 2) during fear 
acquisition training would not ful昀椀ll the criteria of being consistent with 
the latter providing a less precise estimate as the reference model. This, 
in principle, is good news for the 昀椀eld, as this would mean that the re-
sults are rather comparable despite heterogeneity in statistical models 
applied. Still we want to bring the low precision of the estimates to the 
reader’s attention - despite both samples having relatively high sample 
sizes (N = 42 and N = 116) given the standard in the 昀椀eld. Larger sample 
sizes are expected to generate more precise estimates that could lead to 
different conclusions with respect to the conclusion of “comparability.” 

Our Results come to underline the need for better developing com-
mon statistical techniques for our 昀椀eld. Indeed, given the strong trans-
lational importance of fear conditioning procedures in guiding future 
intervention and prevention programs in clinical populations, there is an 
urgent need to establish procedures for better determining common 
analytic techniques across studies. This would facilitate or even allow 
comparisons between studies’ results and thereby potentially promote 
replicability and a faster translation of fear conditioning research to the 
clinic. 

De昀氀ating the multiverse and towards better theories and formal 
models Going back to the question on how adding heterogeneity in 
analysis pipelines at the single study level can help to tackle the con-
sequences of heterogeneity on the between-study level. We suggest that 
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5 Note that consistency can only be evaluated pair-wise as there is no original 
effect in a multiverse-type of study given that all paths are assumed to be 
equally justi昀椀able. 
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multiverse analyses as employed here are only one of several promising 
ways to battle the lack of consensus in statistical analyses in fear con-
ditioning. Yet, and importantly, multiverse analyses only battle the 
consequences of this lack of consensus by providing a comprehensive 
overview covering all potentially justi昀椀able models (i.e., robustness 
analyses). At the core of this lack of consensus and the resulting het-
erogeneity and uncertainty, however, is a lack of and underdevelopment 
of formal models for fear conditioning effects. To date, most psychology 
research is based on verbal rather than formal accounts of theories. This 
results in 昀氀exibility in statistical analyses, as different analyses could be 
argued to better serve the (often ill-de昀椀ned) underlying theory. Relat-
ably, it has been highlighted that researchers degrees of freedom mostly 
do not derive from malicious intent but are mostly due to ’ambiguity in 
how to best make the decision in question” (cf. Simmons et al., 2011). 
The development of formal models would get to the roots of data pro-
cessing and analytical heterogeneity and could present a sustainable 
approach for battling analytic heterogeneity. Yet, formal models in 
psychology are used sparingly. As such, multiverse analyses are a 
pragmatic approach for current research until we have accumulated the 
necessary empirical evidence to generate formal models. In fact, better 
theories (Oberauer & Lewandowsky, 2019) about the construct and its 
measurement (Bach et al., 2020) would serve to de昀氀ate the multiverse. 
This can be achieved through systematic (cross-study) multiverse ana-
lyses which may aid the development of formal theories as they may 
reveal speci昀椀c models or operationalizations that may consistently 
impact on variability of the results. Even though we here mainly focus 
on statistical models, this is related to the idea of calibration experi-
ments that evaluate a measurement method under controlled circum-
stances and allow choosing the method that yields the highest effect size 
in independent benchmark experiments (Bach et al., 2020; Bach & 
Melinscak, 2020) which also may serve the aim to de昀氀ate the multiverse. 

Critical considerations for multiverse-type of studies. A common 
point of confusion with multiverse analyses is that they are sensitive to 
multiple comparisons. However, multiple comparison problems arise 
when multiple tests are run and only the signi昀椀cant results are high-
lighted. For example, a researcher runs 20 tests, and only reports the 
single test that turned out to be signi昀椀cant at p < 0.05. However, a 
multiverse approach is not sensitive to this as all tests run are taken into 
account when summarizing the results (e.g., computing proportions of 
values below an alpha threshold). In the above example (i.e., reporting a 
single signi昀椀cant result from a set of 20 tests), then, the proportion of 
signi昀椀cant p-values would be 1/20, showing extremely weak evidence 
for a true effect. 

Yet, the multiverse approach employed here has limitations: First, 
we decided on the statistical models based on a systematic literature 
search in the 昀椀eld of fear conditioning research. This revealed a het-
erogeneous set of models employed in the 昀椀eld with some models used 
very frequently while others are used sparingly. Still, our approach (i.e., 
average p-values and proportion of studies passing a criterion) gives an 
equal weight to approaches that are frequently used (e.g., rmANOVA) as 
well as approaches that are used more sparingly (t-tests) without eval-
uating the individual approaches further. Thus, the inclusion of unjus-
ti昀椀ed speci昀椀cations may result in analytical black holes (cf. Del Giudice & 
Gangestad, 2021) in which genuine effects might be swallowed in 
massive analyses that include unjusti昀椀ed or inappropriate decision nods 
which then may dilute the effect of the justi昀椀ed or appropriate nods. 
Relatedly, selecting statistical models from the literature (as done here) 
may be susceptible to the impact of publication bias as the published 
analyses may just represent the set of analyses that are likely to show an 
effect and consequently made it into a publication. 

Second, for conciseness, none of the analyses included here took into 
account covariates that may have been relevant (e.g., sex or age) but as 
the package is open source, any models could be added to the multiverse 
and we explicitly welcome such contributions. Yet, we highlight that 
analyses with and without covariates do - in a strict sense - not provide 
answers to the same but to different questions. As a consequence, they 

may not be considered equal and may not be part of the same multiverse 
(Simonsohn et al., 2020, Del Giudice and Gangestad, 2021). In a strict 
sense, however, also the different trial numbers included in the models 
as employed here may implicitly test different hypotheses such as end 
point extinction performance or fear recall when using the last or 昀椀rst 
trial(s) of extinction training respectively. Furthermore, different 
numbers of trials in a statistical model have consequences for reliability, 
statistical power of the effect, and the precision of the estimates. The 
same applies to different sample sizes due to different exclusion criteria 
(e.g., compare the results of the 昀椀rst and second data set with N = 38 and 
N = 116, respectively). This highlights, that it is inherently challenging 
to de昀椀ne reasonable or equally justi昀椀able options for a multiverse 
approach which requires careful consideration (Del Guidice et al., 2020) 
and which is hampered by the lack of precise theories to guide what can 
be considered equally justi昀椀able. Yet, as discussed above, these problems 
are not inherent to the multiverse approach but originate from the re-
searchers degrees of freedom allowed for by ill speci昀椀ed (verbal) theories. 
We propose that multiverse-type of analyses (also within a single data-
set) can be helpful in de昀氀ating the multiverse in providing insights into 
which paths converge (i.e., are comparable) and which diverge. 

Third, we exemplify only strong main effects during fear acquisition 
and extinction training and it is plausible that more subtle effects (e.g., 
individual differences, group effects) may hinge more strongly on the 
selection of the statistical model and may thus yield less comparable 
results across the multiverse of models. While the accompanying R 
package ‘multifear’ allows for the integration of a group-level effect, we 
have refrained from providing an example there for simplicity and refer 
to the online tutorial for this (https://github.com/AngelosPsy/multi 
fear). 

Finally, we provide a minimal attempt to establish a model multi-
verse that could be derived from aiming to test a single hypothesis. Of 
note, this does not take into account the multiverse of different data-sets 
that can be generated from a single set of observations through different 
data processing decisions such as different ways to quantify SCRs (Kuhn 
et al., 2022) as well as different transformations or 昀椀lter settings (Pri-
vatsky et al., 2020). The most complete, but also most challenging 
approach, would be to cross the data- and model multiverse approach to 
reveal a comprehensive set of p-values, BF’s, and/or effect sizes. 

Introducing multiverse analyses enabled by the easy-to-use R- 
package ‘multifear’ A secondary aim of this work is to introduce the 
open source ‘multifear’ package which provides a 昀椀rst step in the di-
rection of enabling computationally demanding multiverse-style ana-
lyses in an easy-to-use way. The analyses presented here are can be seen 
as an illustrative example on how to and why to use the ‘multifear’ 

package (see section on de昀氀ating the multiverse and towards better 
theories and formal models). 

In our view, the most pressing further extension include the exten-
sion of the package to other fear conditioning procedures/phases (e.g., 
fear generalization), inclusion of covariates, data multiverse analyses 
based on different transformations or exclusion criteria as well as the 
inclusion of other outcome measures beyond skin conductance (e.g., 
startle re昀氀ex, ratings). Furthermore, a multiverse of data-collection 
methods or experimental designs has been recently suggested which 
also provides an interesting future perspective (Harder, 2020), which is, 
however, much more demanding with respect to resources as it involves 
new data-collections and can hence not easily be implemented in 
‘multifear.’ Lastly, our package could be further extended by including 
continuous predictor effects. 

In closing, with the ‘multifear’ package, we present an easy-to-use 
tool that allows the easy running of (model) multiverse analyses for 
fear conditioning studies based on statistical models and data reduction 
techniques derived from a systematic literature review. We hope that 
this approach and the ‘multifear’ package will be used widely in the fear 
conditioning community and enhance our understanding of the 
robustness of different analytical approaches employed and ultimately 
help to enhance comparability between studies and in the long run aid 
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the development of better theories and formal models. 
How to navigate the multiverse. Here, we have showcased the 

idea, application and value of multiverse type of studies for experi-
mental psychopathology - more precisely the 昀椀eld of fear conditioning 
research. Of note, the multiverse approach has to be seen as only one 
way to battle analytic heterogeneity (here: in statistical analyses) which 
extends beyond other remedies suggested to enhance transparency and 
robustness of research. More precisely, while pre-registration of a study 
protocol as well as registered reports enhance transparency of the sci-
enti昀椀c process, neither of them does counteract the (often) arbitrariness 
of deciding for one speci昀椀c statistical model and one speci昀椀c type of 
variable operationalization or processing pipeline (Krypotos, Klugkist, 
Mertens, & Engelhard, 2019). To this end, even though pre-registration 
and registered reports are certainly useful tools, they provide no infor-
mation to what extent speci昀椀c 昀椀ndings hinge on the speci昀椀c choices 
made or can be generalized to other processing and analysis paths. 
Indeed, the pre-registered speci昀椀cations may neither generate robust, 
representative or generalizable results. To this end, different remedies 
and tools proposed to enhance transparency, replicability and/or 
robustness of research may serve completely different and potentially 
synergistic purposes. 

In closing, we suggest that multiverse type-of analyses can either be 
run as the major analysis or may be included as an additional supple-
mentary analyses to inform on the robustness of a reported 昀椀nding. Most 
importantly, we anticipate that an increase in multiverse-type of studies 
will guide and aid the development of formal theories (Del Giudice & 
Gangestad, 2021) through the accumulation of empirical evidence 
guiding their development which we anticipate to ultimately contribute 
to a more successful and faster translation of fear conditioning research 
to clinical applications. 
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11 Abstract 

Meta-science or meta-research is the study of science's own methods and practices in order to 

improve research practices and ensure the integrity of scientific processes. Three key concepts in meta-

science are reproducibility, robustness, and replication which are crucial for ensuring the credibility of 

scientific findings. Recently, various studies have consistently revealed that achieving reproducible, 

robust, and replicable results is still a challenge in psychological research. One aspect that accentuates 

this challenge is the significant heterogeneity in employed methods which is also referred to as the 

‘garden of forking paths’. This heterogeneity affects the robustness of research results and makes them 
difficult to compare, integrate, and generalize. These issues are also present in research addressing 
anxiety- and stress-related processes. 

Research on these processes is of great importance, since anxiety disorders are highly prevalent, 

causing significant suffering for a large number of individuals and imposing a substantial financial 

burden on the healthcare system. In the laboratory, the acquisition, treatment, and relapse of fear- and 

stress-related disorders can be modeled within the classical fear conditioning paradigm. In this 

paradigm, individual differences in defensive responding – which was regarded as “noise” for decades 
– can significantly impact fear conditioning processes, and might also play a key role in clinical settings. 

However, there is considerable methodological heterogeneity in fear conditioning research, and the 

robustness of findings, particularly concerning individual differences, has been little studied so far. 

Thus, this thesis aims at bridging that gap by addressing methodological heterogeneity in fear 

conditioning research and contributing to the accumulation of knowledge on result robustness in a 
comprehensive series of four studies. 

The majority of the data analyzed in these studies were derived from a longitudinal investigation 

that included a large sample and spanned six measurement time points. Two of these time points 

involved a two-day differential fear conditioning paradigm, and a variety of outcome measures, 

including physiological measures (e.g., fMRI and SCR) and self-report data (e.g., fear ratings and 

questionnaires). While Study I demonstrates, that previously reported associations between individual 

differences in brain structure and defensive responding could not be replicated, Study II reveals robust 

group- but limited individual-level longitudinal reliability of commonly used measures in fear 

conditioning research. Study III highlights the massive heterogeneity in participant exclusion due to 

‘non-learning’ and ‘non-responding’ and its impact on results and their interpretation, whereas Study 

IV introduces an efficient method to explore methodological heterogeneity systematically by testing 
various analytic approaches simultaneously.  

In summary, while fear conditioning research faces challenges such as robustness and 

methodological heterogeneity, the studies presented in this thesis offer potential remedies to enhance 

robustness, reduce heterogeneity, and improve comparability, integrability, generalizability, and 

replicability of research findings. These remedies involve improving reliability and precision, and, more 

broadly, promoting transparency in reporting as well as fostering a change in scientific culture. To 

achieve this, meta-and open science tools play an important role and were also used extensively in the 

studies included in this thesis. In conclusion, the fear conditioning paradigm has strong potential for 

clinical use, but more research on fear conditioning research is needed to expand the cumulative meta-

scientific knowledge. Ultimately this should advance the progress in the field by obtaining reproducible, 

robust, and replicable findings that accelerate the translation of fear conditioning discoveries into 
successful clinical interventions.  
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12 Zusammenfassung 

Meta-Wissenschaft oder Meta-Forschung ist die Untersuchung der Methoden und Praktiken der 

Wissenschaft selbst, um die Forschungspraktiken zu verbessern und die Integrität wissenschaftlicher 

Prozesse zu gewährleisten. Drei Schlüsselkonzepte der Meta-Forschung sind Reproduzierbarkeit, 

Robustheit und Replikation, die für die Glaubwürdigkeit wissenschaftlicher Ergebnisse entscheidend 

sind. In jüngster Zeit haben verschiedene Studien immer wieder gezeigt, dass es in der psychologischen 

Forschung immer noch eine Herausforderung darstellt, reproduzierbare, robuste und replizierbare 

Ergebnisse zu erzielen. Ein Aspekt, der diese Herausforderung noch verschärft, ist die erhebliche 

Heterogenität der verwendeten Methoden, die auch als "Garten der sich verzweigenden Wege" 

bezeichnet wird. Diese Heterogenität beeinträchtigt die Robustheit der Forschungsergebnisse und 

erschwert deren Vergleich, Integration und Verallgemeinerung. Diese Probleme treten auch in der 

Forschung auf, die sich mit angst- und stressbezogenen Prozessen befasst. 

Die Erforschung dieser Prozesse ist von großer Bedeutung, da Angststörungen weit verbreitet 

sind, bei einer großen Zahl von Menschen erhebliches Leid verursachen und eine erhebliche finanzielle 

Belastung für das Gesundheitssystem darstellen. Im Labor kann der Erwerb, die Behandlung und der 

Rückfall von angst- und stressbedingten Störungen mit dem Paradigma der klassischen 

Angstkonditionierung modelliert werden. Individuelle Unterschiede in der Abwehrreaktion innerhalb 

des Paradigmas – die jahrzehntelang als Rauschen betrachtet wurden – können die Prozesse der 

Angstkonditionierung erheblich beeinflussen und könnten auch im klinischen Bereich eine wichtige 

Rolle spielen. Allerdings gibt es eine erhebliche methodische Heterogenität in der 

Furchtkonditionierungsforschung, und die Robustheit der Ergebnisse, insbesondere in Bezug auf 

individuelle Unterschiede, wurde bislang nur wenig untersucht. Ziel dieser Arbeit ist es daher, diese 

Lücke zu schließen, indem diese methodische Heterogenität in der Furchtkonditionierungsforschung 

thematisiert wird und in einer umfassenden Serie von vier Studien ein Beitrag zur Akkumulation von 
Wissen über die Robustheit von Ergebnissen geleistet wird. 

Der Großteil der in diesen Studien analysierten Daten stammt aus einer 

Längsschnittuntersuchung, die eine große Stichprobe umfasste und sich über sechs Messzeitpunkte 

erstreckte. Zwei dieser Zeitpunkte umfassten ein zweitägiges Paradigma zur differenziellen 

Angstkonditionierung und eine Vielzahl von Ergebnismessungen, darunter physiologische Messungen 

(z. B. fMRI und SCR) und Selbstauskünfte (z. B. Angstbewertungen und Fragebögen). Während Studie 

I zeigt, dass zuvor berichtete Assoziationen zwischen individuellen Unterschieden in der Hirnstruktur 

und defensivem Verhalten nicht repliziert werden konnten, zeigt Studie II eine robuste 

gruppenbezogene, aber begrenzte individuelle longitudinale Reliabilität von häufig in der 

Furchtkonditionierungsforschung verwendeten Messgrößen. Studie III unterstreicht die massive 

Heterogenität beim Ausschluss von Teilnehmern aufgrund von "Nicht-Lernen" und "Nicht-Reagieren" 

und deren Auswirkungen auf die Ergebnisse und deren Interpretation, während Studie IV eine effiziente 

Methode zur systematischen Erforschung der methodischen Heterogenität einführt, die verschiedene 

analytische Ansätze gleichzeitig testet.  

Zusammenfassend lässt sich sagen, dass die Furchtkonditionierungsforschung zwar mit 

Herausforderungen wie Robustheit und methodischer Heterogenität konfrontiert ist, die in dieser Arbeit 

vorgestellten Studien jedoch potenzielle Abhilfemaßnahmen bieten, um die Robustheit zu erhöhen, die 

Heterogenität zu verringern und die Vergleichbarkeit, Integrierbarkeit, Generalisierbarkeit und 

Replizierbarkeit der Forschungsergebnisse zu verbessern. Diese Abhilfemaßnahmen umfassen die 
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Verbesserung der Reliabilität und Präzision, die Förderung der Transparenz in der Berichterstattung 

sowie die Förderung eines Wandels der wissenschaftlichen Kultur. Um dies zu erreichen, spielen Meta- 

und Open-Science-Instrumente eine wichtige Rolle und wurden auch in den Studien, die dieser Arbeit 

zu Grunde liegen, intensiv verwendet. Zusammenfassend lässt sich sagen, dass das Paradigma der 

Furchtkonditionierung ein großes Potenzial für die klinische Anwendung hat, dass aber mehr Forschung 

zur Furchtkonditionierung erforderlich ist, um das kumulative metawissenschaftliche Wissen zu 

erweitern. Letztendlich sollte dies den Fortschritt auf diesem Gebiet vorantreiben, indem 

reproduzierbare, robuste und replizierbare Ergebnisse gewonnen werden, die die Umsetzung der 

Befunde zur Furchtkonditionierung in erfolgreiche klinische Interventionen beschleunigen. 
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