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1 Introduction

This dissertation is a collection of three different topics from infinite graph theory.
In the first topic we investigate the question whether the end space of a graph can

be described in a certain way by a tree-decomposition. There are several ways how tree-
decompositions can be related to ends of a graph, arguably the most natural one is the
property of displaying a set of ends in the sense that the ends of the decomposition tree
correspond bijectively to the ends of the graph or a prescribed subset of the ends.

A recent result by Carmesin [9] from 2014 states that it is always possible to display the
set of undominated ends of a graph G. However, a full characterisation of the subsets of
ends that can be displayed remained open. Carmesin’s research in this topic was generally
motivated by the wide field of separation systems.

In the last year, Pitz introduced the technique of enveloping a given subgraph, a powerful
tool to find for any subgraph of a graph another subgraph with the same ends in the closure
in |G| but with finite adhesion. Those envelopes are perfect candidates for parts of a tree-
decomposition and indeed allowed Pitz to obtain a shorter constructive proof of Carmesins
result above [38]. This new technique was the starting point to think about whether we can
find an answer for the general problem which sets of ends can be displayed. Our first result
was that the graphs for which the whole end space can be displayed are exactly those with a
normal spanning tree. By a result of Diestel [16], the graphs G with normal spanning trees
are exactly those for which |G| is completely metrizable.

In joint work with Thilo Krill and Max Pitz we further showed that the subsets of ends
that can be displayed for any given graph G are exactly the Gδ sets of ends in |G|. In turn,
the Gδ sets of ends are exactly those sets Ψ ⊆ Ω(G) for which |G|Ψ is completely metrizable.
That way, we obtain a natural extension of the first result. Another approach to this field is
to look for whether we can make the ends, which are not displayed, live in different parts
of the decomposition tree. In the best case, we can find a bijection such that for each part
and for each end of the decomposition tree, there is exactly one end of G living in that part
or end. This approach leads to the property of representing the set Ω(G). This property
is a strengthening of the concept of distinguishing ends by Carmesin (Carmesin did not
require bijectivity). It turns out that the ends can always be represented whenever any subset
of ends can be distributed along the parts of any tree-decomposition. This leads to our
characterisation of graphs with a representable end space.

Our second topic will be Hamilton circles in powers of infinite graphs. The nth power
Gn of a graph G is obtained from G by adding an edge between any two vertices for which
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its distance in G is at most n. As early as in 1960, Sekanina proved by induction that the
third power G3 of any connected finite graph G has a Hamilton cycle [33]. Georgakopoulos
conjectured that by using topological circles in the Freudenthal compactification |G3| this
theorem should extend to all countable connected graphs [24]. This conjecture was also
reiterated by Reinhard Diestel [17] and Bojan Mohar [32].

In my master thesis, I disproved this conjecture and characterized the trees that have a
Hamilton circle in their third power. Nevertheless is this not sufficient for a full characterization
of all countable graphs which are Hamiltonian in the third power, since the end space of the
third power of arbitrary graphs is way more complex than the same space for trees. Our main
result in this field is a characterisation of the rayless graphs with a Hamilton circle in their
third power. Unlike the majority of proofs about rayless graphs in infinite graph theory, our
proof of this characterisation is not by induction on the rank of the graph, but instead uses
an involved direct construction of the desired Hamilton circle.

Our second main result in this field is that the fourth and higher powers of all countable
trees are Hamiltonian.

Our third and final topic is Nash Williams’ orientation theorem from 1960 [34]. It states
that every finite 2k-edge-connected graph has a k-arc-connected orientation.

The question whether this statement holds for infinite graphs remains unsolved until today.
Thomassen had asked in 1985 whether there is a function f : N→ N such that any f(k)-edge-
connected multigraph has a k-arc-connected orientation [43] and indeed in 2016, Thomassen
achieved a marvellous breakthrough towards the orientation theorem by proving that every
8k-edge-connected multigraph has a k-arc-connected orientation [44], giving f(k) ≤ 8k.

We will refine this result by establishing an improved bound of f(k) = 4k, and further
show the optimal result f(k) = 2k for the class of locally finite graphs with countably many
ends, from which at most one has odd degree. Especially does this include the class of one
ended locally finite graphs. Also I hope that some of the techniques we use may be helpful
for further research in this field.
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2 Basic definitions and tools

In this thesis, if not otherwise stated G = (V,E) is always any (possibly infinite) graph with
vertex set V and edge set E. For graph theoretic terms we follow the terminology in the book
Graph Theory by Reinhard Diestel [14]. Whenever we refer to commonly known established
results in the field of graph theory, such as the star-comb lemma from the next subsection,
they can usually be found in this book.

2.1 Facts about infinite graphs

There are three different structural ways how a graph can be infinite. A graph can have
infinitely many components, it can contain a vertex of infinite degree, or it can contain a one
way infinite path, called a ray. Since all topics of this dissertation are either only interesting
for connected graphs or can be reduced to connected graphs by looking at each component
separately, only the last two ones are interesting for our applications.

Remark 2.1. Every connected infinite graph does either contain an infinite star or a ray.

Graphs without vertices of infinite degree are called locally finite.
The following star-comb lemma is used frequently to find certain connected substructures

in infinite graphs.
Given a set of vertices U , a comb attached to U consists of a ray R together with infinitely

many disjoint R–U paths (possibly trivial). A star attached to U is a subdivided infinite star
with all leaves in U . We call the paths from the center of the star to its leaves the subdivided
leaves of the star.

Lemma 2.2 (Star-Comb lemma [14, Lemma 8.2.2]). Let U be an infinite set of vertices in a
connected graph G. Then G contains a star or a comb attached to U .

In the special case of a locally finite graph, we will always find a comb and for a rayless
graph, we will always find a star.

For two sets of vertices A,B ⊆ V (G), we define the connectivity κG(A,B) as the minimum
number of vertices in G separating A from B. Note that κ may be any infinite ordinal.
There are several Menger-type results for infinite graphs known. We will only use the
simple result that κG(A,B) is always equal to the maximal number of disjoint A−B−paths
[14, Lemma 8.4.1].

For vertices v, w ∈ V (G), we define κG(v, w) as the maximal number of internally disjoint
v − w−paths.
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A graph G in which for every two vertices v, w holds κG(v, w) < ∞ is called finitely
separable.

Further, we define λG(v, w) as the maximal number of edge-disjoint v − w−paths.

Lemma 2.3. Let G = (V,E) be any connected graph with an infinite subdivided star Sw with
center w and leaves (vi)i∈N. If v is another vertex in G for which there is another infinite
subdivided star Sv with center v and leaves in (vi)i∈N, then κG(v, w) =∞.

Proof. For each i for which there is a v − vi path in Sv, there is also a w − vi−path in Sw.
The union of these paths contains a v − w−path Pi. Without loss of generality, we assume
that there is one such path Pi for every i ∈ N.

To choose internally disjoint paths recursively, it remains to show that given finitely
many paths Pi1 , Pi2 , Pi3 , ..., Pin , we can find one more path Pin+1 which is internally disjoint
from Pi1 , Pi2 , Pi3 , ..., Pin . To find Pin+1 , let V ′ be the union of the inner vertex sets of
Pi1 , Pi2 , Pi3 , ..., Pin . Now since the subdivided leaves of a star are disjoint apart from the
center and v, w /∈ V ′, only finitely many of them can meet V ′. Hence for both stars almost
all subdivided leaves are disjoint from V ′. This implies that we can find one subdivided leaf
of Sv and one of Sw with the same endvertex vin+1 such that both of them are disjoint from
V ′. It follows that also Pin+1 is disjoint from V ′

2.2 Ends and directions

Two rays in a graph are equivalent if no finite set of vertices separates them; the corresponding
equivalence classes of rays are the ends of G. If ω is an end of G and R ∈ ω, we call R an
ω-ray. The set of ends of a graph G is denoted by Ω = Ω(G).

The degree deg(ω) of an end ω is the supremum of the sizes of collections of pairwise
disjoint rays in ω; Halin showed that this supremum is always attained, see [14, Theorem 8.2.5].
Ends are called thin if they have finite degree, and thick otherwise.

We say that a vertex v dominates a ray R if there is a subdivided star with center v and
leaves in R. Whenever two rays R and R′ are equivalent, a vertex dominates R if and only if
it dominates R′. Thus we can say that a vertex dominates an end ω if and only if it dominates
one ray (and thus all rays) from ω. In this case, we say ω is dominated.

For every finite vertex-set S ⊆ V and every ω ∈ Ω, there is a unique component of G− S
that contains a tail of every ω-ray. We denote this component by C(S, ω) and say that ω lives
in C(S, ω). Further we define Ω(S, ω) = {ϕ ∈ Ω: C(S, ϕ) = C(S, ω)} as the set of all ends
that live in C(S, ω). We put Ĉ(S, ω) = C(S, ω) ∪ Ω(S, ω).
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If H is a subgraph of G, then rays equivalent in H remain equivalent in G; in other words,
every end of H can be interpreted as a subset of an end of G, so the natural inclusion map
ι : Ω(H)→ Ω(G) is well-defined. A subgraph H ⊆ G is end-faithful if this inclusion map ι is
a bijection from Ω(H) onto ∂H ⊆ Ω(G).1

A direction on G is a function d that assigns to every finite S ⊆ V one of the components
of G− S so that d(S) ⊇ d(S ′) whenever S ⊆ S ′. For every end ω, the map S 7→ C(S, ω) is
easily seen to be a direction. Conversely, every direction is defined by an end in this way:

Theorem 2.4 (Diestel & Kühn [15]). For every direction d on a graph G there is an end ω
such that d(S) = C(S, ω) for every finite S ⊆ V (G).

2.3 Topologies on infinite graphs

The set of ends of G will be denoted by Ω(G). The space |G| is defined as V
.
∪ Ω

.
∪E ′, where

E ′ is the disjoint union of continuum sized sets, one set (v, w) for each edge vw of G. Also
we choose for each edge a fixed bijection between (v, w) and the real interval (0, 1). For each
end and each finite vertex set S, we define C(S, ω) as the unique component of G − S, in
which each ray of ω has a tail and

◦
Eε(S, ω) as the set of all inner points of S −C(S, ω) edges

at distance less than ε from C(S, ω). There are several topologies on |G|. The three most
commonly used ones are the following:

Definition 2.5. The topology TOP on |G| is the topology induced by the following basic
open sets:
1.) For each edge vw, any inverse image of an open subset of (0, 1) under our fixed bijection.
2.) For each vertex v, the union of half-open partial edges [v, z), one for each edge e at v with
an inner point z of e.
3.) For an end ω, a finite vertex set S, the set of all vertices, ends and inner edge points in
C(S, ω) together with a union of half-open partial edges (z, v], one from every S − C(S, ω)
edge uv with v ∈ C(S, ω).

Definition 2.6. The topology MTOP on |G| is the topology induced by the following basic
open sets:
1.) For each edge vw, any inverse image of an open subset of (0, 1) under our fixed bijection.
2.) For each vertex v and each ε > 0, the set of all points p in topological edges (v, w), such

1In the literature, the term end-faithful subgraph is sometimes used only for subgraphs H ⊆ G with
∂H = Ω(G).
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that the images of v and p under our fixed bijection have distance smaller than ε in (0, 1).
3.) For an end ω, a finite vertex set S and each ε > 0, the set of all vertices, ends and inner
edge points in C(S, ω) together with the inner edge points of S −C(S, ω) edges with distance
less than ε from its endpoint in C(S, ω).

Definition 2.7. The topology VTOP on |G| is the topology induced by the following basic
open sets:
1.) For each edge vw, any inverse image of an open subset of (0, 1) under our fixed bijection.
2.) For each vertex v and each ε > 0, the set of all points p in topological edges (v, w), such
that the images of v and p under our fixed bijection have distance smaller than ε in (0, 1).
3.) For an end ω, a finite vertex set S, the set of all vertices, ends and inner edge points in
C(S, ω) together with all inner points of S − C(S, ω) edges.

Those topologies are originally defined by Reinhard Diestel and can be found in [16]. We
state some of the basic properties without proving them:

The three topologies coincide for locally finite graphs. Also |G| is compact in TOP or
MTOP if and only if it is locally finite.

Theorem 2.8. [16]
The following statements are equivalent in VTOP for any graph G = (V,E).

• |G| is compact.

• For any finite S ⊆ V the graph G− S has only finitely many components.

• Every closed set of vertices is finite.

All three topologies induce the same end space Ω(G), thus in the following corollary the
topology is not specified.

Corollary 2.9. [16]
The subspace Ω(G) of |G| is compact if and only if for every finite S ⊆ V (G) only finitely
many components of G− S contain a ray.

Theorem 2.10. [16]
Let G be a connected graph.

• In MTOP, |G| is metrizable if and only if G has a normal spanning tree.

• In VTOP, |G| is metrizable if and only if none of its ends is dominated.
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• In TOP, |G| is metrizable if and only if G is locally finite.

Given a set of vertices U ⊆ V (G), we write ∂U for its boundary, i.e. the set of ends in U .
It is well-known that ω ∈ ∂U if and only if there is a comb attached to U with spine in ω.
Further this topological viewpoint allows us to define a (possibly infinite) path as a subspace
of |G| that is homeomorphic to the unit interval [0, 1] and a (possibly infinite) circle as a
subspace of |G| that is homeomorphic to the unit circle S1.

2.4 Tree orders and normal trees

The tree order of a tree T with root r is a partial order on V (T ) which is defined by setting
u ≤ v if u lies on the unique path rTv from r to v in T . Given n ∈ N, the nth level T[n] of T
is the set of vertices at distance n from r in T , and by T[≤n] we denote the union over the
first n levels. The down-closure of a vertex v is the set dve := {u : u ≤ v }; its up-closure is
the set bvc := {w : v ≤ w }. The down-closure of v is always a finite chain, the vertex set of
the path rTv. A ray R ⊆ T starting at the root is called a normal ray of T .

A rooted spanning tree T of a graph G is normal in G if the endvertices of every edge
of G are comparable in the tree order of T . Normal spanning trees are always end-faithful
[14, Lemma 8.2.3].

A rooted, not necessarily spanning, tree T contained in a graph G is normal in G if the
endvertices of every T -path in G are comparable in the tree-order of T . Here, for a given
subgraph H ⊆ G, a path P in G is said to be an H-path if P is non-trivial and meets H
exactly in its endvertices. Clearly, if T is spanning, this reduces to the earlier condition, as in
this case all T -paths are chords. We remark that for a normal tree T ⊆ G the neighbourhood
N(D) of every component D of G− T forms a chain in T . The following result can be found
in [29].

Theorem 2.11. Let G be a connected graph. For every open cover O of Ω(G), there is a
rayless normal tree T in G such that for every component C of G− T there is a set O ∈ O
such that ∂C ⊆ O.

We say a set of vertices U in a graph G has finite adhesion, if and only if every component
of G− U has a finite neighbourhood in U .

Lemma 2.12. Let G be a connected graph and T a rayless normal tree in G. Then T has
finite adhesion in G. Moreover, for every finite set U ⊆ V (G) there is a rayless normal tree
T ∗ ⊇ T in G such that U ⊆ V (T ∗).
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Proof. For the proof that T has finite adhesion in G, let C be any component of G−T . Since
T is normal, the neighbourhood of C is a chain in the tree order of T , and this chain is finite
because T ∗ is rayless.

Next, let T ∗ be a rayless normal tree in G extending the tree T which contains maximally
many vertices from U . We show that T ∗ contains all vertices from U . Suppose for a
contradiction that there is a vertex u ∈ U with u /∈ V (T ∗) and let C be the component of
G− T ∗ containing u. We showed in the first paragraph of this proof that the neighbourhood
N(C) of C is a finite chain in the tree order of T ∗. Let v be its maximal element and v′ a
neighbour of v in C. Then the union of T ∗ with the edge vv′ and a v′–u path in C is again a
rayless normal tree with T as a subgraph, contradicting the maximality of T .

2.5 Tree-decompositions

A [rooted] tree-decomposition of a graph G is a pair T = (T,V) where T is a [rooted] tree
and V = (Vt : t ∈ T ) is a family of vertex sets of G called parts such that the following holds
(see also [14, §12.3]):

(T1) for every vertex v of G there exists t ∈ T such that v ∈ Vt;

(T2) for every edge e of G there exists t ∈ T such that e ∈ G[Vt]; and

(T3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t2 lies on the t1–t3 path in T .

Let e = xy be any edge of T and let Tx and Ty be the two components of T−e with x ∈ Tx and
y ∈ Ty. Each edge e = xy of T in a tree-decomposition gives rise to a separator Xe := Vx ∩ Vy
called the separator induced by the edge e, which separates Ax = ⋃

t∈Tx
Vt from Ay = ⋃

t∈Ty
Vt.

The tree-decomposition has finite adhesion if all separators of G induced by the edges of T
are finite.

2.6 Topological notions

A subspace Y of a topological space X is discrete if every singleton of Y is open in the
subspace topology.

A Gδ-set of a topological space X is a countable intersection of open sets. An Fσ-set is a
countable union of closed sets. Note that the complement of a Gδ-set is always a Fσ-set and
vice versa.
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Lemma 2.13. Let G be a graph and Ψ ⊆ Ω(G). Then V (G) ∪Ψ is Fσ in |G| if and only if
G ∪Ψ is Fσ in |G|.

Proof. The backwards direction follows from that fact that V ∪ Ω is closed in |G|, so V ∪Ψ
is closed in G ∪Ψ, and closed subsets of Fσ-sets are themselves Fσ.

Conversely, assume V ∪Ψ = ⋃
n∈NXn is a countable union of closed sets Xn of vertices

and ends in |G|. Without loss of generality, we have Xn ⊆ Xn+1. Let Vn = Xn ∩ V (G). Then⋃
n∈N Vn = V (G) and G = ⋃

n∈NG[Vn]. But then the induced subsets G[Xn] := G[Vn] ∪Xn

are also closed in |G|, and so G ∪Ψ = ⋃
n∈NG[Xn] is Fσ in |G|, too.

A set of vertices U in a graph G is dispersed if it can be separated from any ray in G by a
finite set of vertices. This is equivalent to the property of U being closed in |G|.
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3 End spaces and tree-decompositions

3.1 Introduction

In this chapter we settle the question up to which complexity the topological spaces |G| formed
by an infinite graph G together with its ends can still be encoded by tree-decompositions of
finite adhesion of the underlying graph G.

To state our results more precisely, recall that a separation of a graph G is an unordered
pair {A,B} of sets of vertices in G such that A ∪ B = V (G) and G has no edge between
A \B and B \ A, which is equivalent to saying that its separator A ∩B separates A from B.
The cardinal |A ∩B| is the order of the separation {A,B} and the sets A,B are its sides.

Vt1 ∩ Vt2

t1 t2

U1
U2

Figure 1: Vt1 ∩ Vt2 separates U1 from U2.

A longstanding quest in graph theory is to understand end spaces of infinite graphs that
are not necessarily locally finite, cf. [11, 13,16,27,29,30,39,40].

Remember that the parts of a tree-decomposition mirror the separation properties of the
tree: just like removing any edge e = t1t2 from T gives rise to two components T1 and T2 of
T − e, so does removing Xe := Vt1 ∩ Vt2 from G separate any part of T1 from any part of
T2, see Figure 1. More formally, writing U1 = ⋃{Vt : t ∈ T1} and U2 = ⋃{Vt : t ∈ T2}, we
require that {U1, U2} is a separation of G with separator Xe. If all such separations are of
finite order, we say the tree-decomposition has finite adhesion.

Now consider how the ends of a graph G interact with a tree-decomposition T of finite
adhesion. As every edge e of T induces a finite order separation {Ae, Be} of G, any end of G
has to choose one side of T − e, and we may visualize this decision by orienting e accordingly.
Then for a fixed end, all the edges point either towards a unique node or towards a unique
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end of T , see Figure 2. In this way, each end of G lives in a part of T or corresponds to an
end of T , and we may encode this correspondence by a map fT : Ω(G)→ V (T ) ∪ Ω(T ).

R

Figure 2: A ray R and its corresponding orientation of T

Tree-decompositions of finite adhesion have been used to study the structure of infinite
graphs and their ends in e.g. [5, 7–11,38,42]. Of course, some tree-decompositions of finite
adhesion carry more information about the ends than others. For one, information content
may be measured in terms of injectivity of fT . Indeed, a tree-decomposition consisting of a
single part contains zero information, whereas a tree-decomposition T of finite adhesion that
distinguishes all the ends, i.e. where fT is injective, contains more information about the end
space – although it may still give false hints, as for example ends of T may not represent real
ends of G. So even better would be a bijective fT , in which case we say that T represents
the ends of G. On the other hand, while the trivial tree-decomposition into a single part
always exists, some graphs G, such as the binary tree with one dominating vertex added to
every rooted ray (cf. Section 3.9), are too complex to be distinguished or represented by a
tree-decomposition of finite adhesion. Our first main result characterises precisely when these
best-case scenarios occur; as a surprising by-product, we obtain that whenever a space |G| can
be distinguished by a tree-decomposition of finite adhesion, then it can also be represented.
In fact, an even weaker condition suffices: As long as there is some tree-decomposition of
finite adhesion into ≤1-ended parts, i.e. a tree-decomposition such that at most one end is
mapped to any given part under fT , we also get a tree-decomposition representing |G|.

Let’s call a set of vertices U ⊆ V (G) slender if its closure U ⊆ |G| is scattered of finite
Cantor-Bendixson rank; in other words, if successively taking the Cantor-Bendixson derivative
of its closure U ⊆ |G| yields the empty set after finitely many iterations, cf. Section 2.6.
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With this notion, our first main result reads as follows.

Theorem 3.1. The following are equivalent for any connected graph G with at least one end:

1. There is a tree-decomposition of finite adhesion that represents Ω(G).

2. There is a tree-decomposition of finite adhesion that distinguishes Ω(G).

3. There is a tree-decomposition of finite adhesion into ≤1-ended parts.

4. V (G) is a countable union of slender sets.

It is clear that any assertion from (1) to (3) implies the next. The idea for (3) ⇒ (4)
is that for any fixed integer n, the union over all parts within distance n from the root is
a slender set of vertices, and V (G) clearly is a countable union of these sets. Thus, the
main contribution behind Theorem 3.1 is the implication (4)⇒ (1), which employs recently
developed techniques of envelopes from [30, 38] and rayless normal trees from [29]. The proof
of Theorem 3.1 is given in Section 3.7.

A slightly different way to measure information captured by some tree-decomposition of
finite adhesion is motivated by the observation that end spaces of trees are well-understood:
They are precisely the completely ultra-metrizable spaces. This suggests preferring tree-
decompositions T where fT sends as many ends to Ω(T ) as possible. In this case, there
is hope to understand the subset Ψ = f−1

T [Ω(T )] ⊆ Ω(G) called the boundary of the tree-
decomposition, with the best case being that T [homeomorphically] displays its boundary,
meaning that fT restricts to a bijection [homeomorphism] between Ψ and Ω(T ), cf. Figures 3
and 4.

Figure 3: Examples of tree-decompositions (in red) of graphs (in black) failing to display
their boundaries.

At first glance, however, it does not seem useful at all when fT maps all ends of G into
Ω(T ) but the function is very much non-injective. However, this information is enough to
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Figure 4: Example of a tree-decomposition (in red) that displays all ends of a countable star
of rays (in black) but fails to display them homeomorphically.

guarantee a normal spanning tree, from which the space |G| is easily understood. Indeed,
given previous work in the field due to Jung and Diestel [12,16,26], it is not hard to verify
that the following assertions are equivalent, see Theorem 3.17 for details:

• There is a tree-decomposition of finite adhesion that (homeomorphically) displays Ω(G).

• There is a tree-decomposition of finite adhesion with boundary Ω(G).

• |G| is (completely) metrizable.

• V (G) is a countable union of closed sets in |G|.

• G has a normal spanning tree.

Now our second main result provides a local version of the above equivalences, characterising
precisely which subsets Ψ of Ω(G) can be (homeomorphically) displayed. Indeed, a striking,
recent result by Carmesin [9] says that it is always possible to display the set of undominated
ends of a graph G. In [8], Bürger and Kurkofka partially localized Carmesin’s result by
constructing tree-decompositions of finite adhesion (with additional desirable properties) that
display the boundary ∂U of prescribed infinite sets of vertices U ⊆ V (G) where none of the
ends in ∂U are dominated. Carmesin also asked for a characterisation of those pairs of a
graph G and a subset Ψ ⊆ Ω(G) for which G has a tree-decomposition displaying Ψ [9, p. 549].
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This problem has also been reiterated in [7, Problem 3.22]. Theorem 3.2 below answers this
question.

Another set of questions in infinite topological graph theory concerns so-called Ψ-graphs
|G|Ψ, i.e. subspaces of |G| of the form |G|Ψ = G ∪ Ψ ⊆ |G| for a set of ends Ψ ⊆ Ω(G).
Ψ-graphs have been studied in connection with infinite matroids [5, 6, 19]: For example, the
topological circles (copies of the unit circle S1) in |G|Ψ form the cycles of an infinite matroid
whenever Ψ belongs to the Borel σ-algebra of Ω(G) [5].

It turns out that the correct generalisation of the 3rd bullet above about metrizability of
|G| involves precisely the property of complete metrizability of Ψ-spaces.

Theorem 3.2. For any connected graph G and a set Ψ of ends of G the following are
equivalent:

1. There is a tree-decomposition of finite adhesion homeomorphically displaying Ψ.

2. There is a tree-decomposition of finite adhesion displaying Ψ.

3. There is a tree-decomposition of finite adhesion with boundary Ψ.

4. |G|Ψ is completely metrizable.

5. Ψ is Gδ in |G|.

Note that from Theorem 3.2 one easily reobtains the above equivalences in the case Ψ = Ω.
Indeed, only item (5) needs to be commented on: For this, note that saying that Ψ = Ω is Gδ

in |G| means Ψ = Ω is a countable intersection of open sets, which turns out to be equivalent
to V (G) being a countable union of closed sets in |G|. Also note that Ψ being a Gδ means
that Ψ is a fairly simple element of the Borel σ-algebra on |G|, and in fact, using Theorem 3.2
it is not hard to establish that |G|Ψ gives an infinite matroid in the special case from [5] where
Ψ ⊆ |G| is Gδ.

Carmesin’s result that the undominated ends Ψ of any connected graph can always be
displayed now follows easily from Theorem 3.2: Simply note that fixing any vertex v and
considering the set Bn(v) of all vertices in G within graph distance at most n from v, the
set Ψ is the intersection of the countably many open sets On = |G| \Bn(v) (for n ∈ N) and
hence Gδ, see Theorem 3.26.

Furthermore, Theorem 3.2 also provides tree-decompositions that (homeomorphically)
display the undominated ends in the boundary ∂U of any fixed infinite set of vertices U ⊆ V (G),
strengthening the above mentioned result by Bürger and Kurkofka from [8]; see Theorem 3.27.
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A number of natural questions remain on the topic which subsets of ends can be distin-
guished.

Problem 3.3. Characterise which Ψ ⊆ Ω(G) can be distinguished.

Given two distinct ends ω1, ω2 of a graph G write n(ω1, ω2) ∈ N for the minimal order of
a separation in G that is oriented differently by ω1 and ω2. We say that a tree-decomposition
T with decomposition tree T efficiently distinguishes a set of ends Ψ if T distinguishes Ψ
with the additional property that for each ψ1 6= ψ2 ∈ Ψ there is an edge e on the path in T
between fT (ψ1) and fT (ψ2) with |Xe| = n(ω1, ω2).

Problem 3.4. Characterise which Ψ ⊆ Ω(G) can be efficiently distinguished.

An end ω of a graph is called thin if all families of disjoint ω-rays are finite, and thick
otherwise. Our next problem extends a problem of Diestel [11], asking for which graphs
there is a tree-decomposition of finite adhesion displaying precisely its thin ends. Carmesin
[9] constructed a graph for which there is no such tree-decomposition, and we construct a
different counterexample in Example 3.32 with help of our characterisation of displayable sets
of ends from Theorem 3.2. We propose a different way in which a tree-decomposition of finite
adhesion might distinguish the thin ends from the thick ends and ask which other bipartitions
of Ω(G) can be distinguished in the same way:

Problem 3.5. Characterise for which bipartitions Ω(G) = Ω1tΩ2 there is a tree-decompositions
T of finite adhesion with fT (Ω1) ∩ fT (Ω2) = ∅.

We conclude with two problems concerning metrizability in end spaces.

Problem 3.6. Characterise which subspaces Ψ ⊆ Ω(G) are metrizable or completely metriz-
able.

Problem 3.7. Characterise which spaces |G|Ψ are metrizable.

For Ψ = Ω(G), an answer to Problem 3.6 is given in [29].
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3.2 Basic definitions

Given a tree-decomposition T = (T,V) of finite adhesion of G, any end ω of G orients each
edge e = xy of T according to whether ω lives in a component of G[Ax]−Xe or G[Ay]−Xe.
This orientation of T points towards a node of T or to an end of T , and ω lives in that part
for that node or corresponds to that end, respectively.

Let fT : Ω(G)→ V (T )∪Ω(T ) be the function mapping every end of G to the node or end
of T that it lives in or corresponds to, respectively. We say that T distinguishes the ends of
G if fT is injective, and it represents the ends of G if fT is bijective.

We call f−1
T [Ω(T )] the boundary of T , and f−1

T [V (T )] the interior of T . We say that T
displays a subset Ψ ⊆ Ω(G) if Ψ is the boundary of T and fT � Ψ→ Ω(T ) is bijective, and
it homeomorphically displays Ψ if fT � Ψ → Ω(T ) is a homeomorphism. We say that T
[bijectively] distributes a subset Ξ ⊆ Ω(G) if Ξ is the interior of T and fT � Ξ is injective
[bijective]. Finally, we say that T realises [represents] a partition Ω(G) = Ξ tΨ of the end
space of G if T [bijectively] distributes Ξ and displays Ψ.

We conclude this section with a sufficient condition for tree-decompositions to (homeo-
morphically) display their boundary. We say a rooted tree-decomposition (T,V) is upwards
connected if for every edge e ∈ E(T ) with x < y the induced subgraph He := G[Ay \ Ax] =
G[Ay]−Xe (with Ax, Ay and Xe as above) is non-empty and connected (or equivalently, He

is a component of G−Xe).

Lemma 3.8. Every upwards connected rooted tree-decomposition T = (T,V) of finite adhesion
of a graph G homeomorphically displays its boundary.

Proof. Let Ψ be the boundary of T . We show that f := fT � Ψ : Ψ→ Ω(T ) is a homeomor-
phism.

For the proof that f is injective, let ψ1 6= ψ2 ∈ Ψ and let Ri be the f(ψi)-ray in T starting
in the root of T for i = 1, 2. There is a finite vertex set S ⊆ V (G) such that ψ1 and ψ2 live
in different components of G− S. By (T1) there is a finite subtree T ′ of T containing the
root of T such that S ⊆ ⋃

t∈T ′ Vt =: G′. We denote the unique T ′–(T \ T ′) edge in Ri by ei
for i = 1, 2. Then ψi lives in Hei

(as defined above) which is a component of G−G′ since T
is upwards connected. Since ψ1 and ψ2 live in different components of G− S, they also live
in different components of G−G′. It follows that He1 6= He2 . Therefore e1 6= e2, R1 6= R2,
and thus f(ψ1) 6= f(ψ2).

Next, for the proof that f is onto, for each end ω of T we find an end ψ ∈ Ψ such that
fT (ψ) = ω. Let R = re0v1e1v2e2 . . . be the ω-ray in T starting in the root of T . We have
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⋂
i∈NHei

= ∅ because each Hei
contains only vertices from parts Vt such the distance of t

to the root of T is greater than i. In particular, for every finite subset S of V (G) there is a
minimal integer i such that S ∩Hei

= ∅. Since Hei
is connected and non-empty, there is a

unique component d(S) of G− S with Hei
⊆ d(S). The function d defines a direction on G

because the components He0 ⊇ He1 ⊇ . . . are nested and non-empty. By Theorem 2.4, there
is an end ψ of G such that C(S, ψ) = d(S) for every finite subset S ⊆ V (G). In particular,
we have d(Xei

) = Hei
for the separator Xei

corresponding to ei, and hence ψ lives in Hei
for

all i ∈ N. Consequently, ψ lies in the boundary of T and f(ψ) = ω.
We now argue that f is continuous (this part of the argument works for any tree-

decomposition displaying Ψ and doesn’t yet require upwards connectedness). Indeed, let
ψ ∈ Ψ and f(ψ) = ω ∈ Ω(T ). For continuity, consider an arbitrary basic open neighbourhood
ΩT (T ′, ω) of ω ∈ Ω(T ). Since T is a tree, there is a unique C(T ′, ω)–T ′ edge e = tt′. Then
Xe = Vt ∩ Vt′ is finite since T had finite adhesion. Now CG(Xe, ψ) lies completely on one
side of the separation (Ae, Be), and so all ends in CG(Xe, ψ) orient e towards ω, showing that
f [ΩG(Xe, ψ)] ∩Ψ ⊆ ΩT (T ′, ω) as desired.

Finally, we show that f−1 is continuous (this part fails without upwards connectedness,
cf. Figure 4).Let f−1(ω) = ψ ∈ Ψ as before and consider a basic open neighbourhood
ΩG(S, ψ) ∩ Ψ of ψ ∈ Ψ. Let T ′ be a finite subtree of T which contains the root of T and
such that S ⊆ ⋃

t∈V (T ′) Vt. Since ψ orients e towards ω and He is connected, it follows that
He = C(Xe, ψ) ⊆ C(S, ψ). Thus, all ends that orient e towards ω live in C(S, ψ), giving
f−1[ΩT (T ′, ω)] ⊆ Ω(S, ψ) ∩Ψ as desired.
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3.3 Tree-decompositions displaying all ends

In this section we answer the question which graphs have a tree-decomposition displaying
all ends. It turns out that those are exactly the graphs with a normal spanning tree. A
characterisation of those graphs by forbidden minors can be found in [37].

Theorem 3.9. The following are equivalent for any connected graph G:

1. There is an upwards connected tree-decomposition of finite adhesion with connected parts
that homeomorphically displays Ω(G).

2. There is a tree-decomposition of finite adhesion displaying Ω(G).

3. There is a tree-decomposition of finite adhesion with boundary Ω(G).

4. |G| is (completely) metrizable.

5. Ω(G) is Gδ in |G|.

6. G has a normal spanning tree.

Proof. The equivalence (5)⇔ (6) is a well-known result by Jung characterising the existence
of normal spanning trees [26]. In Jung’s language, a connected graph has a normal spanning
tree if and only if V (G) is a countable union of dispersed sets; since dispersed sets are precisely
the sets of vertices which are closed in |G|, this is equivalent to V = V (G) being Fσ in |G|.
By Lemma 2.13, this is equivalent to G being Fσ in |G|, which by taking complements is the
same as Ω(G) being Gδ in |G|.

The equivalence (4)⇔ (6) is due to Diestel [16].2 The implications (1)⇒ (2) and (2)⇒ (3)
are trivial.

For (3)⇒ (5) suppose we have a tree-decomposition (T,V) with root r of finite adhesion
with boundary Ω(G). We claim that G[Dn] is closed, where

Dn :=
⋃

t∈T≤n

Vt.

Indeed, for any end ω of G there is a unique ray R = t0t1t2 . . . starting at the root t0 = r

corresponding to this end. Then Vtn ∩ Vtn+1 is a finite separator that separates Dn from the
tails of all ω-rays. Hence no end lives in the closure of Dn, so G[Dn] is closed. It follows from

2For (6)⇒ (4), Diestel only verifies that his metric is topologically compatible; but it not hard to see that
his metric is in fact complete. See also Theorem 3.17.
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property (T1) and (T2) of a tree-decomposition that G = ⋃
n∈NG[Dn] is Fσ, so by taking

complements in |G|, we see that Ω(G) is Gδ in |G|.
Lastly, we show (6)⇒ (1). Something similar has been done in [12]. Assume that G has a

normal spanning tree T with root r. For every vertex t of T , we define Vt := dte and show
that T := (T, (Vt)t∈T ) is a tree-decomposition of G of finite adhesion that homeomorphically
displays all its ends. Since T is normal, the end vertices of any edge vw of G are comparable in
the tree order. If say v < w, then e belongs to the part Vw per definition, giving (T2). Further,
if a vertex lies in two parts Vv and Vw, it lies in dve ∩ dwe and hence in all Vt for vertices t on
the unique v–w path in T . Thus we get property (T3), so we have a tree-decomposition. It
is clear that all parts are connected and since all parts are finite, also all adhesion sets are
finite. Finally, T is clearly upwards connected. Therefore it follows from Lemma 3.8 that
T homeomorphically displays its boundary, which contains all ends of G since all parts are
finite.
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3.4 Envelopes

Let G be a connected graph. An envelope for a set of vertices U ⊆ V (G) is a set of vertices
U∗ ⊇ U of finite adhesion (i.e. such that every component of G− U∗ has only finitely many
neighbours in U∗) with ∂U∗ = ∂U . In [30, Theorem 3.2] it is proven that every set of vertices
in a connected graph admits a connected envelope.

In the following, however, we need a stronger notion of an envelope that works for a set
X ⊆ V (G)∪Ω(G) of vertices and ends (and in particular, for a set X consisting of ends only):
An envelope for such a set X ⊆ V (G) ∪ Ω(G) is a set of vertices X∗ ⊇ X ∩ V (G) of finite
adhesion such that ∂X∗ = X ∩ Ω(G), where the closure X of X is taken in |G|.

Theorem 3.10. Any set consisting of vertices and ends in a graph G admits an envelope.

Proof. Let X ⊆ V (G) ∪ Ω(G) be a given set of vertices and ends in a graph G, and write
V (X) := X ∩ V (G). Let R be an inclusionwise maximal set of pairwise disjoint rays of ends
in X. Put

X ′ := V (X) ∪
⋃
R∈R

V (R)

and let S be the set of all centres of (infinite) stars attached to X ′. We will show that

X∗ := X ′ ∪ S

is an envelope for X. The verification relies on the following two claims:

Claim 3.11. If S is a finite set of vertices and C is a component of G− S such that X ′ ∩ C
is finite, then X∗ ∩ C = X ′ ∩ C.

Only X∗ ∩ C ⊆ X ′ ∩ C requires proof. For this consider some v ∈ S. By definition, v
is the centre of an infinite star attached to X ′. Since S is finite and X ′ meets C finitely, it
follows that v /∈ C. Hence, C ∩ S = ∅ and so X∗ ∩ C = X ′ ∩ C as claimed.

Claim 3.12. If S is a finite set of vertices and C is a component of G−S such that C∩X = ∅,
then X∗ ∩ C is finite.

To see the claim, consider some finite set of vertices S, and assume that C is a component
of G− S such that C avoids X. First, we show that C ∩X = ∅. For this, observe that the
set C ∪ E̊1/2(S,C) is open and disjoint from X and so it is disjoint from X. In particular, C
is disjoint from X. Hence every ray R′ ∈ R meets C finitely. Furthermore, every ray from R
which meets C also meets S, and since the rays in R are pairwise disjoint, at most |S| rays
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from R meet C. So ⋃
R∈R V (R) meets C finitely, and hence so does X ′. By Claim 3.11, also

X∗ ∩ C = X ′ ∩ C is finite. This establishes the claim.
To see ∂X∗ = X ∩ Ω(G), we show both inclusions separately. For ⊇ consider any end

ε /∈ ∂X∗. Then C(S, ε)∩X∗ = ∅ for some finite set of vertices S. Consider a ray R in ε that
is completely contained in C(S, ε). Then R is disjoint from any ray in R. By maximality of
R, this means that ε /∈ X.

For ⊆ consider any end ε /∈ X. Then there is a finite set of vertices S such that Ĉ(S, ε)
avoids X. By Claim 3.12, also X∗ intersects C(S, ε) finitely, witnessing ε /∈ ∂X∗.

To see that X∗ has finite adhesion, suppose for a contradiction that there is a component
C of G−X∗ with infinite neighbourhood. Then by a routine application of the Star-Comb
Lemma 2.2, we either find a star or a comb attached to X∗ whose centre v or spine R is
contained in C. The ray case results in an immediate contradiction as follows: If ε denotes
the end with R ∈ ε, then the comb attached to X∗ with spine R witnesses that ε ∈ ∂X∗.
Since ∂X∗ = X ∩ Ω(G) by the earlier observation, we get R ∈ ε ∈ X. But then the existence
of R contradicts the maximality of R.

In the star case, note that for all finite sets of vertices S disjoint from v, the component C
of G− S containing v meets X∗ infinitely. Then C also meets X ′ infinitely by Claim 3.11.
But then it is straightforward to inductively construct a star with centre v attached to X ′,
violating the maximality of S. The completes the proof that X∗ is an envelope for X.

Note that the envelopes constructed in Theorem 3.10 are in general neither connected nor
end-faithful. But we can easily obtain both properties with the following construction.

For a given subgraph H ⊆ G of finite adhesion, we define a torso-extension H ′ ⊇ H as
follows: First, we makeH induced. Then for each component C ofG−H, let TC ⊆ G[C∪N(C)]
be a finite tree such that all vertices from N(C) are leaves of TC . We add all these TC to H
to obtain H ′.

Lemma 3.13. Let G be connected. Whenever H ⊆ G is a subgraph of finite adhesion, then
every torso-extension H ′ is an end-faithful connected subgraph of G of finite adhesion with
∂H ′ = ∂H.

Proof. Since inside of each component of G−H we only add a finite subgraph to H, also H ′

has finite adhesion.
By construction, every vertex of H ′ \H is connected via a finite path in H ′ to a vertex of

H. Hence for connectivity of H ′ it remains to show that there is a path in H ′ between every
two vertices v, w ∈ H.
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Since G is connected, there is a v–w path P in G. We consider P as a sequence of edges
between vertices of H and segments inside of components C of G−H together with their
end-vertices in N(C). After replacing each of those segments in a component C by a path in
TC between the same end-vertices, we obtain a finite v–w walk P ′ contained in H ′. So H ′ is
connected.

To see that ∂H ′ = ∂H, only ⊆ requires proof. If ω /∈ ∂H, then ω lives in a unique
component C of G − H. Since H ′ ∩ C is finite it follows that ω also lives in a unique
component C ′ of G−H ′ with C ′ ⊆ C and hence ω /∈ ∂H ′ by finite adhesion of H ′.

We now argue that H ′ contains an ω-ray for every end ω in ∂H ′ = ∂H. Suppose without
loss of generality that H 6= ∅ and fix any ω-ray R = r0r1r2 . . . in G with r0 ∈ V (H). By
finite adhesion of H, the ray R contains infinitely many vertices of H. We will construct a ray
R′ ⊆ H ′ that meets R infinitely as follows: If R ⊆ H ′, there is nothing to do. Otherwise, let
rn0 be the first vertex on R outside of H ′, and consider the component C0 3 rn0 of G−H. Let
rk0 be the last vertex of R in C0. Replace rn0−1Rrk0+1 by an rn0−1–rk0+1 path P0 in TC0 ⊆ H ′

and call the resulting ray R1. Note that R1 ∩ H ⊆ R ∩ H. Now we iterate the same step
for R1 to find a new ray R2 and so on. This yields a sequence of rays R1, R2, R3, . . . with
Rn ∩H ⊆ R ∩H and which agree on larger and larger initial segments contained in H ′. The
union of these segments is a ray R′ ⊆ H ′ with R′ ∩H ⊆ R ∩H, so R′ is an ω-ray in H ′ as
desired.

To see that H ′ is end-faithful, it remains to show that any two rays R1 and R2 in H ′

that are equivalent in G are also equivalent in H ′. By assumption there is a collection P of
infinitely many disjoint R1–R2 paths in G. We will find infinitely many such paths in H ′. Let
P be an R1–R2 path in G with endvertices r1 ∈ R1 and r2 ∈ R2. As in the second paragraph,
we find a r1–r2 walk P ′ in H ′. Consider the finitely many components of G−H that meet
P ′ and delete from P all paths that meet one of these components – by finite adhesion, P
remains infinite. So we can find another R1–R2 path in H ′ disjoint to the first one. Iterating
this construction, we find infinitely many disjoint R1–R2 paths in H ′, showing that R1 and
R2 in are also equivalent in H ′.

A result for torsos of parts in tree-sets similar to Lemma 3.13 is proven in [21, Section 2.6].

Corollary 3.14. Any set consisting of vertices and ends in a connected graph G has a
connected, end-faithful envelope.

Whenever we refer to the envelope of X inside a connected graph G, we assume that we
fixed one possible end-faithful connected choice and call it EG(X).
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3.5 From topology to tree-decompositions

In this section we employ the envelope technique in order to construct a tree-decomposition of
finite adhesion adapted to some prescribed topological information. Roughly, given an infinite
graph G and an increasing sequence of closed subsets X0 ⊆ X1 ⊆ X2 ⊆ . . . in |G| such that
V (G) ⊆ ⋃

n∈NXn, we construct a tree-decomposition T = (T,V) of finite adhesion such that
precisely the ends of Xn live in parts indexed by the first n levels of T , and all other ends get
displayed.3

However, we also want a device that ensures that all ends of some prescribed subcollection
∆ of ends in ⋃

n∈NXn live in pairwise distinct parts of T . It turns out that this can be achieved
provided that each ∆n := ∆ ∩ (Xn \Xn−1) is a discrete set.

Lemma 3.15. Let G be a graph and Ξ ⊆ Ω(G). Suppose that there is a sequence X0 ⊆ X1 ⊆
X2 ⊆ . . . of subsets of V (G) ∪ Ξ that are closed in |G| with V (G) ∪ Ξ = ⋃

n∈NXn. Denote
Ξn := Xn ∩ Ω(G) and let ∆n be a discrete subset of Ξn \

⋃
i<n Ξi for all n ∈ N. Then there

exists a sequence of induced subgraphs of finite adhesion G0 ⊆ G1 ⊆ G2 ⊆ . . . of G such that
the following holds for all n ∈ N:

(i) For every component C of G−Gn, the set (C ∩Gn+1) ∪N(C) is connected in G;

(ii) ∂G3n+2 ⊆ Ξn \∆n;

(iii) for every component C of G−G3n+2, there is at most one end from ∆n contained in
∂C;

(iv) Xn ∩ V (G) ⊆ V (G3n+3);

(v) ∂G3n+3 = Ξn.

Proof. Set G0 := ∅. We will inductively define subgraphs G0, G1, . . . of G all of finite adhesion
so that (i)− (v) are satisfied.

Every step of the construction follows the same general pattern: To construct Gn+1 from
Gn consider the current set Cn of components of G−Gn. For every D ∈ Cn we consider the
subgraph D̃ := G[D ∪N(D)] of G. Each time we will define a set of vertices VD ⊆ V (D̃) of
finite adhesion in D̃ containing N(D). Then also Gn+1 := Gn ∪

⋃
D∈Cn

VD has finite adhesion
in G since any component C of G−Gn+1 is also a component of D̃ − VD for some D ∈ Cn.
Furthermore, we will make sure that VD is connected so that (i) is satisfied.

3In the actual proof, we arrange for technical reasons that the ends of Xn live precisely in parts indexed
by the first 3n + 3 levels of T .
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Next, we make two observations concerning the end space of D̃, which both follow from
the fact that N(D) is finite: Firstly, we have ∂D = ∂D̃ in G, and secondly, the inclusion
map ι as mentioned in Section 2.2 is a homeomorphism from Ω(D̃) to ∂D ⊆ |G|. Via this
homeomorphism, we will in the following identify the spaces Ω(D̃) and ∂D ⊆ |G|.

Now for the actual construction of the sequence G0, G1, . . . , we proceed in steps of three.
Suppose that G3n has already been defined. We demonstrate how to recursively construct

G3n  G3n+1  G3n+2  G3n+3 = G3(n+1)

in order to satisfy (i)− (v) for the three indices 3n+ 1, 3n+ 2 and 3n+ 3.
1. Step 3n 3n+ 1.

Let D be any component from C3n. Since ∆n is discrete in |G|, also ∆n∩∂D is discrete in ∂D.
Thus there is a set OD = {Oω : ω ∈ ∆n ∩ ∂D} of open subsets of ∂D with Oω ∩∆n = {ω}
for all ω ∈ ∆n ∩ ∂D. Applying Corollary 3.14 we consider the envelope

VD := ED̃(((Ξn ∩ ∂D) \
⋃
OD) ∪N(D))

which is a connected vertex set of finite adhesion in D̃ (cf. Figure 5).

G3n

D
∈
C 3
n

OD

ends from Ξn−1

ends from ∆n

ends from Ξn \ (Ξn−1 ∪∆n)
ends from Ω(G) \ Ξn

VD

Figure 5: Construction step 3n 3n+ 1.

We now determine which ends are contained in ∂VD. Since both Xn and Ω(G) are closed
in |G|, also Ξn = Xn∩Ω(G) is closed in |G|. Hence (Ξn∩∂D)\⋃OD is closed in the subspace
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∂D of |G|. Since N(D) is finite and therefore does not have any ends in its closure, it follows
from the definition of an envelope and our identification of Ω(D̃) with ∂D that

∂VD = (((Ξn ∩ ∂D) \
⋃
OD) ∪N(D)) ∩ ∂D = (Ξn ∩ ∂D) \

⋃
OD = (Ξn ∩ ∂D) \

⋃
OD.

Hence by (v) for G3n, the graph G3n+1 = G3n ∪
⋃
D∈C3n

VD satisfies

(vi) ∂G3n+1 ⊆ Ξn \∆n.

Next, we show that

(vii) for every component C of G−G3n+1, there is an open cover O of ∂C such that each
set from O contains at most one end from ∆n.

Let C be a component of G − G3n+1 and D′ the component of G − G3n with C ⊆ D′. We
show that (vii) is fulfilled with

O := {O ∩ ∂C : O ∈ OD′} ∪ {∂C \ Ξn}.

Clearly, all sets in O are open in ∂C and contain at most one end from ∆n. For the proof
that ∂C ⊆ ⋃O, we observe that C and VD′ are disjoint and the neighbourhood of C is
finite. Therefore, ∂C and ∂VD′ are disjoint. Since ∂VD′ = (Ξn ∩ ∂D′) \

⋃OD′ , we have
∂C ∩ Ξn ⊆

⋃OD′ and therefore ∂C ⊆ ⋃O.
2. Step 3n+ 1 3n+ 2.

Let D be any component from C3n+1. By (vii) there exists an open cover O of ∂D such that
each set from O contains at most one end from ∆n (cf. Figure 6). Then by Theorem 2.11,
there is a rayless normal tree T in D̃ such that for every component C ′ of D̃ − T there is a
set O ∈ O with ∂C ′ ⊆ O. By Lemma 2.12 there exists a rayless normal tree T ∗ in D̃ such
that V (T ) ∪N(D) ⊆ V (T ∗). We define VD := V (T ∗). Then every component C of G− VD is
contained in a component C ′ of G− T and thus there is a set O ∈ O with ∂C ⊆ O. Then
by (vii), C contains at most one end from ∆n. Hence G3n+2 = G3n+1 ∪

⋃
D∈C3n+1 VD satisfies

(iii). Furthermore, T ∗ has finite adhesion in D̃ by Lemma 2.12. Finally, normal trees are
end-faithful by [14, Lemma 8.2.3], so from the fact that T ∗ is rayless it follows that ∂T ∗ = ∅.
Therefore ∂G3n+2 = ∂G3n+1 and (ii) is a consequence of (vi).

3. Step 3n+ 2 3n+ 3.
Again let D be any component from C3n+2 (the components of G−G3n+2). We define

VD := ED̃((Xn ∩D) ∪N(D)).

29



G3n+1

D
∈
C 3
n
+

1

T ∗ = VD

O

ends from Ξn−1

ends from ∆n

ends from Ξn \ (Ξn−1 ∪∆n)
ends from Ω(G) \ Ξn

Figure 6: Construction step 3n+ 1 3n+ 2.

Then it follows from the definition of an envelope that

Xn ∩ V (D̃) ⊆ ((Xn ∩D) ∪N(D)) ∩ V (D̃) ⊆ VD.

Therefore G3n+3 = G3n+2 ∪
⋃
D∈C3n+2 VD satisfies (iv). Furthermore, since N(D) is finite and

Xn is closed, we have

∂VD = ((Xn ∩D) ∪N(D)) ∩ ∂D = Xn ∩ ∂D = Ξn ∩ ∂D.

Then together with (ii) we obtain ∂G3n+3 = Ξn which proves (v).

Theorem 3.16. Let G be a connected graph and Ξ ⊆ Ω(G). Suppose that there is a sequence
X0 ⊆ X1 ⊆ X2 ⊆ . . . of subsets of V (G)∪Ξ that are closed in |G| with V (G)∪Ξ = ⋃

n∈NXn.
Denote Ξn := Xn ∩ Ω(G) and let ∆n be a discrete subset of Ξn \

⋃
i<n Ξi for all n ∈ N. Then

there is an upwards connected tree-decomposition T = (T,V) of finite adhesion with connected
parts which homeomorphically displays Ω(G) \Ξ such that the boundary of every part contains
at most one end from ⋃

n∈N ∆n.

Proof. Let G0 ⊆ G1 ⊆ G2 ⊆ . . . be the sequence from Lemma 3.15 with properties (i)− (v)
and suppose without loss of generality that G0 = ∅. This sequence gives rise to a tree-
decomposition T = (T,V) of finite adhesion and into connected parts as follows: Write Cn for
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the set of components of G−Gn. We define a tree order ≤T on T := ⊔
n∈N Cn as follows: For

all Cn ∈ Cn and Cm ∈ Cm, let Cn ≤T Cm if and only if Cn ⊇ Cm and n ≤ m; this will be our
decomposition tree. Note that G0 = ∅ ensures T has a root whose associated part is G. The
part corresponding to a node C ∈ Cn of T will be N(C) ∪ (C ∩Gn+1) (which is precisely the
set VC from the proof of Lemma 3.15). Then it is readily checked that all properties (T1) –
(T3) of a tree-decomposition are satisfied, in particular (T1) holds by (iv). All parts of T are
connected by (i).

It is clear from the construction that T is upwards connected. Furthermore, by (v) the
interior of T is Ξ and hence its boundary is Ω(G)\Ξ. Therefore T homeomorphically displays
Ω(G) \ Ξ by Lemma 3.8.

It is left to show that in every part of T there lives at most one end from ⋃
n∈N ∆n. For

any n ∈ N, we have ∆n ⊆ ∂G3n+3 \ ∂G3n+2 by (ii) and (v).
Since this inclusion holds for all n ∈ N, it follows that ∂G3n+3 \ ∂G3n+2 does not contain

ends from ∆n′ for any n′ 6= n. Furthermore, by (iii) every component in C3n+2 contains
at most one end from ∆n in its boundary. Hence all ends from ∆n are contained in the
boundaries of parts of the form N(C) ∪ (C ∩G3n+3) for C ∈ C3n+2, and in the boundary of
every such part there is no end from ∆n′ for any n′ 6= n and at most one end from ∆n. This
finishes the proof.
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3.6 Tree-decompositions displaying sets of ends

In this section we will prove our characterisation announced in Theorem 3.2 of displayable sub-
sets of Ω(G), i.e. subsets which can be (homeomorphically) displayed by a tree-decomposition
of finite adhesion.

Theorem 3.17. For any connected graph G and any set Ψ of ends of G the following are
equivalent:

1. There is an upwards connected tree-decomposition of finite adhesion with connected parts
that homeomorphically displays Ψ.

2. There is a tree-decomposition of finite adhesion displaying Ψ.

3. There is a tree-decomposition of finite adhesion with boundary Ψ.

4. |G|Ψ is completely metrizable.

5. Ψ is Gδ in |G|.

Proof. We demonstrate the following sequence of implications:

(2) (3)

(1) (5) (1)

(4)

The implications (1)⇒ (2)⇒ (3) are trivial.
(1)⇒ (4): Let (T,V) be a tree-decomposition of finite adhesion of G homeomorphically

displaying Ψ with a fixed root r of T . We begin by defining a complete metric dT on
V (T ) ∪ Ω(T ). Assign to every e ∈ E(T ) a number `(e): If e ∈ E(T ) is a T n–T n+1 edge (i.e.
an edge between level n and level n+ 1 of T ), we set `(e) = 1/2n. If P is a (possibly infinite)
path in T , we say that the finite number ∑

e∈E(P ) `(e) is the length of P . Now we define
dT (x, y) for all x, y ∈ V (T ) ∪ Ω(T ): If x and y are both vertices, let dT (x, y) be the length of
the unique x–y path in T . If x is a vertex and y is an end, then let dT (x, y) be the length of
the unique ray from y which starts in x. Similarly, if both x and y are ends, let dT (x, y) be
the length of the unique double ray in T between x and y. It is straight-forward to check
that dT defines a complete metric on V (T ) ∪ Ω(T ).

We now use dT to define a metric d on G ∪Ψ. For every vertex v ∈ V (G), let vT be the
least vertex of T with respect to the tree order such that v is contained in the part VvT

(this
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is well-defined according to (T3)). Additionally, for every end ω ∈ Ψ, let ωT be the end of T
which ω corresponds to. For all x, y ∈ V ∪Ψ, we define

d(x, y) =


0 if x = y,

1/2n if x 6= y ∈ V (G) and xT = yT lies in the nth level of T ,

dT (xT , yT ) if xT 6= yT .

Next, we prove that d is a metric on V (G)∪Ψ. It is clear that d(x, x) = 0 and d(x, y) > 0
for all x 6= y and that d is symmetric. We show that triangle inequality holds: Let x, y, z be
pairwise distinct elements of V (G) ∪Ψ. We need to show that

d(x, z) ≤ d(x, y) + d(y, z). (∗)

Clearly, (∗) holds if xT = yT = zT . If xT = yT 6= zT , then d(x, z) = d(y, z) and hence (∗)
follows. A similar argument works if yT = zT . Next, suppose that xT = zT 6= yT and let n be
the level of xT in T . Then d(x, z) = 1/2n and since `(e) ≥ 1/2n for every edge e of T with
endvertex xT also d(x, y) ≥ 1/2n, which proves (∗). Finally, if xT , yT and zT are pairwise
distinct, then (∗) follows from the triangle inequality for dT . This finishes the proof of (∗).

For the proof that d is complete, let (xn)n∈N be a Cauchy-sequence in V (G) ∪Ψ. Hence
((xn)T )n∈N is a Cauchy-sequence in T because dT (vT , wT ) ≤ d(v, w) for all v, w ∈ V (G) ∪Ψ.
If ((xn)T )n∈N is eventually constant, then (xn)n∈N is eventually contained in Vt for some
t ∈ V (T ). If t lies in the nth level of T , then d(v, w) ≥ 1/2n for all v 6= w ∈ Vt. Hence
also (xn)n∈N is eventually constant. Otherwise, if ((xn)T )n∈N is not eventually constant, then
((xn)T )n∈N converges to an end ω of T and thus (xn)n∈N converges to the end of G which
corresponds to ω. Finally, we extend d to a complete metric on G ∪Ψ by relating every edge
vw of G linearly to a real closed interval of length d(v, w). We omit the details.

It is left to show that the metric d induces the subspace topology on G∪Ψ inherited from
|G|. We need to show for any given x ∈ G ∪Ψ that

(†) every MTop-basic open neighbourhood of x in G ∪Ψ contains an open ε-ball around x
with respect to d, and vice versa.

This is clear if x is an inner point of an edge. Next, let x ∈ V (G) be a vertex and n the level
of xT in T . Then (†) is true because every edge of G which has x as an endvertex has length
at least 1/2n and at most 1.

Now suppose that x ∈ Ψ and let Ĉε(S, x) be a basic open neighbourhood of x in |G| for
some ε ≤ 1. Let n be the maximum level of T containing a vertex sT for some s ∈ S. We
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show that the open ball B in |G| with respect to d with radius ε/2n and centre x is a subset
of Ĉε(S, x). First, consider the open ball B′ in T with respect to the metric dT with radius
ε/2n and centre x′, where x′ is the end of T which x corresponds to. Let e be the edge of T
which is contained in the normal x′-ray in T and connects a node un form the nth level of T
to a node un+1 from the n+ 1st level. Then B′ is completely contained in the closure of the
component D of T − e with un+1 ∈ V (D) since

dT (un+1, x
′) =

∑
i≥n+1

1/2i = 1/2n ≥ ε/2n.

In particular, every vertex in B′ lies in the n+ 1st level of T or above. Next, it follows from
the definition of the metric d that every vertex in B is contained in a part Vt with t ∈ B′ ⊆ D,
but no vertex of B can be contained in a part Vt such that the level of t in T is at most n.
Therefore all vertices in B and similarly also all ends in B are contained in He, where He is
the subgraph of G from the definition of upwards connectedness. Since He is disjoint from S,
connected by upwards connectedness of T , and x orients e towards x′, we have He ⊆ Ĉ(S, ω).
Hence all vertices and ends in B and all edges with both endvertices in B are contained in
Ĉε(S, x); it is left to show the same for points of edges in B with only one endvertex in B.
Every such edge f , however, has its other endvertex in Vun by (T3), and as un lies in the nth
level of T , the length of f with respect to d is at least 1/2n. Recall that any point p on f in
B has distance less than ε/2n to x and therefore also to the end vertex of f in B. Thus p is
contained in Ĉε(S, x), as desired.

Conversely, let B be an open ε-ball around x with respect to d of radius 0 < ε ≤ 1. Let
ω ∈ Ω(T ) be the end of T corresponding to x and R the rooted ω-ray in T . Choose n ∈ N
such that 1/2n < ε and let ti ∈ V (T ) be the node in R ∩ T i for i ∈ {n + 2, n + 3}. Then
define S as the separator induced by the edge tn+2tn+3 of T in G. Now C := Ĉ1/2n+1(S, x) is
a subset of B: Let y be any point in C; we have to show that d(y, x) < ε. First suppose that
y ∈ C(S, x) and let w be a vertex from the part Vtn+3 . For any point z ∈ C(S, x) we have

d(w, z) ≤
∑
i≥n+3

1/2i = 1/2n+2.

Hence
d(y, x) ≤ d(y, w) + d(w, x) ≤ 1/2n+2 + 1/2n+2 = 1/2n+1 < ε.

Next, suppose that y is an inner point of an S–C(S, x) edge with endvertex v in C(S, x). We
have seen above that d(v, x) ≤ 1/2n+1. Hence it follows from the choice of C that

d(y, x) ≤ d(y, v) + d(v, x) ≤ 1/2n+1 + 1/2n+1 < ε
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which proves C ⊆ B.
(4)⇒ (5): Assume that |G|Ψ is completely metrizable. We claim that

• Ψ is Gδ in |G|Ψ, and

• |G|Ψ is Gδ in |G|.

This implies (5) as being Gδ is transitive.
Since closed subsets of metrizable spaces are always Gδ [22, Corollary 4.1.12], we get that

Ψ is Gδ in |G|Ψ. Next, by a well-known result of Čech [22, Theorem 4.3.26] all completely
metrizable spaces, and so in particular |G|Ψ, are Čech-complete, and by [22, Exercise 3.9.A],
all Čech-complete spaces are Gδ in their closures. Thus we conclude that |G|Ψ is Gδ in its
closure |G|.

(3)⇒ (5): Let (T,V) be a tree-decomposition of finite adhesion of G with boundary Ψ.
Fix a root r of T and denote by En the set of all edges between the nth and n+ 1st level of
T . For every edge e ∈ En, let (Ae, Be) be the respective separation of G such that Vr ⊆ Ae

and let Se = Ae ∩Be be the corresponding finite adhesion set. Note that Ae contains every
part Vt with t ∈ T≤n. We denote

Ce :=
⋃
{Ĉ1/2(Se, ω) : ω ∈ ∂Be}.

Then On := ⋃
e∈En
Ce is an open set in |G| because it is a union of open sets. We show that

Ψ = ⋂
n∈NOn. Clearly, Ψ ⊆ ⋂

n∈NOn. For the converse inclusion, let ω ∈ ⋂
n∈NOn. We show

that ω does not live in any part of (T,V) and therefore lies in the boundary of (T,V). Indeed,
if ω ∈ ∂Vt for t ∈ T n, then ω is not contained in On+1, a contradiction.

(5) ⇒ (1): Let Ψ ⊆ Ω(G) be a Gδ set in |G|. Hence G ∪ Ξ where Ξ := Ω(G) \ Ψ is
an Fσ set in |G| and by Lemma 2.13, also V (G) ∪ Ξ is an Fσ set in |G|. This means that
V (G) ∪ Ξ = ⋃

n∈NXn is a countable union of sets Xn which are closed in |G|, we may assume
that X0 ⊆ X1 ⊆ · · · . By applying Theorem 3.16 (with ∆n = ∅) there is an upwards connected
tree-decomposition of finite adhesion into connected parts that homeomorphically displays
Ψ = Ω(G) \ ⋃

n∈NXn.

Corollary 3.18. Displayable sets of ends are completely metrizable.

Proof. The implication (2)⇒ (4) in Theorem 3.17 says that for every displayable set of ends
Ψ ⊆ Ω(G) in a graph G we have that |G|Ψ is completely metrizable. Since Ψ ⊆ |G|Ψ is closed,
and closed subspaces of completely metrizable spaces are again completely metrizable, it
follows that Ψ is completely metrizable.

35



Corollary 3.19. Let G be a graph with a displayable set of ends Ψ ⊆ Ω(G) and let Φ be a
subset of Ψ. Then Φ is (homeomorphically) displayable if and only if Φ is a Gδ set in Ψ.

Proof. Immediate from (2) ⇔ (5) in Theorem 3.17 and transitivity of the Gδ-property.

Corollary 3.20. Let G be a graph with a normal spanning tree. Then a subset Φ ⊆ Ω(G) is
(homeomorphically) displayable if and only if Φ is a Gδ set in Ω(G).

Proof. Follows from (6) ⇒ (5) in Theorem 3.9 together with the previous corollary for
Ψ = Ω(G).

36



3.7 Tree-decompositions distributing sets of ends

In this section we characterise which subsets of ends can be distributed by a tree-decomposition
of finite adhesion. Recall that a topological space X ⊆ Z has a σ-discrete expansion in Z

if it can be written as a disjoint union X = ⊔
n∈NXn such that all Xn are discrete and all

Yn := ⋃
i≤nXi are closed in Z.

Theorem 3.21. Let G be a connected graph and Ξ ⊆ Ω(G) a subset of ends of G. Then the
following are equivalent:

(i) There is a tree-decomposition of finite adhesion distributing Ξ.

(ii) V (G) is a countable union of slender vertex sets Un such that ⋃
n∈N ∂Un = Ξ.

(iii) V (G) ∪ Ξ has a σ-discrete expansion in |G|.

(iv) There is an upwards connected tree-decomposition of finite adhesion with connected parts
realising (Ξ,Ξ{).

Proof. We will show a cyclic chain of implications. For (i) ⇒ (ii), suppose we have a
tree-decomposition (T,V) with root r of finite adhesion that distributes Ξ.

We define
Un =

⋃
t∈T≤n

Vt.

By property (T1) of a tree-decomposition, it is clear that V (G) ⊆ ⋃
n∈N Un. Since Ξ is the

interior of (T,V), we also have Ξ = ⋃
n∈N ∂Un as desired.

Furthermore, each Un is slender: Clearly, all vertices are isolated in |G|. Additionally,
∂Un \ ∂Un−1 consists of at most one end for each part Vt for t ∈ T n and hence all ends in
∂Un \ ∂Un−1 are isolated points of Un. Therefore, each Un has Cantor-Bendixson rank at most
n+ 1 by induction.

For (ii)⇒ (iii), suppose V (G) is a countable union of slender vertex sets Un such that⋃
n∈N ∂Un = Ξ. Without loss of generality, the sequence of the Un is increasing. Write Xn = Un

and let Y0 = X0 and Yn+1 = Xn+1 \Xn. By assumption, each Yn has finite Cantor-Bendixson
rank say kn. Recall that Y (0)

n := Yn and Y (i+1)
n denotes the derived space of Y (i)

n for all
i ∈ N. Since Yn has rank kn, we have Y (kn)

n = ∅. Let Zn,i := Y (i)
n \ Y

(i+1)
0 be the subset of Yn

consisting of all elements that get deleted when forming Y (i+1)
n for 0 ≤ i ≤ kn − 1. We claim

that
Z0,k0−1, Z0,k0−2, . . . , Z0,0, Z1,k1−1, Z1,k1−2, . . . , Z1,0, Z2,k2−1, Z2,k2−2, . . .
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is the desired σ-discrete expansion of V (G) ∪ Ξ.
First of all, since V (G) ∪ Ξ = ⋃

n∈N Yn and this union is disjoint, the above sequence has
union V (G) ∪ Ξ. By the definition of rank, it is also clear that all sets in the sequence are
discrete. It remains to show that the union over finite initial segments is closed. Clearly, each
such union is of the form

Y = Xn ∪ Zn+1,kn+1−1 ∪ · · · ∪ Zn+1,i ⊆ Xn+1

for some i < kn+1, and this set is closed in |G| as Xn+1 is closed in |G| and Y is closed in
Xn+1 by the definition of the Cantor-Bendixson rank.

For (iii) ⇒ (iv), let (X ′n)n∈N be a σ-discrete expansion for V (G) ∪ Ξ. Then we apply
Theorem 3.16 for the closed sets Xn := ⋃

i≤nX
′
i and the discrete sets ∆n := X ′n ∩ Ω(G) to

obtain an upwards connected tree-decomposition of G of finite adhesion into connected parts
displaying Ξ{ such that all ends from Ξ = ⋃

n∈N ∆n, and hence all ends from the interior of T
live in pairwise distinct parts. In other words, this tree-decomposition realises (Ξ{,Ξ).

Next, it is clear that (iv) implies (i), which completes the proof.

We have now all results in place to prove our main result Theorem 3.1 from this paper,
the following theorem contains even more equivalent properties:

Theorem 3.22. The following are equivalent for any connected graph G with at least one
end:

1. There is an upwards connected tree-decomposition of finite adhesion that represents
Ω(G) such that all parts induce connected subgraphs.

2. There is a tree-decomposition of finite adhesion that represents all ends in Ω(G).

3. There is a tree-decomposition of finite adhesion that distinguishes all ends in Ω(G).

4. There is a tree-decomposition of finite adhesion into ≤1-ended parts.

5. Some subset Ξ ⊆ Ω(G) of ends can be distributed.

6. V (G) is a countable union of slender sets.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) are trivial. The implication (5)⇒ (6)
follows from (i)⇒ (ii) in Theorem 3.21. Finally, for (6)⇒ (1) note that due to (ii)⇒ (iv)
in Theorem 3.21, we immediately get from (6) that there is an upwards connected tree-
decomposition of finite adhesion into connected parts that realises (Ξ,Ξ{). But then it
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follows from the subsequent Lemma 3.23 that there also is such a tree-decomposition T ′ that
represents some partition (Ξ′,Ψ′) of Ω(G) with Ξ ⊆ Ξ′, and so T ′ represents all ends in Ω(G)
as desired.

Lemma 3.23. If a connected graph G with at least one end admits a tree-decomposition
T of finite adhesion that realises some partition (Ξ,Ψ) of Ω(G), then there also is such a
tree-decomposition T ′ that represents some partition (Ξ′,Ψ′) of Ω(G) with Ξ ⊆ Ξ′.

Moreover, whenever T has connected parts or is upwards connected, we can obtain the
same for T ′.

Proof. Suppose we are given a tree-decomposition (T,V) of finite adhesion realising some
partition (Ξ,Ψ) of Ω(G). We will perform two rounds of contractions on T to make sure that
we represent some partition (Ξ′,Ψ′) of Ω(G) with Ξ ⊆ Ξ′.

First, pick a maximal family R of disjoint rays in T such that no end of G lives in a part
corresponding to one of the nodes of a ray in R. Then consider a new tree-decomposition
(Ṫ , V̇) where Ṫ is obtained from T by contracting each ray in R. For every R ∈ R we define a
corresponding part V̇R = ⋃

t∈R Vt. Since the set of separators of (Ṫ , V̇) is a subset of the set of
separators of (T,V), it follows that also (Ṫ , V̇) has finite adhesion. And since by assumption
on (T,V) there corresponds precisely one end of G to any ray R ∈ R, it follows that (Ṫ , V̇)
realises (Ξ′,Ψ′) where Ξ′ is the union of Ξ together with all ends of G that correspond to a
ray in R, and Ψ′ is its complement.

Next, note that by maximality of R, every ray of Ṫ contains infinitely many nodes whose
corresponding parts in V̇ contain an end of G. Therefore, if we pick any partition P of V (Ṫ )
into subtrees such that each subtree P contains a unique node for which there is an end ωP
of G living in the corresponding part of V̇ , then all P ∈ P are necessarily rayless.

Now consider a new tree-decomposition (T ′,V ′) where T ′ is obtained from Ṫ by contracting
each subtree in P. Naturally, V (T ′) = P, and for each P ∈ V (T ′) we define V ′P = ⋃

t∈P V̇t.
Since T ′ arises from T by contracting subtrees, it is clear that T ′ has finite adhesion, connected
parts, or is upwards connected if the same is true for T . Lastly, (T ′,V ′) now represents the
partition (Ξ′,Ψ′), as in each part V ′P there lives precisely the single end ωP from Ξ′, and since
all P were rayless and (Ṫ , V̇) displays Ψ′, also (T ′,V ′) displays Ψ′.

Corollary 3.24. If a connected graph G with at least one end admits a rayless tree-decomposition
T of finite adhesion that distributes Ω(G), then there also is such a tree-decomposition that bi-
jectively distributes Ω(G). Moreover, whenever T has connected parts or is upwards connected,
we can obtain the same for T ′.
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3.8 Tree-decompositions distributing all ends

In the previous section we stated a topological characterisation for the sets of ends that can be
distributed. If we are interested in distributing all ends of G, we can obtain a combinatorial
characterisation in terms of the underlying graph.

The following is a convenient description of the Cantor-Bendixson rank of the space
V ∪ Ω(G) ⊆ |G| due to Jung [26, §3]: The rank r(x) of a vertex or an end x in a graph
G = (V,E) is defined as follows: all vertices have rank 0. An end ω has rank 1, if there is
a finite set S ⊆ V , such that Ĉ(S, ω) contains no other end. For an ordinal α, we say an
end ω has rank α, if it has not already been assigned a smaller rank and if there is a finite
set S ⊆ V such that all ends in Ĉ(S, ω) have been assigned a rank, and all these ranks are
strictly smaller than α.

For a graph G in which every end has a rank (i.e. for graphs where V ∪Ω(G) is scattered),
we define the end-rank r(G) as the supremum of the ranks of all points in V ∪ Ω(G).4

Theorem 3.25. The following are equivalent for any connected graph G:

(i) There is an upwards connected rayless tree-decomposition of finite adhesion with con-
nected parts distributing Ω(G).

(ii) There is a tree-decomposition of finite adhesion distributing Ω(G).

(iii) V ∪ Ω(G) has a σ-discrete expansion.

(iv) G contains no end-faithful subdivision of the full binary tree T2.

(v) Every end of G has a rank, i.e. Ω(G) is scattered.

Moreover, if Ω(G) 6= ∅, we may add

(vi) There is an upwards connected rayless tree-decomposition of finite adhesion with con-
nected parts bijectively distributing Ω(G).

Proof. (i)⇔ (ii)⇔ (iii) is a special case of Theorem 3.21.
For the implication (iii) ⇒ (iv) note that any subspace of V ∪ Ω(G) inherits the property
of having a σ-discrete expansion. However, the end space of a binary tree does not have a
σ-discrete expansion: Indeed, any discrete set in a compact metric space is just countable;
but the end space of a binary tree is uncountable, so not a countable union of countable sets.

4We remark that in this formulation, r(G) and the Cantor-Bendixson rank of V ∪ Ω(G) may differ by ±1.
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The equivalence (iv)⇔ (v) is the content of Jung’s [26, Satz 4].
We prove (v)⇒ (iii) by transfinite induction on the end-rank α of G. In the base case

r(G) = 0, i.e. when Ω(G) = ∅, we may take the trivial expansion consisting just of the vertex
set.

Now let α > 0, and suppose that all graphs of rank < α admit a σ-discrete expansion.
First, let Φ ⊆ Ω(G) consist of all ends of rank α. Clearly, Φ is a closed discrete subset of
Ω(G). By Corollary 3.14, there is a connected envelope U for Φ, i.e. U is a connected set of
vertices in G of finite adhesion such that ∂U = Φ. Write P for the collection of components
of G− U , and note that for each P ∈ P , all ends living in P have rank < α.

Now for each component P ∈ P individually, consider a collection CP = {CP (Sω, ω) :
ω ∈ Ω(P )} such that each set CP (Sω, ω) witnesses the rank of ω inside the graph P . By
Theorem 2.11, there is a rayless normal tree NP in P such that every component D of P −NP

is included in an element of CP and hence satisfies r(D) < α. Note that U ′ = U ∪ ⋃
P∈P NP

also is an envelope for Φ, but now, writing P ′ for the collection of components of G− U ′, we
have r(D) < α for every D ∈ P ′. By induction assumption, each D ∈ P ′ admits a σ-discrete
expansion

V (D) ∪ Ω(D) =
⋃
n≥1

XD,n.

Then X0 := U ′ = U ′ ∪ Φ together with

Xn :=
⋃
D∈P ′

XD,n

for n ≥ 1 gives the desired σ-discrete expansion of V ∪ Ω(G). Indeed, to see that X0 ∪
X1 ∪ · · · ∪Xn is closed for every n ∈ N, note that every end ω of G outside of this set lives
in some component D for D ∈ P ′. Let S ⊆ V (D) be finite such that ĈD(S, ω) is a basic
open set inside V (D) ∪ Ω(D) separating ω from the closed set XD,1 ∪ · · · ∪XD,n. But then
ĈG(S ∪N(D), ω) is a basic open neighbourhood of ω in V ∪Ω(G) witnessing that ω does not
belong to the closure of X0 ∪X1 ∪ · · · ∪Xn. This completes the induction step and the proof
of (v)⇒ (iii).

Finally, the moreover part (i)⇔ (vi) is immediate from Corollary 3.24.

Using different methods, Polat showed that Ω(G) has a σ-discrete expansion if and only if
every end of G has a rank [40, Theorem 8.11].
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3.9 Applications

3.9.1 Tree-decompositions displaying special subsets of ends

Through our main characterisation, we can now give a short proof of the main result from
Carmesin’s [9].

Theorem 3.26. Every connected graph G has a tree-decomposition of finite adhesion with
connected parts that displays precisely the undominated ends of G.

Proof. Let Ξ be the set of all ends of G which are dominated. By Theorem 3.17 it suffices
to show that Ω(G) \ Ξ is a Gδ set in |G|, and by Lemma 2.13 it is equivalent to show that
V (G)∪Ξ is an Fσ set in |G|. Choose an arbitrary vertex u ∈ V (G) and for all n ∈ N write Xn

for the set of all vertices of G with distance at most n to u. We show that V (G)∪Ξ = ⋃
n∈NXn.

We have V (G) = ⋃
n∈NXn because G is connected. It is left to show that the ends in ⋃

n∈NXn

are precisely the dominated ends of G.
Consider any end ω ∈ Ω(G) and let R be an ω-ray in G. First, suppose that ω is dominated

and let v be the centre of an infinite subdivided star S with leaves in R. Furthermore, suppose
that v ∈ Xn. Then S − v is a comb attached to N(v) ⊆ Xn+1 and therefore ω is contained in
Xn+1.

Now assume for a contradiction that some Xn contains an undominated end ω, and
choose n minimal with that property. Then there is a comb C attached to Xn with spine
R ∈ ω. By minimality of n, there is an infinite set T of teeth of C which lie in Xn \Xn−1.
The neighbourhood of T in Xn−1 is finite, again by minimality of n. Since every vertex in
Xn \Xn−1 has a neighbour in Xn−1, there is vertex v ∈ Xn−1 with infinitely many neighbours
in T . Hence ω is dominated by v, a contradiction.

The following generalises a corresponding result from [8, Theorem 2].

Theorem 3.27. For every infinite set of vertices U in a connected graph G, there is a
tree-decomposition of G of finite adhesion that displays precisely the undominated ends of ∂U .

Proof. Without loss of generality, we may assume that U has finite adhesion (Theorem 3.10).
Consider the contraction minor H � G obtained from G by contracting each component

C of G− U to a single vertex vC (of finite degree).

Claim 3.28. The inclusion U ↪→ H induces a bijection ∂U → Ω(H) that preserves the
property of being dominated.

This claim is proven just like Lemma 3.13.
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Claim 3.29. The contractions resulting in H induce a natural continuous surjection f : |G| →
|H|.

To see that f is continuous, consider some end ω ∈ |G|. If ω /∈ ∂U , then f(ω) = vC

for some component C, and f is continuous at ω. If ω ∈ ∂U , then f(ω) = ω′ ∈ Ω(H) by
Claim 3.28. Let CH(X ′, ω′) be an arbitrary basic open neighbourhood around ω′ in H. Let
X ⊆ U be the finite set of vertices where we replace every vertex of the form vC in X ′ by
N(C). It remains to verify that

f [CG(X,ω)] ⊆ CH(X ′, ω′).

But this is clear: for every v ∈ CG(X,ω), any v − ω-ray R avoiding X is mapped to a locally
finite connected subgraph in H avoiding X ′ which includes an f(v)− ω′-ray R′.

Now we apply Theorem 3.26 inside H to see that there is a tree-decomposition of finite
adhesion displaying the undominated ends Ψ of H. Hence Ψ is Gδ in |H| by Theorem 3.17,
say Ψ = ⋂

n∈NOn with On open in |H|. But then by Claim 3.29,

f−1(Ψ) = f−1(
⋂
n∈N

On) =
⋂
n∈N

f−1(On)

is Gδ in |G|. Thus f−1(Ψ) can be displayed by a tree-decomposition of finite adhesion of G,
again by Theorem 3.17. This completes the proof as f−1(Ψ) is the set of all undominated
ends in ∂U by Claim 3.28.

3.9.2 Counterexamples

Consider the full infinite binary tree T2, and let X ⊆ Ω(T2) be any set of ends. A binary
tree with tops X is the graph with vertex set T2 t X, all edges of T2, and such that the
neighbourhood of x ∈ X consists of infinitely many nodes on its corresponding normal ray in
T2.

We reobtain Carmesin’s observation that a T2 with uncountably many tops does not admit
a tree-decomposition of finite adhesion displaying all its ends, but now with significantly
shorter proof.

Example 3.30. No binary tree with uncountably many tops admits a tree-decomposition of
finite adhesion displaying all its ends.

Proof. These graphs do not have normal spanning trees by [18, Proposition 3.3], and so the
result follows from Theorem 3.9.
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With only a little more work, we can prove the following stronger result by Carmesin
[9, p.7].

Example 3.31. No binary tree with uncountably many tops admits a tree-decomposition of
finite adhesion distinguishing all its ends.

Proof. Let G be a binary tree with uncountably many tops. Suppose for a contradiction
that V (G) is a countable union of slender sets. Then one of the slender sets U contains
uncountably many of the tops. Write R for the set of all normal rays of T2 which have a
corresponding top in U . We call a vertex v of T2 good, if it lies in uncountably many rays
from R. It is clear that the root of T2 is good. We now show that for each good vertex v,
there are two incomparable good vertices above v in the tree-order:

Suppose not for a contradiction. It is clear that at least one upper neighbour in T2 of each
good vertex is good. This implies that there is a ray R of good vertices above v. Since per
assumption all good vertices above v are comparable, no other vertex above v outside the ray
R is good. But this ray has only countable many neighbours in T2. As no such neighbour
above v is good, every neighbour of R above v lies on only countably many rays from R. But
then also v lies on only countably many rays from R, which is a contradiction since v is good.

From this claim follows that there is a subdivided binary tree inside G such that each
branch vertex is good.

It follows that ∂U itself contains the end space of a subdivided binary tree. But the end
space of a binary tree is not scattered, a contradiction. It follows from Theorem 3.22 that
Ω(G) cannot be distinguished.

We conclude this section with a new example of a graph G witnessing that the thin ends
of G cannot always be displayed, that is based on topological considerations only (a different
example is given by Carmesin in [9, Example 3.3]). More precisely, since displayable subsets
of ends are always completely metrizable by Corollary 3.18, it suffices to construct a graph
where the thin ends are not completely metrizable.

As a warm-up, consider the binary tree T , and call a normal ray of T rational if its
corresponding 0 − 1-sequence becomes eventually constant, and irrational otherwise. Let
Σ ⊆ Ω(T2) be the subspace of rational ends. By Sierpinski’s characterisation [41], every
countable metric space without isolated points – so in particular Σ – is homeomorphic to the
rational numbers Q. Thus, Σ is not completely metrizable, and hence not displayable.

We now modify T such that all irrational ends become thick, and all rational ends remain
thin. A binary tree with fat tops Z is a graph with vertex set T tZ, all edges of T2, and such
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that the neighbourhood of z ∈ Z consists of infinitely many nodes on some normal ray Rz of
T2. Thus, the difference between a tree with tops and tree with fat tops is that a normal ray
may now have more than one top vertex.

Example 3.32. There is a binary tree with uncountably many fat tops such that its thin ends
cannot be displayed.

Construction. Starting from the binary tree T , let {Ri : i ∈ N} be an enumeration of the
rational rays in T . We now add infinitely many top-vertices above each irrational ray, and
connect them to their rays such that

1. each top-vertex z dominates its corresponding irrational ray Rz, and

2. for each rational ray Ri, at most i vertices on Ri have top-vertices as neighbours.

Once the construction has finished, it is clear that the resulting graph G is as desired. The
end space Ω(G) = Ω(T ) remains unchanged. From (2) it is easy to see that every rational
end ωi 3 Ri has end-degree 1 in G (and hence is thin), since the corresponding ray Ri has a
tail of vertices of degree 3 whose edges are cut edges. All irrational ends are dominated by
their infinitely many top-vertices and thus become thick.

By Sierpinski’s characterisation [41], the set of rational / thin ends is homeomorphic to the
rational numbers Q, so not completely metrizable, and hence not displayable by Corollary 3.18.

It remains to describe how to connect a top-vertex z to its irrational ray Rz. For each
top-vertex z and every j ∈ N, let rjz be the ≤T -minimal vertex in Rz \ (R0 ∪ . . . ∪Rj). Now
let the neighbours of z be exactly the vertices in {r0

z , r
1
z , r

2
z , . . .}. Since r0

z ≤ r1
z ≤ r2

z ≤ · · · is
cofinal in Rz, the top-vertex z dominates Rz, establishing property (1).

Next, consider the ith rational ray Ri. Again, for j ≤ i let rji be the ≤T -minimal vertex
in Ri \ (R0 ∪ . . . ∪Rj) (if it exists). Then it is clear that r0

i , r
1
i , . . . , r

i−1
i are the only vertices

on Ri adjacent to top-vertices, giving (2).
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4 Hamilton circles in powers of infinite graphs

4.1 Introduction

For a given graph G = (V,E), we obtain its nth power Gn by adding an edge between any
two vertices for which its distance in G is at most n. As early as in 1960, Sekanina proved
that the third power G3 of any connected finite graph G has a Hamilton cycle [33]. The
original proof was by induction, showing that for a fixed root r, we can find a Hamilton cycle
for which one of the two edges at r lies in G itself. For our application we will control a bit
more how the Hamilton cycle lies in the graph, thus we will state a constructive proof in
Chapter 4.2.3 of a slightly stronger result.

A general approach to extend finite theorems to locally finite graphs is by working in the
topological space |G| and using a compactness argument. Agelos Georgakopoulos proved
the theorem about Hamilton circles in the third power for locally finite graphs, by using the
compactness principle:

Theorem 4.1. [24] If G is a connected locally finite graph, then G3 has a Hamilton circle.

A circle in this context is a topological circle in |G3| defined as in the end of section 2.3.
Even though Georgakopoulos conjectured that this is also true for all countable connected
graphs, there are several counterexamples. To understand those counterexamples, we have to
think about the fact that the endspace Ω(G3) may differ structurally from Ω(G) itself.

We define V∞ as the set of vertices of infinite degree in G. For each vertex v ∈ V∞, its
G-neighborhood becomes an infinite clique already in G2, which contains new rays that are
not necessarily equivalent to any ray of G. In G3 or even higher powers of G, some of those
cliques will belong to the same end.

The starting point for this chapter are the results of my master thesis, in which I
characterized the trees with a Hamilton circle in their third power. We will introduce this
result by giving the key counterexamples and further motivate why the problem is even more
complex for arbitrary countable graphs.

Lemma 4.2. If T is a countable tree, then the set of ends in T 3 can be written as a disjoint
union Ω1 ∪ Ω2, with the following properties:

1. There exists a canonical injection from Ω1 to the set of ends of T , in which each end in
Ω1 is mapped to a subset of itself and the image of this injection is the set of ends of T
not containing a ray of vertices in V∞. We call the ends in Ω1 preserved ends.
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2. Ω2 consists of one end for each component K of T [V∞], where every ray of that end
meets the union of that component with its T -neighborhood infinitely often. We call such
an end a new end in K.

In the following counterexamples, T is rayless and T [V∞] has only one component, hence
T 3 is one-ended and a Hamilton circle would be a spanning double-ray together with the
new end. To explain those examples, we will use some terms without precisely defining them.
However, we will state the ideas of them based on our examples. The precise definitions and
full characterisation of all countable trees T , for which T 3 has a Hamilton circle, can be found
in my master thesis.

v1 v2 v3

T1

v1 v2 v3

T2

To understand why no spanning double-ray exists, let us assume that we had a spanning
double-ray R. Consider for example the left subdivided star S in T := T2. Each of its leaves
has 3 neighbors in T 3: The other two vertices on its subdivided edge and the center v1 of the
star. But v1 has only two neighbors in R, implying that for all but at most 2 of the leaves, its
neighbors in R are the two subdividing vertices:

v1

The T -neighbor of such a leaf also has another neighbor in R. With a similar argument,
we obtain that for almost all subdivided leaves, that this neighbor is a T -neighbor of v1. We
say that such components of G−S are not well-coverable. We obtain a ray in R, consisting of
the vertices of infinitely many components of G− v. We call such a ray captured. If there are
two disjoint captured rays B1, B2 in R, then R− (B1 ∪B2) must be finite, but still contains
infinitely many leaves of one (or both) non-subdivided stars, a contradiction.
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Similarly we find such a captured ray for each of the subdivided stars. In T2 we obtain
one such captured ray for each of the subdivided stars. In T1, if one captured ray B does not
cover almost all of the components of T1 − v2, we can find a second one in T 3

1 −B and obtain
the same contradiction. If not, then S := v2 ∪NT1(v2) is a separator of T 3

1 and S|R−B is a
finite separator of R − B. But R − B contains infinitely many paths between NT (v1) and
NT (v3), each of them containing a vertex in S|R2 , a contradiction.

Every other counterexample for trees fails in a similar way to be hamiltonian. A component
of T [V∞] which prohibits the existence of a Hamilton circle in one of those two ways is called
splitting. A Hamilton circle of T 3 exists exactly when there is no such splitting component.
The following theorem is shown in my master thesis:

Theorem 4.3. If T is a tree, then T 3 has a Hamilton circle if and only if no component of
T [V∞] is splitting.

On first glance, one may think that the characterization of the countable connected
graphs with a Hamilton circle in their third power might be somehow directly related to the
characterisation for trees, for example by finding Hamilton circles in the third power of a
certain spanning tree T . But in general T ⊆ G does not imply |T 3| ⊆ |G3|. The graph G3

can have fewer ends than T 3. Even the existence of a Hamilton circle for each spanning tree
is not enough to find one in G3:

Lemma 4.4. There is a rayless graph G such that G3 has no Hamilton circle, but every
spanning tree of G has a Hamilton circle in its third power.

Conversely, there are graphs with a Hamilton circle in their third power, for which there
is none for every spanning tree:

Lemma 4.5. There is a rayless graph G such that G3 has a Hamilton circle, but no spanning
tree of G has a Hamilton circle in its third power.

v1 v2 v3
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In the first example G3 is one ended but has two vertices inducing captured rays and still
infinitely many vertices left in the middle, thus with a similar argument as for the first of our
initial examples, one can prove that G3 has no Hamilton circle. But for each spanning tree T
we keep only one from the infinitely many paths in the middle and thus obtain two different
new ends in T 3 for components of T∞ of size 2. Because now each of the components has
only one vertex forcing a captured arc, both of them are not splitting anymore, so we can
construct a Hamilton circle in T 3.

In the second example, the finite components of G − v2 are well-coverable in a similar
way as in our definition for trees, so we do not obtain a captured arc, but when we choose a
spanning-tree T , we turn each of the components in one or two not well-coverable ones, so we
obtain no Hamilton circle in T 3.

The precise notions and a proof why those are indeed counterexamples is included in our
characterisation of Section 4.2.

Those two examples motivate the extension of our question from trees to arbitrary
countable graphs. In the next section we present a characterization of all rayless graphs with
a Hamilton circle in their third power. It turns out that our characterization of the graphs
with Hamilton circle in their third power can be formulated in a similar way with another
definition of splitting components. However, the proofs contain a lot more interesting and
challenging technical details.

Theorem 4.6. For a countable rayless graph G, G3 has a Hamilton circle if and only if no
class of V∞/ ∼ is splitting.

The last section of this chapter is about higher powers of trees. It seems natural that
every countable tree has a Hamilton circle in the fourth or higher power and indeed, this is
the case as we will prove in this section. But due to the fact that the endspace may change
for different powers, the proof is not straightforward. In particular, it is worth mentioning
that to build a Hamilton circle of T n we might be forced to use edges of E(T n) \ E(T n−1).
Because of that, we cannot apply induction on n or any similar argument. Instead, we will do
a direct construction of a Hamilton circle of T n for each n ≥ 4.

Theorem 4.7. For a countable tree T and any n ≥ 4, T n has a Hamilton circle.
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4.2 Hamilton circles in the third power of rayless graphs

4.2.1 The end space of the third power of G

The goal of this section is to characterize the ends of G3 for any rayless connected graph
G = (V,E). Since G itself does not have any ends, all of its rays arise when building the third
power.

We define V∞ ⊆ V as the set of vertices of V with infinite degree. For every v ∈ V∞, its
neighborhood in G becomes an infinite clique in G2, and hence also in G3. To understand
the endspace of G3, it is crucial to find out for which vertices the new rays in G3 arising
through those cliques belong to the same end. We will describe this concept by the following
equivalence relation:

Definition 4.8. For a graph G = (V,E), we define the graphs G∼∞ = (V∞, E∼) on V∞ with
edges between each two vertices v, w ∈ V∞ for which either vw ∈ E(G) or κG(v, w) =∞.

For v, w ∈ V∞, we say v ∼ w whenever they are in the same component of G∼∞. Two
vertices which are equivalent in this relation are called weakly equivalent.

The weak equivalence classes can be further partitioned into strong equivalence classes:

Definition 4.9. For a graph G = (V,E), we define the graph G≈∞ = (V∞, E≈) on V∞ with
edges between each two vertices v, w ∈ V∞ for which κG(v, w) =∞.

For v, w ∈ V∞, we say v ≈ w whenever they are in the same component of G≈∞. Two
vertices which are equivalent in this relation are called strongly equivalent.

Lemma 4.10. If G = (V,E) is a rayless graph, then G∼∞ and G≈∞ are also rayless.

Proof. Suppose there was a ray R = v1, v2, v3, ... in G∼∞. We construct a ray in G recursively.
Define P0 = v1, and construct a sequence of paths P1 ⊂ P2 ⊂ P3... satisfying the following:

(i) Pi begins in v1 and ends in a vertex vk of R

(ii) Pi contains no vi for an i > k.

Given Pn ending in vk, we define Pn+1 as follows: If there is an edge vkvk+1 in G, then we
obtain Pn+1 by adding this edge to Pn. This edge is not already in Pn, because of (ii). It is
clear that Pn+1 satisfies (i) and (ii).

If there is no edge vkvk+1 in G, then there are infinitely many internally disjoint vk −
vk+1−paths in G. Let P be one of them which meets Pn only in vk. Also let vl be the first
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vertex of R (after vk) on this path. Then we obtain Pn+1 from Pn by adding vkPvl. Again it
is clear that (i) and (ii) hold for Pn+1.

The union ⋃
i∈N Pi is a ray in G, a contradiction. The graph G≈∞ is a subgraph of G∼∞ and

hence also rayless.

For the rest of this section, let G = (V,E) be a fixed rayless graph. We will see that its
third power G3 has exactly one end for each weak class of V∞.

Lemma 4.11. Let K be a component of G≈∞ or G∼∞. For a vertex w ∈ V∞, for which there is
an infinite subdivided star in G with center w and infinitely many leaves (vi)i∈N in K follows
that also w ∈ K.

Proof. Since K is infinite and G≈∞, G∼∞ are rayless (4.10), according to the star-comb
Lemma 2.2, there is a subdivided infinite star S in G≈∞ or G∼∞ with a center v and leaves in
v1, v2, v3, ....

Let vi1 , vi2 , vi3 , ... be the leaves of S. We will show that we also find an infinite star in
G, by recursively defining infinitely many internally disjoint paths starting at v and ending
in different vertices from vi1 , vi2 , vi3 , ...: For two vertices, which are weakly, but not strongly
equivalent, we call the G-edge between them important.

Assume that we have already constructed finitely many (possibly none) such paths. Let⋃
P be the union of these paths. Because ⋃

P is finite, it meets only finitely many important
edges. Let vik be one leaf of S such that the v−vik−path Sk in S contains no vertex from ⋃

P ,
and also for each two vertices on Sk, which are not strongly equivalent, does ⋃

P not contain
the associated important edge. We choose for every edge between two strongly equivalent
vertices on Sk one path in G between them, which does not meet ⋃

P and for the other edges,
we choose the associated important edge.

The union of all the chosen paths and edges is a finite connected graph, disjoint from ⋃
P .

This graph contains the desired v − vik−path in G.
After we have done this step countably many times, we obtain the infinitely many internally

disjoint paths starting at v and ending in different vertices from vi1 , vi2 , vi3 , .... Now these two
subdivided stars with centers v and w satisfy the properties of Lemma 2.3. It follows that
κG(v, w) =∞ and hence w ∈ K.

Lemma 4.12. Let [v] 6= [w] be two strong or weak classes of V∞. Then there are at most
finitely many internally disjoint [v]− [w]−paths in G.
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Proof. Assume for a contradiction that there are infinitely many internally disjoint [v] −
[w]−paths in G. Let G′ be the graph G after identifying all vertices of [w] (Note that G[[w]]
is not necessary connected).

Then we can apply Lemma 4.11 to G′ and obtain a vertex v′ ∈ [v] with infinitely many
internally disjoint paths to the contraction vertex w in G′. In G itself those paths are between
v′ and [w].

If infinitely many of them are ending in the same vertex w′ ∈ [w] then v′ ≈ w′. If not,
then they end in infinitely many different vertices in [w] so we find a subdivided infinite star
in G with center v′ and leaves in [w].

We apply Lemma 4.11 a second time to show that v′ ∈ [w] and thus [v] = [w], a
contradiction.

Lemma 4.13. Let v, w be in V∞. Then v ≈ w if and only if there are infinitely many
internally edge-disjoint paths between them.

Proof. For the forward implication, consider a v − w−path in G≈∞. Choosing for each edge
of this path one of the infinitely many paths in G between its endvertices, we find a finite
subgraph containing a v − w−path. By choosing those paths recursively such that none of
it meets any edge of the constructed graphs before, we obtain infinitely many edge-disjoint
v − w−paths.

For the backward direction, assume that there are infinitely many internally edge-disjoint
paths P1, P2, ... between v and w. We call those paths original. We will recursively construct
a v − w−path v = w0, w1, ..., wn = w in G≈∞.

For each original path let vi be the first vertex after v on Pi. Since from each vi there is a
path to w in G, the union of these paths is a connected subgraph G1 of G− v. Because G
is rayless, we obtain a star with a center w1 in G1 with leaves in {v1, v2, ...}. (2.2). Now it
follows from 4.11 that vw1 ∈ E(G≈∞).

If any wi = w, we are done. If not, we define Gi+1 as the subgraph of Gi as the union of the
subpaths between wi and w from the infinitely many original paths that meet wi. Now we can
obtain wi+1 inside of Gi+1 in the same way as we obtained w1 in G1. Since each Gi+1 is disjoint
from the paths between w0, w1, ..., wi apart from wi, it follows that wi+1 /∈ {w0, w1, ..., wi}.

We can always continue the sequence, unless wi+1 = w at some point, but if this construc-
tion does not end, we would obtain a ray in G≈∞ and hence also in G (4.10), a contradiction.
It follows that v = w0 ≈ w1 ≈ ... ≈ wn = w.

The assumption for G to be rayless is indeed essential for the last lemma to hold. The
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following Farey graph is a counterexample of a not rayless graph.

Example 4.14. Let H0 be the graph K2 with 2 vertices v, w and one edge vw. Now let H1

be the triangle C3 with vertices v, w, x . Now to obtain Hi+1 for i > 1, add for each edge
in E(Hi) \ E(Hi−1) one parallel edge to it and subdivide it once. Let H be the limit of this
sequence. Now in H every vertex has infinite degree, but for each two vertices there are at
most 3 internally disjoint paths between them, thus no two vertices are strongly equivalent.
By subdividing every edge of H, we can even obtain a graph in which every weak class is a
singleton.

H1 H2 H3

Substantial research on the Farey graph was done by Jan Kurkofka. One of his results was that
the Farey graph is the unique graph up to minor-equivalence that is infinitely edge-connected
but such that every two vertices can be finitely separated [28].

Lemma 4.15. Let v, w be in V∞. Then v ∼ w if and only if there is no finite v−w−separator
with finite neighborhood in G.

Proof. Suppose for a contradiction that v ∼ w and there is a finite v − w−separator S with
finite neighborhood in G. There is a v − w−path in G∼∞ that witnesses v ∼ w. We will show
that for each edge v1v2 of P , there is a path between v1 and v2 in G that avoids S. The union
of these paths contains a v − w−path in G avoiding S, a contradiction.

In the case that there is an edge between v1v2 in G, each v1 − v2−separator contains v1 or
v2 and hence would have infinite neighborhood. Hence the edge v1v2 avoids S. If there are
infinitely many v1 − v2−paths in G, there is no finite v1 − v2−separator in G at all. Hence,
there is a v1 − v2−path avoiding S.

Suppose now that v � w. We will construct a finite v − w−separator with finite neigh-
borhood: By Lemma 4.12, there is a finite maximal set {P1, ..., Pn} of internally disjoint
[v]∼ − [w]∼−paths in G.

Now let Sn be the set of vertices of finite degree on those paths. If Sn is a v−w−separator,
then we are done. If not, there is a [v]∼ − [w]∼−path Pn+1 avoiding Sn. Define Sn+1 in the
same way as Sn for the set of paths P1, ..., Pn+1. Iterate this as long as possible. If we do not
get a finite separator (with finite neighborhood) after finitely many steps, we obtain infinitely
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many different paths P1, P2, ... in G between [v]∼ and [w]∼ from which each of them meets
P1, ..., Pn. This implies that the union P of these paths has at most n components. Further,
since v � w, every v − w−path contains at least one vertex of finite degree, so each path we
construct does indeed contain at least one vertex that does not lie on any of the earlier paths.
This implies that P is infinite. It follows that P has at least one infinite component and since
G is rayless, there is an infinite subdivided star in P . It follows from 4.11 that its center is
also in [v]∼, a contradiction.

To understand how new rays in G3 arise and which pairs of them are equivalent, we
introduce the concept of manifestations. This will not only lead to our main result of this
subsection that we obtain exactly one new end for each weak class but further gives us an
idea of how those ends look like.

Definition 4.16. For an element v of V∞, we define a simple manifestation of v in G3 as a
ray in G3 in the G-neighborhood of v.

Lemma 4.17. For each edge v1v2 in G∼∞, any simple manifestations of v1 and v2 are equivalent
in G3

Proof. Let R1 be a simple manifestation of v1 and R2 be a simple manifestation of v2. If
there is an edge v1v2 in G, then every vertex of R1 is adjacent to every vertex of R2 and the
rays are clearly equivalent. If v1 ≈ v2, then let P1, P2, P3, ... be infinitely many disjoint paths
between NG(v1) and NG(v2) (In this context, we allow paths to have only one vertex, if it is
in NG(v1) ∩NG(v2).)

If infinitely many of these paths are already between R1 and R2, then we are done. If not,
then we assume without loss of generality that none of them are. Adding one vertex of R1

and one of R2 to each path in a disjoint way gives us infinitely many disjoint R1 −R2−paths
in G3.

Lemma 4.18. Two simple manifestations of vertices v1 and v2 are in the same end of G3, if
and only if v1 ∼ v2.

Proof. The backward direction follows by induction on the distance of v1, v2 in G∼∞ from
Lemma 4.17. Suppose now for a contradiction that simple manifestations R1 and R2 of v1

and v2 are in the same end of G3, but v1 � v2. It follows from Lemma 4.15 that there is a
finite v −w−separator S with finite neighborhood in G; clearly S cannot contain v or w. We
show that S ∪NG(S) separates the rays R1 and R2 in G3: If not, there is a R1 −R2−path P
avoiding S ∪NG(S) in G3. We replace each edge xy of P by a x− y−path Pxy of length at

54



most 3 in G. Because x and y does not lie in the neighborhood of S, they both have distance
at least 2 from S and the path Pxy cannot meet S. Hence after replacing all edges in P like
this, we find a R1 − R2−path P ′ := v1, v2, ..., vn avoiding S in G. By adding the edge vv1,
if v is not already in P ′ and vnw, if w is not already in P ′, we obtain a v − w−path in G
avoiding S, a contradiction.

Definition 4.19. For an element v ∈ V∞, a manifestation of v is a ray R in G3 such that
there is an infinite subdivided star in G with center v and leaves in R.

Lemma 4.20. For each element v ∈ V∞, any two manifestations of v are equivalent.

Proof. Due to Lemma 4.18 it suffices to show that each manifestation R of v is equivalent
to any simple manifestation R′ of v: Consider a subdivided star with center v and leaves
in R. The union of R, this subdivided star and the clique in G3 consisting of NG(v) is a
subgraph of G3 containing R and R′, but no finite set separating them. Hence R and R′ are
also equivalent in G3.

Corollary 4.21. Two manifestations of elements v1, v2 ∈ V∞ are equivalent if and only if
v1 ∼ v2.

Proof. The backward direction follows from 4.20 and 4.18.
If two manifestations R1, R2 of elements v1, v2 ∈ V∞ are equivalent, then we also find with
4.20 two simple manifestations R′1, R′2 of v1, v2 such that R1 ∼ R′1 and R2 ∼ R′2. It follows
that R′1 ∼ R′2, which implies with the forward direction of 4.18 that v1 ∼ v2.

Proposition 4.22. For any rayless graph G = (V,E), there is a canonical bijection between
V∞/ ∼ and Ω(G3), in which every equivalence class [v]∼ of V∞/ ∼, is mapped to the end G3

consisting of the rays that meet [v]∼ ∪NG([v]∼) in infinitely many vertices. The rays in one
such end are exactly the manifestations of all vertices from the class.

Proof. Let R be any ray of G3. Applying the star-comb Lemma 2.2 in G on V (R), we can
show that R is indeed a manifestation of an element v ∈ V∞. The Lemma 4.21 finishes our
proof.

We call the image of a weak class [v]∼ under the bijection from the previous lemma the
end induced by [v]∼.
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4.2.2 Counterexamples of graphs with no Hamilton circle in their third power

As already mentioned in the introduction, the existence of a Hamilton circle in the third
power of a rayless graph is dependent on each of the new ends or, in terms of 4.22, on each
weak class. In this section we will precisely define the concept of captured arcs and splitting
classes. Further, we conclude the section with a proof that every rayless graph with a splitting
class fails to be Hamiltonian in its third power.

Again, for this whole section let G = (V,E) be a countable connected rayless graph.

Lemma 4.23. Let [v] be any strong or weak class. Then [v] is either infinite or G− [v] has
infinitely many components.

Proof. Assume that [v] is finite. Since all vertices in [v] have infinite degree, it follows that
NG([v]) is infinite. Suppose for a contradiction that G− [v] has only finitely many components.
This implies that there is a component K of G− [v] containing infinitely many elements of
NG([v]). From the star comb Lemma 2.2 and the fact that G is rayless follows that there is a
subdivided star in K with a center w and teeth in NG([v]). It follows from 4.12 that w ∈ [v],
a contradiction.

Definition 4.24. Let [v] be any strong or weak class. A component H of G− [v] is called
not well-coverable, if

(i) |V (H)| > 2,

(ii) |V (H) ∩NG([v])| = 1, say V (H) ∩N([v]) = {r},

(iii) dH(r) is finite and H − r has exactly dH(r) components, and

(iv) each component of H − r has at least 2 vertices.

Otherwise, H is called well-coverable. Vertices in well-coverable components of G− [v] are
called [v]-good or simply good.

We call the neighbors of [v] in a component K of G− [v] the [v]-roots or simply roots of K.

Lemma 4.25. A not well-coverable component of G − [v]≈ for a strong class [v]≈ cannot
meet any other strong class inside [v]∼.

Proof. If a component K of G− [v]≈ meets another strong class inside [v]∼, this means that
it has one vertex which is weakly, but not strongly equivalent to a vertex of [v]≈. Thus K has
a root in V∞ and is well-coverable.
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Lemma 4.26. For a subgraph H ⊆ G, whenever NG(G−H) ∩H is finite and contains only
vertices of finite degree, then every end of G3 lives either in H or in G−H, so |H3| can be
well-defined as a subspace of |G3|.

Proof. Follows from Lemma 4.15 and Proposition 4.22.

Consider a Hamilton circle C of |G3| and a subgraph H ⊆ G as in the previous lemma.
Inside of H is C not necessarily connected. Possibly are the vertices and ends of |H3| covered
by multiple segments of C. Each of these segments is either an arc or a singleton vertex. For
simplicity we think of such singletons also as arcs (for which both endvertices are the same)
and call a cover of V (H) ∪ Ω(H3) of disjoint arcs in |H3| an arc cover of H3.

Lemma 4.27. Let H ( G a subgraph, for which NG(G−H)∩H is finite. If an arc cover of
H3 is induced by a Hamilton circle C of G3, all its arcs are between vertices. Furthermore
are the endvertices of the arcs of G-distance at most 3 from G−H in G.

Proof. Each endpoint of an arc from our cover is a point through which C leaves H. The
subgraphs H3 and (G−H)3 have no ends in common by lemma 4.26, hence C cannot leave H
through an end. Further for every edge between H and G−H in G3 is the distance between
its two endvertices at most 3 in G, which implies the second part of the lemma.

If the G-distance to G−H from an endvertex of an arc in |H3| is lower, there are usually
more neighbors outside of H. To make the construction of a Hamilton circle possible, we try
to make this distance sufficiently low. This is the crucial difference between well-coverable
and not well-coverable components.

We distinguish two types of arc covers of a component H of G− [v] according to whether
there is a root of H as a singleton arc or not. In the first case, the best thing possible for a
one-rooted component would be if H − r is covered by arcs with endvertices in NH(r). But
this is not possible for not well-coverable components:

Lemma 4.28. Let [v] be any strong or weak class and H be a not well-coverable component
of G− [v] with root r. Then every arc cover of H3 in which the root r is a singleton has at
least one arc with an endpoint outside of {r} ∪NH(r).

Proof. Let X be the set of singletons in our arc cover apart from r. We may assume that
X ⊆ NH(r), otherwise we are done. Let {A1, A2, ...} be the remaining finite or countable set
of disjoint arcs covering the vertices and ends of |H3| − r −X.
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Suppose for a contradiction that each of the arcs has two endvertices in NH(r). Per
definition of not well-coverable, the root r has finite degree (see Definition 4.24 (iii)), say
NH(r) = {v1, v2, ..., vl}, consequently there are only finitely many arcs {A1, A2, ..., Ak} and
k ≤ (l − |X|)/2.

Also per definition does H − r have exactly l components, each of them of size at least 2.
This implies that each of these components contains exactly one element of NH(r) and at
least one element of distance at least 2 from r (see properties (iii) and (iv)).

Since r has finite degree, it is a finite separator with finite neighborhood. Now Lemma 4.15
implies that each weak class lives in at most one component of H − r. Also as in the proof
of Lemma 4.15, we can show that {r} ∪ NG(r) is a separator in H3, which leaves at least
l components of H3 − r − NH(r). We choose l of them and call them K1, K2, ...Kl. The
closures of these components have no ends in common. It follows that for each Ki there are
at least two edges between Ki and NH(r) in the union of the Ai. All in all there are at least
2l such edges, but since there is at least one arc A1, at least two of the vertices v1, v2, ..., vl

are endvertices of this arc and hence have degree 1 in A1. Each other vertex has degree at
most 2 in the union of the Ai, because the arcs are disjoint. Hence, there are at most 2l − 2
edges between NH(r) and K1 ∪K2 ∪ ... ∪Kl, a contradiction.

The following definition of captured arcs is the fundamental concept of this section. To
motivate this definition and to get an idea of how we obtain a captured arc in the proof of
4.30, let us consider the case that a class [v]≈ ∈ [v]∼/ ≈ is finite and has only finitely many
[v]≈-good neighbors.

Let us evaluate the question, what the possible neighbors of the arc from the previous
lemma in a Hamilton circle of G3 are. In the optimal case the arc in |H3| − r is between a
vertex in NH(r) and one vertex of H-distance 2 from r.

The endvertex which is further away from r has as G3-neighbors outside of |H3| only
some vertices from [v]∼, namely the G−neighbors of r in [v]∼. Those are per assumption
only finitely many. So, by the lack of enough such outside neighbors, almost all of these
components cannot contain such an arc and hence their roots cannot be a singleton in the
arc cover. That way the best case left for almost all not well-coverable components is an
arc between the root r and one of its H-neighbors. The neighbors outside of H in G3 of the
vertices in NH(r) are vertices of [v]∼ and roots from some other components of G− [v]∼. If
almost all of those components are not well-coverable, then almost all times the adjacent arc
in C is in another not well-coverable component. We will see that we can recursively obtain
an arc that we call a captured arc through infinitely many of those components. Formally, we
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define a captured arc as follows:

Definition 4.29. We call an arc A ⊆ |G3| captured by [v]≈, if it satisfies the following:

(A1) All vertices of A lie in not well-coverable components of G− [v]≈,

(A2) A contains the root of infinitely many not well-coverable components of G− [v]≈ and

(A3) A starts in a vertex and ends in the end of G3 induced by [v]∼ (see Proposition 4.22).

If an arc is captured by strong class [v]≈, we call it a [v]≈-captured arc or just captured arc.

Lemma 4.30. Let C be a Hamilton circle of G3 and v ∈ V∞. If a class [v]≈ ∈ [v]∼/ ≈ is
finite and has only finitely many [v]≈-good neighbors, then C contains a [v]≈-captured arc.

Proof. In this proof, we call components of G− [v]≈ bad, if they are not well-coverable. We
know from Lemma 4.23 that G− [v]≈ has infinitely many components. Because [v]≈ has only
finitely many good neighbors, there are also only finitely many well-coverable components
of G− [v]≈, which we call K1, ..., Kj. Let Kj+1, Kj+2, ... be the bad components of G− [v]≈.
The root of a bad component Ki we call ri.

We will show that for almost all of the components Ki of G− [v]≈ the following assertion
holds:

(*) Ki is bad and the arc Ai containing ri in the arc cover of Ki is not a singleton arc.
Furthermore is one C-neighbor of the second endvertex wi of Ai the root rj of another
bad component of G− [v]≈.

To see this claim, we will show that every possible way in which a component can fail to
satisfy (*) can happen for only finitely many components:

• Only finitely many of the components are not bad.

• For each bad component Ki for which its arc cover contains r as a singleton, due to
Lemma 4.28, at least one of the arcs A′i partitioning G3[Ki − ri] has an endvertex vi
with G-distance 3 from [v]≈. All G3-neighbors of vi, which are not in Ki are in [v]≈. In
C does every vertex have degree 2, hence this can happen only for at most 2|[v]≈| bad
components of G− [v]≈. ([v]≈ is finite per assumption) For the remaining components
does the arc Ai have two endvertices ri and wi.
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• Since bad components have only one root, each wi has G-distance at least 2 from [v]≈.
Hence NG3(wi) \Ki ⊆ [v]≈ ∪ NG([v]≈). It follows again that at most 2|[v]≈| of them
have a vertex of [v]≈ as C-neighbor outside Ki and every other such vertex has a root
of a component Kj as C-neighbor, from which almost all are bad.

We define an auxiliary graph Z with vertex set {Kj+1, Kj+2, ...} and an edge KxKy, whenever
the two components Kx and Ky satisfy (*) and there is a C-edge between the bad arcs Ax
and Ay. Per definition has Z maximal degree 2 or less.

If Z contains a finite circle, the arcs Ai for the elements of this circle together with the
C-edges between them induce a circle C ′ ( C, a contradiction. It follows that each component
of Z is either a singleton, a finite path, a ray or a double-ray. Each component of Z which is
a singleton or a finite path contains one element Ki which does not satisfy (*). Since this can
only happen finitely often, it follows that Z has only finitely many such components, hence Z
contains a ray.

The arcs according to (*) inside the components on this ray together with the C-edges
between them induce an arc A in C. It is clear that A satisfies (A1) and (A2). Whenever
we delete any initial segment of A, the remaining arc still contains infinitely many roots of
not well-coverable components of G− [v]≈. It follows that the end induced by [v]∼ is in the
closure of A but not as an inner point. Hence A ends in the end induced by [v]∼ and satisfies
(A3).

Corollary 4.31. Let A be a Hamilton arc of G3 and v ∈ V∞. If a class [v]≈ ∈ [v]∼/ ≈ is
finite and has only finitely many good neighbors, then C contains a captured arc in the not
well-coverable components of G− [v]≈.

Proof. The proof is analogous to the proof of 4.30 apart from the fact that there might be two
fewer components satisfying the claim (*) (one for each endpoint of the Hamilton arc).

Remark 4.32. In the context from 4.30, according to 4.25 only the well-coverable components
of G − [v]≈ can meet another strong class of [v]∼/ ≈, hence almost all bad components of
G − [v]≈ are also components of G − [v]∼. So our captured arcs lie especially in the not
well-coverable components of G− [v]∼, whose neighborhood is in [v]≈.

Definition 4.33. A strong class [v]≈ of V∞/ ≈ is called bad if it is finite and has only finitely
many good neighbors. A weak class [v]∼ of V∞/ ∼ is called splitting, if |[v]∼/ ≈ | ≥ 3 and
[v]∼/ ≈ contains either two or more bad classes or one bad class [v]≈ that separates [v]∼ in
G∼∞.
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Theorem 4.34. If V∞/ ∼ has a splitting class [v]∼, then G3 has no Hamilton circle.

Proof. Suppose for a contradiction that G3 has a Hamilton circle C.
Let ω be the end induced by [v]∼ (see Proposition 4.22). If there are two bad classes

[k1]≈ and [k2]≈ in [v]∼/ ≈ with captured arcs R1 and R2 ending in ω (Lemma 4.30), the
captured arcs have only finitely many vertices in common (else this would imply k1 ≈ k2,
a contradiction), so after deleting an initial segment we may assume that they are disjoint.
After deleting R1 and R2 from C, it remains an arc A := C \ (R1 ∪R2) between the initial
vertices x1 and x2 from R1 and R2.

Because |[v]∼/ ≈ | ≥ 3, there is at least one third strong class [k3]≈. Per definition all
vertices from a captured arc Ri lie in the not well-coverable components of G− [ki]≈. Now
Lemma 4.25 implies that none of these components meets [k3]≈. Hence there are also infinitely
many neighbors of [k3]≈, which are not covered by R1 and R2. These neighbors must be
contained in A. Since A is closed and ω lives in the boundary of NG([k3]≈) it follows that ω
is a boundary point of A, obtaining a third arc ending in ω, a contradiction.

If there is only one bad class [k]≈ in [v]∼/ ≈, then it separates at least two vertices w
and w′ in G∼∞. If C contains two disjoint captured arcs induced by [k]≈, we obtain the same
contradiction as before with the G-neighbors of [w]≈. If not, then there is only one captured
arc R. We may assume that R contains all but finitely many components of G− [k]≈, else
G − R has a Hamilton arc C − R and [k]≈ has also only finitely many good neighbors in
G−R, so we would find another captured arc (Corollary 4.31). Let {r1, ..., rk} be the set of
all roots of the finitely many components from G− [k]≈ not covered by R .

Since [k]≈ separates w and w′ in G∼∞, according to Lemma 4.15 there is a finite w −
w′−separator S in G− [k]≈ with finite neighborhood. It follows that each w−w′−path in G3

avoiding S contains an edge for which its endvertices are separated by [k]≈ in G. Thus each
such path contains a vertex of NG([k]≈), so Z := [k]≈ ∪NG([k]≈) ∪ S ∪NG(S) is a separator
of w and w′ in G3. Then Z −R = [k]≈ ∪{r1, ..., rk}∪S ∪NG(S) is a finite separator of w and
w′ in G3 −R. But after deleting R from C, it remains an arc A′ between the initial vertex x
of R and the end ω. This arc contains only finitely many arcs between NG(w) and NG(w′)
(each such arc uses one vertex from Z −R or the end ω), and hence lies eventually in one of
these components. But ω is in the closure of both components, so A′ must have ω already as
an inner point, a contradiction.
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4.2.3 Covering finite subgraphs

After we characterized counterexamples by splitting classes, it remains for us to show the
converse that every countable rayless graph without a splitting class has indeed a Hamilton
circle in its third power. We will do this by constructing Hamilton circles in several steps.
A good way to start with our construction of Hamilton circles is to think about covering
the vertex set of finite subgraphs. However we will later apply the results of this section not
exactly on subgraphs of G itself, but subgraphs of contraction minors.

From [33] we already know that we can find for each finite graph G a Hamilton circle of
G3 containing any chosen prescribed edge of G. Since our application of this finite statement
will be a recursive construction of infinite Hamilton circles, we need more control about how
edges of G3 lie in this circle. Consider a finite component of G− [v] for any week or strong
class [v]. Remember that its roots are defined as the vertices in the neighborhood of [v].We
may need to make sure that our contracted vertices are incident with edges of G2 that can be
replaced in a later step. Further we may need for each finite subgraph an edge of G incident
with one of its roots.

This motivates the following definitions:

Definition 4.35. We say, a subspace X of G3 respects a set of vertices V ′ of G, if there
is an injection i : V ′ → E(G) ∩ E(X) such that v ∈ i(v) for all v ∈ V ′. For such a given
function, we say i(v) respects v. Also whenever we use the phrase e respects v without defining
a function i, we assume that we fixed one with i(v) = e.
We say, a subspace X of G3 pays attention to a set of vertices V ′ of G, if there is an injection
i : V ′ → E(G2) ∩ E(X) such that v ∈ i(v) for all v ∈ V ′. For such a given function, we
say i(v) pays attention to v. Also whenever we use the phrase e pays attention to v without
defining a function i, we assume that we fixed one with i(v) = e.

Further, whenever we cover the vertices of a finite subgraph by a path, it is important
to know which are the endvertices of this path or more precise, by how far they are away in
G from a root of such a subgraph. We will see in this section that the best such distance
possible depends on whether a finite subgraph is well-coverable or not. With this thought in
mind, we are ready to prove several detailed ways of covering finite subgraphs, which can be
utilized as a toolbox for constructing Hamilton circles and arcs. For the sake of simplicity, we
will do some constructions for trees and then apply them to arbitrary finite connected graphs.

Lemma 4.36. For any finite rooted tree (T, r) with at least 3 vertices and an independent
set V ′ of vertices of T , there is a Hamilton circle C of T 3 which respects r and pays attention
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to V ′. Moreover can we construct the circle such that both edges incident with r are in T 2.

Proof. Let T = (V,E) be a finite tree with root r and at least 3 vertices. We define an
equivalence relation on the set of leaves of T , in which two leaves are equivalent whenever
they have the same lower neighbor in T . We call the equivalence classes under this relation
bundles. Define L0 := {r} and for each i ∈ N let Li be the ith distance class of r. We say
that a Hamilton circle C of T 3 covers a bundle with lower neighbor v smoothly, if there is
an enumeration {l0, l1, ..., lk} of the bundle such that C contains the segment vl0l1...lk or its
inverse. In that case, we can pay attention to the whole bundle with the following function:

i(lm) =
vl0 if m = 0,

lm−1lm if 0 < m ≤ k

We apply induction after the height h of T and show that we find a Hamilton circle C of
T 3 with the following slightly stronger properties:

(i) One of the edges in C incident with r is in T and the other is in T 2.

(ii) C pays attention to (V ′ ∪ Lh) \ {l ∈ Lh−1|l is no leaf }.

(iii) Each bundle of T is covered smoothly by C.

To see how (i)-(iii) imply the lemma, note that whenever a vertex v is in V ′ ∩ Lh−1, none
of its upper neighbors is in V ′ because V ′ is an independent set of vertices. So whenever this
vertex is not payed attention to due to (ii), it has by property (iii) an upper neighbor l0 with
the edge vl0 paying attention to it. We can use this edge to pay attention to v instead of l0
and hence pay attention to V ′.

For h = 1, let v0, v1, ..., vn be the neighbors of r. Let C be the Hamilton circle rv0v1v2...vnr.
This circle clearly satisfies (iii) and the function

i(vk) =
rv0 if k = 0,

vk−1vk if k > 0

witnesses that all vertices are payed attention to. Property (i) is satisfied due to the edge rv0

if r is in V ′.
Let now a tree T of height h be given together with an independent set of vertices V ′.

We define T ′ := T − Lh. Per inductive assumption there is a Hamilton circle Ch−1 of T ′3

satisfying the properties (i)-(iii) for V ′ \ Lh and h− 1.
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Now for each vertex v in Lh−2 that has upper upper neighbors, we modify Ch−1 as follows:
We name the upper neighbors of v in T as l0, l1, ..., lk and for each li we name the bundle of
its upper neighbors as li,0, li,1, ...li,ki

. We will modify Ch−1 to cover bvc as follows:
Since we covered each bundle smoothly, we may assume without loss of generality that

Ch−1 contains the segment vl0l1...lk.
We replace this segment by vl0,0l0,1, ...l0,k0l0l1,0l1,1, ...l1,k1l1...lk,0lk,1, ...lk,kk

lk, leaving out the
bundle of leaves whenever a vertex li has no upper neighbors. The property (i) is clearly
satisfied for the new circle. That (iii) is satisfied is easy to check since each bundle li0 , li1 , ...liki

is covered by a path according to the definition of smoothly. Since we need no longer pay
attention to vertices in the h − 1th level it is clear that all those new edges covering the
bundles smoothly can be used to satisfy the part of (ii) that we shall pay attention to Lh.
But the initial circle Ch−1 did not pay attention to the vertices of V ′ in the h− 2th level. It
remains to show that Ch does this. For a vertex v ∈ (V ′ ∩ Lh−2) we can use the edge vl0,0
to pay attention to it, since l0,0 is payed attention to with l0,0l0,1 or l0,0l0 if its bundle is a
singleton.

Corollary 4.37. For any finite rooted tree (T, r) with at least 3 vertices and an independent
set V ′ of vertices of T , there is a Hamilton path of T 3 between r and and one T -neighbor of r
which pays attention to {r} ∪ V ′

Proof. Delete the edge respecting r from a Hamilton circle as in 4.36

Note that those statements about finite trees can also be applied for any finite graph, by
using a spanning tree.

Corollary 4.38. For any finite graph G = (V,E) with at least 3 vertices, any vertex r ∈ V
and an independent set V ′ of vertices of G, there is a Hamilton circle C of G3 which respects
r and pays attention to V ′.

Corollary 4.39. For any finite graph G = (V,E) with at least 3 vertices, any vertex r ∈ V
and an independent set V ′ of vertices of G, there is a Hamilton path of G3 between r and and
one G-neighbor of r which pays attention to {r} ∪ V ′

Let us remember how we obtained captured arcs around a strong class [v]/ ≈ in our
counterexamples. Whenever we cover the vertices of a not well-coverable component as in 4.38,
we leave it through a vertex which is a G-neighbor of the root r. Whenever the next vertex
is a root of another not well-coverable component, we end again in a vertex of G-distance 2
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from [v]/ ≈. Apart from some finite exceptions, the only way to leave the components around
[v]/ ≈ and reach another strong class is through well-coverable components.

Remark 4.40. A well-coverable component of G− [v] for a strong or weak class [v] has been
defined as the negation of a not well-coverable component as defined in Definition 4.24. Thus
a well-coverable component K has either more then one root, or of it has only one root r, it
satisfies one of the following:

(i) |V (K)| ≤ 2,

(ii) dK(r) =∞

(iii) K − r has less then dK(r) components, or

(iv) one component of K − r has only one vertex

To cover a well-coverable component, we will either use a path between two roots of one
such component (see (C”) in the following lemma) or we will use only a single root. In the
second case, we need to cover the rest of the well-coverable component with an arc between
two neighbors of this root (see (C’) in the following lemma).

As already mentioned before, paying attention to independent sets of vertices will play
an essential role in our construction of Hamilton circles for infinite rayless graphs. However,
when leaving out the root of a well-coverable component of G − V∞ and covering the rest,
there will be one exception, in which we cannot pay attention to an arbitrary independent set
of vertices. For this exception, we will define the property of being sovereign for independent
vertex sets in well-coverable components as follows:

When K is well-coverable with only one root r and K − r has exactly dK(r) components,
it follows from the Definition 4.24 that there is at least one of those components of K− r with
only one vertex. (see the last property of Remark 4.40) In this case, we call an independent
set not containing r sovereign, if there is one such component of size 1 which is also not part
of that set. In every other case, we use sovereign as a synonym for independent.

Lemma 4.41. Let [v] be any strong or weak class in G and K be a finite component of
G− [v]. Then K is well-coverable if and only if one of the following holds:

(C’) For every root r of K and any sovereign set V ′ ⊆ V (K− r), there is a Hamilton path of
K3− r with endvertices of G-distance at most 2 from V∞, which pays attention to V ′ or

(L) K has at most 2 vertices.
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If K has at least two roots r and r′, then also:

(C”) For any sovereign set V ′ ⊆ V (K−r), there exists a Hamilton path of K3 with endvertices
r and r′ which pays attention to V ′.

Proof. For the backward implication assume thatK is not well-coverable. From Definition 4.24
we obtain that K has at least 3 vertices. The negation of (C’) follows from Lemma 4.28.

Assume now that K is a finite well-coverable component of G− [v] and (L) does not hold.
Let V ′ ⊆ V (K) be a sovereign set. In the case that K has more than one root r, let r′ be
another one of them. We will show (C’) and then (C”):

To show (C’), we will construct a Hamilton-path of K3 − r with endvertices of G-distance
at most 2 from [v]: Because K is finite, we can assume without loss of generality that K is a
tree. Also does K contain a r′ − r−path P ′ = x0x1x2...xnxn+1 (with x0 = r′ and xn+1 = r).
For each vertex xi on this path, let Xi be the subgraph of K induced by xi and all components
of K − xi, which are disjoint from P ′. For each Xi with i ≤ n, which has size more than 1,
we will replace the edge xixi+1 of P ′ by a path covering V (Xi) and paying attention to all
vertices of Xi ∩ V ′. If Xi = {xi, wi}, then define Pi := xiwixi+1. Clearly the edge xiwi pays
attention to wi.

If |Xi| > 2, then from 4.38 we obtain a Hamilton circle Ci of X3
i , which respects xi with

an edge xiwi and pays attention to Xi ∩ V ′. In this case, we define Pi := Ci − xiwi + wixi+1

and P ′ := x0P0w0w1P1x1w2P2x2w3...xn−1wnPnxn. The path P ′ covers all vertices from the
component of K − r, which contains r′ and pays attention to all its vertices in V ′. If K − r
has no other component, then we are done. If not, let X ′ be the union of r and the remaining
components. According to Lemma 4.39, there is a Hamilton path H of X ′3 between r and
one G-neighbor w of r, which pays attention to {r} ∪ V ′ ∩X ′ such that the H-neighbor w′ of
r has distance at most 2 from r in X ′. Hence there is an edge xnw′ in K and we can define
P := x0P

′xnw
′Hw. This path covers all vertices of K − r, pays attention to all leaves and its

endvertices have G-distance at most 2 from [v].
To obtain the Hamilton path as in (C”), add the edge wr to the constructed path P .

In the case that K has only one root r, it follows from Definition 4.24 that there is one
component X of G− r which contains at least two neighbors of r (see (iii) in Remark 4.40)
or has only one vertex (see (iv) in Remark 4.40).

Let K1, K2, ..., Kn be the other components of G− r. Again, we apply Lemma 4.39 to find
for each K3

i a Hamilton-path Qi with first endvertex of K-distance 1 and second endvertex
of K-distance 2 from r, which pays attention to Ki ∩ V ′. Consider the union of the Qi
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together with all edges between the second endvertex of each Qi and the first endvertex of
Qi+1 (whenever Qi+1 exists). Let v be one G-neighbor of r in X and add the edge from the
second endvertex of Qn to v to the required path. If X has more than one vertex, it has
another G-neighbor v′ of r. In this case, we can apply (C”) to find a path covering V (X3) from
v to v′, which pays attention to X ∩ V ′. We add this path and finish our construction.
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4.2.4 Rayless graphs with a single weak class

In this whole section, let G = (V,E) be a rayless graph for which |V∞/ ∼ | = 1 and for which
its one weak class is not splitting. To understand this section better, it might be helpful to
keep in mind that this graph will arise later as a contraction minor from some original graph
with possibly multiple weak classes.

We call a strong class [v]≈ good, if it is not bad. This is exactly the case, whenever it
is infinite or if it has infinitely many good neighbors. Let C be the set of components of
G− [v]∼ = G− V∞. We call its elements flaps.

Note that each flap is finite, since it contains only vertices of finite degree and because
G is rayless per assumption. We will construct a Hamilton circle and a Hamilton arc of G3.
Since G3 is one ended according to 4.22, it remains to build a spanning double ray in the
first case and two disjoint rays spanning V in the second case. To do so, we apply the results
of the last section to the elements of C. For our main result later, the results of this section
will be applied to certain contraction minors. We will now carefully define a specific setup to
obtain some additional properties.

Some flaps that might be not well-coverable in the original graph might become well-
coverable after certain contractions. We will pretend as if they were not well-coverable. Also
if there is some bad class [v]≈, we will not use the property of being well-coverable for flaps
adjacent to that class either. To be able to keep track of that, let us assume that we fixed a
colouring of V∞ ∪NG(V∞) into the colors red and green satisfying the following:

(C1) Every vertex of [v]∼ is green. Every other green vertex is in a well-coverable flap,

(C2) Every well-coverable flap contains at most one green root,

(C3) If |[v]∼/ ≈ | ≥ 3, then every class [v]≈ apart from at most one not separating G≈∞ does
either contain infinitely many green vertices or has infinitely many green vertices in its
neighborhood and

(C4) Every vertex v ∈ [v]∼ has either infinitely many green neighbors in G− [v]∼ or none.

We will see in the next section in the proof of our main result 4.55 that we can always
obtain such a coloring. For now, we just assume that the coloring is given.

Note that the third property (C3) is equivalent to the statement that V∞ remains not
splitting if we change all well-coverable flaps without a green root into not well-coverable
flaps.
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Every root of a not well-coverable flap is red. Together with the first property, we obtain
that a strong class [v′]≈ is good if and only if that class together with its G-neighborhood has
infinitely many green vertices.

For each flap with only red roots, we cover it in a way according to 4.39 (so, we do not care,
whether it is well-coverable or not). Components with a green root are always well-coverable
and we might cover them with a path omitting the green root as in 4.41.

We define a module as the vertex set of a whole flap or as the vertex set of a flap without
a green vertex. We sometimes use the word module also for the subgraph of G induced by
the vertex set of a module. Furthermore, we will show that we can again choose one vertex
that our Hamilton circle or arc respects and one independent set of vertices to which we pay
attention for each flap. As mentioned before, there is one exception for how we can choose
those independent sets: Whenever we want to cover a one-rooted well-coverable flap and
omitting the root as in 4.41, we can only pay attention to a sovereign set as defined in the
last section. We need this kind of cover for those flaps with a green root.

For all other flaps we do not need the information whether they are well-coverable or
not and cover them in a way according to 4.39. So we assume for the whole section that we
fixed for every flap an independent set of vertices inside that flap which is sovereign for the
flaps containing one green root and arbitrarily chosen for all other flaps. We call a standard
subspace of |G3| sovereign if it pays attention to the chosen independent sets of each module
which it covers all vertices.

Our strategy to construct a Hamilton circle is as follows: We will split G into two parts
and construct a spanning ray of the third power of each part. We will make sure that in each
part, we can move around to cover modules and green vertices in arbitrary order without
leaving any vertices uncovered. To do so, we define the relation of being connectable on V∞.
This relation basically states that for an equivalence class V ′ ⊆ V∞, after we already used
finitely many vertices to construct an initial segment of a ray, we can still extend any finite
path constructed so far by connecting an arbitrary vertex of V ′ or a flap adjacent to V ′. Using
this property, we will be able to build a spanning ray or double ray recursively for each such
class V ′.

Definition 4.42. A sovereign path P in G3 from a vertex v′ to a vertex w′ is called structured,
if it satisfies the following:

(S1) The endvertices v′ and w′ of P both have G-distance at most 2 from V∞,

(S2) V (P ) is the union of v′, modules and green vertices,
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(S3) if v′ /∈ V∞, then P meets the flap of v′ only in v′ and

(S4) if w′ /∈ V∞, then P contains a module containing w′.

v

v′

w

w′

V∞

Figure 7: A structured path from v′ to w′

Our Hamilton circle and arc will be the union of infinitely many such structured paths.
To keep track of the already used parts of the graph, we define a blocker as any finite vertex
set which is the union of a set of green vertices and vertex sets of whole modules. Note that
each module has finitely many vertices, so we do not have to worry about blockers becoming
infinite by adding finitely many modules.

Definition 4.43. We say that a vertex v ∈ V∞ is connectable to w ∈ V∞, if given any blocker
B, any vertex v′ /∈ B with G-distance at most 2 from v and any target avoiding B, which is
either w itself or a flap K ∈ C with w as G-neighbor, there is a structured path P satisfying
the following:

(S5) P begins in v′,

(S6) P ends in w, if w is the target and otherwise in a vertex w′ ∈ K with G-distance at
most 2 from w,

(S7) P avoids B and

(S8) if v = v′, then the first edge of P lies in G.

In the case v = v′ = w = w′, we define the singleton vertex v also as a structured path.

Lemma 4.44. ’Being connectable to’ is a reflexive and transitive relation on V∞.
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Proof. We show first that every element v ∈ V∞ is connectable to itself: If our target is v
itself, then the desired structured path is either an edge from v′ to v or a single vertex, if
v = v′. As structured path from v′ to a given flap K ∈ C, we can take a cover of K as in 4.39
together with an edge in G3 from v′ to a root of K, which is a G-neighbor of v. That way is
(S8) satisfied. The properties (S1)-(S7) are straightforward to check.
Let now v be connectable to w and w be connectable to x. We will show that v is connectable
to x: We assume that we are given any blocker B, any vertex v′ avoiding B with G-distance
at most 2 from v and any target that is either x or a flap K avoiding B with x as G-neighbor.
Because v is connectable to w, there is a structured path P from v′ to w satisfying (S5)-(S8).
Because of (S2) this path consists of v′, modules and green vertices. We obtain another
blocker B+ by adding these green vertices and modules together with the flap containing v′

to B. Since modules are finite, B+ remains finite as well. Because w is connectable to x,
there is another structured path P satisfying (S5)-(S8), beginning in w and ending in a vertex
x′ ∈ V (K) with G-distance at most 2 from x or in x itself, if x is the target. For the union of
these paths are the properties (S1)-(S8) immediately clear per definition, hence we conclude
that v is connectable to x.

Definition 4.45. We say v and w are connectable, whenever v is connectable to w and w is
connectable to v.

The idea behind the concept of being connectable is that we obtain equivalence classes
in which we can move back and forth any number of times always using only finitely many
modules and green vertices and hence still have infinitely many left to continue the construction
recursively. With the setup defined, this construction will be fairly easy if we have only one
single equivalence class of the relation of being connectable. Also for two classes, we will not
have a problem, because we can construct two rays to our new end, one in each class.

The following two lemmas give sufficient conditions for vertices from V∞ to be connectable.
First, we show that we are always connectable inside strong classes. And second we show that
we can always move out of good strong classes. In particular, when two adjacent classes are
both good, then they lie in the same equivalence class of the relation of being connectable.

Lemma 4.46. For every edge vw ∈ E(G≈∞), its endvertices v and w are connectable.

Proof. Assume that we are given any blocker B, any vertex v′ avoiding B with G-distance at
most 2 from v and any target which is either a flap K avoiding B with w as G-neighbor or w
itself.
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Per definition of ≈ there are infinitely many v − w−paths in G. Let P be one of them,
such that no vertex of P lies in B and no vertex of P lies in a flap that contains a vertex of
B. This is possible, since B is finite. For every vertex of finite degree on P , we add the whole
flap containing it and obtain a graph P+ that also avoids B. Now P+ contains a sequence in
V∞ ∪ C of pairwise different elements, from which each element is adjacent in G to the next
one.

B

F0 F2v

q1 q2

w

Figure 8: A structured path between two vertices v, w for which vw ∈ E(G≈∞). The Blocker
B is finite, so we can find a v − w−path avoiding B.

Let v = q0, ..., ql = w be the elements of V∞ of this sequence in order. Between each two
of them is either an edge in G or a flap.

We will now construct a structured path witnessing that v and w are connectable along
this sequence. At first, we consider the case that v = v′ and the target is w.

We will construct a path between each two successive elements qj and qj+1: If there is no
flap between qj and qj+1, we just use the edge qjqj+1.

Now assume that there is a flap Fj between qj and qj+1. Per assumption, both of qj and
qj+1 have one G-neighbor in Fj. If qj and qj+1 have no such G-neighbor in Fj in common,
then Fj has at least two roots and thus is well-coverable per Definition 4.24, so we can find
a sovereign Hamilton-path PFj

of F 3
j between a G-neighbor of qj and a G-neighbor of qj+1

(4.41). Otherwise, if qj and qj+1 have one G-neighbor rj in Fj in common, then we can find a
sovereign Hamilton-path PFj

of F 3
j between rj and one G-neighbor of rj (4.39).

In both cases PFj
is a sovereign path between a G-neighbor rFj

of qj and a vertex wFj

which has distance at most 2 of qj+1 in G. So we add the edges qjrFj
and wFj

qj+1 to obtain
the desired path.

We show that the union of these paths satisfies (S1)-(S8): The properties (S1) and (S3)-(S7)
are immediately clear, and (S2) holds, since each vertex in V∞ is green and the vertex set of
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each flap is a module. Further is the first edge vq2 or vrF1 . In both cases is this an edge from
G itself.

Now if v′ 6= v, we can switch the first vertex to v′. Since v′ has G-distance of at most 2
from v is the new first edge still in G3.

If the target is a flap K instead of the vertex w, we can find a sovereign Hamilton-path P
of K3 between a G-neighbor r of w and one vertex w′ with G-distance at most 2 from w. In
the case that the target was w, the last edge on our path was in G2. Thus we can replace w
by r and add P , so we end up in w′ to satisfy (S4) and (S6). The remaining properties are
clear per construction.

Corollary 4.47. Any two strongly equivalent vertices v, w ∈ V∞ are connectable.

Proof. Combine Lemma 4.46 and Lemma 4.44.

Lemma 4.48. For an edge vw ∈ G∼∞, for which [v]≈ is good, it follows that v is connectable
to w.

Proof. If v ≈ w, then the statement is already shown in 4.47. Thus, we only have to consider
the case that there is an edge between v and w in G.

Assume that we are given any blocker B, any vertex v′ avoiding B with G-distance at
most 2 from v and any target which is either a flap K avoiding B with w as G-neighbor or w
itself.

We will construct the structured path in several steps. In each step, we might continue
constructing from both sides, every time reducing the quest of constructing the remaining
path to the construction of a new path between the two new endvertices. The properties
(S1),(S3),(S4),(S5), (S6) and (S8) are satisfied at the beginning of our construction. Thus, in
later steps we only have to check on (S2) and (S7).

Every time we construct something, we will avoid B to satisfy (S7). For simplicity, we
assume without stating it in every single step that we added everything constructed so far
to B and avoid it as well. This can be done since we use only a finite set of vertices and is
necessary to obtain indeed a path in the end.

If the target is w, then the edge v′w is the desired path and the properties (S1)-(S8) are
easy to check. So we may assume that the target is a flap K.

Again, we can cover K by a path between a root r and a vertex w′ of G-distance at most
2 from w (4.39). This path will be the end of our structured path, so it remains to construct
the initial segment from v′ to r.
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If v′ = v, choose any neighbor g1 of v avoiding B. In this case, we start our path with the
edge vg1 to satisfy (S8). If g1 is green, we redefine v′ := g1 and continue. If g1 is red, it is
part of a flap avoiding B and we continue our path with a path covering the third power of
this flap (4.39) and redefine v′ as the endvertex of this path.

Thus it remains to find a structured path from v′ 6= v to r.

v

v′

w

r

w′

[v]≈ [w]≈

K

If v′ has G-distance less then 2 from v, we can just use the edge v′r and are done. So we
may assume that v′ has distance 2 from v and it remains to construct a structured path from
v′ to a G-neighbor r1 of v instead. Choose r1 /∈ B as an arbitrary G-neighbor of v. If r1 is
green, we can just use the edge v′r1 as structured path and we are done with the construction.
If r1 is red, it is part of a flap K1 also avoiding B. The case that this flap has no other
element then r1 is analogous to the case that r1 is green. Thus we can assume that we cover
K3

1 according to (4.39) by a path between r1 and a vertex w1 of G-distance at most 2 from v.
Now it remains to connect v′ and w1 by a structured path.

v

r1

v′

w

r

w1

w′

[v]≈ [w]≈

K

Since [v]≈ is good, there are infinitely many green vertices in [v]≈ ∪NG([v]≈) left avoiding
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B, let d be one of them. We define x := d, if d ∈ [v]≈. Otherwise let x be a neighbor of d in
[v]≈. We know from Lemma 4.47 that v is connectable to x. Thus we can find structured
paths P ′ from v′ to a vertex x′ of G-distance at most 2 from x and a structured paths P1

from v1 to a vertex x1 of G-distance at most 2 from x. We choose those paths disjoint from
each other (possible since we can add P1 to our blocker before we find P ′) and avoiding B.

v

r1

v′

w

r

w1

w′

[v]≈

[w]≈

K

xd

x′

x1

P1

P ′

Now the endvertices x′ and x1 are both G3-neighbors of d, since d ∈ {x} ∪NG(x). So we
can connect them by adding the edges x1d and dx′ and are done with our construction.

Remark 4.49. ’Being connectable to’ is not necessary a symmetric relation. If w from the
last lemma lies in a bad class and we forbid all well-coverable flaps adjacent to that class, any
further structured path follows a captured arc as shown in 4.30, so we cannot connect w back
to v.

Corollary 4.50. For an edge vw ∈ G∼∞, for which [v]≈ and [w]≈ are good, it follows that any
v′ ∈ [v]≈ and w′ ∈ [w]≈ are connectable.

Consider the case that all vertices of V∞ are connectable. The following three lemmas
all use the same technique of constructing spanning paths inside a graph, by combining a
sequence of structured paths using the property of being connectable. Since we can move on
arbitrarily around vertices of V∞, we can control whether we want to construct a Hamilton
circle, a Hamilton ray or a Hamilton arc between two arbitrarily chosen vertices.

Lemma 4.51. If every two vertices in V∞ are connectable and V0 := {v0, v1, ..., vn} is a finite
subset of V∞, then G3 has a sovereign spanning ray starting in v0 and respecting V0.

Proof. We enumerate V∞ ∪ C = {v0, v1, ..., vn, yn+1, yn+2, ...} with v0, v1, ..., vn as the first
elements.
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Beginning with P0 := v0, we will construct a sequence of finite sovereign paths P1, P2, P3, ...

such that each path Pi satisfies:

(i) V (Pi) is the union of modules and green vertices,

(ii) the first endvertex of Pi is v0 and the second endvertex of Pi has G-distance at most 2
from V∞,

(iii) Pi−1 ⊆ Pi,

(iv) if i ≤ n, then Pi contains v0, v1, ..., vi in order, ends in vi and respects v1, v2, ..., vi−1.
Further does Pi not contain vi+1, vi+2, ..., vn and

(v) if i > n, then Pi contains and respects V0 and covers yj for all j ≤ i+ 1 (if yj is a flap,
this means that Pi contains all vertices of yj).

We define P−1 := P0 to satisfy (iii) for P0. The other properties are clearly satisfied. Let Pi
be given satisfying (i)-(v) with endvertices v0 and wi (We define w0 := v0).

Let B′ be the set of vertices from Pi. It follows from (i) that B′ is indeed a blocker. If
i ≤ n, we define B := B′ ∪ V0 \ {vi+1}. If i > n, we define B := B′. Note that in this case it
follows from (v) that B already contains V0.

If the next element xi+1 is already covered by Pi, then we define Pi+1 := Pi. So we assume
that xi+1 is not covered by Pi. If xi+1 (either vi+1 or yi+1) is a flap, define K := xi+1 and
choose any vertex w in V∞ such that K meets NG(w). If xi+1 ∈ V∞, define w := xi+1 and K
as any flap avoiding B and meeting NG(w).

If K avoids B, then per assumption there is a structured path P+ beginning in wi and
ending in a vertex w′(K) with G-distance at most 2 from w which satisfies (S5)-(S8).

It follows from (S2) that the only possible case in which K does not avoid B is if B
contains one green vertex d in K. Now we obtain from (C4) that w has infinitely many green
neighbors. Let d′ be one of them avoiding B. We obtain P+ in the same way as in the case
when K avoids B apart from that we exchange d for d′ in this path. To see why this exchange
is possible, note that (S2) implies that the structured path ends in a Hamilton path of the
third power of the target K. In this case is K well-coverable, so we can assume that we cover
K − d according to (C ′) in Lemma 4.41. The endvertices of this cover have G-distance of at
most 2 from w and thus G-distance at most 3 from d′. Hence we can cover K − d+ d′ instead
of K.

We define Pi+1 as Pi extended by P+ and the edge w′w if w = xi+1. This is indeed a path,
because Pi and P+ are disjoint from each other apart from wi. Since any structured path is
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sovereign, we keep this property as well for any Pi+1. The properties (i)-(iii) are easy to check.
If i ≤ n, then since Pi satisfies (iv) and V0 \ {vi+1} is part of B, we added no other vertex
from V0 but vi+1 to our path. Further follows from (S8) that we respect vi. The vertices
v0, v1, ..., vi−1 are already respected by Pi and hence also by Pi+1. Thus (iv) is satisfied for
Pi+1.

If i > n, then with the same argument does Pn+1 already contain and respect V0, hence the
same holds for Pi+1. It is clear by construction that Pi+1 covers yi+1 and hence by induction
also all earlier elements of our enumeration, thus (v) holds as well for Pi+1.

Clearly the ray R := ⋃
i∈N Pi is a sovereign spanning ray of G3 starting in v0 and respecting

V0.

Lemma 4.52. If every two vertices in V∞ are connectable and V0 is an arbitrary finite subset
of V∞, then G3 has a sovereign spanning double-ray respecting V0.

Proof. The proof is analogous to the proof of 4.51 apart from that we change (i) to "Both
endvertices of Pi have G-distance at most 2 from V∞" and extend the path alternately on
both sides.

Lemma 4.53. If every two vertices in V∞ are connectable and v0, w0 ∈ V∞, then G3 has a
sovereign Hamilton arc between v0 and w0 respecting {v0, w0}.

Proof. The proof is analogous to the proof of 4.51 apart from that we construct two disjoint
such rays by starting at the two endvertices and extend alternately on both sides.

Proposition 4.54. In the setup of this section does the following hold:

(i) For every v0 ∈ V∞, the graph G3 has a sovereign Hamilton circle respecting v0.

(ii) For every w1, w2 ∈ V∞, the graph G3 has a sovereign Hamilton arc between w1 and w2

respecting w1.

Proof. The graph G3 has only one end and a Hamilton circle is a spanning double ray together
with this end, while a Hamilton arc consists of two disjoint rays spanning V (G) together with
this end.

If V∞/ ≈ has only one class, then there is nothing left to show (see 4.52 and 4.53).
So we may assume that |V∞/ ≈ | ≥ 2. For both cases, we will construct two disjoint rays

covering V (G3). For case (i), we will make sure that both rays start in adjacent vertices w1

and w2 such that we can add the edge w1w2 to obtain a Hamilton circle. For case (ii), we will
make sure that the two rays start in the given vertices w1 and w2.
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Since V∞ is not splitting, there is at most one class [v1]≈ ∈ V∞/ ≈ with only finitely many
good neighbors in G. If no such class exists, define [v1]≈ as an arbitrary class in V∞/ ≈ which
is not separating G≈∞. (such a class exists, because G≈∞ is also rayless and hence a spanning
tree of G≈∞ contains a leaf.)

We may assume that v1 is chosen in a way such that v1 has a neighbor v2 ∈ V∞ \ [v1]≈.
Let C0 be the flaps in C with a G-neighbor in [v1]≈ and C1 all other flaps. Define

G0 := G[[v1]≈ ∪ C0] and G1 := G \ V (G0).
For every other strong class [v′]≈, there are only finitely many flaps which have a neighbor

in [v1]≈ as well as in [v′]≈. Thus in G1 still every strong class is good. It follows from 4.47
that every two vertices in [v1]≈ are connectable in G0. Since every strong class in G1 is good,
it follows from 4.50 that every two vertices in V∞ \ [v1]≈ are connectable in G1.

Now Lemma 4.51 implies that we obtain sovereign spanning rays of G3
0 and G3

1.
To prove (i), we choose v1 and v2 as their starting vertices and add the edge v1v2 to obtain

the desired Hamilton circle. Further using the same lemma, we can make sure to respect v0.
To prove (ii), we choose as starting vertices of the rays w1 and w2 and obtains the desired

statement directly if one w1 and w2 is in G0 and the other one is in G1.
If not, we assume without loss of generality that w1, w2 ∈ G0. Now let R1 be a spanning

ray of G3
1 beginning in v2 and R0 be a spanning ray of G3

0 + w2w1 beginning in v1 and
containing and respecting {v1, w2, w1} in the order v1, w2, w1. We may assume that we used
the new added edge w2w1 as the w2 − w1−path in the construction of the ray R0 according
to Lemma 4.51.

Now the two rays w2R1v1v2R2 and w1R1 together with the end of G3 are the desired
sovereign Hamilton arc between w1 and w2 respecting w1.
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4.2.5 Main Result

Finally we are ready to finish the proof of our main result that a countable rayless graph has
a Hamilton circle in its third power if and only if no class of V∞/ ∼ is splitting.

Theorem 4.55. For a rayless graph G, its third power G3 has a Hamilton circle if and only
if no class of V∞/ ∼ is splitting.

Proof. The forward direction has been shown in 4.34.
For the backward implication, we will construct a Hamilton circle. To make this construction
easier to understand, we will possibly delete some unnecessary edges of G without changing
the end space of G3.

Let us call vertices of infinite degree big and vertices of finite degree small. A small path
is a path in G consisting of only small vertices. A small component is defined accordingly.
Since G is rayless, each small component of G is finite.

We construct a sequence of subgraphs G0 ⊇ G1 ⊇ G2, ... of G, each of them with vertex
set V (G) (but possibly less edges then G) and minors Ḡ0, Ḡ1, Ḡ2, ... of G such that each Ḡi is
obtained from Gi by some contractions. Let Di be the vertices from Ḡi, which are obtained
by contraction of a set of vertices. We call them dummy-vertices. It may happen in the
construction that we ’contract’ a single vertex. For technical reasons we still think of that
singleton vertex-set as a dummy-vertex. Every dummy-vertex is a subset of V (G).

Let Di be the set of dummy-vertices of Ḡi and Vi be the set of vertices of Gi, which are
no dummy-vertices. Every vertex in Vi is a vertex of G.

Further we construct a Hamilton circle Ci for each Ḡ3
i and satisfy the following:

(G1) Ω(G3
i ) = Ω(|G3|).

(G2) Each weak class of Gi is splitting.

(M1) For every v ∈ V , there is one i ∈ N such that v ∈ Vi.

(M2) Vi ⊆ Vi+1 for all i ∈ N

(M3) Ci pays attention to Di.

(M4) Ci+1 contains all edges from Ci between vertices of Vi.

The statement (G1) means that edges we delete in our construction will not change the
endspace in the third power. For the first step of our construction, we pick any weak class
[v]∼ and put all its vertices in V0.
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Let Ḡ be the graph obtained from G after identifying the vertices of each other weak class
(note that a weak class induces not necessarily a connected subgraph, so this identification is
not always a contraction). Note that all roots of components of G− [v]∼ are small vertices,
hence none of them are identified yet. Especially whenever a component of G− [v]∼ has more
then one root, it still has after this identification step. Further it is easy to check that also all
of the properties (i)-(iv) from Remark 4.40 are preserved under identifications. Hence each
well-coverable component of G− [v]∼ is also well-coverable in Ḡ− [v]∼.

Now we claim for each component K of Ḡ− [v]∼ the following:

Claim 1. There is a finite subgraph YK ⊆ K such that each neighbor of YK in K − YK is a
small vertex with only big neighbors in YK. Further does this subgraph preserve the property
of being well-coverable whenever K was well-coverable.

To see this claim, note that in K, each big vertex comes from a weak class of K and also
is K finitely separable because no two big vertices are strongly equivalent (since the would be
identified in that case).

In the case that K has more than one root, choose two roots r and r′. In this case it
is clearly well-coverable (see 4.40). Let X be an r − r′−path inside of K and X+ be the
union of X together with all small components from small vertices of X. We define YK as X+

together with all big neighbors of X+ in K.
If K has only one root r and comes from a not well-coverable component of G− [v]∼, then

we add the small component R+ of r to V0. Now R+ has finitely many big neighbors. In this
case, we define YK := R+ ∪NK(R+).

If K has only one root r and comes from a well-coverable component of G− [v]∼, then
again we add the small component R+ of r to V0. Define Y ′K := R+ ∪NK(R+). If Y ′K − r has
less then dY ′K (r) components, it is well-coverable and we define YK := Y ′K .

If not, then according to 4.40 Y ′K − r has exactly dY ′K (r) components. If one of these
components has size 1 and has no neighbors in K − Y ′K , we define again YK := Y ′K

If not, then since K was well-coverable, there are two components of Y ′K − r living in the
same component of K − Y ′K . We choose any Y ′K-path P between two components of Y ′K − r
with internal vertices in K − Y ′K . We define P+ as the union of P together with all small
components from small vertices of P and YK := Y ′K ∪ P+.

This completes the proof of Claim 1.

Claim 2. For each component K of Ḡ − [v]∼, there is a minor of K isomorphic to YK,
such that the coresponding dummy vertex db for each big vertex b in YK contains almost all

80



components of K − YK that are adjacent to b in K.

To see this claim, choose for each component K ′ of K − YK one big neighbor b of K and
then delete every edge between K ′ and YK − b.

Since K is finitely separable, there are only finitely many components of K−Y which have
more than one neighbor on Y , so we only deleted finitely many edges. Now each component
K ′ of K − Y has one unique corresponding big neighbor b left. We add to each big vertex
b in K all those corresponding components and obtain the dummy-vertex db. Since after
the deletion of edges, each big vertex b ∈ V (K) had still almost all of its initial neighbors,
Claim 2 is forfilled.

Let G0 be defined as G after deleting the same set of edges and Ḡ0 be the graph obtained
from Ḡ after these deletions and contractions above for each component of Ḡ− [v]∼. Since
we deleted no edges between big vertices and for each big vertex only finitely many edges
adjacent to it, it is easy to check that the relation ∼ does not change after the deletion and
thus according to 4.22 does (G1) hold for G0. For each weak class [w]∼ of G0, only finitely
many of the components of G− [w]∼ might have changed after the deletion of edges, so it is
clear that [w]∼ is still splitting in G0 and (G2) holds for G0.

When K is well-coverable with only one root r and K − r has exactly dK(r) components,
it follows from the Definition 4.24 that there is at least one of those components of K− r with
only one vertex. (see the last property of Remark 4.40). In this case, we call an independent
set not containing r sovereign, if there is one such component of size 1 which is also not part
of that set. In every other case, we use sovereign as a synonym for independent.

It is clear that the set of dummy-vertices are an independent set of vertices in Ḡ0. Further
if a component K came from a well-coverable component of G− [v]∼ and has only one root r
such that K − r has exactly dK(r) components, it follows from the Definition 4.24 that there
is at least one of those components of K − r with only one vertex. (see the last property of
Remark 4.40) One of these vertices cannot be a dummy-vertex, because else it would have
had neighbors in G, which would imply that the component K was not well-coverable before
contraction. Hence we obtain that the set of dummy-vertices is indeed a sovereign set of
vertices in Ḡ0.

Claim 3. There is a coloring of [v]∼∪NḠ0([v]∼) satisfying the properties (C1)-(C4) of the last
section. Further is each green vertex of NḠ0([v]∼) in a well-coverable component of G− [v]∼

To see this claim, we start by coloring all vertices of [v]∼ green. Now for each component
K of Ḡ− [v]∼, we apply the following: If K has more then one root, we color one of its roots
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green and the other roots red. If K has only one root and comes from a not well-coverable
component of G− [v]∼, then we color its root red. If K has only one root and comes from a
well-coverable component of G− [v]∼, then we color its root green.

It is easy to see that this coloring satisfies the properties (C1), (C2) and (C3). In a second
step, we change our coloring to satisfy the property (C4) as well: We will keep all red vertices
in [v]∼∪NḠ0([v]∼) and all green vertices in [v]∼, but whenever a vertex in [v]∼ has only finitely
many green neighbors in Ḡ0 − [v]∼, we color those neighbors red instead, to make sure that
(C4) holds. It is clear that (C1), (C2) hold after the color change. Since [v]∼ is not splitting
per assumption, (C3) was true before this color change. However if a class [v′]≈ ⊆ [v]∼ is
infinite, it contains still infinitely many green vertices. If [v′]≈ ⊆ [v]∼ and has only finitely
many neighbors in [v]∼, then we changed the color for only finitely many of its neighbors of
each of its finitely many vertices, thus (C3) remains true in this case as well. Now that we
shown this third claim, we can apply Proposition 4.54 part (i) to obtain a Hamilton circle C0

of Ḡ3
0 paying attention to all dummy-vertices (in other words satisfying (M3)).
Now to apply induction, we assume thatGi, Ḡi, (Ci) are defined satisfying (G1), (G2), (M1)−

(M4). We define Gi+1 and Ḡi+1 as follows: Each dummy-vertex d in Ḡi comes from a unique
weak class [vd]∼. We put this class in Vi and then do the same construction as in the definition
of G0 and Ḡ0 for the graph represented by d. After we have done this for each dummy-vertex,
we obtain the graphs Gi+1 and Ḡi+1.

Now to construct Ci+1, we have to replace the edges at each d from Ci by a path covering
the new graph we obtained inside d as follows:

Let x and y be the neighbors of d in Ci such that x has distance at most 2 of d in Gi.
Now we can choose big vertices x′ and y′ in d such that there are edges edges xx′ ∈ G2 and
yy′ ∈ G3.

If x′ 6= y′, we use 4.54 (ii) to find a new Hamilton path between x′ and y′ covering d′

paying attention to all new dummy-vertices. Since its endvertices have G-distance at most 3
from x and y this path can be build in for the Hamilton circle Gi+1.

If x′ = y′, then we find a Hamilton circle inside of the refined dummy vertex respecting
x′ and paying attention to all new dummy-vertices. Let x′′ be the neighbor of x′ witnessing
that x′ is respected. Since the edge xx′ was in G2, we will replace it by xx′′ and find again a
Hamilton path between x′′ and y′ whose endvertices have G-distance at most 3 from x and y
covering d′ paying attention to all new dummy-vertices.

After we done this replacement for each dummy-vertex d of Gi, we obtain a Hamilton
circle Ci+1 of Gi+1, paying attention to Di+1, thus (M2) is fulfilled. Also (M2) clearly holds
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and we did not change any edges between vertices of Vi, which implies (M4). Further since
Vi+1 contains at least the neighborhood of Vi, every vertex does fulfill (M1) at some point.

This also implies that the edges at each vertex are defined eventually after finitely many
steps and do not change later, so it is clear that a limit C of this sequence of circles is
well-defined as the set of all vertices and ends of G3 and all edges from further circles which
are not adjacent with dummy-vertices.

It remains to show that C is a Hamilton circle of G3.
First note that every vertex or end is in a Ci for some i and thus also in C.
Consider any homeomorphism h0 : S1 → C0. Now to obtain a homeomorphism hi+1 :

S1 → Ci+1 for each Gi+1 recursively, we change hi on each interval on which a dummy-vertex
together with two edges is replaced by an arc in the straight forward way such that the interval
is mapped to the arc instead. Clearly each hi is a homeomorphism. Now each element of S1

will at some point be mapped to a vertex, end or edge of G3 (and not to a dummy-vertex or
an edge incident with a dummy-vertex) and hence its image does not change in a later step.

This way, the limit h : S1 → C of the sequence (hi)i∈N is well-defined. To prove that h
and its inverse is continuous at each element which is mapped to a vertex or inner edge point,
we will show that for every such element s ∈ S1 there is a neighborhood around s and an
i ∈ N in which h and hi coincide. That way the continuity of h(s) follows from the continuity
of hi: In the case that h(s) is an inner point of an edge, the statement holds clearly for the
first i for which this edge is in Ci. If h(s) is a vertex, we use the first i for which both edges
in Ci incident with that vertex are the same as in h. Such an i exists, since every edge of C
comes from some Ci.

Now it remains to show the continuity when h(s) is an end ω. Let [v]∼ be the weak class
corresponding to ω. Let O := CG3(S, ω) ∩ C be a basic open neighborhood around ω in
C. Now consider the first i ∈ N, for which ω ∈ |Ḡ3

i |. We define Oi := CḠ3
i
(S, ω) ∩ Ci. Per

assumption is hi(Oi) an open set in S1. Since all rays of ω live in any basic open neighborhood,
it is clear that almost all vertices of [v]∼ ∪NGi

([v]∼) are in CḠ3
i
(S, ω). Every arc that replaces

an edge from one of the two ω-rays in Ci in a later step lives in a component K ′ with a big
neighbor b ∈ [v]∼. Thus K ′ contains a vertex of NGi

([v]∼). Since almost all of them are not
in S, there is an S ′ ⊇ S, such that for O′i := CḠ3

i
(S, ω) ∩ Ci and O′ := CG3(S ′, ω) ∩ C holds

hi(O′i) = h(O′). This implies that h(O′) is an open set in S1 for which O′ ⊆ O.
Since S1 is Hausdorff and C is compact it follows that h−1 : C → S1 is also continuous.
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4.3 Hamilton circles in fourth and higher powers of trees

Our second main result of this chapter is that the fourth and higher power of any countable
tree is always Hamiltonian. It seems natural that the proof for higher powers becomes easier
then for the third power, which is indeed the case. However, even for graphs in which we
already know that its third power is Hamiltonian, it is not immediately clear for higher powers,
since the end space may be different for each power. Especially interesting is the fact that for
every n > 4 there are examples of trees for which edges from E(T n) \ E(T n−1) are actually
necessary to build a Hamilton circle. As already done for the third power of rayless graphs,
our first step is to understand the end space of powers of countable trees. After that we will
again construct a Hamilton circle recursively.
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4.3.1 The endspace of powers of a tree

Consider any tree T . We will divide the ends of T n into preserved and new ends. When
constructing a Hamilton circle, we will deal with the preserved ends in the limit step, while
we handle each new end in a similar way as in the last section.

Lemma 4.56. Given a tree T = (V,E) and n ≥ 2. For x, y ∈ V∞, write x ∼n y, if the
distance of x and y is at most n− 2. Take the transitive closure of this relation (also denoted
by ∼n). Then the set of ends in T n, can be written as a disjoint union Ω1 ∪ Ω2, with the
following properties:

1. There exists a canonical injection from Ω1 to the set of ends of T . Each end in Ω1 will
be mapped to a subset of itself and the image of this injection is the set of ends of T ,
from which no ray meets a class of V∞/∼n in infinitely many vertices. We call the ends
in Ω1 preserved ends.

2. The set Ω2 consists of one end for each equivalence class [v]∼n of V∞/ ∼n, where every
ray of that end meets the union of that class with its first bn2 c distance classes in T

infinitely often. We call such an end new end in [v]∼n.

Proof. Let n ≥ 2 be fixed. Given an equivalence class [v]∼n , write [[v]]∼n for the set of vertices
within distance bn2 c of [v]∼n in T . For an edge e ∈ T n, we define Pe as the unique path in T
between the endvertices of e. For a subgraph H ⊆ T n, we define H(T ) ⊂ T as the union of
all Pe for all e ∈ E(H).

First we note that for each v ∈ V∞ the set of vertices within distance bn2 c from {v} induces
an infinite clique in T n. If two vertices of V∞ have distance at most n− 2, there is an infinite
matching between these cliques. It follows that for every class [v]∼n of V∞/∼n, the vertex
set [[v]]∼n cannot be separated in T n by finitely many vertices and therefore all rays meeting
[[v]]∼n infinitely belong to same end in T n.

For two vertices v1, v2 ∈ V∞ in different classes of V∞/∼, each vi together with an arbitrary
ray Ri, which meets [[vi]]∼n infinitely often, we will find a finite R1 − R2−separator in T n:
Consider the unique v1 − v2 path P in T . Without loss of generality, we can assume that v1

and v2 are the only vertices in V∞ on this path. Let K be the component of T −V∞ containing
P and K ′ be the finite subgraph of K, consisting of P and the first 2n distance classes of P .

We claim that S = V (K ′)∪NT (V (K ′)) is the required separator. Note that S is finite, as
V (K ′) is finite, and every vertex of K ′ has finite degree. Suppose for a contradiction that
there is an R1 −R2−path Q in T n avoiding S. For each edge of this path between vertices
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from different components of T −K ′, the roots from these components must have distance
at most n − 2 from each other, else there were no edge between other vertices from those
components in T n. This implies that those components are rooted at vertices of infinite
degree. Hence, Q induces a sequence of vertices of infinite degree, in which successive vertices
have distance at most n− 2 from each other in T and thus v1 ∼n v2, a contradiction.

In summary, there is indeed exactly one end for each class of V∞/ ∼n, so we can define
these ends as Ω2.

Whenever a ray of T meets a class [[v]]∼n in infinitely many vertices, then this ray belongs
to the end of Ω2 corresponding to [v]∼n . It particular, it is possible that distinct normal rays
of T belong to the same new end in Ω2. We now show that whenever two distinct normal rays
R1 and R2 of T do not belong to the same new end in Ω2, then they are not equivalent in T n.
In other words, two distinct ends of T are merged in T n only if both of them are contained in
the same new end ω2 ∈ Ω2: If one or both of R1 or R2 are in a new end, then the statement
is clear, so we may assume that neither R1 nor R2 meets any [[v]]∼n infinitely often. Let R be
the unique double ray contained in R1 ∪R2. We will construct a finite separator between the
tails of R in T n:

In the case where R has a vertex a which does not lie in any [[v]]∼n , define S as a together
with its first bn2 c+ 1 distance classes in T . By assumption, in the first bn2 c distance classes of
a are only vertices of finite degree, hence S is finite. Also, R− S consists of two tails Q1 and
Q2. Suppose for a contradiction that there is a path P between a vertex v1 of Q1 and v2 of
Q2 in T n − S. Since a has distance at least bn2 c+ 1 from each vertex of P , no path Pe for e
in E(P ) meets a. Hence a /∈ P (T ), implying that P (T ) is not connected (as v1 and v2 are
separated in T by a), a contradiction.

If every vertex of R belongs to some class [[v]]∼n for a vertex v ∈ V∞, then, since per
assumption R meets no class [[v]]∼n infinitely, there are two vertices w1, w2 ∈ E(R) such that
there is no class [[v]]∼n containing both. Let w1 ∈ [[v1]]∼n , w2 ∈ [[v2]]∼n and define Q1 and Q2

as the two disjoint tails of R, starting at w1 and w2. We obtain the tree T+ from T as follows:
For i ∈ {1, 2}, let xi be the vertex of Qi with Qi-distance bn2 c from wi. For every vertex x in
Qi with Qi-distance of at least bn2 c from wi, add infinitely many leaves as neighbors of x. In
T 3

+ is each Qi in the new end belonging to [[xi]]∼n and x1 �n x2 in T+, because v1 �n v2 in T ,
so there is a finite separator S in T 3

+ separating [[x1]]∼n and [[x2]]∼n and hence also Q1 and
Q2. Because T 3 ⊆ T 3

+, it follows that S|T 3 separates Q1 and Q2 in T 3.
Hence for each end of T , which is not contained in a new end, there is a unique end of T 3,

which contains the end of T . Define the set of those ends as Ω1.
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It remains to show that these are indeed all ends, in other words that each ray of T n lies
in an end, which is either in Ω1 or Ω2. Let R = v0, v1, v2, ... be any ray of T n and consider the
subtree R(T ). Suppose that R(T ) has a vertex v of infinite degree. This means that infinitely
many of the Pe for e ∈ E(R) contain v. Because a path Pe has length at most n, one of the
two paths between R and v of which this path consists has length smaller or equal to bn2 c, so
at least one of its endvertices lies in [[v]]∼n , so R meets [[v]]∼n in infinitely many vertices and
hence is in the new end in [v]∼n . If R(T ) is locally finite, we, we can find a Comb in R(T )
with spine R′ and infinitely many teeth in R. Thus R′ and R are equivalent and hence are in
the same end.
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4.3.2 Constructing the Hamilton circle

Remember why it was not always possible to find a Hamilton circle in G3. The reason was
that sometimes we obtained a captured arc around a new end because of not well-coverable
components. Such a component X with root r was characterised by the fact that is was not
possible to cover X3 − r by an arc between two neighbors of r. In Xn − r for n ≥ 4 this
will be always possible, which can be considered as the main reason why there is always a
Hamilton circle for powers higher than 3.

At first, we will show that in higher powers every finite subtree can be covered in such a
good way. Remember our definition of the bundles from the proof of Lemma 4.36. We call a
leaf solitary if it is in a bundle of size one.

Lemma 4.57. For any finite rooted tree (T, r) with at least 3 vertices, there is a Hamilton
circle C of T 3, which respects r and all solitary leaves of T .

Proof. The lemma follows directly from the construction in the proof of Lemma 4.36: Covering
a bundle smoothly as defined in the proof implies respecting one leaf from each bundle and
especially respecting all solitary leaves.

Lemma 4.58. Let (T, r) be a finite rooted tree and n ≥ 4. Then there exists a spanning path
in T n − r with endvertices in the T -neighborhood of r, which respects all solitary leaves of T .

Proof. If T is well-coverable, we even find such a path in T 3 (4.41), since the solitary leaves
form an independent set. So we may assume that each component of T − r is of size at least
2. Define NT (r) := {v0, v1, ..., vn}. From 4.57 we obtain for each component Ti of T − r of
size at least 3 a Hamilton circle of T 3

i which respects vi and all solitary leaves of Ti. After
deleting the edge viwi respecting vi, we obtain a Hamilton-path Pi of T 3

i between vi and one
upper T -neighbor wi of vi. Note that wi is no solitary leaf, since per definition are the edges
respecting different vertices distinct. For a component of T − r of size two with vertices
vi, wi we define Pi as the edge viwi. Now v0P0w0w1P1v1w2P2v2w3P3v3...wnPnvn is the desired
Hamilton-path. The only used edge from T n \T 3 is w0w1. Every other edge is even in T 3.

For each equivalence class [v]∼n of V∞/∼n, let T[v]∼n
be the smallest subtree of T containing

[v]∼n (this is well-defined, since in a tree there is a unique path between each two vertices).

Lemma 4.59. For two different classes [v]∼n and [w]∼n are the trees T[v]∼n
and T[w]∼n

disjoint.

Proof. Suppose for a contradiction that x ∈ T[v]∼n
∩ T[w]∼n

. Each vertex x in T[v]∼n
lies on a

path between two vertices of [v]∼n . Since these paths have length at most n− 2, there is a
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v′ ∈ [v]∼n with distance at most n−2
2 from x. Also we find such a vertex w′ ∈ [w]∼n . If follows

that v′ and w′ have distance at most n− 2 from each other in T , so [v]∼n = [w]∼n .

For a subtree U ⊆ T , we define U+ as follows:
For each component K of T − U , we add one or two vertices to U :
Call the unique vertex of K which is adjacent to U rK and add it to the subtree. Whenever
K has more than one vertex, we also add another vertex vK from K, which is adjacent to rK
in T , chosen in the same tree T[v]∼n

as rK , whenever rK is in such a tree, and else arbitrarily.
This graph is uniquely defined under isomorphism and whenever we refer to it, we assume
that we fixed one possible choice.

Proposition 4.60. Given n > 3 and U = T[v]∼n
as defined before with a root r and one of

its neighbors w arbitrarily chosen in U , the graph U+n has a Hamilton circle containing rw
and also the edge rKvK for every components K of T − U , for which this edge exists.

Proof. Let {v0, v1, v2, ...} be an enumeration of V (U). Now, we enumerate the vertices of U
and components of U+ − U as follows: Consider a sequence (an)n∈N of natural numbers in
which every number appears infinitely often. For each ai in our sequence, we add vi to our
enumeration, if this ai appears for the first time. Also we possibly add components of U+−U
with neighbor vi to our enumeration:
Whenever there are only finitely many such components, we add all of them at the end of our
current enumeration, if they were not added in an earlier step. Whenever there are infinitely
many such components, we assume they are ordered in a fixed order and add the first two of
them, which were not chosen before to the end of our enumeration. We call the components
which are added in one such step a convolute of components.

Because U+n is one ended, it remains to construct a spanning double ray.
We construct a sequence of a singleton P0 := {v0} and paths P1 ⊆ P2 ⊆ P3 ⊆ ... in U+n

such that:

(P1) For each vertex of U or component of U+ − U , there is a path Pi that covers it.

(P2) the endvertices from each path Pi have T -distance at most 1 from U .

(P3) For each root rK ∈ Pi of a component of U+−U , is the edge rKvK also in Pi, whenever
vK exists.

We extend the path alternately from both sides. Let Pi be given with endvertices w1 and
w2 (for P0, let both of them be v0) and assume without loss of generality that we have to
extend the path on w2 in this step.
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Consider the next element X of our enumeration, which is not already in Pi. We will
cover it in the (i+ 1)th step and thus satisfy (P1).

If X is in V (U), we define b′ := X. If X is a component of U+ − U , we define b′ as the
unique T -neighbor in U of X. Let a′ be w2 if w2 ∈ U and else the unique neighbor in U of
the component of U+ − U containing w2.

Then there is a unique a′− b′-path a′ = q0, ..., ql = b′ in U . Let p1, p2, ..., pm be the vertices
of infinite degree on this path in order. Per definition of ∼n, two successive vertices of infinite
degree in this sequence have T -distance at most n− 2 from each other. For each pj , whenever
there are infinitely many components of U+ − U adjacent to pj, Pi meets only finitely many
of them and we choose one convolute of two such components Kj, K

′
j of U+ − U adjacent to

pj with roots rKj
, rK′j . We define a path Qj := rKj ,vKj

, vK′j , rK′j , leaving out vKj
or vK′j if it

does not exist. (Since n ≥ 4, the edge vKj
vK′j is in T n.)

In the case that there are not infinitely many components of U+ − U adjacent to pj, pj
has infinite degree in U . Thus, we can choose two U -neighbors u and v of pj not covered by
Pi. Let U0, ..., Um be a convolute of components of U+ − U adjacent to u and V0, ..., Vn be a
convolute of components of U+ − U adjacent to v, whenever such a convolute exists. (Since
u and v are not already covered by Pi, this convolutes are not covered as well.) We define
a path Qj := uvU0rU0 , vU1 , rU1 , ..., vUmrUmrV0vV0rV1 , vV1 , ..., rVnvVnv, leaving out every vertex
which does not exist. Note that all these edges are in T n. In both cases are the endvertices
of Qj of T -neighbors of pj, thus, because pj and pj+2 have distance at most n− 2, there is
for each j < m an edge in T n between the endvertex of Qj and the initial vertex of Qj+1.
Consequently, we can extend Pi by the path w2Q1Q2...Qm. Let rm be the endvertex of this
path. Then we add another segment to our arc, depending on how X lies in the graph:

If X ∈ U , we add the edge rmb and are done with the construction.
If X /∈ U , let B0, ..., Bn be the convolute of components containing X. We extend our

path by vB0rB0 , vB1 , rB1 , ..., vBnrBn leaving out every vBi
which does not exist. In any case,

we end up with a vertex of T -distance at most 1 from U , so (P2) holds. The statement (P3)
is also clear per construction.

After we have done countably many steps, according to (P1) and (P3), we constructed
a double-ray covering all vertices of U+ containing rv and also the edge rKvK for every
components K of U+ − U , for which this edge exists.

Theorem 4.61. For a countable tree T and any n ≥ 4, T n have a Hamilton circle.

Proof. We construct a Hamilton circle of T n.
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Figure 9: A path from w2 to b′

Choose a class [v]∼n in V∞/∼n arbitrarily. Starting with T0 := T[v]∼n
, we define a sequence

of subgraphs T0 ⊆ T1 ⊆ T2... of T as follows:
If Ti = T or T+

i = T , then stop the sequence. (this will only happen, if T n has no preserved
end.) If not, then given Ti, we construct Ti+1 as follows:

For every component Ki of T − Ti, we add the following subtree:
Whenever rKi

is in a tree T[w]∼n
, we add T[w]∼n

as a whole. Because of the way we
prioritised the choice of vki

, we made sure that it is also in Ti+1. If rKi
is not in any T[v]∼n

,
then we add only rKi

.
Now we will define a sequence of Hamilton circles Ci for each T+

i
n such that:

(i) Ci contains all edges of the form rKi
vKi

for components Ki of T − Ti.

(ii) Ci+1 \ Ci is a disjoint union of arcs, each of them replacing an edge of the form rKi
vKi

.
Further this arc replacing an edge rKi

vKi
lies in K.

The Hamilton circle C0 exists due to Proposition 4.60. To construct the Hamilton circle
Ci+1 from Ci it remains to replace the edge rKvK for each component of T − Ti by an arc
that covers everything from that component in T+

i+1:
In case that this is a tree T[w]∼n

we can apply Proposition 4.60 again inside that component
and obtain another circle containing rKvK , so we can replace this edge by the rest of the
circle. For every new component K ′ arising this way inside K, the new circle also uses the
edge r′Kv′K , so we can make sure that (i) still holds.
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In case that we added from the component K only rK to Ti+1, rK has finite degree and
Ti+1 ∩K consists of a star with center rK , from which some of its leaves may be subdivided.
Let K1, K2, ... be the components of K − rK with roots vK = r0, r1, r2, ..., rx and for each
of these components Ky with more than one vertex, let vy be the second vertex chosen for
T+
i+1. We replace the edge rKvK with the finite path vKv0v1r1v2r2...vxrx leaving out every vy

that does not exist. Clearly this path uses every edge of the form vyry and hence again (i) is
satisfied.

Since in each step, we added at least the root of every component of T − Ti, we made sure
that each vertex is eventually in a Ti and also covered by one Hamilton circle Ci.

We define a compatible sequence of homeomorphisms hi : S1 → Ci as in the proof of
Theorem 4.55 and its limit h′ on each point on which this sequence is eventually constant.
The continuity of h′(s) and h′−1 for each element s which is mapped to a vertex, inner edge
point or new end can be shown with the same argument as in the proof of Theorem 4.55 as
well.

Also it follows from the fact that each hi is a homeomorphism that h′ is injective. Further
the sequence (hi)i∈N becomes eventually constant at each point which is mapped to a vertex,
inner edge point or new end and thus all these element are in the image of h′. Now we define
h(s) := h′(s) for all s ∈ S1 for which h′(s) is defined.

Consider now an s ∈ S1 for which the sequence (hi(s))i∈N does not become eventually
constant. This can only be the case, whenever each (hi(s)) is an inner point of an edge which
is replaced in a later step. Let e1, e2, e3, ... be the sequence of these edges and for each of this
edges ei, let Ai be the arc replacing it.

Since each Ai contains multiple edges, we may assume that the sequence of intervals
mapped to e1, e2, e3, ... converges to the single point s. Now each edge ei on this sequence is
of the form rKvK for some component K as defined above. The sequence of those rK defines
a unique ray in T , which belongs to an end ω. We define h(s) := ω.

To show that h is still injective, let s ∈ S1 be an element with h(s) := ω for which h′(s) is
not defined and s′ ∈ S1 be any other element. If h(s′) is not an end, there is nothing more to
show, so we may assume that h(s′) is an end ω′.

If ω′ is a new end in a class [v]∼n of V∞/ ∼n, then h(s′) = h′(s′) and hence there is an
i ∈ N for which hi(s′) = ω′. The circle Ci+n covers [v]∼n and its first bn2 c distance classes in
T . Since the ray from ω in T contains a tail of outside of Ci+n, it cannot lie in ω′. It follows
that h(s) = ω 6= ω′ = h(s′).

If ω′ is a preserved end, then also each (hi(s′)) is an inner point of an edge which is
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replaced in a later step and there is another sequence f1, f2, f3, ... of these edges, each of them
with an arc Bi be the arc replacing it. Now let i be chosen such that ei 6= fi. Now there are
two disjoint components KA and KB of T − Ti such that for all j > i does Aj lie in KA and
Bj in KB. It follows again that ω 6= ω′.

Now it remains to show the continuity of h at any given s for which h(s) is a preserved
end ω. Let C(S, ω) ∩ C be any basic open set in C around ω. Since S is finite, there are
only finitely many of the arcs Ai meeting S. Let Aj be the last one of them. Now define I as
the interior of the interval h−1

j+1(Aj+1). Then h(I) ⊆ ⋃
i>j Ai ⊆ C(S, ω). It follows that h is

continuous in s. Since S1 is compact and C is Hausdorff it follows that h−1 : C → S1 is also
continuous. Since the image of h is closed and contains all vertices, it is clear that it also
contains all ends of T n.
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5 NashWilliams’ orientation theorem for infinite graphs

5.1 Introduction

A directed multigraph is k-arc-connected if from any vertex v to any other vertex w of the
graph there exist k arc-disjoint forwards directed paths. Clearly, the underlying undirected
graph of a k-arc-connected multigraph must be 2k-edge-connected. The classic orientation
theorem of Nash-Williams from 1960 asserts that for finite multigraphs, also the following
converse is true.

Theorem 5.1 (Nash-Williams’ orientation theorem [34]). Every finite 2k-edge-connected
multigraph has a k-arc-connected orientation.

In the same paper, Nash-Williams claimed that his result also holds for infinite graphs –
but the promised proof was never published and the claim was not repeated in [35]. Despite
significant effort, it has remained open ever since whether the orientation theorem holds for
infinite graphs as well.

So far, for arbitrary infinite graphs, only the case k = 1 was known, proved by Egyed by a
Zorn’s lemma argument already in 1941 [20].

To appreciate the difficulty of the general case, note that a priori it is not even clear
whether any sufficiently large edge-connectivity implies the existence of a k-arc-connected
orientation. This is different for finite multigraphs, where a simple argument shows that every
4k-edge-connected multigraph has a k-arc-connected orientation: By the Nash-Williams/Tutte
tree packing theorem [14, Corollary 2.4.2], any such graph has 2k edge-disjoint spanning trees,
so after fixing a common root, we may simply orient half of the trees away from and the
other half towards the root. This approach, however, is blocked for infinite graphs: there exist
locally finite graphs of arbitrarily large finite (edge-)connectivity that do not even possess
three edge-disjoint spanning trees [1].

Motivated by the above considerations, Thomassen has asked in 1985 whether there is
a function f : N→ N such that any f(k)-edge-connected multigraph has a k-arc-connected
orientation [43]. This conjecture has been featured again in [4, Conjecture 8], where also a
topological variation of the problem was suggested by allowing directed topological arcs in
|G|; this topological version has been recently solved by Jannasch [25].

More than 50 years after Nash-Williams’ finite orientation theorem and about 30 years
after posing his own conjecture, Thomassen achieved a marvellous breakthrough towards
the orientation theorem by proving that every finite 8k-edge-connected multigraph has a
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k-arc-connected orientation [44], giving f(k) ≤ 8k. In this chapter, we show f(k) ≤ 4k for all
graphs. Further we show for 2k-edge-connected multigraphs with at most countably many
ends, from which at most one end has odd degree that we can improve Thomassen’s argument
in order to get the best possible bounds, thereby establishing Nash-Williams’ orientation
theorem for some infinite graphs in its optimal form.

Furthermore, some steps in the proof work for arbitrary graphs, so it is possible that
some of the techniques in our proof might be helpful in the future for other classes of graphs.
We remark that our proof employs Mader’s lifting theorem from 1978 [31]. There are also
slightly other versions from 1992 [23] and 2016 [36], results that were certainly not available
to Nash-Williams in 1960.
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5.2 Boundary-linked decompositions

Let G = (V,E) be a locally finite connected multigraph. The boundary of a set of vertices B
is the collection of edges in G with one endvertex in B and the other one outside of B.

A set of vertices B ⊂ V is called boundary-linked if the induced subgraph G[B] together
with its boundary has a collection of pairwise edge-disjoint equivalent rays R1, R2, . . . such
that each edge in the boundary is the first edge of one of the rays Ri. If we also want to point
out to which end ω those rays belong, we say that B is ω-boundary-linked.

Thomassen proved in [44] that for every locally finite connected multigraph G = (V,E)
and any given finite set of vertices A′ ⊆ V , V (G) \ A′ can be partitioned into finitely many
sets each of which is either a singleton or a boundary-linked vertex set with finite boundary
in G:

Theorem 5.2. [44] Let G be a connected, locally finite multigraph. Given any finite set of
vertices A′ ⊆ V , there is a finite set of vertices A ⊇ A′ such such that the vertices of G− A
can be partitioned into finitely many boundary-linked vertex sets with finite boundaries.

We do not actually know in general, whether we can choose our partition always without
edges between the boundary-linked sets:

Problem 5.3. Let G be a connected, locally finite multigraph. Is it true that given any finite
set of vertices A′ ⊆ V , there is a finite set of vertices A ⊇ A′ such such that all components
of G− A are boundary-linked?

However for multigraphs with countably many ends, we can obtain such a partition:

Theorem 5.4. Let G = (V,E) be a connected, locally finite multigraph with at most countably
many ends. Given any finite set of vertices A′ ⊆ V , there is a finite set of vertices A ⊇ A′

such such that all components of G− A are boundary-linked.

Proof. Let {ω1, ω2, ...} be an enumeration of the ends of G.
Let E1 = {v1w1, v2w2, ..., vkwk} be a minimal A′ − ω1−separator such that v1, ..., vk

are the endvertices of the edges from E1 in the side of the cut that contains A′. Define
A1 := A′ ∪ {v1, ..., vk}. By minimality of E1, the component K0 of G − E1 containing ω1

has boundary E1. We show that K0 is boundary-linked: We define a sequence of connected
subgraphs K1 ) K2 ) K3.... To define Ki, delete all vertices from Ki−1 incident with its
boundary and then define Ki as the unique infinite component of the resulting subgraph of
Ki−1 that contains ω1. Because E1 was a minimal A′ − ω1−separator, it follows that Ki also
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has a boundary of size at least k. By Menger’s theorem, G has k pairwise edge-disjoint paths
P i

1, P
i
2, ..., P

i
n such that P i

j starts with vjwj and terminates with an edge in the boundary of
Ki for j ∈ [n] and i ∈ N. For every j ∈ [n] we define a limit ray Rj from the path system
Pj = {P i

j : i ∈ N} as follows: Since G is locally finite, for infinitely many i, the paths P i
j in Pj

have the same second edge. For infinitely many of those i, the paths P i
j also have the same

third edge, and so on. Repeating this argument, we obtain a a sequence of edges giving rise
to a ray Rj starting with the edge vjwj. Clearly these rays R1, . . . , Rn all belong to the end
ω1, witnessing that B1 := K0 is boundary-linked.

We now define A2, A3, ... and B2, B3, ... recursively: Since G is localy finite, G − (Ai ∪
B1 ∪ ... ∪Bi) has only finitely many components. If all of them are finite for some i, then we
add the remaining vertices to Ai and obtain our desired partition of V (G). If not, then each
infinite component contains a ray (again, because G is locally finite). Let ωk be the least end
in our enumeration for which there is a ray left. With the same construction as above for
A1 and B1, we obtain the finite vertex set Ai+1 and a boundary linked set Bi+1 containing
all rays of ωk. Suppose for a contradiction that this procedure does not terminate. In this
case, the sets B1, B2, ... together with all inner vertices of its boundary-edges form an open
cover of the endspace Ω(G). Since G is locally finite, the endspace Ω(G) is compact, so there
is a finite subcover. It follows that we already covered all ends after finitely many steps, a
contradiction.

An end ω is called even, if there exists a finite set of vertices S such that for all finite sets
of vertices S ′ ⊇ S holds that the maximal number of edge-disjoint rays in ω starting in S ′ is
even. Otherwise, the end is called odd.

Theorem 5.5. Let G = (V,E) be a connected, locally finite multigraph with only countably
many ends. Given any finite set of vertices A′ ⊆ V , there is a finite set of vertices A ⊇ A′

such such that every component B of G− A is ωB-boundary-linked for an end ωB.
Furthermore we can chose A in a way such that every component B of G− A has even

boundary whenever the end ωB is even.

Proof. We do the same construction as in the proof of 5.4, apart from that whenever we
construct a set B for an even end ωB, we add a vertex set witnessing that ωB has even degree
to Ai. This way we made sure that our boundary of B has indeed even size.
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5.3 Mader’s lifting theorem and the lifting graph

Lifting two distinct edges vx, vy incident with a common vertex v in a multigraph G means
deleting them and adding a new edge xy to G (possibly parallel to existing edges between x
and y).

Suppose G = (V + v, E) is a finite multigraph such that any two vertices in V are
joined by k pairwise edge-disjoint paths in G. A pair of edges vx, vy is called admissible for
edge-connectivity k, or simply admissible if the connectivity constant k is understood from
context, if after lifting vx, vy we obtain a graph G′ in which still any two vertices in V are
joined by k pairwise edge-disjoint paths in G′.

We use Mader’s Lifting theorem in the following version of Frank [23].

Theorem 5.6 (Mader, Frank). Suppose that G = (V + v, E) is a finite connected multigraph
such that any two vertices in V are joined by k pairwise edge-disjoint paths in G. If v is not
incident with a bridge and d(v) 6= 3, there are bd(v)

2 c pairwise disjoint admissible pairs of edges
incident to v.

Two admissible pairs are called compatible if after lifting one of them, the second one is
still admissible in the resulting graph. In this context, we also call the liftings compatible.
Clearly no pair of edges becomes admissible after lifting another pair, if it has not been
admissible before. However, the opposite is possible. Not every two liftings are compatible:

v

Figure 10: Every two edges at v form an admissible pair, but the liftings are not compatible,
since lifting two pairs would destroy the 3-edge-connectivity.

The lifting graph L(G, v, k) is the graph whose vertices are the edges incident with v, and
two vertices ei, ej are adjacent if (ei, ej) is an admissible pair for edge-connectivity k. From
this perspective, Theorem 5.6 implies that under the above assumptions on G, if d(v) is even,
then L(G, v, k) has a perfect matching.
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Substantial research on the structure of the lifting graph was done by Ok, Richter and
Thomassen [36].

Theorem 5.7 (Ok, Richer and Thomassen). Let k ≥ 2 be even, and G = (V +v, E) be a finite
connected multigraph such that any two vertices in V are joined by k pairwise edge-disjoint
paths in G. If v is not incident with a bridge and d(v) ≥ 4, then:

• If d(v) is odd, then L(G, v, k) is either connected or it has two components, one of them
being a singleton and the other one a complete multipartite graph.

• If d(v) is even and k is odd then L(G, v, k) is either connected or it has two even
components, both of them being a complete multipartite graph.

• If d(v) is even and k is even, then L(G, v, k) is a connected complete multipartite graph.

• If d(v) = 5, then L(G, v, k) is either an isolated vertex plus a 4-cycle or a connected
graph. If k is even and L(G, v, k) is connected, then L(G, v, k) is a complete multipartite
graph.
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5.4 Immersions of finite graphs of prescribed connectivity

If G is a multigraph and H is a nother multigraph with vertices x1, x2, . . . , xn, then an
immersion of H in G is a subgraph of G consisting of n distinguished vertices y1, y2, . . . , yn

and a collection of pairwise edge-disjoint paths in G such that for each edge xixj in H there
is a corresponding path in the collection from yi to yj. This immersion is said to be on
{y1, . . . , yn}.

Thomassen proved in [44, Theorem 4] that for any finite set of vertices A in a 4k-
edge-connected locally finite multigraph G, there is an immersion in G of a finite Eulerian
2k-edge-connected multigraph on A:

Theorem 5.8. [44] Let k be a natural number, G = (V,E) be a 4k-edge-connected multigraph
and A ⊆ V be a finite set of vertices. Then G contains an immersion of a finite Eulerian
2k-edge-connected multigraph with vertex set A.

Our aim is to find a special immersion that reflects the original edge-connectivity in A.
For a multigraph H and a set A ⊆ V (H), we say that A is k-edge-connected in H, if

λH(a, b) ≥ k for all distinct a, b ∈ A.
Further we say for an orientation ~H of H that A is k-arc-connected in ~H, if for every two

distinct vertices x, y in A, there are k arc-disjoint directed paths in ~H from x to y and from y

to x.

Definition 5.9. A set A ⊆ V (G) in a 2k-edge-connected multigraph G is called immersible
for edge-connectivity 2k if there is a set X containing exactly one vertex of each component
of G− A with a boundary of odd size and if G contains an immersion of a finite multigraph
H on A ∪X with the following properties:

(i) dH(x) = 3 for all x ∈ X and

(ii) A is 2k-edge-connected in H.

We call a pair (ei, ej) of boundary-edges of an ω-boundary-linked set B ⊆ V B-admissible,
if the pair (ei, ej) becomes admissible after contracting B.

For a multigraph G = (V,E) and an ω-boundary-linked set B ⊆ V with finite boundary
e1, ..., eq of size q, we define aB-lifting as a set of disjointB-admissible pairs {(ei1 , ej1), (ei2 , ej2), ..., (eip , ejp)}
of edges in the boundary of B with p = q

2 if q is even and p = q−3
2 if q is odd such that

the lifting of all pairs in this set is compatible. Note that recursively applying the lifting
Theorem 5.6 implies that there is always at least one B-lifting for each such B.
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Definition 5.10. We call a boundary linked set B with boundary of size q strongly boundary-
linked in G if it satisfies the following property:

• If q is even, then there is a B-lifting, for which there is a set of edge-disjoint paths in
G[B], each of them connecting the edges of one of its pairs, and

• If q is odd, then there is a B-lifting, for which there is a vertex x in B and a set of
q−3

2 + 3 edge-disjoint paths in G[B], q−3
2 of them connecting the edges of one of those

pairs, and 3 of them between x and one of the three edges f1, f2 or f3 that are not in
the B-admissible pairs.

Proposition 5.11. [44] Every boundary-linked set with a boundary of even size in a 2-edge-
connected multigraph G is strongly boundary-linked in G.

With a deeper analysis of the lifting graph [2], Amena Assem showed the following in
June 2023:

Proposition 5.12. [3] Every boundary-linked set with a boundary of odd size in a 4-edge-
connected multigraph G is strongly boundary-linked in G.

Proof. The statement is implied by Lemma 3.1 in [3]

However, this result was not available by the time of my research, so we will give a direct
proof in the next section only for a boundary of size 5.

Unfortunately, it is not sufficient for a set A to be immersible when all components of
G−A are strongly boundary linked, since after realising the linkage in a component with odd
boundary, due to the vertex of degree 3, the resulting graph is no longer 4-edge-connected.
However, after linking the boundary of a component of even degree as in Definition 5.10 we
keep the 2-edge-connectivity of the whole graph. Thus Lemma 5.11 can be applied multiple
times.

Proposition 5.13. Let k ≥ 2 be a natural number, G be a 2k-edge-connected locally finite
multigraph, and A be a finite set of vertices in G, such that every component of G − A

is boundary-linked and has a boundary of even size. Then G contains an immersion of a
2k-edge-connected finite multigraph H on A.

We omit the proof of Proposition 5.13, since it can be easily deduced from the proof of
the following Theorem:
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Theorem 5.14. Let k ≥ 2 be a natural number, G be a 2k-edge-connected locally finite
multigraph, and A be a finite set of vertices in G, such that every component of G − A is
strongly boundary-linked and exactly one component of G− A has a boundary of odd size.

Then the component with boundary of odd size contains a vertex x such that G contains
an immersion of a finite multigraph H on A ∪ {x} with the following properties:

(i) dH(x) = 3 and

(ii) A is 2k-edge-connected in H.

Proof. Since G is locally finite and A is finite, there are only finitely many components
B1, B2, ..., Bn of G−A. Without loss of generality, we assume that Bn is the component with
a boundary of odd size.

Starting with G0 = H0 := G, we define a sequence of immersions G0, G1, ..., Gn of
2k-edge-connected multigraphs H0, H1, ..., Hn, such that each Hi for i ∈ {1, ..., n− 1} satisfies:

(I1) V (Hi) = V (Hi−1) \ V (Bi)

(I2) A is 2k-edge-connected in Hi.

To obtain Gi from Gi−1, we link the boundary of B1 as in Definition 5.10 (see Lemma 5.11).
After we define V (Hi) = V (Hi−1)\V (Bi) and add for each linking path an edge in Hi instead,
Gi becomes an immersion of Hi. Per definition of the liftings is Hi still 2k-edge-connected.

Now Hn−1 is a 2k-edge-connected multigraph on A ∪ Bn. Since 2k ≥ 4, we can apply
Lemma 5.12 on Hi−1 to find a linkage in Bn according to Definition 5.10. Replacing Bn with
that linkage, we obtain an immersion on a finite multigraph H satisfying (i) and (ii) per
definition.
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5.5 Linking boundaries of size five

A set R of rays witnessing that a set B is boundary-linked is called a boundary-linking set.
For each boundary-linking-set R = {R1, R2, ..., Rq}, we define another graph M(R) with

vertex set {e1, ..., eq} and edges between every two vertices ei, ej if G[B] has a collection
of infinitely many pairwise disjoint paths joining Ri, Rj having no edges in common with
R1 ∪R2 ∪ ...∪Rq. In the context of a boundary-linking-set R of rays, we call a path between
two of them having no edges in common with R1 ∪R2 ∪ ...∪Rq an R-path. For an R-path P
between Ri and Rj , we call the unique ei − ej−path in Ri ∪Rj ∪ P an ei − ej−passage. Note
that after deleting the edges of a passage from B, it stays boundary-linked with a boundary
of size q − 2.

We will show Theorem 5.12 for the special case of a boundary of size 5. For the rest of
this section, let G be a 4-edge-connected multigraph and B be a boundary-linked set with
boundary of size 5. We will show that B is strongly boundary-linked.

Consider two rays Ri, Rj in a boundary-linking set R with

V (Ri) = {p0, p1, p2, ...}, E(Ri) = {p0p1, p1p2, ...},

V (Rj) = {q0, q1, q2, ...}, E(Rj) = {q0q1, q1q2, ...}.

Two R-paths P1 = pa, ...qb and P2 = pc, ...qd such that a ≤ c and b ≥ d, are called crossing.
The rays Ri, Rj in R are called interchangeable if there are two crossing R-paths between
them.

pa

pc qb

pa

pc qb

Figure 11: Two rays with crossing paths in the case b = d
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Remark 5.15. In the notation from above, whenever Ri, Rj are interchangeable, we can
exchange Ri with p0RipaP1qbRj and Rj with q0RjqdP2pcRi and obtain a new boundary-linking-
set R′ = {R′1, ..., R′q} such that R′n = Rn for all n 6= i, j and R′i begins with ei and contains a
tail of Rj and vice versa.

The proof of the following lemma is similar to the second proof of Menger’s Theorem in
[14, Theorem 3.3.1].

Lemma 5.16. Let G = (V,E) be a k-edge-connected multigraph and s ∈ V a vertex and
T ⊆ V be a set of vertices not containing s. For every set P = {P1, P2, ...Pm} of fewer
than k edge-disjoint s − T−paths, we can find another set {P ′1, P ′2, ...P ′k} of k edge-disjoint
s− T−paths such that each Pi for i ≤ m has the same endvertices as P ′i .

Proof. It is sufficient to show that we can find m+ 1 such paths. We apply induction after
|P1| ∪ |P2| ∪ ... ∪ |Pm|. It is clear that the induction starts for the empty set of paths, since G
is connected. Without loss of generality, we assume that each Pi meets T only in its endvertex.
Now let tm+1 be any vertex from T , which is not the endvertex of any path in P and let
Pm+1 be any s− tm+1−path avoiding the endvertices from P1, P2, ...Pm on T . If P1, P2, ...Pm+1

are edge-disjoint, we are done. If not, let ab be the last edge of Pm+1 on a path P ∈ P.
Define T ′ := T ∪ V (bPm+1 ∪ bP ) and P ′ := (P \ {P})∪ {Pb}. Since P ′ satisfies the induction
hypothesis, there is an extension P ′′ of m+ 1 edge-disjoint s−T ′−paths satisfying the lemma.
Let P ′′ be the path of P ′′ ending in b and P ′′m+1 be the path of P ′′ with an endvertex y outside
of the endvertices of the paths from P ′. If y /∈ bP , we can extend P ′′ by bP and P ′′m+1 by
yPm+1 (if y is not already in T ). Otherwise is y ∈ bP − b and we can extend P ′′ by bPm+1

and P ′′m+1 by yP to obtain the desired set of edge-disjoint paths.

Lemma 5.17. For each edge RiRj in M(R) are Ri and Rj either interchangeable or there is
a boundary-linking-set R′, which can be obtained from R by replacing the ray Ri with a ray
R′i such that R′ satisfies the following:

(R1) M(R′) ⊇M(R) and

(R2) there is a ray Rk ∈ R′ \ {R′i, Rj} from which there is an R′-path to R′i and an R′-path
to Rj.

Proof. Per assumption are there infinitely many edge-disjoint R-paths between Ri and Rj . Let
P1, P2, P3 be three of them. If two of them are crossing, then Ri and Rj are interchangeable
and we are done. Otherwise we define for each Pk the vertex vk as its endvertex on Ri and wk
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as its endvertex on Rj . Without loss of generality, we assume that v1, v2, v3 occur in order of
their index on Ri.

ei ej

v1

v2

v3

Ri

w1

w2

w3

Rj

P1

P2

P3

Now we define s = v2 and T = R1 ∪R2 ∪ ...∪Rq ∪P1 ∪P3 \ v̊1Ri̊v3 and apply Lemma 5.16
for the paths v2Riv1, v2Riv3 and P2.

We obtain four edge-disjoint s− T−paths, three of them have endvertices v1, v3 w2. Let
P ′1 be the v1 − v2−path and P ′3 the v2 − v3−path. Also we define P ′2 as the new path with
the same endvertices as P2. The fourth path P ′4 has any endvertex t ∈ T . Without loss of
generality, we assume that t is the only vertex of this path in T . We define R′i as a ray starting
at ei contained in Ri− v1Riv3 +P ′1 +P ′3 and obtain R′ from R by replacing Ri with R′i. Since
each ray in R′ has a tail in common with the corresponding ray in R, it is clear that (R1)
holds. It is left to show that in each possible case, either Ri and Rj are interchangeable or
(R2) holds:

• If t ∈ (R1 ∪R2 ∪ ...∪Rq) \ (Ri ∪Rj), say t ∈ Rk, then P ′4 is an R′-path between Ri and
Rk. Further does P ′2 ∪ P ′4 contain an R′-path between Rj and Rk, which implies (R2).

• If t ∈ Rj, then P ′2 and P ′4 are crossing.
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• If t ∈ P1, then v2P
′
4tP1w1 and P ′2 are crossing. The case t ∈ P3 is analogous.

• If t ∈ Riv1, then P ′4 ∪ P ′2 and P1 are crossing. The case t ∈ v3Ri is analogous.

Proposition 5.18. Every boundary-linked vertex set B with boundary of size at most 6 in a
4-connected multigraph is strongly boundary-linked.

Proof. The case of an even boundary size q is already shown in Proposition 5.11. Further it
is clear for q = 3, so it remains to show the proposition for q = 5.

Let again {e1, e2, e3, e4, e5} be the boundary of B and R = {R1, R2, R3, R4, R5} be any
fixed boundary-linking-set, each Ri with initial edge ei.

Further let L be the lifting graph on {e1, e2, e3, e4, e5}. From Theorem 5.7 follows that L
is either connected it has two components, one of them being a singleton and the other one a
complete multipartite graph. Together with Theorem 5.6 we conclude in the second case that
L consists of a singleton and a 4-cycle.

It remains to find a path P in B between an admissible pair of edges such that the
remaining three boundary-edges can still be connected in B − P .

If L and M(R) have an edge in common, we can define P as a passage and are done.

Claim 1. There is an edge eiej in L such that ei and ej have distance at most 2 in M(R).

To see this claim, let T be a spanning tree of M(R). Since T has 5 vertices, it is either a
path or a 4-star or a 3-star in which one edge is subdivided once. In the second or third case,
we conclude directly from Theorem 5.6 that at least one of the admissible pairs has distance
of at least 2 in T and hence also in M(R). So lets us have a look at the case in which T is a
path. If L is connected, then the middle vertex of the path has at least one neighbor in L,
which has distance of at most 2 in T . If not, then the middle vertex is isolated in L and the
other 4 vertices form a 4-circle which again implies that two of them have distance of at most
2 in T and hence also in M(R).

Without loss of generality let e2 and e4 the two boundary edges according to Claim 1 and
e3 the boundary edge on the shortest M(R)-path between them.

If R2 and R3 or R3 and R4 are interchangeable, then according to Lemma 5.15, we could
find another set of rays R′ for which e2 and e4 are adjacent in M(R′), so we are done.

In any other case, we assume after possibly applying Lemma 5.17 to the pairs (R2, R3)
and (R4, R3) that there is another ray, say R1, in R with R−paths to R2 and R3 and another
ray Rx with R-paths to R3 and R4. We distinguish the two cases Rx = R1 and Rx = R5.
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We name the vertices and edges of R3 as follows:

V (R3) = {v0, v1, v2, ...},

E(R3) = {v0v1, v1v2, ...},

If Rx = R5, then let P1 be an R-path between R1 and R3 and P5 be an R-path between
R5 and R3. Let vm and vn be the endvertices on R3 from these paths with m ≤ n. Now
since e2e3, e4e3 ∈ M(R), there are infinitely many edge-disjoint R-paths between R2 and
R3 and R4 and R3. Since none of those pairs are interchangeable, also their endvertices
on R3 are different. Choose such paths P2 and P4 edge-disjoint from R3vn ∪ P1 ∪ P5 and
with endvertices vo and vp on R3 such that m ≤ n < o ≤ p. Now the path contained in
R2 ∪R4 ∪ P2 ∪ voR3vp ∪ P4 between e2 and e4 is the desired path since the remaining three
boundary edges can still be connected through R3vn ∪ P1 ∪ P5 ∪R1 ∪R5.

e1 e2 e3 e4 e5

R1 R2

vm

vn

vo

vp

R3

P1

P5

P2

P4

R4 R5

If Rx = R1, then we look again at the lifting graph L. Again we assume that there is no
R-path between two rays from which their initial edges are adjacent in L. This implies that
e1e2, e1e3, e1e4, e2e3, e3e4 /∈ E(L), thus dL(e1) ≤ 1 and dL(e3) ≤ 1. This excludes the case of L
containing a 4-cycle. It is left the case that L is connected. This implies that e3e5, e1e5 ∈ E(L),
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further do we already know that e2e4 ∈ E(L). Since now dL(e1) = dL(e3) = 1, it follows that
e2e5 or e4e5 is an edge of L as well. We assume without loss of generality that e2e5 ∈ L. Now
since M(R) is connected, e5 has at least one neighbor in M(R). The only possible neighbor
which is not already in E(L) is e4. Thus R5 and R4 cannot be interchangeable (otherwise we
could exchance the rays in a way that e5 had another neighbor). Again applying Lemma 5.17
to the pair (e5, e4) gives us another boundary-linked set of rays R′ such that there is a R′-path
from the ray starting at e5 to any other ray then the ray starting at e4. This completes the
proof.

108



5.6 Extending orientations of Eulerian subgraphs

And indeed, as our last ingredient, we note that Nash-Williams’ orientation theorem also
holds in the following, slightly stronger form, improving the bounds from [44, Theorem 6].

For two vertices x, y in a multigraph G, we write λ(x, y) for maximum number of edge-
disjoint x− y−paths, and λ∗(x, y) for the greatest even number ≤ λ(x, y). Further, for two
vertices x, y in an oriented multigraph ~G define α(x, y) as the maximum number of edge-
disjoint directed x− y−paths. Let us say an orientation ~G of a multigraph G is connectivity
preserving, if

α(x, y) ≥ λ∗(x, y)
2

for any two distinct vertices x, y ∈ G.

Theorem 5.19. Let G be a finite multigraph and H ⊆ G an open or closed Eulerian subgraph.
Then any consistent orientation ~H of H can be extended to a connectivity preserving orientation
of G.

Proof. An odd vertex pairing of a finite multigraph G = (V,E) is a partition P of the vertices
of odd-degree in G into sets of size two. Interpreting P as edges, we obtain an Eulerian
multigraph G′ = (V,E ′) where E ′ = E ∪̇P . Then H ⊆ G ⊆ G′. Nash-Williams showed in
[34, Theorem 2] that every multigraph G = (V,E) has an odd-vertex pairing P such that for
every two x, y ∈ V and every bipartition (X, Y ) of V with x ∈ X and y ∈ Y holds:

(?) |E(X, Y )| − |P (X, Y )| ≥ λ∗(x, y).

We claim that with such an odd-vertex pairing, any consistent orientation ~G′ of the
Eulerian multigraph G′ that extends ~H restricts to a connectivity preserving orientation ~G of
G as desired.

For two vertices a, b with edge-connectivity λ(a, b), let (A,B) be a partition of G inducing
a minimal edge-cut between a and b. Since ~G′ is balanced, it follows that

| ~E(A,B)|+ |~P (A,B)| = |E(A,B)|+ |P (A,B)|
2 .

However, since |~P (A,B)| ≤ |P (A,B)|, it follows that

α(a, b) = | ~E(A,B)| ≥ |E(A,B)|+ |P (A,B)|
2 −|P (A,B)| = |E(A,B)| − |P (A,B)|

2
(?)
≥ λ∗(a, b)

2
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5.7 Main results

We are now ready to extend Nash-Williams’ orientation theorem to infinite multigraphs with
at most countably many ends, from which at most one end has odd degree. As mentioned in
the introduction, our method of proof adapts Thomassen’s [44, Theorem 7].

Theorem 5.20. Every 2k-edge-connected locally finite multigraph with at most countably
many ends, from which at most one end has odd degree, has a k-arc-connected orientation.

Proof. Enumerate V = {v0, v1, ...}. Beginning with A0 = {v0} and any directed cycle
~W0 ⊆ G containing v0, we will construct a sequence of finite, 2-edge connected subgraphs
W0 ⊆ W1 ⊆ W2 ⊆ · · · of G with compatible orientations ~W0 ⊆ ~W1 ⊆ ~W2 ⊆ · · · and sets of
vertices A0 ⊆ A1 ⊆ A2 · · · such that for all n ≥ 0:

(i) {v0, . . . , vn} ⊆ An ⊆ V (Wn).

(ii) For every component B of G \ An, all but possibly at most one exceptional vertex have
in-degree equalling out-degree in ~Wn, with the exceptional vertex having a difference of
1 between in- and out-degree.

(iii) An is k-arc-connected in ~Wn.

Once the construction is complete, we claim that properties (i) and (iii) imply that any
orientation ~G of G extending ~W := ⋃

i∈N
~Wi is k-arc-connected. Indeed, for every two distinct

vertices x, y in G, by (i) there is an i ∈ N with x, y ∈ Ai, and so by (iii) by there are k
arc-disjoint directed paths in ~Wi from x to y and from y to x. Since ~Wi ⊆ ~W as oriented
subgraphs, these directed paths are directed also in ~W , and hence in ~G, as desired.

Thus, it remains to describe the inductive construction, and this is where property (ii)
is needed. So suppose inductively that we have already constructed An and ~Wn according
to (i)–(iii). Since G has countably many ends, we may apply Theorem 5.5 to the set
A′n+1 := V (Wn) ∪ {vn+1} to obtain a finite set An+1 ⊇ A′n+1 such that the components of
G−An+1 are boundary-linked sets. Since there is at most one end of odd degree per assumption,
we obtain at most one boundary linked set with odd boundary. Applying Proposition 5.13 or
Theorem 5.14 yields an empty or one-elemented set Xn+1 and also an immersion Wn+1 on
An+1 ∪ Xn+1 in G of a finite multigraph H for which An is 2k-edge-connected in H (with
dH(x) = 3 for x ∈ Xn+1, if x exists). Since each of the paths in Wn+1 that corresponds to
an edge of H is either an edge of Wn or is internally disjoint from Wn, we may assume that
Wn ⊆ Wn+1 and Wn ⊆ H.
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Now contract An in H to a dummy vertex v, and call the resulting multigraph H̃. For
each component B of G \ An, let H̃ � B be the subgraph of H̃ induced by the dummy vertex
v together with V (B) ∩ V (H). Property (ii) implies that all the edges of ~Wn inside B form
a consistently oriented (open or closed) Eulerian subgraph of H̃ � B. Hence we can apply
Theorem 5.19 to each H̃ � B to extend the orientation of this subgraph to a connectivity
preserving orientation of all of H̃ � B, making An k-arc-connected in this orientation. After
doing this for every component B of G− An, we obtain an orientation ~H of H.

We claim that with this orientation, An is also k-arc-connected in ~H: Indeed, let E(X, Y )
be any bond in H. If An lies completely on one side X or Y , then the bond restricts to a cut
in some H̃ � B, and since An k-arc-connected in its orientation, there exist at least k edges
oriented from X to Y , and also from Y to X. And if An meets both X and Y , then the cut
restricts to a cut of ~Wn separating two vertices from An, and so by (iii) there again exist at
least k edges oriented from X to Y , and also from Y to X in ~Wn, and hence in ~H. Together,
it follows from Menger’s theorem that An is indeed k-arc-connected in ~H.

Finally, we now lift this orientation of ~H to an orientation ~Wn+1 of the immersion Wn+1

so that ~Wn+1 satisfies (i)–(iii). Indeed, for each oriented edge in ~H, we simply orient the
corresponding path in the immersion Wn+1 accordingly. Then ~Wn ⊆ ~Wn+1 as directed
multigraphs, and (i) holds by construction. To see that property (ii) holds, note that the
edges incident with a vertex v in V (Wn+1) \ (An+1 ∪X) belong to a collection of edge-disjoint,
forwards oriented paths containing v in their interior, and hence have equal in- and out-degree.
And if for a component B there is the vertex x in B ∩X of degree 3 in H, then since H is
2-edge-connected and ~H is connectivity preserving, it follows that there is at least one ingoing
and one outgoing edge at x in H, and so x has a difference of 1 between in- and out-degree in
~Wn+1. Finally, property (iii) follows at once from the fact that ~Wn+1 is an immersion of the
multigraph ~H in which An+1 was k-arc connected.

Corollary 5.21. Every one-ended 2k-edge-connected locally finite multigraph has a k-arc-
connected orientation.

Theorem 5.22. Every 4k-edge-connected multigraph has a k-arc-connected orientation.

Proof. By Theorem 5.1, only the infinite case is open. Next, Thomassen has shown that
every infinite 4k-edge-connected multigraph has a decomposition into locally finite, 4k-edge-
connected subgraphs [44, §7 & §8]; hence, it suffices to prove the assertion for locally finite
multigraphs. Further, by Egyed’s result [20], we may assume that k ≥ 2.

In the last theorem, the restriction to countably many ends, from which at most one end
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has odd degree, came from the immersion Theorem 5.14 we used. Since we have a 4k-edge-
connected multigraph, we can apply the original immersion Theorem 5.8 from Thomassen
instead. Apart from that, we do the same proof as in Theorem 5.20.
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6 English summary

Chapter 3: End spaces and tree-decompositions
Section 3.3: We show that the graphs for which there is a tree-decomposition displaying all

ends are exactly the graphs with a normal spanning tree. We further state some topological
characterisations.

Section 3.4: We introduce the concept of Envelopes. Envelopes are a powerful tool to find
for any subgraph of a graph another subgraph with the same ends in the closure in |G| but
with finite adhesion. As a strengthening of the original envelope theorem from Max Pitz, we
show that any set consisting of vertices and ends in a connected graph G has a connected,
end-faithful envelope.

Section 3.5: We show that under certain topological circumstances, we can find an upwards
connected tree-decomposition of finite adhesion with connected parts, which homeomorphically
displays a given set of ends, such that the boundary of every part contains at most one end
from another given set of ends.

Section 3.6: We characterise in several ways which sets of ends from a given graph can be
displayed by a tree-decomposition. The most notably results are that these are the sets Ψ for
which |G|Ψ is completely metrizable, which is also equivalent to the property of Ψ being Gδ

in |G|.
Section 3.7: We show that a set Ξ of ends in a graph G can be distributed, whenever

V (G) ∪ Ξ has a σ-discrete expansion in |G|.
Section 3.8: We show that the graphs with a tree-decomposition distributing all ends are

exactly those graphs for which each end has a rank.
Section 3.9: We deduce from our research the result from Carmesin that every connected

graph G has a tree-decomposition of finite adhesion with connected parts that displays
precisely the undominated ends of G. Further we give a shorter proof of Carmesins result that
no binary tree with uncountably many tops admits a tree-decomposition of finite adhesion
distinguishing all its ends.

Chapter 4: Hamilton circles in powers of infinite graphs
Section 4.2.1: We characterize the end-space of third powers of rayless graphs with an

equivalence relation on the vertices of infinite degree.
Section 4.2.2: We state and prove a sufficient condition for a rayless graph to have no

Hamilton circle in their third power.
Section 4.2.3: We strengthen the original theorem for Hamilton cycles in the third power
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of finite graphs slightly in a way that allows us more control about some edges.
Section 4.2.4: We construct Hamilton circles for all rayless graphs with one end in their

third power, which are not a counterexample as characterized before. Further we keep the
control about some edges to use the result from this section for a recursive construction.

Section 4.2.5: We construct a Hamilton circle for all rayless graphs that remain after
eliminating all possible counterexamples. This leads to a final characterisation.

Section 4.3.1: We characterize the end-space of fourth and higher powers of infinite trees
with an equivalence relation of the vertices of infinite degree.

Section 4.3.2: We prove with a recursive construction that all fourth and higher powers of
infinite trees have a Hamilton circle.

Chapter 5: Nash Williams orientation theorem for infinite graphs
Section 5.2: We show that we can find for any finite set of vertices A′ in a connected locally

finite multigraph G with countably many ends a finite superset A, such that the components
of G− A are boundary linked sets.

Section 5.3: We introduce Mader’s lifting theorem and state some results about the lifting
graph from Ok, Richter and Thomassen.

Section 5.4: We introduce the concept of immersions and show that we can find for a
vertex set A in a multigraph G under certain circumstances a special immersion that reflects
the original edge-connectivity in A.

Section 5.5: We give a construction for a linking of boundary-linked sets with boundary
of size 5 as needed for the special immersion defined in the section before.

Section 5.6: We show that we can extend any open or closed eulerian subgraph in a finite
multigraph to a connectivity preserving orientation of the whole graph.

Section 5.7: We show that Nash-Williams’ orientation theorem holds for locally finite
multigraphs with at most countably many ends, from which at most one end has odd degree.
Further we show that every 4k-edge-connected multigraph has a k-arc-connected orientation.
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7 Deutsche Zusammenfassung

Kapitel 3: End spaces and tree-decompositions
Abschnitt 3.3: Wir zeigen, dass die Graphen mit einer Baumzerlegung, die alle En-

den darstellt (displayed), genau die Graphen sind, die einen normalen Spannbaum haben.
Zusätzlich beweisen wir einige topologische Charakterisierungen.

Abschnitt 3.4: Wir geben eine Einführung in das Konzept der Envelopes. Envelopes
sind ein wesentliches Werkzeug, um zu jedem Teilgraphen eines Graphen einen weiteren
Teilgraphen mit endlicher Adhäsion zu finden, der die selben Enden in seinem topologischen
Abschluss hat. Aufbauend auf dem ursprünglichen Envelope Theorem von Max Pitz zeigen
wir, dass jede Menge von Ecken und Enden in einem zusammenhängenden Graphen einen
zusammenhängenden, endentreuen Envelope hat.

Abschnitt 3.5: Wir zeigen, dass unter gewissen topologischen Umständen eine Baum-
zerlegung mit endlicher Adhäsion und zusammenhängenden Verzweigungsmengen existiert,
die aufsteigend-zusammenhängend (upwards connected) ist, eine vorgegebene Endenmenge
homöomorph darstellt und in der in jeder Verzweigungsmenge höchstens ein weiteres Ende
lebt.

Abschnitt 3.6: Wir charakterisieren die Mengen von Enden eines gegebenen Graphen, die
durch eine Baumzerlegung dargestellt werden können, auf verschiedene Weisen. Insbesondere
zeigen wir, dass dies die Mengen von Enden Ψ sind, für die |G|Ψ vollständig metrisierbar ist.
Dies ist ebenso äquivalent dazu, dass Ψ eine Gδ-Menge in |G| ist.

Abschnitt 3.7: Wir zeigen, dass eine Menge von Enden Ξ in einem Graphen G verteilt
(distributed) werden kann, falls V (G) ∪ Ξ eine σ-diskrete Expansion in |G| hat.

Abschnitt 3.8: Wir zeigen, dass die Graphen mit einer Baumzerlegung, die alle Enden
verteilt, genau die Graphen sind, für die jedes Ende einen Rang hat.

Abschnitt 3.9: Wir folgern das Theorem von Carmesin, dass jeder Graph G eine Baumzer-
legung mit endlicher Adhäsion und zusammenhängenden Zerlegungsmengen hat, die genau
die undominierten Enden darstellt. Weiterhin beweisen wir, dass kein Binärbaum mit über-
abzählbar vielen Tops eine Baumzerlegung mit endlicher Adhäsion hat, die alle Enden
unterscheidet.

Kapitel 4: Hamilton circles in powers of infinite graphs
Abschnitt 4.2.1: Wir charakterisieren den Endenraum der dritten Potenz von strahlenlosen

Graphen mithilfe einer Äquivalenzrelation auf den Ecken von unendlichem Grad.
Abschnitt 4.2.2: Wir definieren und beweisen eine hinreichende Bedingung dafür, dass ein
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strahlenloser Graph keinen Hamiltonkreis in seiner dritten Potenz hat.
Abschnitt 4.2.3: Wir verstärken das ursprüngliche Theorem über Hamiltonkreise in der

dritten Potenz von endlichen Graphen auf eine Weise, die uns mehr Kontrolle darüber erlaubt,
welche Ecken für einen Hamiltonkreis verwendet werden.

Abschnitt 4.2.4: Wir konstruieren Hamiltonkreise für alle strahlenlosen Graphen mit nur
einem Ende in der dritten Potenz, die nicht zu den vorher charakterisierten Gegenbeispielen
gehören. Außerdem können wir in unserem Hamiltonkreis einige Kanten festlegen, die wir
später für eine rekursive Konstruktion benötigen.

Abschnitt 4.2.5: Wir konstruieren einen Hamiltonkreis für alle strahlenlosen Graphen,
die nicht zu den vorher charakterisierten Gegenbeispielen gehören. Damit ist unsere finale
Charakterisierung vollständig.

Abschnitt 4.3.1: Wir charakterisieren den Endenraum von der vierten und höheren
Potenzen von strahlenlosen Graphen mithilfe einer Äquivalenzrelation auf den Ecken von
unendlichem Grad.

Abschnitt 4.3.2: Wir beweisen mit einer rekursiven Konstruktion, dass alle vierten und
höheren Potenzen von abzählbaren Bäumen einen Hamiltonkreis haben.

Kapitel 5: Nash Williams’ orientation theorem for infinite graphs
Abschnitt 5.2: Wir zeigen, dass wir für jede endliche Menge A′ in einem zusammenhän-

genden, lokal endlichen Graphen G mit abzählbar vielen Enden eine endliche Obermenge A
finden, sodass die Komponenten von G− A boundary linked sind.

Abschnitt 5.3: Wir stellen Mader’s lifting Theorem vor und geben einige Aussagen über
den Lifting Graph von Ok, Richter und Thomassen an.

Abschnitt 5.4: Wir definieren Immersionen und zeigen, dass wir für eine Eckenmenge A in
einem Multigraphen G unter gewissen Umständen eine spezielle Immersion finden, die den
Kantenzusammenhang in A erhält.

Abschnitt 5.5: Wir konstruieren für Mengen, die boundary-linked mit Boundary der Größe
5 sind ein linking in dem Sinne, wie es zur Konstruktion der speziellen Immersion gebraucht
wird.

Abschnitt 5.6: Wir zeigen, dass wir jede offene oder geschlossene Eulertour in einem
endlichen Multigraphen zu einer kantenzusammenhangserhaltenden Orientierung des gesamten
Graphens ergänzen können.

Abschnitt 5.7: Wir zeigen Nash-Williams’ orientation Theorem für lokal endliche Multi-
graphen mit höchstens abzählbar vielen Enden, von denen höchstens eines ungeraden Grad
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hat. Weiterhin zeigen wir, dass jeder 4k-kanten-zusammenhängende Multigraph eine k-arc-
zusammenhängende Orientierung hat.
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Chapter 3: This chapter is based on a paper of Thilo Krill, Max Pitz and me.
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