Wirksamkeit von topischem Ciclosporin A in der Behandlung von Glaukompatienten nach tiefer Sklerektomie

Dissertation
zur Erlangung des Grades eines Doktors der Zahnmedizin
an der Medizinischen Fakultät der Universität Hamburg
vorgelegt
von

Iyad Zuheir Said Afaneh
geboren am 19.11.1992 in Hamburg

Hamburg 2023
Angenommen von der
Medizinischen Fakultät der Universität Hamburg am: 26.09.2023

Veröffentlicht mit Genehmigung der
Medizinischen Fakultät der Universität Hamburg.

Prüfungsausschuss, der Vorsitzende: Herr Prof. Dr. Olaf Hellwinkel

Prüfungsausschuss, zweite Gutachterin: Frau Prof. Dr. Maren Klemm
Inhaltsverzeichnis

1. Einleitung ..5
 1.1 Primär chronisches Offenwinkelglaukom ... 6
 1.2 Glaukomdiagnostik ... 7
 1.2.1 Intraokularer Druck ... 7
 1.2.2 Applanatonstonometrie ... 8
 1.2.3 Gesichtsfelduntersuchung ... 9
 1.2.4 Untersuchung des Sehnervenkopfes (Papille) ... 9
 1.3 Medikamentöse Therapie ... 10
 1.3.1 Kammerwasser-abflussverbessernde Medikamente 10
 1.3.2 Produktionsenkende Medikamente .. 11
 1.3.3 Konservierungsmittel .. 12
 1.4 Chirurgische Glaukomtherapie ... 13
 1.4.1 Trabekulektomie ... 14
 1.4.2 Tiefe Sklerektomie .. 15
 1.4.3 Postoperative Therapie .. 18
 1.4.4 Kortikosteroide ... 18
 1.5 Ciclosporin A (CyA) ... 20
 1.6 Einfluss der Wundheilung und Vernarbung auf den Operationserfolg 24
 1.7 Hypothese und Ziel der Arbeit ... 28

2. Material und Methoden ... 29
 2.1 Ausgewertete Glaukomparameter ... 30
 2.1.1 Applanatorische Druckmessung (IOD) .. 31
 2.1.2 Visus .. 31
 2.1.3 Gesichtsfelduntersuchung ... 32
 2.1.4 Heidelberger Retina Tomografie (HRT) .. 32
 2.1.5 Ophthalmologische Medikation prä- und postoperativ 32
2.1.6 Nachbehandlungen

2.1.7 Postoperative Komplikationen

2.1.8 Definition Erfolg

2.2 Methoden der statistischen Auswertung

3. Ergebnisse

3.1 Deskriptive Statistik

3.2 Augeninnendruck (IOD)

3.3 Drucksenkende Wirkstoffe

3.4 Visus

3.5 Gesichtsfeld

3.6 Postoperative Komplikationen

3.7 Goniopunktion und weitere drucksenkende Eingriffe

4. Diskussion

5. Zusammenfassung

6. Abkürzungsverzeichnis

7. Tabellenverzeichnis

8. Abbildungsverzeichnis

9. Literaturverzeichnis

10. Danksagung

11. Lebenslauf

12. Eidesstattliche Erklärung
1. Einleitung

Es gibt eine Vielzahl von operativen Behandlungsansätzen sowie von postoperativ unterstützenden Maßnahmen. Die tiefe Sklerektomie (TS) ist eine schonende Operationstechnik, bei der ein künstlicher Kammerwasserabfluss geschaffen wird, indem ein tiefer Skleralappen exzidiert und der Schlemmsche Kanal in diesem Bereich entdacht wird. Hierdurch verringert sich der Abflusswiderstand im Trabekelwerk und im Schlemmschen Kanal ohne eine Eröffnung der Vorderkammer. Durch dieses nichtpenetrierende Verfahren konnte die postoperative
Komplikationsrate im Vergleich zu penetrierenden Verfahren wie der Trabekulektomie (TE) deutlich
gesenkt werden und die tiefe Sklerektomie hat sich als effektive drucksenkende Maßnahme etablieren können (Klemm, 2015, Reznicek et al., 2016).

1.1 Primär chronisches Offenwinkelglaukom

Ein konsekutiv erhöhter IOD kann einerseits die Folge einer im Verhältnis zum Abfluss relativen Überproduktion oder andererseits eines gestörten Abflusses des Kammerwassers sein. Bei der häufigsten Form der Glaukomerkrankungen, dem pri- mär chronischen Offenwinkelglaukom (PCOWG), sind sogenannte Plaques
unter

1.2 Glaukomdiagnostik

In der Glaukomdiagnostik ist die kontinuierliche Beobachtung und Untersuchung des IOD, des Kammerwinkels, der Papillenexkavation und des Gesichtsfeldes (GF) essentiell.

1.2.1 Intraokularer Druck

Ein physiologischer IOD ist das Resultat eines Gleichgewichtes zwischen Kammerwasserproduktion und -abfluss und liegt im Mittel bei augengesunden Patienten zwischen 10mmHg und 21mmHg, im Durchschnitt bei 16 ±2,5 mmHg (Plange, 2017). Ist beides konstant im Gleichgewicht, so ist auch der IOD konstant. Die Sekretionsmenge bestimmt den Einstrom des Kammerwassers, der Strömungswiderstand in den Abflussstrukturen sowie der episklerale Venendruck den Abfluss (Grüb and Mielke, 2004). Das Kammerwasser entstammt dem Blutplasma der Kapillaren des Ziliarkörpers. Das sehr proteinreiche Filtrat gelangt durch die gefensterten Kapillaren in das Stroma der Ziliarkörperfortsätze (Ultrafiltration), aus denen wiedenum die löslichen Substanzen des Filtrats über die Doppelmembran des Ziliarepithels transportiert werden. Resultierend daraus entsteht ein osmotischer Gradient, der den passiven Einstrom von Wasser in die Hinterkammer erleichtert (Göbel et al., 2011, Kanski et al., 2012). Von dort führt der Weg entlang der Linse durch die Pupille bis in die Vorderkammer. Das Kammerwasser ist insofern essentiell, weil es den Stoffwechsel von Auge und Linse, der Hornhaut und der anliegenden Strukturen mit Nährstoffen und
Sauerstoff versorgt (Shields and Kriegstein, 1993,

1.2.2 Applanationstonometrie

al., 2016).
1.2.3 Gesichtsfelduntersuchung

1.2.4 Untersuchung des Sehnervenkopfes (Papille)

der Nervenfaseranzahl zur Vergrößerung der

Aufgrund dieser wichtigen Aspekte ist die Laser-Scanning-Tomographie in der Glaukomdiagnostik ein hilfreiches zusätzliches Modul. Insbesondere im Rahmen von Früherkennung und Verlaufskontrollen, spielt diese Untersuchungsmethode eine Rolle (Scheuerle et al., 2003, Hoffmann et al., 2009).

1.3 Medikamentöse Therapie

1.3.1 Kammerwasser-abflussverbessernde Medikamente

Folgende Substanzklassen werden zur Besserung des Kammerabflusses verwendet:
• Parasympathomimetika
Prostaglandinderivate

1.3.2 Produktionssenkende Medikamente

Diese Substanzklassen wirken durch eine Verminderung der Kammerwasserproduktion:

- Betablocker
- Alpha-2-Agonisten
- Carboanhydrasehemmstoffe

1.3.3 Konservierungsmittel

Folge, dass eine langfristige medikamentöse Therapie vor glaukomchirurgischen Operationen durch die Erhöhung von Entzündungsmediatoren das Risiko einer Vernarbung des
Sickerkissens erhöht und somit zu einem Versagen der chirurgischen Therapie führen kann (Sherwood et al., 1989, Terai et al., 2009, Pisella et al., 2004).

1.4 Chirurgische Glaukomtherapie

Als Methode der ersten Wahl werden die TE als Goldstandard und auch die TS angewandt. Bei beiden Verfahren wird auf unterschiedliche Art und Weise ein dauerhafter künstlicher Abflussweg geschaffen, um Kammerwasser aus dem Auge hin- aus zu transportieren (Dietlein et al., 2009). In der Glaukomchirurgie werden zudem alternative Verfahren, wie die sogenannte Zyklophotokoagulation (CPC), angewandt. Diese senkt die Kammerwasserproduktion durch eine Destruktion des kammerwasserproduzierenden Ziliarkörperepithels (Dietlein et
al., 2009). Ferner können auch minimalinvasive Verfahren verwendet werden. Hierbei werden kleine
Implantate (Stents) mittels eines Injektors in das Trabekelmaschenwerk platziert und sollen so für eine Verbesserung des Kammerwasserabflusses sorgen (Manasses and Au, 2016).

1.4.1 Trabekulektomie

den Zellyklus ein und verhindert die Aufnahme von der Base Thymidin in die DNA
MMC ist ein Alkaloid, welches die DNA-abhängige RNA-Synthese inhibiert (Gaskin et al., 2014). Die Gabe von MMC und 5-FU kann sowohl intra- als auch postoperativ erfolgen, mit dem Hauptziel die Funktion des Sickerkissens aufrechterhalten und die postoperative Vernarbung zu verhindern. Weitere Komplikationen können in Form von Aderhautschwellungen, Hypotonie, Vorderkammerabflachungen, Hyphäma, Kataraktentwicklung, Endophthalmitis und auch in sehr seltenen Fällen die Ausbildung eines malignen Glaukoms auftreten (Picht et al., 2001a).

1.4.2 Tiefe Sklerektomie

noch bestehende Descemet-Fenster mittels Diffusion in den subkonjunktivalen Raum abfließen

Bestreben eine einfachere und komplikationsärmere postoperative Wundmodulation zu erreichen. Der Grund

Ein entscheidender Faktor sowohl nach TE und TS, ist eine unerwünschte frühzei- tige Vernarbung des Sickerkissens. Diese tritt deutlich häufiger nach der TE auf. Durch die Gabe von Antimetaboliten, wie meistens 5-FU und MMC, sowohl intra- als auch postoperativ wird versucht, die Vernarbungstendenz zu unterbinden (Shaarawy et al., 2004, Klemm, 2015). Nach einer TS kann, um die starken
Nebenwirkungen von Antimetaboliten zu umgehen, eine postoperative Gabe von CyA-AT bei speziellen Patienten verabreicht werden (Klemm, 2015).

1.4.3 Postoperative Therapie

Bei der postoperativen Nachsorge nach TE und TS werden meist IOD, Verschluss der Bindehaut, Vorderkammertiefe, Fundus und Zustand des geschaffenen Sickerkissens beurteilt (Klink et al., 2006b). Der Zeitpunkt der Sickerkissenvernarbung und die damit einhergehenden Folgen entscheiden im postoperativen Verlauf über Misserfolg und Erfolg der Operation (Khairy et al., 2005, Klink et al., 2012).

1.4.4 Kortikosteroide

Kortikosteroide werden zur Anwendung in der Ophthalmologie am häufigsten in Form von Augentropfen verwendet. Durch Konserverungsmittel, wie beispielsweise das BAK, und der Verwendung von Mikrosuspensionen erhöht sich die
Kon-taktzeit am Auge und folglich wird eine größere Vorderkammerkonzentration von

Kortikosteroïden, steken die unerwünschten Nebenwirkungen
und Komplikationen heraus. Folglich wäre eine alternative Therapie mit einem ähnlichen Wirkungspotenzial, aber weniger Nebenwirkungen, wünschenswert.

1.5 Ciclosporin A (CyA)

CyA ist ein neutrales, lipohiles und zyklisches Polypeptid aus 11 Aminosäuren und praktisch nicht wasserlöslich (Lallemand et al., 2017, Stähelin, 1996). Durch seinen lipophilen Charakter ist CyA dagegen löslich in fetten Ölen oder organischen Lebensmitteln. Ölige CyA-Augentropfen werden zudem auch besser
resorbiert und vertragen (Lallemand et al., 2017). Der pharmakologische Effekt von CyA entsteht
eine sehr präzise Wirkung auf das Immunsystem (Dunn et al., 2001).

Bei lokaler Anwendung am Auge wird CyA vor allem von der Hornhaut (Kornea) aufgenommen. Dort lagert sich CyA in den unterschiedlichen Schichten an, abhängig von der jeweiligen Zellldichte. Es ergibt sich in etwa nach Applikation und Aufnahme von CyA ein Anteil von 60% im Epithel, etwa 30% im Stroma
und etwa 11% im Endothel der Hornhaut (Fahr, 1993). Es wird angenommen, dass topisches

Die Nebenwirkungen der CyA Therapie sind im Allgemeinen sehr stark dosisabhängig. Da CyA aus der Transplantationsmedizin stammt und dort oft angewandt wird, konnten bei Transplantationspatienten, auch bedingt durch die systemische Gabe Nebenwirkungen häufiger und ausgeprägter festgestellt werden (Donnenfeld and Pflugfelder, 2009). Bei systemischer Gabe von CyA treten vor allem uner-
wünschte Nebenwirkungen in Form von Nierenfunktionsstörungen auf. Zudem können bei systemischer Therapie weitere Nebenwirkungen wie Hepatotoxizität,

1.6 Einfluss der Wundheilung und Vernarbung auf den Operationserfolg

Bei den verschiedenen Operationsverfahren in der Glaukomchirurgie wird unter anderem die Bildung eines Sickerkissens oder eines sogenannten skleralen Sees unterhalb der Konjunktiva angestrebt (Klink et al., 2012). Diese Verfahren dienen dem Zweck, dass das Kammerwasser abfließen kann, um den IOD langfristig senken zu können. Wichtig hierbei ist, dass die geschaffene Öffnung ununterbrochen offenbleibt. Hier liegt die größte Gefahr der Narbenbildung, da die natürliche Heilungstendenz des menschlichen Körpers anstrebt eine offene Wunde zu heilen (Skuta, 1987). Im Rahmen des chirurgischen Verfahrens stellen die subkonjunktivalen Fibrosierung und die Vernarbung des Sickerkissens die größte Gefahr eines Misserfolgs dar (Skuta, 1987; Dietlein, 2002; Grehn, 2008). Die Verbindung zwischen Vorderkammer und Subkonjunktivalraum kann dementsprechend durch Narbenwäsche verschlossen oder verlegt werden. Das Kammerwasser kann somit nicht mehr genügend abfließen.

Die Pathophysiologie der Vernarbung verläuft wie beschrieben auf zellulärer Ebene in mehreren Schritten ab. Ein durch Entzündungsmediatoren, wie Zytokinen induzierter massiver Einstrom von Wachstumsfaktoren, sorgt für eine Vermehrung von Fibroblasten im Wundgebiet, die sich zu Myofibroblasten umwandeln (Klink et al., 2006b). Myofibroblasten sorgen für die Bildung von Bindegewebsgrundsubstanz (extrazelluläre Matrix wie Kollagen und Fibronektin) und somit einen
mechanischen Verschluss der Wunde (Klink et al., 2006b). Während bei einer nor-
malen Wundheilung durch einen programmierten Zelltod die Anzahl der Myo-
fibroblasten sinkt, ist die Konzentration von Entzündungsmediatoren bei heilen-
der Bindehaut und generell durch die oftmals langwierige medikamentöse Therapie im Kammerwasser von Glaukompatienten nachweislich erhöht (Picht et al., 2001b, Klink et al., 2006b). Topisches CyA sorgt durch seine spezifische Inhibition von Zytokinen wie Interleukin 2 (IL-2) dafür, dass bereits das erste Glied der Immun-
reaktion unterdrückt wird. Daraus resultierend kommt es zu einem Rückgang der Synthese eines breiten Spektrums von Entzündungsmediatoren, die für die Prozesse der Fibroblastenaktivität und Narbenbildung verantwortlich sind (Kumar et al., 2014, Faulds et al., 1993). Der gewünschte Einfluss liegt in einer Verringerung der Intensität der natürlichen Entzündungsreaktion und damit der Vorbeugung einer überschießenden Narbenbildung.

Zusätzlich begünstigt eine erhöhte mechanische Belastung durch interstitiellen Flüssigkeitsstrom und angespanntes Gewebe die Proliferation von Myofibroblas-
ten. Die Gefahr einer länger anhaltenden Myofibroblastenaktivität liegt in der Fib-
rosierung und hypertropher Narbenbildung der Wunde (Klink et al., 2006b).

Zusammenfassend kann zwischen drei Vernarbungsprozessen zu verschiedenen postoperativen Zeitpunkten unterscheiden. In der unmittelbar postoperativen Phase verschließt das Granulationsgewebe den durch die Operation geschaffenen Ab-
flussweg (Azuara-Blanco and Katz, 1998). Von der zweiten bis achten postopera-
tiven Woche wird der Abfluss durch eine subkonjunktivale Membran aus fibrösem Bindegewebe behindert. Dieser Zustand wird auch als Abkapselung des Filterkis-
sens, Tenon-Kapselzyste oder zystisches Filterkissen bezeichnet (Grehn, 2019, Gaskin et al., 2014). Die dritte Phase beschreibt die postoperative Phase nach eini-
gen Monaten bis zu Jahren, in der das geschaffene Sickerkissen abflacht und mit dem episkleralen Gewebe vernarbt. Solche vernarbten Sickerkissen führen zu ei-
selte Sickerkissen unterschieden (Azuara-
Fibrosierung und Vernarbung durch eine bereits erhöhte Anzahl an Entzündungsmediatoren im Wundgebiet kommen (Khaw et al.,

1.7 Hypothese und Ziel der Arbeit

2. Material und Methoden

2.1 Ausgewertete Glaukomparameter

Erfasst wurden Basisinformationen der eingeschlossenen Patienten wie das Geschlecht, das Alter, allgemeine und ophthalmologische Vorerkrankungen, allgemeine Dauermedikationen, allgemeine und/oder bereits stattgefundenene ophthalmologische Operationen wurden zusammengetragen. Die weiteren erhobenen Parameter ergaben sich aus der Auswertung der prä- und postoperativen klinischen Untersuchungen. Folgende Parameter wurden im Rahmen der Gesamtuntersuchung erfasst:

- IOD
- Visus
- Gesichtsfeld/GF_MD
- Papillenexkavation mittels Heidelberger Retina Tomograph
- Anzahl der drucksenkenden Wirkstoffe
- Präoperative Glaukomoperationen
- Postoperative Komplikationen, insbesondere in Form von IOD-Anstieg und Sickerkissenabkapselungen bzw. -vernarbungen
- Revisionsoperationen und weitere drucksenkende Glaukomoperationen

Für die Auswertung wurden folgende Follow-UP-Zeitpunkte definiert:

- Präoperativ
• FU1: 1 Tag postoperativ
• FU2: 2 Tage postoperativ
• FU3: 20-40 Tage postoperativ
• FU4: 90-180 Tage postoperativ
• Last Follow-Up (FU5): 300-420 Tage postoperativ (10-14 Monate)

Präoperativ wurde stets die letzte Untersuchung vor dem chirurgischen Eingriff berücksichtigt. Postoperativ wurde immer die letzte Untersuchung innerhalb der jeweiligen Zeitintervalle von FU1 bis FU5 ausgewertet.

2.1.1 Applanatorische Druckmessung (IOD)

IOD-Messungen erfolgten zu jedem Untersuchungszeitpunkt applanatorisch, mittels Goldmann-Tonometer. Wurden präoperativ oder bei anderen Untersuchungszeitpunkten im Rahmen eines sogenannten Tagesdruckprofils mehrere Augeninnendruckwerte zu unterschiedlichen Tageszeitpunkten erstellt, dann wurde der jeweilige Mittelwert aller Werte in die Statistik aufgenommen.

2.1.2 Visus

2.1.3 Gesichtsfelduntersuchung

Das Gesichtsfeld wurde mithilfe der statischen Perimetrie untersucht. Die mittlere Defekttiefe (MD) beschreibt die quantitative Auswertung des Gesichtsfeldes. Er wird in Dezibel erfasst und ausgewertet. Folgende zwei Geräte wurden für die Untersuchungen verwendet: „Humphrey Field Analyzer Model 750 i von Carl Zeiss Meditec“ und „Haag Streit Octopus 900 Eye Suite i8 2.2.0 Perimetrie v3.6.1“.

2.1.4 Heidelberger Retina Tomografie (HRT)

Mittels HRT wurden folgende Parameter erhoben: Papillenfläche, Randsaumvolumen und das lineare Cup-Disc-Ratio. Für die Untersuchungen wurde das Gerät „HRT II/3 ONH Acquisition Module 3.0.7.0 von Heidelberg Engineering Version 1.9.10.0,“ verwendet.

2.1.5 Ophthalmologische Medikation prä- und postoperativ

Es wurden bei allen Patienten und an allen Untersuchungszeitpunkten, die jeweils verabreichten medikamentösen Wirkstoffe, sowie die Dosierung und Anzahl der Tropfen erfasst. Es fand präoperativ keine Fließwechselphase statt.

2.1.6 Nachbehandlungen

Für beide Kontrollgruppen wurden postoperativ die notwendigen Nachbehandlungen, Revisionsoperationen und weitere drucksenkende Eingriffe erfasst und statistisch hinsichtlich des IOD verglichen. Es wurden Nachbehandlungen in Form
einer
Goniopunktion und weitere notwendige Glaukomoperationen in Form von TS-Revisionen, Trabekulektomie und Zyklophotokoagulation, aufgelistet.

2.1.7 Postoperative Komplikationen

Die erfassten postoperativen Komplikationen wurden bei den Nachkontrollen von FU1 bis FU5 aufgelistet und statistisch hinsichtlich des IOD miteinander verglichen.

2.1.8 Definition Erfolg

Als „Complete Success“ wurde ein IOD zum Zeitpunkt FU5 ≤ 15 mmHg ohne drucksenkende Medikamente, als „Qualified Success“ mit drucksenkenden Medikamenten definiert.

2.2 Methoden der statistischen Auswertung

3. Ergebnisse

3.1 Deskriptive Statistik

Es wurden insgesamt in beiden Gruppen 131 Patienten und 166 operierte Augen eingeschlossen. Davon entfallen 107 Patienten und 130 operierte Augen auf die Gruppe TS normal und 24 Patienten und 36 operierte Augen auf die Gruppe TS CyA. Das mittlere Alter liegt bei 72,1 Jahre (TS normal) und bei 70,0 Jahre (TS CyA). Von den untersuchten Patienten waren 58,77% weiblich und 41,23% männlich. Der präoperative Mittelwert für den IOD lag bei 17,26 mmHG ± 4,52 (SD) für TS normal und bei 19,38 mmHG ± 4,95 (SD) für TS CyA. Die Gruppe TS normal hatte 2,81 ± 1,06 und TS CyA 3,08 ± 1,05 drucksenkende Wirkstoffe präoperativ. Der MD-Wert für das Gesichtsfeld betrug im Schnitt -11,32 dB ± 8,80 für TS normal und -7,94 dB ± 7,89 für TS CyA. Präoperative Werte für den IOD als auch für den MD des Gesichtsfeldes waren signifikant unterschiedlich und stellen somit eine entscheidende Limitation für den definierten Zieldruck dar (p<0,05). Alle anderen Werte sind statistisch nicht signifikant unterschiedlich.

Tabelle 1: deskriptive Statistik

Es wurden folgende Variablen statistisch miteinander verglichen: Augen, Patientenzahl, Augenseite, Geschlecht, Alter, IOD, GFMD, Wirkstoffe vor OP und CD-Ratio.

<table>
<thead>
<tr>
<th>Variable</th>
<th>TS normal</th>
<th>TS CyA</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>130</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>n (%) ; Med. (Q1/Q3) (Min bis Max)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patienten</td>
<td>107</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Augenseite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rechts (%)</td>
<td>78 (60%)</td>
<td>20 (55,556%)</td>
<td>0,773*</td>
</tr>
<tr>
<td>links (%)</td>
<td>52 (40%)</td>
<td>16 (44,444%)</td>
<td></td>
</tr>
<tr>
<td>Geschlecht</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weiblich (%)</td>
<td>63 (58,879%)</td>
<td>14 (58,333%)</td>
<td>1,000*</td>
</tr>
<tr>
<td>männlich (%)</td>
<td>44 (41,121%)</td>
<td>10 (41,667%)</td>
<td></td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>106 72,1 (64,1-76,2) (33,9 bis 85,8)</td>
<td>24 70,0 (63,8-73,2) (39,3 bis 81,5)</td>
<td>0,243*</td>
</tr>
<tr>
<td>IOD</td>
<td>130 17,0 (14,0/20,0) (2,0 bis 34,0)</td>
<td>36 18,0 (16,0/22,2) (13,0 bis 35,0)</td>
<td>0,029*</td>
</tr>
<tr>
<td>Wirkstoffe vor OP</td>
<td>130 3,0 (2,0/3,0) (0,0 bis 5,0)</td>
<td>36 3,0 (2,0/4,0) (1,0 bis 6,0)</td>
<td>0,327*</td>
</tr>
<tr>
<td>GFMD</td>
<td>116 -11,2 (-16,6/-4,2) (-33,6 bis 7,5)</td>
<td>35 -4,1 (-10,8/-1,8) (-31,1 bis 0,1)</td>
<td>0,012*</td>
</tr>
<tr>
<td>CD</td>
<td>105 0,9 (0,8/1,0) (0,3 bis 2,0)</td>
<td>28 0,9 (0,8/1,0) (0,5 bis 1,0)</td>
<td>0,854*</td>
</tr>
</tbody>
</table>

* Chi-Quadrat Test
† Unabhängiger Mann-Whitney Test
3.2 Augeninnendruck (IOD)

Der durchschnittliche präoperative IOD-Wert in der TS CyA Kontrollgruppe ist mit 19.04 ± 4.77 mmHG höher als bei der TS normal Kontrollgruppe 17.26 ± 4.42 mmHG. Der generelle Unterschied zwischen beiden Kontrollgruppen ist signifikant (P-Wert=0,029). Allerdings ist die Entwicklung des IOD im postoperativen Verlauf bei beiden Gruppen nicht signifikant unterschiedlich.

In beiden Gruppen sinkt der IOD am ersten Tag (FU1) postoperativ signifikant (P-Wert<0,001). In der Gruppe TS normal von 17.26 ± 4.52 (SD) mmHG auf 9.40 ± 6.05 (SD) mmHG und in der TS CyA Gruppe von 19.38 ± 4.95 (SD) mmHG auf 13.00 ± 8.43 (SD) mmHG. Ab FU3 steigt der IOD im Vergleich zu FU1 und FU2 wieder signifikant an (p<0,001) und liegt in der Gruppe TS normal bei 14.40 ± 4.63 (SD) mmHG und in der TS CyA Gruppe bei 16.87 ± 5.05 (SD) mmHG. Danach bleiben die Werte bis FU5 auf einem sehr ähnlichen Niveau, wie bei FU3 (siehe Tabelle 4). Verglichen mit den präoperativen IOD-Ausgangswerten nimmt der Augeninnendruck nach tiefer Sklerektomie in beiden Kontrollgruppen über dem gesamten Beobachtungszeitraum in beiden Gruppen ähnlich signifikant ab. Prozentual liegt die IOD-Senkung in beiden Gruppen nach 10-14 Monaten (FU5) bei identischen 13 %.
<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Q25</th>
<th>Q75</th>
<th>P-Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FU1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS normal</td>
<td>111</td>
<td>-100</td>
<td>69</td>
<td>-43</td>
<td>37</td>
<td>-100</td>
<td>-21</td>
<td>0.467</td>
<td></td>
</tr>
<tr>
<td>TS CyA</td>
<td>31</td>
<td>-100</td>
<td>61</td>
<td>-34</td>
<td>34</td>
<td>-100</td>
<td>-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>142</td>
<td>-100</td>
<td>69</td>
<td>-41</td>
<td>36</td>
<td>-100</td>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS normal</td>
<td>100</td>
<td>-100</td>
<td>50</td>
<td>-49</td>
<td>36</td>
<td>-100</td>
<td>-22</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>TS CyA</td>
<td>29</td>
<td>-100</td>
<td>25</td>
<td>-44</td>
<td>33</td>
<td>-100</td>
<td>-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>129</td>
<td>-100</td>
<td>50</td>
<td>-48</td>
<td>35</td>
<td>-100</td>
<td>-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS normal</td>
<td>91</td>
<td>-80</td>
<td>500</td>
<td>-8</td>
<td>62</td>
<td>-80</td>
<td>0</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>TS CyA</td>
<td>28</td>
<td>-58</td>
<td>24</td>
<td>-11</td>
<td>25</td>
<td>-10</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>119</td>
<td>-80</td>
<td>500</td>
<td>-9</td>
<td>55</td>
<td>-80</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS normal</td>
<td>75</td>
<td>-59</td>
<td>220</td>
<td>-14</td>
<td>35</td>
<td>-10</td>
<td>0</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>TS CyA</td>
<td>19</td>
<td>-50</td>
<td>45</td>
<td>-15</td>
<td>25</td>
<td>-18</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>-59</td>
<td>220</td>
<td>-14</td>
<td>33</td>
<td>-18</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS normal</td>
<td>130</td>
<td>-67</td>
<td>400</td>
<td>-13</td>
<td>48</td>
<td>-19</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS CyA</td>
<td>36</td>
<td>-50</td>
<td>137</td>
<td>-13</td>
<td>30</td>
<td>-20</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>166</td>
<td>-67</td>
<td>400</td>
<td>-13</td>
<td>45</td>
<td>-19</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mann-Whitney test. Korrigiert um 5 Vergleiche mit Bonferroni-Methode
Abbildung 1: IOD in beiden Kontrollgruppen

3.3 Drucksenkende Wirkstoffe

Die Anzahl der antiglaukomatösen Wirkstoffe war im Vergleich der beiden Kontrollgruppen untereinander nicht signifikant (P-Wert = 0,327) unterschiedlich. In der TS normal Gruppe lag der präoperative Mittelwert bei 2.81 ± 1.06 (SD) und war nach 10-14 Monaten (FU5) bei durchschnittlich 1.13 ± 1.54 (SD). In der TS CyA Gruppe lag der präoperative Mittelwert bei 3.08 ± 1.05 (SD) und war nach FU5 bei durchschnittlich 1.14 ± 1.27 (SD). In allen postoperativen Untersuchungen war die Anzahl der Wirkstoffe signifikant kleiner als präoperativ (P-Wert <0,001).
Abbildung 2: Entwicklung der drucksenkenden Wirkstoffe

In Tabelle 6 sind die Erfolgsraten basierend auf den IOD und die Anzahl der Wirkstoffe dargestellt. Ein CS wurde in der Gruppe TS normal bei 45 Augen (34,62%) und in der TS CyA Gruppe bei 10 Augen (27,78%) erreicht. Der Vergleich beider Gruppen ergab für den CS keinen signifikanten Unterschied (P-Wert=0,549). Ein QS erreichten in der TS normal Gruppe 36 Augen (27,69%) und 4 Augen (11,11%) in der TS CyA Gruppe. Der QS ist in beiden Gruppen signifikant unterschiedlich (P-Wert=0,047).

Zusätzlich wurden prozentuale Drucksenkungen >20% mit bzw. ohne Therapie ermittelt und miteinander verglichen. Dabei erreichten 33 Augen (25,38%) in der TS normal Gruppe diesen Wert und 7 Augen (19,44%) in der TS CyA Gruppe. Der Unterschied war nicht signifikant unterschiedlich (P-Wert=0,517). Eine >20%ige Drucksenkung mit Therapie erreichten 22 Augen (16,92%) in der TS normal Gruppe und 7 Augen (19,44%) in der TS CyA Gruppe.
Tabelle 3: Die Erfolgsrate der beiden Gruppen

Die Tabelle zeigt die Erfolgsrate der beiden Kontrollgruppen. Es wurde einerseits analysiert, bei wie vielen Patienten eine 20% Drucksenkung nach FU5 ohne zusätzliche Wirkstoffe und mit zusätzlichen Wirkstoffen erreicht worden ist. Zusätzlich wurde außerdem analysiert, bei wie vielen der definierte Erfolgsdruck von <15mmHg, erreicht worden ist; hier auch mit und ohne zusätzliche Wirkstoffe.

<table>
<thead>
<tr>
<th></th>
<th>TS normal</th>
<th>TS CyA</th>
<th>P-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehr als 20% Drucksenkung ohne Therapie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU1</td>
<td>77/112 (68,75%)</td>
<td>17/32 (53,12%)</td>
<td>0,140</td>
</tr>
<tr>
<td>FU2</td>
<td>74/100 (74,00%)</td>
<td>19/29 (65,52%)</td>
<td>0,481</td>
</tr>
<tr>
<td>FU3</td>
<td>30/92 (32,61%)</td>
<td>3/31 (9,68%)</td>
<td>0,018</td>
</tr>
<tr>
<td>FU4</td>
<td>24/77 (31,17%)</td>
<td>2/20 (10,00%)</td>
<td>0,087</td>
</tr>
<tr>
<td>FU5</td>
<td>33/130 (25,38%)</td>
<td>7/36 (19,44%)</td>
<td>0,517</td>
</tr>
<tr>
<td>Mehr als 20% Drucksenkung mit Therapie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU1</td>
<td>7/112 (6,25%)</td>
<td>3/32 (9,38%)</td>
<td>0,693</td>
</tr>
<tr>
<td>FU2</td>
<td>1/100 (1,00%)</td>
<td>4/29 (13,79%)</td>
<td>0,009</td>
</tr>
<tr>
<td>FU3</td>
<td>8/92 (8,70%)</td>
<td>4/31 (12,90%)</td>
<td>0,495</td>
</tr>
<tr>
<td>FU4</td>
<td>9/77 (11,69%)</td>
<td>5/20 (25,00%)</td>
<td>0,156</td>
</tr>
<tr>
<td>FU5</td>
<td>22/130 (16,92%)</td>
<td>7/36 (19,44%)</td>
<td>0,804</td>
</tr>
<tr>
<td>IOD unter 15mmHg ohne Therapie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU1</td>
<td>83/112 (74,11%)</td>
<td>17/32 (53,12%)</td>
<td>0,030</td>
</tr>
<tr>
<td>FU2</td>
<td>83/100 (83,00%)</td>
<td>18/29 (62,07%)</td>
<td>0,022</td>
</tr>
<tr>
<td>FU3</td>
<td>44/92 (47,83%)</td>
<td>4/31 (12,90%)</td>
<td><0,001</td>
</tr>
<tr>
<td>FU4</td>
<td>32/77 (41,56%)</td>
<td>3/20 (15,00%)</td>
<td>0,036</td>
</tr>
<tr>
<td>FU5</td>
<td>45/130 (34,62%)</td>
<td>10/36 (27,78%)</td>
<td>0,549</td>
</tr>
<tr>
<td>IOD unter 15mmHg mit Therapie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FU1</td>
<td>10/112 (8,93%)</td>
<td>4/32 (12,50%)</td>
<td>0,513</td>
</tr>
<tr>
<td>FU2</td>
<td>3/100 (3,00%)</td>
<td>4/29 (13,79%)</td>
<td>0,045</td>
</tr>
<tr>
<td>FU3</td>
<td>12/92 (13,04%)</td>
<td>4/31 (12,90%)</td>
<td>1,000</td>
</tr>
<tr>
<td>FU4</td>
<td>12/77 (15,58%)</td>
<td>1/20 (5,00%)</td>
<td>0,292</td>
</tr>
<tr>
<td>FU5</td>
<td>36/130 (27,69%)</td>
<td>4/36 (11,11%)</td>
<td>0,047</td>
</tr>
</tbody>
</table>
3.4 Visus

Die Messwerte für die Sehstärke (Visus) lagen präoperativ in der Gruppe TS normal bei $0,66 \log\text{Mar} \pm 0,31$ (SD) und in der Gruppe TS CyA bei $0,71 \log\text{Mar} \pm 0,25$ logMar (SD). In beiden Gruppen zeigte sich ein nahezu identischer Verlauf. Dabei sind die Werte bis FU2 signifikant gesunken ($p<0,05$) und haben sich dann ab FU3 bis hin zu FU5 auf ein konstantes Niveau stabilisiert (siehe Abb 3). Folglich ergibt sich für die Sehstärke kein signifikanter Unterschied in beiden Gruppen nach FU5, im Vergleich zu den präoperativen Werten (p-Wert >0,05).

Im Rahmen der Visusauswertung wurde ebenfalls untersucht, bei wie vielen Patienten eine Phakoemulsifikation zusätzlich zur TS durchgeführt wurde. In der TS normal Gruppe hatten 60 Patienten (46,15 %) eine zusätzliche Phakoemulsifikation und in der TS CyA 14 Patienten (38,88%). Eine Unterteilung des Visus für eine TS und TS in Kombination mit Phakoemulsifikation wurde nicht durchgeführt.
Abbildung 3: Die Entwicklung der Visuswerte

Die Grafik zeigt die Entwicklung der Visuswerte (in logMar) anhand eines BoxPlot-Diagramms. Auf der x—Achse ist die chronologische zeitliche Entwicklung von prä-OP bis FU5 dargestellt. Auf der y-Achse sind die Messwerte für den Visus aufgetragen. Es sind im Vergleich zu den präoperativen Werten keine signifikanten Änderungen des Visus nach FU5 zu beobachten.

3.5 Gesichtsfeld

Die Gesichtsfelduntersuchung zeigte präoperativ eine MD von -11,32 ± 8,80 (TS normal) und -7,49 ± 7,89 (TS CyA). Zur FU5 zeigten die Gesichtsfelduntersuchungen eine MD von -9,46 ± 7,96 (TS normal) und -6,66 ± 8,06 (TS CyA) In beiden Gruppen zeigte sich für beide Untersuchungen kein statistisch signifikanter Unter- schied (p>0,05).

3.6 Postoperative Komplikationen

In der Kontrollgruppe TS normal trat bei 10 von 130 Augen (9,3%) und in der Gruppe TS CyA bei 3 von 36 Augen (12,5%) ein Hyphäma auf. In beiden Gruppen trat jeweils eine Aderhautamotio (TS normal 0,9%; TS CyA 4,2%) auf. Eine En- dophtalmatitis kam in beiden Gruppen nicht vor. Eine persistierende Hypotonie trat einmal in der Gruppe TS normal (0,9%) und kein Mal in TS CyA (0%) auf. Eine
persistierende Hypertonie trat bei 8 von 130 Augen in TS normal (7,5%) und bei 5 von 36 Augen in TS CyA (20,8%) auf.

Insgesamt gab es bei den postoperativen Komplikationen keinen statistisch signifikan- kanten Unterschied.

3.7 Goniopunktion und weitere drucksenkende Eingriffe

In der TS CyA Gruppe hatten 18 von 24 Patienten (75%) und in der TS normal Gruppe 57 von 106 Patienten (53,8%) eine Goniopunktion. Es gab keinen statistisch signifikanten Unterschied (p=0,095).

In der TS CyA Gruppe benötigten im postoperativen Verlauf 2 Augen eine TS Re- vision (5,41%), weitere 4 Augen benötigten eine CPC (10,81%). In der TS normal Gruppe benötigte ein Auge eine TS-Revision (0,77%) und 3 Augen eine CPC (2,31%). Der Unterschied ist statistisch signifikant unterschiedlich (p=0,027).
4. Diskussion

Die vorliegende Studie untersucht erstmals den Einfluss topischer CyA AT auf den postoperativen Verlauf nach primärer TS, bei Patienten mit einem PCOWG. Im Rahmen der postoperativen Nachsorge ist bei der TS ähnlich wie bei der TE die Aufrechterhaltung des subkonjunktivalen Sickerkissens für den Operationserfolg wichtig, um die neu geschaffenen Abflusswege aufrechtzuerhalten und damit eine langfristige IOD-Senkung zu gewährleisten (Ang et al., 2010, Anand and Bong, 2015, Mendrinos et al., 2008, Kazakova et al., 2002).

So wie in allen glaukomchirurgischen Operationen kann es nach einer TS zu einem unerwünschten IOD-Anstieg kommen, oft bedingt durch die frühzeitige Vernarbung im Bereich des Sickerkissens oder des geschaffenen Skleradeckels (Guedes et al., 2011, Roy and Mermoud, 2006). Guedes et al. untersuchten in ihrer Studie die möglichen Risikofaktoren einer TS und kamen zu dem Ergebnis, dass insbesondere ein fehlender Einsatz von Antimetaboliten, wie MMC und ein hoher präoperativer IOD ausschlaggebende Faktoren für das Scheitern einer TS sein können (Guedes et al., 2011, Klink et al., 2012).

In unserer Studienpopulation wurden alle durchgeführten TS ohne die intraoperative Anwendung von Antimetaboliten durchgeführt. Die Ausgangsdrucklage war in beiden Gruppen im Vergleich zur Literatur niedrig. In TS CyA lag der präoperative IOD bei 19,38 ± 4,95 mmHG und war statistisch signifikant höher im Vergleich zu TS normal (17,26 ± 4,52 mmHG). In beiden Gruppen konnten signifikante Drucksenkungen beobachtet werden. Dabei sind die Änderungen zwischen den Gruppen und die Drucksenkung im gesamten postoperativen Verlauf in beiden Gruppen ähnlich (jeweils 13% nach FU5) und nicht signifikant unterschiedlich. Einige Studien über TS mit einer ähnlichen Nachbeobachtungszeit (12-16 Monate) hatten mit IOD- Ausgangswerten von ca. 22-34 mmHG weitaus andere Voraussetzungen, die dennoch ähnliche absolute Werte (ca. 14-17 mmHG), wie in unserer Studie erreicht haben (Mousa, 2007, Devloo et al., 2005, El Sayyad et al., 2000). Die niedrigen präoperativen Ausgangswerte sind ein möglicher Indikator dafür, dass die untersuchten Patienten aufgrund von Augentropfenunverträglichkeiten, weiterer Progression
der Glaucomerkrankung trotz niedriger Drucklage oder mangelnder Adhärenz einen chirurgischen Eingriff benötigten. Zahlreiche Patienten, die unter
unterbinden (Hollò, 2017, Scharinger et al., 2021). Die Gabe von konservierungsmittelfreien Steroiden und dazu ein Absetzen der lokalen

In der Literatur werden CS und QS als Maßstab für den Erfolg definiert, um Studien leichter miteinander vergleichen zu können (Heuer et al., 2009). Der Vergleich unserer Ergebnisse mit denen anderer Autoren ist nicht geradlinig, da die veröffentlichten Studien in Bezug auf Erfolgskriterien, Studiendesign, Studienpopulation, Operationstechnik und postoperatives Management sehr heterogen sind (Suominen et al., 2010). In vielen unterschiedlichen TS-Studien mit ähnlicher Nachbeobachtungszeit liegt der CS und QS meist bei <21mmHG oder <18mmHG mit bzw. ohne Therapie (Ravinet et al., 2004, Mousa, 2007, Devloo et al., 2005, El Sayyad et al., 2000). Die zitierten Studien hatten im Vergleich zu unserer Studie höhere IOD- Ausgangsdrucklagen und erreichten auch deswegen höhere prozentuale Drucksenkungen (CS-Werte von 41-79 %). Die Erfolgskriterien unserer Studie (<15mmHG ohne Therapie) lassen sich
schwerer erreichen. Resultierend daraus konnte ein CS bei ca. 28% (TS CyA) und 35% (TS normal) der Patienten erreicht werden. In
Bezug auf die Richtlinien der „European Glaucoma Society“ (u.a. > 20% Drucksenkung ohne medikamentöse Behandlung) erreichten in unserer Studie ca. 25% (TS normal) und ca. 19% (TS CyA) diesen definierten Zieldruck (Society, 2008). Auch in Bezug auf die Erfolgsraten ist der Unterschied zwischen den Gruppen am Ende der Nachbeobachtungszeit nicht signifikant unterschiedlich.

Bissig et al. kamen zu der Schlussfolgerung, dass die TS nicht nur eine erfolgreiche Operationsmethode aufgrund der signifikanten IOD-Senkung, sondern auch gleichzeitig ein niedriges Komplikationsprofil darstellt (Bissig et al., 2008). Bezüglich der postoperativen Komplikationen traten in der vorgelegten Studie zu keinem Untersuchungszeitpunkt signifikante Unterschiede zwischen den Gruppen auf und sind somit vergleichbar mit der Literatur (Yamin and Quentin, 2002, Roy and Mermoud, 2006, Guedes et al., 2011, Ambresin et al., 2002, Khairy et al., 2006). Einzig auffällig ist die höhere, jedoch nicht statistisch signifikante Rate an persistierenden Hypertonien in TS CyA.

Im Rahmen der postoperativen Folgebehandlungen ist die GP nach einer TS eine
weit verbreitete Methode, um den Erfolg einer TS zu gewährleisten. Die Rate

hervorrufen können (Lockwood et al., 2013, Rüfer and Uthoff, 2013,
Birnbaum et al., 2007). Daher wird unter anderem seit den späten 1990er Jahren versucht, topische CyA AT in verschiedenen Konzentrationen bei der chirurgischen Glaukombehandlung einzusetzen, mit dem Ziel, eine ähnlich gute immunmodulierende, zellproliferative und entzündungshemmende Wirkung, aber ohne das komplexere Nebenwirkungsprofil der obengenannten Medikamente zu erreichen.

Nuzzi et al. untersuchte die postoperative Gabe von CyA AT nach TE bei Albino-Ratten. Dabei wurden 8 Ratten jeweils an beiden Augen mittels TE operiert. Direkt postoperativ wurden in das jeweilige rechte Auge eine 2%ige
der Studie konnten keine positiven Effekte von CyA in Bezug auf die postoperative IOD-Reduktion und die
Gan et al., 2009). Um eine effektivere Wund- modulation zu gewährleisten, wurden in den letzten Jahren Transportsysteme

Durch das retrospektive Design dieser Studie und den damit verbundenen Limitationen bezüglich der einbezogenen Patienten ist die Aussagekraft nur bedingt. Es wurden nur Patienten berücksichtigt, die unter einem PCOWG litten und in dem definierten Untersuchungszeitraum eine Untersuchung beziehungsweise Aufenthalt in der Augenklinik hatten. Dieses führte zu unterschiedlichen Gruppengrößen und einer damit verbundenen beschränkten Vergleichbarkeit der Gruppen.
miteinander. Ein wichtiger Aspekt in der Beurteilung des Visus und der MD ist die Tatsache,

Als Fazit aus den Erkenntnissen und Resultaten der Studie stellt die Analyse des Wirkmechanismus von CyA auf molekularer Ebene einen vielversprechenden An-
satz dar, dass CyA direkt in die Entzündungskaskade im Rahmen der TS eingreifen
und somit eine unerwünschte übermäßige Proliferation von Fibroblasten unterdrücken kann, um die drucksenkenden Maßnahmen lange aufrechtzuerhalten (Faulds et al., 1993, Tatlipinar and Akpek, 2005, Matsuda and Koyasu, 2000, Garweg et al., 2006). Um eine effizientere Wirkung zu erzielen, scheint es nach Sichtung der Literatur und der Studienergebnisse sinnvoll zu sein, eine direkte intraoperative Anwendung im Operationsbereich anzuwenden, mit dem Ziel die Wundheilung dadurch bereits frühzeitig entscheidend zu modulieren. Es sind weitere Forschungsarbeiten notwendig, um eine sichere Kombination festzulegen und eine Methodik für die klinische intraoperative Anwendung zu entwickeln.
5. Zusammenfassung

Hintergrund: Die TS ist eine effektive Methode, um den IOD nachhaltig zu senken. Im Rahmen der postoperativen Wundmodulation werden Steroide und Antimetabolite verwendet, um das Risiko für postoperative Vernarbungen zu reduzieren. Diese zeigen eine hohe Effizienz, bei allerdings beträchtlichem Nebenwirkungspotenzial. CyA hat bewiesenermaßen ein günstigeres Nebenwirkungsprofil, seine Rolle in der postoperativen Wundmodulation nach Glaukomoperationen ist jedoch noch nicht vollständig erforscht.

Ziel der Arbeit: In der vorliegenden Arbeit wurde der Einfluss von topischen CyA Augentropfen auf den postoperativen Verlauf nach TS untersucht.

Ergebnisse: Der IOD betrug präoperativ 17,26 ± 4,52 mmHG in der TS normal Gruppe und 19,38 ± 4,95 in der TS CyA. Nach 12 Monaten postoperativ sank der IOD auf 13,91 ± 3,94 (p<0,001) und in der TS CyA Gruppe auf 16,74 ± 8,00 (p<0,001). Die Anzahl der drucksenkenden Wirkstoffe konnte in der TS normal Gruppe von 2,81 ± 1,06 auf 1,13 ± 1,54 (p<0,001) und in der TS CyA Gruppe von
3,08 ± 1,05 auf 1,14 ± 1,27 (p<0,001) gesenkt werden. Sowohl der Visus, die
Gesichtsfelduntersuchung und die postoperativen Komplikationen zeigen über den gesamten postoperativen Verlauf einen stabilen und nicht signifikant unterschiedlichen Verlauf. Die GP-Rate in der TS normal Gruppe betrug 53,8% und 75% in der TS CyA Gruppe. In der TS normal Gruppe hatten insgesamt 3,85 % der operierten Augen eine weitere drucksenkende Folgeoperationen. Davon hatte 1 Auge (0,77%) eine TS-Revision und 3 Augen eine CPC (2,31%). In der TS CyA Gruppe hatten 16,22% der operierten Augen eine weitere drucksenkende Folgeoperation. Davon hatten 2 Augen eine TS-Revision (5,41%) und 4 Augen eine CPC (10,81%). CS wurde bei 45 Augen (34,62%) in der TS normal Gruppe und bei 10 Augen (27,78%) in der TS CyA Gruppe erreicht. Ein QS wurde bei 36 Augen (27,69%) in der TS normal Gruppe und bei 4 Augen (11,11%) in der TS CyA Gruppe erreicht.

Zusammenfassung: Die zusätzliche Therapie mit topischen CyA AT nach TS zeigte in Bezug auf die Wundheilung keinen statistisch signifikanten Einfluss auf den postoperativen Verlauf im Vergleich zur Kontrollgruppe.
Summary

Background: Deep sclerectomy (DS) is an effective method to lower postoperative IOD in the long-term. Steroids and antimetabolites are used in postoperative wound modulation to reduce the risk of postoperative scarring. They stand out for their high efficiency but have considerable side effects. Topical CyA has been shown to have a more favorable side effect profile, but its role in postoperative wound modulation after glaucoma surgery has not been fully explored.

Purpose: In the present study, the influence of topical CyA eye drops on the postoperative course after TS has been investigated.

Methods: A total of 166 eyes of 131 glaucoma patients were included in this retrospective study. Each operated eye was individually analyzed in the statistical analysis. Only Patients with PCOWG who underwent TS for the first time were included in the study. The patients were divided into 2 groups, with 130 eyes as the control group (TS normal) and 36 eyes as the study group (TS CyA). The operated eyes from the TS CyA group received an oil emulsion with 2% CyA concentration 3-4 times a day for 10 weeks in the postoperative course. The following parameters were recorded: Intraocular pressure (IOP), number of pressure-lowering agents, visual field examinations (GF_MD), visual acuity, complications, number of goniopunctures (GP) and further pressure-lowering follow-up operations. Patient assessments were performed preoperatively and postoperatively at 5 observation time intervals (1 day, 2 days, 1 month, 6 months, 12 months). Overall Success was defined as CS IOP of < 15mmHG without additional pressure-lowering medications and QS IOP < 15 mmHG with additional pressure-lowering agents.

Results: IOP was 17,26± 4,52mmHG preoperatively in the TS normal group and 19.38 ± 4.95 mmHG in the TS CyA group. At 12 months postoperatively, IOP decreased to 13,91 ± 3,94 mmHG (p<0,001) and in the TS CyA group to 16,74 ± 8,00 mmHG (p<0,001). The number of pressure-lowering agents was reduced from 2,81 ± 1,06 to 1,13 ± 1,54 (p<0,001) in the TS normal group and from 3,08 ± 1,05 to 1,14 ± 1,27 (p<0,001) in the TS CyA group. Both visual acuity, visual field examination and postoperative complications showed a stable and not significantly dif-
ferent course throughout the postoperative interval. The GP rate in the TS normal group was 53.8% and 75% in the TS CyA group. In the TS normal group, a total of 3.85% of the operated eyes had further pressure-lowering follow-up surgery.
these, 1 eye (0.77%) had a TS revision and 3 eyes had a CPC (2.31%). In the TS CyA group, 16.22% of the operated eyes had another follow-up pressure-lowering surgery. Of these, 2 eyes had TS revision (5.41%) and 4 eyes had CPC (10.81%). CS was achieved in 45 eyes (34.62%) in the TS normal group and in 10 eyes (27.78%) in the TS CyA group. QS was achieved in 36 eyes (27.69%) in the TS normal group and in 4 eyes (11.11%) in the TS CyA group.

Conclusion: Topical application of cyclosporine eye drops showed no beneficial effects in terms of IOP and outcome after deep sclerectomy.
6. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AT</td>
<td>Augentropfen</td>
</tr>
<tr>
<td>c.c.</td>
<td>Cum correctione</td>
</tr>
<tr>
<td>CDR</td>
<td>cup disc ratio</td>
</tr>
<tr>
<td>CyA</td>
<td>topisches Ciclosporin A</td>
</tr>
<tr>
<td>FU</td>
<td>Follow UP / Folgeuntersuchung</td>
</tr>
<tr>
<td>GF</td>
<td>Gesichtsfeld</td>
</tr>
<tr>
<td>GP</td>
<td>Goniopunktion</td>
</tr>
<tr>
<td>HRT</td>
<td>Heidelberg Retina Tomograph</td>
</tr>
<tr>
<td>IOD</td>
<td>intraokulärer Druck/Augeninnendruck</td>
</tr>
<tr>
<td>ITN</td>
<td>Intubationsnarkose</td>
</tr>
<tr>
<td>MD</td>
<td>mittlerer Defekt</td>
</tr>
<tr>
<td>mmHG</td>
<td>Einheit Druck, Millimeter Quecksilbersäule</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>PCOWG</td>
<td>Primär chronisches Offenwinkelglaukom</td>
</tr>
<tr>
<td>PDGF</td>
<td>plateled-derived-growth-factor</td>
</tr>
<tr>
<td>PEX</td>
<td>Pseudoexfoliationsglaukom</td>
</tr>
<tr>
<td>Phako</td>
<td>Phakoemulsifikation</td>
</tr>
<tr>
<td>prä-OP</td>
<td>präoperativ</td>
</tr>
<tr>
<td>post-OP</td>
<td>postoperativ</td>
</tr>
<tr>
<td>s.c.</td>
<td>sine correctione</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>TE</td>
<td>Trabekulektomie</td>
</tr>
<tr>
<td>TS</td>
<td>Tiefe Sklerektomie</td>
</tr>
<tr>
<td>UKE</td>
<td>Universitätsklinikum Hamburg-Eppendorf</td>
</tr>
</tbody>
</table>
7. Tabellenverzeichnis

Tabelle 1: deskriptive Statistik...35
Tabelle 2: Die prozentuale Änderung des IOD......................................37
Tabelle 3: Die Erfolgsrate der beiden Kontrollgruppen.........................39
8. Abbildungsverzeichnis

Abbildung 1: IOD in beiden Kontrollgruppen..38
Abbildung 2: Entwicklung der drucksenkenden Wirkstoffe..............................39
Abbildung 3: Die Entwicklung der Visuswerte..42
9. Literaturverzeichnis

CHOUHDARY, A. & WISHART, P. K. 2007. Non-penetrating glaucoma surgery augmented with mitomycin C or 5-fluorouracil in eyes at high risk of

10. Danksagung

Mein besonderer Dank gebührt Frau Prof. Dr. med. Maren Klemm für die Überlassung des Themas und für die fachliche Betreuung während der Promotionsarbeit.

Bei Frau Dr. med. Maria Katharina Casagrande und Herr Dr. med. Carsten Grohmann bedanke ich mich für ihre ausgeprägte Hilfsbereitschaft und ihre fachliche Unterstützung.

Großer Dank gilt Herrn Vasyl Druchkiv für die wertvolle Hilfe in der statistischen Umsetzung dieser Arbeit.

Ebenso bedanke mich bei allen Mitarbeiterinnen und Mitarbeitern der Augenklinik des UKE, die mich während der Datenerhebung immer freundlich aufgenommen haben.

Zuletzt bedanke ich mich bei meinen Eltern und meiner Frau, die mich stets in jeder Situation unterstützt und den Rücken gestärkt haben.
11. Lebenslauf

entfällt aus datenschutzrechtlichen Gründen.
12. Eidesstattliche Erklärung

Ich versichere ausdrücklich, dass ich die Arbeit selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die aus den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen einzeln nach Ausgabe (Auflage und Jahr des Erscheinens), Band und Seite des be- nutzten Werkes kenntlich gemacht habe.

Ferner versichere ich, dass ich die Dissertation bisher nicht einem Fachverteiter an einer anderen Hochschule zur Überprüfung vorgelegt oder mich anderweitig um Zulassung zur Promotion beworben habe.

Ich erkläre mich einverstanden, dass meine Dissertation vom Dekanat der Medizinischen Fakultät mit einer gängigen Software zur Erkennung von Plagiaten überprüft werden kann.

Ort, Datum, Unterschrift