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1.0 Introduction

Pain is a complex sensation that can arise from various forms of noxious (i.e.
potentially tissue damaging) stimulation, such as heat or pressure on the skin.
However, large interindividual variation in pain sensitivity suggests that the relationship
between nociception and pain is not straightforward. Importantly, pain is frequently felt
in the absence of a nociceptive stimulus, as seen in chronic pain conditions like facial
pain syndrome, chronic migraine, and phantom pain, where patients experience pain
without any apparent cause (May, 2008, 2011; Parkes, 1973; Ramachandran &
Rogers-Ramachandran, 1996; Simmel, 1959). The most impressive instance is
possibly phantom pain, that is, a sensation of pain in an amputated limb despite the
absence of the limb itself (Halligan, 2002; Ramachandran & Rogers-Ramachandran,
1996).

Pain is not simply a direct response to a noxious stimulus, but is instead influenced by
various contextual factors, such as the individual's perceived control over the pain and
their expectations of it (Atlas & Wager, 2014; Bingel et al., 2006; Blchel et al., 2014;
Colloca & Benedetti, 2005; Helmchen et al., 2006; Karsh et al., 2018; Mohr et al., 2008,
2012; Pervin, 1963; Petrovic et al., 2002; Staub et al., 1971; Thompson, 1981; Wager
et al., 2004; Wang et al., 2011; Weisenberg et al., 1985). Even attentional processes
and distraction can affect the perception of pain (Bantick et al., 2002; Hauck et al.,
2007, 2013; Miron et al., 1989; Sprenger et al., 2012). While the objective stimulus
quality is transmitted to the cortex via the ascending pain system, contextual factors
can modulate these afferent signals through descending pathways. For example, pain
expectations have been shown to alter responses at the spinal dorsal horn in a top-
down fashion (Eippert et al., 2009; Sprenger et al., 2015; Tinnermann et al., 2017).
These findings demonstrate the complex nature of pain and the need to consider these
contextual factors in pain management. To understand pain more comprehensively, it
is necessary to consider both the sensory processes that transmit information about
the noxious stimulus to the brain, as well as the contextual factors that can modulate

these signals and the integration of these two components.

A Bayesian perspective on pain allows for this integration of the various factors that
influence the perception of pain (Anchisi & Zanon, 2015; Buchel et al., 2014; Ongaro
& Kaptchuk, 2019; Wiech, 2016). A Bayesian Pain Model views the pain experience

as a combination of prior information and sensory input, with both factors weighted by
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their precision to create a percept. Pain expectations, which can be changed through
learning, are an important part of this model. One notable application of this model is
placebo hypoalgesia, in which positive prior pain experiences can lead to a decrease
in pain through the placebo effect (Atlas & Wager, 2014; Bingel et al., 2006; Colloca &
Benedetti, 2005; Petrovic et al., 2002; Wager et al., 2004 ). This phenomenon has been
observed in studies that show that positive treatment expectations can reduce pain

even in the absence of active treatment.

The Bayesian Pain Model is based on the idea that the brain uses statistical methods
to construct hypotheses about the world around us. The model incorporates concepts
from the Bayesian Brain (Dayan et al., 1995; Friston, 2012; Helmholtz, 1867; Knill &
Pouget, 2004), Predictive Coding (Rao & Ballard, 1999; Srinivasan et al., 1982), the
Free Energy Principle (Friston, 2010; Friston et al., 2006) and Active Inference (Brown
et al., 2013; Friston, 2010; Friston et al., 2009). These ideas can be implemented in
computational models of canonical cortical microcircuits that encode expectations and
the violations of those expectations, also known as prediction errors (Arnal & Giraud,
2012; Bastos et al.,, 2012). The Bayesian Pain Model provides a framework for
understanding how the brain processes sensory information to create our experience

of pain.

In this cumulative dissertation, we address the complex nature of pain and its

modulation by contextual factors through a Bayesian lens.
The core hypotheses of this work are that...

1) the brain processes nociceptive stimuli via Predictive Coding mechanisms,
utilizing expectations and prediction errors.

2) the brain generates a pain percept in a Bayes-optimal manner as explained by
a Bayesian Pain Model.

3) these mechanisms can explain contextual modulations of pain, e.g. through

agency or placebo expectations.

In our first paper, we examined the relationship between expectations and prediction
errors in phasic thermal pain (Reprint 15.1; Strube et al., 2021a). Drawing on Predictive
Coding theory, we explored whether these components are reflected in specific
patterns of neural activity, as measured by electroencephalography (EEG). We

hypothesized that expectations would be represented in lower frequency bands (such
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as alpha or beta, between 8-30Hz), while prediction errors would be encoded in higher
frequencies (such as gamma, >30Hz), based on the asymmetries of oscillatory power
spectra (Arnal & Giraud, 2012; Bastos et al., 2012). Furthermore, we hypothesized that
the neural signals associated with expectations would precede those related to

prediction errors.

We were able to uncover the temporal and spectral patterns of stimulus intensity,
expectations, and prediction errors in pain anticipation and painful thermal stimulation:
We found that an expectation signal was generated in the alpha-to-beta range (8-
30Hz) followed by a prediction error signal in the gamma range (>30Hz) during painful
stimulation. Contrary to our predictions, we observed a decrease in gamma activity
(>30Hz) associated with prediction errors, when the predictive cue did not match the
actual stimulus intensity. In contrast, increasing stimulus intensity was characterized
by the typical spectral patterns associated with nociception, characterized by an
increase in theta activity (4-8Hz), a decrease in alpha-to-beta activity (8-30Hz), and an
increase in gamma activity (>30Hz) (see Ploner et al., 2017 for a review). Our findings
provide insight into the temporal and spectral orchestration underlying Predictive

Coding in pain perception (Strube et al., 2021a).

In our second paper, we extended our investigation to include an affective dimension
by using aversive images (Reprint 15.2; Strube et al., 2021b). Our findings revealed
fundamentally different patterns of neural activity in affective visual processing,
suggesting the existence of modality-specific oscillatory networks in Predictive Coding
for pain and affective visual stimulation. In contrast to our observations for painful
stimuli, we found that all components of Predictive Coding (including stimulus intensity,
expectations, and prediction errors) were encoded in low frequency bands ranging
from theta (4-8Hz) to low gamma (30-50Hz) during the presentation of aversive
pictures. This indicates that these signals are specific to the modality being processed,
and that the temporal and spectral orchestration of Predictive Coding differs between

pain and affective visual processing.

In our third paper, we aimed to explore how the contextual aspect of agency can be
integrated within the framework of a Bayesian Pain Model, and whether this supports
hypotheses derived from the Active Inference model (Reprint 15.3; Strube et al., 2022,
submitted). Agency describes the extent to which an actor believes to be effective in
producing an outcome via his own actions, including sensory outcomes or events.
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We generated hypotheses based on the classical Forward Model (Blakemore et al.,
1998, 2000) and tested them against those derived from Active Inference (Brown et
al., 2013). To test these hypotheses, we conducted a placebo/nocebo experiment in
which treatment was self- or externally-initiated. Our results suggest that agency can
modulate the effectivity of treatment. Computational Bayesian modeling using
variational Bayesian analysis (VBA; Daunizeau et al., 2014) showed that this effect can
be explained as a shift in intensity expectations, in line with predictions from the
Forward Model. A modulation of prior precision, as derived from Active Inference, was

not able to explain this effect.

Interestingly, we found the reverse pattern of typical stimulus intensity representations
in the time-frequency patterns of nociceptive phasic stimulation, as measured by EEG.
In general, nociceptive phasic stimulation is associated with a decrease in alpha-to-
beta (8-30Hz) oscillations and an increase in theta (4-8Hz) oscillations. In this study,
objectively better treatment outcomes were associated with an increase in alpha-to-
beta (8-30Hz) oscillations and a decrease in theta (4-8Hz) oscillations. Additionally,
theta-to-alpha (4-12Hz) activity, which was temporally associated with an expectation-
generating cue, was predictive of Visual Analogue Scale (VAS) ratings when stimulus
intensity was held constant. This indicates a shift in the prior representing expectations
explaining the reduction in pain by self-initiation of pain treatment, as compared to a
shift in the likelihood representing sensory information. Overall, our data provide insight
into the neural mechanisms underlying the placebo/nocebo effect and the role of

agency in pain perception.

With this study, we not only demonstrated that contextual factors such as agency can
be integrated into the Bayesian Pain Model, but we also showed how these factors can
modulate the typical components of Bayesian integration. This allows for a more
sophisticated understanding of how pain is perceived and processed in the brain. By
considering the influence of contextual factors on Bayesian integration, we can gain a

deeper insight into the mechanisms underlying pain perception.

Through the conduct of three studies, we sought to examine the role of Predictive
Coding and Active Inference in the modulation of pain through the lens of Bayesian
inference. The findings of these studies were then integrated to provide an
understanding of the influence of these mechanisms on the experience of pain in a
Bayesian Pain Model. This dissertation provides a cumulative assessment of our
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results and offers conclusions on the role of Predictive Coding and Active Inference in

pain processing.

2.0 Pain versus Nociception: The Influence of Contextual Factors on Pain

At first glance, the basic function of pain seems quite simple — to signal if a physical
stimulus reaches harmful intensities, and facilitate countermeasures (Torebjork, 1985;
Witt & Griffin, 1962). Aspects serving this function can happen automatically and in
very brief time frames. For example, when we grab onto a hot stove top, there is
typically an immediate withdrawal reaction, termed the nociceptive withdrawal reflex
(Bromm & Treede, 1980; Fields & Heinricher, 1989; Neziri et al., 2010; Schouenborg
et al., 1992).

In a simple mechanistic system, a signal indicating injury or destruction of the skin
could be integrated in a model in which higher temperatures (or, generally, physical
intensities) are directly associated with higher pain via a monotonic temperature-pain-
relationship. Experimentally, for example, it has been shown that there is a
monotonically increasing relation between stimulus temperature and the magnitude of
pain sensations in a range from 40-50°C (LaMotte & Campbell, 1978). Pain, however,
is more complex, as contextual factors, such as attention or expectations modulate our
pain experience; this even applies to pain thresholds, i.e. the temperature where an
individual perceives the non-pain perception to flip to a pain perception (e.g. Taesler &
Rose, 2016). As Tracey & Mantyh (2007) pointed out in their definition of pain: “A
conscious experience, an interpretation of the nociceptive input influenced by
memories, emotional, pathological, genetic, and cognitive factors” (Tracey & Mantyh,
2007, p.377).

In this chapter, | will delineate the neurophysiological basis underlying the sensation of
pain. | will begin by describing the physiological basis of bottom-up processing of
sensory pain information, including the ascending pain pathway involved in the
transmission of pain signals from peripheral sensory neurons to the brain. | will then
discuss the role of top-down processing in the modulation of pain, and how cognitive
and emotional factors can influence our perception of pain via descending pain

pathways.



2.1 The Ascending Pain Pathway: Transmitting Bottom-Up Sensory Information

Pain processing typically starts with the activation of nociceptors which are specialized
peripheral sensory neurons in the skin that sense noxious extremes in temperature
and pressure, as well as chemical stimulation (e.g. acids) (Bessou & Perl, 1969;
Burgess & Perl, 1967; Witt & Griffin, 1962). Note that this is not always the case: Pain
can be experienced without the involvement of peripheral sensory neurons, for
example in the case of facial pain syndrome, chronic migraine, or phantom pain (May,
2008, 2011; Parkes, 1973; Ramachandran & Rogers-Ramachandran, 1996; Simmel,
1959).

The information from peripheral nociceptors is transduced into long-range electrical
impulses that are sent to the first synapse in the dorsal horn of the spinal cord, then
towards the brain and (mostly relayed via the thalamus) to a widely distributed network
of cortical structures (Dubin & Patapoutian, 2010). Typically, this pathway is termed
ascending pain pathway (Andersen & Dafny, 1983; Hammond, 1989; Qiao & Dafny,
1988; Willis et al., 1985). In a meta-analysis by Apkarian et al. (2005), cortical
structures associated with pain processing were defined as a result of 68 analyzed
studies. According to this meta-analysis, main components of the pain system are
comprised of somatosensory, insular, cingulate, and prefrontal cortices, the thalamus,

subcortical areas, and the brainstem (Apkarian et al., 2005).

There are two main types of nociceptors, namely A-fiber and C-fiber nociceptors,
describing the nerve fibers involved in relaying the nociceptive signal. Initial fast-onset
pain by high temperatures (e.g. 47°C) is typically signaled by myelinated A-fiber
nociceptors which have relatively high conduction velocities (5—30 m/s), thus enabling
fast motor reactions to harmful stimuli. These fast-conducting fibers are responsible for
the initial sharp pain that is often experienced when we encounter harmful stimuli. C-
fibers, on the other hand, are unmyelinated and have slower conduction velocities (0.4-
1.4 m/s), but can be activated at lower temperatures (approx. 42°C) (Dubin &
Patapoutian, 2010).

In summary, A-fibers and C-fibers transfer nociceptive signals from the periphery to
the dorsal horn of the spinal cord, where they are processed and relayed to the brain.
This bottom-up processing of sensory stimuli is the foundation of the ascending pain
pathway. However, the experience of pain is not solely determined by these bottom-
up signals. Rather, it is also influenced by top-down processes that modulate the
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perception and experience of pain. The descending pain pathway is the basis of these
top-down processes, and it plays a crucial role in the contextual modulation of pain. In
the following section, | will describe the neurophysiological basis of this pathway and

its role in the complex experience of pain.

2.2 The Descending Pain Pathway: Top-Down Pain Regulation

The experience of pain is influenced not only by sensory information transmitted
through the ascending pain pathway, but also by contextual factors that shape our
perception of pain. This is where the descending pain network comes into play:
Descending pathways can inhibit or facilitate nociceptive processing, and have been
shown to involve specific brain regions such as the dorsolateral prefrontal cortex, the
anterior cingulate cortex, and the periaqueductal gray, which, in consequence via the
rostral ventromedial medulla, lead to modulation of activity at the dorsal horn (Eippert
et al., 2009; Geuter & Buchel, 2013; Sprenger et al., 2012; Tinnermann et al., 2017).
In other words, the descending pain network allows for the integration of top-down
cognitive and emotional factors in the relaying of nociceptive information, and

ultimately in the perception and experience of pain.

One prominent example of the influence of top-down processes on pain perception is
the phenomenon of placebo and nocebo effects. Placebo hypoalgesia refers to the
analgesic effects of positive pain expectations and positive treatment expectations,
whereas nocebo hyperalgesia describes the facilitation of pain by negative pain
expectations and negative treatment expectations (Atlas and Wager, 2014; Bingel et
al., 2006; Colloca & Benedetti, 2005; Petrovic et al., 2002; Wager et al., 2004). These
effects have been shown to involve the descending pain network and the modulation
of nociceptive processing in the dorsal horn (Eippert et al., 2009; Geuter & Buchel,
2013; Tinnermann et al., 2017).

Direct evidence for spinal cord involvement in placebo hypoalgesia has been shown in
a combined functional magnetic resonance imaging (fMRI) study, where both cortical
and spinal responses to placebo hypoalgesia have been measured (Sprenger et al.,
2015). In another study, interactions between the brain and the spinal cord have been
shown to mediate value effects in nocebo hyperalgesia, involving the prefrontal cortex,
brainstem, and spinal cord (Tinnermann et al., 2017). Another example of the
involvement of the descending pain pathway is the modulation via top-down attentional
processes. In a study by Sprenger et al. (2012), fMRI data was acquired from the spinal
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cord in combination with thermal pain stimulation while participants were involved in a
well-established working memory task to modulate attentional processes. Here, the
authors showed that attentional processes modulate pain perception by inhibition of

incoming pain signals in the spinal cord (Sprenger et al., 2012).

In summary, information from nociceptive stimuli at peripheral nociceptors is carried in
a bottom-up fashion to higher cortical regions via ascending pathways. At the same
time descending pathways modulate the pain experience and neural information
transmission in a top-down fashion. A prominent example is the influence of
expectations - here positive (placebo) and negative (nocebo) expectations modulate
activity at pain areas including the dorsal horn via descending pathways, which is
ultimately reflected in placebo hypoalgesia and nocebo hyperalgesia: a decreased or
increased sensitivity to the nociceptive input, leading to a reduction (hypoalgesia;
based on placebo effects) or increase of pain sensation (hyperalgesia; based on
nocebo effects).

3.0 The Brain as a Statistical Machine: The Bayesian Brain
In this chapter, | will explore the concept of the Bayesian Brain and its relevance to the

pain system, which consequently leads to a Bayesian perspective in pain processing
in a Bayesian Pain Model. In this context, it is necessary to have a basic understanding
of the brain as a statistical machine. This incorporates ideas from the Free Energy
Principle (Friston, 2010; Friston et al., 2006) and Predictive Coding (Huang & Rao,
2011; Rao & Ballard, 1999; Srinivasan et al., 1982).

The concept of the Bayesian Brain addresses the question of how the brain processes
uncertain or ambiguous information (Knill & Pouget, 2004). What is the role of
uncertainty in action and perception? It suggests that perception can be thought of as
a form of hypothesis testing, where the brain generates hypotheses about the
properties of the world and uses sensory information to test and refine these
hypotheses (Gregory, 1980; Gregory et al., 1968; Kersten et al., 2004). For example,
the visual representation of an image can be described as a probabilistic integration of
prior object knowledge (hypothesis) with image features (sensory information) (Kersten
et al., 2004). The brain is theorized to integrate prior knowledge, or expectations, with
sensory data in a probabilistic manner. Through this process of sampling and updating,

the Bayesian Brain is able to form a representation of the world around us.
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This process is thought to operate in a Bayes-optimal manner, which means that it
integrates sensory information and expectations in the most efficient way possible to
form a percept (see Schwartenbeck et al., 2015 for theoretical considerations of Bayes-
optimal and sub-optimal inference). Bayes-optimal inference can be derived from
Bayes' theorem, which is a fundamental principle of probability that describes the
relationship between the prior probability of a hypothesis, the likelihood of observing
certain evidence given that hypothesis, and the posterior probability of the hypothesis

after taking the evidence into account. This is formalized in the following equation:
(Eq.1; Bayes’ theorem):

P(E|H) * P(H)
P(E)

P(H|E) =

Where P(H|E) is the posterior probability of the hypothesis H after observing evidence
E, P(E|H) is the likelihood of observing evidence E given hypothesis H, P(H) is the prior
probability of hypothesis H, and P(E) is the model evidence. This theorem provides a
way to update our beliefs about the world based on new information and is a key
component of Bayesian inference. By using Bayes' theorem, the Bayesian Brain can
integrate prior expectations with sensory information in order to make predictions about
the world.

In this way, the prior object knowledge is tested by perception, and evidence is
accumulated in favor or against prior object knowledge, leading to updates of our
model of the world. This has been translated to more general frameworks of
computational neuroscience: Integration of prior object knowledge and sensory
information is thought to occur through recurrent feedforward and feedback loops in
the visual cortex, which allow us to make Bayes-optimal inferences based on the
relative precision of the sensory information and prior expectations (Lee & Mumford,
2003). Ernst and Banks (2002) found that when sensory information is less precise,
prior expectations have a greater influence on perception, whereas more precise
sensory information leads to less influence of prior expectations. In contrast, more
precise sensory information leads to less influence of prior expectation on perception.
This leads to the notion of the brain as a statistical machine, as has been proposed by
Dayan et al. (1995) who introduced the brain as a Helmholtz Machine. Following early
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ideas by Helmholtz (1867), Dayan et al. (1995) describe the human perceptual system
as a “statistical inference engine whose function is to infer the probable causes of

sensory input” (Dayan et al. 1995, p.889).

The Bayesian Brain postulates the integration of prior knowledge and sensory input in
the brain as a crucial aspect of our ability to make accurate predictions about the world
around us. The brain is always testing its models of the world — like recurrent
hypothesis tests, expectations, knowledge, and assumptions are tested against
sensory information, which either confirm, alter or disregard our model of the world —
and ultimately lead to learning, i.e. a refinement of our model of the world. By
understanding how this integration occurs, we can gain insights how the brain

processes information and makes inferences.

In the next section, we will explore how the integration of prior knowledge and sensory
input can be incorporated into a Bayesian framework for understanding the perception

of pain in a Bayesian Pain Model.

3.1 The Bayesian Brain in Pain: The Bayesian Pain Model

The idea that the brain processes sensory information in a Bayes-optimal manner has
been used to explain the phenomenon of placebo hypoalgesia, in which positive
expectations about pain can lead to a decrease in pain perception, and nocebo
hyperalgesia, in which negative expectations can lead to an increase in pain perception
(Anchisi & Zanon, 2015; Buchel et al., 2014; Ongaro & Kaptchuk, 2019; Wiech, 2016).
In a Bayesian Pain Model, placebo hypoalgesia and nocebo hyperalgesia are
explained by a Bayes-optimal integration of top-down prior expectations (i.e.,
prediction of pain and pain relief) with bottom-up sensory signals at different points in

the neural hierarchy (Buchel et al., 2014).

An analytical Bayes-optimal solution to the integration of top-down prior pain
expectations and bottom-up sensory input can be achieved by using (biologically
plausible) approximate Gaussian distributions of these parameters (see Laplace
approximation; Friston et al., 2007; Friston & Penny, 2011). Gaussian distributions of
the prior, representing pain expectations, and the likelihood, representing sensory
information, allow for an analytical integration to estimate the Gaussian posterior,
representing the pain percept (see Eq. 2). Normal distributions can be described by
two parameters, the mean p of the distribution and the precision of the distribution o2.

In this view, the posterior is dependent on the mean of the intensity expectation (uprior)
12



and its precision (standard deviation; denoted as 0%yrior) as well as the mean intensity
of the sensory information (nociceptive signal; pikeihood) and the precision of the
sensory information (0Zikelihood), Which is formalized in the following equations,

representing the mean and the precision of the resulting posterior distribution:
(Eq.2)

2 2
_ Hprior * 0" likelihood + Hikelihood * O prior
Mposterior =

2 2
0” likelihood T O prior

2 2
_ O7likelihood * O prior

62 Jikelihood T O%prior

2
o posterior

The following examples show how the integration of expectations and sensory
information can explain phenomena like placebo hypoalgesia and nocebo

hyperalgesia. These examples are adapted from the work of Buchel et al. (2014).

In the first example, imagine that a noxious stimulus is associated with a pain intensity
of 50 VAS on a 0-100 point Visual Analogue Scale (VAS). This is considered the control
case, meaning that there are no expectations involved: In Bayesian integration, this is
represented by a flat prior. The intensity of the pain stimulus is encoded in the mean
of a Gaussian distribution, while the sensory precision is represented by the standard
deviation, which indicates the width of the distribution. In this case, the flat prior does
not change the mean when it is combined with the likelihood, so the resulting

perception (posterior) is the same as the sensory input in the mean (Figure 1a).

In the second example, imagine that a particular cue is repeatedly associated with a
pain stimulus of 30 VAS, leading to conditioning (Figure 1b). Instead of the 30 VAS
stimulus, a 50 VAS stimulus is then presented, as in the control case described above.
In this case, the prior includes the conditioned expectation of 30 VAS, which is lower
than the sensory information of 50 VAS. This represents a placebo expectation,
because the expected pain is less than the actual pain stimulus. In Bayesian
integration, the combination of the prior and the likelihood produces a posterior
(perception) that falls between the two. In this example, this leads to placebo
hypoalgesia (compared to the control case), because the pain is now perceived as 40
VAS rather than 50 VAS.
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In contrast, the third example considers the case of nocebo hyperalgesia (Figure 1c).
In this case, a particular cue is repeatedly associated with a pain stimulus of 70 VAS.
Instead of the 70 VAS stimulus, a 50 VAS stimulus is presented, as in the control case.
This time, the prior corresponds to the conditioned expectation of 70 VAS, which is
higher than the sensory information of 50 VAS. This represents nocebo expectations,
because the expected pain is greater than the actual pain stimulus. In Bayesian
integration, this leads to nocebo hyperalgesia, where the pain is perceived as higher

than it actually is, as in this example, where it is perceived as 60 VAS.
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Stimulation without Placebo/Nocebo Expectations
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Figure 1. The Bayesian Pain Model in placebo hypoalgesia and nocebo hyperalgesia. Adapted from
Bichel et al. (2014). Gaussian distributions characterize nociceptive sensory input (likelihood; green),
placebo expectations (prior; purple), nocebo expectations (prior; yellow) and the pain percept (posterior;
blue). The red line indicates the mean of the posterior distribution. In the first example (a), no
expectations were generated, represented by a (flat) prior centered on the mean of the stimulus. The
pain percept (posterior; blue) is identical to the nociceptive stimulus (likelihood; hidden). The Bayesian
Pain Model explains the modulations of the pain percept (posterior; blue) in (b) placebo hypoalgesia and
(c) nocebo hyperalgesia by the Bayes-optimal integration of prior experiences (here centered at VAS =
30 for placebo expectations and at VAS = 70 for nocebo expectations) with incoming nociceptive
information (likelihood; green). In the second example, representing placebo hypoalgesia (b), placebo
expectations (prior; purple) were generated, which in Bayesian integration with the nociceptive stimulus
(likelihood; green) leads to a placebo effect and a pain percept (posterior; blue) shifted towards lower
VAS ratings. In the third example, representing nocebo hyperalgesia (c), nocebo expectations (prior;
yellow) were generated, which in Bayesian integration with the nociceptive stimulus (likelihood; green)
leads to a nocebo effect and a pain percept (posterior; blue) shifted towards higher VAS ratings.

Bayesian integration thus requires the intensity of expectations and the intensity of

sensory information, which are weighted by their precision — together they constitute a
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pain percept. The influence of precision has been demonstrated empirically by
manipulation of the level of precision of prior treatment expectations: expectation-
based effects are more pronounced with more precise treatment expectations (Grahl
et al., 2018).

In the following chapters, | will use the term Bayesian Pain Model to refer to the
Bayesian integration of prior information and sensory input to form a pain percept, as
delineated in this chapter with the example of placebo hypoalgesia and nocebo
hyperalgesia. This Bayesian Pain Model describes the optimal integration of
expectations and sensory information based on the simplification of information using
Gaussian distributions. This allows for the analytical solutions of Bayesian integration.
In order to provide a comprehensive framework for understanding these processes in
the brain, | will briefly discuss the Free Energy Principle and Predictive Coding as
theoretical frameworks for further hypotheses developed in my research in the next

section.

3.2 The Free Energy Principle

The models of neural processing discussed in this chapter are based on the idea that
internal models are constantly compared to sensory input and updated based on the
processing of prediction errors during learning. Friston et al. (2006) have outlined this
concept in the Free Energy Principle, which can be used to explain a wide range of
cognitive, affective, and evolutionary processes (Brown et al., 2013, 2013; Friston,
2010; Friston et al., 2006; Friston & Kiebel, 2009; Kaplan & Friston, 2018; Parr et al.,
2022). The Free Energy Principle is rooted in the concept of Predictive Coding, and
posits that any self-organizing system in equilibrium with its environment will strive to
minimize its free energy (Friston, 2010). By reducing prediction errors, systems can
maintain their order and develop models that make more accurate predictions about
the sensory world, leading to more efficient information encoding (Friston, 2010;
Friston & Kiebel, 2009).

In other words, the brain is constantly seeking to create an accurate representation of

the world. To do this, it generates models of the world and updates them when

divergent information is received. However, Friston et al. (2006) describe another way

to reduce prediction errors and improve the match between internal models and

sensory input through the use of Active Inference (Brown et al., 2013; Friston et al.,

2006, 2009, 2013, 2017). The brain continuously tries to reduce the prediction errors
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of its generative model of the world, and in addition to updating internal models through
learning, it can also minimize prediction errors through action. Thus, the minimization
of prediction errors can be achieved in two ways: by refining predictions (i.e. updating
our model of the world) to match sensory input, or by performing an action that brings

the world into alignment with our predictions.

In the context of Active Inference, it has been suggested that the precision of sensory
information about the consequences of one's actions must be attenuated in order for
these actions to occur (Brown et al., 2013). This is because, according to the Free
Energy Principle, action is a way of fulfilling expectations: for example, one might
expect their arm to be in a certain location, and as a result, they move their arm to that
location to reduce the mismatch between their expectation and the actual location of
their arm at the original position. Without reducing the precision of sensory information
during action, this expectation of the new arm location would be overruled by prediction

errors arising from the sensory information about the arm's actual location.

In essence, the Free Energy Principle is built on a Predictive Coding view of the brain,
as both expectations and prediction errors are crucial for minimizing free energy and
updating the generative model of the world (Friston & Kiebel, 2009). Active Inference
is an extension of the Free Energy Principle, which suggests that the brain can also

minimize prediction errors through action.

In the following chapter, we will explore the concept of Predictive Coding in greater
detail, as it forms the foundation of our hypothesis about pain processing in the context
of the Bayesian Pain Model.

4.0 Predictive Coding

Early accounts of Predictive Coding were developed within the framework of
computational models of inhibition processes in the retina and visual cortex (Rao &
Ballard, 1999; Srinivasan et al., 1982). For example, it was proposed that the
antagonistic surround of a receptor could be used to calculate the weighted mean of
signals from neighboring receptors, allowing the generation of a statistical prediction
of the signal at the center (Srinivasan et al., 1982). This prediction is based on the
intensity values of the surrounding regions and is combined with the sensory

information entering the particular point. This process can be understood in Bayesian

17



terms as the combination of a prior (the statistical estimate of the intensity at the point)

with a likelihood (the sensory information) to generate a transmission signal.

Predictive Coding principles also suggest that the hierarchical organization of the
cortex plays a role in how higher brain areas influence the processing of lower brain
areas. There is evidence of a hierarchical organization in the visual system, in which
primary regions like the primary visual cortex receive sensory input, while higher areas
are involved in associative functions (Maunsell & van Essen, 1983; Zeki & Shipp,
1988). The brain is thought to use Predictive Coding processes to model complex
scenarios involving internal representations combined with sensory information. Most
of the experimental data supporting the Predictive Coding framework have come from
studies of the visual system (Egner et al., 2010; Hesselmann et al., 2010; Jehee &
Ballard, 2009; Sterzer et al., 2008; Strube et al., 2021b; Summerfield et al., 2006; Uran
et al., 2022).

Predictive Coding mechanisms have also been used to explain processes in other
sensory modalities, such as audition (Arnal & Giraud, 2012; Lesicko et al., 2022; Moran
et al., 2013; Todorovic et al., 2011; Xuejing & Xin, 2019; but see Heilbron & Chait, 2018
for opposing views), olfaction (Zelano et al., 2011; Zhao et al., 2021), and interoception
(Barrett, 2017; Barrett & Simmons, 2015; Seth et al., 2012), as well as higher-order

cognitive processes such as the perception of causality (van Pelt et al., 2016).

In the next step, we will delve into the application of Predictive Coding to the study of
pain perception. We will explore how Predictive Coding principles can be used to

understand the mechanisms underlying pain processing in the brain.

4.1 Predictive Coding in Pain

The ascending and descending pathways in the brain involved in pain processing
resemble a recurrent system that allows for Predictive Coding (Buchel et al., 2014). In
this system, bottom-up sensory information is transmitted via the ascending pathway,
while expectations are encoded in the descending pathway. This allows the brain to
continually compare its expectations of pain with incoming sensory information,
updating these expectations as needed to minimize prediction errors and optimize the

expectations of future pain.

Predictive Coding mechanisms have been investigated in the context of pain, and have

been linked to activity in the anterior insula, which exhibits the expected response
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pattern of Predictive Coding with encoded expectations and prediction errors. The
posterior insula and somatosensory cortex, on the other hand, are associated with the
representation of stimulus intensity (Fazeli & Buchel, 2018; Geuter et al., 2017). The
posterior insula has also been shown to be involved in the correlation of brain activation
with higher-than-expected intensity, known as signed prediction errors (Horing &
Blchel, 2022). These findings provide strong evidence that Predictive Coding plays a
key role in pain perception

The posterior insula receives direct input from the spinothalamic tract, which is involved
in transmitting sensory information in somatosensation and pain perception (Craig,
2002; Dum et al, 2009). This region is also functionally connected to the
somatosensory cortices (Wiech et al., 2014). In the context of Predictive Coding, one
could theorize that the posterior insula integrates sensory information with cognitive
factors such as expectation to compute prediction errors in the anterior insula (Horing
& Buchel, 2022). Importantly, these response patterns in the anterior insula have been
shown to be independent of the aversiveness of the stimuli (Fazeli & Buchel, 2018),
and to be modality-unspecific: the anterior insula correlated with absolute prediction
errors in both aversive auditory and painful stimulation, indicating a general aversive
surprise signal (Horing & Bluchel, 2022). This suggests that the Predictive Coding
mechanisms underlying pain perception are not specific to the sensory modality

involved, but instead reflect a more general process of surprise minimization.

The Predictive Coding framework proposes that the descending and ascending
pathways involved in pain processing integrate sensory information with cognitive
factors such as expectation to compute prediction errors. The anterior insula is a key
region for this process, as it has been shown to exhibit response patterns that are
consistent with the predictions of Predictive Coding, particularly with respect to

absolute prediction errors.

In the next section, we will explore the role of oscillatory patterns in Predictive Coding,

with a focus on canonical microcircuits (Bastos et al., 2012).

4.2 Microcircuits in Predictive Coding

Predictive Coding is theorized to be associated with canonical cortical microcircuits
where neuronal populations are associated with specific computational roles (Bastos
et al., 2012). It is postulated that feedforward prediction errors are projected from lower

cortical levels to higher granular levels (Bastos et al., 2012). From there, they are
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transmitted to excitatory and inhibitory interneurons in supragranular layers, where
expectations are thought to be encoded. Extrinsic feedback connections originate
largely from superficial pyramidal cells while feedforward connections largely originate

from deep pyramidal cells (Felleman & Van Essen, 1991).

These layers of the cortex are associated with asymmetry in the properties of their
oscillatory power spectra: Supragranular sites have higher broadband gamma power,
while granular and infragranular layers have greater power in the alpha and beta range
(Maier et al., 2010). Buffalo et al. (2011) found that the spiking activity of neurons in
the superficial layers of the visual cortex is more coherent with gamma-frequency
oscillations in the local field potential, while neurons in the deep layers are more
coherent with alpha-frequency oscillations. These findings suggest that the different
layers of the cortex exhibit distinct oscillatory patterns, which may play a role in the
coordination of information flow and the computation of prediction errors in the

Predictive Coding framework.

The distinct oscillatory patterns observed in the different layers of the cortex can be
used to make specific predictions about the role of feedback and feedforward
connections in Predictive Coding. Because feedback connections predominantly
originate from deep layers, while feedforward connections originate from superficial
layers, we would expect that expectations, which are thought to be mediated by
feedback connections, would be expressed at lower frequencies than feedforward

prediction error signals.

Arnal and Giraud (2012) theorized accordingly that Predictive Coding should be
‘characterized by alternation of gamma-forward dominant and beta-backward

dominant phases” (p. 394).

In the next chapter, we will integrate our understanding of oscillatory patterns in
Predictive Coding with the existing literature on oscillatory activity in pain processing.
We will briefly review the evidence for oscillatory patterns in pain perception, as well
as the role of top-down modulation in shaping these patterns.

5.0 Oscillatory Patterns of Pain Processing
As discussed in the previous chapter, Predictive Coding is associated with specific

oscillatory patterns (Arnal & Giraud, 2012; Bastos et al., 2012). However, many studies

investigating pain perception have relied on fMRI, which has the disadvantage of a low
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temporal resolution of brain signals (Ogawa et al., 1992). This means that it is difficult
to make precise statements about oscillatory activity or the exact temporal sequence
of signals using fMRI data. To overcome this limitation, it may be necessary to use
other techniques such as electroencephalography (EEG) or magnetoencephalography
(MEG) to measure oscillatory activity more accurately, and to characterize its

relationship to pain perception.

EEG and MEG studies have consistently shown that oscillatory activity in the brain
varies in response to different intensities of painful stimuli, with changes observed in a
range of frequency bands, including infraslow (below 0.1Hz), theta (3-8Hz), alpha (8-
12Hz), beta (12-30Hz), and gamma (>30Hz) oscillations (see Ploner et al., 2017 for a

comprehensive review).

In a study by Schulz et al. (2015), researchers measured the brain's response to two
different types of pain: tonic and phasic. They found that when the brain was subjected
to subjective changes in tonic pain, which in this case was a continuous, 10-minute-
long-lasting pain, there was an increase in gamma activity in the medial prefrontal
cortex in close proximation to premotor and cingulate cortices (Schulz et al., 2015),
while typically, brief painful stimuli have been shown to induce gamma oscillations in
somatosensory cortices. Moreover, in tonic pain, stimulus intensity is inversely related
to beta and alpha oscillations (Chen & Rappelsberger, 1994; Ferracuti et al., 1994;
Peng et al., 2014; Schulz et al., 2015).

The specific pain protocol used in a study can have a significant impact on the
representation of pain in the brain. This is because besides its amplitude, the temporal
properties of the pain stimulus can change the way it is encoded and processed in the
brain. For example, the representation of pain in the brain may be different for a brief,
phasic pain stimulus compared to a longer-lasting, tonic pain stimulus. It is therefore
important to consider the specific pain protocol used in a study when interpreting the

results, as this can affect the way pain is represented in the brain (Horing et al., 2019).

In the next section, we will examine the evidence for top-down modulation of oscillatory
patterns in pain perception. Previous studies have shown that oscillatory activity in pain
perception is not solely determined by the intensity of the nociceptive stimulus, but can
also be influenced by factors such as expectations, attention, and context (Ploner et
al., 2017). This suggests that there may be a role for top-down modulation of pain-

21



related oscillatory activity, in which higher-level cognitive processes influence the way

pain is encoded and processed in the brain.

5.1 Oscillatory Patterns of Top-Down Pain Modulation
The Flexible Routing model of pain perception, proposed by Ploner et al. (2017),

suggests that oscillatory patterns of pain can be influenced by top-down factors such
as expectations or attention. This is thought to be linked to alpha/beta oscillations and
synchronization of alpha/beta activity across different brain areas, whereas gamma
oscillations are proposed to be involved in feedforward signaling. Previous research
has explored the spectral properties of mechanisms involved in pain perception, and
has found evidence for a relationship between alpha/beta oscillations and top-down
modulation of pain. For example, one study using MEG found that alpha suppression
in the anterior insula is linked to the expectation of pain in a situation where painful and
non-painful stimuli were interspersed (Franciotti et al., 2009). Another study suggested
that alpha desynchronization in response to predictable painful stimuli may be a neural
marker of attentional preparation (Babiloni et al., 2003).

Ohara et al. (2006) conducted an experiment in which they used subdural electrodes
to measure the neural activity of two subjects in the primary somatosensory,
perisylvian, and medial frontal cortex. The subjects were exposed to laser pulses that
induced acute phasic pain, and their brain activity was monitored during two different
conditions. In one condition, the subjects were asked to pay attention to the laser
stimulus by performing a cognitive task, while in the other condition, they were
distracted by a magazine article. The researchers found that attention increased the
functional connectivity of brain activity in the beta range between the primary
somatosensory cortex and the perisylvian cortex before the laser stimulus was applied.
Additionally, they observed an increase in synchronization in the alpha range in the

primary somatosensory cortex and the medial frontal cortex (Ohara et al., 2006).

In a similar experiment by Liu et al. (2011) with three subjects, causal influences were
measured between the primary somatosensory cortex, the perisylvian cortex, and the
medial wall during an attention-distraction task. Oscillatory activity in the alpha and
beta ranges were found to be important for the attentional modulation of pain (Liu et
al., 2011). In a study by Hauck et al. (2015), results showed that attention towards pain
led to a decrease in alpha and an increase in gamma activity in the insula. In a similar

study, attentional augmentation of pain processing was suggested based on increased
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gamma band activity by directed attention leading to enhanced saliency (Hauck et al.,
2007). May et al. (2012) report that spatial attention towards pain resulted in a
modulation of pre- and post-stimulus alpha activity, which in summary supports the

idea of alpha activity in top-down control mechanisms of pain (May et al., 2012).

5.2 Oscillatory Patterns of Pain Expectation
According to the Predictive Coding framework and the Free Energy Principle,

expectations play a key role in pain processing. In a study by Albu and Meagher (2016),
when participants expected pain to be worse, they actually experienced more pain and
showed increased activity in the low alpha frequency range. This increase in alpha
activity was associated with negative thoughts and emotions about the pain, such as
pain catastrophizing, rather than the pain intensity itself, suggesting a cognitive-
affective modulation via alpha synchronization (Albu & Meagher, 2016). In another
nocebo study by Thomaidou et al. (2021) beta-band activity in the brain was associated
with the magnitude of the nocebo response. Individuals with strong long-range
temporal correlations in the beta band had larger nocebo responses than those with
weaker activity (Thomaidou et al., 2021). The researchers also found that alpha power
was reduced during the acquisition of the nocebo response, and that alpha power was
higher in nocebo-augmented pain compared to the baseline (Thomaidou et al., 2021).
In a study involving placebo treatment, alpha activity increased significantly post-

placebo-treatment (Huneke et al., 2013).

In a study by Nickel et al. (2022), participants were presented with brief painful stimuli
of low and high intensities that were probabilistically cued. The researchers found that
the expectations of the participants regarding the upcoming pain influenced their brain
activity in the alpha and beta frequency ranges before the presentation of the pain
stimulus. However, during the painful stimulation, the researchers did not observe any
modulation of oscillatory power due to expectations (Nickel et al., 2022). Babiloni et al.
(2003) found that anticipatory alpha activity was associated with the subjective
evaluation of pain intensity. Additionally, it has been observed that distracted
participants during an anticipatory period reported lower pain intensity and
unpleasantness, accompanied by a reduction in alpha activity in the fronto-central
midline region of the brain (Del Percio et al., 2006). These findings suggest a potential
role for oscillatory activity in the alpha and beta frequency ranges in the modulation of
pain perception by expectations. This effect is thought to be related to top-down

modulation of pain processing, and is consistent with theories of Predictive Coding,
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which suggest that the brain uses expectations to predict sensory input and generate

prediction errors.

In summary, the theoretical foundation of my studies is based on understanding the
brain as a statistical machine that uses Bayesian principles to integrate prior
expectations and sensory information. The Bayesian Brain can be explained using
theories like the Free Energy Principle and its extension through Active Inference and
Predictive Coding, which can be applied to the recurrent system of pain processing in
the brain with its ascending bottom-up pathways and descending top-down pathways.
These processes can be measured through oscillatory patterns using EEG, allowing
for the investigation of pain and its top-down processing.

6.0 Testing Predictive Coding, Active Inference, and the Bayesian Pain Model

In this chapter, | will present the empirical studies that were conducted as part of this
cumulative dissertation. These studies were designed to investigate the role of
Predictive Coding and top-down modulations in the neural processing of pain, with a
focus on oscillatory patterns. | will describe the methods and results of these studies

and discuss their implications in the light of a Bayesian Pain Model.

The first study (Reprint 15.1; Strube et al. 2021a) is a replication study using EEG to
investigate the implementation of Predictive Coding in the cortical pain network. Here,
we tested the specific hypothesis that expectations should be encoded in lower
frequencies than prediction errors. The high temporal resolution of EEG allowed for
the separation of expectation and prediction error signals, which was not possible in
previous fMRI studies. The study found that alpha-to-beta synchronization occurred
immediately after a predictive cue, which was associated with higher intensity
expectations. In contrast, prediction errors were encoded in the gamma range during

phasic painful thermal stimulation.

The second study (Reprint 15.2; Strube et al. 2021b) examines the use of Predictive
Coding for negative affective image stimuli. The findings indicate that there are different
patterns of neural activity for this type of stimuli, suggesting the existence of modality-
specific oscillatory networks. In contrast to our observations for painful stimuli, we
found that the affective valence, valence expectations, and prediction errors were

encoded in low frequency bands during the presentation of aversive pictures. This
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suggests that the signals are specific to the modality being processed, and that the

orchestration of Predictive Coding differs between pain and affective visual processing.

The third study (Reprint 15.3; Strube et al. (2022), submitted) explores how the
contextual aspect of agency can be integrated into a Bayesian Pain Model and whether
this supports the predictions of the Active Inference model. We conducted a
placebo/nocebo experiment in which treatment was self- or externally-initiated. The
results showed that agency can modulate the effectivity of treatment and that this can

be explained as a shift in intensity expectations.

6.1 Study 1: Predictive Coding in Pain
Strube, A., Rose, M., Fazeli, S., & Buchel, C. (2021). The Temporal and Spectral

Characteristics of Expectations and Prediction Errors in Pain and
Thermoception. eLife, 10, €62809.

6.1.1 Introduction

In the first study, our aim was to investigate the oscillatory properties of Predictive
Coding signals in pain processing. We specifically hypothesized that an expectation
signal would be encoded in oscillatory patterns earlier than a prediction error signal.
Additionally, we predicted that expectations would be represented in lower frequencies

than prediction errors.

Noxious thermal stimulation of varying intensity was unreliably cued to generate
expectations regarding the stimulation. l.e., a predictive cue was associated with low
(42°C), medium (46°C) or high pain (48°C), where a mismatch of expectation and

stimulation has been conceptualized as a prediction error.

Geuter et al. (2017) and Fazeli & Blichel (2018) conducted similar studies on the
Predictive Coding framework in relation to pain using fMRI. Geuter et al. (2017) used
a cued pain design with two pain stimulus intensities and observed anterior insula
responses that followed the response patterns predicted by the Predictive Coding
framework, indicating the involvement of expectations and prediction errors. Fazeli &
Blchel (2018) extended this work by using three pain intensities and a second modality
to control for aversiveness. They found that the ventral anterior insula represented pain
intensity, expectation, and absolute prediction errors, and that this could not be
explained by aversiveness. Both studies showed that the insula plays an important role

in the Predictive Coding model, but were unable to establish its temporal aspects. This
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motivated the current study, which uses EEG to further investigate the temporal and

spectral aspects of these signals.

In this study, we replicated the design of Fazeli & Bulchel (2018) with slight
modifications for EEG measurements and tested the hypothesized spectral patterns of
the microcircuits involved in Predictive Coding using time-frequency analysis of EEG
data. As discussed in chapter 4.2, it has been suggested that prediction errors should
be expressed by higher frequencies than the predictions that generate them (Arnal &
Giraud, 2012; Bastos et al., 2012).

6.1.2 Methods

The current EEG study was designed to experimentally manipulate expectations and
prediction errors using preceding cues containing unreliable information about the
subsequent pain stimulus. This was achieved by the presentation of predictive cues
(presented for 1000-1400ms) preceding a painful heat stimulus (42°C, 46°C and 48°C
fur low, medium and high stimulus intensities, respectively). Thermal stimulation was
applied using a 30 x 30mm? Peltier thermode (CHEPS Pathway, Medoc, Israel). As a
control condition (see 6.2), we included aversive emotional picture stimuli from the
International Affective Picture System (IAPS; Bradley & Lang, 2007). The color of the
cue (triangle) indicated unreliably the modality of the stimulus (orange for picture and
blue for heat). A white digit written inside of each triangle indicated unreliably the
intensity of the subsequent stimulus (a 1, 2 and 3 for low, medium and high intensity).
Based on this cue-stimulus configuration, we could reliably produce expectations and
prediction errors with control of contingencies between cues and stimuli. The intensity
was cued correctly in 60% of all trials, whereas the modality was cued correctly in 70%

of all trials.

This cued pain paradigm allowed us to directly examine the spectral patterns
associated with prediction errors and expectations. After conducting a behavioral
training session to ensure that participants understood the contingencies, we recorded
their EEG while they continuously rated cued pain and picture trials. After artifact
rejection, correction via independent component analysis (ICA; Jung et al., 2000;
Makeig et al., 1996) and time-frequency transformations, we performed explorative
cluster permutation tests to assess associations with stimulus intensity, expectations
and prediction errors in cue- and pain-locked EEG time-frequency data (see Reprint
15.1., methods for details).
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For the analysis of EEG data, we decided to correct for multiple comparisons using
non-parametrical permutation tests of clusters of neural activity (Maris & Oostenveld,
2007). We based our hypotheses about Predictive Coding on the functional
architecture of canonical cortical microcircuits, but previous studies did not provide
enough detailed information about the timing and frequency patterns of these
processes. We used cluster permutation tests to account for the fact that biological
processes do not always occur at a specific frequency or time point, and that multiple

electrodes may detect activity at the same time.

6.1.3 Results
In this study, we used cluster permutation tests to analyze the time-frequency patterns

of EEG data during a cued pain paradigm with three different stimulus intensities. Our
findings show that there were clear differences in activity between the different levels
of aversiveness. We found multiple clusters of activity in the theta (3-8Hz), alpha-to-
beta (8-30Hz), and gamma (>30Hz) bands that were related to the strength of the pain
stimulus. Behavioral data also showed that the cued intensity influenced pain

perception, i.e. higher pain expectations were associated with higher pain ratings.

Importantly, our results indicated that temporally and spectrally separable clusters of
oscillatory activity are associated with components of Predictive Coding. One early,
low-frequency cluster (3-30Hz) was specifically linked to anticipation in pain
perception, or cued intensity. A later-appearing cluster at higher frequencies (31-
100Hz) was linked to negative absolute prediction errors in pain. On a behavioral level,
pain ratings were associated with expectations; higher pain expectations were
associated with higher pain ratings.

6.1.4 Discussion

In this study, we found that expectation and prediction errors have a significant impact
on pain perception and oscillatory processes in the brain. The modulation of behavioral
pain ratings by expectation (i.e. higher expectations are associated with higher pain)
is supporting the Bayesian Pain Model, where higher expectations would be modelled
via a higher prior mean. In Bayesian integration this would result in higher pain ratings
with higher expectations (Blchel et al., 2014).

We observed a negative modulation of gamma activity by absolute prediction errors,

i.e. lower gamma activity was measured when the predictive cue did not match the

intensity of the upcoming stimulus during pain. This is contrast to prediction error
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effects in the visual (Bauer et al., 2014; van Pelt et al., 2016) and auditory (Edwards et
al., 2005; Parras et al., 2017) domains. Interestingly, while not typically discussed in
the framework of Predictive Coding, other cognitive domains show this pattern of
decreased gamma activity with mismatch. For example, it has been shown that that
gamma power is associated with successful matching (representing the absence of a
prediction error) of external input with internal representations (Herrmann et al., 2004;
Osipova et al., 2006; Wang et al., 2018), and in this context, gamma band activity have
been discussed in terms of representing a match between bottom-up and top-down
information (Herrmann et al., 2004). One further example is increased gamma activity
with higher cloze probabilities in language comprehension (Hald et al., 2006; Molinaro
et al., 2013; Obleser & Kotz, 2011; Wang et al., 2018), where a critical word that is
semantically predictable by the preceding sentence (and is thus related with a high
cloze probability) leads to higher gamma activity as compared to words which are
semantically unpredicted (low cloze probability), which would be represented by a

higher prediction error in a Predictive Coding model.

In this study, we were able to identify the temporal orchestration of essential
parameters of the Predictive Coding process in spectral patterns of neural activity.
Firstly, we found that expectations were associated with increased alpha-to-beta
activity following a predictive cue. In a Bayesian Pain Model, this would represent prior
information that would then be integrated with sensory information during painful
stimulation. We observed that this prior information modulated pain perception
accordingly, with higher expectations being associated with higher pain ratings, as
predicted by the Bayesian Pain Model (Buchel et al., 2014). Secondly, we found that a
decrease in gamma activity was associated with prediction errors during painful
stimulation — this is atypical and was not predicted by theoretical accounts of the
architecture of microcircuits, which posit an increase in gamma activity in response to
prediction errors. These findings provide new insights into the temporal dynamics of

Predictive Coding in the perception of pain.

6.2. Study 2: Predictive Coding in (Aversive) Visual Perception

Strube, A., Rose, M., Fazeli, S., & Blchel, C. (2021). Alpha-to-Beta and Gamma-Band
Activity Reflect Predictive Coding in Affective Visual Processing. Scientific Reports,
11(1), 1-15.
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6.2.1 Summary

Affective image stimuli were also presented as part of the paradigm of the first
experimental study. We have published the results of the analysis of these data in
another publication (Reprint 15.2; Strube et al., 2021b).

| also refer to the publication (Reprint 15.2; Strube et al., 2021b) for a detailed
classification of the results in the context of affective picture processing. Since the
scientific work presented in the context of this dissertation is essentially about pain
processing, | reduce the content of this section to the relevance of this study in the
context of Predictive Coding in the pain domain. Ultimately, the visual-affective
modality was introduced to serve as a control condition for the pain condition to
delineate whether different mechanisms are responsible in Predictive Coding in pain
compared to Predictive Coding in a different (aversively stimulated) modality, which |
will discuss in this chapter. These results are useful to assess whether the spectral and
temporal orchestration of Predictive Coding we found in the first study are specific to

pain stimuli or whether we find comparable results for affective picture stimuli.

The affective picture stimuli were presented in the same way as the pain stimuli in the
first study with the same contingencies. Since both pain stimuli and picture stimuli were
presented to the same group of subjects and the same EEG preprocessing and
analysis techniques were used, results are comparable and differences can be
attributed to the use of the different stimulus materials (see Reprint 15.2; Strube et al.
2021b for detailed methods).

Affective visual stimuli are usually accompanied by a desynchronization of alpha
activity (8-12 Hz; Cui et al., 2013; De Cesarei & Codispoti, 2011; Schneider et al., 2018;
Schubring & Schupp, 2019, 2021). In the context of Predictive Coding, this could be
interpreted as an expectation signal encoded in the increase of alpha activity.
Moreover, affective imagery is associated with event-related synchronization of
gamma activity (>30Hz; Boucher et al., 2015; Glntekin & Tulay, 2014; Keil et al., 2001;
Martini et al., 2012; Muller et al., 1999; Schneider et al., 2018). While expectation
signals are associated with low frequencies, a modulation of gamma would be
postulated for the transmission of feed-forward prediction errors based on canonical
microcircuits theorized for Predictive Coding (Arnal & Giraud, 2012; Bastos et al.,
2012).
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This yields specific hypotheses for Predictive Coding in affective visual image
processing: desynchronization of alpha activity and synchronization of gamma activity
typically associated with affective stimuli signal components of Predictive Coding. |.e.,
alpha activity should be modulated by expectations, whereas gamma activity should

be modulated by prediction errors.

The paradigm used in this study is a probabilistic cue paradigm in which the
contingency of cues and valence intensity of affective imagery are learned in a training
session. Also, cue-stimulus contingencies did not change during the experiment. In
accordance with the pain levels of the first study (see 6.1; Reprint 15.1; Strube et al.

2021a), three affective picture levels were presented to the participants.

The valence of these pictures was clearly discriminable, as behavioral ratings and EEG
time-frequency patterns in the alpha-to-beta (8-30Hz) band were linearly associated
with our valence intensity manipulation. Valence ratings were further modulated by
prediction errors: a larger mismatch between expected and actual stimulus led to larger

valence ratings.

Initially, we had hypothesized that low frequencies should be modulated by
expectations. Here, we found a negative association of alpha-to-beta (8-30Hz) activity
and expected valence during the presentation of the image stimulus. Interestingly, we
found no evidence for such a signal shortly after cue presentation before the picture
stimulus appeared (i.e. a cue was presented, and after a certain lag, the picture
stimulus was presented). This contrasts with our expectation signal in the pain
modality: the expectation of pain modulated oscillatory patterns in an anticipatory
phase before the pain stimulation occurred, immediately after the presentation of an

intensity cue.

As another ingredient of Predictive Coding, we expected a prediction error signal in the
gamma frequency band (>30Hz). The results provide evidence for this hypothesis:
Changes in gamma activity were associated with absolute prediction errors. Again,
there are clear differences to spectral patterns associated with Predictive Coding in
pain. In pain stimulation, a desynchronization of gamma activity is associated with
absolute prediction errors, here there is an increased gamma activity, which is typically
hypothesized in Predictive Coding theories (Arnal & Giraud, 2012; Bastos et al., 2012).
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Our findings suggest that Predictive Coding is involved in affective picture processing,
but that oscillatory patterns are fundamentally different from the patterns involved in
pain perception. By using a carefully designed paradigm that allowed us to precisely
control expectations and prediction errors, we were able to observe distinct patterns of
neural activity in the two different modalities. These results support the idea that there
are distinct, modality-specific Predictive Coding processes associated with oscillatory

activity in affective visual processing and pain processing.

6.3 Study 3: Agency in Pain Treatment and the Bayesian Pain Model

Strube, A., Horing, B., Rose, M., & Buchel, C. (2022). Agency Affects Pain Inference
through Intensity Shift as Opposed to Precision Modulation [Manuscript submitted for
publication]. Department of Systems Neuroscience, University Medical Center

Hamburg-Eppendorf

6.3.1 Introduction

Expectations are fundamental in clinical pain management (Gni} et al., 2020;
Peerdeman et al., 2016; Petersen et al., 2014). However, meta-analyses show that
agency also plays a major role in the treatment of pain. For example, self-treatment of
pain (so-called PCA: Patient-Controlled Analgesia) leads to a greater reduction in pain
compared to external treatment of pain in clinical settings (Ballantyne et al., 1993;
McNicol et al., 2015). The beneficial effect of agency has also been shown
experimentally in pain treatment, showing modulations of pain ratings and
physiological recordings (Beck et al., 2017; Helmchen et al., 2006; Jensen & Karoly,
1991; Kakigi & Shibasaki, 1992; Karsh et al., 2018; Mohr et al., 2008, 2012; Muller &
Netter, 2000; Pellino & Ward, 1998; Pervin, 1963; Staub et al., 1971; Thompson, 1981;
Wang et al., 2011; Weisenberg et al., 1985; Wiech et al., 2006). This process is
associated with sensory attenuation (Blakemore et al., 1998, 1999, 2000; Claxton,
1975; Weiskrantz et al., 1971), namely a reduction of perceived stimulus intensity by
self-production of these stimuli. Even Charles Darwin observed that “from the fact that
a child can hardly tickle itself, or in a much less degree than when tickled by another
person, it seems that the precise point to be touched must not be known” (Darwin,
1872). Since expectations and agency are in principle important effects in (clinical)
pain treatment, the interaction of these components is another factor that deserves

closer examination.
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This study aimed to investigate the role of agency, as a contextual top-down factor of
pain, in the Bayesian Pain Model. The Bayesian Pain Model proposes that
expectations can be integrated into the model as a prior in a Bayesian integration,
where sensory information is combined with prior information to form a pain percept
(Buchel et al., 2014). Both the pain intensity expectation and the precision of that
expectation can be modeled using Bayesian integration. These expectations are
integrated with sensory information in an optimal way, leading to the formation of a
pain percept. The question addressed in this study is how the influence of agency can

be integrated into the Bayesian Pain Model.

It is interesting to consider the relationship between the principles of Active Inference
(Friston et al., 2006, 2009, 2017) in relation to the influence of expectations and agency
on pain perception. Active Inference is associated with a need to reduce the precision
of self-produced stimuli in order to be able to act (see 3.2; Brown et al., 2013). This
can be integrated into the Bayesian Pain Model (Figure 2), as a reduction in likelihood
precision (Figure 2c). l.e., a decrease in attention to sensory information leads to less
precise sensory input. In the case of self-treatment with placebo expectations (i.e.
treatment expectations are better than the actual treatment), this would result in a
larger weight given to placebo expectations in Bayesian integration, leading to
relatively larger placebo expectation effects. In the case of self-treatment with nocebo
expectations (i.e. treatment expectations are worse than the actual treatment), this
would result in a higher weight given to nocebo expectations, leading to relatively larger
nocebo expectation effects. This would manifest as an interaction: Active Inference
posits that self-treatment leads to enhanced expectation effects compared to external

treatment.

This is contrasted by the classical Forward Model, where somatosensory attenuation
is explained by continuously generated predictions of the sensory consequences of a
motor command. Here, accurate predictions are used to attenuate the intensity of
sensory consequences of self-produced movement (Blakemore et al., 2000). This can
be integrated in the Bayesian Pain Model as a reduction of the likelihood or prior mean
— i.e., a decrease of intensity of the sensed or expected nociceptive input (Figure 2b).
In self-treatment, as compared to external treatment, this would lead to a decrease in
pain, regardless of placebo or nocebo expectations. In contrast to Active Inference,
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this would not be predictive of an interaction, but of additive effects of expectations and

agency.
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Figure 2. The Bayesian Pain Model is hypothesized to integrate agency by (b) a mean shift of prior
expectations as derived from the Forward Model or by (c) an attenuation of sensory precision, as derived
from Active Inference. Adapted from Strube et al. (2022, submitted). Gaussian distributions characterize
nociceptive sensory input (likelihood; green), placebo expectations (prior; purple), nocebo expectations
(prior; yellow) and the pain percept (posterior; blue). (a) In simple Bayesian integration in
placebo/nocebo conditions without a modulation by agency, the pain percept (posterior; blue) is the
result of a Bayes-optimal combination of placebo expectations (left; here centered at 30 VAS; purple) or
nocebo expectations (right; here centered at 70 VAS; yellow) with nociceptive sensory information
(likelihood; green). The red line indicates the mean of the posterior distribution. (b) In the Prior Shift
Model derived from the Forward Model, agency over pain shifts the mean of the prior towards lower
VAS values in both, placebo (left) and nocebo (right) conditions. The shift of prior distributions towards
lower VAS values leads to a pain percept (posterior; blue) which is shifted towards lower VAS values as
a consequence of an integration of the likelihood (green) with the shifted prior in both, placebo
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hypoalgesia (left) and nocebo hyperalgesia (right). Here, the red dotted Gaussian distributions represent
prior placebo/nocebo distributions without the influence of agency. The red line indicates the mean of
the posterior distribution in Bayesian integration based on a prior without a shift, i.e. in conditions without
agency over the pain stimulus. (c) In the Likelihood Precision Modulation Model, derived from Active
Inference, agency attenuates sensory precision. The pain percept (posterior; blue) results as a Bayes-
optimal combination of placebo (left) and nocebo (right) expectations with incoming precision-attenuated
nociceptive information (likelihood; green). As a consequence, the relative precision of placebo/nocebo
expectation increases, leading to a shift of the pain percept (posterior; blue) toward lower VAS values
in placebo hypoalgesia (left) and to a shift toward higher VAS values in nocebo hyperalgesia (right), as
the posterior (blue) is “drawn” towards the prior. The red dotted Gaussian distributions represent
likelihood distributions without a precision attenuation by agency. The red line indicates the mean of the

posterior distribution in Bayesian integration without attenuated sensory precision.

6.3.2 Methods

In two pain placebo experiments with self-initiated and externally initiated pain with
both, placebo and nocebo conditions, we investigated how agency acted on
parameters of the Bayesian Pain Model. We derived hypotheses of precise potential
modulations of the Bayesian Pain Model by agency from the Forward Model and Active

Inference.

In both experiments, painful stimuli were presented and participants were told that the
pain would be treated subsequently by TENS (Transcutaneous Electric Nerve
Stimulation). Actually, the pain was reduced by a reduction of the stimulation
temperature. A TENS cover story has been shown to effectively create placebo effects
and has been used in several studies (Grahl et al., 2018; Schenk et al., 2017;
Thomaidou et al., 2021; van de Sand et al., 2018). Here, the TENS cover story was
utilized to establish a treatment situation. In reality, no TENS stimulation was applied
during the treatment of the painful stimuli. This treatment could be self-initiated by the
participant or externally initiated by the experimenter (as explained to the participant;

actual external treatment was initiated automatically by the computer).

This treatment was either related to high or low treatment effectivity. In conditioning
trials, a cue signaling high treatment effectivity was actually associated with a stronger
decrease in pain (a reduction from 70 VAS to 10 VAS) as compared to a cue signaling
low treatment effectivity (a reduction from 70 VAS to 50 VAS). In test trials, both the
high treatment effectivity cue and the low treatment effectivity cue were leading to the
same treatment outcome (a reduction from 70 VAS to 30 VAS). Based on conditioned
placebo/nocebo pain paradigms and the Bayesian Pain Model, we expected a
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modulation of pain ratings in test trials based on placebo/nocebo expectations (Fazeli
& Buchel, 2018; Geuter et al., 2013; Geuter & Buchel, 2013; Hird et al., 2018; Lorenz
et al., 2005; Nickel et al., 2022; Strube et al., 2021a), i.e. expectations of highly
effective treatment (placebo) should be associated with better treatment outcomes in

test trials than expectations of weakly effective treatment (nocebo).

Two models have been proposed to explain the effects of agency on sensory
experiences. The first main model, derived from the Forward Model, suggests that
smaller prediction errors during self-generated movement can lead to a weaker
sensation of action outcomes. Applied to the context of pain treatment, this would mean
that self-treatment would result in a lower perception of pain. This idea motivated the
Likelihood Shift Model or Prior Shift Model (see Figure 2b). The second main model,
based on Active Inference, proposes that sensory attenuation is necessary for enabling
action by reducing the precision of sensory evidence related to the consequences of
one's own actions. This would translate to a reduction in the precision of the likelihood
in the Bayesian Pain Model, which motivated the Likelihood Precision Modulation

Model (see Figure 2c).

We hypothesized that if the likelihood mean is shifted by agency (as derived from the
Forward Model), self-treatment would result in overall lower pain ratings, regardless of
prior expectations. This means that the effects of agency and expectations would be
additive. In contrast, if the precision of the likelihood is reduced (as derived from Active
Inference), the impact of expectations on pain ratings would be enhanced, leading to
a stronger influence of expectations on self-treatment conditions. This would manifest

as an interaction between agency and expectations.

As in previous studies, we utilized cluster permutation tests to assess modulations of
oscillatory activity by stimulus intensity, placebo/nocebo expectations, agency and the
interaction of placebo/nocebo expectations with agency. Moreover, we tested EEG
time-frequency data for correlations with between-subject placebo benefits (i.e. the
difference between high and low treatment expectations in test trials) and for
correlations with between-subject sensory attenuation effects (i.e. the benefit of self-

treatment as derived from model parameter estimates).

The first experiment (N = 25) used continuous pain ratings to establish a precise
readout of pain perception during painful heat stimulation and after treatment, whereas

the second experiment (N = 54) also used EEG to assess neurophysiological
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correlates of top-down modulation via expectations and agency. In both experiments,
thermal pain was administered to capsaicin-sensitized skin on the left radial forearm
following individual calibration to establish pain levels that were equivalent for each
participant. To minimize contamination of EEG data by movement artifacts caused by
continuous pain ratings through button clicks, we changed the paradigm for experiment
2 to incorporate single outcome ratings rather than continuous pain ratings. See
Reprint 15.3. for detailed methods.

6.3.3 Results

In this study, we used three different VAS levels at treatment outcome. These levels
were 10 VAS and 50 VAS for high and low treatment effectivity during conditioning
trials, and 30 VAS for test trials. To determine if participants perceived these levels as
different, we conducted a repeated measures analysis of variance on the final
continuous rating data points (post-treatment VAS rating) from experiment 1 and on
the outcome rating of experiment 2 from all three levels of stimuli, including both
conditioning and test trials. In both experiments, this analysis revealed a significant
difference between all three levels, showing that we were able to successfully generate

three distinct levels of treatment.

In both experiments, we found that people who self-treated and had high treatment
expectations experienced greater pain relief during test trials, where the same stimulus
intensity (30 VAS) was always presented. We also found that there was no interaction
between these factors. Using formal model comparison, we were able to provide strong
evidence for a Likelihood Shift Model or Prior Shift Model (a change in the mean of the
likelihood term or a change in the mean of the prior term caused by self-treatment)
over the Likelihood Precision Modulation Model (modulating the precision of sensory

consequences of self-generated outcomes).

The analysis of the EEG data focused on two phases. In the first phase, we examined
the EEG power shortly after the presentation of the cue, which signaled agency and
treatment effectivity. In the second phase, we analyzed the time frame that included
the pain relief phase and the outcome phase.

Modulation of oscillatory activity by differences in stimulus intensity, agency and
expectation effects were evident in the EEG data: differences in stimulus intensity in
10 VAS versus 50 VAS conditioning trials were linked to differences in the theta (4-

8Hz), alpha-to-beta (8-30Hz), and low gamma (30-50Hz) bands. Agency also
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modulated low-frequency oscillatory responses in the alpha-to-beta (8-30Hz) range
and low gamma (30-50Hz) range at treatment outcome. A negative cluster of activity
in the theta-to-alpha (4-12Hz) range temporally associated with the cue was linked to
the interaction of expectation and agency, and was also significantly related to trial-by-

trial differences in 30 VAS test trials.

6.3.4 Discussion

As expected, our analysis showed a clear difference between 10 VAS and 50 VAS
conditioning trials in terms of pain ratings and oscillatory activity. Higher treatment
success by an actual larger decrease of stimulus intensity was associated with
decreased alpha-to-beta (8-30Hz) and theta (4-8Hz) activity during the relief phase. In
the outcome phase, higher treatment success was associated with increased alpha-
to-beta and decreased theta activity. This is consistent with previous findings that
associate lower alpha-to-beta power (8-30Hz) and higher theta power (4-8Hz) with
higher stimulus intensity (Ploner et al., 2017). Our study extends these findings to a
treatment context, where higher alpha-to-beta power (8-30Hz) and lower theta power
(4-8Hz) were associated with more successful treatment during the outcome phase.
This is complementary to results of oscillatory activity in pain processing (see 5.0),
where decreases of alpha activity and increases of theta activity is related to stimulus
intensity — here, we show that successful treatment leads to a reversal of this pattern:
Higher treatment success is associated with a synchronization of alpha-to-beta activity

and a desynchronization of theta activity.

We observed modulations by stimulus intensity and agency in outcome-locked EEG
data, but not by expectations. This is consistent with previous studies that have shown
cue-related expectation effects in the alpha-to-beta band before painful stimulation, but
not during painful stimulation (Nickel et al., 2022; Strube et al., 2021a). In another
study, pain-induced alpha and gamma responses were significantly influenced by
stimulus intensity but not by placebo hypoalgesia (Tiemann et al., 2015). This indicates
that expectations are associated with cue-locked effects and may be encoded in
oscillatory processes of brain regions that are commonly involved in contextual top-
down processing. In contrast, agency had an effect on both cue-locked activity (as an
interaction) and outcome-locked activity (as a main effect), indicating influences on

both expectations and sensory processing.
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In this experiment, we investigated the mechanism behind improved treatment
effectivity when the treatment was self-initiated. The Forward Model proposes that
small prediction errors during self-generated movement result in a perception of a less
intense sensation compared to externally generated unpredicted outcomes
(Blakemore et al., 1998, 2000). In the context of our pain protocol, this suggests that
self-treatment always leads to improved treatment outcomes. In contrast, Active
Inference suggests that decreased precision of sensory consequences underlies the
sensory attenuation phenomenon (Brown et al., 2013). From a Bayesian perspective,
pain perception can be seen as the integration of expectation (prior) and nociceptive
input (likelihood), with the precision of each term determining its contribution.
Therefore, in Active Inference, reduced nociceptive precision during our experiment
should lead to an increase in the influence of expectation, as its precision remains
constant. As a result, we expected that the relative influence of prior expectations
would be increased compared to sensory evidence, which would be attenuated in
precision. This means that self-treatment should lead to a greater influence of
treatment expectation compared to external treatment. From a statistical perspective,
this would manifest as an interaction between agency and expectation, i.e. larger
differences between low and high treatment expectations in self-treatment compared

to external treatment.

Our data showed clear effects of sensory attenuation and treatment expectations in
two experiments with different pain rating modalities. However, our data did not show
a significant interaction between agency and treatment expectation effects, which
strongly favors the Forward Model of perception for self-initiated pain treatment. This
is supported by Bayesian model comparison using VBA (Daunizeau et al., 2014), which
strongly favored the Likelihood Shift model or the Prior Shift Model over the Likelihood
Precision Modulation Model. EEG data showed that there was a negative cluster of
activity in the theta-to-alpha range (4-12Hz) that was correlated with trial-by-trial VAS
ratings in test trials. The early onset of the cluster, which was associated with cue
onset, suggests that the modulation of expectations by agency affects the prior rather
than the likelihood term, and thus supports the Prior Shift Model over the Likelihood
Shift Model.

The treatment of pain is enhanced by both agency and positive expectations. The

sensory attenuation and objectively different stimulus intensities modify the oscillatory
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activity during the relief and outcome phases of pain treatment. Expectation effects are
associated with EEG activity directly following the cue and interact with agency.
Bayesian model comparisons of our data did not find any evidence of a decrease in
likelihood precision during self-treatment, which suggests that the positive effect of
self-treatment is due to a mean shift as the underlying mechanism in the Bayesian Pain
Model.

In this study, we sought to understand how the contextual aspect of agency can be
integrated within the framework of a Bayesian Pain Model and whether this supports
the predictions of Active Inference. Using EEG data, we determined the oscillatory
mechanisms associated with pain reduction during treatment and showed that
expectations and agency modulate these signals. Our findings suggest that agency
can modulate the effectivity of treatment and that this effect can be explained as a shift
in intensity expectations. Furthermore, our data indicate that the modulation of
likelihood precision, as derived from Active Inference, is not able to explain this effect.
Overall, our findings provide insight into the neural mechanisms underlying the

placebo/nocebo effect and the role of agency in pain perception.

In the context of Active Inference, this is a significant result: From the considerations
on Active Inference, we deduced that agency should lead to a modulation of the
likelihood precision. We found no evidence for this in this study. Thus, we question
whether the proposed mechanism of reducing the precision of self-produced action
outcomes is indeed causal for sensory attenuation effects and whether this mechanism

is suitable for enabling action.

7.0 Conclusion

In this cumulative dissertation, we have interpreted the brain as a statistical machine
that performs Bayes-optimal inferences about the world. This view is prominent in
many contemporary theories of the brain, and evident at both, high-level and low-level
systems of the brain.

The descending and ascending recurrent pain network is suited to perform those
computations and to relate top-down contextual factors such as expectations and
agency to sensory information to enable inference about a pain signal. This ultimately
leads to the Bayesian Pain Model, which postulates an integration of prior information

and nociceptive sensory input to form a pain percept.
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While several studies have identified candidate areas for Predictive Coding
computations, there has been a lack of information about the temporal and spectral
orchestration of these signals, which has been identified in the EEG results of study 1
(Strube et al., 2021a; Reprint 15.1). In our sample, expectations were encoded in low
frequency bands, while absolute prediction errors were encoded in higher frequencies.
In a control condition representing the identical experimental procedure with affective
image stimuli representing the visual modality, a fundamentally different pattern

emerged, suggesting modality-specific encoding of these signals.

However, there are further contextual factors beyond expectancy effects that modulate
pain experience and thus need to be integrated in a Bayesian Pain Model. In this work,
we addressed agency in pain experience and derived hypotheses from Karl Friston's
Free Energy Principle and Active Inference and tested them against the classic
Forward Model by integrating predictions from these theories into the Bayesian Pain
Model. We showed that agency can be integrated into the Bayesian Pain Model using

a shift in expectations, resulting in pain treatment being more effective.

Based on the principles of Active Inference, we expected that agency would lead to a
modulation of likelihood precision. However, our study did not find any evidence to
support this idea. Therefore, we question whether the proposed mechanism of
reducing the precision of self-produced action outcomes is actually responsible for
sensory attenuation effects, and whether this mechanism is sufficient to explain
enabling of action. Namely, it is postulated that an attenuation of the precision of
sensory information in self-produced action outcomes is a necessary condition for
action to occur. The minimization of prediction errors can be enabled via two paths:
First, an update of the model of the world can occur. Second, an action can be used
to adapt the world to the models; for this path, proprioceptive prediction errors must be

suppressed. However, we did not find evidence for this mechanism in our data.

Overall, this work highlights important elements that contribute to the understanding of

the Bayesian Brain in pain.

1) The brain processes nociceptive stimuli via Predictive Coding mechanisms. It
utilizes recurrent transmissions of top-down expectations and bottom-up prediction

errors. These processes are reflected in modality-specific oscillatory patterns.
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2) A pain percept is generated in a Bayes-optimal manner as explained by a Bayesian
Pain Model, as has been shown by bi-directional modulations of the pain percept by

placebo and nocebo expectations.

3) The Bayesian Pain Model can explain contextual modulations such as a reduction
in pain by agency via a shift in the mean of the prior, representing intensity
expectations. This is in contradiction to ideas of Active Inference, which posits that

there should be an attenuation of sensory precision by agency.

In conclusion, this dissertation has focused on the application of Bayesian principles
to the interpretation of the brain as a statistical machine that performs optimal
inferences about the world, with a specific emphasis on pain processing. Our findings
show that the brain processes nociceptive stimuli using Predictive Coding
mechanisms, reflected in modality-specific oscillatory patterns, to generate a Bayes-
optimal pain percept. However, our results do not support the idea that certain
contextual factors, such as agency, modulate the precision of sensory information in
the way previously proposed by theories of Active Inference. This calls into question
the sufficiency of this mechanism in explaining the enabling of action in the context of

pain.
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9.0 Zusammenfassung

In dieser Dissertation haben wir die Rolle der Bayesschen Inferenz in der
Schmerzwahrnehmung unter Verwendung von Predictive Coding und Active Inference
als theoretischen Rahmen erkundet. Wir untersuchten, wie das Gehirn Erfahrungen
und Sinnesinformationen nutzt, um Vorhersagen Uber Schmerzerlebnisse zu treffen
und wie diese Informationen integriert werden, um ein Schmerzempfinden in einem
Bayesschen Schmerzmodell zu bilden. Indem wir Schmerzen aus einer Bayesschen
Perspektive betrachten, konnten wir unser Verstandnis der zugrundeliegenden
neuralen Mechanismen der Schmerzwahrnehmung vertiefen und zur Entwicklung
neuer Schmerzbewaltigungs-Strategien beitragen. Insgesamt zeigt diese Arbeit
wichtige Elemente, die Uber die Schmerzforschung hinaus zum Verstandnis des
Bayesschen Gehirns beitragen.

Unsere empirischen Arbeiten zeigen, dass das Gehirn Schmerzen Uber Predictive
Coding-Mechanismen verarbeitet, indem es rekurrente Ubertragungen von top-down
Erwartungen und resultierenden bottom-up Erwartungsfehlern nutzt, die in
spezifischen spektralen und temporalen Mustern kodiert werden. Die Untersuchung
einer affektiv-visuellen Modalitat liefert Evidenz daflr, dass diese oszillatorischen
Prozesse in modalitatsspezifischen oszillatorischen Mustern widergespiegelt werden.
Unsere Daten stlutzen die Auffassung, dass ein Schmerzempfinden in einer Bayes-
optimalen Weise erzeugt wird, wie durch ein Bayessches Schmerzmodell postuliert. In
zwei experimentellen Studien wird dies demonstriert durch bidirektionale Modulationen
des Schmerzempfindens durch Placebo- und Nocebo-Erwartungen. Das Bayessche
Schmerzmodell kann kontextuelle Modulationen durch eine Verschiebung der
Intensitatserwartungen erklaren, etwa eine Schmerzreduktion durch eine
Selbstbehandlung. Dies steht im Widerspruch zu Ideen von Active Inference, die
besagen, dass es zu einer Abschwachung der sensorischen Prazision durch eine
Selbstbehandlung von Schmerz kommen sollte. Diese Dissertation zeigt die
Anwendung von Bayesschen Prinzipien in der Schmerzverarbeitung, indem das
Gehirn als statistische Maschine dargestellt wird, die optimale Inferenzen Uber die Welt

vornimmt.
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10.0 Zusammenfassung (Englisch)

In this dissertation, we have explored the role of Bayesian inference in the perception
of pain, using Predictive Coding and Active Inference as theoretical frameworks. We
have examined how the brain uses experience and sensory information to make
predictions about potential pain experiences, and how this information is integrated to
form a pain percept in a Bayesian Pain Model. By considering pain from a Bayesian
perspective, we aimed to deepen our understanding of the underlying neural
mechanisms of pain perception and to contribute to the development of new pain
management strategies. Overall, this work highlights important elements that

contribute to the understanding of the Bayesian Brain in pain.

Our empirical work demonstrates that the brain processes pain via Predictive Coding
mechanisms, by utilizing recurrent transmissions of top-down expectations and
bottom-up prediction errors, encoded in specific temporal and spectral patterns. The
investigation of an affective-visual modality provides evidence that these oscillatory
processes are reflected in modality-specific oscillatory patterns. Our data support the
notion that a pain percept is generated in a Bayes-optimal manner, as explained by a
Bayesian Pain Model. This is demonstrated in two experimental studies where we
performed bi-directional modulations of the pain percept by placebo and nocebo
expectations. The Bayesian Pain Model can explain contextual modulations via a
mean shift in intensity expectations, for example, during a reduction in pain by a feeling
of agency. This is in contradiction to ideas of Active Inference, which posits that there
should be an attenuation of sensory precision by agency. This dissertation
demonstrates the application of Bayesian principles in pain processing, framing the
brain as a statistical machine that performs optimal inferences about the world.
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11.0 Abkurzungsverzeichnis / List of Abbrevations

EEG Electroencephalography

MEG Magentoencephalography

VBA Variational Bayesian Analysis

VAS Visual Analogue Scale

TENS Transcutaneous Electric Nerve Stimulation
fMRI Functional Magnetic Resonance Imaging
IAPS International Affective Picture System

ICA Independent Component Analysis

PCA Patient-Controlled Analgesia
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The temporal and spectral characteristics
of expectations and prediction errors in
pain and thermoception

Andreas Strube*, Michael Rose, Sepideh Fazeli, Christian Biichel*

Department of Systems Neuroscience, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany

Abstract In the context of a generative model, such as predictive coding, pain and heat
perception can be construed as the integration of expectation and input with their difference
denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed
an important role of the insula in such a model but could not establish its temporal aspects. Here,
we employed electroencephalography to investigate neural representations of predictions and
prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was
associated with stimulus intensity expectation, followed by a negative modulation of gamma band
activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory
perception, which are associated with increased gamma band activity, but is in agreement with
observations in working memory and word matching, which show gamma band activity for correct,
rather than violated, predictions.

Introduction

It has been shown that physically identical nociceptive input can lead to variable sensations of pain,
depending on contextual factors (Tracey and Mantyh, 2007). In particular, attention, reappraisal,
and expectation are core mechanisms that influence how nociception leads to pain (Wiech et al.,
2008). A clinically important example of how expectations can shape pain processing is placebo
hypoalgesia: pain relief mediated by expectation and experience - in the absence of active treat-
ment (Petrovic et al., 2002, Wager et al., 2004; Colloca and Benedetti, 2005; Bingel et al., 2006;
Atlas and Wager, 2012; Anchisi and Zanon, 2015).

In the context of a generative model of pain, it has been proposed that pain perception can be
seen as the consequence of an integration of expectations with nociception (Biichel et al., 2014,
Wiech, 2016; Ongaro and Kaptchuk, 2019). In this framework, expectations are integrated with
incoming nociceptive information and both are weighted by their relative precision (Grahl et al.,
2018) to form a pain percept. This can be seen in analogy to ideas in multisensory integration
(Ernst and Banks, 2002). Expectations or predictions and resulting prediction errors also play a key
role in generative models such as predictive coding (Huang et al., 2011). In essence, this framework
assumes that neuronal assemblies implement perception and learning by constantly matching incom-
ing sensory data with the top-down predictions of an internal or generative model (Knill and Pou-
get, 2004; Huang et al., 2011; Clark, 2013). Basically, minimizing prediction errors allows systems
to resist their tendency to disorder by the creation of models with better predictions regarding the
sensory environment, leading to a more efficient encoding of information (Friston, 2010).

Electroencephalogram (EEG) correlates of nociceptive skin stimulation have been widely investi-
gated. Generally, phasic gamma activity has been associated with stimulus intensity over the sensory
cortex where the amplitudes of pain-induced gamma oscillations increase with objective stimulus
intensity and subjective pain intensity (Gross et al., 2007; Hauck et al., 2007; Zhang et al., 2012;

Strube et al. eLife 2021;10:62809. DOI: https://doi.org/10.7554/eLife.62809
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Rossiter et al., 2013; Tiemann et al., 2015). Additionally, pain-related gamma band oscillations
have been linked to the insular cortex as well as temporal and frontal regions using depth electrodes
in epilepsy patients (Liberati et al., 2018). In tonic painful heat stimulation, medial prefrontal
gamma activity has been observed (Schulz et al., 2015). In addition, gamma activity is enhanced by
attention in human EEG experiments in visual (Gruber et al., 1999), auditory (Tiitinen et al., 1993,
Debener et al., 2003), and sensorimotor processing (i.e. tactile stimuli) (Bauer et al., 2006) as well
as in nociception (Hauck et al., 2007, Hauck et al., 2015; Tiemann et al., 2010).

Pain-related alpha-to-beta band oscillations are typically found to be suppressed with higher stim-
ulus intensity (Mouraux et al., 2003; Ploner et al., 2006; May et al., 2012; Hu et al., 2013), which
is enhanced by attention (May et al., 2012) and (placebo) expectation (Huneke et al., 2013;
Tiemann et al., 2015; Albu and Meagher, 2016). Interestingly, prestimulus theta (Taesler and
Rose, 2016) as well as prestimulus alpha and gamma activity (Tu et al., 2016) can affect subsequent
pain processing. Specifically, trials with smaller prestimulus alpha and gamma oscillations were per-
ceived as more painful, suggesting a negative modulation of subsequent pain perception (Tu et al.,
2016).

Cued pain paradigms (Atlas et al., 2010) have been used to generate expectations and predic-
tion errors. Previous functional magnetic resonance imaging (fMRI) studies have suggested an impor-
tant role of the anterior insular cortex for mediating expectation effects and the integration of prior
expectation and prediction errors in the context of pain (Ploghaus et al., 1999, Koyama et al.,
2005; Atlas et al., 2010, Geuter et al., 2017; Fazeli and Biichel, 2018). These studies have
revealed that neuronal signals in the anterior insula represent predictions and prediction errors with
respect to pain, which in theory would allow the combination of both terms as required for predic-
tive coding (Btichel et al., 2014; Ongaro and Kaptchuk, 2019). However, in fMRI studies, predic-
tions and prediction errors cannot be temporally dissociated due to the low temporal resolution of
the method. To investigate this further, we conducted a cue-based pain experiment using EEG to
achieve high temporal and spectral resolution of predictions and prediction error processes in the
context of pain.

In this experiment (N = 29) we employed contact heat stimuli with three different intensities (low
heat, medium heat, and high heat), preceded by a visual cue indicating the upcoming intensity (Fig-
ure 1). To generate prediction errors, the modality (picture or heat) was correctly cued only in 70%
of all trials, and stimulus intensities were correctly cued only in 60% of all trials. We then investigated
oscillatory activity related to stimulus intensity, expectation, and prediction errors (Figure 2).

Based on the previous data, we hypothesized that expectation signals should temporally precede
prediction error signals. Based on the functional neuroanatomy of cortical microcircuits
(Bastos et al., 2012), with feedforward connections predominately originating from superficial layers
and feedback connections from deep layers, we expect that prediction error signals should be
related to higher frequencies (e.g. gamma band) than prediction signals (Todorovic et al., 2011;
Arnal and Giraud, 2012).

Materials and methods

Participants

We investigated 35 healthy male participants (mean 26, range 18-37 years), who were paid as com-
pensation for their participation. Applicants were excluded if one of the following exclusion criteria
applied: neurological, psychiatric, dermatological diseases, pain conditions, current medication, or
substance abuse. All volunteers gave their informed consent. The study was approved by the Ethics
Board of the Hamburg Medical Association. Of 35 participants, data from six participants had to be
excluded from the final EEG data analysis due to technical issues during the EEG recording (i.e. the
data of the excluded participants were contaminated with excessive muscle and/or technical arti-
facts) leaving a final sample of 29 participants. The sample size was determined according to a
power calculation (G*Power V 3.1.9.4) based on Geuter et al., 2017. For the left anterior insula
(fMRI; Table 1 in Geuter et al., 2017), we observed an effect size of partial eta squared of 0.17 and
an effect size of 0.22 for the right anterior insula (cue x stimulus interaction). Using a power of (1-

Strube et al. eLife 2021;10:62809. DOI: https://doi.org/10.7554/eLife.62809 2 of 22



e Llfe Research advance

Neuroscience

2000-3000ms

3

1000-1400ms

+

2000ms

Trial Structure Cue-Stimulus Contingencies

2000ms ¢ 1.0% 3.0% 1.0% 2.3% 7.0% 2.3%

Picture | Picture | Picture

42°C 46°C 48°C Level 1 | Level 2 | Level 3

7.0% 2.3% 2.3% 3.0% 1.0% 1.0%

2.3% 7.0% 2.3% 1.0% 3.0% 1.0%

2.3% 2.3% 7.0% 1.0% 1.0% 3.0%

3.0% 1.0% 1.0% 7.0% 2.3% 2.3%

s 1.0% 1.0% 3.0% 2.3% 2.3% 7.0%

Figure 1. Left: Graphical representation of the trial structure. Each trial started with the presentation of a cue, indicating the stimulus intensity and
modality of the following stimulus. After a jittered phase where only the fixation cross was shown, the stimulus (visual or thermal) was presented. A
rating phase (1-4) of the stimulus aversiveness followed. Right: Contingency table for all conditions for each cue-stimulus combination. Note that
percentages are for all trials; therefore, each row adds up to 1/6 (six different cues).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Histogram showing the distribution of the total number of rejected components based on detected muscle artifacts.

beta) of 0.95 and an alpha level of 0.05 and assuming a low correlation (0.1) between repeated
measures, this leads to a sample size of 25, assuming the weaker effect in the left insula.

Stimuli and task

Stimulus properties were chosen to be identical to a previous fMRI study of predictive coding in pain
where both expectation and absolute prediction error effects were observed (Fazeli and Biichel,
2018). Thermal stimulation was performed using a 30 x 30 mm? Peltier thermode (CHEPS Pathway,
Medoc) at three different intensities: low heat (42°C), medium heat (46°C), and high heat (48°C) at
the left radial forearm. These three temperatures cover a large range of temperatures associated
with nociception. The lowest temperature was set at 42°C to ensure a temperature above the
median threshold of heat-sensitive C-fiber nociceptors which have a median heat threshold of 41°C
(Treede et al., 1998). The baseline temperature was set at 33°C and the rise rate to 40°C/s. After
two blocks, the stimulated skin patch was changed to avoid sensitization.

Aversive pictures were chosen from the International Affective Picture System (IAPS) (Lang et al.,
2008) database at three different levels of aversiveness. The images presented during the EEG
experiment had three levels of valence of which the low valence category had valence values of
2.02 + 0.05 (mean =+ standard error), the medium valence category had valence values of 4.06 + 0.02
(mean + standard error), and the high valence category had valence values of 5.23 + 0.01 (mean +
standard error).

Prior to each picture or heat stimulus, a visual cue was presented. The color of the cue (triangle)
indicated (probabilistically) the modality of the stimulus (orange for picture and blue for heat). A
white digit written inside of each triangle indicated (probabilistically) the intensity of the subsequent
stimulus (1, 2, and 3 for low, medium, and high intensity, respectively). During the whole trial, a cen-
tered fixation cross was presented on the screen.
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Figure 2. Hypothetical response patterns based on stimulus intensity (left), expectation (middle), and absolute prediction error (right). The y-axis
represents a hypothetical response variable (e.g. electroencephalogram [EEG] power). Each dot represents a different condition for each stimulus—cue
combination. Blue colors represent low heat conditions, green colors represent medium heat conditions, and red colors represent high heat conditions.
Color intensities depict expectation level.

Each trial began with the presentation of the cue for 500 ms as an indicator for the modality and
intensity of the subsequently presented stimulus. The modality was correctly cued in 70% of all trials
by the color of the triangle. In 60% of all trials, the stimulus intensity was correctly indicated by the
digit within the triangle (see Figure 1 for an overview of all cue contingencies).

Before the presentation of the stimulus, there was a blank period with a variable time frame
between 1000 and 1400 ms. Then, the visual or thermal stimulus was presented for a duration of 2 s.
The visual stimulus was centered on the screen and allowed the participant to perceive the stimulus
without eye movements. Right after the termination of the stimulus, subjects were asked to rate the
aversiveness of the stimulus on a four-point rating scale, where one was labeled as ‘neutral’ and four
was labeled as ‘very strong’. Ratings were performed using a response box operated with the right
hand (see Figure 1 for a visualization of the trial structure).

In addition, four catch trials were included in each block. Subjects were asked to report the pre-
ceding cue in terms of their information content of the modality and intensity within 8 s, and no stim-
ulation was given in these trials.

Trials were presented in four blocks. Each block consisted of 126 trials and four catch trials and
lasted about 15 min. The trial order within each block was pseudorandomized. The order of blocks
was randomized across subjects. The whole EEG experiment including preparation and instructions
lasted for about 3 hr.

Prior to the actual EEG experiment, subjects participated in a behavioral training session. During
this session, participants were informed about the procedure and gave their written informed con-
sent. The behavioral training session was implemented to avoid learning effects associated with the
contingencies between the cues and the stimuli during the EEG session. Between two and three
blocks were presented during the training session (without electrophysiological recordings). The
experimenter assessed the performance after each block based on the percentage of successful
catch trials and the ability to distinguish the three levels of aversiveness of each modality. The train-
ing session was terminated after the second block if participants were able to successfully label cues
in 75% of the catch trials within the second block.

Strube et al. eLife 2021;10:62809. DOI: https://doi.org/10.7554/eLife.62809

4 of 22



eLife

Neuroscience

EEG data acquisition

EEG data were acquired using a 64-channel Ag/AgCl active electrode system (ActiCap64; BrainProd-
ucts) placed according to the extended 10-20 system (Klem et al., 1999). Sixty electrodes were
used of the most central scalp positions. The EEG was sampled at 500 Hz, referenced at FCz, and
grounded at lz. For artifact removal, a horizontal, bipolar electrooculogram (EOG) was recorded
using two of the remaining electrodes and placing them on the skin approximately 1 cm left from
the left eye and right from the right eye at the height of the pupils. One vertical EOG was recorded
using one of the remaining electrodes centrally approx. 1 cm beneath the left eyelid and another
electrode was fixated on the neck at the upper part of the left trapezius muscle (Musculus trapezius)
to record an electromyogram.

EEG preprocessing

The data analysis was performed using the Fieldtrip toolbox for EEG/
MEG (magnetoencephalogram) analysis (Oostenveld et al., 2011) at Donders Institute for Brain,
Cognition and Behaviour, Radboud University Nijmegen, the Netherlands (see http://www.ru.nl/neu-
roimaging/fieldtrip). EEG data were epoched and time-locked to the stimulus onset using the electri-
cal trigger signaling the thermode to start the temperature rise of a given heat trial. Each epoch was
centered (subtraction of the temporal mean) and detrended and included a time range of 3410 ms
before and 2505 ms after trigger onset.

The data was band pass-filtered at 1-100 Hz, Butterworth, fourth order. EEG epochs were then
visually inspected and trials contaminated by artifacts due to gross movements or technical artifacts
were removed. Subsequently, trials contaminated by eye-blinks and movements were corrected
using an independent component analysis (ICA) algorithm (Makeig et al., 1996; Jung et al., 2000).
In all datasets, individual eye movements, showing a large EOG channel contribution and a frontal
scalp distribution, were clearly seen in the removed independent components. Additionally, time-
frequency decomposed ICA data were inspected at a single trial level, after z-transformation (only
for artifact detection purposes) based on the mean and the standard deviation across all compo-
nents separately for each frequency from 31 to 100 Hz. Time—frequency representations were calcu-
lated using a sliding window multi-taper analysis with a window of 200 ms length, which was shifted
over the data with a step size of 20 ms with a spectral smoothing of 15 Hz. Artifact components or
trials were easily visible and were compared with the raw ICA components. Specifically, single and
separate muscle spikes were identified as columns or ‘clouds’ in time-frequency plots. Using this
procedure, up to 30 components were removed before remaining non-artifactual components were
back-projected and resulted in corrected data. Subsequently, the data was re-referenced to a com-
mon average of all EEG channels and the previous reference channel FCz was reused as a data chan-
nel (see Figure 1—figure supplement 1 for a summary of rejected components per participant).

Before time-frequency transformations for data analysis were performed on the cleaned dataset,
the time axis of single trials was shifted to create cue-locked and stimulus-locked data. Cue-locked
data uses the onset of the cue as t = 0. Stimulus-locked data takes the ramp-up period of the ther-
mode into account and sets t = 0 to the time point when the thermode reached the target tempera-
ture (225, 325, and 375 ms after trigger onset for low, medium, and high heat conditions,
respectively). Frequencies up to 30 Hz (1-30 Hz in 1 Hz steps) were analyzed using a sliding Han-
ning-window Fourier transformation with a window length of 300 ms and a step size of 50 ms. For
the analysis of frequencies higher than 30 Hz (31-100 Hz in 1 Hz steps), spectral analyses of the EEG
data were performed using a sliding window multi-taper analysis. A window of 200 ms length was
shifted over the data with a step size of 50 ms with a spectral smoothing of 15 Hz. Spectral estimates
were averaged for each subject over trials. Afterward, a z-baseline normalization was performed
based on a 500 ms baseline before cue onset. For cue-locked data, a time frame ranging from —650
to —150 ms was chosen as a baseline. A distance from the cue onset to the baseline period of 150
ms was set because of the half-taper window length of 150 ms, that is, data points between —150
and 0 ms are contaminated by the onset of the cue. For stimulus-locked trials, a variable cue dura-
tion (1500-1900 ms) and a variable stimulus offset based on the ramp-up time (225-375 ms) were
additionally taken into account, resulting in an according baseline from —2950 to —2450 ms from
stimulus onset. For the baseline correction of time-frequency data, the mean and standard deviation
were estimated for the baseline period (for each subject-channel-frequency combination,
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separately). The mean spectral estimate of the baseline was then subtracted from each data point,
and the resulting baseline-centered values were divided by the baseline standard deviation (classical
baseline normalization — additive model; see Grandchamp and Delorme, 2011).

Predictive coding model

Similar to a previous fMRI study (Fazeli and Btichel, 2018), our full model included three experimen-
tal within-subject factors (see Figure 2). The stimulus intensity factor (INT) models the measured
response with a simple linear function of the stimulus intensity (—1, 0, and 1 for low, medium, and
high intensities, respectively). The expectation factor (EXP) was defined (see Figure 2; center col-
umn) linearly from the intensity predicted by the cue. Again, conditions with a low intensity cue were
coded with a —1, conditions with a medium intensity cue with a 0 and conditions with a high inten-
sity cue with a 1. The absolute prediction error factor (PE) resulted from the absolute difference of
the expectation and actual stimulus intensity (see Figure 2; right column).

We also investigated a signed PE. However, it should be noted that such a term is not orthogonal
to the EXP. However, assuming that an EXP can only be observed after the cue and a PE after the
nociceptive stimulus, we were able to test for a signed PE during the heat phase. Also, we consid-
ered a one-sided PE, where a prediction error is only signaled when the stimulus is more intense as
expected, which is motivated by previous work (Egner et al., 2010; Summerfield and de Lange,
2014; Geuter et al., 2017).

As the lowest stimulus intensity was often perceived as non-painful, we additionally performed an
analysis only with medium and high stimulus intensities. Accordingly, the lowest stimulus intensity
(42°C) were excluded in an additional repeated-measures ANOVA for this purpose (which will be
referred to as the reduced pain model).

Behavioral aversiveness ratings
Behavioral aversiveness ratings were averaged for all 3 x 3 cue-stimulus combinations over each
participant, resulting in a 29 x 9 matrix (subject x condition) for the full model and a 29 x 6 matrix
for the reduced pain model. We tested for main effects across stimulus intensity, expectation, as
well as prediction error using a repeated-measures ANOVA as implemented in MATLAB (see fitrm
and ranova; version 2020a, The MathWorks).

EEG data analysis

All statistical tests in electrode space were corrected for multiple comparisons using non-parametri-
cal permutation tests of clusters (Maris and Oostenveld, 2007). Cluster permutation tests take into
account that biological processes are not strictly locked to a single frequency or time point and that
activity could be picked up by multiple electrodes. Cluster permutation tests are specifically useful
for explorative testing, as explained by Maris and Oostenveld, 2007. While prior hypotheses could
have been formulated regarding the spatial, temporal, and spectral characteristics of brain
responses associated with the intensity of thermal stimulation, and regions of interest could have
been described, variations in the present design could be related to temporal and spectral differen-
ces compared to other studies, which would be taken into account using non-parametric cluster per-
mutation testing.

We wanted to explore positive and negative time-frequency patterns associated with our varia-
tions of stimulus intensity, expectation, and absolute prediction errors using a repeated-measures
ANOVA. A statistical value corresponding to a p-value of 0.05 (F[1,28] = 4.196) obtained from the
repeated-measures ANOVA F-statistics of the respective main effect was used for clustering. Sam-
ples (exceeding the threshold of F[1,28] = 4.196) were clustered in connected sets on the basis of
temporal (i.e. adjacent time points), spatial (i.e. neighboring electrodes), and spectral (i.e. +/— 1 Hz)
adjacency. Further, clustering was restricted in a way that only samples were included in a cluster
which had at least one significant neighbor in electrode space, that is, at least one neighboring chan-
nel also had to exceed the threshold for a sample to be included in the cluster. Neighbors were
defined by a template provided by the Fieldtrip toolbox corresponding to the used EEG montage.

Subsequently, a cluster value was defined as the sum of all statistical values of included samples.
Monte Carlo sampling was used to generate 1000 random permutations of the design matrix, and
statistical tests were repeated in time-frequency space with the random design matrix. The
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probability of a cluster from the original design matrix (p-value) was calculated by the proportion of
random design matrices producing a cluster with a cluster value exceeding the original cluster. This
test was applied two-sided for negative and positive clusters, which were differentiated by the aver-
age slope of the estimated factors.

Monte Carlo cluster tests were performed with 1000 permutations using the test statistics of a
repeated-measures ANOVA model as the value for clustering (at p<0.05/F[1,28]=4.196). All tests
were performed for low frequencies (1-30 Hz) and high frequencies (31-100 Hz), separately. Muscu-
lar and ocular electrodes were excluded from the cluster analysis.

The within-subject INT (which was coded as increasing linearly with stimulus intensity) was tested
stimulus-locked from 0 to 1.6 s. The within-subject EXP, which was coded as increasing linearly with
the cued stimulus intensity, was tested cue-locked from O to 3.6 s. The signed PE was coded as the
difference between stimulus intensity and expectation. The absolute prediction error was coded as
the absolute difference between stimulus intensity and expectation (see Figure 2 for details). Addi-
tionally, we tested a one-sided prediction error, occurring only when the actual stimulus is of a
higher intensity than expected. The signed, absolute, and one-sided PEs were tested stimulus-locked
fromOto 1.6s.

Results

Behavioral data - aversiveness ratings

Participants experienced aversive heat or saw picture stimuli which were probabilistically cued in
terms of modality and intensity, evoking an expectation of modality and intensity. The subsequently
applied stimuli were then rated on a visual analog scale (VAS) from 1 to 4. Our primary behavioral
question was whether ratings are influenced by the experimental manipulation of stimulus intensity,
expectation, and absolute prediction errors.

To validate our intensity manipulation for thermal stimuli and to verify the discriminability
between different levels of heat, we first tested for the main effect of stimulus intensity (Figure 3a).
Our data show a clear rating difference between the three levels of heat. Results regarding the aver-
sive pictures are not the focus of this report but are depicted in Figure 3b for the sake of
comparison.
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Figure 3. Bars indicate pooled aversiveness ratings for (a) heat and (b) aversive pictures for low-, medium-, and
high-intensity conditions. Dots indicate average single-subject ratings.
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To evaluate the main effects of stimulus intensity, expectation, and absolute prediction errors, we
employed a repeated-measures ANOVA of the behavioral data, which revealed significant effects
for the main effect of stimulus intensity, that is, the three levels of heat (F[1,28] = 743.97, p<0.001).
Also, the main effect for expectation on aversiveness ratings was significant (F[1,28] = 38.53,
p<0.001) (Table 1), indicating an influence of the cued intensity on behavioral aversiveness ratings
(Figure 4). The absolute difference between the cued intensity and the actual stimulus intensity (i.e.
absolute prediction error) only showed a trend effect on aversiveness ratings (F[1,28] = 2.87,
p=0.10). The results regarding the aversive pictures are summarized in Table 1.

EEG - stimulus intensity

In a first EEG analysis, we tested for a main effect of the intensity of the heat input in the context of
a correctly cued modality (i.e. heat was expected and received). In order to do so, we performed a
repeated-measures ANOVA on the time—frequency representation of the EEG data on low frequen-
cies (1-30 Hz) and high frequencies (31-100 Hz) separately after stimulus onset using a cluster cor-
rection criterion to address the multiple comparisons problem (see ‘Materials and methods’ for
details). Any significant cluster — composed of neighboring data points in time, frequency, and space
- would indicate a neuronal oscillatory representation of variations in stimulus intensity in a given fre-
quency band.

In the low frequency range (1-30 Hz), one positive cluster (i.e. a positive average slope of the fac-
tor) and one negative cluster (i.e. a negative average slope of the factor) were significant (Figure 5),
indicating a linear association of stimulus intensity and power in this frequency range. Specifically,
the negative cluster included samples in a time range from 250 to 1600 ms after stimulus onset in a
frequency range from 1 to 30 Hz, predominately at contralateral central electrode sites (p=0.002).
The highest parametric F-value within this cluster obtained from the repeated-measures ANOVA
was F(1,28) = 36.40 (p<0.001). This sample was observed at 1250 ms and 22 Hz and had a maximum
at channel CP2. All channels included samples of the negative low frequency stimulus intensity
cluster.

Also in the low frequency range (1-30 Hz), a positive significant cluster included samples in a time
range from 150 to 1050 ms after stimulus onset in the theta frequency range from 1 to 7 Hz predom-
inately at midline electrode sites (p=0.048). The highest parametric F-value from the repeated-meas-
ures ANOVA was F(1,28) = 27.93 (p<0.001). This sample was found at 550 ms and 3 Hz and had a
maximum at channel O2. All channels except FC5, CP4, C6, and FT7 were part of the positive low
frequency stimulus intensity cluster.

In the high frequency range (31-100 Hz) representing gamma activity, one positive cluster was
significant (p<0.001). This cluster included samples in a time range from 550 to 1600 ms after stimu-
lus onset and frequencies from 46 to 100 Hz, predominately at contralateral centroparietal electrode
sites (Figure 5). The highest parametric F-value within this cluster obtained from the repeated-meas-
ures ANOVA was F(1,28) = 33.35 (p<0.001). This sample was observed at 1600 ms and 100 Hz and
had a maximum at channel Cz. All channels included samples of the positive high frequency stimulus
intensity cluster.

In conclusion, these results indicate that a higher intensity of the thermal input is associated with
increased theta and gamma band power and a negative relationship of alpha-to-beta band power
and the intensity of the thermal input (see Figure 5 for a summary of the results of the main effect

Table 1. Main effects of stimulus intensity, expectation, and absolute prediction errors on subjective
ratings in both heat and picture conditions.
Absolute prediction

Stimulus intensity Cued intensity error

(INT) (EXP) (PE)
Factor F(1,28) P F(1,28) P F(1,28) p
Modality
Thermal 743.97 <0.001 39.53 <0.001 2.87 0.10
Visual 762.10 <0.001 1.46 0.24 7.7 0.01
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Figure 4. Ratings for heat stimuli (left) and ‘expectation factor’ weights (right). Bars indicate average aversiveness ratings. Ratings were given on a scale
from 1 to 4. Error bars depict SEM. The data shows not only an effect of stimulus intensity (increase from blue to green to red) but also an effect of
expectation (low to medium to high expectation). The right figure represents hypothetical response patterns based on the expectation factor. The
y-axis represents the hypothetical response variable (e.g. visual analog scale [VAS] rating). Each dot represents a different condition for each stimulus—
cue combination. Blue colors represent low heat conditions, green colors represent medium heat conditions, and red colors represent high heat
conditions. Color intensities depict expectation level.

of stimulus intensity; see Figure 5—figure supplement 1 for single-subject differences in the
gamma band between low stimulus intensity and high stimulus intensity trials).

Expectation

In a next step, we investigated the representation of EXP in our repeated-measures model, again for
low frequencies (1-30 Hz) and high frequencies (31-100 Hz) separately in the cue-locked time-fre-
quency representation of the EEG data.

This analysis revealed one significant positive cluster in the low frequency range (1-30 Hz), indi-
cating a linear association of cue intensity (EXP) and power in this frequency range (p<0.05). The
expectation cluster (p=0.022) included samples from time points ranging from 100 to 2000 ms after
cue onset and included frequencies from 1 to 20 Hz. The highest parametric statistical test value (F
[1,28] = 26.96, p<0.001) was observed at channel P1 700 ms after cue onset at a frequency of 9 Hz.
All channels except TP8 included samples of the late expectation cluster (see Figure 6 for a sum-
mary of the results of the expectation cluster; see Figure 6—figure supplement 1 for single-subject
values).

In summary, these results suggest an increase in alpha-to-beta band power to be associated with
our experimental manipulation of expectations regarding the intensity of the thermal input.

Prediction error model
Likewise, clustering was performed for the prediction error term after stimulus onset in low (1-30
Hz) and high frequencies (31-100 Hz). Any significant cluster would associate oscillatory activity with
the difference of the expectation regarding the intensity of the thermal stimulation and the actual
stimulation, representing a violation of this expectation (prediction error).

This analysis revealed a significant negative cluster in the high frequency range (31-100 Hz), indi-
cating a (negative) linear association of absolute prediction errors and power in this frequency range
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Figure 5. Parametric effects of stimulus intensity. Time-frequency representation averaged over all channels including a significant time—frequency
sample of any cluster (a) and topographies over the whole cluster extents (i.e. full time and frequency range), respectively (b), of the stimulus intensity
main effect of the repeated-measures ANOVA depicting increases (warm) and decreases (cold) in power in relation to heat stimulus intensity. Significant
clusters are highlighted. Colors represent F-values from the repeated-measures ANOVA statistics for the main effect of stimulus intensity.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Difference for the main effect of stimulus intensity in the gamma band (averaged over 60-100 Hz, 1250-1600 ms) in power values
for all high heat vs. low heat conditions with a valid modality cue (expect heat receive heat) for each subject, respectively.

(p=0.002). This (negative) absolute prediction error cluster included samples from frequencies rang-
ing from 51 to 100 Hz and time points ranging from 50 to 1600 ms after stimulus onset. The highest
parametric statistical test value (F(1,28) = 28.52, p<0.001) was found at channel O1 1300 ms after
stimulus onset at a frequency of 98 Hz. All channels included samples of the absolute prediction
error cluster (see Figure 7 for a summary of the results; see Figure 7—figure supplement 1 for sin-
gle-subject values).

A cluster analysis of the signed prediction error, stimulus-locked after stimulus onset (from 1 to
30 Hz for low frequencies and 31-100 Hz for gamma frequencies; from 0 to 1600 ms, stimulus-
locked), did not reveal any significant cluster of activity associated with a linear increase or decrease
of EXP (all p>0.05). Ignoring all stimulus—cue combinations of the PE where the stimulus intensity
was less intense than expected leads to a one-sided PE. A cluster analysis of this effect did not
reveal any significant cluster of activity (all p>0.05).

In summary, these results suggest a decrease in gamma band power to be associated with our
experimental manipulation of expectation violations, resulting from a mismatch of the cued intensity
and the actual heat input.

Reduced pain model
In an additional analysis, we tested all effects in a reduced pain model, which only included painful
stimuli (i.e. three expectation levels and two intensity levels).

To evaluate the main effects of stimulus intensity, expectation, and absolute prediction errors in
the behavioral data, we employed again a repeated-measures ANOVA which revealed significant
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Figure 6. The main effect of expectation. (a) Time-frequency representation of the statistical F-values averaged over all channels. The significant cluster
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Topography of the averaged power over time and frequency of the whole cluster extent (i.e. over the whole time and frequency range) at each channel.
Brighter colors indicate higher F-values. (c) Power values for all conditions with a valid modality cue (expect heat receive heat) averaged over all
significant time—frequency—electrode samples of the EXP cluster show alpha-to-beta enhancement (i.e. positive representation) associated with
expectation. Error bars represent SEM. (d) Predicted responses based on the positive expectation factor are shown. The y-axis represents an imaginary

Figure 6 continued on next page
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response variable (e.g. EEG power). Each dot represents a different condition (in the order of the bar plot representation of average EEG power) for
each stimulus—cue combination. Blue colors represent low heat conditions, green colors represent medium heat conditions, and red colors represent
high heat conditions. Color intensities depict expectation level.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Power values for all conditions with a valid modality cue (expect heat receive heat) averaged over all significant time-frequency—
electrode samples period for each subject (ID) of the EXP cluster.

effects for the main effect of stimulus intensity, that is, the two remaining levels of pain (F[1,28] =
1109.9, p<0.001). Also, the main effect for expectation on pain ratings was significant (F[1,28] =
17.07, p<0.001), indicating again an influence of the cued intensity on behavioral pain ratings. The
absolute difference between the cued intensity and the actual stimulus intensity (i.e. absolute predic-
tion error) when only painful stimuli were included revealed a positive significant effect on pain rat-
ings (F[1,28] = 80.75, p<0.001). This indicates prediction errors and prior expectations to modulate
behavioral aversiveness ratings in painful stimulation.

For the analysis of time—frequency EEG data, we performed a repeated-measures ANOVA on the
time—frequency representation of the EEG data on low frequencies (1-30 Hz) and high frequencies
(31-100 Hz) separately and again using the same cluster correction criterion to address the multiple
comparisons problem as in the initial analysis of the full model.

The cluster test of stimulus intensity revealed one negative cluster (p=0.014) in the low frequency
range (1-30 Hz) including time points from 850 to 1600 ms and frequencies from 8 to 30 Hz
(Figure 8a; see Figure 8—figure supplement 1 for single-subject values). The maximum statistical
F-value (F[1,28] = 31.82; p<0.001) was found at channel AF3 at a frequency of 30 Hz at 1600 ms and
revealed a similar but more broad topography as compared to the original alpha-to-beta negative
main effect of stimulus intensity of the analysis of the full model. All channels included samples of
the negative stimulus intensity cluster.

In the high frequency range (31-100 Hz), a negative cluster of activity (p=0.038) was associated
with absolute prediction errors and included samples in a time range from 850 to 1600 ms after stim-
ulus onset in the gamma frequency range from 54 to 90 Hz predominately at occipital and parietal
electrode sites. The highest parametric F-value from the repeated-measures ANOVA was F(1,28) =
24.10 (p<0.001). This sample was found at 1150 ms and 77 Hz and had a maximum at channel F8
(Figure 8b; see Figure 8—figure supplement 2 for single-subject values). All channels except FC5,
CP4, C6, and FT7 were part of the gamma frequency negative absolute prediction error cluster.

In the low (1-30 Hz) and high frequency (31-100 Hz) ranges, no significant cluster was observed
representing a significant relationship between expectations and EEG activity. However, one cluster
in the low frequency range (1-30 Hz) showed a trend level (p=0.14; based on cluster mass, i.e., the
sum of all clustered F-values) and included samples in a time range from 550 to 1600 ms after stimu-
lus onset and frequencies from 6 to 24 Hz and is displayed in dotted lines in Figure 8c (see Fig-
ure 8—figure supplement 3 for single-subject values).

Discussion

Using a cued heat paradigm with three different stimulus intensities, our data showed a clear dis-
criminability of different levels of aversiveness based on behavioral ratings and EEG time—frequency
patterns. Specifically, we observed several clusters of activity to be associated with the intensity of
thermal stimulation in the theta, beta, and gamma band. Furthermore, behavioral data clearly indi-
cated a positive influence of cued intensity on pain perception. In addition, our results provide evi-
dence for temporally and spectrally separable clusters of oscillatory activity associated with
expectation and a negative modulation of gamma activity by prediction errors for thermoception
and pain. Specifically, one early low frequency (1-30 Hz) cluster was related to expectation in ther-
moception, that is, cued intensity. In contrast, a later occurring cluster at higher frequencies (31-100
Hz) was related to negative prediction errors in thermoception and pain.
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Figure 7 continued on next page
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the bar plot representation of average EEG power) for each stimulus—cue combination. Blue colors represent low heat conditions, green colors
represent medium heat conditions, and red colors represent high heat conditions. Color intensities depict expectation level.
The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Power values for all conditions with a valid modality cue (expect heat receive heat) averaged over all significant time-frequency-
electrode samples period for each subject (ID) of the negative absolute prediction error cluster.

Stimulus intensity and oscillatory activity

Note that our definition of stimulus onset is based on the moment the thermode reached the target
temperature. Using a thermode heating gradient of 40°C/s and neglecting any small internal delays,
the target temperatures of 42°C, 46°C, and 48°C are reached after 225, 325, and 375 ms, respec-
tively. Therefore, our observed increase in theta power agrees with previous studies (Ploner et al.,
2017) and most likely correspond to pain-related evoked potentials (Lorenz and Garcia-Larrea,
2003; Tiemann et al., 2015), such as the P2 with a similar topography. In addition, we observed a
significant suppression of alpha-to-beta activity which, given the abovementioned delays of our pain-
ful stimuli, is in line with the reported beta suppression in previous EEG studies on pain
(Mouraux et al., 2003; Ploner et al., 2006; May et al., 2012; Hu et al., 2013). Finally, power in the
gamma band was also correlated with heat intensity, which is in line with previous studies
(Gross et al., 2007; Hauck et al., 2007; Zhang et al., 2012; Rossiter et al., 2013; Tiemann et al.,
2015). Interestingly, only the alpha-to-beta band desynchronization differentiated between medium
and high pain conditions, whereas differences in the theta and gamma band activity were only evi-
dent when the lowest stimulus intensity was included which was perceived as neutral.

We observed a behavioral effect of prediction errors on perceived stimulus intensity in the
reduced pain model, but this effect was only a trend in the full model. The latter finding replicates a
previous study (Fazeli and Biichel, 2018) indicating a robust effect. Interestingly, the effect of pre-
diction errors on perception increased, and became significant, when we constrained our analysis to
the clearly painful stimuli (reduced pain model). This suggests that a prediction error seems to more
strongly affect pain perception, whereas the effect is weaker in the context of thermoception. How-
ever, this speculation should be corroborated in a future study.

On a more conceptual level, the investigation of neurophysiological effects even in the absence
of a behavioral effect has been considered meaningful (Wilkinson and Halligan, 2004). In particular,
the authors argue that because it is commonly unknown which parts of a cognitive process (and in
which way) produce a specific behavioral response, the relationship between neurophysiological
data and behavioral responses should not be overemphasized, and therefore it can be misleading to
declare behavioral effects a reference or ‘gold standard’. Studies aiming to understand neurophysio-
logical mechanisms of cognition usually relate a neurophysiological readout to a known perturbation
(i.e. experimental design), which is meaningful in its own right.

Hypotheses based on microcircuits

Theoretical accounts (Arnal and Giraud, 2012; Bastos et al., 2012) have suggested that predictive
coding mechanisms could be related to the functional architecture of neuronal microcircuits. As
feedforward connections are predominately originating from superficial layers and feedback connec-
tions from deep layers, it has been suggested that prediction errors should be expressed by higher
frequencies than the predictions that accumulate them.

In the auditory modality, these ideas are supported by empirical data (Todorovic et al., 2011)
showing that prediction errors in the context of repetition suppression were associated with higher
gamma band activity. Likewise, in the visual domain, an MEG study has shown that temporo-parietal
beta power was correlated with the predictability of an action kinematics—outcome sequence, while
gamma power was correlated with the prediction error (van Pelt et al., 2016).

Frequency patterns in predictive coding of pain

Only a few studies have investigated the spectral and temporal properties of expectations and pre-
diction errors in the context of pain (summarized by Ploner et al., 2017). A recent study in rodents
has suggested an information flow between S1 gamma and ACC (Anterior Cingulate Cortex) beta
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Figure 8. Electroencephalogram (EEG) data analysis of the reduced pain model. The top three rows show (a) the main effect of stimulus intensity, (b)
the main effect of negative absolute prediction errors, and (c) the main effect of expectation. Left column: time—frequency representation of the
statistical F-values averaged over all channels. Significant clusters are highlighted by a solid line. The non-significant expectation cluster is highlighted
by a thin dotted line. Right column: power values for all conditions included in the reduced model with a valid modality cue (expect heat receive heat)
Figure 8 continued on next page
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averaged over all significant time—frequency-electrode samples of the respective cluster. (d) Topographies of the averaged power over time and
frequency of the whole cluster extent (i.e. over the whole time and frequency range) at each channel for stimulus intensity (left), negative absolute
prediction errors (center), and expectation (right). Brighter colors indicate higher F-values.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Power values for all medium and high intensity conditions with a valid modality cue.
Figure supplement 2. Power values for all medium and high intensity conditions with a valid modality cue.
Figure supplement 3. Power values for all medium and high intensity conditions with a valid modality cue.

activity during spontaneous pain (Xiao et al., 2019). Based on these data, the authors have pro-
posed a predictive coding model including a bottom-up (gamma) and top-down (beta) component
(Song et al., 2019). Finally, in humans, a recent EEG study showed that the sensorimotor cortex is
more strongly connected to the medial prefrontal cortex at alpha frequencies during tonic pain, sug-
gesting alpha band activity in tonic pain to be associated with bottom-up instead of top-down sig-
naling (Nickel et al., 2020). Nevertheless, the focus of these studies was on generic interactions (i.e.
top-down vs. bottom-up) processes without directly inducing prediction errors as in a cued pain par-
adigm employed in our study.

In the flexible routing model proposed by Ploner et al., 2017, pain is seen as driven by contex-
tual processes, such as expectations, which is associated with alpha/beta oscillations and alpha/beta
synchrony across brain areas. Previous studies have started to examine the spectral properties of
mechanisms related to generative models of pain perception. In particular, a previous MEG study
reported that alpha suppression in the anterior insula is related mainly to pain expectation in a para-
digm in which painful stimuli were interleaved with non-painful stimuli (Franciotti et al., 2009). This
was interpreted as a preparatory mechanism for an upcoming painful stimulus. In a related study,
alpha desynchronization in the context of predictable painful stimuli has been discussed as a possi-
ble neural correlate of attentional preparatory processes (Babiloni et al., 2003).

Expectation is also a crucial ingredient of placebo analgesia and nocebo hyperalgesia. A previous
study reported that resting-state alpha band activity was also linked to the expectation of pain mod-
ulation (analgesia) in a placebo paradigm (Huneke et al., 2013). With respect to negative expecta-
tions, it has been shown that pain modulation due to nocebo expectation is associated with
enhanced alpha activity (Albu and Meagher, 2016). Our findings are in line with these results indi-
cating an important role of low frequency activity in mediating expectation effects in a pain network
underlying a generative model for pain perception.

In contrast to prediction error effects in the visual (Bauer et al., 2014; van Pelt et al., 2016) and
auditory (Edwards et al., 2005; Parras et al., 2017) domains, we observed a negative modulation
of gamma activity by absolute prediction errors. However, it should be noted that opposite effects
have been observed in other cognitive domains. For instance, increased gamma power has been
associated with successful matching (i.e. the absence of a prediction error) between external input
and internal representation (Herrmann et al., 2004a; Osipova et al., 2006; Wang et al., 2018). In
particular, gamma band responses have been explained in terms of the match between bottom-up
and top-down information (Herrmann et al., 2004b). One example is the observation of increased
gamma activity with a higher so-called cloze probability in sentence-level language comprehension
(Hald et al., 2006, Obleser and Kotz, 2011, Wang et al., 2012, Wang et al., 2018,
Molinaro et al., 2013). It has been shown that a critical word that is semantically predictable by the
preceding sentence (so-called high cloze probability) induces a larger gamma response than words
which are semantically incongruent (i.e. unpredicted; low cloze probability) (Wang et al., 2018).

Pain vs. thermoception

In the present study, the lowest stimulus intensity was often not perceived as painful but as hot. In
general, stimulus properties were chosen to be comparable to a previous fMRI study which showed
fMRI signals related to prediction errors (Fazeli and Btichel, 2018). However, even though the low-
est stimulus intensity (42°C) was above the threshold of nociceptors (Treede et al., 1998), the sub-
jective experience of the lowest pain stimuli was often rated as neutral. Therefore, we performed an
additional analysis (reduced pain model) only comprising clearly painful stimuli (46°C and 48°C) to
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more specifically address expectations and predictions errors in pain. The analyses of the behavioral
data revealed similar results. Both models showed a highly significant effect of stimulus intensity and
expectation on perceived stimulus intensity. In addition, the reduced pain model showed a signifi-
cant prediction error effect, which was formally not observed in the full model. However, it is impor-
tant to note that this difference should not be overinterpreted, as the p-value for the prediction
error effect of the full model was at a trend level (p=0.1). Importantly, the negative representation of
prediction errors in the gamma band was evident in both, the reduced and the full model.

Limitations

To unravel the temporal aspects of expectations and prediction errors, this study has been designed
in close analogy to a previous fMRI study and we decided to use the same experimental paradigm
(Fazeli and Btichel, 2018). We therefore decided to also keep the sample characteristics similar and
restricted the sample to male participants, which means that we cannot generalize our results to the
population. However, our study agrees with the findings of a previous study using a similar design
(Geuter et al., 2017) which tested male and female participants. Future studies should investigate
samples including female participants. This would also allow to investigate sex effects with respect
to expectation and prediction error effects in pain.

To minimize motor responses and speed up the rating procedure, we used a four-button device
to directly assess stimulus intensity (in contrast to using two buttons to move a slider on a VAS), thus
being limited to a coarse rating scale of four levels, where one was labeled as ‘neutral’ and four was
labeled as ‘very strong’. This allows to accommodate more trials but is not ideal to assess fine-
grained differences, specifically to differentiate between non-painful and painful stimulation, as level
1 would represent 0-25 on a 0-100 VAS. Future research could use conventional 0-100 VAS to
assess stimulus intensity on a finer scale.

For reasons of comparability to a previous fMRI study, we employed three different temperatures
for all volunteers. Alternatively, we could have defined three levels of pain based on individual cali-
bration of heat stimuli (Taesler and Rose, 2017; Grahl et al., 2018, Horing et al., 2019,
Zhang et al., 2020; Feldhaus et al., 2021). Such a procedure could have avoided trials where no
pain was subjectively perceived. On the other hand, such an approach also carries the risk that sub-
jective ratings during the calibration process do not truly reflect pain and can lead to errors (espe-
cially if ratings are too low) which then affect the entire experiment. However, to address this
shortcoming, we performed an additional analysis, which only included painful stimulus intensities.

Summary

Our data show that key variables required for pain perception and thermoception in the context of a
generative model are correlated with distinct oscillatory profiles in the brain. Furthermore, each
oscillatory frequency band was correlated with a distinct variable such as expectation and prediction
errors. These mechanistic insights could be very helpful in patients with acute and more importantly
in patients with chronic pain, where expectations have been shown to play a critical role in pain
persistence.
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Alpha-to-beta- and gamma-band
activity reflect predictive coding
in affective visual processing

Andreas Strube”’, Michael Rose, Sepideh Fazeli & Christian Biichel

Processing of negative affective pictures typically leads to desynchronization of alpha-to-beta
frequencies (ERD) and synchronization of gamma frequencies (ERS). Given that in predictive coding
higher frequencies have been associated with prediction errors, while lower frequencies have been
linked to expectations, we tested the hypothesis that alpha-to-beta ERD and gamma ERS induced by
aversive pictures are associated with expectations and prediction errors, respectively. We recorded
EEG while volunteers were involved in a probabilistically cued affective picture task using three
different negative valences to produce expectations and prediction errors. Our data show that alpha-
to-beta band activity after stimulus presentation was related to the expected valence of the stimulus
as predicted by a cue. The absolute mismatch of the expected and actual valence, which denotes

an absolute prediction error was related to increases in alpha, beta and gamma band activity. This
demonstrates that top-down predictions and bottom-up prediction errors are represented in typical
spectral patterns associated with affective picture processing. This study provides direct experimental
evidence that negative affective picture processing can be described by neuronal predictive coding
computations.

People see hundreds of unfamiliar faces in daily life, while seeing famous faces is very rare and surprising and—in
terms of predictive coding—unexpected, leading to a large prediction error. Utilizing time-frequency analysis
of brain data, it has been shown for example that famous faces elicit larger gamma responses as compared to
unfamiliar faces.

Predictive coding of perception assumes that neuronal circuits implement perception and learning by con-
stantly matching incoming sensory data with the top-down predictions of an internal or generative model’=°.
Consequently, a system can refine models with better predictions by minimizing prediction errors regarding the
sensory environment, leading to a more efficient encoding of information®.

The Free Energy principle including aspects of predictive coding specifically posits the minimization of “free
energy” (and thus, indirectly prediction errors) as a mechanism to ensure that agents spend most of their time
in a small number of valuable (i.e. positive) and expected states®. With regards to affective stimuli, this agrees
with findings showing that visual stimuli with a negative valence (i.e. a negative and thus unexpected state)
produce larger gamma responses than neutral and positive visual stimuli’-'®. Results interpreting the effects
of negative valence in the gamma band could be associated with the surprise (i.e. general low probability of
a negative encounter) that negative stimuli entail. However, in most studies this cannot be disentangled from
the valence as the prediction error associated with a negative stimulus per se cannot be disentangled from the
prediction error in the individual experimental setting. To achieve this, additional prediction errors have to be
introduced experimentally.

Within the framework of predictive coding, lower frequency oscillatory alpha-to-beta band activity has
been linked to top-down predictive signals and higher frequency gamma band activity to bottom-up prediction
errors*!”18, Comparably, cortical dynamics induced by emotional picture processing comprise event-related
desynchronization (ERD) in the alpha-to-beta band'*-?® and event-related synchronization (ERS) in the gamma
band9,12,14,22,26,29733.

Alpha ERD (a decrease in power in the ~8-12 Hz range) following affective images is smaller when the image
is anticipated, and the tendency is more prominent for images bearing negative emotional valence*. This might
be interpreted as differences in the encoding of expectation signals in a predictive coding framework, where
expectation signals manifest as increases in low frequency (alpha-to-beta) activity. In this context, predictive
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coding suggests that feed-forward prediction errors reflect the difference between top-down expectation signals
(e.g. pre-activated neuronal units based on the anticipation of threat) and actual stimulus input'’.

In the context of affective picture processing, it is interesting to note that participants with dysphoria elicit a
smaller alpha ERD in response to pleasant pictures, but not to unpleasant pictures?. In the context of predictive
coding, affective disorders (such as major depression) have been linked with bottom-up deficits in predictive
processing and increased precision of negative prior beliefs*. The depressed phenotype may emerge from a
collection of depressive beliefs associated with the causal structure of the world®®. As a consequence, treating
depression could be conceptualized as equipping the brain with the resources to modify its internal model of the
world*. Hence, treatment of depression would be associated with brain’s relevant statistical structures becoming
“less pessimistic”. Thus, the predictive coding model of emotional states associated with affective disorders
might be of particular interest for mechanistic insights in depression, as it represents such an internal model
with potentially pathological variations in its statistical structure®>-*°.

In summary, we hypothesize that alpha-to-beta ERD and gamma ERS typically found in responses to negative
affective stimuli are actually signals related to predictive coding. This posits that alpha-to-beta ERD responses
should be modulated by expectations, whereas gamma ERS responses should be modulated by prediction errors
or surprise.

Consequently, we conducted a cue-stimulus paradigm to unravel predictive coding dynamics in affective
picture processing. We specifically introduced prediction errors experimentally by presenting stimuli in two
different modalities, pain and vision (i.e. affective pictures). In the affective picture part presented here, we pre-
sented emotionally negative stimuli and manipulated the degree of negative valence. Participants were asked to
rate the valence of the content on a four-point rating scale. We expected the anticipated degree of the aversive
content to be related to alpha-to-beta ERD. If surprise is a main driving factor of gamma ERS (as derived from
a predictive coding perspective), we expected an increase of gamma power when there was a mismatch between
the anticipated degree of aversion and the actual aversive quality of the picture. If the negative valence or aversive
quality is contributing to the gamma ERS effect, we expected an increase of gamma power with higher aver-
sion regardless of the anticipated degree of aversion. Finally, based on hypotheses regarding a negative valence
associated with prediction errors*, we expected that a greater mismatch between predicted and actual valence
elicits larger valence ratings.

Methods

Participants. We investigated 35 healthy male participants (mean 26, range 18-37 years), who were paid as
compensation for their participation. Applicants were excluded if one of the following exclusion criteria applied:
neurological, psychiatric, dermatological diseases, pain conditions, current medication, or substance abuse. All
volunteers gave their informed consent. The study was approved by the Ethics board of the Hamburg Medical
Association. Data from six participants had to be excluded from the final EEG data analysis due to technical
issues during the EEG recording (i.e. the data of the excluded participants were contaminated with excessive
muscle and/or technical artifacts) leaving a final sample of 29 participants.

Stimuli and task. Stimulus properties were chosen to be identical to a previous fMRI study of predictive
coding where both expectation and absolute prediction error effects were observed in pain®'.

Aversive pictures were chosen from the International Affective Picture System (IAPS)*? database at three dif-
ferent levels of valence. The images presented during the EEG experiment had three levels of valence of which
the low valence category had valence values of 2.02 +0.05 (mean + standard error), the medium valence category
had valence values of 4.06 +0.02 (mean + standard error) and the high valence category had valence values of
5.23+0.01 (mean + standard error). The pain part of this data will not be described here, but has been reported
in Strube et al., 2021%.

Prior to each picture or heat stimulus, a visual cue was presented. The color of the cue (triangle, visual angle
of each side: 0.96°) indicated (probabilistically) the modality of the stimulus (orange for picture and blue for
heat). A white digit depicted inside of each triangle indicated (probabilistically) the intensity of the subsequent
stimulus (1, 2 and 3 for low, medium and high valence). During the whole trial, a centered fixation cross (visual
angle: 0.24°) was presented on the screen.

Each trial began with the presentation of the cue for 500 ms as an indicator for the modality and intensity of
the subsequently presented stimulus. The modality (i.e. pain or picture) was correctly cued in 70% of all trials
by the color of the triangle. In 60% of all trials, the stimulus intensity was correctly indicated by the digit within
the triangle (see Fig. 1b for an overview of all cue contingencies).

Before the presentation of the stimulus, there was a blank period with a variable duration between 1000
and 1400 ms. The visual (or thermal) stimulus was presented for a duration of two seconds. The visual stimulus
(horizontal visual angle of 3.8°; vertical visual angle of 2.4°) was centered on the screen and allowed the partici-
pant to perceive it without eye movements. After the termination of the stimulus, subjects were asked to rate
the aversiveness of the stimulus on a four point rating scale, where 1 was labeled as “neutral” and 4 was labeled
as “very strong”. Ratings were performed using a response box operated with the right hand (see Fig. 1a for a
visualization of the trial structure).

In addition, four catch trials were included in each block. Subjects were asked to report the preceding cue
in terms of their information content of the modality and intensity within 8 s and no stimulation was given in
these trials.

Trials were presented in four blocks. Each block consisted of 126 trials and four catch trials and lasted about
15 min. The trial order within each block was pseudorandomized. The order of blocks was randomized across
subjects. The whole EEG experiment including preparation and instructions lasted for about three hours.
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Figure 1. Overview of the study design. (a) Graphical representation of the trial structure. Each trial started
with the presentation of a cue, indicating the stimulus intensity and modality of the following stimulus. After

a jittered phase where only the fixation cross was shown, the stimulus (IAPS picture or pain) was presented.

A rating phase (1-4) of the stimulus aversiveness followed. (b) Contingency table for all conditions for each
cue-stimulus combination. Note that percentages are for all trials, therefore each row adds up to 1/6 (6 different
cues). Orange fields indicate conditions included in the analysis, i.e. IAPS pictures where IAPS pictures were
indicated by the color of the preceding cue. (c) Hypothetical response patterns based on Stimulus Intensity
(IN'T; left), Expectation (EXP; middle) and Absolute Prediction Error (PE; right). The y-axis represents a
hypothetical response variable (e.g. EEG power or rating). Each dot represents a different condition for each
stimulus-cue combination. Blue colors represent low valence conditions, green colors represent medium valence
conditions and red colors represent high valence conditions. Color intensities depict expectation level.
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Prior to the actual EEG experiment, subjects participated in a behavioral training session. During this ses-
sion, they were informed about the procedure and gave their written informed consent. The behavioral train-
ing session was implemented to avoid learning effects associated with the contingencies between the cues and
the stimuli during the EEG session. Between two and three blocks were presented during the training session
(without electrophysiological recordings). The experimenter assessed the performance after each block based
on the percentage of successful catch trials and the ability to distinguish the three levels of aversiveness of each
modality. The training session was terminated after the second block if participants were able to successfully
label cues in 75% of the catch trials within the second block.

EEG data acquisition. EEG data were acquired using a 64-channel Ag/AgCl active electrode system (Acti-
Cap64; BrainProducts) placed according to the extended 10-20 system™. Sixty electrodes were used of the most
central scalp positions. The EEG was sampled at 500 Hz, referenced at FCz and grounded at Iz. For artifact
removal, a horizontal, bipolar electrooculogram (EOG) was recorded using two of the remaining electrodes and
placing them on the skin approximately 1 cm left from the left eye and right from the right eye at the height of
the pupils. One vertical electrooculogram was recorded using one of the remaining electrodes centrally approxi-
mately 1 cm beneath the left eye lid and another electrode was fixated on the neck at the upper part of the left
trapezius muscle to record an electromyogram (EMG).

EEG preprocessing. 'The parameters and procedures for the EEG preprocessing were adopted from the
analysis of the pain sub-data set for reasons of comparability and consistency (see Strube et al. 2021, https://
elifesciences.org/articles/62809 to view detailed comments from reviewers on these pre-processing steps)**. The
data analysis was performed using the Fieldtrip toolbox for EEG/MEG-analysis*. EEG data were epoched and
time-locked to the onset of the IAPS picture. Each epoch was centered (subtraction of the temporal mean) and
detrended and included a time range of 3410 ms before and 2505 ms after trigger onset.

The data were band-pass filtered at 1-100 Hz, Butterworth, 4th order. EEG epochs were then visually inspected
and trials contaminated by artifacts due to gross movements or technical artifacts were removed. Subsequently,
trials contaminated by eye-blinks and movements were corrected using independent component analysis (ICA)
with a single ICA per subject for all trials concatenated®*. In all datasets, individual eye movements, showing a
large EOG channel contribution and a frontal scalp distribution, were clearly seen in the removed independent
components. Additionally, time-frequency decomposed ICA data were inspected at a single trial level for micro
saccades and muscle artifacts, after z-transformation (only for artifact detection purposes) based on the mean
and the standard deviation across all components separately for each frequency from 31 to 100 Hz. Time-Fre-
quency representations were calculated using a sliding window multi-taper analysis with a window of 200 ms
length, which was shifted over the data with a step size of 20 ms with a spectral smoothing of 15 Hz. Gamma
artifact components were easily visible and were compared with the trial-by-trial time series representations
of all ICA components. Specifically, single and separate muscle spikes and micro saccades were identified as
columns or “clouds” in time-frequency plots. Using this procedure, up to 31 components were removed before
remaining non-artefactual components were back-projected and resulted in corrected data. Subsequently, the
data was re-referenced to a common average of all EEG channels and the previous reference channel FCz was
re-used as a data channel.

Before time-frequency transformations for data analysis were performed on the cleaned data set, the time axis
of single trials were shifted to create separate cue-locked and stimulus-locked datasets. Cue-locked data defines
the onset of the cue as t=0. Stimulus-locked data defines t=0 as the onset of the picture stimulus. Frequencies
up to 30 Hz (1 to 30 Hz in 1 Hz steps) were analyzed using a sliding Hanning-window Fourier transformation
with a window length of 300 ms and a step-size of 50 ms. It should be noted that delta and theta frequencies
are not ideally mapped with these tapers because of a short window length. For the analysis of frequencies
higher than 30 Hz (31 to 100 Hz in 1 Hz steps) spectral analyses of the EEG data were performed using a slid-
ing window multi-taper analysis. A window of 200 ms length was shifted over the data with a step size of 50 ms
with a spectral smoothing of 15 Hz. Spectral estimates were averaged for each subject over trials. Afterwards,
a z-baseline correction was performed based on a 500 ms baseline before cue onset to avoid differences in the
baseline based on modulations of the signal by the anticipation period. For cue-locked data, a time frame rang-
ing from — 650 ms to — 150 ms was chosen as a baseline. A distance from the cue onset to the baseline period of
150 ms was set because of the half-taper window length of 150 ms, i.e. data points between —150 ms and 0 ms
are contaminated by the onset of the cue. For stimulus-locked trials, a variable cue duration (1500-1900 ms) was
additionally taken into account, resulting in an according baseline from —2550 ms to — 2050 ms from stimulus
onset. For the baseline correction of time-frequency data, the mean and standard deviation were estimated for
the baseline period (for each subject-channel-frequency combination, separately). The mean spectral estimate of
the baseline was then subtracted from each data point, and the resulting baseline-centered values were divided
by the baseline standard deviation*®.

Predictive coding model. Similar to a previous fMRI study*' and our analysis of the pain subset of this
dataset®, our full model included three experimental within-subject factors (see Fig. 1c). The stimulus intensity
factor (INT; see Fig. 1c; left column) models the measured response with a simple linear function of the stimulus
intensity (-1, 0 and 1 for low, medium and high intensities, respectively). The expectation (EXP) factor was
defined (see Fig. 1c; center column) linearly from the intensity predicted by the cue. Again, conditions with a
low intensity cue were coded with a — 1, conditions with a medium intensity cue with a 0 and conditions with a
high intensity cue with a 1. The absolute prediction error factor (PE) resulted from the absolute difference of the
expectation and actual stimulus intensity (see Fig. 1¢; right column).
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Behavioral ratings. Behavioral aversiveness ratings were averaged for all 3x 3 cue-stimulus combinations
over each participant, resulting in a 29 x 9 matrix (subject x condition). We tested for main effects across stimu-
lus intensity, expectation, as well as prediction error using one-way repeated measures ANOVAs as implemented
in MATLAB (see fitrm and ranova, Matlab version 2020a, The MathWorks). Post-hoc tests were performed on
the repeated measures ANOVA models using Bonferroni corrections for multiple comparisons as implemented
in MATLAB (see multcompare, Matlab version 2020a, The MathWorks).

EEG data analysis. The parameters and procedures for the EEG data analysis were adopted from the analy-
sis of the pain sub-data set for reasons of comparability*®. All statistical tests in electrode space were corrected
for multiple comparisons using non-parametrical permutation tests of clusters®.

We explored positive and negative time-frequency patterns associated with our variations of stimulus inten-
sity, expectation and absolute prediction errors using one-way repeated measures ANOVAs as implemented in
the Fieldtrip toolbox. A statistical value corresponding to p=0.05 (F(1,28) =4.196) obtained from the repeated
measures ANOVA for each factor was used for clustering. Samples (exceeding the threshold of F(1,28)=4.196)
were clustered in connected sets on the basis of temporal (i.e. adjacent time points), spatial (i.e. neighboring
electrodes) and spectral (i.e.+ 1 Hz) adjacency. Further, clustering was restricted in a way that only samples were
included in a cluster which had at least one significant neighbor in electrode space, i.e. at least one neighboring
channel also had to exceed the threshold for a sample to be included in the cluster. Neighbors were defined by a
template provided by the Fieldtrip toolbox corresponding to the used EEG montage.

Cluster tests were applied separately for low frequencies (1-30 Hz in 1 Hz steps) and high frequencies
(31-100 Hz in 1 Hz steps) in a time frame from 0 (onset of visual stimulus) to 2000 ms (end of visual stimulus
presentation) for stimulus-locked data and from 0 (onset of cue) to 1500 ms (visual stimulus onset) for cue-locked
data. Stimulus-locked data was tested for stimulus intensity, expectation and absolute prediction errors factors.
Cue-locked data was tested for the expectation factor.

Subsequently, a cluster value was defined as the sum of all statistical values of included samples. Monte Carlo
sampling was used to generate 1000 random permutations of the design matrix and statistical tests were repeated
in time-frequency-channel space with the random design matrix. The probability of a cluster from the original
design matrix (p-value) was calculated by the proportion of random design matrices producing a cluster with
a cluster value exceeding the original cluster where a p-value <0.05 indicated a significant difference. This test
was applied two-sided for negative and positive clusters. Positive and negative clusters were determined by
the fixed factor estimate (average slope of all subjects) resulting from a simple linear regression analysis of the
respective main effect, i.e. an average decrease with factor levels was coded negatively whereas an increase was
coded positively.

Clusters of activity reaching statistical significance (p <0.05) were further evaluated using post hoc tests,
which were applied on the mean value of all time-frequency-channel combinations included in the cluster
using Bonferroni corrections for multiple comparisons as implemented in MATLAB (see multcompare, Matlab
version 2020a, The MathWorks).

Results

Behavioral data. Participants experienced affective picture (or heat) stimuli which were probabilistically
cued in terms of modality and intensity, evoking an expectation of modality and intensity. The subsequently
applied stimuli were then rated on a visual analog scale (VAS) from 1-4. Our primary behavioral question was
whether ratings are influenced by the experimental manipulation of stimulus intensity, expectation and absolute
prediction errors.

To evaluate the main effects of stimulus intensity, expectation and absolute prediction error with regards
to the valence of the IAPS pictures, we employed a repeated measures ANOVA of the behavioral data, which
revealed significant effects for the main effect of stimulus intensity, i.e. the three levels of valence (I(1,28) =762.10,
p<0.001). Post hoc analyses using the Bonferroni corrections for multiple comparisons for significance indicated
that all three factor levels differed significantly, revealing higher ratings for high valence pictures (M =2.98,
SD =0.40) vs medium valence pictures (M =1.70, SD =0.30) and medium valence pictures vs low valence pictures
(M=1.09, SD =0.07; all p<0.001).

The main effect for expectation on aversiveness ratings did not yield a significant effect (F(1,28) =1.46,
p=0.24). However, the absolute difference between the cued intensity and the actual stimulus intensity (i.e.
absolute prediction error), showed a significant effect on aversiveness ratings (F(1,28) =7.7, p=0.01). Post hoc
tests indicated that the condition without PEs (M =1.95, SD =0.24) was significantly smaller than the high PE
conditions (M =2.05, SD=0.23; p<0.001). Also, the low PE condition (M =1.83; SD =0.28) was significantly
smaller than the no PE condition (p <0.01). In summary, aversiveness ratings were increasing with the degree
of aversive valence of the presented picture stimuli. Moreover, these results demonstrate higher ratings when
there was a mismatch between the degree of aversion signalized by the preceding cue and the actual stimulus
content, i.e. high prediction errors are related to higher aversiveness ratings. The results regarding picture stimuli
are summarized in Table 1. See Fig. 2 for a descriptive rain cloud plot of behavioral ratings for each condition,
main effects plot for each factor and single subject parameter estimates, showing significant positive intensity
and prediction error factors.

EEG Intensity. EEG analysis were performed in the same way as the pain sub-data set”’. We tested our EEG
time-frequency data for a main effect of the valence of the aversive IAPS pictures in the context of a correctly
cued modality (i.e. an IAPS picture was expected and received). In order to do so, we performed a repeated
measures ANOVA on the time-frequency representation of the EEG data on low frequencies (1-30 Hz) and
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Absolute prediction
Stimulus intensity (INT) Cued intensity (EXP) error (PE)
Factor F(1,28) P F(1,28) p F(1,28) P
Behaviroal ratings 762.10 <.001 1.46 24 7.7 .01

Table 1. Main effects of stimulus intensity, expectation and absolute prediction errors on subjective
aversiveness ratings in affective picture conditions.

high frequencies (31-100 Hz) separately using a cluster correction criterion to address the multiple comparisons
problem (see “Methods” for details). Any significant cluster—composed of neighboring data points in time,
frequency and space—would indicate a neuronal oscillatory representation of variations in stimulus intensity in
a given frequency band.

In the low frequency (1-30 Hz) range, we observed one significant negative cluster of activity (p <0.001)
indicating a negative association of IAPS valence and power in the alpha-to-beta range (See Fig. 3 for a time—fre-
quency representation, a main effects plot and single subject parameter estimates of the INT cluster). Specifically,
this negative cluster included samples in a time range from 0 to 2000 ms after IAPS stimulus onset in a frequency
range from 1 to 30 Hz. All channels included samples of the negative low frequency stimulus intensity cluster.
Bonferroni corrected post hoc tests applied on the mean value of all time-frequency-channel combinations
included in the INT cluster revealed that all comparisons, i.e. low valence (M =-0.38, SD =0.80) vs medium
valence (M =-0.85, SD =0.80), medium valence vs high valence (M =-1.08, SD =0.82) and low valence vs high
valence were significant (all p <0.05), i.e. higher picture valence was related to lower alpha-to-beta power.

In conclusion, these results indicate that a higher picture valence is associated with decreased alpha-to-beta
band power (see Fig. 4 for a rain cloud plot of average EEG power at the INT cluster). No effect was observed
for higher frequencies between 31 and 100 Hz.

Expectation. In a next step, we investigated the representation of the expectation factor (EXP) in our
repeated-measures model, again for low frequencies (1-30 Hz) and high frequencies (31-100 Hz) separately in
the IAPS stimulus-locked and cue-locked time-frequency representation of the EEG data.

This analysis revealed one significant negative cluster in the low frequency range (1-30 Hz) after IAPS stimu-
lus onset, indicating a negative association of cued intensity (EXP) and power in this frequency range (p <0.05).
The expectation cluster (p=0.017) included samples from time points ranging from 550 to 1750 ms after IAPS
stimulus onset and included frequencies from 3 to 30 Hz. All channels included samples of the negative low
frequency EXP cluster (See Fig. 5 for a time-frequency representation, a main effects plot and single subject
parameter estimates of the EXP cluster). Post hoc tests revealed that all comparisons, i.e. low valence expectation
(M=-0.77, SD=0.65) vs medium valence expectation (M=-1.11, SD=0.68), medium valence expectation vs
high valence expectation (M =—1.33, SD =0.62) and low valence expectation vs high valence expectation were
significant (all p <0.001, Bonferroni-corrected), showing higher valence expectation was related to lower alpha-
to-beta power.

A cluster analysis of the expectation factor in cue-locked EEG data (from 1 to 30 Hz for low frequencies and
31-100 Hz for gamma frequencies; from 0 to 1500 ms), did not reveal any significant cluster of activity associ-
ated with changes in EXP (all p>0.05,). See Supplementary Fig. 1 for time-frequency representations for low,
medium and high valence expectation conditions.

In conclusion, these results indicate that a higher valence expectation is associated with decreased alpha-to-
beta band power during stimulus presentation.

Absolute prediction errors.  Finally, we investigated the representation of absolute prediction errors (PE)
in our repeated-measures model for low frequencies (1-30 Hz) and high frequencies (31-100 Hz) separately in
the TAPS stimulus-locked time-frequency representation of the EEG data. This analysis revealed two significant
adjacent positive cluster after IAPS stimulus onset, indicating a positive modulation of EEG power by absolute
prediction errors (PE) (p <0.05).

One positive prediction error cluster was found in the low {requency range (1-30 Hz) (p<0.001) and included
samples from time points ranging from 0 to 2000 ms after IAPS stimulus onset and included frequencies from
1 to 30 Hz. All channels included samples of the low frequency absolute prediction error cluster (see Fig. 6 for a
time-frequency representation, a main effects plot and single subject parameter estimates of the low frequency
PE cluster). Here, post hoc tests revealed that conditions without prediction errors (M =—-1.55, SD =0.82) were
associated with significantly lower alpha-to-beta power than both, low (M =-0.80, SD=0.55) and high PE
(M=-0.68, SD=0.54) conditions (all p<0.001) whereas medium and high PE conditions did not differ in
alpha-to-beta power (p=0.1).

In the high frequency range (31-100 Hz) representing gamma activity one positive prediction error cluster
was observed (p<0.001) and included samples ranging from 0 to 2000 ms after IAPS stimulus onset and from
31 to 73 Hz. All channels included samples of the high frequency absolute prediction error cluster (See Fig. 7 for
a time-frequency representation, a main effects plot and single subject parameter estimates of the INT cluster).
Post hoc tests revealed that all comparisons were significant (all p<0.01, Bonferroni-corrected) and conditions
without PEs (M =—0.84, SD =0.46) were associated with a significantly lower gamma power than low PE condi-
tions (M =-0.36, SD=0.31), and low PE conditions were associated with a lower gamma power than high PE
conditions (M =-0.19, SD=0.34).
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Figure 2. Ratings for IAPS picture stimuli. (a) Raincloud plots representing single subject ratings for all 9
congruent conditions (expect a picture and receive a picture). VAS (Visual Analog Scale) represents the rating
on a 1-4 rating scale. Blue colors represent low valence IAPS picture stimuli, green colors medium valence
IAPS picture stimuli and red colors high valence IAPS picture stimuli. The data show both an effect of stimulus
intensity (increase from blue to green to red), but also a significant positive effect of absolute prediction errors.
(b) Main effect plots for the stimulus intensity (F(1,28) =762.10, p<.01), expectation (F1,28) =1.46, p=.24) and
prediction error (F1,28) =7.7, p <.05) factors (from left to right) showing single subject values and distributions
on the response, partialling out (for display purposes) the effects of the other predictors (e.g. EXP and PE were
partialled out for the main effect plot of INT) for all three factor levels (increasing from left to right). (c) Bars
represent the estimated slope for each subject and factor (stimulus intensity, expectation and prediction error
from left to right). The dashed line represents the fixed factor estimate (average slope of all subjects). Hot colors
represent a positive slope (increases with factor levels) and cold colors a negative slope (decreases with factor
levels).
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Figure 3. Time-frequency representation (a), main effect plot (b) and single subject parameter estimates (c)
for the significant stimulus intensity (IN'T) cluster (p <.001, cluster-corrected), showing a decrease of alpha-to-
beta power with an increased aversiveness of the stimulus. Time—frequency representations (a) are composed
of the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster
is outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope
(decreases with factor levels). The main effect plot (b) for the INT cluster summarizes single subject values and
distributions on the response, partialling out the effects of the respective other predictors (i.e. EXP and PE were
averaged out for the main effect plot of INT) for all three factor levels (increasing from left to right). Single
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The
dashed line represents the fixed factor estimate (average slope of all subjects).

In summary, these results suggest an increase in alpha-to-beta and low gamma band power to be associated
with expectation violations (i.e. absolute prediction errors), resulting from a mismatch of the cued intensity
and the actual valence of the IAPS stimulus. Even though the parameters of our cluster analysis resulted in two
separate clusters of activity, these clusters are connected in time, frequency and space which suggests this activity
to be related to one single cluster.

Discussion

Using a probabilistic cue paradigm with affective pictures of different valence levels, our data showed a clear
discriminability of valence based on behavioral ratings and EEG time frequency patterns. Valence ratings were
positively modulated by high prediction errors, supporting the hypothesis that prediction errors are linked to
higher (negative) valence*’. With regards to the EEG data, we observed one cluster of activity to be negatively
correlated with the valence of the IAPS material in the alpha-to-beta band. Most importantly, our analysis also
revealed expectations and violations of expectations (i.e. prediction errors) to be involved in the alpha-to-beta
ERD and gamma power modulations.

Firstly, we hypothesized that alpha-to-beta ERD responses should be modulated by expectations. Additionally,
we expected a modulation of these frequencies during the anticipation period from cue onset to the onset of the
IAPS stimulus. Here, we found higher alpha-to-beta ERD associated with higher valence expectations during
stimulus presentation, whereas we found no differences during the anticipation period.
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Figure 4. EEG activity at the significant INT cluster. (a) Scatter plots representing single subject EEG power
(averaged over all samples included in the significant IN'T cluster) for all 9 congruent conditions (expect a
picture and receive a picture) and according probability distributions averaged over all significant samples
included in the negative INT cluster (0-2000 ms; 1-30 Hz).

Secondly, we hypothesized that surprise should lead to an increase of gamma ERS when there was a mis-
match between the anticipated degree of aversion and the actual aversive quality of the picture. In contrast, if the
negative valence or aversive quality is contributing to the gamma ERS effect, we expected an increase of gamma
ERS with higher aversion regardless of the anticipated degree of aversion. Here, we provide evidence for gamma
activity related to surprise as higher gamma power was associated with absolute prediction errors, whereas higher
picture valence did not manifest in gamma power increases.

Our findings are in agreement with reports of decreases of alpha band power with unpleasant images and
emotional arousal'*%. Even though many studies observed a decrease in power in the alpha- and lower beta
band, some studies observed an increase with increased valence?®***-52, Interestingly, we found alpha-to-beta
increases in power to be related to expectation violations as well as alpha-to-beta decreases associated with
expected valence during the presentation of the IAPS stimulus. Anticipation of negative pictures enhances neural
responses to the pictures®** during encoding of the emotional content, which is well in line with our findings
of increased ERD with higher valence expectations.

Conversely, anticipation of aversive images did not manifest as differences after the presentation of the cue. It
has been shown that in the anticipation period for affective images, alpha ERD preceding an anticipated negative
image was larger as compared to a positive image®*. Also, negative anticipation of affective images have been
associated with the activation of the right prefrontal cortex in fMRI studies®°. Interestingly, activation of brain
areas associated with negative anticipation is decreased when anticipation of negative emotion is uncertain®.
Here, all cues were to a large degree uncertain (after all, only 60% of all cues predicted the intensity correctly),
which could explain that we could not detect expectation signals based on uncertainty of the anticipation. Alpha-
to-beta band activity has been specifically implicated in the processing of top-down expectation signals'”'%. Beta
activity has also been linked to top-down prediction signals in the visual perception of causal events*®. Here, we
find alpha-to-beta activity associated with expectation signal only during stimulus presentation, suggesting that
a representation of the prediction is reinstantiated during stimulus presentation.

EEG desynchronization is considered a reliable correlate of excited neural structures or activated cortical
areas, while synchronization within the alpha band is hypothesized to be an electrophysiological correlate of
deactivated cortical areas® (see Pfurtscheller et al., 1996 for a review). An alternative view suggests increased
alpha activity to be associated with active inhibition rather than passive inactivity®*-®>. More specifically, it has
been suggested that alpha activity represents an attentional suppression mechanism when objects or features need
to be specifically ignored or selected against®®. Moreover, event related alpha synchronization is obtained over
sites that probably exert top-down control and hence it has been assumed that alpha synchronization reflects a
top-down process of inhibitory control®.

In this sense, inhibition is a mechanism for gating the flow of information throughout the brain which is medi-
ated by alpha activity®"*>%°. In our study, two effects come to play in the alpha-to-beta band, which are relevant
with regard to this hypothesis: Firstly, alpha band activity shows a negative relationship with expected stimulus
intensity, suggesting less inhibition (i.e. more attention to this information) of highly aversive (potentially nega-
tive or threatening) visual stimulation. Secondly, prediction errors resulted in increased alpha band power, i.e. a
positive relationship. In this sense, incongruent trials would be attentionally suppressed and the features would
be specifically ignored or selected against. This is because our alpha-to-beta prediction error follows a pattern of
higher alpha-to-beta power with higher prediction errors. In this paradigm, the probabilistic characteristics of
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Figure 5. Time-frequency representation (a), main effect plot (b) and single subject parameter estimates (c)
for the significant expectation (EXP) cluster (p <.05, cluster-corrected), showing a decrease of alpha-to-beta
power with an increased expected valence of the stimulus. Time-frequency representations (a) are composed
of the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster
is outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope
(decreases with factor levels). The main effect plot (b) for the EXP cluster summarizes single subject values and
distributions on the response, partialling out the effects of the respective other predictors (i.e. INT and PE were
averaged out for the main effect plot of EXP) for all three factor levels (increasing from left to right). Single
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The
dashed line represents the fixed factor estimate (average slope of all subjects).

the cue did not change during the experiment and were learned before EEG measurements. It has been shown
that the update of predictions is associated with beta ERD®. Here, an update of predictions based on unlikely
events would reflect a change in predictions, even though the actual probabilities did not change. Following
this thought, the update of predictions might be suppressed which manifests as higher alpha-to-beta power in
prediction error conditions. This is in line with a proposed role of beta activity in actively maintaining the cur-
rent cognitive set or the status quo®’.

Beta oscillations have also been suggested to be associated with temporal reactivation of neural
representations®®. Beta modulations have been shown in working memory tasks, in which past information is
brought into the focus of attention®®*-"°. Here, conditions with prediction errors might be related to a similar
process, where a mismatch was evaluated by a focus on the information of the cue stored in working memory.
Our manipulation of prediction errors was associated with an increase in alpha-to-beta power: this suggests
top-down processes (working memory and suppression) instead of bottom-up processes to be at play at alpha-
to-beta frequencies associated with our prediction error factor.

In predictive coding, gamma activity has been specifically associated with prediction error responses
has been associated with bottom-up prediction errors in the visual processing of causal events®®. Here, we found
two clusters associated with prediction errors, firstly in the alpha to beta range and secondly in the gamma range.
The gamma cluster needs to be interpreted with caution, as it might be affected by spectral smearing from the
alpha-to-beta cluster.

17,18 and
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Figure 6. Time-frequency representation (a), main effect plot (b) and single subject parameter estimates (c)
for the significant low frequency absolute prediction error (PE) cluster (p <.001, cluster-corrected), showing
an increase of alpha-to-beta power with prediction errors. Time—-frequency representations (a) are composed
of the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster
is outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope
(decreases with factor levels). The main effect plot (b) for the PE cluster summarizes single subject values and
distributions on the response, partialling out the effects of the respective other predictors (i.e. INT and EXP
were averaged out for the main effect plot of PE) for all three factor levels (increasing from left to right). Single
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The
dashed line represents the fixed factor estimate (average slope of all subjects).

In predictive coding, an improved causal model by learning improves top-down predictions which conse-
quently lead to a reduction of bottom-up prediction error signals”". If we interpret both PE clusters (in the alpha-
to beta range and in the gamma range) as incorporating different processes which are encoded simultaneously
at different frequencies, our gamma PE cluster might be a manifestation of bottom-up prediction error signals.
In predictive coding, gamma activity depends on the match between expectations and bottom-up input'” and
is in this sense an assessment of sensory predictions”. In this study, we could directly assess the difference
between expectations and bottom-up sensory input, resulting in differences in the gamma range. In summary,
this would imply that top-down working memory demands and the suppression of prediction updates were
encoded in the alpha-to-beta range whereas bottom-up prediction error signals were simultaneously encoded
in the gamma range.

In the formulation of predictive coding, an important function of emotional valence turns out to regulate the
learning rate of the causes of sensory inputs. Specifically it has been proposed that a violation of expectation leads
to a (qualitatively) negative valence and an increase of the learning rate, while fulfilled expectations are associated
with positive valence and a decrease of the learning rate’’. Absolute prediction errors are also integral part of
formal learning models. In the Pearce Hall model”, the absolute error promotes changes in associative strength
(i.e. learning rate) such that large absolute prediction errors (surprises) prompt the model to rapidly adapt by
increasing its learning rate. If emotions can be derived from a predictive coding function, visual processing of
affective pictures can be seen as a simplified model of predictive coding processes in emotion.
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Figure 7. Time-frequency representation (a), main effect plot (b) and single subject parameter estimates (c)
for the significant high frequency absolute prediction error (PE) cluster (p <.001, cluster-corrected), showing
an increase of gamma power with prediction errors. Time-frequency representations (a) are composed of

the statistical F-values of the repeated measures ANOVA averaged over all channels. The significant cluster is
outlined. Hot colors represent a positive slope (increases with factor levels) and cold colors a negative slope
(decreases with factor levels). The main effect plot (b) for the PE cluster summarizes single subject values and
distributions on the response, partialling out the effects of the respective other predictors (i.e. INT and EXP
were averaged out for the main effect plot of PE) for all three factor levels (increasing from left to right). Single
subject parameter estimates (c) are based on a linear regression of single subject values of each factor level. The
dashed line represents the fixed factor estimate (average slope of all subjects).

Limitations

This study has been designed in close analogy to a previous fMRI study to unravel the temporal dynamics of
expectation and prediction errors and we decided to use the same experimental paradigm*'. We therefore decided
to also keep the sample characteristics similar and restricted the sample to male participants, which means that
we cannot generalize our results to the population. Future studies should investigate samples including female
participants. This would also allow to investigate sex effects with respect to expectation and prediction error
effects in affective picture processing. The restriction to negative valence stimuli in this study limit the general-
izability of our findings. Future studies could explicitly investigate positively valenced stimuli in the context of
predictive coding.

Summary

Our data show that key variables required for affective picture processing in the context of a generative model
(i.e. predictive coding) are correlated with event-related alpha-to-beta and gamma activity. Alpha-to-beta activity
was (negatively) modulated by valence expectations and stimulus valence, whereas prediction errors (positively)
modulated responses from alpha-to-gamma frequencies. Alpha-to-beta increases associated with the mismatch of
stimulus valence and expected valence imply working memory demands as well as the suppression of prediction
updates, whereas gamma increases suggest a role of bottom-up processing of prediction errors.
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Abstract

Agency and expectations play a crucial role in pain perception and treatment. In the
Bayesian pain model, somatosensation (likelihood) and expectations (prior) are weighted
by their precision and integrated to form a pain percept (posterior). Combining pain
treatment with stimulus-related expectations allows to mechanistically assess whether
agency enters this model as a change in intensity or precision. In two experiments, heat
pain was sham-treated either externally or by the subject, while a predictive cue was
utilized to create high or low treatment expectations. Both experiments revealed additive
effects and greater pain relief under self-treatment and high treatment expectations.
Formal model comparisons favor models which allow intensity shifts rather than
differences in precision. Electroencephalography revealed a theta-to-alpha effect
associated with an interaction of expectations and agency, which was also correlated with
trial-by-trial pain ratings. This effect was temporally associated with expectations,

suggesting a shift regarding expectations (prior) rather than somatosensation

(likelihood).

Introduction

Tracey and Mantyh (2007) defined pain as “a conscious experience, an interpretation of
the nociceptive input influenced by memories, emotional, pathological, genetic, and
cognitive factors”l. In this context it has been shown that somatosensory processes such
as pain perception are modulated by agency on a neurophysiological and behavioral
level2-16, This beneficial effect is utilized in Patient-Controlled Analgesia (PCA) commonly
used in post-operative care - patients receiving PCA experience less pain as compared to

patients receiving traditional (i.e. externally applied) analgesial’-18,
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The somatosensory influence of agency on our perception is very intuitive - after all, we
can experience that it is much harder to tickle oneself than to be tickled by another person,
as has also been shown in a number of empirical studies1?-22. Here, we utilize Bayesian
modelling to assess the mechanisms how agency influence pain perception in the context

of different pain treatment expectations.

It has been proposed that pain perception can be seen as a “Bayesian problem” requiring
the integration of expectations with stimulus intensity23-26. The idea is that expectations
are integrated with incoming nociceptive stimulus information, and both are weighted by
their respective precision to form a pain percept. This has been shown by manipulation
of the level of precision of prior treatment expectations, where expectation-based effects

were more pronounced with more precise treatment expectations?27.

Similar to an application in visual perception?8, less precise sensory information would
lead to a relatively higher influence of prior expectation, while more precise sensory
information would lead to less influence of prior expectation on perception. Importantly,
it is possible to design a pain treatment experiment in which sensory evidence (i.e.

enhanced or reduced treatment efficacy) is either self-generated or externally generated.

Agency can now act at various points in the Bayesian pain model (see Fig. 1a). First, the
influence of agency could occur via a shift in the mean value of the likelihood (we will term
this likelihood shift model, see Fig. 1b) or a shift of the mean value of the prior. The former
would entail that sensory neuronal processing is altered in intensity, whereas in the latter
case, agency would change intensity expectations which influence the pain experience.
Secondly, in the same manner, agency could change the precision of the likelihood (we will

term this likelihood precision modulation model, see Fig. 1c) or the precision of the prior.
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The influence of agency (i.e. self-generation of stimuli) on somatosensation is typically
termed sensory attenuation - for which there are explanations comparable to the
hypotheses derived from the Bayesian pain model. Charles Darwin (1872) already
theorized about the influence of action on sensory precision: “from the fact that a child
can hardly tickle itself, or in a much less degree than when tickled by another person, it

seems that the precise point to be touched must not be known”?2°.

To account for the effects of agency different models have been postulated. Firstly, there
is the forward model which explains that smaller prediction errors during self-generated
movement lead to a less intense sensation of action outcomes30. Translated to our pain
treatment paradigm, this would represent a shift of the likelihood by self-treatment in the
direction of experiencing less pain, which motivated our likelihood shift model (see Fig.
1b). Secondly, in the context of the active inference framework, sensory attenuation is
discussed as necessary to enable action by lowering the precision of sensory evidence to
the consequences of one's own actions31. This would translate to a reduction of precision
of the likelihood in the Bayesian pain model, which motivated our likelihood precision

modulation model (see Fig. 1c).

Derived from the Bayesian pain model of expectation-based hypoalgesia (see Fig. 1), we
hypothesized that if the likelihood was shifted by agency, self-treatment would result in
overall lower pain ratings (based on the forward model), regardless of prior expectations,
i.e. agency and expectation effects would be additive. In contrast, less precision (based on
active inference) of self-generated sensory consequences would enhance the impact of
expectation effects (i.e. placebo/nocebo effects), leading to pain ratings being influenced
more strongly by expectations in self-treatment conditions, which would manifest as an

interaction of agency and expectations. See Fig. 1d for statistical hypotheses based on the
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likelihood shift; see Fig. 1le for statistical hypotheses based on attenuated likelihood

precision.

Consequently, we have translated this to formal models of Bayesian integration (Fig. 1a)
in pain perception, incorporating a likelihood shift (Fig. 1b) and likelihood precision
modulation (Fig. 1c), respectively. With these models, we performed a formal Bayesian
model selection (see Fig. 1 for an overview of the main candidate models and model
predictions). Please note that our models also consider the contrary mechanisms, i.e. the
likelihood could be shifted in a way that self-treatment is associated with more pain. Also,
the likelihood could become more precise leading to less influence of prior expectations.
Bayesian modelling does not allow to disentangle whether the influence of agency is
represented in a shift of the likelihood or the prior - a shift in the prior could equally
account for the results as a shift in the likelihood. Differences in precision, on the other
hand, would lead to different parameters for the posterior (i.e. in order to increase the
effects of expectations, higher precision of the prior instead of a lower precision of the
likelihood would lead to a higher precision of the posterior). Therefore, we also included
a prior precision modulation model and models with multiple parameters (shift +

precision modulation) for comparison.

To further measure the neural influence of agency, EEG can help to answer the question
of whether agency acts on the likelihood or the prior in a Bayesian pain model.
Modulations of EEG power in pain are typically more associated with signaling sensory
information than with signaling expectations3233, and typically, expectation effects are
related to processes occurring temporally before pain stimulation (e.g. after an
expectation-inducing cue)3234, An influence of agency on stimulus intensity-related EEG

time-frequency patterns would therefore suggest a modulation of the likelihood, whereas
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an influence of EEG time-frequency patterns related to expectation would suggest a

modulation of the prior.

The first experiment (N = 25) used continuous pain ratings to establish a precise readout
of pain perception during painful heat stimulation and after treatment, while the second
experiment (N = 54) additionally employed electroencephalography (EEG) to further
evaluate neurophysiological correlates of the modulation via expectations and agency. In
both experiments, we applied heat pain to capsaicin-sensitized skin on the left radial
forearm, after individual calibration to create comparable pain levels for each participant.
To avoid a contamination of EEG data by movement artifacts through button presses
during continuous pain ratings, we altered the paradigm for experiment 2 to include
single outcome ratings instead of the continuous pain rating (see Fig. 2 for an overview of

the trial design).
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Figure 1. Bayesian models of pain perception. Bayesian model comparison was used to evaluate two main
Bayesian pain placebo/nocebo models. (a) The core of both models is the Bayes-optimal integration of prior
experiences (here centered at VAS = 10 for placebo and at VAS = 50 for nocebo) with incoming nociceptive
information (i.e. likelihood) to form a pain percept (i.e. posterior). Prior, likelihood and posterior were
approximated by Gaussian distributions allowing for an analytic solution of Bayesian integration. The

likelihood shift model (b) has a free parameter that allows to shift the likelihood mean for self-treatment
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trials (see STAR Methods, Eq.2). For example, the likelihood mean for self-treatment can be shifted to lower
values (blue, solid line) as compared to the mean for external treatment (blue, dashed line). In high
treatment expectation (placebo), this will lead to a shift of the posterior (dark green, solid line) to lower
VAS values as compared to external treatment (dark green, dashed line) because of the integration of the
shifted lower likelihood with the prior. Similarly, in low treatment expectation (nocebo), this will lead to a
shift of the posterior (purple, solid line) to lower VAS values as compared to external treatment (purple,
dashed line). This is in contrast to the likelihood precision modulation model (c) which has a free parameter
that can change likelihood precision (see STAR Methods, Eq.3). If self-treatment is linked to a lower
likelihood precision (blue, solid line) as compared to external treatment (blue, dashed line) this model
should explain the data better than the likelihood shift model. As an example, this can lead to a posterior
(dark green, solid line) which is more strongly drawn to the prior (VAS10 conditioning) in self-treatment
than external treatment (dark green, dashed line), due to the lower “impact” of the likelihood. In low
treatment expectation, the posterior (purple, solid line) would be drawn more strongly to the prior (VAS50
conditioning) in self-treatment than external treatment (purple, dashed line). Note that for actual modeling
we utilized individual prior and likelihood parameters, whereas here, parameters are based on calibration
target values for illustration purposes. The likelihood shift to lower values (d; derived from the forward
model) predicts a decrease of perceived stimulus intensity in self-treatment (green line) as compared to
external treatment (purple line), meaning a higher treatment success in self-treatment trials as compared
to external treatment trials. Likelihood precision modulation leading to lower precision of the likelihood (e;
derived from active inference) would entail that self-treatment is associated with a decrease in precision,
and thus a larger influence of expectations in self-treatment (green line) as compared to external treatment

(purple line).
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152 Figure 2. (a) Schematic representation of the paradigm, (b) trial design for experiment 1, and (c) trial design
153 for experiment 2. Colored lines represent VAS50 conditioning (red), test trials (VAS30; green) and VAS10
154 conditioning (blue). The black line represents alterations in temperature common to all trial types, blue,
155 green and red lines represent changes based on VAS10 conditioning, VAS30 test trials and VAS50
156 conditioning trials, respectively. At trial start, the thermal-heat stimulator (thermode), attached to the left
157 radial forearm of the participant, is at the baseline temperature (set to 30°C for experiment 1 and to 28°C
158 for experiment 2). A red bar indicates the start of the pain phase concurrent with an increase of thermode
159 temperature to the individually calibrated pain level of VAS70. The start of the treatment phase is indicated
160 by a cue showing whether self- or external treatment and whether highly or weakly effective treatment
161 follows. This then leads to actual low (VAS10) or high (VAS50) temperatures during conditioning trials. In
162 test trials, the final temperature is always at VAS30 regardless of the cued treatment efficacy. Arrows
163 indicate time points for EEG data locks, i.e. the time axis of EEG time-frequency data was set to 0 according
164 to the onset of the cue and to the treatment outcome (i.e. target treatment VAS level was reached by the
165 thermode), respectively. In experiment 1 (b), a rating scale controlled with two buttons was presented
166 during the whole trial. At trial start (5s), an empty bar was presented alongside the rating scale (set to 0 at

167  the beginning) and a display of rating buttons (lighting up in green when pressed). During the following



168
169
170
171
172
173
174
175
176
177

178

179

180

181

182

183

pain phase (8-10s), the empty bar was filled red as an indication for pain. After the pain phase, the treatment
cue was presented. The treatment cue showed a reduction of the red bar, where a reduction by 2/3 of the
total height was associated with highly effective treatment and a reduction by 1/3 of the total height was
associated with a weakly effective treatment. Additionally, a signal word indicated self- or external
treatment. After a lag of 2s, the treatment buttons appeared on the display, lighting up in green when
pressed by the subject or externally. After the treatment button was pressed, the temperature was
decreased to the respective pain level. An ITI (intertrial interval) of 18s followed. In experiment 2 (c), pain
ratings scales and buttons were only presented during designated rating phases. Treatment could be started
immediately after the onset of the treatment cue. Here, the timing of each trial was: trial start (4s), pain

phase (8s), pain rating phase (6s), treatment phase (8s) and treatment rating phase (6s) with an ITI of 4s.

Results

Experiment 1: Behavioral results

The first experiment used continuous pain ratings (Fig. 3). As we did not assess
expectations explicitly we refer to expectations as the effects elicited by the predictive
cue, i.e. high and low treatment expectation conditions are related to the predictive cues

signaling high or low treatment success and not to actual expectation ratings.

10
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Figure 3. Continuous VAS ratings per condition. Each line represents a different condition, i.e. VAS10 and
VAS50 conditioning, and four test conditions following VAS30 (self- versus external treatment, low versus
high treatment expectation). Pain phase (VAS70) starts after a cue presentation of 5s for a jittered duration
of 8-10s. Afterwards the treatment phase started, beginning with the presentation of the treatment cue for
2s. Then, treatment was started either by the participant or externally. Lines on the right represent an

enlargement of the highlighted section (25-30s).

The treatment outcome differed objectively as we reduced the pain stimulus to three
different intensities, i.e. VAS10 and VAS50 for high and low treatment efficacy

respectively during conditioning trials, and VAS30 for test trials (albeit presented with

11
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the respective high or low conditioned predictive cues). To evaluate if participants
experienced these three intensities to be different, we conducted a repeated measures
ANOVA on the final continuous rating data points (post-treatment VAS rating) from all
three stimulus intensities, including conditioning and test trials (averaging across
predictive cues) which revealed a significant difference (F(2,48)=43.78, p<0.001, ny? =

0.646) (Fig. 4a).

Post-hoc analyses using Bonferroni correction for multiple comparisons indicated that all
three stimulus intensity levels differed significantly from each other, revealing higher
post-treatment VAS ratings for VAS50 conditioning trials (M =50.35, SD = 15.78) versus
VAS30 test trials (M=38.98, SD = 12.86) and for VAS30 test trials versus VAS10

conditioning trials (M =24.47, SD = 11.95; all p<0.001).

As a next step, we evaluated the effects of our manipulations for the test trials, where the
intensity of the painful stimulus was always reduced to an individually calibrated level of
VAS30. Here, post-treatment VAS ratings could either be influenced by agency (self-
versus external treatment), expectations (low versus high treatment expectations), or
their interaction. Considering the likelihood shift model (see Fig. 1d), we would expect
higher treatment success in self-treatment test trials as compared to external treatment
test trials regardless of prior treatment expectations (as derived from the forward model).
In other words, we would expect a main effect of agency with or without a main effect of
expectation, but no interaction between both factors. Conversely, for the likelihood
precision modulation model (see Fig. 1e), by lowering the precision of sensory evidence
(as derived from predictions related to active inference), prior treatment expectations
would gain a higher relative weight compared to the sensory information in self-

treatment trials versus external treatment trials, which would manifest as an interaction

12
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(i.e. expectation effects should be larger in self-treatment). Note that self-treatment could
also be associated with worse outcomes and therefore a shift of the likelihood to higher
VAS values. Also, self-treatment could lead to less influence of expectations and a more

precise likelihood in the likelihood precision modulation model.

Here, again we conducted a repeated measures ANOVA to test for main effects of agency,
expectation, and their interaction in the test conditions (VAS30). We found a significant
sensory attenuation effect, that is, a main effect of agency (F(1,24)=6.2, p= 0.02, n,% =
0.205), meaning that post-treatment VAS ratings were lower for self-treatment trials (M
=37.99,5D =12.57) versus external treatment trials (M = 39.98, SD = 13.45). Furthermore,
we found a significant expectation effect (F(1,24) = 10.738, p=0.003, np?=0.309), i.e. high
treatment expectations were associated with lower post-treatment VAS ratings (M =
35.00, SD = 13.66; conditioned with VAS10) than those following low treatment
expectations (M = 42.97, SD = 14.77; conditioned with VAS50). Importantly, we did not
observe a significant interaction of expectation and agency (F(1,24)=0.679, p=0.42, ny?
= 0.028). A linear regression of reaction times and agency benefits (self-treatment minus
external treatment post-treatment VAS rating) did not reveal a significant association of

these factors (R?= 0.00503, F(1,24) = 0.116, p = 0.736).

For model-based analyses of our behavioral data, we created two Bayesian models of pain
perception in placebo/nocebo pain treatment (see Fig. 1) which were inverted and
compared using variational Bayesian methods (VBA, see STAR Methods for details). We
used the Bayesian integration model of pain perception as a basis model (Fig. 1a). In self-
treatment test trials under the likelihood shift model, we included the parameter pshitt
which allowed for a shift of the likelihood and thus for a posterior distribution which was

shifted into the same direction in low and high treatment expectation conditions (Fig. 1b;
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here a shift of the likelihood mean to lower values leads to better treatment outcomes).
This was contrasted to the likelihood precision modulation model, where the posterior
distribution should be differentially affected by the conditioned pain experience, and thus
we included the parameter pprecision Which allowed for increases and decreases in
likelihood precision (see Fig. 1c, here a relaxation of likelihood precision leads to an

increased relative weight of expectations).

We used a random effects (RFX) Bayesian model selection approach3>36 to estimate the
overall posterior model probability across subjects. The RFX model exceedance
probability was at ¢ = 0.9986 for the likelihood shift model compared to ¢ = 0.0014 for
the likelihood precision modulation model. Hence, we see clear evidence for the likelihood
shift model with a free parameter enabling likelihood shift over the likelihood precision
modulation model with a free parameter allowing a modulation of likelihood variance
(see Fig. 4¢e). The likelihood shift model also outperforms all other control models in a full
comparison, i.e. a null model without free parameters (i.e. setting the likelihood shift
parameter to 0 and the likelihood precision modulation parameter to 1) and a full model
which included both shift and precision modulation parameters (¢ > 0.999) (see STAR

Methods for details). See Supplementary Fig. 1 for a comparison of all candidate models.

In summary, results using continuous pain ratings clearly demonstrate both sensory
attenuation effects (i.e. self-treatment lead to better outcomes) and expectation effects
(i.e. high treatment expectations lead to better treatment outcomes), but no interaction
between expectation and agency. Model selection provides strong evidence in favor of the
likelihood shift model over all other candidate models (see Fig. 4 for a summary of the

results).
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265 Figure 4. Results from VAS (Visual Analogue Scale) rating analyses of experiment 1 (N = 25). (a) Post-
266 treatment VAS ratings for each stimulus intensity condition (VAS10, 30 and 50) and lines representing the
267 contrasts of low versus high treatment expectation and self- versus external treatment during test trials.
268 Bars and lines represent post-treatment VAS ratings averaged per condition. (b) Scatter plots represent
269 single subject values for treatment outcomes for conditioning, expectation, and agency. Scatter plots

270 represent contrasts of conditions, i.e. each dot represents averaged ratings of a single subject for VAS10
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versus VAS50 conditioning (blue), high treatment expectation versus low treatment expectation (green)
and self-treatment versus external treatment (purple). Brighter colors indicate larger benefits of stimulus
intensity (VAS10 versus VAS50 conditioning), placebo benefits (high treatment expectations versus low
treatment expectations) and agency benefits (self-treatment versus external treatment). Data points above
the diagonal represent single subjects with stimulus intensity, placebo and agency benefits, respectively. (c)
Probability density function of group parameter estimates for the likelihood shift parameter psnit of the
winning likelihood shift model. (d) Single subject differences of log evidence for the likelihood shift model
versus likelihood precision modulation model (negative values favor the likelihood shift model) and (e)

model frequencies and protected exceedance probabilities.

Experiment 2: Behavioral results

As in the first experiment, a repeated measures ANOVA with all three stimulus intensities
(including conditioning and test trials) revealed a significant difference
(F(2,106)=118.32, p<0.001, np? = 0.691) between all three intensities (VAS10, 30 and
50) in post-treatment VAS ratings. Post-hoc analyses using Bonferroni correction for
multiple comparisons indicated that all three stimulus intensity levels differed
significantly from each other, revealing higher post-treatment VAS ratings for VAS50
conditioning trials (M =49.66, SD = 15.46) versus VAS30 test trials (M = 38.24,5D = 17.18)
and for VAS30 test trials versus VAS10 conditioning trials (M =31.04, SD=17.45; all

p<0.001).

For the evaluation of main effects of agency and expectation and their interaction for the
test trials, we again conducted a repeated measures ANOVA. We observed a significant
sensory attenuation effect (F(1,53) =19.13, p <0.001, np2= 0.265), i.e. post-treatment VAS
ratings were lower for self-treatment trials (M = 37.15, SD = 17.26) as compared to
external treatment trials (M = 39.33, SD = 17.30). Also, we found a significant expectation

effect (F(1,53)=35.57, p<0.001, np? = 0.402), i.e. high treatment expectations were
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associated with lower post-treatment VAS ratings (M = 34.91, SD = 17.69; conditioned
with VAS10) than low treatment expectations (M = 41.56, SD = 17.64; conditioned with
VAS50). As in the first experiment, we did not observe a significant interaction of
treatment expectation and agency (F(1,53)= 0.02, p=0.887, np? = 0.003). Finally, we
assessed if agency effects might be explained by reaction times. We tested if reaction times
significantly explained agency benefits (self-treatment minus external treatment post-
treatment VAS rating) in a linear regression model, which showed no significant effect (R?

= 0.0286, F(1,52) = 1.53, p = 0.221).

Again, we used a random effects (RFX) Bayesian model selection approach to estimate the
overall posterior model probability across subjects for the post-treatment VAS ratings in
experiment 2. For experiment 2, the RFX exceedance probability of ¢ = 0.9995 for the
likelihood shift model compared to ¢ = 0.0005 for the likelihood precision modulation
model again strongly favored the likelihood shift model over the likelihood precision
modulation model (Fig. 5e). The likelihood shift model also wins against all other
candidate models (¢ > 0.999) in a full comparison (see STAR Methods for details). See

Supplementary Fig. 1 for a comparison of all candidate models.

Taken together, in the second experiment, we replicated the rating-related results of the
first experiment. Again, these results demonstrate sensory attenuation effects (i.e. self-
treatment leads to better treatment outcomes) and expectation effects (i.e. high treatment
expectations lead to better treatment outcomes) but no interaction between expectation
and agency. Model selection again provides strong evidence in favor of the likelihood shift
model over the likelihood precision modulation model (see Fig. 5 for a summary of the

results).
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Figure 5. Behavioral VAS (Visual Analogue Scale) post-treatment pain rating data of experiment 2 (N = 54).
(a) Post-treatment VAS ratings for each stimulus intensity condition (VAS10, 30 and 50) and lines
representing the contrasts of low versus high treatment expectation and self- versus external treatment
during test trials. Bars and lines represent post-treatment VAS ratings averaged per condition. (b) Scatter
plots represent single subject values for treatment outcomes for conditioning, expectation, and agency.
Scatter plots represent contrasts of conditions, i.e. each dot represents averaged ratings of a single subject
for VAS10 versus VAS50 conditioning (blue), high treatment expectation versus low treatment expectation
(green) and self-treatment versus external treatment (purple). Brighter colors indicate larger benefits of
stimulus intensity (VAS10 versus VAS50 conditioning), placebo benefits (high treatment expectations
versus low treatment expectations) and agency benefits (self-treatment versus external treatment). Data
points above the diagonal represent single subjects with stimulus intensity, placebo and agency benefits,
respectively. (c) Probability density function of group parameter estimates for the likelihood shift
parameter pshitt of the winning likelihood shift model. (d) Single subject differences of log evidence for the
likelihood shift versus likelihood precision modulation model (negative values favor the likelihood shift
model) and (e) model frequencies and protected exceedance probabilities. (f) Example data of a single
subject clearly indicates an improved fit of behavioral post-treatment VAS ratings with the likelihood shift
model (right) over basic Bayesian integration (left). Self-treatment conditions with high and low treatment
expectations (left) with a theoretical posterior based on basic Bayesian integration and (right) with a
theoretical posterior based on Bayesian integration with a likelihood shift (i.e. sensory attenuation
motivated by the forward model) are shown. Lines represent empirical Gaussian high treatment
expectation priors (green), low treatment expectation priors (red) and likelihood (blue) based on the
respective fitted model. The solid dark green line represents the theoretical posterior based on Bayesian
integration of the high treatment expectation prior and the likelihood. The dashed dark green line
represents the parameters of a fitted Gaussian distribution to the empirical post-treatment VAS ratings of
the respective conditions. Accordingly, the solid purple line represents the theoretical posterior based on
Bayesian integration of the low treatment expectation prior and the likelihood. The dashed purple line
represents the parameters of a fitted Gaussian distribution to the empirical post-treatment VAS ratings of

the respective conditions.
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Experiment 2: EEG time-frequency data

For the statistical analysis of EEG data, we considered two separate time points for time-
frequency data to evaluate cue-locked as well as treatment outcome-locked effects. For
cue-locked analyses, we set t = 0 to the onset of the cue indicating the conditioned
effectiveness of the treatment and the agency condition of the treatment phase. In
outcome-locked analyses t = 0 was set to the point when the thermode reached the
calibrated treatment VAS target, and thus, takes individual variations in treatment latency
into account. All tests were corrected for multiple comparisons using Monte Carlo cluster
tests. At each sample a t-test was conducted for each respective contrast (i.e. conditioning,
expectation, agency and interaction) and all samples exceeding the threshold of p < .05
were clustered in connected sets on the basis of temporal (i.e. adjacent time points),
spatial (i.e. neighboring electrodes), and spectral adjacency. This was repeated with
shuffled condition labels per subject and the cluster p-value is calculated as the
proportion of clusters exceeding the original cluster masses (i.e. sum of all t-values at all
samples within a cluster) in random permutation (see STAR Methods for details). See
Supplementary Fig. 2, 3 and 4 for z-scored cue-locked time-frequency data and
Supplementary Fig. 5, 6 and 7 for z-scored outcome-locked time-frequency data for all

conditions at Fz, Cz and Pz, respectively.

Conditioning

In each trial, a predictive cue indicated an upcoming highly or weakly effective
treatment on the ongoing VAS70 stimulus. This association was established during
conditioning trials, where a predictive cue indicating high treatment efficacy was
associated with a (physical) stimulus intensity decrease to a temperature individually

representing VAS10. Similarly, a cue indicating low treatment efficacy was associated
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with a decrease to a temperature representing VAS50. A cluster-corrected dependent
samples t-test on cue-locked data (0 to 2s after the cue, 4-181Hz) revealed no
differences between VAS10 and VAS50 conditioning trials immediately after cue
presentation (all p >.05). However, differences were significant for outcome-locked data
(in a window of -1 to 2s with ¢ = 0 at target temperature, 4-181Hz), revealing two
clusters of activity associated with different conditioning types (VAS10 versus VAS50;
Fig. 6; also see Supplementary Fig. 8 for topographies of significant clusters of activity
for different frequency bands and Supplementary Fig. 9 for bar graphs representing the
averaged power at significant clusters of activity for all conditions). Negative times
reflect activity during the unfolding of pain relief, whereas positive times indicate
activity during the outcome phase, i.e. when temperatures were stable at the final
outcome level. We observed a positive cluster (p <.001) including frequencies from 8 to
64Hz in a time frame from -0.4 to 1s, indicating an increase of EEG power for VAS10
conditioning versus VAS50 conditioning. Additionally, we observed one negative cluster
(p <.001) associated with decreased EEG power of VAS10 versus VAS50 conditioning.

This cluster included frequencies from 4 to 45Hz in a time frame from -0.95 to 0.95s.

Longer outcome latencies based on increased ramp times in the VAS10 as compared to
the VAS50 condition might explain differences in EEG data due to habituation, i.e. the
target temperature is reached at later time points in a decrease from VAS70 to VAS10 as
compared to VAS70 to VAS50. For example, a decrease to a VAS50 temperature of 43°C
from a VAS70 plateau of 47°C takes 500ms whereas a decrease to a VAS10 temperature
of 41°C takes 750ms. Therefore, we tested if activity in clusters representing differences
in intensity (VAS10 versus VAS50 conditioning trials) were associated with ramp time
differences between VAS10 and VAS50 conditioning trials. Both clusters were not

associated with differences in outcome latencies in a linear regression analysis, i.e. the
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individual differences in outcome latency based on different target temperatures in
VAS50 and VAS10 conditions were not predictive for EEG power in the positive and

negative clusters (all p >.05; see Supplementary Figure 10 for details).

This demonstrates a modulation of theta (4-8Hz), alpha-to-beta (8-30Hz) and low
gamma (30-50Hz) frequencies by treatment efficacy via differences in stimulus
intensity, i.e. more effective treatment (VAS10) was associated with lower alpha-to-beta
(8-30Hz) activity during the relief phase followed by lower theta (4-8Hz) and increased
alpha-to-beta (8-30Hz) power at the treatment outcome phase, as compared to less

effective treatment (VAS50).
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Figure 6. (a) Pain treatment paradigm, (b) differences in EEG power (z-scored) for VAS10 conditioning and
VAS50 conditioning averaged over all significant samples in the theta (4-8Hz) and alpha-to-beta (8-30Hz)
bands, (c) time-frequency plot of significant clusters of activity associated with the outcome-locked main
effects of VAS10 versus VAS50 conditioning. Time-frequency plots are averaged t-values over all channels
including significant data points of the respective clusters of activity. Non-significant data points are masked

out. Colors represent t-values.
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Agency

Agency was experimentally manipulated as participants had to either initiate the
treatment themselves, or the treatment was initiated (putatively) by the experimenter.
To test for the effects of agency, we again considered both phases and conducted t-tests
contrasting self-treatment and external treatment during test trials. Here, a cluster-
corrected dependent samples t-test revealed no association between EEG time-frequency
data and agency with cue-locked data (0 to 2s after cue onset, 4-181Hz; all p > .05).
However, treatment outcome-locked data (-1 to 2s at target temperature, 4-181Hz)
revealed two significant clusters of activity associated with agency (Fig. 7). Data showed
a negative cluster (p < 0.001) ranging from -1 to 1s including frequencies from 4 to 54Hz,
exhibiting a negative association between agency and EEG power during the relief (-1 to
0s) and outcome phase (0 to 2s). We also observed a significant (p =.028) positive cluster,
ranging from -0.2 to 0.75s including frequencies from 11 to 54Hz, indicating increased
alpha-to-beta (8-30Hz) and low gamma (30-50Hz) power during the treatment outcome

phase for self-treatment versus external treatment.

Here, again, EEG activity might be explained by longer pain plateau durations which might
lead to habituation. In this case, ramp durations were always identical (i.e. from VAS70 to
VAS30), but in contrast, self-treatment is individually associated with slight differences in
outcome latencies due to individual reaction times and thus potentially a longer pain
plateau duration. Therefore, we assessed if variance of clusters associated with agency
might also be explained by reaction times. We tested differences in self-treatment versus
external treatment averaged EEG power over all samples included in each cluster in a
linear regression model with the average reaction time of each participant as a regressor.

This regressor explained a significant amount of the variance in the negative agency
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cluster (R? = 0.228, F(1,52) = 15.4, p <.001), but not in the positive cluster (R*=0.0611,
F(1,52) = 3.38, p = 0.072). When partialling out the variance explained, the difference in
EEG power in the negative clusters were not significant anymore (p > .05), whereas for
the positive cluster this was not the case and the effect of agency remained significant
(¢(53) = 2.93; p = 0.005). See Supplementary Figure 11 for further details on the

association of reaction time data and agency clusters.

To further evaluate the influence of between-subject differences in sensory attenuation,
we conducted a Pearson’s correlation analysis based on the individually estimated
likelihood shift parameter (i.e. agency benefit; see STAR Methods for details). Here, no
significant associations between subject differences in likelihood shift were associated
with EEG time-frequency data (all p >.05) in cue-locked (0 to 2s after cue onset, 4-181Hz)

and treatment outcome-locked (-1 to 2s at target temperature, 4-181Hz) data.

Finally, we assessed in a linear mixed effects model if the agency-related positive cluster
was associated with individual trial-by-trial outcome pain ratings of the test trials (all
VAS30; see STAR Methods). Activity at the positive agency cluster was not associated with
VAS outcome ratings on a trial-by-trial basis for VAS30 test trials (¢(2588) =-1.148,p =

.25). See Supplementary Table 2 for the full linear mixed effects model.

Taken together, the analysis of agency revealed two clusters associated with differences
between self- and external treatment. Firstly, we observed a negative cluster during the
relief and treatment outcome phase including frequencies from the theta (4-8Hz) to low
gamma (30-50Hz) range, which was related to individual differences in reaction times.
Secondly, when the target temperature was reached, data showed an increase of alpha-
to-beta activity associated with self-treatment (as compared to external treatment). This

cluster was not significantly associated with reaction times.
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Figure 7. (a) Pain treatment paradigm, (b) a panel of line graphs representing differences in EEG power (z-
scored) for self-treatment (green) versus external treatment (purple) averaged over all significant samples
in the theta (4-8Hz) and alpha-to-beta (8-30Hz) ranges, and (c) a time-frequency plot representing
significant clusters of activity associated with the outcome-locked main effects of self- versus external
treatment. Time-frequency plots are averaged t-values over all channels including significant data points of

the respective clusters of activity. Non-significant data points are masked out. Colors represent t-values.

Expectation

As a next step, we evaluated the effects of treatment expectations (i.e. contrast of
predictive cues). During test trials, stimulus intensity (i.e. the target temperature of the
treatment) was set to VAS30. To evaluate the effects of different treatment expectations,
we conducted a cluster-corrected dependent samples t-test on cue-locked data (0 to 2s
after cue onset, 4-181Hz) which revealed no differences between high and low treatment
expectations (all p >.05). Likewise, a cluster-corrected dependent samples t-test did not
reveal significant clusters associated with treatment expectations at the treatment

outcome (-1 to 2s at target temperature, 4-181Hz; all p > .05).
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To further evaluate the effects of treatment expectations, we conducted a Pearson’s
correlation analysis on z-standardized behavioral expectation effects per subject (i.e.
placebo benefit; see STAR Methods for details). Here, positive or negative clusters would
indicate a correlative association of EEG power and the size of the expectation effects.
However, there was no significant association of between-subject expectation effects and
EEG time-frequency data (all p >.05) in cue-locked (0 to 2s after cue onset, 4-181Hz) and

treatment outcome-locked (-1 to 2s at target temperature, 4-181Hz) data.

Interaction of agency and expectation

Finally, we tested for an interaction of treatment expectation and agency. At cue-locked
data (0 to 2s after cue onset, 4-181Hz), a cluster-corrected dependent samples t-test
revealed a significant association of EEG power and the interaction term (p = .034; Fig. 8)
ranging from 0 to 1.35s after cue onset and including frequencies from 4 to 13.5Hz. Here,
we also conducted post-hoc t-tests, which revealed a crossed interaction (all p < .05, see
Supplementary Data for detailed post-hoc t-test results confirming the crossed
interaction). Treatment outcome-locked data did not reveal any cluster associated with
an interaction of treatment expectation and agency (all p >.05). Activity at the interaction
cluster was not associated with differences in averaged individual reaction times for self-

treatment (R?=0.0505, F(1,52) = 2.76, p = 0.102; see Supplementary Figure 12).

Again, we assessed in a linear mixed effects model if the interaction-related negative
cluster was associated with individual trial-by-trial outcome pain ratings of the test trials
(all VAS30; see STAR Methods). Average activity in the negative cluster was significantly
associated (f = 0.74) with VAS outcome ratings on a trial-by-trial basis for VAS30 test

trials (£(2588) = 2.51, p =.0121).
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The analysis of the interaction term revealed differential integration of treatment
expectation and agency information in theta (4-8Hz) and alpha (8-12Hz) frequencies
starting shortly after the presentation of the cue (see Fig. 8 for a summary of the results).
Moreover, activity at this cluster representing theta-to-alpha (4-12Hz) activity was
predictive of trial-by-trial variations in VAS outcome ratings, i.e. lower theta-to-alpha (4-

12Hz) activity was predictive of a higher treatment success.
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Figure 8. (a) Pain treatment paradigm, (b) a line plot showing EEG power averaged over the significant
agency X expectation interaction cluster for self-treatment (green) and external treatment (purple),
showing a significant crossed interaction, and (c) a time-frequency plot representing significant clusters of
activity associated with the cue-locked interaction (agency x expectation) cluster. Time-frequency plots are
averaged t-values over all channels including significant data points of the respective clusters of activity.

Not significant data points are masked out. Colors represent t-values.

Discussion

In the present study, we demonstrated greater pain relief of self-treatment and high

treatment expectations, but no interaction between these factors. Bayesian model
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selection provided strong evidence for a shift model (shift in the mean of the likelihood
term or a shift in the mean of the prior term by self-treatment) over the likelihood
precision modulation model (modulation of precision of sensory consequences of self-
generated outcomes). These effects also manifested in EEG data: differences in stimulus
intensity in VAS10 versus VAS50 conditioning trials were associated with differences in
the theta (4-8Hz), alpha-to-beta (8-30Hz) and low gamma bands (30-50Hz). Agency
modulated low frequency oscillatory responses in the alpha-to-beta range (8-30Hz) and

low gamma (30-50Hz) responses at treatment outcome.

We took great care to match both conditions (self- versus external treatment) with
respect to cognitive and motor demands and adjusted the trials for visual, cognitive, and
motor components. We designed this experiment in a way that both conditions afforded
a motor response by the participant, i.e. in self-treatment, the treatment was started by
the participant by a button press, whereas in external treatment, the participants had to
acknowledge the external-treatment trial by a button press. In addition, both buttons
(treatment and acknowledge buttons) were displayed on the screen. Hence, during both
self-treatment and external treatment, a single button press was made by the subject -
either to start the treatment or to acknowledge the (supposed) experimenter-initiated
treatment. In addition, the correspondingly pressed button (by the experimenter) lit up
on the screen, i.e. in both conditions two buttons changed to green, as in external
treatment, self-treatment was “acknowledged” by the experimenter. By doing so, we
created precise temporal contingencies between the button press initiating self-
treatment and the decrease of temperature. In the external treatment condition, the
participant’s button press to acknowledge external treatment was not locked to the
decrease in temperature, instead the change of the displayed button to green by the “start”

given by the experimenter was in precise contingency with the stimulus decrease. This
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represents a typical ingredient of control or agency, namely the temporal contingency of
an outcome with respect to an action. Consequently, as the motor component was
precisely locked to the treatment in self-treatment but not in the external treatment

condition, this difference could influence the pain experience.

Concerning the role of agency, we expected an increased treatment efficacy when
treatment was self-generated®16. Indeed, data from both experiments support this
hypothesis: self-treatment was associated with lower post-treatment VAS ratings as
compared to external treatment, despite identical objective stimulus intensity. Based on
previous studies, we also expected that pain perception was modulated by
expectation323437-40, Both experiments support this hypothesis and showed a graded
effect of expectation, i.e. high treatment expectations were associated with a higher

treatment success than low treatment expectations.

Crucially, our experiment was designed to investigate the mechanism underlying
improved treatment efficacy when treatment was self-initiated. In a Bayesian sense, pain
perception can be seen as the integration of expectation (prior) and nociceptive input
(likelihood), with the precision of each term determining the amount of its contribution.
Here, we investigated on which of these parameters agency acted. This has been
theoretically motivated: The forward model39 posits that small prediction errors during
self-generated movement lead to a percept of a less intense sensation, relative to
externally generated unpredicted outcomes; applied to our pain protocol, this suggests an
improvement in treatment outcome by self-treatment from which we theoretically
derived a (likelihood) mean shift model (see Fig. 1d). Alternatively, it has been suggested,
in the context of active inference, that action necessarily entails a decrease in precision of

self-generated sensory consequences3l. Thus, because of the reduced sensory nociceptive
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(likelihood) precision in the likelihood precision modulation model, the effect of
expectation should increase. Under these conditions, we would expect that the relative
influence of prior expectations would be increased relative to the sensory evidence, which
would be attenuated in precision, as represented in our likelihood precision modulation
model. Therefore, self-treatment should lead to a greater influence of treatment
expectation relative to external treatment?4. From a statistical perspective, this would
manifest as an interaction between agency and expectation, i.e. larger differences
between low and high treatment expectations in self-treatment as compared to external

treatment (see Fig. 1e).

Our data showed clear effects of sensory attenuation and treatment expectations in two
experiments with different pain rating modalities, and no significant interaction between
sensory attenuation and treatment expectation effects. This clearly favors the mean shift
model for self-initiated pain treatment. This was formally assessed by Bayesian model
comparisons, which strongly favored the mean shift model over the likelihood precision
modulation model and all other models. This is in agreement with a study by Woo et al.
(2017) where choices regarding pain stimulation showed additive reductions of pain by
control and expectations#!, which can also be interpreted as a prior or likelihood shift by

control in a Bayesian sense.

The Bayesian likelihood (mean) shift model included a free parameter (pshitt) able to shift
the mean of the likelihood distribution. However, it should be noted that the shift model
can be implemented in an alternative manner, namely using a free parameter that can
vary the mean of the prior distributions instead of the mean of the likelihood, which
cannot be differentiated on a computational modelling basis using the Bayesian

integration model. However, the EEG data with its temporal resolution can help to
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disentangle this ambiguity. The EEG data showed a cue-locked negative cluster of activity
in the theta-to-alpha range (4-12Hz), which was correlated with trial-by-trial VAS ratings
in test trials. The early onset of this cluster (associated with cue onset) favors a
modulation (i.e. shift) of expectations as opposed to somatosensation and provides
evidence that the modulation by agency affects the prior rather than the likelihood term

in this model.

EEG data analysis was focused on two phases. Firstly, we investigated EEG power shortly
after cue presentation, and secondly, we explored a time frame including the pain relief
phase and the outcome phase, i.e. 1s before the target outcome temperature was reached

by the thermode and 2s after.

As expected for differences in physical stimulus intensities (see Ploner et al., 2017 for a
review), our analysis revealed a clear difference between VAS10 and VAS50 conditioning
trials at the treatment outcome#2. Relative to the VAS50 condition, higher treatment
success (VAS10) was associated with decreased alpha-to-beta (8-30Hz) and theta (4-8Hz)
activity during the relief phase, while the outcome phase was associated with increased
alpha-to-beta and decreased theta activity for VAS10 as compared to VAS50 trials. This is
in line with findings associating lower alpha-to-beta power (8-30Hz) and higher theta
power (4-8Hz) with higher pain ratings or higher pain intensity323443-47, Here, we extend
this to a treatment context, where higher alpha-to-beta power (8-30Hz) and lower theta

power (4-8Hz) was associated with more treatment success during the outcome phase.

Additionally, we observed a negative association of alpha-to-beta power and treatment
success during the relief phase. Importantly, using a control analysis we ruled out that
these clusters are associated with increased outcome latencies by ramp times leading to

differences in time locks in VAS10 as compared to VAS50 conditioning. In general, this
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analysis revealed a very interesting pattern: While in the relief phase, decreased alpha-
to-beta activity was associated with lower stimulus intensity. In the outcome phase, when
the target temperature was reached, increased activity was associated with lower

stimulus intensity.

A similar pattern i.e. a negative cluster starting in the relief phase in the theta-to-low
gamma range (4-50Hz) and a positive cluster at the outcome phase in the alpha-to-beta
range (8-30Hz) emerged when comparing self- versus external treatment trials. In the
treatment phase, it is possible that latencies in reaction times for self-treatment can cause
different pain plateau durations (as compared to external treatment), which can lead to
unspecific time effects such as habituation. To address this concern we explicitly
accounted for reaction times in our statistical model, which revealed that the cluster
representing a negative association of EEG power of the agency contrast was in part
explained by differences in reaction times and thus different pain plateau times as
compared to external treatment. This could explain the similar negative association in
self-treatment by increased habituation resulting from a fatigue of peripheral nociceptive
neurons. Pain intensity would already be decreased in self-treatment as compared to
external treatment in the relief phase by increased habituation#8-52, similar to an actual
difference in stimulus intensity. Importantly, the cluster representing a positive
association with agency was not affected by differences in reaction times. Even though
behavioral ratings indicated a comparable influence of treatment expectations, we did not
find expectations associated with EEG activity at the treatment outcome. Instead, theta
and alpha oscillations at cue onset were differentially representing agency and

expectations and were predictive of VAS outcome ratings.
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We observed modulations by stimulus intensity and agency, but not by expectations in
outcome-locked EEG data. This is in line with previous studies which revealed cue-related
expectation effects in the alpha-to-beta band before painful stimulation3234, but not
during painful stimulation. In another study, pain-induced alpha and gamma responses
were significantly influenced by stimulus intensity but not by placebo hypoalgesia33.
However, it has been demonstrated that expectation-based pain modulation can influence
event-related pain potentials334053-55, Qverall, this suggests that expectations are
associated with cue-locked effects. Expectations might be encoded in oscillatory
processes of brain areas typically associated with contextual influences of top-down
processing. This is in contrast to agency, which modulated activity at both, cue-locked (as
an interaction) and outcome locked activity (as a main effect), suggesting influences on

expectations and sensory processing.

A possible limitation of our modeling approach is that it considers the entire session and
cannot reveal the dynamics e.g. of Bayesian updating across trials as can be revealed using
a dynamical systems approach>¢. However, in our study, in which expectations were
relatively stable throughout the experiment, temporal variations of expectations would
be rather small. Since the temporal evolution of pain-related expectancies are an
important factor in e.g. chronic pain conditions?557, future studies with amended

protocols could consider these dynamics.

In conclusion, pain treatment is additively enhanced by agency and positive expectations.
Sensory attenuation and objectively different stimulus intensities modify oscillatory
activity at the relief and outcome phase of pain treatment, whereas expectation effects
(interacting with agency) were associated with EEG activity directly following the cue.

Using Bayesian model comparisons our data revealed no evidence for a decrease of
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precision in self-treatment, thus favoring a mean shift as the mechanism underlying the
positive effect of self-treatment.
Experimental model and subject details

This is a human study. Information related to the subjects (e.g. sample size and sex) can

be found in the Method details section of the STAR Methods of this paper.

Lead Contact

Further information and requests for resources should be directed to the lead contact

Andreas Strube (a.strube@uke.de) or to Christian Biichel (buechel@uke.de).

Data and code availability
Data and code for this study are available on https://osf.io/q8tgj/.

Strube A., Horing B., Rose M., Biichel C., (2022) Open Science Framework ID q8tgj. Placebo

and Sensory Attenuation in Pain Treatment.

Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

Materials availability

This study did not generate new unique materials or reagents.

Method details

We conducted two experiments in which positive and negative treatment expectations as
well as self- and external treatment were combined. In experiment 1, subjects were
continuously rating their pain experience during painful stimulation and after self- or

external treatment of pain. In experiment 2 with EEG recordings, we restricted the
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paradigm to include only two rating phases instead of a continuous rating to avoid

excessive movement.

Subjects

In experiment 1, 29 healthy participants were enrolled. All participants gave informed
consent and were paid as compensation for their participation. Applicants were excluded
if one of the following exclusion criteria applied: neurological, psychiatric, dermatological
diseases, pain conditions, current medication, or substance abuse. All volunteers gave
their informed consent. The study was approved by the Ethics Board of the Hamburg
Medical Association. Four participants had to be excluded due to adverse reactions to the
capsaicin cream, leaving a final sample of 25 participants (mean age 29.3, range 19-61

years, sex: 14 female / 11 male).

The required sample size of experiment 2 was determined according to a power
calculation>® (G*Power V 3.1.9.4) based on the behavioral sensory attenuation and
expectation effects in experiment 1. For the sensory attenuation effect, we observed an
effect size of Cohen’s f= 0.508 (np? = 0.205) and an effect size of f= 0.669 (np2= 0.309) for
the expectation effect. Using a power of (1-beta) of 0.8 and an alpha level of 0.05 and
assuming low correlations (0.2) among repeated measures, this leads to a required
sample size of 15, taking into account the weaker agency effect. However, given the
different rating in the second experiment we increased the planned number of
participants to 60. Assuming the same proportion of excluded participants as in
experiment 1, this allowed us to potentially detect a medium effect size>? of f= 0.25 with

a sample size of 53.
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We enrolled 60 healthy participants in experiment 2. Five participants had to be excluded
due to adverse reactions to the capsaicin cream and 1 participant had to be excluded due
to technical errors during recording, leaving a final sample size of 54 (mean 28.2, range

20-60 years, sex: 34 female / 20 male).

Thermal stimulation and capsaicin application

Both experiments started with the same preparation procedure with the application of a
capsaicin cream (ABC Heat Cream, Beiersdorf AG, Germany, 750ug capsaicin/g) to the left
radial forearm. Two skin patches of the size of the thermal stimulator probe were covered
with the capsaicin cream for a total of 15 minutes. Thermal stimulation was performed
using a 30 x 30 mm? Peltier thermode (Pathway model ATS, Medoc, Israel). The baseline
temperature was set to 30°C for experiment 1 and the rise rate was set at 8°C/s for both
experiments. The baseline temperature for experiment 2 was set at a lower temperature
of 28°C to minimize skin irritation and attrition. After 2 blocks (experiment 1) or after the
first experimental block (experiment 2), the capsaicin cream was reapplied for 5 minutes,
and the stimulated skin patch was changed to avoid sensitization. In a first step, a single
thermal stimulation with a slowly increasing ramp was used to familiarize the participant
with the thermal stimulation. To test if the capsaicin cream was effectively reducing the
pain threshold participants were asked to report the moment they felt a sensation of pain.
If participants reported pain only above 46°C, the cream was reapplied for another 5
minutes on the skin patch and the initial slowly ramping heat stimulus was repeated (this

applied to 2 participants in experiment 1 and to 4 participants in experiment 2).
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TENS cover story as a treatment situation

Afterwards, TENS (Transcutaneous Electric Nerve Stimulation) was established as a cover
story for the treatment situation. TENS was presented as a nerve stimulation to effectively
reduce pain by modulation of the nerve transmission. Putative TENS has been used to
reliably generate treatment expectations in pain paradigms27.60-62, We provided
volunteers with a deceptive “sham brochure” explaining that different stimulation
frequencies result in different treatment efficacies. An electrode was attached to the
elbow which was connected to an electrical current stimulator (Digitimer Ltd., model
DS7A, United Kingdom). Participants were told that the electrical current stimulator
needed to be individually calibrated. For this, we applied short trains of electrical currents
with increasing intensity and asked the participant to report if there was a sensation; this
was intended to establish the belief that the device is actually active and capable of
producing said currents. Afterwards and without knowledge of the participant, the
electrical current stimulator was turned off and the participants were told that the
settings for optimal stimulation were found. During the experiment, no actual electrical
stimulation was applied. Additionally, and to reinforce the TENS cover story, participants
were asked to report if they felt a stimulation during the experiment and they were told

that if this was the case, the stimulator needed to be recalibrated.

Pain calibration

We individually calibrated the heat stimulation using an adaptive procedure to the levels
of 10, 30, 50 and 70 on a Visual Analogue Scale (VAS) from -100 to 100 where a VAS of 0
represented the pain threshold. The VAS was presented on a computer screen and ratings

were given using the cursor keys on a conventional keyboard. During the information
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procedure at the beginning of the experiment, participants got acquainted with the VAS
scale and printed screenshots of VAS scales were shown and explained. At first,
participants were stimulated with 34°C, 34.5°C, 35°C and 35.5°C and were asked to report
if any of these stimuli were painful. Note that temperatures required to generate pain on
capsaicin sensitized skin are regularly in this temperature range. If the participant
reported that the stimulation was painful, the procedure was continued with a starting
temperature of 35°C, otherwise the starting temperature was set to 36°C for a stepwise
procedure to find the pain threshold. Stimulus duration was set to 8s, according to the
duration of VAS70 pain during the experiment. For the stepwise stimulus determination,
8 stimuli were presented with fixed reductions and increases in temperature relative to
the pain threshold and participants were asked to rate the stimuli on a scale which was
labeled as “normal sensation” at VAS -100, “minimally painful” at VAS 0 and “extremely
painful” at VAS 100. Individual VAS levels of 10, 30, 50 and 70 were estimated using a
linear regression of the VAS ratings recorded during this calibration phase. See

Supplementary Data for calibration data.

Trial design and block structure: experiment 1

Each trial was structured in 3 phases: Trial start, pain phase and treatment phase (see Fig.
2b). At trial start, an empty bar was presented in the center of the screen. The thermode
temperature remained at the baseline of 30°C for 5s. Afterwards, the pain phase started,
which was signaled by a filled red bar in the center of the screen. Thermode temperature
was increased with a rate of 8°C/s to the temperature corresponding to the calibrated
pain value of VAS70. The pain phase lasted for randomly jittered 8-10s. At the beginning
of the treatment phase, a cue was presented which indicated whether high or low

treatment effectivity was to be expected and whether self-treatment or external
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treatment would occur. The cue was designed as a reduction of the centered red bar (i.e.
more reduction by 2/3 of the total height with high treatment expectation as compared
to a reduction by 1/3 of the total height with low treatment expectation) and the word
YOU (i.e. self-treatment) or HE (i.e. experimenter-induced, external treatment) written
inside the bar, indicating self-or external treatment. After a lag of 2s, 2 treatment buttons
were activated and appeared on the display, changing to green when pressed either by
the subject or automatically. The external treatment was communicated as being done by
the experimenter to reinforce the notion of a treatment setting but was in fact computer-
initiated with a naturalistic “reaction time” delay. In the case of self-treatment, the
participant pressed a button (A) and the treatment started with a reduction of the
thermode temperature to the target level of VAS50, VAS30 or VAS10, depending on the
condition. Meanwhile, participants received the signal of a button press (B) from the
experimenter as an indication that the experimenter had acknowledged the self-
treatment. In the case of an external treatment, a button press (B) by the participant had
to acknowledge the external treatment. Meanwhile, participants received an indication of
a button press (A) from the experimenter, signaling that the treatment has been started.
Participants were instructed to perform this task as soon as the treatment buttons
appeared on the screen. Importantly, this procedure ensured identical motor output for
the self-treatment and the external treatment conditions. In conditioning trials, the
expectation of highly effective treatment resulted in a relatively more effective treatment
and a reduction of the pain stimulus to the individual level of VAS10, as compared to a
reduction of the pain stimulus to VAS50 in conditioning trials with low treatment
expectations. For test trials, regardless of cued treatment effectivity, the pain stimulus
was reduced to VAS30. The reduction of the pain stimulus was set at -8°C/s. In total, the

treatment phase lasted 17-19s for a total trial duration of 32s including all 3 phases.
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Additionally, participants were asked to continuously rate their pain level on a scale from
0 (minimal pain) to 100 (extreme pain) during the whole trial duration. A rating scale
with a starting point at VASO (i.e. position of a red rating indicator) appeared ranging from
VASO, labelled as “minimally painful” to VAS100, labelled as “extremely painful”. The 2
buttons used for the rating were represented on the screen and were lighting up when
pressed on the keyboard. After completion of the rating phase, the heat stimulus was

reduced to the baseline temperature for the remaining intertrial interval of 18s.

During experiment 1, 4 experimental blocks were presented. Each block consisted of a
total of 26 trials. It started with 8 conditioning trials, 4 of which were associated with low
treatment success, 4 with high treatment success, each with the respective cues. After the
conditioning trials, 3 micro blocks were presented consecutively. Each micro block

consisted of 6 trials of following types:

(1) 1 conditioning reinforcement trial with high expectation of treatment success with

actual high treatment success (reduction of pain from VAS70 to VAS10).

(2) 1 conditioning reinforcement trial as a reinforcement with low expectation to
treatment success with actual low treatment success (reduction of pain from VAS70 to

VAS50).

(3) 4 test trials with medium treatment success (reduction in pain from VAS70 to VAS30).

le.:

a. 1 trial with high expectation of treatment success and self-treatment with a reduction

of pain from VAS70 to VAS30.

b. 1 trial with high expectation of treatment success and external treatment with a

reduction of pain from VAS70 to VAS30.
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c. 1 trial with low expectation of treatment success and self-treatment with a reduction of

pain from VAS70 to VAS30.

d. 1 trial with low expectation of treatment success and an external treatment with a

reduction of pain from VAS70 to VAS30.

The order of trials within these micro blocks was randomized. Randomization was
constrained so that a trial was not directly followed by the same type of trial, e.g. there
were no 2 consecutive low expectation self-treatment test trials. For the 8 conditioning
trials at the beginning of a block, it was ensured that at most 2 consecutive conditioning

trials with the same condition (e.g. high treatment success) occurred.

In total, 4 experimental blocks were presented. During the first block conditioning and
reinforcement trials were either exclusively self-treatment trials or external treatment
trials. This was switched after 2 blocks, i.e. if the first 2 blocks were self-conditioning

blocks the last 2 blocks were external conditioning blocks and vice versa.

Before the first experimental block was presented, 4 training trials were performed,
during which the illusion of treatment was demonstrated by pressing the button
connected to the heat stimulation device for pain reduction. At this stage, an actual button
press by the experimenter was required during external training trials to establish the
illusion of a direct link between TENS and the button press as for the participant. To do
so, the experimenter sat next to the participant and demonstratively pressed the required
button on the keyboard of the participant. In the remainder of the experiment, external

“button presses” were performed by the computer unbeknownst to the subject.
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Trial design and block structure: experiment 2

During experiment 2 (see Fig. 2¢), the paradigm was split into 5 phases: Trial start (4s),
pain phase (8s), pain rating phase (6s), treatment phase (8s) and treatment rating phase
(6s). Rating scales and related rating buttons on the screen were only presented during
rating phases. During the pain rating phase, a red indicator on the VAS was presented with
a random starting position. During the treatment rating phase, the final pain rating
position of that red indicator was presented for orientation alongside a new green
indicator initially appearing at a random position. The green indicator was used to rate
the treatment outcome. In the treatment phase of experiment 2, treatment buttons were
presented and activated simultaneously with the treatment cue without a jittered lag (as

compared to experiment 1).

In total, 2 experimental blocks were presented. The first block consisted of conditioning
and reinforcement trials which were either exclusively self-treatment trials or external
treatment trials. This was switched after one block, i.e. if the first block was a self-
conditioning block the second block was an external conditioning block, and vice versa. In
total, 56 trials were presented per block, consisting of 8 conditioning trials followed by 8
micro blocks each containing both reinforcers (VAS10 and VAS50 conditioning trials) and
each of the 4 test trial types (self- versus external conditioning, low versus high treatment
expectation). Trials were presented with an intertrial interval of 4s. The first
experimental block was presented after 4 training trials which were performed as in

experiment 1.
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Questionnaire Data

After experiment 2 was concluded, participants were asked to complete several
questionnaires. We included the BDI-V (simplification of the Beck Depression Inventory),
LSHS-R (Launay-Slade Hallucination Scale - German revised version), STAI-X1 (State) and
STAI-X2 (Trait; State-Trait-Anxiety-Scale), FKK (German locus of control scale), SWE
(German General Self-Efficacy Scale) and PCS (Pain Catastrophizing Scale - German
translation) scales®3-71, Pearson product-moment correlation coefficients were computed
to assess the relationship between questionnaire data and agency and placebo benefits.
Agency benefits were defined as the difference between post-treatment VAS ratings of
self-treatment and external treatment conditions. Placebo benefits were defined as the
difference between post-treatment VAS ratings of high treatment expectation and low
treatment expectation conditions. See Supplementary Table 1 for a summary of the

correlational results of the questionnaire data.

EEG recording

EEG data were acquired using a 64-channel Ag/AgCl active electrode system (ActiCap64;
Brain Products GmbH, Germany) placed according to the extended 10-20 system?’2. 60
electrodes were used of the most central scalp positions. The EEG was sampled at 500 Hz,
referenced at FCz, and grounded at Iz. For removal of ocular movement artifacts,
horizontal and vertical bipolar electrooculogram (EOG) were recorded using the 4

remaining electrodes.
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EEG preprocessing

The data analysis was performed using the Fieldtrip toolbox for EEG/MEG analysis73. For
preprocessing, data were epoched and time-locked to the onset of the cue signaling the
start of the treatment phase. Each epoch was centered (subtraction of the temporal mean)
and included a time range of 19s before and 9s after trigger onset (starting with the empty

cue signaling the start of the trial up to the end of the treatment phase).

We employed a preprocessing approach by Hipp et al. (2002)74 by splitting the data into
2 band-pass filtered sub-sets from 4 to 34Hz for low frequencies and from 16 to 250Hz
for high frequencies. This enabled efficient separation of low- and high frequency artifacts
in subsequent ICA analysis. EEG epochs were visually inspected, and trials contaminated
by artifacts due to gross movements or large technical artifacts were removed. Trials
contaminated by eye-blinks, muscle activity, technical artifacts or movements were
corrected using an independent component analysis (ICA) algorithm?>76 after careful
inspection of topographies, power spectra and relation of ICA time courses to the
temporal structure of the experiment. Artifactual components were removed before the
remaining components were back-projected and resulted in corrected data.
Subsequently, the data were re-referenced to a common average of all EEG channels and
the previous reference channel FCz was reused as a data channel. Finally, epochs were

visually screened and trials with remaining artifacts were excluded from analysis.

Before time-frequency transformations for data analysis were performed on the cleaned
datasets, the time axis of single trials was shifted to create cue-locked and outcome-locked
data. For cue-locked data, we set the onset of the cue signaling to the start of the treatment
phase as t = 0. Outcome-locked data takes individual differences in response time into

account and sets t = 0 to the time point when the thermode reached the treatment target
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temperature (calibrated VAS10, VAS30 and VAS50 levels for low conditioning, test and
high conditioning trials, respectively). Trials were excluded if this duration (from cue
onset to treatment outcome) was longer than 6s. This allowed us to create an analysis
window of 2s in subsequent time-frequency analysis without contamination by the

subsequent rating phase.

EEG spectral analysis

Spectral analysis was adapted from Hipp and colleagues’4. This approach ensured a
homogenous sampling and smoothing in time and frequency space. We calculated
spectral estimates for 23 logarithmically scaled frequencies ranging from 4 to 181 Hz
(0.25 octave increments) for the pain phase and treatment phase in 0.05s steps. For cue-
locked data, this included the treatment phase from cue onset up to 2s after cue onset. For
treatment-locked data, this included the relief phase from 1s before the treatment
outcome (target temperatures of VAS10, VAS30 or VAS50) was reached, and the outcome
phase up to 2s after the target temperature was reached. Using the multitaper (DPSS)
approach, we set the temporal and spectral smoothing to match 250ms and 3/4 octave,
respectively. For frequencies below 16 Hz, we employed 250ms temporal windows and
varied the number of Slepian tapers to approximate a 3/4 octave spectrum smoothing.
We changed the time window for frequencies below 16 Hz to achieve a frequency
smoothing of 3/4 octaves with a single taper. We computed the frequency transform using
high- and low-frequency data for frequencies above and below 25 Hz, respectively.
Analysis was then continued with the combined spectral data after averaging of spectral

estimates per block and condition over trials for each subject.
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For the baseline correction of time-frequency data, the mean and standard deviation
were estimated (for each subject/channel/frequency combination, separately) from 0.5
to 7.5s of the pain phase (i.e. increases and decreases in EEG power activity indicate
deviations from EEG power during painful stimulation). The mean spectral estimate of the
baseline was then subtracted from each data point, and the resulting baseline-centered
values were divided by the baseline standard deviation (classical baseline normalization

- additive model”7).

Quantification and statistical analysis

All statistical parameters described in this section are reported in the Results section or

in the Supplementary Data.

Behavioral data analysis

For experiment 1, we performed analysis on the continuous VAS rating by simply using
the last data point of each trial. For experiment 2, we performed analysis on the single
post-treatment VAS rating. Here, we have 2x2 conditions for test trials (low versus high
treatment expectation / self- versus external treatment) and 2 conditions for conditioning
trials. Firstly, we conducted a 3x1 repeated measures ANOVA with post-hoc t-tests to
evaluate the differences between VAS10 (conditioning), VAS30 (test) and VAS50
(conditioning) conditions, respectively. Secondly, we conducted a 2x2 repeated measures
ANOVA to evaluate differences between the different test conditions (low versus high
expectation / self- versus external treatment) and the interaction term of expectation and

agency.
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Bayesian integration models of placebo pain treatment

For model-based analysis of our post-treatment VAS rating data, we designed Bayesian
integration models of pain perception in placebo pain treatment (see Biichel et al., 2014
for a review) in accordance with the likelihood shift model and the likelihood prior
modulation model?4. In the Bayesian formulation of pain perception, Bayes’ theorem is
used to estimate the level of perceived pain, taking precision-weighted prior experiences
into account (Fig. 1a and Eq.1). Formally, the model integrates a prior with a likelihood to
estimate a posterior. Both the prior and the likelihood were approximated by normal
distributions allowing for an analytical integration using normal-normal conjugate priors

to estimate the normal posterior.
(Eq.1)

2 2
_ .uprior * 0" likelihood + Hiikelihood * O prior
:uposterior -

2 2
0" likelihood + 0 prior

2 2
0" likelihood * O prior

2 —
o ior —
posterior 2 2
0 likelihood + 0 prior

With respect to the behavioral data, our model predicted the painfulness of the test phase
post-treatment VAS ratings (posterior) by integrating conditioning post-treatment VAS
ratings as a prior (mean and variance derived from VAS10 and VAS50 post-treatment VAS
ratings for high and low treatment expectation conditions, respectively) with an
individual estimate of the likelihood (average of VAS10 and VAS50 parameters for each
subject). Gaussian approximation of the rating data was performed by fitting a Gaussian
cumulative probability density functions to the cumulative sum of the ratings using a

robust grid search?’.
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For the estimation of the posterior parameters in self-treatment trials we created two
derived models, based on a shift of the likelihood and a modulation of the likelihood
precision. For the likelihood shift model, we included a free parameter pshit to enable a

likelihood shift (Eq.2; Fig. 1b):

(Eq.2)

2 2
_ Hprior * 0 likelinood T (Miiketinood + Psnift) * 0° prior
:uposterior -

2 2
0 “likelihood + 0 prior

2 2
_ 0" likelihood * O prior

2

o i
posterior 2 2

0 likelihood + 0 prior

For the likelihood precision modulation model we included a free parameter pprecision to
represent a modulation of likelihood variance by self-treatment. Under this model],

posterior parameters are estimated by the following equations (see also Fig. 1c):

(Eq.3)
. * (0'2 % .. ) + . . * 0'2 .
u _ Hprior likelihood Pprecision Hiikelirood prior
posterior — 2 2
(G likelinood * pprecision) + 0 prior
(0'2 . . % P )* 0'2 .
2 _ likelihood pprectswn prior
o posterior —

2 2
(o likelihood ¥ Pprecision) T 0% prior

We used a variational Bayesian inference to estimate the parameters of all models using
the VBA toolbox’8 for Matlab (R2021a). Note that we also tested a prior precision
modulation model where the free parameter pprecision was modulating prior precision. We
used uninformative priors for both parameters (pprecision ~ Normal(1,1000) and pshifc ~
Normal(0, 1000). In addition, we fitted a full combined model of all three free parameters

(i.e. pshift, Pprecision at prior, pprecision at likelihood), a combined model including the pshif and
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Pprecision at prior parameters, a combined model including the pshitt and pprecision at
likelihood parameters, and a null model (Eq.1) in which all parameters were
“constrained” through their priors (pprecision ~ Normal(1, 1e-20) and pshitt ~ Normal(0, 1e-
20). Given our behavioral post-treatment VAS rating data (i.e. empirical posterior), VBA
recovers an approximation to both the posterior density on unknown variables (pprecision
and pshitt for the likelihood precision modulation model and the likelihood shift model,
respectively) and the log model evidence (which is used for model comparison). We used
a random effects (RFX) Bayesian model selection approach3>36 to estimate the overall
posterior model probability across subjects. Finally, we estimated the protected
exceedance probability as a metric for the Bayesian model comparison of all candidate

models35.

EEG data analysis

Here, we analyzed the effects of 2 phases of pain treatment. Firstly, we wanted to analyze
effects associated with the treatment cue indicating low or high treatment success and
self- or external treatment. For this analysis, we used a cue-locked analysis window of 2s
after the onset of the cue. Secondly, we wanted to evaluate the relief phase and treatment
outcome based on low or high treatment expectations, agency, and their interaction. As
the treatment outcome occurred at highly variable time points based on the response, we
analyzed -1 to 2s in relation to the time point when the thermode reached the treatment
target temperature (where -1 to Os was defined as the relief phase and 0 to 2s was defined

as the treatment outcome phase).

We corrected all statistical tests in electrode space for multiple comparisons using non-

parametrical permutation tests of clusters’?. Samples (exceeding the threshold of p <.05)
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were clustered in connected sets on the basis of temporal (i.e. adjacent time points),
spatial (i.e. neighboring electrodes), and spectral adjacency. Clustering was restricted in
a way that only samples were included in a cluster which had at least 1 significant
neighbor in electrode space (i.e. at least one neighboring channel also had to exceed the
threshold for a sample to be included in the cluster). Neighbors were defined by a

template provided by the Fieldtrip toolbox corresponding to the used EEG montage.

A cluster value was defined as the sum of all statistical values of included samples. Monte
Carlo sampling was used to generate 1000 random permutations of the design matrix by
shuffling of condition labels per subject, and statistical tests were repeated in time-
frequency space with the random design matrices. The probability of a cluster from the
original design matrix (p-value) was calculated by the proportion of random design
matrices producing a cluster with a cluster value exceeding the original cluster. Muscular

and ocular electrodes were excluded from the cluster analysis.

Further, we wanted to explore correlations of between-subject time-frequency responses
and benefits of high treatment expectation versus low treatment expectation in post-
treatment VAS ratings, as well as sensory attenuation model parameters. For each
participant, we calculated the placebo benefit by the within-subject difference of z-
normalized post-treatment VAS ratings between high and low treatment expectations in
test trials. For the benefit of agency, we used the single subject mean estimate of the pshift

parameter from the VBA model inversion procedure, accordingly.

Any positive or negative cluster in correlation analysis of EEG power during test trials
would indicate an association with placebo or agency benefits. Here, a p-value of p < 0.05
obtained from the Pearson’s correlation test statistic as implemented in the Fieldtrip

toolbox was used as a threshold for clustering.
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Linear mixed effects models of EEG clusters

To better quantify the properties of EEG clusters (see Results), we assessed if these
clusters were associated with trial-by-trial pain reports. In this analysis, we focused on
VAS30 test trials which give the advantage that they are not confounded by different
temperatures. L.e., the intensity contrast of VAS10 and VAS50 conditioning is confounded
with actual differences in temperatures calibrated to VAS10 and VAS50. Considering only
test trials, the temperature was kept constant, meaning that differences in EEG power are
attributable to cognitive processes other than pure sensory processes by nociceptive

intensity differences.

To perform a trial-by-trial analysis, we had to generate single-trial time-frequency data.
We used the same parameters as in the original time-frequency analysis to generate cue-
locked and outcome-locked time-frequency power estimates. It should be noted that the
preprocessing in the original analysis was done on 2 separate data sets split by frequency
(<=25Hz and >25Hz; see STAR Methods), so this did not necessarily mean that the same
trials at both low and high frequency ranges were included for each subject. To allow a
single trial analysis across these clusters (which were in both high and low frequency
ranges) we only included trials for the single trial analysis that were present in both high
and low frequency ranges for each subject. Overall, we removed 11.2% of trials (on
average 1.51 trials per subject per test condition) in the low frequency range and 9.9% of
trials (on average 1.32 trials per subject per test condition) in the high frequency range.
A baseline correction was performed afterwards on each trial separately with the same
basis as in the original analysis. L.e., for each condition we used the mean and standard
deviation over the averaged trials for baseline correction via z-standardization for each

single trial time-frequency power estimates, separately.
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As a next step, we used these single trial time-frequency power estimates to produce a
cluster value for each subject-trial-cluster combination. We extracted the cluster
properties from clusters resulting from our original cluster analysis. We cumulated the
power estimate of each significant datapoint (channel-time-frequency combination) from
our original clusters separately for each trial and averaged this accumulated power
estimate over the total amount of significant data points to create an average single-trial

cluster value for each subject and trial.

Model estimation used a linear mixed-effects model as implemented in MATLAB
(R2021a) in the fitlme function. In total, we included 2 clusters (see Results) in the linear
mixed-effects model: The positive outcome-locked cluster of the agency contrast (self-
treatment versus external treatment in test trials averaged over predictive cues) and the
cue-locked interaction contrast of expectations (i.e. predictive cues) and agency. Negative
outcome-locked clusters of the agency contrast were excluded based on a confound with

reaction times.

Then, we fitted a linear mixed-effects model for VAS outcome ratings at VAS30 test trials,
with fixed effects for each averaged single-trial cluster values, and a random effect for the

intercept. A p-value of .05 was considered as threshold of significance.

Reaction time and ramp time analysis

In this paradigm, pain treatment was either self-administered (i.e. self-treatment) or
externally administered (external treatment) which underlie individual differences in
latencies. These differences in latencies (i.e. by faster or slower responses) are associated
with differences in pain plateau durations as a reduction of temperature was directly

coupled to these responses. As continuous pain leads to habituation or sensitization48-52,
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EEG and behavioral effects of agency could be confounded by these processes, e.g. alonger
plateau duration in the self-treatment condition might explain differences in EEG data. To
test for confounding of the results, we examine the behavioral and EEG effects in a simple
linear regression model. We tested agency benefits (self-treatment minus external
treatment post-treatment VAS rating) averaged for each participantin a linear regression
model with the average reaction time of each participant as a regressor for experiment 1
and 2. Also, we assessed if activity at different EEG clusters (see Results) were associated

with latency differences.

Firstly, we assessed if clusters associated with differences between VAS10 and VAS50
conditioning were associated with outcome latency differences due to different ramp
times for VAS10 and VAS50 conditioning trials. As VAS10 and VAS50 conditioning
temperatures were individually calibrated, there were differences in ramp times between
participants for VAS10 and VAS50 pain levels. For example, a decrease to a VAS50
temperature of 43°C from a VAS70 plateau of 47°C takes 500ms whereas a decrease to
41°C to the VAS10 level would take 750ms. Naturally, this leads to different outcome
latencies based on individual ramp time differences between the VAS50 and VAS10 levels.
Simple linear regression was used to test if ramp time differences significantly predicted
the difference between VAS10 and VAS50 conditioning in averaged EEG power at each

cluster.

As a next step, we assessed if EEG clusters resulting from the t-contrast of agency (self-
versus external treatment) at VAS30 test trials could be explained by reaction time
differences. Here, ramp time differences are not relevant as each condition tested in this
contrast was associated with the same ramp time leading to VAS30 temperatures for self-

and external test trials alike.
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In summary, our cluster analysis revealed 2 separate clusters of activity for the agency
contrast (i.e. self-treatment versus external treatment test trials) in the time-frequency
EEG data at the treatment outcome (see Results). For self- and external conditions, we
averaged the activity of each significant sample (each significant channel-time-frequency

combination) included in the respective cluster per subject.

We tested the difference between self-treatment and external treatment of each
participantin a linear regression model with the average reaction time of each participant
as a regressor. Simple linear regression was used to test if reaction times significantly
predicted the difference between self-treatment and external treatment in averaged EEG

power of cluster samples in each frequency band.

Finally, we tested the cluster resulting from the interaction contrast (see Results) in the
same manner. Here, we calculated the interaction contrast in EEG power per subject and
a simple linear regression was used to test if reaction times significantly predicted the
averaged power of cluster samples associated with the interaction effect. A p-value of .05

was considered as a threshold of significance in all tests.

Additional resources

Experiment 2 was preregistered at the German Clinical Trial Register (ID:

DRKS00025541).
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Supplementary Data

Calibration data: experiment 1

During experiment 1, pain levels were calibrated to achieve VAS10 (M =38.1°C, SD = 3.5°C,
Min = 31.8°C, Max = 44.8°C), VAS30 (M = 39°C, SD = 3.5°C, Min = 32.2°C, Max = 45.3°C),
VAS50 (M = 39.9°C, SD = 3.6°C, Min = 32.5°C, Max = 46.2°C) and VAS70 (M = 40.8°C, SD =
3.8°C, Min = 32.8°C, Max = 47.2°C) pain levels (for highly effective conditioning, test trials,

weakly effective conditioning and VAS70 pain stimulation, respectively).

Calibration data: experiment 2

During experiment 2, pain levels were calibrated to achieve VAS10 (M = 38.2°C, SD =3.1°C,
Min = 31.72°C, Max = 44.5°C), VAS30 (M = 39°C, SD = 3.1°C, Min = 32.1°C, Max = 45.3°C),
VAS50 (M = 38.19°C, SD = 3.1°C, Min = 32.5°C, Max = 46.1°C) and VAS70 (M = 40.5°C, SD
= 3.2°C, Min = 32.8°C, Max = 46.9°C) pain levels (for highly effective conditioning, test

trials, weakly effective conditioning and pain stimulation, respectively).

EEG data analysis: interaction

We conducted post-hoc t-tests to confirm the crossed interaction of agency and
expectations at cue-locked EEG data. Post-hoc t-tests confirmed a crossed interaction
where all 4 comparisons were significant, i.e. self-treatment with high treatment
expectation trials were associated with lower EEG power than self-treatment trials with
low treatment expectations (t(53) = -3.76, p < 0.001), whereas external treatment trials
with high treatment expectations were associated with higher EEG power than external
treatment trials with low treatment expectations (t(53) = 4.86, p < 0.001). Also, high

treatment expectation trials with self-treatment were associated with lower EEG power
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1165 that high treatment expectation trials with external treatment (¢(53) = -6.03, p < 0.001)
1166 and low treatment expectation trials with self-treatment were associated with higher EEG

1167  power than low treatment expectation trials with external treatment (¢(53) = 2.66, p =

1168  0.01).

1169

1170
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1172  Supplementary Figures
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1174  Supplementary Figure 1. Results of the Bayesian model comparison including all models of (a) experiment
1175 1 (N=25) and (b) experiment 2 (N=54) showing (left) protected exceedance probabilities and (right) model
1176  frequencies.

1177

58



Average Power at Fz (Cue-Locked)

a VAS10 Conditioning ) " C . High Treatment Expectation (Placebo) 5 e Self Treat it
128 15 : 15 128
it 4 :
64 64
§ 0.5 g 05 g‘
F-] P & 2
g 0 g 0 g
=] =] 2
g g g
i 18 0.5 [ 05 L 16
A i
8 8
1.5 1.5
4 - 2 i 4 /R AN,
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Time (s) Time (s) Time (s)
VASS50 Conditioning 5 Low Ti 1t Exp ion (Nocebo) 5 External Treatment
128 : 15 128 é 15 128
84 i 64 i i 64
¥ 05 iy H 05 B
%- 32 " g 2E n % 32
5 g g
w 18 05 o 16 05 T 16
-1 E]
8 8
1.5 1.5
+ I b5 i 4 5 s { |
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2 0 02 04 08 08 1 12 14 16 18 2
Time (s) Time (s) Time (s)
1178
1179  Supplementary Figure 2. Time-frequency plots represent averaged, baseline-corrected, cue-locked power
1180  values for each condition at Fz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low treatment
1181 expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values (increase
1182 of power compared to baseline) and cold colors represent negative z-values (decrease of power compared
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1189 Supplementary Figure 3. Time-frequency plots represent averaged, baseline-corrected, cue-locked power
1190  values for each condition at Cz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low treatment
1191 expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values (increase
1192 of power compared to baseline) and cold colors represent negative z-values (decrease of power compared
1193  tobaseline).
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Supplementary Figure 4. Time-frequency plots represent averaged, baseline-corrected, cue-locked power
values for each condition at Pz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low treatment
expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values (increase
of power compared to baseline) and cold colors represent negative z-values (decrease of power compared

to baseline).
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1210 Supplementary Figure 6. Time-frequency plots represent averaged, baseline-corrected, outcome-locked
1211  power values for each condition at Cz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low
1212 treatment expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values
1213 (increase of power compared to baseline) and cold colors represent negative z-values (decrease of power

1214  compared to baseline).
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1217 Supplementary Figure 7. Time-frequency plots represent averaged, baseline-corrected, outcome-locked
1218  power values for each condition at Pz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low
1219 treatment expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values
1220 (increase of power compared to baseline) and cold colors represent negative z-values (decrease of power

1221  compared to baseline).
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1224  Supplementary Figure 8. Topographies represent averaged t-values of pre-defined frequency bands
1225  (Theta 4-8Hz, Alpha 8-12Hz, Beta 12-30Hz and Low Gamma 30-50Hz) over the time range of significant
1226 clusters of (a) VAS10 versus VAS50 conditioning, (b) self- versus external treatment and (c) the interaction

1227  of agency and expectation.
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1229  Supplementary Figure 9. Bar graphs represent averaged, baseline-corrected power values for each
1230  condition averaged over all data points included in significant clusters of (a) VAS10 versus VAS50
1231 conditioning, (b) self- versus external treatment and (c) the interaction of agency and expectation. Error

1232  barsrepresent SEM.
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Supplementary Figure 10. Linear regression of VAS10 versus VAS50 EEG clusters and individual ramp
period differences, (left) of the negative cluster (outcome-locked; 0.95 to 0.95s; 4-48Hz; R?=0.011, F(1,52)
= 0.6, p = 0.442), and (right) of the positive cluster (outcome-locked; -0.4 to 1s; 8-64Hz; R?=0.0316, F(1,52)
= 1.66, p = 0.203). Here, each significant EEG cluster associated with differences in outcome temperatures
(i.e. VAS10 versus VAS50 conditioning) was tested in a linear regression with the individual ramp time as a
predictor. Each cross represents a single participant, the full red line represents the fitted regression line

and dashed red lines represent 95% confidence bounds.
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Supplementary Figure 11. Linear regression of self- versus external test trials EEG clusters and reaction
time differences, (left) of the negative cluster (outcome-locked; -1 to 1s; 4-56Hz) and (right) of the positive
cluster (outcome-locked; -0.2 to 0.75s; 11-54Hz). Here, each significant EEG cluster associated with
differences in agency was tested in a linear regression with the individual reaction time difference between
self- and external trials as a predictor. Each cross represents a single participant, the full red line represents

the fitted regression line and dashed red lines represent 95% confidence bounds.
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Supplementary Figure 12. Linear regression of the interaction EEG cluster and reaction time differences.
Differences in reaction times are associated with longer outcome latencies in self-treatment. Here, the
significant negative interaction EEG cluster (cue-locked; 0 to 1.35s; 4-13.5Hz) was tested in a linear
regression with the individual reaction time difference between self- and external trials as a predictor. Each
cross represents a single participant, the full red line represents the fitted regression line and dashed red

lines represent 95% confidence bounds.
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1260
1261

1262

Agency Benefit Placebo Benefit
Scale
M SD Pearson'sr p-value Pearson'sr p-value
BDI-V 20.74 15.31 0.25 .06 0.18 .18
STAI-X2 (Trait) 37.74 11.21 0.10 47 0.23 .09
STAI-X1 (State) 38.77 11.47 0.16 26 0.15 15
FKK-C 13.94 6.67 -0.04 .77 0.08 .55
FKK-I 2441 5.94 0.15 .27 -0.07 .62
FKK-P 15.39 6.36 -0.02 91 0.23 .09
FKK-SK 25.70 6.50 -0.02 90 -0.05 .73
LSHS_R 7.20 6.60 0.02 91 0.22 12
SWE 20.69 4.28 -0.08 .61 0.01 .95
PCS 17.56 9.21 0.15 .28 0.10 46

Supplementary Table 1. Correlation of questionnaire data with individual agency and placebo benefit

Scores.
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Name Estimate | SE t-value DF p-Value Lower Upper
Bound Bound
Intercept | 38.29 2.337 16.394 2588 <.001 33.71 42.87
Positive Agency Cluster | -0.434 0.378 -1.149 2588 261 -1.175 0.307
(-0.2 to 0.75s; 11-54Hz)
Negative Interaction Cluster | 0.739 0.294 2.510 2588 .0121* 0.162 1.316
(0 to 1.35s; 4-13.5Hz)

1263  Supplementary Table 2. Fixed effects coefficients of the trial-by-trial LME model with 95% confidence

1264 intervals (lower bound and upper bound) for each cluster and intercept for VAS outcome ratings.
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