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1.0 Introduction 

Pain is a complex sensation that can arise from various forms of noxious (i.e. 

potentially tissue damaging) stimulation, such as heat or pressure on the skin. 

However, large interindividual variation in pain sensitivity suggests that the relationship 

between nociception and pain is not straightforward. Importantly, pain is frequently felt 

in the absence of a nociceptive stimulus, as seen in chronic pain conditions like facial 

pain syndrome, chronic migraine, and phantom pain, where patients experience pain 

without any apparent cause (May, 2008, 2011; Parkes, 1973; Ramachandran & 

Rogers-Ramachandran, 1996; Simmel, 1959). The most impressive instance is 

possibly phantom pain, that is, a sensation of pain in an amputated limb despite the 

absence of the limb itself (Halligan, 2002; Ramachandran & Rogers-Ramachandran, 

1996). 

Pain is not simply a direct response to a noxious stimulus, but is instead influenced by 

various contextual factors, such as the individual's perceived control over the pain and 

their expectations of it (Atlas & Wager, 2014; Bingel et al., 2006; Büchel et al., 2014; 

Colloca & Benedetti, 2005; Helmchen et al., 2006; Karsh et al., 2018; Mohr et al., 2008, 

2012; Pervin, 1963; Petrovic et al., 2002; Staub et al., 1971; Thompson, 1981; Wager 

et al., 2004; Wang et al., 2011; Weisenberg et al., 1985). Even attentional processes 

and distraction can affect the perception of pain (Bantick et al., 2002; Hauck et al., 

2007, 2013; Miron et al., 1989; Sprenger et al., 2012). While the objective stimulus 

quality is transmitted to the cortex via the ascending pain system, contextual factors 

can modulate these afferent signals through descending pathways. For example, pain 

expectations have been shown to alter responses at the spinal dorsal horn in a top-

down fashion (Eippert et al., 2009; Sprenger et al., 2015; Tinnermann et al., 2017). 

These findings demonstrate the complex nature of pain and the need to consider these 

contextual factors in pain management. To understand pain more comprehensively, it 

is necessary to consider both the sensory processes that transmit information about 

the noxious stimulus to the brain, as well as the contextual factors that can modulate 

these signals and the integration of these two components.  

A Bayesian perspective on pain allows for this integration of the various factors that 

influence the perception of pain (Anchisi & Zanon, 2015; Büchel et al., 2014; Ongaro 

& Kaptchuk, 2019; Wiech, 2016). A Bayesian Pain Model views the pain experience 

as a combination of prior information and sensory input, with both factors weighted by 
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their precision to create a percept. Pain expectations, which can be changed through 

learning, are an important part of this model. One notable application of this model is 

placebo hypoalgesia, in which positive prior pain experiences can lead to a decrease 

in pain through the placebo effect (Atlas & Wager, 2014; Bingel et al., 2006; Colloca & 

Benedetti, 2005; Petrovic et al., 2002; Wager et al., 2004). This phenomenon has been 

observed in studies that show that positive treatment expectations can reduce pain 

even in the absence of active treatment.  

The Bayesian Pain Model is based on the idea that the brain uses statistical methods 

to construct hypotheses about the world around us. The model incorporates concepts 

from the Bayesian Brain (Dayan et al., 1995; Friston, 2012; Helmholtz, 1867; Knill & 

Pouget, 2004), Predictive Coding (Rao & Ballard, 1999; Srinivasan et al., 1982), the 

Free Energy Principle (Friston, 2010; Friston et al., 2006) and Active Inference (Brown 

et al., 2013; Friston, 2010; Friston et al., 2009). These ideas can be implemented in 

computational models of canonical cortical microcircuits that encode expectations and 

the violations of those expectations, also known as prediction errors (Arnal & Giraud, 

2012; Bastos et al., 2012). The Bayesian Pain Model provides a framework for 

understanding how the brain processes sensory information to create our experience 

of pain.  

In this cumulative dissertation, we address the complex nature of pain and its 

modulation by contextual factors through a Bayesian lens.  

The core hypotheses of this work are that  

1) the brain processes nociceptive stimuli via Predictive Coding mechanisms, 

utilizing expectations and prediction errors. 

2) the brain generates a pain percept in a Bayes-optimal manner as explained by 

a Bayesian Pain Model. 

3) these mechanisms can explain contextual modulations of pain, e.g. through 

agency or placebo expectations. 

In our first paper, we examined the relationship between expectations and prediction 

errors in phasic thermal pain (Reprint 15.1; Strube et al., 2021a). Drawing on Predictive 

Coding theory, we explored whether these components are reflected in specific 

patterns of neural activity, as measured by electroencephalography (EEG). We 

hypothesized that expectations would be represented in lower frequency bands (such 
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as alpha or beta, between 8-30Hz), while prediction errors would be encoded in higher 

frequencies (such as gamma, >30Hz), based on the asymmetries of oscillatory power 

spectra (Arnal & Giraud, 2012; Bastos et al., 2012). Furthermore, we hypothesized that 

the neural signals associated with expectations would precede those related to 

prediction errors.  

We were able to uncover the temporal and spectral patterns of stimulus intensity, 

expectations, and prediction errors in pain anticipation and painful thermal stimulation: 

We found that an expectation signal was generated in the alpha-to-beta range (8-

30Hz) followed by a prediction error signal in the gamma range (>30Hz) during painful 

stimulation. Contrary to our predictions, we observed a decrease in gamma activity 

(>30Hz) associated with prediction errors, when the predictive cue did not match the 

actual stimulus intensity. In contrast, increasing stimulus intensity was characterized 

by the typical spectral patterns associated with nociception, characterized by an 

increase in theta activity (4-8Hz), a decrease in alpha-to-beta activity (8-30Hz), and an 

increase in gamma activity (>30Hz) (see Ploner et al., 2017 for a review). Our findings 

provide insight into the temporal and spectral orchestration underlying Predictive 

Coding in pain perception (Strube et al., 2021a). 

In our second paper, we extended our investigation to include an affective dimension 

by using aversive images (Reprint 15.2; Strube et al., 2021b). Our findings revealed 

fundamentally different patterns of neural activity in affective visual processing, 

suggesting the existence of modality-specific oscillatory networks in Predictive Coding 

for pain and affective visual stimulation. In contrast to our observations for painful 

stimuli, we found that all components of Predictive Coding (including stimulus intensity, 

expectations, and prediction errors) were encoded in low frequency bands ranging 

from theta (4-8Hz) to low gamma (30-50Hz) during the presentation of aversive 

pictures. This indicates that these signals are specific to the modality being processed, 

and that the temporal and spectral orchestration of Predictive Coding differs between 

pain and affective visual processing. 

In our third paper, we aimed to explore how the contextual aspect of agency can be 

integrated within the framework of a Bayesian Pain Model, and whether this supports 

hypotheses derived from the Active Inference model (Reprint 15.3; Strube et al., 2022, 

submitted). Agency describes the extent to which an actor believes to be effective in 

producing an outcome via his own actions, including sensory outcomes or events.  
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We generated hypotheses based on the classical Forward Model (Blakemore et al., 

1998, 2000) and tested them against those derived from Active Inference (Brown et 

al., 2013). To test these hypotheses, we conducted a placebo/nocebo experiment in 

which treatment was self- or externally-initiated. Our results suggest that agency can 

modulate the effectivity of treatment. Computational Bayesian modeling using 

variational Bayesian analysis (VBA; Daunizeau et al., 2014) showed that this effect can 

be explained as a shift in intensity expectations, in line with predictions from the 

Forward Model. A modulation of prior precision, as derived from Active Inference, was 

not able to explain this effect.   

Interestingly, we found the reverse pattern of typical stimulus intensity representations 

in the time-frequency patterns of nociceptive phasic stimulation, as measured by EEG. 

In general, nociceptive phasic stimulation is associated with a decrease in alpha-to-

beta (8-30Hz) oscillations and an increase in theta (4-8Hz) oscillations. In this study, 

objectively better treatment outcomes were associated with an increase in alpha-to-

beta (8-30Hz) oscillations and a decrease in theta (4-8Hz) oscillations. Additionally, 

theta-to-alpha (4-12Hz) activity, which was temporally associated with an expectation-

generating cue, was predictive of Visual Analogue Scale (VAS) ratings when stimulus 

intensity was held constant. This indicates a shift in the prior representing expectations 

explaining the reduction in pain by self-initiation of pain treatment, as compared to a 

shift in the likelihood representing sensory information. Overall, our data provide insight 

into the neural mechanisms underlying the placebo/nocebo effect and the role of 

agency in pain perception. 

With this study, we not only demonstrated that contextual factors such as agency can 

be integrated into the Bayesian Pain Model, but we also showed how these factors can 

modulate the typical components of Bayesian integration. This allows for a more 

sophisticated understanding of how pain is perceived and processed in the brain. By 

considering the influence of contextual factors on Bayesian integration, we can gain a 

deeper insight into the mechanisms underlying pain perception. 

Through the conduct of three studies, we sought to examine the role of Predictive 

Coding and Active Inference in the modulation of pain through the lens of Bayesian 

inference. The findings of these studies were then integrated to provide an 

understanding of the influence of these mechanisms on the experience of pain in a 

Bayesian Pain Model. This dissertation provides a cumulative assessment of our 
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results and offers conclusions on the role of Predictive Coding and Active Inference in 

pain processing. 

2.0 Pain versus Nociception: The Influence of Contextual Factors on Pain 

At first glance, the basic function of pain seems quite simple  to signal if a physical 

stimulus reaches harmful intensities, and facilitate countermeasures (Torebjörk, 1985; 

Witt & Griffin, 1962). Aspects serving this function can happen automatically and in 

very brief time frames. For example, when we grab onto a hot stove top, there is 

typically an immediate withdrawal reaction, termed the nociceptive withdrawal reflex 

(Bromm & Treede, 1980; Fields & Heinricher, 1989; Neziri et al., 2010; Schouenborg 

et al., 1992).   

In a simple mechanistic system, a signal indicating injury or destruction of the skin 

could be integrated in a model in which higher temperatures (or, generally, physical 

intensities) are directly associated with higher pain via a monotonic temperature-pain-

relationship. Experimentally, for example, it has been shown that there is a 

monotonically increasing relation between stimulus temperature and the magnitude of 

pain sensations in a range from 40-50°C (LaMotte & Campbell, 1978). Pain, however, 

is more complex, as contextual factors, such as attention or expectations modulate our 

pain experience; this even applies to pain thresholds, i.e. the temperature where an 

individual perceives the non-pain perception to flip to a pain perception (e.g. Taesler & 

Rose, 2016). As Tracey & Mantyh (2007) pointed out in their definition of pain: A 

conscious experience, an interpretation of the nociceptive input influenced by 

 (Tracey & Mantyh, 

2007, p.377). 

In this chapter, I will delineate the neurophysiological basis underlying the sensation of 

pain. I will begin by describing the physiological basis of bottom-up processing of 

sensory pain information, including the ascending pain pathway involved in the 

transmission of pain signals from peripheral sensory neurons to the brain. I will then 

discuss the role of top-down processing in the modulation of pain, and how cognitive 

and emotional factors can influence our perception of pain via descending pain 

pathways. 
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2.1 The Ascending Pain Pathway: Transmitting Bottom-Up Sensory Information 

Pain processing typically starts with the activation of nociceptors which are specialized 

peripheral sensory neurons in the skin that sense noxious extremes in temperature 

and pressure, as well as chemical stimulation (e.g. acids) (Bessou & Perl, 1969; 

Burgess & Perl, 1967; Witt & Griffin, 1962). Note that this is not always the case: Pain 

can be experienced without the involvement of peripheral sensory neurons, for 

example in the case of facial pain syndrome, chronic migraine, or phantom pain (May, 

2008, 2011; Parkes, 1973; Ramachandran & Rogers-Ramachandran, 1996; Simmel, 

1959). 

The information from peripheral nociceptors is transduced into long-range electrical 

impulses that are sent to the first synapse in the dorsal horn of the spinal cord, then 

towards the brain and (mostly relayed via the thalamus) to a widely distributed network 

of cortical structures (Dubin & Patapoutian, 2010). Typically, this pathway is termed 

ascending pain pathway (Andersen & Dafny, 1983; Hammond, 1989; Qiao & Dafny, 

1988; Willis et al., 1985). In a meta-analysis by Apkarian et al. (2005), cortical 

structures associated with pain processing were defined as a result of 68 analyzed 

studies. According to this meta-analysis, main components of the pain system are 

comprised of somatosensory, insular, cingulate, and prefrontal cortices, the thalamus, 

subcortical areas, and the brainstem (Apkarian et al., 2005).  

There are two main types of nociceptors, namely A-fiber and C-fiber nociceptors, 

describing the nerve fibers involved in relaying the nociceptive signal. Initial fast-onset 

pain by high temperatures (e.g. 47°C) is typically signaled by myelinated A-fiber 

nociceptors which have relatively high conduction velocities (5 30 m/s), thus enabling 

fast motor reactions to harmful stimuli. These fast-conducting fibers are responsible for 

the initial sharp pain that is often experienced when we encounter harmful stimuli. C-

fibers, on the other hand, are unmyelinated and have slower conduction velocities (0.4-

1.4 m/s), but can be activated at lower temperatures (approx. 42°C) (Dubin & 

Patapoutian, 2010). 

In summary, A-fibers and C-fibers transfer nociceptive signals from the periphery to 

the dorsal horn of the spinal cord, where they are processed and relayed to the brain. 

This bottom-up processing of sensory stimuli is the foundation of the ascending pain 

pathway. However, the experience of pain is not solely determined by these bottom-

up signals. Rather, it is also influenced by top-down processes that modulate the 
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perception and experience of pain. The descending pain pathway is the basis of these 

top-down processes, and it plays a crucial role in the contextual modulation of pain. In 

the following section, I will describe the neurophysiological basis of this pathway and 

its role in the complex experience of pain. 

2.2 The Descending Pain Pathway: Top-Down Pain Regulation 

The experience of pain is influenced not only by sensory information transmitted 

through the ascending pain pathway, but also by contextual factors that shape our 

perception of pain. This is where the descending pain network comes into play: 

Descending pathways can inhibit or facilitate nociceptive processing, and have been 

shown to involve specific brain regions such as the dorsolateral prefrontal cortex, the 

anterior cingulate cortex, and the periaqueductal gray, which, in consequence via the 

rostral ventromedial medulla, lead to modulation of activity at the dorsal horn (Eippert 

et al., 2009; Geuter & Büchel, 2013; Sprenger et al., 2012; Tinnermann et al., 2017). 

In other words, the descending pain network allows for the integration of top-down 

cognitive and emotional factors in the relaying of nociceptive information, and 

ultimately in the perception and experience of pain.  

One prominent example of the influence of top-down processes on pain perception is 

the phenomenon of placebo and nocebo effects. Placebo hypoalgesia refers to the 

analgesic effects of positive pain expectations and positive treatment expectations, 

whereas nocebo hyperalgesia describes the facilitation of pain by negative pain 

expectations and negative treatment expectations (Atlas and Wager, 2014; Bingel et 

al., 2006; Colloca & Benedetti, 2005; Petrovic et al., 2002; Wager et al., 2004). These 

effects have been shown to involve the descending pain network and the modulation 

of nociceptive processing in the dorsal horn (Eippert et al., 2009; Geuter & Buchel, 

2013; Tinnermann et al., 2017).  

Direct evidence for spinal cord involvement in placebo hypoalgesia has been shown in 

a combined functional magnetic resonance imaging (fMRI) study, where both cortical 

and spinal responses to placebo hypoalgesia have been measured (Sprenger et al., 

2015). In another study, interactions between the brain and the spinal cord have been 

shown to mediate value effects in nocebo hyperalgesia, involving the prefrontal cortex, 

brainstem, and spinal cord (Tinnermann et al., 2017). Another example of the 

involvement of the descending pain pathway is the modulation via top-down attentional 

processes. In a study by Sprenger et al. (2012), fMRI data was acquired from the spinal 
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cord in combination with thermal pain stimulation while participants were involved in a 

well-established working memory task to modulate attentional processes. Here, the 

authors showed that attentional processes modulate pain perception by inhibition of 

incoming pain signals in the spinal cord (Sprenger et al., 2012). 

In summary, information from nociceptive stimuli at peripheral nociceptors is carried in 

a bottom-up fashion to higher cortical regions via ascending pathways. At the same 

time descending pathways modulate the pain experience and neural information 

transmission in a top-down fashion. A prominent example is the influence of 

expectations - here positive (placebo) and negative (nocebo) expectations modulate 

activity at pain areas including the dorsal horn via descending pathways, which is 

ultimately reflected in placebo hypoalgesia and nocebo hyperalgesia: a decreased or 

increased sensitivity to the nociceptive input, leading to a reduction (hypoalgesia; 

based on placebo effects) or increase of pain sensation (hyperalgesia; based on 

nocebo effects). 

3.0 The Brain as a Statistical Machine: The Bayesian Brain 
In this chapter, I will explore the concept of the Bayesian Brain and its relevance to the 

pain system, which consequently leads to a Bayesian perspective in pain processing 

in a Bayesian Pain Model. In this context, it is necessary to have a basic understanding 

of the brain as a statistical machine. This incorporates ideas from the Free Energy 

Principle (Friston, 2010; Friston et al., 2006) and Predictive Coding (Huang & Rao, 

2011; Rao & Ballard, 1999; Srinivasan et al., 1982).  

The concept of the Bayesian Brain addresses the question of how the brain processes 

uncertain or ambiguous information (Knill & Pouget, 2004). What is the role of 

uncertainty in action and perception? It suggests that perception can be thought of as 

a form of hypothesis testing, where the brain generates hypotheses about the 

properties of the world and uses sensory information to test and refine these 

hypotheses (Gregory, 1980; Gregory et al., 1968; Kersten et al., 2004). For example, 

the visual representation of an image can be described as a probabilistic integration of 

prior object knowledge (hypothesis) with image features (sensory information) (Kersten 

et al., 2004). The brain is theorized to integrate prior knowledge, or expectations, with 

sensory data in a probabilistic manner. Through this process of sampling and updating, 

the Bayesian Brain is able to form a representation of the world around us. 
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This process is thought to operate in a Bayes-optimal manner, which means that it 

integrates sensory information and expectations in the most efficient way possible to 

form a percept (see Schwartenbeck et al., 2015 for theoretical considerations of Bayes-

optimal and sub-optimal inference). Bayes-optimal inference can be derived from 

Bayes' theorem, which is a fundamental principle of probability that describes the 

relationship between the prior probability of a hypothesis, the likelihood of observing 

certain evidence given that hypothesis, and the posterior probability of the hypothesis 

after taking the evidence into account. This is formalized in the following equation: 

(Eq.1;  

 

 

Where P(H|E) is the posterior probability of the hypothesis H after observing evidence 

E, P(E|H) is the likelihood of observing evidence E given hypothesis H, P(H) is the prior 

probability of hypothesis H, and P(E) is the model evidence. This theorem provides a 

way to update our beliefs about the world based on new information and is a key 

component of Bayesian inference. By using Bayes' theorem, the Bayesian Brain can 

integrate prior expectations with sensory information in order to make predictions about 

the world. 

In this way, the prior object knowledge is tested by perception, and evidence is 

accumulated in favor or against prior object knowledge, leading to updates of our 

model of the world. This has been translated to more general frameworks of 

computational neuroscience: Integration of prior object knowledge and sensory 

information is thought to occur through recurrent feedforward and feedback loops in 

the visual cortex, which allow us to make Bayes-optimal inferences based on the 

relative precision of the sensory information and prior expectations (Lee & Mumford, 

2003). Ernst and Banks (2002) found that when sensory information is less precise, 

prior expectations have a greater influence on perception, whereas more precise 

sensory information leads to less influence of prior expectations. In contrast, more 

precise sensory information leads to less influence of prior expectation on perception. 

This leads to the notion of the brain as a statistical machine, as has been proposed by 

Dayan et al. (1995) who introduced the brain as a Helmholtz Machine. Following early 
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ideas by Helmholtz (1867), Dayan et al. (1995) describe the human perceptual system 

 (Dayan et al. 1995, p.889).  

The Bayesian Brain postulates the integration of prior knowledge and sensory input in 

the brain as a crucial aspect of our ability to make accurate predictions about the world 

around us. The brain is always testing its models of the world  like recurrent 

hypothesis tests, expectations, knowledge, and assumptions are tested against 

sensory information, which either confirm, alter or disregard our model of the world  

and ultimately lead to learning, i.e. a refinement of our model of the world. By 

understanding how this integration occurs, we can gain insights how the brain 

processes information and makes inferences.  

In the next section, we will explore how the integration of prior knowledge and sensory 

input can be incorporated into a Bayesian framework for understanding the perception 

of pain in a Bayesian Pain Model. 

3.1 The Bayesian Brain in Pain: The Bayesian Pain Model 

The idea that the brain processes sensory information in a Bayes-optimal manner has 

been used to explain the phenomenon of placebo hypoalgesia, in which positive 

expectations about pain can lead to a decrease in pain perception, and nocebo 

hyperalgesia, in which negative expectations can lead to an increase in pain perception 

(Anchisi & Zanon, 2015; Büchel et al., 2014; Ongaro & Kaptchuk, 2019; Wiech, 2016). 

In a Bayesian Pain Model, placebo hypoalgesia and nocebo hyperalgesia are 

explained by a Bayes-optimal integration of top-down prior expectations (i.e., 

prediction of pain and pain relief) with bottom-up sensory signals at different points in 

the neural hierarchy (Büchel et al., 2014).  

An analytical Bayes-optimal solution to the integration of top-down prior pain 

expectations and bottom-up sensory input can be achieved by using (biologically 

plausible) approximate Gaussian distributions of these parameters (see Laplace 

approximation; Friston et al., 2007; Friston & Penny, 2011). Gaussian distributions of 

the prior, representing pain expectations, and the likelihood, representing sensory 

information, allow for an analytical integration to estimate the Gaussian posterior, 

representing the pain percept (see Eq. 2). Normal distributions can be described by 

two parameters, the mean  of the distribution and the precision of the distribution 

prior) 
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and its precision (standard deviation; denoted as prior) as well as the mean intensity 

likelihood) and the precision of the 

likelihood), which is formalized in the following equations, 

representing the mean and the precision of the resulting posterior distribution:  

(Eq.2) 

 

 

The following examples show how the integration of expectations and sensory 

information can explain phenomena like placebo hypoalgesia and nocebo 

hyperalgesia. These examples are adapted from the work of Büchel et al. (2014).  

In the first example, imagine that a noxious stimulus is associated with a pain intensity 

of 50 VAS on a 0-100 point Visual Analogue Scale (VAS). This is considered the control 

case, meaning that there are no expectations involved: In Bayesian integration, this is 

represented by a flat prior. The intensity of the pain stimulus is encoded in the mean 

of a Gaussian distribution, while the sensory precision is represented by the standard 

deviation, which indicates the width of the distribution. In this case, the flat prior does 

not change the mean when it is combined with the likelihood, so the resulting 

perception (posterior) is the same as the sensory input in the mean (Figure 1a). 

In the second example, imagine that a particular cue is repeatedly associated with a 

pain stimulus of 30 VAS, leading to conditioning (Figure 1b). Instead of the 30 VAS 

stimulus, a 50 VAS stimulus is then presented, as in the control case described above. 

In this case, the prior includes the conditioned expectation of 30 VAS, which is lower 

than the sensory information of 50 VAS. This represents a placebo expectation, 

because the expected pain is less than the actual pain stimulus. In Bayesian 

integration, the combination of the prior and the likelihood produces a posterior 

(perception) that falls between the two. In this example, this leads to placebo 

hypoalgesia (compared to the control case), because the pain is now perceived as 40 

VAS rather than 50 VAS. 
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In contrast, the third example considers the case of nocebo hyperalgesia (Figure 1c). 

In this case, a particular cue is repeatedly associated with a pain stimulus of 70 VAS. 

Instead of the 70 VAS stimulus, a 50 VAS stimulus is presented, as in the control case. 

This time, the prior corresponds to the conditioned expectation of 70 VAS, which is 

higher than the sensory information of 50 VAS. This represents nocebo expectations, 

because the expected pain is greater than the actual pain stimulus. In Bayesian 

integration, this leads to nocebo hyperalgesia, where the pain is perceived as higher 

than it actually is, as in this example, where it is perceived as 60 VAS.  
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Figure 1. The Bayesian Pain Model in placebo hypoalgesia and nocebo hyperalgesia. Adapted from 
Büchel et al. (2014). Gaussian distributions characterize nociceptive sensory input (likelihood; green), 
placebo expectations (prior; purple), nocebo expectations (prior; yellow) and the pain percept (posterior; 
blue). The red line indicates the mean of the posterior distribution. In the first example (a), no 
expectations were generated, represented by a (flat) prior centered on the mean of the stimulus. The 
pain percept (posterior; blue) is identical to the nociceptive stimulus (likelihood; hidden). The Bayesian 
Pain Model explains the modulations of the pain percept (posterior; blue) in (b) placebo hypoalgesia and 
(c) nocebo hyperalgesia by the Bayes-optimal integration of prior experiences (here centered at VAS = 
30 for placebo expectations and at VAS = 70 for nocebo expectations) with incoming nociceptive 
information (likelihood; green). In the second example, representing placebo hypoalgesia (b), placebo 
expectations (prior; purple) were generated, which in Bayesian integration with the nociceptive stimulus 
(likelihood; green) leads to a placebo effect and a pain percept (posterior; blue) shifted towards lower 
VAS ratings. In the third example, representing nocebo hyperalgesia (c), nocebo expectations (prior; 
yellow) were generated, which in Bayesian integration with the nociceptive stimulus (likelihood; green) 
leads to a nocebo effect and a pain percept (posterior; blue) shifted towards higher VAS ratings. 

 
Bayesian integration thus requires the intensity of expectations and the intensity of 

sensory information, which are weighted by their precision  together they constitute a 
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pain percept. The influence of precision has been demonstrated empirically by 

manipulation of the level of precision of prior treatment expectations: expectation-

based effects are more pronounced with more precise treatment expectations (Grahl 

et al., 2018). 

In the following chapters, I will use the term Bayesian Pain Model to refer to the 

Bayesian integration of prior information and sensory input to form a pain percept, as 

delineated in this chapter with the example of placebo hypoalgesia and nocebo 

hyperalgesia. This Bayesian Pain Model describes the optimal integration of 

expectations and sensory information based on the simplification of information using 

Gaussian distributions. This allows for the analytical solutions of Bayesian integration. 

In order to provide a comprehensive framework for understanding these processes in 

the brain, I will briefly discuss the Free Energy Principle and Predictive Coding as 

theoretical frameworks for further hypotheses developed in my research in the next 

section. 

3.2 The Free Energy Principle 

The models of neural processing discussed in this chapter are based on the idea that 

internal models are constantly compared to sensory input and updated based on the 

processing of prediction errors during learning. Friston et al. (2006) have outlined this 

concept in the Free Energy Principle, which can be used to explain a wide range of 

cognitive, affective, and evolutionary processes (Brown et al., 2013, 2013; Friston, 

2010; Friston et al., 2006; Friston & Kiebel, 2009; Kaplan & Friston, 2018; Parr et al., 

2022). The Free Energy Principle is rooted in the concept of Predictive Coding, and 

posits that any self-organizing system in equilibrium with its environment will strive to 

minimize its free energy (Friston, 2010). By reducing prediction errors, systems can 

maintain their order and develop models that make more accurate predictions about 

the sensory world, leading to more efficient information encoding (Friston, 2010; 

Friston & Kiebel, 2009).  

In other words, the brain is constantly seeking to create an accurate representation of 

the world. To do this, it generates models of the world and updates them when 

divergent information is received. However, Friston et al. (2006) describe another way 

to reduce prediction errors and improve the match between internal models and 

sensory input through the use of Active Inference (Brown et al., 2013; Friston et al., 

2006, 2009, 2013, 2017). The brain continuously tries to reduce the prediction errors 
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of its generative model of the world, and in addition to updating internal models through 

learning, it can also minimize prediction errors through action. Thus, the minimization 

of prediction errors can be achieved in two ways: by refining predictions (i.e. updating 

our model of the world) to match sensory input, or by performing an action that brings 

the world into alignment with our predictions.  

In the context of Active Inference, it has been suggested that the precision of sensory 

information about the consequences of one's actions must be attenuated in order for 

these actions to occur (Brown et al., 2013). This is because, according to the Free 

Energy Principle, action is a way of fulfilling expectations: for example, one might 

expect their arm to be in a certain location, and as a result, they move their arm to that 

location to reduce the mismatch between their expectation and the actual location of 

their arm at the original position. Without reducing the precision of sensory information 

during action, this expectation of the new arm location would be overruled by prediction 

errors arising from the sensory information about the arm's actual location. 

In essence, the Free Energy Principle is built on a Predictive Coding view of the brain, 

as both expectations and prediction errors are crucial for minimizing free energy and 

updating the generative model of the world (Friston & Kiebel, 2009). Active Inference 

is an extension of the Free Energy Principle, which suggests that the brain can also 

minimize prediction errors through action. 

In the following chapter, we will explore the concept of Predictive Coding in greater 

detail, as it forms the foundation of our hypothesis about pain processing in the context 

of the Bayesian Pain Model. 

4.0 Predictive Coding 

Early accounts of Predictive Coding were developed within the framework of 

computational models of inhibition processes in the retina and visual cortex (Rao & 

Ballard, 1999; Srinivasan et al., 1982). For example, it was proposed that the 

antagonistic surround of a receptor could be used to calculate the weighted mean of 

signals from neighboring receptors, allowing the generation of a statistical prediction 

of the signal at the center (Srinivasan et al., 1982). This prediction is based on the 

intensity values of the surrounding regions and is combined with the sensory 

information entering the particular point. This process can be understood in Bayesian 
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terms as the combination of a prior (the statistical estimate of the intensity at the point) 

with a likelihood (the sensory information) to generate a transmission signal. 

Predictive Coding principles also suggest that the hierarchical organization of the 

cortex plays a role in how higher brain areas influence the processing of lower brain 

areas. There is evidence of a hierarchical organization in the visual system, in which 

primary regions like the primary visual cortex receive sensory input, while higher areas 

are involved in associative functions (Maunsell & van Essen, 1983; Zeki & Shipp, 

1988). The brain is thought to use Predictive Coding processes to model complex 

scenarios involving internal representations combined with sensory information. Most 

of the experimental data supporting the Predictive Coding framework have come from 

studies of the visual system (Egner et al., 2010; Hesselmann et al., 2010; Jehee & 

Ballard, 2009; Sterzer et al., 2008; Strube et al., 2021b; Summerfield et al., 2006; Uran 

et al., 2022). 

Predictive Coding mechanisms have also been used to explain processes in other 

sensory modalities, such as audition (Arnal & Giraud, 2012; Lesicko et al., 2022; Moran 

et al., 2013; Todorovic et al., 2011; Xuejing & Xin, 2019; but see Heilbron & Chait, 2018 

for opposing views), olfaction (Zelano et al., 2011; Zhao et al., 2021), and interoception 

(Barrett, 2017; Barrett & Simmons, 2015; Seth et al., 2012), as well as higher-order 

cognitive processes such as the perception of causality (van Pelt et al., 2016). 

In the next step, we will delve into the application of Predictive Coding to the study of 

pain perception. We will explore how Predictive Coding principles can be used to 

understand the mechanisms underlying pain processing in the brain. 

4.1 Predictive Coding in Pain 

The ascending and descending pathways in the brain involved in pain processing 

resemble a recurrent system that allows for Predictive Coding (Büchel et al., 2014). In 

this system, bottom-up sensory information is transmitted via the ascending pathway, 

while expectations are encoded in the descending pathway. This allows the brain to 

continually compare its expectations of pain with incoming sensory information, 

updating these expectations as needed to minimize prediction errors and optimize the 

expectations of future pain. 

Predictive Coding mechanisms have been investigated in the context of pain, and have 

been linked to activity in the anterior insula, which exhibits the expected response 
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pattern of Predictive Coding with encoded expectations and prediction errors. The 

posterior insula and somatosensory cortex, on the other hand, are associated with the 

representation of stimulus intensity (Fazeli & Büchel, 2018; Geuter et al., 2017). The 

posterior insula has also been shown to be involved in the correlation of brain activation 

with higher-than-expected intensity, known as signed prediction errors (Horing & 

Büchel, 2022). These findings provide strong evidence that Predictive Coding plays a 

key role in pain perception 

The posterior insula receives direct input from the spinothalamic tract, which is involved 

in transmitting sensory information in somatosensation and pain perception (Craig, 

2002; Dum et al., 2009). This region is also functionally connected to the 

somatosensory cortices (Wiech et al., 2014). In the context of Predictive Coding, one 

could theorize that the posterior insula integrates sensory information with cognitive 

factors such as expectation to compute prediction errors in the anterior insula (Horing 

& Büchel, 2022). Importantly, these response patterns in the anterior insula have been 

shown to be independent of the aversiveness of the stimuli (Fazeli & Büchel, 2018), 

and to be modality-unspecific: the anterior insula correlated with absolute prediction 

errors in both aversive auditory and painful stimulation, indicating a general aversive 

surprise signal (Horing & Büchel, 2022). This suggests that the Predictive Coding 

mechanisms underlying pain perception are not specific to the sensory modality 

involved, but instead reflect a more general process of surprise minimization. 

The Predictive Coding framework proposes that the descending and ascending 

pathways involved in pain processing integrate sensory information with cognitive 

factors such as expectation to compute prediction errors. The anterior insula is a key 

region for this process, as it has been shown to exhibit response patterns that are 

consistent with the predictions of Predictive Coding, particularly with respect to 

absolute prediction errors.  

In the next section, we will explore the role of oscillatory patterns in Predictive Coding, 

with a focus on canonical microcircuits (Bastos et al., 2012). 

4.2 Microcircuits in Predictive Coding 

Predictive Coding is theorized to be associated with canonical cortical microcircuits 

where neuronal populations are associated with specific computational roles (Bastos 

et al., 2012). It is postulated that feedforward prediction errors are projected from lower 

cortical levels to higher granular levels (Bastos et al., 2012). From there, they are 
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transmitted to excitatory and inhibitory interneurons in supragranular layers, where 

expectations are thought to be encoded. Extrinsic feedback connections originate 

largely from superficial pyramidal cells while feedforward connections largely originate 

from deep pyramidal cells (Felleman & Van Essen, 1991).  

These layers of the cortex are associated with asymmetry in the properties of their 

oscillatory power spectra: Supragranular sites have higher broadband gamma power, 

while granular and infragranular layers have greater power in the alpha and beta range 

(Maier et al., 2010). Buffalo et al. (2011) found that the spiking activity of neurons in 

the superficial layers of the visual cortex is more coherent with gamma-frequency 

oscillations in the local field potential, while neurons in the deep layers are more 

coherent with alpha-frequency oscillations. These findings suggest that the different 

layers of the cortex exhibit distinct oscillatory patterns, which may play a role in the 

coordination of information flow and the computation of prediction errors in the 

Predictive Coding framework. 

The distinct oscillatory patterns observed in the different layers of the cortex can be 

used to make specific predictions about the role of feedback and feedforward 

connections in Predictive Coding. Because feedback connections predominantly 

originate from deep layers, while feedforward connections originate from superficial 

layers, we would expect that expectations, which are thought to be mediated by 

feedback connections, would be expressed at lower frequencies than feedforward 

prediction error signals. 

Arnal and Giraud (2012) theorized accordingly that Predictive Coding should be 

-forward dominant and beta-backward 

. 

In the next chapter, we will integrate our understanding of oscillatory patterns in 

Predictive Coding with the existing literature on oscillatory activity in pain processing. 

We will briefly review the evidence for oscillatory patterns in pain perception, as well 

as the role of top-down modulation in shaping these patterns.  

5.0 Oscillatory Patterns of Pain Processing 
As discussed in the previous chapter, Predictive Coding is associated with specific 

oscillatory patterns (Arnal & Giraud, 2012; Bastos et al., 2012). However, many studies 

investigating pain perception have relied on fMRI, which has the disadvantage of a low 
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temporal resolution of brain signals (Ogawa et al., 1992). This means that it is difficult 

to make precise statements about oscillatory activity or the exact temporal sequence 

of signals using fMRI data. To overcome this limitation, it may be necessary to use 

other techniques such as electroencephalography (EEG) or magnetoencephalography 

(MEG) to measure oscillatory activity more accurately, and to characterize its 

relationship to pain perception.  

EEG and MEG studies have consistently shown that oscillatory activity in the brain 

varies in response to different intensities of painful stimuli, with changes observed in a 

range of frequency bands, including infraslow (below 0.1Hz), theta (3-8Hz), alpha (8-

12Hz), beta (12-30Hz), and gamma (>30Hz) oscillations (see Ploner et al., 2017 for a 

comprehensive review).  

In a study by Schulz et al. (2015), researchers measured the brain's response to two 

different types of pain: tonic and phasic. They found that when the brain was subjected 

to subjective changes in tonic pain, which in this case was a continuous, 10-minute-

long-lasting pain, there was an increase in gamma activity in the medial prefrontal 

cortex in close proximation to premotor and cingulate cortices (Schulz et al., 2015), 

while typically, brief painful stimuli have been shown to induce gamma oscillations in 

somatosensory cortices. Moreover, in tonic pain, stimulus intensity is inversely related 

to beta and alpha oscillations (Chen & Rappelsberger, 1994; Ferracuti et al., 1994; 

Peng et al., 2014; Schulz et al., 2015). 

The specific pain protocol used in a study can have a significant impact on the 

representation of pain in the brain. This is because besides its amplitude, the temporal 

properties of the pain stimulus can change the way it is encoded and processed in the 

brain. For example, the representation of pain in the brain may be different for a brief, 

phasic pain stimulus compared to a longer-lasting, tonic pain stimulus. It is therefore 

important to consider the specific pain protocol used in a study when interpreting the 

results, as this can affect the way pain is represented in the brain (Horing et al., 2019). 

In the next section, we will examine the evidence for top-down modulation of oscillatory 

patterns in pain perception. Previous studies have shown that oscillatory activity in pain 

perception is not solely determined by the intensity of the nociceptive stimulus, but can 

also be influenced by factors such as expectations, attention, and context (Ploner et 

al., 2017). This suggests that there may be a role for top-down modulation of pain-
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related oscillatory activity, in which higher-level cognitive processes influence the way 

pain is encoded and processed in the brain. 

5.1 Oscillatory Patterns of Top-Down Pain Modulation 
The Flexible Routing model of pain perception, proposed by Ploner et al. (2017), 

suggests that oscillatory patterns of pain can be influenced by top-down factors such 

as expectations or attention. This is thought to be linked to alpha/beta oscillations and 

synchronization of alpha/beta activity across different brain areas, whereas gamma 

oscillations are proposed to be involved in feedforward signaling. Previous research 

has explored the spectral properties of mechanisms involved in pain perception, and 

has found evidence for a relationship between alpha/beta oscillations and top-down 

modulation of pain. For example, one study using MEG found that alpha suppression 

in the anterior insula is linked to the expectation of pain in a situation where painful and 

non-painful stimuli were interspersed (Franciotti et al., 2009). Another study suggested 

that alpha desynchronization in response to predictable painful stimuli may be a neural 

marker of attentional preparation (Babiloni et al., 2003).  

Ohara et al. (2006) conducted an experiment in which they used subdural electrodes 

to measure the neural activity of two subjects in the primary somatosensory, 

perisylvian, and medial frontal cortex. The subjects were exposed to laser pulses that 

induced acute phasic pain, and their brain activity was monitored during two different 

conditions. In one condition, the subjects were asked to pay attention to the laser 

stimulus by performing a cognitive task, while in the other condition, they were 

distracted by a magazine article. The researchers found that attention increased the 

functional connectivity of brain activity in the beta range between the primary 

somatosensory cortex and the perisylvian cortex before the laser stimulus was applied. 

Additionally, they observed an increase in synchronization in the alpha range in the 

primary somatosensory cortex and the medial frontal cortex (Ohara et al., 2006). 

In a similar experiment by Liu et al. (2011) with three subjects, causal influences were 

measured between the primary somatosensory cortex, the perisylvian cortex, and the 

medial wall during an attention-distraction task. Oscillatory activity in the alpha and 

beta ranges were found to be important for the attentional modulation of pain (Liu et 

al., 2011). In a study by Hauck et al. (2015), results showed that attention towards pain 

led to a decrease in alpha and an increase in gamma activity in the insula. In a similar 

study, attentional augmentation of pain processing was suggested based on increased 
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gamma band activity by directed attention leading to enhanced saliency (Hauck et al., 

2007). May et al. (2012) report that spatial attention towards pain resulted in a 

modulation of pre- and post-stimulus alpha activity, which in summary supports the 

idea of alpha activity in top-down control mechanisms of pain (May et al., 2012). 

5.2 Oscillatory Patterns of Pain Expectation 
According to the Predictive Coding framework and the Free Energy Principle, 

expectations play a key role in pain processing. In a study by Albu and Meagher (2016), 

when participants expected pain to be worse, they actually experienced more pain and 

showed increased activity in the low alpha frequency range. This increase in alpha 

activity was associated with negative thoughts and emotions about the pain, such as 

pain catastrophizing, rather than the pain intensity itself, suggesting a cognitive-

affective modulation via alpha synchronization (Albu & Meagher, 2016). In another 

nocebo study by Thomaidou et al. (2021) beta-band activity in the brain was associated 

with the magnitude of the nocebo response. Individuals with strong long-range 

temporal correlations in the beta band had larger nocebo responses than those with 

weaker activity (Thomaidou et al., 2021). The researchers also found that alpha power 

was reduced during the acquisition of the nocebo response, and that alpha power was 

higher in nocebo-augmented pain compared to the baseline (Thomaidou et al., 2021). 

In a study involving placebo treatment, alpha activity increased significantly post-

placebo-treatment (Huneke et al., 2013).  

In a study by Nickel et al. (2022), participants were presented with brief painful stimuli 

of low and high intensities that were probabilistically cued. The researchers found that 

the expectations of the participants regarding the upcoming pain influenced their brain 

activity in the alpha and beta frequency ranges before the presentation of the pain 

stimulus. However, during the painful stimulation, the researchers did not observe any 

modulation of oscillatory power due to expectations (Nickel et al., 2022). Babiloni et al. 

(2003) found that anticipatory alpha activity was associated with the subjective 

evaluation of pain intensity. Additionally, it has been observed that distracted 

participants during an anticipatory period reported lower pain intensity and 

unpleasantness, accompanied by a reduction in alpha activity in the fronto-central 

midline region of the brain (Del Percio et al., 2006). These findings suggest a potential 

role for oscillatory activity in the alpha and beta frequency ranges in the modulation of 

pain perception by expectations. This effect is thought to be related to top-down 

modulation of pain processing, and is consistent with theories of Predictive Coding, 
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which suggest that the brain uses expectations to predict sensory input and generate 

prediction errors. 

In summary, the theoretical foundation of my studies is based on understanding the 

brain as a statistical machine that uses Bayesian principles to integrate prior 

expectations and sensory information. The Bayesian Brain can be explained using 

theories like the Free Energy Principle and its extension through Active Inference and 

Predictive Coding, which can be applied to the recurrent system of pain processing in 

the brain with its ascending bottom-up pathways and descending top-down pathways. 

These processes can be measured through oscillatory patterns using EEG, allowing 

for the investigation of pain and its top-down processing. 

6.0 Testing Predictive Coding, Active Inference, and the Bayesian Pain Model 

In this chapter, I will present the empirical studies that were conducted as part of this 

cumulative dissertation. These studies were designed to investigate the role of 

Predictive Coding and top-down modulations in the neural processing of pain, with a 

focus on oscillatory patterns. I will describe the methods and results of these studies 

and discuss their implications in the light of a Bayesian Pain Model. 

The first study (Reprint 15.1; Strube et al. 2021a) is a replication study using EEG to 

investigate the implementation of Predictive Coding in the cortical pain network. Here, 

we tested the specific hypothesis that expectations should be encoded in lower 

frequencies than prediction errors. The high temporal resolution of EEG allowed for 

the separation of expectation and prediction error signals, which was not possible in 

previous fMRI studies. The study found that alpha-to-beta synchronization occurred 

immediately after a predictive cue, which was associated with higher intensity 

expectations. In contrast, prediction errors were encoded in the gamma range during 

phasic painful thermal stimulation. 

The second study (Reprint 15.2; Strube et al. 2021b) examines the use of Predictive 

Coding for negative affective image stimuli. The findings indicate that there are different 

patterns of neural activity for this type of stimuli, suggesting the existence of modality-

specific oscillatory networks. In contrast to our observations for painful stimuli, we 

found that the affective valence, valence expectations, and prediction errors were 

encoded in low frequency bands during the presentation of aversive pictures. This 
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suggests that the signals are specific to the modality being processed, and that the 

orchestration of Predictive Coding differs between pain and affective visual processing. 

The third study (Reprint 15.3; Strube et al. (2022), submitted) explores how the 

contextual aspect of agency can be integrated into a Bayesian Pain Model and whether 

this supports the predictions of the Active Inference model. We conducted a 

placebo/nocebo experiment in which treatment was self- or externally-initiated. The 

results showed that agency can modulate the effectivity of treatment and that this can 

be explained as a shift in intensity expectations.  

6.1 Study 1: Predictive Coding in Pain 
Strube, A., Rose, M., Fazeli, S., & Büchel, C. (2021). The Temporal and Spectral 

Characteristics of Expectations and Prediction Errors in Pain and 

Thermoception. eLife, 10, e62809. 

6.1.1 Introduction 

In the first study, our aim was to investigate the oscillatory properties of Predictive 

Coding signals in pain processing. We specifically hypothesized that an expectation 

signal would be encoded in oscillatory patterns earlier than a prediction error signal. 

Additionally, we predicted that expectations would be represented in lower frequencies 

than prediction errors. 

Noxious thermal stimulation of varying intensity was unreliably cued to generate 

expectations regarding the stimulation. I.e., a predictive cue was associated with low 

(42°C), medium (46°C) or high pain (48°C), where a mismatch of expectation and 

stimulation has been conceptualized as a prediction error.  

Geuter et al. (2017) and Fazeli & Büchel (2018) conducted similar studies on the 

Predictive Coding framework in relation to pain using fMRI. Geuter et al. (2017) used 

a cued pain design with two pain stimulus intensities and observed anterior insula 

responses that followed the response patterns predicted by the Predictive Coding 

framework, indicating the involvement of expectations and prediction errors. Fazeli & 

Büchel (2018) extended this work by using three pain intensities and a second modality 

to control for aversiveness. They found that the ventral anterior insula represented pain 

intensity, expectation, and absolute prediction errors, and that this could not be 

explained by aversiveness. Both studies showed that the insula plays an important role 

in the Predictive Coding model, but were unable to establish its temporal aspects. This 
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motivated the current study, which uses EEG to further investigate the temporal and 

spectral aspects of these signals. 

In this study, we replicated the design of Fazeli & Büchel (2018) with slight 

modifications for EEG measurements and tested the hypothesized spectral patterns of 

the microcircuits involved in Predictive Coding using time-frequency analysis of EEG 

data. As discussed in chapter 4.2, it has been suggested that prediction errors should 

be expressed by higher frequencies than the predictions that generate them (Arnal & 

Giraud, 2012; Bastos et al., 2012).  

6.1.2 Methods 

The current EEG study was designed to experimentally manipulate expectations and 

prediction errors using preceding cues containing unreliable information about the 

subsequent pain stimulus. This was achieved by the presentation of predictive cues 

(presented for 1000-1400ms) preceding a painful heat stimulus (42°C, 46°C and 48°C 

für low, medium and high stimulus intensities, respectively). Thermal stimulation was 

applied using a 30 × 30mm2 Peltier thermode (CHEPS Pathway, Medoc, Israel). As a 

control condition (see 6.2), we included aversive emotional picture stimuli from the 

International Affective Picture System (IAPS; Bradley & Lang, 2007). The color of the 

cue (triangle) indicated unreliably the modality of the stimulus (orange for picture and 

blue for heat). A white digit written inside of each triangle indicated unreliably the 

intensity of the subsequent stimulus (a 1, 2 and 3 for low, medium and high intensity). 

Based on this cue-stimulus configuration, we could reliably produce expectations and 

prediction errors with control of contingencies between cues and stimuli. The intensity 

was cued correctly in 60% of all trials, whereas the modality was cued correctly in 70% 

of all trials.  

This cued pain paradigm allowed us to directly examine the spectral patterns 

associated with prediction errors and expectations. After conducting a behavioral 

training session to ensure that participants understood the contingencies, we recorded 

their EEG while they continuously rated cued pain and picture trials. After artifact 

rejection, correction via independent component analysis (ICA; Jung et al., 2000; 

Makeig et al., 1996) and time-frequency transformations, we performed explorative 

cluster permutation tests to assess associations with stimulus intensity, expectations 

and prediction errors in cue- and pain-locked EEG time-frequency data (see Reprint 

15.1., methods for details).  
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For the analysis of EEG data, we decided to correct for multiple comparisons using 

non-parametrical permutation tests of clusters of neural activity (Maris & Oostenveld, 

2007). We based our hypotheses about Predictive Coding on the functional 

architecture of canonical cortical microcircuits, but previous studies did not provide 

enough detailed information about the timing and frequency patterns of these 

processes. We used cluster permutation tests to account for the fact that biological 

processes do not always occur at a specific frequency or time point, and that multiple 

electrodes may detect activity at the same time.  

6.1.3 Results 
In this study, we used cluster permutation tests to analyze the time-frequency patterns 

of EEG data during a cued pain paradigm with three different stimulus intensities. Our 

findings show that there were clear differences in activity between the different levels 

of aversiveness. We found multiple clusters of activity in the theta (3-8Hz), alpha-to-

beta (8-30Hz), and gamma (>30Hz) bands that were related to the strength of the pain 

stimulus. Behavioral data also showed that the cued intensity influenced pain 

perception, i.e. higher pain expectations were associated with higher pain ratings. 

Importantly, our results indicated that temporally and spectrally separable clusters of 

oscillatory activity are associated with components of Predictive Coding. One early, 

low-frequency cluster (3-30Hz) was specifically linked to anticipation in pain 

perception, or cued intensity. A later-appearing cluster at higher frequencies (31-

100Hz) was linked to negative absolute prediction errors in pain. On a behavioral level, 

pain ratings were associated with expectations; higher pain expectations were 

associated with higher pain ratings. 

6.1.4 Discussion 

In this study, we found that expectation and prediction errors have a significant impact 

on pain perception and oscillatory processes in the brain. The modulation of behavioral 

pain ratings by expectation (i.e. higher expectations are associated with higher pain) 

is supporting the Bayesian Pain Model, where higher expectations would be modelled 

via a higher prior mean. In Bayesian integration this would result in higher pain ratings 

with higher expectations (Büchel et al., 2014). 

We observed a negative modulation of gamma activity by absolute prediction errors, 

i.e. lower gamma activity was measured when the predictive cue did not match the 

intensity of the upcoming stimulus during pain. This is contrast to prediction error 



28 
 

effects in the visual (Bauer et al., 2014; van Pelt et al., 2016) and auditory (Edwards et 

al., 2005; Parras et al., 2017) domains. Interestingly, while not typically discussed in 

the framework of Predictive Coding, other cognitive domains show this pattern of 

decreased gamma activity with mismatch. For example, it has been shown that that 

gamma power is associated with successful matching (representing the absence of a 

prediction error) of external input with internal representations (Herrmann et al., 2004; 

Osipova et al., 2006; Wang et al., 2018), and in this context, gamma band activity have 

been discussed in terms of representing a match between bottom-up and top-down 

information (Herrmann et al., 2004). One further example is increased gamma activity 

with higher cloze probabilities in language comprehension (Hald et al., 2006; Molinaro 

et al., 2013; Obleser & Kotz, 2011; Wang et al., 2018), where a critical word that is 

semantically predictable by the preceding sentence (and is thus related with a high 

cloze probability) leads to higher gamma activity as compared to words which are 

semantically unpredicted (low cloze probability), which would be represented by a 

higher prediction error in a Predictive Coding model. 

In this study, we were able to identify the temporal orchestration of essential 

parameters of the Predictive Coding process in spectral patterns of neural activity. 

Firstly, we found that expectations were associated with increased alpha-to-beta 

activity following a predictive cue. In a Bayesian Pain Model, this would represent prior 

information that would then be integrated with sensory information during painful 

stimulation. We observed that this prior information modulated pain perception 

accordingly, with higher expectations being associated with higher pain ratings, as 

predicted by the Bayesian Pain Model (Büchel et al., 2014). Secondly, we found that a 

decrease in gamma activity was associated with prediction errors during painful 

stimulation  this is atypical and was not predicted by theoretical accounts of the 

architecture of microcircuits, which posit an increase in gamma activity in response to 

prediction errors. These findings provide new insights into the temporal dynamics of 

Predictive Coding in the perception of pain.  

6.2. Study 2: Predictive Coding in (Aversive) Visual Perception 

Strube, A., Rose, M., Fazeli, S., & Büchel, C. (2021). Alpha-to-Beta and Gamma-Band 

Activity Reflect Predictive Coding in Affective Visual Processing. Scientific Reports, 

11(1), 1-15. 



29 
 

6.2.1 Summary 

Affective image stimuli were also presented as part of the paradigm of the first 

experimental study. We have published the results of the analysis of these data in 

another publication (Reprint 15.2; Strube et al., 2021b).  

I also refer to the publication (Reprint 15.2; Strube et al., 2021b) for a detailed 

classification of the results in the context of affective picture processing. Since the 

scientific work presented in the context of this dissertation is essentially about pain 

processing, I reduce the content of this section to the relevance of this study in the 

context of Predictive Coding in the pain domain. Ultimately, the visual-affective 

modality was introduced to serve as a control condition for the pain condition to 

delineate whether different mechanisms are responsible in Predictive Coding in pain 

compared to Predictive Coding in a different (aversively stimulated) modality, which I 

will discuss in this chapter. These results are useful to assess whether the spectral and 

temporal orchestration of Predictive Coding we found in the first study are specific to 

pain stimuli or whether we find comparable results for affective picture stimuli.  

The affective picture stimuli were presented in the same way as the pain stimuli in the 

first study with the same contingencies. Since both pain stimuli and picture stimuli were 

presented to the same group of subjects and the same EEG preprocessing and 

analysis techniques were used, results are comparable and differences can be 

attributed to the use of the different stimulus materials (see Reprint 15.2; Strube et al. 

2021b for detailed methods). 

Affective visual stimuli are usually accompanied by a desynchronization of alpha 

activity (8-12 Hz; Cui et al., 2013; De Cesarei & Codispoti, 2011; Schneider et al., 2018; 

Schubring & Schupp, 2019, 2021). In the context of Predictive Coding, this could be 

interpreted as an expectation signal encoded in the increase of alpha activity. 

Moreover, affective imagery is associated with event-related synchronization of 

gamma activity (>30Hz; Boucher et al., 2015; Güntekin & Tülay, 2014; Keil et al., 2001; 

Martini et al., 2012; Müller et al., 1999; Schneider et al., 2018). While expectation 

signals are associated with low frequencies, a modulation of gamma would be 

postulated for the transmission of feed-forward prediction errors based on canonical 

microcircuits theorized for Predictive Coding (Arnal & Giraud, 2012; Bastos et al., 

2012). 
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This yields specific hypotheses for Predictive Coding in affective visual image 

processing: desynchronization of alpha activity and synchronization of gamma activity 

typically associated with affective stimuli signal components of Predictive Coding. I.e., 

alpha activity should be modulated by expectations, whereas gamma activity should 

be modulated by prediction errors. 

The paradigm used in this study is a probabilistic cue paradigm in which the 

contingency of cues and valence intensity of affective imagery are learned in a training 

session. Also, cue-stimulus contingencies did not change during the experiment. In 

accordance with the pain levels of the first study (see 6.1; Reprint 15.1; Strube et al. 

2021a), three affective picture levels were presented to the participants.  

The valence of these pictures was clearly discriminable, as behavioral ratings and EEG 

time-frequency patterns in the alpha-to-beta (8-30Hz) band were linearly associated 

with our valence intensity manipulation. Valence ratings were further modulated by 

prediction errors: a larger mismatch between expected and actual stimulus led to larger 

valence ratings.  

Initially, we had hypothesized that low frequencies should be modulated by 

expectations. Here, we found a negative association of alpha-to-beta (8-30Hz) activity 

and expected valence during the presentation of the image stimulus. Interestingly, we 

found no evidence for such a signal shortly after cue presentation before the picture 

stimulus appeared (i.e. a cue was presented, and after a certain lag, the picture 

stimulus was presented). This contrasts with our expectation signal in the pain 

modality: the expectation of pain modulated oscillatory patterns in an anticipatory 

phase before the pain stimulation occurred, immediately after the presentation of an 

intensity cue.   

As another ingredient of Predictive Coding, we expected a prediction error signal in the 

gamma frequency band (>30Hz). The results provide evidence for this hypothesis: 

Changes in gamma activity were associated with absolute prediction errors. Again, 

there are clear differences to spectral patterns associated with Predictive Coding in 

pain. In pain stimulation, a desynchronization of gamma activity is associated with 

absolute prediction errors, here there is an increased gamma activity, which is typically 

hypothesized in Predictive Coding theories (Arnal & Giraud, 2012; Bastos et al., 2012). 
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Our findings suggest that Predictive Coding is involved in affective picture processing, 

but that oscillatory patterns are fundamentally different from the patterns involved in 

pain perception. By using a carefully designed paradigm that allowed us to precisely 

control expectations and prediction errors, we were able to observe distinct patterns of 

neural activity in the two different modalities. These results support the idea that there 

are distinct, modality-specific Predictive Coding processes associated with oscillatory 

activity in affective visual processing and pain processing. 

6.3 Study 3: Agency in Pain Treatment and the Bayesian Pain Model 

Strube, A., Horing, B., Rose, M., & Büchel, C. (2022). Agency Affects Pain Inference 

through Intensity Shift as Opposed to Precision Modulation [Manuscript submitted for 

publication]. Department of Systems Neuroscience, University Medical Center 

Hamburg-Eppendorf 

6.3.1 Introduction 

Expectations are fundamental in clinical pain management (Gniß et al., 2020; 

Peerdeman et al., 2016; Petersen et al., 2014). However, meta-analyses show that 

agency also plays a major role in the treatment of pain. For example, self-treatment of 

pain (so-called PCA: Patient-Controlled Analgesia) leads to a greater reduction in pain 

compared to external treatment of pain in clinical settings (Ballantyne et al., 1993; 

McNicol et al., 2015). The beneficial effect of agency has also been shown 

experimentally in pain treatment, showing modulations of pain ratings and 

physiological recordings (Beck et al., 2017; Helmchen et al., 2006; Jensen & Karoly, 

1991; Kakigi & Shibasaki, 1992; Karsh et al., 2018; Mohr et al., 2008, 2012; Müller & 

Netter, 2000; Pellino & Ward, 1998; Pervin, 1963; Staub et al., 1971; Thompson, 1981; 

Wang et al., 2011; Weisenberg et al., 1985; Wiech et al., 2006). This process is 

associated with sensory attenuation (Blakemore et al., 1998, 1999, 2000; Claxton, 

1975; Weiskrantz et al., 1971), namely a reduction of perceived stimulus intensity by 

self-production of these stimuli. Even Charles Darwin observed that 

a child can hardly tickle itself, or in a much less degree than when tickled by another 

 (Darwin, 

1872). Since expectations and agency are in principle important effects in (clinical) 

pain treatment, the interaction of these components is another factor that deserves 

closer examination. 
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This study aimed to investigate the role of agency, as a contextual top-down factor of 

pain, in the Bayesian Pain Model. The Bayesian Pain Model proposes that 

expectations can be integrated into the model as a prior in a Bayesian integration, 

where sensory information is combined with prior information to form a pain percept 

(Büchel et al., 2014). Both the pain intensity expectation and the precision of that 

expectation can be modeled using Bayesian integration. These expectations are 

integrated with sensory information in an optimal way, leading to the formation of a 

pain percept. The question addressed in this study is how the influence of agency can 

be integrated into the Bayesian Pain Model. 

It is interesting to consider the relationship between the principles of Active Inference 

(Friston et al., 2006, 2009, 2017) in relation to the influence of expectations and agency 

on pain perception. Active Inference is associated with a need to reduce the precision 

of self-produced stimuli in order to be able to act (see 3.2; Brown et al., 2013). This 

can be integrated into the Bayesian Pain Model (Figure 2), as a reduction in likelihood 

precision (Figure 2c). I.e., a decrease in attention to sensory information leads to less 

precise sensory input. In the case of self-treatment with placebo expectations (i.e. 

treatment expectations are better than the actual treatment), this would result in a 

larger weight given to placebo expectations in Bayesian integration, leading to 

relatively larger placebo expectation effects. In the case of self-treatment with nocebo 

expectations (i.e. treatment expectations are worse than the actual treatment), this 

would result in a higher weight given to nocebo expectations, leading to relatively larger 

nocebo expectation effects. This would manifest as an interaction: Active Inference 

posits that self-treatment leads to enhanced expectation effects compared to external 

treatment. 

This is contrasted by the classical Forward Model, where somatosensory attenuation 

is explained by continuously generated predictions of the sensory consequences of a 

motor command. Here, accurate predictions are used to attenuate the intensity of 

sensory consequences of self-produced movement (Blakemore et al., 2000). This can 

be integrated in the Bayesian Pain Model as a reduction of the likelihood or prior mean 

 i.e., a decrease of intensity of the sensed or expected nociceptive input (Figure 2b). 

In self-treatment, as compared to external treatment, this would lead to a decrease in 

pain, regardless of placebo or nocebo expectations. In contrast to Active Inference, 
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this would not be predictive of an interaction, but of additive effects of expectations and 

agency. 

 

Figure 2. The Bayesian Pain Model is hypothesized to integrate agency by (b) a mean shift of prior 

expectations as derived from the Forward Model or by (c) an attenuation of sensory precision, as derived 

from Active Inference. Adapted from Strube et al. (2022, submitted). Gaussian distributions characterize 

nociceptive sensory input (likelihood; green), placebo expectations (prior; purple), nocebo expectations 

(prior; yellow) and the pain percept (posterior; blue). (a) In simple Bayesian integration in 

placebo/nocebo conditions without a modulation by agency, the pain percept (posterior; blue) is the 

result of a Bayes-optimal combination of placebo expectations (left; here centered at 30 VAS; purple) or 

nocebo expectations (right; here centered at 70 VAS; yellow) with nociceptive sensory information 

(likelihood; green). The red line indicates the mean of the posterior distribution. (b) In the Prior Shift 

Model derived from the Forward Model, agency over pain shifts the mean of the prior towards lower 

VAS values in both, placebo (left) and nocebo (right) conditions. The shift of prior distributions towards 

lower VAS values leads to a pain percept (posterior; blue) which is shifted towards lower VAS values as 

a consequence of an integration of the likelihood (green) with the shifted prior in both, placebo 
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hypoalgesia (left) and nocebo hyperalgesia (right). Here, the red dotted Gaussian distributions represent 

prior placebo/nocebo distributions without the influence of agency. The red line indicates the mean of 

the posterior distribution in Bayesian integration based on a prior without a shift, i.e. in conditions without 

agency over the pain stimulus. (c) In the Likelihood Precision Modulation Model, derived from Active 

Inference, agency attenuates sensory precision. The pain percept (posterior; blue) results as a Bayes-

optimal combination of placebo (left) and nocebo (right) expectations with incoming precision-attenuated 

nociceptive information (likelihood; green). As a consequence, the relative precision of placebo/nocebo 

expectation increases, leading to a shift of the pain percept (posterior; blue) toward lower VAS values 

in placebo hypoalgesia (left) and to a shift toward higher VAS values in nocebo hyperalgesia (right), as 

the posterior (blue) . The red dotted Gaussian distributions represent 

likelihood distributions without a precision attenuation by agency. The red line indicates the mean of the 

posterior distribution in Bayesian integration without attenuated sensory precision. 

6.3.2 Methods 

In two pain placebo experiments with self-initiated and externally initiated pain with 

both, placebo and nocebo conditions, we investigated how agency acted on 

parameters of the Bayesian Pain Model. We derived hypotheses of precise potential 

modulations of the Bayesian Pain Model by agency from the Forward Model and Active 

Inference.   

In both experiments, painful stimuli were presented and participants were told that the 

pain would be treated subsequently by TENS (Transcutaneous Electric Nerve 

Stimulation). Actually, the pain was reduced by a reduction of the stimulation 

temperature. A TENS cover story has been shown to effectively create placebo effects 

and has been used in several studies (Grahl et al., 2018; Schenk et al., 2017; 

Thomaidou et al., 2021; van de Sand et al., 2018). Here, the TENS cover story was 

utilized to establish a treatment situation. In reality, no TENS stimulation was applied 

during the treatment of the painful stimuli. This treatment could be self-initiated by the 

participant or externally initiated by the experimenter (as explained to the participant; 

actual external treatment was initiated automatically by the computer). 

This treatment was either related to high or low treatment effectivity. In conditioning 

trials, a cue signaling high treatment effectivity was actually associated with a stronger 

decrease in pain (a reduction from 70 VAS to 10 VAS) as compared to a cue signaling 

low treatment effectivity (a reduction from 70 VAS to 50 VAS). In test trials, both the 

high treatment effectivity cue and the low treatment effectivity cue were leading to the 

same treatment outcome (a reduction from 70 VAS to 30 VAS). Based on conditioned 

placebo/nocebo pain paradigms and the Bayesian Pain Model, we expected a 
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modulation of pain ratings in test trials based on placebo/nocebo expectations (Fazeli 

& Büchel, 2018; Geuter et al., 2013; Geuter & Buchel, 2013; Hird et al., 2018; Lorenz 

et al., 2005; Nickel et al., 2022; Strube et al., 2021a), i.e. expectations of highly 

effective treatment (placebo) should be associated with better treatment outcomes in 

test trials than expectations of weakly effective treatment (nocebo).  

Two models have been proposed to explain the effects of agency on sensory 

experiences. The first main model, derived from the Forward Model, suggests that 

smaller prediction errors during self-generated movement can lead to a weaker 

sensation of action outcomes. Applied to the context of pain treatment, this would mean 

that self-treatment would result in a lower perception of pain. This idea motivated the 

Likelihood Shift Model or Prior Shift Model (see Figure 2b). The second main model, 

based on Active Inference, proposes that sensory attenuation is necessary for enabling 

action by reducing the precision of sensory evidence related to the consequences of 

one's own actions. This would translate to a reduction in the precision of the likelihood 

in the Bayesian Pain Model, which motivated the Likelihood Precision Modulation 

Model (see Figure 2c). 

We hypothesized that if the likelihood mean is shifted by agency (as derived from the 

Forward Model), self-treatment would result in overall lower pain ratings, regardless of 

prior expectations. This means that the effects of agency and expectations would be 

additive. In contrast, if the precision of the likelihood is reduced (as derived from Active 

Inference), the impact of expectations on pain ratings would be enhanced, leading to 

a stronger influence of expectations on self-treatment conditions. This would manifest 

as an interaction between agency and expectations.  

As in previous studies, we utilized cluster permutation tests to assess modulations of 

oscillatory activity by stimulus intensity, placebo/nocebo expectations, agency and the 

interaction of placebo/nocebo expectations with agency. Moreover, we tested EEG 

time-frequency data for correlations with between-subject placebo benefits (i.e. the 

difference between high and low treatment expectations in test trials) and for 

correlations with between-subject sensory attenuation effects (i.e. the benefit of self-

treatment as derived from model parameter estimates).  

The first experiment (N = 25) used continuous pain ratings to establish a precise 

readout of pain perception during painful heat stimulation and after treatment, whereas 

the second experiment (N = 54) also used EEG to assess neurophysiological 
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correlates of top-down modulation via expectations and agency. In both experiments, 

thermal pain was administered to capsaicin-sensitized skin on the left radial forearm 

following individual calibration to establish pain levels that were equivalent for each 

participant. To minimize contamination of EEG data by movement artifacts caused by 

continuous pain ratings through button clicks, we changed the paradigm for experiment 

2 to incorporate single outcome ratings rather than continuous pain ratings. See 

Reprint 15.3. for detailed methods. 

6.3.3 Results 

In this study, we used three different VAS levels at treatment outcome. These levels 

were 10 VAS and 50 VAS for high and low treatment effectivity during conditioning 

trials, and 30 VAS for test trials. To determine if participants perceived these levels as 

different, we conducted a repeated measures analysis of variance on the final 

continuous rating data points (post-treatment VAS rating) from experiment 1 and on 

the outcome rating of experiment 2 from all three levels of stimuli, including both 

conditioning and test trials. In both experiments, this analysis revealed a significant 

difference between all three levels, showing that we were able to successfully generate 

three distinct levels of treatment. 

In both experiments, we found that people who self-treated and had high treatment 

expectations experienced greater pain relief during test trials, where the same stimulus 

intensity (30 VAS) was always presented. We also found that there was no interaction 

between these factors. Using formal model comparison, we were able to provide strong 

evidence for a Likelihood Shift Model or Prior Shift Model (a change in the mean of the 

likelihood term or a change in the mean of the prior term caused by self-treatment) 

over the Likelihood Precision Modulation Model (modulating the precision of sensory 

consequences of self-generated outcomes).  

The analysis of the EEG data focused on two phases. In the first phase, we examined 

the EEG power shortly after the presentation of the cue, which signaled agency and 

treatment effectivity. In the second phase, we analyzed the time frame that included 

the pain relief phase and the outcome phase.  

Modulation of oscillatory activity by differences in stimulus intensity, agency and 

expectation effects were evident in the EEG data: differences in stimulus intensity in 

10 VAS versus 50 VAS conditioning trials were linked to differences in the theta (4-

8Hz), alpha-to-beta (8-30Hz), and low gamma (30-50Hz) bands. Agency also 
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modulated low-frequency oscillatory responses in the alpha-to-beta (8-30Hz) range 

and low gamma (30-50Hz) range at treatment outcome. A negative cluster of activity 

in the theta-to-alpha (4-12Hz) range temporally associated with the cue was linked to 

the interaction of expectation and agency, and was also significantly related to trial-by-

trial differences in 30 VAS test trials.  

6.3.4 Discussion 

As expected, our analysis showed a clear difference between 10 VAS and 50 VAS 

conditioning trials in terms of pain ratings and oscillatory activity. Higher treatment 

success by an actual larger decrease of stimulus intensity was associated with 

decreased alpha-to-beta (8-30Hz) and theta (4-8Hz) activity during the relief phase. In 

the outcome phase, higher treatment success was associated with increased alpha-

to-beta and decreased theta activity. This is consistent with previous findings that 

associate lower alpha-to-beta power (8-30Hz) and higher theta power (4-8Hz) with 

higher stimulus intensity (Ploner et al., 2017). Our study extends these findings to a 

treatment context, where higher alpha-to-beta power (8-30Hz) and lower theta power 

(4-8Hz) were associated with more successful treatment during the outcome phase. 

This is complementary to results of oscillatory activity in pain processing (see 5.0), 

where decreases of alpha activity and increases of theta activity is related to stimulus 

intensity  here, we show that successful treatment leads to a reversal of this pattern: 

Higher treatment success is associated with a synchronization of alpha-to-beta activity 

and a desynchronization of theta activity. 

We observed modulations by stimulus intensity and agency in outcome-locked EEG 

data, but not by expectations. This is consistent with previous studies that have shown 

cue-related expectation effects in the alpha-to-beta band before painful stimulation, but 

not during painful stimulation (Nickel et al., 2022; Strube et al., 2021a). In another 

study, pain-induced alpha and gamma responses were significantly influenced by 

stimulus intensity but not by placebo hypoalgesia (Tiemann et al., 2015). This indicates 

that expectations are associated with cue-locked effects and may be encoded in 

oscillatory processes of brain regions that are commonly involved in contextual top-

down processing. In contrast, agency had an effect on both cue-locked activity (as an 

interaction) and outcome-locked activity (as a main effect), indicating influences on 

both expectations and sensory processing. 
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In this experiment, we investigated the mechanism behind improved treatment 

effectivity when the treatment was self-initiated. The Forward Model proposes that 

small prediction errors during self-generated movement result in a perception of a less 

intense sensation compared to externally generated unpredicted outcomes 

(Blakemore et al., 1998, 2000). In the context of our pain protocol, this suggests that 

self-treatment always leads to improved treatment outcomes. In contrast, Active 

Inference suggests that decreased precision of sensory consequences underlies the 

sensory attenuation phenomenon (Brown et al., 2013). From a Bayesian perspective, 

pain perception can be seen as the integration of expectation (prior) and nociceptive 

input (likelihood), with the precision of each term determining its contribution. 

Therefore, in Active Inference, reduced nociceptive precision during our experiment 

should lead to an increase in the influence of expectation, as its precision remains 

constant. As a result, we expected that the relative influence of prior expectations 

would be increased compared to sensory evidence, which would be attenuated in 

precision. This means that self-treatment should lead to a greater influence of 

treatment expectation compared to external treatment. From a statistical perspective, 

this would manifest as an interaction between agency and expectation, i.e. larger 

differences between low and high treatment expectations in self-treatment compared 

to external treatment. 

Our data showed clear effects of sensory attenuation and treatment expectations in 

two experiments with different pain rating modalities. However, our data did not show 

a significant interaction between agency and treatment expectation effects, which 

strongly favors the Forward Model of perception for self-initiated pain treatment. This 

is supported by Bayesian model comparison using VBA (Daunizeau et al., 2014), which 

strongly favored the Likelihood Shift model or the Prior Shift Model over the Likelihood 

Precision Modulation Model. EEG data showed that there was a negative cluster of 

activity in the theta-to-alpha range (4-12Hz) that was correlated with trial-by-trial VAS 

ratings in test trials. The early onset of the cluster, which was associated with cue 

onset, suggests that the modulation of expectations by agency affects the prior rather 

than the likelihood term, and thus supports the Prior Shift Model over the Likelihood 

Shift Model. 

The treatment of pain is enhanced by both agency and positive expectations. The 

sensory attenuation and objectively different stimulus intensities modify the oscillatory 
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activity during the relief and outcome phases of pain treatment. Expectation effects are 

associated with EEG activity directly following the cue and interact with agency. 

Bayesian model comparisons of our data did not find any evidence of a decrease in 

likelihood precision during self-treatment, which suggests that the positive effect of 

self-treatment is due to a mean shift as the underlying mechanism in the Bayesian Pain 

Model. 

In this study, we sought to understand how the contextual aspect of agency can be 

integrated within the framework of a Bayesian Pain Model and whether this supports 

the predictions of Active Inference. Using EEG data, we determined the oscillatory 

mechanisms associated with pain reduction during treatment and showed that 

expectations and agency modulate these signals. Our findings suggest that agency 

can modulate the effectivity of treatment and that this effect can be explained as a shift 

in intensity expectations. Furthermore, our data indicate that the modulation of 

likelihood precision, as derived from Active Inference, is not able to explain this effect. 

Overall, our findings provide insight into the neural mechanisms underlying the 

placebo/nocebo effect and the role of agency in pain perception. 

In the context of Active Inference, this is a significant result: From the considerations 

on Active Inference, we deduced that agency should lead to a modulation of the 

likelihood precision. We found no evidence for this in this study. Thus, we question 

whether the proposed mechanism of reducing the precision of self-produced action 

outcomes is indeed causal for sensory attenuation effects and whether this mechanism 

is suitable for enabling action.   

7.0 Conclusion 

In this cumulative dissertation, we have interpreted the brain as a statistical machine 

that performs Bayes-optimal inferences about the world. This view is prominent in 

many contemporary theories of the brain, and evident at both, high-level and low-level 

systems of the brain.  

The descending and ascending recurrent pain network is suited to perform those 

computations and to relate top-down contextual factors such as expectations and 

agency to sensory information to enable inference about a pain signal. This ultimately 

leads to the Bayesian Pain Model, which postulates an integration of prior information 

and nociceptive sensory input to form a pain percept.  
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While several studies have identified candidate areas for Predictive Coding 

computations, there has been a lack of information about the temporal and spectral 

orchestration of these signals, which has been identified in the EEG results of study 1 

(Strube et al., 2021a; Reprint 15.1). In our sample, expectations were encoded in low 

frequency bands, while absolute prediction errors were encoded in higher frequencies. 

In a control condition representing the identical experimental procedure with affective 

image stimuli representing the visual modality, a fundamentally different pattern 

emerged, suggesting modality-specific encoding of these signals. 

However, there are further contextual factors beyond expectancy effects that modulate 

pain experience and thus need to be integrated in a Bayesian Pain Model. In this work, 

we addressed agency in pain experience and derived hypotheses from Karl Friston's 

Free Energy Principle and Active Inference and tested them against the classic 

Forward Model by integrating predictions from these theories into the Bayesian Pain 

Model. We showed that agency can be integrated into the Bayesian Pain Model using 

a shift in expectations, resulting in pain treatment being more effective.  

Based on the principles of Active Inference, we expected that agency would lead to a 

modulation of likelihood precision. However, our study did not find any evidence to 

support this idea. Therefore, we question whether the proposed mechanism of 

reducing the precision of self-produced action outcomes is actually responsible for 

sensory attenuation effects, and whether this mechanism is sufficient to explain 

enabling of action. Namely, it is postulated that an attenuation of the precision of 

sensory information in self-produced action outcomes is a necessary condition for 

action to occur. The minimization of prediction errors can be enabled via two paths: 

First, an update of the model of the world can occur. Second, an action can be used 

to adapt the world to the models; for this path, proprioceptive prediction errors must be 

suppressed. However, we did not find evidence for this mechanism in our data. 

Overall, this work highlights important elements that contribute to the understanding of 

the Bayesian Brain in pain.  

1) The brain processes nociceptive stimuli via Predictive Coding mechanisms. It 

utilizes recurrent transmissions of top-down expectations and bottom-up prediction 

errors. These processes are reflected in modality-specific oscillatory patterns. 
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2) A pain percept is generated in a Bayes-optimal manner as explained by a Bayesian 

Pain Model, as has been shown by bi-directional modulations of the pain percept by 

placebo and nocebo expectations. 

3) The Bayesian Pain Model can explain contextual modulations such as a reduction 

in pain by agency via a shift in the mean of the prior, representing intensity 

expectations. This is in contradiction to ideas of Active Inference, which posits that 

there should be an attenuation of sensory precision by agency. 

In conclusion, this dissertation has focused on the application of Bayesian principles 

to the interpretation of the brain as a statistical machine that performs optimal 

inferences about the world, with a specific emphasis on pain processing. Our findings 

show that the brain processes nociceptive stimuli using Predictive Coding 

mechanisms, reflected in modality-specific oscillatory patterns, to generate a Bayes-

optimal pain percept. However, our results do not support the idea that certain 

contextual factors, such as agency, modulate the precision of sensory information in 

the way previously proposed by theories of Active Inference. This calls into question 

the sufficiency of this mechanism in explaining the enabling of action in the context of 

pain. 
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9.0 Zusammenfassung 

In dieser Dissertation haben wir die Rolle der Bayesschen Inferenz in der 

Schmerzwahrnehmung unter Verwendung von Predictive Coding und Active Inference 

als theoretischen Rahmen erkundet. Wir untersuchten, wie das Gehirn Erfahrungen 

und Sinnesinformationen nutzt, um Vorhersagen über Schmerzerlebnisse zu treffen 

und wie diese Informationen integriert werden, um ein Schmerzempfinden in einem 

Bayesschen Schmerzmodell zu bilden. Indem wir Schmerzen aus einer Bayesschen 

Perspektive betrachten, konnten wir unser Verständnis der zugrundeliegenden 

neuralen Mechanismen der Schmerzwahrnehmung vertiefen und zur Entwicklung 

neuer Schmerzbewältigungs-Strategien beitragen. Insgesamt zeigt diese Arbeit 

wichtige Elemente, die über die Schmerzforschung hinaus zum Verständnis des 

Bayesschen Gehirns beitragen.  

Unsere empirischen Arbeiten zeigen, dass das Gehirn Schmerzen über Predictive 

Coding-Mechanismen verarbeitet, indem es rekurrente Übertragungen von top-down 

Erwartungen und resultierenden bottom-up Erwartungsfehlern nutzt, die in 

spezifischen spektralen und temporalen Mustern kodiert werden. Die Untersuchung 

einer affektiv-visuellen Modalität liefert Evidenz dafür, dass diese oszillatorischen 

Prozesse in modalitätsspezifischen oszillatorischen Mustern widergespiegelt werden. 

Unsere Daten stützen die Auffassung, dass ein Schmerzempfinden in einer Bayes-

optimalen Weise erzeugt wird, wie durch ein Bayessches Schmerzmodell postuliert. In 

zwei experimentellen Studien wird dies demonstriert durch bidirektionale Modulationen 

des Schmerzempfindens durch Placebo- und Nocebo-Erwartungen. Das Bayessche 

Schmerzmodell kann kontextuelle Modulationen durch eine Verschiebung der 

Intensitätserwartungen erklären, etwa eine Schmerzreduktion durch eine 

Selbstbehandlung. Dies steht im Widerspruch zu Ideen von Active Inference, die 

besagen, dass es zu einer Abschwächung der sensorischen Präzision durch eine 

Selbstbehandlung von Schmerz kommen sollte. Diese Dissertation zeigt die 

Anwendung von Bayesschen Prinzipien in der Schmerzverarbeitung, indem das 

Gehirn als statistische Maschine dargestellt wird, die optimale Inferenzen über die Welt 

vornimmt. 
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10.0 Zusammenfassung (Englisch) 

In this dissertation, we have explored the role of Bayesian inference in the perception 

of pain, using Predictive Coding and Active Inference as theoretical frameworks. We 

have examined how the brain uses experience and sensory information to make 

predictions about potential pain experiences, and how this information is integrated to 

form a pain percept in a Bayesian Pain Model. By considering pain from a Bayesian 

perspective, we aimed to deepen our understanding of the underlying neural 

mechanisms of pain perception and to contribute to the development of new pain 

management strategies. Overall, this work highlights important elements that 

contribute to the understanding of the Bayesian Brain in pain.  

Our empirical work demonstrates that the brain processes pain via Predictive Coding 

mechanisms, by utilizing recurrent transmissions of top-down expectations and 

bottom-up prediction errors, encoded in specific temporal and spectral patterns. The 

investigation of an affective-visual modality provides evidence that these oscillatory 

processes are reflected in modality-specific oscillatory patterns. Our data support the 

notion that a pain percept is generated in a Bayes-optimal manner, as explained by a 

Bayesian Pain Model. This is demonstrated in two experimental studies where we 

performed bi-directional modulations of the pain percept by placebo and nocebo 

expectations. The Bayesian Pain Model can explain contextual modulations via a 

mean shift in intensity expectations, for example, during a reduction in pain by a feeling 

of agency. This is in contradiction to ideas of Active Inference, which posits that there 

should be an attenuation of sensory precision by agency. This dissertation 

demonstrates the application of Bayesian principles in pain processing, framing the 

brain as a statistical machine that performs optimal inferences about the world. 
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11.0 Abkürzungsverzeichnis / List of Abbrevations 

EEG  Electroencephalography 

MEG  Magentoencephalography 

VBA   Variational Bayesian Analysis 

VAS  Visual Analogue Scale  

TENS  Transcutaneous Electric Nerve Stimulation 

fMRI  Functional Magnetic Resonance Imaging 

IAPS  International Affective Picture System 

ICA  Independent Component Analysis 

PCA  Patient-Controlled Analgesia  
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Abstract 16 

Agency and expectations play a crucial role in pain perception and treatment. In the 17 

Bayesian pain model, somatosensation (likelihood) and expectations (prior) are weighted 18 

by their precision and integrated to form a pain percept (posterior). Combining pain 19 

treatment with stimulus-related expectations allows to mechanistically assess whether 20 

agency enters this model as a change in intensity or precision. In two experiments, heat 21 

pain was sham-treated either externally or by the subject, while a predictive cue was 22 

utilized to create high or low treatment expectations. Both experiments revealed additive 23 

effects and greater pain relief under self-treatment and high treatment expectations. 24 

Formal model comparisons favor models which allow intensity shifts rather than 25 

differences in precision. Electroencephalography revealed a theta-to-alpha effect 26 

associated with an interaction of expectations and agency, which was also correlated with 27 

trial-by-trial pain ratings. This effect was temporally associated with expectations, 28 

suggesting a shift regarding expectations (prior) rather than somatosensation 29 

(likelihood). 30 

Introduction 31 

Tracey and 32 

the nociceptive input influenced by memories, emotional, pathological, genetic, and 33 

1. In this context it has been shown that somatosensory processes such 34 

as pain perception are modulated by agency on a neurophysiological and behavioral 35 

level2 16. This beneficial effect is utilized in Patient-Controlled Analgesia (PCA) commonly 36 

used in post-operative care  patients receiving PCA experience less pain as compared to 37 

patients receiving traditional (i.e. externally applied) analgesia17,18.  38 
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The somatosensory influence of agency on our perception is very intuitive - after all, we 39

can experience that it is much harder to tickle oneself than to be tickled by another person, 40 

as has also been shown in a number of empirical studies19 22. Here, we utilize Bayesian 41 

modelling to assess the mechanisms how agency influence pain perception in the context 42 

of different pain treatment expectations. 43 

It has been proposed that pain perception can be seen as a Bayesian problem  requiring 44 

the integration of expectations with stimulus intensity23 26. The idea is that expectations 45 

are integrated with incoming nociceptive stimulus information, and both are weighted by 46 

their respective precision to form a pain percept. This has been shown by manipulation 47 

of the level of precision of prior treatment expectations, where expectation-based effects 48 

were more pronounced with more precise treatment expectations27.  49 

Similar to an application in visual perception28, less precise sensory information would 50 

lead to a relatively higher influence of prior expectation, while more precise sensory 51 

information would lead to less influence of prior expectation on perception. Importantly, 52 

it is possible to design a pain treatment experiment in which sensory evidence (i.e. 53 

enhanced or reduced treatment efficacy) is either self-generated or externally generated.  54 

Agency can now act at various points in the Bayesian pain model (see Fig. 1a). First, the 55 

influence of agency could occur via a shift in the mean value of the likelihood (we will term 56 

this likelihood shift model, see Fig. 1b) or a shift of the mean value of the prior. The former 57 

would entail that sensory neuronal processing is altered in intensity, whereas in the latter 58 

case, agency would change intensity expectations which influence the pain experience. 59 

Secondly, in the same manner, agency could change the precision of the likelihood (we will 60 

term this likelihood precision modulation model, see Fig. 1c) or the precision of the prior.  61 
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The influence of agency (i.e. self-generation of stimuli) on somatosensation is typically 62

termed sensory attenuation - for which there are explanations comparable to the 63 

hypotheses derived from the Bayesian pain model. Charles Darwin (1872) already 64 

theorized about the influence of action on sensory precision:  65 

can hardly tickle itself, or in a much less degree than when tickled by another person, it 66 

29.  67 

To account for the effects of agency different models have been postulated. Firstly, there 68 

is the forward model which explains that smaller prediction errors during self-generated 69 

movement lead to a less intense sensation of action outcomes30. Translated to our pain 70 

treatment paradigm, this would represent a shift of the likelihood by self-treatment in the 71 

direction of experiencing less pain, which motivated our likelihood shift model (see Fig. 72 

1b). Secondly, in the context of the active inference framework, sensory attenuation is 73 

discussed as necessary to enable action by lowering the precision of sensory evidence to 74 

the consequences of one's own actions31. This would translate to a reduction of precision 75 

of the likelihood in the Bayesian pain model, which motivated our likelihood precision 76 

modulation model (see Fig. 1c). 77 

Derived from the Bayesian pain model of expectation-based hypoalgesia (see Fig. 1), we 78 

hypothesized that if the likelihood was shifted by agency, self-treatment would result in 79 

overall lower pain ratings (based on the forward model), regardless of prior expectations, 80 

i.e. agency and expectation effects would be additive. In contrast, less precision (based on 81 

active inference) of self-generated sensory consequences would enhance the impact of 82 

expectation effects (i.e. placebo/nocebo effects), leading to pain ratings being influenced 83 

more strongly by expectations in self-treatment conditions, which would manifest as an 84 

interaction of agency and expectations. See Fig. 1d for statistical hypotheses based on the 85 
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likelihood shift; see Fig. 1e for statistical hypotheses based on attenuated likelihood 86

precision.  87 

Consequently, we have translated this to formal models of Bayesian integration (Fig. 1a) 88 

in pain perception, incorporating a likelihood shift (Fig. 1b) and likelihood precision 89 

modulation (Fig. 1c), respectively. With these models, we performed a formal Bayesian 90 

model selection (see Fig. 1 for an overview of the main candidate models and model 91 

predictions). Please note that our models also consider the contrary mechanisms, i.e. the 92 

likelihood could be shifted in a way that self-treatment is associated with more pain. Also, 93 

the likelihood could become more precise leading to less influence of prior expectations. 94 

Bayesian modelling does not allow to disentangle whether the influence of agency is 95 

represented in a shift of the likelihood or the prior  a shift in the prior could equally 96 

account for the results as a shift in the likelihood. Differences in precision, on the other 97 

hand, would lead to different parameters for the posterior (i.e. in order to increase the 98 

effects of expectations, higher precision of the prior instead of a lower precision of the 99 

likelihood would lead to a higher precision of the posterior). Therefore, we also included 100 

a prior precision modulation model and models with multiple parameters (shift + 101 

precision modulation) for comparison.  102 

To further measure the neural influence of agency, EEG can help to answer the question 103 

of whether agency acts on the likelihood or the prior in a Bayesian pain model. 104 

Modulations of EEG power in pain are typically more associated with signaling sensory 105 

information than with signaling expectations32,33, and typically, expectation effects are 106 

related to processes occurring temporally before pain stimulation (e.g. after an 107 

expectation-inducing cue)32,34. An influence of agency on stimulus intensity-related EEG 108 

time-frequency patterns would therefore suggest a modulation of the likelihood, whereas 109 
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an influence of EEG time-frequency patterns related to expectation would suggest a 110

modulation of the prior.  111 

The first experiment (N = 25) used continuous pain ratings to establish a precise readout 112 

of pain perception during painful heat stimulation and after treatment, while the second 113 

experiment (N = 54) additionally employed electroencephalography (EEG) to further 114 

evaluate neurophysiological correlates of the modulation via expectations and agency. In 115 

both experiments, we applied heat pain to capsaicin-sensitized skin on the left radial 116 

forearm, after individual calibration to create comparable pain levels for each participant. 117 

To avoid a contamination of EEG data by movement artifacts through button presses 118 

during continuous pain ratings, we altered the paradigm for experiment 2 to include 119 

single outcome ratings instead of the continuous pain rating (see Fig. 2 for an overview of 120 

the trial design).  121 

 122 
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123 

Figure 1. Bayesian models of pain perception. Bayesian model comparison was used to evaluate two main 124 

Bayesian pain placebo/nocebo models. (a) The core of both models is the Bayes-optimal integration of prior 125 

experiences (here centered at VAS = 10 for placebo and at VAS = 50 for nocebo) with incoming nociceptive 126 

information (i.e. likelihood) to form a pain percept (i.e. posterior). Prior, likelihood and posterior were 127 

approximated by Gaussian distributions allowing for an analytic solution of Bayesian integration. The 128 

likelihood shift model (b) has a free parameter that allows to shift the likelihood mean for self-treatment 129 
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trials (see STAR Methods, Eq.2). For example, the likelihood mean for self-treatment can be shifted to lower 130 

values (blue, solid line) as compared to the mean for external treatment (blue, dashed line). In high 131 

treatment expectation (placebo), this will lead to a shift of the posterior (dark green, solid line) to lower 132 

VAS values as compared to external treatment (dark green, dashed line) because of the integration of the 133 

shifted lower likelihood with the prior. Similarly, in low treatment expectation (nocebo), this will lead to a 134 

shift of the posterior (purple, solid line) to lower VAS values as compared to external treatment (purple, 135 

dashed line). This is in contrast to the likelihood precision modulation model (c) which has a free parameter 136 

that can change likelihood precision (see STAR Methods, Eq.3). If self-treatment is linked to a lower 137 

likelihood precision (blue, solid line) as compared to external treatment (blue, dashed line) this model 138 

should explain the data better than the likelihood shift model. As an example, this can lead to a posterior 139 

(dark green, solid line) which is more strongly drawn to the prior (VAS10 conditioning) in self-treatment 140 

than external treatment (dark green, dashed line), due to the lower of the likelihood. In low 141 

treatment expectation, the posterior (purple, solid line) would be drawn more strongly to the prior (VAS50 142 

conditioning) in self-treatment than external treatment (purple, dashed line). Note that for actual modeling 143 

we utilized individual prior and likelihood parameters, whereas here, parameters are based on calibration 144 

target values for illustration purposes. The likelihood shift to lower values (d; derived from the forward 145 

model) predicts a decrease of perceived stimulus intensity in self-treatment (green line) as compared to 146 

external treatment (purple line), meaning a higher treatment success in self-treatment trials as compared 147 

to external treatment trials. Likelihood precision modulation leading to lower precision of the likelihood (e; 148 

derived from active inference) would entail that self-treatment is associated with a decrease in precision, 149 

and thus a larger influence of expectations in self-treatment (green line) as compared to external treatment 150 

(purple line). 151 
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Figure 2. (a) Schematic representation of the paradigm, (b) trial design for experiment 1, and (c) trial design 152 

for experiment 2. Colored lines represent VAS50 conditioning (red), test trials (VAS30; green) and VAS10 153 

conditioning (blue). The black line represents alterations in temperature common to all trial types, blue, 154 

green and red lines represent changes based on VAS10 conditioning, VAS30 test trials and VAS50 155 

conditioning trials, respectively. At trial start, the thermal-heat stimulator (thermode), attached to the left 156 

radial forearm of the participant, is at the baseline temperature (set to 30°C for experiment 1 and to 28°C 157 

for experiment 2). A red bar indicates the start of the pain phase concurrent with an increase of thermode 158 

temperature to the individually calibrated pain level of VAS70. The start of the treatment phase is indicated 159 

by a cue showing whether self- or external treatment and whether highly or weakly effective treatment 160 

follows. This then leads to actual low (VAS10) or high (VAS50) temperatures during conditioning trials. In 161 

test trials, the final temperature is always at VAS30 regardless of the cued treatment efficacy. Arrows 162 

indicate time points for EEG data locks, i.e. the time axis of EEG time-frequency data was set to 0 according 163 

to the onset of the cue and to the treatment outcome (i.e. target treatment VAS level was reached by the 164 

thermode), respectively. In experiment 1 (b), a rating scale controlled with two buttons was presented 165 

during the whole trial. At trial start (5s), an empty bar was presented alongside the rating scale (set to 0 at 166 

the beginning) and a display of rating buttons (lighting up in green when pressed). During the following 167 
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pain phase (8-10s), the empty bar was filled red as an indication for pain. After the pain phase, the treatment 168 

cue was presented. The treatment cue showed a reduction of the red bar, where a reduction by 2/3 of the 169 

total height was associated with highly effective treatment and a reduction by 1/3 of the total height was 170 

associated with a weakly effective treatment. Additionally, a signal word indicated self- or external 171 

treatment. After a lag of 2s, the treatment buttons appeared on the display, lighting up in green when 172 

pressed by the subject or externally. After the treatment button was pressed, the temperature was 173 

decreased to the respective pain level. An ITI (intertrial interval) of 18s followed. In experiment 2 (c), pain 174 

ratings scales and buttons were only presented during designated rating phases. Treatment could be started 175 

immediately after the onset of the treatment cue. Here, the timing of each trial was: trial start (4s), pain 176 

phase (8s), pain rating phase (6s), treatment phase (8s) and treatment rating phase (6s) with an ITI of 4s.  177 

Results 178 

Experiment 1: Behavioral results 179 

The first experiment used continuous pain ratings (Fig. 3). As we did not assess 180 

expectations explicitly we refer to expectations as the effects elicited by the predictive 181 

cue, i.e. high and low treatment expectation conditions are related to the predictive cues 182 

signaling high or low treatment success and not to actual expectation ratings.  183 
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Figure 3. Continuous VAS ratings per condition. Each line represents a different condition, i.e. VAS10 and 184 

VAS50 conditioning, and four test conditions following VAS30 (self- versus external treatment, low versus 185 

high treatment expectation). Pain phase (VAS70) starts after a cue presentation of 5s for a jittered duration 186 

of 8-10s. Afterwards the treatment phase started, beginning with the presentation of the treatment cue for 187 

2s. Then, treatment was started either by the participant or externally. Lines on the right represent an 188 

enlargement of the highlighted section (25-30s).  189 

The treatment outcome differed objectively as we reduced the pain stimulus to three 190 

different intensities, i.e. VAS10 and VAS50 for high and low treatment efficacy 191 

respectively during conditioning trials, and VAS30 for test trials (albeit presented with 192 
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the respective high or low conditioned predictive cues). To evaluate if participants 193

experienced these three intensities to be different, we conducted a repeated measures 194 

ANOVA on the final continuous rating data points (post-treatment VAS rating) from all 195 

three stimulus intensities, including conditioning and test trials (averaging across 196 

predictive cues) which revealed a significant difference (F(2,48 43.78, p 0.001, p2 = 197 

0.646) (Fig. 4a).  198 

Post-hoc analyses using Bonferroni correction for multiple comparisons indicated that all 199 

three stimulus intensity levels differed significantly from each other, revealing higher 200 

post-treatment VAS ratings for VAS50 conditioning trials (M 50.35, SD 15.78) versus 201 

VAS30 test trials (M 38.98, SD = 12.86) and for VAS30 test trials versus VAS10 202 

conditioning trials (M 24.47, SD = 11.95; all p 0.001). 203 

As a next step, we evaluated the effects of our manipulations for the test trials, where the 204 

intensity of the painful stimulus was always reduced to an individually calibrated level of 205 

VAS30. Here, post-treatment VAS ratings could either be influenced by agency (self- 206 

versus external treatment), expectations (low versus high treatment expectations), or 207 

their interaction. Considering the likelihood shift model (see Fig. 1d), we would expect 208 

higher treatment success in self-treatment test trials as compared to external treatment 209 

test trials regardless of prior treatment expectations (as derived from the forward model). 210 

In other words, we would expect a main effect of agency with or without a main effect of 211 

expectation, but no interaction between both factors. Conversely, for the likelihood 212 

precision modulation model (see Fig. 1e), by lowering the precision of sensory evidence 213 

(as derived from predictions related to active inference), prior treatment expectations 214 

would gain a higher relative weight compared to the sensory information in self-215 

treatment trials versus external treatment trials, which would manifest as an interaction 216 
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(i.e. expectation effects should be larger in self-treatment). Note that self-treatment could 217

also be associated with worse outcomes and therefore a shift of the likelihood to higher 218 

VAS values. Also, self-treatment could lead to less influence of expectations and a more 219 

precise likelihood in the likelihood precision modulation model. 220 

Here, again we conducted a repeated measures ANOVA to test for main effects of agency, 221 

expectation, and their interaction in the test conditions (VAS30). We found a significant 222 

sensory attenuation effect, that is, a main effect of agency (F(1,24 6.2, p = 0.02, p2 = 223 

0.205), meaning that post-treatment VAS ratings were lower for self-treatment trials (M 224 

= 37.99, SD = 12.57) versus external treatment trials (M = 39.98, SD = 13.45). Furthermore, 225 

we found a significant expectation effect (F 10.738, p = 0.003, p2 = 0.309), i.e. high 226 

treatment expectations were associated with lower post-treatment VAS ratings (M = 227 

35.00, SD = 13.66; conditioned with VAS10) than those following low treatment 228 

expectations (M = 42.97, SD = 14.77; conditioned with VAS50). Importantly, we did not 229 

observe a significant interaction of expectation and agency (F(1,24 0.679, p = 0.42, p2 230 

= 0.028). A linear regression of reaction times and agency benefits (self-treatment minus 231 

external treatment post-treatment VAS rating) did not reveal a significant association of 232 

these factors (R² = 0.00503, F(1,24) = 0.116, p = 0.736).  233 

For model-based analyses of our behavioral data, we created two Bayesian models of pain 234 

perception in placebo/nocebo pain treatment (see Fig. 1) which were inverted and 235 

compared using variational Bayesian methods (VBA, see STAR Methods for details). We 236 

used the Bayesian integration model of pain perception as a basis model (Fig. 1a). In self-237 

treatment test trials under the likelihood shift model, we included the parameter pshift 238 

which allowed for a shift of the likelihood and thus for a posterior distribution which was 239 

shifted into the same direction in low and high treatment expectation conditions (Fig. 1b; 240 
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here a shift of the likelihood mean to lower values leads to better treatment outcomes). 241

This was contrasted to the likelihood precision modulation model, where the posterior 242 

distribution should be differentially affected by the conditioned pain experience, and thus 243 

we included the parameter pprecision which allowed for increases and decreases in 244 

likelihood precision (see Fig. 1c, here a relaxation of likelihood precision leads to an 245 

increased relative weight of expectations).  246 

We used a random effects (RFX) Bayesian model selection approach35,36 to estimate the 247 

overall posterior model probability across subjects. The RFX model exceedance 248 

probability was at  = 0.9986 for the likelihood shift model compared to  = 0.0014 for 249 

the likelihood precision modulation model. Hence, we see clear evidence for the likelihood 250 

shift model with a free parameter enabling likelihood shift over the likelihood precision 251 

modulation model with a free parameter allowing a modulation of likelihood variance 252 

(see Fig. 4e). The likelihood shift model also outperforms all other control models in a full 253 

comparison, i.e. a null model without free parameters (i.e. setting the likelihood shift 254 

parameter to 0 and the likelihood precision modulation parameter to 1) and a full model 255 

which included both shift and precision modulation parameters (  > 0.999) (see STAR 256 

Methods for details). See Supplementary Fig. 1 for a comparison of all candidate models.  257 

In summary, results using continuous pain ratings clearly demonstrate both sensory 258 

attenuation effects (i.e. self-treatment lead to better outcomes) and expectation effects 259 

(i.e. high treatment expectations lead to better treatment outcomes), but no interaction 260 

between expectation and agency. Model selection provides strong evidence in favor of the 261 

likelihood shift model over all other candidate models (see Fig. 4 for a summary of the 262 

results). 263 
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 264 

Figure 4. Results from VAS (Visual Analogue Scale) rating analyses of experiment 1 (N = 25). (a) Post-265 

treatment VAS ratings for each stimulus intensity condition (VAS10, 30 and 50) and lines representing the 266 

contrasts of low versus high treatment expectation and self- versus external treatment during test trials. 267 

Bars and lines represent post-treatment VAS ratings averaged per condition. (b) Scatter plots represent 268 

single subject values for treatment outcomes for conditioning, expectation, and agency. Scatter plots 269 

represent contrasts of conditions, i.e. each dot represents averaged ratings of a single subject for VAS10 270 
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versus VAS50 conditioning (blue), high treatment expectation versus low treatment expectation (green) 271 

and self-treatment versus external treatment (purple). Brighter colors indicate larger benefits of stimulus 272 

intensity (VAS10 versus VAS50 conditioning), placebo benefits (high treatment expectations versus low 273 

treatment expectations) and agency benefits (self-treatment versus external treatment). Data points above 274 

the diagonal represent single subjects with stimulus intensity, placebo and agency benefits, respectively. (c) 275 

Probability density function of group parameter estimates for the likelihood shift parameter pshift of the 276 

winning likelihood shift model. (d) Single subject differences of log evidence for the likelihood shift model 277 

versus likelihood precision modulation model (negative values favor the likelihood shift model) and (e) 278 

model frequencies and protected exceedance probabilities. 279 

Experiment 2: Behavioral results 280 

As in the first experiment, a repeated measures ANOVA with all three stimulus intensities 281 

(including conditioning and test trials) revealed a significant difference 282 

(F(2,106 118.32, p 0.001, p2 = 0.691) between all three intensities (VAS10, 30 and 283 

50) in post-treatment VAS ratings. Post-hoc analyses using Bonferroni correction for 284 

multiple comparisons indicated that all three stimulus intensity levels differed 285 

significantly from each other, revealing higher post-treatment VAS ratings for VAS50 286 

conditioning trials (M 49.66, SD 15.46) versus VAS30 test trials (M 38.24, SD = 17.18) 287 

and for VAS30 test trials versus VAS10 conditioning trials (M 31.04, SD 17.45; all 288 

p  289 

For the evaluation of main effects of agency and expectation and their interaction for the 290 

test trials, we again conducted a repeated measures ANOVA. We observed a significant 291 

sensory attenuation effect (F(1,53 19.13, p 0.001, p2 = 0.265), i.e. post-treatment VAS 292 

ratings were lower for self-treatment trials (M = 37.15, SD = 17.26) as compared to 293 

external treatment trials (M = 39.33, SD = 17.30). Also, we found a significant expectation 294 

effect (F 35.57, p , p2 = 0.402), i.e. high treatment expectations were 295 
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associated with lower post-treatment VAS ratings (M = 34.91, SD = 17.69; conditioned 296

with VAS10) than low treatment expectations (M = 41.56, SD = 17.64; conditioned with 297 

VAS50). As in the first experiment, we did not observe a significant interaction of 298 

treatment expectation and agency (F(1,53  0.02, p = 0.887, p2 = 0.003). Finally, we 299 

assessed if agency effects might be explained by reaction times. We tested if reaction times 300 

significantly explained agency benefits (self-treatment minus external treatment post-301 

treatment VAS rating) in a linear regression model, which showed no significant effect (R² 302 

= 0.0286, F(1,52) = 1.53, p = 0.221). 303 

Again, we used a random effects (RFX) Bayesian model selection approach to estimate the 304 

overall posterior model probability across subjects for the post-treatment VAS ratings in 305 

experiment 2. For experiment 2, the RFX exceedance probability of  = 0.9995 for the 306 

likelihood shift model compared to  = 0.0005 for the likelihood precision modulation 307 

model again strongly favored the likelihood shift model over the likelihood precision 308 

modulation model (Fig. 5e). The likelihood shift model also wins against all other 309 

candidate models (  > 0.999) in a full comparison (see STAR Methods for details). See 310 

Supplementary Fig. 1 for a comparison of all candidate models.  311 

Taken together, in the second experiment, we replicated the rating-related results of the 312 

first experiment. Again, these results demonstrate sensory attenuation effects (i.e. self-313 

treatment leads to better treatment outcomes) and expectation effects (i.e. high treatment 314 

expectations lead to better treatment outcomes) but no interaction between expectation 315 

and agency. Model selection again provides strong evidence in favor of the likelihood shift 316 

model over the likelihood precision modulation model (see Fig. 5 for a summary of the 317 

results).  318 
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Figure 5. Behavioral VAS (Visual Analogue Scale) post-treatment pain rating data of experiment 2 (N = 54). 320 

(a) Post-treatment VAS ratings for each stimulus intensity condition (VAS10, 30 and 50) and lines 321 

representing the contrasts of low versus high treatment expectation and self- versus external treatment 322 

during test trials. Bars and lines represent post-treatment VAS ratings averaged per condition. (b) Scatter 323 

plots represent single subject values for treatment outcomes for conditioning, expectation, and agency. 324 

Scatter plots represent contrasts of conditions, i.e. each dot represents averaged ratings of a single subject 325 

for VAS10 versus VAS50 conditioning (blue), high treatment expectation versus low treatment expectation 326 

(green) and self-treatment versus external treatment (purple). Brighter colors indicate larger benefits of 327 

stimulus intensity (VAS10 versus VAS50 conditioning), placebo benefits (high treatment expectations 328 

versus low treatment expectations) and agency benefits (self-treatment versus external treatment). Data 329 

points above the diagonal represent single subjects with stimulus intensity, placebo and agency benefits, 330 

respectively. (c) Probability density function of group parameter estimates for the likelihood shift 331 

parameter pshift of the winning likelihood shift model. (d) Single subject differences of log evidence for the 332 

likelihood shift versus likelihood precision modulation model (negative values favor the likelihood shift 333 

model) and (e) model frequencies and protected exceedance probabilities. (f) Example data of a single 334 

subject clearly indicates an improved fit of behavioral post-treatment VAS ratings with the likelihood shift 335 

model (right) over basic Bayesian integration (left). Self-treatment conditions with high and low treatment 336 

expectations (left) with a theoretical posterior based on basic Bayesian integration and (right) with a 337 

theoretical posterior based on Bayesian integration with a likelihood shift (i.e. sensory attenuation 338 

motivated by the forward model) are shown. Lines represent empirical Gaussian high treatment 339 

expectation priors (green), low treatment expectation priors (red) and likelihood (blue) based on the 340 

respective fitted model. The solid dark green line represents the theoretical posterior based on Bayesian 341 

integration of the high treatment expectation prior and the likelihood. The dashed dark green line 342 

represents the parameters of a fitted Gaussian distribution to the empirical post-treatment VAS ratings of 343 

the respective conditions. Accordingly, the solid purple line represents the theoretical posterior based on 344 

Bayesian integration of the low treatment expectation prior and the likelihood. The dashed purple line 345 

represents the parameters of a fitted Gaussian distribution to the empirical post-treatment VAS ratings of 346 

the respective conditions.    347 
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Experiment 2: EEG time-frequency data 348 

For the statistical analysis of EEG data, we considered two separate time points for time-349 

frequency data to evaluate cue-locked as well as treatment outcome-locked effects. For 350 

cue-locked analyses, we set t = 0 to the onset of the cue indicating the conditioned 351 

effectiveness of the treatment and the agency condition of the treatment phase. In 352 

outcome-locked analyses t = 0 was set to the point when the thermode reached the 353 

calibrated treatment VAS target, and thus, takes individual variations in treatment latency 354 

into account. All tests were corrected for multiple comparisons using Monte Carlo cluster 355 

tests. At each sample a t-test was conducted for each respective contrast (i.e. conditioning, 356 

expectation, agency and interaction) and all samples exceeding the threshold of p < .05 357 

were clustered in connected sets on the basis of temporal (i.e. adjacent time points), 358 

spatial (i.e. neighboring electrodes), and spectral adjacency. This was repeated with 359 

shuffled condition labels per subject and the cluster p-value is calculated as the 360 

proportion of clusters exceeding the original cluster masses (i.e. sum of all t-values at all 361 

samples within a cluster) in random permutation (see STAR Methods for details). See 362 

Supplementary Fig. 2, 3 and 4 for z-scored cue-locked time-frequency data and 363 

Supplementary Fig. 5, 6 and 7 for z-scored outcome-locked time-frequency data for all 364 

conditions at Fz, Cz and Pz, respectively. 365 

Conditioning 366 

In each trial, a predictive cue indicated an upcoming highly or weakly effective 367 

treatment on the ongoing VAS70 stimulus. This association was established during 368 

conditioning trials, where a predictive cue indicating high treatment efficacy was 369 

associated with a (physical) stimulus intensity decrease to a temperature individually 370 

representing VAS10. Similarly, a cue indicating low treatment efficacy was associated 371 
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with a decrease to a temperature representing VAS50. A cluster-corrected dependent 372

samples t-test on cue-locked data (0 to 2s after the cue, 4-181Hz) revealed no 373 

differences between VAS10 and VAS50 conditioning trials immediately after cue 374 

presentation (all p > .05). However, differences were significant for outcome-locked data 375 

(in a window of -1 to 2s with t = 0 at target temperature, 4-181Hz), revealing two 376 

clusters of activity associated with different conditioning types (VAS10 versus VAS50; 377 

Fig. 6; also see Supplementary Fig. 8 for topographies of significant clusters of activity 378 

for different frequency bands and Supplementary Fig. 9 for bar graphs representing the 379 

averaged power at significant clusters of activity for all conditions). Negative times 380 

reflect activity during the unfolding of pain relief, whereas positive times indicate 381 

activity during the outcome phase, i.e. when temperatures were stable at the final 382 

outcome level. We observed a positive cluster (p < .001) including frequencies from 8 to 383 

64Hz in a time frame from -0.4 to 1s, indicating an increase of EEG power for VAS10 384 

conditioning versus VAS50 conditioning. Additionally, we observed one negative cluster 385 

(p < .001) associated with decreased EEG power of VAS10 versus VAS50 conditioning. 386 

This cluster included frequencies from 4 to 45Hz in a time frame from -0.95 to 0.95s. 387 

Longer outcome latencies based on increased ramp times in the VAS10 as compared to 388 

the VAS50 condition might explain differences in EEG data due to habituation, i.e. the 389 

target temperature is reached at later time points in a decrease from VAS70 to VAS10 as 390 

compared to VAS70 to VAS50. For example, a decrease to a VAS50 temperature of 43°C 391 

from a VAS70 plateau of 47°C takes 500ms whereas a decrease to a VAS10 temperature 392 

of 41°C takes 750ms. Therefore, we tested if activity in clusters representing differences 393 

in intensity (VAS10 versus VAS50 conditioning trials) were associated with ramp time 394 

differences between VAS10 and VAS50 conditioning trials.  Both clusters were not 395 

associated with differences in outcome latencies in a linear regression analysis, i.e. the 396 
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individual differences in outcome latency based on different target temperatures in 397

VAS50 and VAS10 conditions were not predictive for EEG power in the positive and 398 

negative clusters (all p > .05; see Supplementary Figure 10 for details).  399 

This demonstrates a modulation of theta (4-8Hz), alpha-to-beta (8-30Hz) and low 400 

gamma (30-50Hz) frequencies by treatment efficacy via differences in stimulus 401 

intensity, i.e. more effective treatment (VAS10) was associated with lower alpha-to-beta 402 

(8-30Hz) activity during the relief phase followed by lower theta (4-8Hz) and increased 403 

alpha-to-beta (8-30Hz) power at the treatment outcome phase, as compared to less 404 

effective treatment (VAS50).  405 

 406 

Figure 6. (a) Pain treatment paradigm, (b) differences in EEG power (z-scored) for VAS10 conditioning and 407 

VAS50 conditioning averaged over all significant samples in the theta (4-8Hz) and alpha-to-beta (8-30Hz) 408 

bands, (c) time-frequency plot of significant clusters of activity associated with the outcome-locked main 409 

effects of VAS10 versus VAS50 conditioning. Time-frequency plots are averaged t-values over all channels 410 

including significant data points of the respective clusters of activity. Non-significant data points are masked 411 

out. Colors represent t-values. 412 
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Agency 413 

Agency was experimentally manipulated as participants had to either initiate the 414 

treatment themselves, or the treatment was initiated (putatively) by the experimenter. 415 

To test for the effects of agency, we again considered both phases and conducted t-tests 416 

contrasting self-treatment and external treatment during test trials. Here, a cluster-417 

corrected dependent samples t-test revealed no association between EEG time-frequency 418 

data and agency with cue-locked data (0 to 2s after cue onset, 4-181Hz; all p > .05). 419 

However, treatment outcome-locked data (-1 to 2s at target temperature, 4-181Hz) 420 

revealed two significant clusters of activity associated with agency (Fig. 7). Data showed 421 

a negative cluster (p < 0.001) ranging from -1 to 1s including frequencies from 4 to 54Hz, 422 

exhibiting a negative association between agency and EEG power during the relief (-1 to 423 

0s) and outcome phase (0 to 2s). We also observed a significant (p = .028) positive cluster, 424 

ranging from -0.2 to 0.75s including frequencies from 11 to 54Hz, indicating increased 425 

alpha-to-beta (8-30Hz) and low gamma (30-50Hz) power during the treatment outcome 426 

phase for self-treatment versus external treatment.  427 

Here, again, EEG activity might be explained by longer pain plateau durations which might 428 

lead to habituation. In this case, ramp durations were always identical (i.e. from VAS70 to 429 

VAS30), but in contrast, self-treatment is individually associated with slight differences in 430 

outcome latencies due to individual reaction times and thus potentially a longer pain 431 

plateau duration. Therefore, we assessed if variance of clusters associated with agency 432 

might also be explained by reaction times. We tested differences in self-treatment versus 433 

external treatment averaged EEG power over all samples included in each cluster in a 434 

linear regression model with the average reaction time of each participant as a regressor. 435 

This regressor explained a significant amount of the variance in the negative agency 436 
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cluster (R² = 0.228, F(1,52) = 15.4, p < .001), but not in the positive cluster (R² = 0.0611,437

F(1,52) = 3.38, p = 0.072). When partialling out the variance explained, the difference in 438 

EEG power in the negative clusters were not significant anymore (p > .05), whereas for 439 

the positive cluster this was not the case and the effect of agency remained significant 440 

(t(53) = 2.93; p = 0.005). See Supplementary Figure 11 for further details on the 441 

association of reaction time data and agency clusters.  442 

To further evaluate the influence of between-subject differences in sensory attenuation, 443 

 individually estimated 444 

likelihood shift parameter (i.e. agency benefit; see STAR Methods for details). Here, no 445 

significant associations between subject differences in likelihood shift were associated 446 

with EEG time-frequency data (all p > .05) in cue-locked (0 to 2s after cue onset, 4-181Hz) 447 

and treatment outcome-locked (-1 to 2s at target temperature, 4-181Hz) data.   448 

Finally, we assessed in a linear mixed effects model if the agency-related positive cluster 449 

was associated with individual trial-by-trial outcome pain ratings of the test trials (all 450 

VAS30; see STAR Methods). Activity at the positive agency cluster was not associated with 451 

VAS outcome ratings on a trial-by-trial basis for VAS30 test trials (t(2588) = -1.148, p = 452 

.25). See Supplementary Table 2 for the full linear mixed effects model. 453 

Taken together, the analysis of agency revealed two clusters associated with differences 454 

between self- and external treatment. Firstly, we observed a negative cluster during the 455 

relief and treatment outcome phase including frequencies from the theta (4-8Hz) to low 456 

gamma (30-50Hz) range, which was related to individual differences in reaction times. 457 

Secondly, when the target temperature was reached, data showed an increase of alpha-458 

to-beta activity associated with self-treatment (as compared to external treatment). This 459 

cluster was not significantly associated with reaction times.  460 
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 461 

Figure 7. (a) Pain treatment paradigm, (b) a panel of line graphs representing differences in EEG power (z-462 

scored) for self-treatment (green) versus external treatment (purple) averaged over all significant samples 463 

in the theta (4-8Hz) and alpha-to-beta (8-30Hz) ranges, and (c) a time-frequency plot representing 464 

significant clusters of activity associated with the outcome-locked main effects of self- versus external 465 

treatment. Time-frequency plots are averaged t-values over all channels including significant data points of 466 

the respective clusters of activity. Non-significant data points are masked out. Colors represent t-values. 467 

Expectation 468 

As a next step, we evaluated the effects of treatment expectations (i.e. contrast of 469 

predictive cues). During test trials, stimulus intensity (i.e. the target temperature of the 470 

treatment) was set to VAS30. To evaluate the effects of different treatment expectations, 471 

we conducted a cluster-corrected dependent samples t-test on cue-locked data (0 to 2s 472 

after cue onset, 4-181Hz) which revealed no differences between high and low treatment 473 

expectations (all p > .05). Likewise, a cluster-corrected dependent samples t-test did not 474 

reveal significant clusters associated with treatment expectations at the treatment 475 

outcome (-1 to 2s at target temperature, 4-181Hz; all p > .05). 476 
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To further evaluate the effects of treatment expectations, we conducted a477

correlation analysis on z-standardized behavioral expectation effects per subject (i.e. 478 

placebo benefit; see STAR Methods for details). Here, positive or negative clusters would 479 

indicate a correlative association of EEG power and the size of the expectation effects. 480 

However, there was no significant association of between-subject expectation effects and 481 

EEG time-frequency data (all p > .05) in cue-locked (0 to 2s after cue onset, 4-181Hz) and 482 

treatment outcome-locked (-1 to 2s at target temperature, 4-181Hz) data.   483 

Interaction of agency and expectation 484 

Finally, we tested for an interaction of treatment expectation and agency. At cue-locked 485 

data (0 to 2s after cue onset, 4-181Hz), a cluster-corrected dependent samples t-test 486 

revealed a significant association of EEG power and the interaction term (p = .034; Fig. 8) 487 

ranging from 0 to 1.35s after cue onset and including frequencies from 4 to 13.5Hz. Here, 488 

we also conducted post-hoc t-tests, which revealed a crossed interaction (all p < .05, see 489 

Supplementary Data for detailed post-hoc t-test results confirming the crossed 490 

interaction). Treatment outcome-locked data did not reveal any cluster associated with 491 

an interaction of treatment expectation and agency (all p > .05). Activity at the interaction 492 

cluster was not associated with differences in averaged individual reaction times for self-493 

treatment (R² = 0.0505, F(1,52) = 2.76, p = 0.102; see Supplementary Figure 12).  494 

Again, we assessed in a linear mixed effects model if the interaction-related negative 495 

cluster was associated with individual trial-by-trial outcome pain ratings of the test trials 496 

(all VAS30; see STAR Methods). Average activity in the negative cluster was significantly 497 

associated (  = 0.74) with VAS outcome ratings on a trial-by-trial basis for VAS30 test 498 

trials (t(2588) = 2.51, p = .0121).  499 
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The analysis of the interaction term revealed differential integration of treatment 500

expectation and agency information in theta (4-8Hz) and alpha (8-12Hz) frequencies 501 

starting shortly after the presentation of the cue (see Fig. 8 for a summary of the results). 502 

Moreover, activity at this cluster representing theta-to-alpha (4-12Hz) activity was 503 

predictive of trial-by-trial variations in VAS outcome ratings, i.e. lower theta-to-alpha (4-504 

12Hz) activity was predictive of a higher treatment success.  505 

 506 

Figure 8. (a) Pain treatment paradigm, (b) a line plot showing EEG power averaged over the significant 507 

agency x expectation interaction cluster for self-treatment (green) and external treatment (purple), 508 

showing a significant crossed interaction, and (c) a time-frequency plot representing significant clusters of 509 

activity associated with the cue-locked interaction (agency x expectation) cluster. Time-frequency plots are 510 

averaged t-values over all channels including significant data points of the respective clusters of activity. 511 

Not significant data points are masked out. Colors represent t-values.  512 

Discussion 513 

In the present study, we demonstrated greater pain relief of self-treatment and high 514 

treatment expectations, but no interaction between these factors. Bayesian model 515 
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selection provided strong evidence for a shift model (shift in the mean of the likelihood 516

term or a shift in the mean of the prior term by self-treatment) over the likelihood 517 

precision modulation model (modulation of precision of sensory consequences of self-518 

generated outcomes). These effects also manifested in EEG data: differences in stimulus 519 

intensity in VAS10 versus VAS50 conditioning trials were associated with differences in 520 

the theta (4-8Hz), alpha-to-beta (8-30Hz) and low gamma bands (30-50Hz). Agency 521 

modulated low frequency oscillatory responses in the alpha-to-beta range (8-30Hz) and 522 

low gamma (30-50Hz) responses at treatment outcome.  523 

We took great care to match both conditions (self- versus external treatment) with 524 

respect to cognitive and motor demands and adjusted the trials for visual, cognitive, and 525 

motor components. We designed this experiment in a way that both conditions afforded 526 

a motor response by the participant, i.e. in self-treatment, the treatment was started by 527 

the participant by a button press, whereas in external treatment, the participants had to 528 

acknowledge the external-treatment trial by a button press. In addition, both buttons 529 

(treatment and acknowledge buttons) were displayed on the screen. Hence, during both 530 

self-treatment and external treatment, a single button press was made by the subject - 531 

either to start the treatment or to acknowledge the (supposed) experimenter-initiated 532 

treatment. In addition, the correspondingly pressed button (by the experimenter) lit up 533 

on the screen, i.e. in both conditions two buttons changed to green, as in external 534 

treatment, self-treatment was acknowledged  by the experimenter. By doing so, we 535 

created precise temporal contingencies between the button press initiating self-536 

treatment and the decrease of temperature. In the external treatment condition, the 537 

button press to acknowledge external treatment was not locked to the 538 

decrease in temperature, instead the change of the displayed start539 

given by the experimenter was in precise contingency with the stimulus decrease. This 540 
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represents a typical ingredient of control or agency, namely the temporal contingency of 541

an outcome with respect to an action. Consequently, as the motor component was 542 

precisely locked to the treatment in self-treatment but not in the external treatment 543 

condition, this difference could influence the pain experience.  544 

Concerning the role of agency, we expected an increased treatment efficacy when 545 

treatment was self-generated8,16. Indeed, data from both experiments support this 546 

hypothesis: self-treatment was associated with lower post-treatment VAS ratings as 547 

compared to external treatment, despite identical objective stimulus intensity. Based on 548 

previous studies, we also expected that pain perception was modulated by 549 

expectation32,34,37 40. Both experiments support this hypothesis and showed a graded 550 

effect of expectation, i.e. high treatment expectations were associated with a higher 551 

treatment success than low treatment expectations.  552 

Crucially, our experiment was designed to investigate the mechanism underlying 553 

improved treatment efficacy when treatment was self-initiated. In a Bayesian sense, pain 554 

perception can be seen as the integration of expectation (prior) and nociceptive input 555 

(likelihood), with the precision of each term determining the amount of its contribution. 556 

Here, we investigated on which of these parameters agency acted. This has been 557 

theoretically motivated: The forward model30 posits that small prediction errors during 558 

self-generated movement lead to a percept of a less intense sensation, relative to 559 

externally generated unpredicted outcomes; applied to our pain protocol, this suggests an 560 

improvement in treatment outcome by self-treatment from which we theoretically 561 

derived a (likelihood) mean shift model (see Fig. 1d). Alternatively, it has been suggested, 562 

in the context of active inference, that action necessarily entails a decrease in precision of 563 

self-generated sensory consequences31. Thus, because of the reduced sensory nociceptive 564 
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(likelihood) precision in the likelihood precision modulation model, the effect of 565

expectation should increase. Under these conditions, we would expect that the relative 566 

influence of prior expectations would be increased relative to the sensory evidence, which 567 

would be attenuated in precision, as represented in our likelihood precision modulation 568 

model. Therefore, self-treatment should lead to a greater influence of treatment 569 

expectation relative to external treatment24. From a statistical perspective, this would 570 

manifest as an interaction between agency and expectation, i.e. larger differences 571 

between low and high treatment expectations in self-treatment as compared to external 572 

treatment (see Fig. 1e). 573 

Our data showed clear effects of sensory attenuation and treatment expectations in two 574 

experiments with different pain rating modalities, and no significant interaction between 575 

sensory attenuation and treatment expectation effects. This clearly favors the mean shift 576 

model for self-initiated pain treatment. This was formally assessed by Bayesian model 577 

comparisons, which strongly favored the mean shift model over the likelihood precision 578 

modulation model and all other models. This is in agreement with a study by Woo et al. 579 

(2017) where choices regarding pain stimulation showed additive reductions of pain by 580 

control and expectations41, which can also be interpreted as a prior or likelihood shift by 581 

control in a Bayesian sense.  582 

The Bayesian likelihood (mean) shift model included a free parameter (pshift) able to shift 583 

the mean of the likelihood distribution. However, it should be noted that the shift model 584 

can be implemented in an alternative manner, namely using a free parameter that can 585 

vary the mean of the prior distributions instead of the mean of the likelihood, which 586 

cannot be differentiated on a computational modelling basis using the Bayesian 587 

integration model. However, the EEG data with its temporal resolution can help to 588 



 
31 

disentangle this ambiguity. The EEG data showed a cue-locked negative cluster of activity 589

in the theta-to-alpha range (4-12Hz), which was correlated with trial-by-trial VAS ratings 590 

in test trials. The early onset of this cluster (associated with cue onset) favors a 591 

modulation (i.e. shift) of expectations as opposed to somatosensation and provides 592 

evidence that the modulation by agency affects the prior rather than the likelihood term 593 

in this model.  594 

EEG data analysis was focused on two phases. Firstly, we investigated EEG power shortly 595 

after cue presentation, and secondly, we explored a time frame including the pain relief 596 

phase and the outcome phase, i.e. 1s before the target outcome temperature was reached 597 

by the thermode and 2s after.  598 

As expected for differences in physical stimulus intensities (see Ploner et al., 2017 for a 599 

review), our analysis revealed a clear difference between VAS10 and VAS50 conditioning 600 

trials at the treatment outcome42. Relative to the VAS50 condition, higher treatment 601 

success (VAS10) was associated with decreased alpha-to-beta (8-30Hz) and theta (4-8Hz) 602 

activity during the relief phase, while the outcome phase was associated with increased 603 

alpha-to-beta and decreased theta activity for VAS10 as compared to VAS50 trials. This is 604 

in line with findings associating lower alpha-to-beta power (8-30Hz) and higher theta 605 

power (4-8Hz) with higher pain ratings or higher pain intensity32,34,43 47. Here, we extend 606 

this to a treatment context, where higher alpha-to-beta power (8-30Hz) and lower theta 607 

power (4-8Hz) was associated with more treatment success during the outcome phase. 608 

Additionally, we observed a negative association of alpha-to-beta power and treatment 609 

success during the relief phase. Importantly, using a control analysis we ruled out that 610 

these clusters are associated with increased outcome latencies by ramp times leading to 611 

differences in time locks in VAS10 as compared to VAS50 conditioning. In general, this 612 



 
32 

analysis revealed a very interesting pattern: While in the relief phase, decreased alpha-613

to-beta activity was associated with lower stimulus intensity. In the outcome phase, when 614 

the target temperature was reached, increased activity was associated with lower 615 

stimulus intensity.  616 

A similar pattern i.e. a negative cluster starting in the relief phase in the theta-to-low 617 

gamma range (4-50Hz) and a positive cluster at the outcome phase in the alpha-to-beta 618 

range (8-30Hz) emerged when comparing self- versus external treatment trials. In the 619 

treatment phase, it is possible that latencies in reaction times for self-treatment can cause 620 

different pain plateau durations (as compared to external treatment), which can lead to 621 

unspecific time effects such as habituation. To address this concern we explicitly 622 

accounted for reaction times in our statistical model, which revealed that the cluster 623 

representing a negative association of EEG power of the agency contrast was in part 624 

explained by differences in reaction times and thus different pain plateau times as 625 

compared to external treatment. This could explain the similar negative association in 626 

self-treatment by increased habituation resulting from a fatigue of peripheral nociceptive 627 

neurons. Pain intensity would already be decreased in self-treatment as compared to 628 

external treatment in the relief phase by increased habituation48 52, similar to an actual 629 

difference in stimulus intensity. Importantly, the cluster representing a positive 630 

association with agency was not affected by differences in reaction times. Even though 631 

behavioral ratings indicated a comparable influence of treatment expectations, we did not 632 

find expectations associated with EEG activity at the treatment outcome. Instead, theta 633 

and alpha oscillations at cue onset were differentially representing agency and 634 

expectations and were predictive of VAS outcome ratings.  635 
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We observed modulations by stimulus intensity and agency, but not by expectations in 636

outcome-locked EEG data. This is in line with previous studies which revealed cue-related 637 

expectation effects in the alpha-to-beta band before painful stimulation32,34, but not 638 

during painful stimulation. In another study, pain-induced alpha and gamma responses 639 

were significantly influenced by stimulus intensity but not by placebo hypoalgesia33. 640 

However, it has been demonstrated that expectation-based pain modulation can influence 641 

event-related pain potentials33,40,53 55. Overall, this suggests that expectations are 642 

associated with cue-locked effects. Expectations might be encoded in oscillatory 643 

processes of brain areas typically associated with contextual influences of top-down 644 

processing. This is in contrast to agency, which modulated activity at both, cue-locked (as 645 

an interaction) and outcome locked activity (as a main effect), suggesting influences on 646 

expectations and sensory processing. 647 

A possible limitation of our modeling approach is that it considers the entire session and 648 

cannot reveal the dynamics e.g. of Bayesian updating across trials as can be revealed using 649 

a dynamical systems approach56. However, in our study, in which expectations were 650 

relatively stable throughout the experiment, temporal variations of expectations would 651 

be rather small. Since the temporal evolution of pain-related expectancies are an 652 

important factor in e.g. chronic pain conditions25,57, future studies with amended 653 

protocols could consider these dynamics. 654 

In conclusion, pain treatment is additively enhanced by agency and positive expectations. 655 

Sensory attenuation and objectively different stimulus intensities modify oscillatory 656 

activity at the relief and outcome phase of pain treatment, whereas expectation effects 657 

(interacting with agency) were associated with EEG activity directly following the cue. 658 

Using Bayesian model comparisons our data revealed no evidence for a decrease of 659 
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precision in self-treatment, thus favoring a mean shift as the mechanism underlying the 660

positive effect of self-treatment.  661 

Experimental model and subject details 662 

This is a human study. Information related to the subjects (e.g. sample size and sex) can 663 

be found in the Method details section of the STAR Methods of this paper.  664 

Lead Contact  665 

Further information and requests for resources should be directed to the lead contact 666 

Andreas Strube (a.strube@uke.de) or to Christian Büchel (buechel@uke.de). 667 

Data and code availability 668 

Data and code for this study are available on https://osf.io/q8tgj/.  669 

Strube A., Horing B., Rose M., Büchel C., (2022) Open Science Framework ID q8tgj. Placebo 670 

and Sensory Attenuation in Pain Treatment. 671 

Any additional information required to reanalyze the data reported in this paper is 672 

available from the lead contact upon request.     673 

Materials availability 674 

This study did not generate new unique materials or reagents.  675 

Method details 676 

We conducted two experiments in which positive and negative treatment expectations as 677 

well as self- and external treatment were combined. In experiment 1, subjects were 678 

continuously rating their pain experience during painful stimulation and after self- or 679 

external treatment of pain. In experiment 2 with EEG recordings, we restricted the 680 
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paradigm to include only two rating phases instead of a continuous rating to avoid 681

excessive movement.  682 

Subjects  683 

In experiment 1, 29 healthy participants were enrolled. All participants gave informed 684 

consent and were paid as compensation for their participation. Applicants were excluded 685 

if one of the following exclusion criteria applied: neurological, psychiatric, dermatological 686 

diseases, pain conditions, current medication, or substance abuse. All volunteers gave 687 

their informed consent. The study was approved by the Ethics Board of the Hamburg 688 

Medical Association. Four participants had to be excluded due to adverse reactions to the 689 

capsaicin cream, leaving a final sample of 25 participants (mean age 29.3, range 19 61 690 

years, sex: 14 female / 11 male).  691 

The required sample size of experiment 2 was determined according to a power 692 

calculation58 (G*Power V 3.1.9.4) based on the behavioral sensory attenuation and 693 

expectation effects in experiment 1. For the sensory attenuation effect, we observed an 694 

effect size of f = 0.508 ( p2 = 0.205) and an effect size of f = 0.669 ( p2 = 0.309) for 695 

the expectation effect. Using a power of (1-beta) of 0.8 and an alpha level of 0.05 and 696 

assuming low correlations (0.2) among repeated measures, this leads to a required 697 

sample size of 15, taking into account the weaker agency effect. However, given the 698 

different rating in the second experiment we increased the planned number of 699 

participants to 60. Assuming the same proportion of excluded participants as in 700 

experiment 1, this allowed us to potentially detect a medium effect size59 of f = 0.25 with 701 

a sample size of 53.  702 
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We enrolled 60 healthy participants in experiment 2. Five participants had to be excluded 703

due to adverse reactions to the capsaicin cream and 1 participant had to be excluded due 704 

to technical errors during recording, leaving a final sample size of 54 (mean 28.2, range 705 

20 60 years, sex: 34 female / 20 male).  706 

Thermal stimulation and capsaicin application 707 

Both experiments started with the same preparation procedure with the application of a 708 

capsaicin cream (ABC Heat Cream, Beiersdorf AG, Germany, 750µg capsaicin/g) to the left 709 

radial forearm. Two skin patches of the size of the thermal stimulator probe were covered 710 

with the capsaicin cream for a total of 15 minutes. Thermal stimulation was performed 711 

using a 30 × 30 mm2 Peltier thermode (Pathway model ATS, Medoc, Israel). The baseline 712 

temperature was set to 30°C for experiment 1 and the rise rate was set at 8°C/s for both 713 

experiments. The baseline temperature for experiment 2 was set at a lower temperature 714 

of 28°C to minimize skin irritation and attrition. After 2 blocks (experiment 1) or after the 715 

first experimental block (experiment 2), the capsaicin cream was reapplied for 5 minutes, 716 

and the stimulated skin patch was changed to avoid sensitization. In a first step, a single 717 

thermal stimulation with a slowly increasing ramp was used to familiarize the participant 718 

with the thermal stimulation. To test if the capsaicin cream was effectively reducing the 719 

pain threshold participants were asked to report the moment they felt a sensation of pain. 720 

If participants reported pain only above 46°C, the cream was reapplied for another 5 721 

minutes on the skin patch and the initial slowly ramping heat stimulus was repeated (this 722 

applied to 2 participants in experiment 1 and to 4 participants in experiment 2). 723 
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TENS cover story as a treatment situation  724 

Afterwards, TENS (Transcutaneous Electric Nerve Stimulation) was established as a cover 725 

story for the treatment situation. TENS was presented as a nerve stimulation to effectively 726 

reduce pain by modulation of the nerve transmission. Putative TENS has been used to 727 

reliably generate treatment expectations in pain paradigms27,60 62. We provided 728 

volunteers with a deceptive brochure  explaining that different stimulation 729 

frequencies result in different treatment efficacies. An electrode was attached to the 730 

elbow which was connected to an electrical current stimulator (Digitimer Ltd., model 731 

DS7A, United Kingdom). Participants were told that the electrical current stimulator 732 

needed to be individually calibrated. For this, we applied short trains of electrical currents 733 

with increasing intensity and asked the participant to report if there was a sensation; this 734 

was intended to establish the belief that the device is actually active and capable of 735 

producing said currents. Afterwards and without knowledge of the participant, the 736 

electrical current stimulator was turned off and the participants were told that the 737 

settings for optimal stimulation were found. During the experiment, no actual electrical 738 

stimulation was applied. Additionally, and to reinforce the TENS cover story, participants 739 

were asked to report if they felt a stimulation during the experiment and they were told 740 

that if this was the case, the stimulator needed to be recalibrated.  741 

Pain calibration 742 

We individually calibrated the heat stimulation using an adaptive procedure to the levels 743 

of 10, 30, 50 and 70 on a Visual Analogue Scale (VAS) from -100 to 100 where a VAS of 0 744 

represented the pain threshold. The VAS was presented on a computer screen and ratings 745 

were given using the cursor keys on a conventional keyboard. During the information 746 
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procedure at the beginning of the experiment, participants got acquainted with the VAS 747

scale and printed screenshots of VAS scales were shown and explained. At first, 748 

participants were stimulated with 34°C, 34.5°C, 35°C and 35.5°C and were asked to report 749 

if any of these stimuli were painful. Note that temperatures required to generate pain on 750 

capsaicin sensitized skin are regularly in this temperature range. If the participant 751 

reported that the stimulation was painful, the procedure was continued with a starting 752 

temperature of 35°C, otherwise the starting temperature was set to 36°C for a stepwise 753 

procedure to find the pain threshold. Stimulus duration was set to 8s, according to the 754 

duration of VAS70 pain during the experiment. For the stepwise stimulus determination, 755 

8 stimuli were presented with fixed reductions and increases in temperature relative to 756 

the pain threshold and participants were asked to rate the stimuli on a scale which was 757 

labeled normal sensation  at VAS -100, minimally painful  at VAS 0 and extremely 758 

p  at VAS 100. Individual VAS levels of 10, 30, 50 and 70 were estimated using a 759 

linear regression of the VAS ratings recorded during this calibration phase. See 760 

Supplementary Data for calibration data. 761 

Trial design and block structure: experiment 1 762 

Each trial was structured in 3 phases: Trial start, pain phase and treatment phase (see Fig. 763 

2b). At trial start, an empty bar was presented in the center of the screen. The thermode 764 

temperature remained at the baseline of 30°C for 5s. Afterwards, the pain phase started, 765 

which was signaled by a filled red bar in the center of the screen. Thermode temperature 766 

was increased with a rate of 8°C/s to the temperature corresponding to the calibrated 767 

pain value of VAS70. The pain phase lasted for randomly jittered 8-10s. At the beginning 768 

of the treatment phase, a cue was presented which indicated whether high or low 769 

treatment effectivity was to be expected and whether self-treatment or external 770 
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treatment would occur. The cue was designed as a reduction of the centered red bar (i.e. 771

more reduction by 2/3 of the total height with high treatment expectation as compared 772 

to a reduction by 1/3 of the total height with low treatment expectation) and the word 773 

YOU (i.e. self-treatment) or HE (i.e. experimenter-induced, external treatment) written 774 

inside the bar, indicating self-or external treatment. After a lag of 2s, 2 treatment buttons 775 

were activated and appeared on the display, changing to green when pressed either by 776 

the subject or automatically. The external treatment was communicated as being done by 777 

the experimenter to reinforce the notion of a treatment setting but was in fact computer-778 

initiated . In the case of self-treatment, the 779 

participant pressed a button (A) and the treatment started with a reduction of the 780 

thermode temperature to the target level of VAS50, VAS30 or VAS10, depending on the 781 

condition. Meanwhile, participants received the signal of a button press (B) from the 782 

experimenter as an indication that the experimenter had acknowledged the self-783 

treatment. In the case of an external treatment, a button press (B) by the participant had 784 

to acknowledge the external treatment. Meanwhile, participants received an indication of 785 

a button press (A) from the experimenter, signaling that the treatment has been started. 786 

Participants were instructed to perform this task as soon as the treatment buttons 787 

appeared on the screen. Importantly, this procedure ensured identical motor output for 788 

the self-treatment and the external treatment conditions. In conditioning trials, the 789 

expectation of highly effective treatment resulted in a relatively more effective treatment 790 

and a reduction of the pain stimulus to the individual level of VAS10, as compared to a 791 

reduction of the pain stimulus to VAS50 in conditioning trials with low treatment 792 

expectations. For test trials, regardless of cued treatment effectivity, the pain stimulus 793 

was reduced to VAS30. The reduction of the pain stimulus was set at -8°C/s. In total, the 794 

treatment phase lasted 17-19s for a total trial duration of 32s including all 3 phases. 795 
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Additionally, participants were asked to continuously rate their pain level on a scale from 796

0 (minimal pain) to 100 (extreme pain) during the whole trial duration. A rating scale 797 

with a starting point at VAS0 (i.e. position of a red rating indicator) appeared ranging from 798 

VAS0, labelled as minimally pain  to VAS100, labelled as extremely pain . The 2 799 

buttons used for the rating were represented on the screen and were lighting up when 800 

pressed on the keyboard. After completion of the rating phase, the heat stimulus was 801 

reduced to the baseline temperature for the remaining intertrial interval of 18s. 802 

During experiment 1, 4 experimental blocks were presented. Each block consisted of a 803 

total of 26 trials. It started with 8 conditioning trials, 4 of which were associated with low 804 

treatment success, 4 with high treatment success, each with the respective cues.  After the 805 

conditioning trials, 3 micro blocks were presented consecutively. Each micro block 806 

consisted of 6 trials of following types: 807 

(1) 1 conditioning reinforcement trial with high expectation of treatment success with 808 

actual high treatment success (reduction of pain from VAS70 to VAS10). 809 

(2) 1 conditioning reinforcement trial as a reinforcement with low expectation to 810 

treatment success with actual low treatment success (reduction of pain from VAS70 to 811 

VAS50). 812 

(3) 4 test trials with medium treatment success (reduction in pain from VAS70 to VAS30). 813 

I.e.: 814 

a. 1 trial with high expectation of treatment success and self-treatment with a reduction 815 

of pain from VAS70 to VAS30. 816 

b. 1 trial with high expectation of treatment success and external treatment with a 817 

reduction of pain from VAS70 to VAS30. 818 
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c. 1 trial with low expectation of treatment success and self-treatment with a reduction of 819

pain from VAS70 to VAS30. 820 

d. 1 trial with low expectation of treatment success and an external treatment with a 821 

reduction of pain from VAS70 to VAS30. 822 

The order of trials within these micro blocks was randomized. Randomization was 823 

constrained so that a trial was not directly followed by the same type of trial, e.g. there 824 

were no 2 consecutive low expectation self-treatment test trials. For the 8 conditioning 825 

trials at the beginning of a block, it was ensured that at most 2 consecutive conditioning 826 

trials with the same condition (e.g. high treatment success) occurred.  827 

In total, 4 experimental blocks were presented. During the first block conditioning and 828 

reinforcement trials were either exclusively self-treatment trials or external treatment 829 

trials. This was switched after 2 blocks, i.e. if the first 2 blocks were self-conditioning 830 

blocks the last 2 blocks were external conditioning blocks and vice versa.  831 

Before the first experimental block was presented, 4 training trials were performed, 832 

during which the illusion of treatment was demonstrated by pressing the button 833 

connected to the heat stimulation device for pain reduction.  At this stage, an actual button 834 

press by the experimenter was required during external training trials to establish the 835 

illusion of a direct link between TENS and the button press as for the participant. To do 836 

so, the experimenter sat next to the participant and demonstratively pressed the required 837 

button on the keyboard of the participant. In the remainder of the experiment, external 838 

 839 
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Trial design and block structure: experiment 2 840 

During experiment 2 (see Fig. 2c), the paradigm was split into 5 phases: Trial start (4s), 841 

pain phase (8s), pain rating phase (6s), treatment phase (8s) and treatment rating phase 842 

(6s). Rating scales and related rating buttons on the screen were only presented during 843 

rating phases. During the pain rating phase, a red indicator on the VAS was presented with 844 

a random starting position. During the treatment rating phase, the final pain rating 845 

position of that red indicator was presented for orientation alongside a new green 846 

indicator initially appearing at a random position. The green indicator was used to rate 847 

the treatment outcome. In the treatment phase of experiment 2, treatment buttons were 848 

presented and activated simultaneously with the treatment cue without a jittered lag (as 849 

compared to experiment 1).  850 

In total, 2 experimental blocks were presented. The first block consisted of conditioning 851 

and reinforcement trials which were either exclusively self-treatment trials or external 852 

treatment trials. This was switched after one block, i.e. if the first block was a self-853 

conditioning block the second block was an external conditioning block, and vice versa. In 854 

total, 56 trials were presented per block, consisting of 8 conditioning trials followed by 8 855 

micro blocks each containing both reinforcers (VAS10 and VAS50 conditioning trials) and 856 

each of the 4 test trial types (self- versus external conditioning, low versus high treatment 857 

expectation). Trials were presented with an intertrial interval of 4s. The first 858 

experimental block was presented after 4 training trials which were performed as in 859 

experiment 1.  860 
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Questionnaire Data 861 

After experiment 2 was concluded, participants were asked to complete several 862 

questionnaires. We included the BDI-V (simplification of the Beck Depression Inventory), 863 

LSHS-R (Launay-Slade Hallucination Scale  German revised version), STAI-X1 (State) and 864 

STAI-X2 (Trait; State-Trait-Anxiety-Scale), FKK (German locus of control scale), SWE 865 

(German General Self-Efficacy Scale) and PCS (Pain Catastrophizing Scale  German 866 

translation) scales63 71. Pearson product-moment correlation coefficients were computed 867 

to assess the relationship between questionnaire data and agency and placebo benefits. 868 

Agency benefits were defined as the difference between post-treatment VAS ratings of 869 

self-treatment and external treatment conditions. Placebo benefits were defined as the 870 

difference between post-treatment VAS ratings of high treatment expectation and low 871 

treatment expectation conditions. See Supplementary Table 1 for a summary of the 872 

correlational results of the questionnaire data.  873 

EEG recording 874 

EEG data were acquired using a 64-channel Ag/AgCl active electrode system (ActiCap64; 875 

Brain Products GmbH, Germany) placed according to the extended 10 20 system72. 60 876 

electrodes were used of the most central scalp positions. The EEG was sampled at 500 Hz, 877 

referenced at FCz, and grounded at Iz. For removal of ocular movement artifacts, 878 

horizontal and vertical bipolar electrooculogram (EOG) were recorded using the 4 879 

remaining electrodes.  880 
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EEG preprocessing 881 

The data analysis was performed using the Fieldtrip toolbox for EEG/MEG analysis73. For 882 

preprocessing, data were epoched and time-locked to the onset of the cue signaling the 883 

start of the treatment phase. Each epoch was centered (subtraction of the temporal mean) 884 

and included a time range of 19s before and 9s after trigger onset (starting with the empty 885 

cue signaling the start of the trial up to the end of the treatment phase). 886 

We employed a preprocessing approach by Hipp et al. (2002)74 by splitting the data into 887 

2 band-pass filtered sub-sets from 4 to 34Hz for low frequencies and from 16 to 250Hz 888 

for high frequencies. This enabled efficient separation of low- and high frequency artifacts 889 

in subsequent ICA analysis. EEG epochs were visually inspected, and trials contaminated 890 

by artifacts due to gross movements or large technical artifacts were removed. Trials 891 

contaminated by eye-blinks, muscle activity, technical artifacts or movements were 892 

corrected using an independent component analysis (ICA) algorithm75,76 after careful 893 

inspection of topographies, power spectra and relation of ICA time courses to the 894 

temporal structure of the experiment. Artifactual components were removed before the 895 

remaining components were back-projected and resulted in corrected data. 896 

Subsequently, the data were re-referenced to a common average of all EEG channels and 897 

the previous reference channel FCz was reused as a data channel. Finally, epochs were 898 

visually screened and trials with remaining artifacts were excluded from analysis. 899 

Before time frequency transformations for data analysis were performed on the cleaned 900 

datasets, the time axis of single trials was shifted to create cue-locked and outcome-locked 901 

data. For cue-locked data, we set the onset of the cue signaling to the start of the treatment 902 

phase as t = 0. Outcome-locked data takes individual differences in response time into 903 

account and sets t = 0 to the time point when the thermode reached the treatment target 904 



 
45 

temperature (calibrated VAS10, VAS30 and VAS50 levels for low conditioning, test and 905

high conditioning trials, respectively). Trials were excluded if this duration (from cue 906 

onset to treatment outcome) was longer than 6s. This allowed us to create an analysis 907 

window of 2s in subsequent time-frequency analysis without contamination by the 908 

subsequent rating phase.  909 

EEG spectral analysis 910 

Spectral analysis was adapted from Hipp and colleagues74. This approach ensured a 911 

homogenous sampling and smoothing in time and frequency space. We calculated 912 

spectral estimates for 23 logarithmically scaled frequencies ranging from 4 to 181 Hz 913 

(0.25 octave increments) for the pain phase and treatment phase in 0.05s steps. For cue-914 

locked data, this included the treatment phase from cue onset up to 2s after cue onset. For 915 

treatment-locked data, this included the relief phase from 1s before the treatment 916 

outcome (target temperatures of VAS10, VAS30 or VAS50) was reached, and the outcome 917 

phase up to 2s after the target temperature was reached. Using the multitaper (DPSS) 918 

approach, we set the temporal and spectral smoothing to match 250ms and 3/4 octave, 919 

respectively. For frequencies below 16 Hz, we employed 250ms temporal windows and 920 

varied the number of Slepian tapers to approximate a 3/4 octave spectrum smoothing. 921 

We changed the time window for frequencies below 16 Hz to achieve a frequency 922 

smoothing of 3/4 octaves with a single taper. We computed the frequency transform using 923 

high- and low-frequency data for frequencies above and below 25 Hz, respectively. 924 

Analysis was then continued with the combined spectral data after averaging of spectral 925 

estimates per block and condition over trials for each subject.  926 
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For the baseline correction of time frequency data, the mean and standard deviation 927

were estimated (for each subject/channel/frequency combination, separately) from 0.5 928 

to 7.5s of the pain phase (i.e. increases and decreases in EEG power activity indicate 929 

deviations from EEG power during painful stimulation). The mean spectral estimate of the 930 

baseline was then subtracted from each data point, and the resulting baseline-centered 931 

values were divided by the baseline standard deviation (classical baseline normalization 932 

 additive model77).  933 

Quantification and statistical analysis 934 

All statistical parameters described in this section are reported in the Results section or 935 

in the Supplementary Data.  936 

Behavioral data analysis 937 

For experiment 1, we performed analysis on the continuous VAS rating by simply using 938 

the last data point of each trial. For experiment 2, we performed analysis on the single 939 

post-treatment VAS rating. Here, we have 2x2 conditions for test trials (low versus high 940 

treatment expectation / self- versus external treatment) and 2 conditions for conditioning 941 

trials. Firstly, we conducted a 3x1 repeated measures ANOVA with post-hoc t-tests to 942 

evaluate the differences between VAS10 (conditioning), VAS30 (test) and VAS50 943 

(conditioning) conditions, respectively. Secondly, we conducted a 2x2 repeated measures 944 

ANOVA to evaluate differences between the different test conditions (low versus high 945 

expectation / self- versus external treatment) and the interaction term of expectation and 946 

agency.  947 
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Bayesian integration models of placebo pain treatment 948 

For model-based analysis of our post-treatment VAS rating data, we designed Bayesian 949 

integration models of pain perception in placebo pain treatment (see Büchel et al., 2014 950 

for a review) in accordance with the likelihood shift model and the likelihood prior 951 

modulation model24. In the Bayesian formulation of pain perception, Bayes theorem is 952 

used to estimate the level of perceived pain, taking precision-weighted prior experiences 953 

into account (Fig. 1a and Eq.1). Formally, the model integrates a prior with a likelihood to 954 

estimate a posterior. Both the prior and the likelihood were approximated by normal 955 

distributions allowing for an analytical integration using normal-normal conjugate priors 956 

to estimate the normal posterior.  957 

(Eq.1) 958 

 959 

 960 

With respect to the behavioral data, our model predicted the painfulness of the test phase 961 

post-treatment VAS ratings (posterior) by integrating conditioning post-treatment VAS 962 

ratings as a prior (mean and variance derived from VAS10 and VAS50 post-treatment VAS 963 

ratings for high and low treatment expectation conditions, respectively) with an 964 

individual estimate of the likelihood (average of VAS10 and VAS50 parameters for each 965 

subject). Gaussian approximation of the rating data was performed by fitting a Gaussian 966 

cumulative probability density functions to the cumulative sum of the ratings using a 967 

robust grid search27.  968 
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For the estimation of the posterior parameters in self-treatment trials we created two 969

derived models, based on a shift of the likelihood and a modulation of the likelihood 970 

precision. For the likelihood shift model, we included a free parameter pshift to enable a 971 

likelihood shift (Eq.2; Fig. 1b): 972 

(Eq.2) 973 

 974 

 975 

 976 

For the likelihood precision modulation model we included a free parameter pprecision to 977 

represent a modulation of likelihood variance by self-treatment. Under this model, 978 

posterior parameters are estimated by the following equations (see also Fig. 1c): 979 

(Eq.3) 980 

 981 

 982 

We used a variational Bayesian inference  to estimate the parameters of all models using 983 

the VBA toolbox78 for Matlab (R2021a). Note that we also tested a prior precision 984 

modulation model where the free parameter pprecision was modulating prior precision. We 985 

used uninformative priors for both parameters (pprecision ~ Normal(1,1000) and pshift ~ 986 

Normal(0, 1000). In addition, we fitted a full combined model of all three free parameters 987 

(i.e. pshift, pprecision at prior, pprecision at likelihood), a combined model including the pshift and 988 
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pprecision at prior parameters, a combined model including the pshift and pprecision at 989

likelihood parameters, and a null model (Eq.1) in which all parameters were 990 

 through their priors (pprecision ~ Normal(1, 1e-20) and pshift ~ Normal(0, 1e-991 

20). Given our behavioral post-treatment VAS rating data (i.e. empirical posterior), VBA 992 

recovers an approximation to both the posterior density on unknown variables (pprecision 993 

and pshift for the likelihood precision modulation model and the likelihood shift model, 994 

respectively) and the log model evidence (which is used for model comparison). We used 995 

a random effects (RFX) Bayesian model selection approach35,36 to estimate the overall 996 

posterior model probability across subjects. Finally, we estimated the protected 997 

exceedance probability as a metric for the Bayesian model comparison of all candidate 998 

models35.  999 

EEG data analysis    1000 

Here, we analyzed the effects of 2 phases of pain treatment. Firstly, we wanted to analyze 1001 

effects associated with the treatment cue indicating low or high treatment success and 1002 

self- or external treatment. For this analysis, we used a cue-locked analysis window of 2s 1003 

after the onset of the cue. Secondly, we wanted to evaluate the relief phase and treatment 1004 

outcome based on low or high treatment expectations, agency, and their interaction. As 1005 

the treatment outcome occurred at highly variable time points based on the response, we 1006 

analyzed 1 to 2s in relation to the time point when the thermode reached the treatment 1007 

target temperature (where -1 to 0s was defined as the relief phase and 0 to 2s was defined 1008 

as the treatment outcome phase).  1009 

We corrected all statistical tests in electrode space for multiple comparisons using non-1010 

parametrical permutation tests of clusters79. Samples (exceeding the threshold of p < .05) 1011 
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were clustered in connected sets on the basis of temporal (i.e. adjacent time points), 1012

spatial (i.e. neighboring electrodes), and spectral adjacency. Clustering was restricted in 1013 

a way that only samples were included in a cluster which had at least 1 significant 1014 

neighbor in electrode space (i.e. at least one neighboring channel also had to exceed the 1015 

threshold for a sample to be included in the cluster). Neighbors were defined by a 1016 

template provided by the Fieldtrip toolbox corresponding to the used EEG montage. 1017 

A cluster value was defined as the sum of all statistical values of included samples. Monte 1018 

Carlo sampling was used to generate 1000 random permutations of the design matrix by 1019 

shuffling of condition labels per subject, and statistical tests were repeated in time1020 

frequency space with the random design matrices. The probability of a cluster from the 1021 

original design matrix (p-value) was calculated by the proportion of random design 1022 

matrices producing a cluster with a cluster value exceeding the original cluster. Muscular 1023 

and ocular electrodes were excluded from the cluster analysis. 1024 

Further, we wanted to explore correlations of between-subject time-frequency responses 1025 

and benefits of high treatment expectation versus low treatment expectation in post-1026 

treatment VAS ratings, as well as sensory attenuation model parameters. For each 1027 

participant, we calculated the placebo benefit by the within-subject difference of z-1028 

normalized post-treatment VAS ratings between high and low treatment expectations in 1029 

test trials. For the benefit of agency, we used the single subject mean estimate of the pshift 1030 

parameter from the VBA model inversion procedure, accordingly.  1031 

Any positive or negative cluster in correlation analysis of EEG power during test trials 1032 

would indicate an association with placebo or agency benefits. Here, a p-value of p < 0.05 1033 

test statistic as implemented in the Fieldtrip 1034 

toolbox was used as a threshold for clustering.  1035 
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Linear mixed effects models of EEG clusters 1036 

To better quantify the properties of EEG clusters (see Results), we assessed if these 1037 

clusters were associated with trial-by-trial pain reports. In this analysis, we focused on 1038 

VAS30 test trials which give the advantage that they are not confounded by different 1039 

temperatures. I.e., the intensity contrast of VAS10 and VAS50 conditioning is confounded 1040 

with actual differences in temperatures calibrated to VAS10 and VAS50. Considering only 1041 

test trials, the temperature was kept constant, meaning that differences in EEG power are 1042 

attributable to cognitive processes other than pure sensory processes by nociceptive 1043 

intensity differences.  1044 

To perform a trial-by-trial analysis, we had to generate single-trial time-frequency data. 1045 

We used the same parameters as in the original time-frequency analysis to generate cue-1046 

locked and outcome-locked time-frequency power estimates. It should be noted that the 1047 

preprocessing in the original analysis was done on 2 separate data sets split by frequency 1048 

(<=25Hz and >25Hz; see STAR Methods), so this did not necessarily mean that the same 1049 

trials at both low and high frequency ranges were included for each subject. To allow a 1050 

single trial analysis across these clusters (which were in both high and low frequency 1051 

ranges) we only included trials for the single trial analysis that were present in both high 1052 

and low frequency ranges for each subject. Overall, we removed 11.2% of trials (on 1053 

average 1.51 trials per subject per test condition) in the low frequency range and 9.9% of 1054 

trials (on average 1.32 trials per subject per test condition) in the high frequency range. 1055 

A baseline correction was performed afterwards on each trial separately with the same 1056 

basis as in the original analysis. I.e., for each condition we used the mean and standard 1057 

deviation over the averaged trials for baseline correction via z-standardization for each 1058 

single trial time-frequency power estimates, separately.  1059 
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As a next step, we used these single trial time-frequency power estimates to produce a 1060

cluster value for each subject-trial-cluster combination. We extracted the cluster 1061 

properties from clusters resulting from our original cluster analysis. We cumulated the 1062 

power estimate of each significant datapoint (channel-time-frequency combination) from 1063 

our original clusters separately for each trial and averaged this accumulated power 1064 

estimate over the total amount of significant data points to create an average single-trial 1065 

cluster value for each subject and trial. 1066 

Model estimation used a linear mixed-effects model as implemented in MATLAB 1067 

(R2021a) in the fitlme function. In total, we included 2 clusters (see Results) in the linear 1068 

mixed-effects model: The positive outcome-locked cluster of the agency contrast (self-1069 

treatment versus external treatment in test trials averaged over predictive cues) and the 1070 

cue-locked interaction contrast of expectations (i.e. predictive cues) and agency. Negative 1071 

outcome-locked clusters of the agency contrast were excluded based on a confound with 1072 

reaction times. 1073 

Then, we fitted a linear mixed-effects model for VAS outcome ratings at VAS30 test trials, 1074 

with fixed effects for each averaged single-trial cluster values, and a random effect for the 1075 

intercept. A p-value of .05 was considered as threshold of significance. 1076 

Reaction time and ramp time analysis 1077 

In this paradigm, pain treatment was either self-administered (i.e. self-treatment) or 1078 

externally administered (external treatment) which underlie individual differences in 1079 

latencies. These differences in latencies (i.e. by faster or slower responses) are associated 1080 

with differences in pain plateau durations as a reduction of temperature was directly 1081 

coupled to these responses. As continuous pain leads to habituation or sensitization48 52, 1082 
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EEG and behavioral effects of agency could be confounded by these processes, e.g. a longer 1083

plateau duration in the self-treatment condition might explain differences in EEG data. To 1084 

test for confounding of the results, we examine the behavioral and EEG effects in a simple 1085 

linear regression model. We tested agency benefits (self-treatment minus external 1086 

treatment post-treatment VAS rating) averaged for each participant in a linear regression 1087 

model with the average reaction time of each participant as a regressor for experiment 1 1088 

and 2. Also, we assessed if activity at different EEG clusters (see Results) were associated 1089 

with latency differences.  1090 

Firstly, we assessed if clusters associated with differences between VAS10 and VAS50 1091 

conditioning were associated with outcome latency differences due to different ramp 1092 

times for VAS10 and VAS50 conditioning trials. As VAS10 and VAS50 conditioning 1093 

temperatures were individually calibrated, there were differences in ramp times between 1094 

participants for VAS10 and VAS50 pain levels. For example, a decrease to a VAS50 1095 

temperature of 43°C from a VAS70 plateau of 47°C takes 500ms whereas a decrease to 1096 

41°C to the VAS10 level would take 750ms. Naturally, this leads to different outcome 1097 

latencies based on individual ramp time differences between the VAS50 and VAS10 levels. 1098 

Simple linear regression was used to test if ramp time differences significantly predicted 1099 

the difference between VAS10 and VAS50 conditioning in averaged EEG power at each 1100 

cluster. 1101 

As a next step, we assessed if EEG clusters resulting from the t-contrast of agency (self- 1102 

versus external treatment) at VAS30 test trials could be explained by reaction time 1103 

differences. Here, ramp time differences are not relevant as each condition tested in this 1104 

contrast was associated with the same ramp time leading to VAS30 temperatures for self- 1105 

and external test trials alike.  1106 
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In summary, our cluster analysis revealed 2 separate clusters of activity for the agency 1107

contrast (i.e. self-treatment versus external treatment test trials) in the time-frequency 1108 

EEG data at the treatment outcome (see Results). For self- and external conditions, we 1109 

averaged the activity of each significant sample (each significant channel-time-frequency 1110 

combination) included in the respective cluster per subject.  1111 

We tested the difference between self-treatment and external treatment of each 1112 

participant in a linear regression model with the average reaction time of each participant 1113 

as a regressor.  Simple linear regression was used to test if reaction times significantly 1114 

predicted the difference between self-treatment and external treatment in averaged EEG 1115 

power of cluster samples in each frequency band.  1116 

Finally, we tested the cluster resulting from the interaction contrast (see Results) in the 1117 

same manner. Here, we calculated the interaction contrast in EEG power per subject and 1118 

a simple linear regression was used to test if reaction times significantly predicted the 1119 

averaged power of cluster samples associated with the interaction effect. A p-value of .05 1120 

was considered as a threshold of significance in all tests. 1121 
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DRKS00025541). 1124 

Acknowledgements 1125 

CB is supported by ERC-AdG-883892-PainPersist and DFG SFB 289 project A02. MR is 1126 

supported by DFG SFB 289 project A03 and DFG SFB TR 169 project B3. Funded by the 1127 

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)  Project-ID 1128 

422744262 TRR 289. 1129 



 
55 

Ethics 1130 

Human subjects: All volunteers gave their informed consent. The study was approved by 1131 

the Ethics board of the Hamburg Medical Association (PV3892).  1132 

Declaration of Interests 1133 

The authors report no conflict of interest. 1134 

Author contributions 1135 

A.S.: Conceptualization, Data curation, Software, Formal analysis, Investigation, 1136 

Visualization, Methodology, Writing - original draft, Project administration, Writing - 1137 

review and editing; B.H.: Conceptualization, Software, Methodology, Writing - review and 1138 

editing; M.R.: Resources, Methodology; C.B.: Conceptualization, Resources, Formal 1139 

analysis, Supervision, Funding acquisition, Validation, Visualization, Methodology, Project 1140 

administration, Writing - review and editing. 1141 

  1142 



 
56 

Supplementary Data 1143 

Calibration data: experiment 1 1144 

During experiment 1, pain levels were calibrated to achieve VAS10 (M = 38.1°C, SD = 3.5°C, 1145 

Min = 31.8°C, Max = 44.8°C), VAS30 (M = 39°C, SD = 3.5°C, Min = 32.2°C, Max = 45.3°C), 1146 

VAS50 (M = 39.9°C, SD = 3.6°C, Min = 32.5°C, Max = 46.2°C) and VAS70 (M = 40.8°C, SD = 1147 

3.8°C, Min = 32.8°C, Max = 47.2°C) pain levels (for highly effective conditioning, test trials, 1148 

weakly effective conditioning and VAS70 pain stimulation, respectively).   1149 

Calibration data: experiment 2 1150 

During experiment 2, pain levels were calibrated to achieve VAS10 (M = 38.2°C, SD = 3.1°C, 1151 

Min = 31.72°C, Max = 44.5°C), VAS30 (M = 39°C, SD = 3.1°C, Min = 32.1°C, Max = 45.3°C), 1152 

VAS50 (M = 38.19°C, SD = 3.1°C, Min = 32.5°C, Max = 46.1°C) and VAS70 (M = 40.5°C, SD 1153 

= 3.2°C, Min = 32.8°C, Max = 46.9°C) pain levels (for highly effective conditioning, test 1154 

trials, weakly effective conditioning and pain stimulation, respectively).   1155 

EEG data analysis: interaction    1156 

We conducted post-hoc t-tests to confirm the crossed interaction of agency and 1157 

expectations at cue-locked EEG data. Post-hoc t-tests confirmed a crossed interaction 1158 

where all 4 comparisons were significant, i.e. self-treatment with high treatment 1159 

expectation trials were associated with lower EEG power than self-treatment trials with 1160 

low treatment expectations (t(53) = -3.76, p < 0.001), whereas external treatment trials 1161 

with high treatment expectations were associated with higher EEG power than external 1162 

treatment trials with low treatment expectations (t(53) = 4.86, p < 0.001). Also, high 1163 

treatment expectation trials with self-treatment were associated with lower EEG power 1164 
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that high treatment expectation trials with external treatment (t(53) = -6.03, p < 0.001) 1165

and low treatment expectation trials with self-treatment were associated with higher EEG 1166 

power than low treatment expectation trials with external treatment (t(53) = 2.66, p = 1167 

0.01).  1168 

  1169 
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 1171 

Supplementary Figures 1172 

 1173 

Supplementary Figure 1. Results of the Bayesian model comparison including all models of (a) experiment 1174 

1 (N=25) and (b) experiment 2 (N=54) showing (left) protected exceedance probabilities and (right) model 1175 
frequencies. 1176 

  1177 
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 1178 

Supplementary Figure 2. Time-frequency plots represent averaged, baseline-corrected, cue-locked power 1179 
values for each condition at Fz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low treatment 1180 

expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values (increase 1181 
of power compared to baseline) and cold colors represent negative z-values (decrease of power compared 1182 

to baseline). 1183 

 1184 

 1185 

 1186 

  1187 
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 1188 

Supplementary Figure 3. Time-frequency plots represent averaged, baseline-corrected, cue-locked power 1189 
values for each condition at Cz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low treatment 1190 

expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values (increase 1191 
of power compared to baseline) and cold colors represent negative z-values (decrease of power compared 1192 

to baseline). 1193 

  1194 
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 1195 

Supplementary Figure 4. Time-frequency plots represent averaged, baseline-corrected, cue-locked power 1196 

values for each condition at Pz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low treatment 1197 

expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values (increase 1198 
of power compared to baseline) and cold colors represent negative z-values (decrease of power compared 1199 

to baseline).  1200 

  1201 
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 1202 

Supplementary Figure 5. Time-frequency plots represent averaged, baseline-corrected, outcome-locked 1203 
power values for each condition at Fz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low 1204 
treatment expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values 1205 
(increase of power compared to baseline) and cold colors represent negative z-values (decrease of power 1206 
compared to baseline). 1207 
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 1209 

Supplementary Figure 6. Time-frequency plots represent averaged, baseline-corrected, outcome-locked 1210 

power values for each condition at Cz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low 1211 
treatment expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values 1212 

(increase of power compared to baseline) and cold colors represent negative z-values (decrease of power 1213 
compared to baseline). 1214 
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 1216 

Supplementary Figure 7. Time-frequency plots represent averaged, baseline-corrected, outcome-locked 1217 

power values for each condition at Pz. (a) VAS10 versus (b) VAS50 conditioning, (c) high versus (d) low 1218 
treatment expectation and (e) self- versus (f) external treatment. Warm colors represent positive z-values 1219 

(increase of power compared to baseline) and cold colors represent negative z-values (decrease of power 1220 
compared to baseline). 1221 

 1222 
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 1223 

Supplementary Figure 8. Topographies represent averaged t-values of pre-defined frequency bands 1224 

(Theta 4-8Hz, Alpha 8-12Hz, Beta 12-30Hz and Low Gamma 30-50Hz) over the time range of significant 1225 

clusters of (a) VAS10 versus VAS50 conditioning, (b) self- versus external treatment and (c) the interaction 1226 
of agency and expectation.  1227 
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 1228 

Supplementary Figure 9. Bar graphs represent averaged, baseline-corrected power values for each 1229 

condition averaged over all data points included in significant clusters of (a) VAS10 versus VAS50 1230 
conditioning, (b) self- versus external treatment and (c) the interaction of agency and expectation. Error 1231 

bars represent SEM. 1232 

  1233 
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 1234 

Supplementary Figure 10. Linear regression of VAS10 versus VAS50 EEG clusters and individual ramp 1235 
period differences, (left)  of the negative cluster (outcome-locked; 0.95 to 0.95s; 4-48Hz; R² = 0.011, F(1,52) 1236 

= 0.6, p = 0.442), and (right) of the positive cluster (outcome-locked; -0.4 to 1s; 8-64Hz; R² = 0.0316, F(1,52) 1237 
= 1.66, p = 0.203). Here, each significant EEG cluster associated with differences in outcome temperatures 1238 

(i.e. VAS10 versus VAS50 conditioning) was tested in a linear regression with the individual ramp time as a 1239 

predictor. Each cross represents a single participant, the full red line represents the fitted regression line 1240 
and dashed red lines represent 95% confidence bounds.   1241 

  1242 
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 1243 

Supplementary Figure 11. Linear regression of self- versus external test trials EEG clusters and reaction 1244 
time differences, (left) of the negative cluster (outcome-locked; -1 to 1s; 4-56Hz) and (right) of the positive 1245 

cluster (outcome-locked; -0.2 to 0.75s; 11-54Hz). Here, each significant EEG cluster associated with 1246 
differences in agency was tested in a linear regression with the individual reaction time difference between 1247 

self- and external trials as a predictor. Each cross represents a single participant, the full red line represents 1248 
the fitted regression line and dashed red lines represent 95% confidence bounds.   1249 

  1250 
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 1251 

Supplementary Figure 12. Linear regression of the interaction EEG cluster and reaction time differences. 1252 

Differences in reaction times are associated with longer outcome latencies in self-treatment. Here, the 1253 
significant negative interaction EEG cluster (cue-locked; 0 to 1.35s; 4-13.5Hz) was tested in a linear 1254 

regression with the individual reaction time difference between self- and external trials as a predictor. Each 1255 
cross represents a single participant, the full red line represents the fitted regression line and dashed red 1256 

lines represent 95% confidence bounds.   1257 

  1258 
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   Agency Benefit Placebo Benefit 

Scale 
M SD Pearson's r p-value Pearson's r p-value 

BDI-V 20.74 15.31 0.25 .06 0.18 .18 
STAI-X2 (Trait) 37.74 11.21 0.10 .47 0.23 .09 
STAI-X1 (State) 38.77 11.47 0.16 .26 0.15 .15 

FKK-C 13.94 6.67 -0.04 .77 0.08 .55 

FKK-I 24.41 5.94 0.15 .27 -0.07 .62 

FKK-P 15.39 6.36 -0.02 .91 0.23 .09 

FKK-SK 25.70 6.50 -0.02 .90 -0.05 .73 

LSHS_R 7.20 6.60 0.02 .91 0.22 .12 

SWE 20.69 4.28 -0.08 .61 0.01 .95 

PCS 17.56 9.21 0.15 .28 0.10 .46 
Supplementary Table 1. Correlation of questionnaire data with individual agency and placebo benefit 1260 

scores. 1261 

  1262 
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Name Estimate SE t-value DF p-Value Lower 

Bound 

Upper 

Bound 

Intercept 38.29 2.337 16.394 2588 <.001 33.71 42.87 

Positive Agency Cluster 
(-0.2 to 0.75s; 11-54Hz)  

-0.434 0.378 -1.149 2588 .261 -1.175 0.307 

Negative Interaction Cluster 
(0 to 1.35s; 4-13.5Hz)  

0.739 0.294 2.510 2588 .0121* 0.162 1.316 

Supplementary Table 2. Fixed effects coefficients of the trial-by-trial LME model with 95% confidence 1263 

intervals (lower bound and upper bound) for each cluster and intercept for VAS outcome ratings. 1264 
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