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A B S T R A C T

In this thesis, I explore two broad interconnected themes. First, I seek
a solution to the so-called GeV-TeV tension in the gamma-ray sky,
through tracing the generation and evolution of plasma instabilities
and energetic broadening in pair beams from TeV blazars, both in
a proposed laboratory setup and then for astrophysical pair beams.
Next, I chart the consequences of the energy losses from blazar beams
in the thermal history of the universe at late times, subsequently its
impact on structure formation, and what one can infer about dark
matter halos in the subgalactic scale, in particular for light dark mat-
ter candidates such as axions. I then proceed to describe an axion
haloscope based on the concept of detecting an amplified magnetic
field generated by axion-induced current when embedded in the galac-
tic dark matter halo.

Z U S A M M E N FA S S U N G

In dieser Arbeit untersuche ich zwei weitreichende, miteinander ver-
bundene Themen. Zunächst suche ich nach einer Lösung für die so-
genannte GeV-TeV-Spannung am Gammastrahlenhimmel, indem ich
die Entstehung und Entwicklung von Plasmainstabilitäten und ener-
getischer Verbreiterung in Paarstrahlen von TeV-Blazaren verfolge, so-
wohl in einem vorgeschlagenen Laboraufbau als auch für astrophysi-
kalische Paarstrahlen. Als Nächstes gehe ich auf die Folgen der Ener-
gieverluste von Blazar-Strahlen in der thermischen Geschichte des
Universums zu späten Zeiten ein, anschließend auf ihre Auswirkun-
gen auf die Strukturbildung und darauf, was wir über Halos aus
dunkler Materie im subgalaktischen Bereich ableiten können, insbe-
sondere für leichte Kandidaten für dunkle Materie wie Axionen. An-
schließend beschreibe ich ein Axion-Haloskop, das auf dem Konzept
des Nachweises eines verstärkten Magnetfeldes basiert, das durch
Axion-induzierten Strom erzeugt wird, wenn er in den galaktischen
Halo aus dunkler Materie eingebettet ist.
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F O R E W O R D

This thesis, titled, “In Light and Dark: Laboratory and Astrophysical
Probes of the Late Universe”, subtitled “From TeV Blazars to Table-
top Experiments”, is divided into Part I, Plasma Astrophysics: Fate
of Relativistic Pair Beams in the Laboratory and Cosmos, and Part
II, The Dark Universe: Dark Halos in a Blazar-heated Universe and
Laboratory Probes of Dark Matter.

In Part I, I outline the observational discrepancy in the gamma ray
spectra from TeV blazars and formulate the fate of the astrophysi-
cal neutral pair beams launched from the host active galactic nuclei
(AGNs) of these blazars. In Chapter 1, I outline the conundrum in
the GeV gamma-ray spectra of these objects, the role of cosmic mag-
netic field, and how plasma astrophysics comes to play an important
role in explaining the discrepancy. In Chapter 2, I introduce how the
growth rates for electrostatic instabilities scale with various param-
eters related to the beam and the environment, and show the com-
puted growth rates for a number of distribution functions, applicable
to laboratory and astrophysical plasmas. In Chapter 3, I explore the
setting of a laboratory astrophysics experiment and show the relevant
growth rates for a 2D Gaussian distribution as injected neutral pair
beam and introduce the Fokker-Planck equation for pair beam evo-
lution, which contains in a compact form the energy loss via insta-
bilities that leads to the heating of the intergalactic medium and mo-
mentum diffusion leading to self-heating and relaxation of the beam,
and compare the results with state-of-the-art particle-in-cell simula-
tions. In Chapter 4, I discuss the fate of astrophysical beams, in terms
of the modification of the resulting GeV secondary cascade spectra,
for instability-induced energy loss and momentum broadening of the
pair beam.

In Part II, I delve into how to harness the power of electromagnetic
phenomena into exploring the dark component of our universe, start-
ing from TeV blazar beams to uncover the size of the underlying dark
structures, to tabletop experiment that can detect a current induced
by the galactic dark matter. I introduce axions and axion-like-particles
as dark matter in Chapter 5. Then in Chapter 6, I present the impact
of heating of the intergalactic medium with the energy dumped into
it from the blazar beams in terms of a modified temperature-density
relation and elevated entropy floor. In Chapter 7, I show how the el-
evated entropy floor increases the Jeans and filtering mass of halos
thus suppressing structure at small scales, and compare it directly
with the predictions of ultralight axions, also known as wave dark
matter. In Chapter 8, I return to a laboratory search for axion-like



particles in our galaxy using an LC-circuit-based haloscope, WISPLC,
with projected sensitivities for light axions.

Chapter 3 is a summary of the article titled, “Evolution of Relativis-
tic Pair Beams: Implications for Laboratory and TeV Astrophysics”.
The list of authors with contributions is appended below.

• Oindrila Ghosh. Contribution: Analytical and numerical calcula-
tion of growth rate & Fokker-Planck equation.

• Marvin Beck. Contribution: PIC simulation and analysis of re-
sults.

• Ryan David Stark. Contribution: Experimental consultant on sim-
ulation.

• Benno Zeitler. Contribution: Experimental consultant on design
and setup.

• Carl B. Scroeder. Contribution: Useful discussions and consulta-
tion on laboratory plasmas.

• Florian Gruener. Supervisor.

• Martin Pohl. Contribution: Advisor and consultant.

• Guenter Sigl. Contribution: Supervisor

Chapter 8 is a summary of the article titled, “WISPLC: Search for
Dark Matter with an LC-Circuit” [1], published in Physical Review
D. The list of authors and their corresponding contributions are ap-
pended below.

• Oindrila Ghosh. Contribution: Theoretical framework and sensi-
tivity calculation.

• Zhongyue Zhang. Contribution: Experimental design, conceptu-
alization, simulation and preliminary studies on detector sensi-
tivity.

• Dieter Horns. Contribution: Supervisor.
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Part I

P L A S M A A S T R O P H Y S I C S : FAT E O F
R E L AT I V I S T I C PA I R B E A M S I N T H E

L A B O R AT O RY A N D C O S M O S

This part involves plasma astrophysics. I introduce the
motivations to seek the physics of TeV blazars in a labo-
ratory astrophysics setup, introduce basics of plasma in-
stabilities and then discuss the evolution of a neutral pair
beam in two distinct contexts, in the laboratory and for
energetic astrophysical pair beams from blazars.





1
B A C K G R O U N D A N D M O T I VAT I O N

1.1 motivation

Among TeV sources detected with the current-generation telescopes
searching the gamma-ray sky, blazars are ubiquitous. Blazars are ac-
tive galactic nuclei with jets erupting from them pointing their emis-
sion towards our line of sight (LoS). In this thesis, we will primarily fo-
cus on BL Lac type blazar sources. TeV photons from blazars interact
with the extragalactic background light (EBL) and produce energetic
electron-positron pairs, which in turn, undergo inverse Compton scat-
tering (ICS) upon meeting the cosmic microwave background (CMB)
and produce gamma-ray emission [5–7]. Thus, in addition to the TeV
emission, their reprocessed GeV emission acts as a messenger of the
astrophysics of TeV blazars, which can also be used as a powerful tool
to constrain the properties of the EBL.

The primary mechanism for the loss of energy of the e+e− pairs
is thought to be ICS off the CMB. However, this scenario is problem-
atic for two reasons. The estimated electromagnetic cascade is not
found in the gamma-ray observations [2]. In addition, when ICS is
the only agent of reprocessing of the emissions from the TeV band [8],
it overproduces the observed extragalactic gamma-ray background
(EGRB) [9] in case of a decoupling between the parent galaxy and
the TeV blazars hosted in them in terms of their cosmological evolu-
tion. More recent observations weakens the strong blazar evolution
scenario, thus a different means by which the cascade flux is reduced,
such as magnetic deflection of the charged pairs, is sought.

In presence of cosmic magnetic field, the pairs, in addition to the
ICS cooling, will undergo gyration and can be deflected, forming the
so-called “pair halos”. This can lead to a serious suppression of the
reprocessed GeV emission along the LoS [10]. Therefore, the strength
of the extragalactic magnetic field (EGMF) associated with certain cor-
relation lengths which determine the length scale to which the field
is coherent, can also be inferred from the emission and constrained
using gamma-ray observation of TeV blazars [11, 12]. A schematic is
shown to depict the various processes the relativistic pairs can un-
dergo.

In gamma-ray observations of TeV blazars, a strong suppression of
the cascade emission is apparent, regardless of the fact that the energy
spectra of the attenuated GeV emission should closely follow that of
the expected primary TeV emission of a typical power-law cutoff:

3



4 background and motivation

Figure 1: Schematic of the propagation of the neutral pair beam from a TeV
blazar (Courtesy: Quantum Universe Day Slides, Marvin Beck)

dNγ/dE ∼ E−Γ exp (−E/Ecut) , (1)

where we note that the luminosity of the GeV cascade should be
the same as the integral primary source luminosity across the multi-
TeV energy bins, since nearly all of the power emitted in gamma rays
above the TeV scale is absorbed. However, the prominent suppression
indicates that the ICS is not as efficient as previously assumed and
other mechanisms must be at play. At first glance, we revisit the sce-
nario of magnetic pair deflection. For the deflection of the energetic
pairs owing to the EGMF, the corresponding deflection angle is de-
pendent on the correlation length of the magnetic field.

1.1.1 Coherent magnetic field

The impact of extragalactic magnetic field in then propagation of cos-
mic rays can be observed through their deflection off the cosmic mag-
netic field in voids, which the non-observation of GeV emission from
TeV blazars can be attributed to [2]. Such deflection angle for cosmic
rays with energy UCR owing to the cosmic magnetic field when r ⩽ lc
is estimated as

Θ = −
Ze

UCR
r × B (2)

with Z being the atomic number. For r ≫ lc the deflection angle
can be calculated as

Θrms ≃ 2

π

ZeB

UCR
(rlc)

1/2 (3)

where r is the source distance and lc is the coherence length of the
magnetic field [13].

1.1.2 Turbulent magnetic field

The calculation can then be further extended to turbulent magnetic
fields using appropriate choice of the magnetic field power spectrum.



1.1 motivation 5

Since charged particles in turbulent magnetic fields perform a ran-
dom walk, and B = 0, it makes sense to consider the the rms strength
of the stochastic magnetic field Brms consistent within a certain corre-
lation length λB such that

B2
rms =

∫∞
0

dkB2(k) (4)

which is best described by a power spectrum of the form B(k) ∝
k−n, where n is the Kolmogorov exponent, n = 5/3. The minimum
and maximum correlation lengths are defined as Lmin and Lmax re-
spectively, and λB can then be expressed as:

λB =
1

2
Lmax ·

n− 1

n
·

1−
(

Lmin
Lmax

)n
1−

(
Lmin
Lmax

)n−1
(5)

The non-observation of pair halos and suppression of cascade emis-
sion can be used as an effective tool to constrain the EGMF. The first
of such constraints using observational data from gamma-ray tele-
scopes Fermi and HESS were presented in [2] as follows. In Fig. 2 the
primary emission from TeV blazars shown in thin dashed curves can
be compared with the cascade emission producing electron-positron
pairs shown in the dotted curve. The thicker curves represent various
models and the lower limit on cascade emission energies are shown in
vertical lines. The data points from Fermi and HESS for three distinct
TeV blazars go on to show a clear suppression at GeV energies.

The most recent constraint on the EGMF comes from the Fermi-
LAT data for a number of TeV blazars [3]. This is shown in Fig. 3.

Nevertheless, magnetic deflection does not solve the problem of
overproducing the EGRB. This is because the average number of pairs
that are deflected out of the LoS are compensated by the average num-
ber of pairs that are deflected into it, thus keeping the contribution to
EGRB unaffected by pair deflection. An effective mechanism to rec-
oncile this problem would be to turn towards plasma physics. Blazar
beams can undergo energy loss via instabilities arising from the rela-
tivistic beam pairs interacting with the background plasma of the in-
tergalactic medium (IGM). The beam-plasma instability, also known
as the pair instability [14], competes with ICS and heats the IGM. This
has profound implications in the thermal history [15] at late times and
thus, structure formation in the Universe. The instability-induced en-
ergy loss can be considered as a viable alternative to the magnetic
deflection scenario. In the scenario driven by collective plasma effects,
energy is deposited from the beam into the IGM, instead of produc-
ing reprocessed GeV spectra only via ICS [9].
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Figure 2: Comparison of cascade emission between models and observa-
tions [2]

Figure 3: Exclusion curves from various sources as observed with Fermi-
LAT for 10 years [3]
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1.2 collective plasma effects

Plasmas are considered to be quasineutral mixtures of positively charged
ions and negatively charged electrons, having bulk properties that
can be expressed in terms of number densities, thermal velocities,
pressures, temperatures etc. as they constitute a very large number
of particles. Due to Debye screening of small electric fields of a given
charge by other charged particles in the plasma of species s to a dis-
tance characterised by Debye length

λDs
=

(
ϵ0kBTs

nee2

)1/2

, (6)

the motion of individual particles, which is otherwise strongly af-
fected by other particles, can be understood in terms of single parti-
cle orbits governed by Lorentz force, when the plasma is collisionless.
Here, ne represents the number density of electrons in the plasma, e
is the electronic charge, Ts is the temperature of the species, and ϵ0
and kB are vacuum permittivity and Boltzmann’s constant.

However, the overall plasma dynamics is much more complicated
thanks to the interactions between the particles and fields. From the
perspective of kinetic theory, we can contextualize the probability of
finding a certain number of particles in a given phase space interval

[x, v; x + dx, v + dv],

in terms of a momentum distribution function

Fs(x, v, t)

where x and v denote position and velocity (momentum) coordinates.
In general, homogeneous Maxwell’s equations with electric field E,

and magnetic field B

∇ · E = ρ/ϵ0 (7)

∇ · B = 0 (8)

∇× E = −
∂B
∂t

(9)

∇× B = µ0j +
1

c2
∂E
∂t

(10)
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and the following definitions of charge and current densities, with
qs, ns, and vs being charge, number density, and velocity of a given
species s,

ρ =
∑
s

qsns (11)

j =
∑
s

qsnsvs (12)

can be used in order to construct the Vlasov equation [16],

[
∂

∂t
+ v · ∇+

qs

ms
(E + v × B) · ∂

∂v

]
Fs(x, v, t) = 0 (13)

which delineates the plasma dynamics for each species s, such that
the bulk densities and velocities in Eqs. 11 and 12 are moments of the
distribution function corresponding to the given species s, fs(x,andv, t)
is the solution of Eq. 13. The plasma frequency is expressed as:

ωp =

√
4πnee2

me
, (14)

where me is the electronic mass.

1.3 electrostatic modes of instabilities

The energy loss mechanism associated with the fastest growing modes
competes with the inverse Compton cooling, injecting energy into the
intergalactic medium, also known as the blazar-heating mechanism.
The most discussed simplified case of such instabilities is the two-
stream instability, a more general version of which is when the inter-
action between the beam and the plasma occurs at an angle, rather
than head-on. This is also known as the oblique mode of Langmuir os-
cillations in the density of the plasma [17]. The instabilities that arise
can be electrostatic or electromagnetic in nature, and the associated
Langmuir waves satisfy the resonance condition:

ω− k · v = 0 (15)

where ω = ω(k) is the complex frequency.
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1.3.1 Solving the Vlasov equation

For an arbitrary homogeneous and infinite beam plasma system con-
sisting N species of charge qs, mass ms, density ns, and mean ve-
locity vj, which is charge and current neutral, i.e.,

∑
s qsns = 0

and Σjqsnsvj = 0 and the equilibrium electromagnetic fields are
set to zero, adopting a distribution function Fs(r, p, t), the relativistic
Vlasov equation reads in terms of a normalised distribution function
Fs(r, p, t) = fs(p, t)/np where np is the number density of particles,

∂fs

∂t
+ v · ∂fs

∂r
+ qs

(
E +

v × B
c

)
∂fs

∂p
= 0 (16)

where each species j is described by its initial distribution function
f0s(p) with

∫
dpf0s(p) = 1. The charge ρ =

∑
s nsqs

∫∫∫
dpfs and and

current densities J =
∑

s nsqs

∫∫∫
dpvfs follow Maxwell’s equation.

The linearization scheme allows us to vary every relevant variable
as

ξ = ξ0 + ξ1 exp(ık · r − ıωt), |ξ1| ≪ |ξ0| (17)

where ξ0 represents the equilibrium initial value. Writing out Maxwell’s
equations and eliminating magnetic field B, one obtains the tensorial
form of the general dispersion relation

detT = 0 (18)

where

T =
ω2

c2
ϵ(k,ω) + k ⊗ k − k2I (19)

with tensor product k ⊗ k = kαkβ where α and β are dummy
indices, I is the identity matrix, and the dielectric tensor is defined as:

ϵαβ(k,ω) =δαβ +
∑
s

ω2
p,s

ω2

∫∫∫
dp

pα

γ(p)
∂f0s
∂pβ

+
∑
s

ω2
p,s

ω2

∫∫∫
dp

pαpβ

γ(p)2
k ·
(
∂f0s
∂p

)
msω− k · p/γ(p)

(20)

where

γ(p) =

√
1+

| p |2

m2
sc

2
(21)
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1.3.2 Dispersion relation

Applying axisymmetry as k = (kx, 0,kz), the dispersion relation can
be cast in terms of the simplified dielectric function for the electro-
static case (B = 0) as follows:

ϵ = 1+
∑
s̄

meω
2
p,s

k2

∫
k ·∇pfs

ω− k · v
dp = 0. (22)

where number density ns ≡
∫
F0sdp is the number density, and

normalized distribution function fs ≡ F0s/ns are represented for each
species s. Performing integration by parts,

ϵ =1−
∑
s

meω
2
p,s

k2

∫
fsk ·∇p

1

ω− k · v
dp

= 1−
∑
s

ω2
p,s

k2c2

∫
fs
k2c2 − (k · v)2

γ(ω− k · v)2
dp = 0

(23)

with ωp,s =
(
4πnse

2/me

)1/2 being the plasma frequency for species
s, which can be designated as beam, background plasma electrons, or
ions.

1.3.3 Phase-space distribution functions

The general form of the normalized phase-space distribution function
can then be expressed in Cartesian coordinates as

f(p) = f(px)f(py)f(pz) (24)

where

∫+∞
−∞ f(p)dp =

∫
f(px)dpx

∫+∞
−∞ f(py)dpy

∫+∞
−∞ f(pz)dpz = 1 (25)

and

k = (kx,ky,kz) (26)

At this point, we ignore any cross-terms that may be related to
beam emittance and express the beam distribution function in terms
of separable components in each direction.

It can be shown that axisymmetry may be assumed without any
loss of generality. Thus the wave number tensor can now be repre-
sented in terms of a component parallel to the direction of propa-
gation of the beam, k|| = kz, and a component perpendicular to it,

k⊥ =
√

k2x + k2y.
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Eq. 24 can then be cast as

∫+∞
−∞ f(p)dp =

∫+∞
0

f(p⊥)p⊥dp⊥

∫2π
0

dθ

∫+∞
−∞ f(p||)dp|| = 1 (27)

1.3.4 Reactive and kinetic regime

When the injected beam does not have a wide variation in momen-
tum, the dispersion relation reduces to its hydrodynamic form, which
can also be derived from the continuity and momentum equations as,

1−
ω2

p,p

ω2
−

ω2
p,b

γ3
(
ω− k∥vb

)2 γ2k2⊥ + k2∥

k2⊥ + k2∥
= 0 (28)

where subscript p stands for the background plasma, and b rep-
resents the beam. This is also known as the reactive regime, charac-
terised by the condition

| k ·∆v |≪ Γr (29)

i.e., when the velocity/momentum spread of the beam ∆v is neg-
ligibly small, the growth rate of instabilities is very high. Here, Γr
is the growth rate in the reactive case. When this condition is not
fulfilled, i.e., in the more realistic scenario of an astrophysical pair
beam with finite momentum spread, the relativistic dispersion equa-
tion can be solved by expanding in the limit ω → ωr with ωr being
the plasma frequency at resonance, and splitting the frequency into
real and imaginary parts. The growth rate in the kinetic regime is then
expressed as the imaginary part of the frequency ω = ℑ (ωr + iωi)

Γk = ωi, (30)

where

ωi = −
ℑΛ (ω = ωr)
∂ℜΛ(ω=ωr)

∂ωr

(31)

with

ℜΛ (ω = ωr) ≈ 1−
ω2

p

ω2
r

(32)

and
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ℑΛ (ω = ωr) ≈−
∑
b

4π2nbe
2
b

k2

×
∫

k
∂F(p)
∂p

δ (kv −ωr)dp

(33)

Setting ωr = ωp, the expression for growth rate in the kinetic
regime is

Γk = ωi = ωp
2π2nbe

2

k2

∫
k · ∂f(p)

∂p
δ (ωp − k · v)dp. (34)

Eq. 34 embodies the dynamics of the entire k-space. In the k⊥ →
0 limit, the two-stream mode, historically also known as the beam-
plasma or Buneman instability, is recovered; k∥ → 0 characterizes
the filamentation mode, and all intermediate modes are considered
the most general case characterise by the oblique mode of instabilities
and relevant in the discussion of electrostatic instabilities, and we will
explore this in our work with a particular emphasis.



2
P L A S M A I N S TA B I L I T I E S

In this chapter, we explore then growth rates from the solutions to the
dispersion relations for various beam plasma systems for a number
of beam distribution functions and background plasma conditions.

2.1 propagation through cold background plasma

Electrostatic modes of plasma instability saturate owing to Landau
damping, that is when the beam electrons have a phase velocity that
falls below the thermal speed of plasma electrons, they get absorbed
by the plasma. For a relativistic electron-positron pair beam, with a
number density of nb with a Lorentz factor of γ propagating through
a cold monoenergetic plasma with a number density np, the disper-
sion relation, Eq. 22 for surviving electrostatic mode is,

1−
ω2

p

ω2
−
∑
b

4πnbe
2

k2

∫
dp

k∂fb(p)
∂p

k · v −ω
= 0 (35)

where the background plasma is modelled using a cold distribution
function resolved in Cartesian momentum coordinates px, py, and pz.

fp(p) = δ (px) δ (py) δ (pz − Pp) (36)

with Pp = mevp. The remaining notations carry the same meaning
as denoted in Chapter 1.

2.1.1 Cold relativistic beam

For a cold relativistic beam described by the following distribution
function in the case of a simplified case of a monoenergetic beam
characterized by momentum Pb such that Pb = meγvb,

fb(p) = δ (p⊥) δ
(
p∥ − Pb

)
/2πp⊥, (37)

he growth rate is well-known [17]:

δr =

√
3

24/3

(
2α

γ

)1/3
(

k2∥

γ2k2
+

k2⊥
k2

)1/3

, (38)

where α denotes the number density contrast between the beam
and the background plasma α = nb/np, and the Lorentz factor of
the beam γ = 1√

1−β2
b

such that βb = Pb

mec
.

13
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2.1.2 Beams with finite temperature

Beam temperature, Tb, must be taken into account while discussing
the more realistic scenarios beyond a monochromatic beam. For a
warm beam with beam temperature Tb, the perpendicular momen-
tum spread is

∆p⊥ =
√
2meTb, (39)

and momentum spread parallel to the propagation direction of the
beam is

∆p∥ =
√

2meTbγ. (40)

An example of such a distribution function is the waterbag distribu-
tion, is a simplified distribution function for a warm beam described
as

fb(p) = 1
4∆p∥∆p⊥

( Θ [p⊥ −∆p⊥])
(
Θ
[
p∥ − Pb −∆p∥

]
− Θ

[
p∥ − Pb +∆p∥

])
(41)

with Θ denoting the Heaviside step function [18].

2.2 propagation through warm plasma

For a relativistic beam propagating through hot plasma, we solve
the dispersion relations for a) a cold beam, and b) a warm beam
and examine their dependences on the Lorentz factor of the beam
γ, as well as the density contrast α. An example of such a scenario is
astrophysical pair beams propagating through the warm intergalactic
medium. The distribution function describing the warm plasma can
be written as a Maxwellian peaking about this temperature Tp.

fp(p) =

(
1

2πmekBTp

)3/2

exp
(
−

p2

2mekBTp

)
(42)

2.2.1 Cold beam

For a cold beam monochromatic with a beam momentum Pb, the
normalized beam distribution function can be expressed as:

fb(p) =
1

2πp⊥
δ (p⊥) δ

(
p∥ − Pb

)
, (43)
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such that fb(p) = Fb(p, x)/nb.
Inserting 42 and 43 into the general expression of the dispersion

relation, where s denotes species of particles, e.g., beam or plasma,

ϵ = 1+
∑
s

meω
2
p,s

k2

∫
k ·∇pFs

ω− k · v
dp = 0, (44)

one can obtain

1−
ω2

p

ω2

(
1+ 3k2λ2D

)
+ i

πnb

np
mev

2
pR = 0 (45)

where

R ≡
∫

k∂fb/∂p∥

ω− k∥vb,∥
dp (46)

which can be computed by evaluating individual residues corre-
sponding to the poles contained in the integration, characterised by
vz = vp. Splitting the frequency of the Langmuir oscillation into real
and imaginary parts,

ω = ωr + iΓ (47)

where the growth rate corresponds to the imaginary part Γ , we obtain
from Eq. 45 using the expression for the residue in Eq. 46,

Γ ≈ πnb

2np
mev

2
pR (48)

The two elements contributing to the pole are:

∂

∂p∥

(
ω− kvb,∥

)∣∣∣∣
pole

= −
kc2

γ3
bme

(49)

and

k
∂fb
∂p∥

∣∣∣∣
pole

= k
δ(p⊥)

2π

∂

∂p∥
δ(p∥ − Pb) (50)

Noting that d3p = 2πp∥dp∥dp⊥, the instability growth rate for a
cold relativistic beam passing through a hot nonrelativistic Maxwellian
plasma can be expressed as [14]:

Γ =
παωp

2c2
m2

ev
2
pγ

3
b. (51)

α = nb/np being the density contrast between the beam and the
plasma.
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2.2.2 Warm beam

The most realistic approximation for a warm relativistic beam is de-
scribed by a shifted Maxwell-Jüttner distribution function [19]

fb(p) =
mec

2

4πγkBTbK2 (mec2/kBTb)m3
ec

3
exp

(
−
γ
(
E− vb,∥p∥ − vb,⊥p⊥

)
kBTb

)
(52)

where Tb is the beam temperature and K2 represents modified
Bessel function of the second kind. Performing similar calculations as
above, one obtains for instability growth rate in propagation through
a warm Maxwellian plasma [19]:

Γ ≈ −Γ0
πγ2

wγ3
b

(
vb − vb,∥

)
4γµ2K2(µ)G3c

[(
G2µ2 + 2Gµ+ 2

)
+

γ2v2b,⊥
2G2c2

(2Gµ+ 2)

]
exp (−Gµ)

(53)

where the maximum growth rate

Γmax ≡ ωpγ (nb/np)
(
mev

2
b/kBTb

)
(54)

and

G′ ≡ γb
(
1− vb,∥vb/c

2
)
/γw (55)

with

w = γ−1
b vb,⊥′/

(
1− vb,∥′vb/c

2
)

(56)

and

γw =
(
1−w2/c2

)−1/2
(57)

The warm beam can also be described by a simplified waterbag
distribution. In this case, the above calculation leads to a growth rate
of

Γ =
παωpmev

2
pγ

3

8∆p∥c2
(58)
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2.3 kinetic growth and beam relaxation

As discussed in 1, the spread in velocity determines whether the insta-
bility proceeds in the reactive or kinetic regime. If the velocity spread
of the beam pairs in the direction parallel and perpendicular to the
direction of propagation is sufficiently large, as is the case for most
realistic beams, in the laboratory as well as in astrophysical environ-
ments, the instability is kinetic. For relativistic beams γ ≫ 1 with an
angular spread ∆θ ⩽ 1, the growth rate can be described in spherical
polar coordinates as [20] where θ represents the angle between the
direction of beam propagation and the wave vector k:

Γk = Imω =πωp
nb

np

(ωp

kc

)3 ∫θ2

θ1

dθ

[(cos θ1 − cos θ) (cos θ− cos θ2)]
1/2

×
[
−2g sin θ+

(
cos θ−

kc
ωp

cos θ′
)

∂g
∂θ

] .

(59)

This is obtained by splitting the beam distribution function f(p, θ)
into an angular part g(θ) and a momentum component such that [21]:

g = mc

∫∞
0

pf(p, θ)dp, (60)

and

cos θ1,2 =
ωp

kc

(
cos θ′ ± sin θ′

√
k2c2

ω2
p

− 1

)
(61)

where θ is the angle between the direction of beam propagation
and the wave vector.

Through instability growth, energy is lost from the pair beams into
the background plasma. However, for the quasi-linear treatment of
the beam evolution to be applicable, one presumes that the produc-
tion of Langmuir oscillation associated with the beam instability is
comparable to the drift of the pair beam speed within the plasma.
The Langmuir waves can be damped or absorbed owing to various
dissipative processes. Even for low to moderate levels of variation in
density, the phase velocity of the waves can reduce to the level of
the thermal velocity of electrons in the plasma, vth. When this hap-
pens, the waves can undergo Landau damping, which is when the
plasma electrons completely absorb the Langmuir excitation. The in-
teraction between the excitation and e+e− pairs in the beam can cause
diffusion of the pairs towards constant perpendicular momenta. The
relevant equation governing the spectral energy density of the beam
W(k, θ′, z) can be expressed as
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3kv2th
wp

cos θ′
∂W

∂z
= 2W Imω = 2WΓk (62)

where z is the coordinate in the parallel direction, and Γk designates
the kinetic growth rate of the beam-plasma instabilities. The distribu-
tion function evolves in spherical coordinates (p, θ,φ; k, θ′ and φ′)
along the direction of propagation z as [22]:

cos θ
∂f

∂z
=

1

p2

∂

∂p
p2

(
Dpp

∂f

∂p
+

Dpθ

p

∂f

∂θ

)
+

1

p sin θ

∂

∂θ
sin θ

(
Dpθ

∂f

∂p
+

Dθθ

p

∂f

∂θ

)
,

(63)

where the diffusion tensors can be written as

Dpp

Dpθ

Dθθ

 = 2π
mω4

p

npc3

∫∞
ωp
c

dk

k

×
∫θ′

2

θ′
1

sin θ′W (k, θ′)dθ′√(
cos θ′1 − cos θ′

) (
cos θ′ − cos θ′2

)


1

ζ

ζ2,


(64)

where

ζ =

(
cos θ−

kc

ωp
sin θ′

)
/ sin θ, (65)

and similarly as before,

cos θ1,2 =
ωp

kc

(
cos θ± sin θ

√
k2c2

ω2
p

− 1

)
. (66)

It can be understood as an effect of momentum broadening for the
beam pairs, appearing as a self-heating of the beam, as a result of
redistribution of energy in the phase space rather than energy drain-
ing out of the beam into the background plasma. More generally, the
convective effect of energy loss and the diffusive process of momen-
tum broadening can be framed in a Fokker-Planck type evolution. We
delve deeper into this framework in the next chapter.
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2.4 growing beam-plasma instabilities in the labora-
tory

2.4.1 Experimental setup

A laboratory experiment is designed where a high-power laser is con-
verted into electron-positron pairs in a tungsten target. The outgoing
jet is then run through a magnetised chamber to align the trajectories
of the charged pairs in the forward direction. This way, a well-defined
neutral “beam” is constructed. The beam then passes through a lab-
oratory plasma. It is at this stage we expect to detect beam-plasma
instability which is expected to mimic astrophysical pair beams un-
dergoing plasma instabilities in the IGM. This setup is delineated in
Fig. 4.

Figure 4: Experimental setup for laboratory astrophysics; Courtesy: Benno
Zeitler

2.4.2 Laboratory beam-plasma distributions

When the injected pair beam is monochromatic, the growth rate is
given by 38, using which the oblique growing modes are plotted in
Figs. 5, 6, and 7, normalized with respect to the plasma frequency ωp,
as a function of k|| and k⊥ for beam Lorentz factors of 25, 50, and 100.

In a realistic laboratory setup, as shown in Fig. 4, the beam has a
momentum spread, and the corresponding momentum distribution
function can be expressed as:

flab(p⊥,p||) = exp

 ln(c1 + 1)√
(p|| − c2)2 + p2

⊥ + 1

c3

− 1 (67)

where assuming axisymmetry, p⊥ =
√

p2
x + p2

y and p|| = pz. The
mean longitudinal momentum is dependent on the Lorentz factor of
the beam γ, and me, representing the electron (positron) rest mass:
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Figure 5: Reactive growth rates for a cold relativistic beam with γ = 25, and
α = 10−3. Oblique growing modes are plotted, with growth rates
normalized with respect to the plasma frequency ωp, as a function
of k|| and k⊥.
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Figure 6: Reactive growth rates for a cold relativistic beam with γ = 50, and
α = 10−3. Oblique growing modes are plotted, with growth rates
normalized with respect to the plasma frequency ωp, as a function
of k|| and k⊥.
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Figure 7: Reactive growth rates for a cold relativistic beam with γ = 100,
and α = 10−3. Oblique growing modes are plotted, with growth
rates normalized with respect to the plasma frequency ωp, as a
function of k|| and k⊥.

µ =
√

γ2 − 1mec (68)

The growth rates of instabilities in the oblique mode for a beam
distribution function as indicated in Eq. 67 with c1 = 0.11 and c3 = 4,
are estimated using a numerical integration scheme of the kinetic
growth rate a la Eq. 59 for a range of beam Lorentz factors which
set c2, as shown in Figs. 8, 9, 10, and 11 for a beam to background
plasma density contrast of α = 10−4. The three fitting parameters are
derived from a simulation of the laboratory astrophysics experiment
using Geant4. Equation 67 is first coordinate-transformed into polar
coordinates, and then the momentum integration is performed from
p = 0 to p → ∞. Let us make note of the poles in the denominator of
Eq. 59. In order to avoid them, the angular integration is performed
from θ1 to (θ1 + θ2)/2− ϵ and then from (θ1 + θ2)/2+ ϵ to θ2. θ1 to
θ2 is described in Eq. 66 where θ = tan−1(p∥/p⊥).

2.5 comparison with astrophysical case

In this section, we compute the growth rate for a generic beam distri-
bution function representing an astrophysical pair beam:

fb(p, θ) =
1

π∆θ2
exp

{
−

(
θ

∆θ

)2
}

(69)
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Figure 8: Growth rate maps for a laboratory distribution function with a
finite momentum width at injection, as described in Eq. 67 at a
Lorentz factor of γ = 40. The kinetic oblique modes are plotted,
with growth rates normalized to the plasma frequency ωp.
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Figure 9: Growth rate maps for a laboratory distribution function with a
finite momentum width at injection, as described in Eq. 67 at a
Lorentz factor of γ = 60. The kinetic oblique modes are plotted,
with growth rates normalized to the plasma frequency ωp.
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Figure 10: Growth rate maps for a laboratory distribution function with a
finite momentum width at injection, as described in Eq. 67 at a
Lorentz factor of γ = 80. The kinetic oblique modes are plotted,
with growth rates normalized to the plasma frequency ωp.
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Figure 11: Growth maps for a laboratory distribution function with a finite
momentum width at injection, as described in Eq. 67 at a Lorentz
factor of γ = 100. The kinetic oblique modes are plotted, with
growth rates normalized to the plasma frequency ωp.
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where the angular width can be expressed as ∆θ = 1
γ = mec

p .
For such a beam, the angular integral in the expression for kinetic

growth rate 60 has been evaluated by [21] through a Monte Carlo
simulation which presents the following inverse γ scaling:

g(θ) =
mec

nb

∫
pf(p, θ)dp ≃ γ−1 1

∆θ2
e
− θ2

∆θ2 , (70)

where we use three models for beams at a given distance D from
the source blazar for comparison with [21]:

• Model 1: D = 0.87 Mpc, γ = 1.56× 105, ∆θ = 6.43× 10−5

• Model 2: D = 95.37 Mpc, γ = 1× 105, ∆θ = 9.14× 10−5

• Model 3: D = 1 Gpc, γ = 3.9× 104, ∆θ = 11.8× 10−5

The corresponding kinetic growth rate maps for realistic blazar
beams are calculated using Eq. 59, with the ansatz presented in Eq.
70 and are presented in Figs. 12-14.
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Figure 12: Growth maps for an astrophysical pair beam according to Model
1. The kinetic oblique modes are plotted, with growth rates nor-
malized to the plasma frequency ωp and the density contrast α..

Thus numerical integration scheme have been shown to reproduce
known results from [21] successfully and then has been further ap-
plied to computation of growth rates for a realistic distribution func-
tion with finite momentum spread, as described in Eq. 67.

As a major difference between the laboratory and astrophysical sce-
narios, we note that the astrophysical pair beams exhibit unstable
modes within a much narrower wave mode window ∆k. From 61, one
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Figure 13: Growth maps for an astrophysical pair beam according to Model
2. The kinetic oblique modes are plotted, with growth rates nor-
malized to the plasma frequency ωp and the density contrast α.
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Figure 14: Growth maps for an astrophysical pair beam according to Model
3. The kinetic oblique modes are plotted, with growth rates nor-
malized to the plasma frequency ωp and the density contrast α.
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can see that a part of the k space is excluded by sin2 θ+ cos2 θ ⩽ 1

and thus k2∥ + k2⊥ ⩽ 1.
We note that a prominent distinction between the reactive growth

rate maps applicable to cold beams as shown in Figs. 5-7, and kinetic
growth rate maps, as derived for the laboratory case, in Figs. 8-11, or
the astrophysical case, in Figs. 12-14, is that the reactive growth rate
is always positive; however, within the resonant window, the kinetic
growth rate shows both positive and negative values, i.e., growth and
damping. This can be understood by looking at the denominator of
the integrand in the expression for the kinetic growth rate in Eq. 59,
which has a positive and a negative root for each resonant wave mode
k.

2.6 other modes of instabilities

2.6.1 Modulation instability

In addition to oblique modes of electrostatic instability, the oscillating
case can be understood as modulation instability. The energy density
of the electrostatic fluctuations can be expressed as [23], [24]

Ee = nbmec
2(γ− 1). (71)

When ions in a turbulent medium scatters as a result of Langmuir
oscillation in the beam, the energy density exceeds the critical value
[25]

Ecrit =
5

3

np
(
kBTp

)2
mec2

, (72)

the wave energy shifts to larger phase speeds leading to resonance,
and modulation instability is triggered. The corresponding dispersion
relation can be solved for the growth rate of:

1 =
ω2

p

ω2
+

ω2 sin2 θ
(
1− γ2−1

γ2 cos2 θ
)

(
ω− kc cos θ

√
γ2−1
γ2

)2 (73)

2.6.2 Weibel modes

In a departure from the two-stream class of instabilities, Weibel modes
occur when in presence of a background magnetic field, anisotropies
in velocity field induce fluctuations in the magnetic field perpendicu-
lar to the direction of particle motion, which is of the form [26]:
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B = B cos(kz)ey. (74)

This creates opposing current sheets by virtue of the deflection of
the charged pairs in the beam through the Lorentz force from B field
fluctuations. A consequence of such current sheets is an overall ampli-
fication of the magnetic field. Larger magnetic field strengths induce
stronger Lorentz force, and eventually a resonance is reached. The
instability has a growth time that can be estimated as [27]:

T =

√
nbe2

ϵ0meγ
, (75)

and saturates when the amplification of the magnetic field leads to
an increase of the Larmor radii to the level of the plasma skin depth
[28]. In parallel, the instability could be short-lived as temperature
anisotropies perpendicular to the beam propagation can suppress the
growth of Weibel modes.

2.6.3 Nonlinear Landau damping

Among nonlinear effects in the beam-plasma system, scattering by
thermal ions can alter the frequency and wave mode of a Langmuir
wave. Such a damping of the Langmuir oscillation is known as non-
linear Landau damping. The transformation (k,ω) → (k′,ω′) has a
timescale Tk which is a combination of the instability growth time
Tinst and the growth time for linear Landau damping TLD,

1/Tk = 1/Tinst + 1/TLD (76)

The evolution of the spectral energy density ϵk is governed by the
kinetic equation:

dϵk

dt
= 2

ϵk

Tk
−

ϵkωpl

8(2π)5/2nemev2e

∫
(k · k′)

k2k′2
ϕ
(
k, k′) ϵk′dk′ (77)

where ϕ (k, k′) is known as the overlap integral [29].

2.7 other relaxation mechanisms

Self-heating of the beam causes a diffusion in the beam momentum
space, causing the beam to broaden its energy spectrum. We explore
the impact of this in the evolution of the beam in further details in
the following chapter. In presence of magnetic field and considering
the presence of ions, the beam can undergo pitch-angle diffusion or
magnetic diffusion in addition to self-heating.
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2.7.1 Pitch-angle diffusion

Thus far, we have ignored collisional effects in the plasma. In presence
of magnetic field, or in a turbulent magnetised plasma, the beam
pairs can undergo pitch-angle diffusion. The diffusive transport is
described by the diffusion coefficient [30]:

Dµµ =

∫∞
0

dt⟨µ̇(t)µ̇(0)⟩ (78)

where the acceleration parameter (t) can be described in terms of
the stochastic magnetic field variation from a mean magnetic field B0

as

µ̇ =
1

rL

(
v∥(t)

δB⊥[z(t), t]
B0

− v⊥(t)
δB∥[z(t), t]

B0

)
(79)

with Larmor radius corresponding to the gyrofrequency Ω:

rL =
ve

Ω
=

vemecγ

eB0
=

pc

eB0
. (80)

2.7.2 Magnetic diffusion

In presence of weak tangled magnetic field, the pairs in the beam can
undergo random walk. Such magnetic diffusion can be understood
in terms of the broadening of the distribution function in terms of
the correlation length λB associated with the magnetic field strength
BIGM as [31]:

∆θ =
mec

p

√
1+

2

3
λBlIC

(
eBIGM

mec

)2

(81)

for a generic astrophysical pair beam distribution over several cor-
relation lengths of the EGMF:

fb,θ(θ,p) =
1

π∆θ2
exp

{
−

(
θ

∆θ

)2
}

, 0 ⩽ θ ⩽ π. (82)

Here, lIC denotes the lengthscale of the inverse Compton scatter-
ing. Let us note that this is a consequence of weak tangled fields.
For larger magnetic field strength, a magnetic deflection would take
place instead. In presence of primordial strength magnetic fields in
voids, such magnetic diffusion holds the potential to, in certain cases,
quench the instabilities in the astrophysical pair beams if they are suf-
ficiently broadened and the rates are no longer competitive to those
of ICS [32].
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L A B O R AT O RY A N D T E V A S T R O P H Y S I C S

This chapter contains a summary an article titled “Evolution of Rela-
tivistic Pair Beams: Implications for Laboratory and TeV Astrophysics
[33]”.

3.1 introduction

Blazars, which are abundant in the gamma-ray sky, are typically ac-
tive galactic nuclei with their jets pointing towards the line of sight. In
this work, we focus on BL Lac type objects that peak at high energies.
Prompt TeV emissions from such distant sources are reprocessed via
their interaction with the extragalactic background light (EBL), lead-
ing to pair creations. Among these pairs, the most abundant are elec-
trons and positrons that propagate in the same direction as the emit-
ted TeV photons. Subsequent cooling of these pairs can be attributed
to inverse Compton scattering (ICS) when the beam interacts with
the cosmic microwave background (CMB) producing GeV gamma
rays. However, a discrepancy between the expected [34] and observed
flux through various gamma-ray observations of blazars have been
reported [2, 11], leading to the so-called “GeV-TeV tension”, which
is universal among the blazar sources detected. The missing cascade
could be due to collective plasma effects [15, 21, 25, 31, 32, 35–42]
or deflection of the electron-positron pairs by the cosmic magnetic
field. If the ICS is efficient, non-observation of the predicted gamma-
ray flux is then utilized to draw a lower bound on the strength of
the intergalactic magnetic field (IGMF) [2, 7, 43]. If the IGMF is suf-
ficiently strong, an additional component is expected in the isotropic
gamma-ray background (IGRB), and when weaker it can lead to the
extended emission known as “pair halos”, i.e., bow-tie-like structures
around point sources in the gamma-ray sky [44], which are not sup-
ported by observations. Recent measurements indicate that the IGMF
may be feeble since no excess owing to strong deflections have been
observed [45].

In this work, we assess the role of collective plasma effects on the
development of electrostatic instabilities. Cherenkov resonance aris-
ing from the interaction between the pair beam and the background
plasma leads to the growth of unstable modes, which can be elec-
trostatic or electromagnetic in nature [18]. The growth rate of such
instabilities, and thus, the fate of the pair beam depends on, among
other parameters, the initial distribution function of particles in the
pair beam. Whether the instabilities can contribute to significant en-

29
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ergy drain [32] has been debated. [46] and [47] respectively argued
that inhomogeneities in the IGM plasma and tangled magnetic field
can render the instabilities inefficient for astrophysical pair beams.
Cosmological implications of such energy drain includes the injec-
tion of energy into the IGM plasma that can alter the thermal history
and suppress the formation of structures at small scales [15, 48, 49].
We delve into this aspect in Chapter 6 and Chapter 7.

We explore a laboratory-based setup of a beam-plasma system and
examine its evolution through analytical and numerical estimates,
which can be compared to PIC simulations. In exploring the role of
collective plasma processes, it is crucial to understand the temporal
evolution of the beam-plasma system and how it differs when the
key parameters are changed. The pair beam in question goes through
a) a linear growth phase in which the Langmuir oscillations develop
and energy is dissipated from the beam into the background plasma
through the growing unstable modes, b) a relaxation phase when
the particles within the beam, upon encountering electrostatic fluc-
tuations introduced by the instabilities, undergo diffusion, changing
the phase space distribution of the beam, and c) the nonlinear phase
characterised by Landau damping of the modes, leading the beam to
saturation. The extent of the energy dissipation depends on the effi-
ciency of the plasma instabilities. Therefore, it is important to focus
on identifying the oscillation modes that are important in driving the
instability, sensitivity of the growth rate to the relevant parameters,
and the evolution of the energy densities in the beam and the plasma
according to the instability growth.

3.2 plasma instabilities and growth of modes

Several kinds of instabilities can set in through the interaction be-
tween the beam and the background plasma, based on beam parame-
ters and distribution functions. With an arbitrary beam velocity char-
acterized by v, and wave vector k, the two-stream mode (k̂.v̂ = ω), the
Weibel mode (k̂.v̂ = 0), and the general oblique mode (k̂.v̂ = ω cos θ)
have been explored [19, 50, 51]. In addition to (semi-)analytical esti-
mates of growth rates, PIC simulations initialized with arbitrary elec-
tron distributions have been useful in understanding the evolution of
the beam, with the following parameters of significance: the density
contrast between the beam and the plasma, the Lorentz factor of the
beam, and the energy or momentum spread of the beam [32, 38].

To recall, for a monoenergetic cold beam, i.e., when the momentum
spread of the beam ∆v is very small, the growth rate of instabilities
turns reactive. The maximum reactive growth rate is then derived as
Im | ω(k) |= δrωp such that [17]:
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δr =

√
3

24/3

(
2α

γ

)1/3
(

k2∥

γ2k2
+

k2⊥
k2

)1/3

=

√
3

24/3
(2α)1/3

γ
(cos θ20 + γ2 sin θ0

2)1/3.

(83)

Here θ0 is the initial angle between the wave vector and beam ve-
locity, γ is the beam Lorentz factor, α = nb/np defines the density
contrast, with nb and np being the number density of particles in the
pair beam and the background plasma, respectively.

For warm beams with finite momentum spreads propagating through
a background warm plasma, the growth rate should be computed
specifically in the kinetic regime. For ultrarelativistic beams (υ ∼ c)
with arbitrary beam distribution function cast in polar coordinates,
an approximation exists [22], f(p, θ), and the normalised growth rate
can be written as

δk = −π
nb

np

(ωp

kc

)3 ∫µ+

µ−

dµ
2g+

(
µ−

k∥c

ωp

)
∂g
∂µ

[(µ+ − µ) (µ− µ−)]
1
2

, (84)

where

g(θ) =
mec

nb

∫
pf(p, θ)dp (85)

µ± =
ωp

kc

(
k∥

k
± k⊥

k

√
k2c2

ω2
p

− 1

)
. (86)

In a prospective laboratory experiment, we approximate the ini-
tially injected beam distribution function with a 2D normal distribu-
tion. As the beam undergoes diffusion in momentum space, the the
beam widens in momentum space and the growth of instabilities goes
from reactive to kinetic in nature. We explore the instability growth
without any correlation between the components parallel and normal
to the direction of beam propagation. The corresponding growth rates
for a beam-plasma system with a density contrast of α ≃ 10−4 and
beam Lorentz factors of, γ, of 25, 50 and 100 are shown in Fig. 15.

3.3 quasilinear relaxation

After the development of Langmuir oscillations, the momentum spread
of the injected beam distribution function increases until the beam
stabilises according to Penrose’s criterion, i.e., when the perpendicu-
lar momentum spread becomes comparable to the beam momentum
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Figure 15: Kinetic growth rate δk/ωp for oblique modes of instability for a
density contrast of α ∼ 10−4 and beam Lorentz factors of γ = 25,
50 and 100.

characterised by the Lorentz factor [52]. Therefore, even when the
beam is monochromatic or narrow in spread at injection, for which
the instability growth rate is reactive and occurs over a much shorter
timescale, as tinst ∼ 1/δ, the quasilinear relaxation widens the en-
ergy width of the beam, leading to the instability growing in the ki-
netic regime. Nonlinear effects such as damping competes with the
growth until saturation is achieved.

Thus the beam evolution can be described aptly by the generalized
Boltzmann equation in the collisionless regime, which reduces to a
Fokker-Planck equation:

∂

∂t
f(p, t) = −

∂

∂pi
[fli(p, t)f(p, t)] +

∂

∂pi
[Dij(p,k, t)

∂

∂pj
f(p, t)]. (87)

Here the first (drift) term represents energy loss due to instability as
υ(p, t) = ṗ and the second term demonstrates momentum diffusion
through the diffusion coefficient Dij.

3.3.1 Energy loss due to instabilities

Neglecting collisional energy loss, the spectral energy density of the
background plasma grows through the resonant electrostatic unstable
modes

∂W

∂t
= 2(Im | ω |)W. (88)

For a laboratory plasma, the beam Lorentz factor is not as high
compared to astrophysical plasmas. This implies that the energy loss
through instabilities is not suppressed. However, the diffusion term
widens a cold beam into a beam with significant sporead in momen-
tum. Even though the overall growth rate is determined by the reac-
tive growth rate, the widening leads to the instability proceeding in
kinetic regime, in which the subsequent growth rate falls below the
reactive rate.
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3.3.2 Diffusion in momentum space

The momentum-diffusion tensor can be determined by the mode-
weighted spectral energy density at resonance for an initial phase-
averaged ensemble [22]:

Dαβ = πe2
∫
W(k, t)

kαkβ

k2
δ(k · v −ω)d3k (89)

The diffusion coefficients depend on beam momenta through the
growth rate in the exponent in the expression for the spectral en-
ergy density by virtue of the beam distribution function used. In
this treatment of the momentum diffusion in the beam-plasma sys-
tem, the delta function associated with the resonance condition in Eq.
89 combs through the modes and picks up the corresponding fastest
growing modes contributing to the growth of the spectral energy den-
sity, i.e.,

W(k, t) |kfl=ωp
= Wresonant(t) = W0

∫t
0

exp[2δmaxωpt]. (90)

Here δmax is the maximum growth rate of the plasma instabilities
normalised in terms of plasma frequency and W0 is the initial energy
in the plasma that can be estimated as the thermal energy of the
background electrons. For astrophysical beam this corresponds to the
temperature of the IGM (O(∼ 10keV)). In a laboratory set up, the
corresponding temperature is of the order of electronVolts. After an
initial phase of growing instabilities which can be described using the
linear theory, the beam undergoes diffusion in momentum space. The
quasilinear approximation applies until the nonlinear damping leads
to instability saturation.

3.3.3 Drift term

The first term in the RHS of Eq. 87 represents a “drift”, i.e., an energy
drain from the beam into the background plasma. As the pair beam
cools, the background field energy increases. The drift coefficient υ is
determined in the parallel direction as:

υ||(p, t) = ṗ|| = δωp
W(t)

nb
(91)

The spectral energy density of the waves can then grow according
to

W(k, t) = W0(k) exp[2δkωpt] , (92)



34 laboratory and tev astrophysics

W0 = nekBTe being the initial spectral energy described by the
thermal fluctuations, which serves as a noise floor.

The above follows immediately from the growth of the electrostatic
field energy owing to instability with a growth rate of δ in units of
plasma frequency ωp in the direction of beam propagation. In the
direction perpendicular to it, the beam momenta is relatively small.
Since p⊥ ≪ p||, the drift in transverse direction can be ignored for
pair beams designed for laboratory astrophysics.

3.3.4 Diffusion term

The second term in Eq. 87 shows diffusion in momentum space and
the diffusion coefficient in its general form can be decomposed into
two diagonal and two off-diagonal contributions. The Cherenkov res-
onance condition represented in the delta function of the integrand
chooses only the fastest growing resonant mode. Thus, the diffusion
coefficients in the 2D Cartesian system can be expressed as:

Dαβ ∼ πe2
W0

ωp
exp[2δmaxωpt]Jαβ , (93)

where

Jαβ = ωp

∫
d3kW(k, t)kαkβ

k2 δ(k · v −ω)∫
d3kW(k, t)

. (94)

Here J|| ∼ J⊥ ∼ O(1− 10)ωp, and the off-diagonal terms vanish as
J||,⊥ = J⊥,|| = 0.

3.3.5 Comparison between the drift and diffusion term

It is important to understand the hierarchy between the drift and the
diffusion term in order to chart out the evolution of the pair beam dis-
tribution function via the Fokker-Planck equation. On the one hand,
if the drift term is much larger than the diffusion term, the system
is advective in momentum space, and the main impact of the Fokker-
Planck evolution would then be energy loss. On the other hand, when
the diffusion term leads, momentum broadening will determine the
primary outcome of the pair beam evolution. The relative impact of
the two terms can be evaluated as follows.

At first, we perform a comparison along the direction of propaga-
tion. The diffusion coefficient is expressed in terms of the spectral
energy density of the electromagnetic fields:

D|| = πe2W(t)J||. (95)

The drift coefficient reads
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ṗ|| = δωpE = δωp
W(t)

nb
. (96)

Thus, the dimensionless ratio of the two terms is

p||ṗ||

D||

=
p||

πe2W(t)

δω2
pW(t)

nb
=

p||

πe2

δω2
p

nbJ||
. (97)

Using the definition of plasma frequency, ωp =
√

4πnee2

me
, and p|| =

γme,

p||ṗ||

D||

≈ δ
γ

α
. (98)

For standard laboratory plasma conditions with γ = 100, α = 10−3

and a kinetic maximum growth rate, p||ṗ||

D||
∼ O(1− 10).

The transverse momentum p⊥ being very small, p⊥ṗ⊥
D⊥

≪ 1 and
diffusion is the leading phenomenon in the direction perpendicular
to beam propagation.

3.4 numerical scheme : an outline

3.4.1 The Fokker Planck Equation

The Fokker-Planck equation is a partial differential equation describ-
ing the evolution of the beam distribution function with a drift term
characterising the energy loss owing to the plasma instabilities and a
diffusive term representing diffusion in momentum space.

∂

∂t
f(p, t) = −

∂

∂pi
[υi(p, t)f(p, t)] +

∂

∂pi

[
Dij(p,k, t)

∂

∂pj
f(p, t)

]
(99)

If we consider a 2D Cartesian system with p|| and p⊥ representing
momenta in forward and transverse direction, such that i, j =||,⊥,
in addition to the homogeneous terms, we also obtain off-diagonal
components for the diffusion term.

3.4.2 Change of variables

Thus, Eq. 99 has the form

(
∂f(p, t)

∂t

)
= −

∂

∂p||

[
v||(p, t)f(p, t)

]
−

∂

∂p⊥
[v⊥(p, t)f(p, t)]

+
∂

∂p||

[
D||(p,k, t)

∂

∂p||

f(p, t)
]
+

∂

∂p⊥

[
D⊥(p,k, t)

∂

∂p⊥
f(p, t)

]
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(100)

Such a PDE can typically be numerically solved using a finite dif-
ference solution scheme, which is unstable at late times owing to the
exponential time-dependence of the drift and diffusion term. In or-
der to tackle this problem, performing a change of variable dτ =

exp[2δωpt]dt is necessary and Eq. 100 can be rewritten as:

∂f(p, τ)
∂τ

= −
∂

∂p||

[Υf(p, τ)] +
[
D||

∂2f(p, τ)
∂p||

+D⊥
∂2f(p, τ)
∂p⊥

]
(101)

where

Υ = δωpγmec (102)

and

D|| = πe2W0J|| (103)

D⊥ = πe2W0J⊥ (104)

3.4.3 Finite difference method

In order to solve the PDE in Eq. 101, we use Finite Difference Method
(FDM), which relies on spacetime discretization into finite-sized nu-
merical grids. First derivative of of an arbitrary function u(x,y) can
be expressed as:

ui+1,j+1 = ui,j +

(
∆x

∂

∂x
+∆y

∂

∂y

)
u

∣∣∣∣
i,j

+
1

2

(
∆x

∂

∂x
+∆y

∂

∂y

)2

u

∣∣∣∣∣
i,j

+ · · ·+ h.o.t

(105)

for which forward difference can be propagated along the x line as:

∂u

∂x

∣∣∣∣
i,j

=
ui+1,j − ui,j

∆x
+O(∆x) (106)

∂u

∂y

∣∣∣∣
i,j

=
ui,j+1 − ui,j

∆y
+O(∆y) (107)

Similarly, backward difference
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∂u

∂x

∣∣∣∣
i,j

=
ui,j − ui−1,j

∆x
+O(∆x) (108)

∂u

∂y

∣∣∣∣
i,j

=
ui,j − ui,j−1

∆y
+O(∆y) (109)

and centered difference

∂u

∂x

∣∣∣∣
i,j

=
ui+1,j − ui−1,j

2∆x
+O

(
∆x2

)
(110)

∂u

∂y

∣∣∣∣
i,j

=
ui,j+1 − ui,j−1

2∆y
+O

(
∆y2

)
(111)

can be derived.
Similarly, for a second derivative, forward difference

∂2u

∂x2

∣∣∣∣
i,j

=
ui+2,j − ui,j

∆x2
+O

(
∆x2

)
(112)

∂2u

∂y2

∣∣∣∣
i,j

=
ui,j+2 − ui,j

∆y2
+O

(
∆y2

)
(113)

backward difference

∂2u

∂x2

∣∣∣∣
i,j

=
ui,j − ui−2,j

∆x2
+O

(
∆x2

)
(114)

∂2u

∂y2

∣∣∣∣
i,j

=
ui,j − ui,j−2

∆y2
+O

(
∆y2

)
(115)

and centered difference

∂2u

∂x2

∣∣∣∣
i,j

=
ui+1,j − 2ui,j + ui−1,j

∆x2
+O

(
∆x2

)
(116)

∂2u

∂y2

∣∣∣∣
i,j

=
ui,j+1 − 2ui,j + ui,j−1

∆y2
+O

(
∆y2

)
(117)
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3.4.4 Implementation and stability

We solve the Fokker-Planck equation in its modified form, Eq. 101

with a forward propagation in time and an upwind scheme in space
for the drift term and a centered difference scheme in space for the
diffusion term. The reason for this hybrid approach is due to the fact
that the drift term, containing a first derivative, when treated with
a forward in time and centered in space approach, unlike the diffu-
sion term, is unconditionally unstable. Therefore, we use an upwind
scheme, i.e., a backward difference in space to treat the first deriva-
tive in the drift term. It is also to be noted that an upwind scheme in
an advection-like term, such as our drift term, introduces a numerical
diffusion.

The hybrid approach gives us a solution that is close to the actual
solution of the Fokker-Planck equation in amplitude as long as the
numerical diffusion is counteracted by the physical diffusion term in
Eq. 101.

For a function f(p||,p⊥; τ) discretized as Φ
(n)
i,j , such that p|| = i∆p||,

p⊥ = j∆p⊥, and τ = n∆τ, on the domain of unit square 0 ⩽ p|| < 1

and 0 ⩽ p⊥ < 1.
Thus,

Φ
(n+1)
i,j = Φ

(n)
i,j +∆τ

Υ||

Φ
(n)
i,j −Φ

(n)
i−1,j

∆p||

+Υ⊥
Φ

(n)
i,j −Φ

(n)
i,j−1

∆p⊥


+∆τ

D||

Φ
(n)
i+1,j − 2Φ

(n)
i,j +Φ

(n)
i−1,j

(∆p||)2
+D⊥

Φ
(n)
i,j+1 − 2Φ

(n)
i,j +Φ

(n)
i,j−1

(∆p⊥)2

 ,

(118)

where since Υ⊥ ≪ Υ∥, we can ignore the second term within the
first parenthesis, and set Υ∥ = Υ.

The stability of the hybrid scheme depends both on the drift and
diffusion coefficients and can be derived from the following condi-
tions

−

(
D||∆p

2
||
+D⊥∆p

2
⊥

∆p2
||
∆p2

⊥

)
∆τ ⩽

(
Υ||∆p|| +Υ⊥∆p⊥

∆p||∆p⊥

)
∆τ ⩽ 1− 2

(
D||∆p

2
||
+D⊥∆p

2
⊥

∆p2
||
∆p2

⊥

)
∆τ

(119)

and

0 ⩽
2
(
D||∆p

2
||
+D⊥∆p

2
⊥

)
∆p2

||
∆p2

⊥
⩽ 1 (120)
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Thus the Courant criterion is then defined as:

∆τ ⩽
1[

(Υ||∆p||+Υ⊥∆p⊥)
∆p||∆p⊥

+
2
(
D||∆p2

||
+D⊥∆p2

⊥

)
∆p2

||
∆p2

⊥

] (121)

After solving the Fokker-Planck equation with the relevant change
of variables using the combined upwind and FTCS scheme, we reex-
press the solution in terms of physical time t.

A realistic modelling of collective plasma effects is possible only
to the extent linear theory and quasilinear approximations allow. Be-
yond these regimes, nonlinear effects become important, a direct con-
sequence of which is saturation and beam stabilization.

3.5 solution to the fokker-planck equation

The Fokker-Planck equation is numerically solved using a finite dif-
ference scheme for a density contrast α = 10−3, background plasma
temperature Te = 500 eV, plasma density ne = 1026cm−3, and the
time evolution of the beam distribution function is plotted for vari-
ous values of beam Lorentz factor γ = 25, 50, and 100 in Fig. 16.

The time evolution of the beam distribution function demonstrates
the impact of the energy loss and diffusive processes. The initial
width of the Gaussian beam is set to the minimum grid resolution.
Further details on the numerical finite-difference scheme adapted is
provided below.

We also present a 1D slice of the distribution function for a beam
with γ = 100 at p⊥ = 0 is shown in Fig. 17. The corresponding
changes in the momentum distribution are governed by an exponen-
tially growing drift coefficient Di(t) that transfers the energy from
the beam such that the mean is shifted as

∆µi ∝ exp[2δωpt] (122)

in each dimension i. Similarly, the diffusion coefficient Di(τ) scales
as

√
τ. This implies that a physical diffusion coefficient has the time-

dependence:

Di(t) ∝ exp[δωpt]. (123)

These effects Figs. 18 and 19, where the time evolution of the drift
of the mean momentum and width of the momentum about the mean
are shown for the parallel direction. We note that the drift coefficient
represented by the change in mean momentum grows exponentially
with an argument twice the growth rate while the diffusion coefficient
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Figure 16: Beam distribution function in p|| − p⊥ plane at various timesteps
in the units of inverse plasma frequency. Eq. 87 is solved for a
plasma with number density npl = 1026 cm−3, density contrast
α ∼ 10−3 and beam Lorentz factors of γ = 25, 50, and 100. The
background temperature is 500 eV and the the color scale has a
unit of MeV−2. The above figures portray the advective and dif-
fusive Fokker-Planck evolution of the beam through energy loss
(shift of the mean energy) and a momentum broadening (diffu-
sive behaviour). The beam evolution is shown until linear pertur-
bation calculations are valid, i.e., before nonlinear effects become
important. Time is expressed in units of plasma period.
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Figure 17: One-dimensional slices of the the distribution function at p⊥ = 0

is plotted against the parallel momentum p|| for various timesteps
tracing the evolution of the normalized distribution function.
Time is expressed in units of plasma period.
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t p
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100

101
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||

= 100

||(t)
e2 pt

Figure 18: The time evolution of the drift of the mean momentum of the dis-
tribution, governed by the Fokker-Planck equation is shown for
the parallel direction in blue points, which at late times shows ex-
ponential growth as the drift coefficient increases exponentially.
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Figure 19: The time evolution of the momentum width of the pair beam,
governed by the Fokker-Planck equation is shown for the paral-
lel direction in blue points, which is dominated by exponential
growth as can be expected from the exponentially growing diffu-
sion coefficient.

represented by the standard deviation has an exponent equal to the
growth rate of the instabilities. This is consistent with the analytical
findings and PIC simulation results presented in the article [33].

3.6 discussions

From this investigation, we note that in addition to plasma heat-
ing via instability losses, a quasilinear relaxation phase occurs, the
main consequence of which is then a momentum diffusion within
the beam. Such diffusive processes can change the beam distribution
function from its initial configuration, as well as affect the energy
partition in the beam-plasma system. Since the fate of beam-plasma
systems is determined by a horde of microscopic phenomena, collec-
tive plasma effects serve as an excellent tool to trace their evolution.
A beam propagating through the plasma induces Langmuir oscilla-
tions that enter Cherenkov resonance associated with electrostatic in-
stability as ω − k⃗ · υ⃗ = 0. When the initial injection of the beam is
energetically narrow or even monochromatic, the instability grows
reactive and its growth rate is estimated hydrodynamically. When
the velocity or momentum spread of the beam ∆υ is not insignificant,
| k⃗ · ∆υ⃗ |> Im | ω(k⃗) | , the instability grows kinetically for most
k’s. This is a direct consequence of the quasilinear relaxation. During
this self-heating phase, the diffusion in momentum space will con-
tinue broadening the beam until the beam is completely relaxed, i.e.,
change in the angular width of the beam approaches the initial beam
width ∆θ ∼ θ0. The overall beam evolution can be traced using the
Fokker-Planck equation, Eq. 87, where the drift term describes the
energy drain owing to instabilities and relaxation is governed by the
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diffusion term, as seen in Fig. 16, as supported by the results from
PIC simulation with similar parameters as shown in [33]. In the fi-
nal stages of the beam evolution, nonlinear damping effects become
important.

From the analysis we draw a few major differences between the
instability growth for a cold and that of a warm beam. For a cold
beam, the window of resonance in Fourier space is narrow in ∆k.
However, a realistic astrophysical pair beam is energetically broader.
When the instability proceeds in the kinetic regime, the energy drain
from the beam is not as efficient since it grows exponentially with an
argument proportional to the instability growth rate. In conjunction,
broadening turns out to be as important a feature of these beams.
The timescale of development for each phase and how long they are
sustained depend on beam parameters such as the beam Lorentz fac-
tor, beam-plasma density contrast, and the initial beam distribution
function at injection.

The investigation in the idealized conditions of a narrow Guassian
2D beam propagating through a homogeneous cold plasma differs
from the astrophysical scenario. In addition, inhomogeneity in the
plasma can affect the growth and development of instabilities. A char-
acteristic length scale Linhom associated to instabilities can be defined
in the direction parallel to beam such that

L|| ∼|
∂lnnp

∂z
|−1 . (124)

In presence of inhomogeneity, the relaxation proceeds under the
condition that the initial angular width of the beam is smaller than a
critical value set by the inhomogeneity length scale, i.e., θ0 < 1/µ||Λ.
The parameter µ|| can be defined as

µ|| =
c

ωpL||

γ

α
(125)

however, when the broadening of the beam increases the angular
width of the beam reaching θ ∼ 1/µΛ, the beam stops expanding
[53], [46]. Limiting our calculation to the quasilinear case, we set the
parameter Λ ∼ 1− 10 for laboratory plasma with a number density
np = 1016cm−3. For a beam Lorentz factor γ ∼ 10 and a density con-
trast α ∼ 10−3, the inhomogeneity lengthscale can be estimated in
the parallel direction as L|| ∼ 1 cm. This implies that the instability is
quenched when the inhomogeneity exceeds 0.1% for a plasma of ra-
dius 10 cm. An inhomogeneity lengthscale in the transverse direction
can be defined and evaluated in the same fashion.

In order to observe the instability growth in a laboratory astro-
physics experiment, it is required that the beam is kept nearly con-
stant for the time the instability grows, equivalent to a distance of
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propagation. The propagation distance needed for the instability to
grow is proportional to the growth rate δ and thus depends on the
plasma density as well. For parameters α = 10−3, γ = 100 and
nbg = 1016 cm−3 this distance is roughly 3 cm. if the beam number
density is held constant and the background density is increased,

the physical propagation distance decreases, since ωp ∝ n
1
2

bg but

δ ∝ α
1
3 ∝ n

1
3

bg. For a beam of finite length and width, as is the
case for laboratory beam-plasma systems, an increase in the length
and width in units of the plasma wavelength translates to the system
more closely resembling the infinitely extended beam discussed in
this work.

3.7 summary and outlook

We describe the evolution of relativistic dilute neutral pair beams con-
sisting of electrons and positrons propagating through a cold plasma
through collective plasma processes. In the initial phase, the beam
exhibits Langmuir oscillations with unstable modes that drives an ex-
ponential growth of the spectral energy density of the plasma. In
absence of magnetic field, the most important instabilities are the
oblique electrostatic instability and the growth rate derived with lin-
ear perturbation theory is valid. In the following phases, the beam
goes through a relaxation phase and we describe the self-heating of
the beam in terms of quasilinear approximations where initial width
is also a key parameter which determines the extent of instability
losses and momentum diffusion in the beam.

In a laboratory setup, in order to create and observe oblique insta-
bility, we need a positive slope in the longitudinal momentum distri-
bution of the input pair beam. Through irradiation of a high-Z conver-
sion target with a high energy particle beam, electron-positron pairs
are produced from Bremsstrahlung photons. The resultant spectrum
should then exhibit a large transverse divergence and a broad energy
spectrum, which was first shown in [54] and subsequently investi-
gated in [55]). This work demonstrates that the growth of the elec-
tric field energy via instability modifies the momentum distribution
pertaining to the beam, leading to an increase in the beam opening
angle. The broadening of the momentum distributions can proceed
exponentially until a saturation of the instability growth. For dilute,
relativistic beams, the growth rate and saturation level have power
law scaling with α and γ. The rate of widening is the same as the
growth rate of the electric field amplitude of the instability.

Inhomogeneities in the plasma can lead to a suppression of the
instability growth and contribute as an additional source of beam re-
laxation. Initial correlation in beam distribution function between the
parallel and perpendicular direction can modify the evolution of the
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beam. In similar vein, nonlinear damping effects that lead to a satura-
tion of the unstable modes should be considered for a more complete
treatment. The next step would be to trace the beam evolution in a
magnetized plasma in order mimic the astrophysical case better. The
above constitute future directions that will be explored in upcoming
work.



4
FAT E O F A S T R O P H Y S I C A L B E A M S

In this chapter, some estimates are presented on the fate of an as-
trophysical pair beam, and subsequently the prospect of observing
the impact of plasma instabilities and momentum diffusion in more
extreme scenarios compared to the laboratory case is explored. The
number density of the free electrons in the intergalactic medium at
mean density and present time is nIGM,0 = 2.2× 10−7cm−3, which
evolves with redshift z and overdensity ∆ according to

nIGM ≡ nIGM,0(∆)(1+ z)3. (126)

The pair production mean free path Dpp can be written as [15]

Dpp(E, z) = 35

(
E

1TeV

)−1(
1+ z

2

)−ζ

Mpc (127)

with ζ = 4.5 for z < 1 and ζ = 0 for z ⩾ 1 [56] [7], and the photon
spectra

FE = E
dN

dE
, (128)

is of the form

dN

dE
= f0

(
E

E0

)−α′

, (129)

where E0 is peak spectral energy in TeV, f0 is a factor of normal-
ization with units of cm−2s−1TeV−1 and index α′ is a combination
of the index of spectra for injection at the source α and the optical
depth,

α′ = αsource + τ (E0, z) . (130)

The optical depth for gamma rays of energy E depends on redshift
z, Hubble function H(z), and the pair production mean free path:

τE(E, z) ≡
∫z
0

cdz′

Dpp (E (1+ z′) /(1+ z), z′)H (z′) (1+ z′)
. (131)

46
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4.1 impact of plasma instability on pair beam spectra

The number density of charged particles in astrophysical pair beams
is determined by the injection from the blazar source and estimated
at present day to be nb,0 ∼ 10−22cm−3 [15]. The pair beam density
is determined by the duration of the TeV emission during the period
of blazar activity, pair production rate, pair cooling rate and the cas-
cading processes in consideration. Therefore, the evolution of pair
density per unit Lorentz factor nγ can be described using a Boltz-
mann equation, which can be written as nb = γnγ. Through the pair
production E ≃ 2γmec

2. The flux of gamma-rays N is such that

γṅγ =
2

Dpp

(
E
dN

dE

)
=

2FE
Dpp

. (132)

The evolution of nγ can be described in terms of Boltzmann equation
in its general form [15]:

∂nγ

∂t
+

c

r2
∂r2nγ

∂r
+ γ̇

∂nγ

∂γ
= ṅγ, (133)

where distance from the source r is measured radially in a spherical
coordinate system. Since nγ does not change appreciably over large
distances comparable to the pair production mean free path Dpp, one
can ignore the advection term c/r2∂(r2nγ)/∂r [15]. It can be assumed
that the TeV blazar emission occurs over a long period of time such
that a steady-state is reached, thus setting the first term on the LHS
to zero ∂nγ/∂t = 0. Therefore, Eq. 133 reduces to:

γ̇
∂nγ

∂γ
= ṅγ. (134)

At this point, the energy loss term can be split into the energy loss
due to ICS, γ̇ICS, and that due to instability losses, γ̇inst:

γ̇ = γ̇ICS + γ̇inst (135)

using which we rewrite Eq. 134 as

(
γ̇ICS

γ
+

γ̇inst

γ

)
∂nγ

∂γ
=

ṅγ

γ
. (136)

Using Eq. 132, we can write Eq. 136 terms of the ICS and instability
rates, ΓICS and Γinst, respectively, as

(ΓICS + Γinst)
∂nγ

∂γ
=

2κ0
Dpp

γ−(1+α′), (137)
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where κ0 = f0E
α′
0 . We note that the rate of inverse Compton scat-

tering is given by

ΓICS =
4σTuCMB

3mec
γ ≃ 1.4× 10−20(1+ z)4γs−1, (138)

where σT is the Thomson cross-section, and uCMB is the energy
density of the cosmic microwave background (CMB). Without assum-
ing a specific unstable mode, a generic expression for the cooling
rate owing to an electrostatic instability can be written in terms of
the plasma frequency ωp corresponding to that of the IGM, density
contrast α = nb/nIGM and the Lorentz factor γ,

Γinst ≈
α

γ
ωp. (139)

Redefining the following variables

b1 =
4σT

3mcc
uCMB, (140)

b2 = αωp, (141)

and

b3 =
2κ0
Dpp

, (142)

Eq. 137 can be cast as

(
b1γ+

b2

γ

)
∂nγ

∂γ
= b3γ

−(1+α′), (143)

which can further be simplified to

(
b1γ+

b2

γ

)[
1

γ

∂nb

∂γ
−

nb

γ2

]
= b3γ

−(1+α′), (144)

using the definition nγ = nb/γ. Thus the final form of the Boltz-
mann equation takes the form

(
b1γ

2 + b2

) ∂nb

∂γ
−

(
b1γ+

b2

γ

)
nb = b3γ

1−α′
. (145)

Here, the index α′ depends on the intrinsic blazar luminosity, and
the coefficient b2 depends on both the beam and the plasma density
since
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b2 = αωp =
nb

np

√
4πnpe2

me
∝ nbn

1/2
p (146)

Thus it is possible to trace the evolution of the pair spectrum once
the source is defined or selected, i.e., Equation 145 can then be solved
for a choice of blazar intrinstic indices, α′ = 2− 3, and the solution
to the Boltzmann equation then determines the final spectra. Broadly,
depending on the density of the IGM plasma, and the beam Lorentz
factor, there is a competition between ICS and instability losses, which
modifies the cooling feature of the pair spectrum depending on the
blazar luminosity.

4.2 exploring momentum diffusion with time delay mea-
surements

Primary photons from TeV blazars pair produce off the EBL at an
∼ Mpc-scale distance from the source. The charged pairs can undergo
diffusion in momentum space, or beam self-heating, as well as mag-
netic deflections due to the EGMF, before undergoing inverse Comp-
ton upscattering off the CMB to product secondary GeV emission [57].
The secondary photons can be detected with a time delay compared
to the prompt emission from the blazars [58]. This has been proposed
as a probe of the weak EGMF [59]. With time delay measurements
owing to EGMF deflections through the time-dependent spectra [10],
properties and structure of the magnetic field could be probed [60],
[61].

Similar to this, in this work, the impact of momentum diffusion
and broadening of pair beams in time delay can be explored and can
be compared with the consequence of the existence of weak tangled
magnetic fields. The analysis is performed, taking into account geo-
metrical effects, and derive the delayed spectra consistently with the
physical scenario.

4.2.1 Prompt and delayed gamma-ray spectra

Keeping in line with the previous section, the prompt spectra can be
described as:

d2Nγ

dEγdt
=

(α− 1)Lγ, iso (t)

4πD2
LE

2
γ,pk

(
Eγ

Eγ,pk

)−α

,
(
Eγ,pk < Eγ < Ecut

)
(147)

where Lγ, iso (t) is the isotropic gamma-ray luminosity, DL is the
corresponding luminosity distance, Eγ,pk = E0 is the spectral peak
energy, and Ecut is the maximum cutoff energy. The luminosity dis-
tance can be expressed as
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DL(z) =
(1+ z)

H0

∫z
0

dz′
[
Ωr

(
1+ z′

)4
+Ωm

(
1+ z′

)3
+ΩΛ

]−1/2
,

(148)

where Ωr, Ωm, and ΩΛ are energy densities of radiation, mat-
ter, and the cosmological constant. When the prompt gamma rays
with energy Eγ pair produce into electrons and positrons, such that
meγe = Eγ/2, the corresponding e± flux at production can be written
for the activity time of TeV blazars t = tblazar:

dNe,0

dγedtblazar
=

Lγ, iso (tblazar)

2πD2
L

α− 1

(2me)
α−1

γ−α
e

E2−α
γ,pk

[1− exp (−τ (2γeme))] .

(149)

Thus, the delayed gamma-ray flux can be expressed as

d2Ndelayed

dtdEγ
=

∫
dγe

dNe

dγe

d2NIC

dtdEγ
, (150)

where for the charged pairs undergoing ICS on CMB, inverse Comp-
ton power for a single electron is

d2NIC

dtdEγ
=

3σT

4γ2
e

c

∫
dϵγ,CMBnCMB

(
ϵγ,CMB

) f(x)

ϵγ,CMB
(151)

with the function as described in [62] as

f(x) = 2x ln x+ x+ 1− 2x2 (152)

where

x =
Eγ

4γ2
eϵCMB

, (153)

and the number density of CMB photons nCMB depends on the
CMB energy density ϵγ,CMB. The total time-integrated electron-positron
flux relevant to delayed emission can thus be written as [63]:

dNe/dγe = (tIC/∆tB)dNe,0/dγe. (154)

However, this picture does not completely capture the geometry of
the delayed emission. In order to properly model this, deflections or
momentum diffusion can be considered as a random walk in angular
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space, such that the probability of an electron found at an angle θ′

while it was emitted at an angle θ is [4]:

P
(
θ, θ′

)
=

1√
2π sin θ′

2√
2πσ(θ)

exp

(
−
(θ′ − ⟨θ⟩)2

2σ2(θ)

)
(155)

which is normalised to
∫
PdΩ′ = 1. A sketch of the geometry of the

delayed emission is shown in Fig. 20

Figure 20: Geometry of delayed emission as shown in schematic from [4]

The variance σ(θ) and expectation value ⟨θ⟩ describe the extent of
broadening and are dependent on beam parameters. Thus,

dNe

dγe
=

∫
dtblazar

∫θmax(tobs,tblazar)

θmin(tobs,tblazar)
dθ

∫
dΩ′δ

(
θ− θ′

)
P
(
θ′, θ

) dNe,0

dγedtblazar

=

∫
dtblazar

∫θmax(tobs,tblazar)

θmin(tobs,tblazar)
dθ

2√
2πσ(θ)

exp
(
−
(θ− ⟨θ⟩)2

2σ2(θ)

)
dNe,0

dγedtblazar
.

(156)

Using c = d⟨r⟩/dtobs, ⟨r⟩ being the distance between the pair pro-
duction and time of observation tobs, the delayed emission can be
described as

d2Ndelayed

dtobsdEγ
=

∫
dγe

dNe

dγe

3σT

4γ2
e

d⟨r⟩
dtobs

∫
dϵγ,CMBnCMB

(
ϵγ,CMB

) f(x)

ϵγ,CMB
.

(157)

4.2.2 Impact of various processes on delayed spectra

The rectilinear distance d⟨r⟩/dtobs can be written in terms of the emis-
sion angle θ, redshift z, and an angular broadening parameter Θ,

d⟨r⟩
dtobs

=
2c

(1+ z) [θ2 +Θ2/3]
, (158)

such that
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Θ2 ≡
〈
θ2B(θ)

〉
+
〈
θ2D(θ)

〉
+
〈
θ2IC(θ)

〉
, (159)

where
〈
θ2B(θ)

〉
represents variance in angle due to magnetic deflec-

tion,
〈
θ2D(θ)

〉
is the angular broadening due to momentum diffusion,

while
〈
θ2ICS(θ)

〉
represents angular broadening due to ICS. If the dis-

tance the charged pairs would have otherwise travelled in absence of
broadening is R(θ), we can write [64],

R− ⟨r⟩ = τB
12

R
〈
ϕ2
B

〉
+

τD
12

R
〈
ϕ2
D

〉
+

τICS

12
R
〈
ϕ2

ICS
〉

, (160)

where ϕB and τB are respectively the deflection angle and “optical
depth” associated with magnetic deflection such that

ϕB ≈ rc

rL
, τB ≈ R

rc
. (161)

Here rc is the coherence length of the magnetic field, and rL is the
Larmor radius. Similarly, for ICS, the corresponding quantities are:

ϕICS ≈ 1

γ
, τICS ≈ R

ℓICS
, (162)

where inverse Compton mean free path can be written as:

ℓICS =
1

σTnCMB
≈ 10 kpc (1+ z)−3. (163)

4.2.3 Comparison of ICS and momentum diffusion

We now proceed to compute the following quantities for momentum
diffusion. The “optical depth” as

τD ≈ R

ℓD
, (164)

where the diffusion lengthscale ℓD depends upon the beam-plasma
density contrast, the IGM plasma frequency and temperature and the
Lorentz factor of the pairs [22]:

ℓD = Λ
c

ωp

1

α

(
kBT

mcc2

)
γθ20. (165)

Here Λ = 1− 10 for standard plasma conditions and θ0 ≈ 1/γ is
the initial beam opening angle. We note that correspondingly,
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ϕD =
∆p⊥
p∥

, (166)

where momentum in the forward direction is p∥ = γmec and mo-
mentum spread in the direction perpendicular to propagation can be
expressed in terms of the diffusion coefficient in the perpendicular
direction:

∆p⊥ =
√
4D⊥tinst, (167)

active over the instability timescale, estimated as inverse of the in-
stability growth rate,

tinst =
Λ

Γinst
≈ Λγ

αωp
. (168)

The momentum diffusion characterised by the diffusion coefficient
can be estimated as

D⊥ = πe2nb

(
kBT

mec2

)
J⊥, (169)

where J⊥ ∼ 10/ωp. Assembling everything, it can then be shown
that,

√
⟨θ2D⟩ = ϕD

√
τD ≈

√
R

√
nb

mec
. (170)

This is then compared with the angular broadening due to ICS
and note that for typical astrophysical parameters, such as nb =

10−22cm−3 and γ = 106,

√
⟨θ2D⟩√
⟨θ2ICS⟩

≈ O(10−5), (171)

which leads to the conclusion that the effect of momentum diffu-
sion is negligible compared to ICS and does not significantly alter
d⟨r⟩/dtobs, and thus time delay observations.

4.2.4 Comparison with deflection owing to weak tangled magnetic fields

For weak tangled magnetic fields, one can consider a typical set of
following parameters, such as the EGMF field strength B = 10−16G

and rc = 10−4Mpc. Thus, approximately,
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√〈
θ2B(θ)

〉
=

rc

rL

√
R

rc
=

√
R

√
rc

rL
. (172)

Consequently, we find

√
⟨θ2B,tangled⟩√

⟨θ2ICS⟩
≈ O(102) (173)

From the above analysis, we conclude that while the deflection ow-
ing to EGMF , even for weak tangled fields, could be comparable to
the ICS broadening, and thus could leave an observable imprint on
the delayed spectra for the secondary cascades. From eqs. 171 and
173, we get

√
⟨θ2D⟩√

⟨θ2B,tangled⟩
≈ O(10−7) (174)

Therefore, the impact of angular broadening owing to instability-
induced momentum diffusion is very small compared to magnetic
and ICS scatter in an astrophysical pair beam, and thus cannot be dis-
entangled from them through gamma-ray observations of time delay.
However, energetic broadening of the astrophysical pair beam, owing
to inhomogeneities in the IGM [46] or weak tangled EGMF [31], can
backreact and lead to a further quenching of the instabilities.



Part II

T H E D A R K U N I V E R S E : D A R K H A L O S I N A
B L A Z A R - H E AT E D U N I V E R S E A N D

L A B O R AT O RY P R O B E S O F D A R K M AT T E R

In this part, after a brief introduction to axions as dark
matter and delving into the linear theory for structure for-
mation, I show how the predictions of ultralight axions
fare alongside impact of a blazar-heated late universe on
structure formation. In a subsequent chapter, I return to
a laboratory probe of dark matter, in particular axion-like
particles in our Galaxy.





5
A X I O N S A S D A R K M AT T E R

5.1 dark matter

According to the cosmological concordance model, the universe con-
sists of four major components, of which dark energy is the takes
up most of the energy budget, at 68± 1%, followed by dark matter
at 27 ± 1%, and the remaining energy density can be attributed to
ordinary matter and radiation [65]. While there are several particle
candidates of dark matter [66], which could be warm (relativistic),
or cold (nonrelativistic), there also exist non-particle dark matter can-
didates such as primordial black holes which could comprise dark
matter in part or in its entirety [67].

5.1.1 Cold Dark Matter

Warm dark matter candidates such as neutrinos can suppress struc-
ture formation below their free-streaming length [68], and often are
riddled with the problem that they cannot account for the energy den-
sity of dark matter completely [69], [70], [71]. In contrast, structures
are not washed out by the velocity dispersion of cold dark matter, con-
sistent with the features of structure formation across various periods
in cosmic history.

5.1.2 Axions

Axions, which arises in quantum chromodynamics (QCD) as a pseudo-
Goldstone boson Peccei-Quinn (PQ) symmetry breaking, invoked to
solve the strong CP problem [72], are considered a promising dark
matter candidate. They contribute to the energy density of the uni-
verse as a stable state with masses at or below the electronVolt (eV)
scale. Stronger constraints on the axion mass are derived from its pro-
duction mechanism in the early universe, in particular, whether infla-
tion occurs before the phase transitions associated with the breaking
of the PQ symmetry and topological defects leading to misalignment,
which sets the axion mass to ma ∼ 10

−6 eV. For QCD axions, the rela-
tionship between their mass and electromagnetic coupling is defined
by the following phenomenoogical relation [73] [74]:

ma = 6× 10−6eV
(
1012GeV

fa

)
. (175)
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Axions can interact with photons as described by the interaction
term

Laγγ = −
1

4
gaγγaFµνF̃µν (176)

where gaγγ stands for the coupling constant, a the axion field, and
ma the axion mass. fa is a parameter known as the axion decay con-
stant, which acts as a measure of the stability of QCD axions. Fµν

and F̃µν respectively represent the electromagnetic field tensor and
its dual. Equation 176 can be written in terms of the electric and mag-
netic fields, E⃗(x) and B⃗(x), respectively.

Laγγ = −gaγγ
α

π

1

fa
a(x)E⃗(x) · B⃗(x), (177)

Axion-like particles (ALPs) have been proposed within many ex-
tensions beyond the Standard Model (BSM) in particle physics and
string compactification scenarios. There have been several prescrip-
tions for QCD axions, of which the three most commonly used for-
malisms include the Peccei-Quinn-Wilczek-Weinberg (PQWW) [75]
[76] [77], Kim-Shifman-Vainshtein-Zakharov (KSVZ) [78] [79], and
Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) framework [80] [81]. From
a phenomenological perspective, ALPs are not limited by the phe-
nomenological relationship between their mass and decay constant
within the mass range similar to that of QCD axions.

ma,QCD ≈ 6× 10−6eV
(
1012GeV
fa/C

)
. (178)

For large decay constant fa, the axion is light and stable, which
makes it a dark matter candidate of interest.

In addition, there are ultralight species (∼10
−22 eV) that are moti-

vated by certain extensions of heterotic String theoretical frameworks,
also known as wave dark matter (WDM) [82], which modifies struc-
ture formation in the small-scale.

5.1.3 Production mechanisms in the early universe

Axions can be produced in the early universe through a variety of
mechanisms. Some of the well-known mechanisms include the mis-
alignment mechanism, which is associated with coherent displace-
ment of the axion field [83] [84]. For axion masses specifically of the
order of ma ∼ 10−22eV [82], the axion field behaves as a classical wave
on scales comparable to their de Broglie wavelength and acts as cold
collisionless dark matter at scales larger than their coherence length.
Topological defects related to the PQ field can lead to the production
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of axions via decay [85]. Decay of heavy particles (e.g., moduli) can re-
sult in relativistic axion species, in particular, when the axion field is
considerably lighter than the parent species. Axions can be thermally
produced when the coupling of the axion to the SM is large. Such
thermally produced relativistic axions behave as a hot dark matter
candidate and are subject to constraints (ma < 0.53− 0.62 eV) simi-
lar to those applicable to other standard hot dark matter candidates,
e.g., massive neutrinos [86] [87] [88]. Relativistic axions can comprise
the cosmic axion background (CAB) on which standard cosmic mi-
crowave background (CMB) and Big Bang nucleosynthesis (BBN) con-
straints are applicable to the effective number of neutrinos derived
considering a CAB [89], [90].

5.1.4 Cosmological implications

The periodic nature of the axion potential, the local maxima of which
are protected by shift symmetry from perturbative effects, can con-
tribute to the cosmological constant thus serving as candidate mod-
els for dark energy [91], and with a sufficient number of e-foldings
obtained by placing the axion field at the top of the potential, natural
inflationary models [92], e.g., V(ϕ) ∝ cos (ϕ/fa), could be realized.

Since the axion equation of state has a pressure term associated
with an oscillation frequency of 2ma, metric potentials also experi-
ence oscillations. This leads to a scalar strain detectable as gravita-
tional wave events and in pulsar timing arrays [93].

A separate set of constraints on axion mass and decay constant
can be drawn from the context of formation of a gravitational atom
composed of bosons arising out of vacuum fluctuations around black
holes, leading to a scenario with black hole spin-down, known as
black hole superradiance, in which spin is extracted from the black
hole and the boson mass (axion mass) creates a barrier. This, in turn,
rules out parts of the mass-spin plane. Based on the black hole mass
and spin distribution estimates, the gravitational wave signatures of
superradiance detectable at LISA and LIGO-Virgo can be used to
probe different classes of axions [94] [95] [96].

5.2 detection prospects

Axions could be indirectly probed using a plethora of constraints
from astrophysical observations as well as dedicated experiments [97].
These detection techniques usually rely on one or more of the fol-
lowing processes: axion production, axion decay, and conversion of
axions into SM states. Further constraints can be derived from spin-
dependent axion-mediated forces in experiments such as the pro-
posed ARIADNE that employs nuclear magnetic resonance, probes
of the coupling of axions with nucleons through spin precession in



60 axions as dark matter

an electric field, and measurement of neutron electric dipole moment
arising in presence of electric and magnetic field. A number of con-
straints derived to date on the axion parameter space are demon-
strated in Fig. 21.

Figure 21: Current limits on the axion parameter space obtained using var-
ious publicly available datasets and constraints, where axion-
photon coupling is plotted against axion mass. Courtesy: GitHub
repository, Ciaran O’ Hare

5.2.1 Axion production

Stellar astrophysics: Stellar cooling from the emission of axions pro-
duced from SM states inside stars impacts stellar evolution, resulting
in constraints on the axion-photon coupling gaγγ < 6.6×10−11GeV−1

from horizontal branch stars and red giant stars [98] [99] [100]. Axion-
electron coupling can be also be constrained from the observed addi-
tional cooling in white dwarfs.

Light shining through a wall: In a laboratory setting, a laser beam is
shot into a barrier, where photons in the beam are expected to con-
vert to axions in the presence of strong magnetic field. The barrier is
ordinarily opaque to photons; however, after crossing of the barrier,
axions are converted back to photons by the application of magnetic
field, thus virtually allowing photons to cross the so-called “wall,”.
This is the principle behind the ALPS experiment which has a target
constraint of gaγγ ∼ 2× 10−11GeV−1 [101], [102], currently upgraded
to ALPS-II.
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X-ray observations: Photons may convert to axion in galactic clusters
owing to cluster magnetic field. This modifies the spectrum of the
observed X-ray photons [103],. A limit on the axion-photon coupling
is obtained as gaγγ ⩽ 10−12GeV−1 from the non-observation of such
effect in X-ray probes, e.g., Chandra [104].

CMB spectral distortions: Photon can convert to axions in the presence
of EGMF, leading to spectral distortions in the CMB. This places a
strong constraint on the product of the axion-photon coupling and
the cosmic magnetic field strength [105], [106].

5.2.2 Axion decay

Astrophysical probes: CMB anisotropies, spectral distortions, and BBN
bounds can probe decay of axions into photons. Constraints exist
from deuterium abundance [107] [108] in the regime 1 keV ⩽ ma ⩽ 1

GeV and 10−4s ⩽ τa ⩽ 106s for axions and ALPs. For axions decay-
ing to photons, the axion lifetime τa can be expressed as:

τa =
64π

m3
ag

2
aγγ

≈ 130s
(

GeV
ma

)3
(
10−12GeV−1

gaγγ

)2

(179)

In addition, future-generation radio telescopes, e.g., SKA and HI-
RAX, can place limits on the axion-photon coupling through the de-
tection of GHz photons from axion-photon conversion in the Milky
Way occuring via the Primakoff process [109].

5.2.3 Axion-photon conversion

Haloscopes: In the presence of strong magnetic field, axions constitut-
ing halo dark matter can be converted into photons in laboratory mi-
crowave cavities [110]. This approach is adopted in a number of cavity
search endeavors across the globe, the most well-known of which is
ADMX [111]. In addition, a number of haloscope experiments em-
ploying other search strategies such as resonant circuits [112], dielec-
tric antenna such as in MADMAX [113], [114], nuclear magnetic res-
onance in CASPEr [115], are proposed to probe this interaction. The
magnetic field induced by axion-sourced current can also be detected
using an LC circuit or other amplification devices, such as WISPLC
[1], SHAFT [116], and ABRACADABRA [117]

Helioscopes: Solar axions can convert to axions when a strong mag-
netic field is applied within a telescope [sikivie83]. A well-known
helioscope, CAST, constrains the axion-photon coupling to gaγγ <

10−10GeV−1 [118]. This limits are expected to further improve with
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the upcoming IAXO [119] and baby-IAXO [120] experiments.

5.3 ultralight axions

Ultralight axion-like particles or wave dark matter (WDM), owing to
their small masses, have very large de Broglie wavelengths extending
to galactic scale, therefore, they essentially behave like a classical field,
evolving in a gravitational potential of the dark matter environment.
Ultralight axions as dark matter leads to a suppression of structure
in the small scale ⩽ 10 kpc. This can be understood from two differ-
ent perspectives. The WDM condensate behaves as a fluid suscepti-
ble to the quantum pressure that prevents the formation of a sharp
density peaks in the dark matter distribution. It can be thought of as,
dark substructures of high density are teased out by the galactic-scale
de Broglie wavelength of WDM. However, its predictions are similar
to those of the ΛCDM framework in the large-scale, consistent with
the observational constraints. Owing to this behaviour, WDM as dark
matter can be useful reconcile with small-scale anomalies in cosmol-
ogy. The dynamics of WDM is governed by the full Klein-Gordon
equation [83]:

ϕ−m2
aϕ = 0 (180)

which at zeroth order of perturbation reduces to

ϕ̈0 + 3Hϕ̇0 +m2
aϕ0 = 0 (181)

In linear perturbation theory, for overdensities ∆ ≪ 1, the per-
turbed equation can be expressed as [121]:

δϕ′′ + 2Hδϕ′ +
(
k2 +m2

aa
2
)
δϕ =

(
Ψ′ + 3Φ

)
ϕ′ − 2m2

aa
2ϕΨ (182)

In the following chapter, we discuss how small-scale power is sup-
pressed for ultralight axions, how it scales with the axion mass in
question, and how they compare with astrophysical solutions driven
by mechanisms such as blazar heating as mentioned in Part I of this
thesis.
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I G M H E AT I N G O W I N G T O I N S TA B I L I T Y L O S S E S

Plasma instabilities resulting from the interaction between highly en-
ergetic TeV-scale blazar-induced pair beams and the background plasma
contribute to the heating of the intergalactic medium (IGM), and can
be considered as a competing mechanism over inverse Compton cool-
ing of the beam. Energy from the beam is transported into the IGM
plasma via unstable electrostatic Langmuir oscillation modes. The
increase in the electric field energy is then transferred to the IGM
plasma leading to an elevated entropy floor and subsequently a mod-
ified temperature-density relation in the late universe. In this chapter,
one can assume the simplified picture of uniform global blazar heat-
ing in the post-reionization era as the comoving number of TeV blazar
sources is conserved close to present day z ∼ 0 [15], and compute the
impact of such heating in the thermal history at late times.

6.1 energy loss from pair beams through instabilities

For maximally growing modes, the electrostatic growth rate in the
reactive case can be expressed as shown in 2:

δr,max = δrγ
2/3 (183)

As the electrostatic modes grow, the mode-dependent spectral en-
ergy density of the electric field W(k) increases as

W(k) =
∫τ
0

e2δi(k)ωptdt (184)

over one e-folding time, i.e, growth time T ∼ 1/(δi(k)ωp) with
generic dimensionless mode-dependent growth rate δi(k) and plasma
frequency ωp such that in absence of nonlinear Landau damping

dW(k)
dt

= 2δi(k)ωpW(k). (185)

The above expression is applicable during the period when plasma
instabilities are active or “turned on”, i.e., the modes are still grow-
ing and saturation via various damping mechanisms has not set in.
Summing over modes, one obtains

∫
k

[
dW(k)

dt

]
dk = 2ωp

∫
k
W(k)δi(k)dk (186)
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The electric field energy described in terms of the electric field E

and vacuum permittivity ϵ0 as

E =
1

2
ϵ0E

2 =

∫
k
W(k)dk, (187)

depends on the energy loss or cooling rate of the beam, and thus
the maximum heating rate of the IGM plasma owing to plasma insta-
bilities can be written as

Γplasma =
Ė

E
= 2δmaxωp, (188)

where δmax is the dimensionless maximum growth rate. In con-
trast, the IGM heating rate owing to inverse Compton scattering can
be written as [15]

ΓIC =
4σTuCMB

3mec
γ ≃ 1.4× 10−20(1+ z)4γbs−1, (189)

where σT is the Thomson cross-section, γ is the Lorentz factor of
the pairs, and z is the redshift. The energy density in the CMB scales
as radiation uCMB ∝ (1+ z)4. Here me is the electron mass.

6.2 temperature-density relation

The intergalactic medium is heated by H and He photoionization, as
it continues to cool adiabatically, where the adiabatic cooling depends
on the local density. Overdense regions exhibit higher temperatures,
as photoheating from recombination is more efficient and adiabatic
cooling is slower [48]. Thus, after reionization, the temperature of the
IGM is determined by the competing heating and cooling processes
which act differently in the underdense and overdense regions. The
thermal evolution of the IGM is best described as the phenomenolog-
ical relation [122]:

T = T0(ρ/ρ)
γ′(z)−1, (190)

where T is the temperature of the IGM at a given redshift z, the
temperature at present day T0 = 1.5 × 104K, ρ is the density at a
given location, and ρ is the cosmic mean density.

If one defines the matter overdensity as δ = (ρ−ρ)/ρ, the temperature-
density relation stated above can be cast as:

T = T0(1+ δ)γ
′(z)−1 (191)

where γ′ denotes the index of the tight power law, often charac-
terised as the equation of state for the IGM.



6.2 temperature-density relation 65

6.2.1 Blazar heating

As delineated in [15], the estimate for IGM heating due to a single
blazar can be expressed as

q̇ =

∫
dE

Θ(E)

Dpp(E, z)
f (FE,E, z) FE (192)

Here Θ(E) serves as a Heaviside step function that allows the inte-
gral to be evaluated above a certain threshold energy, e.g., 100 GeV
[123].

Here the contribution of the plasma instabilities is quantified as

f (FE,E, z) = 1− fIC =
Γplasma

ΓIC + Γplasma
, (193)

the mean free path of a TeV photon before pair production off the
EBL is [15]

Dpp(E, z) = 35

(
E

1TeV

)−1(
1+ z

2

)−ζ

Mpc, (194)

where ζ = 4.5 for z < 1 and ζ = 0 for z ⩾ 1. The mean free path can
be understood in terms of the crossing time for one Hubble radius as

τH(z) =
c

Dpp(E, z)H(z)
, (195)

i.e., this is the optical depth of a gamma ray of energy E associated
with pair production propagating across a Hubble distance at a given
redshift of z. Once again the energy spectra from blazar sources, sim-
ilar to that used in 4 is assumed:

FE = E
dN

dE
∝ E1−α ′

(196)

with the gamma ray number flux defined as a simple power law
with a cutoff:

dN

dE
= f0

(
E

E0

)−α ′

. (197)

where the parameters have their usual meanings as defined before.
For a number of observed blazars, a total heating rate at present time
z = 0 can then be constructed as
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Q̇obs ≃
∑
AGN

E2
0f0

Dpp (E0, 0)

∫Emax

Emin

dE

E0

(
E

E0

)2−α

(198)

More generally, taking into account the evolution of blazars, an
average heating rate at earlier times is usually constructed from the
single blazar heating rate q̇ using the number density of blazars at a
redshift z per unit logarithmic isotropic-equivalent luminosity log10 L,
spectral index α′, and blazar jet opening angle Ω, ϕ̃B(z;L,α ′,Ω) as
described in [48],

Q̇ =

∫
dVd log10 Ldα

′dΩϕ̃B(z;L,α ′,Ω)
Ω

2π
q̇. (199)

This provides an estimate for the energy deposition rate from the
beam into the IGM plasma.

6.2.2 Thermal evolution

The thermal evolution of the IGM at late times is governed by four
components: a) cooling due to Hubble expansion, b) increase in en-
tropy due to structure formation, c) photoionization, photoheating
and various other processes dependent on redshift of evolution, and
d) heating of the IGM through other mechanisms [124]. Typically the
rates for photoionization can be expressed as:

Γphoto(z) =

∫∞
ν0

4πJ(ν, z)
hν

σ(ν)dν. (200)

Similarly, for photoheating the following rate is applicable [125]:

H(z) =

∫∞
ν0

4πJ(ν, z)
hν

(hν− hν0)σ(ν)dν. (201)

Here, ν0 is the threshold frequency and σ(ν) is the photoionization
cross-section, respectively. The redshift- and frequency-dependent UV
background J(ν, z) has index αbk:

J(ν) = (ν/ν0)
αbk . (202)

For normalization in the rates for gas (H and He), the rates are
typically computed for a background index αbk = 0 until the cutoff
in the spectrum at 4 Ry [125]. The photoheating rates are based on
photoionization equilibrium reached after reionization.

Picking up the various pieces of the thermal history, one can ex-
press the IGM temperature as a function of redshift and therefore
time as [124]:



6.2 temperature-density relation 67

dT

dt
= −2HT +

2T

3∆

d∆

dt
+

2

3kBnbary

dQ

dt
(203)

where the first term on the RHS denotes Hubble cooling due to the
expansion of the universe. Overdensity is represented by ∆ and nbary

is the baryon number density. The blazar heating term is expressed
as Q̇B, and all other standard heating and cooling processes are ex-
pressed in units of 3860 K per free particle per Gyr, which add to the
third term in the RHS as Σstd in the following manner [126]:

Q̇ = Q̇B +
3kBnb

2
ΣstdQ̇ (204)

ΣstdQ̇ = Q̇H−I,photo + Q̇He−I,photo

+ Q̇He−II,photo + Q̇H−II,rec + Q̇He−III,rec

+ Q̇Compton + Q̇free−free

(205)

where

Q̇H−I,photo =
T−0.7
4 Z3

3∆

1+αbk/2
, (206)

Q̇He−I,photo = 0.13
T−0.7
4 Z3

3∆

1+ f (αbk)
, (207)

Q̇He−II,photo = 2.0
T−0.7
4 Z3

3∆

1+αbk/2
, (208)

Q̇H−II,rec = −0.11T0.2
4 Z3

3∆, (209)

Q̇He−III,rec = −0.20T0.3
4 Z3

3∆, (210)

Q̇Compton = −0.28T4Z4
3, (211)

and

Q̇free−free = −0.05
√
T4Z

3
3∆ (212)
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where Z3 ≡ (1 + z)/4 and T4 = T/104 K. The only thermal pro-
cesses that are not considered are collisional processes relevant at
dense regions, i.e., ∆ ≫ 10. The Zeldovich approximation [127] can
be applied such that the density of fluid elements, ∆ = 1+ δb, traces
the dark matter overdensity δX.

For a heating rate contribution of Q̇B from blazars, a convenient pa-
rameterisation based on fit to data from [128] within 1-σ uncertainty
can be expressed as [129]:

log10

(
Q̇B/nbary

1eVGyr−1

)
=0.0315(1+ z)3 − 0.512(1+ z)2

+ 2.27(1+ z) − log10 Q̇mod.

(213)

In this work, the following parameter p describes the contribution
of blazar heating as log10 Q̇mod = p = {3−7} for strong to weak blazar
heating cases. For comparison, is also shown the temperature-density
relation of the IGM without any blazar heating in Fig. 22. Here γ ∼

1.6 and slope of the temperature-density relation is consistent with
canonical heating mechanisms described above [124] without shocks
or additional heating components such as plasma instabilities.

Equation 203 is then numerically solved and the redshift depen-
dence of γ′ as of Eq. 191, the temperature-density relations for z =

2− 3 and temperature-redshift relations for ∆ = 10−2 to 1 (mean den-
sity) are plotted in Fig. 22 without blazar heating and in Figs. 23-26

for various degrees of heating characterised by the indices p corre-
sponding to different modes of plasma instabilities leading to energy
loss.

Fig. 22 shows good agreement with the predictions for the temperature-
density relation in absence of any additional heating source past
reionization [126].

In contrast, Fig. 23 shows a clear inversion of the redshift evolu-
tion of the index as well as an inverted temperature-density relation
for various heating scenarios. We observe that the inversion begins
to unfold from p = 5 onward as seen in Fig. 25. Smaller values of
p indicates stronger heating. This is in good agreement with high-
resolution cosmological simulation results for global blazar heating
obtained using smooth particle hydrodynamic code GADGET [130],
[131]. In the next section, we will observe how this alters the entropy
floor which is linked to galaxy formation histories and gas cooling in
clusters [132]. The numerical estimates are in agreement with Lyman-
α observations evolution of the IGM temperature as presented in
[133].
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Figure 22: Left: Evolution of the index of the temperature-density relation
with redshift. Center: Temperature-density relation for a number
of redshifts without blazar heating. The colours of the T − ρ re-
lation span from blue to yellow with decreasing z (3 < z < 2).
Right: IGM temperature as a function of redshift z. The colours of
the T − z relation span from blue to yellow with increasing ∆.

Figure 23: Left: Evolution of the index of the temperature-density relation
with redshift. Center: Temperature-density relation for a number
of redshifts. The colours of the T − ρ relation span from blue to
yellow with decreasing z (3 < z < 2). TIGM is in units of 104 K.
Right: IGM temperature as a function of redshift z. The colours
of the T − z relation span from blue to yellow with increasing ∆.
Plots are for p = 3.

6.2.3 Discussion of results and cosmological repercussions

Even though the methods applied to solve the temperature-density
and entropy-density relations were semianalytic, Figs. 23-26 are in
very good agreement with simulations performed using smooth-particle
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Figure 24: Left: Evolution of the index of the temperature-density relation
with redshift. Center: Temperature-density relation for a number
of redshifts. The colours of the T − ρ relation span from blue to
yellow with decreasing z (3 < z < 2). TIGM is in units of 104 K.
Right: IGM temperature as a function of redshift z. The colours
of the T − z relation span from blue to yellow with increasing ∆.
Plots are for p = 4.

Figure 25: Left: Evolution of the index of the temperature-density relation
with redshift. Center: Temperature-density relation for a number
of redshifts. The colours of the T − ρ relation span from blue to
yellow with decreasing z (3 < z < 2). TIGM is in units of 104 K.
Right: IGM temperature as a function of redshift z. The colours
of the T − z relation span from blue to yellow with increasing ∆.
Plots are for p = 5.

hydrodynamics code GADGET as shown in [129] and Lyman-α fit
from [69], and more recently, [134] and [135]. In absence of blazar
heating, the temperature of the late universe is expected to decrease
after reionization has ended. However, when blazar heating is active,
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Figure 26: Left: Evolution of the index of the temperature-density relation
with redshift. Center: Temperature-density relation for a number
of redshifts. The colours of the T − ρ relation span from blue to
yellow with decreasing z (3 < z < 2). TIGM is in units of 104 K.
Right: IGM temperature as a function of redshift z. The colours
of the T − z relation span from blue to yellow with increasing ∆.
Plots are for p = 7.

the temperature-density relations and entropy-density relations are
inverted. The extent of heating is dependent on the degree of blazar
heating assumed, characterised by the parameter p. It is to be noted
that for a homogeneous heating model, the impact of the heating
is most pronounced at very underdense regions. Thus, the conse-
quences of blazar heating is expected to be severe in cosmological
voids. Strong heating can raise the temperature in voids by three or-
ders of magnitude. The numerical solution is obtained with a normal-
ization of IGM temperature at 1.5× 104 K at z = 3.5, which in this
work is considered as the end of reionization.

Blazar heating is responsible for elevating the entropy floor at late
times. For any sources leading to significant heating at earlier times,
such as reionization, the first groups and galaxies have not formed
and thus would be impacted for even a small degree of heating. How-
ever, in order for the blazar heating to impact the formation of late-
forming groups and clusters, the heating rate needs to be very high.
This does not exclude local effects such as shock heating. There have
also been some discussion in the literature whether blazar heating
can impact the bimodality of clusters in cool-core and non-cool-core
[132].

The major impact of late-time blazar heating is on the formation
histories of the late-forming dwarfs. The star formation histories for
dwarf galaxies can be understood from their metallicity [136]. Ob-
served dwarfs typically contain metal-poor stars, an indicator of star
formation occurring at earlier times [137]. There are no specific cos-
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mological reasons as to why dwarfs cannot form stars at late times.
Instead it is sufficient to argue that dwarfs with younger stellar pop-
ulations cannot form at late times, and the observed metallicity his-
tories and dwarf luminosities [138] are then consistent with late-time
blazar heating. In order to understand how this compares with the
predictions of dark matter models that suppresses structure at small
scales, in particular, those of warm dark matter or ultralight axions,
I look into the Jeans masses of these halos and evaluate the explicit
impact of blazar heating in the next part of this thesis.



7
C R I T I C A L H A L O M A S S A N D I M P L I C AT I O N S F O R
D WA R F G A L A X I E S

Despite its success in explaining the large-scale structure of the uni-
verse, observational discrepancies appear in the small scale. In warm
dark matter-dominated cosmologies, structure formation is suppressed
below the free-streaming scale, which determines the scale below
which bound objects cannot form. Similarly, ultralight axions, also
known as wave dark matter (WDM), have been proposed by [139]
motivated by the apparent lack of consistencies in the predictions of
cold dark matter (CDM) cosmology. Ultralight axions (WDM; ma ∼

10−22eV) with astrophysical-scale coherence length result in a num-
ber of interesting consequences in the small scale, in which structure
formation is suppressed owing to its phenomenological similarity
with warm dark matter (mX ∼

√
maMPl, where mX is the mass of

warm dark matter and MPl is Planck mass).

7.1 small-scale anomalies

Below I outline some of the major problems with the application of
cosmology in the small scale.

7.1.1 Cusp/core problem

In dwarf galaxies, density profiles are observed to be spherical cores
as opposed to CDM-based simulations, which predicts much steeper
profiles shaped like cusps. This issue, commonly known as the cusp
vs. core problem, can extend beyond the small scale and in some cases
observations report cored profiles in clusters [140] [141]. Even though
dwarfs are dominated by dark matter, including baryonic feedback
mechanisms in the simulation seems to flatten the profile; however,
there are controversies regarding the role of dissipative effect of bary-
onic matter which may make the density profile even steeper [142].
Feedbacks from supernovae can cause an outflow of baryons that
flatten the cusp but is not a reliable factor in faint galaxies where
star formation is rare and infrequent [143], [144]. Warm dark matter,
which is severely constrained by Lyman-α forest observations when
thermal [145] [146], was initially thought to be useful in solving the
cusp/core problem but the discrepancies persist [147].

73
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7.1.2 Missing satellites problem

The number of observed satellites of Milky Way is several orders of
magnitude smaller than the number predicted by CDM-based simu-
lations. Dwarf galaxies with limited stellar matter and gas, are often
faint due to limited star formation [148] [149] [150]. This can be due to
baryonic processes such as photoionization and supernova feedback.
However, sky survey experiments such as the Sloan Digital Sky Sur-
vey have detected a number of faint galaxies in the recent past [151].
This makes the understanding of this discrepancy more complicated.

7.1.3 Too-big-to-fail problem

According to hierarchical structure formation, the brightest satellites
of Milky Way are supposed to be hosted by halos with largest veloc-
ity dispersion, which are also the largest subhalos in the Milky Way.
The prediction from CDM-based simulations are of extremely mas-
sive halos with central densities so large that they cannot host the
brightest observed satellites. This issue in the small-scale is known
as the “too-big-to-fail” problem [152]. The massive central region of
the halo indicates that the “too-big-to-fail” problem may have a com-
mon resolution with the cusp/core anomaly. Violent processes such
as ram pressure and tidal stripping, or baryonic feedback from stars
and supernovae are likely to play a role in smoothing the central den-
sity cusps and shaping the core in dwarf spheroidals, according to
simulations. Better approximation of the density map of Milky Way
sized halos can ease the situation as statistical variation in modeling
of the halo mass function may have significantly altered the density
profiles. The “too-big-to-fail” problem has been reported in the Local
Group [153] and in the field [154] to date.

In order to understand how blazar heating affects structure in the
late universe, we take a brief detour to the formalism of how inhomo-
geneities grow in linear regime, the concept of gravitational or Jeans
instability, and pressure from baryonic gas undergoing infall into the
regions where gravitational collapse has taken place.

7.2 linear growth of perturbation

Starting from an initial condition set in the early universe of a smooth
background, small deviations from the cosmic background density
originating from primordial non-Gaussianities and small velocity per-
turbations induced by the Hubble expansion can grow due to asso-
ciated gravitational perturbations. The gravitational wells created by
density perturbations start accreting matter and grow in mass. Such
growth can continue unchecked in absence of a pressure force and
can eventually contract and collapse to form a gravitationally bound
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object. In this manner, matter accreted onto the gravitational wells
virialize to form stable large-scale structures such as galaxies, clusters
etc. Similarly, underdense regions in the universe have matter stream-
ing out of them over the course of the age of the universe, creating
voids [155].

This early linear stage of evolution after the decoupling of mat-
ter and radiation is understood and chalked out well. Nevertheless,
nonlinear features in the growth of perturbations start appearing in
small-scale perturbations. This is a feature of the hierarchical struc-
ture formation [156], in which the smaller structures first go nonlinear
and form cosmic objects, since the amplitudes of primordial density
fluctuations are higher on smaller scales than those on larger ones.
The linear theory remains very useful in understanding the evolution
of the large-scale structures of the observable universe and I provide
a brief overview of it as follows.

A departure from smoothness can be described in terms of the
overdensity or density perturbation:

δ(x, t) =
ρ(x, t) − ρ(t)

ρ(t)
(214)

where ρ(x, t) describes the physical density at a given point and
ρ(t) is the mean cosmic density at a given time. The Newtonian lin-
ear perturbation theory is applicable in the weak-gravity approxima-
tion to length scales smaller than the Hubble length [157], described
as c/H(t) and can be broken down into the following the continuity
equation, Euler equation, and Poisson equation for a perfect (Newto-
nian) self-gravitating fluid:

∂ρ

∂t
+∇ · (ρv) = 0 (215)

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇p−∇ϕ (216)

∇2ϕ = 4πGρ (217)

Introducing small perturbations in the density ρ, velocity v, pres-
sure P, and gravitational potential Φ as,

ρ = ρ+ δρ, (218)

v = v + δv, (219)
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P = P+ δP, (220)

Φ = Φ+ δΦ, (221)

describing the velocity field as a combination of the Hubble flow
and peculiar velocity u as perturbation,

v = Hx + a(t)u ≡ Hx + δv, (222)

where comoving coordinates r is related to the physical coordinates
x via the scale factor,

x = a(t)r (223)

relating the pressure perturbation to the density perturbation through
sound speed cs by assuming perturbations are adiabatic in nature,

δp = c2sδρ, (224)

and Fourier decomposing the overdensities

δ(r, t) =
∑
k

δk exp(ik · r), (225)

such that k is the comoving wave number and kphys is the physi-
cal wavenumber, one can arrive at the time evolution of the density
perturbations as

δ̈k + 2Hδ̇k =

(
4πGρ(t) −

k2c2s
a2

)
δk. (226)

It can be readily seen from the RHS of Eq. 226, that in absence
of the Hubble drag, gravity enables the perturbations to grow, while
pressure prevents it [158]. Thus, perturbations either grow or end
up oscillating as sound waves depending on whether the comoving
wavenumber is smaller or larger than the Jeans wavenumber, i.e., k <

kJ implying sound wave oscillation and k > kJ implying gravitational
collapse where

kJ(a) ≡
a

cs(a)

√
4πGρ̄(a) (227)
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which sets the corresponding Jeans length-scale λJ = 2πa/kJ and
Jeans mass

MJ =
4

3
πρλ3J , (228)

where the scale factor a ≡ 1/(1+ z) and G is the Newton’s constant
of gravitation. The sound speed can be estimated as

cS(a) =

(
γgasP

ρ

)1/2

=

(
γgaskBT(a)

m

)1/2

(229)

with T(a) as the time (or redshift z, or scale factor a)-dependent gas
temperature, P as gas pressure, m is the mass, and kB as Boltzmann’s
constant. The index of the equation of state γgas can be simplified as
5/3 for H & He. Thus

cs(a) ≡

√
5kT(a)

3µmp
(230)

where mean molecular weight µ = 0.533 such that m = µmp, with
mp as proton mass for standard IGM conditions.

From the generic form of the Friedmann equation, Hubble rate
H = ȧ/a, can be expressed in terms of the energy components of
the universe as

H2(a)

H2
0

= E2(a) = a−3Ωm + a−2 (1−Ωm −ΩΛ) +ΩΛ (231)

where subscript “0” refers to the present epoch. The average den-
sity ρ̄(a) is defined as

ρ̄(a) ≡ Ωm(a)ρcr(a) (232)

and the critical density evolves as

ρcr(a) = 3H2(a)/(8πG). (233)

In an Einstein-deSitter universe, which characterise the late-time
evolution, the solution to Eq. 226 is of the form,

δk(t) = D+t
2/3 +D−t

−1, (234)

with a growing term driven by coefficient D+ and a decaying term
D−. Equation 234 indicates that the decaying term is suppressed at
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late times, and the evolution of the density perturbation is governed
by the growth term. However, this pictures changes at very late times,
since closer to present day, ΩΛ cannot be ignored, and the overdensity
evolves in a flat dark-matter dominated universe as:

δ ∝ D+(const) +D− exp (−2Ht), (235)

which indicates a shutdown of growth on linear length scales [156].
However, dynamical evolution of already formed nonlinear structures,
and inter-structure interaction, e.g., formation of galaxies, mergers
and infall, continue to take place [157].

7.3 filtering scale and filtering mass

Returning to linear scales, which constitutes the premise of this dis-
cussion, the evolution of the mixture of baryonic and dark matter
perturbations, respectively, δb(k, t) and δX(k, z), can be expressed in
terms of linear theory as follow [122], [159]:

d2δX
dt2

+ 2H
dδX
dt

= 4πGρ̄ (fXδX + fbδb)

d2δb
dt2

+ 2H
dδb
dt

= 4πGρ̄ (fXδX + fbδb) −
c2S
a2

k2δb

(236)

While the baryonic perturbations experience both thermal and grav-
itational pressure, in terms of gravity, the dark matter component
dominates at late times. Therefore, it is not inaccurate to set the
baryon fraction as zero, fb = 0 and δX ∝ D+. This leads to a solution
of Eq. 236 of the form

δX(k, t) = δb(k, t)(1+
k2

k2J
) (237)

Thus, for large k’s, the DM perturbations grow as D+, and thus the
baryon-to-DM perturbation ratio can be expressed as [160],

δb(t,k)
δX(t,k)

= 1−
A(t)

D+(t)
k2 (238)

with unknown coefficient A(t) that needs to be determined case
by case. If we replace δb accordingly in Eq. 236, A(t) follows the
evolution equation:

d2A

dt2
+ 2H

dA

dt
=

c2S
a2

D+(t), (239)
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the solution to which, with the initial condition of the baryon and
DM perturbations being the same, i.e., A(t = 0) = dA/dt(t = 0) = 0,
is

A(t) =

∫t
0

dt′c2S
(
t′
)
D+

(
t′
) ∫t

t′

dt′′

a2 (t′′)
, (240)

If a filtering scale kF is introduced [159] such that

A(t) ≡ D+(t)

k2F(t)
(241)

and

δb(t,k)
δX(t,k)

= 1−
k2

k2F
, (242)

the general expression for it reads

1

k2F(t)
=

1

D+(t)

∫t
0

dt′a2
(
t′
) D̈+ (t′) + 2H (t′) Ḋ+ (t′)

k2J (t
′)∫t

t′

dt′′

a2 (t′′)

. (243)

Let us note that in the high-k regime, a more accurate description
of the relation between the baryonic and DM perturbations can be
understood readily from Eq. 242 as [161]:

δb = δX exp
[
−k2/k2F

])
(244)

For blazar heating, using Eq. 236 and Eq. 227, noting that the evo-
lution of D+ occurs according to:

D̈+(t) + 2H(t)Ḋ+(t) = 4πGρ̄D+(t), (245)

and transforming the integration variable from t to a, Eq. 243 can
be cast as

1

k2F(a)
=

A0

D+(a)

∫a
0

da′K
(
a′) D+ (a′)

a′3E (a′)

∫a
a′

da′′

a′′3E (a′′)
, (246)

with

A0 =
5

3

(
3Ωm

8πGH0

)2/3

. (247)

The corresponding filtering mass is then defined as:

MF(a) ≡
4π

3
ρ̄(a)

(
2πa

kF(a)

)3

(248)
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7.3.1 High-redshift approximation

For relatively high redshifts after reionization, i.e., z > 2, in an Einstein-
deSitter universe, i.e., in which we can ignore ΩΛ, is a good approxi-
mation for matter-dominated models. Thus Eq. 246 can be cast in the
simpler form [122]:

1

k2F(a)
=

3

a

∫a
amin

da′ 1

k2J (a
′)

[
1−

(
a′

a

)1/2
]

(249)

The Jeans mass and filtering mass are related to the inverse Jeans
and filtering scale as MJ,F ∝ 1/k3J,F. After reionization, the filtering
mass is smaller than the Jeans mass. This is because the filtering scale
1/kF corresponds to a Jeans scale at an earlier time and thus is always
smaller than 1/kJ. In order to see this, one can apply median value
theorem and rewrite Eq. 246 as:

1

k2F(t)
=

1

k2J (t∗)

[
1

D+(t)

∫t
0

dt′a2
(
t′
)

(
D̈+

(
t′
)
+ 2H

(
t′
)
Ḋ+

(
t′
)) ∫t

t′

dt′′

a2 (t′′)

] (250)

and note that when t∗ is integrated from 0 to t, we get

kF(t) = kJ (t∗) (251)

for an earlier time t∗ < t [159].

7.3.2 Baryonic effects and modification in structure formation

In this section, we explore how the elevated entropy floor affect the
baryonic envelope around a blazar beam and importantly, how this
can impact the local DM linear power spectrum through modification
of the filtering scale. The physics can be understood in terms of dy-
namical friction owing to gas outflows that smoothen overdensities
in the dark matter substructure. The mechanism is similar in effect
to other types of baryonic feedback processes which flattens cuspy
dark matter halos to cores and suppresses subhalo formation. The
impact of blazar heating can be explored in the clearest manner after
recombination has taken place at z = 3 [162].

When the IGM is heated due to blazar-beam-induced energy loss
through plasma instability, they are displaced. Such outflows tend
to weaken the gravitational pull, leading to cold dark matter mov-
ing outwards, leading to a dip in local density around the blazars.
Such suppression of power in small scales can lead to a reduction of
the size of subhalos contained within a host halo, a canonical predic-
tion of the hierarchical structure formation in a ΛCDM universe [163].
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However, this treatment cannot effectively capture nonlinear effects,
and modes associated with baryons undergo Silk damping [164], thus
we will confine the discussion to linear theory.

From heating of the IGM plasma through instabilities induced by
propagating energetic blazar beams, Jeans wave mode kJ and the fil-
tering wave mode kF are computed using the temperature-density
relation, and are demonstrated together along with the correspond-
ing Jeans and filtering mass together for comparison during redshifts
3 < z < 2 in Figs. 27-30 using eqs. 250 and ??.

Figure 27: left: Jeans (orange) and filtering (blue) wave mode in units of
h/Mpc, right: Jeans (orange) and filtering (blue) masses in units
of solar mass M⊙, for ∆ = 10−2 without blazar heating.

Figure 28: left: Jeans (orange) and filtering (blue) wave mode in units of
h/Mpc, right: Jeans (orange) and filtering (blue) masses in units
of solar mass M⊙, at mean density ∆ = 1 without blazar heating.

For the purpose of this calculation, we only consider underdense
regions since blazar heating is applicable in the low-density regions.
For overdensities ∆ ⩾ 1, the impact of blazar heating is not as sig-
nificant. The main consequences of the heating of the IGM, as seen
from the contrast between the “no blazar heating” and intermediate
heating characterised by p = 4 case, is a modification to the filtering
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Figure 29: left: Jeans (orange) and filtering (blue) wave mode in units of
h/Mpc, right: Jeans (orange) and filtering (blue) masses in units
of solar mass M⊙, for ∆ = 10−2 and heating degree p = 4.

Figure 30: left: Jeans (orange) and filtering (blue) wave mode in units of
h/Mpc, right: Jeans (orange) and filtering (blue) masses in units
of solar mass M⊙, at mean density ∆ = 1 for heating degree
p = 4.

scale and filtering mass at late times. As can be seen from Figs. 27-
30, consistent with our findings in 6, the modification of the Jeans
and filtering mass owing to blazar heating is most pronounced at
late times, since the activity of blazars are distinguishable during the
period after reionization [165].

We note that the baryonic overdensities trace the underlying dark
matter oversdensities through Eq. 244 and that the filtering and Jeans
scale show the scale below which gravitational collapse cannot take
place. In a blazar-heated late universe, the Jeans and filtering masses
are clearly raised, via the elevated entropy floor. This acts as a cutoff
scale for galaxy formation, and implies that new bound objects can
no longer form below this scale, assuming that baryonic matter is
embedded in dark matter-dominated halos, and the blazar heating
leaves its imprint on the structure formation at late times.
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With the above analysis, we see that heating of the IGM through
energy loss from pair beams via plasma instabilities alter the local
thermal history of the late universe. Blazar heating is local, and is
most effective in underdense regions. Thus, one of the major conse-
quence of blazar heating is the suppression of structure at late times
through a purely astrophysical phenomenon. The filtering scale repre-
sents a scale below which structures cannot form due to gravitational
pressure. This is in contrast with dark matter models with candidates
such as wave dark matter and warm dark matter that can suppress
the formation of structure through introducing oscillation below a
certain scale, thus preventing the collapse of matter, or having an
intrinsic free-streaming scale below which structures are washed out,
based on the properties of the dark matter candidate in consideration.

7.3.3 Comparison with WDM

The axion field ϕ begins oscillating when the damping term driven
by the Hubble parameter H is smaller than the mass term driven by
axion mass ma, and thus applying WKB approximation, one can see
that, unlike cold dark matter, WDM has a scale-dependent non-zero
sound speed [139], [166]:

c2s =

k2

4m2
aa

2

1+ k2

4m2
aa

2

(252)

which, in high and low k reduces respectively to

c2a =

 k2

4m2
aa

2 if k ≪ 2maa

1 if k ≫ 2maa

(253)

The sound speed leads to an additional term in the evolution of the
WDM overdensity

δ′′ +Hδ′ + c2s k
2δ− 3HΦ′ + k2Ψ− 3Φ′′ = 0, (254)

which introduces an axionic Jeans scale,

kJ = (16πGρ̄)1/4m
1/2
a , (255)

above which structures formed behave as cold dark matter. In terms
of the key parameters, with ρ̄ = ρ0a

−3,

kJ = 66.5a1/4

(
Ωah

2

0.12

)1/4 ( ma

10−22eV

)1/2
Mpc−1 (256)
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Noting that WDM of very small masses are excluded via recent
Lyman-α analyses [167], [168], we turn our attention to medium-mass
WDM, 10−20 eV < ma < 10−12 eV. The corresponding characteristic
mass scale is defined as

Mchar =
4

3
π

(
λchar

2

)3

ρ (257)

with λchar/2 = π/k, which scales with the axion mass as Mchar ∝
m

−χ
a where χ ≈ 1.35 [83]. Therefore, for an WDM mass of ma ∼

10−16 eV, the corresponding characteristic mass is Mchar ≈ 102h−1M⊙,
and for an WDM mass of ma ∼ 10−18 eV, the characteristic mass is
Mchar ≈ 104h−1M⊙, which are several orders of magnitude smaller
than that in observed dwarf galaxies, and also much smaller than
that allowed even in weak blazar heating scenarios corresponding to
a kinetic oblique rate.

In WDM cosmology, late-forming dwarf galaxies could host rela-
tively young stars, which is at odds with the star formation histories
explored through metallicity measurements of dwarf galaxies [136],
indicating that the stellar matter hosted in such objects are fairly old
[137]. Thus, this strongly disfavours an WDM-dominated cosmology
at late times and we conclude that formation of dwarf galaxies are
suppressed at late times, indicating a consensus with findings that
can alleviate the small-scale crisis.

At late times this incompatibility with a thermal history altered
by blazar heating translates to a cutoff in the size of gravitationally
bound structures that contains baryons. We note that the suppression
of structure is strong for underdense regions. Therefore, while in a
blazar-heated universe where WDM is all of dark matter, extremely
small and nearly hypothetical dark objects such as minihalos, mini-
clusters, and axion stars can still exist, there is a restriction on the
formation of objects hosting stellar matter at late times, according to
observations of dwarf galaxies. With subsequent Lyman-α analysis it
may be possible to exclude certain mass ranges of WDM for various
degrees of blazar heating.

7.4 future directions

7.4.1 Lyman alpha observations

Most of the gas in the late universe is hydrogen. When electrons in a
hydrogen atom undergoes transition from the first excited state to the
ground state, photons are emitted in the Lyman-α band. Out of these
photons, the ones with short wavelengths (1216 Å) can travel to us
from the high-redshift universe, proving to be one of the best probes
of galaxy formation and cosmic reionization through the behaviour of
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the hydrogen emission lines intergalactic medium at various redshifts
[169]. The flux power spectrum detectable using Lyman-α observa-
tion depends on flux fluctuations, i.e., fluctuation in the transmitted
flux from a source [170]. Such flux overdensity, which traces the un-
derlying matter distribution, can be defined similarly in terms of flux
F and mean flux ⟨F⟩ as [171],

δF ≡ F− ⟨F⟩
⟨F⟩

(258)

which depends on the optical depth owing to Ly-α absorption

F = e−τ. (259)

With fitting parameter A ∝ Ω2
bΓ

−1
UV T−0.7

0 , one can write

F ≃ e−A(ρ/ρ̄)β , (260)

and β = 2.7− 0.7γ′, where γ′ refers to the index in the temperature-
density relation described previously. The mean flux is dependent on
redshift and is tuned by the ionizing UV background from reioniza-
tion Γ−1

UV such that [172]:

F̄(z) ≃

exp
[
−0.0032(1+ z)3.37±0.2

]
1.5 ⩽ z ⩽ 4

0.97− 0.025z± (0.003+ 0.005z) 0z < 1.5
(261)

In order to weigh in the role of various degrees of blazar heating on
structure formation against observations, in a future work, generating
mock Lyman-α flux power spectrum and comparing it with Lyman-α
survey data will be explored.

7.4.2 Patchy blazar heating

In this work, we have studied the impact of heating of the IGM by
blazars via plasma instabilities leading to loss of kinetic energy in pair
beams originating from them, and showed how it affects the thermal
history of the universe at late times. However, the broadening of the
Lyman-α lines is not pronounced at z = 2.4 [173] and this indicates
that observed gas could be cooler than predicted by a bulk volumetric
global heating by the blazars.

Since blazars are AGNs forming in high-density regions, the heat-
ing around such objects is much stronger than relatively underdense
regions. Recent observations indicate that temperatures in underdense
regions could be higher than predicted [174], [175], a feature that



86 critical halo mass and implications for dwarf galaxies

is difficult to explain invoking late HeII reionization. Thus a more
sophisticated approach would be to implement a “patchy heating”
recipe by implementing local heating fluctuations around a mean
heating rate ¯̇Q such that the total heating rate is expressed as [176]:

Q̇(x, z) = ¯̇Q(x, z) [1+ δH(x, z)] (262)

with the heating fluctuation depending on a window function W̃H

δ̃H(k, z) = W̃H(k, z)δ̃(k, z) (263)

which can be described as [177]:

W̃H(k̂, z) =
1

N

∫Emax

Emin

dE

Dpp(E, z)

∫∞
z

dz′
ÊE′ (z′) e−τ

(1+ z′)H (z′)

× D (z′)

D(z)

[(
b
(
z′
)
+

f

3

)
j0(k̂r̂) −

2f

3
j2(k̂r̂)

] (264)

with Dpp is the pair production lengthscale. j0 and j2 are spherical
Bessel functions of the zeroth and second kind. E represents the en-
ergy of the photon received from the blazar, E′ is the initial energy
of the photon, ÊE stands for the comoving blazar spectral luminosity
density, and τ is the optical depth.

Here,

N =

∫Emax

Emin

dE

Dpp(E, z)

∫∞
z

dz′
EE′ (z′) e−τ

(1+ z′)H (z′)
(265)

and

f ≡ d log δ/d loga. (266)

The Eulerian bias b can be implemented with respect to the under-
lying DM halo bias, either using a quasar bias

bquasar (z) = 100.27z−0.04 (267)

or galaxy bias

bgalaxy (z) = 100.174z, (268)

as reviewed in [178]. The heating fluctuations capture the underly-
ing matter distribution on the large scales. Due to coordinate-dependence
of the window function, it is only possible to explore this scenario
with the aid of a cosmological simulation which I will return to in
future work.
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7.4.3 Outlook

In this work, I present the first semianalytic results parameterising
various degrees of blazar heating and how they affect late time struc-
ture formation via an elevated entropy floor. The Jeans mass and filter-
ing mass of halos are computed using the entropy-density relations,
which have similar slopes across the parameter values signifying the
extent of heating. Based on the analysis by [173], the column density
distribution and the Ly-α linewidth do not show thermal broaden-
ing at z = 2.4. While at first glance, it may seem that the homoge-
neous heating models are not consistent with this observation, the
right redshift evolution of blazars needs to be taken into account. In
implementing the patchy heating model based on blazar clustering, it
is worthwhile to note the distinction between galaxy bias and quasar
bias and apply appropriate corrections to the blazar luminosity distri-
bution across redshift, which can steadily diminish at higher redshift,
unlike quasars [179], up until z ∼ 3.5, which is set as the end of reion-
ization for the purpose of this work. It is also worth noting that the
analysis by [173] is sensitive to overdense regions with ∆ ⩾ 1. A di-
rect comparison with Lyman-α temperature measurements at mean
density is performed and limits on axion mass is drawn in my subse-
quent investigation [180]. Combining the power spectra based on the
dark matter models that predict a suppression of structure at small
scales with a cosmological simulation implementing various degrees
of blazar heating in a patchy heating scenario could be useful in un-
derstanding the consistency of the models with altered late time cos-
mologies, which will be explored in a future work.
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A X I O N D E T E C T I O N U S I N G A N L C C I R C U I T

This chapter includes a summary of the article titled “WISPLC: the
search for dark matter using an LC circuit” [1], outlining the detec-
tion prospects of axion dark matter, in particular ALPs as dark matter
using LC circuit. In particular, the concept and schemes for WISPLC,
a state-of-the-art tabletop axion detector which can probe axions in
the mass range 10−12 − 10−6eV operating on broadband and tuned
modes, is introduced and the sensitivity of the experiment is pre-
sented.

8.1 theoretical premise

In presence of axions, the inhomogeneous Maxwell’s equation can be
written as,

∇ · E = gB · ∇a+ ρel (269)

and

∇× B −
∂E
∂t

= gaγγ ( E ×∇a − B
∂a

∂t
) + jel, , (270)

where E and B respectively represent the electric and magnetic
field, and ρel and jel are the corresponding electromagnetic charge
and current densities. Equation 270 contains the time derivative of
the axion field, which depends on the average local axion density as
⟨ρa⟩ = 1

2 ȧ
2.

The characteristic lengthscale of an neV-scale axion is ∼ O(105m).
This is significantly larger than the physical dimension of the exper-
iment. Therefore, for the purpose of the laboratory experiment, we
can consider axions as a coherent oscillating scalar field. This allows
us to ignore any spatial variation and assume homogeneity:

a(t) = a0 cos (mat) =

√
2ρDM

ma
cos (mat), . (271)

Here a0 is the field amplitude, ρDM ≈ 0.3 GeV/cm3 is the local dark
matter density, where we assume that ⟨ρa⟩ = ρDM. Combining Eq.
270 and Eq. 271, we note that an axion-sourced current density ja
is induced by the external magnetic field. The density oscillates at
the Compton frequency of axions νa = mac

2/h, where h is Planck’s

88
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constant and c is the speed of light. The induced axion current can be
derived as:

ja(t) = −gaγγ B
∂a

∂t
= gaγγ

√
2ρDM sin (mat)B (272)

The current then generates an oscillating perpendicular toroidal
magnetic field Ba satisfying

∇× Ba = ja. (273)

This magnetic field Ba can then be amplified with the aid of an LC
circuit and then the amplified field can be captured using a super-
conducting device, such as a SQUID magnetometer. In particular, B⃗a

induces an alternating EMF according to Faraday’s law. The EMF gen-
erates an alternating current. The tunable LC circuit amplifies it and
converts it into a magnetic field through an input coil. The alternat-
ing current can then be measured by the SQUID magnetometer via
inductive coupling to the input coil. This is the premise of detecting
ALPs with WISPLC.

8.2 detection principle

For the purpose of understanding how the shape of the pick up loop
alters what the axion “sees”, we define an effective magnetic volume
incorporating the pick up loop geometry into a geometric factor.

GV =
1∣∣∣B⃗max

∣∣∣Vmagnet

∫
loop

dS

∫
magnet

B⃗(⃗r)× (⃗r− r′)

|⃗r− r′|3
· n̂dV (274)

such that

VB = GVVmagnet . (275)

This way, the magnetic flux through the pickup loop can be ex-
pressed as

Φa(t) = gαγγ

√
2ρDMC sin (mat) , (276)

where we define the form factor C as

C =
∣∣∣B⃗max

∣∣∣VB. (277)

This provides a useful measure for comparison among various ex-
periments in terms of the parameters related to the magnetic such as
its volume VB and the maximum field strength that can be achieved,
Bmax.
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8.2.1 Detection schemes

For the detection of ALPs as dark matter using an LC circuit, two op-
erating modes could be taken advantage of. For a broadband search,
the magnetic flux generated owing to the axion current is transferred
to the magnetometer through inductive coupling. In this mode, the
flux through the pickup loop is related to the magnetic flux in the
SQUID via induction:

ΦSQUID(t) = MiL
−1
sysΦa(t). (278)

It is also possible to enhance the signal by a certain quality factor Q
in a restricted bandwidth ∆ω = ω/Q, where the supercurrent oscil-
lates with a frequency of ω = 1/

√
LC. This is known as the resonant

approach, in which the expression for the flux through the SQUID is
modified by a quality factor Q such that

ΦSQUID(t) = QMiL
−1
sysΦa(t). (279)

Here, we note that Mi stands for the mutual inductance and Lsys is
the total inductance of the readout circuit,

L ≃ Lm + Lc + Ld, (280)

where Lm, Lc, and Ld are respectively the inductances of the fol-
lowing elements: the pickup loop Lm, coaxial cable Lc, and the coil
facing the magnetometer Ld.

8.3 wisplc

The Weakly Interacting Slender Particle detection with LC circuit
(WISPLC) experiment is a haloscope proposed to detect the induced
magnetic field with a superconducting loop after it has been ampli-
fied with a LC resonant circuit. It can then be measured with a Su-
perconducting Quantum Interference Device (SQUIDs) magnetome-
ter. The experiment aims to detect the magnetic field generated by
the induced axion current in presence of an external magnetic field as
discussed in the previous section, in order to detect ultralight axions
and ALPs in the local galactic halo. In addition to the basic broad-
band functionality operating over the entire detector bandwidth, in-
tegration of a tunable LC circuit in the readout can be implemented
in order to enhance the sensitivity in narrower bandwidths.

8.3.1 Experimental design

The WISPLC experiment is built with a large-scale cryogen-free mag-
net system with warm bore of diameter of 125 mm and a length of 755



8.3 wisplc 91

Figure 31: A schematic of the large-scale cryogen-free magnet system with
a warm bore in the center is shown where the two concentric
solenoidal magnets shown in blue and red can produce a maxi-
mum magnetic field of 14 T in the center. Two individually wired
superconducting loops installed inside the cryostat enclose the
cross-section of the magnets. They are shown in green. The fig-
ure is presented as in [1].

mm as. The setpup contains two concentric solenoids, shown in blue
and red, wrapped in superconducting wire, responsible for produc-
ing magnetic field at the center of the warm bore. Two individually
wired superconducting loops placed as enclosure of the magnet cross-
section, are shown in green. The schematic is displayed in Fig. 31. The
maximum magnetic field strength that could be reached is 14 T. We
show a simple experimental scheme in Fig. 32.

8.3.2 Experimental parameters

Using numerical 2D finite element method, the experimental param-
eters for WISPLC are determined as follow: |B⃗max| = 14 T, Vmagnet =

0.024 m3, GV = 0.074. By comparing the form factors in Table 1, one
can see the advantage of WISPLC over other experiments in its C

factor being 1000 times larger than those of the contemporary exper-
iments that employ LC-circuit based axion haloscopes, in particular
ABRACADABRA (ABRA.) [117, 181–183] and SHAFT [116].

For the broadband scheme, bandwidth is restricted by the detector
and readout electronics, and the transfer efficiency

κ = ΦSQUID/Φa ∼ 4× 10−4 (281)

For the resonant readout, a variable LC resonant circuit is inserted
between the pickup loop and SQUID. Consequently, the supercon-
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Ba

SQUID

B ja

Figure 32: Schematics of the proposed experimental setup involving four
rectangles with crossings displaying the windings of the two
solenoid magnets. The figure is presented as in [1].

(a) Readout scheme for broad-
band detection

(b) Readout scheme with reso-
nant circuit

Figure 33: Two different operating modes shown as readout schemes for
broadband and resonant detection. The figure is presented as in
[1].
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Table 1: Comparison of experimental parameters between WISPLC, ABRA.
and SHAFT, C = |B⃗max|Vmagnet GV.

|B⃗max| (T) GV Vmagnet (m3)C/CSHAFT

SHAFT1

1.5 0.108
2 9.5×

10−5

1

ABRA.3
1 0.027 8.9×

10−4

1.55

WIS-
PLC

14 0.074 2.4×
10−2

1.60×
103

ducting current is enhanced by the quality factor Q of the resonant
circuit. For WISPLC, a benchmark quality factor of 104 is chosen.

We expect the axion signal to exhibit a a line profile with a band-
width ∆νa centered at the Compton frequency νa = ωa/2π = mac

2/h

where ∆νa = νaσ
2
υ. The width of the line signal is determined by

the inverse of the so-called axion coherence time τa ∼ 1/maσ
2
υ. The

dark matter velocity dispersion in the Milky Way is considered to be
συ = υ/c ∼ O(10−3) [184].

8.4 sensitivity of the experiment

For neV axions, the coherence time is estimated as τa ∼ 0.66 s.
The total flux noise of a SQUID can be understood as

SΦ = SΦ,SQUID + SV ,amp/V
2
Φ + SI,ampM

2
dyn. (282)

Here SV ,amp and SI,amp represent the current and voltage noise from
amplifier, and VΦ and Mdyn stand for the transfer coefficient and
current sensitivity of the front end SQUID, respectively. The corre-
sponding white noise floor is expressed in terms of the flux quanta
Φ0

S
1/2
Φ ≈ 0.9 µΦ0/

√
Hz, (283)

where Φ0 = h/(2e) ≈ 2× 10−15 Wb is the magnetic flux quantum.
The SNR typically scales as

√
t:

SNR =
ΦSQUID

S1/2
Φ

t1/2, tτa (284)

However, for an observation time greater than the axion coherence
time τa, treating the axion signal as bandwidth-limited, Dicke’s ra-
diometer equation is then adopted and the corresponding expression
for SNR is modified:
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SNR =
ΦSQUID

S
1/2
Φ

(tτa)
1/4 , t > τa (285)

Here we present the estimated sensitivity for a 2σ detection in
terms of an axion-photon coupling of

gaγγ,2σ ⩾ 8× 10−13 GeV−1
( ma

10−9 eV

)1/4 ( σv

10−3

)1/2
(

ρDM

0.3GeV/cm3

)−1/2(
κ

4× 10−4

C

0.025m3T

)−1

(
t

100 days

)−1/4
(

S
1/2
Φ

0.9µΦ0/
√

Hz

) (286)

Scanning between 10−11 eV and 2.5× 10−8 eV is planned for reso-
nant detection. With a 1-min interval for the tuning of the LC circuit,
the integration time can be set as tRes ≈ 1 min for each frequency
scan. We show the total enhancement on the SNR compared to the
broadband detection for ma ⩾ 10−11 eV as:

QRes ≈ Q

(
tRes

tBB

)1/4

≈ 515 (287)

The 2σ exclusion limit is shown in Figure 34 for all resonant bands,
owing to an improved flux transfer efficiency similar to the light-
shaded blue area.

8.5 discussion and summary

The sensitivity for the detection of axions with mass and coupling in
the blue area at 2σ with WISPLC after an integration time of tBB =

100 days is demonstrated in Fig. 34. For comparison are shown two
newly proposed frameworks that extend the QCD axion landscape,
photophilic axions [185] and trapped misalignment [186]), which are
shown in dark grey lines and light-shaded grey area, respectively. The
sensitivity can be improved with a scaled coupling of κ = 2× 10−3,
which is shown in light-shaded blue which reaches the parameter
space for the dark matter models mentioned above. The light-shaded
orange area shows the enhanced sensitivity owing to the resonant
scheme operating from 10−11 eV to 2.5× 10−8 eV. This shows an en-
hancement in sensitivity corresponding to nearly three orders of mag-
nitude in axion-photon coupling. At present, the experiment is fully
funded, is in assembly, and will start taking data in a few months.
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Figure 34: Projected 2σ exclusion limit in the parameter space for broad-
band, in blue, and resonant, in orange, detection schemes. The
light-shaded blue and orange areas represent the sensitivity with
an improved read-out. The total measurement time is 100 days for
both schemes. In the resonant scheme, a frequency scan 1 minute
of integration time is planned with bandwidth ω/Q, which cov-
ers the mass range 10−12 − 10−8eV. The favoured parameter
space of the trapped misalignment axion model [186] and the
photophilic axion model [185] are respectively displayed in light-
shaded grey area and dark grey lines. The figure is presented as
in [1].



9
O U T L O O K

In this thesis, I described how plasma instabilities are manifested in
the laboratory and in astrophysical pair beams. In addition, we have
seen how the energetic broadening of pair beams due to diffusion
in momentum space affect their evolution in the laboratory. For the
first time, the beam evolution is described in a compact advective-
diffusive form of the Fokker-Planck equation for probability distri-
bution functions describing the pair beams, such as a 2D Gaussian
distribution.

For astrophysical pair beams, it can be concluded that energetic
broadening of the spectrum is not observable in terms of time de-
lay observations. In addition, for canonical predictions of electrostatic
unstable modes, the spectra of astrophysical pair beams is not signif-
icantly modified. Only in specific unstable modes with ∝ γ or larger
growth-rate scalings, instabilities could compete with ICS in altering
the observed cascade spectra. A realistic laboratory astrophysics ex-
periment could be the ideal testbed for these predictions, since uncer-
tainties such as strong magnetic deflections [32] or diffusive effects of
weak tangled magnetic field [31] can quench the instabilities in the
astrophysical scenario. It can also be useful in studying the effect of
inhomogeneities in the plasma in the development and sustenance of
the instabilities in addition to nonlinear effects.

Next, I looked into how the energy losses associated with plasma
instabilities can drain energy from the astrophysical pair beams into
the IGM, altering the thermal history at late times. In addition to the
explicit calculations of temperature-density relations for such blazar
beam-induced heating, temperature evolution with redshifts for var-
ious overdensities are derived. The important insight from this com-
putation is that blazar heating is most pronounced at underdense
regions, where presence of hot gas, as observed by Ly-α observations,
cannot be explained by a late HeII reionization. Computation of Jeans
and filtering scale through the elevated entropy floor shows that for
a homogeneous volumetric heating assumption, dwarf galaxies can-
not form below a certain scale at late times, and this is then directly
compared to the predictions of ultralight axions.

In the final part of the thesis, I outlined the design and sensitivity
of a haloscope built to detect axion-like particles through amplifying
the magnetic field from axion-induced current using an LC-circuit,
WISPLC [1]. The detector can operate in resonant mode in addition
to a broadband mode, which gives it significant sensitivity gain of
nearly three orders of magnitude over the broadband scheme. The

96
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sensitivity at 2σ for an axion mass range of 10−11 − 10−6eV reaches
gaγγ ≈ 10−15GeV−1.
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