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Preface

The work leading up to this cumulative dissertation was conducted from October 2018 to April
2023 at the Max Planck Institute for the Structure and Dynamics of Matter and the University
of Hamburg under the supervision of Prof. Dr. Angel Rubio and Dr. Aaron Kelly. This thesis
is based on the publications and manuscript presented in Sec. 2, done in collaboration with Dr.
Shunsuke Sato and Dr. Guillermo Albareda, in which we develop novel computational correlated
dynamics approaches and utilize semi-classical simulation techniques to capture electron-nuclear
interactions in molecules and solids in both equilibrium and laser driven non-equilibrium regimes.
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1 | Abstract

The development of laser technology allowing precision control over the temporal and spatial
profile of ultrafast, highly intense laser pulses, together with the advent of novel means of ma-
nipulating static material properties such as layering of 2D materials and tuning cavity confined
photon interactions, present substantial opportunities for the engineering of exotic, techno-
logically desirable properties through coherent manipulation of quantum degrees of freedom.
However, due to being developed within an equilibrium, perturbative or steady-state context,
the theoretical capacity to predict and interpret the rich diversity of ultrafast, far-from equi-
librium phenomena observed in experiments in extended systems is oftentimes lacking beyond
a coarse phenomenological explanation, or a perturbative approach which oftentimes fails for
such strong driving. This is particularly true when assessing one of the most fundamental in-
teractions in matter: the electron-nuclear interaction. While the simulation of strongly driven,
non-equilibrium, electron-nuclear dynamics can be done with near exactness for small molecu-
lar systems, these quantum chemistry methods face substantial challenges in being applied to
extended systems. This thesis collects research done by the author and collaborators to develop
and extend simulation methods originating from quantum chemistry which can capture strongly
driven electron-nuclear dynamics without dependence on the Born-Oppenheimer framework to
extended systems. By transitioning away from the constraints of Born-Oppenheimer, our goal
is to develop robust, scalable simulation protocols which can replicate and predict experimental
observations in a first-principles, ab-initio manner, across a broad range of dynamical regimes
and material phases.

After giving an overview of some of the experimental phenomena we are trying to address, we
give a brief introduction to some aspects of the existing theoretical framework for addressing
electron-nuclear interactions as embodied in the Born-Oppenheimer approximation as well as
the perturbative and non-perturbative real time-dynamics approaches used to calculate material
properties. In the subsequent sections we contextualize the papers presented with a discussion
of the primary questions addressed by each, the progress made by others in the field and the
contribution made by the author. We first discuss our development of a unique, real-space, grid
based ab-intio wavefunction dynamics approach which is capable of exactly capturing electron-
nuclear and electron-electron correlation effects in both equilibrium and laser driven regimes
across a variety of physical systems and discuss the developments which would be required in
order to make this method scalable and competitive. We next apply a semi-classical dynam-
ics method, Multi-trajectory Ehrenfest (MTEF), based on an ensemble of nuclear trajectories
which can exactly recover the initial quantum nuclear state, while capturing the electron-nuclear
dynamics at the mean-field level. The equations of motion underlying this method are univer-
sally implemented throughout real-time ab-initio dynamics code bases, making this approach
instantly accessible to the broader community. We find that in combination with a real-space
basis treatment of the electronic degrees of freedom, MTEF is able to recover quantum nuclear
effects on the equilibrium absorption spectrum of molecules, and demonstrate the ease with
which this method can be incorporated into existing simulation protocols. Being semi-classical
in nature, MTEF allows for scaling to very large system sizes, while the real space representation
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1 Abstract

of the electronic system allows arbitrarily strong laser driving and the dynamical treatment of
the ions allows significant nuclear rearrangement of the nuclear system.

We subsequently apply MTEF for the first time to realistic periodic systems in a manner which
is generically applicable to any material in order to simulate the sub-30 fs phonon-mediated
relaxation of valley selectively excited charge carriers in hexagonal Boron Nitride (hBN) across
temperatures spanning 2000 K. We are able to use MTEF to simulate arbitrarily strong pump-
probe measurements of the carrier relaxation and directly replicate a recent ‘light-wave engineer-
ing’ experiment on hBN in-silico. We find that MTEF constitutes a natural extension of static
methods which are widely used to calculate the phonon renormalized equilibrium properties
of materials, and that for the far-from-equilibrium phenomena studied, our method converges
with a very small number of trajectories. Thus we ultimately develop and present a method
which is simple to use, accurate, rapidly convergent, and which is capable of capturing strongly
driven electron-phonon dynamics in periodic systems under arbitrary pump-probe setups. We
conclude with a discussion on the research which will follow on the basis of our providing this
much needed tool to simulate the strongly driven dynamics of quantum materials.
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1.1 Zusammenfassung

1.1 Zusammenfassung

Die Entwicklung von Lasertechnologie, die eine präzise Steuerung des zeitlichen und räum-
lichen Profils ultraschneller, hochintensiver Laserpulse ermöglicht, bietet zusammen mit dem
Aufkommen neuartiger Mittel zur Manipulation statischer Materialeigenschaften, wie z. B.
der Schichtung von 2D-Materialien und der Abstimmung hohlraumbegrenzter Photonenwech-
selwirkungen, beträchtliche Möglichkeiten für die Entwicklung exotischer, technologisch wün-
schenswerter Eigenschaften durch kohärente Manipulation von Quantenfreiheitsgraden. Da
die zugrundeliegende Theorie jedoch in einem Gleichgewichts-, Störungs- oder Steady-State-
Kontext entwickelt wurde, ist die theoretische Kapazität zur Vorhersage und Interpretation der
großen Vielfalt ultraschneller, gleichgewichtsferner Phänomene, wie sie in ausgedehnten Syste-
men beobachtet werden, oft nicht ausreichend, um über eine grobe phänomenologische Erklärung
oder einen störungsbasierten Ansatz hinauszugehen. Letzterer versagt jedoch häufig bei stark
getriebenen Systemen. Dies gilt insbesondere für eine der grundlegendsten Wechselwirkungen in
der Materie: die Elektron-Nukleon-Wechselwirkung. Während die Simulation stark getriebener,
nicht im Gleichgewicht befindlicher Elektron-Nukleon-Dynamik für kleine molekulare Systeme
mit nahezu exakter Genauigkeit durchgeführt werden kann, stehen diese quantenchemischen
Methoden bei der Anwendung auf ausgedehnte Systeme vor erheblichen Herausforderungen.
Diese Arbeit fasst die Forschungsergebnisse zusammen, die der Autor mit seinen Kollabo-
rateuren innerhalb seiner Promotion erlangt hat und die darauf abzielen, aus der Quanten-
chemie stammende Simulationsmethoden so weiterzuentwickeln, dass diese ohne Abhängigkeit
vom Born-Oppenheimer-Ansatz auf stark getriebene, ausgedehnte Systeme angewandt werden
können. Unser Ziel war es, robuste, skalierbare Simulationsprotokolle zu entwickeln, die experi-
mentelle Beobachtungen in einer First-Principles, ab-initio Weise über einen weiten Bereich von
dynamischen Regimen und Materialphasen replizieren und vorhersagen können, indem wir uns
von den Einschränkungen von Born-Oppenheimer lösen.

Nach einem Überblick über einige der experimentellen Phänomene, mit denen wir uns befassen,
geben wir eine kurze Einführung in einige Aspekte des bestehenden theoretischen Rahmens für
die Untersuchung von Elektron-Nukleon-Wechselwirkungen, wie sie in der Born-Oppenheimer-
Näherung verkörpert sind, sowie in die störungstheoretischen und nicht-störungstheoretischen
Ansätze der Echtzeitdynamik, die zur Berechnung von Materialeigenschaften verwendet werden.
In den folgenden Abschnitten werden die vorgestellten Arbeiten in einen Kontext gestellt und die
darin behandelten Hauptfragen, die Fortschritte anderer Forschungsgruppen auf diesem Gebiet
und der Beitrag des Autors diskutiert. Zunächst erörtern wir unsere Entwicklung eines neuen,
gitterbasierten ab-intio Wellenfunktionsdynamik-Ansatzes für den Ortsraum, der in der Lage ist,
Elektron-Nukleon- und Elektron-Elektron-Korrelationseffekte sowohl im Gleichgewicht als auch
in lasergesteuerten Regimen in einer Vielzahl von physikalischen Systemen exakt zu erfassen,
und diskutieren die Entwicklungen, die erforderlich wären, um diese Methode skalierbar und wet-
tbewerbsfähig zu machen. Als Nächstes wenden wir eine halbklassische Dynamikmethode an,
das Multi-Trajektorien-Ehrenfest-Theorem (MTEF), das auf einem Ensemble von Kerntrajekto-
rien basiert, die den anfänglichen Quantenkernzustand genau wiederherstellen und gleichzeitig
die Elektron-Nukleon-Dynamik auf der Ebene der Molekularfeldtheorie erfassen kann. Die Be-
wegungsgleichungen, die dieser Methode zugrunde liegen, sind universell in Echtzeit-Ab-initio-
Dynamik-Codebasis implementiert, was diesen Ansatz für eine breitere Gemeinschaft zugänglich
macht. Wir stellen fest, dass MTEF in Kombination mit einer Behandlung der elektronischen
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1 Abstract

Freiheitsgrade auf Basis des Ortsraums in der Lage ist, quantennukleare Effekte auf das Gle-
ichgewichtsabsorptionsspektrum von Molekülen abzubilden, und zeigen, wie einfach diese Meth-
ode in bestehende Simulationsprotokolle integriert werden kann. Da MTEF halbklassisch ist,
kann es auf sehr große Systeme skaliert werden, während die Darstellung des elektronischen
Systems im Ortsraum eine beliebig starke Laseransteuerung und die dynamische Behandlung
der Ionen eine signifikante nukleare Umstrukturierung des Kernsystems ermöglicht.

Anschließend wenden wir MTEF zum ersten Mal auf realistische periodische Systeme an, um die
durch Phononen vermittelte Relaxation von selektiv angeregten Ladungsträgern in hexagonalem
Bornitrid (hBN) bei Temperaturen von bis zu 2000 K zu simulieren. Die Anwendung von MTEF
ist dabei generisch und kann beliebig auf andere Materialien angewandt werden. Wir stellen
fest, dass MTEF eine natürliche Erweiterung der statischen Methoden darstellt, die weithin
zur Berechnung der nach Phononen normalisierten Gleichgewichtseigenschaften von Materialien
verwendet werden. Dabei konvergiert unsere Methode für die untersuchten gleichgewichtsfernen
Phänomene mit einer kleinen Anzahl von Trajektorien. So entwickeln und präsentieren wir eine
Methode, die einfach zu benutzen ist, genau und schnell konvergiert und die in der Lage ist, die
stark getriebene Elektron-Phonon-Dynamik in periodischen Systemen unter beliebigen Pump-
Probe-Anordnungen zu erfassen. Wir schließen mit einer Diskussion über die Forschung, die auf
der Grundlage unserer Bereitstellung dieses dringend benötigten Werkzeugs zur Simulation der
stark getriebenen Dynamik von Quantenmaterialien folgen kann.
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3 | Introduction

Much of the advance of technology in the last century was made possible through the develop-
ment of theories which could describe the microscopic behavior of atoms, molecules and solids.
Semiconducting transistors, magnetic data storage, and photovoltaic cells are integral to mod-
ern civilization and they owe their existence to the understanding of the properties of matter
in thermodynamic equilibrium. By being able to rationally predict and engineer desired system
properties, the size and efficiency of such devices was iteratively optimized until manufacturing
them was sufficiently cheap and reliable for them to become ubiquitous. Concurrently, the devel-
opment of laser technology since the 1960s has allowed condensed matter physicists to selectively
probe and coherently excite matter with increasing levels of precision. By now the intensity with
which matter can be driven from equilibrium, and the degree of temporal and spatial control
over laser pulses is so advanced, as to constitute an entirely new landscape of opportunities to
engineer materials [1–6].

Matter has a large number of degrees of freedom consisting of electronic and nuclear spins,
charges and their spatial configuration with respect to one another. The interactions between
these can manifest as highly complicated phase diagrams, displaying macroscopic behavior emer-
gent from the competing energetic effects of these component subsystems. Equilibrium thermo-
dynamics studies these phase spaces through static magnetic fields (spin), chemical substitutions
(charge) and pressure or crystallographic strain (configuration). Expanding on this rich land-
scape of parameters is the development of novel methods to engineer new states of matter
through amplification of vacuum photon coupling via cavity confinement [7] and tuning electron
dispersion through moiré layering [8–10]. For a given point in the phase diagram, subsequent
analysis can reveal the response of the system to weak external stimuli and thus inspire ap-
plications of the material under these conditions. Furthermore, by exciting particular degrees
of freedom one can dynamically manipulate a particular subsystem. Doing so with sufficient
intensity and speed, one enters the nonadiabtic regime: the component subsystems don’t have
time to find their local equilibrium and thus the system can enter transient phases which dis-
play properties that are normally inaccessible [4, 5]. The key advantage of laser technology is
the capacity to finely tune this manipulation to specific excitation channels within matter. By
resonantly driving or suddenly biasing the system within particular energy windows, the bal-
ance between component subsystems can be rearranged in a coherent and deterministic manner
which subsequently affects the emergent properties of the material. Thus these ‘non-thermal
pathways’ [5], can serve a vital role in rationally developing quantum materials in which exotic
phenomena desirable for technological application such as high temperature superconductivity
or topologically protected states for use as thermally robust qubits manifest under conditions
normally prohibited by equilibrium thermodynamics [11].

As a concrete example consider the laser driven dynamics of nuclei. By resonantly pumping
vibrational modes, the ions can develop large amplitude motion with respect to their crys-
tallographic local equilibrium. Due to anharmonic coupling between vibrational modes, this

6



can cause a net displacement of the lattice structure which subsequently changes the coupling
of electronic orbitals [12]. Driving nuclear dynamics in this manner has been experimentally
demonstrated to cause transient phases of matter such as signatures of superconductivity in
K3C60 up to room temperature [13–15], crystal structure phase transitions from para- to ferro-
electric order in SrTiO3 which remain stable for hours after irradiation [16, 17], and deterministic
enhancement or suppression of ferromagnetic phases in YTiO3 far away from the equilibrium
critical temperature [18]. Similar experiments have been done by driving the electronic system
such as inducing a semi-metal to insulator transition through steady-state Floquet driving in
graphene [19], as well as the spin degrees of freedom through direct manipulation of ferromag-
netism by light pulses [20] and selective excitation of spin polarized electronic bands [21]. For
recent experimental and theoretical reviews see [2, 4–6]. Because of the numerous ways in which
intra- and inter-subsystem interactions can locally reduce energy through forming quasi-particles
(polarons, polaritons, phonon-polaritons, plasmons, excitons, Cooper-pairs, . . .), simply under-
standing how the energy is picked up by the system and how it subsequently moves between
the constituent parts can be a formidable challenge. Thus a key analysis is to track the flow of
energy within a system in real time by probing how its spectroscopic properties change following
an excitation [3]. In chemistry for instance, such ultrafast transient spectroscopies have been
used to study the effects of nuclear motion on photo-disassociation, non-radiative relaxation and
charge transfer in photoactive molecules for nearly thirty years [1, 22].

Thus given the plethora of opportunities, there is a clear demand for robust and predictive
theoretical tools which can interpret, inspire and confirm experiments in far-from-equilibrium
condensed matter physics. However there are significant challenges even for one of the most fun-
damental interactions responsible for the behavior of matter: the electron-nuclear interaction.
In periodic systems nuclear motion is treated almost exclusively in terms of small deviations
from equilibrium, and their interaction with the electronic system is generally treated in a per-
turbative or even phenomenological manner [23, 24]. By contrast, due to having a finite and
small system size, in quantum chemistry methods have been developed in which the nuclear
degrees of freedom can be treated non-perturbatively, under non-adiabatic conditions and in
some cases even fully quantum mechanically [22, 25]. For the smallest molecules these methods
have been developed to the point being considered exact solutions, and have become a neces-
sary tool for the interpretation of experimental spectra [22]. These successes generally rely on
the Born-Oppenheimer framework, its non-adiabatic counterpart the Born-Huang ansatz, and
approximations made from these as starting points. However, due to requiring an electronic
solution for every nuclear configuration, methods relying on this framework are prohibitively
expensive to scale beyond a handful of degrees of freedom. Subsequently over the last 20 years
there has been increasing interest in developing methods which can capture quantum effects in
electron-nuclear dynamics, can be scaled to extended systems and long-time dynamics, and is
capable of simulating the behavior of strongly driven, far-from-equilibrium matter [26–29].

Broadly speaking these efforts take the form of methods with a high degree of correlation be-
tween the electronic and nuclear subsystems such as wavefunction ansätze [30–32], density matrix
[33, 34], and diagrammatic Non-Equilibrium Green’s Function based approaches (when taking
high level expansions) [35, 36], or conversely methods with a lower degree of correlation usu-
ally entailing some semi-classical approximation such as linearized path integral or ring-polymer
molecular dynamics [37], time-dependent Boltzmann and Bloch equations [23, 38] and trajec-
tory based ensemble approaches such as Ab-Initio Multiple Spawning or Ehrenfest dynamics
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3 Introduction

[25]. While the former category generally leads to more quantitatively accurate results, the
computational and theoretical overhead can be extremely demanding, oftentimes limiting the
applicability to smaller systems or shorter time scales unless restricted to simple models or sig-
nificant approximations are made. The latter category is more tractable in these regards while
simultaneously being less accurate for strongly correlated systems by virtue of the semi-classical
approximation, defects which in some cases can be improved upon at increasing computational
cost.

In chapter 4 we discuss some of the recent methodological developments in the former category,
focused primarily on wavefunction dynamics to which the author and collaborators contributed
with paper I. In this paper we developed an ab-initio real-space, real-time, fully quantum me-
chanical electron-nuclear dynamics simulation method which is capable of accurately capturing
the spectrum of equilibrium states as well as perturbatively and strongly driven dynamics, while
still being amenable to optimization which can scale the calculation to larger systems. In chap-
ters 5 and 6 we focus on semi-classical dynamics, providing a short overview in chapter 5 of the
wide ranging methods existing under this umbrella before focusing on Multi-trajectory Ehrenfest
(MTEF), which is amenable to large systems, long time scales and non-adiabatic dynamics. This
method has the further benefit of its equations of motion already being widely implemented,
and when derived in the context of the Quanutm Classical Liouville Equation, forms the basis
for systematic reintroduction of higher electron-nuclear correlation terms. In paper II we sys-
tematically investigated the application of MTEF with the electronic system represented in a
real-space grid basis, finding that we recover quantized nuclear effects on the absorption spec-
trum of molecules, and are able to straightforwardly apply this technique to ab-intio simulations
of real molecules. This work made clear that one can capture such effects at a low computational
cost. We follow up these results with paper III in which we, for the first time, apply MTEF in
an ab-initio manner to periodic systems under strong laser driven dynamics. This work presents
a methodology which simultaneously captures the equilibrium phonon properties of real materi-
als at arbitrary temperatures, the effects of phonon renormalization of the electronic system at
equilibrium for strong coupling, and the phonon scattering induced charge-carrier equalization
of valley selective excitation following intense irradiation in a manner consistent with experiment
and complementary theory calculations.

In order to contextualize the import of these findings, we first begin in this chapter by providing a
brief overview of the Born-Oppenheimer (BO) approximation and its extension to non-adiabatic
dynamics. Next we discuss the real-time dynamics approach for simulating system properties
under perturbative excitation, and demonstrate how it is used within the BO framework to
calculate the vibronic spectra. This quantity constitutes the primary focus of paper II, one of the
primary demonstrations of which was that vibronic spectra could be calculated without reference
to the standard BO approach. We next provide a brief recap of strongly driven processes and
how they can calculated non-perturbatively as done is in papers I and III, whose primary
contributions are to demonstrate techniques capable of calculating strongly driven phenomena
and their nuclear dependencies without relying on BO concepts. We finish this chapter with a
comment on the features of the BO framework which limit the applicability of methods developed
exclusively within it to address the kind of strongly driven, far-from-equilibrium experiments
described above, and finally conclude with a more detailed outline of the proceeding chapters.

8



3.1 The Born-Oppenheimer Approximation and Non-Adiabatic Extensions

3.1 The Born-Oppenheimer Approximation and
Non-Adiabatic Extensions

The Born-Oppenheimer (BO) Approximation and its extension to non-adiabatic dynamics through
the Born-Huang (BH) ansatz constitute the backbone of quantum chemistry, being foundational
to the way that chemists and physicists think about the structure and dynamics of molecules,
and indeed formally serves as a framework for understanding the properties of phonons in pe-
riodic systems. Given the ubiquity of the BO/BH framework, it’s necessary to understand its
limitations and the subsequent growing body of literature working outside of it, to which this
thesis contributes.

The BO approximation relies on the disparity of masses between the electronic degrees of freedom
me and the proton mass Mp. Since Mp/me ∼ 1836, one can separate the electronic motion from
the nuclear motion and treat the nuclear motion as a perturbation on top of the electronic degrees
of freedom. Although attributed to the 1927 paper by Max Born and Robert J. Oppenheimer
[39], the formulation presented there was perturbative in ϵ = (m/M)1/4, with small nuclear
deviation from the equilibrium nuclear configuration R0 giving the lowest energy electronic
configuration ∝ O(ϵ0) followed by vibrational ∝ O(ϵ2), and rotational energies ∝ O(ϵ4) [40]. In
fact the generic validity of this expansion for any nuclear configuration, and indeed whether one
can separate the nuclear motion and still retain discretized electronic potential energy surfaces
at all, has been asserted to be inconsistent with a quantized treatment of indistinguishable nuclei
[41–43]. However, despite this somewhat niche objection, when taken as an ad-hoc assumption
arising from initially treating the nuclei as classical, distinguishable particles of infinite mass
and then quantizing and allowing them to move, the BO framework is an indisputably successful
tool. The following can be found in many standard references [44–46], though we adapt their
presentation and notation for this introduction.

Starting from the full system Hamiltonian, Ĥ, of a system consisting of Nn nuclei and Ne

electrons we can write it in the real space basis of the nuclear positions R = (R1, . . . ,RNn) ∈
RdNn and electronic positions, r = (r1, . . . , rNe) ∈ RdNe where d is the Cartesian dimension of
the system:

H(r,R) = −
Nn∑
ν

1
2Mν

∇2
Rν
−

Ne∑
i

1
2∇2

ri
+
∑
i ̸=j

1
|ri − rj |

−
∑
iν

Zν

|ri −Rν |
+
∑
ν ̸=µ

ZνZµ

|Rν −Rµ|

= −1
2M

−1∇2
R +He(r,R),

(3.1)

where we have rewritten the nuclear kinetic energy term as ∇2
R = (∇2

R1 , . . . ,∇
2
RNn

)T with
diagonal inverse mass matrix M−1, and implicitly defined the electronic Hamiltonian He which
gathers the electronic kinetic energy and all Coulomb potential terms. The charge and mass of
the nucleus ν are referred to by Zν and Mν respectively, and we have used atomic units ℏ = e =
me = 1

4πϵ0
= 1 as will generally be done throughout the rest of the text. The spectral resolution

of this Hamiltonian describes the states of the full system within the Hilbert space H composed
of the direct product of the electronic and nuclear Hilbert spaces H = He ⊗ HN . As briefly
mentioned earlier, we now assume that we can treat the nuclei as distinguishable particles and
take the approximation that Mν → ∞. Doing so allows us to treat the electronic Hamiltonian
as a well defined operator acting on He, parameterized at each fixed nuclear configuration R,
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3 Introduction

whose spectral decomposition defines the adiabatic electronic wavefunction solutions Φn(r; R):

He(r; R)Φn(r; R) = Un(R)Φn(r; R)
Φn(r; R) := ⟨r|Φn(R)⟩ .

(3.2)

For simplicity we will disregard the ionized-continuum states which coexist alongside the bound
state solutions. Each adiabatic electronic state |Φn(R)⟩ defines a static potential Un(R) for each
nuclear configuration, referred to as a Born-Oppenheimer Potential Energy Surface (BOPES).
In practice BOPESs are not written in terms of the (lab-frame) Cartesian coordinates for the
nuclear degrees of freedom, but constructed in terms of non-translational, non-rotational in-
ternal degrees of freedom. While the procedure used to define this coordinate system, and the
implications on the effective electron masses can also be a contentious point [43], oftentimes sim-
ply the normal modes of vibration and the rest mass of the electron are utilized for molecules.
For simplicity we keep the R notation, with the understanding that it has been transformed to
refer to the internal degrees of nuclear freedom, which will sometimes explicitly be referred to
as Q. Furthermore since the electronic system doesn’t have to be solved in terms of the real
space basis we can introduce the general Hilbert space notation Ĥe(R) |Φn(R)⟩ = Un(R) |Φn⟩.
Throughout this thesis adiabatic Born-Oppenheimer states will be referred to as |Φn⟩, and to de-
crease notational clutter, we will occasionally suppress their implicit dependence on the nuclear
configuration.

By construction the adiabatic states are orthogonal at each nuclear configuration R:

⟨Φn(R)|Φm(R)⟩ =
∫
drΦ∗

n(r; R)Φm(r; R)

= δnm.
(3.3)

With these states forming a basis within the electronic Hilbert space He for each R, we can now
construct a wavefunction in the full system Hilbert space H = He⊗HN through the Born-Huang
ansatz:

|Ψ(R, t)⟩ =
∑

n

χn(R, t) |Φn(R)⟩ . (3.4)

This ansatz is composed of nuclear wavepackets, χn(R, t), each associated with a particular
electronic adiabatic BO state. We can see how the nuclear wavepackets depend on the electronic
system by applying the system Hamiltonian Eq. (3.1) to the above ansatz. The equation of
motion of the nuclear wavepackets then becomes:

i∂tχn(R, t) = ⟨Φn|Ĥ|Ψ⟩

= ⟨Φn(R)|
(
−1

2M
−1∇2

R + Ĥe(R)
)
χm(R)|Φm(R)⟩

=
(
−1

2M
−1∇2

R + Un(R)
)
χn(R)− 1

2M
−1∑

m

(2τnm ·∇R + τ (2)
nm)χm(R),

(3.5)

where τnm is the first order non-adiabatic coupling vector (NACV) between adiabatic states n

10
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and m:

τmn = ⟨Φm(R)|∇R|Φn(R)⟩

=
⟨Φm|∇RĤe(R)|Φn⟩
Un(R)− Um(R) for n ̸= m.

(3.6)

The second line follows from the Hellman-Feynman Theorem or equivalently from the solution to
the Sternheimer Equation when treating the nuclear configuration as a perturbative parameter
[47]. The second order non-adiabatic coupling matrix (NACM) τ (2)

mn is defined as:

τ (2)
mn = ⟨Φm(R)|∇2

R|Φn(R)⟩ . (3.7)

Collectively the NACVs and NACMs are referred to as non-adiabatic coupling terms (NACTs);
the effect of NACMs is typically small and therefore they are often disregarded. As can be seen
from the form of the NACV in Eq. (3.6) in the case of well separated BOPESs or a vanishing
numerator, the NACTs can be entirely disregarded, giving rise to the Born-Oppenheimer ap-
proximation. Under this approximation we can fully characterize the nuclear subsystem via it’s
behavior on the various BOPESs. In conjunction with the kinetic energy operator, this gives
rise to vibrational states ν belonging to each BOPES n:

Hn(R)χnν(R) =
(
−1

2M
−1∇2

R + Un(R)
)
χnν(R)

= Enνχnν(R).
(3.8)

These vibrational states often serve as a handle for interpreting spectra, as in the Franck-Condon
effect, and can serve as a basis in which to represent the nuclear wavefunctions χn(R), although
strictly speaking they are only well defined when the NACTs are disregarded.

Conversely as the gap between surfaces decreases these states become coupled and at nuclear
configurations where the BOPES are degenerate, the NACT can diverge. The regions in nu-
clear configuration space where this occurs are known as a Conical Intersections (CIs). When
occurring between the electronic ground state and higher states, the static consequences of CIs
manifest as the Jahn-Teller effect: instead of being in the high-symmetry CI configuration at
which the electronic states are degenerate, the nuclear geometry spontaneously distorts, lift-
ing the electronic state degeneracy. Dynamically, CIs play an integral role in the physics of
molecules. Nuclear wavepackets passing through the area around CIs interact strongly with
other BOPESs and can ‘transfer’ through them thus creating a channel for electronic state re-
laxation (or excitation) due to nuclear motion. This constitutes a non-radiative means of energy
relaxation and plays a critical role in numerous photo-excitation pathways. These include the
detection of light in the human eye [48], the robustness of DNA against photo-damage [49] and
the recombination of photo-excited charge carriers [50]. Developing the means to efficiently
simulate such phenomena constitutes a central focus of the non-adiabatic quantum chemistry
community.

The dynamics captured by the Born-Huang ansatz in Eq. (3.5) constitute an exact represen-
tation of the excited behavior in an isolated molecular system, accomplished by shifting the
dynamics entirely onto the nuclear degrees of freedom. This in fact is the central utility of
this picture since while the full system wavefunction is out of reach for any realistically sized
problem, electronic structure methods allow calculation of all of the ingredients in Eq. (3.5),
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namely the BOPESs Un(R) and NACTs, τmn, τ
(2)
mn [51]. Of course this just shifts the problem,

as calculating or even storing the BOPES and NACTs becomes extremely expensive when one
wants to treat systems with relatively modest numbers of nuclear degrees of freedom. In practice
one isolates their attention to a few degrees of freedom of interest (or a combination of degrees of
freedom in a reaction coordinate) and takes a collection of configurations {R

i
; i = 1, . . . , Nc} at

which the BOPES and NACTs are calculated. These points are then used to calculate a ‘global’
fit.

Regardless of the electronic structure technique used, this procedure is generally expensive for
each configuration, and can be quite sensitive to the details of the problem at hand. Consistent
results for excited state energies typically require a high level method such as Coupled Cluster –
which scales as O

(
N7

e

)
– or Complete Active Subspace Self-Consistent Field (CASSCF), which

can scale exponentially [45]. Oftentimes comparatively cheaper electronic structure methods
such as Linear Response Time Dependent Density Functional Theory (LR-TDDFT) are chosen,
although the accuracy compared to more sophisticated methods can be quite poor [52]. Due
to the presence of CIs it can be preferable to perform a change of basis in order to remove
the singularities and minimize the effects of the NACTs [44]. Such a ‘diabatization’ procedure
results in smooth diabatic potential energy surfaces (PESs). There is no unique definition
of a diabatic PES, thus this requires further choices about what is appropriate for a given
situation [53]. Particularly important types of diabatic models are linear or quadratic vibronic
coupling models (LVC and QVC respectively), which derive from first or second order Taylor
expansions of the electronic Hamiltonian: Ĥe(R) ≈ Ĥe(R0)+∇RĤe(R)|R0 ·(R−R0)+O((R−
R0)2) [54]. These are projected onto the diabatic states |Φn(R0)⟩, which are eigenstates of the
electronic Hamiltonian only at reference configuration R0. The resulting Hamiltonian governing
the nuclear dynamics is composed of smooth ‘diabatic surfaces’ which depend on coupling terms
proportional to (R −R0) and (R −R0)2, restricted to symmetrically allowed couplings. The
construction of LVC and QVC models is a non-trivial process and constitutes an active field of
research [55].

3.2 Real Time Dynamics

As a concrete example of how the BO/BH picture is used to calculate system properties, here
we describe how real time dynamics simulations can be used to study the response of finite and
extended systems to coherent light sources. We first discuss the linear absorption coefficient
analysed in the context of perturbation theory under the dipole approximation. This quantity
describes the absorption of light in a system due to weak incident radiation, acting as a probe of
the optically active excited states intrinsic to a system, and is the focus of paper II, in which we
use both the perturbative correlation function approach described here, as well as direct non-
perturbative propagation, discussed here in section 3.2.2 and in more detail in chapter 5. We also
discuss one of the simplest possible coupled electron-nuclear excitations, the vibronic transition.
Such information is of course necessary to understand the manifold of excited states which can
be accessed upon stronger driving. However, providing a detailed accounting of the origin of
spectral lines by calculating this fundamental system property for mixed vibrational/electronic
excitations is an ongoing research challenge. We also briefly discuss how non-linear optical
response properties can be calculated both perturbatively and non-perturbatively.
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3.2 Real Time Dynamics

3.2.1 Linear Absorption

Samples of matter, say a uniform gas consisting of a single species of molecule or a block of a
crystalline solid, will develop an induced polarization δP upon irradiation with coherent light
of a given frequency ω. This can be described in a power series of the incident E field [56]:

δP(t) =
∫
dt′χ1(t− t′)E(t′) +

∫
dt′
∫
dt′′χ2(t− t′, t− t′′)E(t′)E(t′′) +O(E3)

= δP1 + δP2 +O(δP3),
(3.9)

where χn is the nth order response function (which is a tensor of order n+ 1). If we assume the
incident field is weak, the second and higher order terms can be dropped, and we can turn to
the first-order polarization [57]:

δP1(t) =
∫
dt′χ1(t− t′)E(t′). (3.10)

In the case of a molecular system, the first order change of the polarization is often written in
terms of the dipole operator µ̂ = µ̂e + µ̂N = −

∑
i r̂i +

∑
ν ZνR̂ν , comprised of the electronic

(r̂i) and nuclear (R̂ν) position operators and nuclear charge Zν :

δP1(t) = ⟨δµ̂1(t)⟩ . (3.11)

The expectation value of this operator is ⟨δµ̂1⟩, and the bar overhead in Eq. (3.11) indicates
the spatial average. For solids, interaction with light is written in terms of Maxwell’s equations
in matter, where the most important constiutents for our purposes are the electric current J
and displacement D, whose proportionality to the external field E define the dielectric function
ϵ and conductivity σ [58]:

D = ϵE
J = σE.

(3.12)

Due to the absorption of photons, the intensity of light propagating within the medium will
decay with penetration depth |r| according to the macroscopic Beer-Lambert law:

I(|r|) = I(0)e−α|r|. (3.13)

The rate of intensity decay is determined by the absorption coefficient α. Through Maxwell’s
equations in matter, the frequency dependence of this absorption can be expressed can be
expressed as the following spatial average [57, 59]:

α(ω) = 4πω
3c Im

3∑
j=1

χjj(ω), (3.14)

where c is the speed of light in the vacuum and χij(ω) ∈ C is the susceptibility of the material
in cartesian direction i to an input field in direction j. For periodic systems, this quantity is
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written in terms of the dielectric function and conductivity as [58]:

α(ω) = 2ω
3c Im

3∑
j=1

Nii(ω)

N(ω) =
√
ϵ(ω)µ

ϵ(ω) = ϵ1 + 4πi
ω
σ(ω).

(3.15)

The magnetic permeability µ and real dielectric function ϵ1 are usually set to 1 in calculations.
Naturally, the microscopic details of the system can be tied to the susceptibility, allowing us to
assign the origin of particular spectral features. We start by taking the dipole approximation
in which the wavelength of the exciting field is much larger than the molecule itself allowing
us to ignore it’s spatial dependence. Taking the Fourier transform of the response function Eq.
(3.10) gives the frequency dependent linear susceptibility χ(ω). The matrix elements of the
susceptibility and conductivity are dependent on dipole, current and field directions i, j as:

χij(ω) = ⟨δµ̂i(ω)⟩
Ej(ω)

σij(ω) = ⟨Ji(ω)⟩
Ej(ω) .

(3.16)

In order to obtain an expression for the observables ⟨δµ̂(ω)⟩ and ⟨J(ω)⟩, we first find an expres-
sion for their time dependence by explicitly treating the coupling of the field with the molecular
Hamiltonian Ĥ0 in a semi-classical manner:

Ĥ(t) = Ĥ0 + µ̂ ·E(t). (3.17)

For the periodic case we use the velocity gauge:

Ĥ(t) = − 1
2M (p̂− 1

c
A(t))2 + Û , (3.18)

where M and p collects the particle masses and momenta, Û collects the remaining potential
terms and vector potential A is defined by E = −1

c∂tA. This approach is semi-classical in
the sense that the laser field is treated as a classical parameter, rather than being expanded
in terms of a quantized phonon field. We take a first order expansion to the time evolution
operator Û(t, t0) written in the interaction picture, where operators evolve according to Ô(t) =
eiĤ0tÔe−iĤ0t. In this picture we have [60]:

Û(t, t0) ≈ e−iĤ0(t−t0)
[
1− i

∫ t

t0
dt′E(t′) · µ̂(t′ − t0)

]
= e−iĤ0(t−t0)

[
1− iM−1

∫ t

t0

dt′

2cA(t′) · p̂(t′ − t0)
] (3.19)

For simplicity we make the zero temperature assumption that the system is in it’s global ground
state E0: Ĥ0 |Ψ0⟩ = E0 |Ψ0⟩, although the derivation presented here can be straightforwardly
generalized to temperature dependent situations by replacing the wavefunction with a density
matrix ρ̂(t), and propagating it via the Liouville-von Neumann equation [57]. By initalizing
|Ψ(t = 0)⟩ = |Ψ0⟩ and propagating via Eq. (3.19) we can evaluate ⟨µ(t)⟩ = ⟨Ψ(t)|µ̂|Ψ(t)⟩ or
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3.2 Real Time Dynamics

⟨J(t)⟩ = ⟨Ψ(t)|Ĵ|Ψ(t)⟩, where the current oprerator J is proportional to the system momentum.
Given that Eq. (3.19) only depends on the incident field to the first order, by subtracting the
static 0th order e−iĤ0(t−t0) term, ⟨µ̂0⟩ = ⟨Ψ0|µ̂|Ψ0⟩ (without a static DC bias, there is no steady
state current ⟨J0⟩), we obtain the first order response:

⟨δµ̂i
1(t)⟩ = −i

∫ t

t0
dt′ ⟨Ψ0|

[
µ̂i(t− t′), µ̂j

]
|Ψ0⟩Ej(t′)

⟨Ĵ1
i (t)⟩ = −i

∫ t

t0

dt′

c
⟨Ψ0|

[
Ĵi(t− t′), Ĵj

]
|Ψ0⟩Aj(t′).

(3.20)

We further simplify the expressions by defining the correlation function Cij(t) = ⟨Ψ0|
[
Ôi(t), Ôj

]
|Ψ0⟩,

where the current or dipole operator stands in for Ô. One can observe that the Fourier trans-
form of the time dependent correlation function can be written via the convolution property as
⟨δµ̂1

i (ω)⟩ = −iCij(ω)Ej(ω), and similarly for the current. Therefore:

Cij(ω) = i
⟨δµ̂1

i (ω)⟩
Ej(ω) = iχ1

ij(ω)

= i
⟨δĴ1

i (ω)⟩
Ej(ω) = iσ1

ij(ω),
(3.21)

where A/c has gone to E via the convolution. Notice that the expression for the linear suscepti-
bility depends only on the dipole-dipole or current-current correlation of the propagated system,
and not on the electric field. This is because it’s defined entirely by the intrinsic properties of the
system, and isn’t dependent on the structure of the incident field. In contrast, the response of
systems to stronger pumping fields explored in papers I and III depends on the temporal profile
of the pump, as this strongly influences the population of excited states induced by the laser.
However, in those cases we will still restrict ourselves to the semi-classical dipole approximation,
meaning that the system response is dependent only on the temporal profile of the field.

Since by construction the population of excited states induced by the perturbative laser field is
vanishingly small, we can also analyze the response via Fermi’s Golden Rule. Following some
manipulation of the Fourier transform of Eq. (3.10), one can write the absorption coefficient as
[60, 61]:

α(ω) = 4π2ω

3c

3∑
i=1

∑
n

| ⟨Ψn|µi|Ψ0⟩ |2δ(ℏω − En)− | ⟨Ψn|µi|Ψ0⟩ |2δ(ℏω + En)

α(ω) = 16π2

3ωc

3∑
i=1

∑
n

| ⟨Ψn|vi|Ψ0⟩ |2δ(ℏω − En)− | ⟨Ψn|vi|Ψ0⟩ |2δ(ℏω + En)
, (3.22)

where vi refers to the total velocity of the system’s charge carriers in the i direction, |Ψn⟩ refers
to excited states in the system, and the second term in both lines corresponds to stimulated
emission, which is of course forbidden in the case of the initial state being the global molecular
ground state. This perturbative analysis directly shows how the energetic profile of the absorp-
tion depends on the transition dipole (| ⟨Ψn|µi|Ψ0⟩ |2) or velocity (| ⟨Ψn|vi|Ψ0⟩ |2)moments.
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Vibronic Contributions to Linear Absorption

One of the simplest scenarios of coupled electron-nuclear excitation is the vibronic transition. In
this situation, the BO framework is invoked from the outset by assuming electronic degrees of
freedom are instantly excited with respect to to the nuclear degrees of freedom. Here we focus on
the molecular case, and return to the role of phonons on the absorption spectrum in the periodic
case in chapter 6. Starting from Eq. (3.22) we invoke a static Born-Huang wavefunction ansatz,
Eq. (3.4), for the molecular states, and isolate our attention to the transition between the
molecular ground state consisting of the electronic state |Φ0⟩ and a given higher lying electronic
state |Φn⟩. Disregarding the NACTs, and writing the vibrational states in ket notation as
χnν(R) := ⟨R|χnν⟩, we have the following peaks contained within this transition:

α(ω) = 4π2ω

3c

3∑
i=1

∑
ν

| ⟨Φnχnν |µ̂e
i |Φ0χ00⟩ |2δ(ω − Enν), (3.23)

Note that we have dropped the nuclear term from the dipole operator since by construction it
only connects intra-BOPES vibrational states. Traditionally, at this point one invokes the Con-
don approximation which assumes that the dependence of the electronic dipole on the nuclear
configuration through the BO states is smooth and slowly varying such that it can be evaluated
at some characteristic configuration R0, allowing the absorption to be rewritten in terms of elec-
tronic transition dipole moments ⟨Φn(R0)|µ̂e

i |Φ0(R0)⟩ and the much used Franck-Condon factors
| ⟨χnν |χ00⟩ |2. Finding approximations to these two components and the energies of the states
constitutes the framework in which much of the work on vibronic spectral analysis throughout
the 20th century was conducted. However, in the latter part of the century the increasing avail-
ability of computational resources began to allow for explicit real-time propagation to go from
niche applications [62, 63] to commonplace (for example, one can already see a review article
written on time dependent methods from 1988 [64]), meaning that response functions such as
Eq. (3.20) could be directly calculated.

This time dependent calculation can proceed in one of two ways. Either one restricts oneself
to the perturbative limit, under which one is explicitly interested in the correlation function on
the right hand side of Eq. (3.20). Alternatively, by recalling the starting point of Eq. (3.9), one
can simply directly take some weak external field, |E| << 1, such that only the lowest order
provides any significant signal to the system polarization δP [65, 66]. We remain in the dipole
approximation by keeping the field spatially uniform across the system. This latter method is
referred to as non-perturbative, even when used to calculate the linear response, because it is in
principle not restricted to the dynamics of a particular order in the observable expansion with
respect to external field strength. We utilize this approach to calculate the vibronic absorption
in papers I and II. In paper II we also use the perturbative approach within the BO picture,
which appears again in the case of periodic systems in chapter 6. Therefore, we briefly sketch
here the structure of the perturbative real-time calculation in the BO picture.

Disregarding the NACTs the molecular Hamiltonian and dipole operator between the ground
and excited state n = 1 is written as:

H0(R) = 1
2M

−1∇2
R + U0(R) |Φ0(R)⟩ ⟨Φ0(R)|+ U1(R) |Φ1(R)⟩ ⟨Φ1(R)|

µ̂ = µ̂N ⊗ 1e + |Φ0⟩ µ̄01 ⟨Φ1|+ c.c.,
(3.24)
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3.2 Real Time Dynamics

where we have incorporated the Condon approximation directly into the dipole operator. Treat-
ing the initial state as |Ψ0⟩ = |χ00Φ0⟩, one can directly evaluate the dipole-dipole correlation
function:

Cii(t) = ⟨χ00Φ0| eiĤ0tµ̂ie
−iĤ0tµ̂i |χ00Φ0⟩

= eiE0tµ̄01
i µ̄

10
i ⟨χ00| ⟨Φ1|e−iĤ0t|Φ1⟩ |χ00⟩

= eiE0t|µ̄01
i |2 ⟨χ00| e−i(T̂N +Û1)t |χ00⟩ ,

(3.25)

where Û1 is the operator form of the BOPES, ⟨R|Û1|R′⟩ = U1(R)δR,R′ , and we’ve dropped
the counter-rotating (‘anti-resonant’) contribution [57]. One can read this expression as a series
of instructions: (1) obtain a representation of the lowest lying vibronic state |χ00⟩, and target
surface Ûn; (2) ‘instantly excite the electronic state’ i.e. place χ00 on the upper surface, and
then propagate the nuclear wave packet |χ00⟩ exposed to the excited electronic configuration, as
encoded in the BOPES Hamiltonian:

i∂tχ00(R) =
(
− 1

2M(R)
∇2

R + U1(R)
)
χ00(R); (3.26)

(3) compute the overlap of the out of equilibrium propagated nuclear wavepacket with it’s
equilibrium propagated self. By decomposing |χ00⟩ onto the excited surface vibrational steady
states |χ00⟩ =

∑
ν ⟨χnν |χ00⟩ |χnν⟩ at time 0, propagating and Fourier transforming one can easily

recover the energy and state resolved linear absorption Eq. (3.23). In chapter 6, we show how
phonon assisted optical absorption in solids can be calculated by averaging over static classically
treated nuclear configurations by starting from an expression effectively identical to Eq. 3.25.

3.2.2 Beyond Linear Response

Linear absorption provides a tool to probe the excited states of a system. However, the availabil-
ity of highly intense table-top laser sources alongside technologies to compress pulses to femto-
and atto-second timescales provide opportunities to directly study the role these states play in
the absorption and flow of energy following excitation [22]. The basic idea is quite simple, by
pumping the system and then probing the system with a secondary pulse at some delay, one
obtains a picture of the instantaneous state of the system at that delay time. Following the
initial excitation, the distribution of energy in the system evolves due to interaction between the
subsystems, and correspondingly the response to the secondary pulse will change over time. In
terms of the perturbative treatment of the system response in Eq. (3.9) it’s clear that because of
the dependence of the response on the relative time of the first and second laser, such processes
must be dictated by the second or higher order response functions χn.

Examples of such phenomena include harmonic generation, where the outgoing radiation from
the system has signals at frequencies nω for the input frequency ω, governed by the nth or-
der response functions [56], and Two-Dimensional Electron Spectroscopy (2DES). 2DES relies
on a sequence of three pulses, and thus is a measure of the third order response χ3. Tech-
niques for calculating such higher order response functions in the perturbation approach were
pioneered by the group of Shaul Mukamel [67], and require evaluating nested commutators of
the dipole response at different times analgously to the right hand side of the first order case
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in Eq. (3.20). Performing this calculation requires propagating and evaluating the overlap of
multiple wavepackets evolving on different surfaces simultaneously which naturally leads to a
large increase in the computational cost of the simulation [32, 68, 69].

However, rather than using this perturbative approach, calculating the response of the system
for each order of the expansion in the field strength separately, one can simply take the system
and directly propagate under the influence of an external field via Eq. (3.17). Doing so directly
calculates the system response δP(t) at all orders. By crafting an external field E(t) composed
of a sequence of lasers Ei(t;ϕi) dependent on parameters ϕi = (ωi, τi, Ti, ri), like frequency ω,
pulse center τ , pulse duration T , propagation direction r, etc., one can simply track the induced
dipole (or in the case of periodic systems, the current):

δµ(t;ϕ1, ϕ2, . . .) = ⟨Ψ(t)|µ̂|Ψ(t)⟩

i∂t |Ψ(t)⟩ =
(
Ĥ0 + µ̂ · [E1(t;ϕ1) + E2(t;ϕ2) + . . .]

)
|Ψ(t)⟩ .

(3.27)

By scanning over different pulse-probe parameters this non-perturbative approach in principle
allows one break apart the contributions to δµ(t) into specific orders of the system response
[70, 71]. Due to the generality of this approach it can be used to recreate nearly any ex-
perimental setup or time dependent observable and is a standard approach when calculating
transient absorption spectroscopy (TAS) [72–74], high harmonic generation [75–77], time and
angle resolved photoelectron spectroscopy [78, 79] and laser induced magnetization and phonon
dynamics [80, 81], to name just a few phenomena. These calculations often require a number of
dynamical runs, for example in TAS one must simulate the weak field response, pump response
and pump + probe response at the desired delays. However the benefit is that when done, the
recovered signal automatically contains all contributions at that laser intensity to the signal ca-
pable of being resolved by the simulation method. In contrast for a perturbative calculation, the
contributions of each nth order channel have to be calculated separately. Thus, for disentangling
the excitation and relaxation channels contributing to the experimental signals under far-from-
equilibrium driving, non-perturbative real-time dynamics simulations offer the most flexibility,
ease and breadth of application, with the caveat that the system’s relevant degrees of freedom
must be accurately and efficiently represented [82]. In this regard, since we are interested in the
role of phonon dynamics on such processes, we again run in to the limitations of the BO/BH
picture.

Limitations: Breaking out of BO/BH

The BO/BH framework contains a host a conceptual and practical problems. The issues of
calculation and storage have already been mentioned, and even with state of the art ‘Direct
Dynamics’ or ‘on-the-fly’ approaches, which give semi-local information for wavepackets [83, 84]
or semi-classical trajectories [25, 85], the number of nuclear degrees of freedom whose dynamics
can be resolved for realistic ab-initio systems, remains in the realm of small to medium sized
molecules [25, 86]. Furthermore, as mentioned in the outset, some of the most exciting phenom-
ena of modern condensed matter and ultrafast science involve strongly modifying the electronic
states via coupling to intense light fields. This is done statically through cavity enhanced vac-
uum fluctuation [87–91], in a steady-state manner via Floquet engineering [2, 5, 19, 92] or in an
transient manner via strongly driving the nuclear degrees of freedom [13, 18, 80]. All of these
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3.3 Outline

provide significant challenges to the already limited utility of the BO framework. For example,
although inclusion of strongly coupled cavity modes into the BOPES can be done formally [88],
being able to practically calculate even just electronic properties in ab-initio cavity-molecule
systems is still in its infancy [93, 94], while attempts to treat non-adiabatic dynamics on Flo-
quet PESs have been limited to model systems [95, 96]. For nonlinear electronic spectroscopies,
there is also the conceptual problem of having to a-priori calculate the BO states within the
energy range of the experimental observation, and when using the perturbative method, one
must explicitly analyze how the nuclear wavepackets transfer between all active surfaces in the
manner of Mukamel, thus limiting the predictive power of the ab-initio simulation and increasing
the complexity of the calculation.

The limitations are even more striking when driving the nuclear degrees of freedom. Crucially,
many of the experiments cited above are done in solid state systems. For such extended systems
the BO framework is invoked almost exclusively to find the ground state BOPES. This defines
the equilibrium lattice geometry, and small deviations from it define the phonons. Virtually the
entire condensed matter formalism for treating electron-phonon interactions consists of study-
ing electronic states – defined with respect to the equilibrium geometry – being dressed by the
underlying bosonic phonon field [24, 97, 98]. Generally this centers on interactions mediated
by the first-order or second order anharmonic electron-phonon interaction operators. However
these non-equilibrium phase transitions are rooted in strong driving which induces highly anhar-
monic motion and dramatic realignment of the electronic structure [14, 18, 19, 80]. All of these
effects can be very challenging for perturbative methods starting from the equilibrium system
to capture. Therefore, it’s necessary to find robust theoretical methods which do not rely from
the outset on an adiabatic framework, and instead are capable of systematically capturing both
strongly renormalized equilibrium system properties and transiently driven far-from equilibrium
behavior.

3.3 Outline

This thesis collects contributions the author and collaborators have made over the last five years
towards this goal. Working with Prof. Dr. Angel Rubio, Dr. Aaron Kelly, Dr. Shunsuke
Sato and Dr. Guillermo Albareda, its core contribution consists of two papers and a manuscript
currently under review, in which we develop novel wavefunction dynamics approaches and utilize
semi-classical dynamics to treat electron-nuclear interaction in both molecules and solids under
equilibrium and non-equilibrium laser driven regimes. The specific contributions of the author
to each paper are detailed in section 2.1. In chapters 4, 5, and 6 we briefly introduce and
contextualize papers I, II, and III respectively, in terms of what principle questions they
address, an overview of the relevant research in that field and the contributions those papers
made. The publication of paper II precedes that of paper I and methods developed in that
paper are explored in paper I and summarized in chapter 4. Here we briefly summarize what is
discussed in the chapters preceding the papers.

Chapter 4 focuses on the question of how to efficiently simulate the fully entangled electron-
nuclear dynamics of a system under arbitrarily strong laser driving. Although we mention
in passing other fully correlated approaches such as Non-Equilibrium Green’s Functions (cor-
related up to the choice of interactions included in the self energy) and the density matrix
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based Hierarchichal Equations of Motion, the focus is on methods which can efficiently repre-
sent high dimensional wavefunctions through tensor decompositions, in order to give context for
our novel mixed species wavefunction ansatz, the Interacting Conditional Wavefuntion (ICWF)
method. Less correlated semi-classical approaches are covered in chapter 5. In chapter 4 we
give a brief overview of the method of tensor network decompositions and how they reconstruct
high dimensional objects from lower dimensional data, and discuss the ‘golden standard’ of
non-adiabatic nuclear wavefunction dynamics simulation methods: Multi-Configurational Time-
Dependent Hartree, which is entirely dependent on diabatic approximations to the BOPESs. I
also review some of the recent literature which expanded tensor network methods for coupled
electron-nuclear dynamics methods outside of the BO basis, a category in which ICWF belongs.
I detail the framework and development of ICWF up to the publication of paper I within this
context, and give an overview of the contributions of paper I. In brief, this work developed sev-
eral algorithmic advancements which allow the ground and equilibrium excited states of mixed
electron-nuclear systems to be calculated, following which they can be propagated under arbi-
trarily strong laser dynamics while being entirely represented on a real-space grid for all the
degrees of freedom. Thus ICWF is presented as a self-contained algorithm for the ab-initio
calculation of non-equilibrium mixed-species phenomena, and it’s performance is demonstrated
for a variety of model physical situations, demonstrating high accuracy for every case. We end
by pointing out some of the flaws in the method, and steps which would be required to make it
competitive.

In chapter 5 we turn the discussion to semi-classical dynamics methods, where the nuclear
degrees of freedom are represented by classical-like point particles. Our goal is to address
the question of what coupled electron-nuclear dynamics effects can be recovered when treating
the electronic system in a real-space grid basis, rather than in the BO basis. In this chapter to
provide a brief, high level overview of the common features of semi-classical dynamics approaches,
which allow for systems of much larger sizes to be simulated, and is oftentimes utilized in the BO
picture alongside direct dynamics to treat the ab-initio dynamics of larger molecular systems.
Using these approaches while representing the electornic system on a real-space grid allows us to
capture the properties of all the electronic excited states which can be resolved at a given grid
spacing, while in principle allowing for a wide range of nuclear motion. We focus on a particular
branch of this literature stemming from the Quantum Classical Liouville Equation, wherein the
starting point is an exact transformation of the quantum nuclear degrees of freedom into a phase
space picture. This allows for a series of controlled approximations which effectively tune the
level of electron-nuclear correlation, before focusing on the mean-field limit: Multi-Trajectory
Ehrenfest (MTEF). We discuss how the MTEF algorithm is implemented and how we use it
to calculate the linear absorption of molecules. In paper II we found that MTEF is able to
recover quantized nuclear effects in the vibronic absorption spectrum of molecules and that this
is easily applied to ab-initio molecular simulations, prompting questions about what aspects of
the far-from-equilibrium phenomena of larger systems can be captured.

In paper III we directly address this question by extending MTEF to periodic systems in a
generic ab-initio manner, and explore the what effects on the electronic carrier dynamics can
be captured when treating the phonon subsystem with MTEF. In chapter 6 we discuss the
limitations of the perturbative framework in which condensed matter theory typically treats
electron-phonon coupling. Next we cover the semi-classical ‘frozen-phonon’ approach to cap-
turing phonon renormalized electronic properties, drawing parallels to the molecular vibronic
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3.3 Outline

spectra discussed above. MTEF corresponds to a natural extension of this widely used suc-
cessful method to include dynamics, and we motivate its application by summarizing some of
the examples in literature where single trajectory Ehrenfest dynamics has been applied. As
discussed in paper II these fail to capture the quantized nuclear effects that MTEF can resolve.
In summary we find that MTEF captures equilibrium electron-phonon renormalization, as well
as sub-30fs phonon scattering of selectively excited charge carriers in hexagonal Boron Nitride
(hBN) due to strong driving, with agreement across different theoretical methods and experi-
mental observations in analagous sytems. We also simulate two experimental pump-probe set
ups under ultrafast and ultrastrong laser regimes, one of our own design and one replicating the
results of a recent paper, finding a direct connection to the population dynamics in the former
and broad agreement with the results of the latter.

We conclude in chapter 7 with a summary of the preceding chapters and a discussion covering
their implication for future studies of non-equilibrium phenomena, in particular the potential of
MTEF and ‘frozen-phonon’ static disorder methods to significantly impact the immediate future
of non-equilibrium ab-initio simulation in periodic systems.
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4 | Conditional Wave Function Theory: A
Unified Treatment of Molecular Struc-
ture and Nonadiabatic Dynamics

Given a particle in a particular state, the accumulated effects of interactions due to fundamental
forces biases the probability of finding nearby particles to be in particular states. On top of
these intuitive, classical-like correlations, the indistinguishablity of quantum particles and their
capacity to be in a superposition of states leads to far less intuitive effects. Properties such
as non-trivial exchange statistics and entangled states can lead to highly non-local correlations.
Consequently, trying to simulate these effects within and between subsystems, and especially the
role they play in the strongly driven, far-from-equilibrium behavior of matter, is a formidable
challenge. Breaking the quantum nature of a given subsystem through a semi-classical approach
can reduce the complexity, and we discuss such techniques in chapters 5 and 6. Here instead we
focus on methods which attempt to address the full correlation between the electron and phonon
subsystem. There are of course many techniques, which start from different assumptions and
try to move towards exactness. For example, diagrammatic approaches such as NEGF start
from the assumption of a non-interacting system, and systematically build the interactions back
in [36, 99–101]. In contrast Hierarchical Equations of Motion start from the fully correlated,
but reduced ensemble of the electronic system and systematically build in the non-Markovian
time dependent effects of the phonon bath when driving the system non-perturbatively [33, 34].
While both of these methods can approach exactness through the inclusion of ever higher orders
of interaction diagrams or hierarchical equations, this can rapidly become expensive in cases of
slow convergence or strong coupling.

Wavefunction based approaches intrinsically include all levels of interaction between the compo-
nent systems, up to the restrictions of the ansatz used to represent the problem and the errors
accumulated during propagation. However they are notoriously difficult to scale to large system
sizes, and generally based around the BO framework. Thus it is an open research question how
much one can build in the fully quantum mechanical non-linear dynamics of coupled electron-
nuclear systems, the degree to which this can be done independently of the limitations of the BO
framework, and whether the resulting method can be scaled to large system sizes. In paper I
we demonstrated that by breaking the wavefunction into component degrees of freedom and
representing each on a real-space grid, we can reconstruct strongly driven, highly correlated,
electron-nuclear and electron-electron phenomena in a very accurate manner. In this chapter we
introduce the class of wavefunction ansätze to which this approach belongs, give an overview of
the developments which lead to paper I and discuss the challenges of scaling up this method.
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4.1 Straining Against the Curse of Dimensionality

4.1 Straining Against the Curse of Dimensionality

Being able to resolve and propagate the full system wavefunction Ψ(r,R) for any given problem
has been the unobtainable goal of quantum mechanics for over 100 years. If one tries to naively
represent the wavefunction of a fully entangled multi-particle system in a computer, the number
of bits of memory required will rapidly exceed the number of atoms within the observable universe
(≈ 1078). For the simplest possible case, a series of two level qubit systems, this unimaginable
information explosion already happens for around 260 qubits! This property of entanglement is
referred to as the ‘curse of dimensionality’ and is one of the arguments underlying the push for
simulating quantum systems with quantum computers. Nonetheless, in 2019 when researchers at
Google took a task which was asserted to take 10,000 years on classical hardware and performed
it in 3 minutes on a 53 qubit device [102], this result was later recreated by an unoptimized
Graphics Processing Unit (GPU) program in 15 hours [103].

The reason this is possible is because of the advances which have been made in the last 30 years
in simulating extremely high dimensional data. Much of this work was done independently by
computer scientists working on signal processing [104, 105], physicists looking for the ground
state of fermions interacting on a 1D chain [106] and chemists simulating the dynamics of nuclear
wavepackets in the BO picture [107]. It was only later that the connections between these
apparently disparate fields became clear and the unifying factor between all of them was tensor
decompositions. Here we briefly review tensor decompositions, and some of the most successful
wavefunction dynamics methods which rely on them to combat the ‘curse of dimensionality’.

Tensor Decompositions

Matrices (or tensors of order 2), can be written in terms of sums over ‘outer products’ of vectors.
A particularly important example for any matrix A ∈ Dm×n with D = R or C, is the Singular
Value Decomposition (SVD):

A =
R∑

i=1
σiui ⊗ vi, (4.1)

where the basis vectors {ui} ∈ Dm, and {vi} ∈ Dn, form orthornomal sets within their respective
subspaces. The singular values σi are scalars in R, with σi ≥ 0, and the matrix rank, R ≤
min{n,m}, is the number of non-zero singular values. A given entry of the matrix can be found
as

Akl =
∑

i

σiui,kvi,l, (4.2)

where ui,k is the kth entry of the vector ui. The magnitude of a singular value σi is in effect
a measure of how important the vectors ui and vi are in representing the matrix A in the full
space. Numerically this can help define a compression of the matrix by throwing away small
values of σi below some cut off σc, and reconstructing a low-rank approximation. It is also
useful for defining a pseudo-inverse of a stiff matrix by inverting the low rank approximation
[108]. In physics contexts the SVD also appears as the Schmidt decomposition between two
coupled Hilbert spaces H1⊗H2, and plays a role in the Löwdin symmetric orthogonalization of
hybridized atomic orbitals [109].
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4 Conditional Wave Function Theory

Such decompositions can be generalized to higher dimensional objects. For example, given a
multi-dimensional function such as a PES U(Q), depending on f degrees of freedom, Q =(
Q(1), . . . ,Q(f)

)
, we can represent each degree of freedom Q(i) on a grid Q

(i)
ik
, ik ∈ [1, . . . , ni],

consisting of ni points such that U(Q) ∈ Dn1×...×nf . This constitutes a multi-dimensional matrix
or tensor of order f . The higher order SVD (HOSVD) of U can be constructed as:

U(Q(1), . . . ,Q(f)) =
R1∑
j1

. . .

Rf∑
jf

sj1,...,jf
u(1)

j1
⊗ . . .⊗ u(f)

jf
, (4.3)

and a given element of U can be found as

U(Q(1)
i1
, . . . , Q

(f)
if

) =
R1∑
j1

. . .

Rf∑
jf

sj1,...,jf
u

(1)
j1,ii

. . . u
(f)
jf ,if

. (4.4)

This particular format of a tensor decomposition is called a Tucker form, consisting of the core
tensor s ∈ CR1×...×Rf , and the orthogonal rank 1 tensor bases B = {u(1)

j1
⊗. . .⊗u(f)

jf
} ∈ Dn1×...×nf

constructed by outer products of the single particle functions (SPFs) {u(l)
jl
} ∈ Dnl . The HOSVD

was independently derived in the 1960s for analyzing three dimensional psychometric data [104]
and generalized for multi-dimensional signal processing in 2000 [105]. Independently it was
also derived by quantum chemists in 1996 appealing to the Schmidt decomposition to represent
PESs [107]. It has since found applications in machine learning, signal processing, genetics and
virtually every field which requires analysis of the correlations within high dimensional data
[110, 111]. Due to the properties of the SVD, low-rank approximations are guaranteed to be
optimal in the sense of minimizing the L2 norm with respect to the full rank tensor, and thus
the HOSVD (or POTFIT algorithm) is often referred to as a variational procedure [112]. This
derivation alongside the application of the Tucker decomposition to nuclear wavepackets were
the principle innovations leading to the most refined non-adiabtic dynamics method for small
molecules: Multi-Configurational Time-Dependent Hartree (MCTDH).

‘Exact Solutions’

MCTDH was already well established by 2000 [113], and is generally regarded as a theoretically
exact benchmark for small molecules [25]. The central premise of MCTDH is to perform a Tucker
decomposition of the nuclear wavepackets as well as the PESs in the Heidelberg package of Hans-
Dieter Meyer [114]. The SPFs and the core tensor are then treated as variational parameters
in the Time Dependent Variational Procedure (TDVP) [115, 116]. The low-rank decomposition
of both the nuclear wavepackets and the PESs allows storing both objects in memory and the
subsequent sum-over-products format for both makes propagation of Eq. (3.26) possible for
larger numbers of degrees of freedom. Finally the TDVP guarantees convergence towards the
exact solution of the POTFIT surface dynamics. The MCTDH ansatz can be used for any
entangled bosonic system (with extensions to fermionic systems in Multi-Configurational Time
Dependent Hartree-Fock), and has been applied to treat coupled nuclear and cavity degrees of
freedom in the BO picture [117]. The specific technical details such as the choice of static basis
underlying the time dependent SPFs, equation of motion projectors to force SPFs to remain
orthogonal throughout the time evolution, regularization strategies, and choice of tensor format
for the wavefunction expansion coefficients and potential energies are far beyond the scope of
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this introduction and interested readers can consult the relevant literature [114, 118, 119].

While the results obtained with MCTDH can be quite accurate compared to experiment, there
are significant obstacles to using this approach. Beyond constructing BOPESs and reducing
their complexity to vibronic coupling models, even with the compression of information at a
certain point representing the core tensor becomes prohibitive, requiring the decomposition of
the core tensor itself in what is known as the Hierarchichal Tucker format in Multi-Layer (ML-)
MCTDH [120]. When applied to LVC models ML-MCTDH can be used for many thousands
of degrees of freedom [121, 122], though it’s only due to the implicit simplicity of these models
that the wavefunction ansatz is able to effectively simulate them [120]. This approach is very
complex and in general, beyond a few experimental algorithms, there is no way to know a-
priori which degrees of freedom to group together and how to decompose them [123, 124].
However, the (Hierarchical) Tucker format used in (ML-)MCTDH is just one of a huge variety of
possible decompositions which have been applied to solve high dimensional entangled problems
[125, 126]. In 2019 the time-dependent Denisty Matrix Renormalization Group (td-DMRG)
[127–129], originally developed for 1D fermionic models, was applied to LVC [130] and QVC
[131] models, and has since inspired reformulations of MCTDH [132]. These methods can help
improve problem scaling in some cases, though they still suffer from having to calculate BOPES
and the subsequent vibronic reductions.

Wavefunction Dynamics Beyond Born Oppenheimer

Methods such as multi-component DFT [133] the Nuclear Electronic Orbital (NEO) approach
[134] and the Exact Factorizaion approach [26] have been developed which treat a selection of the
nuclear degrees of freedom quantum mechanically from the outset. This is in sharp contrast to
the BO framework where all the nuclei are treated classically to define the BOPES and NACTs,
following which they are quantized. However since 2020, there has been an increasing interest
in incorporating modern tensor decomposition techniques into fully entangled electron-nuclear
dynamics. In that year three papers came out essentially simultaneously which presented a
Second Quantized Representation (SQR) of the full electron-nuclear Hamiltonian [30, 31, 135]
thus allowing a complete resolution of the combined Hilbert space. Casting the Hamiltonian
in this form requires only definitions of the electronic and nuclear orbitals, with no explicit
dependence on the BO basis. By encoding the bosonic and fermionic statistics directly into
the Hamiltonian, this formulation allows the application of various wavefunction ansätze. Both
the Tucker form as well as the DMRG ansatz have subsequently been used to treat the non-
adiabatic dynamics of electrons and nuclei in a fully quantum mechanical fashion [30, 31, 136].
While the NEO method provides an elegant choice of orbitals, there is no optimal choice of basis
in which to resolve the operators of in the SQR Hamiltonian [135]. From variational arguments
it’s reasonable to expect that for strongly driven systems, one needs bases with many nodes
in order to capture the excited state properties [137]. Conversely one can simply have a basis
which evolves in time thus ‘tracking’ with the excited state properties. This behavior has been
argued as a key reason behind the success of MCTDH [118].
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4.2 The Interacting Conditional Wavefunction Method

In the calculations of paper I we utilized both static and dynamic basis approaches while defin-
ing a generic algorithm for generating electronic and nuclear bases in the real space basis. This
algorithm stems from work with conditional wave functions (CWFs) of the electronic and nuclear
degrees of freedom [138]. For the sake of brevity the composite coordinate for the full system
are written as x =

(
r,R

)
. A particular coordinate which can be either an electronic or nuclear

coordinate is referred to as xi, and xi refers to every other system coordinate besides that par-
ticular one (the complementary degrees of freedom). Each CWF is defined as the instantaneous
‘slice’ of the full system wavefunction at time t:

ψ(i)
α (xi, t; xi

α(t)) :=
∫
dxiδ(xi − xi

α(t))Ψ(x, t)

xi
α(t) =

(
rα

1 (t), . . . , rα
Ne

(t),Rα
1 (t), . . . ,Rα

Nn
(t)
)
\ xα

i (t)
(4.5)

with the complementary degrees of freedom evaluated at the configuration xi
α(t). The initial

positions of the ensemble of trajectories xα(0) = {rα(t),Rα(t)} are obtained by sampling some
approximation to |Ψ(x, 0)|2. Separately, each CWF constitutes an open quantum system, with
the other degrees of freedom being the ‘bath’. This is conceptually quite similar to the Exact
Factorization approach which factorizes the full system wavefunction between subsystems, these
parallels are explored in detail here: [139].

In [138], it’s proven that the full system wavefunction can be exactly decomposed into ensemble
of CWFs for a particular subsystem if (1) the corresponding ensemble of trajectories xα(t)
explores the support of the probability distribution |Ψ(x, t)|2 at any time and (2) if the CWFs
obey non-hermitian equations of motion derived from application of the chain rule:

dtψα(x) = ∂tψα(x) + ∇xΨ|xα · vα

i∂tψ
(i)
α (xi) =

(
− 1

2mi
∇2

xi
+ V (xi,xi

α(t)) + η[Ψ(x, t)](xi,xi
α(t))

)
ψ(i)

α (xi),
(4.6)

where V (xi,xi
α(t)) is the electron-electron, electron-nuclei, and nuclei-nuclei potential operator

evaluated along the trajectory defined by velocity vi
α(t), and η is a complex functional dependent

on the full system wavefunction. Thus by propagating a large enough ensemble of CWFs the
dynamics of the full system can be recovered. The only constraint on the trajectories is that
they sample the support of |Ψ(x, t)|2, a property which is satisfied by the Bohmian velocity field
[140]:

v(x) = Im
(

∇xΨ(x)
Ψ(x)

)
. (4.7)

The ensemble approach is reminiscent of the Coupled-Trajectory Mixed Quantum/Classical
Method (CT-MQC) for integrating the Exact Factorizaiton equations of motion by utilizing a
swarm of trajectories to reconstruct the wavefunction [96, 141]. Thus in contrast to the evolution
equations in MCTDH and DMRG, the CWF approach is not variational in nature, instead it
stems purely from physical arguments concerning open quantum systems coupled by ‘Bohmian
particles’ which sample the support of the full system wavefunction.

The advantage sought by utilizing CWFs is to be able to reconstruct the full dynamics of the
wavefunction Ψ(x, t), an object whose storage for a grid of n points along each degree of freedom
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scales as O(n(Ne+Nn)), by propagating a collection of Nc CWFs scaling as O(Nc(Ne + Nn)n).
However there’s a self-consistency problem in Eq. (4.6) due to the dependence of vα(t) on Ψ
which itself is being recovered by the CWFs. Although some applications were able to be made
by disregarding η(x) and utilizing only the independent velocity fields of the CWFs [138, 142],
a more exact construction of the wavefunction was established by explicitly using the CWFs as
SPFs in a wavefunction ansatz [27]:

Ψ(x, t) =
Nc∑

α=1
Cα(t)ψ(1)

α (x1, t; x1
α(t))⊗ . . .⊗ ψ(Ne+Nn)

α (xNe+Nn , t; xα
Ne+Nn

(t))

=
Nc∑

α=1
Cα(t)ψα(x, t; xα(t))

(4.8)

From here equations of motion for the expansion coefficients Cα(t) ∈ C are made by inserting
Eq. (4.8) into Schrödinger’s equation and projecting onto the CWF basis. By subsequently
using Eq. (4.8) to calculate the fully correlated velocity field in Eq. (4.7) as an input to the
CWF equations of motion in Eq. (4.6), the self-consistency problem can be closed. This ansatz
is not specific to electron-nuclear dynamics and was also applied to a electron-cavity photon
model [27]. While the context of the CWF basis is purely physically inspired, this particular
wavefunction ansatz is widely used, and referred to as the ‘canonical’ tensor decomposition (or
CANDECOMP/PARAFAC or the Canonical Polyadic Decomposition [143, 144]). Compared
to the Tucker decomposition, the structure is extremely simple, eliminating the storage issue
associated with high dimensional core tensors, and in some cases can result in accurate low-
rank representations [143, 145]. This however comes at the cost of having non-orthogonal bases,
which manifests in ICWF as very stiff overlap matrices Sαβ =

∫
dxψ∗

α(x)ψβ(x), which need to
be treated with the SVD based pseudo-inverse in order to integrate the equations of motion.

The final development which led to the work in paper I was actually conducted in the background
of paper II. In that work we extended ICWF to be able to calculate the full system ground
state via freezing the CWFs and trajectories, and performing imaginary time evolution on the
expansion coefficients. In that paper we also modified the initial definition of the CWFs so that
instead of being slices of some initially known wavefunction as in Eq. (4.5), we initialized them
as eigenstates of the Hermitian CWF propagators in Eq. (4.6). That is, instead of slices of the
wavefunction, the CWFs were defined as eigenstates of slices of the Hamiltonian. Inclusion of
the excited state CWFs increases the flexibility of the basis to capture higher energy without
strongly increasing the stiffness of the overlap matrix. These two innovations allowed ICWF to
constitute a closed loop algorithm:

1. Sample initial particles from some approximation to the initial wavefunction, xα ∼ |Ψ̃(x)|2

2. Construct and diagonalize −m−1
i ∇2

xi
+ V (xi,xi

α) to give excited state CWFs ψ(i),m
α .

3. Build Ψ(x) with the CWFs via Eq. (4.8), and propagate Cα(τ) in imaginary time τ ,
minimizing the energy. If desired take Ψ(x, τ)→ Ψ̃(x) and restart from 1.
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4.3 Scientific Contribution and Outlook

Thus in paper I we explore the versatility of this closed-loop, fully quantum mechanical, mixed
electron-nuclear, real-space, real-time method in capturing the equilibrium properties, pertur-
bative, and non-perturbative dynamics of various model systems. We demonstrate that ICWF,
without any reference to the BOPES and their vibrational solutions, captures the vibronic ab-
sorption of an H2 model when calculating the response of a non-perturbative real-time weak
external field, as we did in paper II. We furthermore show that sta-ICWF is able to exactly
capture the non-perturbative dynamics following a resonant driving of the electronic system
at the S2 ← S0 transition energy while semil-classical MTEF qualitatively fails after the laser
is switched off. We also find that dyn-ICWF can accurately capture electron-electron elastic
and ineslatic scattering in a 1D model, as well as the laser driven excitation and subsequent
vibrationally induced relaxation in a proton transfer model.

Finally we studied the self-interference dynamics of a nuclear wavepacket in a problem whose
BOPESs contain a CI. Doing so we find that, without restricting the nuclear wavepacket to a
given BO surface during its dynamics, it still avoids the CI region and displays self interference
which is typically explained as manifesting from the Berry phase induced by restriction of the
wavepacket onto the BOPES [46]. All together, by showing that ICWF can accurately calcu-
late BOPESs, vibronic absorption peaks, inter-state relaxation, and nuclear self-interference we
conclusively demonstrate that this real-space wavefunction dynamics method contains the BO
framework, while the electron-electron scattering and non-perturbative driving (which could be
done at any strength to any number of excited electronic states) demonstrate it is not limited
to it.

While the simulation results are impressive as proofs of concept, there are significant difficulties
in applying this method to realistic systems. To begin with, we utilized the first quantized
representation without explicitly accounting for spin, thus implicitly treating our two electron
systems as singlet states. To improve on this one would either have to build the wavefunction as
Slater determinants or incorporate the fermionic statistics directly into an SQR representation
of the Hamiltonian. On that front, the definition of CWFs we’ve used here provide a unique
starting point for developing bases which could be of some use in other applications, seeing as
they diagonlize restricted subspaces of the Hamiltonian. However, the non-orthogonality of the
CWFs is a major drawback, and can lead to significant problems in the propagation of ICWF,
primarily through inclusion of redundant degrees of freedom leading to a stiff overlap matrix.
Although some CWFs may be redundant at a given time in the simulation, they could become
important later, leading to a hoarders dilemma.

The consequence is that for the four-dimensional nuclear self-interference example, even with
significant numerical optimizations and exploiting parallel GPU resources, propagating the 4096
CWFs necessary to converge the results took four times longer than the numerically exact
solution on the same hardware. This problem is common in TDVP ansätze, and there exist
strategies to alleviate it such as choosing relevant bases from a pool in a way which minimizes
redundancy [146] or by projecting the propagator onto a linearly independent subset of the
bases [147]. Thus further expansion of the ideas presented would require significant investment
in optimization of the algorithm through exploration of alternative tensor formats, optimizations
of the on the fly evaluation of the two-body potentials, and an optimal choice of basis set. While
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4.3 Scientific Contribution and Outlook

the physical arguments underlying the CWFs and their equations of motion are compelling,
it’s unclear the advantage they would have in contrast to a fully variational approach, which
is mathematically guaranteed to converge with increasing non-redundant degrees of freedom.
Instead for the rest of the research presented in this thesis we turned to expanding the realm of
applicability of a tool already common to the real-time ab-initio dynamics community, though
often not used to its full potential: semi-classical dynamics.
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ABSTRACT: We demonstrate that a conditional wave function theory enables a
unified and efficient treatment of the equilibrium structure and nonadiabatic
dynamics of correlated electron−ion systems. The conditional decomposition of the
many-body wave function formally recasts the full interacting wave function of a
closed system as a set of lower-dimensional (conditional) coupled “slices”. We
formulate a variational wave function ansatz based on a set of conditional wave
function slices and demonstrate its accuracy by determining the structural and time-
dependent response properties of the hydrogen molecule. We then extend this
approach to include time-dependent conditional wave functions and address
paradigmatic nonequilibrium processes including strong-field molecular ionization,
laser-driven proton transfer, and nuclear quantum effects induced by a conical
intersection. This work paves the road for the application of conditional wave
function theory in equilibrium and out-of-equilibrium ab initio molecular simulations
of finite and extended systems.

1. INTRODUCTION

Emerging experimental capabilities in the precise manipulation
of light and matter are opening up new possibilities to
understand and exploit correlations and quantum effects that
can be decisive in the functional properties of molecules and
materials. Light-driven states can not only be designed to
monitor and/or control the structure of molecules1−7 and
solids8−12 but also form light−matter hybrid states with new
physical properties.13−21 In view of these exciting developments,
accurate first-principles theoretical techniques are also needed
to help interpret observations, to enable the predictions of
simplified models to be scrutinized, and, ultimately, to help gain
predictive control. Our ability to treat the full correlated
quantum structure and dynamics of general electron−ion
systems unfortunately remains limited by the unfavorable
scaling of the many-body problem.
A standard approach to address this problem inmolecular and

solid-state systems has been to “divide-and-conquer” in the
sense that the electronic structure and the electron−nuclear
interactions are treated separately. Introduced almost a century
ago by Born and Oppenheimer,22 the adiabatic approximation,
i.e., the assumption that electrons adjust instantaneously to the
motion of nuclei, is the cornerstone of this so-called standard
approach. The Born−Oppenheimer (BO) approximation has
been crucial to the development of a vast majority of approaches
in quantum chemistry and condensed-matter theory,23,24 and
the concept of ground-state Born−Oppenheimer potential-
energy surface (BOPES) is the foundation for understanding the
properties of systems at thermal equilibrium such as chemical

reactivity25−27 and nuclear quantum effects,28−31 as well as of
systems driven out of equilibrium.32−35

Accurately describing systems driven away from equilibrium
and including nonadiabatic electron−nuclear effects places even
more stringent demands on the development of practical first-
principles tools. In the standard approach, one directly builds
upon the BO approximation by expanding the full molecular
wave function in the Born−Huang basis.36 Within this
framework, nonadiabatic processes can be viewed as nuclear
wavepacket dynamics with contributions on several BOPESs,
connected through nonadiabatic coupling terms that induce
electronic transitions.37 In this picture, trajectory-based
quantum dynamics methods offer a trade-off between physical
accuracy and computational cost.38−40 Of these approaches,
perhaps the most popular are the Ehrenfest mean-field theory41

and Tully’s surface hopping dynamics.42 Both of these
approaches consist of an ensemble of uncorrelated trajectories.
Reintroducing correlation, for example, using a variety of wave
function ansatz,43−48 semiclassical techniques,49,50 the quan-
tum-classical Liouville equation,51−53 path-integral meth-
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ods,54,55 or methods based on the exact factorization,56−58

allows for further accuracy with increased computational effort.
While advances in the ab initio electronic structure theory in

quantum chemistry and condensed matter have made
computing the ground-state energies both routinely efficient
and rather accurate in many cases, obtaining accurate excited-
state information remains a challenging problem in its own right.
Even in cases where the excited-state electronic structure is
available, performing fully quantum nuclear dynamics calcu-
lations using the standard approach quickly becomes
infeasible35,43 as the memory required to store the information
contained in the BOPESs grows rapidly with the number of
correlated degrees of freedom. In this respect, gaining the ability
to rigorously treat selected nuclear degrees of freedom quantum
mechanically without incurring an overwhelming computational
cost is the goal.
An alternative approach for describing quantum effects in

coupled electron−ion systems is using a real-space representa-
tion of all degrees of freedom. This route might sound less
intuitive as it avoids routine concepts such as BOPESs and
nonadiabatic couplings that are fundamental in the present
description and understanding of quantum molecular dynamics.
However, this feature might be turned into an attractive
playground from the computational point of view, as these
quantities are usually demanding to obtain and fit from ab initio
electronic structure calculations. In this framework, one of the
leading approximate methods to describe the coupled electron−
nuclear dynamics for large systems is time-dependent density
functional theory coupled to classical nuclear trajectories
through the Ehrenfest method.59 Due to its favorable system-
size scaling, the real-space picture Ehrenfest method has been
successful for a great many applications, from capturing
phenomena associated with vibronic coupling in complex
molecular systems60 and photodissociation dynamics in small
molecules61 to radiation damage in metals;62 its efficiency allows
calculations on large systems for even hundreds of femto-
seconds.63 It has also been recently combined with the nuclear-
electronic orbital method as a way to include quantum effects for
selected nuclear degrees of freedom to study proton transfer
processes in molecular excited states.64

It is well known, however, that the Ehrenfest approach can be
inaccurate due to its mean-field nature. One classic example of
this breakdown occurs in photochemical reaction dynamics,
where mean-field theory can often fail to correctly describe the
product branching ratios.39,65 Generally speaking, the mean-
field description of any transport property can potentially suffer
some deficiency; this is sometimes referred to as a violation of
detailed balance,66 but it ultimately stems from the lack of time-
translational invariance that is inherent to any approximate
method that does not rigorously preserve the quantum
Boltzmann distribution.67

The conditional wave function (CWF) framework introduced
in ref 68 offers a route to go beyond the limits of mean-field
theory while retaining a real-space picture; it is an exact
decomposition and recasting of the total wave function of a
closed quantum system.69 When applied to the time-dependent
Schrödinger equation, the conditional decomposition yields a
set of coupled, non-Hermitian, equations of motion.68 One can
draw connections betweenCWF theory and other formally exact
frameworks proposed in the literature to develop novel
approximate schemes that provide a completely new perspective
to deal with the long-standing problems of nonadiabatic
dynamics of complex interacting systems.70,71 An example is

the time-dependent interacting conditional wave function
approach (ICWF),72,73 a recently introduced method for
performing quantum dynamics simulations that is multi-
configurational by construction. Using a stochastic wave
function ansatz that is based on a set of interacting single-
particle CWFs, the ICWF method is a parallelizable technique,
which achieves quantitative accuracy for situations in which
mean-field theory drastically fails to capture qualitative aspects
of the dynamics, such as quantum decoherence, using orders of
magnitude fewer trajectories than the converged mean-field
results.72

In this work, we introduce an exact time-independent version
of the CWF mathematical framework. The time-independent
CWF framework is formulated in real space, and it is an exact
decomposition of the time-independent wave function of a
closed quantum system that yields a set of coupled nonlinear
eigenvalue problems and associated conditional eigenstates.
Based on this framework, we put forth a static-basis version of
the ICWF method, which allows us to establish an efficient and
accurate algorithm for calculating the ground- and excited-state
structures of correlated electron−nuclear systems and even-
tually extended systems. Importantly, the combination of the
static version of the ICWF method using a time-dependent
conditional eigenstate basis sets the stage for the implementa-
tion of a general-purpose ab initio molecular simulator that is
formulated in the real-space picture and that self-consistently
treats stationary states, as well as driven dynamics.
This manuscript has the following structure: in Section 2, we

define the mathematical structure of the time-independent
version of the CWF framework. Based on these results, we put
forth an imaginary-time version of the ICWF technique in
Section 3 for solving the time-independent Schrödinger
equation and the performance of the resulting algorithm is
assessed through the calculation of the ground-state and the low-
lying excited-state BOPESs of the hydrogen molecule in one
dimension (1D). In Section 4, a real-time extension of this
multiconfigurational ansatz is presented, along with an
algorithm for solving the time-dependent Schrödinger equation
using a stochastic static-basis ansatz. The ability of the resulting
algorithm in capturing static and dynamic properties is then
assessed by evaluating the absorption spectrum and a laser-
induced dynamics of the aforementioned H2 model system. In
Section 5, we revisit the exact time-dependent CWF framework,
and in Section 6, we present the dynamical ICWF (dyn-ICWF)
approach to the time-dependent Schrödinger equation. The
performance of the time-dependent ICWF method in
combination with its imaginary-time variation for preparing
the initial state is demonstrated for three model systems, viz., a
laser-driven proton-coupled electron transfer model, an
electron-atom scattering process, and an example of nuclear
quantum effects in the dynamics through a conical intersection
(CI). A summary of the main results of this work and an outlook
on future directions are offered in Section 7.

2. CONDITIONAL EIGENSTATES

We begin by considering a closed system with n electrons andN
nuclei, collectively denoted by x = (r, R). We use the position
representation for both subsets; lowercase symbols will be used
for the electronic subsystem, e.g., r = {r1s1, ..., rnsn}, and
uppercase symbols R = {R1σ1, ..., RNσN} for the nuclear
subsystem. Hereafter, electronic and nuclear spin indices,
respectively, sj and σj, will be made implicit for notational
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simplicity, and, unless otherwise stated, all expressions will be
given in atomic units.
The time-independent CWF can be constructed starting from

the nonrelativistic time-independent Schrödinger equation in
the position representation

̂ Ψ = Ψγ γ γx xH E( ) ( ) (1)

where Ψγ(x) is an eigenstate of the molecular Hamiltonian Ĥ
with label γ and the corresponding energy eigenvalue Eγ. The
molecular Hamiltonian operator Ĥ in eq 1 can be written as

∑̂ = ̂ +
=

×
x xH T W( ) ( )

j

N n

j j
1 (2)

w h e r e t h e k i n e t i c e n e r g y o p e r a t o r s a r e
̂ = − ℏ∇ − xT z A( i ( ))j m j j j

1
2

2
j

, mj and zj being the characteristic

mass and charge of particle j, respectively. The full electron−
nuclear potential energy of the system is W(x) (written in the
position basis rather than, say, the BO or Born−Huang basis),
and A is the vector potential due to an arbitrary static external
electromagnetic field.
Note that the total Hamiltonian in eq 1 is invariant under

translations and rotations of all particles. This means that the
eigenstates of the system will be invariant under transformations
by the translation and rotation groups. Together with the
inversion symmetry, this implies that all one-body quantities
such as the electron density or any nuclear-reduced density are
constant and that two-particle position correlation functions
only depend on the distance between their arguments. This is
obviously not a convenient starting point to describe the
structure of a quantum system. The solution to this problem
relies on transforming the Hamiltonian to a fixed coordinate
system that reflects the internal properties of the system.a This
is, in general, not a trivial task, and hereafter, we will assume that
eq 1 already reflects such internal properties, either by exploiting
a particular symmetry of the system or by simply introducing a
parametric dependence on, e.g., a fixed (heavy) nuclear position.
At this point, we can decompose the eigenstates Ψγ(x) in

terms of single-particle conditional eigenstates of either of the
two subsystems, which are defined as follows

∫ψ δ≔ ̅ ̅ − ̅ Ψα γ α γx x x x( ) d ( )i i i i i
,

(3)

Here, the index α denotes the particular conditional slice and x̅i
= (x1, ..., xi−1, xi+1, ..., xn×N) are the coordinates of all degrees of
freedom in the system except xi. Similarly, x̅i

α = (x1
α, ..., xi−1

α , xi+1
α ,

..., xn×N
α ) are some particular positions of all system degrees of

freedom except xi. As shown schematically in Figure 1, the
conditional eigenstates in eq 3 represent one-body slices of the
full many-body eigenstates Ψγ(x) taken along the coordinate of
the ith degree of freedom. The particle placement xα defining the
CWFs has not yet been specified, and although, in principle, it
can be chosen arbitrarily, it will be proven convenient in practice
to exploit important sampling techniques.
Evaluating eq 1 at x̅i

α by applying the integral operator in eq 3
yields conditional eigenstates that are the solutions of the
following eigenvalue problem

η ψ ψ̂ + + =α α γ α γ γ α γT W E( )i i i i i
, , ,

(4)

where we introduced Wi
α(xi) = W(xi,x̅i

α), with W(x) being the
full electron−nuclear interaction potential appearing in the
Hamiltonian of eq 2. In addition, ηi

α,γ(xi) are the kinetic
correlation potentials given by

∑η =
̂Ψ
Ψ

α γ
γ

γ
≠

×

̅α
x

T
( )

x

i i
j i

n N
j,

i (5)

Provided a large enough collection of CWFs satisfying eq 4, an
exact solution of eq 1 can be reconstructed by undoing the
conditional decomposition of eq 3 (see Figure 1b).68 That is,
given a set of conditional slices that sufficiently span the support
of Ψγ, then the corresponding conditional eigenstates can be
used to reassemble the full electron−nuclear wave function

ψΨ =γ α γx( ) ( )x i
,

i (6)

using the transformations xi
, which are discussed in more

detail in Appendix A. This expression, eq 6, can be used to
evaluate the kinetic correlation potentials in eq 5. In this way, the
generalized one-body eigenvalue problem in eq 4 can be
understood as an exact decomposition and recasting of the
eigensolution of the full electron−nuclear system, which yields a
set of coupled, non-Hermitian, eigenvalue problems.

Figure 1. Schematic representation of the CWF approach to the time-independent Schrödinger equation for one electron and one nucleus in one
dimension, i.e., x = (r, R). (a) The full ground-stateΨ0(r, R) is plotted together with a pair of conditional ground statesϕα,0(r) for the electronic degree
of freedom (in red) and χα,0(R) for the nuclear degree of freedom (in blue) for a given position of the full configuration space {rα, Rα}. Contour plots of
the molecular wave function are also shown for clarity. (b) The exact solution of the time-independent Schrödinger equation in eq 1 can be
reconstructed provided a sufficiently large ensemble of sampling points xα = {rα, Rα}. This can be done by applying the reassembling transformation r
or R (whose definition can be found in Appendix A) to the ensemble of electronic ϕα,0(r) or nuclear χα,0(R) conditional eigenstates, respectively.
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2.1. Time-Independent Hermitian Approximation. An
approximate solution to eq 4 can be formulated by expanding
the kinetic correlation potentials around the sampling
coordinates xα using Taylor series and then truncating at zeroth
order, i.e.

η ≈ ̅α γ αx xf( ) ( )i i i
,

(7)

At this level, the kinetic correlation potentials engender only a
global phase that can be simply omitted as expectation values are
invariant under such global phase transformations. Note that
these approximated kinetic correlation potentials can be
alternatively obtained by introducing a mean-field ansatz
Ψγ(x) = ∏i=1

n×Nψ(xi) into eq 5. By making this approximation,
the eigenvalue problems in eq 4 are restored to aHermitian form

ψ ψ̂ + ≈α α γ γ α γT W E( )i i i i
, ,

(8)

The Hermitian limit allows the full many-body problem to be
approximated as a set of independent single-particle problems.
That is, the superscript γ refers exclusively to the conditional
eigenstate excitation number.

3. STATIC PROPERTIES WITH CONDITIONAL
EIGENSTATES

In general, the higher-order terms in the Taylor expansion of the
kinetic correlation potentials are non-negligible. However, one
can still take advantage of the simple Hermitian form of the
conditional eigenvectors (hereafter referred to as conditional
wave functions (CWFs)) in eq 8 to design an efficient many-
body eigensolver by utilizing them as bases for electronic and
nuclear degrees of freedom in a variational wave function ansatz.
While there is a diverse literature spanning decades on

different forms for variational electron−nuclear wave function
ansatz, for illustrative (and practical) purposes, we employ a
sum-of-product form, which in the language of tensor
decompositions is referred to as the canonical format.76 For
each degree of freedom xi, we utilize a given electronic or nuclear
CWF, respectively, coming from solutions to eq 8, to
approximate the γth full system exact excited state as follows

∑ ∏

∑ ∏

ψ

ψ

Ψ =

=

γ

λ ν
λ ν
γ λ ν

α
α
γ α

= =

×

= =

×

x x

x

C

C

( ) ( )

( )

N M

i

n N

i i

N M

i

n N

i i

( , ) (1,1)

( , )

,
1

,

1 1

c

c

(9)

where in the second line, we have rearranged the sum over
particle position λ ∈ {1, ..., Nc} and excited CWF ν ∈ {1, ...,M}
into a single index α = λ +Nc(ν− 1), such that α∈ {1, ...,NcM}.
The particle placement xα defining the conditional potentialsWi

α

has not yet been specified, and, in principle, it can be chosen
arbitrarily; however, in practice, we choose to sample from initial
guesses for the reduced densities of the electronic and nuclear
subsystems.
We refer to this ansatz (eq 9) as being in canonical format

because we do not mix all possible CWFs ψi
λ,ν for all possible

degrees of freedom xi, as one does with a single-particle function
bases across the different system degrees of freedom in the
Tucker format employed in the multiconfigurational time-
dependent Hartree (Fock)MCTDH(F)43 and multiconfi-
gurational electron−nuclear dynamics ansatz.77 In principle, this
choice can be relaxed, and one can utilize various choices of
tensor network representation for the expansion coefficients C,

such as matrix product states or hierarchical Tucker formats,
which when employed in the multilayer extension78,79 of
MCTDH allow for an increase in efficiency for certain problems.
However, since the time dependence of the ansatz in eq 9 is
entirely within the expansion coefficients, one only needs to
calculate the matrix elements at time zero, creating a quite
efficient time propagation framework. Note that although we use
a simple Hartree product over electronic degrees of freedom, the
above ansatz can be straightforwardly extended to have
fermionic antisymmetry via treating the CWFs as the spatial
component of spin orbitals in Slater determinants.
Hereafter, and for reasons that will be apparent later, we will

call eq 9 the static-basis ICWF (or sta-ICWF) ansatz. With this
ansatz in hand, we then consider a solution of eq 1 based on the
imaginary-time propagation technique,80 i.e.

τ
τ τΨ = − ̂ Ψγ γ γx xH

d
d

( , ) ( , )
(10)

where

i

k

jjjjjjj
y

{

zzzzzzz
i

k

jjjjjjj
y

{

zzzzzzz∑ ∑̂ = − ̂ ̂ − ̂γ

ζ

γ
ζ

ζ

γ
ζ

=

−

=

−
 x xH P H P( ) ( )

1

1

1

1

(11)

and P̂ζ = ΨζΨζ† are projectors used to remove the wave
functions Ψζ from the Hilbert space spanned by Ĥ. The first
excited state, for instance, is thus obtained by removing the
ground state from the Hilbert space, which makes the first
excited state the ground state of the new Hamiltonian.
By introducing the ICWF ansatz of eq 9 into eq 10, we find an

equation of motion for the coefficients Cγ = {C1
γ, ..., CNcM

γ }

∑

∑ ∑
τ

τ τ

τ

= − + +

−

γ
γ

ξ

γ
ξ ξ γ

ξ

γ

ν

γ
ξ ν γ

− −
=

−

−
=

−

=

−

      
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C
C C

C

d
d

( ) ( ) ( )

( )

1 1

1

1

1

1

1

1

1

(12)

where =ξ ξ ξ † C C , , and the matrix elements of  and  are

∫∏ ψ ψ=αβ
α β

=

×
* xd

i

n N

i i i
1 (13)

∫∏ ψ ψ= ̂αβ
α β

=

×
* x Hd

i

n N

i i i
1 (14)

where again, the α, β indices refer to the index over particle
placement and excited CWFs. Obtaining these matrix elements
involves a sum over all two-body interactions across each degree
of freedom and a sum across one-body operators. In practice, 
may be nearly singular, but its inverse can be approximated by
the Moore−Penrose pseudo-inverse.
Based on solving the system of equations in eq 12 for Cγ, one

already has the ingredients to put forth a time-independent
ICWF eigensolver algorithm that will ultimately be used to
evaluate the expectation value of generic observables Ô(x).
Given an approximate solution to the eigenfunction Ψγ(x), the
expectation value of  reads

⟨ ̂⟩ =γ
γ γ†O C C (15)

with the matrix elements of  being given by an analogous
expression to eq 14.
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3.1. Example I: Ground and Excited BOPESs of H2.As an
illustrative example, we now calculate the BOPESs of amodel for
the H2 molecule. We adopt a model where the motion of all
particles is restricted to one spatial dimension, and the center-of-
mass motion of the molecule can be separated off.81,82 In this
model, the relevant coordinates are the internuclear separation,
R, and the electronic coordinates, r1 and r2. The Hamiltonian,
written in terms of these coordinates, is

i

k
jjjjj

y

{
zzzzz∑

μ

μ

= − ∂
∂ + +

+ − ∂
∂ +

=

H r r R
R R

W r r

r
W r R

( , , )
1

2
1

( , )

1
2

( , )
i i

i

1 2
n

2

2 ee 1 2

1

2

e

2

2 en
(16)

where for M being the proton mass, μe = M/(2M + 1) is the
reduced electronic mass and μn = M/2 is the reduced nuclear
mass. In eq 16, the electron−electron repulsion and the
electron−nuclear interaction are represented by soft-Coulomb
potentials

=
− + ϵ

W r r
r r

( , )
1

( )
ee 1 2

1 2
2

ee (17)

= −
− + ϵ

−
+ + ϵ

W r R
r R

r R

( , )
1

( /2)
1

( /2)

en 2
en

2
en (18)

i.e., the Coulomb singularities are removed by introducing
smoothing parameters ϵee = 2 and ϵen = 1. The above model
system qualitatively reproduces all important strong-field effects
such as multiphoton ionization, above-threshold ionization, or
high-harmonic generation.83−85 Moreover, it has provided
valuable information in the investigation of electron correlation
effects.86−88

For this model, the BOPESs are defined by the following
electronic eigenvalue problem

Φ = ϵ Φγ γ γr r R r r R R r r R( , ; ) ( , ; ) ( ) ( , ; )el 1 2 1 2 1 2 (19)

where = ̂ − ̂H Tel nuc, and {Φγ(r1, r2; R)} are the (complete,
orthonormal) set of BO electronic states. A parametric
dependence on the nuclear coordinates is denoted by the
semicolon in the argument. The BOPESs, ϵγ(R), can be
calculated using the imaginary-time sta-ICWF method
described in eqs 10−14 along with a simplified version of the
ansatz in eq 9 that is specialized to this particular case of
parametric nuclear dependence. A thorough description of the
numerical procedure, as well as the convergence behavior of the
sta-ICWF method for this model can be found in Appendix B.1.
In Figure 2, we show the first five BOPESs calculated via the

sta-ICWF approach using (Nc,M) = (32, 5). In the top panel, the
exact BOPESs are plotted against the sta-ICWF data, overlaid as
solid gold lines. The results demonstrate that the sta-ICWF
ansatz used in a variational context captures the entire group of
the excited BOPES landscape over this energy range. As a point
of comparison, in the bottom panel of Figure 2, we also show the
result of mean-field-type calculations of the BOPESs for this
system. Specifically, we show Hartree−Fock and configuration
interaction singles (CIS) data for the ground-state and excited-
state BOPESs, respectively, which suffer from well-known

inaccuracies in capturing the binding energy and excited-state
properties of the system.

4. TIME-DEPENDENT PROPERTIES WITH
CONDITIONAL EIGENSTATES

The sta-ICWF eigensolver described above can be easily
extended to describe dynamical properties. For that, we consider
the time-dependent Schrödinger equation

Ψ = ̂ Ψx x
t

t H t ti
d
d

( , ) ( ) ( , )
(20)

where Ψ(x, t) is the electron−nuclear time-dependent wave
function, and the Hamiltonian of the system Ĥ(t) may contain a
time-dependent external electromagnetic field.
In practice, we are interested in situations where the initial

wave function is the correlated electron−nuclear ground state,
i.e., Ψ(x, 0) = Ψγ=0(x), and some nonequilibrium dynamics is
triggered by the action of an external driving field (hereafter, we
omit the superscript γ for clarity). We can then decompose the
time-dependent many-body wave function as in eq 9 by
restricting it to the case of γ = 0. We choose to restrict, for the
moment, the time dependence of our ansatz to the expansion
coefficients Cα. Although in this formulation the basis remains
static, by choosing sufficient excited CWF states, γ > 0 in eq 8,
for xα covering some anticipated range of motion for the
dynamics, we can expect to capture the support of Ψ(t). The
equations of motion forCα can be obtained either by inserting eq
9 directly into eq 20 or by utilizing the Dirac−Frenkel variational
procedureb

= − − 
t

t t tC C
d
d

( ) i ( ) ( )1
(21)

In eq 21, the matrix elements of  and  are identical to those
defined in eqs 13 and 14, with the Hamiltonian’s time
dependence coming from any external fields and the wave
function decomposed into single-particle CWFs for the nuclear
and both electronic degrees of freedom. The values of the
coefficients at time t = 0, i.e., C(0), may be obtained from the

Figure 2. Exact first five BOPESs of the one-dimensional H2 model
system (solid black lines). sta-ICWF results for (Nc, M) = (32, 5) are
shown in the top panel (solid gold lines). Hartree−Fock andCIS results
for the ground-state and excited-state BOPESs, respectively, are shown
in the bottom panel (dashed lines) alongside exact results (solid lines)
and color-coordinated via calculated excited states.
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imaginary-time sta-ICWF method of eq 12. In this way, the
combination of the imaginary-time and real-time sta-ICWF
methods yields a “closed-loop” algorithm for the structure and
dynamics of molecular systems that does not require explicit BO
state information as an input to the method. For the interested
reader, a detailed flowchart of the resulting sta-ICWF method
can be found in Appendix D.
4.1. Example II: Optical Absorption Spectrum of H2.

Here, we demonstrate an application of the real-time sta-ICWF
approach to simulate the optical absorption spectrum for the
molecular hydrogen model introduced in Section 3.1. We utilize
the “δ-kick” method of Yabana and Bertsch,89 where an
instantaneous electric field E(t) = κδ(t) with perturbative
strength κ≪ 1 au−1 couples to the dipole moment operator μ =
r1 + r2 and thereby produces an instantaneous excitation of the
electronic system to all transition dipole allowed states. The
resulting (linear) absorption spectra can then be calculated via
the dipole response, Δμ(t) = μ(t) − μ(0−)
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Ç
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(22)

In practice, due to the finite time propagation, the integrand is
also multiplied by a mask function t( ) that smoothly vanishes
at the final simulation time Tf.
The system is first prepared in the ground state using the

imaginary-time sta-ICWF. See Appendix B.2 for a thorough
description of the imaginary-time sta-ICWF method and its use
for preparing the ground state of theH2model system. The field-
driven dynamics is then generated by applying the kick operator
to the relevant degree of freedom. A thorough description of the
numerical procedure, as well as the convergence behavior of the
sta-ICWFmethod for this model, can be found in Appendix B.3.
The reader can also find a detailed flowchart of the (real and
imaginary) sta-ICWF method in Appendix D.
For the H2 model, the occupation of excited electronic states

and subsequent coupled electron−nuclear dynamics produce a
characteristic vibronic peak structure usually explained via the
Franck−Condon vertical transition theory. In the top panel of
Figure 3, we show vibronic spectra calculated both with sta-
ICWF for the absorption from S0 to S2 in comparison with the
numerically exact results also calculated via the δ-kick approach.
For sta-ICWF, we found thatNc = 4096 andM = 3 was sufficient
to obtain accurate results. The results demonstrate that the sta-
ICWF ansatz used in a variational context achieves an accurate
vibronic spacing, and furthermore, it not only captures the

electron−nuclear correlation inherent to vibronic spectra but
also solves the electron−electron subsystem accurately. The
deviation from the exact results does grow with increasing
energy, although this is ameliorated with increasing Nc and M,
and can, in principle, be eliminated at large enough values of
these parameters (see Appendix B.3).
For comparison, we also showmean-field, semiclassical results

for the vibronic spectra. Specifically, we calculated the
absorption spectrum with the multitrajectory Ehrenfest δ-kick
(MTEF-kick) method,60 overlaid as dashed blue lines. The
electronic subsystem was solved exactly as a two-particle wave
function over the real-space grid for each independent nuclear
trajectory. We see that the vibronic spacing calculated with the
MTEF-kick approach fails in capturing the correct peak spacing
in addition to showing unphysical spectral negativity.

4.2. Example III: Laser-Driven Dynamics of H2. The
present formalism is not restricted to just perturbative fields and
can deal with any arbitrary external field. Going beyond the
linear response regime, we investigate the effect of strong driving
by a few-cycle, ultrafast laser pulse for this same H2 model
system. The system is first prepared in the ground state using the
imaginary-time sta-ICWF, and then the field-driven dynamics is
generated by applying an electric field of the form E(t) =
E0Ω(t) sin(ωt), with E0 = 0.005 au and an envelopeΩ(t) with a
duration of 20 optical cycles. The carrier wave frequency ω =
0.403 is tuned to the vertical excitation energy between the
ground and second excited BOPESs at the mean nuclear
position of the ground-state wave function. A thorough
description of the numerical procedure, as well as the
convergence behavior of the sta-ICWF method for this model,
can be found in Appendix B.4, as well as in Appendix D.
The intense laser pulse creates a coherent superposition of the

ground and second excited BO states whereby the bond length
of the molecule increases, as shown in the bottom panel of
Figure 4. The nuclear wavepacket then eventually returns to the
Franck−Condon region, creating the resurgence of the
electronic dipole oscillation seen in the top panel of Figure 4.
In the MTEF mean-field description of this process, the short-

Figure 3. S2 ← S0 spectra of ICWF-kick (gold) and multitrajectory
Ehrenfest δ-kick (MTEF-kick) (blue) compared to the exact peak
placement overlaid as a black line, showing that while mean-field theory
is unable to capture qualitatively the correct vibronic line shape spacing
and intensity, the sta-ICWF approach accurately captures the exact
spectrum.

Figure 4. Top panel: evolution of the expectation value of the dipole
operator ⟨μe⟩ for the 1DH2 model system forNc = 4096 (from bottom-
up) andM = 3. Bottom panel: evolution of the expectation value of the
nuclear interseparation ⟨R⟩ for the 1D H2 model system for Nc = 4096
and M = 3.
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time limit is rather accurately captured, while the subsequent
effects of the laser pulse on the nuclear dynamics and the
resurgence in the dipole response are not. These results show
that the sta-ICWF method is able to capture the electronic
correlations inherent to the electronic dipolemoment during the
initial laser-driven dynamics, as well as the electron−nuclear
correlations that arise during the subsequent nonequilibrium
dynamics. For this particular problem, we found that (Nc,M) =
(4096, 3) was sufficient to obtain highly accurate results for both
the expectation value of the electronic dipole moment (top
panel of Figure 4) and the expectation value of the internuclear
separation (bottom panel of Figure 4). Further details can be
found in Appendix B.4.

5. TIME-DEPENDENT CONDITIONAL WAVE
FUNCTIONS

While the sta-ICWF method shows promising performance in
the examples studied thus far, it faces the same limitations as any
method that relies on a static basis. Perhaps, the most significant
aspect can be framed in terms of capturing the full support of the
time-dependent wave function, which is exacerbated in cases
where the time-dependent state strays far from the span of the
static basis. One strategy to address these scenarios would be to
incorporate time-dependent conditional wave functions in the
ICWF ansatz. Hence, we take advantage of the time-dependent
version of the CWF framework introduced in ref 68, which relies
on decomposing the exact many-body wave function,Ψ(x, t), in
terms of time-dependent single-particle CWFs of either the
electronic or nuclear subsystems as

∫ψ δ≔ ̅ ̅ − ̅ Ψα αx x x x xt t t( , ) d ( ( ) ) ( , )i i i i i (23)

Evaluating the time-dependent Schrödinger equation in eq 20
at xi

α(t), one can show that the CWFs in eq 23 obey the following
equations of motion

ψ η ψ= [ ̂ + + ]α α α α

t
t T W t t ti

d
d

( ) ( ) ( ) ( )i i i i i (24)

whereWi
α(xi, t) =W(xi,x̅i

α(t), t), and we remind thatW(x) is the
full electron−nuclear interaction potentials that appear in the
Hamiltonian of eq 2. In eq 24, ηi

α(xi, t) are time-dependent
complex potentials containing kinetic correlations and advective
terms, i.e.
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As in the time-independent CWF framework, the conditional
wave functions in eq 23 represent slices of the full wave function
taken along single-particle degrees of freedom of the two disjoint
subsets. Each individual CWF constitutes an open quantum
system, whose time evolution is nonunitary, due to the complex
potentials ηi

α(xi, t), which now include advective terms due to
the inherent motion of the trajectories xα(t), which evolve
according to Bohmian (conditional) velocity fields68

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
ψ

ψ
̇ = ∇α

α

α
α

x
x

x
t

m

t

t
( )

1
Im

( , )

( , )
x

i
i

i i i

i i t( )i (26)

An exact solution to eq 20 can be then constructed provided we
use a sufficiently large number of slices {xα(t)} that explore the
full support of |Ψγ(x, t)|2 (in analogy with Figure 1b), i.e.

ψΨ = αx xt t( , ) ( ( , ))x i ii (27)

where the transformations can be found in Appendix A. The
one-body equations of motion in eq 24 can be then understood
each as a coupled set of nonunitary and nonlinear time-
dependent problems.
The derivation of the exact time-dependent CWF mathemat-

ical framework corresponds to the transformation of the many-
body time-dependent Schrödinger equation to the partially
comoving frame in which all coordinates except the ith move
attached to the electronic and nuclear flows and only the ith
coordinate is kept in the original inertial frame. Within the new
coordinates, the convective motion of all degrees of freedom
except for the ith coordinate is described by a set of trajectories
of infinitesimal fluid elements (Lagrangian trajectories), while
the motion of the ith degree of freedom is determined by the
evolution of the CWFs in a Eulerian frame.71 The purpose of this
partial time-dependent coordinate transformation is to prop-
agate all trajectories along with the corresponding probability
density flow such that they remain localized where the full
molecular wave function has a significant amplitude.

5.1. Time-Dependent Hermitian Approximation. In
general, the effective potentials in eq 25 exhibit discontinuous
steps, which could introduce instabilities in a trajectory-based
solution of the many-body dynamics based on eq 24. Therefore,
in a similar manner to the time-independent case, an
approximate solution can be formulated by expanding the
kinetic and advective correlation potentials around the condi-
tional coordinates xα(t), such that

η = ̅α αx xt f t( , ) ( ( ))i i i (28)

In this limit, the kinetic and advective correlation potentials only
engender a global phase that can be omitted, as expectation
values are invariant under such global phase transformations.
The resulting propagation scheme is restored to a Hermitian
form. That is, eq 24 is approximated as

ψ ψ= ̂ +α α α

t
t T W t ti

d
d

( ) ( ( )) ( )i i i i (29)

while the trajectories xα(t) are constructed according to eq 26.
This approximation to the time-dependent CWF formalism is

clearly a major simplification of the full problem, as it recasts the
many-body time-dependent Schrödinger equation as a set of
independent single-particle equations of motion. Despite the
crudeness of the approximation in eq 28, the set of equations of
motion in eq 29 has found numerous applications, e.g., in the
description of adiabatic and nonadiabatic quantum molecular
dynamics68,70 and quantum electron transport.90−94 In ref 68,
for example, results using eq 29 for an exactly solvable model
system showed a great degree of accuracy of the time-dependent
Hermitian approximation in capturing nonadiabatic dynamics.
Alternatively, in ref 70, the set of equations in eq 29 was used to
describe the adiabatic double proton transfer for an exactly
solvable model porphine, showing great promise in capturing
quantum nuclear effects. Regarding the comparison of the time-
dependent Hermitian approach in eq 29 with conventional
mean-field methods, in ref 91, it was shown that quantum
electron transport simulations using eq 29 represent an
improvement with respect to time-dependent (Hartree-type)
mean-field simulations. Similar conclusions were reported in ref
95, where a simplified semiclassical method based on eq 29 was
compared with classical mean-field results.
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Methods based on eq 29, however, are known to fail to
describe important nonadiabatic processes such as the splitting
of the time-dependent reduced nuclear density with influences
from different BOPESs.68 This type of dynamics has been
commonly associated with decoherence effects that neither the
Hermitian approximation in eq 28 nor other mean-field
methods such as Ehrenfest or Tully’s surface hopping dynamics
are able to capture.

6. SIMULATING FAR-FROM-EQUILIBRIUM DYNAMICS
WITH CONDITIONAL WAVE FUNCTIONS

In general circumstances where the kinetic and advective
correlation potentials are important, we can make use of the
simple Hermitian form of the conditional equations of motion in
eq 29 to design an efficient many-body wave function
propagator. For that, we expand the full electron−nuclear
wave function using the ansatz

∑ ∏ ψΨ =
α

α
α

= =

×
x xt C t t( , ) ( ) ( , )

N M

i

n N

i i
1 1

c

(30)

where the coefficients Cα(t) and the CWFs ψi
α(xi, t) are

initialized using the sta-ICWFmethod and propagated afterward
using the approximated equations of motion in eq 29 along with
trajectories obeying eq 26.
The time evolution of the coefficients C(t) can be then

obtained by inserting the ansatz of eq 30 into eq 20
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where the matrix elements of ,  are defined as in eqs 13 and
14, with the time dependence coming from external fields in the
Hamiltonian and the time-dependent CWFs, while i are
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where hi
α(t) are the Hermitian Hamiltonians in eq 29 and Ĥ(t) is

the full time-dependent Hamiltonian in eq 20.
Obtaining these matrix elements is straightforward, involving

a sum across single-body operators in eqs 13 and 32 and all sums
of two-body interactions across each degree of freedom in eq 14.
Note that any operator involving only a single species, e.g., the
kinetic energy, is canceled out, and thus the evolution of C is
governed exclusively by matrix elements of operators, which
either fully (through ) or conditionally (through i) correlate
the degrees of freedom.
Equations 26, 29, and 31 define a set of coupled differential

equations that hereafter will be referred to as the dynamical
ICWF (dyn-ICWF) method. One can then evaluate the
expectation value of a generic observable ⟨Ô(x)⟩ as given in
eqs 15 with dyn-ICWF by simply taking into account that ψi

α(t)
are now time-dependent CWFs.
The above dyn-ICWF method was first put forth in ref 72. At

the time of publishing the work in ref 72, however, there was no
theory sustaining the construction of the initial conditional wave
function basisψi

α(xi,t) without relying on an exact solution of the
time-independent Schrödinger equation. That has been the
main limitation of the method thus far. Here, instead, we have
shown that the imaginary-time sta-ICWF method (derived in
Section 3) not only allows us to solve accurately the time-
independent Schrödinger equation but also serves as a method

to define an optimal set of conditional wave function basis
ψi
α(xi,0). Therefore, the dyn-ICWF in combination with

imaginary-time sta-ICWF provides a self-consistent approach
to describe observables that are relevant to equilibrium, as well
as far-from-equilibrium processes. An example combining these
two methods will be shown in the example of Section 6.2, where
an initial ground state is prepared using imaginary-time sta-
ICWF and a later dynamics, triggered by a laser pulse, is
described using dyn-ICWF. The interested reader can find a
complete flowchart of the combined method in Appendix D.

6.1. Example IV: Impact Electron Ionization. The
theoretical description of electron scattering remains challeng-
ing, as it is a highly correlated problem that generally requires
treatment beyond perturbation theory.96,97 We here study a
model system of electron−hydrogen scattering that can be
exactly solved numerically.98 In atomic units, the Hamiltonian of
this one-dimensional two-electron model system reads
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are, respectively, the soft-Coulomb interaction and the external
potential that models the H atom located at r = 10 au. The initial
interacting wave function is taken to be a spin singlet, with a
spatial part

ϕ ϕ ϕ ϕΨ = +r r r r r r( , )
1
2

( ( ) ( ) ( ) ( ))0 1 2 H 1 WP 2 WP 1 H 2 (36)

where ϕH(r) is the ground-state hydrogen wave function and
ϕWP(r) is an incident Gaussian wavepacket
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with α = 0.1 representing an electron at r =−10 au, approaching
the target atom with a momentum p.
The time-resolved picture presents scattering as a fully

nonequilibrium problem, where the system starts already in a
nonsteady state, and so, the imaginary-time sta-ICWF cannot be
applied here to prepare the initial wave function. Instead, we
stochastically sample the initial probability density |Ψ0(r1, r2)|

2

with Nc trajectories {r1
α(0), r2

α(0)} that are used to construct
CWFs ϕ1

α(r1, 0) and ϕ2
α(r2, 0), as defined in eq 23. A thorough

description of the numerical procedure, as well as the
convergence behavior of the dyn-ICWF method for this
model can be found in Appendix C.1. See also Appendix D for
a description of the corresponding workflow.
We study the dynamics of the electron−hydrogen scattering

by evaluating the time-dependent one-body density, ρe(r1, t) =
2∫ |Ψ(r1, r2, t)|2 dr2, for two different initial momenta, viz., p =
0.3 and 1.5 au. For p = 0.3 au, the energy is lower than the lowest
excitation of the target (which is aboutω = 0.4 au) and hence the
scattering process is elastic. In this regime, mean-field results
(here represented by extended time-dependent Hartree−Fock
calculations) and dyn-ICWF results with Nc = 128 results both
capture the correct dynamics accurately (see Figure 5). In
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approaching the target atom with the larger momentum p = 1.5
au, the incident wavepacket collides inelastically with the target
electron at around 0.24 fs, after which, a part of the wavepacket is
transmitted while some is reflected back leaving the target
partially ionized. In this regime, the mean-field method fails to
describe the transmission process quantitatively and the
reflection process even qualitatively due to its inability to
capture electron−electron correlation effects. This is in contrast
with dyn-ICWF results, which quantitatively capture the
correlated dynamics for Nc = 256, although a lower number of
CWFs already reproduces qualitatively the dynamics (see
Appendix C.1 and Figure 5).
6.2. Example V: Laser-Driven Proton-Coupled Electron

Transfer. We now show dyn-ICWF results for a prototypical
photoinduced proton-coupled electron transfer reaction, using
the Shin−Metiu model.99 The system comprises donor and
acceptor ions, which are fixed at a distance L = 19.0a0, and a
proton and an electron that are free to move in one dimension
along the line connecting the donor−acceptor complex. Based
on the parameter regime chosen, this model can give rise to a
number of challenging situations where electron−nuclear
correlations play a crucial role in the dynamics.
The total Hamiltonian for the system is

̂ = − ∂
∂ − ∂

∂ + ̂H r R
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2
1

2
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2

2
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where m is the electron mass, and M is the proton mass. The
coordinates of the electron and the mobile ion are measured
from the center of the two fixed ions and are labeled r and R,
respectively. The full electron−nuclear potential reads
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where erf() is the error function. The parameter regime studied
for this model (Rf = 5a0, Rl = 4a0, and Rr = 3.1a0) is chosen such
that the ground-state BOPES, ϵBO

1 , is strongly coupled to the first
excited adiabatic state, ϵBO

2 , around the mean nuclear
equilibrium position Req = −2a0. The coupling to the rest of
the BOPESs is negligible.
We set the system to be initially in the full electron−nuclear

ground state obtained from the imaginary-time propagation
method described above, i.e., Ψ(r, R, 0) = Ψ0(r, R) (the
interested reader can find a general workflow of the simulation in
Appendix D). We then apply an external strong electric field,
E(t) = E0Ω(t) sin(ω t), with E0 = 0.006 au, Ω(t) = sin(πt/20)2,
and ω = ϵBO

1 (Req) − ϵBO
0 (Req). The external field induces a

dynamics that involves a passage through an avoided crossing
between the first two BOPESs, with further crossings occurring
at later times as the system evolves. When the system passes
through the nonadiabatic coupling region, the electron transfers
probability between the ground state and the first excited state.
This is shown in the top panel of Figure 6, where we monitor the

BO electronic state populations Pn(t) (whose definition can be
found in Appendix C.2). As a result of the electronic transition,
the reduced nuclear density changes shape by splitting into two
parts representing influences from both ground- and excited-
state BOPESs. This can be seen in the bottom panel of Figure 6,
where, as a measure of decoherence, we use the indicatorDnm(t)
(whose definition can be found in Appendix C.2). As
nonadiabatic transitions occur, the system builds up a degree
of coherence that subsequently decays as the system evolves
away from the coupling region.
As shown in Figure 6, the dyn-ICWF method reaches

quantitative accuracy for (Nc, M) = (256, 1) and vastly
outperforms the multitrajectory Ehrenfest mean-field method
in describing both the adiabatic populations and the

Figure 5. Top panel: reduced electron density at t = 1.8 fs for p = 0.3 au
andNc = 128. Bottom panel: reduced electron density at t = 0.85 fs for p
= 1.5 au and Nc = 256 and Nin = 10.

Figure 6. Top panel: population dynamics of the first two adiabatic
electronic states P0,1(t). Solid black lines correspond to exact numerical
results. Solid blue and red lines correspond to dyn-ICWF results with
(Nc, M) = (256, 1) for the ground and first excited adiabatic
populations, respectively. Dashed blue and red lines correspond to
mean-field MTEF results. Bottom panel: decoherence dynamics
between the ground state and first excited adiabatic electronic states,
i.e.,D01. Solid black lines correspond to exact results. The solid blue line
corresponds to dyn-ICWF results with (Nc,M) = (256, 1). The dashed
blue line corresponds to mean-field MTEF results.
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decoherence measure. More specifically, while both the dyn-
ICWF method and MTEF dynamics correctly capture the exact
adiabatic population dynamics at short times, the latter breaks
down at long times as it fails to capture the qualitative structure
of the time-evolving indicator of decoherence. Noticeably, all of
these aspects of this problem are qualitatively well described by
the dyn-ICWF method using only (Nc, M) = (16, 1) (these
results can be found in Appendix C.2).
6.3. Example VI: Interference Effects Near a Molecular

Conical Intersection.We next study dynamics around conical
intersections (CIs) using a minimal generalization of the above
Shin−Metiu model first proposed by Gross and co-workers100

and extended further by Schaupp and Engel.101 The model
consists of a quantized electron and proton that can move in two
Cartesian directions, along with two fixed “classical” protons, R1,
R2. A CI occurs in this model when (treating the quantized
proton as a BO parameter) the protons are in a D3h geometry.
The potential energy is
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(40)

and we use the parameter values a = 0.5, b = 10, R0 = 1.5, R1 =
(−0.4√3, 1.2), and R2 = (0.4√3, 1.2).
We initialize the total systemwave function as a direct product

of the first excited electronic BO state and a nuclear Gaussian
state centered at Rc = (0, 0.4) with standard deviation σ

2 = 5. For
this placement of R1, R2, the CI occurs at the origin and, in the
BO picture, the initial nuclear wavepacket “falls toward” the CI
(see Figure 14 in Appendix C.3). In this picture, the nuclear
motion occurs on a single BOPES and the two portions of the
nuclear wavepacket around the CI (i.e., the clockwise and
anticlockwise components) cause an interference pattern to
develop when they do recollide (see Figure 7).
While the interference pattern described in Figure 7 can be

understood as the adiabatic circular motion around the position
of a conical intersection, it is important to emphasize that the
concept of CI makes sense only when the adiabatic picture, i.e.,

the Born−Huang basis expansion, is used to represent the
molecular wave function. However, any observable effect that
can be explained on the adiabatic basis must arise also in any
other picture such as the diabatic picture or the full real-space
grid picture used by the dyn-ICWF method. Therefore, while
not depending on the BO picture (beyond defining the initial
state), the dyn-ICWF method is able to capture the correct CI
curvature effects, as well as any interference pattern that forms in
the fully reduced nuclear density

∬ρ = |Ψ |R R r r r r R R( , ) d d ( , , , )x y x y x y x y
2

(41)

See Appendices C.3 and D for further details on the dyn-ICWF
calculation.

7. CONCLUSIONS
In this work, we have introduced an exact mathematical
framework that avoids the standard separation between
electrons and nuclei and hence enables a unified treatment of
molecular structure and nonadiabatic dynamics without relying
on the construction and fit of Born−Oppenheimer potential-
energy surfaces and the explicit computation of nonadiabatic
couplings.
We have introduced a time-independent conditional wave

function theory, which is an exact decomposition and recasting
of the static many-body problem that yields a set of single-
particle conditional eigenstates. Based on the imaginary-time
propagation of a stochastic ansatz made of approximated
conditional eigenstates, the resulting method, called sta-ICWF,
is able to accurately capture electron−electron correlations
intrinsic to molecular structure. A real-time counterpart of the
above method has been also derived following the Dirac−
Frenkel variational procedure, and its combination with the
imaginary-time version yields an accurate method for solving
out-of-equilibrium properties of molecular systems where
nonadiabatic electron−nuclear correlations are important.
This has been shown by reproducing the exact structural, linear
response, and nonperturbatively driven response properties of
an exactly solvable one-dimensional H2 model system that
standard mean-field theories fail to describe.
We have also considered a broader class of conditional wave

functions that was formally introduced through time-dependent
conditional wave function theory, yielding a set of coupled
single-particle equations of motion. An approximated set of
these time-dependent conditional wave functions are utilized as
time-dependent basis of a stochastic wave function ansatz that is
meant to describe observables that are relevant to far-from-
equilibrium processes. The resulting propagation technique
(called dyn-ICWF) in combination with sta-ICWF provides a
fully self-consistent approach and, moreover, the method
achieves quantitative accuracy for situations in which mean-
field theory drastically fails to capture qualitative aspects of the
combined electron−nuclear dynamics.
The sta- and dyn-ICWF methods are wave function-based

approaches. Therefore, while the simple sum-of-product forms
that we have employed for our ansatz in eqs 9 and 30 can be
made more efficient, by introducing a tensor network
representation for the expansion coefficients such as matrix
product states or hierarchical Tucker formats, for example, an
exponential scaling with respect to the number of correlated
degrees of freedom is expected unless approximations are
introduced. That being said, we want to emphasize that the
ICWF method is fundamentally different from wave function

Figure 7. Exact and dyn-ICWF reduced nuclear density showing the
interference pattern after having traversed the conical intersection at
the origin.
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methods that rely on the Born−Huang expansion of the
molecular wave function. Alternatively, the ICWF method
describes electronic and nuclear degrees of freedom on the same
mathematical footing, viz., the real-space grid picture. It is this
particular trait that makes the ICWF an original starting point for
developing novel, unexplored, approximations that could
eventually yield a significant computational advantage compared
to methods that rely on the Born−Huang expansion.
Importantly, the conditional decomposition holds for an

arbitrary number of subsets (up to the total number of degrees of
freedom in the system) and applies to both fermionic and
bosonic many-body interacting systems. Our developments thus
provide a general framework to approach the many-body
problem in and out of equilibrium for a large variety of contexts.
For example, using conditional wave functions in a form
compatible with time-dependent density functional theory in
connection with alternative tensor network decompositions or
in combination with classical/semiclassical limits for specified
degrees of freedom are particularly appealing routes to follow,
and work in this direction is already in progress.102 Furthermore,
the extension to periodic systems is currently under inves-
tigation and should allow the ab initio description of driven
electron−lattice dynamics such as, for example, laser-driven
heating and thermalization,103−108 correlated lattice dynam-
ics,109−111 and phase transitions.112−114

A. Definition of the “Reassembling” Transformation xi
of

Equation 6
Here, we consider a reconstruction of the full wave function
Ψγ(x) from conditional wave functions defined as in eq 3 of the
main text, i.e.

∫ψ δ≔ ̅ ̅ − ̅ Ψα γ α γx x x x x( ) d ( ) ( )i i i i i
,

(42)

Here, the index α ∈ {1, 2, ..., Nc} denotes the particular
conditional slice, and x̅i = (x1, ..., xi−1, xi+1, ..., xn×N) are the
coordinates of all degrees of the system except xi. Similarly, x̅i

α =
(x1

α, ..., xi−1
α , xi+1

α , ..., xn×N
α ) are the position of all system’s degrees

of freedom except xi.
Assuming that the conditional sampling points, x̅i

α, are
distributed according to a normalized distribution ̅αx( )i , one
can approximately reconstruct the full wave function based on
the interpolation with a Gaussian function Gσ(x̅i) with a given
width σ as

ψ
Ψ ≔
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i (43)

In this way, the full wave function is reconstructed as a Gaussian
weighted average: in the numerator of eq 43, the contribution
from each conditional slice α is weighted with a Gaussian
distribution, and it becomes larger if the evaluated point, x̅, is
closer to the sampling point x̅α. To compensate the nonuniform
sampling distribution contribution, the interpolation weight is
divided by the distribution function ̅αx( )i . In addition, the
denominator of eq 43 ensures normalization of the interpolation
weight.
By considering a dense sampling (Nc→∞), the reconstructed

wave function of eq 43 can be rewritten as

∫ ψΨ = ̅ ̅ − ̅σ
γ α σ α α γ

→∞
x x x x xGlim ( ) d ( ) ( )

N
N i i i i,
Rec, ,

c
c (44)

and substituting eq 42 into eq 44, one obtains

∫Ψ = ̅ ′ ̅ − ̅′ Ψ ̅′σ
γ σ

→∞
x x x x xGlim ( ) d ( ) ( )

N
N i i i,
Rec,

c
c (45)

where x̅′ = (x1′, ..., xi−1′ , xi, xi+1′ , ..., xn×N′ ). Therefore, for a dense
sampling,ΨNc,σ

Rec,γ(x) can be understood as the convolution of the
full wave function Ψ(x) and the Gaussian weight Gσ(x̅i).
Furthermore, in the narrow Gaussian width limit, (σ → 0),
Gσ(x̅i) can be treated as a Dirac δ function and hence eq 45 can
be written as

Ψ = Ψ
σ

σ
γ

→
→∞

x xlim ( ) ( )
N

N
0

,
Rec,

c

c

(46)

In conclusion, one can exactly reconstruct the full electron−
nuclear wave function in terms of conditional wave functions
using the reassembling operator xi

defined as

ψ
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B. Convergence of the Real- and Imaginary-Time Versions
of the sta-ICWF Method
In this section, we discuss the convergence of the imaginary- and
real-time sta-ICWF methods for the examples in Sections 3.1,
4.1, and 4.2. For that, we first notice that, due to the stochastic
nature of the sta-ICWF method, given a set of sampling points
Nc and their conditional eigenstates M, we may also consider a
number Nin of different sets of Nc sampled points and their
associatedM conditional eigenstates. This can be accounted for
by rewriting the expectation value of eq 15 as

∑⟨ ̅ ⟩ = ⟨ ̂ ⟩
=

O t
N

O t( )
1

( )
p

N

p
in 1

in

(48)

The dispersion of ⟨O̅(t)⟩ with respect to Nin is then quantified
through its standard deviation, i.e.

Δ ̅ = ⟨ ̅ ⟩ − ⟨ ̅ ⟩O t O t O t( ) ( ) ( )2 2
(49)

B.1. Ground and Excited BOPESs of H2.We discuss here the
convergence of the imaginary-time version of the sta-ICWF
method in capturing the ground-state and excited-state BOPESs
for the H2 model system introduced in Section 3.1. Finding the
BOPESs for this particular model is equivalent to solving eq 19
using the imaginary-time evolution technique

τ
τ τΦ = − ̂ Φζ ζ ζr r R r r R

d
d

( , ; , ) ( , ; , )1 2 el 1 2 (50)

where {Φγ(r1, r2; R)} are the (complete, orthonormal) set of BO
electronic states, and we have defined Ĥel

ζ as
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(51)

where P̂ξ = ΦξΦξ† and ̂ = ̂ − ̂H Tel nuc.
The BO electronic states, Φγ(r1, r2; R), are then expanded in

terms of CWFs with the following simplified version of the
ansatz in eq 9 that is specialized to the particular case of
parametric nuclear dependence

∑ ϕ ϕΦ =γ

α
α
γ α α

=
r r R C r R r R( , ; ) ( ; ) ( ; )

N M

1 2
1

1 1 2 2

c

(52)
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Slicing points (r1
α, r2

α) are generated by sampling from reduced
one-body electronic densities, which in this case are simply

chosen to be Gaussian functions ρe(ri) = A e−ri
2/10. The

conditional eigenstates ϕi
α,ν(ri; R), for ν ∈ {1, ..., M} are then

evaluated on each slice using the Hermitian approximation, i.e.

i
k
jjjj

y
{
zzzzϕ ϕ− ℏ ∇ + =α α ν ν α ν

m
W r R r R E R r R

2
( , ) ( ; ) ( ) ( ; )i i i i i i i

2
2 , ,

(53)

whereWi
α(ri, R) =Wee(ri,ri̅

α) +Wen(ri, R). The coefficient vector
Cγ is randomly initialized and then propagated in imaginary time
until the target state is reached according to eq 12 of the main

text, with Ĥ being substituted with ̂
el.

To achieve converged results, a grid (0, 9] au for the
internuclear separation with 181 grid points is chosen for the
nuclear degrees of freedom. For the electron coordinates, the
grid covers the interval [−35, +35] au with 200 grid points. The
fourth-order Runge−Kutta integration method was used to
propagate the imaginary-time sta-ICWF equation of motion
(i.e., eq 12) with a time-step dτ = 0.01 au, and the Moore−
Penrose pseudo-inversion method with a tolerance of 10−8 was
used to approximate the numerical inversion of the overlap
matrix in eq 13. Importantly, the matrices and of eqs 12 and
14 need only be constructed at the initial time, requiring only the
repeated multiplication of an Nc × M vector by an Nc

2 × M2

matrix for the imaginary-time propagation.
In Figure 8, we show sta-ICWF results for the first five

BOPESs for two different sets of parameters: (Nc,M) = (32, 1)

(top panel) and (Nc,M) = (8, 1) (bottom panel). The sta-ICWF
data are presented alongside (standard deviation) error bars
defined in eq 49. Noticeably, even for M = 1 (i.e., when only
ground-state conditional eigenstates are used in the expansion of
eq 52), the results in Figure 8 demonstrate the convergence of
the imaginary-time sta-ICWF method to the exact BOPESs. For
a large enough number of sampling points and excited CWFs,
viz., (Nc,M) ≳ (32, 5), the sta-ICWF results are fully converged
to the exact BOPESs and the associated error bars become
negligible due to the completeness of the CWF basis.
B.2. Ground State of H2.We investigate here the ground-state

energy for the model H2 introduced in Section 3.1, as well as the

convergence behavior of the imaginary-time version of the sta-
ICWF method in capturing it. We aim to solve eq 10, which for
this particular model system reduces to

τ
τ

τ
Ψ = − ̂ Ψr r R

H r r R
d ( , , , )

d
( , , , )

(0)
1 2 (0)

1 2 (54)

where Ĥ is the Hamiltonian in eq 16. For that, we choose the
conditional eigenstate basis by sampling Nc points (r1

α, r2
α, Rα)

from guesses to the reduced electronic and nuclear densities

ρe(ri) = Ae e
−ri

2/10 and ρn(R) = An e
−(R−2)2, respectively. Starting

from the full H2 Hamiltonian of eq 16, these positions are then
used to construct and diagonalize the Hermitian Hamiltonians
in eq 8. In this way, we obtain 3×Nc×Mconditional eigenstates
{ϕ1

α,ζ(r1), ϕ2
α,ζ(r2), χ

α,ζ(R)}. This allows us to expand the full
ground-state wave function as

∑ ϕ ϕ χΨ =
α

α
α α α

=
r r R C r r R( , , ) ( ) ( ) ( )

N M
(0)

1 2
1

0
1 1 2 2

c

(55)

Given a random initialization of the coefficient vector C, we
then evolve it in imaginary time according to eq 12 and the
matrix elements of eqs 13 and 14. To achieve converged results,
a grid (0, 9] au for the internuclear separation with 181 grid
points is chosen for the nuclear degrees of freedom. For the
electron coordinates, the grid covers the interval [−35, +35] au
with 200 grid points. The fourth-order Runge−Kutta algorithm
with a tolerance of 10−8 was used to propagate the imaginary-
time sta-ICWF equations of motion with a time-step dτ = 0.01
au, and the Moore−Penrose pseudo-inversion method was used
to approximate the numerical inversion of the overlap matrix in
eq 13. Importantly, the matrices  and  of eq 12 need only be
constructed at the initial time.
From the exact symmetric ground-state wave function, we

found an equilibrium separation of ⟨R⟩ = 2.2 au and the ground-
state energy is E0 =−1.4843 au We then define the relative error
of the sta-ICWF calculation with respect to the exact calculation
as Er = |⟨H̅⟩0 − E0|/|E0|, where

∑⟨ ̅⟩ = ⟨Ψ | ̂ |Ψ ⟩
=

H
N

H
1

n

N

n0
in 1

(0) (0)
in

(56)

and Ψ0 has been defined in terms of CWFs in eq 55.
The error Er is presented in Figure 9 as a function of the

number of sampling points and for a different number of excited
conditional eigenstates, i.e., (Nc, M). Error bars represent the
standard deviation ΔH̅0 defined in eq 49 for a number of
different initial sampling points. Due to the variational nature of
the method, the relative error decreases with an increasing

Figure 8. First five BOPESs reproduced with the sta-ICWF method for
(Nc, M) = (8, 1) (bottom panel) and (Nc, M) = (32, 1) (top panel).
These data are presented alongside (standard deviation) error bars.

Figure 9. (Left) Logarithm of the mean relative energy error Eer as a
function of the logarithm of the number of sampling points Nc and for
different number of excited CWFsM = {1, 2, 3, 4}. Error bars represent
the standard deviation of the relative error.
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number of sampling points Nc. Noticeably, even for M = 1 (i.e.,
when only ground-state conditional eigenstates are used in the
expansion of eq 9), the results in Figure 9 demonstrate the
convergence of the imaginary-time sta-ICWF method to the
exact ground state. The convergence process is accelerated
though as we allow a number of excited conditional eigenstates
(i.e., M > 1) to participate in the ansatz. For a large enough
number of basis elements Nc × M, the CWF bases become a
complete basis of the problem. This is independent of the initial
distribution of sampling points and hence the associated error
bars vanish for large enough values of Nc × M.
B.3. Optical Absorption Spectrum of H2.We discuss here the

convergence of the real-time version of the sta-ICWFmethod in
capturing the optical absorption spectrum of the H2 model
system introduced in Section 3.1. The simulation starts with the
preparation of the ground-state coefficients C(0) using the
imaginary-time version of the sta-ICWF method described in
Appendix B.2. The relevant degree of freedom of the kick
operator is then applied to each CWF, the Hamiltonian and
inverse overlap matrices of eqs 13 and 14 are reconstructed, and
C is propagated to the desired time according to eq 21. A kick
strength of κ = 10−4 au−1 was sufficient to generate the kick
spectra within the linear response regime, and a total
propagation time of Tf = 1500 au was used to generate the
s p e c t r a , a l o n g s i d e t h e m a s k f u n c t i o n

= = − +x t T x x( / ) 1 3 2f
2 3.

A grid [−35, +35] au with 200 grid points was chosen for the
electronic coordinates. The fourth-order Runge−Kutta algo-
rithm was used to propagate the imaginary-time sta-ICWF
equations of motion with a time-step dt = 0.01 au, and the
Moore−Penrose pseudo-inversion method with a tolerance of
10−8 was used to approximate the numerical inversion of the
overlap matrix in eq 13. Again, the matrices  and  of eq 12
need only be constructed at the initial time.
In Figure 10, we show convergence results for sta-ICWF

calculations of the optical linear absorption spectra (eq 22) for
four different sets of parameters: (Nc,M) = (512, 3), (Nc,M) =
(2048, 3) (top panel), and (Nc, M) = (4096, 1) and (Nc, M) =
(4096, 3) (bottom panel). In all of these cases, we considered a
number of different initial sampling points, which have been

used to calculate the associated (standard deviation) error bars
as in eq 49. As the number of conditional eigenstate basis
elements in the ansatz expansion of eq 55 increases, the
variational nature of the method ensures convergence to the
exact linear absorption line shape. Similarly, the error bars shrink
as the number of conditional eigenstates in the basis Nc × M
allows us to span the relevant part of the Hilbert space.

B.4. Laser-Driven Dynamics of H2. We discuss here the
convergence of the real-time version of the sta-ICWFmethod in
capturing the laser-driven dynamics of the H2 model system
introduced in Section 3.1. As explained in Section 4.2 of the
main text, the system is first prepared in the ground state using
the imaginary-time sta-ICWF as explained in Appendix B.2, and
then the field-driven dynamics is generated by applying an
electric field of the form E(t) = E0Ω(t) sin(ωt), with E0 = 0.005
au and an envelopeΩ(t) with a duration of 20 optical cycles. The
carrier wave frequency ω = 0.403 is tuned to the vertical
excitation between the ground BO state and second excited
electronic surface.
For the dynamics we used, a grid (0, 9] au for the internuclear

separation with 181 grid points is chosen for the nuclear degrees
of freedom. For the electron coordinates, the grid covers the
interval [−35, +35] au with 200 grid points. The fourth-order
Runge−Kutta algorithm was used to propagate the sta-ICWF
equation of motion in eq 21 with a time-step dt = 0.01 au, and
the Moore−Penrose pseudo-inversion method with a tolerance
of 10−8 was used to approximate the numerical inversion of the
overlap matrix in eq 13.
In Figure 11, we show convergence results for the real-time

sta-ICWF calculation of the electronic dipole moment ⟨μ̂e⟩. We

considered four different sta-ICWF configurations, viz., (Nc,M)
= (512, 3), (Nc,M) = (4096, 3) (in the top panel), and (Nc,M) =
(4096, 1) and (Nc,M) = (4096, 3) (in the bottom panel). As the
number of CWFs in the ansatz expansion of eq 55 increases, the
variational nature of the method ensures convergence to the
exact dynamics. The deviation from the exact results does grow
with increasing time lapse, although this is ameliorated with
increasing either Nc and/or M and can, in principle, be
eliminated at large enough values of these parameters. Similarly,
the error bars become negligible when the CWF bases expand

Figure 10. H2 spectrum for ICWF-Kick with different number of
sampling points and excited CWFs. Top panel: (Nc,M) = (512, 3) and
(Nc,M) = (2048, 3). Bottom panel: (Nc,M) = (4096, 1) and (Nc,M) =
(4096, 3). The results are presented alongside (standard deviation)
error bars.

Figure 11. Evolution of the expectation value of the dipole operator
⟨μe⟩ for the 1D H2 model system for a number of conditional basis
configurations. Top panel: (Nc, M) = (512, 3), (Nc, M) = (4096, 3).
Bottom panel: (Nc,M) = (4096, 1) and (Nc,M) = (4096, 3). These data
are presented along with (standard deviation) error bars.
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the full support of the Hilbert space explored during the
dynamics. This happens for (Nc, M) ≳ (4096, 3).
C. Convergence of the dyn-ICWF Method
In this section, we discuss the convergence behavior of the dyn-
ICWF method for the examples of Sections 6.1−6.3. As it
happened for the sta-ICWFmethod, the stochastic nature of the
dyn-ICWF method allows us to consider a number Nin of
different initial sampling points for a given set of parameters (Nc,
M). This is taken into account by writing expectation values as in
eq 48 and its standard deviation as in eq 49.
C.1. Impact Electron Ionization. We discuss here the

convergence behavior of the dyn-ICWF method in capturing
the laser-driven proton-coupled electron transfer described in
Section 6.1.
The time-resolved picture presents scattering as a fully

nonequilibrium problem, where the system starts already in a
nonsteady state, and so, the imaginary-time sta-ICWF cannot be
applied here to prepare the initial wave function. Instead, we
stochastically sample the initial probability density |Ψ0(r1, r2)|

2

with Nc trajectories {r1
α(0), r2

α(0)} that are used to construct
CWFs ϕ1

α(r1, 0) and ϕ2
α(r2, 0), as defined in eq 23. These CWFs

are then used to construct the ansatz in eq 30, i.e.

∑ ϕ ϕΨ =
α

α
α α

=
r r t C t r t r t( , , ) ( ) ( , ) ( , )

N M

1 2
1

1 1 2 2

c

(57)

with an initial C vector that is obtained using

= −C G(0) 1 (58)

where G is the vector containing the overlap between the initial
wave function and the CWFs, i.e.

∬ ϕ ϕ= Ψα
α α* *G r r r r r rd d ( , 0) ( , 0) ( , )1 2 1 1 2 2 0 1 2 (59)

Given C(0), and ϕ1
α(r1, 0) and ϕ2

α(r2, 0) for an ensemble of
sampling points {r1

α(0), r2
α(0)}, these objects are then

propagated according to the dyn-ICWF equations of motion
in eqs 29 and 31.
To achieve converged results, we choose the size of the

simulation box to be 150 × 150 au2 with a homogeneous grid
consisting of 500 grid points in each direction. The fourth-order
Runge−Kutta algorithm was used to propagate the dyn-ICWF
equations of motion with a time-step dt = 0.01 au, and the
Moore−Penrose pseudo-inversion method with a tolerance of
10−8 was used to approximate the numerical inversion of the
overlap matrix in eq 31.
In Figure 12, we show the one-body electronic density ρe(r1,

t), for two different initial momenta and final times, viz., p = 0.3
and 1.5 au and t = 1.8 and 0.85 fs. For p = 0.3 au, a very small
number of CWFs ((Nc,M) = (16, 1)) is already able to capture
the correct dynamics quantitatively. In approaching the target
atom with the larger momentum p = 1.5 au, the conventional
mean-field method fails to describe the ionization process due to
the lack of electron−electron correlation effects. This is in
contrast with dyn-ICWF results, which qualitatively captures the
correlated dynamics for a small number of CWFs (Nc,M) = (64,
1).
C.2. Laser-Driven Proton-Coupled Electron Transfer. We

discuss here the convergence behavior of the dyn-ICWFmethod
in capturing the laser-driven proton-coupled electron transfer
described in Section 6.2. We suppose the system to be initially
seating in the full electron−nuclear ground state, i.e., Ψ(r, R, 0)
= Ψ0(r, R). This state is prepared using the imaginary-time

version of the sta-ICWF method with ground-state CWFs only
(i.e., M = 1)

∑ ϕ χΨ =
α

α
α α

=
r R C r R( , ) (0) ( , 0) ( , 0)

N
(0)

1

c

(60)

The sta-ICWF provides as output the initial expansion
coefficients C(0) and the ground-state electronic and nuclear
CWFs, ϕα(r, 0) and χα(R, 0), respectively. We then apply an
external strong electric field, defined in Section 6.2 of the main
text, and the coefficients and the CWFs are propagated using the
dyn-ICWF equations of motion in eqs 29 and 31.
To achieve converged results, a grid [−9, 9] au with 301 grid

points is chosen for the nuclear degrees of freedom. For the
electron coordinates, the grid covers the interval [−75, +75] au
with 250 grid points. The fourth-order Runge−Kutta algorithm
was used to propagate the dyn-ICWF equations of motion with a
time-step dt = 0.1 au, and theMoore−Penrose pseudo-inversion
method with a tolerance of 10−8 was used to approximate the
numerical inversion of the overlap matrix in eq 31.
By introducing the Born−Huang expansion of the molecular

wave function, Ψ(r, R, t) = ∑nΦR
(n)(r, t)χ(n)(R, t), we then

monitor the dynamics through the BO electronic state
populations, Pm(t) = ∫ dR|χ(m)(R, t)|2, and the overlap integral
of projected nuclear densities evolving on different BOPESs,
Dnm(t) = ∫ dR|χ(n)(R, t)|2|χ(m)(R, t)|2. These quantities can be
written in terms of the dyn-ICWF basis by re-expressing the
adiabatic nuclear components as

∫∑χ χ ϕ| | = Φ
α

α
α α

=
R t C t R t r r r t( , ) ( ) ( , ) d ( ) ( , )m

N M

R
m( ) 2

1

( )
2

c

(61)

In Figure 13, we show dyn-ICWF results for (Nc,M) = (16, 1).
This very small number of CWFs, even if associated with large
deviations across different stochastic particle placements, is able
to capture nearly quantitatively both the adiabatic populations
and the decoherence indicator. This result demonstrates that the
dyn-ICWF technique achieves quantitative accuracy for
situations in which the mean-field theory drastically fails to
capture qualitative aspects of the dynamics using 3 orders of
magnitude fewer trajectories than a mean-field simulation.

Figure 12. Top panel: reduced electron density at t = 1.8 fs for p = 0.3
au and (Nc,M) = (16, 1). Bottom panel: reduced electron density at t =
0.85 fs for p = 1.5 au and (Nc, M) = (64, 1).
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C.3. Interference Effects Near a Molecular Conical
Intersection. We discuss here some of the technical details of
the interference effect calculation demonstrated in Section 6.3.
As in ref 101, we took an electronic spatial grid [−12, 12] au with
81 grid points and a nuclear grid [−1.5, 1.5] au with 51 grid
points alongside a time step of dt = 0.02 au. The initial wave
function was constructed on this grid, and the exact dynamics
were propagated directly using a fourth-order Runge−Kutta
integrator.
The time-resolved picture presents this problem as a fully

nonequilibrium problem, where the system starts already in a
nonsteady state, and so, the imaginary-time sta-ICWF cannot be
applied here to prepare the initial wave function. Instead, we
stochastically sample the initial probability density |Ψ0(r, R)|

2

with Nc trajectories {r
α(0), Rα(0)} that are used to construct

CWFsϕr
α(r, 0) and ϕR

α(R, 0), as defined in eq 23. In this process,
we respected the symmetry of the underlying initial state by
symmetrizing the initial particle placement (and thereby
complementarily symmetric slice CWFs) around the Ry, ry
axes, meaning for each particle Rα = (Rx

α, Ry
α), we set Rα+1 =

(−Rx
α, Ry

α).
These CWFsϕr

α(r, 0) andϕR
α(R, 0) are then used to construct

the ansatz in eq 30, i.e.

∑ ϕ ϕΨ =
α

α
α α

=
r R r Rt C t t t( , , ) ( ) ( , ) ( , )

N

r R
1

c

(62)

with an initial C vector that is obtained using

= −C G(0) 1 (63)

where G is the vector containing the overlap between the initial
wave function and the CWFs, i.e.

∬ ϕ ϕ= Ψα
α α* *r R r RG r rd d ( , 0) ( , 0) ( , )r R 0 1 2 (64)

Given C(0), and ϕ1
α(r1, 0) and ϕ2

α(r2, 0) for an ensemble of
sampling points {r1

α(0), r2
α(0)}, these objects are then

propagated according to the dyn-ICWF equations of motion
in eqs 29 and 31.
In the dyn-ICWF, the pseudo-inverse tolerance for  was set

to 10−8 and the evaluation matrix elements of the electron−
nuclear interaction potential term of eq 40

∬ ϕ χ ϕ χ=αβ
α α β β* * R r r R r rWd d ( ) ( ) ( ) ( )en (65)

was accelerated using a singular value decomposition (SVD) to
break up the four index potentials Wen(rx, ry, Rx, Ry) into a sum
over electronic and nuclear two index vectors

∑ σ=
=

σ

W r r R R u r r v R R( , , , ) ( , ) ( , )x y x y
l

N

l l x y l x yen
1 (66)

By tossing out σl < 10
−4, we found that we were able to retain the

accuracy of this potential to within a numerically tolerable limit
with a speedup in computation time at a factor between 3.6 and
4.3 depending on hardware. A cubic interpolation to a grid twice
as fine was used to smooth the images of the nuclear density
In Figure 14, we show the first and second excited BOPESs

associated with the extended Shin−Metiu model introduced in

Section 6.3. dyn-ICWF results for Nc = {1024, 1600, 2400} are
shown in Figure 15. Due to the finesse of the interference pattern
and its fragility with respect to the symmetry of the problem, the
number of CWFs required to reproduce quantitatively the exact
dynamics is relatively high compared to previous examples in
Appendices C.1 and C.2. And yet, note that while theNc = 1024

Figure 13. Top panel: population dynamics of the first two adiabatic
electronic states P0,1(t). Solid black lines correspond to the exact
numerical results. Solid blue and red lines correspond to dyn-ICWF
results with (Nc,M) = (16, 1) for the ground and first excited adiabatic
populations, respectively. Bottom panel: decoherence dynamics
between the ground state and first excited adiabatic electronic states,
i.e.,D01. Solid black lines correspond to exact results. The solid blue line
corresponds to dyn-ICWF results with (Nc, M) = (16, 1).

Figure 14. BOPESs for the first two excited states with electronic
quantum numbers ζ = 1 (lower surface) and ζ = 2. As mentioned in the
main text, the initial nuclear state is initialized as a Gaussian centered at
R = (0, 0.4) on the lower surface.

Figure 15. Convergence of the interference pattern arising from the CI
with respect to the number of basis elements, Nc. The computational
time for each fourth-order Runge−Kutta time step scales as

=t N(( ) )c
a for a = 1.59 ± 0.06.
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result do not reproduce the interference pattern accurately, they
do qualitatively capture the nuclear dynamics by avoiding the
forbidden region surrounding the conical intersection. This is in
contrast to the mean-field result (Figure 7 of ref 101), which fails
to capture this qualitative feature of the nuclear dynamics.

D. Implementing the ICWF Method
We discuss here the general workflow associated with the
different versions of the ICWF method, as well as some general
remarks concerning their scalability with respect to the number
of degrees of freedom.
Figure 16 illustrates all possible situations of interest. State

preparation using imaginary-time sta-ICWF for equilibrium
states is described in the top-left panel. A number Nc of particle

positions xα(0) are sampled from educated guesses of the single-
particle reduced probability densities. These positions are used
to construct the Hermitian Hamiltonians of eq 8 and a number
M of eigenstates. The randomly initialized vector of coefficients
Cγ(0) of the Ansatz in eq 9 is then propagated in imaginary time
until convergence according to eqs 12−14. At this point, any
(equilibrium) property of interest can be evaluated using eq 15
and 48 and 49.
The simulationmay continue if the perturbation of an external

agent is included. Thereafter, state propagation can be carried
out using real-time sta-ICWF (bottom left) or dyn-ICWF
(bottom right). As explained in the main text, if one chooses to
propagate according to the sta-ICWF equation of motion (eq

Figure 16. Flowchart of the ICWF method. The flowchart illustrates all possible situations of interest, viz., state preparation using either imaginary-
time sta-ICWF for equilibrium states (top-left) or direct matrix inversion for nonequilibrium states (top right), and state propagation using real-time
sta-ICWF (bottom left) or dyn-ICWF (bottom right).
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21) together with eqs 13 and 14, a sufficient number of excited
CWF states, γ > 0 in eq 9, for xα(0) covering some anticipated
range of motion for the dynamics must be considered.
Alternatively, in cases where the time-dependent wave function
is expected to stray far apart from the initial sta-ICWF basis, one
may choose to address the dynamics using a time-dependent
CWF basis as in eq 30 and the corresponding equations of
motion in eq 29, together with eqs 31 and 32 and 13 and 14. At
this point, any (nonequilibrium) property of interest can be
again evaluated using eq 15 together with eqs 48 and 49.
Finally, note that in cases where one aims to study a certain

dynamics that is triggered by some predefined out-of-
equilibrium initial state, obtaining the initial coefficients C(0)
is done through direct matrix inversion (top right). Afterward,
the dynamics must be simulated using the dyn-ICWF algorithm
described above.
Importantly, at this level of approximation, the ICWFmethod

is a wave function approach. That is to say that, while the simple
sum-of-product form that we employed for our ansatz in Figure
16 can be made more efficient by introducing a tensor network
representation for the expansion coefficients (such as matrix
product states or hierarchical Tucker formats), an exponential
scaling is not expected to be circumvented without introducing
any further approximation.
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■ ADDITIONAL NOTES
aThis has been discussed at length in the literature. A general
and very elegant discussion on the various ways the body-fixed
frame can be chosen is given in refs 74 and 75.
bBoth procedures lead to identical equations of motion due to
the only time-dependent variational parameter being the
expansion coefficients.
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5 | Simulating Vibronic Spectra without Born-
Oppenheimer Surfaces

The problem with wavefunction dynamics ultimately lies in its non-locality, which subsequently
requires information about the coupling between the component parts of the system for all
possible configurations. Thus the only way to truly scale simulations beyond small molecules is
to have a quasi-local representation of one of the subsystems, i.e. treating their constituent parts
like point particles. In the subsequent discussion, and in paper II we will treat the electrons
as the quantum mechanical subsystem and the nuclei as the classical-like subsystem, but it’s
important to note that this approximation can be done between other component subsystems. In
particular one can treat the cavity modes and nuclear subsystem semi-classically simultaneously,
with both coupled to a quantum mechanically treated electronic system [148–150].

When treating the nuclei semi-classically, oftentimes the forces dictating their evolution come
from BO derived PESs, and the electronic system is constrained to evolve between these elec-
tronic states. In contrast, we want to understand what can be captured when the electronic
system is represented on a real-space grid, with the nuclear evolution being dictated by mean-
field forces. Doing so, we are free to drive the electronic system in real-time to any complicated
superposition of excited states desired. Simultaneously the nuclei are free to explore any part
of the system phase space. Such a framework allows, in principle, for the study of driven phase
transitions involving modulation of electronic properties through strongly anharmonic nuclear
motion or large scale nuclear rearrangement through electronic system excitation. Furthermore,
since the mean-field Ehrenfest dynamics of nuclei are widely implemented in real-time dynamics
codes, any simulation protocal based on it can be widely adopted. However, given the impor-
tance quantized nuclear behavior can play in such phenomena [80, 151], it’s important to know
whether such effects can be captured, and what limitations arise from the real-space grid and
mean-field approach. Thus in paper II we systematically study the capacity of mean-field semi-
classical dynamics to recover quantized nuclear effects by starting with the simplest possible
case of dynamical electron-nuclear coupling, vibronic absorption.

First in this chapter we provide a brief overview of semi-classical dynamics approaches, and
pay particular attention to the class of algorithms derived from Quantum-Classical Liouville
Equation as a starting point. A small portion of what follows is adapted from the SI section
MTEF Equation of Motion from paper II.

5.1 Semi-Classical Dynamics

There are a number of ways that one can go about treating the nuclei like particles while
treating the electronic system quantum mechanically, but the common challenge to all of them
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5.1 Semi-Classical Dynamics

is reconciling the fact that the electronic system can be in a quantum superposition between
different states, while the nuclei cannot. Quantum mechanically, it makes sense to speak of a
nuclear wavepacket evolving under the forces of a given electronic state n. In the Born-Huang
expansion, we can envision this combined state as the electron-nuclear wavepacket |χn⟩ ⊗ |Φn⟩.
Through the adiabatic theorem one can also think of a classical particle responding to the
forces from a single electronic state which instantly adjusts to the nuclear motion, analogous
to replacing |χn⟩ with a Dirac delta. However, in a fully quantum mechanical picture, one can
construct the full system state out of a superposition of electron-nuclear wavepackets, and the
effects of all of these distinct electronic configurations manifest in the dynamics of the nuclear
subsystem’s behavior simultaneously. In contrast, a point particle has a single position in its
classical phase space defined by its position and momentum, and therefore must evolve according
to a single force. One popular solution to this problem is the notion of ‘surface hopping’ such as
the Fewest Switches Surface Hoppping (FSSH) algorithm [152], in which a collection of nuclear
trajectories {Ri,Pi; i = 1, . . . N} evolve adiabatically on a given surface Un(R):

Ṙi(t) = M−1Pi(t)

Ṗi(t) = −∇RUn(R)
∣∣
Ri(t).

(5.1)

When a given trajectory approaches a region with strong NACTs it will probabilistically switch
surfaces (hop). By propagating an ensemble of trajectories, if the surface hopping probabilities
are constructed appropriately, a pragmatic simulacrum of the branching paths of the quantum
dynamics can be attained. While the equations of motion can be motivated by integrating
the classical Lagrangian alongside a time dependent phase [25, 153], the probabilistic switching
between surfaces is an ad-hoc choice which is constructed in an attempt to maintain detailed
balance (microscopic reversibility) while minimizing hopping. In combination with on-the-fly
evaluation of BOPESs and NACTs, surface hopping approaches such as Ab-Initio Multiple
Spawning (AIMS) – which dresses the trajectories in gaussian wave packets – are among the
most popular choices for ab-initio non-adiabatic molecular dynamics simulations [22, 25]. Nu-
clear quantum effects such as zero-point energy and tunneling can also be included through
path integral molecular dynamics approaches such as centroid molecular dynamics or ring poly-
mer molecular dynamics (RPMD) [37, 154–156]. These methods are based on an approximate
mapping between the imaginary time Feynman path integral and a chain of copies of the clas-
sical system, connected by temperature dependent springs, which capture the delocalization of
the nuclear system. In the limit of infinite copies and harmonic potentials this becomes exact.
Through a Kubo-transformation, these methods can be used to calculate the real-time dynamics
of systems in the short-time limit [154] and RPMD can be extended to non-adiabatic dynamics
through inclusion of surface hopping [157, 158].

In general the treatment of the nuclear system via an ensemble of classical-like trajectories will
lead problems of over-coherence. This can be understood in the Born-Huang ansatz as a failure of
the nuclear states on different surfaces, |χn⟩, to cleanly separate following an interaction between
BOPESs such that the system remains in a coherent superposition between different electronic
states, i.e. ⟨χn(t)|χm(t)⟩ ̸= 0, in regions of the nuclear configuration space with little coupling
between these two surfaces [159]. There are techniques for reducing such problems [160], and in
fact a framework exists that allows for a systematic hierarchy of semi-classical dynamics which
approaches more exact dynamics, while not necessarily relying on the BO picture.
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5 Simulating Vibronic Spectra without Born-Oppenheimer Surfaces

The Quantum Classical Liouville Equation

Instead of starting with the assumption of a classical like-trajectory we can instead begin with
an exact reformulation of the quantum mechanical system through the phase-space represen-
tation. Introduced by Eugene Wigner in 1932 [161] the Wigner transformation maps the state
of a quantum system to a quasi-probability distribution in both position and momentum si-
multaneously. By similarly transforming operators, the expectation value of observables can be
obtained by integrating over phase space [162]. Restricting the Wigner transform to just the
nuclear degrees of freedom allows for systematic treatment of the electron-nuclear correlation.
Starting from a density matrix representation of the full system, ρ̂, we perform a Wigner trans-
formation over the nuclear subsystem, producing a unique mapping onto a nuclear phase space
X = (R,P) ∈ R2dNn for Cartesian dimension d. The partial Wigner transform for ρ̂ is defined
as:

ρ̂W (X) = 1
(2π)dNn

∫
dSeiP·S ⟨R − S/2|ρ̂|R + S/2⟩ , (5.2)

for dummy variable S. Note that ρ̂W (X) retains a Hilbert space (operator) character over the
electronic degrees of freedom, dependent on the continuous nuclear phase space parameters. In
general, developing equations of motion for ρ̂W (X) requires taking the partial Wigner transfor-
mation of the Liouville von-Neumann equation of motion for ρ:

∂ρ̂W

∂t
= −i

(
(Ĥρ̂)W − (ρ̂Ĥ)W

)
(Ĥρ̂)W = ĤW exp

( 1
2i
←→
Λ
)
ρ̂W

←→
Λ =←−∇P ·

−→
∇R −

←−
∇R ·

−→
∇P

g exp
(
κ
←→
Λ
)
f =

∞∑
s=0

κs

s!

s∑
t=0

(−1)t

(
s

t

)[
∂s−t

R ∂t
P f

] [
∂t

R∂
s−t
P g

]
.

(5.3)

The last line defines the ‘Moyal product’ also known as the ‘star product’ [163]. Up to this
point we have made no assumptions, meaning that if one is able to calculate Eq.s (5.2) and (5.3)
exactly, then the any observable of interest could be calculated via:

⟨Ô(t)⟩ = Tr
[∫

dXρ̂W (X, t)ÔW (X)
]

= Tr
[∫

dXρ̂W (X)ÔW (X, t)
]
,

(5.4)

where the equation of motion for the Wigner transformed operator is the complex conjugate of
Eq. (5.3). Since this is exact it is also as difficult to deal with as the original problem. So we
make the first approximation, which is similar in spirit to the Born-Oppnehimer approximation
itself. By expressing the Poisson bracket operator Λ, in terms of the ratio of masses between
the nuclei and the electrons Λ = (m/M)

1
2 Λ′, and truncating the Moyal product of e(m/M)

1
2 Λ′ at

first order, one can arrive at the Quantum-Classical Liouville Equation (QCLE) [164, 165]:

i
∂

∂t
ρ̂W (X) = −i[ĤW , ρ̂W ] + 1

2
(
{ĤW , ρ̂W } − {ρ̂W , ĤW }

)
, (5.5)

where {A(X), B(X)} = A(X)
←→
Λ B(X) refers to the normal classical Poisson bracket. This

expression has also been shown to be related to ‘linearization approaches’ such as Linearized
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Semi-Classical Initial Value Representation (LSC-IVR) which approximate the path integral
representation of the time evolution of an operator [166]. The QCLE and LSC-IVR expressions
form a starting point for a large variety of semi-classical dynamics methods, and while in principle
Eq. (5.5) can be resolved in an arbitrary electronic basis |ϕi⟩ and the generalized phase space
distributions ρW,ij(X) = ⟨ϕi|ρ̂W (X)|ϕj⟩ can be directly propagated on a phase space grid [167],
this still scales exponentially with with the number of quantum and classical degrees of freedom
[168], meaning that almost all practical integration methods have been based on ensembles of
trajectories.

There exists a hierarchy of solutions to the QCLE with regard to the degree of correlation be-
tween the electronic and nuclear degrees of freedom. At the highest level of correlation there are
direct integration schemes where the electronic degrees of freedom are resolved in the adiabatic
(BO) basis and branching ensembles of trajectories transition between surfaces [169]. The com-
putational overhead of this approach is prohibitive, and there are methods like the Generalized
Quantum Master Equation (GQME) [170] and its mean field version [171], which retains a finite
memory kernel of the quantum-classical interaction to alleviate the complexity. There are also
schemes to explicitly entangle otherwise independent trajectories together with a non-local full
system-state dependent force [172] and approaches based on further mappings of the electronic
system to auxillary variables with such as the Poisson Bracket Mapping Equation [173–175] and
the Forward-Backward Trajectory Solution (FBTS) [74, 176, 177] which further disregard some
portions of the fully coupled dynamics. Work on novel trajectory based integration schemes is
very much on going; for a recent review see [178]. These methods are important because they
can serve as a formal framework to understand exactly which components of electron-nuclear
correlation are lost as one makes more and more assumptions, and conversely provide inspiration
for how to build these back in when starting from the mean-field approach: Multi-trajectory
Ehrenfest (MTEF).

5.2 Multi-Trajectory Ehrenfest

Whereas many of the above mentioned methods have been primarily applied to models meant
to test non-adiabatic coupling scenarios such as the spin-boson, Su-Schrieffer-Heeger [74], Shin-
Metiu, and Tully’s models [152], the simplicity of MTEF allows for its use in any model or
ab-initio simulation. To derive MTEF equations of motion from the QCLE, one takes the mean
field approximation by assuming that the full system can be written as a sum of electron-nuclear
correlated (entangled) and uncorrelated (factorizable) parts:

ρ̂W (X, t) = ρ̂e(t)ρn,W (X, t) + ρ̂corr,W (X, t). (5.6)

The key step is neglecting the contribution of the correlated part in the dynamics. Note that
while the ensuing dynamics do not explicitly treat the effect of electron-nuclear correlation, the
initial state generally is correlated, and this can implicitly affect the dynamics. Under this
approximation, the electronic density matrix at all times can be written as:

ρ̂e(t) = Trn

[
ρ̂W (t)

]
=
∫
dXρ̂W (X, t), (5.7)
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5 Simulating Vibronic Spectra without Born-Oppenheimer Surfaces

and the nuclear phase space probability distribution is ρn(X, t) = Tre[ρ̂W (X, t)], where Trs refers
to the trace over subsystem s. By assuming the system is factorizabile at all times, the equations
of motion resulting from the QCLE can be exactly solved via the method of characteristics
through a sufficiently large ensemble of independent trajectories Xi each sampled from ρn,W (X)
[179]. Formally this corresponds to ρn,W (X, t) = 1

Nt

∑Nt
i δ(X

i
−X(t)), where Nt is the number

of trajectories in the ensemble. Each trajectory evolves according to Hamilton’s equations of
motion generated from the mean-field effective Hamiltonian,

∂tRi =
∂HEff

n,W

∂Pi
, ∂tPi = −

∂HEff
n,W

∂Ri

HEff
n,W = Hn,W (Xi(t)) + Tre

[
Ĥen,W (Xi(t))ρ̂i

e(t)
]
.

(5.8)

Where Hn,W and Ĥen,W refer to the partially Wigner transformed nuclear and electron-nuclear
coupling operators, respectively. The electronic density associated with each trajectory, ρi

e(t),
evolves according to the following commutator:

d

dt
ρ̂i

e(t) = −i
[
Ĥe + Ĥen,W (Xi(t)), ρ̂i

e(t)
]
. (5.9)

With this integration approach calculating the expectation value of observables via Eq. (5.4)
becomes:

⟨O(t)⟩ = 1
Nt

Nt∑
i=1

Tre

[
ÔW (Xi(t))ρ̂i

e(t)
]
. (5.10)

In summary, to perform an MTEF calculation the only required input is an approximate initial
nuclear density matrix ρ̂n, which one then Wigner transforms via Eq. (5.2) to give ρn,W . A key
point is that at this stage no constraints have been made on the electronic system. We only
require a basis which spans the space of the electronic Hamiltonian, and a particular choice of
the initial electronic density matrix in Eq. (5.6). For example in thermodynamic equilibrium
at a given temperature T , for a given nuclear configuration Xi, one could treat the electronic
system as being in the canonical ensemble initialized on the BO states:

ρ̂i
e = 1

Z

∑
n

f(Un(R
i
);T ) |Φn(R

i
)⟩ ⟨Φn(R

i
)| , (5.11)

where f(E;T ) is the Fermi-Dirac distribution, and Z is the partition function. We utilize such
an approach in paper III. The electronic system can also be initialized in a non-equilibrium
configuration, in either case the steps to performing an MTEF calculation are:

1. Sample {Xi(0)} ∼ ρn,W , and for each Xi initialize ρ̂i
e(0).

2. Propagate ρ̂i
e(t) and Xi(t) simultanesouly according to Eq. (5.9) and Eq. (5.8). This can

be done for example with Runge-Kutta integration for the electronic degrees of freedom
alongside Velocity Verlet for X. For pure electronic states Eq. (5.9) can of course be
replaced by the Schrödinger equation.

3. Calculate observables at each desired time step. Since the trajectories are completely
independent, each contribution on the right hand side of Eq. (5.10) can be calculated and
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stored in parallel and post-processed.

Given the exponential scaling at the root of why we’ve come to this approximated method in
the first place, in general it’s unreasonable to expect that one will be able to produce an initial
nuclear state which takes into account coupling with electronic system at all orders of interaction.
When available and applicable, one can in principle take the BO vibrational states |χnν⟩, which
of course encode the effects of the electronic state up to the adiabatic approximation via the
BOPES. However, one can also get a low order approximation to the BOPES through a harmonic
approximation around the lowest energy configuration. This of course leads to the normal mode
decomposition, where the nuclear configuration space (for 3 Cartesian dimensions) R ∈ R3Nn is
linearly transformed to the (non-translational, non-rotational) normal mode coordinates Q(R) ∈
R3Nn−6. Each normal mode can be treated as an independent quantum harmonic oscillator
(QHO), giving the initial nuclear state as:

χν(R) ≈ χ1(Q1)⊗ . . .⊗ χ3Nn−6(Q3Nn−6). (5.12)

The Wigner transform of the quantum harmonic oscillator, its excited states and temperature
dependence is well known [162, 180] and require only the harmonic frequency as input, a quantity
that is easy to calculate for arbitrary (non-floppy) systems using Density Functional Perturbation
Theory.

There are many paths to the equations of motion (5.9) and (5.8) [181, 182], and subsequently
there is confusion throughout the literature as to what ‘Ehrenfest dynamics’ means. Oftentimes,
the term Ehrenfest is used when initializing the nuclear degrees of freedom in the equilibrium
geometry with zero velocity or taking an arbitary displacement of the nuclei [183]. As we
demonstrate in paper II and paper III, the former choice (Single Trajectory Ehrenfest – STEF)
generally fails to account for the effects of the nuclear subsystem on the electronic system, while
the latter leads to strong artifacts in the spectrum. Despite the manner in which they’re used,
the Ehrenfest equations of motion are ubiquitous in real time dynamics literature, having been
implemented with the electronic system treated through Hartree-Fock [184], CASSCF [185],
TDDFT [186–190], tight-binding TDDFT [191] and NEO theory [192] to name a few. Thus the
MTEF algorithm can be adapted across the ab-initio real time dynamics community at the cost
of running a series of trajectories in parallel rather than just a single one as is often done.

5.3 Scientific Contribution and Outlook

In paper II we explore the application of MTEF when the electronic system is treated through
a real-space basis using both an H2, and in the real-space real-time TDDFT code Octopus [82].
We calculated the vibronic absorption of the H2 model and the benzene molecule with TDDFT,
utilizing an non-perturbative real-time dynamics approach via an instantaneous electic field or
‘kick’:

E(t) = κδ(t− 0+). (5.13)

Being instantaneous in time, this electric field has uniform spectral weight, thereby inducing
an electronic transition to every allowed electronic state instantaneously. By setting the field
strength κ << 1 [a.u.] we restrain the response to be in the linear regime, though this can
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5 Simulating Vibronic Spectra without Born-Oppenheimer Surfaces

also be used to study non-linear response properties by increasing the magnitude of κ [193].
This method has been used in real time dynamics to study the out-of-equilibrium response of
systems since at least the 70s in nuclear dynamics [194], and has been a standard technique for
calculating spectra in TDDFT since 1996 [65].

In paper II we demonstrate that by including the quantized nuclear subsystem through MTEF,
the electronic absorption spectra is split and demonstrates vibronic peaks, which as explained
in section 3.2.1 is usually attributed to quantized vibronic states. We also demonstrate that
ICWF, being a more strongly correlated method, can capture this effect with greater numerical
accuracy. Throughout the paper and the SI we systematically study the origin of the defects
in the MTEF spectral lines in the H2 model and subsequently found that as a consequence
of exciting the system perturbatively while using mean field forces, the dominant contribution
to the nuclear forces comes from the initial electronic state. Thus the spacing of the vibronic
peaks corresponds to the vibrational states of the initial electronic surface, rather than the
target electronic state. Naturally this implies that with strong driving and similar BOPESs
between excited states, the MTEF results will become more quantitatively accurate, which we
demonstrate in the SI. We conclude the paper with a calculation of the vibronic absorption
spectrum of the benzene molecule, finding significant reweighting of the spectrum with regards
to STEF and making a qualitatively better agreement with experiment.

Paper II conclusively demonstrated that treating the electronic system quantum mechanically
in the real-space basis and nuclear subsystem via MTEF can capture nuclear quantization effects
arising from dynamical interactions between the electronic and nuclear subsystems. We demon-
strated that by introducing methods which account for dynamical correlation the accuracy can
be improved, giving motivation for incorporating methods from the hierarchy of QCLE ap-
proaches into the real-space representation. Finally we showed that, being a mean field method,
the degree of error in MTEF is proportional to the degree to which the forces of the nuclear
subsystem change upon reorganization of the electronic configuration. For molecules such as H2
or benzene, given the small number of electrons in the system, it’s reasonable to expect that the
character of forces on the nuclear subsystem would be highly sensitive to rearrangements of the
electronic structure.

Thus for extended systems it’s also reasonable to expect that the character of forces on the
ionic system would be relatively unperturbed by modest excitation densities. Given that the
electronic system in the real-space basis can capture any excited state properties (up to the grid
spacing), alongside the fact that MTEF scales favorably with system size, allows for dynamic
rearrangement of nuclei, and can be easily integrated into existing simulation workflows, this
method offers a promising intersection of capabilities to simulate non-equilibrium phenomena.
Thus in paper III we extend MTEF to periodic systems, and return to the question of the effects
of static disorder vs dynamics in the context of the system response to strong laser driving.
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ABSTRACT: We show how linear vibronic spectra in molecular systems can be
simulated efficiently using first-principles approaches without relying on the
explicit use of multiple Born−Oppenheimer potential energy surfaces. We
demonstrate and analyze the performance of mean-field and beyond-mean-field
dynamics techniques for the H2 molecule in one dimension, in the later case
capturing the vibronic structure quite accurately, including quantum Franck−
Condon effects. In a practical application of this methodology we simulate the
absorption spectrum of benzene in full dimensionality using time-dependent
density functional theory at the multitrajectory Ehrenfest level, finding good
qualitative agreement with experiment and significant spectral reweighting
compared to commonly used single-trajectory Ehrenfest dynamics. These results
form the foundation for nonlinear spectral calculations and show promise for
future application in capturing phenomena associated with vibronic coupling in
more complex molecular and potentially condensed phase systems.

Simulating vibronic effects from first-principles calculations
is one of the central goals in theoretical spectroscopy that

has implications in chemistry, physics, and materials science.
The involvement of nuclear vibrational quantum states during
electronic transitions plays a decisive role in determining the
spectral features associated with these processes. This has been
well-established by the utility of the Franck−Condon principle,
for example, which represents an early paradigm for the role of
nuclear quantum effects in electronically nonadiabatic
processes. Describing this interplay between the electronic
and vibrational degrees of freedom requires a quantum
mechanical description that is both accurate and scalable to
relatively large system sizes. One popular method to calculate
vibronic spectra is to take a sum-over-states approach, where
matrix elements of the transition operators between the states
involved in generating the desired spectral signal are
constructed. In this approach the states of interest can be
represented using the Born−Oppenheimer (BO) basis; one
must already have some a priori knowledge of the BO states
that are involved, along with the associated potential energy
surfaces and nonadiabatic couplings.
An alternative strategy to summing over states in the BO

basis is to take a coordinate space perspective and construct
the response function for the system of interest from direct
time-propagation of the system in that picture.1,2 This
invariably requires some level of approximation in the
representation dynamics of the electronic and nuclear degrees
of freedom, with different consequences for their coupling
depending on the method chosen. The mixed quantum−
classical Ehrenfest approach is a practical approximation to the
fully quantum mechanical dynamics of the system, and despite

its approximate dynamics, provides a formally exact representa-
tion of the quantum equilibrium structure of the correlated
electronic and vibrational degrees of freedom via a multi-
trajectory Ehrenfest (MTEF) simulation through the use of the
Wigner representation.3−5 In this case, the Wigner transform
maps the vibrational quantum states onto phase space
distributions of continuous position and momentum coor-
dinates which can be sampled by an appropriate Monte Carlo
procedure to capture the quantum equilibrium structure of the
problem. The limitations of the Ehrenfest approach and other
independent trajectory semiclassical methods are well-
known,6−10 and while there have been many attempts to
ameliorate these shortcomings, with some exceptions,11,12

most rely on the BO framework in their implementation.13−17

In this work we take a different approach to go beyond mean-
field theory based on the recently introduced interacting
conditional wave function (ICWF) formalism, which is able to
capture correlated electronic and nuclear dynamics.18−21 We
apply MTEF and ICWF dynamics to an exactly solvable one-
dimensional H2 model and show that these methods are able
to recover electron−nuclear correlations in linear vibronic
spectra without the need to calculate multiple BO surfaces. In
addition, we show that the MTEF method can be easily
extended to ab initio nonadiabatic molecular dynamics
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simulations by calculating the vibronic spectra for benzene,
where we find good agreement with experimental results.
The linear spectrum of a system is given by the Fourier

transform of time correlation function (TCF) CAB(t) = ⟨[Â(t),
B̂]⟩ of the transition dipole operator, μ̂, Cμμ(t) = ⟨μ̂(t)μ̂(0)⟩1,22

(unless otherwise stated all expressions are in atomic units):

I
c

t t

c
t Tr t t

( )
4

3
d e ( ),

8
3

d e ( ( ) ( 0))

t

t

i

0

i
eq

∫
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ω πω μ μ

πω μ ρ μ

= ⟨[ ̂ ]̂⟩

= ℜ ̂ ̂ ̂ =

ω

ω

−∞
∞

∞
(1)

where the trace occurs over nuclear and electronic degrees of
freedom; ρ̂eq is the equilibrium density matrix for the coupled
system, and we evolve μ̂(t) in the Hilbert representation.
Traditionally, vibronic spectra are explained by invoking the
Franck−Condon approximation in the BO picture, where the
electronic system is instantly excited, thus promoting the
unperturbed ground-state nuclear system to a different
electronic surface. If one has access to the electronic states
involved in a particular spectral range then the contributions to
the spectrum due to each electronic transition can be identified
by resolving the transition dipole operator in the basis of the
electronic states of interest, and the vibronic side peaks of that
transition can be calculated by propagating the initial state’s
nuclear subsystem under the effect of the nonequilibrium
electronic occupation. When it is feasible to resolve the nuclear
wave function dynamics, this can be one of the most accurate
methods of calculating molecular vibronic spectra.23,24

Although resolving eq 1 in the BO framework is a powerful
analysis tool, it is computationally impractical for systems with
many nuclear degrees of freedom, particularly when one
desires spectra over multiple surfaces. One can bypass this
computational bottleneck by representing the system in a real
space basis and using the “δ-kick” method,25 which captures
electronic transitions to all dipole-transition allowed states
(resolved on the grid) within a single calculation by utilizing
the dipole response to a perturbative, but impulsive external
field Ĥfield = E(t)μ̂, with E(t) = κδ(t) and κ ≪ 1. Using first-
order perturbation theory, the dipole response ⟨Δμ(t)⟩ =
⟨μ(t)⟩ − ⟨μ(0)⟩ can be written in powers of the field1,2

t iTr t( ) ( ( ), (0) ) ( )I I
eq

2μ μ μ ρ κ κ⟨Δ ⟩ = [ ̂ ̂ ] ̂ + (2)

where μ̂I(t) is evolved in the interaction representation. Hence,
the linear response spectra may also be obtained via the
relation

C t
i

t( ) ( )
κ

μ= − ⟨Δ ⟩μμ (3)

provided the strength of the perturbing field, κ, is sufficiently
small. This δ-kick approach requires only the initial state of the
full system as input, followed by time propagation for a
sufficient duration so as to obtain the desired energy
resolution. Importantly, this technique can also serve as a
foundation for calculating nonlinear optical response spectra.26

While the methods described above are formally equivalent,
differences between the calculated spectra can arise when
approximations are made. Here we briefly describe two
methods for performing coupled electron nuclear dynamics
simulations: the quantum−classical mean-field MTEF method
and the ICWF formalism, which was designed to go beyond
the mean-field limit.

A typical approach to Ehrenfest theory is to assume a
separable electronic−nuclear wave function ansatz, take the
classical limit of the nuclear portion, and initialize the nuclei at
the equilibrium position with zero nuclear momentum.27,28

This single-trajectory Ehrenfest (STEF) method is often
employed when a mixed quantum−classical method is needed
to couple electronic and nuclear dynamics,29 in some cases
providing a stark difference in electronic dynamics compared
to fixed nuclei.30,31 Although attempts at capturing quantized
vibrational effects in STEF with the δ-kick method have been
made,32 they can contain unphysical spectral features (see the
Supporting Information) which make them unsuitable for
application to nonlinear spectra
An alternative route to Ehrenfest is also possible in the

density matrix picture and proceeds via the quantum−classical
Liouville equation.33 The major difference is that this
representation results in a multitrajectory Ehrenfest picture of
the dynamics, where the initial quantum statistics of the
correlated system can, in principle, be captured exactly. Here,
we outline the evolution equations, and we offer more details
in the Supporting Information. The time evolution of the
reduced electronic density is

t
t i H t tX

d
d

( ) ( ( )), ( )e e,W
Eff

eρ ρ̂ = − [ ̂ ̂ ]
(4)

where the subscript W refers to the partial Wigner transform
over the nuclei; X = (R,P) is a collective variable for the
nuclear position R and momentum P, and the effective
electronic mean-field Hamiltonian is Ĥe,W

Eff (X(t)) = Ĥe +
Ĥen,W(X(t)), where Ĥe refers to the electronic portion of the
Hamiltonian and Ĥen to the electron nuclear coupling. The
nuclear dynamics is represented as an ensemble of N
independent Wigner phase-space trajectories, ρn,W(X,t) = 1/
N∑i

Nδ(Xi − Xi(t)), that evolve according to Hamilton’s
equations of motion generated from the effective nuclear
mean-field Hamiltonian
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The average value of any observable, ⟨O(t)⟩, can then be
written as

O t Tr O tX X X( ) d ( , ) ( , 0)e W W∫ ρ⟨ ⟩ = ̂ ̂
(6)

which can be evaluated by sampling initial conditions from
ρ̂W(X,0) and evolving the expectation value of the observable
according to the above equations of motion. Using this
dynamics method in conjunction with the BO basis
representation to evaluate eqs 1 and 4−6 ultimately leads to
the following equations of motion, with sums over BO states
denoted by a (see the Supporting Information for details)
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where ϵa(R) are the BO surfaces and daa′ are the nonadiabatic
coupling vectors (NACVs) between states a and a′.
In contrast to the previous expression, utilizing MTEF in the

real space δ-kick approach requires initializing the electronic
wave function as the BO eigenstate for each initially sampled
nuclear geometry. The δ-kick is applied and the electronic
wave function is propagated using the time-dependent
Schrödinger equation equivalent to eq 4 alongside the nuclei
according to eq 5. Calculating the spectrum via MTEF
dynamics in the BO picture is from here on referred to as
MTEF-BO, and calculating it via the δ−kick method is referred
to as MTEF-kick.
Moving beyond semiclassical dynamics, the formally exact

CWF method and its practical ICWF implementation are
recently developed methods which have shown to be able to
capture nonequilibrium correlated nuclear−nuclear and
electron−nuclear phenomena beyond the mean-field
limit.18−21 This approach is based on taking single-particle
slices (the CWFs) of the time-dependent wave function of the
full system; approximating the equations of motion for these
CWFs by the Hermitian components of the sliced Hamil-
tonian; and finally, in the ICWF extension, utilizing these
electron−nuclear CWFs as a basis of Hartree products in a
wave function ansatz.
Here we describe an implementation of this approach

utilizing the static and time-dependent variational principles
for the expansion coefficients in a static CWF basis. The basis is
chosen via sampling electronic and nuclear positions (rα, Rα),
α ∈ {1,···, Nc}, where r and R are understood to be collective
position variables, from initial guesses to the electronic and
nuclear densities. These are used to construct the Hermitian
limit of the CWF propagators18
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for a system with Ne electrons and Nn nuclear degrees of
freedom. Taking eigenstates of he

α(ri) and hn
α(Rl), denoted

ϕα(ri) and χα(Rl). respectively, as our (static) CWF basis we
write the following single-index, multiconfigurational, mixed-
species, wave function ansatz:

t C tr R r R( , , ) ( ) ( ) ( )
N

i

N

i
l

N

l

c e n∑ ∏ ∏ϕ χΨ =
α

α
α α

(9)

where we have taken a Hartree product of electronic and
nuclear CWFs for each degree of freedom. While the Hartree
product over electronic degrees of freedom and a single
expansion index has been sufficient for accuracy in applications
of ICWF so far, this ansatz can in principle be trivially
extended to a multi-index expansion and to have Fermionic
antisymmetry via inclusion of Slater determinants. We then
utilize the Dirac−Frenkel variational procedure34−36 to
develop equations of motion for C⃗(t), which leads to the
following standard evolution equation for the expansion
coefficients of a nonorthogonal static basis:

t
C i CS H

d
d

1⃗ = − ⃗−
(10)
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for the full molecular Hamiltonian Ĥ.
While the general form of this wave function ansatz is not

unique, the mixed-species CWF basis treats the electronic and
nuclear subsystems on an equal footing without relying on any
adjustable parameters, using the Hermitian limit of the
solutions to the conditionalized time-independent Schrödinger
equations.
The ground-state wave function is obtained from this

approach using imaginary time evolution,37,38 and the δ-kick
spectra (ICWF-kick) is calculated by applying the perturbative
field to the CWFs at time zero and recalculating the S and H
matrices, equivalent to propagating in the interaction
representation. In practice, S may be nearly singular, but its
inverse can be approximated by the Moore−Penrose
pseudoinverse.39 This “closed-loop” of initial state preparation
and time-propagation ensures that our ICWF approach is a
fully self-consistent method that increases in accuracy with
increasing Nc and requires no BO state information.
To investigate the performance of the MTEF and ICWF

approaches to vibronic spectral lineshapes we studied the
vibronic transitions in an exactly solvable one-dimensional
model system for molecular hydrogen.40−42 The total
Hamiltonian can be written in the center of mass frame in
atomic units as
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where μn = mp/2 and μe = 2mp/(2mp + 1) are the reduced
nuclear and electronic masses; R is the internuclear separation,
and ri are the electronic positions. We take the proton mass to
be mp = 1836. The electronic and nuclear degrees of freedom
were each resolved on grids for the numerically exact solution
and ICWF-kick approaches, while the MTEF-kick electronic
wave functions were time-evolved on the (r1, r2) grid, and the
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MTEF-BO information was calculated by solving the
electronic subsystem across the nuclear grid; see Computa-
tional Methods for more details. A kick strength of κ =
10−4a0

−1. was sufficient to generate the kick spectra within the
linear response regime and, unless otherwise stated, a total
propagation time of 10 000 au ≈ 242 fs was used to generate
the spectra.
In Figure 1 we show mean-field spectra calculated both with

(MTEF-BO) and without (MTEF-kick) the use of multiple
BO surfaces for the absorption from S0 to S2 in comparison
with the numerically exact results. We see that in the BO

picture the MTEF method recovers the vibronic absorption
peak placement quite accurately for the first five peaks, with a
broadening occurring for the higher-energy peaks that leads to
a loss of structure. This broadening of the spectral signal is due
to the well-known fact that the MTEF dynamics does not
preserve the correct quantum statistics and thus cannot fully
capture the electron−nuclear correlation in the problem (see
the Supporting Information for a detailed discussion of this
issue). The prepeak features in Figure 1b are also unphysical
artifacts of MTEF. The MTEF-BO spectra were converged to
within graphical accuracy using N = 50 000 trajectories,

Figure 1. 1D H2, S2 ← S0 spectra calculated via the MTEF-TCF, MTEF-kick, and STEF-kick approaches, with the exact peak placements overlaid
as dashed vertical lines. Spectral cross sections are reported in square Bohr radii a0

2. For clarity the STEF-kick spectrum has been multiplied by a
factor of 0.175 to match the scale of the MTEF-kick results.

Figure 2. S0 ← S2 spectra compared between the MTEF-TCF, MTEF-kick, and STEF-kick approaches, with exact peak placement overlaid as
dashed vertical lines. MTEF nuclear initial conditions are sampled from the lowest-lying vibrational state on S2. The sign of all spectra here is
inverted for ease of comparison to other figures, and for legibility the STEF-kick spectrum was multiplied by a factor of 0.4 to match the MTEF-
kick spectra maximum.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.1c00073
J. Phys. Chem. Lett. 2021, 12, 3074−3081

3077



although an ensemble size of approximately N = 500−1000
also yields reasonable results.
Focusing on the MTEF-kick results in Figure 1c, we see that

this approach recovers vibronic side peak structures again
without any BO surface information, albeit with inaccurate
spacing, while STEF-kick captures only the vertical electronic
transition from the minimum of the S0 surface. The average
peak spacing in the MTEF-kick spectra is approximately 0.32
eV; this corresponds remarkably well with the natural
frequency of the harmonic approximation to the ground-state
surface expanded around the equilibrium geometry, which is
also 0.32 eV in this case. This result is unsurprising as the
electronic kick induces a very small population transfer to the
upper surface proportional to the square of the kick strength,

which results in the mean forces on the nuclei in MTEF-kick
essentially corresponding to those of the initial state.
The influence of the initial state on the MTEF-kick spectra is

further demonstrated by analyzing the emission spectra in
Figure 2. The initial state here was chosen by hand as the
lowest-lying nuclear state on the S2 surface. Once again we see
that MTEF-BO recovers the peak placement quite well, while
the MTEF-kick data has a less accurate vibronic spacing.
Fitting the MTEF-kick peaks, we find an excellent
correspondence between mean spacing of the five lowest-
energy MTEF peaks and the excited surface natural frequency
of 0.21 eV. Although the nuclear dynamics within MTEF-kick
are primarily governed by the properties of the initial
electronic state, the electron−nuclear coupling modulates the
electronic linear response in a nontrivial manner, fundamen-

Figure 3. S2 ← S0 spectra of the ICWF-kick and MTEF-kick methods, with the exact peak placement overlaid as dashed lines.

Figure 4. Experimental vibronic spectra for the lowest-lying optical transitions of benzene46 compared to the MTEF and STEF kick spectra
calculated with TDDFT.
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tally changing the system response calculation compared to
simply averaging the electronic transition properties over the
equilibrium nuclear configuration, as is done in the nuclear
ensemble approach43 (see the Supporting Information).
For ICWF-kick, we found that Nc = 4096 and mixing the

three lowest-energy CWF eigenstates in roughly equal
proportion was sufficient to obtain quite accurate results. In
Figure 3 we demonstrate that the ICWF ansatz used in a
variational context achieves a much more accurate vibronic
spacing than the MTEF-kick approach, without the failing of
peak broadening or unphysical spectral negativity apparent in
the MTEF-BO results. The accuracy of these results under-
scores that the ICWF ansatz is a robust framework to capture
the electronic and vibronic quantum dynamics, being accurate
for not only the electron−nuclear correlation inherent to
vibronic spectra but also the electronic subsystem itself, which
in the MTEF results was solved exactly either on a grid or
using explicit BO state information. The deviation from the
exact results does grow with increasing energy, although this is
ameliorated with increasing Nc and can in principle be
eliminated at large enough values of Nc (see the Supporting
Information).
Finally we demonstrate the application of MTEF-kick to real

3D molecular systems using the ab initio Octopus44 real-space
time-dependent density functional theory (TDDFT)45 package
to calculate the linear vibronic MTEF-kick spectra of benzene.
The initial conditions for the nuclear subsystem were obtained
by calculating the normal-mode frequencies and dynamical
matrix of the molecule and sampling Wigner transforms of the
ground-state wave functions in the harmonic approximation
(see the Supporting Information for more details). The
adiabatic-LDA functional was used, along with norm-
conserving Troullier−Martins pseudopotentials, and the

trajectories were evolved for 201
eV
ℏ ≈ 132 fs with a time

step of t 0.0015
eV

Δ = ℏ ≈ 1 as. A kick strength of κ = 5 × 10−3

Å−1 was used to generate the kick spectra within the linear
response regime in this case, and the graphical convergence of
the MTEF results was found to be achieved with N = 500
trajectories.
In Figure 4, we compare the MTEF-TDDFT-kick results, its

STEF-TDDFT-kick counterpart, and gas-phase experimental
data.46 There is remarkably good agreement across the wide
energy range available from experiment, before molecular
dissociation pathways become available around 13.8 eV. Again,
this full linear absorption spectrum is obtained without
resorting to the calculation of individual transitions between
states as would be required in a BO-state-based calculation.
Principally, there is a significant spectral reweighting between
STEF and MTEF below 17.5 eV, above which the electronic
density of states is so high as to obscure the difference between
the two methods. In the inset of Figure 4, in the 7 eV region
corresponding to the energy range of the doubly degenerate,
dipole-allowed E Au g1

1
1

1← , π* ← π transition,31,47,48 the
STEF spectral weight is distributed across a much wider energy
range in the MTEF signal, encompassing the experimental
bands from 6 to 8 eV. The two STEF peaks at 8.5 and 8.95 eV
are also spread across the 8−9 eV range. It is reasonable to
expect that the broadening of the MTEF signal relative to the
experimental signal is due to the effects discussed above that
arise because of the mean-field treatment. In the Supporting
Information we also compare these results to the broadening

from the nuclear ensemble average calculation of the spectrum
and find good agreement, given the high density of electronic
states and many nuclear degrees of freedom in this system. By
comparison with the standard STEF dynamics results used in
large ab initio simulations, we see that utilizing multiple
trajectories with equilibrium quantum nuclear statistics
fundamentally changes the properties of the spectrum.
We have demonstrated that semiclassical MTEF simulations

can capture vibronic structure with the correct spectral sign in
the region of the transition. Moreover, we have shown how this
can be achieved without using multiple BO surfaces via the δ-
kick method and that the vibronic spacing calculated with the
MTEF-kick approach matches the profile of the initial state.
We have shown that utilizing a dynamics method that can
accurately capture the correlated electron−nuclear dynamics,
such as the ICWF method, in tandem with the δ-kick approach
allows one to accurately recover the vibronic spectra. Finally,
we demonstrated that MTEF-kick is easily applied to ab initio
molecular systems by simulating the vibronic spectra of
benzene and finding good agreement to experimental results.
These linear response results establish a solid basis for

further investigations into nonlinear response of field driven
molecular systems utilizing the practical and efficient MTEF
and ICWF techniques along with ab initio electronic structure
methods. Work in preparation by the present authors also
explores the utility of ICWF with electron−electron and
electron−nuclear correlated systems and explores the response
of these systems under nonperturbative electric fields.
Furthermore, we expect that MTEF-kick will improve in
accuracy for periodic systems, as changes in the electronic
configuration are often to likely produce smaller changes in the
nuclear forces than in molecular hydrogen. This makes this
method interesting to pursue in periodic systems in particular,
where there is a dearth of theoretical frameworks for ab initio,
nonpertubrative electron−nuclear coupling.49 Work in this
direction is in progress, as is the implementation of the ICWF
method within an ab initio framework for molecular and
periodic systems.

■ COMPUTATIONAL METHODS
In the 1D H2 model, the electronic coordinates are each
resolved on a 65a0 wide interval with spacing of 0.6a0, while
the nuclear grid extends to Rmax = 6.3125a0 with 0.0625a0
spacing. Quadratic complex absorbing potentials were also
added to the Hamiltonian to prevent reflection from the
simulation box edge (see the Supporting Information). To
generate the exact results we evolved the full wave function
under the δ-kick on the three-dimensional electron−nuclear
grid, while for MTEF-kick, the electronic subsystem’s
Schrödinger equation, dependent on Ri(t), was solved exactly
on the two-dimensional electronic grid for each trajectory. All
wave functions were time-propagated using a fourth-order
Runge−Kutta integration scheme with a time-step size of Δt =
0.05 au. For the MTEF trajectories, the nuclear degree of
freedom was propagated via a velocity Verlet type scheme with
the same time-step size.50 An exponential damping mask
function exp(−γt) was applied to all time-dependent signals in
the Fourier transform, and the damping factor was set to damp
the signal to 0.1% of its strength at the final time.
For the 1D H2 MTEF-BO results, the potential energy

surfaces ϵa(R) and μW
aa′ (R) were calculated on a nuclear grid

with ΔR = 0.02a0 up to Rmax = 8a0, fit to a cubic spline
function, and interpolated every 0.01ΔR. The NACV between
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S0 and S2 in this model is numerically zero. These quantities
were resolved for the first allowed dipole transition, between
the ground state (S0) and the second excited state (S2), and the
results were found to be well converged within about 5 × 104

trajectories.
For the MTEF-TDDFT-kick simulations we used a real

space grid formed from overlapping spheres of radius 8 Å
centered on the initial positions of the nuclei, with an isotropic
grid spacing of 0.16 Å, which was found to be sufficient to
converge the energies of the lowest-lying absorption lines. The
reported results were calculated on a hyperthreaded 16 CPU
core Xeon E5-2698 v3 requiring approximately 880 core hours
per trajectory. Being composed of independent trajectories the
cost of the MTEF method over the STEF simulation scales
linearly with the number of trajectories, requiring approx-
imately 440 000 core hours for graphical convergence at 500
trajectories.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00073.
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MTEF Equations of Motion

Starting from a density matrix representation of the full system, ρ̂, we Wigner trans-

form over the nuclear subsystem, producing a unique mapping onto a nuclear position

R and momentum P phase space X = (R,P), where R and P are collective variables

R = (R1, . . . ,RNn), P = (P1, . . . ,PNn), with Ri,Pi ∈ Rd. The partial wigner transform is

defined for any operator as

ρ̂W (R,P) =
1

(2π)dNn

∫
dXeiP·X 〈R− X

2
|ρ̂|R +

X

2
〉 , (1)

leaving a Hilbert space operator character over the electronic degrees of freedom, dependent

on the continuous nuclear phase space parameters. In general, developing equations of motion

for ρ̂W (R,P), (or any operator), requires taking the partial Wigner transformation of the

Liouville von-Neumann equation of motion for ρ:

∂ρ̂W
∂t

= −i
(

(Ĥρ̂)W − (ρ̂Ĥ)W

)

(Ĥρ̂)W = ĤW exp
( 1

2i
Λ
)
ρ̂W

Λ =
←−∇P ·

−→∇R −
←−∇R ·

−→∇P

g exp
(
κΛ
)
f =

∞∑

s=0

κs

s!

s∑

t=0

(−1)t
(
s

t

)[
∂s−tR ∂tP f

] [
∂tR∂

s−t
P g

]
.

(2)

Where the final line defines the “Moyal product” also known as the “star product”.1 By

expressing the Poisson braket operator Λ, in terms of the ratio of masses between the nuclei

and the electrons Λ = (m/M)
1
2 Λ′, and truncating the Moyal product of e(m/M)

1
2 Λ′ at first

order, one can arrive at the Quantum-Classical Liouville Equation (QCLE):2

i
∂

∂t
ρ̂W (R,P) = −i[ĤW , ρ̂W ] +

1

2

(
{ĤW , ρ̂W} − {ρ̂W , ĤW}

)
, (3)

where {A(R,P), B(R,P)} refers to the normal Poisson bracket.
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To derive MTEF equations of motion from the QCLE, one takes the mean field ap-

proximation by assuming that the full system can be written as a sum of correlated and

uncorrelated parts,

ρ̂W (X, t) = ρ̂e(t)ρn,W (X, t) + ρ̂corr,W (X, t), (4)

and then neglecting the contribution of the correlated part in the dynamics. Note that while

the ensuing dynamics do not explicitly treat the effect of subsystem correlation, the initial

state generally is correlated, and therefore is implicitly included in the dynamics.

Under this approximation, the electronic density matrix is

ρ̂e(t) = Trn

(
ρ̂(t)

)
=

∫
dXρ̂W (X, t), (5)

and the nuclear (quasi) probability phase space distribution is ρn(X, t) = Tre (ρ̂W (X, t)).

In the equations of motion resulting from inserting this approximation into the QCLE, the

evolution of the reduced Wigner density of the nuclear subsystem can be exactly represented,

via the method of characteristics, by a sufficiently large ensemble of multiple independent

trajectories, ρn,W (X, t) = 1
N

∑N
i δ(Xi −X(t)). Each trajectory evolves according to Hamil-

ton’s equations of motion generated from the mean-field effective Hamiltonian,

∂Ri

∂t
=
∂HEff

n,W

∂Pi

,
∂Pi

∂t
= −

∂HEff
n,W

∂Ri

HEff
n,W = Hn,W (Xi(t)) + Tre

(
Ĥen,W (Xi(t))ρ̂

i
e(t)
)
.

(6)

Where Hn,W and Hen,W refer to the partially Wigner transformed nuclear and electron-

nuclear coupling operators, respectively. The electronic density associated with each trajec-

tory , ρie(t), evolves according to the following commutator:

d

dt
ρ̂ie(t) = −i

[
Ĥe + Ĥen,W (Xi(t)), ρ̂

i
e(t)
]
. (7)
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The exact expression for the average value of any observable, 〈O(t)〉, can be written as

〈O(t)〉 = Tre

∫
dXÔW (X, t)ρ̂W (X, 0) = Tre

∫
dXÔW (X)ρ̂W (X, t)

=
1

N

N∑

i

Tre

(
ÔW (Xi(t))ρ̂

i
e(t)

) (8)

The mean field limit of this expression simple corresponds to evaluating the integral by

sampling initial conditions for an ensemble of independent trajectories from ρ̂W (X, 0), and

then generating the time evolution for each trajectory by approximating ÔW (X, t) by it’s

mean-field counterpart.

Following the sampling of an initial nuclear condition, Xi, from the Wigner distribution

associated to the nuclear subsystem wave function, the electronic system is initialised as:

(Ĥe + Ĥen,W (Ri))φa(r) = εa(Ri)φa(r), (9)

i.e. implicitly as the BO electronic state atRi. Under this scheme, the electronic subsystem’s

initial conditions are implicitly correlated with the nuclear subsystem’s quantum statistics.

In cases where the nuclear initial state is impractical to calculate exactly one may utilise

the normal modes of the molecular system, or phonon coordinates of a periodic system, to

treat the full nuclear wavefunction as a Hartree product of N uncoupled harmonic oscillators,

where N is the number of non-rotational and non-translational nuclear degrees of freedom:

χn(R) ≈ χ1(Q1)⊗ . . .⊗ χN(QN)

χi(Qi) =
∑

l

c
(i)
l χ

l
i(Qi).

(10)

With c
(i)
l referring to the occupation of the lth excited state of normal mode i with wave-

function, χli, and Qi(R) the normal mode coordinate. Formally, this is exactly equivalent to

taking a second order Taylor expansion approximation of the BO surface about the equilib-
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rium nuclear position R0:

Hnuc(R,P) =
∑

l

1

2Ml

P2
l +

∑

lm

1

2
(Rl −R0

l )
∂2VBO
∂Rl∂Rm

∣∣∣∣
R0

(Rm −R0
m). (11)

Defining the dynamical matrix, Hlm = 1√
Ml

∂2V
∂Rl∂Rm

1√
Mm

, and it’s diagonalizing unitary trans-

form, DTHD = Ω, DTD = 1, where Ωij = ω2
i δij, we construct the normal coordinate

transform for all non-rotational, non-translational (imaginary) ω2
i , (here we include ~ for

clarity):

√
Ml(Rl −R0

l ) =
∑

i

Dliqi ,
Pl√
Ml

=
∑

i

Dlisi

si =
√

~ωiSi , qi =

√
~
ωi
Qi,

(12)

such that we obtain the nuclear Hamiltonian in dimensionless normal mode coodinates:

H(Q,S) =
∑

i

~ωi
2

(S2
i +Q2

i ). (13)

Of course, the simple harmonic wave function solutions to the above Hamiltonian have

well known analytical expressions and are trivially Wigner transformed, the ground state

harmonic oscillator wavefunction’s Wigner function for instance is:3

W0(Q,S) =
1

π
exp

(
−S2 −Q2

)
. (14)

We can therefore sample these transforms for (Q,S) and then use eq. (12) to back transform

to from normal mode coordinates to cartesian coordinates.
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MTEF-BO Equations of Motion in the Born Oppenheimer

Basis

In deriving the MTEF equations of motion in the BO basis, we start by writing the molecular

hamiltonian in terms of position and momentum space operators for the electrons (light

particles), r̂, p̂ and nuclei (heavy particles) R̂, P̂ . These are again understood to be collective

variables.

Ĥ(r̂, p̂, R̂, P̂ ) =
1

2M
P̂ 2 + ĥe(r̂, p̂, R̂)

ĥ(r̂, p̂, R̂) =
1

2
p̂2 + V̂ (r̂, R̂)

V̂ (r̂, R̂) = V̂ee(r̂) + V̂en(r̂, R̂) + V̂nn(R̂).

(15)

We then utilise a position representation in the nuclear dof by expanding in the space of

nuclear position states 1R =
∫
dR |R〉 〈R|, leading to

Ĥ(R) = − 1

2M
∇2

R + ĥe(r̂, p̂,R) (16)

For a transition between two electronic states g and e, we can expand in the adiabatic basis

|φa(R)〉 , (a = g, e) which are dependent on the nuclear positions R defined by,

ĥe(R) |φa(R)〉 = εa(R) |φa(R)〉 . (17)

Taking the partial Wigner transform of eq. (16) leads to

ĤW (R,P) =
1

2M
P2 + ĥe,W (r̂, p̂,R) (18)

where ĥe,W (R) is the normal electronic hamiltonian operator, now dependent on R in the

Wigner nuclear phase space. Starting with the separability approximation for the density
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operator, and neglecting correlations, we have ρ̂W = ρ̂eρn(R,P), with

∂tρ̂e = −i
[
TrX 〈ĥe,W (R)〉 , ρ̂e

]
(19)

where TrX 〈. . .〉 =
∫
. . . dRdP, and P scalar terms are cancelled by the commutator. We

are of course interested in evaluating the dipole-dipole correlation function:

Cµµ(t) =

∫
dRdPTre

{
µ̂W σ̂(t)

}

=

∫
dRdPTre

{
µ̂W (t)σ̂(0)

}
,

(20)

where σ̂ = [µ̂W , ρ̂W ], and we resolve the dipole operator as

µ̂W (R, t = 0) = −r̂ + ZRR

=
∑

aa′

|φa〉 〈φa|(−r̂)|φa′〉 〈φa′ |+ δaa′ZRR |φa〉 〈φa′|

=




R µge(R)

µeg(R) R




(21)

Where ZR refers to the ionic charge of each nuclei. In practice we can neglect the intra-state

R term as we are focused entirely on the transition dipole moment.

Taking the initial state as the ground state, (|Ψ〉 = |χ0
gφg〉)

ρ̂W (R,P, 0) = ρng (R,P)




1 0

0 0


 , (22)
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leads to

ˆσ(0) = [µ̂W , ρ̂W (R,P, 0)]

= ρng (R,P)




0 −µge(R)

µeg(R) 0


 .

(23)

And therefore the correlation function becomes

Cµµ(t) =

∫
dRdP (µgeW (R, t)σeg(0) + µegW (R, t)σge(0))

=

∫
dRdP

(
µgeW (R, t)µegW (R, 0)

− µegW (R, t)µgeW (R, 0)
)
ρng (R,P).

(24)

We can construct an identical quantity from a different initial condition as a superposition

state (|Ψ〉 = 1√
2
|χg〉 (|φg〉+ i |φe〉)) giving,

ˆ̃ρW (R, P, 0) = ρng (R,P)
1

2




1 −i

i 1


 (25)

For this different initial condition we propagate

C̃µµ(t) =
i

2

∫
dRdP

(
µgeW (R, t)µegW (R, 0)− µegW (R, t)µgeW (R, 0)

)
ρng (R,P)

=
i

2
Cµµ(t) (26)

With this different initial condition, we take the MTEF form of the nuclear density arising

from the Monte Carlo integration described above,

ρn(R,P) =
1

N

∑

i

δ(R−Ri(t))δ(P−Pi(t)). (27)

The subsequent equations of motion for the system are for the electronic density, needed for
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the nuclear trajectories are:

∂tρ̃
aa′
e = −iρ̃aa′e (t)(εa(Ri(t))− εa′(Ri(t)))

+
∑

a′′

Pi(t)

M

(
ρ̃aa

′′
e (t)dia′′a′(t)− diaa′′(t)ρ̃a

′′a′
e (t)

)

∂tRi(t) = Pi(t)/M

∂tPi(t) =
1

2

∑

aa′

(
F aa′
W (t)ρ̃a

′a
e (t) + ρ̃aa

′
e (t)F a′a

W (t)
)

=
∑

aa′

<
[
F aa′
W (t)ρ̃a

′a
e (t)

]

=
∑

a

−∂Rεa(Ri(t))ρ̃
aa
e (t)

+
∑

aa′

<
[(
εa(Ri(t))d

i
aa′(t)− εa′(Ri(t))d

i
a′a(t)

)
ρ̃a
′a
e (t)

]

(28)

Where in the last two equations we have used the identity diaa′(t) = 〈φa|∂Ri
φa′〉 |Ri(t) =

−(dia′a(t))
∗, to manipulate F aa′

W (t) = −〈φa(R)|∂RĤW |φa′(R)〉 |Ri(t). Note that for transitions

like the S0/S2 transition 1D H2 focused on in the body of this paper, the non-adiabatic

coupling vector (NACV) daa′ = 0, means that the mean field force acting on the nuclei is at

all times a 1
2
superposition of the S0 and S2 surfaces.

These are propagated alongside the dipole matrix element equations of motion, needed

for the correlation function:

∂tµ
aa′
W (Ri(t)) = iµaa

′
W (Ri(t))(εa(Ri(t))− εa′(Ri(t))). (29)

STEF Spectral Negativity

As mentioned in the main text, previous work by Goings et. al4 employed STEF-kick dy-

namics simulations to calculate spectra in fully ab-initio 3D H2 by initialzing the nuclear

geometry in non-equilibrium ‘compressed’ geometries. Geometries were selected correspond-

ing to expected vibrational energies from Boltzmann distributions at arbitrary temperatures
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and the δ−Kick method was used to excite the electronic subsystem. Furthermore, only the

magnitude of the spectral response was depicted, which does not show the spectral negativ-

ity resulting from initialising the mean field simulations in a non-equilibrium state. Here we

utilise the canonical initial conditions of the STEF-BO picture for the 1D H2 model. The

electronic occupation is equal for each of the two surfaces ivolved in the transition, and the

nuclear initial condition corresponds to the equillibrium geometry of the initial surface. In
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Figure S1: 1D H2 S0 ← S2 absorption spectra, comparing exact, MTEF-BO and STEF-BO.

Fig. S1c we see the results of STEF-BO for the S2 ← S0 region of the spectrum, showing

that this only captures positive spectral intensities in the vicinity of the exact results, with

accurate peak placement only at the MTEF level. Furthermore the contributions to the

unphysical pre-peak features of individual trajectories become apparent in the low energy

tail. For completeness we also feature the S0 ← S2 results in Fig. S2, which demonstrate the

same features of correct spectral sign only in the region of the exact results and alternating

sign elsewhere.
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Figure S2: 1D H2 S2 ← S0 absorption spectra, comparing exact, MTEF-BO and STEF-BO.

Application to Displaced Harmonic Oscillator Model

In order to investigate the limitations of MTEF, we can utilise a model which captures the

essential physics of the S0/S2 1D H2 transition which was focused on in the first portion

of the main text. Recall that for this transition, the NACV’s between the two electronic

adiabatic states are zero, that is 〈φa(R)|∂Rφa′(R)〉 = 0 ∀ a, a′ in the BO basis, with a, a′

restricted to S0/S2 This means that matrix elements for the partially Wigner transformed

molecular hamiltonian can be written as

ĤW (R,P ) =
P 2

2M
1 +



εg(R) 0

0 εe(R)


 . (30)

As described in detail in the first section of this SI, MTEF is rooted in a mean field ap-

proximation to the QCLE, which is itself the first order expansion of the partially Wigner
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transformed Liouville von-Neumann equation. Taking eq. (2) to second order provides,

∂ρ̂W
∂t

= −i
[
ĤW , ρ̂W

]

+
1

2

(
{ĤW , ρ̂W} − {ρ̂W , ĤW}

)

− i

8

([
∂2
P ĤW , ∂

2
Rρ̂W

]
+
[
∂2
RĤW , ∂

2
Pρ̂W

])
(31)

Which in our model Hamiltonian eq. (30) becomes,

∂ρaa
′

W

∂t
= −i(εa(R)− εa′(R))ρaa

′
W

+

[
1

2
(∂Rεa(R) + ∂Rεa′(R)) ∂P −

P

M
∂R

]
ρaa

′
W

− i

8

(
∂2
Rεa(R)− ∂2

Rεa′(R)
)
∂2
Pρ

aa′
W +O

(
(m/M)

3
2

)

(32)

Such that the error in time propagation resultant from taking only the first order expansion,

compared to the second, is proportional to the difference in energy surface curvature.

If we take the analytically solvable Displaced Harmonic Oscillator (DHO) model5,6 by

using surfaces εa(R) = 1
2
ω2
a(R − Da)

2 + Ea, we see that for identical surfaces ωe = ωg that

the 2nd order and higher terms in the Wigner transformed Liouville von-Neumann equation

are zero, rendering the QCLE exact for this case.

To demonstrate the effect of varying surface curvature, we took parameters similar to

harmonic surface fits to the BO surfaces in 1D H2, and for simplicity, took the FC approxima-

tion alongside setting µaa′(R) = (1− δaa′)a.u.. We solve the exact and MTEF-TCF spectra

for the DHO with different values of ωe relative to ωg by propagating for Tf = 2 · 104a.u..

In Fig. (S3) we see iin the left column that for identical upper and lower surfaces, mean

field theory is of course exact, and for varying surfaces, MTEF displays a peak broadening

and prepeak features. The origin of this broadening is from an effective damping in the time

dependent signal, shown in Fig. (S4).
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Figure S3: Spectra for the DHO model with several excited and ground state surface fre-
quencies in each column. Each row compares exact, MTEF-BO and STEF-BO results re-
spectively, with the Exact peak placement for each column overlaid across each as vertical
dashed lines.
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in the right column legend, and exact spectral peaks overlaid as vertical black dashed lines.
For clarity, the time dependent signal is curtailed at 1 · 104a.u..
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MTEF-Kick Comparison to the Nuclear Ensemble Ap-

proach

In the Nuclear Ensemble Approach (NEA)7 the absorption spectra is written as

σ(ω) =
4π2

cω

∑

n

∫
dR|χ00(R)|2∆ω2

0n(R)| 〈φ0|µe(r, R)|φn〉r |2L(ω − ω0n(R), δn)

=
4π2

cω

∑

n

1

Nt

Nt∑

l=1

∆ω2
0n(Rl)| 〈φ0|µe(r, Rl)|φn〉r |2L(ω − ω0n(Rl), δn)

L(x− xi, δ) =
1

π

δ

(x− xi)2 + (δ)2

(33)

Where ∆ω2
0n(R) is the vertical excitation energy between the ground and excited electronic

states, µe is the electronic dipole operator, L is a Lorentzian broadening function dependent

on a width parameter δ, and in the second line we have taken a Monte Carlo sampling

integral of the first line, selecting Rl from |χ00(R)|2. This Monte Carlo integral is precisely

equivalent to the MTEF procedure sampling from the Wigner transform of the nuclear

ground state, however unlike the MTEF-kick approach doesn’t include any nuclear dynamics

effects modulating the electronic properties. The NEA results for Nt = 1.3×105 in the model

H2 system discussed in the main text are compared to the exact vibronic spectra and the

MTEF-kick spectra in figure S5, showing directly that while sampling over initial equilibrium

configuration naturally leads to a broadening of the resulting spectrum, the dynamics of the

nuclear subsystem coupled to the electronic subsystem are responsible for the vibronic peak

structure of the MTEF-kick results. A width parameter of δ = − log(10−3)
Tfπ

was used for

Tf = 10, 000[a.u.], creating a width commensurate with the dynamics results which have a

similar width due to the the exponential damping mask used in the Fourier transform of the

dipole signal.

The NEA method was also applied to the benzene molecule, with the dipole oscillator

strengths and transition energies calculated via the Casida equation with 400 unoccupied
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with the MTEF-kick results from the main text recreated in (b).
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orbitals for the same set of initial nuclear geometries used for the MTEF-TDDFT-kick spectra

and the same simulation box parameters reported in the main text. The results are shown

in figure S6. We see that there is good qualitative agreement between the two methods in

this system, due to the density of electronic and vibrational states in the energy range. For

completeness we also recreate the NEA results of Crespo-Otero and Barbatti7 calculated

with a more sophisticated xc functional, and find quite good agreement, particularly in the

5.5eV to 6eV energy range.

While these two methods are qualitatively quite similar for the linear optical absorption

spectra, as evidenced from the NEA H2 calculation generally speaking the MTEF dynamics

do indeed add non-trivial information. Furthermore for non-linear and time dependent

spectra and phenomena, static ion ensemble approaches like NEA are either inapplicable

or less suitable than our proposed framework.

More Detail on the ICWF Method

The conditional wave function (CWF) approach can be developed starting from the full

molecular wave function for electrons and nuclei, Ψ(r,R, t), which can be formally decom-

posed in terms of the CWFs of each subsystem:

ψαe (r, t) :=

∫
dRδ(Rα(t)−R)Ψ(r,R, t), (34)

ψαn(R, t) :=

∫
drδ(rα(t)− r)Ψ(r,R, t). (35)

From these definitions one can show that the CWFs, ψαe (t) and ψαn(t), obey non-Hermitian

equations of motion involving complex potentials which are functionals of the full wave

function and cause the time-evolution of the individual CWFs to be non-unitary.8 The

recently developed Interacting-CWF (ICWF) method9 avoids the direct calculation of these

S17



5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Energy [eV]

0

50

100

150

200

250

300

I(
) [

M
b]

MTEF-TDDFT-Kick ALDA
NEA LDA
NEA CAM/B3LYP
Experiment

5.5 6.0 6.5 7.0 7.5
Energy [eV]

0

100

200

300

I(
) [

M
b]
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nonlocal complex potentials by positing the following multiconfigurational CWF basis ansatz

for the full many-body wave function:

Ψ(r,R, t) =
Nc∑

α=1

Cα(t)ψαe (r, t)ψαn(R, t). (36)

The basis functions in this sum are chosen to be single particle CWFs that satisfy the

mean-field, or Hermitian, limit of the CWF equations in which the complex potentials triv-

ially vanish. The upper limit of the sum, Nc, refers to the total number of configurations,

which can be stochastically sampled. Including interactions between the trajectories in the

ensemble through the coefficients C(t) = {C1(t), ..., CNc(t)} corrects the Hermitian-CWF

evolution. The time evolution of these coefficients is obtained by inserting eq. (36) directly

into the TDSE.

As described in the text, for the kick spectra adapted ICWF algorithm, the CWFs are

instead selected as eigenstates of the Hermitian propagators, and used as a static basis.

The imaginary and real time equations of motion for the expansion coefficient ~C are then

solved using the respective variational principles,10–13 allowing for a completely closed-loop

algorithm for wave function preparation and propagation.

To generate the kick spectra, after preparing the ground state ~C(0), the relevant degree

of freedom of the kick operator exp(−iκµ̂) is applied to each CWF, the Hamiltonian and

inverse overlap matrices are reconstructed, and ~C is propagated to the desired time. This

procedure is equivalent to propagating in the interaction representation, with V̂I(t) = κδ(t)µ̂.

Since these matrices are only constructed at time zero, this algorithm is extremely efficient,

requiring only the propagation of a Nc × 1 vector by a Nc × Nc matrix. For comparison,

the 1D H2 MTEF-kick results reported here required the propagation of 34, 000 trajectories

each consisting of 1082 × 1 electronic wave functions. With a parallelized implementation

and hardware allowing approximately 50traj/hr, this equates to roughly 680 compute hours.

The ICWF Nc = 4096 results reported in the main body by contrast require 17 compute
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hours on the same hardware.
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Figure S7: Convergence of the ICWF kick spectra results for increasing numbers of bases
Nc. The two lowest lying peaks are mostly converged by Nc = 1024, but the higher energy
spectra requires more variational degrees of freedom to capture.

With increasing non-redundant variational parameters, one is guaranteed to better cap-

ture the initial state and minimize the error of time dependent propagation.12 As an example

of the convergence properties of ICWF-kick, see Fig. S7. These spectra are the result of

utilising only lowest energy hermitian propagator eigenstates and propagating for Tf = 1500

a.u. with a mask function14 W (x) = 1−3x2 +2x3, for x = t/Tf applied to the time signal in

the Fourier Transform. The more accurate Nc = 4096 results in the main body are initialised

using mixes of the three lowest energy CWF eigenstates in roughly equal proportions.

Theoretical and practical developments are underway to implement the ICWF method

in arbitrary ab-initio settings.
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Complex Absorbing Potentials

Quadratic complex absorbing potentials15 of the following form were used in all simulations

of the one dimensional H2 model:

We(ri) = −iη
[
(ri − rl)2Θ(rl − ri) + (ri − rr)2Θ(ri − rr)

]

Wn(R) = −iη(R−Rr)
2Θ(R−R0),

(37)

where Θ is the Heaviside function, and η was set to 0.1Ha/a0 for both subsystems.

The electronic CAP cut offs, rl and rr, were placed 10a0 from the walls, while the nuclear

CAP start was set at R0 = 5.6875a0.
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6 | Revealing Ultrafast Phonon Mediated
Inter-Valley Scattering through Tran-
sient Absorption and High Harmonic
Generation Spectroscopies

In recent years as researchers have been exploring the far-from-equilibrium behavior of laser
driven materials, phonons have emerged as a key factor in understanding the relaxation of
electronic excitations and furthermore developed as a tool to coherently manipulate material
properties [4]. A notable example is experimental observation of metastable states in K3C60
displaying superconductive behavior far above Tc which can be induced by resonant driving of
phonon modes [13–15]. Ultrafast, laser driven, phonon-induced phase transitions have also been
observed in SrTiO3 upon targeted phonon driving, switching from paraelectric to ferroelectric
and remaining stable for hours [16, 17], and tuned phonon parametric driving has been observed
to stabilize high-temperature ferromagnetism in YTiO3 at temperatures three times higher than
the equilibrium thermodynamic transition [18]. Driving the inter-layer shear modes of the
layered 2D Transition Metal Dichalcogenide (TMD) material WTe2 in order to enhance or
suppress centro-symmetric symmetry breaking has also been experimentally demonstrated, and
is proposed to be a tool for manipulating the predicted topological Weyl semi-metal phases
dictated by these symmetries [195, 196].

Thus given this plethora of experimental phenomena, there is increasing demand on theory to
disentangle the role of the interactions between the electronic and lattice degrees of freedom in
inducing, stabilizing and destroying metastable states. In this chapter we sketch an overview
of the differences in how electron-nuclear dynamics are conceptualized within Many Body Per-
turbation Theory (MBPT) versus the Born-Oppenheimer/semi-classical framework. We then
describe how the latter can be formally applied within periodic systems, giving rise to static
disorder and Ehrenfest dynamics approaches, and summarize our contribution in paper III
bringing MTEF into this field in a manner which respects the ab-initio phonon dispersion. By
utilizing MTEF in periodic systems, we introduce a method to systematically capture the quan-
tum thermodynamical equilibirum statistics of the phonons, while simultaneously capturing the
far-from-equilibrium electron-phonon dynamics at the mean field level.

6.1 Electron-Phonon Dynamics

The conceptual framework for understanding electron-nuclear interactions in periodic systems
can be considerably different than that for molecules. While both invoke the concept of the
ground state BOPES in order to define the equilibrium geometry, and harmonic nuclear pertur-
bations from it, the subsequent methodology rapidly begins to diverge from there. As discussed
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6 Phonon Mediated Inter-Valley Scattering

throughout this thesis the most widely used interpretational framework for quantum nuclear
dynamics in molecular systems consists of nuclear wavepackets evolving under the influence of
electronic states acting as a static underlying scaffold. This arises from an explicit treatment
of the correlation between the two subsystems through diagonalizing the electronic subsystem
at each nuclear configuration. However what is commonly done in periodic systems is to diag-
onalize the electronic system at the equilibrium lattice geometry, giving the Bloch states |kn⟩
and bands ϵkn in reciprocal space. Separately, the effects of nuclear motion are described by
small deviations from the equilibrium geometry giving the phonon modes |nqν⟩ and dispersion
branches ωqν in reciprocal space. The interactions and correlations between these two systems
(beyond the harmonic approximation built into the phonon dispersion) are then introduced by
starting from this assumption of independence. Consequently, anharmonic interactions are typ-
ically truncated at the first or second order in atomic displacement, while the theoretical tools
used to incorporate their effect on the static or dynamic properties of the system are generally
perturbative in nature [24]. Thus in the language of MBPT, the electron system is ‘dressed’ or
‘renormalized’ by the underlying bosonic phonon field as encoded by the various diagrammatic
expansions of the interaction within the self-energy of the propagator of the otherwise ‘bare’
state [98].

Within this perspective, the driven dynamics of an electron-phonon system can be treated
by a hierarchy of approximations [23, 38]. At the lowest level are phenomenological models
such as the two-temperature model, which assumes the two subsystems act as coupled thermal
reservoirs [197]. In the density matrix picture of the electronic system, one can introduce
diagonal and off-diagonal relaxation and dephasing times T1, T2 which are meant to coarsely
represent the total effects of the phonon bath on the excitations and coherences of the electronic
system [198]. A method which allows for explicit resolution of the populations of electronic
states and phonon modes is the Time Dependent Boltzmann Equation (TDBE), which estimates
the scattering between these states using Fermi’s golden rule [23, 38]. This method assumes
that the interaction between the two subsystems is sufficiently weak that the bare phonon and
electron states accurately describe the system for all times. Explicit laser driven dynamics can
be included by using the Bloch equation [199–201]. In systems with strong electron-phonon
coupling one must begin directly addressing the renormalization of the phonon and electronic
eigenstates using Non-Equilibrium Green’s Function (NEGF) approaches such as the Kadanoff-
Baym equations [36, 100, 101]. At the highest level of complexity, in one-dimensional systems
variational approaches like td-DMRG [202] and the hierarchichal equations of motion [34] can be
done, although these are generally limited to a small number of sites corresponding to a coarse
sampling of the reciprocal space Brillouin Zone.

6.2 Static Disorder

In recent years, there has been increasing interest in incorporating the effects of phonons not
through diagrammatic or phenomenological approaches, but instead in a semi-classical frame-
work. In contrast to the picture of interacting quasi-particles painted above, this returns back
to territory more familiar to quantum chemists. By treating the nuclei within a supercell (many
copies of the irreducible primitive cell) as classical-like point particles, distortions of the nuclear
positions within the supercell from their equilibrium positions can be decomposed into contri-
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butions from particular phonon branches. By breaking the highly symmetric lattice structure,
the properties of the electronic system can be substantially changed, even to the point of recov-
ering electronic properties using uncorrelated ab-initio methods which are typically argued as
being rooted in correlated behaviour [203, 204]. This type of approach was used in the 1950s by
Ferd Williams [205] and Melvin Lax [206] to understand phonon renormalized optical absorp-
tion in solids by drawing comparisons to the Franck-Condon effect, and thus its derivation is an
illustrative connection to the formalism of paper II.

The derivation of the Williams-Lax expression for the temperature-dependent phonon renormal-
ized optical absorption proceeds very similarly to that for vibronic linear absorption in molecules.
The time dependent transition rate between electronic states n and m induced by a perturbing
field Â can be obtained by summing over the contribution of the nuclear states ν, µ on both
surfaces [97]:

Wnν→mµ(t) = 2π ⟨χnν |Ânm|χmµ⟩ ⟨χmµ| exp
[
i
(
T̂ + Ûm

) ]
Âmn exp

[
− i

(
T̂ + Ûn

) ]
|χnν⟩

Ânm = ⟨Φn(R)|Â|ϕm(R)⟩
(6.1)

where the transition operator between electronic states n and m, Ânm retains its dependence on
the nuclear configuration. This corresponds to the Herzberg-Teller rate, and by evaluating it at a
particular configuration R0 the above reduces to the Franck-Condon expression. The observant
reader will note that this is essentially identical in form to the dipole-dipole correlation function
for linear vibronic absorption in molecules Eq. (3.25). From here the commutators involving the
nuclear kinetic energy are disregarded on the argument that the nuclear masses go to infinity,
which in this literature is referred to as the semi-classical approximation due to the phonon
energy states becoming continuous [97, 206]. By summing over the excited nuclear states and
using the resolution of the identity,

∑
µ |χmµ⟩ ⟨χmµ| = 1, the above expression reduces to the

following for transitions between the electronic ground state 0 and a given excited state n:

W0ν→n(t) = 2π ⟨χ0ν | exp
[
it
(
Ûn − Û0

) ]
|Ânm|2|χ0ν⟩

=
∫
dR|χ0ν(R)|2|Anm(R)|2 exp

[
it
(
Un(R)− U0(R)

) ]
,

(6.2)

where in the second line we have simply expressed the nuclear states in the real space supercell
coordinates R. The Williams-Lax transition rate is finally obtained by Fourier transforming Eq.
(6.2) and performing a canonical average over the vibrational states [97]:

Γ0→n(ω, T ) = 1
Z

∑
ν

e−βE0νW0ν→n(ω)

= 2π
Z

∑
ν

e−βE0ν

∫
dR|χ0ν(R)|2|Anm(R)|2δ

(
Un(R)− U0(R)− ω

)
.

(6.3)

This expression tells us that the temperature dependent optical absorption of a solid (or indeed
any observable which can be written in a Fermi’s golden rule form) can be obtained by performing
a thermally weighted average over the real space distribution of a collection of phonon induced
distortions, characterized by the distribution function |χ0ν(R)|2. By Monte Carlo sampling
the distribution functions, the position dependent electronic quantities can be calculated with
any type of electronic structure theory. This approach has been used quite successfully in
a large number of applications including calculating phonon renormalized optical absorption
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[207, 208], excitonic-phonon interactions [209], and temperature dependent transient absorption
(in conjunction with the two-temperature model) [197]. This method can be referred to as
‘static disorder’ and due to ignoring the nuclear motion is also called the ‘clamped ion’ or
‘frozen phonon’ approximation.

In 2020 the Williams-Lax expression was extended by Marios Zacharias and Feliciano Giustino
to explicitly decompose the nuclear distortions into contributions from specific phonon modes.
In paper III, we recap the process by which one can rewrite the phonon Hamiltonian in terms
of normal mode coordinates zqν [24]:

Hph(zqν) =
∑
qν

ωqν

(
z2

qν

l2qν

+ l2qν∂
2
zqν

)
, (6.4)

where lqν ∝
√
ℏ/M0ωqν is the zero-point energy characteristic length scale for some characteris-

tic mass M0. The eigenstate solutions of the independent quantum harmonic oscillators in Eq.
(6.4) are of course Hermite polynomials written in the coordinates zqν . By introducing these
into Eq. (6.2) as the nuclear states, and explictily performing the thermally weighted sum in
Eq. (6.3), one obtains the following expression [208]:

Γ0→n(ω) =
∏
qν

∫
dzqν

πσ2
qν

exp
[
− |zqν |2

σ2
qν

]
|A0n(zqν)|2δ(Un(zqν)− U0(zqν)− ω), (6.5)

where σ2
qν = l2qν(2nqν,T + 1) is proportional to the Bose-Einstein occupation nqν,T for each

phonon. This generalized expression allows one to attribute the role played by particular phonon
branches to the renormalization of the electronic observable. This method was recently shown to
be equivalent to taking the Feynman expansion of the electron-phonon interaction to all orders
in the perturbation, within the adiabatic limit [210], meaning that for the static properties of
systems it can in principle be used for arbitrarily strong electron-phonon coupling. Thus given
the success of this non-perturbative method in capturing the static properties of a system, it’s
natural to wonder: what was lost when we chose to disregard the motion of the nuclear system
in Eq. (6.1)?

Ehrenfest Dynamics

Most theoretical studies which have looked at the role of semi-classical phonon dynamics in
a periodic system have been quite restrictive. Outisde a handful of applications using FSSH
[211] or FBTS [74], most employ a single Ehrenfest trajectory and restrict themselves to either
the Γ point phonon or a small supercell. Already this is enough to demonstrate changes in
the high harmonic generation [76, 77], show evidence of modified vertical electronic excitation
[212], and Floquet dress the electronic system through periodic phonon motion [92]. However,
by taking larger supercells it has been shown that Ehrenfest dynamics can capture much more.
For example by taking a sufficiently large supercell to capture both phases, a laser-driven phase
transition in monolayer MoTe2 was simulated, unveiling the microscopic details by which laser
driving creates a metastable state that is unstable to anharmonic phonon-phonon scattering
[213]. This approach has also been used to study the inter-layer shear-mode driving of Td−WTe2
theoretically supporting the experimentally proposed manipulation of the Weyl points, and has
simulated the switching of charge density wave order in photoexcited TiSe2 [29].
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However, as discussed at length in paper II, single trajectory results also have critical flaws
rooted in their failure to capture the quantum nature of the initial nuclear state. This can be
of fundamental importance in the behavior of periodic systems. For example, it’s been shown
that the paraelectric ground state of SrTiO3 is only stable due to the zero-point energy of the
lattice [151], and that the ferroelectricity induced upon THz driving is explicable by a quantum
superposition of the ground and excited lattice states [80]. Given that MTEF can recover
the quantum statistics of the equilibrium thermodynamic phonon distribution and demonstrate
quantized dynamical behavior in molecular systems, what can it capture in periodic systems?

6.3 Scientific Contribution and Outlook

In paper III, we derive the connection between the Wigner distribution of the phonon system
in reciprocal space and the corresponding real space supercell displacement. By writing the
thermodynamic equilibrium density matrix in terms of the normal mode coordinates zqν and
momenta Pqν via the Wigner transform of Eq. (6.4), we can exactly capture the tempera-
ture dependent quantum state of the phonon system for any material. This only requires the
phonon dispersion ωqν and real space distortions e(q, ν) as input, quantities which are widely
available through Density Functional Perturbation Theory. We show that when disregarding
the phonon momenta, the denisty matrix exactly reduces to the distribution function in the
Zacharias-Giustino formulation of the Williams-Lax transition rate, Eq. (6.5), making this a
natural generalization of the static disorder method to include momenta. We then utilize this
Wigner function to perform MTEF simulations to study phonon mediated relaxation of selec-
tively excited charge carriers in hexagonal Boron Nitride (hBN). Upon irradiation with circularly
polarized light, 2D materials with broken inversion symmetry display selective excitation their
conduction band minima, known as valley selectivity [201, 214–220]. In TMDs this ‘valley polar-
ization’ degree of freedom has been proposed as a candidate for all-optical quantum information
storage and manipulation, but is plagued by rapid ‘depolarization’ or loss of the selective valley
excitation due to Coulomb scattering, excitonic effects and phonon scattering [100, 221–223].

We demonstrate that we can capture this effect only when including static disorder or explicit
phonon dynamics beyond the primitive cell/Γ point phonons. We furthermore found that static
phonons capture this relaxation exclusively through elastic scattering. We find that when using
dynamic phonons, the electronic system has up-scattering as well down-scattering events, leading
to a buildup of carriers outside of the valley regions at long times, at a rate which is proportional
to the unphysical loss of zero-point energy (ZPE) in the phonon systems. Nonetheless we validate
our approach by comparing static and dynamic phonons to a TDBE calculation. We find that
the pump-induced valley asymmetry decays exponentially with a characteristic time scale below
30 fs, and we calculate its temperature dependence across 0− 2000 K, finding good agreement
across all theoretical methods with analogous experimental measurements in TMDs [100, 221].

We furthermore demonstrate that this predicted valley relaxation can be measured via two
different experimental techniques which can be straightforwardly simulated with MTEF. First
we propose a Transient Circular Dichroism (TCD) measurement and simulate the results using
TDDFT in a supercell as well as in a tight binding (TB) model. We find that the TCD results
directly correspond to the TB valley asymmetry and that we can recreate the same behavior
using fully ab-initio TDDFT. Secondly we directly replicate a recent experimental study of
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the valley asymmetry in hBN in-silico [224]. This experiment tested a measure of the valley
asymmetry based on the ellipticity of high harmonics generated by an extremely intense linearly
polarized off-resonant field. We confirm that this signal can be recovered but that it decays
rapidly due to phonon scattering. Finally in the SI we validate our TB model by recreating
the renormalized spectral function in graphene calculated using static disorder thus confirming
that MTEF can recover equilibrium phonon induced electronic renormalization under strong
coupling regimes. [210]. Quite importantly, we also demonstrate that for the non-equilibrium
electronic relaxation MTEF converges with as little as two trajectories.

In the near term, static disorder supercell approaches show the most promise for incorporation
into real-time dynamics workflows. As seen in the TDDFT results in paper III, inclusion of static
disorder leads to fundamental qualitative differences in the dynamics which bring the response
more in line with expectations from TDBE and experimental observations in similar systems.
Although MTEF suffers from non-physical ZPE leakage at long time scales, as discussed in
chapter 5 there are numerous methods to correct for such consequences of taking the mean field
approximation. For this particular problem, a recent paper proposes to separate off Wigner
transform variables responsible for the ZPE coupling to the electronic system, preserving ZPE
throughout the dynamics [225]. In any case, this phenomena only affects the very long-time
scale dynamics, and the short-timescale MTEF dynamics agree with both the clamped ion and
TDBE approaches as well as experimental observations in similar systems across 2000 K. Given
that, for this particular problem, all of these methods converge with extremely small numbers
of trajectories, and the ease with which researchers can include these methods, this approach
promises to be a very powerful tool in the future of theoretical non-adiabatic dynamics.
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Processes involving ultrafast laser driven electron-phonon dynamics play a fundamental role in
the response of quantum systems in a growing number of situations of interest, as evidenced by
phenomena such as strongly driven phase transitions and light driven engineering of material prop-
erties. To show how these processes can be captured from a computational perspective, we simulate
the transient absorption spectra and high harmonic generation signals associated with valley se-
lective excitation and intra-band charge carrier relaxation in monolayer hexagonal boron nitride.
We show that the multi-trajectory Ehrenfest dynamics approach, implemented in combination with
real-time time-dependent density functional theory and tight-binding models, offers a simple, ac-
curate and efficient method to study ultrafast electron-phonon coupled phenomena in solids under
diverse pump-probe regimes which can be easily incorporated into the majority of real-time ab initio
software packages.

I. INTRODUCTION

Time resolved spectroscopies, such as time and angle
resolved photoemission, time resolved photoluminesence
and transient absorption spectroscopy (TAS) constitute
fundamental tools to study the flow of energy in ma-
terials following excitation by light. Understanding the
microscopic details of the excitation and relaxation path-
ways can serve as the basis for deterministic manipulation
of material properties for technological applications such
as enhanced photodetectors [1, 2], long lived optically

∗ Author to whom correspondence should be addressed:
aaron.kelly@mpsd.mpg.de

controlled qubit registers [3, 4] and attosecond control
of magnetic ordering for ultrafast spintronics [5–7]. In
parallel to developments pushing the time, energy, and
momentum resolution of these spectroscopic techniques,
there has been a plethora of phenomena studied under
novel conditions such as transient phases and Floquet
renormalization under strong parametric driving [8–12],
chemical reaction rate modification under exposure to
cavity confined fields [13, 14], and exotic quantum phases
when layering 2D materials [15, 16]. The study of the mi-
croscopic origins of these phenomena pushes the bound-
aries of theoretical tools which are useful near equilibrium
conditions, in particular for one of the most fundamen-
tal processes for understanding the behavior of materials:
the electron-phonon interaction.

Treating coupled electron-phonon dynamics in simula-
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tions of periodic systems is typically limited to either phe-
nomenological coupling and decay terms, or coarse ap-
proximations such as the two-temperature model [17–19].
Going beyond these options leads one to consider an ex-
plicit treatment of the phonon degrees of freedom, which
can be achieved through the time-dependent Boltzmann
equation (TDBE) [19–24], which is derived in the pertur-
bative limit of the electron-phonon interaction. Attempts
to move beyond some of the constraints of the TDBE
include approaches based on density matrix formalism,
such as the Bloch equation [25–27], the Hierarchical
Equations of Motion [28] or the time-dependent Density
Matrix Renormalization Group [29, 30] for 1D systems,
and non-equilibrium Green’s function approaches based
on solving the Kadanoff-Baym equations [31–33].

Conversely, the electronic system can be treated in a
fully ab initio manner and one can still capture the effect
of phonon fluctuations, even in cases with very strong
coupling, via static displacement approaches which sam-
ple phonon distortions in large supercells [34, 35]. In the
adiabatic limit, this approach has recently been shown
to be equivalent to the Feynman expansion to all orders
of the electron-phonon interaction perturbation [36], and
is analogous to the nuclear ensemble average technique
from molecular physics, where electronic properties are
obtained by averaging over the nuclear coordinate dis-
tribution on the ground Born-Oppenheimer state [37].
Breaking the high symmetry equilibrium lattice structure
of periodic systems has been found to significantly alter
the results of ab-initio calculations; disorder has been ar-
gued as being responsible for capturing a significant por-
tion of what is usually attributed to electron correlation
when using ostensibly uncorrelated DFT methods [38],
as well as being the dominant factor in phase transitions
typically argued to be rooted in electronic structure [39].

A natural step beyond including the static disorder of
the nuclei is to also consider their dynamics, which opens
the possibility to treat time-dependent response proper-
ties where the nuclear forces are dependent on nonequi-
librium electronic configurations. A mean field treatment
that can be applied in this context is the multi-trajectory
Ehrenfest approach (MTEF), which allows one to re-
cover the quantum statistics of the equilibrium nuclear
subsystem [40] whilst approximating the time-evolution
using Ehrenfest trajectories. This approach has been
shown to capture Franck-Condon physics [41] as well as
time-resolved out of equilibrium system dynamics [42–
44]. Propagating the system in real time allows for co-
herent electronic evolution at short time scales, while ac-
counting for all orders of interaction with both external
fields and the phonon system (at the mean field level).

Although the basic ingredients required for MTEF are
already available in most real-time ab initio codes, and
despite some existing formulations of reciprocal space
semi-classical dynamics in the literature [45–47], to the
authors’ best knowledge, application of this method has
not been widely explored in periodic systems, nor has
the static displacement approach been widely applied to

time-resolved phenomena. Rather, most uses of ab ini-
tio semi-classical dynamics in periodic systems involve
only a single trajectory [48–50], typically using a prim-
itive unit cell or initializing the phonon distortion with
classical molecular dynamics simulations which often fail
to capture the exact quantum statistics of the initial
state [51]. Nonetheless, inclusion of more phonon modes
through supercell dynamics allows for detailed study of
fundamental processes such as the relaxation of excited
electrons through phonon emission, anharmonic phonon-
phonon scattering and phase transitions, even at the sin-
gle trajectory level [52, 53].

Therefore, in this work we formulate the Wigner rep-
resentation for the phonon subsystem in a generic man-
ner using ab initio dispersion relations of real materi-
als, yielding a framework that systematically captures
the equilibrium properties of the phonon system. While
MTEF is well known to suffer from zero point energy
(ZPE) leakage and incorrect thermalization between the
quantum and classical systems at long time scales, there
are several schemes that can systematically correct these
failures with added computational cost [54, 55]. How-
ever, as our focus here is limited to studies of the short
time-scale dynamics of strongly driven systems, we will
not pursue such corrections and simply aim to discover
what can be achieved at the mean field level.

As an illustrative example we study ultrafast phonon
mediated electronic reorganization following valley selec-
tive laser excitation in monolayer hexagonal boron nitride
(hBN), demonstrating the ability of MTEF to capture
many of the essential features of the process which has
been argued to be a significant driver of valley selective
relaxation in Transition Metal Dichalcogenides (TMDs)
[31, 56–58]. Due to negligible spin-orbit coupling in hBN,
the two K valleys in the Brillouin Zone (BZ) are degen-
erate, while valley specific selection rules are preserved
upon interaction with circularly polarized light [59–62],
making this a prototypical material to study the relax-
ation of excited charge carriers theoretically. Using a real
space ab initio supercell approach with time-dependent
density functional theory (TDDFT), and a reciprocal
space tight binding (TB) model, we find that including
phonon fluctuations leads to a rapid redistribution of ex-
cited charge carriers within a characteristic time scale of
less than 30 fs, and that these results converge with as
little as two trajectories.

We show that in the static limit, the harmonic Wigner
distribution of phonon momenta and coordinates reduces
to the phonon distribution obtained in the reciprocal
space picture of Williams-Lax theory [35]. We compare
the results of propagating the electronic system with
MTEF to the limit of frozen phonons, as well as the
TDBE approach, finding broad qualitative agreement be-
tween these approaches across temperatures from 0−2000
K while reproducing the experimentally observed low-
temperature behaviour of analogous TMD systems. Fi-
nally, we demonstrate the flexibility of our method to
predict and recreate spectroscopic experiments by simu-
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lating two different transient absorption measurements.
First we propose a circularly polarized TAS measurement
and demonstrate the signal corresponds directly to the
valley asymmetry decay. Second, we replicate a recently
performed study [63] using the ellipticity of harmon-
ics generated under extreme laser driving to track tun-
able valley selective excitation in hBN using bichromatic
counter-rotating ‘trefoil’ pumps, also showing a rapid de-
cay of the observable signal. Both cases demonstrate the
ease with which our approach can be applied within tight
binding and fully ab initio real time electronic dynamics
software packages under arbitrary pump-probe setups.

II. THEORY

Here we briefly summarize how the description of
the phonon subsystem can be formulated based on the
phonon dispersion of real materials within MTEF by ap-
pealing to the Wigner distribution of the phonon sys-
tem. We then elaborate on the connections between
this approach and the static displacement formalism, and
we briefly outline the TDBE that will be used for later
comparison. We generally use atomic units throughout,
though sometimes for clarity ~ is written explictly.

A. Multitrajectory Ehrenfest dynamics

While a variety of routes to derive the Ehrenfest equa-
tions of motion are available, we focus here on how the
MTEF approach can be derived as the uncorrelated solu-
tion to the quantum-classical Liouville equation (QCLE)
[64, 65], which describes the approximate time-evolution
of the total density matrix. The partial Wigner transform
is employed, which for an arbitrary operator is defined as:

ÔW (R,P) = (2π)−dN
∫
dQe−iP·Q 〈R + Q/2|Ô|R−Q/2〉 .

(1)
Here the list of variables (R,P) represents the full set
of nuclear position R = (R1, . . . ,RN ) and momentum
P = (P1, . . . ,PN ) variables which are vectors in N × d
Cartesian dimensions, and we note that the operator
character of objects in the electronic Hilbert space is un-
changed by the partial Wigner transform.

In the mean field limit the density operator can be fac-
torized ρ̂W = ρn,W (R,P, t)ρ̂e(t), and the Wigner func-
tion of the nuclear degrees of freedom can be repre-
sented by an ensemble of Nt independent trajectories,

ρn,W (R,P, t) =
∑Nt
i=1 wiδ(R−Ri(t))δ(P−Pi(t)), with

weights wi. The time evolution of the electronic density
and the phase space coordinates is given by the Ehrenfest

equations of motion [40]:

∂tρ̂e(t) = −i
[
ĤW (Ri(t),Pi(t)), ρ̂e(t)

]

Ṗi = −Tr

[
ρ̂e(t)∇RĤW (R,P)

∣∣∣∣
(Ri(t),Pi(t))

]

Ṙi =
Pi
M
,

(2)

where M are the nuclear masses. These equations are
solved for the independent trajectories with initial con-
ditions (Ri(0),Pi(0)) sampled from ρn,W . Observables
are constructed by averaging over the ensemble of trajec-
tories; in the case of equal trajectory weights, 〈O(t)〉 =
1
Nt

∑Nt
i=1 Tr

[
ÔW (Ri(t),Pi(t))ρ̂W (Ri(0),Pi(0))

]
.

B. The Phonon Subsystem

For completeness we restate some textbook definitions
of the phonon coordinates, in particular drawing from
the work of Brüesch [66] and Giustino [67], with spe-
cial emphasis on the often less well described conjugate
momenta, which play an important role in the MTEF
method (however, for a notable exception see [68]).

For a supercell composed of Np = N1 × . . .×Nl prim-
itive cells in l periodic dimensions, we utilize the Born
von-Karman (BvK) boundary conditions (see SI.1 A).
Each primitive cell contains Nc unique atoms which for
a given lattice configuration have equilibrium positions
in the primitive cell of R0

α, for α = 1, . . . , Nc. The
equilibrium position of a given atom α within the su-
percell is specified by the primitive cell position Rp; for
primitve cell index p = 1, . . . , Np, and the primitive
cell equilibrium position, R0

αp = Rp + R0
α. We fur-

ther denote small displacements from these positions via
δRαp = Rαp − R0

αp. Canonically conjugate momenta,
Pαp, can then be defined by the commutation relation
[Rαp,Pαp] = i~δα,α′δp,p′ .

Using the textbook definition of the interatomic force
constant matrix and it’s Fourier transform, the dynam-
ical matrix (see SI.1 B), we define the complex normal
coordinates and momentum for a given phonon quasi-
momentum q and branch ν as the following linear trans-
formation :

zqν = N−1/2p

∑

αp

e−iq·Rp(Mα/M0)1/2e∗αν(q) · δRαp

Pqν = N−1/2p

∑

αp

e−iq·Rp(M0/Mα)1/2e∗αν(q) ·Pαp.
(3)

Here, eαν(q) ∈ Cd is the normal mode of vibration de-
scribing the displacement of atom α in the primitive cell
with mass Mα. M0 is a reference mass, taken to be the
mass of the proton. The inverse of this transformation
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reads as

δRαp = N−1/2p

∑

qν

eiq·Rp(M0/Mα)1/2eαν(q)zqν

Pαp = N−1/2p

∑

qν

eiq·Rp(Mα/M0)1/2eαν(q)Pqν .
(4)

It is easily shown that the complex normal position and
momenta obey the normal commutation relations for
phonons [66–69]:

[zqν , P−q′ν′ ] = i~δqq′δνν′ . (5)

The redundancy in the complex normal coordinates,
seen by z−qν = z∗qν , can be removed by introducing the
so called real normal coordinates [66, 67]. To show how
this is done, we start by partitioning the q grid in the
first BZ into three sets, in the manner of Giustino and
Brüesch. Call set A the set of vectors invariant under
inversion modulo addition with a reciprocal lattice vector
G, i.e. q = −q+G . Set B and C are partitioned in such
a way that all vectors q ∈ C are obtained from q′ ∈ B via
inversion, i.e. q′ = −q + G. This leads to the following
definitions

zqν =

{
xqν for q ∈ A
xqν + iyqν for q ∈ B (6)

Pqν =

{
rqν for q ∈ A
rqν + isqν for q ∈ B (7)

whereby the following properties hold true

x−qν = xqν , r−qν = rqν

y−qν = −yqν , s−qν = −sqν
(8)

Now we can rewrite (4) as

δRαp = N−1/2p (M0/Mα)1/2


 ∑

q∈A,ν
eαν(q)xqν cos (q ·Rp)

+ 2Re


 ∑

q∈B,ν
eiq·Rpeαν(q)(xqν + iyqν)






Pαp = N−1/2p (Mα/M0)1/2


 ∑

q∈A,ν
eαν(q)rqν cos (q ·Rp)

+ 2Re


 ∑

q∈B,ν
eiq·Rpeαν(q)(rqν + isqν)




 ,

(9)

where the sum over C has been included by taking twice
the real part of the sum over B. With this removal of the
redundancy, one can see that this linear transformation
contains dNcNp independent variables corresponding to

xqν for q ∈ A and xqν , yqν ∈ B, with canonical con-
jugates rqν for q ∈ A and rqν , sqν for q ∈ B, defining
canonical commutation relations

[xqν , rq′ν′ ] = [yqν , sq′ν′ ] = i~δqq′δνν′
[xqν , yq′ν′ ] = [rqν , sq′ν′ ] = 0

[xqν , sq′ν′ ] = [yqν , rq′ν′ ] = 0.

(10)

Following Giustino we define the characteristic length
scale of the phonon frequencies as

lqν =





(
~

2M0ωqν

)1/2
for q ∈ B, C

2
(

~
2M0ωqν

)1/2
for q ∈ A

(11)

and rescale the coordinates as z̃qν = zqν/lqν and P̃qν =
Pqν lqν/~. With this linear transformation we use the
properties of the normal modes subject to the BvK
boundary conditions to rewrite the real space nuclear
Hamiltonian in the harmonic limit as:

Ĥph =
1

2

∑

q∈A,ν
ωqν

(
r̃2qν + x̃2qν

)

+
1

2

∑

q∈B,ν
ωqν

(
r̃2qν + x̃2qν + s̃2qν + ỹ2qν

)
.

(12)

1. Phonon Wigner function

The Wigner transform of the density matrix of a set
of uncoupled phonons in the canonical ensemble can be
written in terms of the reduced coordinates as [70]:

ρph,W =
∏

ν,q∈A,B

tanh(βωqν/2)

π
exp

[
−tanh(βωqν/2)

(
r̃2qν + x̃2qν

)]

×
∏

ν,q∈B

tanh(βωqν/2)

π
exp

[
−tanh(βωqν/2)

(
s̃2qν + ỹ2qν

)]
,

(13)

for β = 1/kbT , where the reduced coordinates are now
treated as continuous degrees of freedom. We use this
distribution to sample the phonon modes when perform-
ing real space supercell calculations; the nuclear config-
uration associated with a particular phonon coordinate
configuration is obtained by simply using Eq. (9) af-
ter sampling the reduced coordinates from Eq. (13).
The required inputs are eαν(q) and ωqν , which are eas-
ily obtained via Density Functional Perturbation The-
ory (DFPT) calculations such as the implementation in
Quantum Espresso [71, 72].

We note here that while sampling the equilibrium
phonon distribution in Eq. (13) exactly captures the
quantum statistics of the phonon system only in the har-
monic limit, the time evolution is not constrained to this
limit as the nuclei are subject to the (Ehrenfest) forces
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coming from the driven electronic system. In this sense,
the phonon coordinate picture can be viewed as a conve-
nient basis in which the nuclear system can be initialized,
rather than a limitation of MTEF to the harmonic ap-
proximation.

C. Connection to Static Displacement Methods

In the special displacement method (SDM) introduced
by Zacharias and Giustino [34, 35], static thermody-
namic properties of periodic systems (within the Born-
Oppenheimer approximation) are calculated by tak-
ing specific phonon coordinate configurations from the
Williams-Lax nuclear coordinate distribution, written in
reciprocal space [35]. For an arbitrary operator Ô the
expectation value at a given temperature is given as

O(T ) =
∏

ν,q∈A

∫
dxqν√
πσqν

e
− x

2
qν

σ2qν

×
∏

ν,q∈B

∫
dxqνdyqν
πσ2

qν

e
− x

2
qν+y2qν

σ2qν O{xqν ,yqν}(T ),

(14)

with σ2
qν = l2qν (2nqν,T + 1), for the Bose-Einstein occu-

pation of the mode, nqν,T = [exp (β~ωqν)− 1]
−1

, and

O{xqν ,yqν}(T ) referring to the expectation value of Ô
at temperature T with respect to the electronic system,
evaluated at phonon configuration {xqν , yqν}.

The connection to the Wigner transformation of the
phonon coordinates can been seen by inserting σqν and
nqν,T for the distribution functions of Eq. (14). Keeping
in mind our definition of lqν in Eq. (11), one immediately
arrives at Eq. (13) for the position coordinates. There-
fore, including the phonon momenta is in some sense an
extension of this method to dynamic ions. Thus, given
the success of the SDM in capturing phonon renormal-
ization using small numbers of displacement samples,
one can consider sampling approaches inspired by this
method which incorporate momenta. We explore this
possibility in SI.6, but find no significant advantage for
the observables studied here.

In what follows, we refer to a simulation protocol as
‘static’ when we sample exclusively positions from Eq.
(13) (i.e. from the distribution function in Eq. (14)),
constrain the phonon coordinates at this initial configu-
ration and evolve only the electronic system in time. This
approximation is sometimes referred to as the ‘clamped
ion’, ‘frozen phonon’, or ‘static disorder’ approximation.
In contrast we refer to a protocol as ‘dynamic’ when
both phonon coordinate and momenta initial conditions
are sampled from Eq. (13) and the phonon coordinates
evolve along with the electronic system according to Eq.
(2).

D. Time-dependent Boltzmann equation

In order to make connections with statistical mechanics
approaches based on perturbation theory, we also make
comparisons with a time-dependent Boltzmann equation
treatment of the problem. Starting from Fermi’s golden
rule for the first-order rate equation for electron occupa-
tion in band n at crystal momentum k, fnk and phonon
occupation nqν due to electron-phonon scattering pro-
cesses: [19, 21]

∂tfnk = 2π
∑

mνq

|gνmn(k,q)|2

×{(1− fnk)fmk+qδ(εnk − εmk+q + ωqν)(nqν + 1)

+(1− fnk)fmk+qδ(εnk − εmk−q − ωqν)nqν

+fnk(1− fmk+q)δ(εnk − εmk−q − ωqν)(nqν + 1)

+fnk(1− fmk+q)δ(εnk − εmk−q + ωqν)nqν},
(15)

and

∂tnqν = 4π
∑

mnk

|gνmn(k,q)|2fnk(1− fmk+q)

×{δ(εnk − εmk+q − ωqν)(nqν + 1)

−δ(εnk − εmk+q + ωqν)nqν}.

(16)

Here gνmn(k,q) are the electron-phonon matrix elements
in the band basis. Since we focus mainly on the short
time scale dynamics, we do not include phonon-phonon
scattering in our TDBE analysis.

III. TIGHT BINDING MODEL

We treat the electronic structure of hBN in a widely
used DFT-based tight binding model with nearest neigh-
bor hopping between the two inequivalent sublattice
sites. While, in principle, the electron-phonon coupling
matrix elements can be extracted from existing DFPT
packages, these quantities are almost always given as ab-
solute values which can be used in the TDBE. As the
time evolution of the electronic dynamics in MTEF also
requires the complex phase of the coupling matrix ele-
ments, we derive a BZ extensive expression for the cou-
pling. We treat the nuclear dependence of the electronic
Hamiltonian by modeling the hopping term to be expo-
nentially dependent on interatomic distance:

t(Ri,Rj) = t0 exp

(
−b
[ |Ri −Rj |

d0
− 1

])
, (17)

where t0 is the equilibrium hopping term, b is the
electron-phonon coupling factor, and d0 is the equilib-
rium distance between sublattice sites i and j. This fit-
ting is common in literature for graphene tight binding
models, and b can be related to experimental observables
[73–75].
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For simplicity we restrict our study to two dimen-
sions by only considering phonon branches with no out
of plane component. We perform a second order expan-
sion of ionic displacement from equilibrium while restrict-
ing the hopping term expansion to first order, ignoring
the second order electron-phonon coupling coefficients,
or Debye-Waller terms, which is quite often done in lit-
erature [67, 75]. By rewriting the electronic operators in
terms of plane waves and the nuclear displacements in
terms of phonon complex normal coordinates, we obtain
the following reciprocal space Hamiltonian (see SI.2 for
details):

ĤW (X) =
1

2

∑

qν

ωqν

(
P̃ 2
qν + z̃2qν

)
+

∑

α∈{a,b}
∆αα̂

†
kα̂k

− t0
∑

k

(
â†kb̂k

∑

δ

eik·δ + c.c.

)
+
∑

qν

z̃qν lqνM̂(q, ν),

M̂(q, ν) =
∑

kδ

gδν(q)
(
â†k+qb̂ke

ik·δ + b̂†kâk−qe
−ik·δ

)
.

(18)

Here X = (z,P) is the collection of phonon coordinates,
α̂k are the electronic site operators for sites α = {a, b}
with onsite energies ∆α = ±∆ responsible for opening
the gap Eg = 2|∆|. Nearest neighbor sites are connected

by vectors δ. The matrices M̂(q, ν) describe the coupling
of the phonon normal coordinates to the electronic sys-
tem, resulting in the scattering of electronic planewaves
from k → k ± q, and depend on coupling terms gδν(q),
which themselves depend on eαν(q).

The required inputs for this model are the lattice con-
stant a0, onsite energies ∆α, hopping term t0, phonon
dispersion ωqν , polarization eν(q) and electron-phonon
coupling factor b. In this work, we obtained the lat-
tice constant and phonon information from Quantum
Espresso cell relaxation and phonon dispersion calcula-
tions, and fit the hopping term, onsite energies and cou-
pling factor from a symmetric two band approximation
to the conduction band calculated using an uncorrected
LDA xc functional. See the Computational Methods sec-
tion for further details.

The present tight-binding model clearly involves a ma-
jor simplification, as it treats the electronic system at
the independent particle level. However, this simplified
treatment is not entirely unreasonable as one can elim-
inate excitonic effects in experimental setups by plac-
ing the monolayer onto a conductive substrate, which
screens the electric field and allows the study of free car-
riers [76, 77]. Furthermore, the purpose of the TB model
is mainly in developing comparisons with ab initio sim-
ulations, which go beyond this limitation. Nevertheless,
it would be interesting to go beyond this limit in future
applications.

1. Implementing the MTEF Method with the TB Model

For each initial condition X0 that is sampled from
ρph,W (X), one can find the single particle orbitals for

ĤW (X0),

ĤW (X0) |ψl(X0)〉 = εl(X
0) |ψl(X0)〉 (19)

and construct the density operator,

ρ̂e =
∑

l

f(ε0l , T ) |ψl〉 〈ψl| , (20)

where f(ε0l , T ) is the Fermi occupation at temperature T
evaluated for the orbital energy εl(X

0) = ε0l at this initial
configuration. In the above expression for the electronic
density we have suppressed the dependence of the orbital
on the phonon coordinates. One may then propagate
a set of trajectories, associated with the set of initial
conditions, according to the MTEF equations of motion
(Eq.(2)), which in the case of the present TB model are
more conveniently expressed as follows,

˙̃P iqν = −
(
ωqν z̃

i
qν + lqνTr

[
Mqνρ

i
e(t)
])

˙̃ziqν = ωqν P̃
i
qν

i∂t |ψil〉 = ĤW (Xi(t)) |ψil〉 .
(21)

We have validated the accuracy of the MTEF treat-
ment of this form of tight binding model by comparing
with the nonequilibrium Green’s function (NEGF) re-
sults of Nery and Mauri [36] for the phonon renormaliza-
tion of the electronic spectral function in graphene, and
we find that the spectral function generated from MTEF
simulations is in good agreement with the NEGF results.
See the SI.4 for details.

IV. RESULTS

A. Excited Carrier Relaxation in hBN

Due to the lack of inversion symmetry, hBN is a strong
insulator with a gap around the K/K ′ points that is de-
picted in panel (b) of Fig. 1.

This also leads to the potential for selective excitation
in the BZ around the K/K ′ points upon irradiation with
circularly polarized light.

For simplicity, we did not include direct coupling be-
tween the laser field and the phonon modes, and as such
the laser field is only indirectly coupled to the phonons
via the modification of the electronic occupations. To
couple the electronic system to the laser field in the long-
wave approximation we use a Peierls substitution to mod-
ify the electronic wavevector k:

k(t) = k−
∫ t

E(t′)dt′ = k +
1

c
A(t). (22)
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t=10 fs

t=200 fs t=200 fs t=200 fs t=200 fs

FIG. 1. Panel (a) shows a schematic of circularly polarized light exciting a sheet of hBN. The upper half of panel (b) shows the
electron bands calculated using DFT with an LDA xc functional, alongside the tight binding (TB) bands fit to match the band
onset. The Fermi level has been centered between the conduction and valence bands. The arrow indicates the approximate
energy of excitation around a specific K valley, and the shading indicates the occupation of states in the TB model just after
the laser pulse, interpolated from the MTEF results. The lower half of panel (b) shows the phonon dispersion calculated using
DFPT, with shading indicating the initial phonon occupation number at 300 K, with the translational modes at Γ set to zero.
The bottom four panels show the occupation of the conduction band 200 fs after the laser pulse under different approximations
to the electron-phonon dynamics: (c) initially equilibrium geometry with zero velocity, (d) TDBE, (e) static displacement, and
(f) MTEF dynamics. The phonon system in panels (d-f) is sampled at/set to 300 K. The labeling of the otherwise degenerate
K+/K− points is based off the polarization of the pump and the scale is capped at 0.8, to emphasize small differences.

We use a circularly polarized laser pulse A(t) using a
cos2 envelope with polarization defined by:

A(t) =

{
A0(t) cos2

(
π

Tpump
(t− Tpump/2)

)
, t < Tpump

0 , else

A0(t) =
A0√

2

(
Re
[
eisωt

]
x̂ + Im

[
eisωt

]
ŷ
)
.

(23)

We utilize a pump pulse duration of ten optical cycles
at carrier frequency ω = 5 eV, such that Tpump ≈ 8.3
fs (FWHM ≈ 4.1 fs), with amplitude A0 = 5 a.u. cor-
responding to a peak intensity of 7.88 × 1011 W/cm2.
The handedness of the laser is controlled by s = {1,−1},
creating left and right circularly polarized light, and we
distinguish the K points by which sign of s excites them
as K+/K−.

After exposure to the pump pulse we track the occupa-
tion of the conduction band states, fck = |ck|2, by taking

the expectation value of the projector:

ck(t) =
1

Nt

Nt∑

i

Tr [ρ̂i(t) |ck〉 〈ck|] . (24)

Strictly speaking this projector is only valid when the
laser field is turned off, otherwise one must project onto
the Houston states |ck(t)〉 [78, 79]. For simplicity we
project onto the equilibrium band states, and indicate
when the laser field is on (and therefore where this mea-
sure is only approximate) using grey shading in the back-
ground. In panels (c-f) of Fig. 1 we show a snapshot of
the conduction band occupations taken 200 fs after the
circularly polarized pump pulse, using the different ap-
proaches mentioned above. In all cases the system is ini-
tialized at 300 K. In Fig. 1 (c) we initialize the ionic sys-
tem at the equilibrium geometry with zero velocity. The
excited population established after the pulse has a large
imbalance between the K− and K+ valley carrier dis-
tributions and remains completely static throughout the
propagation in this case due to a lack of decay channels.
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The marginal population around K+, mostly around the
K±M lines, and the dip at K− is due to pumping slightly
above the gap, as seen in Fig. 1 (b), though there is no
population at the symmetry forbidden K+ point itself.

Often in literature, a dynamics simulation will be re-
ferred to as Ehrenfest if the ions are allowed to move ac-
cording to mean field forces, without a unique specifica-
tion of their initial conditions. We show that performing
the simulation with fixed ions or with dynamic ions start-
ing with zero initial velocity, but in either case starting
from the equilibrium geometry, results in no qualitative
change in the excited electron occupation. By breaking
the symmetries of the equilibrium geometry and includ-
ing static disorder in the phonon system, there is a funda-
mental difference in the evolution of the excited electronic
system.

The results of TDBE dynamics are shown in panel (d)
of Fig. 1. The initial carrier distribution rapidly equal-
izes between the K−/K+ valleys, while simultaneously
contracting towards the lowest energy states available in
the valley bottoms. These dynamics are restricted exclu-
sively to relaxation of the electronic occupations because,
as seen in panel (b), the optical phonons initially have no
energy available to contribute to scattering the electronic
system uphill in energy.

For the case of static disorder, shown in Fig. 1(e),
the valley occupations are effectively equalized by 200
fs, however there is no change in occupied energy levels,
as seen by the ring around K± which is present in the
occupation immediately after excitation as in panel (c).
This can be explained in the framework of band folding:
displacing the ionic positions in a supercell is equivalent
to folding over the primitive cell BZ bands. This allows
the excited charge carriers at K− to have a decay channel
into the energetically degenerate folded k points around
K+. However, this is a strictly elastic scattering process
and therefore is effectively restricted to states inside the
initially excited energy window.

The results of allowing for dynamic ion motion at the
MTEF level are shown in Fig. 1 (f). Here we see that in
addition to homogenization of valley population, there is
also some scattering of carriers out of the energetic win-
dow in which they were initially excited. One can see that
in addition to scattering downwards in energy towards
the K± points, there is also excitation of the electrons
upward in the valleys along the K±M lines. Without
exact numerical results it is difficult to address the accu-
racy of this phenomena, however it could be related to
the ZPE leakage of the mean-field dynamics: although
the optical phonon occupation is approximately zero ini-
tially, over time the ZPE of phonons near the gamma
point is drained into the electronic system, incrementally
exciting the charge carriers beyond what one sees in the
TDBE results at this temperature. However, note that
when propagating without pumping the electronic sys-
tem, there is no loss of phonon ZPE and no heating of
the electronic system as the band gap forbids the promo-
tion of electrons due to the order of magnitude smaller
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FIG. 2. (a): Valley population asymmetry at T = 300 K
defined by Equation (25). Panel (b) shows the fraction of
conduction band population outside the K± regions. The
grey region corresponds to when the pump is turned on and
the dotted line at zero is a guide to the eye.

phonon energies. See SI.7 for further details.
To assess the relaxation timescales in more detail, we

can track the flow of excited charge carriers throughout
the BZ by integration of the conduction band occupation
within the populated region AK± around the K± points:

VAocc(t) =

∫
AK−

d2k fck(t)−
∫
AK+

d2k fck(t)
∫
AK−

d2k fck(t) +
∫
AK+

d2k fck(t)
. (25)

In the valleytronics literature this measure has been used
to define the ‘valley polarization’ or ‘valley asymmetry’
[4, 58, 62] and (for TMDs) has been shown by perturba-
tion theory to be strongly influenced by electron-phonon
coupling [80]. For our purposes we use this term to re-
fer strictly to the population imbalance between the K±

valleys, without reference to the spin resolved bands typ-
ically associated. We choose the integration regions to be
|k−K±| < 0.36Å−1, roughly corresponding to the pop-
ulated areas Fig. 1(c). In Fig. 2(a), we see that static
displacement, MTEF dynamics and TDBE all capture
an extremely rapid population rearrangement within the
first 50 fs. In the static displacement method there is a
slight inversion of polarization which slowly decays over a
50 fs-2 ps timescale, and the total population outside the
valley regions in Fig. 2(b) remains fixed due to carrier
energies being confined to their initial excitation energy
window. Small changes to the radius of integration do
not change the characteristics of these plots due to the
normalization with respect to region population in Eq.
(25), and simply changes the quantitative values in Fig.
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FIG. 3. The timescale of an exponential fit of the valley de-
polarization rates calculated with Eq. (25) over the first 50
fs, with an inverse scattering rate γ fit to these data shown
as the dotted line.

2(b).
The TDBE and MTEF dynamics clearly display a sec-

ond time scale, starting from about 50 fs in the case of
MTEF and about 100 fs for TDBE, where the valley
equalization slows into an asymptotic-like behavior when
the population imbalance dips below 0.15. Simultane-
ously, in the TDBE results there is a down-scattering of
carriers which were initially outside of the valley regions
as the excited electronic population emits energy into the
phonon bath and assumes a more thermal distribution.
In contrast, MTEF shows the presence of up-scattering
processes as the ZPE from the phonon system is absorbed
by the electronic system due to the classical nature of the
approximation. See SI.7 for further details.

We gain further insight to the effect of the phonon bath
on the ultra-fast excited carrier relaxation or ‘valley de-
polarization’ by varying the initial temperature of the
system. In Fig. 3 we show the characteristic time scales
of depolarization obtained from fitting the valley asym-
metry in the first 50 fs to an exponential decay function,
f(t) = a0+a1exp (−t/τdp), across multiple temperatures.
The most apparent feature is an effective independence of
the depolarization rate on temperature until about 300K
which can be easily attributed to the high phonon ener-
gies in hBN, meaning that the optical phonon branches
only begin to have significant occupation at higher tem-
peratures. This behavior has been experimentally ob-
served in the steady-state photoluminescence polariza-
tion of MoS2, which is directly proportional to the valley
lifetime [56], as well as in valley asymmetry decay times
in WSe2 measured by time-dependent Kerr rotation mea-
surements [31].

The depolarization timescales τdp can be related to
the average phonon occupation via a linear function of
the scattering rate: γ = 1/τdp where γ = γ0 + α 〈nph〉.
Using the fit τdp values, we further fit the scattering
rates by taking at each temperature the expected oc-

cupation value of the Bose-Einstein distribution at the
average optical phonon energy, 0.16 eV, showing very
good agreement with the data. The fit scattering param-
eters are αDynamic = 0.072 fs−1, αStatic = 0.081 fs−1, and

αTDBE = 0.065 fs−1. Although the ZPE leakage present
in the MTEF dynamics can affect electronic populations
at long time scales, these results show that for short
time scales the MTEF decay rates broadly agree with the
TDBE and static displacement approaches; all methods
predict this timescale to depend on thermal activation of
the phonon optical modes in a consistent manner.

In the context of the MTEF and static disorder simula-
tions, it is worth pointing out that these results converge
with an extremely small number of trajectories. For ex-
ample, while the data shown in Fig. 2 was obtained with
Nt = 380 trajectories, we can reproduce a graphically
converged result with high probability through as little
as two random samples. See SI.5 for further analysis.

B. Tracking Valley Asymmetry with Transient
Circular Dichroism

Direct experimental observations of time dependent
valley populations has been done in TMDs by performing
time resolved measurements, such as time and angle re-
solved photoemission [76, 77], time dependent Kerr rota-
tion spectroscopy [31], helicity resolved two-dimensional
electronic spectroscopy [81], and TAS [27, 82]. In this
section we focus on TAS using circularly polarized light,
Transient Circular Dichroism (TCD).

Pumping the system with circularly polarized light
produces an electronic current, jpump(t), that depends on
the polarization of the pump. Next, one probes the sys-
tem with a much weaker circularly polarized probe pulse
with a time delay between it’s envelope center and the
pump center of τ and a duration of Tpr to generate the
pump-probe current jpump-probe(t, τ), which encodes the
excitation of the system induced by the pump at this de-
lay, and depends on the polarization of the probe. Taking
the difference between these currents

jTAS(t, τ) = jpump-probe(t, τ)− jpump(t), (26)

allows one to calculate the intermediary transient optical
conductivity (TOC) [83]:

σ̃ij(ω, τ) =

∫ Tf+τ+Tpr/2

τ−Tpr/2
dt W (t/Tf )jiTAS(t, τ)eiωt

∫ Tf+τ+Tpr/2

τ−Tpr/2
dt W (t/Tf )Ejprobe(t)e

iωt
. (27)

Here i, j are the cartesian directions of the pump and
probe, and we have inserted the mask function W (x) =
exp (−κx) , κ = − ln

(
10−3/Tf

)
to damp the integrand of

the Fourier transform, given the finite propagation time
Tf . The trace of the optical conductivity is used through-
out, σ(ω) = Tr [σij(ω)]. Finally by comparing the differ-
ence to the response of the system with no pump pulse
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FIG. 4. The real part of the TOC: Re [σ(ω, τ)] calculated in the TB model. The arrows indicate the chirality of the pump
and probe, either pumping and probing with the the same handedness or opposite handedness. Panels (a) and (b) are the
equilibrium geometry results and the MTEF results at 300 K are shown in panels (c) and (d). The left most panels show the
spectral weight of the pump, |E(ω)| which is active during the grey highlighted time span. The logarithmic scale has been set
to emphasize the signal in the cross valley data, while minimizing the fluctuations arising from CEP locking.

but the same probe, σno-pump(ω) we obtain the true TOC:

σ(ω, τ) = σ̃(ω, τ)− σno-pump(ω). (28)

As with the pump pulse, we also use a cos2 envelope for
the probe, with a strength of A0 = 0.01 a.u. at the same
frequency as the pump for a single optical cycle, Tpr ≈ 0.8
fs. The carrier envelope phase (CEP) between the pump
and probe for each delay is fixed to zero. See SI.3 for the
explicit formulas for the electronic current operator in
the TB model and section VI E for the MTEF simulation
protocol.

The results for the real component of the TOC cal-
culated in the TB model are shown in Fig. 4, with a
delay spacing of ∆τ = 0.5fs and a propagation time of
Tf = 30fs. The pump chirality in all cases is spump = −1,
the same used in the results of Fig. 1, and the chiral-
ity of the probe is sprobe = −1 in the left column and
sprobe = +1 in the right column. The periodic fluctu-
ation of the signal is due to the CEP locking, and can
in principle be removed if desired by averaging the re-
sults over several CEPs [84, 85]. Starting with the static
equilibrium geometry results on the top row, in panel
(a), we see that after the pump, at around τ = 4fs,
the signal is saturated around the pumping frequency,
whereas in panel (b) following the same pump, but with
a probe pulse of the opposite chirality, there is a mini-
mal response indicating a very small population slightly
above 5eV. By directly comparing to Fig. 1(c) we see
that the signal in Fig. 4(b) corresponds to the small pop-
ulation around (and energetically above) K+ induced by
the pump, while the saturated signal in Fig. 4(a) corre-
sponds clearly to the large population in the K− valley.

The TOC signal is of course unchanging after the pulse
due to the lack of decay channels, again corresponding to
the equilibrium results shown in Fig. 2. Turning to the
MTEF results, we see a sharp attenuation of the signal
in panel (c) following the pump, as well as a broadening
of the range of the signal with respect to panel (a) due to
scattering within and outside the K− valley. Concurrent
with the attenuation of the K− valley signal around 5
eV there is a buildup of signal in panel (d) indicating a
buildup of carrier density in the K+ region.

We can generalize these predictions of the TOC to the
calculated conduction band populations without reliance
on defining valley integration areas by taking the differ-
ence of the columns shown in in Fig. 4(d) and (c), and
integrating over the energy axis:

VATAS(τ) =

∣∣∣∣
∫
dω Re [σcross

TAS (ω, τ)− σsame
TAS (ω, τ)]∫

dω Re [σcross
TAS + σsame

TAS (ω, τ)]

∣∣∣∣,
(29)

where σsame indicates the TOC obtained by pumping and
probing with the same chirality of light as in the left
columns of Fig. 4, and σcross refers to pumping and prob-
ing with opposite circular polarizations, as in the right
columns of Fig. 4. In Fig. 5 we perform a TCD cal-
culation using frozen phonons and compare the measure
in Eq. (29) coming from the TCD directly to the valley
polarization calculated via Eq. (25) using the occupation
data from the pump only part of the TAS calculation. It
is clear that there is good agreement between these two
measures.

Finally we perform a TCD calculation using the
TDDFT program Octopus [86] in a 30×30 supercell with



11

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

Va
lle

y 
As

ym
m

et
ry

TB VAocc static
TB VATAS equil.
TB VATAS static

0 10 20 30 40
Time [fs]

0.0

0.1

0.2

0.3

Va
lle

y 
As

ym
m

et
ry

TDDFT VATAS static
TDDFT VATAS prim. dynamic

FIG. 5. Extracting Valley Asymmetry from TAS calcula-
tions via Eq. (29). The results of the same calculation done
through TDDFT are also included. The grey shaded region
is the time period in which the laser field is active. The char-
acteristic decay times fit to the TAS data via an exponential
starting from time 0 are τdp = 32 ± 2fs for the tight binding
calculation and τdp = 13.5±0.8fs for the TDDFT calculation.
The exponential fit to the TDDFT data is also plotted, with
the grey line being a guide to the eye.

a delay spacing ∆τ of 5 fs. Due to the size of this calcu-
lation, 1800 ions in periodic boundary conditions, it was
computationally infeasible to do the full calculation with
dynamical ions. However we can compare to a full MTEF
calculation sampling the Γ point optical phonons with
ten dynamical calculations in a primitive cell in gray. The
fully ab initio calculations show a smaller degree of valley
polarization at the peak of the pulse, and the supercell
calculations show an extremely rapid depolarization, on
a timescale roughly two to three times faster than the
tight binding model. As expected, the displacements in
the primitive cell calculation, while demonstrating some
fluctuation of the signal, do not depolarize due to be-
ing restricted to Γ point phonons, incapable of scattering
electronic states from K− to K+.

C. Tracking Valley Asymmetry with Optical
Harmonic Polarimetry

While testing the predictions of the above TCD cal-
culation experimentally is in principle possible – as the
generation of circularly polarized light in the range of
the experimentally measured hBN gap of 6eV can be
achieved via high harmonic generation (HHG) [87] – a
much easier measure of the valley asymmetry has been
proposed by Jiménez-Galán and colleagues [62, 88] and
recently experimentally tested by Mitra et. al [63] which

is based off the ellipticity of harmonics generated by a
linearly polarized, high-intensity, off-resonant probe. In
this section we recreate this experiment in silico and test
the robustness of this measure when including phonon
induced scattering in the simulation.

The basic idea was explained succinctly in the SI of
[62]: when driving the system with an off-resonant probe
aligned in the Γ − M direction of the BZ, the current
response induced parallel to the driving field (j‖) will

not be affected by the population of the K+/K− val-
leys, however the current response in the perpendicular
direction (j⊥) must be. The contribution to j⊥ is pro-
portional to the anomalous Hall conductivity arising from
conduction band population in regions of non-zero Berry
curvature. For equal K+ and K− valley populations the
anomalous Hall current will have exactly counteracting
contributions from these two regions. For unequal popu-
lation, a non-zero j⊥ will emerge, which has been used as
an experimental measure for valley polarization in TMDs
for nearly a decade [89].

Furthermore, since the Berry curvature around the two
valleys have opposite sign, the anomalous current arising
from a population imbalance around either valley will al-
ways be completely out of phase (π) with respect to one
another, and both π/2 out of phase with respect to j‖.
This means that the radiation emitted as a result of this
current will have an elliptical polarization, with elliptic-
ity ε ∈ [−1, 1] corresponding to the K−/K+ population
imbalance, and gives an all-optical measure of the valley
asymmetry. Mitra et. al [63] use this phenomenon as a
measure of the degree of valley asymmetry in hBN fol-
lowing a bichromatic ‘trefoil’ light pulse – which has been
proposed as a tunable driver of valley selective excitation
in monolayer hBN and graphene, as well as bulk TMDs
and twisted bilayer graphene [90, 91] – finding a small
but apparently valley selective signal about 100 fs after
excitation.

While the ellipticity of emitted harmonics has been
proposed to detect other system properties such as topo-
logically insulating phases, the utility of this measure has
been called into question by ab initio simulations due in
part to the many technical difficulties related to the gen-
eration and interpretation of HHG signals, even in the-
oretically ideal conditions [51, 92–95]. Furthermore the
HHG spectrum has been found to be very sensitive to
Γ point phonon distortions [50]. Given these open ques-
tions in the literature, along with the results in Sections
IV A and IV B indicating that phonons should induce ul-
trafast sub-30 fs homogenization of any valley asymmetry
in monolayer hBN, in this section we test the robustness
of this measure of valley asymmetry upon inclusion of
phonon degrees of freedom and the time dependence of
the asymmetric valley population signal following a tre-
foil pump in our TB and TDDFT approaches.



12

1. Robustness of Harmonic Ellipticity under
Phonon-Induced Valley Equilibration

We define the intensity of light emitted due to the non-
equilibrium current in a given Cartesian direction x, y,
as:

|Ix,y(ω)|2 =

∣∣∣∣
∫ tf

t0

dteiωtm(t,
1

2
[tf − t0]) ∂tjx,y(t)

∣∣∣∣
2

,

(30)
where m(t, x) is a mask function. For clean high har-
monic generation, we utilize a probe pulse which is far
from resonance with the energy gap in hBN, ωprobe <<
Eg, allowing us to drive the system at very high intensi-
ties, and utilize a ‘super-sine’ envelope for both the probe
pulse and the Fourier transform [96]:

m(t, τ) =

(
sin

(
π
t− τ
Tprobe

))



∣∣
π

(
t−τ
Tprobe

− 1
2

)∣∣
w




(31)

where w = 0.75, τ is the center of the mask, and m(t, τ)
is defined to be zero when |t− τ | ≥ Tprobe/2. This mask
is useful as it begins and ends exactly at 0 while having
a short and smooth ramp time, maximizing the number
of optical cycles present at full intensity. We drive the
system along the mirror axis, parallel to the B-N bond,
and define this to be the y direction corresponding to
pumping along the Γ −M line in the BZ. The probe is
depolyed at multiple delays τ relative to the center of a
pump envelope:

A(t; τprobe) =
c
√
Iprobe

ωprobe
m(t, τ) cos(ωprobet+ φ)ŷ (32)

Where Iprobe is the probe intensity, c is the speed of light,
and φ is the CEP, which is always fixed from the start
time, i.e., φ = ωprobe(τ − Tprobe/2).

The ellipticity of emitted light calculated by Eq. (30)
at a given energy ω can be determined via the Stokes
parameters ([97] Eq. SI.2):

ε(ω) = h
|Ix|2 + |Iy|2 −

√
(Ix − Iy)2 + 4IxIy cos2 (φy − φx)

|Ix|2 + |Iy|2 +
√

(Ix − Iy)2 + 4IxIy cos2 (φy − φx)

φx = arg (Ix) , φy = arg (Iy) ,

h = sign

[∣∣∣∣Ix + iIy

∣∣∣∣−
∣∣∣∣Ix − iIy

∣∣∣∣
]
,

(33)

where h is the helicity of the signal corresponding to the
handedness: -1 for right, 1 for left, 0 for linear, and φx,y
is the phase of the signal. The ellipticity ranges continu-
ously from [−1, 1] defining fully right circularly polarized
light to fully left circularly polarized light.

One can define the ellipticity of a given harmonic by
taking the normalized harmonic yield for each harmonic
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FIG. 6. The intensity weighted ellipticity and correspond-
ing elliptical yield of the harmonics generated in a fixed-
equilibrium geometry calculation 25 fs after excitation with
left circularly, right circularly or linearly polarized light us-
ing the same pump parameters as in sections IV A and IV B.
The vertical dashed line indicates the conduction band edge
at 4.43 eV. (a): the TB model results, (b): TDDFT results,
(c): the elliptical yield of panel (a) calculated with Eq. (34),
(d): the elliptical yield of panel (b).

n, weighted by the ellipticity:

Elliptical Yield (n) =

∫ n+1/2

n−1/2 dωε(ω)
(
|Ix|2 + |Iy|2

)
∫ n+1/2

n−1/2 dω (|Ix|2 + |Iy|2)
,

(34)
where the integral goes from the energy at (n−1/2)ωprobe

to (n+1/2)ωprobe. With these definitions in hand we can
test the ellipticity of the harmonics generated in hBN
after irradiation by the on-resonant pump from sections
IV A and IV B which, as already demonstrated, produces
very strong valley asymmetry.

In Fig. 6, we see the HHG spectrum for a fixed-
equilibrium geometry calculation, 25 fs after being
pumped with left circulalry, right circularly or linearly
polarized light at ωpump = 5 eV and Tpump ≈ 8.3 fs, gen-
erated by a probe with ωprobe = 1 eV, and Tprobe = 30 fs.
As one would expect, the fundamental matches the polar-
ization of the driving probe field, while there is flipping of
the ellipticity at each subsequent harmonic, until reach-
ing the band edge at 4.43 eV, whereupon the conduc-
tion band electron response dominates the signal. These
results hold for both the TB and the TDDFT spectra,
though there are naturally some quantitative differences,
in particular concerning the intensity of the emitted light.
Under linearly polarized pumping, the ellipticity of the
spectrum is effectively flat for the TB model, with a small
signal at the 3rd harmonic, however the TDDFT results
show an elliptical response at both the fundamental and
3rd harmonic, which nonetheless is washed out in the
yield calculation. Although the intensity weighted ellip-
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FIG. 7. The elliptical yield of the 3rd harmonic calculated
with Eq. (34), following excitation with the same circularly
polarized resonant pump from sections IV A and IV B. The
grey region corresponds to the duration of the pump, while
the vertical dotted line indicates the final time of pump-probe
overlap.

ticity can be quite large, due to the normalization in Eq.
(34) the calculated yield does not necessarily reflect this.

Although the 3rd harmonic signal is small, we find that
it provides the cleanest time resolved information when
scanning over probe delays, shown in Fig. 7. Here we
see precisely the same behavior as in the previous re-
sults. When the ions are fixed at the equilibrium ge-
ometry, there is a fluctuation in the signal for both the
TB and TDDFT results, but it remains non-zero due to
a lack of valley asymmetry decay channels. In contrast
when including phonon dynamics either via MTEF or
static disorder there is a suppression of the initial signal
followed by a rapid decay corresponding to the equilibra-
tion of valley population seen in Fig. 2.

2. Robustness of Trefoil Valley Selectivity under
Phonon-Induced Valley Homogenization

By combining two counter-rotating circularly polarized
fields with a fundamental frequency ωtr and it’s second
harmonic 2ωtr with a relative amplitude of 2:1, and a
delay td of the 2ωtr field relative to the fundamental,
one obtains a laser with a triangular ‘trefoil’ shape in
the plane which can be arbitrarily rotated by tuning td.
The orientation of the trefoil was shown numerically via
the semi-conductor Bloch equation to preferentially ex-
cite electrons into the K+ or K− valleys in monolayer
hBN [62, 63]. The explicit form of the trefoil gauge field

we use is:

Atrefoil(t) = A0m(t)

(
Re

[
2

3
e−iωtrt +

1

3
ei2ωtr(t−td)

]
x̂

+Im

[
2

3
e−iωtrt +

1

3
ei2ωtr(t−td)

]
ŷ

)
,

(35)

where again m(t) is an envelope function. We chose
ωtr = 0.6 eV for a duration Tpump = 30 fs as in the
experimental paper, with a super-sine envelope and an
intensity of 1.67×1012 W/cm2. The effect of driving the
TB system with this laser is shown via the conduction
band occupations plotted in Fig 8.

In Fig. 8, panels (a-c) show the results for the static
equilibrium geometry with the trefoil pulse oriented at
−30◦, 0◦, and 30◦ rotations relative to the x axis in the
BZ. The excitation atK+ for the 30◦ rotation in Fig. 8(c)
is quite strong and agrees qualitatively with Fig. 2e of
Ref. [62], which shows a similar pumping frequency. At
the opposite tuning in panel (a) when K− should be more
populated, there is indeed some excitation, and looking
closely one can see that it’s texture also resembles the
‘grape-cluster’ structure of the K+ valley in panel (c),
although the magnitude of excitation is lower. Qualita-
tively this reproduces the relative difference in excitation
density reported in Fig. 3d and 3e in [62], confirming
that our model also captures this phenomenon. Halfway
between these two tunings, in panel (b), one still sees a
strong preferential excitement in the K+ valley over the
K− valley.

Incorporating phonon dynamics via MTEF in panels
(d), (e), and (f), these trends broadly remain 50 fs af-
ter pumping, though the fine structure of the excitation
seen away from the K valleys is washed out by electron-
phonon scattering, causing a radially symmetric distribu-
tion away from the BZ boundaries that decreases towards
Γ. Inclusion of the phonon system via static disorder pro-
duces BZ occupations virtually identical to the MTEF
results at this timescale.

In all cases, looking within a small region around
K+/K− when pumping at −30◦ versus 30◦ one sees there
is indeed an asymmetry in the excitation at the extrema
of trefoil orientation. To see how this manifests in the
HHG signal, we recreate the experimental setup by uti-
lizing a linearly polarized probe of the same intensity and
fundamental frequency as the trefoil pump (ωprobe = ωtr)
to create an HHG spectrum. As the HHG from the pump
alone has no contribution to the 3ωtr harmonic channel
it serves as a natural signal region to study with the
probe. In Fig. 9 we compare the ellipticity of the 3rd har-
monic to the valley asymmetry calculated directly from
the conduction band occupation induced exclusively by
the trefoil pump for fixed equilibrium geometry in pan-
els (a) and (b), and MTEF/static displacement in panels
(c) and (d). Because of the diffuse excitation, we choose
integration regions for Eq. (25) in the BZ formed from
vertices at the high symmetry points bisecting the lines



14

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

k y
 [Å

1 ]

(a)
K

K +

M

(b)
K

K +

M

(c)
K

K +

M

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.4 0.0 0.4
kx [Å 1]

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

k y
 [Å

1 ]

(d)
K

K +

M

0.4 0.0 0.4
kx [Å 1]

(e)
K

K +

M

0.4 0.0 0.4
kx [Å 1]

(f)
K

K +

M

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

FIG. 8. The occupation of the conduction band 50 fs after irradiation with the trefoil pump in the TB model. The path of
the trefoil pump in the plane is arbitrarily rescaled and drawn within the BZ as the blue line. Panels (a), (b) and (c) show the
results for the static equilibrium geometry when the degree of rotation of the trefoil with respect to the BZ x axis is at −30◦, 0◦

and 30◦ respectively. Panels (d), (e) and (f) show the MTEF results at the same rotations – Note the smaller colormap scale.
The triangular regions inscribed by the dotted lines are formed by vertices at the high symmetry points between the K+/K−

points, and are used to define the integration regions for the valley asymmetry calculation in Fig. 9.

between adjacent K+/K− valleys, which neatly encap-
sulates the excitation around K+ for a 30◦ trefoil pump.

The equilibrium geometry results in panel (b) show
that while the valley asymmetry integrated in the con-
duction band generally shows a tuning of the valley oc-
cupations, beginning preferentially in the K− valley at
−30◦ and in the K+ valley at 30◦, it is not exact, as at
0◦ there should in principle be more equal population,
yet there is clearly a preferential excitation. This is par-
tially reflected in the ellipticity in panel (a), where there
is a strong polarization signal at 30◦ and 0◦, however, the
small degree of K− population under −30◦ pumping fails
to contribute to a significant negative elliptical emission.

These signals become cleaner when looking at the
MTEF/static results in panel (c). There is a much
smaller degree of polarization at 0◦, while −30◦ is neg-
ative throughout. In all pump cases, there is a decay in
the signal over the 70 fs depicted which is commensurate
with the decay of valley asymmetry seen in panel (d).
Comparing the strength of the signal when using oppo-
sitely tuned pumps, these simulations indicate that the
relative signal difference is very weak after 100 fs.

V. CONCLUSION

We have derived a general expression for the Wigner
transformation of the phonon thermal density matrix
applicable to the phonon dispersion for real materials
taken from ab initio calculations, and utilized it to per-
form MTEF calculations in both a reciprocal space TB
model and a real space TDDFT supercell approach. This
methodology allowed us to simulate the relaxation of
asymmetrically excited charge carriers in hBN, to track
this through the transient absorption spectra using cir-
cularly polarized probes, and to recreate an experimen-
tal observation of harmonic ellipticity as a measure of
valley population imbalance. The inclusion of phonon
degrees of freedom, either dynamically (including anhar-
monic effects) or statically, produced fundamentally dif-
ferent spectroscopic simulation results due to the com-
plete exclusion of a critical decay channel in the common
equilibrium geometry framework.

We discussed connections between the MTEF method
and static displacement approaches, finding that MTEF
is analogous to an extension of the reciprocal space
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FIG. 9. The left column shows the ellipticity yield of the
3rd harmonic generated after irradiation with the three trefoil
pulse rotations seen in Fig. 8, compared to the right column
showing valley asymmetry calculated by applying Eq. (25)
to the triangular dotted regions in Fig. 8. Panels (a) and
(b) show the static equilibrium geometry results while panels
(c) and (d) show the MTEF results in bold lines and static
results in dashed lines. Note the order of magnitude difference
between the y-axes scales for the two approaches.

William-Lax / Zacharias-Giustino coordinate distribu-
tion to include nuclear velocities/momenta. We have
also demonstrated that MTEF and static displacement
methods can capture the phonon driven sub-30 fs val-
ley depolarization on time scales commensurate with the
TDBE results. Further, we showed that while static dis-
placement methods are restricted to elastic scattering,
MTEF suffers from unrealistic electron heating at long
time scales due to ZPE leakage. Despite this, we showed
that the temperature dependence of the short time scale
relaxation of excited charge carriers agrees well across
these simulation methods, exhibiting a plateau in inter-
valley relaxation lifetimes at low temperature that agrees
relatively well with experimental measurements in sim-
ilar systems [31, 56]. Furthermore we found that these
results converge with a very small number of samples.

This work extends MTEF into the domain of the ab
initio treatment of periodic systems, providing a start-
ing point for the hierarchy of semiclassical dynamics ap-
proaches which build on from the mean field limit, cor-
recting for some of it’s most serious shortcomings. How-
ever, even with issues in the long time-scale behavior of
MTEF, this simulation method provides a unique tool
to study the ultrafast response behavior of systems with
strong electron-phonon coupling in laser driven regimes
far from thermal equilibrium. Inclusion of phonon dy-
namics has the potential to be utilized to incorporate
phonon dynamics into fully ab initio simulations of para-
metric driving, Floquet engineering and driven phase
transitions, while already inclusion of static disorder can
substantially change predictions of spectroscopic mea-
surements via inclusion of elastic electron-phonon scat-
tering under arbitrarily complex pump-probe configura-

tions.
The rapidity with which our results converge for the

results presented here is highly encouraging for other far
from equilibrium observables, and given the simplicity of
incorporating our method into existing real time simu-
lation protocols of non-equilibrium driven phenomena in
quantum materials, as well as the fundamental qualita-
tive differences in the resulting temperature dependent
dynamics resolved in a systematic framework, we think
that this will be a valuable tool going forward.

VI. COMPUTATIONAL DETAILS

A. Tight Binding Model

The lattice parameter of a0 = 4.734 Bohr was ob-
tained from cell relaxation in Quantum Espresso. The
phonon frequencies and displacements were calculated on
a Monckhorst-Pack (MP) grid of 30× 30 using Quantum
Espresso, with a 64× 64 MP electronic k point grid. We
utilize a 302 k and q grid in the BZ for our Equilib-
rium, MTEF and static TB simulations in sections IV A
and IV B which is sufficiently dense to converge our re-
sults compared to a 362 grid. In section IV C we used a
60× 60 k-grid.

The tight binding parameters t0 and ∆α = ±|∆| were
fit from the conduction band calculated over a 30 × 30
MP grid in the TDDFT code Octopus according to the
analytical dispersion relation of the equilibrium geometry
tight binding model:

Ek =
√

∆2 + t20|γ(k)|2, γ(k) =
∑

δ

eik·δ. (36)

An LDA functional was used with Hartwigsen-Goedeker-
Hutter (HGH) norm-conserving pseudopotentials with
the simulation box having a real space grid spacing of
0.35 Bohr, and being periodic only in two dimensions
with a vacuum of 1a0 on either side of the monolayer.
The band gap of Eg = 2|∆| corresponds to the uncor-
rected LDA direct gap of 4.43 eV, and t0 = 2.68 eV. Al-
though hBN has rather high energy phonons compared to
many other materials, the electronic gap remains an or-
der of magnitude larger, meaning that none of the physics
of the electron dynamics within the upper band presented
here is affected by not correcting this gap.

The hopping parameter b was calculated by fitting the
bands to Eq. (36) for a range of ionic configurations
with maximum displacement of 3% of the lattice con-
stant, about 0.14 Bohr from equilibrium in steps of 0.005
Bohr, using a first order expansion of Eq.(17). The re-
sulting value of b = 2.87 is quite close to the value sug-
gested in [74] (b = 3.3), where it was approximated from
Slater-Koster parameters between nearest and next near-
est neighbors, and is also in a similar range to the value
of 3.37 which has been estimated for graphene [75].

The tight binding model is written in Python and
C++/CUDA, and is available at gitlab.com under
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kevin.lively_mpsd/graphene-tight-binding

B. MTEF Simulations

We integrated the MTEF equations of motion with
an fourth order Runge-Kutta algorithm for the elec-
tronic portion simultaneously with a velocity-Verlet type
scheme for the phonon configuration, using a time step
of 0.1 a.u..

C. TDDFT Simulations

The TDDFT simulation was done with a time step
of 5 × 10−3 fs using a 16th order Lanczos expansion of
the exponential propagator in an approximated enforced
time reversal symmetry framework. Only the Γ point was
included in the 30 × 30 supercell BZ, i.e. equivalent to
a 30× 30 k grid in the primitive cell BZ under the BvK
boundary conditions. We used the same grid spacing,
pseudopotentials, and simulation box geometry that were
used to fit the tight binding model.

D. TDBE Simulations

All of our TDBE results are generated using input
from the tight-binding model Eq. (18) in the main
text, with band energies εnk = ±|εl(X = 0)|, and
electron-phonon matrix elements taken via projection of
the coupling terms onto the band states gνmn(k,q) =

〈ψnk|lqνM̂(qν)|ψmk〉.
The delta functions used in the TDBE scattering rate

equations are approximated by Gaussian distributions

δ(x) ≈ 1
η
√
π
e−( xη )

2

with η = 10 meV, and the resultant

scattering rates converged with respect to number of k/q
points and η [24, 98]. The equations of motion themselves
are integrated using a fourth order Runge-Kutta algo-
rithm with fnk(t), nqν(t) inserted into each derivative
and a timestep of 1fs. The initial excited electronic car-
rier population is set via interpolation of the carrier occu-
pations from the equilibrium geometry using a 722 k MP
grid just after the cessation of the pulse onto a denser 902

k grid. Because we are working with highly non-thermal
electronic distributions in a system with extremely strong
electron-phonon coupling on top of this gaussian approx-
imation, we find there is a slight drift in the total excited
population, and that the ratio of population drift to total
population decreases as the initial total excited popula-
tion decreases. Therefore with the exception of Fig. 1(d),
which is included on the same scale for illustrative pur-
poses, the initial TDBE electronic population distribu-
tion is set as 1/100th of the MTEF occupation at the end

of the pump, i.e. fTDBE
ck (Tpump) = 0.01fMTEF

ck (Tpump).
E. Transient Optical Conductivity

The simulation protocol for calculating the transient
optical conductivity is as follows:

1. Sample a phonon system initial condition and ini-
tialize the electronic system according to Eq. (20),
giving a total system initial condition IC0.

2. Expose the system to a probe of a given chirality
sprobe from IC0, and propagate for a duration of
Tf .

3. Reset to IC0 and propagate the system under the
influence of the pump to the maximum delay time
desired τmax+Tf . At each time τ that one wants to
have data for, save the instantaneous state of the
system ICτ .

4. Load each ICτ and propagate under the same
pump, but with an added probe of chirality sprobe
centered at τ + Tprobe/2.

5. Apply Eqs. (26-28), using the response from step
(2) to calculate σequil(ω).

6. Repeat steps (2-5) with a probe of the opposite
chirality.

7. Repeat steps (1-6) for Nt samples and average the
results

F. Graphical Representation of Data

The data in figures 1, 4 and 8 were interpolated with
the bicubic interpolation function of matplotlib.
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Supplemental Information: Revealing Ultrafast Phonon Mediated Inter-Valley
Scattering through Transient Absorption and High Harmonic Generation

Spectroscopies

SI.1. DETAILS OF THE PHONON NORMAL MODE DESCRIPTION

We follow primarily the convention from Feliciano Giustino’s Rev. Mod. Phys. [1], restating many definitions here
to make the text self-contained. These definitions are used in the derivation of the phonon wigner distribution and
the electron-phonon coupling matrix elements.

A. The Born-Von Kármán Boundary Conditions

The crystalline primitive unit cell is defined by the primitive lattice vectors ai, for i = {1, . . . , l} for the number
of periodic dimensions l and the pth unit cell is specified by Rp =

∑
i niai with integers ni ∈ [0, Ni − 1]. The BvK

supercell contains Np =
∏

iNi primitive unit cells. The primitive vectors of the reciprocal lattice are denoted by bj ,
fulfilling the duality condition ai · bj = 2πδij . Consider Bloch wave vectors qi defined on a uniform grid in the first
Brillouin zone, q =

∑
i(mi/Ni)bi with integers mi ∈ [0, Ni − 1]. From these definitions we have the following sum

rules:
∑

q

exp(iq ·Rp) = Npδp,0

∑

p

exp(iq ·Rp) = Npδq,0.
(SI.1)

B. Normal Mode Coordinates

Within the BvK boundary conditions atoms are identified by their positions w/rt the primitive cell, R0
αp = Rp+R0

α,
where p = 1, . . . , Nc identifies the primitive cell, α indicates the specific atom within the primitive cell, Nc is the
number of atoms within each primitive unit cell, and R0

α denotes the equilibrium position within the primitive unit
cell defined by being a minimum energy configuration for a given lattice configuration. We can further identify small
displacements from these positions via δRαp = Rαp − R0

αp. For small displacements from the minimum energy
configuration, we can write the potential as

U = U0 +
1

2

∑

αp,α′p′

∂2U

∂Rαp∂Rα′p′

∣∣∣∣
R0

α,p,R
0
α′,p′

δRαpδRα′p′

= U0 +
1

2
Cαp,α′p′δRαpδRα′p′ ,

(SI.2)

where we have defined the so called Interatomic Force Constant matrix (IFC) as C, with Cαp,α′p′ ∈ Rd×d. Treating the
nuclear positions as operators, we define canonical momenta Pαp by the canonical commutation relation [Rαp,Pαp] =
iℏδα,α′δp,p′ and write the Hamiltonian operator for the nuclei in real space as

Ĥph =
1

2

∑

αp,α′p′

Cαp,α′p′δRαpδRα′p′ +
∑

αp

1

2Mα
P2

αp (SI.3)

Since the IFC must be invariant under any operation which maps between supercells, it obeys certain symmetry
operations. We can encode this via the Fourier transform of the IFC, defined as the dynamical matrix [2]

Dα,α′(q) = (MαMα′)−1/2
∑

p

Cα0,α′p exp(iq ·Rp), (SI.4)

whereMα is the mass of the αth ion. The dynamical matrix is hermitian and positive definite allowing real eigenvalues,
denoted as ω2

qν

∑

α′

Dα,α′(q)eα′ν(q) = ω2
qνeαν(q). (SI.5)
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In classical mechanics, eαν(q) ∈ Cd correspond to the normal modes of the system, i.e. independent oscillators with
characteristic angular frequency ωqν for each branch ν and unique primitive cell atom α. The eigenvectors and values
of the dynamical matrix have the following properties at each q:

∑

ν

e∗α′ν,i(q)eαν,j(q) = δα,α′δi,j (Completeness)

∑

α

e∗αν,i(q)eαν′,j(q) = δνν′δi,j (Orthonormality)

ω2
−q,ν = ω2

qν

eαν(−q) = e∗αν(q).

(SI.6)

By inserting the decomposition of real space displacement into phonon coordinates, Eq. (4), into (SI.3), and using
equations (SI.1) and (SI.4-SI.6) we obtain the reciprocal space Phonon Hamiltonian in reduced coordinates, Eq. (12).
We can further rewrite the phonon hamiltonian by introducing the following ladder operators:

âx,†qν =
1√
2
(x̃qν − ir̃qν) , âxqν =

1√
2
(x̃qν + ir̃qν)

ây,†qν = − 1√
2
(iỹqν + s̃qν) , âyqν =

1√
2
(iỹqν − s̃qν) ,

(SI.7)

whose definitions and properties as ladder operators follow from the phonon momentum inversion properties and
canonical commutation relations, Eq. (8) and (10). From here it is trivial to rewrite the reciprocal space phonon
hamiltonian Eq. (12) as

Ĥph =
∑

q∈A,ν

ωqν

(
âx,†qν â

x
qν +

1

2

)
+
∑

q∈B,ν

ωqν

(
âx,†qν â

x
qν + ây,†qν â

y
qν + 1

)
. (SI.8)

SI.2. DERIVATION OF THE TIGHT-BINDING ELECTRON-PHONON COUPLING TERM

Generally the electron-phonon coupling constants gνmn(q) are most often incorporated into semi-classical Boltzmann
style equations, meaning that only their absolute value is calculated using DFPT [3], or only described analytically
in small regions around high symmetry BZ points [4–7]. However, we require the complex value of the coupling
throughout the entire BZ in order to have coherent electronic evolution. Therefore we describe our derivation for this
in detail.

Starting with the following Hamiltonain:

ĤW (X) = Hph(X)−
∑

pδ

t(Rb,Ra)
(
â†pb̂p+δ + c.c.

)
+
∑

pα

∆αα̂
†
pα̂p, (SI.9)

we expand the exponential dependence of the hopping term on the nuclear coordinates, t(Rb,Ra) = t0 exp
(
−b
[
|Rb−Ra|

d0
− 1
])

,

to first order, giving us:

ĤW (X) = Hph(X)− t0
∑

pδ

(
â†pb̂p+δ + c.c.

)
+
∑

pα

∆αα̂
†
pα̂p −

t0b

d0

∑

pδ

δ̂ · (δRp+δ,b − δRpa)
(
â†pb̂p+δ + c.c.

)
, (SI.10)

where δ̂ is the unit vector connecting the a sublattice sites to the b sublattice sites. We can rewrite the real space
electron-phonon coupling (EPC) hamiltonian as:

Ĥe-ph = − t0b
a0

∑

p

∑

p′∈{p,p±1}
δ̂
0

p′ · (δRbp′ − δRap)
(
â†pb̂p′ + c.c.

)
, (SI.11)

where âp we have organized the supercell labeling such that the nearest neighbors for each primitive cell are labeled

as belonging to p− 1, p, p+1. Furthermore, defining the equilibrium nearest neighbor distance as R0
bp−R0

ap = δ0 we
can easily write:

δ0p−1 = R0
b,p−1 −R0

ap = δ0 − a2

δ0p = δ0

δ0p+1 = δ0 − a2 − a1,

(SI.12)
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with corresponding unit vectors δ̂
0

p. We take the Fourier transform by replacing the real space lattice site operators
with their planewave counterparts:

α̂p = N−1/2
p

∑

k

eik·R
0
αp α̂k (SI.13)

Note that we make the distinction between the primitive cell lattice sites Rp and sublattice sites R0
αp belonging to

the α ∈ {A,B} sublattices: R0
αp. Although we have ionic displacements δRαp, these are fundamentally defined w/rt

to the sublattice sites R0
αp which define the periodicity of the crystal, and therefore how the Fourier transform is

defined.
Inserting equations (SI.13) and (4) into equation (SI.11), we have the following:

Ĥe-ph = − t0b
d0
N−3/2

p

∑

pδ

∑

qν

∑

kk′

δ̂ ·
((

M0

Mb

) 1
2

eiq·µδebν(q)−
(
M0

Ma

) 1
2

eaν(q)

)
zqν

×
(
eiRp·(q+k′−k)eik

′·δâ†k′ b̂k + eiRp·(q−k′+k)b̂†k′ âk

)

=
∑

qνδ

∑

kk′

gδν(q)zqν

(
δq+k′,ke

ik′·δâ†kb̂k + δq−k′,ke
−ik′·δ b̂†k′ âk

)
,

(SI.14)

Where µδ = {0,−a2,−a2− a1} are the primitive lattice vectors connecting primitive cell Rp to p′ = {p− 1, p, p+1},
and in the second line we have summed through p, applying the BvK boundary conditions Eq. (SI.2), and defined
the electron-phonon coupling term as

gδν(q) := −
t0b

N
1/2
p d0

δ̂ ·
((

M0

Mb

) 1
2

eiq·µδebν(q)−
(
M0

Ma

) 1
2

eaν(q)

)
. (SI.15)

We can group gδν(q) and everything in parentheses together and call it the electron-phonon coupling operator M̂(q, ν).
By summing q through C, we obtain the actually implemented form of the tight binding Hamiltonian in Eq. (18):

ĤW (X) = Hph(X) + Ĥe +
∑

ν,q∈A
xqνM̂(q, ν) +

∑

ν,q∈B
xqν

(
M̂(q, ν) + M̂†(q, ν)

)
+ iyqν

(
M̂(q, ν)− M̂†(q, ν)

)
,

(SI.16)

where He gathers the bare hopping and onsite energy terms. This means that the equations of motion for each
xiqν , y

i
qν trajectory are explicitly

ṙqν = −
〈
∂H

∂xiqν

〉
= −Tr

[
ρ̂i(t)

(
M̂(q, ν) + M̂†(q, ν)

)]
− ωqν

lqν
xqν

ṡqν = −
〈
∂H

∂yiqν

〉
= −iTr

[
ρ̂i(t)

(
M̂(q, ν)− M̂†(q, ν)

)]
− ωqν

lqν
yqν .

(SI.17)

Looking at the structure of M̂(q, ν) one can see that M̂(q, ν) + M̂†(q, ν) will be hermitian while M̂(q, ν)− M̂†(q, ν)
will be anti-hermitian. Therefore expectation values of the former will always be real and imaginary for the latter.

SI.3. ELECTRONIC CURRENT OPERATOR

The current density operator can be defined as

ĵW =
i

Ω

[
r̂, ĤW (t)

]
(SI.18)

for the super cell surface area Ω and the electron position operator

r̂ =
∑

i∈Np

∑

δ

riâ
†
i âi + (ri + δ) b̂†i+δ b̂i+δ =

∑

i∈Np

∑

δ

rin̂i + (ri + δ) n̂i+δ (SI.19)
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Where i is summed over primitive cells and the number operator n̂i+δ is understood to be a b sublattice number
operator to reduce notational clutter. We can utilize the definition of the sublattice anticommutation,

{α̂i, β̂
†
j} = δi,jδα,β

{α̂i, β̂j} = {α̂†
i , β̂

†
j} = 0,

(SI.20)

where α̂, β̂ can be either â or b̂ site operators to derive the identity:
[
n̂i, â

†
j b̂j+δ

]
= (δij − δi,j+δ) â

†
j b̂j+δ. (SI.21)

Taking the commutator and utilizing the identity (SI.21) we obtain

ĵ = e
i

Ω

∑

i∈Np

∑

δ

δ

(
t0 +

t0b

a0
δ̂ · (δri+δ − δri)

)(
â†i b̂i+δ − c.c.

)
. (SI.22)

Expanding in plane waves and phonons as before we have:

ĵ = e
i

Ω

[
t0
∑

k

∑

δ

δ
(
â†kb̂ke

ik·δ − c.c.
)
+
∑

qν

zqνD̂(q, ν)

]

D̂(q, ν) =
∑

k

∑

δ

δgδν(q)
(
â†k+qb̂ke

ik·δ − b̂†kâk−qe
−ik·δ

)
.

(SI.23)

We take Ω to be Np times primitive cell area Ω0 = 19.5bohr2

SI.4. ELECTRONIC STATE RENORMALIZATION IN GRAPHENE

To provide a sanity check of our derivation of gδν(q) in the tight binding model, we first apply our tight bind-
ing Hamiltonian in Eq. (18) to graphene and compare with recent results from Nery and Mauri [8] using static
displacement averaging to calculate the electron-phonon interaction renormalized spectral function Ak(ω).

Reference [8] utilizes an electron-phonon coupling parameter η, which in our model corresponds to η = bt0/d0. We
reproduced their Figure 8 results using the same parameter set of ∆α = 0, t0 = 2.58eV and d0 = 1.413Å for two
different coupling strengths, ηexpt = 4.42 eV/Å(a value extracted from experiment), and ηinter = 2.5ηexpt by running
MTEF dynamics on a 36× 36 k and q grid for 12fs. We calculate the retarded Green’s function for band n via:

GW,nk(t) =
i

Nt

∑

il

⟨nk|ψi
l(t)⟩ ⟨ψi

l(t = 0)|nk⟩ . (SI.24)

By taking the Fourier transform of the mean field propagated Green’s function, using the mask function W (x) =
1− 3x2 + 2x3, we obtain GW,nk(ω). The spectral function is of course defined to be Ank(ω) = −(1/π)Im [GW,nk(ω)].
The results shown in Fig. SI.1, have good agreement with the Nery and Mauri results, namely a significant broadening
of the signal with increasing temperature and coupling strength, as well as a decrease in signal intensity away from K
and Γ for both cases. The small negativities in the spectral function for high energy k points near Γ in the lower panel
are due to the extremely anharmonic dynamics arising from the artificially strong electron-phonon coupling constant.
Such spectral negativity is a known feature of MTEF calculations with anharmonic forces [9].

We further compare our model to a specific peak at k = 0.75K in Fig. SI.2. The various sampling approaches
that are compared are explained in section SI.6. In panels (a) and (b) we see that the sampling approaches used in
the text, dynamic and static, agree very well with data extracted from [8], with the primary difference being slightly
broader tails. With this check we are confident that simply replacing the parameters of our tight binding model with
those fit to hBN is a reasonable approach to the electron-phonon coupling in this system.

SI.5. CONVERGENCE OF VALLEY HOMOGENIZATION

For this analysis we use the Normalized Root Mean Squared Displacement (NRMSD) to quantify how much a given
time dependent signal varies from another:

NRMSD =

√∫ tf
ti
dt (f(t)− g(t))2 /(tf − ti)

max (f(t))−min (f(t))
. (SI.25)
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FIG. SI.1. The spectral function Ak(ω) of graphene calculated in the tight binding model through MTEF, with electron-phonon
coupling constants η and temperatures matching the simulations from Ref. [8], Figure 8. See text for details.

We take f(t) = VANt
(t) calculated with the largest number of trajectories available, in the case of the data in

Fig. 2, Nt = 380. We let g(t) = VAN ′
t
(t) be the same signal calculated with a random selection of N ′

t << Nt

trajectories. The NRMSD value for this collection of N ′
t trajectories tells us how much this signal deviates from the

more converged value calculated with Nt trajectories. By pulling different random collections of size N ′
t from the data

we can histogram the resulting NRMSD values, giving us a probability distribution of what errors we can expect with
this number of trajectories. The results of this analysis are plotted in Fig. SI.3.

Plotted in panel (a) in black is the same MTEF dynamic phonon data plotted in Fig. 2(b), alongside an example
of a signal with an NRMSD of 0.02 in red. It’s clear that this signal already appears qualitatively converged, yet we
see from the error probability distributions in panel (b) that this a high error outlier of a result, even when using
only two trajectories! Instead, with quite reasonable numbers of samples, the results rapidly converge towards signals
which are graphically indistinguishable from results using over an order of magnitude more trajectories.

SI.6. ALTERNATIVE SAMPLING APPROACHES

In the special displacement method (SDM) of Zacharias and Giustino [10, 11], the convergence of sampling the
configuration distribution in Eq. (14) can be accelerated for small supercell sizes (i.e. sparse q grids in the BZ) by
taking a handful of specific configurations. These involve taking positions of magnitude |xqν |, |yqν | = σqν and carefully
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FIG. SI.2. The spectral function of graphene for k = 0.75K, using ηexpt and sampling at T = 300K using dynamic phonon
approaches in panel (a) and static phonon approaches in panel (b), with data taken from [8], Fig. 7, top left panel. The
convergence of the spectral function for different sampling types in SI.6 is shown in panels (c) and (d) as the mean of the error
of the time signal G0.75K(t) as a function of Nt, where err(t) = σG0.75K (t)/

√
Nt for σ2

G(t) = ⟨G2(t)⟩ − ⟨G(t)⟩2.

choosing signs Sqν = {+1,−1} of zqν = Sqν |zqν |, which favorably cancel terms in the 2nd order perturbative expansion
of observables in the phonon coordinates. This allows for capturing the thermodynamic equilibrium properties at
second order which can be shown to analytically go to zero in the case of an infinitely large supercell. This is
expected to be of most benefit in the case of small supercells, and has been found to not to necessarily be a sufficient
configuration for convergence in cases of very strong electron-phonon coupling [8].

In our framework we can analyze this choice of displacement magnitude in terms of the phonon occupation number.
Taking equations (SI.8), we clearly identify nqν to be

nxqν =
1

2

(
r̃2qν + x̃2qν

)
− 1

2
for q ∈ A,B

nyqν =
1

2

(
s̃2qν + ỹ2qν

)
− 1

2
for q ∈ B.

(SI.26)

In this picture, with the SDM choice equivalent to setting the reduced momenta r̃, s̃ to zero and x̃2 = ỹ2 = nqν,T +1/2
meaning nqν = nqν,T /2− 1/4. That is to say, the SDM corresponds to a static displacement large enough to account
for half of the thermal occupation of the phonon mode, and half of the ZPE.

We can perform an analogous sampling which obtains the thermal occupation number by construction but splits the
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FIG. SI.3. The probability distribution of getting a particular error measured as the NRMSD of the valley polarization seen in
Fig. 2 for a small number of samples with respect to the value calculated using a much larger number of samples.

weight evenly between position and momentum by choosing r̃2qν = x̃2qν = nxqν,T +1/2, and equivalently for nyqν . Since
in our approach, we are interested in strongly coupled electron-phonon systems where a perturbative expansion may
not be sufficient, and we have dynamical phonons which can explore beyond a harmonic approximation, rather than
carefully choosing signs to eliminate terms for a 2nd order thermodynamic equilibirum property, we simply randomly
sample Sqν for every phonon branch and momenta. We refer to this as ⟨n⟩T sampling.

If on the other hand, we choose to run with frozen phonon dynamics, but still want to have initial phonon occupations
corresponding to the thermal occupation, we can set x̃2qν = 2nxqν + 1 and sample the sign of x̃qν (doing the same

with ỹ), while fixing ˙̃zqν = 0. We refer to this approach as ⟨n⟩T -static. For comparison, we refer to using the SDM
magnitudes (nqν = nqν,T /2) and sampling signs with frozen phonons as ZG-static. A summary of the various initial
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x̃qν , ỹqν r̃qν , s̃qν nqν

dynamic ∼ ρph,W ∼ ρph,W → nqν,T

⟨n⟩T -dynamic ±(nqν + 1
2
)1/2 ±(nqν + 1

2
)1/2 nqν,T

static ∼ ρph,W 0 → nqν,T /2− 1/4

ZG-static ±(nqν + 1
2
)1/2 0 nqν,T /2− 1/4

⟨n⟩T -static ±(2nqν + 1)1/2 0 nqν,T

TABLE SI.1. A summary of the various choices of initial conditions for the phonon reduced coordinates and momenta. Although
the electronic system properties can be obtained via time evolution for all these methods, the phonon system is dynamic only
when r̃qν , s̃qν ̸= 0. The symbol “→ nqν,T ” indicates convergence with increasing Nt.

0 250 500 750 1000 1250 1500 1750 2000
Temperature [K]

10

15

20

25

30

dp
 [f

s]

Dynamic
Static
n T-static
n T-dynamic
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FIG. SI.4. The temperature dependence of the short time scale valley population homogenization, as seen in Fig. 2, calculated
with all of the sampling techniques in Table SI.6.

conditions and dynamics choices is shown in Table SI.6.
The principle question is whether these different sampling techniques lead to altered observables, or faster con-

vergence. We start by looking at a phonon renormalized property of the electronic system in a thermal equilibrium
state. Taking the graphene spectral function in Fig. SI.2(a), we see that using ‘dynamic’ sampling, that is drawing
phonon momenta and coordinates in a straight-forward manner from Eq. 13 and ⟨n⟩T -dynamic already lead to slightly
different spectral function intensities. In Fig. SI.2(c), we track the convergence of this signal by taking the average
error as a function of time. Given that we are Monte Carlo sampling an initial distribution this error is defined as
the standard deviation of the observable calculated with Nt trajectories, over

√
Nt. Panel (c) shows that the signal

produced by ⟨n⟩T sampling converges marginally faster than that produced by dynamic sampling, but that at large
configurations, there is virtually no difference in the two approaches.

We see something similar when comparing the ‘static’ and ‘ZG-static’ sampling approaches in Fig. SI.2(b) and
Fig. SI.2(d), with the primary difference of this comparison being that the spectral function magnitudes for these
two methods agree nearly exactly. The outlier however appears to be ⟨n⟩T -static, which has a significantly different
spectral intensity than any static or dynamic approach. This indicates that the majority of the effect responsible for
renormalization of the electronic spectral function at this k point can be accounted for via displacement within the
first standard deviation of the phonon distribution. Of course in the harmonic limit, setting phonon momentum and
displacement absolute values to ±|σqν | will result in motion in phase space entirely on the circumference of the phase

space circle of radius
√
2|σqν |. Fixing the initial position to ±2|σqν | apparently exceeds the renormalization effect



9

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

N
M

RS
D
(N

′ t) 
[a

rb
.]

(a) n T-dynamic N ′
t = 20 

n T-dynamic N ′
t = 10

n T-dynamic N ′
t = 5

n T-dynamic N ′
t = 2

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
NRMSD

N
M

RS
D
(N

′ t) 
[a

rb
.]

(b) dynamic N ′
t = 20

dynamic N ′
t = 10

dynamic N ′
t = 5

dynamic N ′
t = 2

FIG. SI.5. The probability distribution of getting a particular NRMSD of the valley polarization seen in Fig. 2 when selecting
an arbitrary Nt number samples taken via ⟨n⟩T -dynamic sampling versus straight forward Monte Carlo sampling.

obtained by full Monte Carlo sampling, or even Monte Carlo sampling on the ±
√
2|σqν | radial points.

However, this is a value calculated at thermodynamic equilibrium. To see the effect for far from equilibrium
properties, we turn to the temperature dependence of the valley homogenization timescale in the TB hBN model, seen
in Fig. SI.4. The ⟨n⟩T -dynamic and ZG-static sampling approaches sit almost precisely on top of their coresponding
dynamic and static results. Quite notably the ⟨n⟩T -static results again constitute an outlier to the other methods,
with a scattering fit parameter of α⟨n⟩T−static = 0.129fs−1, compared to αStatic = 0.081fs−1, αZG−static = 0.082fs−1,

αDynamic = 0.072fs−1, α⟨n⟩T−Dynamic = 0.068fs−1 and αTDBE = 0.065fs−1. Clearly this sampling method, while
producing the correct thermal occupation value through strong static displacement, appears to overestimate the
effect of phonon renormalization, when compared to Monte Carlo sampling of the phonon coordinate / momenta
distribution.

Finally we can investigate whether there is any significant advantage in the dynamical case to sampling with the
⟨n⟩T -dynamic approach. We repeat the NRMSD probability analysis of SI.5 for the time dependent valley asymmetry
in an MTEF calculation and report the results in Fig. SI.5. We find that the probability of obtaining a signal using
a small number of trajectories, which has a small deviation from the signal one would obtain using a much larger
number, looks effectively identical between the two sampling approaches, thus in this case this sampling method
confers no appreciable advantage.
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SI.7. ZPE LEAKAGE

We track the effects of ZPE leakage when propagating with dynamic MTEF by looking at the phonon occupation
number nqν calculated via Eq. (SI.26). Given sufficient samples, nqν will converge towards the expected thermal
occupation nqν,T , which for the optical phonons at 300K means approximately 0. Therefore as the ZPE drains out of
a given phonon mode, the occupation will go towards −1/2.

In Fig. SI.6 we show a selection of the occupation numbers of the highest energy optical branch phonon modes
over time. In panel (a) when the system is exposed to a laser pulse, we see that on timescales commensurate with the
long time scale excitation outside the valleys in Fig. 2(b), there is a loss of energy in the phonon modes. The initial
occupation value of 0 requires a large number of trajectories to converge to exactly, but as discussed throughout the
text, the dynamical electronic observables of interest converge rapidly. Panel (b) shows the phonon occupation when
the electronic system is not pumped. In this case, due to the large electronic gap, there is nowhere for the phonon
energy to go, and instead one just sees oscillation of the occupation numbers over time. This oscillation is due to
anharmonic forces arising from exposure to the electronic system, and can in principle be analyzed to capture the
renormalized phonon frequencies.

In Fig. SI.6(c) we take the phonon occupations from the last time step of panel (a) at 2ps and plot them against
the distance of their q vector from Γ. There is very clearly a direct correlation between the how close a phonon mode
is to Γ and the amount of energy it loses to the electronic system. This may be related to the fact that the phonon
modes are coupled directly to the electronic system via a linear dependence through the nearest neighbor hopping
term. Therefore the modes closer to Γ which correspond to a coherent reduction in the nearest neighbor distance
throughout the system, most strongly excite the electrons and allow a conduit for vibrational energy to go into the
electronic system.
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FIG. SI.6. The phonon occupation number in a selection of the highest energy optical modes over time, when the electronic
system is either (a) exposed to a pump or (b) allowed to propagate without a pump. Panel (c) shows the phonon occupation
numbers from panel (a) at the final time, plotted against the distance of their q vector from Γ.



7 | Summary, Conclusion and Outlook

In this thesis we have presented work done by the author and colleagues to develop and ex-
pand simulation techniques capable of capturing strongly driven non-equilibrium phenomena in
quantum matter which can be widely utilized by the broader computational condensed matter
physics community. Initially in paper I we explored the applicability of ICWF, a novel wavefunc-
tion dynamics approach based on decomposition of the system degrees of freedom. We tested
the performance of ICWF against numerically exactly solvable problems, showcasing its perfor-
mance for a variety of physical systems and quantities including the linear and beyond linear
response of an H2 model under a driving external field, elastic and inelastic electron-electron
scattering, excitation non-radiative relaxation, and nuclear wavepacket self-interference effects
due to propagation around a CI entirely captured in real space. Although ICWF performed well
for these simple problems and has many conceptually interesting facets, as discussed in chapter
4, its further development would ultimately require a great deal of optimization in order to make
it competitive with already widely utilized variational tensor decomposition based wavefunction
dynamics approaches.

Therefore in paper II we turned to a refinement of semi-classical dynamics methods based on
the Ehrenfest equations of motion which are already implemented almost universally through-
out the real-time dynamics community. As discussed in chapter 5, by deriving the Ehrenfest
equations of motion through the QCLE, one can contextualize them as the mean-field limit of a
broader semi-classical dynamics framework, giving rise to the MTEF method. MTEF consists of
evolving multiple independent trajectories with the standard Ehrenfest equations of motion but
with initial conditions sampled from the Wigner transform of the initial nuclear state, which sys-
tematically recovers its exact quantum statistics. Viewed in this context, MTEF can be thought
of as the lowest order approximation in a series of systematic improvements in the treatment
of electron-nuclear dynamical correlation. Unlike wavefunction approaches, semi-classical tra-
jectory ensemble based methods like MTEF and extensions beyond it are simple to scale up to
very large system sizes. Furthermore since MTEF is independent of the choice of the electronic
representation, using a real-space grid basis alongside TDDFT allows one to treat the coupled
electron-nuclear dynamics of large systems under arbitrarily strong driving at the mean field
level, limited only by the grid spacing and xc-functional.

Thus in paper II, we applied MTEF in conjunction with a real-space grid basis for the electronic
system in order to calculate the linear vibronic absorption spectra of a numerically solvable
H2 and benzene treated with TDDFT. Utilizing the H2 model we demonstrated that one can
capture quantized nuclear effects in the form of Franck-Condon absorption lineshapes only when
allowing the nuclear position to evolve. Thus we found that this quantization effect requires
electron-nuclear dynamical interaction at least at the mean-field level. We found that due to
the combination of mean-field forces and an explicit, though weak, external laser, the MTEF
vibronic lineshape corresponds to the quantized vibrational states of the initial rather than target
BOPES. We furthermore demonstrated that incorporating dynamical correlations between the
electronic and nuclear subsystem beyond the mean-field level through ICWF can correct for
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this phenomena and accurately capture the exact vibronic lineshape while remaining entirely
in the real-space basis. These conclusions from the H2 model informed our interpretation of
the results we obtained by applying MTEF to the vibronic absorption of the benzene molecule
using TDDFT. Here we found that MTEF qualitatively agreed better with the experimental
spectrum, covering parts of the spectrum which are entirely absent in the single trajectory
results and showing similar low energy shoulders, albeit across a broader energy range. The
primary import of paper II is to emphasize to the broader community that quantized nuclear
dynamics effects are achievable within fully ab-initio contexts through minor modifications of
their existing simulation workflows, as well as to provide a detailed accounting of the origin
of artifacts which may arise when doing so with a real-space basis. Furthermore we found
that this particular combination of approaches displays attributes which indicate that rather
than calculating equilibrium excited state properties of small molecules, the mean-field MTEF
approach may be better suited to simulations of strongly driven, far from equilibrium large scale
systems.

Therefore in manuscript III we extended MTEF to simulate the response of periodic solid state
systems beyond weak field driving. By explicitly deriving the connection between the Wigner
transformation of the phonon subsystem to distortions of the ions in real space supercells, we
were able to utilize MTEF in extended systems in a generic manner which can systematically
capture the quantum thermal equilibrium distribution of the ab-initio calculated phonon system.
We found that the Wigner distribution of the phonon degrees of freedom exactly corresponds
to the Zacharias-Giustino reciprocal space formulation of the Williams-Lax supercell distortion
probability distribution when disregarding the phonon momentum. Thus MTEF constitutes
a natural extension of the static displacement methods which have been quite successful at
calculating phonon induced renormalization across a broad range of equilibrium phenomena.
We utilized MTEF in both a reciprocal space TB model and a real space supercell TDDFT
treatment in order to study the phonon driven reorganization of valley selectively excited charge
carriers in hBN. We compared MTEF and static displacement approaches to TDBE calculations,
and the temperature dependent behavior to experimental measurements in analagous systems
finding agreement across these theoretical and experimental benchmarks. On top of reproducing
the NEGF calculated equilibrium renormalization of electronic spectral functions in graphene,
these results unambiguously validate the accuracy of MTEF in solids.

Due to the simplicity of our approach we were able to directly simulate the transient circular
dichroism (TCD) absorption of hBN using both the TB model and TDDFT as well as replicate a
recent experiment [224] utilizing bichromatic counter-rotating ‘trefoil’ pumps and high harmonic
generation (HHG) as a probe for carrier imbalance in hBN in-silico. This paper demonstrates
that the phonon degrees of freedom can be easily, accurately and systematically included in ab-
initio simulations at any temperature with fundamental qualitative differences in the subsequent
system dynamics. Furthermore, we found that for the dynamical observables studied, the MTEF
and static disorder results converge extremely rapidly, with graphical convergence obtained in
some cases at a high probability within two trajectories. Finally by explicitly deriving the Wigner
distribution for the ab-initio phonon dispersion of real materials, we open the door to the full
suite of QCLE based extensions beyond the mean-field approximation, allowing for corrections
to ZPE leakage and the neglect of dynamical electron-phonon correlation.

In conclusion the MTEF method in solids as presented in manuscript III constitutes a funda-
mental advance in the capacity of computational ab-initio methods to simulate non-equilibrium
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phenomena in extended systems under arbitrarily complex pump-probe protocols. This method
can systematically capture the equilibrium quantum mechanical nature of the phonon subsystem
while its dynamics at the mean field level is not restricted to small perturbations from equilib-
rium. In principle, this approach can capture wide ranges of motion up to and including driven
phase transitions and strongly anharmonic driving; a dynamical regime which lies at the heart
of many of the most compelling experimental findings in the field. Furthermore, the capacity to
simulate very large supercells naturally lends itself towards application in the non-equilibrium
dynamics of Moiré layered materials, Van der Waals heterostructures, and the effects of differ-
ential lattice expansion between bilayers, applications which are already being pursued further
in the Rubio group. Given that QCLE based ensemble trajectory based approaches can also
be used to capture cavity confined photons, exploration of this methodology to capture the
non-equilibrium dynamics of coupled electron-phonon-cavity photon systems will be of great
interest. In order to be generically applied to all non-equilibrium regimes, some of the most se-
rious unphysical artifacts of the mean-field dynamics will have to be addressed, in particular for
long time scale phenomena such as Floquet engineered states. Nonetheless, applications in the
immediate future of the static disorder method to simulate the far-from-equilibrium properties
of matter, although limited to elastic phonon scattering, will undoubtedly enable the ab-initio
prediction of fundamentally different system properties than the limited high-symmetry equilib-
rium geometry calculation can acquire, and can serve as a valuable and easily incorporated tool
to the entire community.
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