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Zusammenfassung

In der vorliegenden Dissertation wird das Zusammenspiel zwischen der molekularen
elektronischen Leitfähigkeit und der Reaktion einer Solvens-Umgebung untersucht.
Wir stellen ein theoretisches Modell einer molekularen Brücke bereit, welche sich in
einem polaren Solvens befindet, das als dielektrisches Kontinuum beschrieben wird.
Letzteres bildet eine bosonische Umgebung aus fluktuierenden Polarisationsmoden,
welche an ein einzelnes überschüssiges Elektron in der molekularen Brücke zwischen
den beiden metallischen Elektroden koppeln. Unsere Schwerpunkte liegen dabei ei-
nerseits bei der Untersuchung von reinen Solvenzien und mischbaren binären Solvens-
Gemischen, und andererseits bei der Einbindung einer Hydrathülle. Die Hydrathülle
besteht aus der ersten Wasserschicht, welche das überbrückende Molekül umgibt und
welche andere Eigenschaften besitzt als der Bulk-Solvens.

Mithilfe einer quantenmechanischen, diagrammatischen Realzeit-Technik berechnen
wir den elektrischen Ladungsstrom der Brücke in dem sequentiellen Tunnel-Regime,
welches eine schwache Kopplung zwischen dem Molekül und den Zuleitungen erfordert.
Diese Technik basiert auf der Liouville-Von-Neumann-Gleichung und erlaubt das Lösen
der Quanten-Master-Gleichung der reduzierten Dichtematrix des Mölekuls in störungs-
theoretischer Weise in der Tunnel-Kopplung, bei nichtperturbativer Einbeziehung der
elektrostatischen Molekül-Solvens Kopplung bei der Einelektronenübertragung. Um
den Solvens zu beschreiben, verwenden wir den Ansatz von Gilmore und McKenzie,
welcher auf dem Solvatationsmodell von Onsager basiert. Dieser Ansatz bietet ein
probates Mittel zur Bestimmung der Spektraldichte des Solvens, welche in die irre-
duzible Selbstenergie der Quanten-Master-Gleichung einfließt. Zur Beschreibung von
Solvens-Gemischen nutzen wir den Gladstone-Dale-Ansatz, um eine effektive dielektri-
sche Funktion zu bestimmen und einen Ausdruck für die resultierende Spektraldich-
te von den Polarisationsfluktuationen von binären Solvens-Gemischen aufzustellen.
Mit dieser Methode berechnen wir den Leitwert der Brücke in Abhängigkeit von dem
Anteil der Solvens-Komponenten und deren chemischer Eigenschaften. Bei Inbezug-
nahme der gemessenen dielektrischen Konstanten und Debye Relaxationszeiten von
reinen Solvenzien sowie der Anpassung des Volumenanteils haben wir eine sehr gute
Übereinstimmung zwischen den mithilfe des Modells berechneten und experimentell
ermittelten Werten für den nichtlinearen differentiellen Leitwert erhalten. Dieser An-
satz kann ohne Weiteres auf komplexere Solvens-Gemische verallgemeinert werden und
bietet somit die Möglichkeit für eine technische Anwendung als Konzentrationssensor
auf molekularer Ebene.

Zur Untersuchung der Hydrathülle führen wir eine zeitabhängige Wechselspannung
ein. Diese erlaubt es uns im linearen Transport-Regime zu bleiben (lineare Antwort auf
ein kleines, externes Potenzial) und einen anderen Kontrollparameter als die Gleich-
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spannung für die Untersuchung des Solvens sowohl mit als auch ohne Hydrathülle
zu verwenden. Wir führen eine Fourier-Entwicklung der Quanten-Master-Gleichung
durch und berechnen die Fourier-Komponenten des Stroms in Abhängigkeit von der
Wechselspannungsfrequenz. In Analogie zum Gleichstromfall bei den binären Solvens-
Gemischen, zeigen wir, dass der Einfluss der Hydrathülle auf den elektrischen Strom
anhand der Spektraldichte beschrieben werden kann, wo die Eigenschaften der Hülle,
wie die Dicke oder die dielektrische Funktion, direkt einfließen. Somit bietet der Ansatz
ein probates Mittel, um die Dicke der Hülle anhand des Stromes zu bestimmen. Insge-
samt haben wir eine theoretische Methode aufgestellt, welche als molekularer Sensor
zur Bestimmung der Dicke einer Hydrathülle oder zur Bestimmung des Volumenanteils
eines Solvens-Gemisches mit hoher Sensitivität genutzt werden kann.
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Abstract

In this thesis, the interplay between molecular electronic conduction and the response
of a solvent environment is investigated. We propose a theoretical model of a molecular
junction in a polar solvent described as a dielectric continuum. The latter forms a
bosonic environment of fluctuating polarization modes which couple to a single excess
electron in the molecular junction between two metallic electrodes. Our focus areas
are, on the one hand, the investigation of pure solvents and miscible binary solvent
mixtures, and on the other hand, the incorporation of a hydration shell. The hydration
shell consists of the first water layer surrounding the bridging molecule in the junction
and has distinct properties different from the bulk solvent.

Using a quantum mechanical real-time diagrammatic technique, we calculate the
junction’s electric charge current in the sequential tunneling regime which requires a
weak coupling between the molecule and the leads. This technique is based on the
Liouville-von Neumann equation and allows to solve the quantum master equation of
the reduced density matrix of the molecule in a perturbative manner in the tunnel cou-
pling to the metallic leads, while including the electrostatic molecule-solvent coupling
in the single electron transfer nonperturbatively. In order to describe the solvent, we
employ an approach by Gilmore and McKenzie which is based on the Onsager model
of solvation. This approach presents a valid means to determine the spectral density
of the solvent which enters the irreducible self-energy of the quantum master equa-
tion. For the description of solvent mixtures, we use the Gladstone-Dale approach to
determine an effective dielectric function and propose an expression for the resulting
spectral density of the polarization fluctuations of binary solvent mixtures. With this
methodology, we calculate the junction’s conductance in dependence on the fractional
ratio of the solvent constituents and their respective chemical properties. Utilizing
the measured dielectric constants of pure solvents as well as their respective Debye
relaxation times together with tuning the volumetric fraction, we have obtained a
very good agreement of the nonlinear differential conductance either calculated by
the proposed model and experimentally measured conductance values. The approach
can readily be generalized to more complicated mixtures of solvents, giving rise to
technical applications as concentration sensors on the molecular scale.

For the investigation of the hydration shell, we introduce a time-dependent ac volt-
age. This allows us to stay in the linear transport regime (linear response to a small
external potential) and use a different control parameter than the applied dc voltage
to study the influence of the solvent with and without hydration shell. We Fourier
expand the quantum master equation and calculate the Fourier components of the
current in dependence of the ac frequency. In analogy to the dc case for binary solvent
mixtures, we show that the influence of the hydration shell on the electric current can
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be captured by a spectral density where the shell properties, i.e., its thickness or its
dielectric function, directly enter. Interestingly, the Fourier components of the charge
current for different applied ac voltage frequencies portray a nonlinear behavior when
altering the thickness of the hydration shell. Therefore, the approach provides a valid
means to determine the thickness of the shell through the current. In total, we have
established a theoretical methodology that may be applied for a molecular sensor to
determine the thickness of a hydration shell or the volume fraction of a solvent mixture
with high sensitivity.
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Chapter 1.

Introduction

The miniaturization of electronic devices remains an enormous challenge. To this end,
the field of molecular electronics has made considerable progress in recent years where
it is now routinely possible to wire an organic molecule, an object as small as 1 nm,
between two metallic leads and measure its electronic transport characteristics [1].
Generally, the concept of electrons moving through single molecules comes in two
different guises. The first involves a charge moving from one end of the molecule to
the other and the second involves current passing through a single molecule that is
strung between electrodes. The two are closely related because they both attempt to
answer the same fundamental question: How do electrons move through molecules [2]?
Understanding the motion of electrons to and through a single molecule is central to the
field of molecular electronics. The field dates back to 1974, when Aviram and Ratner
first proposed the idea of utilizing single organic molecules as rectifiers [3]. Since then,
there have been dramatic advances toward the realization of electronic transistors
integrated on the molecular scale [4]. As a vital component of molecular electronics,
single molecular junctions have attracted significant attention both in theory and
experiment [1, 5]. Experimentally and theoretically, it has been shown that there are
two limiting cases of charge transfer through molecular junctions according to the two
mentioned guises. (1) Charge transmission via elastic coherent scattering from one
lead to the other [6–11]. (2) Charge transfer via sequential tunneling due to strong
localization induced by a thermal environment and the decoherence of the electron’s
wave function. The second has vital applications in single molecular junctions in
electrochemical environments at room temperature while recent studies investigate the
partial decoherence of the electron wave function combining both limiting cases [12,13].

Not only was the first single-molecule transistor fabricated already in 2000 [14]
but single-molecule junctions have been realized as rectifiers [15], switches [16], sen-
sors [17, 18] and have recently attracted much attention due to their promising ther-
moelectric properties [19–21]. Moreover, single molecular junctions provide a unique
platform for simultaneous investigation, manipulation, detection, and stimulation of
chemical reactions [22]. Usual realizations of electro-chemical charge transmission con-
sider single molecular junctions as immersed in solution. The inclusion of the bridging
molecule into the (bulk) solvent alters the interacting network between the solvent
molecules in proximity of the introduced molecule. Thus, the solvent molecules must
build stronger bonds among each other and/or the junction molecule and form a sol-
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Chapter 1. Introduction

vation shell with distinct properties different from the bulk solvent [23–25]. Therefore,
on the one hand, the type of the surrounding solvent can play a significant role on
the transport properties of single-molecule junctions [26–28]. On the other hand, the
formation of a solvation shell can further drastically change the electronic conductance
of a metal-molecule-metal junction by up to two orders of magnitude [29].

Theoretical description of the influence of the solvent on the transmission prop-
erties has so far relied on utilizing density functional theory (DFT) calculations for
the molecular orbitals when placing few, i.e., 1-2, water molecules in the vicinity of
the bridging molecule [29]. Their rigorous but calculationally involved outcome have
predicted the influence of polar solvents and the hydration shell on the charge trans-
mission through molecular junctions [29,30]. Contrary to these numerically expensive
calculations, the present thesis aims to provide a theoretical model based on few coarse
grained solvent and shell parameters, like the dielectric properties and the shell thick-
ness, to determine the role of a solvent, and mixtures thereof, as well as the solvation
shell on charge transport properties of a molecular junction.

The transport theory presented here is based on a real-time diagrammatic ap-
proach [31–35] closely related to path-integral methods formulated in connection with
dissipation [36–38]. The idea is to integrate out the environment degrees of freedom
and to set up a formally exact quantum master equation for the reduced density matrix
of the molecule. The kernel of this integro-differential equation is represented as a sum
over all irreducible diagrams and can be calculated in a systematic perturbation expan-
sion in tunneling [35]. The lowest order of this perturbation expansion represents the
sequential tunneling regime. It describes single-electron tunneling processes through
molecule states and is valid when the coupling between the molecule and the electrodes
is weak. It is important to notice that the master equation within the sequential tun-
neling regime is a perturbative approach only in the coupling to the electrodes, but it
includes the electrostatic molecule-solvent coupling non-perturbatively [35]. The over-
all goal of this theoretical framework is to find a valid means by which characteristics
of the solvent surrounding the molecule will be made visible via electron transport
properties, e.g., via the tunneling current or the differential conductance. Such a tool
in turn gives rise to possible applications of a molecular junction acting as a sensor
model measuring, e.g., the volume fraction of solvent mixtures or the thickness of a
hydration shell.

Having this in mind, we present in Section 1.1 a brief overview of the experimental
techniques that led up to the establishment of molecular electronics as a solid field
of science and that are currently being used to fabricate both atomic-scale wires and
molecular junctions. In the subsequent Section 1.2, we collect theoretical approaches
utilized for the description of transport mechanisms in nanoscale systems. In the last
section of this introduction we outline the structure of this thesis.

1.1. Experimental techniques

As for many other fields in nanoscience, the invention of the scanning tunneling micro-
scope (STM) by Gerd Binnig and Heinrich Rohrer (at IBM Zurich) in 1981 [39,40], for
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1.1. Experimental techniques

which they were awarded the Nobel prize in 1986, changed the panorama for molecular
electronics. The STM was the first tool that provided a practical way to ’visualize’
and manipulate matter at the atomic scale. Soon after its invention, it became clear
that the STM could provide a realistic way to address single molecules and to study
their electronic transport properties [41]. The discovery of the STM has also inspired
many related scanning probe microscopy tools, which measure a great variety of prop-
erties with atomic resolution [42]. The most important probe is the Atomic Force
Microscope (AFM).

While in the application of an STM a fine metallic tip is held at a distance from
a counter electrode (in general a metallic surface) by making use of the exponential
distance dependence of the tunneling current, an AFM uses the distance dependence
of the force between tip and surface instead of the tunnel current. Depending on the
chemical nature of both the tip and the surface this force consists of several contribu-
tions and its distance dependence may be complex and even nonmonotonic [41]. One
advantage of AFM as compared to STM is that it allows the study of poorly conduct-
ing or isolating surfaces. It has also been used for the study of such problems as the
forces required for unfolding an individual protein molecule [43]. The latter example
also illustrates an important aspect of these tools: Apart from imaging atoms at the
surface of a solid, it is possible to manipulate individual atoms and molecules [44].
In 1992 in Leiden [45] a new technique was introduced by Muller et al. dedicated
to the study of atomic sized junctions, baptized the Mechanically Controllable Break
Junction (MCBJ) technique, based on an earlier design by Moreland and Ekin [44,46].
The principle of this technique is schematically illustrated in Fig. 1.1.

Different groups showed that the STM and the MCBJ technique could be used to
fabricate metallic wires of atomic dimensions [44]. Since then these nanowires have
become an endless source of new physical phenomena and have played a crucial role in
the fields of mesoscopic physics and nanoelectronics. The relevance of these systems for
molecular electronics is two-fold. On the one hand, they provide the basis to contact
individual molecules with dimensions on the range of a few nanometers, which is out of
the scope of conventional lithographies. On the other hand, the atomic contacts have
allowed establishing the connection between the quantum properties of single atoms
and the macroscopic electrical properties of the circuits in which they are embedded,
which is an important lesson for molecular electronics [41].

At the end of the 1990’s and the beginning of the 21st century new experimen-
tal techniques were introduced and additional results were reported showing that
molecules can indeed mimic the behavior of ordinary microelectronics components [41].
Thus for instance, the so-called nanopore technique was utilized to show that junc-
tions based on certain organic molecules can exhibit, for example, a very pronounced
negative differential resistance [47]. Techniques like electromigration [48], which were
specially designed to contact single molecules, made possible to incorporate a gate elec-
trode in single-molecule junctions and thus, to mimic the measurements performed in
solid state devices like transistors or in nanostructures like quantum dots. The term
electromigration denotes a process in which ions are moved due to high electrical cur-
rent densities. It has been understood that several effects contribute to the total force
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Chapter 1. Introduction

Figure 1.1.: Schematics of the principles of the mechanically controllable break junction
(MCBJ) technique. a) The gold wire of the break junction before breaking and tip
formation. b) After addition of the compound of interest, self-assembled monolayers
(SAMs) form on the gold wire surfaces. c) Mechanical breakage of the wire produces two
opposing gold contacts that are SAM-covered. d) The gold contacts are slowly moved
together until the onset of conductance is achieved [41].

acting on a metal atom which forms the conductor, the two most important being the
so-called direct force due to the electric field. It causes the electrical current and thus
points into the direction of the field. The second one is caused by momentum transfer
of the conduction electrons onto the ions. It has opposite sign and is called the wind
force. When the total force overcomes the binding force of the ions, they start to
diffuse but can be pinned again at defects or positions where the current density and
driving force falls below this threshold value [41].

An important difference to STM techniques and MCBJs is the fact that the wire
forming the contact is in solid contact with a substrate. The advantage lies in the fact
that no particular requirements exist for the properties of the substrate, besides the
fact that it should be sufficiently insulating. Often silicon - the standard substrate in
microelectronics - is used. With suitable doping it can be used as back-gate for in-
ducing an electric potential and building a three-terminal device [41]. The fabrication
process of a three-terminal device needs to ensure that the gate couples only electro-
statically to the molecule. This can be achieved by electrically insulating the gate
from the source/drain electrodes and from the molecule. However, parasitic currents
caused by various mechanisms (quantum tunneling, electron hopping, etc.) can lead
to a current between the gate and the drain. This gate leakage can overshadow the
molecular signature, and should therefore be kept as low as possible [49]. A further
drawback of the electromigration technique is the fact that it is a single-shot exper-
iment: Once an atomic contact has been established there is only limited possibility
to fine tune its atomic configuration, in particular coming back to a larger contact
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1.2. Theoretical approaches

is almost impossible. After burning through the wire it cannot be closed again. A
combination of electromigration with the lithographic MCBJ technique can overcome
the latter problem: A thin-film MCBJ is thinned-out by electromigration to a narrow
constriction with a cross section of a few nanometers. The substrate is then bent care-
fully for completely breaking the wire or arranging single-atom contacts. This last step
is reversible and repeatable for studying small contacts or trapped nanoobjects [41].

However, the technical challenges remain for the integration of an additional gate
electrode due to current leakage. To address this issue, solvent gating has been con-
sidered as a potentially simple method to continuously fine-tune the charge transport
through single-molecule junctions. A strong influence of the surrounding solvent on
the charge transport was recently reported for certain organic molecular junctions
with different anchoring groups in various solvent environments using the MCBJ tech-
nique [27]. The molecular conductance was shown to be tunable by nearly an order
of magnitude by varying the polarity of solvent. Furthermore, gating efficiency due to
solvent-molecule interactions was found to depend on the choice of the anchor group.

With the use of the introduced experimental techniques it was possible to show, for
example, that single-molecule junctions can exhibit physical phenomena like Coulomb
blockade or the Kondo effect [50], which are well-known in the context of other
nanoscopic structures. Manifold variations of these techniques exist (in addition to
other, not mentioned techniques in this brief overview) that are permanently improved
and extended to study various additional properties related to molecular electron-
ics [41].

1.2. Theoretical approaches

The theoretical treatment of transport at nanoscale requires the combined use of
different approaches and approximations, where we will briefly outline some of the
main concepts following Ref. [51].

The Landauer-Büttiker (LB) [6–11] method (also known as the scattering method)
establishes the relation between the wave functions (scattering amplitudes) of electrons
in a quantum junction and the conducting properties of this junction. The method
can be applied to find the current through a noninteracting system or through an
effectively noninteracting system, for example if the meanfield description is valid and
the inelastic scattering is not essential. Such type of an electron transport is called
coherent, because there is no phase-breaking and quantum interference is preserved
during the electron motion across the system [51].

The notion of coherent or incoherent transport pertains to an independent particle
description of the electrons where they occupy one-particle orbitals. In the case of
coherent transport, the phase of the orbitals evolves deterministically. In the case of
incoherent processes, the phase changes in an unpredictable way due to interactions
which are not contained in the independent particle Hamiltonian. Such interactions
can be electron–electron interaction, or electron–phonon interaction, or the interaction
between the electrons and an electromagnetic field. If the electrons spend a long
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time on the molecule, which happens when the couplings to the leads are weak, the
decoherence will be complete. Only for short traversal times, the phase will be well
preserved. Another distinction is that between elastic and inelastic transport. In
the latter case, interactions may cause energy loss or gain of the electrons flowing
through the device. This energy change may be caused by the same interactions
as those causing decoherence. Note, however, that incoherent transport can still be
elastic [52].

Coherence is assumed in many ab-initio based transport methods using the DFT
and Landauer approach, so that the LB method is now routinely applied to any basic
transport calculation through nanosystems and single molecules. Besides, it is directly
applicable in many semiconductor quantum dot systems with weak electron-electron
interactions. Due to simplicity and generality of this method, it is now widely accepted
and is in the base of our understanding of coherent transport [51].

However, the peculiarity of single-molecule transport is the essential role of electron-
electron and electron-phonon interactions, so that the LB method is usually not enough
to describe essential physics even qualitatively. During last years many new methods
were developed to describe transport at finite voltage, with focus on correlation and
inelastic effects, in particular in the cases when Coulomb blockade, Kondo effect and
vibronic effects take place. Among others, there are two very well established the-
oretical frameworks that can be used to study quantum transport with interactions
and at finite voltage: Quantum master equation and nonequilibrium Green function
techniques.

The quantum master equation (QME) [38] describes the time evolution of the re-
duced density matrix or density operator of the molecule and is usually formulated
in the basis of the eigenstates of the molecule. It gives a fairly complete description
of sequential tunneling, the main features of Coulomb blockade and even can capture
Kondo physics for temperatures of the order of or larger than the Kondo tempera-
ture [34]. The QME technique leads to more simple “classical” master equations in
the case where (i) the electrode-system coupling can be considered as a weak pertur-
bation, and (ii) off-diagonal elements of the reduced density matrix in the eigenstate
representation (coherences) can be neglected due to very short coherence times [51].

The nonequilibrium Green function (NGF) formalism was developed independently
by Kadanoff and Baym [53] and Keldysh [54] about 60 years ago. It is able to deal
with a very broad variety of physical problems related to quantum transport. Since its
appearance, it has been used successfully in the theory of nonequilibrium supercon-
ductivity [55], and later was proposed as a standard approach in mesoscopic physics
and molecular electronics. In particular, an elegant approach was formulated by Meir,
Wingreen and Jauho [56–58], who derived an exact expression for nonequilibrium cur-
rent through an interacting nanosystem placed between large noninteracting leads in
terms of the nonequilibrium Green functions of the nanosystem. Still, the problem of
calculation of these Green functions is not trivial [51].

Both approaches, the QME and NGF techniques, can yield formally exact expres-
sions for many observables. For noninteracting systems, one can even solve many mod-
els analytically. However, once interactions are introduced—and these are the most
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1.2. Theoretical approaches

interesting cases containing a very rich physics—different approximation schemes have
to be introduced to make the problems tractable [51].

We apply the QME for the investigation of the current and the nonlinear differential
conductance through a molecular junction which is embedded in a polar solvent. We
use a weak coupling approximation between the leads and the molecule but we do not
neglect off-diagonal elements of the reduced density matrix. Our approach is based
on the Liouville-von Neumann equation and was developed by König, Schoeller and
Schön [31–34] in the middle of the 1990’s. They formulated a real-time diagrammatic
technique which allows a systematic application of the QME in a perturbative scheme
in the tunneling. Each tunneling process can thereby be represented as a diagram
where the number of inseparable tunneling processes corresponds to the order of tun-
neling. With this technique they calculated, for example, the conductance through
a single-electron transistor by incorporating second-order tunneling, i.e., cotunneling,
and found quantitative agreement with experiments [59, 60].

In order to take the influence of the solvent surrounding the molecule into account
we use a reduced description based on the Onsager continuum model of solvation.
In 1936, Lars Onsager was the first who has effectively described the polarization of
the solvent as back action on the solute dipole moment by means of a fluctuating
force field, the reaction field [61]. His concept of molecular dipole moments acting
on the continuum dipolar solvent with a resulting back action opened up the way to
describe the solute dynamics quantum mechanically, e.g., as a two level system with
distinct dipole moments for the ground and excited states [62,63]. Central macroscopic
properties such as the dielectric constants and the relaxation time of the solvent, which
are all experimentally measurable, enter in that model. Although this model does not
include the microscopic details of the solvent, it captures the essential low-energy
physics of the solvation process in the regime of long polarization wavelengths [62,64,
65]. In order to describe binary solvent mixtures we exploit the simplest approach of
Gladstone and Dale [66] for its effective dielectric function which includes the relative
concentrations of a host and an inclusive solvent together with the respective dielectric
permittivities. With this approach we derive a spectral density of the solvent mixture
on the basis of the calculations by Gilmore and McKenzie [62]. They determined the
spectral density within the Onsager continuum model of solvation and also extended
this model to include a thin shell of bound water, the hydration shell [67].

The concept of a hydration shell has been employed to describe the peculiar proper-
ties of water directly next to biomolecules and biomolecular ensembles such as mem-
branes. The hydration shell consists of the first water layer–or sometimes the first few
water layers–surrounding the biomolecule and interacting with it or at least noticeably
influenced by it. The structure and function of biomolecules are strongly influenced
by their hydration shells. Structural fluctuations and molecular excitations of hy-
drating water molecules cover a broad range in space and time, from individual water
molecules to larger pools and from femtosecond to microsecond time scales [68]. There-
fore, the solvent molecules close to the junction molecule display distinct properties
different from the bulk solvent [23–25]. On the other hand, the aqueous environment
“sufficiently” far from the biomolecular surface should display properties of bulk-like
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water [68]. We show that the influence of the hydration shell on the electric current
through a solvated molecular junction can be captured by a spectral density where
the shell properties, i.e., its thickness or its dielectric function, directly enter.

We emphasize that the list of theoretical methods mentioned so far is far from ex-
haustive and, like in the case of experimental techniques, many variations and adap-
tations of these methods exist which are constantly improved and extended to incor-
porate the description of additional properties related to molecular electronics.

1.3. Structure of this thesis

The outline of this thesis is as follows. Chapter 2 is an introduction to the general
concept of charging effects in transport through nanoscale devices. We discuss the
circumstances and relevant scales, such as the size of the nanodevice or the temper-
ature, for observing effects due to the discrete nature of charge. To this end, we use
a description of electronic circuits which include the single-molecule device. After
we have identified the conditions for the occurrence of charging effects, we introduce
the starting point, given by a model Hamiltonian, of our description of a molecular
junction immersed in a solvent in Chapter 3. There we present a suitable theoretical
description to characterize the main properties of the involved constituents and their
interactions contributing to the current through the junction. A real-time transport
theory adapted to our model is then derived in Chapter 4. We use a diagrammatic
technique in which each diagram can be interpreted physically as a particular tunneling
process. With this technique we solve the quantum master equation in the sequential
tunneling regime and derive an expression for the stationary tunneling current.

In Chapter 5 we focus on the dielectric solvation dynamics involving charged and
polar solutes in dielectric environments. We consider a polar solvent characterized by
its dielectric response function. We describe the relaxation process due to a sudden
change in the charge distribution inside the solvent in terms of this dielectric function.
To do so, we use linear dielectric response theory and utilize the Debye model. For
homogeneous and isotropic systems we recapitulate the relations between the polariza-
tion, displacement and electric field from textbook. Furthermore we show how polar
solvents can be modeled as harmonic environments in which the harmonic modes are
motions of the polarization field. We also derive the spectral density both for a sin-
gle solvent and solvent mixtures by describing the solvation process by the Onsager
model and the concept of Gilmore and McKenzie. For solvent mixtures we additionally
incorporate the approach of Gladstone and Dale for an effective dielectric function.
In the last section of this chapter we present the results generated on the basis of
the theoretical analysis described to this point. We begin by reproducing well-known
results within the field of electron transport theory in order to give an overview of
possible observations with our model. Then we demonstrate how pure solvents affect
the current as well as the nonlinear differential conductance. Additionally, we inves-
tigate the temperature dependence of the differential conductance. Our main results
in this chapter are differential conductance calculations for binary solvent mixtures,
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including a promising comparison to experimental data [69].
Chapter 6 is devoted to the description of time-dependent transport. In order to

investigate novel transport characteristics while staying in the linear transport regime
(linear response to a small external potential), we introduce a time-dependent ac volt-
age. By Fourier expanding the quantum master equation, the electric current can then
be expressed by its Fourier components. Our goal is to incorporate the influence of the
hydration shell on the transport characteristics. Similar to the solvation description
of solvent mixtures, the spectral density of the hydration shell can be captured via
an extended Onsager model. Here our main results are calculations of the Fourier
components of the current with respect to the hydration shell thickness [70]. We also
find the same qualitative behavior for the first Fourier component with respect to the
volume fraction of a solvent mixture as for the nonlinear differential conductance in
the dc case. The main difference is that we are here in the linear transport regime and
still find that the current is highly sensitive to both the volume fraction and the in-
dividual solvents themselves. These results can be easily extended to photon-assisted
electron transport in molecular wires given its mathematical form as under ac driving.

Finally, Chapter 7 concludes the thesis and provides an outlook. Two Appen-
dices A and B are included containing a detailed analysis of a contour integration
needed in Chapter 4 and a table of the experimentally measured dielectric solvent
parameters used for the numerical results, respectively.
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Chapter 2.

Theoretical background

In this chapter we describe the fundamental physical principles and theoretical pre-
requisites underlying the modeling of single molecules that are trapped between two
or three electrodes, as laid out in Refs. [35, 41, 52, 71–76]. The modeling concept
is based on the assumption that the accumulation of charge on the single molecule
can be represented by a capacitive circuit model. To make modeling possible on the
level of circuits, we have to translate the physical or electrochemical quantities–such
as charge, Coulomb energy, electrostatic charging energy, addition energy, or energy
levels–to the circuit quantities, charge, voltage difference, potential, current, and en-
ergy [75]. To this end, we consider in the following single-electron transport through
a tunnel barrier, i.e., quantum tunneling, and Coulomb blockade physics.

2.1. Quantum tunneling and Coulomb blockade

We examine a single molecule connected between a source and a drain electrode, while
a third electrode–the gate electrode–is only capacitively coupled to the molecule, see
Fig. 2.1 for a schematic sketch. The gate electrode enables us to tune the energy level
spectrum of the molecule and in turn allows us to control the current that flows through
the system by an external field, very much like in the case of field-effect transistors
in microelectronics. Due to this analogy and also to the fact that the transport is
usually dominated by single-electron processes, these systems are known as single-
molecule transistors (SMTs) or single-electron transistors (SETs), when a quantum
dot is located between source and drain instead of a molecule [41]. A quantum dot
is, e.g., a semiconductor nanostructure with very small spatial dimension, therefore
exhibiting a discrete energy spectrum just like that of an atom or molecule. Now,
an important and distinguishing property of single molecules in solid-state devices is
the strength of the coupling between the electrons in the electrodes (or leads) and
the electrons in the molecule. If the coupling is weak, it is possible to describe all
electrical properties of the system with well-defined energy levels and well-defined
voltages across the molecule and the respective electrodes [75].

It is important to mention that any modeling effort of real devices involves a the-
oretical framework on a certain level. At the lowest modeling level, the transport of
electrons from the source to the molecule and from the molecule to the drain can be
described by quantum mechanical tunneling. There, the interface between the leads
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Chapter 2. Theoretical background

Figure 2.1.: A schematic three-terminal molecular junction or single-molecule transis-
tor, made of a molecule that is connected between a source and a drain electrode, with
a third electrode that functions as a gate.

and the molecule acts as tunneling barriers. Due to their wave nature, electrons can
tunnel through these potential tunneling barriers, even if the total energy of an elec-
tron is smaller than the energy needed to overcome the barrier in a classical way. By
tunneling through the barriers from source to drain, the electrons create a current
flow when a sufficiently large voltage is applied. Weak coupling allows a description
in terms of a two-step process in which an electron first tunnels from the source to
the molecule, and then tunnels from the molecule to the drain [75]. This is called
sequential tunneling or single-electron tunneling.

At the modeling level above this, phenomena are described by classical physics, such
as thermodynamics. This is the level at which Coulomb blockade can be described
as a condition that relies on the reduction in the free (electrostatic) energy of the
system as a result of the tunneling event [75]. Coulomb blockade is an electronic
phenomenon that describes the suppression of current flow through the molecule due to
the electrostatic (Coulomb) repulsion between electrons occupying the molecule. This
phenomenon is generally associated with the quantization of charge, i.e., tunneling can
be done only by whole electrons. To overcome the Coulomb blockade, the so-called
addition energy Eadd has to be provided by energy sources in the electronic circuitry
that excites the trapped molecule. The expression for the addition energy consists
of two terms: The first term is the charging energy Ece associated with the energy
necessary to bring a single electron on a classical metallic island in between the leads.
The second term is the quantum kinetic energy ∆E due to the fact that we are dealing
with a molecule having well-separated energy levels instead of the dense spectrum of
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(a) (b)

Figure 2.2.: (a) Tunneling of an electron toward an isolated metallic island. (b) Two-
level model to illustrate the transport characteristics in the Coulomb blockade regime as
presented in Ref. [41].

a large metallic island [75]. The addition energy then is

Eadd = Ece +∆E . (2.1)

In order to determine the charging energy Ece let us consider an isolated metallic
island embedded in an insulating medium, see Fig. 2.2 (a). The number of elementary
particles in the island must be integer. Thus, its charge Q must be an integer amount
of elementary charges, Q = eN , with N being the number of excess electrons in the
island [73]. We can view the system as a single capacitance C, in which the island
forms one electrode of this capacitor and the environment forms the other electrode.
Both sides of the capacitor are not connected [75]. The induced electrostatic capacitive
charge for a capacitor is given by

q = CV , (2.2)

where V is the voltage between both sides of the capacitor. Notice that the induced
charge q is not the charge of a particle and therefore, in contrast to the charge transfer
from and to the molecule or its occupation number, is not a quantized number [74].
Transporting additional charge (dq) to another plate of a capacitor requires the elec-
trostatic work

Epot =

∫
V dq =

∫
q

C
dq (2.3)

against the applied voltage [35, 76]. For the total charge Q, the work performed can
be determined as

Epot =
1

C

∫ Q

0

qdq =
Q2

2C
=

e2

2C
N2 = ECN

2 . (2.4)

The increase in energy when an electron is added to this island, to which already N
electrons have been tunneled, is called the single-electron charging energy Ece(N) [75].

Ece(N) =
((N + 1)e)2

2C
− (Ne)2

2C
=

e2

2C
(2N + 1) . (2.5)
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Figure 2.3.: The electrostatic energy within the capacitive circuit model for different
particle numbers N as presented in Ref. [35]. At the intersection point of two adjacent
parabolas transport is possible.

For initially uncharged islands, the expression for the single-electron charging energy
Ece(N = 0) is called the Coulomb energy EC :

EC =
e2

2C
. (2.6)

Often the Coulomb energy is interpreted as the energy barrier felt by a single electron
moving onto an electrically neutral island. That is, tunneling is forbidden until this
barrier can be surmounted when an energy source is applied that provides enough
energy during tunneling. A Coulomb blockade exists if enough energy is not sup-
plied [75].

Let us return to our three-terminal molecular junction from Fig. 2.1. There, the
total capacitance of the SMT is given by C = CL + CR + CG, where CL, CR and CG
are the capacitances of the source, drain and gate electrode, respectively. The induced
charge in this case is q = CLVL + CRVR + CGVG, where VL, VR and VG denote the
potential shift for the source, drain and gate electrode, respectively. The electrostatic
work required then becomes [35,74]

Epot(Q = eN) = EC(N − q/e)2 . (2.7)

The system tries to minimize its electrostatic energy. Therefore, the integer particle
number N tends to be as close as possible to the continuous variable q/e. As a
consequence, the particle number can be controlled in discrete units by varying q/e
via the gate voltage VG. For half-integer values of q/e, two adjacent particle numbers
N = q/e ± 1/2 lead to the same electrostatic energy and transport is possible, see
Fig. 2.3. Away from the degeneracy points, transport is suppressed up to smearing
due to temperature, bias voltage and quantum fluctuations [35]. This is again the
Coulomb blockade phenomenon. The system is called transistor since by tuning the
gate voltage VG the current can be switched on and off [72].

So far we have considered only the Coulomb interaction and neglected the energy
level spacing ∆E, i.e., the separation between discrete energy states, of the molecule.
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2.1. Quantum tunneling and Coulomb blockade

Figure 2.4.: Calculated stability diagrams corresponding to the two-level system of
Fig. 2.2 (b). Top: Current vs. gate voltage and source-drain (or bias) voltage. Bottom:
Differential conductance vs. gate voltage and source-drain voltage. The picture is taken
from Ref. [41].

In order to illustrate the consequences from the single-particle states of the molecule
let us have a look at an example of a two-level system as presented in Ref. [41]. The
system has two non-degenerate single-particle levels with energies E1 = 50 meV and
E2 = 80 meV, which are measured with respect to the equilibrium chemical potential
of the leads (set to zero), see Fig. 2.2 (b). The charging energy is assumed to be
e2/C = 100 meV, which in this case is larger than the excitation energy ∆E =
E2 − E1 = 30 meV. The temperature is kBT = 2.5 meV (i.e., T ≈ 30 K) and the
tunnel barriers are identical for the left (L) and right (R) lead.

When we consider the energy configuration illustrated in Fig. 2.2 (b), the current
is suppressed, in the weak coupling regime and at low temperature, when all chemical
potential levels lie outside of the bias window. As we can tune the location of these
levels using the gate voltage VG, it is interesting to study the current I and the
differential conductance dI/dV of the device as a function of the bias voltage VSD and
VG. A two-dimensional plot of the current or conductance as a function of the two
voltages is often referred to as stability diagram [41]. Figure 2.4 shows the stability
diagrams of the two-level system from Fig. 2.2 (b). Each level resonance generates two
straight lines in the VSD-VG plane, separating regions of suppressed current from those
with finite current. The resulting diamond-shaped regions are traditionally called
Coulomb diamonds, as they are often studied in the context of metallic dots, where
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the chemical potential difference of the levels is mainly made up of the Coulomb energy.
The name is also used in molecular transport, although this is strictly speaking not
justified since in this case the level spacing can be of the same order as the Coulomb
interaction [41].

Nevertheless, one can infer valuable information from the Coulomb diamond picture.
Thus for instance, the addition energy, see Eq. 2.1, can be read off from the height of
the diamond or from the distance of the degeneracy points. Additionally, excitations
appear as lines running parallel to the Coulomb diamond edges. At such a line, a new
excited state enters the bias window, creating an additional transport channel. The
result is a step-wise increase of the current and a corresponding peak in the differential
conductance. The energy of an excitation, ∆E in Fig. 2.4, can be determined by
reading off the bias voltage of the intersection point between the excitation line and the
Coulomb diamond edge [41]. The width of the lines in the dI/dV plot (or, equivalently,
the voltage range over which the step-wise increase in the current occurs) is determined
by temperature and the coupling strength between the leads and the two-level system
[52]. There are other important issues like the size of the diamonds or the role of the
asymmetry in the coupling that can be discussed at a qualitative level. We refer to
Refs. [41, 52] for more details.

In this thesis we focus on the level spacing of the molecule, in particular on the
energy difference between the highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO). The excitation energy ∆E will be sim-
ply a single-level energy εd given with respect to the Fermi energy of the leads. Fur-
thermore, we will neglect electron-electron interactions. Our focus lies on the determi-
nation of solvent and solvation shell influences on the electron transport through the
molecule. Therefore, our stability diagrams will not contain the Coulomb diamonds,
see Fig. 5.3 (a) in the Results and discussion chapter. However, given the electrostatic
interaction between solvent molecules and conducting molecule, the solvent can shift
the level energy εd and, thus, can have the same effect as a gate potential.

2.2. Charging effects in transport through nanoscale
devices and higher order tunneling

In this section we examine the circumstances under which single-electron charging
effects are important in the transport through small devices. In other words, following
Refs. [41,71] we want to address the following question: How small and how cold should
a conductor be so that adding or subtracting a single electron has a measurable effect?
To answer this question, let us consider again the three-terminal molecular junction
from Fig. 2.1, where we have already established the charging energy ∝ e2/C with
the total capacitance C. The charging energy becomes important when it exceeds the
thermal energy kBT [41, 71].

A second requirement to observe charging effects is that the barriers are sufficiently
opaque such that the electrons are located either in the source, in the drain, or on the
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molecule. This means that quantum fluctuations in the number N due to tunneling
through the barriers are much less than one over the time scale of the measurement.
(This time scale is roughly the electron charge divided by the current.) This require-
ment translates to a lower bound for the tunnel resistances Rt of the barriers. To
see this, consider the typical time to charge or discharge a capacitor ∆t = RtC. The
Heisenberg uncertainty relation: ∆E∆t = (e2/C)RtC > h implies that Rt should be
much larger than the resistance quantum h/e2 = 25.813 kΩ in order for the energy
uncertainty to be much smaller than the charging energy [41, 71]. To summarize, the
two conditions for observing effects due to the discrete nature of charge are [41, 71]

Rt ≫ h/e2 and e2/C ≫ kBT . (2.8)

The first criterion can be met by weakly coupling the small object to the source and
drain leads. The second criterion can be met by making the object small or by lowering
the temperature [41,71]. Let us recall that the capacitance of an object scales with its
radius r and for a sphere, C = 4πε0r. Thus for instance, the charging energy of a C60

molecule, which has a radius of r ∼ 4Å, can be estimated to be e2/4πε0r ∼ 3.6 eV. This
indicates that charging effects can in principle be readily observed in single-molecule
junctions even at room temperature (kBT = 25 meV), as long as the molecules are
weakly coupled to the electrodes [41, 71].

As discussed in the previous section, when it comes to charging effects, an important
energy scale is the energy level spacing ∆E in the molecule, i.e., the separation between
the discrete energy states of the small conductor. To be able to resolve these levels, the
spacing must be much larger than kBT . In the case of molecular junctions, the spacing
∆E, which is basically the HOMO-LUMO gap, is typically of the order of several
electronvolts. Therefore, level quantization should be easily observable in SMTs even
at room temperature [41].

Now that we have identified the relevant scales for the occurrence of charging ef-
fects, we will briefly discuss some phenomena occurring when the requirements for
single-electron charging effects are not met. For example, when the temperature is
not sufficiently low enough, small but finite currents can appear inside of the Coulomb
diamonds due to thermal fluctuations [74]. There is, however, a further effect which
can lead to finite currents in the blocked region. The origin of this effect are co-
tunneling and higher-order tunneling processes. Even though we have used classical
arguments for the charging energy, the SMT is a quantum mechanical system. While
a single electron is bound to the law of energy conservation, it is possible for two or
more electrons to tunnel simultaneously [74]. The tunneling electrons then do not
need to conserve energy individually but only as a whole, thereby giving rise to new
contributions to the charge current. These are called cotunneling contributions and
are of higher order in the system-lead interaction than the sequential tunneling con-
tributions we have discussed so far. In this thesis, we will concentrate on sequential
tunneling only. It is however important to be aware of the existence of cotunneling ef-
fects. They become important for strong molecule-lead interactions or when all other
transitions are forbidden. In order to stay in the sequential tunneling regime, it is
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therefore necessary to ensure that the molecule-lead interaction is weak compared to
all other energy scales in the problem [74]. For larger tunnel coupling or low tem-
perature and transport voltage higher-order processes will have significant effects on
the transport characteristics and in general need to be taken into account under these
conditions [72].
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Chapter 3.

The model of a molecular
nanojunction in solution

We consider a molecule in a polar solvent coupled to two leads under the influence
of an external voltage. The system is illustrated in Fig. 3.1. We want to investigate
how the solvent influences the current through the molecule when a voltage is applied
between the source and the drain. The goal is to find a relation between the applied
voltage and the resulting electron current depending on different solvents such that
in the end it is possible to deduce from the measured current the properties of the
solvent in which the molecule is present. To this extent, we have to find a suitable
theoretical description to characterize the main properties of the involved constituents
contributing to the current which we will present in the following.

3.1. The molecule

We model the molecule in terms of a quantum dot. A quantum dot is a semiconductor
nanostructure that confines the motion of conduction band electrons, valence band
holes, or excitons (bound pairs of conduction band electrons and valence band holes)
in all three spatial directions [77]. Due to this confinement the charge and energy
of a quantum dot have a discrete quantized spectrum just like that of an atom or
molecule. Hence, quantum dots are sometimes referred to as artificial atoms [78, 79]
and thus are used to describe the central interacting region in our model. In general,
experimentally realizable quantum dots contain a lot of levels. If the level splitting
is larger than temperature and bias voltage, then at most one level participates in
transport [72]. Hence, we limit our consideration to two molecular electronic states,
describing an oxidized state with N and a reduced state with N + 1 electrons on
the molecule. This standard assumption of strong Coulomb repulsion pushes states
with other electronic occupations in energy regimes that are not accessible under the
experimental conditions [27,80]. The Hamiltonian of the molecule is then given by

Hmol = εdd
†d . (3.1)

Here d† and d are the creation and annihilation operators of an electron on the molecule
with energy εd, respectively. We also neglect the spin degree of freedom since we
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Figure 3.1.: Illustration of the model of the system given by a molecule in a solvent,
which is in contact with two leads, the source (L) and the drain (R), respectively. The
picture is adapted from Ref. [64].

are mainly interested in the charge current regardless of the spin of the electrons.
Furthermore, our model does not include the electron-electron interaction needed to
describe, e.g., Coulomb blockade effects, but focuses on the study of the inelastic
effects of the electron-phonon interaction [81].

3.2. The leads

Guided by the typical experimental geometry in which the leads rapidly broaden
into metallic contacts, we view electrons in the leads as noninteracting except for
an overall self-consistent chemical potential µr [58], where the index r = L (R) labels
the left (right) lead. The Hamiltonian takes the form of a free electron Fermi gas

Hleads =
∑
r,k

(εk,r − µr)c
†
k,rck,r . (3.2)

The creation (annihilation) operators of an electron in the leads with momentum k
are denoted by c†k,r (ck,r). The bias voltage is symmetrically applied around the Fermi
energy εF ≡ 0, i.e., µL = −µR = eV/2. Furthermore, we set ℏ ≡ 1 and kB ≡ 1.

3.3. The solvent

We assume the solvent to consist of polar molecules interacting with the central
molecule when an electron is present on the latter one. Polar molecules contain polar
bonds due to a difference in electronegativity between the bonded atoms. This means
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that the negative charges from the electrons are not evenly distributed among the po-
lar molecules, which causes a dipole moment. Thus, polar molecules interact through
dipole–dipole intermolecular forces. A classic example of a polar bond is the bond in
water between hydrogen and oxygen. Due to their relatively large net dipole moments
caused by the opposing partial charges water molecules exhibit hydrogen bonds which
is a common form of a dipole-dipole interaction where the partial charge of one wa-
ter molecule interacts with the opposing charge of a neighboring water molecule and
creates the H-bond. Hydrogen bonds are much weaker than covalent bonds within
a molecule. However, a single water molecule can exhibit several H-bonds and as a
result the influence of hydrogen bonds is in total significantly large. The dipole-dipole
interactions can be attributed as fluctuations or phonons of the electrodynamic en-
vironment surrounding the central molecule. We characterize these fluctuations as
bosonic modes ωm and describe the polar solvent by the Hamiltonian [64,65]

Hsolv =
∑
m

ωma
†
mam . (3.3)

Here a†m (am) creates (destroys) a polarization excitation which we denote as phonon
in mode m. Although we assume the bosonic modes stemming from fluctuations of
the electrodynamic environment, i.e., the solvent, the specific kind of the modes ωm
can be adjusted accordingly to the bosonic environment [33]. Polar solvents can be
modeled as harmonic environments in which the harmonic modes are motions of the
polarization field [64]. In Section 5.3 we show in more detail how the dielectric response
of a polar medium can be described in terms of the Hamiltonian (3.3).

3.4. Coupling between leads and molecule

In order to couple the leads and the molecule, we introduce tunneling. This is done in
a perturbative way by considering the overlap between the lead states and the states
of the molecule. This overlap is parametrized by tunneling amplitudes tk,r that enter
in the tunneling Hamiltonian [75]

Htun =
∑
r,k

(
tk,rc

†
k,rd+ H.c.

)
. (3.4)

This tunneling Hamiltonian describes charge transfer processes of single electrons tun-
neling from the leads to the molecule and vice-versa. We will assume that the tunneling
amplitudes are free parameters that we can tune as we wish, but in principle one can
compute them from overlap integrals between orbital wave functions of the lead and
the molecule [75].

3.5. Coupling between solvent and molecule

Finally, we have the last interaction taken into account which represents the coupling
between the phonon modes of the solvent and the electron at the resonant level of the
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molecule given by the Hamiltonian [82]

Hmol-solv =
∑
m

gmd
†d(a†m + am) , (3.5)

where gm describes an electron-phonon coupling constant. The Hamiltonian describes
the lowest-order coupling between electrons and phonons derived from linear response
theory [82].

3.6. Polaron transformation

We write the full Hamiltonian of our system model as

H = H0 +Htun ,

H0 = Hmol +Hleads +Hsolv +Hmol-solv .
(3.6)

The reason why we choose this notation becomes apparent in the following. In the
real-time diagrammatic technique, which we introduce in the next chapter to calcu-
late the current through the molecule, we change to the interaction picture. To this
extent, it is useful to have a Hamiltonian which contains the free parts of the partial
subsystems and a separate single interacting part. This can be obtained by a unitary
transformation [83,84] given by U = exp

(
−id†dφ

)
and φ = i

∑
m

gm
ωm

(
a†m − am

)
.

This transformation is called Lang-Firsov or polaron transformation [83,84] and yields
the transformed Hamiltonian

H̄ = UHU−1 = H̄0 + H̄tun , (3.7)

where
H̄0 = H̄mol +Hleads +Hsolv , (3.8)

with

H̄mol =

(
εd −

∑
m

g2m
ωm

)
d†d , (3.9)

and

H̄tun =
∑
r,k

(
tk,rc

†
k,rde

iφ + H.c.
)
. (3.10)

The essential building block of the calculation consists of exploiting the Baker-Campbell-
Hausdorff formula for two operators X and Y , which reads [85]

eXY e−X =
∞∑
n=0

1

n!
[X, Y ]n = Y + [X, Y ] +

1

2
[X, [X, Y ]] +

1

6
[X, [X, [X, Y ]]] + · · · ,

(3.11)
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where [X, Y ]n =
[
X, [X, Y ]n−1

]
, and [X, Y ]0 = Y . With X = d†d

∑
m

gm
ωm

(
a†m − am

)
,

we thus obtain for the transformation of the relevant operators

d̄ = eXde−X =
∞∑
n=0

(∑
m

gm
ωm

(
a†m − am

))n
n!

[
d†d, d

]
n
= de

∑
m

gm
ωm

(am−a†m) = de−iφ ,

d̄† = d†eiφ ,

ām = eXame
−X =

∞∑
n=0

(
d†d
)n

n!

[∑
m′

gm′

ωm′

(
a†m′ − am′

)
, am

]
n

= am − gm
ωm

d†d ,

ā†m = a†m − gm
ωm

d†d ,

c̄k,r = ck,r ,

c̄†k,r = c†k,r . (3.12)

Here, we have used
[
d†d, d

]
n
= (−1)nd, and

[
a†m′ − am′ , am

]
= −δm′,m. The conse-

quences of this transformation are that the electron-phonon interaction renormalizes
the level position of the molecule, i.e., ε̄d =

(
εd−

∑
m

g2m
ωm

)
, and the tunneling term ac-

quires phase factors e±iφ [72]. These phase factors describe the effect of boson-assisted
tunneling caused by the solvent. Without tunneling the problem is now solved, i.e.,
the interaction between the molecule and the solvent can be treated exactly in the
absence of the fermionic leads. The tunneling term is still nontrivial and therefore the
real-time diagrammatic technique set up in the following chapter is based on an ex-
pansion in the tunneling vertex [35]. Operatorwise we have a part of the Hamiltonian
H̄0 containing the free subsystems and a single interacting part H̄tun containing all
the interactions between the three subsystems. This separation also comes in handy
for the upcoming derivation of the real-time diagrammatics. For convenience we drop
the bar on all operators and imply implicitly that all operators O ≡ Ō = UOU−1 are
the transformed ones after the polaron transformation [35]. Furthermore, from here
on we refer to the renormalized level position of the molecule as εd.
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Chapter 4.

Quantum master equation and
real-time diagrammatic technique

A full description of the molecule and its environment is, in most cases, impossible
due to the size of the environment. It is, however, possible to describe the dynamics
of only the molecule by integrating out the environment. An approach based on
this technique is the quantum master equation. The master equation describes the
evolution of the reduced density matrix of the molecule via transition rates between
the molecule and the environment [74]. The total transformed Hamiltonian of our
system consists of an environment, including the leads and the solvent, the molecule
part, and the tunneling part. The latter describes the coupling between environment
and molecule and will drive the molecule system out of equilibrium. Therefore, we
formulate the nonequilibrium problem in the following way. For t ≤ t0 , we assume the
tunneling part of the Hamiltonian to vanish, and the environment to be in equilibrium.
This means that the initial density matrix for the total system (ρ) factorizes into parts
for the molecule (ρmol), the leads (ρeqleads), and the solvent (ρeqsolv), i.e.,

ρ(t) = ρmol(t)ρ
eq
leadsρ

eq
solv for t ≤ t0 , (4.1)

where

ρeqleads =
e−βHleads

Trleads [e−βHleads ]
and ρeqsolv =

e−βHsolv

Trsolv [e−βHsolv ]
. (4.2)

The reduced density matrix of the molecule is given by

ρmol(t) = TrleadsTrsolv [ρ(t)] , (4.3)

with Trleads and Trsolv being the trace over the lead and solvent degrees of freedom,
respectively [35]. We further assume that the molecule, the leads, and the solvent
are at the same temperature T leading to the same inverse temperature β = 1/T .
The master equation can now be derived starting from the Liouville-von Neumann
equation

∂

∂t
ρ(t) = −i [H, ρ(t)] , (4.4)

which describes how the full density operator evolves in time in the Schrödinger pic-
ture. As mentioned earlier we want to change to the interaction picture in order
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Chapter 4. Quantum master equation and real-time diagrammatic technique

to utilize the real-time diagrammatic technique. To this extent, we use the defini-
tion of an arbitrary Schrödinger operator in the interaction picture which is given by
O(t)I = eiH0(t−t0)O(t)e−iH0(t−t0), where the subscript I denotes the interaction picture.
By differentiating the full density operator ρ(t) = e−iH0(t−t0)ρ(t)Ie

iH0(t−t0) with respect
to t and using Eq. (4.4) we get the interaction picture Liouville-von Neumann equation

∂

∂t
ρ(t)I = −i [Htun(t)I , ρ(t)I ] , (4.5)

which describes the time evolution of the density operator in the interaction picture
and resembles the form of the Liouville-von Neumann equation in the Schrödinger
picture, however, with the tunneling Hamiltonian Htun(t)I in the interaction picture
instead of the full Hamiltonian H. The formal solution of Eq. (4.5) can be found by
integration, i.e.,

ρ(t)I = ρ(t0)I − i

∫ t

t0

dt′ [Htun(t
′)I , ρ(t

′)I ] . (4.6)

Reinserting the formal solution into the right-hand side of Eq. (4.5) leads to

∂

∂t
ρ(t)I = −i [Htun(t)I , ρ(t0)I ]−

∫ t

t0

dt′ [Htun(t)I , [Htun(t
′)I , ρ(t

′)I ]] . (4.7)

Since we want to derive an equation of motion for the reduced density matrix, the
next step is to trace out the lead and solvent degrees of freedom. Before we proceed
with this step, we first calculate the time derivative of the density matrix from the
interaction picture definition of an operator, i.e.,

∂

∂t
ρ(t)I = eiH0(t−t0)

(
i [H0, ρ(t)] +

∂

∂t
ρ(t)

)
e−iH0(t−t0) . (4.8)

It will become apparent below why this switch to the Schrödinger picture will be
useful. Now, let us proceed with the calculation of the trace over the lead and solvent
degrees of freedom. We get from Eq. (4.7)

∂

∂t
ρmol(t)I = TrleadsTrsolv

[
∂

∂t
ρ(t)I

]
= −TrleadsTrsolv

[∫ t

t0

dt′ [Htun(t)I , [Htun(t
′)I , ρ(t

′)I ]]

]
.

(4.9)
Due to our consideration that the environment is initially at its equilibrium and thus
its density matrix is diagonal in the corresponding energy basis we see that the first
term on the right hand side of Eq. (4.7) vanishes under the trace of the environment,
i.e., TrleadsTrsolv

(
[Htun(t)I , ρ(t0)I ]

)
= 0, because the tunneling Hamiltonian Htun is

non-diagonal in the eigenbasis of the environment. We write a matrix element of
the reduced density matrix of the molecule in the Schrödinger picture as Pψ1

ψ2
(t) =

⟨ψ1|ρmol(t)|ψ2⟩, where |ψi⟩ are eigenstates of the molecule, i.e., Hmol|ψi⟩ = εψi |ψi⟩. By
using the equality of Eq. (4.7) and Eq. (4.8) as well as the performed trace over the
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lead and solvent degrees of freedom, we arrive at the quantum master equation for a
matrix element of the reduced density matrix of the molecule, given by

∂

∂t
Pψ1

ψ2
(t) =i (εψ2 − εψ1)P

ψ1

ψ2
(t)

− ei(εψ2−εψ1)(t−t0)⟨ψ1|TrleadsTrsolv
[∫ t

t0

dt′ [Htun(t)I , [Htun(t
′)I , ρ(t

′)I ]]

]
|ψ2⟩ .

(4.10)

Notice, how the left-hand side and the first term of the right hand side stems from the
switch to the Schrödinger picture from Eq. (4.8). In this way it is possible to describe
the coherent dynamics separately from the dissipative one. Thus, the first term on the
right-hand side governs the dynamics of the isolated molecule system in the absence of
tunneling, whereas the second term encloses all effects of the fermionic leads and the
bosonic solvent [86]. The quantum master equation can be written in a short hand
notation [72]

∂

∂t
Pψ1

ψ2
(t) = i (εψ2 − εψ1)P

ψ1

ψ2
(t)−

∑
ψ′
1,ψ

′
2

∫ t

t0

dt′P
ψ′
1

ψ′
2
(t′)Σ

ψ′
1ψ1

ψ′
2ψ2

(t′, t) , (4.11)

where the so-called irreducible self-energy part Σ
ψ′
1ψ1

ψ′
2ψ2

(t′, t) contains all the tunneling
processes between the molecule and the environment stemming from the tunneling
Hamiltonian Htun. We will explain in the next section how we get from Eq. (4.10)
to Eq. (4.11) and how we can calculate the self-energy as well as why it is called
irreducible. Before we do so, we want to make two major approximations. Notice,
that up to this point, the quantum master equation is formally exact since all orders
of the system-environment interaction are included either explicitly in form of the
interaction Hamiltonian or implicitly in the density matrix [74].

We have stated that ρ(t) factorizes for t ≤ t0. At later times, correlations between
the environment and the molecule may arise due to the tunneling term Htun. However,
for a weak coupling, at all times ρ(t) should only show deviations of order Htun from
an uncorrelated state [86]. Therefore, we assume that the environment is at thermal
equilibrium at all times. In order for this assumption to be valid two conditions need to
be fulfilled: First, the equilibration times of the environment need to be fast compared
to the time between two tunneling processes. Second, the environment needs to be
very large compared to the molecule. Since we are discussing the transfer of single
electrons between a nanosystem, i.e., the molecule, and its environment typically given
by solids and solvents, both of which having macroscopic dimensions, these conditions
are satisfied [74]. Now, because the molecule-environment interaction is assumed to be
small, we treat the interaction in the self-consistent Born approximation, where only
the lowest order self-energies are kept [81]. This means that we will neglect terms of
higher than second order in Htun in Eq. (4.10).

The next assumption we want to perform is the Markov approximation. The dissi-
pative part of the quantum master equation depends on the evolution of the density
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Chapter 4. Quantum master equation and real-time diagrammatic technique

matrix from the initial time t0 to the evaluation time t, including memory effects in the
dynamics [86]. Depending on the form of the environment surrounding the system of
interest, it is possible that a calculation of the systems dynamics requires to take into
account the previous dynamics up to a certain memory time. The dynamics of such
a system is then called non-Markovian. For Markovian systems, the memory time is
assumed to be much shorter than any system or environment time scale [74]. Due to
the Markov approximation we can replace ρ(t′)I by ρ(t)I in Eq. (4.10) which leads to
a replacement of Pψ′

1

ψ′
2
(t′) by Pψ′

1

ψ′
2
(t) in Eq. (4.11) yielding the Markov quantum master

equation

∂

∂t
Pψ1

ψ2
(t) = i (εψ2 − εψ1)P

ψ1

ψ2
(t)−

∑
ψ′
1,ψ

′
2

∫ t

t0

dt′P
ψ′
1

ψ′
2
(t)Σ

ψ′
1ψ1

ψ′
2ψ2

(t′, t) . (4.12)

What remains to be specified and calculated is the irreducible self-energy part Σψ′
1ψ1

ψ′
2ψ2

(t′, t).
We will continue with this calculation in the following.

4.1. Calculation of the self-energy Σ to leading
order in the tunnel coupling

In general, the irreducible self-energy Σ
ψ′
1ψ1

ψ′
2ψ2

(t′, t) contains all orders of the interactions
between the molecule and the environment happening between the times t′ and t.
These interactions can be represented in diagrams (see Fig. 4.1), which are similar to
Feynman diagrams, and for which J. König et al. have developed calculation rules
presented in Ref. [87]. The self-energy part Σ

ψ′
1ψ1

ψ′
2ψ2

(t′, t) is called irreducible, because
it contains the sum of all diagrams in which any vertical cut through them crosses at
least one tunneling line [72]. Due to our assumption that the coupling between the
molecule and the environment is sufficiently weak, it is reasonable to assume that only
the lowest order of the interaction is important for the system’s dynamics [74]. The
lowest non-vanishing order term of the self-energy, which is of second order in Htun,
is called the transition rate of sequential tunneling. It corresponds to the physical
situation where all tunneling processes are incoherent. The next non-vanishing term,
which is of forth order in Htun, is called the cotunneling transition rate. It means
that at least two tunneling processes are coherent allowing for coherent transport
through the molecule [35]. Again, within the Born approximation we will focus on the
lowest order transition rate in the sequential tunneling regime. In order to identify the
lowest order self-energy, let us expand the double commutator in Eq. (4.10) and insert
identities 1 =

∑
ψi
|ψi⟩⟨ψi| between the operators, so that, together with the Markov
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4.1. Calculation of the self-energy Σ to leading order in the tunnel coupling

ψ1

ψ2

ψ′
1

ψ′
2

Σ
ψ′
1ψ1

ψ′
2ψ2

(t′, t)

t′ t

Figure 4.1.: Visualization of the full irreducible self-energy on the Keldysh contour
containing all orders of the tunneling Hamiltonian Htun. The dashed lines represent
fermionic interactions between the molecule and the leads whereas the wiggled lines
represent bosonic interactions stemming from the solvent. The picture is adapted from
Ref. [35].

approximation (ρ(t′)I → ρ(t)I), we get

∂

∂t
Pψ1

ψ2
(t) = i (εψ2 − εψ1)P

ψ1

ψ2
(t)−

∑
ψ′
1,ψ

′
2

∫ t

t0

dt′ei(εψ2−εψ1)(t−t0)×

TrleadsTrsolv

[
⟨ψ1|Htun(t

′)I |ψ′
1⟩⟨ψ′

1|ρ(t)I |ψ′
2⟩⟨ψ′

2|Htun(t)I |ψ2⟩︸ ︷︷ ︸
(i)

+ ⟨ψ1|Htun(t)I |ψ′
1⟩⟨ψ′

1|ρ(t)I |ψ′
2⟩⟨ψ′

2|Htun(t
′)I |ψ2⟩︸ ︷︷ ︸

(ii)

−
∑
ψ′
3

⟨ψ1|Htun(t)I |ψ′
3⟩⟨ψ′

3|Htun(t
′)I |ψ′

1⟩⟨ψ′
1|ρ(t)I |ψ′

2⟩︸ ︷︷ ︸
(iii)

δψ′
2ψ2

−
∑
ψ′
3

⟨ψ′
1|ρ(t)I |ψ′

2⟩⟨ψ′
2|Htun(t

′)I |ψ′
3⟩⟨ψ′

3|Htun(t)I |ψ2⟩︸ ︷︷ ︸
(iv)

δψ′
1ψ1

]
.

(4.13)

We want to end up in a form resembling Eq. (4.12). To this extent, we insert the tun-
neling Hamiltonian from Eq. (3.10) and switch once again from the interaction picture
of the density matrix and molecule operators to the Schrödinger picture in order for
the free molecule Hamiltonian to act upon its eigenstates. Furthermore, we know
how the fermionic operators of the leads evolve in time, i.e., ck,r(t)I = e−iεk,r(t−t0)ck,r.
Since the tunneling Hamiltonian consists of two terms and appears twice in each of
the four terms (i)–(iv) in Eq. (4.13) this would lead to a total number of sixteen
terms. However, half of them do not contribute due to particle number conservation.
Together with the assumption that the density matrix of the total system (molecule
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Chapter 4. Quantum master equation and real-time diagrammatic technique

+ environment) factorizes at all times, we end up with

∂

∂t
Pψ1

ψ2
(t) = i (εψ2 − εψ1)P

ψ1

ψ2
(t)−

∑
ψ′
1,ψ

′
2

∫ t

t0

dt′P
ψ′
1

ψ′
2
(t)
∑
k,r

|tk,r|2

×
{
e
i(εψ′

1
−εψ1 )τe−W (+τ)

[
e−iεk,rτf−

r (εk,r)⟨ψ1|d|ψ′
1⟩⟨ψ′

2|d†|ψ2⟩

+e+iεk,rτf+
r (εk,r)⟨ψ1|d†|ψ′

1⟩⟨ψ′
2|d|ψ2⟩

]
+e

i(εψ2−εψ′
2
)τ
e−W (−τ)

[
e+iεk,rτf−

r (εk,r)⟨ψ1|d|ψ′
1⟩⟨ψ′

2|d†|ψ2⟩

+e−iεk,rτf+
r (εk,r)⟨ψ1|d†|ψ′

1⟩⟨ψ′
2|d|ψ2⟩

]
−
∑
ψ′
3

e
i(εψ′

1
−εψ′

3
)τ
e−W (+τ)

[
e+iεk,rτf+

r (εk,r)⟨ψ1|d|ψ′
3⟩⟨ψ′

3|d†|ψ′
1⟩

+e−iεk,rτf−
r (εk,r)⟨ψ1|d†|ψ′

3⟩⟨ψ′
3|d|ψ′

1⟩
]
δψ′

2ψ2

−
∑
ψ′
3

e
i(εψ′

3
−εψ′

2
)τ
e−W (−τ)

[
e−iεk,rτf+

r (εk,r)⟨ψ′
2|d|ψ′

3⟩⟨ψ′
3|d†|ψ2⟩

+e+iεk,rτf−
r (εk,r)⟨ψ′

2|d†|ψ′
3⟩⟨ψ′

3|d|ψ2⟩
]
δψ′

1ψ1

}
,

(4.14)

where the Fermi-Dirac distribution f±
r (εk,r) =

[
1 + e±β(εk,r−µr)

]−1 of lead r with chem-
ical potential µr stems from the trace over the leads, i.e.,

f+
r (εk,r) = Trleads

[
ρeqleadsc

†
k,rck,r

]
and f−

r (εk,r) = Trleads

[
ρeqleadsck,rc

†
k,r

]
. (4.15)

The exponential factor e−W (±τ) comes from the trace over the solvent, which can be
calculated using Feynman’s disentangling method [84], and together with the time
difference τ = t− t′ results in

e−W (+τ) = Trsolv

[
ρeqsolve

±iφ(t)Ie∓iφ(t
′)I
]

and e−W (−τ) = Trsolv

[
ρeqsolve

±iφ(t′)Ie∓iφ(t)I
]
.

(4.16)

The latter factor is most interesting to our investigation, because it contains the in-
fluence of the solvent on the molecule. The exponent W (τ) is referred to as the
time-dependent reservoir correlation function [65] or line shape function [88] and can
be written as [35,65,88]

W (τ) =
1

π

∫ ∞

0

dω
J(ω)

ω2

{
(1− cos(ωτ)) coth

(
βω

2

)
+ i sin(ωτ)

}
, (4.17)

where J(ω) is the spectral density of the solvent and in general is defined as [35,65,88]

J(ω) = π
∑
m

g2mδ(ω − ωm) . (4.18)
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Although the spectral density in Eq. (4.18) is defined in terms of a sum of delta func-
tions, any macroscopic system will in practice have a continuous spectral density [65].
Depending on the type of the solvent, the spectral density can assume various kinds
of possible forms. Since we consider a polar solvent, we assume the spectral density
to be in the so-called Debye form, i.e., [89]

J(ω) = 2η
ωωc

ω2 + ω2
c

. (4.19)

This spectral density is linear (Ohmic) for small frequencies but has a Lorentzian cut-
off. It is sometimes also referred to as an Ohmic spectral density with Drude cutoff. It
describes a solvent exhibiting Debye dielectric relaxation. The two parameters which
characterize the spectral density, the characteristic cutoff frequency ωc and the cou-
pling strength η, are related to other physical quantities: 1/ωc = τE is related to the
Debye relaxation time of the solvent and η is the reorganization energy [89]. In Sec-
tion 5.4, we will exploit in more detail how the spectral density can be derived utilizing
the Onsager model of solvation and how it differs for various polar solvents. Let us, at
the moment, return to the calculation of the self-energy. By comparing Eq. (4.12) and
Eq. (4.14), we can directly read off the lowest order self-energy Σ

(1)ψ′
1ψ1

ψ′
2ψ2

(t′, t) which
consists of eight terms representing eight diagrams, where each only contains one tun-
neling line. We label each of these diagrams according to Fig. 4.2. We see, that all
the diagrams only depend on the time difference τ = t − t′. For example, the first
two diagrams Sψ

′
1ψ1

ψ′
2ψ2

(τ) and T
ψ′
1ψ1

ψ′
2ψ2

(τ) are stemming from the term (i) of Eq. (4.14),
where it can be observed, that from the tunneling Hamiltonian at time t′ between the
states ψ′

1 and ψ1 an electron on the molecule is either annihilated (in case of diagram
S) or created (in diagram T ). This annihilation and creation process of an electron
on the molecule is indicated by the direction of the arrow between the time points on
the upper and lower contour, where an arrow pointing away from (onto) a time point
means, that an electron is being annihilated (created) on the molecule. In Fig. 4.2
we have only visualized the interaction between the molecule and the leads illustrated
by the dashed line. However, between the two indicated time points of each diagram,
there can be, in principle, infinitely many connecting bosonic lines coming from the
interaction between the molecule and the solvent due to the appearing factor e−W (±τ).

What one can further deduce from the diagrams, is, that in contrast to the direc-
tional fermionic tunneling lines the bosonic interactions for the diagrams S and T are
the same, i.e., they are direction-independent and, consequently, the factor e−W (+τ)

is equal for both of these diagrams. In a similar manner, the interactions between
the molecule and the environment are represented in the diagrams U and V . Here,
only the times at which the creation and annihilation processes take place are inter-
changed. In the remaining diagrams W , X, Y , and Z tunneling processes are only
taking place on either the upper or the lower contour, which means, that the state of
the molecule does not change on the respective free propagating contour line, lead-
ing to a δψ′

iψi
= ⟨ψ′

i|ψi⟩. In between tunneling processes on the non-free propagating
contour part the molecule is in the state ψ′

3 which stems from the additional identity
1 =

∑
ψ′
3
|ψ′

3⟩⟨ψ′
3| included in Eq. (4.13).
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Figure 4.2.: Tunneling diagrams in first order of the self-energy.

32



4.1. Calculation of the self-energy Σ to leading order in the tunnel coupling

For the calculation of the sum over all momenta k of the lead electrons we employ
the wide-band approximation, where we assume that the tunnel amplitude as well as
the density of states in the leads D(εk,r) are energy independent and located around
the fermi energy εF ≡ 0, i.e., tk,r → tr and D(εk,r) → D(εF) =

Γr
2π|tr|2 , where we have

introduced the tunnel coupling strength Γr = 2π|tr|2D(εF). This wide-band limit is
justified whenever the conduction bandwidth of the leads is much larger than all other
relevant energy scales [90]. We can then transform the sum over the lead states in
Eq. (4.14) into a continuous energy integral, i.e.,

∑
k →

∫
dεD(εF) = D(εF)

∫
dε. The

equation of the diagram S then looks like

S
ψ′
1ψ1

ψ′
2ψ2

(τ) = +
∑
r

Γr
2π
e
i(εψ′

1
−εψ1 )τe−W (+τ)⟨ψ1|d|ψ′

1⟩⟨ψ′
2|d†|ψ2⟩

∫ ∞

−∞
dεe−iετf−

r (ε) .

(4.20)
All other diagrams change accordingly. We notice that the energy integral does not
converge for positive times τ ≥ 0, due to the fact that the Fermi-Dirac distribution
approaches zero only for one of the integral limits. Particularly, depending on the sign
of the Fermi-Dirac distribution, we have for one limit limε→±∞ f±

r (ε) = 0, while in the
other limit we have limε→∓∞ f±

r (ε) = 1. To address this mathematical inconvenience,
we observe that the replacement of the sum over the momenta of the lead electrons
by an infinite integral is not fully reasonable, because the lead electrons can not have
infinite energy.

Therefore, we introduce the bandwidth B of the leads, which is much larger than
every other energy scale of the total system. We fix B = 105 Γ throughout this work.
The sign of the bandwidth is introduced in such a way, that the energy integral ap-
proaches zero for the corresponding limit where the Fermi-Dirac distribution does not
approach zero. In this way, the energy integral converges and can be calculated, e.g.,
utilizing the residue theorem. Depending on the sign of the Fermi-Dirac distribution
and the time τ appearing in the diagrams, we get∫ ∞

−∞
dεf±

r (ε)e
+iε(τ∓ i

B ) = ∓iπ
β

eiµr(τ∓
i
B )

sinh
(
π
β

(
τ ∓ i

B

)) ,

∫ ∞

−∞
dεf±

r (ε)e
−iε(τ± i

B ) = ±iπ
β

e−iµr(τ±
i
B )

sinh
(
π
β

(
τ ± i

B

)) .

(4.21)

Now that the energy part of the leads is covered, what remains to be calculated in
the quantum master equation is the integration over the time. To this extent, we
first have a look at the time-dependent line shape function W (τ) from Eq. (4.17). By
partitioning it into its real and imaginary parts W (τ) = W ′(τ) + iW ′′(τ) we have

W ′(τ) =
1

π

∫ ∞

0

dω
J(ω)

ω2
(1− cos(ωτ)) coth

(
βω

2

)
(4.22)

and
W ′′(τ) =

1

π

∫ ∞

0

dω
J(ω)

ω2
sin(ωτ) . (4.23)
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When we now insert the Debye spectral density from Eq. (4.19) we can recast and
calculate the two parts as

W ′(τ) =
2ηωc
π

∫ τ

0

dτ2

∫ τ2

0

dτ1
d2

dτ 21

∫ ∞

0

dω
1

ω(ω2 + ω2
c )

(1− cos(ωτ1)) coth

(
βω

2

)
=

2ηωc
π

∫ τ

0

dτ2

∫ τ2

0

dτ1

∫ ∞

0

dω
ω

ω2 + ω2
c

cos(ωτ1) coth

(
βω

2

)
=

2ηωc
π

∫ τ

0

dτ2

∫ τ2

0

dτ1Re

{∫ ∞

0

dω
ω

ω2 + ω2
c

eiωτ1 coth

(
βω

2

)}
(4.24)

and

W ′′(τ) =
2ηωc
π

∫ τ

0

dτ1
d

dτ1

∫ ∞

0

dω
1

ω(ω2 + ω2
c )

sin(ωτ1)

=
2ηωc
π

∫ τ

0

dτ1

∫ ∞

0

dω
cos(ωτ1)

ω2 + ω2
c

=
2ηωc
π

∫ τ

0

dτ1Re

{∫ ∞

0

dω
eiωτ1

ω2 + ω2
c

}
.

(4.25)

The integral over the frequency ω can now be performed using the residue theorem,
see Appendix A. Followed by the integrals over the times τi, we end up with the
expressions [65, 88,91]

W ′(τ) =
η

ωc
cot

(
βωc
2

)(
e−ωc|τ | + ωc|τ | − 1

)
+

4ηωc
β

∞∑
n=1

e−νn|τ | + νn|τ | − 1

νn (ν2n − ω2
c )

, (4.26)

W ′′(τ) = − sgn(τ)
η

ωc

(
e−ωc|τ | − 1

)
, (4.27)

where νn = 2π
β
n are known as the Matsubara frequencies stemming from the complex

poles of the coth function appearing in Eq. (4.24) when performing the contour inte-
gration utilizing the residue theorem and sgn is the signum function. The terms linear
in τ in Eq. (4.26) can be summarized by the use of the expansion of the cot function
in a series of fractions, i.e., [92]

cot(πx) =
1

πx
+

2x

π

∞∑
n=1

1

x2 − n2
, (4.28)

and we arrive at the full expression for the line shape function given by

W (τ) =
2η

βωc
|τ |+ 4ηωc

β

∞∑
n=1

e−νn|τ | − 1

νn (ν2n − ω2
c )

+
η

ωc

(
e−ωc|τ | − 1

) [
cot

(
βωc
2

)
− i sgn(τ)

]
.

(4.29)
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4.1. Calculation of the self-energy Σ to leading order in the tunnel coupling

Figure 4.3.: Time integral of the tunneling diagrams.
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Chapter 4. Quantum master equation and real-time diagrammatic technique

As mentioned before, at time t0 the tunneling between the molecule and the envi-
ronment is switched on. For t0 → −∞ this is performed adiabatically [35]. We have
seen, that all diagrams depend only on the time difference τ = t− t′. Thus, we replace
the time variable in the integral of the quantum master equation by τ . Then, the
integral runs from zero to infinity, when we set t0 = −∞. Furthermore, we set our
focus on the symmetric tunneling regime, where the tunneling coupling strength of the
left and right lead are set to be the same, i.e., Γ = ΓL = ΓR. In addition, we use the
shorthand notation ωψiψj = εψi − εψj for the energy difference between state ψi and
ψj of the molecule. The time integral of Eq. (4.20) from the diagram S then becomes∫ ∞

0

dτS
ψ′
1ψ1

ψ′
2ψ2

(τ) = −i Γ
2β

⟨ψ1|d|ψ′
1⟩⟨ψ′

2|d†|ψ2⟩
∑
r

∫ ∞

0

dτ
e
iωψ′

1ψ1
τ
e−W (+τ)e−iµr(τ−

i
B
)

sinh
(
π
β

(
τ − i

B

)) .

(4.30)
In a similar manner we get the time integrated tunneling rates from the remaining
diagrams, see Fig. 4.3.

4.2. Solving the quantum master equation

With the previous considerations, it follows that the quantum master equation can be
written in a matrix multiplication notation given in the compact form

∂

∂t
P(t) = i∆εP(t) +ΣP (t) , (4.31)

where the matrix ∆ε includes the energy difference εψ2−εψ1 and the time independent
kernel matrix Σ includes the time integrated kernel elements stemming from the lowest
order tunneling diagrams, i.e., Sψ

′
1ψ1

ψ′
2ψ2

=
∫∞
0

dτS
ψ′
1ψ1

ψ′
2ψ2

(τ) and so on. The solution of
Eq. (4.31) has the form

P(t) = exp(M t)P(0) , (4.32)

where the matrix M consists of the sum of the matrices ∆ε and Σ. In princi-
ple, the matrix M is complex and non-symmetric, meaning it is in general non-
diagonalizable [86]. However, there is a way to solve the quantum master equation
using the right and left eigenvectors of M , denoted as rλ and lλ, respectively, and
which are given by

Mrλ = Λλrλ , l†λM = Λλl
†
λ , (4.33)

where Λλ = Γλ+ iΩλ is the λ-th eigenvalue of the corresponding eigenvector. The sta-
tionary solution corresponds to the eigenvector r0 with the eigenvalue Λ0 = 0, which is
the only eigenvector with a non-zero trace, i.e., Tr [rλ] = δλ0 [93]. The real part of the
remaining eigenvalues is always negative, i.e., Γλ ̸=0 < 0, and describes the time scale
of relaxation and decoherent processes. In addition, the asymptotic relaxation rate of
the system is given by the largest non-zero real part of the eigenvalues. On the other
hand, the imaginary part Ωλ determines the time scale of coherent processes. We can
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4.3. The stationary tunneling current

expand the initial state P(0) in terms of the right eigenvectors, i.e., P(0) =
∑

λ cλrλ,
and hence write the solution (4.32) as

P(t) =
∑
λ

cλrλe
(Γλ+iΩλ)t , (4.34)

where the expansion coefficients cλ are chosen such that Eq.(4.34) satisfies the initial
condition while ensuring that the probability is conserved at all times, i.e., Tr [P] = 1,
leading to c0 = 1 [93]. Knowledge of the time evolution of the reduced density matrix
then allows us to calculate expectation values of any system operator [74]. Since we are
interested in the influence of the solvent on the charge current through the molecule,
we investigate in the following chapter the expectation value of the stationary charge
current flowing through the molecule as well as the differential conductance. In order
to determine stationary quantities as well as the stationary state, which the system
approaches for t → ∞, we know that the stationary reduced density matrix elements
P ψ1

∞ψ2
= limt→∞ Pψ1

ψ2
(t) do not change with time anymore and the quantum master

equation simplifies to
∂

∂t
P ψ1

∞ψ2
= 0 . (4.35)

We calculate the time integral appearing in (4.30) and all the other diagrams as well
as the solution of the quantum master equation (4.32) numerically. To this extent,
we use a LAPACK routine, which calculates the left and right eigenvectors and the
corresponding eigenvalues of the matrix M , with which we can then determine the
stationary state as well as the matrix exponential and in total the solution of the quan-
tum master equation (4.34) or (4.32). With the stationary solution we can determine
the stationary tunneling current.

4.3. The stationary tunneling current

The operator of the tunneling current through lead r is given by the time derivative of
the particle number operator Nr(t) =

∑
k c

†
k,r(t)ck,r(t) of the respective lead multiplied

by the elementary charge e > 0. Utilizing the Heisenberg picture we can employ the
Heisenberg equation of motion and get

Ir(t)H = e
d

dt
Nr(t)H = ie [H,Nr] (t)H = ie [Htun, Nr] (t)H , (4.36)

where we have used, that the particle number operator commutes with the free Hamil-
tonian H0 and for the remaining commutators the relations

[
c†k,rck,r, ck,r

]
= −ck,r as

well as
[
c†k,rck,r, c

†
k,r

]
= c†k,r has been applied. Inserting the expression for the tunneling

Hamiltonian (3.10) yields

Ir(t)H = −ie
∑
k

(
tk,rc

†
k,r(t)Hd(t)H − H.c.

)
. (4.37)
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Chapter 4. Quantum master equation and real-time diagrammatic technique

Notice that in this form the tunneling current operator resembles the tunneling Hamil-
tonian Htun apart from the prefactor −ie and the minus sign in front of the Hermitian
conjugate part which creates an electron on the molecule. In order to calculate a mea-
surable quantity we have to evaluate the expectation value of the current operator,
which is given by

⟨Ir(t)⟩ = Tr [ρ(t0)Ir(t)H] = Tr [ρ(t)IIr(t)I ] , (4.38)

where we have switched again to the interaction picture in order to utilize the previous
calculations of the diagrammatic technique. Inserting the integrated Liouville-von
Neumann equation (4.6) then leads to

⟨Ir(t)⟩ = −iTr
[∫ t

t0

dt′ [Htun(t
′)I , ρ(t

′)I ] Ir(t)I

]
, (4.39)

where we have used again that the term with ρ(t0)I vanishes due to the fact that the
current operator is non-diagonal in the system and environment operators in the same
way as Htun has been for the calculation of the reduced density matrix. This equation
looks also very similar to the quantum master equation (4.10) apart from the free
evolution of the isolated molecule. Indeed, this equation can be written in accordance
to Eq. (4.11) as [35]

⟨Ir(t)⟩ = −e
∑

ψ′
1ψ

′
2ψ3

∫ t

t0

dt′P
ψ′
1

ψ′
2
(t′)Σ

Irψ′
1ψ3

ψ′
2ψ3

(t′, t) , (4.40)

where the irreducible self-energy Σ
Irψ′

1ψ3

ψ′
2ψ3

(t′, t) now stems from the current operator
of the lead r and thus contains the superscript Ir. In the same fashion as we have
done before for the reduced density matrix, we will show how to get from Eq. (4.39)
to Eq. (4.40) and identify the current rates Σ

Irψ′
1ψ3

ψ′
2ψ3

(t′, t) as well as the contributing
diagrams. By expanding the commutator from Eq. (4.39) and writing down the trace
over the molecule eigenstates out of the full trace as well as including identities between
the operators we get to the expression

⟨Ir(t)⟩ = −i
∑

ψ′
1ψ

′
2ψ3

∫ t

t0

dt′TrleadsTrsolv

[
⟨ψ3|Htun(t

′)I |ψ′
1⟩⟨ψ′

1|ρ(t′)I |ψ′
2⟩⟨ψ′

2|Ir(t)I |ψ3⟩︸ ︷︷ ︸
(v)

−⟨ψ′
1|ρ(t′)I |ψ′

2⟩⟨ψ′
2|Htun(t

′)I |ψ3⟩⟨ψ3|Ir(t)I |ψ′
1⟩︸ ︷︷ ︸

(vi)

]
.

(4.41)
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4.3. The stationary tunneling current

Applying the same steps used from Eq. (4.13) to Eq. (4.14) including the Markov
approximation (ρ(t′)I → ρ(t)I) and τ = t− t′ we get

⟨Ir(t)⟩ =− e
∑

ψ′
1ψ

′
2ψ3

∫ t

t0

dτP
ψ′
1

ψ′
2
(t)
∑
k

|tk,r|2

×
{
e
i(εψ′

1
−εψ3 )τe−W (+τ)

[
e+iεk,rτf+

r (εk,r)⟨ψ3|d†|ψ′
1⟩⟨ψ′

2|d|ψ3⟩

− e−iεk,rτf−
r (εk,r)⟨ψ3|d|ψ′

1⟩⟨ψ′
2|d†|ψ3⟩

]
+ e

i(εψ3−εψ′
2
)τ
e−W (−τ)

[
e+iεk,rτf−

r (εk,r)⟨ψ′
2|d†|ψ3⟩⟨ψ3|d|ψ′

1⟩

− e−iεk,rτf+
r (εk,r)⟨ψ′

2|d|ψ3⟩⟨ψ3|d†|ψ′
1⟩
]}

. (4.42)

By comparison with Eq. (4.40) we can, again, directly read off the lowest-order irre-
ducible self-energy, this time stemming from the current operator. We recognize that
there are four contributing terms coming from the two terms (v) and (vi) in Eq. (4.41).
We proceed with the change to a continuous description utilizing the wide-band ap-
proximation in the symmetric tunneling regime, i.e.,

∑
k |tk,r|2 →

Γ
2π

∫
dε and calculate

the energy integral with Eq. (4.21). Setting t0 → −∞ and writing down the time in-
tegrated tunneling current rates Σ

Irψ′
1ψ3

ψ′
2ψ3

=
∫∞
0

dτΣ
Irψ′

1ψ3

ψ′
2ψ3

(τ) we end up with the four
contributing diagrams shown in Fig. 4.4. As we expected, the four diagrams resem-
ble the first four diagrams from the reduced density matrix apart from the fact that
the right vertex at time t always stems from the current operator. Therefore, the
diagrams where an electron is created on the molecule at time t, i.e., where the ar-
row points onto the circle of the vertex stemming from the current operator, carry
an additional minus sign compared to the diagrams of the reduced density matrix.
This minus sign stems from the minus sign in front of the Hermitian conjugate part
in Eq. (4.37). Finally, we get the stationary current ⟨Ir⟩∞ = limt→∞⟨Ir(t)⟩ with the
aid of the stationary reduced density matrix elements (4.35) in the following way

⟨Ir⟩∞ = −e
∑

ψ′
1ψ

′
2ψ3

P
ψ′
1

∞ψ′
2
Σ
Irψ′

1ψ3

ψ′
2ψ3

, (4.43)

where we recall that the irreducible self-energy part ΣIrψ′
1ψ3

ψ′
2ψ3

from the current operator
consists of the sum of the four time-integrated diagrams depicted in Fig. 4.4. The
procedure to calculate the stationary current is now as follows. First, the stationary
reduced density matrix is evaluated via the left and right eigenvectors introduced
in Eq. (4.33). To this extent, the time-integrated tunneling diagrams from Fig. 4.3
need to be calculated in order to solve the quantum master equation (4.31). At the
same time, the integrated tunneling current diagrams from Fig. 4.4 are established.
Finally, the stationary tunneling current can be calculated by means of Eq. (4.43). In
Chapter 5.6 we will investigate the numerical results and discuss the influence of the
solvent on the current.
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Chapter 4. Quantum master equation and real-time diagrammatic technique

Figure 4.4.: Time integral of the tunneling current diagrams.
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Chapter 5.

Dielectric solvation dynamics

This chapter focuses on the solvation dynamics involving charged and polar solutes
in dielectric environments. Our discussion follows Refs. [64, 65]. Most electron trans-
fer reactions occur in polar solution. Here the solvent molecules such as water are
characterized by permanent dipoles. By changing the type of solvent it is possible to
change the magnitude of the molecular dipoles. In this manner one can control an
additional external parameter (besides temperature and applied voltages) influencing
the electron transfer characteristics [65].

We consider a polar solvent characterized by its dielectric response function ε(ω).
Upon a sudden change in the charge distribution inside this solvent a relaxation pro-
cess follows in which the solvent adjusts to the new charge distribution. We want
to describe this relaxation process in terms of the dielectric response function [64].
Since the dielectric function is of central importance, we briefly recall its definition
and physical meaning. If an (external) field is applied to a dielectric material, it be-
comes polarized. This polarization results from a deformation of the electron cloud
of the molecules forming the dielectric. If these molecules possess a permanent dipole
moment and if they are not very densely packed, they may also reorient in the course
of time. This results in the orientational polarization. Usually a deformation of the
nuclear geometry is less important. All polarization contributions can be comprised
in the macroscopic vector field of the dipole density (polarization vector) P [65].

In a typical experiment, for instance, by photoionization, the solute charge distri-
bution is assumed to change abruptly, at t = 0, say, from ρ1(r) to ρ2(r), then stays
constant. This means that the dielectric displacement, related to ρ(r) by the Poisson
equation ∇ ·D = 4πρ, is also switched from D1 to D2 at t = 0. In the process that
follows the solvent structure adjusts itself to the new charge distribution. This appears
as a local relaxation of the solvent polarization, which over time changes from P1 to
P2 [64].

For many applications it suffices to consider two distinct contributions to the com-
plete polarization field P. The first contribution Pel refers to the polarization of the
electron cloud of the molecules. Due to the small mass of the electrons compared to
that of the molecule, this polarization may respond to high-frequency external fields.
It forms the high-frequency part P∞ of the total polarization field, P∞ ≡ Pel. The
second contribution is related to an orientational polarization Por that follows from
an reorientation of the molecules carrying a permanent dipole moment. This type of
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Chapter 5. Dielectric solvation dynamics

polarization responds much more slowly to an external disturbance than Pel. Together
with the electronic contribution it results in the low-frequency part P0, and we can
set P0 ≡ Por +Pel [65]. These induced polarizations affect the local electrostatic field
at the solute, therefore its energy. We want to relate the time evolution of this local
electrostatic field to the given dielectric response function ε(ω) [64].

5.1. Dielectric relaxation and the Debye model

In linear dielectric response theory, the electrostatic displacement D, and the electro-
static field E in a dielectric medium are related to each other by [64]

D(r, t) =

∫
dr′
∫ t

−∞
dt′ε(r− r′, t− t′)E(r′, t′) . (5.1)

We assume that the response is local, that is, ε(r−r′, t−t′) = ε(r, t−t′)δ(r−r′). This
assumption is not really valid for dielectric response on molecular length scales, but
the errors that result from it appear to be small in many cases while the mathematical
simplification is considerable. Also, while in general the dielectric response ε is a
tensor, we take it for simplicity to be a scalar, that is, we consider only isotropic
systems. In this case, it is sufficient to consider the magnitudes D and E of D and
E [64]. Thus, we have the local scalar relationship

D(r, t) =

∫ t

−∞
dt′ε(t− t′)E(r, t′) , (5.2)

and its Fourier transform (defining, for example, E(ω) =
∫∞
−∞ dteiωtE(t))

D(ω) = ε(ω)E(ω) , (5.3)

where

ε(ω) ≡
∫ ∞

0

dteiωtε(t) . (5.4)

To account for the fast and slow components of the dielectric response, we take ε(t)
in the form

ε(t) = εeδ(t) + ε̃(t) , (5.5)

to get

D(t) = εeE(t) +
∫ t

−∞
dt′ε̃(t− t′)E(t′) , (5.6)

D(ω) = εeE(ω) + ε̃(ω)E(ω) . (5.7)
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The Debye model takes for the slow part of the dielectric response the form

ε̃(t) =
εS − εe
τD

e−t/τD , (5.8)

so that

ε(ω) = εe +

∫ ∞

0

dt
εS − εe
τD

e−t/τDeiωt = εe +
εS − εe
1− iωτD

. (5.9)

The dielectric response in this model is thus characterized by three parameters: The
electronic εe and static εS response constants, and the Debye relaxation time τD [64].
The electronic response constant forms the high-frequency part of the dielectric func-
tion, i.e., ε∞ ≡ εe.

When we take the time derivative of Eq. (5.6) with respect to t

dD
dt

= εe
dE
dt

+ ε̃(0)E(t) +
∫ t

−∞
dt′
(
dε̃

dt

)
t−t′

E(t′) , (5.10)

and use∫ t

−∞
dt′
(
dε̃

dt

)
t−t′

E(t′) = − 1

τd

∫ t

−∞
dt′ε̃(t− t′)E(t′) = − 1

τD
(D(t)− εeE(t)) , (5.11)

we get

d

dt
(D − εeE) = − 1

τD
(D − εSE) . (5.12)

An interesting outcome of Eq. (5.12) is that the implied relaxation depends on the
way the experiment is conducted [64]. When we consider an abrupt change in the
solute charge distribution, as described in the previous section, it implies a jump in
the dielectric displacement D. This jump in D can be accounted for by the Heaviside
step function θ(t) as

D(t) = Dθ(t) =

0, t < 0 ,

D, t ≥ 0 .
(5.13)

In this case Eq. (5.12) describes the evolution of E under the constant displacement
D,

d

dt
E = − εS

εeτD

(
E − 1

εS
D
)
. (5.14)

This implies that at equilibrium (dE/dt = 0), E = ε−1
S D. Immediately following the

jump in D, however, the electric field is E(t = 0) = ε−1
e D. The corresponding solution

of Eq. (5.14) is then

E(t) = 1

εS
D +

(
1

εe
− 1

εS

)
De−t/τL , (5.15)
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where τL is the longitudinal relaxation time

τL =
εe
εS
τD . (5.16)

We see that in this case the relaxation is characterized by the time τL which can be
quite different from τD: For example in water εe/εS ≈ 1/20 and while τD ≈ 8 ps,
τL is of the order of 0.4 ps. The origin of the terms transverse and longitudinal
dielectric relaxation times lies in the molecular theory of dielectric relaxation, where
one finds that the decay of correlation functions involving transverse and longitudinal
components of the induced polarization vector are characterized by different time
constants. In a Debye fluid the relaxation times that characterize the transverse and
longitudinal components of the polarization are τD and τL = εe

εS
τD, respectively [64].

For what follows we want to address how an external field, e.g., induced by the
charge distribution of the solute, leads to a change of the charge distribution in the
solvent, characterized in terms of its polarization [63].

5.2. Dynamic response of the solvent polarization

In general, there will be a dependence of the solvent polarization field on the external
field, that is, P becomes an (in general) nonlinear functional of the electric field. For
a weak perturbation of the solvent due to the external field, a linear relation between
the electric field and the polarization is justified in the form [63]

P(r, t) =

∫
dr′
∫
dt′χ(r, r′; t, t′)E(r′, t′) . (5.17)

Here, χ is the tensor of electric susceptibility, because the direction of P can differ
from that of the electric field E . For an isotropic solvent, P and E are parallel and
the electric susceptibility becomes a scalar χ. The dependence of χ(r, r′; t, t′) on time
and position reflects the fact that an applied field at a certain position at a certain
time may cause a response at another position at a later time. In a homogeneous and
stationary solvent the susceptibility depends only on position and time differences, i.e.,
χ(r, r′; t, t′) = χ(r − r′; t− t′). For a local susceptibility in time and position and an
isotropic solvent, we even have that χ(r−r′; t− t′) = χδ(r−r′)δ(t− t′), which implies
P = χE . We assume that the electric field in the solvent results from an externally
controlled charge density ρex(r), i.e., from the solute molecule, and the polarization
charge density of the solvent ρP (r). Therefore, the relation for the overall electric field
in the solvent ∇E(r) = 4π(ρex(r) + ρP (r)) holds. The dielectric displacement field,
which obeys ∇D(r) = 4πρex(r) and where D = E + 4πP, may be interpreted as the
external field induced by ρex(r). For vacuum and, hence, in absence of the polarizable
solvent D = E [63]. Accordingly, we identify

P =
1

4π
(D − E) (5.18)
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as the field induced by the dielectric solvent. With the definition of the (local) dielec-
tric constant ε = 1 + 4πχ, one can write the relation D = E + 4πP as E = ε−1D. In
dielectric media, ε > 1 holds such that the electric field E inside the solvent is smaller
than the applied field outside the solvent which we identify by the dielectric displace-
ment vector D. This reduction of the field is a clear signature of the polarization of
the solvent [63].

If the charge distribution of the solute varies appreciably during a time period, the
response of the microscopic solvent particles, i.e., molecules, atoms or electrons, will
not be sufficiently rapid to build up a new equilibrium polarization, such that the
actual polarization P of the continuous solvent will lag behind the changing charge
distribution and the corresponding displacement field D of the solute [63]. The func-
tion mediating the linearized dependence (in analogy to Eqs. (5.1) and (5.17)) between
P and D is known as the linear molecular polarizability α [65]. For an isotropic and
homogeneous solvent which is local in position, the polarizability is given according
to the applied external field D = ε−1D + 4πP outside as [63]

P(t) =
1

4π

∫ t

−∞
dt′[δ(t− t′)− ε−1(t− t′)]D(t′) ≡ 1

4π

∫ t

−∞
dt′α(t− t′)D(t′) . (5.19)

The assumption of locality is valid if the spatial variation of the actual external electric
field D(t) is small on the scale of atomic or molecular extensions inducing the polariza-
tion [63]. Carrying out a Fourier transform of Eq. (5.19), we get P(ω) = α(ω)D(ω).
Together with the Fourier transform of Eqs. (5.1) and (5.17) for homogeneous and
isotropic systems we have the relations

P(ω) = α(ω)D(ω) ,

D(ω) = ε(ω)E(ω) ,
P(ω) = χ(ω)E(ω) ,

(5.20)

with

α(ω) =
1

4π
(1− ε−1(ω)) ,

χ(ω) =
1

4π
(ε(ω)− 1) .

(5.21)

The frequency-domain function of the polarizability α(ω), as well as the time-domain
version enclosed in Eq. (5.19), contains the response of the solvent polarization to an
externally applied time-dependent field.

We briefly comment on the relation between the low- and high-frequency limits of
the dielectric function (5.9) and the corresponding components of the polarization
field, as laid out in Ref. [65]. Suppose that the external field D is monochromatic. If
it oscillates with a low frequency ωlow we write

D(t) = Dlowe
−iωlowt +D∗

lowe
iωlowt . (5.22)
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Inserting this into Eq. (5.19) gives

P0 =
1

4π
{[1− ε−1(ωlow)]Dlowe

−iωlowt + [1− ε−1(−ωlow)]D∗
lowe

iωlowt}

≈ 1

4π

(
1− 1

εS

)
D . (5.23)

If exclusively high-frequency components are contained in the external field, one can
deduce in the same manner

P∞ =
1

4π

(
1− 1

ε∞

)
D . (5.24)

Since P0 also contains an electronic contribution, the orientational polarization follows
as

Por = P0 −P∞ =
1

4π

(
1

ε∞
− 1

εS

)
D . (5.25)

The combination

cPek =
1

ε∞
− 1

εS
(5.26)

of the inverse dielectric constants is known as the Pekar factor [65]. The dielectric re-
sponse of a polar medium, characterized by the polarization field P, can be described in
terms of the Hamiltonian (3.3) that corresponds to a system of independent harmonic
oscillators in which the harmonic modes are motions of the polarization field [64,94].

5.3. Harmonic field representation of dielectric
response

In this section, we briefly show how the response of the polarization field P can be
described by a Hamiltonian for independent harmonic oscillators. Our discussion
follows Ref. [94], where H. Fröhlich has calculated this relation for a free electron
in the conduction band of an isotropic ionic crystal lattice. In such a lattice the
electron is subject to forces due to displacements and deformations of atoms or ions.
Such displacements can be described by attaching a displacement vector to each lattice
point. Moreover, for electrons with sufficiently low energy the electronic wave function
changes only very little in one lattice distance. Therefore, the lattice can be treated
as a continuum. The displacement vectors then become a continuous function of
position, i.e., they form a vector field [94]. Furthermore, displacements leading to
electric polarization have a much stronger interaction with electrons than other types
of displacements in ionic crystals. The latter will, therefore, be disregarded [94]. Let
P(r) be the electric polarization at the position r. In reasonable approximation it
suffices to consider two distinct contributions to the complete polarization field, as
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5.3. Harmonic field representation of dielectric response

discussed in the previous section. In the presence of an external field D(r, rel) due
to an electron at position rel, the equations of motion for the two polarization field
contributions read [94]

P̈or(r) + ω2Por(r) = D(r, rel)/γ , (5.27)

P̈∞(r) + ω2
∞P∞(r) = D(r, rel)/δ . (5.28)

Here, ω ≡ ωlow and ω∞ correspond to the low- and high-frequency oscillations of the
external field, respectively. The constants γ and δ are closely connected with the en-
ergy due to the respective displacements (cf. Eq. (5.31)). Comparison of Eqs. (5.27)
and (5.28), for the static case (P̈or = 0, P̈∞ = 0), with Eqs. (5.25) and (5.24) respec-
tively leads to [94]

1

γ
=
ω2

4π

(
1

ε∞
− 1

εS

)
, (5.29)

1

δ
=
ω2
∞
4π

(
1− 1

ε∞

)
. (5.30)

The equations of motion (5.27) and (5.28) can be derived from the Lagrangian [94]

L =
γ

2

∫ [
Ṗ2

or(r)− ω2Por
2(r)

]
d3r +

δ

2

∫ [
Ṗ2

∞(r)− ω2
∞P2

∞(r)
]
d3r

+

∫
D(r, rel) [Por(r) +P∞(r)] d3r , (5.31)

by putting

δL = 0 , (5.32)

and treating the components of Por(r) and P∞(r) as variables. We have omitted the
motion of the free electron in Eq. (5.31), since we want to establish a Hamiltonian for
the polarization field. The spatial derivatives of the functions Por(r) and P∞(r) do
not occur in the Lagrangian. Therefore, in a straightforward way the components of
these functions at different positions can be taken as different variables and Eq. (5.32)
then yields immediately [94]

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 , (5.33)

if q represents any of these variables; the differentiations with respect to them follow
by considering the integrals as limits of sums [94]. Equations (5.33) then lead to
Eqs. (5.27) and (5.28) for all r.

The moment conjugate to q is defined as ∂L/∂q̇ so that γṖor(r) and δṖ∞ are
conjugate to Por(r) and P∞(r), respectively. Hence the Hamiltonian is given by [94]

H =
∑
q

∂L

∂q̇
q̇ − L =

γ

2

∫ [
Ṗ2

or(r) + ω2Por
2(r)

]
d3r +

δ

2

∫ [
Ṗ2

∞(r) + ω2
∞P2

∞(r)
]
d3r

−
∫

D(r, rel) [Por(r) +P∞(r)] d3r . (5.34)
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In the classical case of an electron at rest, when D for a single free electron in the
crystal is given by

D(r, rel) = −∇ e

|r − rel|
, (5.35)

H becomes infinite because the integrands in Eq. (5.34) diverge as r → rel [94]. There-
fore, we will neglect the interaction energy between electron and lattice displacements,
i.e., the third term in the Hamiltonian (5.34). For a more thorough treatment how to
remedy this divergence we refer to Ref. [94].

We proceed by introducing auxiliary complex field vectors B(r) and C(r) such that

B(r) =

(
γω

2

)1/2(
Por(r) +

i

ω
Ṗor(r)

)
, (5.36)

B†(r) =

(
γω

2

)1/2(
Por(r)−

i

ω
Ṗor(r)

)
, (5.37)

C(r) =

(
δω∞

2

)1/2(
P∞(r) +

i

ω∞
Ṗ∞(r)

)
, (5.38)

C†(r) =

(
δω∞

2

)1/2(
P∞(r)− i

ω∞
Ṗ∞(r)

)
, (5.39)

or

Por(r) =

(
1

2γω

)1/2 [
B†(r) +B(r)

]
, (5.40)

Ṗor(r) =

(
ω

2γ

)1/2

i
[
B†(r)−B(r)

]
, (5.41)

P∞(r) =

(
1

2δω∞

)1/2 [
C†(r) +C(r)

]
, (5.42)

Ṗ∞(r) =

(
ω∞

2δ

)1/2

i
[
C†(r)−C(r)

]
. (5.43)

With these field vectors we can write the field part Hfield of the Hamiltonian (5.34) as

Hfield = ω

∫
B†(r)B(r)d3r + ω∞

∫
C†(r)C(r)d3r . (5.44)

This is a Hamiltonian for independent harmonic oscillators specified by the continuous
index r [64]. When going from the continuous description of Eq. (5.44) to a discrete
quantization and considering each of the harmonic oscillators having its own frequency,
we finally recognize that the dielectric response of a polar medium can be described
in terms of the Hamiltonian (3.3) introduced in Sec. 3.3. For what follows we want to
relate the solvent reaction to the spectral density.
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5.4. Derivation of the spectral density

In this section we elaborate in more detail the derivation of the spectral density intro-
duced in Eq. (4.19). To this extent, we describe the solvation process by the well-known
Onsager model [61], and from that starting point the spectral density will be obtained
as laid down by Gilmore and McKenzie in Ref. [62]. The Onsager model is a contin-
uum model where the solvent is treated as a homogeneous dielectric and the solute is
treated as a point dipole µ which is surrounded by a spherical cage of polar solvent
molecules with Onsager radius a (see Fig. 5.1), which is typically the size of the so-
lute molecule. Inside the molecular cavity, vacuum is assumed, i.e., it has a dielectric
constant of εc = 1. The central dipole polarizes the solvent which in turn produces an
electric reaction field R acting back on the dipole. This dipole-dipole interaction has
the energy E = −µ ·R, which typically lowers the total energy and forms a stabilized
structure. Although the Onsager model does not include the microscopic details of
the system, it does capture the essential physics of the solvation process [62]. Now,
for the solute molecule and its interaction with the solvent Gilmore and McKenzie
have used basically the same corresponding Hamiltonians introduced for our model
in Eqs. (3.1) and (3.5) with the only major difference of the included dipole moment.
They assumed that the solute molecule has a permanent dipole moment in both the
ground and excited state, given by µg and µe, respectively, and that the direction of
the dipole moment points in the same direction in these two states. The two parts of
the Hamiltonian in their notation then look like

Hsolute =
1

2
ε0σz, Hint =

1

2
σz∆µR +

1

2
(µe + µg)I2R , (5.45)

with ∆µ = µe − µg, the 2 × 2 Pauli matrix σz and the 2 × 2 identity matrix I2. The
reaction field is quantized with its modes ωm and its amplitudes em according to

R(t) =
∑
m

em
[
ame

−iωmt + a†me
iωmt
]
, (5.46)

where am and a†m again obey the bosonic commutation relation
[
am, a

†
n

]
= δm,n. The

solvent is likewise considered as a bath of independent harmonic oscillators with the
total solvent energy expressed analogously to Eq. (3.3). Thus, the full Hamiltonian
for a single molecule coupled to the polar solvent can be written as

H =
1

2
ε0σz +

∑
m

ωma
†
mam + σz

∑
m

Mm(a
†
m + am) +

∑
m

M̃m(a
†
m + am) , (5.47)

with the redefined couplings Mm = 1
2
em∆µ and M̃m = 1

2
em(µe + µg). Apart from the

last term, this is the same Hamiltonian as Eq. (3.6) without the contributions from
the leads, which is referred to as the independent boson model [84]. The next step
is to relate J(ω) to the zero-temperature fluctuations in the uncoupled environment.
To this extent, we first consider the expectation value of the reaction field to vanish,
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Chapter 5. Dielectric solvation dynamics

Figure 5.1.: Onsager model of solvation. The molecule is treated as a point dipole
inside a vacuum cavity with dielectric constant εc = 1 and radius a, which is surrounded
by a polar solvent. The dipole polarizes the solvent, which in turn creates an electric
reaction field which acts back on the dipole, stabilizing the solvated system. The picture
is taken from Ref. [62].

i.e., ⟨R(t)⟩ = 0, and examine the reaction field fluctuation correlation function CR(t),
defined as

CR(t) = i⟨R(t)R(0)⟩θ(t) ≡ i⟨0|eiHsolvtRe−iHsolvtR|0⟩θ(t) , (5.48)

where |0⟩ is the ground state of the solvent harmonic oscillators and θ(t) is the Heav-
iside step function. In order to see a connection between CR(t) and J(ω) we have to
look at the Fourier transform of CR(t), in particular its imaginary part, given by

ImCR(ω) = π
∑
n

δ(ω − En)|⟨0|R|n⟩|2 = π
∑
m

δ(ω − ωm)e
2
m . (5.49)

Here we have included an identity of energy eigenstates
∑

n |n⟩⟨n| = 1, so that
Hsolv|n⟩ = En|n⟩, and used the fact that all terms ⟨0|R|n⟩ vanish except for when a
single oscillator is singly occupied. These states have energy En = ωm, and ⟨0|R|m⟩ =
em, due to the orthogonality of the solvent states ⟨m|m′⟩ = δmm′ . Furthermore, the
factor π comes from the one-sided Fourier transform as a result of the Heaviside step
function appearing in CR(t) and writing it by virtue of the delta function. When we
compare now Eq. (5.49) with Eq. (4.18) and the corresponding Hamiltonian parts, we
find

J(ω) = (∆µ)2ImCR(ω) . (5.50)
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Now that we have a link between the spectral density and the reaction field fluctuation
correlation function, we further want to actually find an expression for the reaction
field fluctuations. To this extent, we note that in the Onsager model the reaction field
and the central dipole are related via the susceptibility function χ(t− t′) as

R(t) =

∫ t

−∞
dt′χ(t− t′)µ(t′) , (5.51)

which reflects the fact that the dipole moments of solvent molecules do not adjust
instantaneously to the central dipole moment, but rather lag behind the changing
dipole in time [95]. The Fourier transform of Eq. (5.51) can be directly obtained
utilizing the convolution theorem and reads

R(ω) = χ(ω)µ(ω) . (5.52)

To obtain an appropriate expression for χ(ω) which is the response of the idealized
homogeneous dipolar solvent to the molecular dipole moment, it is necessary to solve
the time-dependent electrostatic problem for the system [95,96]. Taking the center of
the dipole as the origin of a coordinate system and choosing the dipole vector in align-
ment with the z−axis, i.e., µ = µêz, we are able to solve the Laplace equation ∆Φ = 0
for the electric potential Φ as the net charge is zero. The resulting solution exploits
the spherical symmetry and is Φi =

∑∞
n=0

(
A

(i)
n rn +B

(i)
n r−(n+1)

)
Pn(cos θ), where Pn

are the Legendre polynomials and θ is the angle with respect to the z−axis [95]. We
label the potential outside the sphere with index i = 1 and that inside the sphere
with index i = 2. The coefficients A(i)

n and B
(i)
n are determined from the values of

the potential at the boundary (r = a), or, when appropriate, from the asymptotic
behavior at infinity [97]. That is, the potentials have to fulfill the conditions [97]

(Φ1)r→∞ = 0 , (5.53)

(Φ1)r=a = (Φ2)r=a , (5.54)

ε

(
∂Φ1

∂r

)
r=a

=

(
∂Φ2

∂r

)
r=a

. (5.55)

The potentials outside and inside the Onsager sphere then read

Φ1 =
3

2ε+ 1

µ

r2
cos θ , (5.56)

Φ2 =
µ

r2
cos θ − 2(ε− 1)

2ε+ 1

µ

a3
r cos θ . (5.57)

The resulting electric field inside the cavity is a superposition of the dipole field in
vacuum and the uniform reaction field R of the form [95,97]

R(ω) =
1

4πε0a3
2(ε(ω)− 1)

2ε(ω) + 1
µ(ω) . (5.58)
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Chapter 5. Dielectric solvation dynamics

Thus, for the case of a point dipole in a sphere with radius a one obtains for the
susceptibility function [62,97]

χ(ω) =
1

4πε0a3
2(ε(ω)− 1)

2ε(ω) + 1
, (5.59)

where ε(ω) is the frequency-dependent dielectric function of the solvent and ε0 in
this case is the vacuum permittivity. As mentioned earlier, we want the spectral
density to be in the Debye form, so we use the Debye dielectric relaxation function
ε(t) = ε∞δ(t) + τ−1

D (εS − ε∞) exp(−t/τD)θ(t) which in Fourier space is given by (see
Eq. (5.9))

ε(ω) = ε∞ +
εS − ε∞
1− iωτD

. (5.60)

In the high-frequency limit (ω → ∞), the Debye dielectric function in Eq. (5.60) ap-
proaches the corresponding high-frequency value ε∞, whereas for very low frequencies
(ω → 0) it reaches the corresponding low frequency (static) dielectric constant εS [95].
The intermediate, frequency-dependent range is characterized by the Debye relax-
ation time τD, which represents the bulk reorientational relaxation time of the solvent
dipoles [62]. The Debye dielectric function can be split into a real and imaginary part
ε(ω) = ε′(ω) + iε′′(ω), with

ε′(ω) = ε∞ +
εS − ε∞

1 + (ωτD)
2 and ε′′(ω) =

(εS − ε∞)ωτD

1 + (ωτD)
2 . (5.61)

Likewise, the susceptibility function χ(ω) can be split into a real and imaginary part
according to χ(ω) = χ′(ω) + iχ′′(ω). There is a relationship between dissipation
represented by the imaginary part χ′′(ω) and the fluctuation correlation spectra CR(ω)
which is called the fluctuation-dissipation theorem. It is given by [38,62,98]

χ′′(ω) = − i

2

(
1− e−βω

)
CR(ω) , (5.62)

which reduces to CR(ω) = 2iχ′′(ω) at zero temperature. Note that the use of zero
temperature fluctuations is a mathematical derivation only, and provided that the
appropriate temperature parameters for the solvent and molecule are used, the result-
ing spectral density is applicable to all temperatures [67]. By plugging in the Debye
formula for the dielectric function given by Eq. (5.60) into Eq. (5.59) and taking the
imaginary part χ′′(ω) to utilize the fluctuation-dissipation theorem, one finally gets to
the spectral density of the Onsager model using Eq. (5.50) in the form

J(ω) =
(∆µ)2

2πε0a3
6(εS − ε∞)

(2εS + 1)(2ε∞ + 1)

ωτE
ω2τ 2E + 1

, (5.63)

where τE = 2ε∞+1
2εS+1

τD [62]. The reorganization energy η is related to the spectral density
via [99]

η =
1

π

∫ ∞

0

dω
J(ω)

ω
=

(∆µ)2

4πε0a3
6(εS − ε∞)

(2εS + 1)(2ε∞ + 1)
, (5.64)
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and together with the cut-off frequency ωc = 1
τE

we can write the spectral density as
introduced in Eq. (4.19). When we use the general form of the spectral density given
in Eq. (4.18), the reorganization energy can be written as

η =
∑
m

g2m
ωm

, (5.65)

which is exactly the term by which the molecule energy becomes renormalized after
the polaron transformation due to the coupling to the solvent, see Eq. (3.9). A major
advantage of the reorganization energy is that it reduces all solvent degrees of freedom
to a single number because it is the integral over all bath modes [95].

5.5. Solvent mixtures

In the following we want to take into consideration the influence on the current not
only due to one solvent but a mixture composed of two solvents. There exists already
a successful theory to describe multicomponent mixtures which is the Maxwell Gar-
nett mixing formula. It describes the permittivity of the effective medium in terms
of the permittivities and volume fractions of the individual constituents of the com-
plex medium [100]. We will start, however, with the simplest approach proposed by
Gladstone and Dale who expressed a formula for the effective permittivity of a binary
mixture given by [66,101]

εGD(ω) = (1− f)εh(ω) + fεi(ω) , (5.66)

which is proportional and linear to the relative concentrations of a host, 1 − f , and
an inclusive solvent, f , with complex, frequency dependent permittivities εh(ω) and
εi(ω), respectively. We assume each of the constituents to exhibit a dielectric function
in the Debye form, i.e.,

εh(ω) = h∞ +
hS − h∞
1− iωτh

and εi(ω) = i∞ +
iS − i∞
1− iωτi

, (5.67)

with the static (hS, iS) and high-frequency (h∞, i∞) dielectric constants as well as the
Debye relaxation times (τh, τi) of the host and the inclusive solvent, respectively. From
Eqs. (5.50)–(5.62) we see that we can write the spectral density in terms of the real
(ε′(ω)) and imaginary (ε′′(ω)) part of the dielectric function as

J(ω) =
(∆µ)2

2πε0a3
6ε′′(ω)

(2ε′(ω) + 1)2 + 4ε′′(ω)2
. (5.68)

In this equation we will replace the dielectric function of a single solvent by the
Gladstone-Dale formula as given in Eq. (5.66). Then, by solving for roots of the
denominator we can factorize the denominator and write the spectral density with the
Gladstone-Dale permittivity as

JGD(ω) =
ωD + ω3E

(ω2 + ω2
1)(ω

2 + ω2
2)
, (5.69)
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where

D =
(∆µ)2

Aπε0a3
3 [τif(iS − i∞) + τh(1− f)(hS − h∞)] , (5.70)

E =
(∆µ)2

Aπε0a3
3
[
τ 2hτif(iS − i∞) + τ 2i τh(1− f)(hS − h∞)

]
, (5.71)

and

ω1 =

√
B −

√
B2 − 4AC

2A
, ω2 =

√
B +

√
B2 − 4AC

2A
, (5.72)

with

A = τ 2hτ
2
i [2h∞(1− f) + 1 + 2fi∞]2 , (5.73)

B = τ 2h [2h∞(1− f) + 1 + 2fiS]
2 + τhτi8f(1− f)(hS − h∞)(iS − i∞)

+ τ 2i [2hS(1− f) + 1 + 2fi∞]2 ,
(5.74)

C = [2hS(1− f) + 1 + 2fiS]
2. (5.75)

When we afterwards calculate the reorganization energy with this spectral density via
the relation (5.64), we find

ηGD = η1 + η2 , (5.76)

where

η1 =
−D + Eω2

1

2ω1 (ω2
1 − ω2

2)
and η2 =

−D + Eω2
2

2ω2 (ω2
2 − ω2

1)
. (5.77)

Rewriting the last two expressions in terms of D and E, we see

D = 2ω1ω2 (ω1η2 + ω2η1) and E = 2 (ω1η1 + ω2η2) . (5.78)

By inserting (5.78) into (5.69) and some trivial algebra, we end up with

JGD(ω) = 2η1
ωω1

(ω2 + ω2
1)

+ 2η2
ωω2

(ω2 + ω2
2)
, (5.79)

which resembles a sum of two separate spectral densities in the Debye form. Note,
that only for f = 0 the reorganization energy as well as the frequency ω1 become that
of the host only, i.e.,

ηGD

∣∣∣
f=0

= η1 = ηh ≡
(∆µ)2

4πε0a3
6(hS − h∞)

(2hS + 1)(2h∞ + 1)
,

ω1

∣∣∣
f=0

= ωh ≡
2hS + 1

2h∞ + 1
τ−1
h .

(5.80)
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Likewise, for f = 1 only the inclusive solvent remains with

ηGD

∣∣∣
f=1

= η2 = ηi ≡
(∆µ)2

4πε0a3
6(iS − i∞)

(2iS + 1)(2i∞ + 1)
,

ω2

∣∣∣
f=1

= ωi ≡
2iS + 1

2i∞ + 1
τ−1
i .

(5.81)

For f between zero and one, however, all parameters η1, η2, ω1 and ω2 depend on the
high- and low-frequency dielectric constants of the host and inclusive solvent and their
respective Debye relaxation times as shown in Eqs. (5.70)–(5.77).

In Fig. 5.2 (a), we show an exemplary plot of the spectral density as a function of the
volume fraction f and the frequency ω for a solvent mixture between nitrobenzene and
toluene. When pure nitrobenzene is considered (f = 0), the spectral density has its
peak at the cut-off frequency of nitrobenzene ωNBZ

c , as expected from Eq. (5.80). For
nonzero volume fractions the position as well as the height of the peak change accord-
ing to Eq. (5.79). Additionally, in Fig. 5.2 (b), we show the maximum of the spectral
density Jmax as well as the reorganization energy η for the solvent mixtures toluene-
nitrobenzene, chlorobenzene-nitrobenzene and dimethylformamide-nitrobenzene. It
can be observed that only for the mixture between nitrobenzene and toluene Jmax is
non-monotonous which subsequently results in the non-monotonous behavior of the
maximum differential conductance for this mixture, see Fig. 5.7 in Sec. 5.6.4. Further-
more, for nonzero volume fractions both Jmax and η can reach values which are higher
than the individual ones of each constituent, as observed for toluene-nitrobenzene.

Due to the fact that the spectral density of the composite can be written as a sum
of structurally two spectral densities in the Debye form, we can directly write down
the exponent of the bath correlation function for a binary solvent mixture as

WGD(τ) =
2η1
βω1

|τ |+ 4η1ω1

β

∞∑
n=1

e−νn|τ | − 1

νn (ν2n − ω2
1)

+
η1
ω1

(
e−ω1|τ | − 1

) [
cot

(
βω1

2

)
− i sgn(τ)

]
+
2η2
βω2

|τ |+ 4η2ω2

β

∞∑
n=1

e−νn|τ | − 1

νn (ν2n − ω2
2)

+
η2
ω2

(
e−ω2|τ | − 1

) [
cot

(
βω2

2

)
− i sgn(τ)

]
.

(5.82)

With this expression we can calculate the influence of a binary solvent mixture on
the tunneling current diagrams appearing in Fig. 4.4, by which we can then, in total,
determine the solvent effects on the current by means of Eq. (4.43).
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Figure 5.2.: (a) Spectral density J(ω) normalized to the reorganization energy ηNBZ of
nitrobenzene as a function of the volume fraction f and the frequency ω (normalized to
the cut-off frequency of nitrobenzene ωNBZ

c ) for the solvent mixture between nitroben-
zene and toluene. (b) Maximum of the spectral density as well as the reorganization
energy η for the solvent mixtures toluene-nitrobenzene, chlorobenzene-nitrobenzene and
dimethylformamide-nitrobenzene, both normalized to ηNBZ. The solvent parameters are
taken from Ref. [102].
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5.6. Results and discussion

In this section, we present the results generated on the basis of the theoretical analysis
described so far. We start by reproducing well-known results within the field of electron
transport theory in order to give a general introduction into the possible observations
with our model. Specifically, we first have a look at current-voltage plots without any
surrounding solvents. In the next step, we introduce several different pure solvents and
analyze their influence both on the current as well as on the differential conductance.
Following this, we investigate the impact of temperature on electron transfer through
the molecule. Finally, we incorporate also binary solvent mixtures in our investigation
of electron transport through single-molecule junctions and conclude with a promising
comparison to experimental data.

5.6.1. Electron transport without solvent

We consider first the molecule without surrounding solvent (η = 0Γ) and examine
a typical bias voltage plot with respect to the applied gate voltage, corresponding
in this case to the energy level of the molecule. In Fig. 5.3 (a), we can observe a
linear dependence between the bias voltage and the molecular energy given at the
temperature T = 0.1 Γ, which corresponds to room temperature (300 K) with Γ =
250 meV. When the bias potential has reached twice the value of the molecular energy
level a current can flow through the molecule, indicated in yellow for a positive current
at positive biases and in blue for a negative current at negative biases. The reason why
it has to reach twice the molecular energy level is due to the symmetrically applied
bias voltage, that is illustrated in Fig. 5.3 (b). At zero bias the chemical potentials of
the leads are aligned and no current can be generated. When a positive or negative
bias voltage is applied, one of the lead chemical potentials has to reach the molecular
energy in order to generate a current flow and since they are applied symmetrically,
i.e., µL = −µR = eV/2, this is achieved when the bias voltage is twice the molecular
energy. The transition from no current to the onset of current is smoothed out by the
temperature-dependent occupation of the Fermi leads.

When more than one energy level of the molecule and electron-electron interactions
are considered such bias-gate voltage plots typically show a diamond-shaped pattern,
see Fig. 2.4 in Chapter 2. The resulting diamonds are called Coulomb diamonds
due to the Coulomb blockade effect. A Coulomb blockade describes the suppression
of current flow through the molecule due to the electrostatic (Coulomb) repulsion
between electrons occupying the molecule.
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(a) Current at T = 0.1Γ.

   

(b) Energy level configuration.

Figure 5.3.: (a) Color coded current in dependence of the applied bias voltage with
respect to the gate voltage, the latter corresponding to the molecule energy level in this
case. The temperature is T = 0.1 Γ, which corresponds to room temperature (300 K)
with Γ = 250 meV. (b) The single-level energy of the molecule between the two leads at
different bias potentials.

5.6.2. Pure solvents affecting electron transport

We study next how a pure solvent influences the behavior of the current. To this
extent, we take a look at a specific value of the molecular energy given by εd = 1.2 Γ
and consider a bias voltage window between 0 and 5 Γ.

When we want to compare different solvents by utilizing their experimentally mea-
sured dielectric relaxation parameters, we have to transcribe the solvent characteris-
tics, such as the reorganization energy and the cut-off frequency, in units of Γ. To
this end, we set Γ = 250meV so that a temperature of T = 0.1 Γ corresponds to room
temperature (300K) which is where the dielectric relaxation parameters were mea-
sured [102]. In addition to the dielectric parameters of the solvent we need to specify
the molecular radius a and the transition dipole moment ∆µ of the solute in order to
calculate the reorganization energy. We consider a realistic molecular radius a = 5Å,
and a typical dipole moment change of ∆µ = 5D [103–108].

In Fig. 5.4 one can see the current-voltage plot and Fig. 5.5 shows the nonlinear con-
ductance curve of the molecular junction dissolved in the pure solvents toluene (TOL),
chlorobenzene (CBZ), ethanol (ETH), butanol (BUT), water (WAT) and nitroben-
zene (NBZ). The maximum of the differential conductance is reduced and its width is
enhanced when the junction is immersed in a solvent (grey dashed line for the case in
absence of a solvent vs. solid curves with a solvent in Fig. 5.5). This is due to the fact
that a part of the electric potential energy eV , inducing the electric current, is used
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for the reorganization of the solvent. Thus, the slope of the current-voltage response
is reduced. Consequently, the larger is the reorganization energy of the solvent, the
smaller the conductance maximum becomes.

Once dissolved, the molecular energy level is broadened due to solvent fluctuations
which brings the former in resonance with the electronic levels of the leads even if
the applied voltage is low. On the other hand, higher level fluctuations lead to off-
resonances with lead levels for higher voltages. This additional tunneling broadening
occurs via the absorption or emission of (bosonic) solvent polarization modes similar to
the broadening dominated by the emission of phonons into a substrate [109]. Franck-
Condon steps are not present in our case because the dielectric provides a continuum
of modes instead of a single mode (which could be a single molecular vibrational mode)
in accordance with the high-temperature regime [69].
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Figure 5.4.: Stationary current I as a function of the bias voltage V in the absence of
a solvent (grey dashed line) and with various surrounding pure solvents (solid lines) as
indicated. Parameters are a = 5 Å, ∆µ = 5 D, T = 0.1 Γ, εd = 1.2 Γ and Γ = 250 meV.
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Figure 5.5.: Nonlinear differential conductance G = dI/dV as a function of the bias
voltage V in the absence of a solvent (grey dashed line) and with various surrounding pure
solvents (solid lines) as indicated. G0 = 2e2/h is the conductance quantum. Parameters
are a = 5 Å, ∆µ = 5 D, T = 0.1 Γ, εd = 1.2 Γ and Γ = 250 meV. Inset: Sketch of
the model of the molecular junction between two metallic leads and surrounded by a
dielectric solvent.

5.6.3. Temperature dependence of the differential conductance

Before we continue with the investigation of binary solvent mixtures, we first inves-
tigate the influence of temperature on electron transport through the molecule both
with and without surrounding solvent. Figure 5.6 portrays the maximum of the non-
linear differential conductance Gmax, calculated at the bias voltage eV = 2.4 Γ, as
a function of the temperature T . As expected, Gmax is inversely proportional to T .
For the case of no surrounding solvent, i.e., for η = 0 Γ, and in the linear transport
regime, i.e., for V → 0, this inverse proportionality is a well known result which can
be derived analytically [41,52,110,111] and reads

Gmax =
e2

4kBT

ΓLΓR
ΓL + ΓR

. (5.83)

This behavior also holds true when a surrounding solvent is considered, see the colored
lines with η ̸= 0 Γ in Fig 5.6 (a). The main difference is that Gmax gets smaller with
larger reorganization energies η when compared to the case of no surrounding solvent.
This reduction of the nonlinear differential conductance maximum is in accordance
with the results presented in Fig. 5.4 (b) for specific solvents, where also solvents with
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a larger reorganization energy suppress the peak of G more strongly than solvents
with a smaller η. The reason for this reduction is again that a part of the electric
potential energy eV is exploited to reorganize the solvent. We additionally show the
log-log plot of the Gmax-T curves in Fig. 5.6 (b) to emphasize the inverse relationship
between Gmax and T . Here, the curves appear as straight lines with a negative slope
indicative of a power function with a negative exponent.
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Figure 5.6.: (a) Maximum of the nonlinear differential conductance as a function of the
temperature T in the absence of a solvent (black line) and with a surrounding solvent
with a cutoff frequency of ωc = 10 Γ and varying reorganization energies (colored lines) as
indicated. The value of Γ is Γ = 250meV, so that a temperature of T = 0.1Γ corresponds
to room temperature (300 K). (b) Log-log plot of (a).
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Figure 5.7.: Maximum of the nonlinear differential conductance as a function of the
volume fraction f for the binary mixtures between butanol and ethanol, chlorobenzene
and nitrobenzene, as well as toluene and nitrobenzene. The solid lines show the results
calculated using the effective dielectric parameters of Gladstone-Dale (Eq. (5.66)) in an
effective Debye spectral density. In addition, the circles mark the conductance calculated
with a single Debye spectral density of the mixture with the directly measured dielectric
parameters taken from Ref. [102]. Parameters are a = 5 Å, ∆µ = 5 D, T = 0.1 Γ,
εd = 1.2 Γ, and Γ = 250 meV.

5.6.4. Influence of binary solvent mixtures on electron
transport

Next, we examine the influence of solvent mixtures with a particular eye on the three
binary solvent pairs toluene-nitrobenzene (TOL-NBZ), chlorobenzene-nitrobenzene
(CBZ-NBZ), and butanol-ethanol (BUT-ETH). To this end, we have calculated the
maximum of the differential conductance Gmax under variation of the volume fraction
f of the mixture. In Fig. 5.7 we start with one pure solvent (f = 0) and increase the
volume fraction f of the other until the latter solvent is solely present at f = 1. We
find that Gmax is highly sensitive to both the volume fraction and the individual sol-
vents themselves. While the conductance for CBZ-NBZ and BUT-ETH monotonously
increases or decreases, respectively, the result for TOL-NBZ shows a non-monotonous
behavior. The latter originates from the non-monotonous dependence of the spectral
density and reorganization energy of the solvent mixture on the volume fraction, see
Fig. 5.2 (b). A signature of mixtures of different dielectric properties.

The reasoning is analogue to the case of pure solvents. Solvent mixtures with higher
reorganization energies require a larger part of the electric potential energy, provided
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by the bias voltage V , to reorganize than mixtures with smaller reorganization energies.
This in turn lowers the slope of the current-voltage response and reduces the conduc-
tance maximum for solvent mixtures with larger reorganization energies. Notably, we
find an excellent agreement when we compare the dependence of Gmax calculated with
an effective Gladstone-Dale-Debye solvent mixture of Eq. (5.66) with the differential
conductance calculated with a single Debye solvent with the actual measured dielec-
tric parameters of the binary mixture directly as obtained in Ref. [102] (symbols in
Fig. 5.7). Hence, the Gladstone-Dale model of dielectric mixtures can be a sensitive
tool to directly read off the volume fraction of binary solvent mixtures.

A measure complementary to the maximum of the differential conductance is the full
width at half maximum (FWHM) which we have calculated for the solvent mixtures
between toluene-nitrobenzene, chlorobenzene-nitrobenzene and dimethylformamide-
nitrobenzene. The results are shown in Fig. 5.8. The accuracy of our results is deter-
mined by the voltage step size of 0.02 Γ and we have used a cubic spline interpolation
to show the general trend without extensively exhausting numerical expenses [69]. It
can be nicely observed that the FWHM directly follows the behavior of the spectral
density or the reorganization energy when comparing with Fig. 5.2 (b).
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Figure 5.8.: Full width at half maximum of the nonlinear differential conductance as a
function of the volume fraction f for the binary solvent mixtures between nitrobenzene-
toluene, nitrobenzene-chlorobenzene and nitrobenzene-dimethylformamide. The data
points have been calculated with an accuracy determined by the voltage step size of
0.02 Γ and we have used a cubic spline interpolation for the final curves (solid lines).
Parameters are a = 5 Å, ∆µ = 5 D, T = 0.1 Γ, εd = 1.2 Γ and Γ = 250 meV.
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Figure 5.9.: Nonlinear differential conductance of a OPE-SMe molecular junction as a
function of the volume fraction f for binary solvent mixtures of ACN and TMB (red)
as well as of THF and TMB (blue). Parameters are a = 5 Å, ∆µ = 10 D, T = 10 Γ,
εd = 120 Γ and Γ = 2.5 meV. Experimental data are taken from Ref. [27].

5.6.5. Comparison to experimental data

In this section, we compare the experimental results of the differential conductance of
Ref. [27] with our theoretical results. In the experiment, the electronic conductance
of oligophenylethynylene-sulfurmethyl (OPE-SMe) placed between two gold electrodes
and additionally embedded in a solvent has been measured for varying volume fractions
of different solvent mixtures. The nonlinear differential conductance of this single-
molecule junction can be tuned by nearly an order of magnitude when varying the po-
larity of the solvent. To recover the experimental data by our model we use the Debye
dielectric function while utilizing the static dielectric constants εS and the dielectric
relaxation times τD from literature (see Table B.1) for the three investigated solvents
1,3,5-trimethylbenzene (TMB), tetrahydrofuran (THF), and acetonitrile (ACN) and
adjust the high-frequency dielectric constants ε∞ as fitting parameters. In Ref. [27],
the length of the molecular junction has been determined by the break-junction tech-
nique to be stable around 1 nm. Thus, we choose a radius of a = 5 Å. Moreover, we set
the dipole moment change to ∆µ = 10 D, which is in the typical range of OPE-SMe
molecular junctions [103–108], and Γ = 2.5 meV so that a temperature of T = 10 Γ
corresponds to room temperature (300 K).

Figure 5.9 depicts the logarithm of the differential conductance calculated at a
voltage corresponding to the molecule energy of εd = 120 Γ and normalized to the
conductance quantum G0 = 2e2/h for varying volume fractions between the host sol-
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vent TMB and the two inclusions THF and ACN, respectively. A very good agreement
between theory and experiment is achieved for the solvent mixture between TMB and
ACN (red color in Fig. 5.9). For TMB and THF (blue color in Fig. 5.9), a good
alignment between experiment and theory is obtained for volume fractions below 0.8.

In order to explore the mechanism of solvent gating on the charge transport, control
experiments with other bridge molecules, which did not exhibit a significant solvent
induced shift on the conductance, have been reported in Ref. [27]. In addition, the
local density of states (LDOS) has been calculated by means of DFT calculations for
all investigated molecules [27]. Only for OPE-SMe, the LDOS was found to be mainly
localized on the molecular bridge itself, while for the other molecules, the LDOS was
shown to be delocalized almost equally over the gold electrodes as well as the molecular
bridge. Hence, only for OPE-SMe, strong LDOS localization on the molecule implies
a weak hybridization coupling between the molecule and the electrodes together with
a strong influence of the solvent, in agreement with the assumption of sequential tun-
neling as scope of this thesis. However, the precise form of the investigated molecules
as well as the spatial distribution of the LDOS on the molecule do not follow a perfect
spherical geometry, which we assume in our model. Hence, deviations between our
calculations and the experimental data, such as for the conductance of THF, can occur
for these reasons.

Moreover, the influence of the solvent on the transmission spectra for OPE-SMe was
investigated [27]. The solvent effect on the spectral shift is almost twice as pronounced
for ACN as compared to THF, which further supports the very good agreement of our
results for ACN [69]. The less pronounced spectral shift for THF in comparison to
ACN might be directly related to the polarity of the solvents which is roughly twice
as large for ACN compared to THF [103]. A more polar solvent in turn might lead to
a stronger influence on the electron density distribution of the solute, and thus, to a
stronger localization on the bridge molecule [112].
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Chapter 6.

Time dependent transport under
an ac voltage

The calculations with the dc current can be generalized to the case of ac-driven leads.
Indeed, we show that we may utilize the ac-driving to determine the impact of a
hydration shell surrounding the molecule. To do so, we extend the procedure of
the calculations presented for the dc case. We start with the determination of the
stationary current driven by an ac field. We assume that the time-dependence of
the electrostatic potentials is periodic in time with period T = 2π/ωac. This implies a
periodicity of the irreducible self-energies and of the stationary probability distribution
as well as the tunneling current in the stationary state [35]. Therefore, as a next step,
we Fourier expand the master equation which subsequently becomes a numerically
conveniently tractable algebraic equation. Finally, we incorporate the hydration shell
by determining a spectral density which includes necessary information to characterize
the shell. Let us start with the derivation of the current under ac drive.

6.1. Stationary current under ac drive

The ac voltage is explicitly included in the energies of the lead electrons εk,r(t) =
εk,r + eVr cos(ωact), with the amplitude VL = −VR = Vac and the frequency ωac,
respectively. By using the unitary transformation U(t) = e

−i
∫ t
t0

dτ
∑
k,r eVr cos(ωacτ)c

†
k,rck,r ,

the time dependence of the single particle energies εk,r(t) is transferred to the tunneling
amplitudes tk,r(t) = tk,r exp(−i

∫ t
t0
dτeVr cos(ωacτ)). The appearing exponential can

be expanded via the Jacobi-Anger expansion

eix sin θ =
∞∑

n=−∞

Jn(x)e
inθ , (6.1)

where Jn(x) are the ordinary Bessel functions of the first kind. For the calcula-
tion of the irreducible self-energies Σ the tunneling amplitudes appear as products
tk,r(t

′)t∗k,r(t), which leads to exponentials of the form

e±i
∫ t
t′ dτeVr cos(ωacτ) =

∑
mn

drmne
±imωacte∓inωact

′
, (6.2)
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Figure 6.1.: The four tunneling current diagrams which contribute to sequential tunneling
in the ac-driven case.

with the coefficients

drmn = Jm

(
eVr
ωac

)
Jn

(
eVr
ωac

)
. (6.3)

Utilizing Eq. (6.2) to determine the stationary current for the ac-driven case we see
that Eq. (4.42) turns into

⟨Ir(t)⟩ = −e
∑

ψ′
1ψ

′
2ψ3

∫ t

t0

dτP
ψ′
1

ψ′
2
(t)
∑
k

|tk,r|2
∑
mn

drmn

×
{
e
i(εψ′

1
−εψ3 )τe−W (+τ)

(
e−iωact(m−n)−inωacτeiεk,rτf+

r (εk,r)⟨ψ3|d†|ψ′
1⟩⟨ψ′

2|d|ψ3⟩

− eiωact(m−n)+inωacτe−iεk,rτf−
r (εk,r)⟨ψ3|d|ψ′

1⟩⟨ψ′
2|d†|ψ3⟩

)
+ e

i(εψ3−εψ′
2
)τ
e−W (−τ)

(
e−iωact(m−n)−inωacτeiεk,rτf−

r (εk,r)⟨ψ′
2|d†|ψ3⟩⟨ψ3|d|ψ′

1⟩

− eiωact(m−n)+inωacτe−iεk,rτf+
r (εk,r)⟨ψ′

2|d|ψ3⟩⟨ψ3|d†|ψ′
1⟩
)}

.

(6.4)
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Here, we recognize that the terms contributing to the irreducible self-energy no longer
depend only on the time difference τ = t − t′ but additionally maintain a time-
dependence due to the applied periodic ac drive. Nevertheless, we can still perform
the integral over τ and find for the irreducible self-energy in the stationary limit, i.e.,
for t0 → −∞, that

Σ
Irψ′

1ψ3

ψ′
2ψ3

(t) =

∫ t

t0

dτΣ
Irψ′

1ψ3

ψ′
2ψ3

(t− τ, t) =
∑
p

Σ
Irψ′

1ψ3,p

ψ′
2ψ3

eipωact . (6.5)

The four tunneling current diagrams which contribute to sequential tunneling now
have the form as depicted in Fig. 6.1. In the same fashion we can write the irreducible
self-energies of the reduced density matrix as

Σ
ψ′
1ψ1

ψ′
2ψ2

(t) =

∫ t

t0

dτΣ
ψ′
1ψ1

ψ′
2ψ2

(t− τ, t) =
∑
m

Σ
ψ′
1ψ1,m

ψ′
2ψ2

eimωact , (6.6)

and the master equation for the ac-driven case becomes

∂

∂t
Pψ1

ψ2
(t) = i (εψ2 − εψ1)P

ψ1

ψ2
(t)−

∑
ψ′
1,ψ

′
2

P
ψ′
1

ψ′
2
(t)Σ

ψ′
1ψ1

ψ′
2ψ2

(t) . (6.7)

The tunneling diagrams of the self-energy from the reduced density matrix adjust
accordingly as presented in Fig. 6.2.

6.2. Fourier expansion of the master equation and
numerical implementation

We use the periodicity of the irreducible self-energies and Fourier expand the master
equation. In particular,

Pψ1

ψ2
(t) =

∑
k

Pψ1,k
ψ2

eikωact . (6.8)

When we insert this expression into Eq. (6.7) together with Eq. (6.6) and use the
orthogonality of the complex exponentials, we arrive at the Fourier expanded master
equation

0 = i(εψ2 − εψ1 − kωac)P
ψ1,k
ψ2

+
∑
ψ′
1ψ

′
2,q

P
ψ′
1,q

ψ′
2

Σ
ψ′
1ψ1,k−q

ψ′
2ψ2

. (6.9)

For the numerical implementation we introduce the number M of Fourier modes which
are maximally taken into account, i.e., the Fourier sums run from −M to +M . Fur-
thermore, we define the probability vector P⃗ = [P⃗ψ

ψ , P⃗
ψ1

ψ2
]T , where P⃗ψ

ψ and P⃗ψ1

ψ2
are

2M +1 dimensional vectors carrying the different Fourier modes for the diagonal and
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Figure 6.2.: Tunneling diagrams of the irreducible self-energy of the reduced density
matrix in the ac-driven case.
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off-diagonal elements of the reduced density matrix, respectively. The two possible
states of our model are {|ψ⟩} = {|0⟩, |1⟩}. Thus, the dimension of P⃗ is d = 4(2M +1).
The master equation in Fourier representation is an algebraic equation which can be
written in a matrix vector notation as

0 = R · P⃗ =


R00

00 R10
10 R00

10 R10
00

R01
01 R11

11 R01
11 R11

01

R00
01 R10

11 R00
11 R10

01

R01
00 R11

10 R01
10 R11

00

 ·


P⃗ 0
0

P⃗ 1
1

P⃗ 0
1

P⃗ 1
0

 , (6.10)

with a d× d matrix R. Within the Fourier subspace, the elements of R read(
R
ψ′
1ψ1

ψ′
2ψ2

)
k,q

= i(εψ2 − εψ1 − qωac)δqkδψ′
1ψ1
δψ′

2ψ2
+ Σ

ψ′
1ψ1,k−q

ψ′
2ψ2

. (6.11)

In order that the probability is conserved at any time t, it has to hold that∑
ψn

Pψn,k
ψn

= δk0 . (6.12)

Then, one sees that

Tr [ρmol(t)] =
∑
ψn

⟨ψn|ρmol(t)|ψn⟩ =
∑
ψn

Pψn
ψn

(t)

=
∑
ψn

∑
k

Pψn,k
ψn

eikωact =
∑
k

δk0e
ikωact

= 1 .

(6.13)

Furthermore, since the density matrix needs to be a positive semidefinite operator, it
has to hold that

⟨ψn|ρmol(t)|ψn⟩ ≥ 0 , ∀t, ψn , (6.14)

leading to

Pψn,k
ψn

= 0 , if k ̸= 0 , (6.15)

Pψn,k
ψn

≥ 0 , if k = 0 . (6.16)

Since the vector P⃗ in Eq. (6.10) represents the density matrix it can not be the null
vector. Thus, the matrix R is not only in general complex, non-symmetric and non-
diagonalizable but also has to be singular, i.e., detR = 0. This means that P⃗ is an
eigenvector of R with eigenvalue 0. Therefore, the Fourier components Pψ1,k

ψ2
of the

reduced density matrix can readily be obtained by numerically solving the eigenvalue
problem given by Eq. (6.10), while ensuring conservation of probability.
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Figure 6.3.: Two models of solvation. Model 1 is the Onsager model as shown in
Fig. 5.1. Model 2 additionally incorporates a hydration shell with radius b and dielectric
function εbw(ω). The picture is taken from Ref. [113].

Finally, we obtain the stationary current by inserting the numerically calculated
expressions (6.5) and (6.8) into Eq. (4.40) which yields

⟨Ir(t)⟩ = −e
∑

ψ′
1ψ

′
2ψ3

P
ψ′
1

ψ′
2
(t)Σ

Irψ′
1ψ3

ψ′
2ψ3

(t)

= −e
∑

ψ′
1ψ

′
2ψ3

∑
kq

P
ψ′
1,q

ψ′
2

Σ
Irψ′

1ψ3,k−q
ψ′
2ψ3

eikωact

=
∑
k

Ikr e
ikωact ,

(6.17)

where, in the last line, the current under the applied ac voltage is written in the form
of a Fourier expansion where the Fourier-components are given by

Ikr = −e
∑

ψ′
1ψ

′
2ψ3

∑
q

P
ψ′
1,q

ψ′
2

Σ
Irψ′

1ψ3,k−q
ψ′
2ψ3

. (6.18)

This result is used to investigate the influence of the solvent and different extensions
of the hydration shell on the current under an applied ac voltage.

6.3. Spectral density of the hydration shell

The inclusion of the bridging molecule into the (bulk) solvent alters the interacting
network between the solvent molecules in proximity of the introduced molecule. Thus
the solvent molecules surrounding the central molecule form a hydration shell with a
more rigid water structure and a pronounced slowing down of structure fluctuations
as well as rotational motion and a concomitant increase of H-bond lifetimes [68]. In
order to incorporate hydration shell effects on the quantum transport we expand our
model in such a way that the Onsager sphere introduced in Sec. 5.4 now contains
a shell of thickness (b − a), where b denotes the outer sphere radius and a is the
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inner sphere radius, see Fig. 6.3. The new contribution now stems from the dielectric
function associated with the bound water shell εbw(ω) which is different than either
the surrounding solvent dielectric function εs(ω) as well as the dielectric constant of
vacuum εc = 1 inside the cavity. From the considerations in Sec. 5.4 we know that we
can write the spectral density as

J(ω) = 2 (∆µ)2 Im [χ (ω)] . (6.19)

The susceptibility function χ(ω) for a point dipole in a sphere containing a hydration
shell of thickness (b − a) can be derived in analogy to the derivation of Eq. (5.59).
Our derivation follows Ref. [67]. Due to the spherical symmetry, the electric potentials
in the cavity Φc, the shell Φbw and the bulk water Φs can be expressed in terms of
spherical harmonics [63,67,97]

Φi =
∞∑
n=0

(
A(i)
n r

n +B(i)
n r

−(n+1)
)
Pn(cos θ) , (6.20)

as in Sec. 5.4. We recall that Pn are the Legendre polynomials and θ is the angle with
respect to the z−axis, i.e., the axis of the dipole µ = µêz. At the dielectric boundaries
(and in general), the electric potential as well as the electric displacement must be
continuous. Therefore, we can apply the boundary conditions [67]

(Φs)r→∞ = 0 , (6.21)

Φµ =
µ

r2
cos θ , (6.22)

(Φbw)r=b = (Φs)r=b , (6.23)

(Φc)r=a = (Φbw)r=a , (6.24)

εc

(
∂Φc

∂r

)
r=a

= εbw

(
∂Φbw

∂r

)
r=a

, (6.25)

εbw

(
∂Φbw

∂r

)
r=b

= εs

(
∂Φs

∂r

)
r=b

. (6.26)

The first condition is that the potential must go to zero at infinity. This means that
all coefficients from the bulk environment with positive powers of r must vanish, that
is, A(s)

n = 0 for all n.
The second condition is the field from a point dipole. As this is the only free charge

in the cavity, this is the only source term (inverse power of r) that will contribute
to the potential Φ [67]. Since P1(cos θ) = cos θ, only the n = 1 term is involved.
Therefore, B(c)

n=1 = µ and B
(c)
n̸=1 = 0. (Nothing is said about A(c)

n .) The final terms
describe the continuity of the potential and its derivative over the boundary. The first
condition gives [67]

∞∑
n=0

(
A(bw)
n bn +B(bw)

n b−(n+1)
)
Pn(cos θ) =

∞∑
n=0

B(s)
n b−(n+1)Pn(cos θ) . (6.27)
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Because the Legendre polynomials Pn are orthogonal, we can consider each term of
this sum as being equal, therefore

A(bw)
n bn +B(bw)

n b−(n+1) = B(s)
n b−(n+1) . (6.28)

In a similar way, the remaining boundary conditions can be applied to produce a set
of linear equations on the coefficients A(i)

n and B(i)
n . We have six boundary conditions

and six variables (each, of course, a function of n), and therefore, we are able to solve
for all parameters. However, we are only interested in the field inside of the cavity
and, in particular, the unknown part A(c)

n . We find that all of the A(c)
n values are

zero except for n = 1. Thus, the potential due to the surface charges is given by
Φc,surf = A

(c)
1 r1P1(cos θ) = −χµr cos θ, where we find with εc = 1 [67]

χ(ω) =
1

4πε0a3
(εbw + 2)(εs − εbw)a

3 + (εbw − 1)(2εs + εbw)b
3

2(εbw − 1)(εs − εbw)a3 + (2εbw + 1)(2εs + εbw)b3
. (6.29)

In this expression we have omitted the frequency dependence of the complex dielectric
functions for better clarity. The actual electric field in the cavity due to the surface
charges but not the dipole itself, i.e., the reaction field, is then R(ω) = χ(ω)µ(ω),
which will be a constant throughout the cavity, parallel to the dipole, and proportional
to the dipole moment µ [67]. With Eq. (6.19) we can then directly write the spectral
density for a point dipole in a sphere containing a hydration shell of thickness (b− a)
as

J2(ω) =
(∆µ)2

2πε0a3
Im

[
(εbw + 2)(εs − εbw)a

3 + (εbw − 1)(2εs + εbw)b
3

2(εbw − 1)(εs − εbw)a3 + (2εbw + 1)(2εs + εbw)b3

]
. (6.30)

We assume that the hydration shell is thin compared to the radius of the inner sphere
and perform a Taylor expansion of the spectral density in the relative shell thickness
(b− a)/a≪ 1. This yields [67]

J2(ω) = J1(ω) + Jbw(ω) , (6.31)

where J1(ω) represents the spectral density of a molecule inside a cavity of radius a
surrounded by a bulk solvent in the absence of a hydration shell, as previously encoun-
tered in Eq. (5.63). The second term Jbw(ω) can be identified with the contribution
to the spectral density of the bound water layer for which we get

Jbw(ω) =
(∆µ)2

2πε0a3
Im

[
3

εbw

(2εs + εbw)(εbw − εs)

(2εs + 1)2
(b− a)

a

]
. (6.32)

If we further consider frequencies much smaller than the inverse bulk solvent relaxation
time 1/τs, we can approximate the dielectric function of the bulk solvent by its static
value, i.e., εs(ω) ≈ εs,S, and the spectral density becomes

Jbw(ω) =
3 (∆µ)2

2πε0a3
(b− a)

a

1

(2εs,S + 1)2
Im

[(
1 +

2εs,S
εbw

)
(εbw − εs,S)

]
(6.33)

=
3 (∆µ)2

2πε0a3
(b− a)

a

1

(2εs,S + 1)2

(
1 +

2ε2s,S
|εbw(ω)|2

)
Im [εbw(ω)] . (6.34)
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Figure 6.4.: Spectral density J(ω) normalized to the reorganization energy ηs of bulk
water as a function of the frequency ω (normalized to the cut-off frequency of water ωs)
for various relative hydration shell thicknesses as indicated. The cut-off frequency of the
hydration shell is ωbw = 10−2ωs.

By additionally approximating the absolute square with the static value squared, i.e.,
|εbw(ω)|2 ≈ ε2bw,S, and using the Debye form for the bound water dielectric function,
i.e., Im [εbw(ω)] = (εbw,S−εbw,∞)(ωτbw/(1+ω

2τ 2bw)), the final expression for the spectral
density of the bound water turns into [67,113]

Jbw(ω) =
3 (∆µ)2

2πε0a3
(b− a)

a

(ε2bw,S + 2ε2s,S)(εbw,S − εbw,∞)

ε2bw,S(2εs,S + 1)2
ωτbw

1 + ω2τ 2bw
. (6.35)

In this form it resembles the spectral density of the bulk solvent and likewise can be
expressed as

Jbw(ω) = 2ηbw
ωωbw

ω2 + ω2
bw

, (6.36)

with the bound water cut-off frequency ωbw = 1/τbw and reorganization energy

ηbw =
3 (∆µ)2

4πε0a3
(b− a)

a

(ε2bw,S + 2ε2s,S)(εbw,S − εbw,∞)

ε2bw,S(2εs,S + 1)2
. (6.37)

In order to further simplify this expression, we take a closer look at the involved relax-
ation times and dielectric constants. For bulk water at room temperature, εs,S = 78.3,
εs,∞ = 4.21, and τs = 8.2 ps [62, 114, 115]. The dielectric properties of the hy-
dration shell are less clear, but in general, a higher structural order of the water
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molecules in the first few layers around the solute implies weaker fluctuations and,
thus, εs,S ≫ εbw,S [63,67,68,113]. This reflects the fact, that the water molecules are
stronger bound in a hydrogen network and are less polarizable. Due to this enhanced
interaction in the hydration shell, the relaxation time is significantly slower, such that
τbw ≫ τs [63, 67, 68, 113]. Furthermore, the high-frequency dielectric constants are
generally smaller than the static ones, i.e., εs,S ≫ εs,∞, and εbw,S ≫ εbw,∞ [67, 113],
because the dielectric response is weaker at high frequencies. Hence, we use these
relations and set τbw = 10τs to obtain

(ε2bw,S + 2ε2s,S)(εbw,S − εbw,∞)

ε2bw,S(2εs,S + 1)2
≈ 1

2εbw,S
. (6.38)

Compared to the factor of the reorganization energy, Eq. (5.64), of bulk water

2(εs,S − εs,∞)

(2εs,S + 1)(2εs,∞ + 1)
≈ 1

2εs,∞
, (6.39)

we see that

ηbw ≈ εs,∞

εbw,S

(b− a)

a
ηwater . (6.40)

In this expression we see that the reorganization energy of the shell can be increased
compared to the bulk water reorganization energy by increasing either the relative
shell thickness or the ratio between the high-frequency dielectric parameter of bulk
water and the static dielectric parameter of bound water.

In Fig. 6.4, we show an exemplary plot of the spectral density for water with various
relative hydration shell thicknesses. The two contributions to the spectral density can
be clearly observed by the two separated peaks when the hydration shell is present
(colored lines). Without the hydration shell only one peak appears at the cut-off
frequency of the bulk water ωs (black line). Therefore, an increase in the shell thickness
only increases the bound water part of the spectral density which in this case has its
peak at ωbw = 10−2ωs. Although the spectral density of the form (6.31) is only
valid for thin hydration shells (b − a)/a ≪ 1, we also show J(ω) for larger values of
(b − a)/a in Fig. 6.4 to illustrate the leading contribution from the hydration shell.
Interestingly, one observes a strong impact on J(ω) already in the limit (b− a)/a≪ 1
which signals the electrodynamically collective response of the strongly bound water
in the shell. Clearly, as follows from Eq. (6.40), the slope of J(ω) at low frequencies
depends linearly on the relative hydration shell thickness (b− a)/a.

6.4. Results and discussion

In the following, we present the results for the current through the single-molecule
junction driven by an ac voltage. Like we did for the dc case, we begin by discussing
results without any surrounding solvents. In Fig. 6.5 (a) the zeroth and first Fourier
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Figure 6.5.: (a) Zeroth and first Fourier component of the stationary current with
respect to the applied dc voltage. (b) Stationary current as a function of the time t at
a dc voltage of eVdc = 240 Γ. Parameters are εd = 120 Γ, eVac = 10 Γ, ωac = 20 Γ,
T = 10 Γ, and Γ = 2.5 meV.

component of the stationary current are illustrated as a function of the applied dc
voltage. The amplitude and frequency of the ac voltage are eVac = 10 Γ and ωac = 20 Γ,
respectively. It can be nicely seen that the zeroth Fourier component of the current
corresponds to the dc current as observed in Fig. 5.4 (a). We note, that the scaling of
the parameters is different by a factor of 100 between Figs. 6.5 and 5.4.

In addition to the dc part of the current we observe a peak of the first Fourier
component where the dc voltage reaches the energy level of the molecule, i.e., at
eVdc = 240 Γ. Since the first negative Ik=−1 and positive Ik=+1 Fourier components
are the same in this case the time-dependent current at eVdc = 240 Γ then has a form
of a cos-function, see Fig. 6.5 (b). The time-dependent current oscillates around the
dc current value Ik=0(eVdc = 240 Γ) ≈ 0.25 Γ with twice the amplitude of the first
Fourier component Ik=1(eVdc = 240 Γ) ≈ 0.04 Γ.

When the molecular junction is embedded in the same solvents as investigated for
the nonlinear differential conductance in the dc case (see Fig. 5.4 (b)), the maximum
value of the first Fourier component decreases in a similar fashion, see Fig. 6.6. Ac-
cordingly, a part of the electric potential energy eV is used for the reorganization of
the solvent. Solvents with larger reorganization energies suppress the maximum value
of the first Fourier component of the current more strongly than solvents with smaller
reorganization energies. Notice, that the ac voltage in Fig. 6.6 has been doubled
compared to Fig. 6.5, i.e., eVac = 20 Γ.
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Figure 6.6.: First Fourier component of the stationary current as a function of the
dc voltage. Parameters are εd = 120 Γ, eVac = 20 Γ, ωac = 20 Γ, T = 10 Γ, and
Γ = 2.5 meV.

6.4.1. Hydration shell effects in ac-driven single-molecule
junctions

In experimental setups of metal-molecule-metal junctions it is oftentimes favorable to
operate in the linear transport regime (small applied dc voltages) to distinguish solvent
and hydration shell effects from other nonlinear effects like the negative differential
resistance due to the interplay between two or more conduction channels accessible by
a finite applied dc voltage. Having this in mind, we use a different control parameter
than the applied dc voltage, i.e., the ac voltage frequency ωac, to study the influence
of the solvent with and without hydration shell. We fix the dc voltage to µL = µR =
eVdc = 0 and set the molecular energy level to εd = 0. Given this symmetry of our
model where the leads’ Fermi levels align with the molecular level in the absence of
an applied voltage, all even Fourier components of the ac current vanish and only the
odd ones are nonzero. Additionally, the zeroth Fourier component of the current also
vanishes due to the fact that we are in the linear transport regime with Vdc = 0, since
it corresponds to the dc current.

In Fig. 6.7, we show the first Fourier component Ik=1 of the stationary current both
in the absence of a solvent and for water with various relative hydration shell thick-
nesses. Ik=1 is only induced by the applied ac voltage so that in the limit ωac/Γ → 0 no
potential difference can be build up across the molecule in the relevant charge transfer
time scale Γ−1 and Ik=1 goes to zero. The Ik=1-ωac curve goes through a maximum
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close to the frequency ωac = eVac = 10 Γ, which can be attributed to the Bessel
functions appearing in Eq. (6.4), because the product of the zeroth and first Bessel
function is maximal when the argument eVac/ωac is close to one. These two Bessel
functions are the main contributors to the first Fourier component of the stationary
current for frequencies at or above ωac = eVac because all higher Bessel functions are
significantly smaller in that frequency range. Put differently, the energy supplied by
the ac voltage (ℏ)ωac matches the electric energy eVac by the (time-dependent) voltage
sweep across the molecule. Higher ac frequencies ωac lead to an energetic mismatch
and Ik=1 declines. Similar observations are found in the photon assisted current in
single molecular junctions where Ik=1 is the related current induced when electrons
exchange a single energy quantum, i.e., a photon with the oscillating ac field [116].

εd a
ΓL ΓR

μL

μR

εF εFb

Figure 6.7.: First Fourier component of the stationary current Ik=1 as a function of the
ac frequency ωac in the absence of a solvent (grey dashed line) and for water with various
relative hydration shell thicknesses (solid lines). Parameters are a = 5 Å, ∆µ = 5 D,
T = 10 Γ, εd = 0 Γ, eVac = 10 Γ and Γ = 2.5 meV.
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Figure 6.8.: First Fourier component of the stationary current Ik=1 as a function of
the ac frequency ωac in the absence of a solvent (grey dashed line) and for different pure
solvents (solid lines) as indicated. Parameters are a = 5 Å, ∆µ = 5 D, T = 10 Γ,
εd = 0 Γ, eVac = 10 Γ and Γ = 2.5 meV.

When water is considered as a solvent surrounding the molecule then the Ik=1-ωac
curves significantly decrease, see Fig. 6.7. This is due to the fact that a part of the
electric potential energy of the ac drive is used for the reorganization of the solvent.
Even more energy is needed to reorganize the solvent when we additionally consider
the hydration shell. That is why the maximum current Ik=1

max decreases further with
an increase of the hydration shell as depicted in Fig. 6.7 (a). Furthermore, we notice
that the Ik=1 values for different ωac in a given window (∼ 10–70 Γ) decline differently
when increasing the shell thickness. This behavior reflects the distinct coupling of the
molecular level to different polarization modes captured by the spectral density (see
Fig. 6.4). We additionally portray Ik=1 in Fig. 6.8 with respect to ωac for the same
parameters as in Fig. 6.7, but for various different solvents. The trend of the Ik=1-ωac
curves is similar to the Ik=1-Vdc curves in Fig. 6.6 when it comes to the variation of the
solvent. That is, solvents with larger reorganization energies suppress the maximum
value of the first Fourier component of the current more strongly than solvents with
smaller reorganization energies. The explanation is again that a part of the electric
energy is used for the reorientation of the solvent.

In Fig. 6.9, we show Ik=1
max with respect to the relative shell thickness (b − a)/a

and observe that it is consistent with an exponential decrease. Such an exponential
decrease of Ik=1

max with respect to the shell thickness could be expected from the real part
of W (t) from Eq. (4.17) where the spectral density J(ω) enters. The dominant term in
J(ω) is the reorganization energy of the shell ηbw which is directly proportional to its
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relative thickness (b− a)/a (see Eq. (6.40)). Note, that deviations from that behavior
may occur due to the exact calculations of the time integral over the self-energy in
Eq. (6.5). The decline of Ik=1

max directly reflects the enhanced collective response of the
strongly bound molecules in the hydration shell.

Interestingly, the position ωac(I
k=1
max) at which Ik=1 is maximal is also influenced by

the shell and shifts to higher frequencies when compared to the case without hydration
shell, see Fig. 6.10. Since the contribution from the irreducible self-energy (4.42) to
the current is maximal when the imaginary part of the exponent vanishes the observed
increase of ωac(Ik=1

max) with a growing hydration-shell can be related to the increasing
imaginary part of W (t) in Eq. (4.17) which makes the imaginary part in the exponent
in Eq. (6.4) smaller [70].

Figure 6.9.: Maximum of the first Fourier component of the stationary current Ik=1
max as

a function of the relative shell thickness (b− a)/a. Parameters are a = 5 Å, ∆µ = 5 D,
T = 10 Γ, εd = 0 Γ, eVac = 10 Γ and Γ = 2.5 meV. The inset shows the trend for larger
relative shell thicknesses within the expansion of Eq. (6.31). The blue line is a fit to an
exponential function as indicated.
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Figure 6.10.: Frequency ωac(I
k=1
max) position at Ik=1

max as a function of the relative shell
thickness (b−a)/a. Parameters are a = 5 Å, ∆µ = 5 D, T = 10 Γ, εd = 0 Γ, eVac = 10 Γ
and Γ = 2.5 meV. The insets show the trend for larger relative shell thicknesses within
the expansion of Eq. (6.31). The blue line is a fit to an exponential function as indicated.

6.4.2. Higher order Fourier components of the current

In Fig. 6.11, we show the third Fourier component Ik=3 of the stationary current
both in the absence of a solvent and for water with various relative hydration shell
thicknesses. Ik=3 shows a similar behavior with increasing hydration shell thicknesses
as Ik=1 in Fig. 6.7. Note, however, that the magnitude of the value of this Fourier
component is much smaller than Ik=1 due to the chosen small amplitude of our model.
Furthermore, we show Ik=3 only for frequencies at or above ωac = eVac = 10 Γ be-
cause we consider only the first three Bessel functions which contribute mainly to the
third Fourier component of the stationary current and all higher Bessel functions are
significantly smaller in that frequency range.

In Fig. 6.12, we also illustrate the second Ik=2 and third Ik=3 Fourier components
of the stationary current as a function of the dc voltage in the absence of a solvent.
But this time again for a molecular energy level of εd = 120 Γ, ac voltage eVac = 20 Γ,
and ac frequency ωac = 20 Γ, as in Fig. 6.6 for Ik=1. It can be nicely observed
that the second Fourier component is antisymmetric around the resonance point of
eVdc = 240 Γ, where the dc voltage reaches the energy level of the molecule. In contrast
to this, the third Fourier component is symmetric around eVdc = 240 Γ, like Ik=1 in
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Fig. 6.6. Furthermore, the odd Fourier components have their maximum around the
resonance point whereas the even ones are zero at that point. This is in accordance
with our results in the linear transport regime, i.e., for eVdc = 0 Γ and εd = 0 Γ.
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Figure 6.11.: Third Fourier component of the stationary current Ik=3 as a function of
the ac frequency ωac in the absence of a solvent (grey dashed line) and for water with
various relative hydration shell thicknesses (solid lines) as indicated. Parameters are
a = 5 Å, ∆µ = 5 D, T = 10 Γ, εd = 0 Γ, eVac = 10 Γ, and Γ = 2.5 meV.
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Figure 6.12.: Second Ik=2 and third Ik=3 Fourier component of the stationary current
as function of the dc voltage Vdc in the absence of a solvent. Parameters are εd = 120 Γ,
eVac = 20 Γ, ωac = 20 Γ, T = 10 Γ, and Γ = 2.5 meV.

6.4.3. Application to binary solvent mixtures

With the same methodology as in Sec. 5.6.4 for the nonlinear differential conductance
we next investigate the first-order Fourier component Ik=1 under an ac voltage with
frequency ωac = 10 Γ and amplitude eVac = 10 Γ as a function of the volume fraction f
for the binary mixtures between butanol and ethanol, chlorobenzene and nitrobenzene,
as well as toluene and nitrobenzene. Notably, we find the same qualitative behavior
for Ik=1 with respect to f , Fig. 6.13, as for the nonlinear differential conductance,
see Fig. 5.7. Ik=1 is also highly influenced by the volume fraction f of the additional
solvent. The Ik=1-f behavior likewise depends on the specific binary mixture and
reflects the non-monotonous characteristics of the dielectric function Eq. (5.66). The
main difference is that we are here again in the linear transport regime, i.e., eVdc = 0 Γ
and εd = 0 Γ, and still find that Ik=1 is highly sensitive to both the volume fraction
and the individual solvents themselves [70].
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Figure 6.13.: First Fourier component of the stationary current as a function of the
volume fraction f for the binary mixtures between butanol and ethanol, chlorobenzene
and nitrobenzene, as well as toluene and nitrobenzene. The solid lines show the results
calculated using the effective dielectric parameters of Gladstone-Dale in an effective De-
bye spectral density. In addition, the circles mark the current calculated with a single
Debye spectral density of the mixture with the directly measured dielectric parameters
taken from Ref. [102]. Parameters are a = 5 Å, b = 0, ∆µ = 5 D, T = 10 Γ, εd = 0 Γ,
eVac = 10 Γ, ωac = 10 Γ and Γ = 2.5 meV.
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Chapter 7.

Summary and outlook

In this thesis, we have investigated the interplay between molecular electronic conduc-
tion and the response of a polar solvent environment. A setup of a molecular junction
immersed in solution offers a promising ground for molecular electronics devices, in
particular sensors and switches. As sensors such devices are sensitive to small changes
of concentrations of target species dissolved in a polar solvent, while as switches they
are controlled by the bias and gate voltage. We provide a theory to calculate the
charge current through a molecular junction surrounded by a polar solvent. For the
calculation of the tunneling current we utilize a quantum mechanical real-time di-
agrammatic technique in the regime of sequential charge tunneling, which includes
the electrostatic molecule-solvent coupling in the single electron transfer nonpertur-
batively. This technique is based on the Liouville-von Neumann equation and allows
to solve the quantum master equation of the reduced density matrix of the molecule
in a perturbative manner in the tunnel coupling to the leads. The lowest order of this
perturbation corresponds to the sequential tunneling regime and is the main contribu-
tion to the current when the molecule-lead coupling is weak and the temperature or
the bias voltage are comparably large. For larger tunnel coupling or low temperature
and transport voltage higher-order processes, so-called cotunneling contributions, will
have significant effects on the transport characteristics and in general need to be taken
into account under these conditions. In this thesis, we have concentrated on sequential
tunneling only.

For the incorporation of the solvent, we have used an approach by Gilmore and
McKenzie. Based on the Onsager model of solvation, this approach offers the deter-
mination of the solvent spectral density which enters the irreducible self-energy of the
quantum master equation. Using a Debye dielectric function, the solvent can thereby
be characterized by its dielectric constants and the Debye relaxation time. In ad-
dition to the investigation of pure solvents, we use the Gladstone-Dale approach to
determine an effective dielectric function and propose an expression for the resulting
spectral density of the polarization fluctuations of binary solvent mixtures. We believe
that this approach could be also relevant for optical absorption spectroscopy of solutes
in solvent mixtures. Utilizing the measured dielectric constants of pure solvents as well
as their respective relaxation times together with tuning the volumetric fraction, we
have obtained a very good agreement of the nonlinear differential conductance either
calculated by the proposed model and experimentally measured conductance values.
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We have observed that the maximum of the differential conductance gets reduced and
its width is enhanced when the junction is immersed in a solvent. This is due to the
fact that a part of the electric potential energy, inducing the electric current, is used
for the reorganization of the solvent. Therefore, the larger the reorganization energy
of the solvent is, the smaller the conductance maximum becomes. Furthermore, the
additional tunneling broadening occurs via the absorption or emission of (bosonic)
solvent polarization modes similar to the broadening dominated by the emission of
phonons into a substrate. The examined nonmonotonous behavior of the differential
conductance with respect to the volume fraction for certain solvent mixtures sub-
sequently results from the nonmonotonous behavior of the spectral density of these
mixtures. Franck-Condon steps are not present in our case because the dielectric pro-
vides a continuum of modes instead of a single mode (which could be a single molecular
vibrational mode) in accordance with the high-temperature regime.

In order to investigate novel transport characteristics while staying in the linear
transport regime (linear response to a small external static voltage), we introduce a
time-dependent ac voltage. By Fourier expanding the quantum master equation, the
electric current can then be expressed by its Fourier components. We have calculated
the Fourier components of the current in dependence of the ac frequency in order to
investigate the influence of a hydration shell on the transport characteristics. Similar
to the solvation description of solvent mixtures, the spectral density of the hydration
shell can be captured via an extended Onsager model where the shell properties,
i.e., its thickness or its dielectric function, directly enter. Here our main results are
calculations of the Fourier components of the current with respect to the hydration
shell thickness. Interestingly, the Fourier components of the charge current for different
applied ac voltage frequencies portray a nonlinear behavior when altering the thickness
of the hydration shell. The hydration shell is formed around the central molecule
which alters the interacting network between the solvent molecules in proximity of
the junction molecule. Due to a more rigid water structure and a pronounced slowing
down of structure fluctuations as well as rotational motion of the water molecules in
the hydration shell more energy is needed to reorganize the shell in comparison to the
bulk solvent further away from the bridging molecule. That is why the maximum value
of the Fourier components of the current decreases with an increase of the hydration
shell thickness. Like in the dc case for solvent mixtures this is due to the fact that a
part of the electric potential energy of the ac drive is used for the reorganization of the
(bulk) solvent and, additionally, the hydration shell. Furthermore, we notice that the
Fourier components of the current for different ac frequencies decline differently in a
certain frequency window when increasing the shell thickness. This behavior reflects
the distinct coupling of the molecular level to different polarization modes captured
by the spectral density.

We find that by comparing the results of no solvent and water as a solvent both
with and without hydration shell we can determine the thickness of the shell through
the current under ac drive. The relative shell thickness can be read off, for example,
by the exponential-like decline of the first Fourier component of the current. We have
also applied the same methodology as for the investigation of the hydration shell to the
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inspection of binary solvent mixtures. Notably, we find the same qualitative behavior
for the first Fourier component of the current with respect to the volume fraction as for
the nonlinear differential conductance in the dc case. The main difference is that we
are here in the linear transport regime and still find that the current is highly sensitive
to both the volume fraction and the individual solvents themselves. As a consequence,
a possible application is provided by a prototype molecular junction under ac drive,
measuring the volume fraction of a binary solvent mixture. Therefore, in total, the
proposed theoretical methodology may be applied for a molecular sensor to determine
the thickness of a hydration shell or the volume fraction of a solvent mixture with high
sensitivity.

Possible extensions of the model are manifold and, given the rich field of molecular
electronics, can provide exciting prospects for future research. One extension that
directly comes into mind is the combination of the investigated influences of solvent
mixtures and the incorporation of a shell. In that case not only a hydration shell
build out of water molecules could be considered but a generalized theory could be
developed which contains a solvation shell from the constituents of the solvent mixture.
The spectral density of such a solvation shell will depend on the volume fraction of
the mixture in addition to the volume fraction dependence of the spectral density of
the mixture itself.

Speaking of solvent mixtures, our model incorporates only binary solvent mixtures.
A further possible extension is, thus, to allow an arbitrary number of solvents in the
mixture. There exists already a successful theory to describe multicomponent mixtures
which is the Maxwell Garnett mixing formula. It describes the permittivity of the
effective medium in terms of the permittivities and volume fractions of the individual
constituents of the complex medium [100]. With the Maxwell Garnett mixing formula
it should, in principle, be possible to find a spectral density for a multicomponent
mixture. Not only the inclusion of more than two solvents could be regarded for the
investigation of transport characteristics of molecular junctions.

Also the addition of salt ions could be taken into account. Like in the case of the
Maxwell Garnett mixing formula, an effective dielectric function can be derived which
contains not only the permittivities and volume fractions of the individual liquids but
also considers the polarizability of the ionic species, by properly accounting for the
volume change upon mixing [117]. Furthermore, solvent miscibility is a fundamental
property that governs the applications of liquid mixtures [118]. While we have in-
vestigated only miscible solvent mixtures it remains unclear whether the theoretical
methodology provides a valid means to describe immiscible solvents. Further possible
extensions of the model could be the inclusion of solvent viscosity [119] or current
noise [120]. Spin-dependent transport [121] is yet another important field of research.
The spin degree of freedom can readily be included in the model Hamiltonian. Con-
sidering a coupling specific to the spin, such as, e.g., an external magnetic field or
spin-orbit coupling, also magnetic effects can be studied within this theoretical frame-
work. Accompanying the inclusion of spin, more than a single energy level of the
molecule could be incorporated. Additionally, higher-order tunneling, such as cotun-
neling, can be investigated in a systematic way by calculating the quantum master
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equation to second (or higher) order in the tunnel coupling. The inclusion of asym-
metric tunnel barriers [122] could further be incorporated. The results of the ac-driven
current can be easily extended to photon-assisted electron transport [116] in molecular
wires given its mathematical form as under ac driving.

The list of possible extensions as well as investigations of novel transport character-
istics could go on for several pages. This demonstrates, on the one hand, the versatility
and broad range of application that the theoretical methodology offers. On the other
hand, it shows the rich and exciting field of research that molecular electronics pro-
vides.
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Appendix A.

Contour integral of the bosonic
correlation function exponent

Here, we apply complex analysis to evaluate the frequency integral of the exponent
W (τ) of the bosonic correlation function. To this extent, we utilize the theorem of
residues for the contour integral. Let us start with the imaginary part W ′′(τ), for
which we have to calculate the integral according to Eq. (4.25)∫ ∞

0

dω
cos(ωτ1)

ω2 + ω2
c

=
1

2

∫ ∞

−∞
dω

cos(ωτ1)

ω2 + ω2
c

. (A.1)

Here, we have used, as a first step, that the integrand is an even function of ω. For
the remaining integral we want to make use of the residue theorem. To this extent, we
choose a closed contour in C and a complex function f(z) which is related to our initial
integrand. Let C be the closed contour with mathematically positive orientation in
the upper half of the complex plane, as shown in red in Fig. A.1. It consists of two
parts, the line segment on the real axis which runs from minus R to plus R and the
semicircular arch CR with radius R, where R is a large positive real number which we
will later send to infinity in order to calculate our integral.

Figure A.1.: The closed contour C encloses the pole z1 = iωc of f(z).
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To proceed, we want to calculate the contour integral∮
C

dzf(z) =

∮
C

dz
eizτ1

z2 + ω2
c

=

∮
C

dz
eizτ1

(z − iωc)(z + iωc)
(A.2)

of the complex function f(z) along the contour C. Since f(z) is analytic everywhere
on and within C except for the single isolated singularity z1 = iωc, we can apply the
theorem of residues to calculate the contour integral which results in∮

C

dzf(z) = 2πiRes(f(z), z1) . (A.3)

Here, Res(f(z), z1) is the residue of f(z) at z1, which in this case is given by

Res(f(z), z1) = lim
z→z1

(z − z1)f(z) = lim
z→iωc

(z − iωc)
eizτ1

(z − iωc)(z + iωc)
=
e−ωcτ1

2iωc
. (A.4)

We note that f(z) has also a second isolated singularity z2 = −iωc, but since it is not
enclosed by the contour, it does not contribute to the contour integral. Now that we
have found the value of the complex contour integral, we want to make use of it for
our initial real integral. When looking at the two parts of the contour integral, we can
split the full contour and write∮

C

dzf(z) =

∫ R

−R
dωf(ω) +

∫
CR

dzf(z) , (A.5)

where the first term on the right hand side stems from the line segment and the second
term corresponds to the semicircular arch. Notice that, since the line segment runs
from −R to R along the real axis, we have replaced the complex variable by the real
quantity ω for that part.

Let us have a look how the two separate parts look like. Starting with the line part,
we get∫ R

−R
dωf(ω) =

∫ R

−R
dω

eiωτ1

ω2 + ω2
c

=

∫ R

−R
dω

cos(ωτ1)

ω2 + ω2
c

+ i

∫ R

−R
dω

sin(ωτ1)

ω2 + ω2
c

, (A.6)

where we have used Euler’s identity. We see that the imaginary part consists of an
integrand which is odd in ω and therefore will be zero, because we integrate an odd
function over an interval which is symmetric around the origin. When we then take
the limit R → ∞ in Eq. (A.6), we end up with our desired integral given in Eq. (A.1).
What remains to be calculated is the integral over the semicircular arch. To do so,
we first parameterize the path along the semicircular arch by z = Reiθ with θ ∈ [0, π]
and dz = iReiθdθ. Then, the integral becomes∫

CR

dzf(z) =

∫ π

0

dθiReiθ
eiRτ1e

iθ

R2e2iθ + ω2
c

. (A.7)
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Next, we show that this integral approaches zero as R approaches infinity. We estimate
the upper and lower bound by looking at the absolute value of the integral and use
the triangle inequality. Since∣∣∣∣iReiθ eiRτ1 cos(θ)e−Rτ1 sin(θ)R2e2iθ + ω2

c

∣∣∣∣ = Re−Rτ1 sin(θ)

|R2e2iθ + ω2
c |

≤ R

R2 − ω2
c

, (A.8)

where we have utilized Euler’s identity again. For the first equality, we have used
the fact, that R, τ1, and sin(θ) are real positive values (for θ ∈ [0, π]) and there-
fore the absolute value brackets of the nominator can be omitted. For the last in-
equality, we have employed the reverse triangle inequality for the denominator, i.e.,∣∣R2e2iθ − (−ω2

c )
∣∣ ≥ ∣∣∣∣R2e2iθ

∣∣− |ω2
c |
∣∣, and also utilized that R is an arbitrarily large

real number greater than ωc. Thus, the absolute value brackets of the denominator
can also be omitted. In total, we see that the absolute value of the integral over the
semicircular arch is restricted by

0 ≤
∣∣∣∣∫
CR

dzf(z)

∣∣∣∣ ≤ R

R2 − ω2
c

∫ π

0

dθ =
πR

R2 − ω2
c

, (A.9)

and thus
∫
CR

dzf(z) → 0 as R → ∞. Finally, by putting everything together, we see
that in the limit R → ∞ of Eq. (A.5) together with Cauchy’s residue theorem (A.3),
we get an expression for our initial integral over ω, viz

lim
R→∞

∮
C

dzf(z) = lim
R→∞

(∫ R

−R
dωf(ω) +

∫
CR

dzf(z)

)
=

∫ ∞

−∞
dω

cos(ωτ1)

ω2 + ω2
c

=
π

ωc
e−ωcτ1 .

(A.10)
In the same manner, we can calculate the integral over the frequency ω for the real
part of the bosonic correlation function exponent from Eq. (4.24). The only major
difference of this part is the coth function for which we have to calculate additional
residues in order to determine the contour integral. It turns out that these residues are
given by the sum over the Matsubara frequencies appearing in Eq. (4.26). We further
notice that the real part of W (τ) not only is an even function in ω but also in τ and
the imaginary part is an odd function in τ , leading to the fact that W (−τ) = W ∗(τ).
Thus, Eq. (A.10) should be the same whether we have +τ or −τ . Consequently, we
get the absolute value of τ in Eqs. (4.26) and (4.27) and the imaginary part obtains
the signum function, see also Eq. (3.274) in Ref. [65].
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Appendix B.

Dielectric solvent parameters

In Tab. B.1, we list the magnitudes of the static (εS) and high-frequency (ε∞) dielectric
constants as well as the dielectric relaxation times (τD) of the solvents considered in
Section 5.6 and Section 6.4. The parameter values have been taken from literature, as
indicated by the references in square brackets in the table.

Solvent εS ε∞ τD (ps)
1,3,5-trimethylbenzene (TMB) 2.27 [123] 1.2 30.2 [124]
Toluene (TOL) 2.7 [102] 2.3 [102] 17.3 [102]
Chlorobenzene (CBZ) 6.2 [102] 3.3 [102] 16.8 [102]
Tetrahydrofuran (THF) 6.8 [125] 3.0 3.93 [125]
Butanol (BUT) 19.0 [102] 3.8 [102] 482 [102]
Ethanol (ETH) 25.4 [102] 4.9 [102] 168 [102]
Nitrobenzene (NBZ) 35.7 [102] 3.3 [102] 44.5 [102]
Acetonitrile (ACN) 35.8 [126] 8.5 3.37 [126]
Dimethylformamide (DMF) 38.5 [102] 10 [102] 14.6 [102]
Water (WAT) 78.4 [115] 5.2 [115] 8.27 [115]
Formamide (FOR) 110 [102] 5.3 [102] 35.9 [102]

Table B.1.: Magnitudes of the static and high-frequency dielectric constants as well as
the dielectric relaxation times. The respective references are given in square brackets.
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