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Abstract

This thesis studies wall crossing phenomena in BPS structures associated to 4d N = 2
QFTs including both Argyres-Douglas and Seiberg-Witten theories. The BPS spectrum
is determined in each region of the moduli space, bounded by walls of marginal stability,
both by using attractor flow methods and by deriving a generating function with Fourier
coefficients that jump as a wall is crossed. The attractor flow methods are applied using
existence conditions for the BPS states on the endpoints of the flow lines which split when
a composite line flows into a wall. For N = 4 dyonic black holes the wall crossing of 1

4BPS
states is known to be determined by the Weyl denominator of a Borcherds-Kac-Moody
algebra. This has a different Fourier expansion in the different chambers, which represents
a jump in the degeneracies of black holes with specific charges.

In this work, analogs of these counting functions are found for N = 2 BPS structures. These
correspond to the Weyl denominator formulae in the case of ADE type Lie algebras, where
the root system describes the charges of the BPS particles. The resulting formulae contain
information about the spectra of BPS and framed BPS states in Weyl chambers within the
moduli spaces of these theories. The regions in the moduli space with fixed spectra are
found to be bounded by walls, including the Weyl chamber boundaries and an additional
wall of marginal stability. In some examples of uncoupled BPS structures this can then be
reproduced by the Stokes phenomena of the Borel summation of the topological string free
energy.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Wall-Crossing Phänomenen von BPS Zustän-
den in 4d N = 2 supersymmetrischen Quantenfeldtheorien, einschließlich Argyres-Douglas
und Seiberg-Witten Theorien. Das BPS Spektrum wird in den verschiedenen Regionen des
Modulraums bestimmt, die durch die “Walls of marginal stability” begrenzt werden. Dies
geschieht zunächst durch die Anwendung von Attractor-Flow Methoden und danach durch
die Herleitung einer erzeugenden Funktion mit Koeffizienten, die beim Überqueren einer Wall
sich verändern. Die Attractor-Flow-Methoden werden angewandt, indem die Existenzbedin-
gungen für BPS-Zustände an den Endpunkten der Flusslinien betrachtet werden. Diese Lin-
ien verzweigen sich, wenn eine Linie, die zu einem zusammengesetzten BPS-Zustand gehört,
in eine Wall fließt.

Für N = 4 supersymmetrische Schwarze Löcher mit elektrischer und magnetischer Ladung
werden die Wall-Crossing-Phänomene von 1

4 -BPS-Zuständen durch den Weyl-Nenner für die
Borcherds-Kac-Moody-Algebra beschrieben. Diese Funktion hat unterschiedliche Fourier-
Entwicklungen in den verschiedenen Weyl-Kammern. Dies repräsentiert einen Sprung im
Entartungsgrad der Schwarzen Löcher mit spezifischer Ladung. In dieser Arbeit werden
Analoga dieser erzeugenden Funktion für BPS-Strukturen in N = 2 supersymmetrischen
Theorien gefunden. Diese Analoga sind die Weyl-Nenner-Formeln für ADE Lie-Algebren, in
denen die Wurzeln die Ladung der BPS-Teilchen beschreiben. Mithilfe dieser Formeln kann
man Informationen über das Spektrum der BPS- und gerahmten BPS-Zustände ablesen. Die
Regionen des Modulraums, in denen die Spektren konstant sind, werden durch die Walls
begrenzt. Diese Walls umfassen die Grenzen der Weyl-Kammern, aber auch eine zusätzliche
Wall of marginal stability. In einigen Beispielen entkoppelter BPS-Strukturen lassen sich
diese Phänomene auch mit den Stokes-Sprüngen der Borel-Summierung der freien Energien
des topologischen Strings beschreiben.
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B Â1 changes in representation 184

B.1 Original generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.1.1 Changes in highest weight . . . . . . . . . . . . . . . . . . . . . . . . 185

B.2 A2 Weyl character changes in representation . . . . . . . . . . . . . . . . . . 187

B.2.1 Weyl denominator expansions . . . . . . . . . . . . . . . . . . . . . . 187



CONTENTS

C Integral representations of double gamma function 189

C.1 Derivation of relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.2 Writing relation as an integral representation . . . . . . . . . . . . . . . . . . 190



1 | Introduction

This thesis is concerned with the wall crossing of BPS structures that arise from BPS
states present in special 4d N = 2 QFTs. These theories also have a type II string theory
construction on a Calabi-Yau 3-fold. In this thesis a new generating function is constructed
that encodes these wall crossing phenomena. Wall crossing in general involves jumps in
the number of BPS states, and the associated BPS invariants, across a boundary within the
deformation space of parameters describing the theory. This occurs as composite BPS states
become unstable and decay into constituents. The boundary is called the wall of marginal
stability and the space of parameters describing the deformations of the theory is known
as the moduli space. Physically, for a QFT or string theory, this can be interpreted as a
deformation space of the low energy effective action or the space of couplings.

A BPS state is a special type of supersymmetric state that is annihilated by the supercharges.
There is a condition, known as the BPS bound, which is saturated from below by the BPS
states: their mass and the modulus of their central charges are equal, otherwise the mass
is greater. BPS states also have a geometrical description as D-branes arising from string
theory. In this case, one looks at the target space of the string theory in which the BPS
states are described by special submanifolds wrapped within this space. BPS states can be
considered topological data of a theory - they are topologically protected against quantum
corrections. This means that the number of states should not change under continuous
deformation of the moduli of a theory unless a wall of marginal stability is crossed. Therefore,
this has led to descriptions of strong/weak coupling dualities and has inspired a large body
of research looking for non-perturbative formulations of QFTs and string theories as well as
a description of black hole microstates.

An important result in the study of 4d N = 2 QFTs was that of Seiberg-Witten theory [1]
due to the exact description of the low energy effective action. This has later been found to
have a BPS spectrum represented by the full Â1 root system at weak coupling and just 2
basis states in the strong coupling region on the other side of the wall [2, 3, 4]. Subsequently,
similar results have been found for Argyres-Douglas theories [5, 6, 7, 8, 9], with ADE type
root systems describing the charges of the BPS states. The most basic example of wall
crossing involves the simple (also known as primitive) case representing a jump between 2
and 3 BPS states. One can interpret this as a composite BPS dyon splitting into electric
and magnetic constituents during wall crossing. This occurs when the central charges of the
BPS states, which are complex numbers, align on the wall of marginal stability.

1



1 Introduction 2

There is also an equivalent 2d description of this wall crossing that predated this [10] and was
further developed in [11, 3]. This involved counting solitons in Landau-Ginsburg theories
which are the analog of the 4d BPS states. The models themselves were constructed from [12,
13] massive deformations of superconformal points [14, 15]. Further important contributions
to the study of wall crossing were made by Gaiotto, Moore and Neitzke (GMN), first by
reducing wall crossing phenomena found in the 4d models to R

3⇥S1 [16], then by introducing
a new type of wall crossing [17]. This involved bound states of the original BPS states that
exist in the theory with a large core object. These combinations are called framed BPS states
[17, 18] and their walls are referred to as BPS walls. The new walls are of particular interest
as they can be organised into Weyl chambers and constrain the wall crossing behavior of
the original BPS states in the theory.

The BPS invariants in the N = 2 theories that are discussed in this thesis are found
by counting the states using BPS indices for the hyper and vector multiplets in the theory.
When embedded in string theory, they have also been found to have a description [19, 20, 21]
as topological invariants of the target spaces, such as Donaldson-Thomas (DT) [19, 22, 23]
and Gopakumar-Vafa (GV) [24, 25, 26, 27] invariants, which have been further related to
Gromov-Witten invariants for some examples in the DT-GW correspondence from MNOP
[28, 29]. They can therefore be encoded by particular functions known as the generating
functions of these invariants and can be read off from topological string partition functions in
specific examples. Wall crossing for these BPS structures has also been encoded in generating
functions by considering products of operators representing BPS states that match on either
side of the wall, as found by Kontsevich and Soibelman [30], and interpreted physically in
[16, 31, 32, 33, 34]. Furthermore, the jumps in the BPS indices can often be generated
simultaneously when crossing a wall using results known as the wall crossing formulae.
These are well known [35, 36] in the primitive and semi-primitive cases, the latter involving
bound states of a single BPS state with multiple copies of another [37, 34, 18, 38].

Conversely, one can also work backwards if the BPS invariants and their wall crossing
phenomena are known. One writes down a generating function for these invariants which
determines the BPS spectrum in every region of the moduli space. This then becomes a
candidate for a non-perturbative partition function for a generalised lattice of BPS states.
This direction of research is developed in this thesis for particular testing cases, given by
Seiberg-Witten and simple A1, A2 type Argyres-Douglas theories, with known patterns of
wall crossing. This should then be generalisable to other BPS structures such as those
described by ADE type root systems.

In parallel, BPS states have been counted for N = 4 black holes where the first microstate
description in terms of BPS states was given by Strominger and Vafa [39] for 5d black holes
on K3 ⇥ S1. Later the partition function for dyonic 4d black holes on K3 ⇥ T 2 was also
derived by Dijkgraaf, Verlinde, Verlinde [40] and built on by [41]. This partly followed the
older known computation [42] for the N = 2 BPS algebras of perturbative BPS states,
described by Harvey and Moore [43, 44], starting from 1996. The result of this was that the
partition function for dyonic black holes could be written as the weight 10 Siegel modular



1 Introduction 3

form known as the Igusa cusp form. This is also the Weyl denominator of a Borcherds-Kac-
Moody algebra and is extensively discussed by Gritsenko and Nikulin [45, 46, 47].

Since then, there has been extensive research on using this dyon counting formula to extract
degeneracies for particular charges [48, 49, 50, 51]. This is done by extracting Fourier
coefficients as well as by using a specific contour prescription for the different charges that can
be deformed into each other. The prescription must satisfy parity and S-duality constraints.
The dyons (which are black holes with multiple centers) can undergo wall crossing in that
they split into electric and magnetic constituents. This has been studied by Cheng and
Verlinde [52, 53] and further discussed in [54], first using the contour prescription in which
wall crossing happens as poles are crossed, and then by considering the jumps in a highest
weight of Verma modules. In this work this result is used to construct an analog for BPS
states in the 4d N = 2 theories.

The attractor flow on the moduli space of BPS solutions in supergravity is another important
concept in the study of wall crossing and has been worked on extensively in [55, 36, 56, 57, 58].
One can use existence conditions on the endpoints of the central charges to determine the
spectrum within each chamber and the wall crossing between the chambers. A BPS state is
excluded if its flow line terminates at a regular point in the moduli space. Wall crossing can
be seen here by the attractor flow line of a composite BPS state splitting into the flow lines
of the constituents at the wall. A BPS state can exist if the flow terminates at a singular
point where the central charge vanishes. This method is applied to Seiberg-Witten and
Argyres-Douglas theories in this thesis.

The central charges can also be used as arguments in the N = 2 analogs of the generating
function. In this case, the existence conditions for the BPS states then map onto counts of
BPS states in the generating function in the different regions of the moduli space. This is
what allows a generating function for a particular root system to count the BPS states of
distinct theories, with different central charges, but retaining the same BPS root system.
Finally, this thesis directly discusses connections between the wall crossing of BPS counting
functions derived here and non-perturbative topological string partition functions. In the
example of the resolved conifold with an Â1 root system [59, 20, 60] the free energies can be
expressed as a Borel transform and have been found [61] to take different values depending
on which ray the integral is taken along, hereby encoding the Jafferis-Moore wall crossing.

Contribution of this thesis

In the first research work in this thesis “Special geometry, quasi-modularity and attractor
flow for BPS structures” [62], included in chapters 7 and 8, we extend the attractor flow
literature [55, 36, 56, 57, 58] to the BPS structures of Argyres-Douglas A1, A2 models and
Seiberg-Witten theory. We use the solutions of the Picard-Fuchs equations to find the
moduli dependent central charges of the BPS states. This then allows the attractor flow
to be plotted using the gradient flow lines which are then continued through branch cuts
when necessary. The existence conditions at the ends of these lines then determine the BPS
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spectrum in the different chambers.

In the second work “Generating functions for N = 2 BPS structures”, presented in chapters
10 and 11 of this thesis, we generalise the results of Cheng and Verlinde [52, 53] to construct
an N = 2 analog counting function. When the cental charges are included in the argument of
this function, this then reproduces the BPS spectra in all regions of the moduli space for the
4d N = 2 QFT examples, including Argyres-Douglas theories with A1, A2 root systems, and
BPS structures with the affine root system Â1. This includes both Seiberg-Witten theory
and the D6-D2-D0 brane system on the resolved conifold described by Jafferis-Moore [37]
and further studied by [59, 63, 20, 61]. This counting function, as in the N = 4 examples,
is the Weyl denominator or character of a Verma module with the highest weight counting
the BPS states. This highest weight jumps when a BPS wall, in the form of a Weyl chamber
boundary, is crossed. The construction of the generating function should be generalisable
to ADE type Argyres-Douglas theories.



Outline of thesis

• The introductory chapter 2 introduces the concept of a BPS bound [64, 65] and the
history of the development of BPS states in super Yang-Mills (SYM) theory and string
theory. Seiberg-Witten theory [1] and Argyres-Douglas theories [5] are introduced.
The interpretation of the BPS states as D-branes [66], wrapped on cycles in the target
space of the string theory, is introduced on both the type IIA and type IIB side.

• Chapter 3 describes the relations between BPS state counts using indices and geometric
invariants [19] of the underlying target spaces including Donaldson-Thomas [22, 23]
invariants and their refinement [34, 67] for hyper and vector multiplets. This is then
used to explain the Konsevich-Soibelman [30] wall crossing formulae with the key
examples of wall crossing including the primitive case and that for Seiberg-Witten
theory.

• Chapter 4 reviews the background and development of the theory of quivers in the
context of counting BPS states [68, 69, 70, 4, 71]. The theory of quiver representa-
tions and mutations are discussed and it is shown how the spectrum of BPS states is
determined in the different regions of the moduli space. Interpreting the mutations
as Weyl reflections is of particular importance as these are later used in section 11 to
change the basis of positive roots in the generating function that is constructed. The
root systems of the quivers can be derived from BPS algebras [43, 44].

• Chapter 5 describes the formulae for the change of the BPS indices across a wall
known as the wall crossing formulae [36]. The primitive and semiprimitive examples
are reviewed. The concept of framed BPS state [17] is introduced, but following the
supergravity description [18]. Here, the walls for framed BPS states are known as BPS
walls and can be related to Weyl chambers of the associated root system describing
the states. In 5.4 the D6-D2-D0 system developed by Jafferis Moore [37] is reviewed
and written in terms of the roots of the affine Lie algebra Â1.

• Chapter 6 describes the Exact WKB method applied to the cubic curve.

• Chapters 7 and 8 include my contributions to the preprint “Special geometry, quasi-
modularity and attractor flow for BPS structures” [62]. We use solutions to the Picard-
Fuchs equations and the monodromies to determine the central charges for the BPS

5



1 Introduction 6

states in Argyres-Douglas A1, A2 and Seiberg-Witten theory. We plot the gradient flow
lines and use existence conditions to reproduce the spectra in the different chambers.

• In chapter 9 the BPS configurations and wall crossing phenomena in N = 4 black holes
are introduced in sections 9.1 and 9.2. In section 9.3 the derivation of the generating
function of dyonic black holes by Dijkgraaf, Verlinde, Verlinde [40] is reviewed and
described as a partition function of dyons. The wall crossing for the decomposition of
dyons is discussed in section 9.5 via the contour prescription.

• Chapters 10 and 11 describe a research project “Generating functions for N = 2 BPS
structures”. In chapter 10 we extract generating functions for subalgebras from the
N = 4 dyon counting formula and continue to apply the prescription for wall crossing
described by Cheng and Verlinde [52, 53] for the full generating function in terms of a
change in a highest weight of the Verma module. In chapter 11 we use this to construct
analog generating functions for N = 2 theories using their root systems. Specifically,
the D6-D2-D0 wall crossing 11.3 and Seiberg-Witten theory 11.4 for Â1. We also look
at the Argyres-Douglas A2 theory 11.5.

• Chapter 12 discusses the relation between the generating functions constructed and
topological string partition functions for uncoupled BPS structures, for example, on
the resolved conifold [61] and the A1 model. In this case, the Borel transform of the
free energy generates the wall crossing.

Publications

The work in this thesis resulted in the following manuscripts:

• M. Alim, F. Beck, A. Biggs, D. Bryan, Special geometry, quasi-modularity and attractor
flow for BPS structures, arXiv:2308.16854 [hep-th], 2023;

• M. Alim, D. Bryan, Generating functions for N = 2 BPS structures, to appear.



2 | BPS states and Argyres-Douglas

theories

A class of theories, defined on special loci in the moduli space of particular 4d N = 2 QFTs,
and associated to a Lie algebra, are known as ADE type Argyes-Douglas [5, 6, 7, 8, 9]
theories. In these models, the wall crossing phenomena for the BPS states are particularly
well understood, making them an ideal testing case for more general ideas about BPS
structures and wall crossing. There are several ways to construct Argyres-Douglas and
related gauge theory models from higher dimensional theories. One can use the constructions
to obtain information about these full theories simply by studying the Argyres-Douglas
model. Examples of this include a 10 dimensional type II string theory construction of ADE
type gauge theories [72, 73, 74, 75, 68, 76, 77], and Argyres-Douglas theories [8, 9], that has
developed since these models were originally derived. String theory constructions such as
these contain Dp-branes as submanifolds embedded within the target space, which describe
open strings with both Dirichlet and von Neumann boundary conditions [78], and give rise
to p + 1 dimensional worldvolume theories. Type IIA and type IIB string theories contain
branes with even and odd p respectively. They carry electric and magnetic Ramond-Ramond
(RR) charges and can be taken to represent the charged BPS states.

One can use the BPS spectrum, the set of existing states, to study the wall crossing. This
means that some BPS states are only stable in certain regions in the moduli space. The
boundary separating these regions is known as the wall of marginal stability. This condition
for stable BPS states is also known as ⇧-stability [70] 1. These BPS states then decay
into constituents when this wall is crossed. However, within these regions the number of
BPS states remain constant under variation of the moduli and can thus be considered a
topological quantity. In this thesis 2 types of supersymmetric BPS multiplets are described.
These include the hypermultiplet which describes scalars and fermionic matter, and the
vector multiplet which includes a vector boson.

1This is a generalisation of the µ-stability condition of vector bundles first described mathematically in
[79].

7
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2.1 Introduction to 4d N = 2 QFTs

There exist classes of Yang-Mills theories that contain such BPS multiplets and have also
led to significant physical contributions, for example, they have been used extensively for
building unification models. Yang-Mills (YM) theories [80, 81] can be represented by an
SU(N) gauge group or other compact, non-abelian Lie group. Importantly, there are also
supersymmetric SYM of this form which are interesting due to many exact results being
known. For example, 4d N = 2 gauge theories are a particularly interesting case to study
because these systems can be solved exactly at low energies. The theories with rank r gauge
group G have a holomorphic prepotential F(A), in r multiplets Ai, 2 which are chiral and
abelian. Perturbative quantum corrections to this prepotential exist only at one loop order.
At low energies an effective action for the quantum theory was put forward in the literature
[1, 66, 82, 83, 84] and can be written in N = 1 language as:

L =
1

4⇡
Im
h Z

d4✓
X

i

@F(A)

@Ai
Āi +

Z
d2✓(

1

2

X

ij

⌧ij(A)W
i

↵
W ↵j)

i
, (2.1.1)

W↵ represents a vectormultiplet, K(A, Ā) is the Kähler potential on the moduli space,
and ⌧ij(A) are the complexified effective gauge couplings.

This theory is determined by the prepotential F(A) such that

K(A, Ā) = Im
h@F(A)

@Ai
Āi

i
, ⌧ij(A) =

@2F(A)

@Ai@Aj
, AiD =

@F(A)

@Ai
, (2.1.2)

where AiD is the dual component under electric-magnetic duality. We have a charge lattice
� = �e��m for the U(1) charges, arranged into the vector (q, p), that is split into the electric
and magnetic sublattices. From this one can define a symplectic pairing on the lattice for 2
dyons �k 2 � (k = 1, 2), also known physically as the Dirac pairing

h�k, �li =
X

i

(pk)
i(ql)i � (pl)

i(qk)i , k, l 2 {1, 2} . (2.1.3)

It is also important to understand that this Lagrangian description only works at low energies
[1]. This is because electric and magnetic monopoles under the U(1) lattice charges are
mutually non local. This means that their symplectic product from (2.1.3) is non-vanishing.
Such a Lagrangian, as given in (2.1.1), can only ever contain local degrees of freedom - no
known duality can transform a purely electric lagrangian into one coupled to both electric
and magnetic monopoles whilst retaining Lorentz invariance.

2The index i labels generators of the Cartan subalgebra. ↵ are spinor indices which are suppressed on
the chiral multiplets.
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2.1.1 Moduli space

One can now introduce a set of complex numbers defining a coordinate on the moduli space
B, such that u = (u1, ..., ur) 2 B.3 This space parameterises the vacua of the theory, which,
in the case of an N = 2 gauge theory, is also known as the Coulomb branch or vectormultiplet
moduli space [85]. One can also use these moduli to specify a hyperelliptic curve that
realises the theory. In the classical theories [83, 84, 86] one obtains gauge symmetry at the
singularities of this curve which act as symmetry enhancement points. This is then broken
to U(1)r at a generic point in the moduli space u 2 B. Recalling the charge lattice, one
can consider this mathematically as a local system � over the base B containing the lattice
fiber �u ' Z

2r. Physically, this can be interpreted as the separate set of electric and dual
magnetic charges for each multiplet.

Theories with 1-dimensional moduli spaces

The focus of the research in this thesis is on one-dimensional moduli spaces, parameterised
by a single complex variable u, with a single set of electric and magnetic charges (q, p). The
multiplets discussed above (2.1.1-2.1.2) have scalar components given by a(u) and the dual
aD(u). The central charges of the BPS states can now be defined in terms of the electric
and magnetic charges as

Z�(u) = qa(u) + paD(u). (2.1.4)

One remembers that for BPS states the mass equals the modulus of the central charge. The
prepotential and central charges of the theory are determined by a Riemann surface, denoted
by ⌃u, called the Seiberg-Witten curve and can be considered part of a deformation family.
In this way one can define a specific theory from a specially chosen Riemann surface, which
can include various deformations of singularities. The electric and magnetic functions a(u)
and aD(u) in (2.1.4) are determined by period integrals on this curve over the cycles �1 and
�2 2 H1(⌃u,Z) such that

a(u) =

Z

�1

�u , aD(u) =

Z

�2

�u , ⇧ =

✓
aD
a

◆
2 �_ ⌦Z C, (2.1.5)

where ⇧ is the period vector and �u is a meromorphic differential on the surface chosen for
the particular theory one is considering. 4

3In general this can also be written as a polynomial in terms of the scalar fields in the multiplet � as
uk = Tr[�k].

4See sec. 7.2.2 for the specific curves studied in this thesis.
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Monodromies

The functions a(u) and aD(u) in (2.1.5) are in general multivalued such that if one takes
a path in the moduli space around a singular point s, each function can now be written
as a linear combination of the electric and magnetic functions before the path was taken.
This can be seen by crossing branch cuts in the moduli space. This is called monodromy
and there is a monodromy matrix Ms associated to each singular point. The matrix acts on
⇧t. In a non-local theory, the monodromies do not commute. One can take loops around
multiple singular points to derive relations between the monodromies, such that if one knows
the monodromies around a particular set of singular points one can compute those for the
remaining points. This is used extensively in the research on attractor flow presented in
chapters 7 and 8. One can now look at specific examples of theories.

2.1.2 Argyres-Douglas theories and their string theory

construction

In general an Argyres-Douglas theory [5, 6] is a supersymmetric QFT that arises from the
deformation of ADE type singularities on the curve. Argyres-Douglas points exist in the
moduli space at the points where the curves have cusps. An ADE type singularity can be
defined as an orbifold fixed point which is locally written as C

2/�. Here � ,! SU(2) is a
finite subgroup with an ADE classification. These quotient spaces are isomorphic to curves
with cuspoidal singularities at the origin. For example, one can look at a general An�1

theory as shown by [86] and further reviewed in [66, 71]. For these models the most general
type of deformation can be written in terms of the hyperelliptic curves

⌃u : y2 � xn +
X

0k<n

ukx
k = 0 �! y2 �WAn�1(x, u1, ..., un�1) = 0, (2.1.6)

where y2 � xn = 0 was the original An�1 singular curve now embedded in (2.1.6). 5

These singularities can also be resolved as ALE spaces, which provides a good way of visualis-
ing them. This stands for “Asymptotically Locally Euclidean” [87] space and is a hyperkähler
manifold. In this space the singularities are resolved as a set of Riemann spheres touching
in the form of a Dynkin diagram (see Fig. 2.1). Essentially, one now has spheres in place of
the initial singular points.

This can be done by including extra quadratic variables to the polynomial in the curve
5For full SU(n) SYM deformed by a dynamic scale ⇤ one must square the polynomial WAn�1(x, u1, ..., uk)

in (2.1.6) and obtains genus g = n� 1 hyperelliptic curves from the deformation of the singularity [66, 71,
84, 86].
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Part of
geometrically realised

Dynkin diagram

Further spheres
in general

......

Figure 2.1: Showing part of a general resolution of an ADE singularity with touching
spheres. The Dynkin diagrams can be drawn by connecting the red dots.

ADE type singularity

D2 branes wrapping 2-cycles in K3

ALE space

Embed in type IIA string theory

resolve singularity

D3 branes wrapping ALE space + 1-cycle in CY 3-fold

Embed in type IIB string theory

Figure 2.2: Embedding ADE type singularities in string theory.

containing the singular points e.g. WAn�1(x1, u1, ..., uk) such that this is replaced with

WAn�1(x1, u1, ..., uk) + x2
2 + x2

3. (2.1.7)

String theory construction

This form of resolution of the singularities has been very useful for further embedding
these spaces in higher dimensional theories, for example, by using ALE fibrations (see Fig.
2.2). For example, type IIA strings have been studied on a K3 manifold in the literature
[68, 72, 73, 74, 75], and reviewed in [66], where one considers BPS states as D2-branes
wrapping 2 cycles around the spheres. On the type IIB side the BPS states are represented
by D3 branes wrapping 3-cycles in CY 3-folds [76, 77, 9] given by the deformation families
Xu. For these 3-folds one can now define:

the central charge and mass Z�(u) =

Z

Xu

� ^ ⌦u ⌘
Z

�

⌦u , M�(u) =

Z

�

|⌦u| , (2.1.8)
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the BPS bound
Z

�

|⌦u| � |
Z

�

⌦u| , � 2 H3(Xu,Z), u 2 B, (2.1.9)

where ⌦u is a holomorphic (3,0)-form on the CY 3-fold. The meromorphic 1-forms �u in
(2.1.5), which are used to compute the period integrals over 1-cycles in the Riemann surface
realising the theory, are now reductions of this holomorphic (3,0)-form. This will be further
used in chapter 7 of this thesis to evaluate the attractor flow of the central charges.

Wall crossing

The BPS spectra and their wall crossing phenomena are particularly well understood in
the case of ADE type Argyres-Douglas theories because the charges of the BPS states are
represented by the roots of the semi-simple ADE Lie algebra. In these cases, there are
composite roots representing BPS states that combine the charges of the basis states. The
walls of marginal stability MS are now loci in this space of deformations of the singularity
where the composite roots split up. For 2 charges �1, �2 to combine, this condition is given
by the alignment of the central charges Z�1(u), Z�2(u):

MS�1,�2 :=

(
u 2 B |Z�1(u)/Z�2(u) 2 R

)
. (2.1.10)

Therefore, these examples become particularly good for testing general ideas about wall
crossing phenomena.

2.1.3 Seiberg-Witten theory

In [1] a 4d SYM theory was constructed by Seiberg and Witten with SU(2) gauge symmetry.
One can treat this theory according to the previous section 2.1.1 with complex 1 dimensional
moduli space. The full quantum theory, however, has particularly interesting behavior of its
BPS spectrum. When one writes down the electric and magnetic functions a(u) and aD(u)
one finds these have a monodromy group given by �(2), a congruence subgroup of SL(2,Z).
This allows the moduli space to be parameterised by the quotient of the upper-half plane
by this group: H

+/�(2).

In the weak coupling region these monodromies can be used to generate an infinite spectrum
of BPS states described by the root system of the affine Lie algebra Â1. This includes
infinitely many dyons, a monopole, and a W-boson. On the other hand, in the strong
coupling region only 2 basis states of this root system exist due to the wall of marginal
stability separating the regions. Here only one monopole and one dyon are left over.



3 | BPS structures and invariants

The BPS states in the theories discussed in the previous section 2.1 can in many cases be
counted in the different regions (or chambers) in the moduli space. This count of BPS states
can be used to derive geometric invariants such as Donaldson-Thomas (DT) [22, 23] and
Gopakumar-Vafa (GV) invariants [25, 24]. Physically, the DT invariants enumerate BPS
particles with spin in 4d N = 2 QFTs, the latter GV invariants can be found from the genus
expansion of the topological string free energy. If one lifts to M-theory in 11 dimensions the
GV invariants count electrically charged M2 branes. The research in this thesis develops a
new formulation for counting the BPS states in N = 2 QFTs and the string models they are
embedded in. However, to do this one must first reproduce the correct count and spectrum
of the BPS states in the different chambers and the associated geometric invariants, that
have been previously derived, using various formulations in the literature. These include the
quantum dilogarithm identities of [30], quiver descriptions [68, 69, 4, 88] and wall crossing
formulae [35, 36]. The various descriptions are reviewed in the following chapters 3, 4 and
5. In this chapter 3 the definitions of BPS invariants and their wall crossing are reviewed
through quantum dilogarithm identities, which are simple formulae that encapsulate the
wall crossing phenomena.

3.1 BPS structures and Donaldson-Thomas invariants

For theories with a string theory construction, BPS states can be counted by associating
various invariants to a target space X, which can be taken as the internal CY 3-fold. These
include BPS and Donaldson-Thomas invariants [19]. This formulation has been taken from
these physical theories and defined mathematically as a BPS structure by [21] 1. In general,
one can define a BPS structure as (�, Z,⌦), where � is the charge lattice, the central charge
Z : � ! C is defined as a homomorphism from the lattice to the complex numbers, and
⌦(�) 2 Q is the BPS invariant associated to the electric and magnetic charge � 2 �. This
can be determined by taking a trace on the Hilbert space of BPS states. The BPS invariant is
the same when one takes the opposite charge ⌦(�) = ⌦(��). Donaldson-Thomas invariants
were first described by [22, 23] in the mathematics literature but it was found by Joyce and

1This was based on the previous works [89, 90] and the stability structures of graded Lie algebras arising
from the charges in [30].
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Song [19] that they can be nicely mapped to the BPS invariants [19, 20, 21]

DT(�) =
X

�=m↵

1

m2
⌦(↵) 2 Q, (3.1.1)

where one has m 2 Z, so that when one takes � 2 � to be a point in the charge lattice
one still has a charge in the lattice after dividing by m. Donaldson-Thomas invariants were
originally understood mathematically as a count of (semi-)stable 2 sheaves on X in particular
rational combinations of cohomology classes defined by the Chern character of the sheaves.
One can invert the above expression (3.1.1) to write the BPS invariants in terms of the
Donaldson-Thomas invariants [21], where the function µ(m) is the Mobius function

⌦(�) =
X

�=m↵

µ(m)

m2
DT(↵) 2 Q. (3.1.2)

3.1.1 Refinement of BPS indices

The BPS invariants ⌦(�) can also be refined. This means that each invariant can be split
into parts, each part giving further information about the BPS configuration. To see this
one must look at the BPS invariant as a trace over the BPS Hilbert space HBPS. However,
one must first carry out a decomposition of the full BPS Hilbert space HBPS into that of
individual charges [34]. The Hilbert space now becomes HBPS = ��2�HBPS(�) [33]. In N =
2 supersymmetric QFTs (including gauge and effective supergravity theories) constructed
on a CY target space, BPS states in the additional 3+1 dimensions are defined by both
the 3-component of the angular momentum in space 2J3 2 Z [36, 33, 34] and the charge
� 2 � in the lattice. Hence, a BPS invariant described above for a state with a single set
of electric and magnetic charges � = (q, p), as described in section 2.1.1, can be refined by
decomposing it into invariants describing the possible spin components.

Trace on Hilbert space

All BPS configurations in N = 2 theories are supersymmetric multiplets, consisting of a
set of constituent states with a particular spin; the smallest possible example of such a
configuration is a hypermultiplet. The states in this hypermultiplet can be looked at as
particles in the 4d Minkowski spacetime which have spin around their center of mass within
the R

3 space. These spin degrees of freedom of the hypermultiplet are present in all possible
longer multiplets, therefore, to give a simple form for the refined index, they can be factored

2The stability condition used here is called Gieseker Stability and for algebraic curves is equivalent to
the previously mentioned stability condition on vector bundles.
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out of the BPS Hilbert space [36, 34, 67, 33]. The Hilbert space looks like

HBPS = ([
1

2
] + 2[0])⌦H0

BPS
, (3.1.3)

after the factorisation. Here the Hilbert space, denoted by H0
BPS

in (3.1.3), is defined as
the “reduced Hilbert space”, and is the space from which one can use the second helicity
supertrace [91] to extract the refined BPS invariants. The refined BPS index [33] can now
be computed in the form

⌦ref (�, u, y) = TrH0
BPS(�,u)

(�y)2J
0
3 =

X

p2Z

⌦ref

p
(�, u, y)(�y)p. (3.1.4)

Here ⌦ref

p
are refined BPS indices, meaning that they include the counts of the spin using the

variable y (which can in string theory on a compact CY 3-fold be interpreted as a spacetime
graviphoton background [34]). In this case, using the index formula (3.1.4) above, ⌦ref

p
takes

into account the spin degeneracy and can be read off from the y expansion of ⌦ref (�, u, y).
Here u is again the point in the moduli space, on which the chambers and any possible walls
of marginal stability can exist.

Examples of refined indices

In the case of a hypermultiplet we have

⌦ref

0 = 1, ⌦ref

p 6=0 = 0, (3.1.5)

and for a vector multiplet

⌦ref

�1 = 1, ⌦ref

1 = 1. (3.1.6)

This can alternatively be written as ⌦ref (�, u, y) = �y � y�1 [33]. The BPS invariants can
be recovered from the refined BPS invariants in the semi-classical limit. This can be taken
as y ! 1. In this case, we reproduce the BPS invariants for hypermultiplets and vector
multiplets, with charges �h and �v, respectively:

⌦(�h, u) = 1, ⌦(�v, u) = �2. (3.1.7)

These are the well-known (un-refined) BPS invariants that appear in the BPS structures
associated to the 4d N = 2 QFTs discussed in section 2.1.2 including Argyres-Douglas and
Seiberg-Witten theories. For example, the BPS configurations of Argyres-Douglas theories of
ADE type consist of BPS hypermultiplets, whereas Seiberg-Witten SU(2) theory contains an
additional vector multiplet boson. These BPS invariants can also be derived from a suitable
generating function in the cases for which this is known. For example, in the case of the
BPS structure of the resolved conifold, it has been shown by [19] that these BPS invariants
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can be derived from a generating function [59, 92] for non-commutative Donaldson-Thomas
invariants (NCDT). This is elaborated on in sections 4.3.4 and 5.4.

Relation to Gopakumar-Vafa invariants

There is a way to derive BPS invariants from a topological string free energy. This is done by
splitting it into contributions from constant and non-constant pseudoholomorphic maps into
the target space, the non-constant maps representing extended objects in the CY 3-fold X.
Physically, these are M2 branes (or D2-D0 boundstates in type IIA string theory) wrapped
on genus g curves within this space [24, 25]. This part of the free energy can be expanded
as

F (�, t) =
X

�,g�0,k>0

GV(g, �)
1

k

⇣
2 sin

⇣k�
2

⌘⌘2g�2

ekt� , (3.1.8)

where � is the topological string coupling, � 2 H2(X,Z), and t� is the associated Kähler
parameter. GV(g, �) are the Gopakumar-Vafa invariants, where those of genus-0 have been
found to correspond to the BPS invariants of the form ⌦(±�, n) = GV(0, �), n 2 Z, in some
examples, such as the resolved conifold, and have been conjectured [26, 27, 19] to correspond
to such BPS invariants for general CY 3-folds.

3.1.2 BPS invariants and wall crossing from quantum dilogarithms

It is also interesting to look at wall crossing in terms of the BPS invariants. For BPS states
that are only stable in certain regions of the moduli space we expect the BPS invariants
to vanish when the state decays into its constituents. In this case, it is useful to have a
simple equation which describes the decay process of a BPS state across a wall of marginal
stability in terms of its charges, and also encodes the BPS invariants of the states involved.
Fortunately, such a formula has been introduced by Konsevich and Soibelman [30] in terms
of products of special functions called quantum dilogarithms. Here the product on one
side of the wall of marginal stability should match that on the other with the exponents
corresponding to BPS invariants. The wall crossing is also described by [30] in terms of
“motivic” DT invariants, which were later shown by Dimofte, Gukov and Soibelman [34, 33]
to correspond to the refined DT invariants discussed here in the previous section 3.1.1.
These wall crossing formulae can be arranged to show a wall crossing relation in the Argyres-
Douglas A2 [5] and Seiberg-Witten [1] theory. The quantum dilogarithm function [33, 93, 94]
can be defined as:

E(x) =
1X

n=0

(�qx)n

(1� q)...(1� q)n
=

1Y

i=0

(1 + qi+
1
2x)�1, (3.1.9)
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BPS invariant ⌦(�)

Donaldson-Thomas invariant DT(↵)

Map using Mobius functions

genus 0 Gopakumar-Vafa invariant GV

DT-GV correspondence

Refined BPS invariants ⌦p(�)

decompose into spin contributions

Figure 3.1: Diagram showing all the geometric invariants that arise from the BPS state
count.

where x is a quantum operator such that for any two x1, x2 the relation x1x2 = qx2x1 is
satisfied, and x12 is defined by x12 = q�

1
2x1x2 = q

1
2x2x1. The parameter q 1

2 = �e~ describes
the quantum deformation.

To write down a wall crossing formula one must first think about what must be substituted
into the quantum dilogarithm (3.1.9). For this we must use the quantum operators described
above to construct a general charge lattice � spanned by �1, �2. For this one can define a
quantum torus algebra. This is constructed by quantising the complex torus T = �_ ⌦ C

⇤.
In this case, one obtains the generators of the algebra ê�1 , ê�2 (and ê0 = 1) with �1, �2 2 �.
This algebra is associative but non-commutative [30, 34]

ê�1+�2 = q
1
2 h�1,�2iê�1 ê�2 ,

[ê�1 , ê�2 ] = (q
1
2 h�1,�2i � q�

1
2 h�1,�2i)ê�1+�2 . (3.1.10)

Now this can be substituted into the quantum dilogarithm from [30, 33] using functions of
the form

Amot

�
:= U� =

Y

p2Z

E((�q
1
2 )pê�)

(�1)p⌦ref
p , (3.1.11)

where ⌦ref

p
are refined BPS indices from section 3.1.1. Amot

�
can be understood as elemets

of the quantum motivic torus. Now these are the functions that obey the wall crossing
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formula - the product over the charges on one side of the wall should match that on the
other. This is clear in the following 2 examples 3.1.2 and 3.1.2 below. For a 2 dimensional
electric and magnetic charge lattice, the generators of the form ê� can be written in terms
of the quantum operators x1 and x2. 3

Seiberg-Witten theory

Now we look back to the theories from sections 2.1.2-2.1.3 and compare the BPS invariants
for the states in these theories to the exponents of the quantum dilogarithms in the wall
crossing formula. It should be possible, using the operators in (3.1.11), to arrange the quan-
tum dilogarithms into a product relation so that the exponents of the quantum dilogarithms
on the left-hand side of the equation represent the BPS invariants on one side of the wall of
marginal stability and those on the right-hand side represent those on the other. One can
start by looking at the case for Seiberg-Witten SU(2) theory. For this example [33], we can
write the functions U�, for � = n�1 +m�2, as:

Un,m = E(q�
nm
2 xn

1x
m

2 ) =
1Y

i=0

(1 + qi+
1
2�

nm
2 xn

1x
m

2 )
�1, (3.1.12)

U2,0 = E(�q
1
2x2

1)
�1E(�q�

1
2x2

1)
�1 =

1Y

i=0

(1� qi+1x2
1)

�1
1Y

i=0

(1� qix2
1)

�1. (3.1.13)

The first expression in (3.1.12), involving Un,m, is a general expression for any BPS hy-
permultiplet, and can be taken to be the dyons found in Seiberg-Witten theory such that
(n,m) = (2k, 1), (2k � 2,�1), k 2 Z. The second expression for U2,0 can be interpreted as
the vector boson in Seiberg-Witten theory.

The next step is to look at the wall crossing encoded as a product relation. The functions
Un,m can be written in a way that represents this wall crossing and might also be formulated
as a generating function. This takes the form

U2,�1U0,1 = U0,1U2,1, U4,1...U2,0...U6,�1U4,�1U2,�1, (3.1.14)

where one can clearly see the wall crossing in Seiberg-Witten theory, with the spectra on
both sides of the wall in equation (3.1.14) being represented by the product of operators.
On the left hand side of (3.1.14) we see the charges of a hypermultiplet monopole and
dyon (0, 1), (2,�1) represented because these are the only BPS states existing on this side
of the wall, whereas on the other side we have the full infinite spectrum including the
vector multiplet boson (2, 0) in addition to the infinite spectrum of dyons with charges
(2k, 1), (2k + 2,�1), k 2 Z.

3It is also important to note that for a general generator in the lattice we have ên�1+m�2 = q
�nm

2 ê
n

�1
ê
m

�2
.
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Argyres-Douglas A2 theory

Such a relation also exists for the Argyres-Douglas A2 theory. This can also be used as
another opportunity to show a relation between the quantum dilogarithm operators and a
Konsevich-Soibelman wall crossing formula [30]. In this case, the relation corresponds to
the pentagon identity, first described in [93], which can be written as

E(x1)E(x2) = E(x2)E(x12)E(x1), (3.1.15)
U1,0U0,1 = U0,1U1,1U1,0,

where this is also the formula for primitive wall crossing. Equation (3.1.15) above then
represents the most basic wall crossing process whereby a hypermultiplet dyon of charge
(1, 1) decays into an electric and magnetic monopole of charges (1, 0) and (0, 1) respectively.
Hence, one can see the left-hand side the product representing the 2 basis particles whereas
the right-hand side is a triple product representing 2 basis states and the composite.



4 | BPS quivers in N = 2 QFTs

There is a class of supersymmetric QFTs with a BPS spectrum that can be described by
a diagram called a quiver. This consists of a set of nodes connected by arrows. Quiver
descriptions arose in the context of string theory to study D-brane systems that were used to
geometrically engineer specific supersymmetric QFTs as worldvolume theories [68, 95, 96].
The spaces that were initially used for the construction of the quiver include the ALE
spaces, which, as one can remember from section 2.1.2, are resolutions of ADE type orbifold
singularities (remember Fig. 2.1) of the form C

2/�, that are non-compact and hyperkähler.
� being the finite subgroup of SU(2). Quiver descriptions were subsequently found in the
literature for the BPS states in ALE fibrations. Examples include the non-compact Calabi-
Yau given by OP2(�3) in [69] and type IIA string theory models close to the orbifold points
of C2/ZN [88]. In these cases, quiver representations can describe particular BPS states.

Because of these results, many supersymmetric QFTs that are embedded in these string
theory constructions have subsequently been found to have a quiver description for their
BPS states. This includes the Argyres-Douglas theories with ADE type root systems. It
also applies to gauge theories containing massive hypermultiplet states [97] and other families
of theories 1. There are methods that can be used to study wall crossing using a quiver i.e.
to generate the spectrum of existing BPS states in different chambers in the moduli space.
For example, such methods include using quiver mutations as well as the representation
theory of quivers. These were reviewed in [71] and further worked on in [4, 99]. This is
covered here in sections 4.2 and 4.2.5 respectively.

4.1 Construction of quivers

When one looks at 4d N = 2 theories such as those in section 2.1 a quiver description can
be constructed by considering the coulomb branch moduli u 2 B again, which parameterize
the masses and coupling constants. One remembers that in general, for a particular value of
u, the gauge group splits into U(1)r, r = rk(G) and one has the BPS lattice � describing the
electric and magnetic charges. (In general the lattice can also contain flavor charges with
symmetry of rank f . The total rank of the lattice then becomes 2r+ f). The central charge

1For example, those that can be constructed by wrapping M5 branes on Riemann surfaces with punctures
[98].

20
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in this context is defined as a homomorphism from the lattice into the complex numbers
Z(u) : � ! C.

To build a quiver Q for a particular theory, one must first take into account that the theory
contains both particles and antiparticles. If one defines the spectrum of particles to have
central charges in a chosen half plane H

+ then the antiparticles have their central charges
in H

� (see Fig. 4.1 for an example). The theories we are looking at have CPT invariance
which means that every particle has a corresponding antiparticle with opposite charge. To
draw the quiver [4] one must first identify a basis of BPS hypermultiplet states that have
central charges in a chosen half-plane. This is the minimum number of linearly independent
states (2r + f) from which one can generate the BPS spectrum. If one labels the basis �i
then all charges in the lattice can be written in the form:

� =
2r+fX

i=1

ni�i, ni 2 N
+. (4.1.1)

Now a quiver Q can be drawn using the following rules:

(i) For every basis state �i one must include a node.

(ii) Take the inner product of the basis states [96, 3, 4, 71] h�i, �ji for all distinct �i, �j.
This should correspond to the number of lines between the nodes labelled by �i and
�j in the direction j ! i. These lines should only be drawn if h�i, �ji > 0.

One can use the quiver to describe general composite BPS states of the form: � =
P

i
ni�i.

For this one labels the nodes with i and arrows with b. For this description there is a gauge
group U(ni) at the node i and a bifundamental matter field Aij for every arrow between i
and j. Hence, we now have a full gauge group from the product and matter fields of the
form [4, 100]:

Gauge group :
Y

nodes i

U(ni), Matter fields :
M

arrows b

Ab

ij
. (4.1.2)

4.1.1 Construction of quiver moduli space

Now that we have defined the gauge group and matter fields one can look for the ground
states of the supersymmetric quantum theory by determining whether the associated quiver
moduli space exists. To do this for such a quiver construction one must now switch to
the Higgs branch, which is the moduli space of N = 2 hypermultiplets [85]. To construct
a suitable moduli space, one must define, firstly Fayet-Iliopolus (FI) terms denoted by ✓i
[70, 4, 100]. These parameters are determined by the central charges of the basis particles
as the U(1) charges at the nodes of the quiver couple to them. In the cases that the central
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cone of particles

cone of anti-particles

H
+
1

H
�
1

Z�2(u) Z�1(u)

�Z�2(u) �Z�1(u)

Z�1+�1(u)

�Z�1+�1(u)

Figure 4.1: Example showing a cone of particles in the upper half-plane.

charges are closely aligned one can approximate the FI terms as

✓i = |Z�i(u)|(argZ�i(u)� argZ�(u)). (4.1.3)

In the general case, one can write down a D-term equation of motion [4, 88] for every node
existing within the quiver

X

arrows leaving i

|Ab

ij
|2 �

X

arrows entering i

|Ab

ki
|2 = ✓i. (4.1.4)

Finally, in the cases where a quiver contains loops, the theory contains a function known
as the superpotential W . This superpotential is holomorphic and has various properties
including gauge invariance. Its inputs are the fields Ab

ij
. It is not determined by the quiver

but has equations of motion [88, 4] that come from the F-term. These are

@W
@Ab

ij

= 0. (4.1.5)
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Form of moduli space

Now, using this information, one can write the moduli space of the BPS states M� on the
Higgs branch. If in general we have the gauge groups U(ni) (from (4.1.2)) for each node,
the moduli space one looks for when considering a particular BPS state � is the solution
space of the above equations quotiented by the full gauge group [4]. This then becomes

M� =

(
Ab

ij

�����
@W
@Ab

ij

= 0,
X

arrows leaving i

|Ab

ij
|2 �

X

arrows entering i

|Ab

ki
|2 = ✓i

) . Y

i=1

U(ni).

(4.1.6)

If this moduli space exists for a particular charge so does a corresponding BPS state. If one
wants to determine the degeneracy of such states one needs to look at the possible spins.
This information can be extracted from the cohomology of M�. The moduli space M� is
a Kähler manifold. For Kähler manifolds there exists a special way to decompose the de
Rham cohomology into forms constructed as an exterior product - a power of the Kähler
form further multiplied by a kernel under the product with another power of this form. This
is called the Lefschetz decomposition (see e.g. [101]). There are Lefschetz decompositions
of the cohomology of the moduli space M� that can be written as representations of SU(2).

Constructing the BPS multiplets

The irreducible representations then become the BPS multiplets. However, if one is to
consider all the spins, one must remember from section 3.1.1 that there is an additional
hypermultiplet from the spin in spacetime that one must tensor this SU(2) with 2

Spin = Lefschetz ⌦
 h1

2

i
+ 2[0]

!
. (4.1.7)

The factor of 1
2 being the intrinsic spin of the particle. If one just considers the spin from

the perspective of the moduli space, the hypermultiplets have a Lefschetz multiplet with 0
length (in this case the moduli space M� is just a point) whereas vector multiplets have
length 2 (for example for M� ⌘ P

1). In general, one can read off from (4.1.7) above that for
a moduli space M� of complex dimension d a BPS multiplet always exists with spin d+1

2 .
The most general equation for the dimension of the moduli space developed in [68, 4, 97] is

d =
X

A
b
ij

(ninj)�
X

nodes i

n2
i
� (no. F-term constraints) + 1, (4.1.8)

2This has been used both to determine the dimensions of moduli spaces as well as to define refined BPS
indices [4, 36, 34, 33, 67].
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where the ni come from the gauge groups at the nodes. This is derived by counting the
degrees of freedom of the fields Ab

ij
and subtracting those for the gauge group and the

constraints imposed by the F-term. The extra +1 in (4.1.8) is added at the end to take into
account an overall diagonal U(1)d 2 factor because bifundamental fields do not obtain an
extra charge if one can rotate all gauge factors simultaneously.

4.2 Quiver descriptions

There is an alternative way of looking at this problem. This works by solving the equations
for the F-term constraints (4.1.5) and taking a quotient by the gauge group

Q
i
GL(ni,C),

where this is now complexified relative to that shown in (4.1.2). This is also another way
of constructing the moduli space M� in (4.1.6), for which one can also define stability
conditions. This description of the problem can now be formulated in the language of
quiver representations. These have been well understood mathematically [102, 103, 104]
in terms of maps between vector spaces. A good overview of the connection between the
mathematical and physical interpretation, including writing the maps as morphisms between
categories, is given in the book on mirror symmetry [105].

4.2.1 Representations and subrepresentations

Definition 4.2.1. [4, 88, 97] To define a quiver representation R, associated to � =
P

i
ni�i

one must choose a complex vector space C
ni at every node of the quiver and also a set of

linear maps Ab

ij
: Cni ! C

nj defining the arrows between the nodes. Physically, this has been
interpreted as the field configuration in a vacuum, where one has constant bi-fundamental
fields Ab

ij
(that still satisfy the F-term constraints). One can use their vacuum expectation

values, VEVs, to form the maps between the nodes of the quiver.

Definition 4.2.2. [4, 88, 97] Next one can define a subrepresentation S ⇢ R by considering
a complex vector space contained in the one used to define the quiver representation C

mi ⇢
C

ni , and suitable linear maps at every arrow, that map these subspaces at the nodes to each
other ab

ij
: Cmi ! Cmj . This constitutes a subrepresentation if all possible diagrams, of the

form shown below, commute:

C
ni C

nj

C
mi C

mj

A
b
ij

a
b
ij

For every quiver representation R, one must determine if it is stable with respect to the
subrepresentations S and satisfies the conditions given by the D-term equations of motion.
This is typically done by considering the central charges.
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Stability of representations

One must remember that a quiver representation R, with the complex vector spaces given
by C

nj , represents a charged BPS state of the form � =
P

i
ni�i with central charge Z�(u) =P

i
niZ�i(u). To construct a quiver description, one must have a cone of these central charges

in a chosen half plane. A subrepresentation S ⇢ R is thus a state, or linear combination of
states, that form a constituent of this composite and becomes a decay product at the wall of
marginal stability.3 One can denote a representation and subrepresentation R and S with
charges �R, �S and assign the central charges Z�R(u), Z�S(u) respectively. It can easily be
seen that the nodes have no subrepresentations and hence are always stable. These give a
single hypermultiplet.

A general representation R is stable under decay into a subrepresentation when for every S
(excluding the trivial cases of 0 and R)

arg (Z�S(u)) < arg (Z�R(u)), (4.2.1)

before deacy

argZ�1(u)

argZ�1+�2(u)

Figure 4.2: Example of representation before decay showing the larger argument.

so that we again have the condition of alignment of the central charges for wall crossing
from section 2.1.2. In is interesting to note that close to alignment this condition can be
written in terms of the equations of motion (4.1.3) for the D-term [4]. One can now also
reformulate the moduli space (4.1.6) as

M� =

(
R = {Ab

ij
: Cni ! C

nj}

�����
@W
@Ab

ij

= 0, R has ⇧ stability

) . Y

i=1

Gl(ni,C).

(4.2.2)

3The stability under this decay is again called ⇧ stability.
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after decay

argZ�1(u)

Figure 4.3: Representation after deacy with the central ray now absent.

4.2.2 Quiver mutations and dualities

A quiver description requires a cone of central charges in a chosen half plane. Other than
the wall of marginal stability, there is another kind of wall in the moduli space where this
condition breaks down (these are often referred to as “walls of the second kind” [30, 4]). In
this case, one can no longer construct the quiver on the other side of this type of wall. This
occurs when at a point in the moduli space the imaginary part of the central charge for a
particular BPS state becomes negative

Im(Z�(u)) > 0 �! Im(Z�(u)) < 0. (4.2.3)

When this occurs, the quiver description breaks down, and one must choose a different
quiver with a new basis of charges that have central charges with a positive imaginary part.
The transformation that acts between the quivers is known as a quiver mutation. Physically
these mutations represent Seiberg dualities [106, 107, 108] which are S-dualities of the low
energy theory that can exchange electric and magnetic charges. This is formulated in [109]
for the ADE examples.

Change of basis

Alternatively, one can use a different quiver to describe a new basis for the same charges
at the same point in the moduli space. In order to construct such a quiver one has to have
a cone of particles in the chosen half plane H

+, however, one can simply rotate the half
plane such that some particles become antiparticles in the new half plane (see Fig. 4.4 for
an example). Then one can choose a new basis of charges such that all particles again exist
within the new half plane: this change of basis is the quiver mutation.

Transformation of charges

A quiver mutation is possible due to the CPT invariance of the theory such that the particles
and antiparticles can be exchanged. For example, take a particle with charge �1 where the
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cone of particles

cone of anti-particles
H

+
2

H
�
2

Z�2(u) Z�1(u)

�Z�1(u) �Z�2(u)

Z�1+�1(u)

Z��1��1(u)

Figure 4.4: A change in the definition of the upper half-plane H
+
2 also generates a change

of basis of particles or quiver mutation.

imaginary part of the central charge changes sign. One now looks for a dual quiver that this
quiver can be mapped to: Q ! Q0. In this case, one must use the following basis change so
that this charge is mapped to its negative

�01 = ��1. (4.2.4)

The other BPS states become [4, 71, 109]:

�0
i
=

(
�i + h�i, �1i�1, for h�i, �1i > 0,

�i, for h�i, �1i  0.
(4.2.5)

From this information in (4.2.4) and (4.2.5) a new quiver can be constructed. This new
quiver Q0 has the same nodes as the original. It has arrows, now encoding fields of the form
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A0
ij
, that take the place of the original arrow.

These rules should be sufficient to mutate the quivers with 2 nodes and no superpotential
that are investigated in this thesis. The quiver mutations (4.2.5) can also be described
as Weyl reflections when one constructs Weyl chambers from the basis of charges. This
will become important later in chapter 11 as when one looks at potential new generating
functions such as the Weyl denominator or Weyl character one must be able to distinguish
these mutations from an actual change in the number of BPS states.

4.3 Examples

Now one can look to specific simple examples where the quiver representations for the BPS
states, mutation sequences for the spectrum, and the possible inclusions of subrepresenta-
tions are known. Here we can return to the Argyres-Douglas and Seiberg-Witten theories
from sections 2.1.2-2.1.3. The wall crossing for these theories was already shown in terms of
quantum dilogarithm identities in section 3.1.2 but this can be further demonstrated here.
This can be done by looking at inclusions of quiver subrepresentations into the represen-
tations for these models or by using quiver mutations to generate the spectrum on either
side of the wall of marginal stability. Here we show the quiver for each example and explain
how the spectrum is determined in all chambers from a mutation sequence or by using the
representations and the subrepresentations. Here the latter have the interpretation as decay
products of a composite BPS states.

4.3.1 Argyres-Douglas A1

This is the simplest possible BPS structure that one can represent with a quiver. It is a single
BPS hypermultiplet with charge �. In this case, one can define the quiver representation
simply by a single complex vector space: C. There cannot be any subrepresentations for
this, meaning that this remains stable everywhere in the moduli space. The quiver itself is
just a single node with no arrows:

�

4.3.2 Argyres-Douglas A2

This is the first BPS structure that undergoes wall crossing. For this example, the theory
is described by a quiver with 2 nodes. This is drawn using the rule for drawing arrows with
the product h�2, �1i = 1, where �1 = (1, 0) and �2 = (0, 1). There is one arrow labelled as
b1 between them:
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�1 � � �2

b1

In this case, it is possible to decay into subrepresentations which can be written as inclusions
of the quiver representations shown below. The possible subrepresentations include:

C C

0 C

as well as,
C C

C 0
.

The condition for the decay of this representation into these subrepresentations is that of the
real ratio of the central charges. It is also possible to generate the spectrum of this theory
using quiver mutations. On one side of the wall of marginal stability one can generate just
the basis states - the electric and magnetic monopoles and their antiparticles ±�1,±�2. On
the other side one can also generate the sum and its antiparticle ±(�1 + �2) - the dyon in
the theory.

4.3.3 Seiberg-Witten theory

In this well known example, the quiver (4.3.3) is found extensively in the literature [3, 4,
33, 97, 100, 2] and has 2 nodes but also 2 arrows labelled as b1 and b2. These are obtained
following the rule that there must be h�2, �1i = 2 edges between the nodes, where the charges
are given by �1 = (2,�1) and �2 = (0, 1):

�1 � � �2

b1 b2

This again undergoes wall crossing as the central charges align. On one side of the wall of
marginal stability there are infinitely many ways to mutate this quiver (4.3.3) generating
the full spectrum of Seiberg-Witten theory at weak coupling with charges k�1 + (k + 1)�2,
(k + 1)�1 + k�2 and their antiparticles. This includes the infinite spectrum of dyons, a
monopole, and a W-boson. The W-boson is found as the accumulation ray of the mutated
charges given by the sum �1 + �2 and its antiparticle. On the other side the mutations can
only generate the basis states �1, �2 and their antiparticles. These being the dyon and the
monopole.
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4.3.4 Resolved conifold

We now know that quivers describing the BPS spectra of Argyres-Douglas theories are
constructed from the resolution of ADE type singularities [71]. However, there are also
other models that have a quiver description arising from the resolution of a singularity. An
example of this is the resolved conifold, which, as with the case of the quiver discussed for
Seiberg-Witten theory, has multiple arrows. This is formed by a non-commutative resolution
of the conifold singularity, a singular point in the 3-fold which can locally be written as
Z = {x1x2 � x3x4 = 0} ⇢ 4. Here it is the Calabi-Yau algebra 4, resulting from this
resolution [59, 111], that is non-commutative. This can be represented by a quiver, [19, 59]
with 2 vertices Q0 = {�0, �1}, and 2 pairs of edges in opposite directions between the vertices
b1, b2 : �0 ! �1 and c1, c2 : �1 ! �0. In this final example, the quiver can be depicted as

�0 � � �1

b1 b2

c1 c2

Physically, this quiver describes D2-D0 branes within the resolved conifold. This results in
a quiver quantum mechanics with no wall of marginal stability, although the same combi-
nations of charge vectors represent the BPS states as in the full spectrum of Seiberg-Witten
theory. If one wants to include a magnetic charge in the model one can wrap a D6 brane
around the entire conifold. From the D2-D0 states bound to this D6 brane, one can now
write down framed representations for this quiver (4.3.4) (which pair the representations
with a map to a vector space which is fixed and graded [112]) 5 that can become unsta-
ble. This is also an example of a quiver with a superpotential as it has closed loops. This
superpotential is in general given by the functions on the edges (if we write them, using
the arrow labels, as b1, b2, c1, c2), which can be written as W = b1c1b2c2 � b1c2b2c1. Later
in sec. 5.4 it will be shown, if the magnetic D6 brane is included, how one can derive the
BPS invariants from this resolution by defining a partition function with non-commutative
NCDT invariants as its expansion coefficiants.

4A Calabi-Yau manifold can be re-formulated as a polynomial algebra following Ginsburg [110] and can
have properties such as associativity and non-/commutativity.

5These were first constructed by Nakajima [113] to define quiver variaties. They will also become impor-
tant for understanding the framed BPS states in sec. 5.3.
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BPS states

There are ways of computing the change in the BPS index and the refined BPS index across
a wall of marginal stability. These are known as wall crossing formulae and can be derived
by looking at the Hilbert space of the composite BPS state and considering all the possible
decompositions into constituents. Then one must find suitable tensor products of the Hilbert
spaces of the constituents and then sum over the possible decompositions correctly [35, 36].
One can then calculate the change in the indices. This has been used extensively in the
split attractor flow literature, which will be discussed later in detail in chapter 7 of this
thesis. Whenever such a flow line hits a wall of marginal stability, for example in [36], BPS
indices of composite states can be computed by taking products of constituents comprising
the split flows. This has been used and extended for many examples of wall crossing in
[114, 115, 116, 18].

These results are well understood for the simple case of a composite state splitting into 2
basis states, known as primitive, and also semi-primitive case of n copies of one state bound
to another, where prescriptions exist for the change �⌦(u, �, y) and �⌦(u, �) across a wall.
In this chapter 5 the examples of the primitive and the semi-primitive wall crossing formulae
are reviewed as well as the relation to BPS galaxies of bound states consisting of a heavy core
charge and an orbiting charge. This is demonstrated for an example from Jafferis-Moore
[37] of a heavy D6 brane bound to configurations of D2/D0 branes.

5.1 Primitive wall crossing formula

There is a well known relation for the change in the BPS index ⌦(�, u) in N = 2 theories
at a point u within a chamber in the moduli space just after crossing the wall of marginal
stability at ums. This holds when 2 constituent states, with charges �1, �2, which cannot be
decomposed further, combine into a composite state with charge � = �1+�2. This is known
as the primitive wall crossing formula and is constructed from the fact that the Hilbert space
for the composite state is a tensor product of that for the constituents [35]. The formula

31
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takes the form [36, 37], for the BPS invariants, of the equation

�⌦(�, u) = (�1)h�1,�2i�1|h�1, �2i|⌦(�1, ums)⌦(�2, ums). (5.1.1)

This can be generalised to the refined BPS invariants from section 3.1.1 if one includes the
additional parameter y

�⌦(�, u, y) = (�1)h�1,�2i�1ch|<�1,�2>|(y)⌦(�1, ums, y)⌦(�2, ums, y), (5.1.2)

where the character ch|h�1,�2i|(y) is of a representation of SU(2) with a dimension |h�1, �2i|
of the form ch|h�1,�2i| = ch⇢|h�1,�2i|

1. This takes into account the so(3) spin in spacetime of the
electromagnetic field of the particles, given by J�1,�2 =

1
2(|h�1, �2i � 1|). If there is only one

decay pathway of a composite BPS particle into its constituents, of the form � = �1 + �2,
then this is the formula that should be applied.

5.2 Semi-primitive wall crossing formula

Now we look for a wall crossing formula for states with charges of the form �c + n�h. This
is a special type of configuration where parallel charges, known as halo charges, bind to a
core on a sphere of fixed radius (see Fig. 5.1). There is one wall at which infinitely many
electric halo charges, of the form n�h, bind to a single core monopole charge �c. A good
example of this is the case of infinitely many D0 branes binding to a D6 brane, with large
mass, in the resolved conifold. One can look for an equation describing the possible BPS
indices for the states, and how they jump, as the halo configurations become stable at the
wall. This allows one to compute the change in the BPS indices for all n. This is known as
the semi-primitive wall crossing formula first derived by Denef and Moore [36] and applied
in [37, 34, 18, 38]. In general, the semi-primitive formula can be described by a sum over
the changes in the BPS indices under wall crossing. This is given by

⌦(�c; u) +
X

n�1

�⌦(�c + n�h; u)X
n

�h
= ⌦(�c; ums)

Y

k�1

(1� (�1)kh�c,�hiXk

�h
)k|h�c,�hi|⌦(k�h;ums),

(5.2.1)

where one introduces the variable X� to encode the charges such that it obeys the condition
X�1+�2 = X�1X�2 . These are coordinates on a fiber Tu of the complex torus T = �_ ⌦ C

⇤

from (3.1.10) but this time just in the semi-classical limit [16]. If the basis in the charge
lattice is given by �i such that Xi := X�i , a general charge in the spectrum of BPS states
can be written in the form X� =

Q
i
Xni
�i

.

This semi-primitive wall crossing formula (5.2.1) can be constructed just as in the primitive
case by considering the products of Hilbert spaces. Indeed, one can start by considering a

1
⇢|h�1,�2i| is the highest weight.
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Hilbert space consisting of the core charge �c and the single halo �h. However, we remember
that in the semi-primitive case we must generalise to charges of the form �c+n�h, with core
�c, to which multiples of the halo charge n�h become bound to as the wall is crossed. The
changes in the BPS indices can be seen most clearly by considering the product step by step
and then using it to construct a generating function in the variable X�.

�c

n�h

halo charges around a large core

Figure 5.1: Core and halos.

Now one can proceed to construct the generating function by starting to use the Hilbert
space products [117]. As there are now multi-particle halo states, one must include the
internal Fock space of bosonic and fermionic creation and annihilation operators, to count
the halo states present for a particular charge. Then one takes suitable products of the
contributions of the individual charges that are active. Using the new variables X�, defined
here, one can expand the contribution of these factors to the BPS invariants in terms of the
generating function

GHalo

�c
(u) =

1X

n=0

⌦(�c + n�h; u)X�c+n�h
, (5.2.2)

where the ⌦(�c + n�h; u) are the BPS indices counting the states in this way. If one has a
region in which only the core charge exists, one can simply write the function as

G�c(u) = X�c . (5.2.3)

Now we are crossing one wall but we can treat this as infinitely many overlapping walls for
every possible state. As one gradually moves in the moduli space, one can cross a wall for
a particular halo configuration, say from a region u� to u+. As this occurs a state with
charge �c + n�h comes into existence. For every such state that enters the spectrum one
must consider a new factor representing the contribution of the Fock space for the new halo
particle now bound to the core. For example, as the wall for �h is crossed, this is taken into
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account by including an extra factor such that the new generating function becomes

GHalo

�c
(u) = (1� (�1)h�h,�ciX�h

)|h�h,�ci|⌦(�h;ums)X�c , (5.2.4)

where one has now acted with a symplectomorphism on Tu, and �(�h) = (�1)h�h,�ci is a
quadratic refinement used to generate the torus algebra 2. One must continue by considering
all the BPS halo states n�h as they enter the spectrum, so one has to continue to add factors
until an infinity of BPS states contribute to the generating function

GHalo

�c
(u) =

1Y

n=1

(1� (�1)hn�h,�ciXn

�h
)|hn�h,�ci|⌦(�h;ums)X�c , (5.2.5)

which now reproduces the right hand side of the initial equation (5.2.1). It can therefore be
seen that, when crossing this single wall, one obtains the same result as if an infinite product
is taken on overlapping walls that are crossed simultaneously. This can then be expanded
and matched to the left hand side to obtain the changes in the BPS indices �⌦(�c+n�h; u)
as the wall is crossed.

5.3 Framed BPS states and galaxies

Framed BPS states were introduced in [17] as BPS states in 4d N = 2 theories that can
bind with a particular class of operators. These are called line operators as they are inserted
on a straight line. Examples of line operators include the t’Hooft-Wilson operators defined
in [118, 119]. When they only carry electric charge, they have a physical interpretation as
Wilson Lines. The name “framed” comes from the framed quiver representations [113, 112]
that describe them. In the context of framed BPS states the original BPS states that are
bound to the line operator are referred to as “vanilla” BPS states. Framed BPS states are
interesting because of their effect on the vanilla BPS degeneracies. This situation can be
looked at as a large central object probing the system of BPS states, in an Argyres-Douglas
theory for example, and can be used to recover the Konsevich-Soibelman wall crossing
formula [30] for these vanilla BPS states.

Framed BPS states are also interesting in the context of the research presented in this thesis
because the wall crossing of framed BPS states can be matched with Weyl chambers in a way
that is analogous to that in Cheng and Verlinde [52, 53], which is suggestive of a new form
of generating function (see chapters 10 and 11). There is also a supergravity perspective
from which to view framed BPS states in the context of halo states bound to a large core
charge (the analog of the line operator) which was developed in [57, 100, 120]. Importantly,
this was then further developed into a direct analog in terms of a generating function, from
the QFT perspective [17] for framed BPS states, in [18] by constructing a more general
configuration of orbiting charges known as a BPS galaxy. This is then further reviewed in

2
�(�h)X�h is a Hamiltonian that gives the generator e�h [16].
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[117]. The configuration has appropriate inner products between the charges that match
the construction of the framed BPS states in [17].

5.3.1 Core charges and orbiting charges

One can consider a more general configuration, of a core charge and orbiting charges, than
those looked at for the semi-primitive wall crossing formula (5.2.1) in chapter 5.2. Here
“orbiting” refers to 4d solutions in N = 2 effective supergravity 3. These can be bound in
many more possible configurations. As before, the core is denoted by �c, and the sum of
the orbiting charges is denoted by �orb. This is then defined as a BPS galaxy with total
charge �t = �c + �orb. To define the core one must first define U(1) electric and magnetic
charges �0 and �00 respectively. After this, one can use an example of a core charge of the
form [18, 117]:

�c = ⇤2�0 + ⇤�00 + �, such that, (5.3.1)
�t = �c + �orb, and the products are,

h�0, �00i = 1, �, �orb 2 �?
0 := {� : h�0, �i = h�00, �i = 0},

where ⇤ is an anisotropic scaling, and one lets the charge � be perpendicular to the core
electric and magnetic charges. There is an additional lattice of orthogonal charges relative
to the initial U(1) charges described before (5.3.1). These are the orbiting charges that are
bound to the core as a whole. The sum of these charges is denoted by �orb 2 �?

0 . This
whole configuration is then described as a BPS galaxy as we now have the single core charge
and in general we can have composite bound states in orbit in many possible configurations.
The orbiting charges don’t have to be pure halo states as they can be configurations within
�?
0 that are non-local relative to each other. There can also be mixed states meaning that

charges can be exchanged between the core and the orbiting charges. This arises due to
quantum tunnelling in the full non-perturbative theory.

Looking back at the semi-primitive wall crossing formula (5.2.1) in chapter 5.2, one can
continue looking at charges of the form �c + n�h to use as an example of mixed states. The
BPS indices for these charges cannot simply be decomposed into the product of constituents.
This means that ⌦(�c+n�h; u) 6= ⌦(�c; u)⌦(n�h; u). This is because the states in the Hilbert
space can mix in such a way that one can redefine which charges in �c + n�h belong to the
core and the halo. The alternative decompositions of the charge �c +n�h take the form of a
core with charge �c+m�h and halo charge with (n�m)�h. Furthermore, in general one can
also include additional orbital charges of the form n�h + � combined with a core of �c � �.
However, all these effects can be suppressed by taking a limit of large charges in the core.

3See section 7 for a detailed description of multi-centered bound states in supergravity.
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�c

�1

large core charge

basis charges in

�orb�2

�2�1
composite charge in orbit

Figure 5.2: Example BPS galaxy with possible basis and composite configurations in orbit
of the large core �c.

Limit of large charges

The effects of mixed states can be taken into account following the example of [18] by using
the fact that these effects do not occur if one takes the core charge to be large. One can
take the limit ⇤ ! 1 so that the core becomes such a BPS state with large charge and
mass. There are several physical arguments explaining that, in the ⇤ ! 1 limit, the extra
decompositions from non-perturbative quantum effects disappear. Two main reasons are:

(i) Entropic suppression of the fragmentation of black holes; this is exponential as the
charge becomes large [121, 122, 117]. A good example for this is the Reissner-
Nordström black hole where one can consider a charge Q splitting into components
Q = Q1 +Q2. The change of entropy from this decomposition is

�S = ⇡Q2 � ⇡Q2
1 � ⇡Q2

2 = 2⇡Q1Q2. (5.3.2)

In this case, the amplitude for this decomposition falls off in the change in the entropy
(the difference between the entropy of the composite and 2 separate constituents) as
e�

1
2 �S. Therefore, as Q ! 1 the amplitude associated to this splitting tends to 0.
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(ii) Alternatively, one can look at the core �c and consider a potential halo charge of the
form �i 2 �?

0 . For this example, one can determine if a transfer of the charge �i from
the core to the halo [18] is possible. The argument for the absence of mixed states
[57, 18, 117] can be seen by looking at the distance between the core and this halo
charge

r = h�c, �ii
1

2Im(Z�ie
i↵)

, (5.3.3)

ei↵ is obtained by taking the phase of the total central charge Z(�c + �i; u1) after an
infinite time evolution. In this case, because of the scaling ⇤ in the �c we have r ! 1
as ⇤ ! 1 and the quantum tunnelling amplitude tends to 0 because of the large
separation of the core and the orbiting charge. Therefore, a transfer between the core
and the halo cannot happen with a large core charge.

5.3.2 Hilbert space and generating function of framed BPS states

From the limit described in the previous subsection 5.3.1, a closed system of BPS states is
obtained with a core charge �c and various configurations of states bound to the core. The
core charge is now fixed. Therefore, with all the composite BPS configurations containing
the same core charge - one can factor the core out of the Hilbert space and construct a
quotient Hilbert space [117]. This is defined as

h�c(�orb; u) =
h�c+�orb

h�c
, (5.3.4)

where we remember that �orb is the sum of the charges orbiting the core. These BPS states
are defined as framed, which can be interpreted as in [17]. The index of these framed BPS
states is given by

⌦
�c
(�orb; u) = lim

⇤!1
Trh�c (�orb;u)(�1)2J3 , (5.3.5)

with spin 2J3, which is analogous to the BPS indices from [34], defined in section 3.1.1.
These BPS numbers are locally constant but undergo wall crossing when a new particle �
enters the BPS galaxy. To see this, consider this new particle in the galaxy with central
charge: Z(�, u). This charge � can be chosen to be in the perpendicular space � 2 �?

0 , so
the resulting generating function (5.3.8) for these framed indices only depends on a charge
of the from �orb + �.

BPS walls and Weyl chambers

The wall for the new particle � to enter the BPS galaxy occurs when this central charge
is parallel with the sum of all the central charges within the BPS galaxy [18, 117], after
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the new particle has entered. This total central charge after the new particle has entered is
denoted by: Z(�c + �orb + �; u). The dependence on �orb is removed by taking the ⇤ ! 1
limit discussed above in section 5.3.1. Now the wall is defined by

W� :=

(
Z(�0, u) || Z(�, u) : Im[Z(�, u)Z̄(�0, u)] = 0 �! Im[

Z(�, u)

⇣
] = 0

)
, (5.3.6)

where ⇣ can be considered a phase.

This wall therefore depends just on the large part of the core and the halo. It is called a
BPS wall and is distinct from the wall of marginal stability for the decomposition of the
vanilla BPS states �, without the presence of a BPS galaxy. The configurations with charges
proportional to the charge � are removed or added from the orbit of the core when W� is
crossed. Later, in chapter 11, we also match the BPS walls to the boundaries of the Weyl
chambers, of the particular root system, associated to the Lie algebra describing the vanilla
BPS states of the 4d N = 2 theory. This is interesting as this is a setting in which new
candidate generating functions, such as the Weyl denominator formula, can be conjectured
to exist that count the introduction of new halo states as changes in the highest weight of
a module or representation. However, we can now look at the effects of crossing BPS walls
on the currently known generating function of the indices in (5.3.5).

This effect of crossing a BPS wall on this generating function can be determined by using
the same principle as for the semi-primitive wall crossing formula. The configuration has
total charge �t = �c + �orb and the contribution of the charge � to the new wall crossing
formula is

(1� (�1)h�,�tiXn

�
)|h�,�ti|⌦(�;ums), (5.3.7)

where one can then multiply by these factors successively for each � to obtain the generating
function. The expansion of the generating function for framed BPS states becomes

G�orb
�c

(u) :=
X

�orb2�?
0

⌦
�c
(�orb; u)X�+�orb

. (5.3.8)

One can then read off the framed BPS indices in (5.3.5) from this expansion (5.3.8). These
generating functions can be applied to N = 2 theories with an effective supergravity de-
scription which arise when taking local limits of compact CY 3-folds that give rise to the
effectively non-compact Argyres-Douglas and Seiberg-Witten theories. In these cases, the
charges � can be chosen as the charges present in the respective models. They can then be
interpreted as the charges of BPS solutions in a chosen N = 2 supergravity theory probed
by a large core charge.
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Figure 5.3: This diagram shows the BPS walls for the framed BPS states in blue
intersecting on the wall of marginal stability in red where one has zoomed in. The green

line is the path in the moduli space which can be taken to show the wall crossing formula.

Konsevich-Soibelmann operator

It is possible to write the generating function in terms of the Konsevich-Soibelman (KS)
operators from [30] (unlike those looked at in section 3.1.2, we are now considering the semi-
classical limit) representing the N = 2 charges and their wall crossing behavior from either
the line operator or large charge formulation [17, 18]. These have, as an exponent, the BPS
index ⌦(�; u) of the pure N = 2 theory without any additional charges associated with a
BPS galaxy. As mentioned above, these are also known as “vanilla” BPS indices. Equation
(5.3.7), describing the contribution of the semi-primitive wall crossing formula to the framed
generating function, can be simplified by introducing the operator D�X�t := h�, �tiX�t to
remove the explicit dependence on �orb. This operator can act separately on individual terms
in the generating function representing a different total charge. One can now write down
the factor (5.3.7) as a Konsevich-Soibelmann operator

K� := (1� (�1)D�X�)
D� . (5.3.9)
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Hence, these transformations can be used to construct the generating function by acting
with the operator K⌦(�,u)

� if a wall W� is crossed. This is interesting as one can now see how
wall crossing works in the pure N = 2 theory by thinking about the generating function
of framed BPS indices. This generating function is equivalent when one takes equivalent
paths in the moduli space, crossing all BPS walls for framed states, on both sides of the
wall of marginal stability of the pure theory. This can be seen as shown in Figure 5.3 by
starting at a point u0 and taking a loop in the moduli space crossing all walls and including
the KS operator associated with a particular BPS wall as the loop crosses that particular
wall. For example, in the A2 root system we have K�1K�2 = K�2K�1+�2K�1 representing the
construction of the generating function from factors on either side of the wall of marginal
stability.

A collection of intersecting rays in which some rays only exist on one side of the intersection
is also known as a scattering diagram. Figure 5.3 shows this for the A2 case. These were
originally introduced by Gross and Siebert [123] in the context of mirror symmetry. The
scattering diagrams for the Seiberg-Witten and A2 examples were worked out by Bridgeland
in [124].

5.4 D6-D2-D0 system on the conifold

There is another well known case of a system of BPS states describing configurations that
are bound to a large core. This is the example of type IIA string theory on the conifold
[37, 59, 38]. Here, an initially compact CY 3-fold X is considered which contains a projective
line P

1 ⇢ X. The local limit of the CY is taken, meaning one zooms in around the conifold
singularity so that one can effectively treat this as a non-compact manifold given by the
rank 2 bundle O(�1) �O(�1) ! P

1. The P
1 zero section can be contracted by letting its

Kähler modulus tend to 0 such that the conifold singularity exists at this point. This exam-
ple has been extremely useful because the wall crossing has been later shown to be related
to non-perturbative topological string partition functions on this target space [61], and has
reproduced the Donaldson-Thomas partition functions in [28, 29] that have been useful for
demonstrating the correspondence between Donaldson-Thomas and Gromov-Witten invari-
ants. One can also use this partition function to read off the values of non-commutative
(NCDT) invariants, described by Joyce and Song in [19], and then further use these to cal-
culate the vanilla BPS indices discussed in section 3.1.1 for the hyper and vector multiplets
respectively.

The D0-D2-D6 partition function is another framed BPS index and this model can be
considered as a pure D6 brane on the conifold with possible combinations of D0-D2 branes
bound to it [37]. In this model, the BPS walls for a new state to become bound to the core
have been shown to depend on the Kähler moduli of the target space as well as another
real number describing a phase of the core charge [37]. The target space in this case is a
CY 3-fold X. A scaling factor ⇤ is chosen for which the local limit is taken as ⇤ ! 1.
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This is analogous to the limit of large charges taken in section 5.3.1 and indeed this is the
limit of large D6 brane charge. The partition function has been derived by starting in the
region where only the core D6 brane exists [37, 36]. In this first region, the BPS partition
function is just ZD6-D2-D0 = 1. The other walls have been determined by considering where
the central charges align. To define the central charges, one must define the charges. These
charges take the form: 4

�1 + �2 = � = 1� m̃� + ñdV, where �1 = a+D � �h + nhdV, m̃, ñ, nh 2 Z, (5.4.1)

a 2 H0(X;R), � 2 H4(X;R), D 2 H2(X;R), dV generates H6(X;Z),

P ,P 0 2 H2(X,R), such that P · � = 1, P 0 · � = 0,

and one can also define �h · P = mh, �h · P = Mh.

The central charges associated to this system [37] can be written as 5

Z�1 =
a

6
⇤3e3i� +

D
2
· (⇤ei�P 0 + zP)2 �Mh⇤e

i� �mhz � nh, (5.4.2)

Z�2 =
1

6
⇤3e3i� � m̃z � ñ� Z�1 ,

where we consider a Kähler parameter of the form t = zP +⇤ei�P 0, and z 2 C, � 2 R. The
wall crossing has been well understood for the range � 2 (0, ⇡) and Im(z) > 0. Now one
takes the limit ⇤ ! 1 for a large core D6 charge and looks for values of a,D,Mh

6 that
allow for the existence of walls, in this limit, that represent the formation of bound states
to this core. After this one is left with charges of the form

�1 = 1�m0� + n0dV and �2 = �m� + ndV, (5.4.3)

where the numbers have been relabelled. 7 Remembering to take the limit [37], this results
in the central charges of the form

lim⇤!1Z(�1; t) : Z(�1; t) : ⇤
3e3i� �m0z � n0 ! ⇤3e3i�, (5.4.4)

lim⇤!1Z(�2; t) : Z(�2; t) = �mz � n.

The walls of marginal stability occur at the points at which the central charges align. This
is also equivalent to the attractor flow stability condition (e.g. Denef [56]) which for this

4Here the dot product is the intersection product in cohomology ↵1 · ↵2 :=
R
X
↵1 ^ ↵2.

5One can interpret this physically as z and � parameterizing the magnetic field of the resulting theory.
6E.g. a = 0, 1, D = 0, Mh = 0.
7The relabelling depends on the parameters chosen and the labelling of �1 and �2.
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system corresponds to

h�1, �2iIm[Z(�1; t)Z̄(�2; t)] = �nIm(e3i�(�mz⇤ � n)) > 0. (5.4.5)

Now one can see that the positions of the walls depend just on z 2 C and the angle � 2 (0, ⇡)

� =
1

3
arg(�mz � n) +

2⇡k

3
. (5.4.6)

Here we have k 2 Z. The total space spanned by z and � has real dimension 3, with the
walls here being a codimension 1 real space. For a fixed choice of k one can write all the
possible walls [37, 38] in the form (for m > 0)

Wm

n
= {(z,�) : � =

1

3
arg(z +

n

m
) +

⇡

3
}, (5.4.7)

W�m

n
= {(z,�) : � =

1

3
arg(z � n

m
)},

W̃�m

n
= {(z,�) : � =

1

3
arg(z � n

m
) +

2⇡

3
}.

The regions between the walls are written as [Wm1
n1

,Wm2
n2

] as one moves in the direction of
increasing �. Now we can construct the generating function in this case by starting in the
right chamber in Fig. 5.4 and reducing �. We review this here with fixed z but this can
in general be varied. Walls are encountered as the composite states �1 + �2 form. These
walls are initially of the form Wm

n
and are located at � = 1

3 arg(z� | n
m
|)+ ⇡

3 . Now one must
look more specifically at the system of D0-D2-D6 branes. One can start by noting that the
BPS states discussed above that become bound to the core correspond to either primitive
D0-D2 fragments or pure D0 branes. The D2-D0 fragments represent BPS hypermultiplets
as discussed in section 3.1.1.

This means the particles associated to this charge are fermionic, implying that multiple
particles cannot occupy the same quantum state. Therefore, one cannot have multiple D2-
D0 fragments bound to the core and the only walls one is left with are those with W±1

n

shown on Fig. 5.4. The D0 branes represent BPS vector multiplets and behave as bosons.
In contrast to the fermions multiple particles can occupy the same state implying walls of
the form W0

n
can exist. This is also interesting because these are roots of the Â1 Lie algebra.

It means that the walls can also be written as boundaries of the Weyl chambers of this Lie
algebra. This will become important later in section 11.3, in the context of finding new
generating functions, by looking for analogs of the N = 4 generating functions in [52, 53].

However, we start by constructing the known partition function by crossing the walls succes-
sively. One starts with the D2-D0 walls. These exist as the D2-D0 fragments align with the
core D6. This is started by applying the semi-primitive wall crossing formula to successive
walls [37, 63] such that the partition function (5.4.8) in each region of the moduli space
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Figure 5.4: This shows the walls in blue for the binding of D2-D0 fragments to the D6
core. The D6-D0 wall is labelled in green. In this example, there can be infinitely many

BPS states as n can tend to infinity.

[W1
n+1,W1

n
] then becomes

Z+
n
(u, v) =

nY

j=1

(1� (�u)jv)j, (5.4.8)

where u, v 2 C. 8 So, one continues to cross the walls of which there are infinitely many,
which have the form W1

n
. Here one lets n ! 1 which represents an increasing D0 charge

of the fragment. There is an accumulation ray at � = ⇡

3 , which represents the wall for the
bound state D6-D0. As one continues to successively cross the walls one continues to pick
up factors [37, 63] as one takes the limit (5.4.9) approaching the accumulation ray

limn!1Z+
n
(u, v) =

Y

k>0

(1� (�u)kv)k = Z 0
DT

(u, v). (5.4.9)

This is also known as the “reduced Donaldson-Thomas Partition function” for the previ-
ously known topological string partition function in [28]. Next one crosses the wall, or

8These chemical potentials can be matched with the Kähler parameter t = z, and coupling arg(�) = 3�,
in a topological string partition function, where u = �e

i�
, v = e

2⇡it [28, 29, 61].
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accumulation ray, for the D6-D0 combination. For this one picks up the factor

M(u)2 =
Y

k>0

(1� (�u)k)�2k. (5.4.10)

where M(u) is also known as the MacMahon function [28, 125]. This is now included in the
partition function as

limn!1Z�
n
(u, v) =

Y

k>0

(1� (�u)k)�2k(1� (�u)kv)k. (5.4.11)

Now as one continues crossing walls one encounters next the walls that exist as the D6
composite brane central charge aligns with those of the fragments consisting of D2 � D0
brane combinations. These walls are now of the general form W�m

n
, where m = 1, and lie

at an angle given by � = 1
3 arg(z � | n

m
|) for m < 0, n > 0. Now one can keep decreasing the

angle � and consider (5.4.12) the D6-D2-D0 partition function [37, 63, 126] in the chambers
defined by [W�1

n
W�1

n+1]

Z�
n
(u, v) =

Y

k>0

(1� (�u)k)�2k(1� (�u)kv)k
Y

r>n

(1� (�u)rv�1)r. (5.4.12)

Finally, we keep reducing the angle � until all walls of the form W�1
n

are crossed. One is now
in the chamber defined by: 1

3 arg(z) < � < 1
3 arg(z�1). One can call this the Szendrői region

as the partition function within this region is exactly what Szendrői derived, by counting
particular framed objects in the category of quiver representations [59, 19], constructed
from a non-commutative resolution of the conifold. This was done by relating the counting
function to the pyramid partition function of [126]. When taking the limit Im(z) ! 0, in
this Szendrői region, one approaches conifold singularity at the chamber boundary as the
P
1 ⇢ X contracts. The final form of this generating function [37, 59, 63, 126, 20] is

ZSz(u, v) =
Y

k>0

(1� (�u)k)�2k(1� (�u)kv)k(1� (�u)kv�1)k (5.4.13)

=1 +
X

p,q

NCDTp,qu
pvq. (5.4.14)

One can use this final partition function (5.4.13) to define the non-commutative Donaldson-
Thomas invariants NCDT, as in Joyce and Song [19], for framed quiver representations
labelled by (p, q). For this example, the quiver with 2 sets of arrows between the nodes
has also been shown previously in section 4.3.4. This will later also be shown to match to
Weyl chambers for Â1 root system, which allows for another description of the wall crossing.
For the resolved conifold one finds the well-known BPS invariants that are known from the
GV(0, �) invariants in [25, 24]. In this case, the BPS invariants are

⌦(±� + ndV ) = +1, 8n 2 Z ⌦(ndV ) = �2, n 2 Z n 6= 0. (5.4.15)
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The WKB method (named after Wentzel, Kramers and Brillouin) was originally devel-
oped as a method for solving differential equations approximately - this was done in 1926.
These differential equations are linear and have a coordinate dependence in their coefficients.
This method is particularly useful for solving the Schrödinger equation in semiclassical ap-
proximations. More recently, this has been extended to the exact WKB analysis for one-
dimensional cases. Remarkably, one can use such examples to consider quantum periods, as
series expansions in ~ around classical paths, that are Borel resummable along different rays.
This exact WKB method was developed in [127, 128, 129, 130] and subsequently reviewed in
[131, 132, 133]. This was done by interpreting the wavefunction in terms of these quantum
or WKB periods. The classical periods that these are expanded about can be related back
to the periods of the curves we are interested in for Seiberg-Witten and Argyres-Douglas
theories. Importantly, this can help us interpret the periods used in the research on attractor
flow described in chapters 7 and 8.

There has also been recent exploration in the literature for the periods of the quantised
Seiberg-Witten curve in [134]. The quantisation of these curves is important from the
perspective of counting BPS states as the quantum periods satisfy the system of TBA
equations already used to derive the hyperkähler metric for the N = 2 QFTs in the work
of Giaotto, Moore, Neitzke [16]. This implies that these TBA equations have poles in
the period ratio representing the walls of marginal stability for the decay of composite
BPS states, hereby dividing the moduli space into regions where different numbers of BPS
states exist. Indeed, the concepts introduced in this chapter can therefore be added to the
prescriptions used to count BPS states and describe the wall crossing phenomena discussed
in chapters 3, 4 and 5.

6.1 Schrödinger equation and quantum periods

This discussion can be started by considering the Schrödinger equation describing the wave-
function of a particle with energy E moving in a potential V (x) at a coordinate x. This
particle is non-relativistic. However, unlike the situation for a particle, x is now complex to

45
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allow for the exact resummation of the solutions. The equation can be written as

�~
2 00(x) + (V (x)� E) (x) = 0. (6.1.1)

The exact WKB method [131, 132, 133] solves this equation by producing asymptotic ex-
pansions in ~. One starts with the substitution of the exponential of an integral over a
path

 (x) = exp
h i
~

Z
x

x0

Q(x0)dx0
i
, (6.1.2)

which when put in the equation gives

Q2(x)� i~
dQ(x)

dx
= p2(x), p(x) = (E � V (x))

1
2 . (6.1.3)

This is also known as a Ricatti equation. The solution for the function Q(x) can be found
as a series in ~

Q(x) =
1X

k=0

Qk(x)~
k, (6.1.4)

where Qk(x) can be found using a recursion relation. One can split this series into 2 parts
[133] corresponding to odd and even exponents of ~ respectively

Q(x) = P (x) +Qodd(x). (6.1.5)

the odd part being the total derivative

Qodd(x) =
i~

2

d

dx
logP (x). (6.1.6)

This can be put back into the expression for the wavefunction so that it becomes

 (x) =
1p
P (x)

exp
h i
~

Z
x

x0

P (x0)dx0
i
, (6.1.7)

where P (x) can be written in the form of the series

P (x) =
X

n�0

pn(x)~
2n.

Here we have the classical momentum being defined as p0(x) = p(x) and the meromorphic
differential P (x)dx. This is defined for the curve [133] containing both the energy and the
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potential

y2 = 2(E � V (x)), (6.1.8)

however, we remember that x and y are now complex. Now if the potential V (x) is polyno-
mial in q then the equation above is a hyperelliptic curve known as the WKB curve. This is
a Riemann surface ⌃WKB parameterized by moduli set in E and V (x). We can define the
periods of this curve using the differential P (x)dx around the path given by the one-cycles
� 2 H1(⌃WKB). These are known as quantum [132, 133] or WKB periods and are denoted
as

⇧�(~) =

I

�

P (x)dx, � 2 H1(⌃WKB). (6.1.9)

The Voros symbol is defined as the exponent of this period V = exp( i
~
⇧�). The quantum

periods in (6.1.9) can also be written in terms of a power series in ~ with even powers - just
like we have described for P (x). This is written as:

⇧�(~) =
X

n�0

⇧n

�
(x)~2n, ⇧n

�
(x) =

I

�

pn(x)dx. (6.1.10)

Therefore, the classical period that we have been looking at so far, introduced in section
2.1.1, in our discussion of N = 2 QFTs, corresponds to

⇧0
�
(x) =

I

�

p0(x)dx. (6.1.11)

It is interesting to look at a way to explicitly calculate the quantum corrections to this
classical period. First, the energy and the potential are chosen such that they take the form
of an (r + 1) order polynomial

V (q)� E = xr+1 � u1x
r�1 � ...� ur. (6.1.12)

This is now a suitable curve representing deformations about singularities which can be
chosen as the realisation of ADE type Argyres-Douglas theories. Here the period integral of
the curve ỹ2 = V (x)� E is given by

⇧0
�
(x) = i

I

�

ỹdx. (6.1.13)

One can then construct a meromorphic basis of differentials [133], used to construct higher
order quantum corrections for the WKB period, from the derivative of the one used in the
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classical period such that

@ui ỹdx = �xr�i

2ỹ
dx, i : 1, ...r. (6.1.14)

This can then be used to expand the differentials pn(x)dx in terms of this basis. This means
that each term in the expansion of the differential can be written as

pn(x)dx = i
rX

j=1

b(n)
j
@uj ỹdx+ @x(...), (6.1.15)

with a total derivative as the second term that is integrated out when taking the period.
The full series expansion, for the quantum corrections (6.1.10) to the classical period, is
given as follows

⇧(n)
�

=
rX

i=1

b(n)
i
@ui⇧

(0)
�
. (6.1.16)

This means that every term in the expansion of the quantum period can be written as
a linear combination of derivatives of the classical period. The coefficients b(n)

i
must be

determined by doing the computation of the classical period and its derivatives for a specific
curve.

6.1.1 WKB for the cubic curve

We can now look at the special case of the cubic curve the discussion for which was started
in [132] and continued for [133]. In general, it can be written in terms of a 2d complex
moduli space with (u1, u2)

⌃ : y2 = x3 � u1x� u2. (6.1.17)

This curve has discriminant 4 = 4u3
1 � 27u2

2. Now, using the argument above for the cubic,
the quantum corrections can be derived as

⇧(n)
�

= b(n)1 @u1⇧
(0)
�

+ b(n)2 @u2⇧
(0)
�
. (6.1.18)

One can now choose, as an example, the elliptic curve corresponding to the realisation of
the Argyres-Douglas A2 theory. This takes the form of

⌃A2 : y2 = 4x3 � 3⇤2x+ u, (6.1.19)

where one can hold the (dynamically generated) scale ⇤ constant such that we can consider
u1 fixed. In this case, one has the classical periods corresponding to the central charges of
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the BPS states

⇧(0)
�1

= iZ�1(u), ⇧(0)
�2

= iZ�2(u), (6.1.20)

which will be used later in chapters 7 and 8 to determine the existence of BPS states by using
the gradient flow to determine the existence conditions for particular BPS states in different
regions of the moduli space. One can also use these central charges and their derivatives (if
known explicitly) to calculate the quantum corrections to the classical periods.

6.2 Borel transformation of periods

A Borel transformation is a special type of transform that acts on a power series and is
extensively reviewed, for example in Sauzin [135], and in Sternin, Shatalov [136]. If the
Borel transformation is analytic along a particular ray on the Borel plane, and a Laplace
integral can be taken along this ray that is finite, then the original series is called Borel
summable. This integral is now known as the Borel sum. Also, the integral must be taken
along a chosen ray that avoids singularities. This enables the study of wall crossing, as when
the ray is taken on either side of a line containing singularities the result is different - these
jumps can then encode the wall crossing phenomena we are studying. This has become
important in perturbative QFTs where an expansion that in general does not converge can
be rewritten as an analytic function.

6.2.1 Definition of Borel transform

The Borel transformation acts on the series as

O(z) =
1X

l=0

clz
�(a+l) ! BO(⇣) =

1X

l=0

cl
�(a+ l)

⇣a+l�1. (6.2.1)

The Borel sum manifests its self as an integral along a ray

S✓O(z) =

Z
e
i✓1

0

d⇣e�⇣zBO(⇣), (6.2.2)

where the ray is usually taken to lie along the real axis, so that one can write the integral
as

SO(z) =

Z 1

0

d⇣e�⇣zBO(⇣). (6.2.3)
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The relationship between the series expansions can be shown by substituting the expression
for the Borel transform back into the integral

SO(z) =

Z 1

0

d⇣

⇣
e�⇣z

1X

l=0

cl
�(a+ l)

⇣a+l =
1X

l=0

clz
�(a+l). (6.2.4)

These transformations can be applied here (subsec. 6.2.2 below) to the quantum periods.
They will also become useful for determining wall crossing phenomena in non-perturbative
topological string partition functions for uncoupled BPS structures in chapter 12, e.g. for
the deformed conifold in subsection 12.1.1.

6.2.2 Application to quantum periods

The Borel transformation and resummation of the quantum periods (6.1.9) can be written
in terms of z = 1

~
as in [133, 134]:

⇧̂�(⇣) =
X

n�0

1

(2n)!
⇧n

�
⇣2n, s(⇧�) =

1

~

Z 1

0

e�
⇣
~ ⇧̂�(⇣)d⇣. (6.2.5)

The quantum period is Borel summable in the form of (6.2.5) if the integral converges in
the limit ~ ! 0. This Borel resummation has been taken along the ray R>0. This can be
generalised to any ray along an angle � such that one can use the integral

s�(⇧�) =
1

~

Z
e
i�1

0

e�
⇣
~ ⇧̂�(⇣)d⇣, (6.2.6)

where these periods in (6.2.6) are Borel summable along the ray, of angle �, if we have
Borel resumability for the series ⇧�(ei�~). As Borel resummations are discontinuous along
singularities we now have jumps in the Borel resummations for the periods (known as stokes
jumps) such that there is a discontinuity of the period ⇧̂�(⇣) for a particular ray in ⇣ and
angle �. For this we can define s�+(⇧�) and s��(⇧�) on either side of the ray. These then
become

s�±(⇧�)(e
i�
~) = lim

�!0
s(⇧�)(e

i�±i�
~). (6.2.7)

The discontinuity along the ray at � can then be calculated by taking the difference

disc� (⇧�) = s+(⇧�)� s�(⇧�). (6.2.8)
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The ray at the angle � is known as a stokes ray. Hence, it is possible to define a stokes
automorphism across the ray that can act on a series. This can be written as follows

O� = s+ � s�1
� , (6.2.9)

where we are treating s+, s� and O� as operators. The direction can be reversed by taking
O

�1
�

. Here a structure has been constructed for the stokes jumps that depends just on the
quantum periods. Stokes jumps will be discussed again in chapter 12 in the context of
non-perturbative topological string free energies.

6.2.3 TBA equations

The Thermodynamic Bethe Ansatz (TBA) is a way to calculate the energy of ground states
in an integrable quantum field theory. It can be used to find thermodynamic quantities such
as the distributions for the energy and momentum of states in the model as well as the free
energy. It has been determined that the WKB periods can be encoded within such a TBA
system of equations.

It is possible to construct a system of TBA equations using a Riemann-Hilbert problem for
the periods. The problem was described by Voros in [137], for the example of the quartic
potential. There are known solutions to this Riemann-Hilbert problem given by Giaotto,
Moore, Neitzke [31], in the context of a QFT on R

3 ⇥ S1, with a low energy 3d sigma
model description. The target space of this sigma model has a hyperkähler metric which
can be constructed from the solutions of this Riemann-Hilbert problem. These solutions
form a system of TBA equations which have been shown recently by [138] to describe
quantum periods of Argyres-Douglas theories. From these equations one can then derive
the conditions for wall crossing from the period ratio.

For this one can look back at the curve and the potential (6.1.8-6.1.12) and look at the
turning points on this potential as was done in [133]. In general, we can consider a potential
Vr+1(x) where we consider this a degree r + 1 polynomial in a Riemann surface. The curve
itself is hyperelliptic and has genus g = r

2 . From this curve it is possible to calculate the
classical periods using the turning points of the curve. When considering the turning points
one can look at a region in the moduli space where they are all occur at real coordinates
which can be arranged in order such that if one labels the points xi they satisfy: x1 < x2 <
... < xr+1. The classical periods correspond to the cycles around particular turning points.
The cycles �i, i : 1, ..., r, are taken to be around [xi, xi+1], which is an interval between the
turning points. In this case, a configuration is chosen such that the odd and even classical
periods or masses are

m2i�1 = ⇧0
�2i�1

= 2

Z
x2i

x2i�1

p(x)dx, m2i = i⇧0
�2i

= 2i

Z
x2i+1

x2i

p(x)dx. (6.2.10)
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cubic curve

turning points

x

y

x1 x2 x3

�1

�2

Figure 6.1: Plot of a cubic curve with turning points. The cycles can then be taken around
these turning points.

Now one can look back at the quantum periods. For these periods discontinuity formulae
have been derived for both odd and even cycles [133]. For example, the odd cycles satisfy

disc ⇧�2i�1 = �i~ log(1 + e�
i
~⇧�2i�2 (~))� i~ log(1 + e�

i
~⇧�2i (~)). (6.2.11)

and a discontinuity relation for the even case can also be derived by exchanging cycles. One
can then write these relations together, but one must first define:

�i✏2i�1(✓ + i
⇡

2
± i�) =

1

~
s±(⇧�2i�1)(~), (6.2.12)

�i✏2i(✓) =
1

~
s(⇧�2i)(~),

where 0 < � ⌧ 1 is a small parameter. One also has ei✓ = 1
~

. Now we can define a new
function with which one can completely encode all the discontinuities. This can be written
as

La(✓) = log(1 + e✏a(✓)), L0(✓), Lr+1(✓) = 0, a : 1, ..., r. (6.2.13)
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Now we can finally write the discontinuity formulae together as

disc⇡
2
✏a(✓) = La�1(✓) + La+1(✓) a : 1, ..., r, (6.2.14)

where the formulae constitute a Riemann-Hilbert problem for ✏a. These functions take the
form ✏a = mae✓ +O(e�✓), in the limit ✓ ! 1. This Riemann-Hilbert problem has a known
solution [31, 133]. This is a set of TBA equations and reads as

✏a(✓) = mae
✓ �

Z

R

La�1(✓0)

cosh(✓ � ✓0)

d✓0

2⇡
�
Z

R

La+1(✓0)

cosh(✓ � ✓0)

d✓0

2⇡
a : 1, ..., r. (6.2.15)

This system was derived for a region in the moduli space where m2i�1 and m2i are real.
This region is also known as the minimal chamber. However, in general these are complex
functions and take the form: ma = |ma|ei�a . This can be incorporated into the TBA
equations by shifting the functions as follows

L̃a(✓) ! L̃a(✓ � i�a), ✏̃a(✓) ! ✏a(✓ � i�a), (6.2.16)

which can then be substituted into the TBA system to give

✏̃a(✓) = mae
✓ �

Z

R

L̃a�1(✓0)

cosh(✓ � ✓0 � i�a + i�a�1)

d✓0

2⇡
�
Z

R

L̃a+1(✓0)

cosh(✓ � ✓0 � i�a + i�a+1)

d✓0

2⇡
.

(6.2.17)

Now one can consider the poles of (6.2.17). It can be seen [133] that there are poles at
|�a � �a±1| = ⇡

2 such that the equations only hold in the region of the moduli space where
|�a � �a±1| < ⇡

2 . There are further poles at (n+1)⇡
2 . These poles represent walls of marginal

stability associated to BPS states existing in the spectrum. Now we look at the simplest
example of the cubic with r = 2 that realises the A2 model. Here one can move between 2
regions of the moduli space

�2 � �1 <
⇡

2
! �2 � �1 >

⇡

2
, (6.2.18)

where in this case the wall is crossed when �2 � �1 =
⇡

2 . For this example, considering that
the functions in this case are at m1 = |m1|ei�1 and m2 = |m2|ei�2 this corresponds to a wall
at

Im
h⇧�1

⇧�2

i
= 0, (6.2.19)

where one sees that (6.2.19) reproduces the equation of the wall in terms of a real ratio of
the periods. From equations (6.1.20) and (6.2.10) one can see that this also holds in the
classical limits that we are working in for the specific Argyres-Douglas or Seiberg-Witten
theories when the appropriate curves are chosen on which to take the periods. In this case,
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the period ratio is the wall of marginal stability. It is also interesting to note that the wall
of marginal stability is represented by poles in a contour integral in a denominator of the
form cosh(✓� ✓0� i�a+ i�a�1). This form of integral for these N = 2 theories is reminiscent
of the situation in N = 4 dyon counting formulae [40, 52, 53, 54]. However, in that case
the integral was extracting Fourier coefficients. Later, in section 9.3 and chapter 11, it will
be discussed if an exact analog can be found for the N = 2 theories that counts BPS states
with a similar contour prescription.



7 | Attractor flow in N = 2
supergravity

In the previous chapters 3, 4, and 5, we have reviewed known prescriptions for computing
the BPS spectrum in all the possible chambers in the moduli space for Argyres-Douglas
theories. We now look for new methods that can reproduce these results and could be
generalised to other BPS structures. We start by considering a very visual idea, known as
attractor flow, that has been developed for N = 2 supergravities, e.g. in [36, 56, 57]. We
then apply it to effectively non-compact models described by local limits of compact Calabi-
Yaus in which gravity decouples, as given by the decoupling limit in the work of Denef [139].
This can also be understood as zooming in close to the singularities where the CY becomes
effectively non-compact. We look at the central charges of the BPS states, including those
for the Argyres-Douglas theories described in the previous examples. This and the following
chapter, 7 and 8, are based on the preprint “Special geometry, quasi-modularity and attractor
flow for BPS structures” [62] done in collaboration with Alim, Beck and Biggs. Chapters
7 and 8 in this thesis include my contribution to this preprint, specifically the work on the
attractor flow, with the addition of a brief review of the supergravity background in the first
part of chapter 7.

7.1 Introduction to attractor flow of BPS states

BPS spectra in type II string theory on CY-3-folds, for example the quintic, have been
studied in detail by Denef in the context of supergravity [57, 56], mapping the problem of
determining the existence of BPS states within regions in the moduli space to the problem
of determining solutions to the attractor flow equations. The attractor mechanism itself
was first described in the context of extremal black hole solutions in N = 2 supergravity
[140]. The equations themselves subsequently emerged in [141, 142], and were formulated
in terms of a time derivative in [143], such that the BPS mass is minimized in the limit
of infinite time. BPS existence conditions were then formulated in terms of the value of
the central charge at the end point of the attractor flow lines [55]. The reviews [144, 145]
describe in detail the literature on attractor flow in the context of black hole solutions in
supergravity, for example the radial flow of scalars with initial values at infinity to a fixed
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point in the near horizon geometry, as well as the connection to the Bekenstein-Hawking
entropy and the OSV conjecture 1. The wall-crossing formulae we can recall from chapter
5.1, were developed in this context by Denef and Moore [36], giving a quantitative handle
on the problem of determining the decay and recombination of BPS solutions. This was
then further developed by [147], where the BPS index is explicitly determined from the split
attractor flows. Importantly, it was found that the attractor flow splits as the composite
states decay at a wall.

A significant contribution of the split attractor flow method, determining the BPS spectrum
within different chambers of the moduli space, bounded by walls of marginal stability, was
given in [57]. This was done for various examples, including type IIB string theory on the
mirror quintic, and Seiberg-Witten theory in the low energy N = 2 supergravity limit of
type II string theory after gravity has been decoupled. The interpretation of the existence
conditions for BPS states was further developed by finding the explicit black hole and empty
hole (which have a central region with no energy)2 solutions to the supergravity equations at
the end point of the flow. Importantly, the existence conditions for Seiberg-Witten theory
were determined in the context of monodromies around the singular points, which were then
used to determine the known spectrum of BPS states. The method involved splitting the
attractor flow of composite states at the wall of marginal stability and then allowing the
resulting flow to pass through the relevant branch cuts.

In [56] the attractor flow method is extended to a detailed analysis of BPS type IIA D-branes
on the quintic: here the attractor equations were written in the form of gradient flow of the
central charges. The equations were solved approximately by minimizing the central charge
using iterative methods and then the attractor flow lines were plotted. Existence conditions
on the end point of the flow were considered as before.

Here, and in chapters 7-8, we re-derive and extend the results of [57] for Seiberg–Witten
theory. We explicitly produce plots of iterative solutions to the attractor flow equations and
find all possible flows between covers of the moduli space, using the existence conditions on
these flows to determine the spectrum. We then extend this method to two parameterisations
of the Argyres–Douglas A2 theory and hereby determine the spectrum in this novel example.
The A1 model is also briefly discussed.

7.1.1 Wall crossing and attractor flow in N = 2 supergravity

The attractor mechanism was first discovered for dyonic black holes in supergravity, where
the black hole spacetime metric can be substituted into the supergravity action, and used
to find the equations of motion. This also holds in the low energy effective supergravity
limits of type IIB string theory: in our work we are considering the pure theory in the
decoupling limit of the gravitational terms of the type IIB string, as described in [139].

1This states that the black hole partition function is the modulus squared of the topological string
partition function: ZBH = |Ztop|2 [146].

2See Fig. 7.2.



7.1.1 Wall crossing and attractor flow in N = 2 supergravity 57

Our work involves 1
2BPS states on non-compact CY 3-folds, hence black holes cannot form

from the resulting 4d solutions. However, there is still an interpretation as a supergravity
solution. At special points in the moduli space these solutions can be interpreted in terms
of Stromingers empty hole solutions [57] (shown in Fig. 7.2 with an empty central region
with no energy).

The concept of attractor flow was originally interpreted as the minimisation of the BPS mass
of the solution over time. This idea also holds in simple examples, such as the case of the A2

or Seiberg-Witten theory. We start by following the paper by Denef, Green and Raugas [56],
which investigates split attractor flows for the quintic, and then use their methods on the
central charges of Argyres-Douglas theories, including the A1, A2 models and Seiberg-Witten
theory. Split attractor flows, which correspond to the multi-centered solutions splitting into
multiple single-centered solutions, were used by [56] to find existence conditions on BPS
states in the supergravity limit for the quintic.

4d metric

We derive the attractor flow on the moduli space by solving the BPS supergravity equations
which can be found from the bosonic part of the 4d low energy limit of 10d type IIB string
theory. One starts by studying a spherically symmetric metric (which is ideal for studying
spherically symmetric solutions such as black holes), such that all quantities are just a
function of a radial coordinate denoted by r [57]. In this case, the electric and magnetic
charges of the supergravity solutions can be obtained by integrating the field strengths over
a sphere at infinity. The solution then includes a radial function U(r), which defines the
metric. If this 4d spacetime metric is obtained in a low energy limit of type IIB string
theory, U(r) is also dependent on the period vector of the internal CY 3-fold [148, 149].
Furthermore, one has the scalar fields in the vectormultiplet of the theory ua(r), which
define the moduli space [143]. This moduli space is a Kähler manifold [150].

There is also an alternative parameterisation in terms of the inverse radius ⌧ = 1
r
, where

the radial function can be written as U(⌧). To derive the attractor flow equations, one
must first consider the equations of motion that can be derived from the 4d low energy
bosonic supergravity action. One must then substitute a specific spacetime metric gij into
the lagrangian, which can be found by first considering a general spherical 4d metric [56] of
the form

ds2 = �e2U(r)(dt+ widx
i)2 + e�2U(r)dxidxi. (7.1.1)

Here x is the coordinate vector centered at the origin, such that the radius is r = |x|, and
the vector w = wiei describes the deformations of the metric. 3

One can let the metric become spherically symmetric by letting the components wi ! 0,
which then allows us to proceed in applying the method, from [56] for the quintic, to our

3This metric is asymptotically flat if U(r), |w| ! 0 when r ! 1.
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Argyres-Douglas models. We consider that, in a supergravity theory, the BPS basis states
have a 4d description in terms of such spherically symmetric solutions around a single
point. They are thus called “single-centered”. Bound states of multiple BPS basis states
have a description in terms of multiple solutions of the form just mentioned around different
coordinate centers and are therefore called “multi-centered”.

Bound state splits at wall
of marginal stability

Im[Z�1(u)Z̄�2(u)] = 0.

�1

center 1
• •

center 2

�2

�2

solution 1
•

�1, �2 are the non-local
basis charges at

the centers.

Far from the centers the boundstate can
be approximated as spherically

symmetric.

The solution is not spherically symmetric here.

Lines of constant potential.

rs =
1
2h�1, �2i

|Z�1 (u)+Z�2 (u)|
Im[Z�1 (u)Z̄�2 (u)]

rs is the radius of
separation of the

centers.

•
solution 2

Figure 7.1: 2 centered solution: before and after it splits into 2 separate single-centered
solutions.

This can be further understood by looking back to the metric and coordinate systems in
(7.1.1-7.1.2): single-centered solutions in these models exist as BPS solutions, with metrics
of the form (7.1.2), with spherical symmetry and charge located in spacetime at the origin.
On the other hand, multi-centered solutions are not spherically symmetric, so in this case
one must keep the deformed metric in (7.1.1). This changes the equations of motion that
result when substituting the metric into the lagrangian. If the charges at the 2 centers are
equal or parallel ⌧ can be re-parameterised so that the attractor flow lines remain unaffected,
otherwise one can take an approximation of spherical solutions at large distance from the two
centers of the bound state. The spherically symmetric 4d space-time metric [56, 140, 143]
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is given by the well known solution

ds2 = �e2U(⌧)dt2 + e�2U(⌧)dxidxi. (7.1.2)

We assume the solutions are asymptotically flat such that U(⌧ = 0) = 0.

Supergravity equations of motion

This metric is what is substituted into the N = 2, d = 4 supergravity action to derive
the equations of motion. This is written in a 1 dimensional form in terms of the radial
coordinate ⌧ . The 1d effective action, in the time interval �t, is denoted by Seff [57]. This
then becomes:

Seff =
S

�t
= �1

2

Z 1

0

d⌧
⇣
U̇(⌧)2 +

1

2
gab̄u̇

a ˙̄ub̄ + e2U(⌧)V (u)
⌘
�
⇣
e2U(⌧)|Z�(u)|

⌘

⌧=1
, (7.1.3)

where V (u) = |Z�(u)|2 + 4gab̄@a|Z�(u)|@̄b̄|Z�(u)|.

Here the dot represents a derivative with respect to ⌧ . The ⌧ dependent coordinates at a
point u 2 B in the moduli space are written as ua(⌧), and gab̄ is the inverse metric on the
moduli space defined by

gab̄ = @a@̄b̄K, where K = �
Z

X

i ln
⇣
⌦0 ^ ⌦̄0

⌘
. (7.1.4)

Here, K is the Kähler potential and ⌦0 is the holomorphic (3,0) form on the internal CY
3-fold X. This can be normalised as ⌦ = e

K
2 ⌦0 for later use in explicitly deriving the central

charges. The central charge, denoted here again by Z�(u), is dependent on the charges and
the moduli. The supergravity equations of motion can be derived from this Lagrangian.
This has been done in the spherically symmetric case for the single-centered BPS states
with charge � [143, 55, 56, 57]. They are given by

@⌧U(⌧) = �eU(⌧)|Z�(u)|, (7.1.5)

@⌧u
a = �2eU(⌧)gab̄@̄b̄|Z�(u)|. (7.1.6)

To solve these equations one would require the metric on the moduli space and the moduli
dependence of the central charge. It has been found by [56], that unless one is at a singular
or critical point of |Z�(u)|, the attractor flow equations (7.1.5-7.1.6) always drive the central
charge to at least a local minimum in the moduli space. This can be understood [56] through
the following equation:

@⌧ |Z�(u)| = �4eU(⌧)gab̄@a|Z�(u)|@̄b̄|Z�(u)| < 0. (7.1.7)
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Existence conditions for the BPS states

Given the positive definite metric and the positive product of the differentials of the central
charges, there are several conditions on the existence of a BPS state with a particular central
charge. These depend on the value of the central charge at the attractor point. The existence
conditions were first described by Moore in [55] and applied in [56, 57, 62].

(i) If |Z�(u)| 6= 0 at the modulus u⇤ (where ⇤ denotes the attractor point) then the
flow always exists as ⌧ ! 1 and the equation describes a BPS black hole. In this
case, the moduli tend towards their final value at the black hole horizon. Due to the
non-compactness and decoupling from gravity, this is not the case in the A2 model.

(ii) If |Z�(u)| = 0 at u⇤ and u⇤ is a regular point in the moduli space then the above
inequality is violated and no BPS states exist.

(iii) If |Z�(u)| = 0 and u⇤ is a singular or boundary point in the moduli space then massless
BPS states can exist. In this case one can interpret the resulting solution as an empty
hole solution. Unlike a black hole this has no horizon but still has a core region. This
core region being “empty” because it contains no energy (see Fig. 7.2). Such solutions
are indeed possible in a non-compact CY 3-fold and occur in our research. These are
the same solutions that exist for example at a conifold singularity [57].

7.2 Application to 1 parameter case

The main objective of our research is to find the solutions for Argyres-Douglas A2 and
Seiberg-Witten theory. These theories have a complex 1-dimensional moduli spaces with
just 1 complex parameter u. Therefore, the attractor flow equations can be simplified in
this 1-parameter case. In this case, all the components of the inverse metric vanish except
for one, which can be written as guū. Now looking back at equation (2.8) in Denef, Greene
and Raugas [56], we have

@⌧u = �2eU(⌧)guū@̄ū|Z�(u)|, (7.2.1)

where ⌧ is considered as a time parameter and is also the inverse of the radius of the solution
⌧ = 1

r
. One can now write the metric pre-factor to the derivative of the central charge as

⇢(⌧) = 2eU(⌧)guū > 0 such that equation (7.2.1) [56, 57] becomes

@⌧u = �⇢(⌧)@̄ū|Z�(u)|. (7.2.2)
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lines of constant U(⌧)

empty center
• ⌧⇤

⌧⇤ : value of ⌧ at which moduli approach singular point

Figure 7.2: Solution with empty central region: the so called “empty” hole.

The time parameter ⌧ can be re-parametrised to undo the dependence on ⇢(⌧):

1

⇢(⌧)
@⌧u = @⌧ 0u =

@⌧

@⌧ 0
@⌧u �! ⇢(⌧) =

@⌧ 0

@⌧
. (7.2.3)

This is equivalent to writing the equations without the ⇢(⌧) and using a different definition
of ⌧ . It means that the attractor flow lines remain the same when the metric prefactor is
reparameterized. So finally, in order to find a simple way to compute the flow lines, one can
simply choose a parameterisation such that ⇢(⌧) = 1. The attractor equation (7.2.2) can
now simply be written as

@⌧u = �@̄ū|Z�(u)|. (7.2.4)

Furthermore, the inequality in (7.1.7) now becomes

@⌧ |Z�(u)| = �2@u|Z�(u)|@̄ū|Z�(u)| < 0, (7.2.5)

where this again shows that the flow lines always move towards a minimum value of the
central charge. As stated in the literature [55, 57, 56], the attractor equations are the lines (or
geodesics) of steepest decent of the central charge in the moduli space. Therefore, the only
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required ingredient to input into the equations, to integrate and solve for these geodesics,
is the moduli dependent central charge |Z�(u)|. The inverse metric factor guū can also be
used if one wants to solve the exact equations of motion. However, this isn’t necessary to
determine the attractor flow lines as one can always use the ⌧ re-parametrisation.

7.2.1 Path of steepest descent

The important thing to notice for this 1-parameter case is that the attractor flow lines are
the lines of steepest descent for the modulus of Z�(u). This greatly simplifies finding the
attractor flow equations and allows us to write down the differential equation that must be
solved for the attractor flow lines. Z�(u) is a function of a complex 1-dimensional parameter
u and its modulus can be written as |Z�(u)|. However, it can also be written as a function
on R

2 as |Z�(x, y)|. For a function in R
2 the gradient is in the direction of the maximum

rate of increase of the function

r|Z�(x, y)| =
@|Z�(x, y)|

@x
êx +

@|Z�(x, y)|
@y

êy. (7.2.6)

This path of steepest descent must therefore be tangent to r|Z�(x, y)| but in the oppo-
site direction hence tangent to �r|Z�(x, y)|. Therefore, the required differential equation
describing the flow lines is

dy

dx
=

⇣
@|Z�(x,y)|

@y

⌘

⇣
@|Z�(x,y)|

@x

⌘ . (7.2.7)

When the expression for |Z�(x, y)| is written in terms of x and y this equation should
be integrated to find these flow lines. Unfortunately, this is not possible in the general
case because the central charges involve hypergeometric functions with unknown integrals.
However, the gradient flow can be computed iteratively and the attractor flow lines plotted
from this. Also, in the limits around the singular points the integral can often be computed
analytically.

7.2.2 Curves and periods

As explained previously in section 2.1.2, the BPS states in type IIB string theory arise
from D3 branes wrapping 3-cycles in the threefold 4. In the decoupling limit there is a one
to one correspondence between the BPS supergravity solutions and the BPS states in the
supersymmetric QFT with this brane construction. The D3 branes wrapped in the threefold
have 1 dimensional slices on the Seiberg-Witten curve ⌃u embedded in the deformed CY-
3-fold Xu which correspond to 1d cycles on this elliptic curve. The BPS central charge is

4These are also known as special Lagrangian submanifolds.
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given by an integral over the normalised holomorphic (3,0) form ⌦u on the full CY-3-fold
Z�(u) =

R
�
⌦u and we take the reduction on the elliptic curve ⌃. From this we obtain the

meromorphic differential �u = ydx. The periods of the elliptic curve corresponding to the
central charges then correspond to the integral of ydx over the cycles �1, �2 2 H1(⌃u,Z)
in the curve. In this work we will consider the following examples of BPS structures with
complex one-dimensional moduli spaces B and a dynamically generated scale ⇤ in the QFT
defining the boundary of the strong and weak coupling regions [66]. These are associated
to the physical theories. Their geometric realization, as outlined above, are given by the
following curves. We denote these compactified elliptic curves by ⌃:

1. Argyres–Douglas A1 theory, realized geometrically by the curve:

⌃A1 := {y2 = x2 � 4u 2 2} , u 2 B = ⇤ (7.2.8)

2. Argyres–Douglas A2 realized by:

⌃I

A2
:= {y2 = 4x3 � 3⇤2 x+ u 2 2} , u 2 B = 1 \ {±⇤3,1} (7.2.9)

3. Argyres–Douglas A2 realized by:

⌃II

A2
:= {y2 = (x� ⇤2)(x+ ⇤2)(x� u) 2 2} , u 2 B = 1 \ {±⇤2,1} (7.2.10)

4. Seiberg–Witten SU(2) realized by:

⌃SW := {y2 = ⇤2

x3
+

2u

x2
+

⇤2

x
2 ⇥ C

⇤} , u 2 B = 1 \ {±⇤2,1} (7.2.11)

7.2.3 Picard-Fuchs equations and solutions

The next step is to choose the scaling ⇤ = 1. Now it is possible to derive Picard-Fuchs
equations for the periods of the meromorphic differential. The derivation itself was done in
[62] using the Griffiths pole order reduction methods. These were developed by Griffiths in
[151, 152]. This then results in differential equations for the periods that can be solved. A
particular linear combination of solutions can then be matched with the moduli dependent
central charges of the BPS states using their monodromies. Here 4 examples and their
associated Picard-Fuchs equations are briefly reviewed. The monodromies are shown for the
singular points.

(i) As in (7.2.8) the realisation of the A1 curve is given by

⌃A1 := y2 = x2 � 4u 2 C
2, u 2 B = ⇤. (7.2.12)
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In this case, the Picard-Fuchs equation is simply

@u(u@
2
u
f(u)) = 0. (7.2.13)

such that one can immediately write the solution for the period as f1(u) = 2⇡iu. There
is another dual period taken over a cycle which is non-compact and can be determined
by introducing a scale µ. This period is then given by

f2(u) = u(log u� 1) +
µ2

2
� 2u log µ+O(1/µ2) . (7.2.14)

These are also the periods defining the special geometry in the Gaussian matrix model
described in the Lecture notes [153]. There is another method that can be used to
find the periods. This is to directly perform the period integrals on the curve over the
cycles. The curve is a double cover of C = C, and has branch points at ±2

p
u. The

compact cycle of the curve ⌃ is given by the lift of the cycle around the two branch
points in the space C. This cycle is denoted by A. The non-compact dual cycle is
denoted by B, and is defined using the scale µ and considering the lift of the cycle
around 2

p
u and µ.

The period integrals on the curve then reproduce the solutions to the Picard-Fuchs
equation y dx including

f1(u) =

Z

A

y dx = 2⇡iu , (7.2.15)

and the other period which is (µ-)regularized and dual to the first one

f2(u) =

Z

B

y dx = u(log u� 1) +
µ2

2
� 2u log µ+O(1/µ2) . (7.2.16)

Once both periods are known one can determine the monodromy matrix about the
singular point u = 0. This reads

M0 =

✓
1 1
0 1

◆
. (7.2.17)

(ii) A realisation of the A2 theory we worked with is given by the curve (based off (7.2.9)):

⌃I

A2
:= y2 = 4x3 � 3x� u 2 C

2, u 2 B = 1 \ {±1,1}. (7.2.18)

The Picard-Fuchs equation associated to this curve is:

(1� u2)@2
u
g(u)� 5

36
g(u) = 0. (7.2.19)
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The linearly independent solutions were found to be:

g1(u) =
3

5⇡
3
2

(6�(
7

12
)�(

11

12
)F 1

2 (�
5

12
,� 1

12
,
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, u2)� u�(

1

12
)�(

17

12
)F 1

2 (
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12
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12
,
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2
, u2)),

(7.2.20)

g2(u) =
�3i

5⇡
3
2

(6�(
7

12
)�(

11

12
)F 1

2 (�
5

12
,� 1

12
,
1

2
, u2) + u�(

1

12
)�(

17

12
)F 1

2 (
1

12
,
5

12
,
3

2
, u2)).

(7.2.21)

Here, the functions of the form F 1
2 (a, b, c, u) are hypergeometric. For |u| < 1 these

functions are analytic and are represented by the hypergeometric series. For |u| > 1
one can find an analytic continuation such that the function again has such a series
expansion. They are well known and described extensively for example in [154, 155],
and in [156], along with many identities relating different hypergeometric and other
special functions.

These solutions have the following monodromies about the singular points �1,+1 and
1, which can be taken around loops from a base point ub 2 B in the moduli space in
a counterclockwise direction:

M+1 =

✓
1 �1
0 1

◆
, M�1 =

✓
1 0
1 1

◆
, M1 =

✓
0 �1
1 1

◆
. (7.2.22)

This can be seen by expanding the solutions around the singular points us+✏ei✓, ✏ 2 R

and taking the anti-clockwise loop ✓ : 0 ! 2⇡. The expansions are shown in appendix
part A, specifically part A.1.1 for this example. The third monodromy is determined
by the other 2 such that M1 = M+1M�1. This can be seen by combining the loops
around which the monodromies are taken.

(iii) The alternative realisation of the A2 theory is given by the curve from (7.2.10):

⌃II

A2
:= y2 = (x+ 1)(x� 1)(x� u) 2 C

2, u 2 B = 1 \ {±1,1}. (7.2.23)

The new Picard-Fuchs equation associated to this curve can be written as

u(u� 1)@2
u
⇡(u) + (�2u+ 1)@u⇡(u) +

5

4
⇡(u) = 0. (7.2.24)

We solved these equations to obtain 2 linearly independent solutions:

⇡1(u) = � 8

15

p
2(�1 + u2)Q2

1
2
(u), (7.2.25)
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⇡2(u) = � 4

15

p
2i(�1 + u2)⇡P 2

1
2
(u). (7.2.26)

Here P 2
1
2
(u) is an associated Legendre polynomial (described for example in [157] and

[156]) of fractional order corresponding to a solution of a hypergeometric differential
Legendre equation. Q2

1
2
(u) is the second solution of this hypergeometric differential

equation. The numbers 2 and 1
2 represent the degree and order respectively of the

solution.

Again, in this case the monodromies around the singular points can be found (appendix
A.1.2) by carrying out a series expansion at these points and then taking loops around
them. For �1 and +1 we have:

M+1 =

✓
1 0
�2 1

◆
, M�1 =

✓
1 2
0 1

◆
, M1 =

✓
1 2
�2 �3

◆
. (7.2.27)

(iv) Now we return to the curve for Seiberg-Witten theory in (7.2.11) while setting ⇤ = 1.

⌃SW := {y2 = 1

x3
+

2u

x2
+

1

x
2 ⇥ C

⇤} , u 2 B = 1 \ {±1,1} (7.2.28)

For Seiberg-Witten theory the Picard-Fuchs equation becomes

(1� u2)@2
u
h(u)� 1

4
h(u) = 0. (7.2.29)

This has solutions of the form

h1(u) = � 2
1
2
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2
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h2(u) = �
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, u2). (7.2.31)

The monodromies in the case of Seiberg-Witten theory about the singular points
+1,�1 and 1 are well known [1]. However, as a different realisation of the curve
has been used the monodromies that are obtained (from the expansions in appendix
A.1.3) are also modified and are given by:

M+1 =

✓
1 0
�2 1

◆
, M�1 =

✓
1 2
0 1

◆
, M1 =

✓
1 2
�2 �3

◆
. (7.2.32)

In this case, there are infinitely many covers for the central charges of the BPS states
as one takes loops successively. This can also be used to generate the dyon spectum
in [1] and will be shown here in the next chapter 8 from the attractor flow.
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The monodromies are determined by branch cuts (e.g. logarithmic) connecting the singular
points. There is a further step necessary to conclude that these solutions to the Picard-
Fuchs equations are indeed central charges of the BPS states of the physical theories we
are working with. In general, any linear combination of solutions is also a solution so it is
possible to choose a basis. A choice of basis in general produces different monodromies of
the solutions around the singular points. To proceed, one must match these solutions with
the central charges of the BPS states. This is done by matching the monodromies of the
cycles around the singular points corresponding to the BPS states with the monodromies
of solutions to the Picard-Fuchs equation. The monodromies for both the cycles and the
solutions of the Picard-Fuchs equations for the first and second realisations of the A2 case
have indeed been found and matched in this way before this work was carried out.
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Now the Picard-Fuchs equations are known and the solutions, with their monodromies, have
been found and matched with the moduli dependent central charges, within the theories
with complex 1-dimensional moduli spaces. This then allows us to apply the method of
steepest decent from [56], described in section 7.2.1 and developed in [139], to such models
originating from the literature [158, 159, 160, 161, 162] on type II effective field theories.
We use this to find and plot the attractor flow lines iteratively (on Mathematica) for all
the cases mentioned above including the Argyres-Douglas A1, A2 theories [5, 9] as well as
Seiberg-Witten theory [1]. In the cases with a wall of marginal stability between the weak
and strong coupling regions, this is also plotted. The existence conditions on the endpoint
of the flow [55, 56, 57] from subsection 7.1.1 are used to determine which BPS states exist
in which chambers in the moduli space. Any split attractor flow lines are plotted. The
branch cuts are also plotted, and when the flow lines enter or leave a cut they are continued
through the branch cut by taking a loop around a singular point and acting on them with
the appropriate monodromies from subsection 7.2.3.

8.1 Attractor flow for A1-theory

We proceed to derive the attractor flow for the A1-model. This arises from the deformed
conifold, described for example in [60]. We are using the path of steepest descent method,
described in subsection 7.2.1, to derive the flow lines. In this case, the central charge is
simply Z�1(u) = u.

a.) We let u := x+ iy such that |Z�i(u)| := |Z�i(x+ iy)| 2 R
+.

b.) For Z�1(u) = u we have |Z�1(u)| = |u| = |x+ iy| =
p
x2 + y2.

c.) We substitute this expression into the gradient flow equations to derive the attractor
flow lines

dy

dx
=

⇣
@|Z�i (x,y)|

@y

⌘

⇣
@|Z�i (x,y)|

@x

⌘ =

yp
x2+y2

xp
x2+y2

=
y

x
. (8.1.1)

68
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d.) The equation can be solved as

1

y
dy =

1

x
dx ! y = Ax. (8.1.2)

Hence, the equations y = Ax from (8.1.1-8.1.2) describe the set of all straight lines L passing
through the origin. The attractor flow lines then correspond to straight lines flowing to the
origin. Now we can also look at this in terms of the time parameter ⌧ . In this form, the
attractor flow equation can be written as

dx

d⌧
= �@|Z�i(x, y)|

@x
= � xp

x2 + y2
= � xp

(1 + A2)x2
= � 1p

(1 + A2)
= ↵. (8.1.3)

Therefore, the coordinate x is linear in the time coordinate such that:

x = ↵⌧ + �. (8.1.4)

One can plot these attractor flow lines (see Fig. 8.1) on the moduli space as a radial flow
flowing into the origin.

Figure 8.1: This diagram shows the attractor flow lines of A1 flowing to its attractor point
at the origin.
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Final state in chamber

Hence, we can see that in this theory there is only 1 BPS state flowing to the attractor
point at the origin. There are no walls of marginal stability or jumps in the number of BPS
states.

Chamber Existing charges Count
1: All space �1 1

Table 8.1: Single BPS state that exists everywhere in the moduli space.

8.2 Attractor flow for Argyres–Douglas A2 theory

We now repeat this process for A2 theory [5, 9]. We take the exact expressions for all possible
linear combinations of the central charges Z�i(u), for each realisation of the theory, and derive
the attractor flow lines from the gradient flow (see section 7.2.1) using Mathematica. We
let u ! 1

u
to have the origin of the complex plane at infinity. We then proceed in the

following way; we first let u := x + iy 2 1 such that the modulus of the central charge
|Z�i(u)| := |Z�i(x + iy)| 2 R

+. As before, we substitute this expression into the gradient
flow equations to derive the attractor flow lines

gradient flow:
dy

dx
=

⇣
@|Z�i (x,y)|

@y

⌘

⇣
@|Z�i (x,y)|

@x

⌘ . (8.2.1)

8.2.1 Walls, branch cuts and flow lines

Wall of marginal stability and existence

We take into consideration the wall crossing phenomena in which a BPS exists (is stable)
in one region of the u-plane, but is excluded by the existence conditions from [55, 56, 57]
in another region (see section 7.1.1). Physically this corresponds to a region of the moduli
space in which the composite BPS particle is unstable and decays into a combination of
its constituents. For this we also plot the wall of marginal stability MS�1,�2 that bounds
the stable and unstable regions on the u-plane: for the meromorphic differential ỹdz from
section 7.2.2 this is given by the locus of real ratio of the periods

MS�1,�2 :
Z�1(u)

Z�2(u)
2 R. (8.2.2)
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The decay of a BPS state in a chamber is represented diagrammatically by split attractor
flow lines: a flow line enters a chamber and would end at a regular point in the moduli
space. Therefore, it is excluded in the chamber but still existed before it crossed the wall of
marginal stability MS�1,�2 . In this case, the flow line hits the wall of marginal stability and
splits into constituent BPS flow lines corresponding to BPS states that are stable within the
region.

Figure 8.2: BPS state only exists if flow terminates at singular point us.

Comment on branch cuts

We also consider the branch cuts of the Z�i(u) in the u-plane. We find the branch cuts and
plot the segments which affect the attractor flow lines. When an attractor flow line enters
a branch cut, we follow [56, 57] by finding a path in the u-plane which connects the point
at which the attractor flow line enters the branch cut (shown from above in Fig. 8.3) and
leaves it (shown from below). We determine which singular points this path encloses and
act on Z�i(u) with the monodromies Mus associated to the corresponding singular points
us 2 B. We write u = us+ ✏e�i✓, ✏ 2 R

+, ✓ 2 {0, 2⇡} and let ✓ : 0 7! 2⇡. The monodromies
from section 7.2.3 can be read off from the expansions around the singular points given in
appendix A.

We then continue this modified central charge through the branch cut. The same existence
conditions then apply on the other side of the branch cut. If the state is excluded on the
other side of the branch cut, by a regular termination point, then it also didn’t exist before it
entered the branch cut - up until the last point after it crossed the wall of marginal stability
MS�1,�2 where it decayed into its constituent BPS states.

8.2.2 Attractor flow first realisation

We will start by using the curve ⌃I

A2
, for the first realisation, and consider flow lines of

all possible Z�i(u). We plot a diagram Fig. 8.4 with the existing flow lines and the split
attractor flow. When we compute the central charges and take the ratio we just obtain a
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Figure 8.3: Single flow line passing through branch cut after acting with monodromy
around singular point.

wall separating 2 chambers: an outer and inner region (see Fig. 8.4) labelled as A and B
respectively. This is the standard realisation of the wall used the literature e.g. [31] and can
be obtained by taking a slice in the complex 2d moduli space of SU(3) [5] containing the
Argyres-Douglas points [163]. In this parameterisation there are also 2 regions but with the
wall shifted along the y-axis.

Existing BPS states Non-existing BPS states
Flow line
Charges �1 �2 �1 + �2 �1 continuation �2 continuation �1 + �2 outside wall

Table 8.2: Flow lines in Fig. 8.4.

Description of flow lines

Z�1(u) and Z�2(u) (7.2.20-7.2.21) are, for a particular cover, defined for u 2 1\ [�1,1) and
u 2 1 \ [1,1) respectively. They have ub log u branch cuts [�1,1) and (1, 1] represented
by and on Fig. 8.4 respectively, separating the regions B1 and B2. This allows
for the analytic continuation of the central charges onto new covers. Their flow lines are
represented on this diagram by blue and red lines, and flow to +1 and �1
respectively. Both are singular points, hence Z�1(u) and Z�2(u) exist everywhere. This
holds in both the inner region B and outer region A.
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B2

B1

A

Figure 8.4: As before the black line is the wall of marginal stability.

a.) The purple line represents the Z�1(u) branch cut and the orange line is that of Z�2(u).
The blue and red flow lines represent Z�1(u) and Z�2(u) respectively.

b.) The solid green line represents the sum of the basis states Z�1(u)+Z�2(u). The dashed
blue and red lines represent the analytic continuation of Z�1(u) + Z�2(u) through the
branch cuts of Z�1(u) and Z�2(u) respectively.

In this case, when the sum is analytically continued through the branch cuts, it becomes
Z�1(u) around the left cut and Z�2(u) around the right cut. Again, the gray lines represent
the unstable continuation of Z�1(u) + Z�2(u) flow in the outer region A where it crashes at

a regular point.

Wall crossing of dyon

The sum, represented by , and written as Z�1(u) + Z�2(u), has a more complicated
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behavior. Its source is at infinity. It exists within the inner region B. However, outside this
region, where it is represented by the gray line , it flows to a regular point on the wall,
is hereby excluded, and must therefore split into its constituent BPS states Z�1(u), Z�2(u),
as shown on the diagram above. The situation with the sum Z�1(u) + Z�2(u) in the inner
chamber B is more involved: it first appears that the attractor flow lines terminate at the
same regular point in the moduli space as they do from the outside. However, in this case
we must take the branch cuts of the basis charges into account.

We must now use the method introduced in 8.2.1. This means we analytically continue the
flow of Z�1(u)+Z�2(u) through the branch cuts between B1 and B2 by taking paths around
the singular points at ±1 and acting with the associated monodromy matrix, from (7.2.22),
in the right direction. We look at 2 cases:

(i) In the first case, represented by , the analytic continuation of the central charges
acts in a clockwise direction around �1 as

(M�1)
�1 : Z�1(u) 7�! Z�1(u)� Z�2(u), (8.2.3)

such that Z�1(u) + Z�2(u) 7�! Z�1(u).

This then leaves the branch cut in B2 as the dashed blue line.

(ii) In the second case, represented by , the continuation acts in a counter-clockwise
direction around +1:

M+1 : Z�2(u) 7�! Z�2(u)� Z�1(u), (8.2.4)

such that Z�1(u) + Z�2(u) 7�! Z�2(u),

and leaves the branch cut in B2 as the dashed red line.

Hence, one can see from (8.2.3-8.2.4), when the sum in the upper half plane is continued
through the branch cuts, where it flows in, it subsequently flows out in the lower half
plane as one of the basis states. This then flows to the singular points ±1 and therefore
exists.

One can use the analytic continuation of the central charges to find a region in which the
sum of a particle and an antiparticle, e.g. �1��2, can exist. In the region B2 on the diagram
Fig. 8.4, taken below the 2 branch cuts and above the outer lower arc 1, the central charge
of the basis states Z�1(u), Z�2(u) becomes either Z�1(u)�Z�2(u) or �Z�1(u) +Z�2(u). This
depends on which branch cut the analytic continuation is done through, the sign of the basis
state before the continuation. There are now 2 possible covers one must consider for the
central charges with either �1 � �2 or ��1 + �2 existing on it. .

1This is the lower part of the central chamber.
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Exclusion of higher linear combinations nZ�1(u) +mZ�2(u)

After this we consider the general state n�1+m�2. For this, one needs to consider termination
points corresponding to

nZ�1(u) +mZ�2(u) = 0, (8.2.5)

for all (n,m). If the point is a regular point on the wall, the state doesn’t exist. In the
discussion below we will show that all states other than (0, 1), (1, 0) and (1, 1) are excluded
by regular termination points on segments of the wall. This is done by considering the
alignment or anti-alignment of the central charges (described in Fig. 8.5) on the wall and
the range of the ratio on paths between singular points. If there is a change in sign along
the path then equation (8.2.5) has a solution and a combination is excluded.

Figure 8.5: Alignment and anti-alignment of central charges on different general segments
of a wall of marginal stability.

From this one can see that in the outer region A these higher linear combinations flow to
and are excluded by a regular point on the lower segment of the wall, like the sum, but this
time shifted according to the ratio n

m
. This is because of the anti-alignment of the central

charges on this segment. We present a table (8.3) here representing the ratios of the central
charges along a path (8.2.6) on the wall from

1 �! �1 �! 1, (8.2.6)

along the lower segment then the upper segment respectively. Within the inner region B
things become more involved and one must consider the logarithmic branch cuts [±1,1).
In this case, we find that for n�1+m�2 within the inner chamber, the flow line for nZ�1(u)+
mZ�2(u), 8n,m � 1 also ends at a regular point on the lower segment of the wall.

However, as with the case for Z�1(u) + Z�2(u), it flows through the branch cuts before it
can reach the point. Again, we must act with the corresponding monodromies from (7.2.22)
around the singular points to transform the central charges and then analytically continue
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ratios along path

paths between singular points Z�1(u) Z�2(u) Z�1(u)/Z�2(u) Z�2(u)/Z�1(u)
1 0 2.29i +1 0
�1 2.29 0 0 ±1
1 0 2.29i �1 0

Table 8.3: Ratio of central charges at singular points along wall.

through the branch cut.

Excluding higher combinations using range of ratio

Unlike Z�1(u) + Z�2(u), the higher combinations n,m > 1, n 6= m do not become the basis
states when flowing through the branch cuts, instead they remain states with m,n > 1, n 6=
m, and the ratio n

m
keeps the same sign. This means the states will continue to flow and

terminate at another regular point on the lower segment of the wall. Therefore, as with the
previous parameterisation, states of the form, n�1 +m�2 n,m � 1, n

m
, m
n
> 1 are excluded

in the inner region B as well and hence do not exist/ are unstable anywhere in the moduli
space.

Example

Non - existing BPS states
Flow line
Charges 3�1 + 2�2 �1 + 2�2
Forked flow lines
Charges �1 + �2 2�1 + �2 �2 �1 + �2

Table 8.4: Forked flow lines of non-existing BPS states on Fig. 8.6.

An example flow in chamber B (the dotted black line) is given by 3Z�1(u) + 2Z�2(u)
and is shown in the diagram Fig. 8.6 above. As it passes through the branch cut between B1
and B2, we act with an M+1 (from (7.2.22)) in a counter-clockwise direction and transform

3Z�1(u) + 2Z�2(u) 7�! 3Z�1(u) + 2(Z�2(u)� Z�1(u)) 7�! Z�1(u) + 2Z�2(u). (8.2.7)



8.2.2 Attractor flow first realisation 77

B1

B2

A

Figure 8.6: The black dotted line in B1 represents the flow of the charge
3Z�1(u) + 2Z�2(u). Its flow through the branch cut along (1, 1] is shown. In this case, it
becomes Z�1(u) + 2Z�2(u) in B2, represented by the brown line, which can terminate at a
regular point on the wall. The black dotted line splits into the green and blue dashed lines,

representing the sum Z�1(u) + Z�2(u) and 2Z�1(u) + Z�2(u) respectively. Similarly, the
diagram shows the splitting of the brown line into green and red lines, representing

Z�1(u) + Z�2(u) and Z�2(u) on the first cover.

This leaves the branch cut in B2 as (the brown line). This terminates at a regular
point in the lower half plane and is therefore excluded. This then excludes the higher linear
combinations in the inner chamber B around infinity. 2

Final existing states in each chamber

The complete tabulation (8.5) for the existing states on the 2 covers discussed in section
8.2.2 in this parameterisation is as follows:

2They are excluded outside in A as they simply flow to another regular point on the lower segment of
the wall without encountering a branch cut.
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Chamber Existing charges cover 1 Existing charges cover 2 Count
B1: Central region upper half �1, �2, �1 + �2 �1, �2, �1 + �2 3
B2: Central region lower half �1, �2, �1 � �2 �1, �2, ��1 + �2 3
A: Outer region �1, �2 �1, �2 2

Table 8.5: Existing BPS states on both covers, in all chambers.

8.2.3 Attractor flow second realisation

Now we repeat the attractor flow analysis for the second realisation which is described by
the curve ⌃II

A2
. When one again computes the ratio of the central charges one finds a wall

of marginal stability with 5 chambers analogous to that in [9] (see Fig. 8.7). This time
this includes a center right and center left inner chamber, an outer chamber, as well as 2
chambers below the upper arc and above the lower arc.

a.) We continue with the curve ⌃II

A2
and consider flow lines of all possible Z�i(u).

b.) We normalise the central charges to Z�i(u) ! 1
u2�1Z�i(u) before plotting the attractor

flow lines. This is to produce symmetric results such that all attractor points are on
equal footing. This means that, for each existing BPS state, each flow line flows from
an infinity of the central charge at 2 singular starting points to a 0 at the third singular
point.

The existing flow lines in the inner chambers are shown on the Figure 8.7 below:

Existing BPS states
Flow line
Charges �1 �2 �1 + �2 �1 � �2

Non-existing BPS states:
Chamber Charge
outer, lower half plane �1 + �2
center left, above cut �2
center left, below cut �2 � 2�1
center right, above cut �1
center right, below cut �1 � 2�2

Table 8.6: Flow lines on Fig. 8.7.
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C

B

A

D1

D2

E1

E2

Figure 8.7: Wall of marginal stability in black, the orange and purple lines correspond to
branch cuts of Z�1(u) and Z�2(u) respectively. The blue and red lines correspond to sample
attractor flow lines of Z�1(u) and Z�2(u) . The green line is a sample flow line for the sum
Z�1(u) + Z�2(u). It appears as a dashed line on the other side of the branch cuts. The grey

lines represent the flow lines continued into unstable regions: Z�1(u) and Z�2(u) in the
right and left central chambers respectively, and Z�1(u) + Z�2(u) in the outer region.

Description of each flow line in outer chambers

The central charges Z�1(u), Z�2(u) (7.2.25-7.2.26) are again defined on a particular cover for
u 2 1 \ [1,1) and u 2 1 \ [�1,1) respectively. As with the first realisation there are
logarithmic branch cuts arising from the ua log u terms in the expansion around the singular
points. These can again be taken from [±1,1) and are represented by the lines and

respectively. The flow lines can be continued through the branch cuts onto a new
cover.

(i) The blue line corresponds to a sample flow of Z�1(u): in the 2 chambers B,C
within the outer arc, this charge flows from the singular points at u = +1 and u = 1
to the termination point at u = �1. Therefore, because �1 is a singular point, Z�1(u)
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exists within these chambers. The blue line can also be taken in the outer region A,
just above the outer arc, and in this case will flow from +1 to �1. So, again, Z�1(u)
exists in this outer region.

(ii) The red line corresponds to a sample flow of Z�2(u): This follows the same flow
pattern with the direction of flow reversed: in the regions B,C just below the outer
arc, Z�2(u) flows from u = �1 and u = 1 to u = +1. Again, +1 is a singular point
and therefore Z�2(u) again exists in these chambers as well as the outer region.

(iii) Finally, the green line corresponds to a sample attractor flow line of the sum
Z�3(u) = Z�1(u) +Z�2(u): shown in the chamber B below the upper outer arc, as well
as above the branch cuts in the 2 central chambers, D1 and E1. For this normalisation
this state flows from ±1 to its termination point at u = 1, and therefore exists in
these regions, because u = 1 is a singular point.

(iv) The gray line represents the sum Z�1(u)+Z�2(u) in chamber A outside the wall:
here it doesn’t exist and terminates at a regular point on the lower arc of the wall.
This means that the third state decays across the outer wall in the upper half plane.
We have:

decay pathway outer chamber Z�3(u) Z�1(u) + Z�2(u), (8.2.8)
in terms of charges �3 �1 + �2.

Analytic continuation of Z�1(u) + Z�2(u) dyon through the branch cuts

The sum Z�1(u) + Z�2(u) also wouldn’t exist when evaluated in the chamber C just above
the lower arc because it would flow to the same regular termination point. However, we
apply the same method as for the previous parameterisation ⌃I

A2
by taking into account

the branch cuts of the basis charges. This sum, represented by the green line in B,
can be analytically continued using the monodromies in (7.2.27), into the lower half plane.
Both Z�1(u) and Z�2(u) have logarithmic branch cuts in the intervals (1,+1] and [�1,1)
respectively. In these cases, we took the paths around the singular points. The one around
�1 is clockwise and we act with

(M�1)
�1 : Z�2(u) 7�! Z�2(u)� 2Z�1(u). (8.2.9)

For +1 we must consider M+1. However, this time we rotate in a anti-clockwise direction
such that

M+1 : Z�1(u) 7�! Z�1(u)� 2Z�2(u). (8.2.10)

Therefore, the sum becomes

Z�1(u) + Z�2(u) 7�! �Z�1(u) + Z�2(u) around �1 and (8.2.11)
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Z�1(u) + Z�2(u) 7�! Z�1(u)� Z�2(u) around +1.

These combinations are represented on Fig. 8.7 as dotted green lines . They also flow
from ±1 to 1 in the chamber C just above the lower arc, and also in the 2 central chambers,
D2 and E2, below the branch cut. Therefore, the analytic combination of the sum (8.2.11)
can be taken to exist there.

We remember that the sum and its analytic continuation do not exist in the outer region
A. Here, on both sides of the branch cuts, the flow lines terminate at a regular point on the
wall bounding the outer region. To summarise, this means that, as with the first realisation
⌃I

A2
in section 8.2.2, there are again 2 covers on which either �1 � �2 or ��1 + �2 and their

antiparticles can exist in particular regions.

Split flow of Z�1(u), Z�2(u) in central two regions

We next consider existence of the basis charges Z�1(u), Z�2(u) (7.2.25-7.2.26) in the 2 central
regions D and E and their analytic continuation through the branch cuts. Each basis charge
has a chamber in the central region near its source point with its logarithmic branch cut
passing through it. In these chambers the attractor flow flows into the branch cut. We
proceed as before in (8.2.9-8.2.10), by analytically continuing the basis charge through the
branch cut by taking a path around the singular point and acting with the corresponding
monodromy from (7.2.27). In this case, depending on whether one considers the flow flowing
into the branch cut from above or below, the central charges get mapped to

Z�1,2(u) 7�! Z�1,2(u)± 2Z�1,2(u). (8.2.12)

This always leads to the flow terminating at a regular point on the wall just on the other
side of the branch cut, excluding the basis state from existing within the smaller chamber
next to its source point. In this case, the central charges Z�1(u), Z�2(u) can no longer be
considered basis states. Instead, at the wall of marginal stability surrounding the 2 small
central chambers D, E, these BPS states decay into the other (now constituent states) that
are stable within the chamber:

decay pathway center right chamber D Z�1(u) � Z�2(u) + Z�3(u), (8.2.13)
in terms of charges �1 � �2 + �3,

and
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decay pathway center left chamber E Z�2(u) � Z�1(u) + Z�3(u), (8.2.14)
�2 � �1 + �3,

These split attractor flow processes (8.2.13-8.2.14) can be seen in the right and left central
chambers, D, E, of Fig. 8.7 above respectively. The Fig. 8.8 below shows a zoomed-in
version of these chambers:

Existing BPS states
Flow line
Charges �2
Split flow lines
Charges ��1 �1 + �2

Non-existing BPS states
Flow line
Charges �2 above cut

�2 � 2�1 below cut

Table 8.7: Split flow lines of �2 on Fig. 8.8.
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C

B

D1

D2

Figure 8.8: Zoomed version of left central chamber D.

a.) This diagram shows split flow corresponding to Z�2(u) splitting into �Z�1(u)+Z�3(u),
where Z�1(u) in blue exists in the chamber and flows to u = �1. Similarly, Z�3(u) in
green exists by flowing to u ! 1.

b.) The gray line shows the flow line of Z�2(u) in D1 continued into its non-existing
chamber D2. This gray flow line is analytically continued through the branch cut by
mapping Z�2(u) 7�! Z�2(u)� 2Z�1(u), which is represented by the dashed line.

c.) This flow then crashes at a regular point on the lower wall, hence excluding the state.
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Exclusion of general n�1 +m�2

Now we consider again, as in 8.2.2, the general states of the form

n�1 +m�2 for n > 1, m 6= 0, 1 or m > 1, n 6= 0, 1. (8.2.15)

Such states in (8.2.15) are again found not to exist. They flow to a regular point, analogous
to a solution of (8.2.5), but for this realisation of the curve. The equation for this point is
again

nZ�1(u) +mZ�2(u) = 0. (8.2.16)

To proceed, we again consider the alignment of the central charges along all segments of
the wall and determine the sign of the ratio of the central charges, as well as its range of
values between the singular points. As with the first parameterisation we tabulate these
data in a table (8.8) below. We find that the alignment reverses discontinuously at the
point at infinity. In particular, the alignment of Z�1(u) reverses as the wall passes through
this point.

The final table (8.8) shows the ratios and the normalised central charges along the path on
the wall: 3

1 �! �1 �! 1 �! 1 �! �1 �! 1. (8.2.17)

ratios along path

paths between singular points Z�1(u) Z�2(u) Z�1(u)/Z�2(u) Z�2(u)/Z�1(u)
1 1 0 +1 0
�1 0 1 0 +1
1 1 1 ±1 ±1
1 1 0 �1 0
�1 0 1 0 �1
1 1 1 ⌥1 ⌥1

Table 8.8: Central charges and their ratio at the singular points.

Exclusion of combinations with
m

n
> 1

3The double tabulated singular points represent the different paths between the singular points along
different arcs on the wall to show the range of the ratios along these arcs.
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From this table (8.8) above it can be seen that, for Z�1(u)/Z�2(u), the arc from [1, 1] in the
u-plane gives a range of Z�1(u)/Z�2(u) from [�1,�1]. Given that this ratio is a continuous
analytic function, it will take any value in this range. Hence, the equation

nZ�1(u) +mZ�2(u) = 0 �! Z�1(u)

Z�2(u)
= �m

n
, (8.2.18)

will have a solution along the [1, 1] segment corresponding to an attractor point of vanishing
central charge at a regular point in the moduli space - meaning such a (n,m), m

n
> 1 BPS

state doesn’t exist.

Exclusion of combinations with
n

m
> 1

Furthermore, we can see that also for Z�1(u)/Z�2(u), the arc from [�1,1] in the u-plane
gives a range of Z�2(u)/Z�1(u) from [�1,�1]. Again, because of the continuity and ana-
lyticity of the ratio, the equation (8.2.18) must also have a solution in the range [�1,1] by
the same argument meaning BPS states of the form (n,m), n

m
> 1 also don’t exist. Hence,

8n,m 6= 0, n

m
= 1. 4

Flow of higher linear combinations through the branch cuts

Continuation of Z�2(u) flow
Flow line
Charge �2 �2 �2 � 2�1 �2�1 + 5�2 �2�1 � 3�2 �2 � 4�1
Cover number 1 1 2 3 4 5

Table 8.9: Continuation of Z�2 flow through branch cut.

There are many possible ways that the attractor flow of a general linear combination n�1 +
m�2 can flow through a branch cut.

It can be shown that all these flows are excluded by regular termination points after they are
analytically continued through the cut, unless the states take the form ±�1,±�2,±�1 ± �2.
The states flow through the logarithmic branch cuts

ua log u [�1,1) : and (8.2.19)

4Note that Z�1 (u)
Z�2 (u)

2 [�1, 0] along the lower [1,�1] segment. However, this doesn’t exclude any linear
combination of BPS states as they pass through the wall or a branch cut before flowing to a termination
point on the lower segment.
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C

B

A

D1

D2

E1

E2

Figure 8.9: This diagram shows the analytic continuation of the Z�2(u), the dotted red
line, initially in its non-existing central left region D1 on the cover on the other side of the
branch cut above D2. At the cut it becomes Z�2(u)� 2Z�1(u), represented by the brown

line.

a.) This line on this cover also flows again into the branch cut from the upper half of this
center left chamber D1 and becomes �4Z�1(u) +Z�2(u) in D2 before terminating at a
regular point. The Z�2(u)�2Z�1(u) line also terminates at regular points on the lower
[�1,1] and upper [1,�1] segments.

b.) It can also flow into the branch cut in the central right region E: the flow in the
lower half E2 is analytically continued to �2Z�1(u) � 3Z�2(u) in black. Using the
continuation from the upper half E1, the flow becomes �2Z�1(u) + 5Z�2(u) below the
cut in gray. In all cases the flow terminates at regular points.

(1, 1] : (8.2.20)

on Fig. 8.9 through the 2 central chambers D and E. In one chamber, the states flow into the
branch cut (8.2.19) from both sides. These are analytically continued to states on another
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cover that terminate at a regular point on the segment of the wall just on the other side of
the branch cut - excluding this and the initial state. In the other chamber, the flow lines
flow into the branch cut (8.2.19) in one half of the chamber where they are again analytically
continued to states on a second cover that terminate at a regular point on the part of the
wall bounding the other half of the chamber. 5

Description of each flow line

In Fig. 8.9 above and Fig. 8.10 we give an example initially of Z�2(u) represented by a
dashed red line and the gray line after it crosses the wall of D1: in this case we
analytically continue the flow of Z�2(u), shown in the previous diagrams, and table (8.9),
onto the cover it flows to when passing through the branch cut (8.2.19) between D1 and D2.
As mentioned before in (8.2.9), when continuing through the branch cut, we act with the
monodromy (M�1)�1 (from (7.2.27)) in a clockwise direction and obtain

(M�1)
�1 : Z�2(u) 7�! Z�2(u)� 2Z�1(u). (8.2.21)

This flow then emerges from the branch cut (8.2.19), in D2, as the brown line , and
flows to a regular point on the segment bounding the lower half of the center left chamber
D2 between [�1,1]. The flow of Z�2(u) � 2Z�1(u) is represented by the brown line in the
rest of the figure. One can see that in the large lower chamber C the state also flows to this
attractor point on the lower wall of the center left chamber and is thus excluded. In the
outer region A and large upper chamber B, the state flows to a regular point on the upper
segment of chamber B between [1,�1].

We now consider the various ways the state Z�2(u) � 2Z�1(u), represented by , can
flow through the logarithmic branch cuts between [�1,1) and (1, 1]:

(i) We have already described how the flow emerges from the branch cut in the lower half
of the central left chamber D2 from the Z�2(u) state on a second cover. However, on
the same cover as the emerging flow in the lower half of the chamber, in the upper half
of the chamber D1, Z�2(u)� 2Z�1(u) from (8.2.21) flows into the branch cut (8.2.19).
Here we again act with (M�1)�1 in a clockwise direction, such that

(M�1)
�1 : Z�2(u)� 2Z�1(u) 7�! (Z�2(u)� 2Z�1(u))� 2Z�1(u) 7�! Z�2(u)� 4Z�1(u).

(8.2.22)

This state, represented by the dotted dark gray line , then emerges from the
cut in the lower half of the chamber D2 again, but on a new cover, on which it also

5On the original cover in the lower half of this chamber the state has a flow out of the branch cut (from
an analytic continuation of a state on a third cover) which then also flows to a different regular point on
the wall segment bounding the lower half. This is the same attractor point that the lines in the lower large
chamber flow to and are excluded by.
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terminates at a regular point (on the left of the previous attractor point) on the lower
segment of the wall bounding the half chamber D2, and is hereby excluded.

(ii) The state Z�2(u)� 2Z�1(u) from (8.2.21) also flows into the logarithmic branch cut in
the center right chamber E from (1, 1], from both above and below on the same cover.
When it flows up into the branch cut (8.2.20) from the lower half of the chamber E2
one acts with (M+1)�1 and

(M+1)
�1 : Z�2(u)� 2Z�1(u) 7�! Z�2(u)� 2(Z�1(u) + 2Z�2(u)) 7�! �2Z�1(u)� 3Z�2(u),

(8.2.23)

which emerges in E1 as the dashed black line on a new cover, shown in the
Figures 8.9, 8.10. This flow then terminates on a regular point on the upper segment
bounding the upper half of E1, and is excluded.

(iii) In the upper half of the center right chamber E1 on the initial cover, Z�2(u)� 2Z�1(u)
flows downwards into the branch cut (8.2.20). This time we act with M+1 in a coun-
terclockwise direction and the state becomes:

M+1 : Z�2(u)� 2(Z�1(u)� 2Z�2(u)) 7�! �2Z�1(u) + 5Z�2(u). (8.2.24)

This flow, represented by a dashed grey line , then emerges from the branch cut
on another cover in E2. Again, the line terminates at a regular point - this time on the
lower segment of the wall bounding the lower half of E2, and the state is once again
excluded.

Summary

Hence, we have determined that the state Z�2(u) � 2Z�1(u) is always excluded because all
possible flows in all possible regions of the moduli space end at a regular point, including all
possible flows through branch cuts. This means this state can never exist as part of the BPS
spectrum. As shown in the diagram below (Fig. 8.10) this can be successively continued
to other combinations, such as �2Z�1(u) � 3Z�2(u) from (8.2.23), that are also excluded
as BPS states (Fig. 8.10 below shows that, like Z�2(u) � 2Z�1(u), this state has a second
regular termination point on the outer arc). If we also consider analytic continuations of
the non-existing Z�1(u) +Z�2(u) flow, this process of flowing through the cuts can continue
until all linear combinations except for the charges ±�1,±�2,±�1 ± �2 are excluded.

Final existing states in each chamber

Therefore, we now know the combination of states that exist in each region of the moduli
space. We find 3 BPS states existing in the 2 chambers below the outer arc and 2 BPS
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C

B

A

D1

D2

E1

E2

Figure 8.10: This diagram shows the continuation of the higher combinations on the other
side of the branch cuts to their second termination points on that cover: �4Z�1(u)+Z�2(u)
is the light blue line, �2Z�1(u)� 3Z�2(u) in black, and �2Z�1(u) + 5Z�2(u) in grey. In all

cases the flow terminates at a regular point on a segment bounding one of the inner
chambers D, E, as well as one on the segment bounding the large outer chamber A

opposite to the first regular point - hence such states are excluded.

states existing in the remaining 3 chambers. This is as we expect from the literature e.g. in
Shapere and Vafa [9]. Each cycle �1, �2, �3 exists in 4 out of 5 regions in the moduli space.
The exact description of the BPS existence in the moduli space is given in the table (8.10)
below.
Now we take into account the branch cuts on the diagram and remember that in the region
on the diagram below the 2 branch cuts (8.2.19, 8.2.20), but still above the outer lower
arc 6, the central charge of the sum Z�1(u) + Z�2(u) becomes either Z�1(u) � Z�2(u) or
�Z�1(u)+Z�2(u) depending on which branch cut the analytic continuation is done through
(8.2.11) and hence which of the two possible covers one considers for the central charge. The

6This contains the lower part of the central 2 chambers D2, E2 and the full lower chamber C above the
lower arc.
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Chamber Existing charges Count
D: Central left �1, �3 2
E: Central right �2, �3 2
B: Upper arc �1, �2, �3 3
C: Lower arc �1, �2, �3 3
A: Outside wall �1, �2 2

Table 8.10: Existing BPS states in each chamber labelled by �1, �2 and �3.

complete tabulation is shown in the table (8.11).

Chamber Existing charges cover 1 Existing charges cover 2 Count
D1: Central left upper half �1, �1 + �2 �1, �1 + �2 2
D2: Central left lower half �1, ��1 + �2 �1, �1 � �2 2
E1: Central right upper half �2, �1 + �2 �2, �1 + �2 2
E2: Central right lower half �2, �1 � �2 �2, ��1 + �2 2
B: Upper arc �1, �2, �1 + �2 �1, �2, �1 + �2 3
C: Lower arc �1, �2, �1 � �2 �1, �2, ��1 + �2 3
A: Outside wall �1, �2 �1, �2 2

Table 8.11: Existing BPS states, this time distinguishing �3 = �1 + �2 from �3 = �1 � �2.

8.3 Attractor flow in Seiberg-Witten SU(2)

We also carry out the analysis of deriving the Picard-Fuchs equation, the solutions and the
BPS central charges for Seiberg-Witten SU(2) [1]. As for the Argyres–Douglas theory, we
determine the attractor flow and use it to reproduce the spectrum of BPS states in each
chamber. We hereby reproduce the BPS spectrum of the quiver theory [4] with just 2 basis
states �1, �2 in one chamber, and infinitely many in the other chamber, with charges of the
form n�1 + (n+ 1)�2, (n+ 1)�1 + n�2. We use a similar set of steps as for the A2 theory.

The central charges (7.2.30-7.2.31) we derived from the solutions of the Picard-Fuchs equa-
tions were found to be
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on a particular cover. There are uc log u branch cuts at [�1,1) and [1,1) that are repre-
sented by and on Fig. 8.11.

Spectrum from attractor flow

This behaves very similarly to the A2 case in the new parameterisation, looking at the plot
below (Fig. 8.11), the behavior is almost identical. However, (e.g. from the quiver theory)
we expect the spectrum to contain infinitely many BPS states in the chamber B around
infinity. To verify this, we first consider the monodromies from (7.2.32) and transformations
of the central charges around the singular points, and through the branch cuts ending there.

We recall from (7.2.32) that at �1 the transformations are: 7

Monodromy transformations (8.3.3)

(Z�1(u), Z�2(u))

✓
1 ±2
0 1

◆
,

such that Z�1(u) 7�! Z�1(u) and Z�2(u) 7�! Z�2(u) + 2Z�1(u).

At +1 we have:

(Z�1(u), Z�2(u))

✓
1 0
⌥2 1

◆
, (8.3.4)

such that the transformations can be written as:
Z�2(u) 7�! Z�2(u), and Z�1(u) 7�! Z�1(u)� 2Z�2(u).

Now consider the attractor flow: combinations of the form ±nZ�1(u)±mZ�2(u) always flow
to a point on the wall for n,m � 1. For n

m
� 0 the flow terminates on the lower arc and for

n

m
 0 on the upper arc. To avoid all states being excluded from existence by flowing to the

regular point, we consider the flow entering the branch cuts [�1,1) and (1, 1] between B1
and B2. At the branch cuts we can combine the flows by acting with the transformations
(8.3.3-8.3.4). These must have flows continuous with those on the other side of the branch
cut and cannot terminate at a regular point if the original state exists. This can only happen
if the ratio changes sign from n

m
� 0 to n

m
 0 or vice versa.

7The sign on the ±2 is determined by the direction of the loop taken around the singular point.
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Infinite tower of existing BPS states

Hence, we can use the monodromies in (8.3.3-8.3.4) to generate the set of all existing states
not excluded by the regular points, by acting with the monodromy transformations that
reverse this ratio. Initially we act in a similar way to the A2 case when considering a
rotation (starting in the upper half plane) of the form u = �1 + ✏e�i✓, ✓ : 0 ! +2⇡ around
�1 and u = +1 + ✏e�i✓, ✓ : �⇡ ! +⇡ around +1, where ✏ 2 R

+.

Therefore, the transformations become +1: Z�1(u) 7�! Z�1(u)�2Z�2(u) and �1: Z�2(u) 7�!
Z�2(u)+2Z�1(u), a change of sign happening because we are considering a rotation from the
lower half plane. Knowing that the basis states Z�1(u), Z�2(u) exist in the chamber B around
infinity, we can consider the transformations that generate the full spectrum by acting with
these monodromies:

First examples from first basis state (8.3.5)

+1 : Z�1(u) 7�! Z�1(u)� 2Z�2(u),

�1 : Z�1(u)� 2Z�2(u) 7�! Z�1(u)� 2(Z�2(u) + 2Z�1(u)) 7�! �3Z�1(u)� 2Z�2(u),

+1 : � 3Z�1(u)� 2Z�2(u) 7�! �3(Z�1(u)� 2Z�2(u))� 2Z�2(u) 7�! �3Z�1(u) + 4Z�2(u),

�1 : � 3Z�1(u) + 4Z�2(u) 7�! �3Z�1(u) + 4(Z�2(u) + 2Z�1(u)) 7�! 5Z�1(u) + 4Z�2(u),

+1 : 5Z�1(u) + 4Z�2(u) 7�! 5(Z�1(u)� 2Z�2(u)) + 4Z�2(u) 7�! 5Z�1(u)� 6Z�2(u), ...

In general

(n+ 1)Z�1(u) + nZ�2(u) 7�! (n+ 1)(Z�1(u)� 2Z�2(u)) + nZ�2(u) 7�!
(n+ 1)Z�1(u)� (n+ 2)Z�2(u) m = n+ 1 7�! mZ�1(u)� (m+ 1)Z�2(u), ...

First examples from second basis state (8.3.6)

�1 : Z�2(u) 7�! Z�2(u)� 2Z�1(u),

+1 : Z�2(u)� 2Z�1(u) 7�! Z�2(u)� 2(Z�1(u) + 2Z�2(u)) 7�! �3Z�2(u)� 2Z�1(u),

�1 : � 3Z�2(u)� 2Z�1(u) 7�! �3(Z�2(u)� 2Z�1(u))� 2Z�1(u) 7�! �3Z�2(u) + 4Z�1(u),

+1 : � 3Z�2(u) + 4Z�1(u) 7�! �3Z�2(u) + 4(Z�1(u) + 2Z�2(u)) 7�! 5Z�2(u) + 4Z�1(u),

�1 : 5Z�2(u) + 4Z�1(u) 7�! 5(Z�2(u)� 2Z�1(u)) + 4Z�1(u) 7�! 5Z�2(u)� 6Z�1(u), ...

In general
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(n+ 1)Z�2(u) + nZ�1(u) 7�! (n+ 1)(Z�2(u))� 2Z�1(u)) + nZ�1(u) 7�!
(n+ 1)Z�2(u)� (n+ 2)Z�1(u), m = n+ 1 7�! mZ�2(u)� (m+ 1)Z�1(u) ...

These are the existing states in the model that are not excluded by termination at a regular
point. One obtains the same pattern starting with Z�1(u) + 2Z�2(u). Hence, all the combi-
nations are of the form: nZ�2(u) ± (n + 1)Z�1(u) and nZ�1(u) ± (n + 1)Z�2(u), which was
previously expected. We also expect another state to exist in chamber B around infinity.
This corresponds to a W-boson. In our basis its central charge is the sum of the central
charges Z�1(u)+Z�2(u). Some examples of sample attractor flow lines, for particular central
charges, are shown in the diagrams (Figs. 8.11, 8.12) below:

Split flow lines for example existing BPS states
Flow line
Charges �1 + �2 �1 � 2�2 �2 � 2�1 �1 � �2
Split flow lines
Charges �1 �2 �1 �2 �1 �2 �1 �2

Non-existing BPS states
Flow line
Charges 3�1 + �2 �1 + �2
Forked flow lines
Charges �1 �2

Table 8.12: Split flow lines of BPS states on Fig. 8.11.

Analytic continuation for monopole and dyon

The diagram Fig. 8.11 shows the first example of the existing states generated by analytically
continuing the central charges of the basis states (the monopole and dyon) through the
branch cuts - the diagram shows

M+1 : Z�1(u)� 2Z�2(u) 7�! Z�1(u) and (8.3.7)
(M�1)

�1 : �2Z�1(u) + Z�2(u) 7�! Z�2(u)

as dashed blue and red lines in B2 becoming the basis charges in B1, shown
by and , that flow to singular points and exist everywhere. This process can be
continued indefinitely, generating the nZ�2(u)± (n+1)Z�1(u) tower. However, these higher
combinations only exist in the central chamber B - all such states split at the wall into their
composite basis states and flow to ±1. If the linear combination were to be continued in the
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B1

B2

A

Figure 8.11: Sample attractor flow lines at infinity for Seiberg-Witten SU(2). The wall of
marginal stability is in black.

a.) The solid blue and red lines represent the flows of Z�1(u) and Z�2(u) respectively
flowing to ±1.

b.) The dashed blue and red lines correspond to Z�1(u)� 2Z�2(u) and �2Z�1(u) +Z�2(u)
- they flow through the branch cut and become the respective basis charges.

c.) The green line corresponds to Z�1(u)+Z�2(u) this flows parallel to the branch cut and
its analytic continuation Z�1(u)� Z�2(u) is shown by the dashed green line.

d.) The non-existing brown line corresponds to 3Z�1(u) + Z�2(u) and flows through the
branch cut to become Z�1(u)+Z�2(u) on a new cover, where it flows to a regular point
on the lower wall.

All higher linear combinations split at the wall into the basis flows.

outer chamber A around u = 0 it would flow to a regular point on the wall and be excluded.
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Flow for W-boson

The combination Z�1(u) + Z�2(u) (the green line ) exists in chamber B1 and is inter-
esting because it flows in parallel to the branch cut rather than flowing through it. When
analytically continued through the cut, to Z�1(u)�Z�2(u) in B2 (represented by the dashed
green line ), the flow is symmetric with that above the cut. Therefore, this state exists
within the central chamber B on 2 covers, but again splits at the wall into the basis states
for the same reason as the other higher combinations. It therefore doesn’t exist in the outer
region A. Physically this should correspond to the W-boson in the spectrum.

Example of flow for non-existing state

Finally the state 3Z�1(u)+Z�2(u) (represented by the brown line in B1) flows into the
branch cut onto a new cover where it becomes Z�1(u) + Z�2(u) in B2 and terminates
at a regular point on the lower part of the wall. This means it is one of the states excluded
by the existence conditions and is not in the spectrum of BPS states. Other non-existing
higher combinations follow a similar flow pattern.

Below we show a diagram, Fig. 8.12, showing more closely the central region B with the flow
lines passing through the branch cuts. This table describes the flow lines on this diagram:

Existing BPS states Non-existing BPS states
Cover 1 Flow line

Charges �1 � �2 �1 � 2�2 �2 � 2�1 �1 + �2
Cover 2 Split flow lines

Charges �1 + �2 �1 �2 3�1 + �2

Table 8.13: Flow lines through branch cuts on Fig. 8.12.

Final existing states in each chamber

We now have all the required information to write down the spectrum of existing BPS states
in each chamber, which we present in table (8.14) below:
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B1

B2

Figure 8.12: Zoom in around infinity of the attractor flow on the previous diagram: this
shows the flow of Z�1(u)� 2Z�2(u) ! Z�1(u), �2Z�1(u) + Z�2(u) ! Z�2(u),

Z�1(u) + Z�2(u) ! Z�1(u)� Z�2(u) and 3Z�1(u) + Z�2(u) ! Z�1(u) + Z�2(u) in blue, red,
green and brown respectively.

8.3.1 Concluding remarks

Therefore, we have now reproduced the count of BPS states in every chamber for the Argyres-
Douglas theories A1, A2 and Seiberg-Witten theory. Hence, the attractor flow method gives
the same results as those from the other methods in the literature, such as the quantum
dilogarithms from section 3.1.2 and quiver representations from chapter 4. This then can
be considered to be a useful method that could in future be generalised to other BPS
structures, such as other models with an ADE type quiver description. Although there has
to be a method for initially deriving the central charges for a theory before this can be done.
Once these are known it should then become possible to find the walls of marginal stability,
existence conditions and attractor flow lines. Which, as in these cases, should allow for the
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All existing states in all chambers

Chamber Existing charges
cover 1

Existing charges
cover 2

Count

B1: Central region upper
half

��1, ��2, ��1��2
�(n+2)�1�(n+3)�2
�(n+2)�2�(n+3)�1

�1, �2, �1 + �2
n�1 + (n+ 1)�2
n�2 + (n+ 1)�1

Infinite

B2: Central region lower
half

��1, ��2, �1��2
(n+4)�1�(n+3)�2
(n+4)�2�(n+3)�1

�1, �2, ��1 + �2
�(n+2)�1+(n+1)�2
�(n+2)�2+(n+1)�1

Infinite

A: Outer region ±�1, ±�2 ±�1, ±�2 2

Table 8.14: Existing states in Seiberg-Witten theory on 2 covers.

determination of the BPS spectrum.



9 | N = 4 black hole partition functions

In the previous two chapters 7 and 8 we used attractor flow to count BPS states in different
regions of the moduli space. The next stage of this thesis involves reviewing wall crossing and
BPS counting in N = 4 theories, including generating functions for 1

4BPS black holes. The
idea is then to find mathematical analogs for 1

2BPS states in N = 2 theories to the counting
functions of N = 4 1

4BPS states that count the BPS states in the same way. Firstly,
this derives a new way of BPS state counting which again reproduces the wall crossing,
described in section 3.1.2 and chapter 4, and could be generalised to other BPS structures.
Furthermore, if a function in N = 2 is found to encode the BPS spectrum and wall crossing
phenomena in exactly the same way as in the N = 4 example then it is reasonable to
conjecture that the counting function has or is related to the same physical interpretation
e.g. in terms of a partition function as in the N = 4 example. After first reviewing the
N = 4 example and its derivation in section 9.3, we construct a new analog of the dyon
counting function in the second work “Generating functions for N = 2 BPS structures”
contained in chapters 10-11 of this thesis. Here in section 9.1 we start by reviewing the
history, background and physical significance of black hole partition functions.

9.1 History of black hole partition functions

It is important to first review the history and development of the complete partition functions
for black hole microstates in N = 4 string theories. This starts from the development of
black hole entropy by Strominger and Vafa, [39] discussed in section 9.1.1, and the definition
of the degeneracies (sec. 9.2). The derivation of the 4d generating function, initially carried
out by Dijkgraaf, Verlinde and Verlinde [40], is covered in section 9.3. This will then be the
generating function, also appearing in the work of Cheng and Verlinde [52, 53], for which
limits can be taken and used to construct N = 2 analogs.

9.1.1 Black hole entropy in Strominger-Vafa black holes

The macroscopic black hole entropy formula was derived by Bekenstein and Hawking [164,
165] and is given by

98
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S =
kBc3A

4G~
,

for area A, with c, kB, ~ and G being the speed of light, Boltzmann constant, Planck’s
constant and the gravitational constant respectively.

However, a formula that derived the black hole entropy from the microstates remained
unknown until the work of Strominger and Vafa [39] which derived the entropy for a 5d BPS
extremal black hole 1 for the first time from these microstates in a string theory context.
This involved an N = 4 black hole in type IIB string theory, with a target K3 ⇥ S1, with
the microstates at weak coupling corresponding to a D1-D5 system in 5 dimensions. When
the microstates of this D1-D5 system are counted and the black hole partition function
is derived one can calculate the entropy which, at leading order, reproduces the result of
Bekenstein-Hawking. These microstates correspond to 1

4BPS states in the theory and the
partition function counts degeneracies of the black hole charges d(QF , QH). Here the charges
QF and QH are axion and electric charges respectively. Strominger and Vafa [39] evaluate
the entropy by taking large QH , QF to supress both string loop and spacetime quantum
corrections. This is done by evaluating Sstat = log d(QF , QH), and the result is obtained as

Sstat = 2⇡

r
QH(

1

2
Q2

F
+ 1). (9.1.1)

When one takes large QF this takes the form of Sstat = 2⇡
q

1
2QHQ2

F
. This result can also

be obtained when one takes the low energy supergravity limit and derives the Bekenstein-
Hawking entropy from the action. From this action it is possible to expand the black hole
entropy in terms of the charges, such that the Bekenstein-Hawking result is obtained in the
limit of large charges when there are fewer quantum corrections from the string theory. The
method used for K3⇥ S1 can also be applied to K3⇥ T 2, given that a degeneracy formula
for the BPS states has been derived in this case. Here the result for the entropy [166], to
leading order, becomes S = ⇡

p
Q2P 2 � (P ·Q)2 2.

9.2 BPS charges and degeneracies in N = 4 black holes

To proceed from here, we must define the degeneracies of BPS states in a Hilbert space
HBPS of states as described for BPS states in 4d N = 2 theories in chapter 3. We should
also note that Harvey and Moore [43, 44] defined the notion of a BPS algebra of this vector
space with a tensor product. There are special sectors correspond to a Generalised Kac-
Moody algebra with roots encoding BPS charges. In the example we are looking at here,

1Extremal black holes are those with minimum mass given a fixed charge and angular momentum.
2Here P and Q are electric and magnetic charges of the 4d black hole
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we can take the Hilbert space to be the space of quantum states labelled by a particular
combination of integers (k, l,m). Each state also has a particular occupation number N I .
Therefore, these states can be labelled by N I

k,l,m
and represented in the Hilbert space by

the vector |N I

k,l,m
i. If one has a charge vector of electric and magnetic charges denoted by

(P,Q) the degeneracy of this state d(P,Q) is defined as the number of independent quantum
states which have these charges. Specifically, in this case, it represents the difference in the
number of bosonic � fermionic BPS multiplets [40, 43, 167]. In this theory these charges
are those of the BPS states of a fivebrane soliton with target space K3⇥S1 ⇥R. There are
several dual string theory perspectives that arise from this fivebrane (see Fig. 9.1), including
a type II string theory on K3⇥ T 2 as well as a heterotic description with a toroidal target
space, which is derived from a dimensional reduction. One can also interpret this setup by
considering both electric and dual magnetic fivebranes wrapped on the 2 different cycles
that are present within the T 2.

Closed string theories have a relation called the level matching condition relating the number
operators of left and right moving string modes and is described in many introductory texts,
e.g. [168, 169]. It is generated by the reparameterization invariance of the worldsheet. In
this case, we have a generalisation of the heterotic level matching conditions involving the
dyon counting formula. These relations constrain the BPS degeneracies by relating the
vectors of electric and magnetic charges and the quantum numbers. Here there are 3 level
matching conditions [40]:

1

2
P 2 +

X

k,l,m,I

kN I

k,l,m
= 1, (9.2.1)

1

2
Q2 +

X

k,l,m,I

lN I

k,l,m
= 1, (9.2.2)

P ·Q+
X

k,l,m,I

mN I

k,l,m
= 1. (9.2.3)

An SL(2,Z) duality can exchange the electric and magnetic charges by acting on them in
a matrix representation as ⇤P,Q �! �⇤P,Q�t (see subsection 9.5.1). All the charges (in the
heterotic theory) can be given by 28 electric and magnetic charges respectively [170] that
are written as the vectors P,Q. Here we must consider Lorentzian charge lattices which
are self-dual an can be written as �a,b [43]. One can now say that the vectors of electric
and magnetic charges are contained in a lattice given by �22,6 [170]. The inner products
P 2 = P ·P , Q2 = Q ·Q and P ·Q are defined using the inner product of the charges on this
�22,6 lattice, which can now be arranged into a second type of charge vector:

⇤P,Q =

✓
P · P P ·Q
P ·Q Q ·Q

◆
. (9.2.4)

For the dyon counting formula we can give the physical interpretation of the quantum
numbers (k, l,m). In this case, the quantum numbers associated to a string on this space
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fivebrane soliton in K3⇥ S1 ⇥ R

6d chiral theory

2d heterotic worldsheet theory

dimensional reduction

worldvolume theory

type II strings

restrict motion of strings to within fivebrane

type IIB on K3⇥ T 2

5d rotating black hole with K3⇥ S1

M-theory lift

type IIA on K3⇥ T̃ 2

Let the radius r ! 1
r

in S̃

Figure 9.1: Dualities resulting from the fivebrane soliton.

include a momentum number l around the circle, as well as a winding number k, and the
helicity of the string m. For this example, these quantum numbers can be arranged into
another Lorentzian lattice �2,1, again with an electric - magnetic duality represented by
SL(2,Z) [40]. The lattice vectors themselves this time have a square length of m2 � 4kl.

If we assume that we are dealing with a K3 in the target space we must look at the expansion
coefficients of the elliptic genus formula to define our quantum state vectors. These are
denoted by c(4kl�m2) and the range of the index I for a particular combination of the other
quantum numbers is given by the absolute value of the expansion coefficient |c(4kl �m2)|
described further in section 9.3.3 [40]. This means that the index I runs from I : 1, ..., |c(4kl�
m2)| and hence completes the description of the quantum states |N I

k,l,m
i.

9.3 Derivation of generating function for black hole

As for the result of Strominger and Vafa, described in subsection 9.1.1 [39], the generating
function for the 1

4BPS black holes in 4 dimensions has also been derived. This gives a dyon
counting formula for 1

4BPS states with electric and magnetic charges. In fact, Strominger,
Shih and Yin [41] used an M-theory lift to relate the degeneracies of the 4d and 5d model.
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As mentioned in section 9.1.1, the 4d model can also be used to reproduce the Bekenstein-
Hawking entropy. This has been done for 4d extremal black holes, and can be derived in
the standard way by taking the limit of large charges and using the Wald entropy formula
[171] for the low energy effective action. The target space of this 4d model in a type II
framework is given by K3 ⇥ T 2, but there is also a dual heterotic theory [172, 173] on a
torus. Here we follow the original derivation by Dijkgraaf, Verlinde, Verlinde [40] of this 4d
dyonic generating function, which later appears in the work of Cheng and Verlinde [52, 53],
and the literature this is built on.

9.3.1 Heterotic description for purely electric and magnetic states

Before we look at the full generating function of the dyons we will start by understanding
the derivation in the purely electric/magnetic case in two of the dual string descriptions.
Firstly, the heterotic string framework has been used to analyse these 1

2BPS states and
to derive the counting formula for their degeneracies. We will start with this description
here. This degeneracy formula - from the charge lattice, is invariant under the duality group
[170, 174, 40], which is given by

SL(2,Z)⇥ SO(22, 6,Z),

where SO(22, 6,Z) is a T-duality subgroup. To determine the generating function we look
for BPS states, which have charges that are contained in a subset of this lattice. These
states should, as BPS states, be annihilated by the supercharges, and for the string theory
correspond to the ground states associated to the superconformal algebra describing the
theory. This particular heterotic string description has 16 supersymmetry charges in total.
There are purely electric states and purely magnetic states that annihilate 1

2 of the super-
charges and dyonic states that annihilate 1

4 of the supercharges. The generating function
for the 1

2BPS states is fairly easy to determine using half of the possible ground states. This
can be computed by just choosing the ground states of the right moving modes [175] of the
heterotic string theory that break only half the supersymmetry and hence are 1

2BPS. This
function is known [40, 175] and is given by

d(P ) =

I

C
d�

ei⇡�P
2

⌘(�)24
. (9.3.1)

Now a contour C is taken in the sigma plane such that � 2 [0, 1]. The function ⌘(�) =Q1
n=1(1 � e2⇡in⌧ )�24. The numerator contains the square of the electric charge P 2. This is

invariant under the transformation under SO(22, 6).
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16 supercharges in heterotic theory

1
2BPS states of heterotic string

take the ground states but only of the right moving modes

Pure electric P states

Heterotic theory from dimensional reduction of fivebrane

Using the dualities, we can see that the computation of equation (9.3.1) above can either be
derived by directly computing the heterotic string partition function for the relevant ground
states, as described previously, or by looking at the dual type II theory [172, 173] (see section
9.3.2). The heterotic-type II duality manifests itself in the fivebrane wrapped on the K3
manifold in the target space, from which the heterotic string worldsheet is constructed by
dimensional reduction [40]. This fivebrane exists as a soliton in the type II descriptions. Its
dimensional reduction, to the heterotic theory, is reviewed below.

Worldvolume theory of fivebrane before dimensional reduction

We will now continue here with the explanation of the heterotic fivebrane description. The
fivebrane has a 6d chiral theory on its worldvolume. In general, all the existing charged
BPS states can be understood as oscillating fields on this worldvolume of the fivebrane.
Alternatively, one can consider the fivebrane as oscillating within the full target space of the
string theory. The fields, or fluctuations with long wavelength, are known as the 0-modes
(of fields with 10 components and no mass). These fields can be arranged into a N = (2, 0)
supermultiplet 3:

Field content of (2,0) multiplet scalars fermions 3 index tensor T3 (9.3.2)

5 4 1

This fivebrane description can be related back to the heterotic string theory using a 6d !
2d dimensional reduction [173, 40]. At the moment we recall that we are looking at a 6d

3The last tensor field is also self-dual [176, 40].
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chiral theory with an interpretation as the worldvolume theory on the fivebrane.

Heterotic worldsheet theory after dimensional reduction

This is now dimensionally reduced to a 2 dimensional theory embedded within the K3
manifold. In this case, the field content in the supermultiplet (9.3.2) reduces.

5 scalars

4 chiral fermionsT3

19 left moving scalars 3 right moving scalars fermionic worldsheet content
right moving

24 left moving scalars in bosonic sector of heterotic string

These correspond to fields that exist on the worldsheet of heterotic string theory with
toroidal target space and hence completes the string duality with the type II strings (see
section 9.3.2). The momentum lattice for the heterotic strings now becomes that for the
cohomology of K3 which can be written as �20,4. The subset of electric charges PA that are
contained in this lattice can be found by integrating the tensor field over the 2 cycles ⌃A

within the K3 as well as along one of the circles S1 [177, 40]. This flux of the tensor reads
as

PA =

Z

S1⇥⌃A

T3. (9.3.3)

9.3.2 Type II description of electric and magnetic states

So far, the generating function for the purely electric and magnetic BPS states was looked at
from the heterotic string perspective. We can now briefly describe the type II interpretation
of the fivebrane as a soliton [178], that was further developed in [177] and [176], and use it to
recover the purely electric generating function. This is done by considering this worldvolume
theory with 5+1 dimensions as a string theory of the type II strings with their motion
restricted to within the fivebrane 4. This theory has (4, 4) supersymmetry in total on the
string worldsheet. The target space remains K3⇥T 2 and the fivebrane oscillates transversely
to the K3 manifold 5. To describe the 1

2BPS states one must again look at only the ground
states of this string that retain half of the supersymmetry - that existed within the original

4This also has a description in terms of D-branes such that the string worldsheet is formed from inter-
secting D-branes that are contained within the fivebrane worldvolume.

5One can define a current algebra from the commutators of current density operators in the theory. This
particular superconformal worldsheet theory has a current algebra described by the group SU(2)L⇥SU(2)R
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worldvolume theory. The string worldsheet theory already has half the supersymmetry of
the fivebrane worldvolume so one can proceed just by looking at all the ground states,
without having to choose right or left movers.

16 supercharges on fivebrane worldvolume

8 supercharges

on worldsheet

1
2BPS states of original theory

take the ground states

Pure electric P or magnetic Q states

Partition function for electric and magnetic states

One must now continue by finding a partition function that counts these 1
2BPS states on

the fivebrane using the type II perspective. This partition function can be written as the
exponential of the free energy Z = eF . In this theory, because of the N = 4 supersymmetry,
the higher loop order terms and terms describing string interactions do not contribute to the
free energy. In this case, this calculation proceeds in a similar way to one in a topological
string theory for which one can compute the free energy, but only up to a one loop term.
The partition function, in [40], now reads as

Z = eF0�modes+F1�loop , (9.3.4)

where the 0-modes of the fivebrane are those discussed in sec. 9.3.1. From the partition
function one obtains a dependence on the moduli in the worldvolume theory of the fivebrane.
These must be integrated over to get the degeneracies. We are first looking at the purely
electric and magnetic BPS states which correspond to the ground states of the string and
preserve half of the supersymmetry 6. The ground states of this string (moving within the
fivebrane worldvolume) on the K3 manifold are described by harmonic forms. These are

which will become important for dyon counting in sec. 9.3.3.
6This partition function should also reproduce the one for the infinite tower of heterotic Dabholkar,

Harvey states originally looked at in [179, 180].
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the well known [181, 182] differential forms that exist on Riemannian manifolds that are
annihilated by the Laplace operator. There are 24 harmonic forms on a K3 manifold, which
must therefore be factored into the free energy. As the target space is K3⇥T 2 we must also
include the contributions from the T 2. This means both the numbers describing momentum
and winding around the cycles.

Moduli of torus

These momentum and winding numbers of the string are contained in �2,2, which is also
known as the Narain lattice. There are 2 complex moduli that parameterise the torus. Here
we have ⇢ that measures the volume and the field B on T 2. This is the Kähler modulus of T 2.
We also have a complex structure modulus �. The 1-loop free energy of this configuration
[40], remembering the 24 harmonic forms, can be written as

F1�loop =
1

2

Z
d2⌧

⌧2

X

(pL,pR)2�2,2

ei⇡(⌧p
2
L�⌧̄p

2
R) 24, (9.3.5)

where this sum can be split into 2 terms contributing from the momentum modes and
winding modes that couple to the parameters ⇢ and � respectively. The result of the sum
was originally found by [183] 7, and used again by [40]

F1�loop = 24log(⇢
1
2
2 |⌘(⇢)|2) + 24log(�

1
2
2 |⌘(�)|2) + C. (9.3.6)

The 2 terms in (9.3.6) represented by parameters ⇢ and � can be shown to represent electric
and magnetic charges: if we take the first term to represent electric charges, the second then
represents magnetic charges. One can look at this duality between the electric charges P
and the magnetic charges Q from the type IIA perspective following [184]. Here we can use
a T-duality map on the T 2 by inverting the radius of the cycles. This map exchanges the
complex structure and volume moduli and shows that this fivebrane encodes both electric
and magnetic charges [40] (in fact, it can be interpreted as dual branes wrapping around
different cycles in the torus). The heterotic string partition function, discussed before for
the ground states of the right moving mode, can be recovered by taking the holomorphic
part of the free energy (9.3.6) and including the contributions from the fivebrane 0-modes.
Then one reproduces the result shown in equation (9.3.1).

9.3.3 Partition function of dyons from type II description

Now that we have looked at the partition function for purely electric and magnetic 1
2BPS

states, in subsection 9.3.2, we can generalise to dyonic 1
4BPS states which are formed by

7This was used to calculate a 1-loop threshold correction.



9.3.3 Partition function of dyons from type II description 107

combining these electric and magnetic BPS states. These will be the states that ultimately
appear in the work of Cheng and Verlinde [52, 53] and we later use to construct N = 2
analogs. To understand these states we again consider the type II strings on the fivebrane and
the N = (4, 4) superconformal algebra. As we noted before there are 16 supercharges in total
for the spacetime and 8 on the worldsheet. The 1

4BPS states are those that break 3
4 of the

original 16 spacetime supersymmetries. Therefore, because the worldsheet supersymmetry is
already half of that in spacetime, one must only have half of this worldsheet supersymmetry
to obtain the 1

4BPS states. This is again achieved by considering the ground states of only
the right moving modes of the string and hereby retaining only 4 unbroken supercharges.

16 supercharges on fivebrane worldvolume

8 supercharges

again look at worldsheet

1
4BPS states with 4 unbroken supercharges left

again take the ground states but only of right moving modes

Dyonic BPS states with charges (P,Q)

Elliptic genus

These states are counted by the trace in the Ramond-Ramond RR-sector of the string theory
(from strings satisfying two Ramond boundary conditions). This corresponds to the (2, 2)
elliptic genus. As the fivebrane is wrapped on the K3, the elliptic genus [40, 42, 51] is taken
on this manifold

�(q,y)(K3) = TrRR(�1)FR+FLyJL0q(L0� c
24 )q̄(L̄0� c

24 ), (9.3.7)

�(⌧,z)(K3) = Tr(�1)FR+FLe2⇡i(⌧(L0� c
24 )+zFL),

(9.3.8)
⌧ 2 H

+, z 2 C, q = e2⇡i⌧ , y = e2⇡iz, JL0 is in general a left-moving U(1) charge operator,
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L0, L̄0 are Virasoro generators for the left and (the restricted) right moving modes respectively,

c is the central charge of the Virasoro superalgebra, c(K3) = 6.

This trace is taken over these quantum numbers. To understand (9.3.8), one must now
remember the current algebra discussed in section 9.3.2. It has left and right moving 0-
modes which are represented by states with fermion numbers on the worldsheet given by
FL = m 2 Z, FR = 0,±1, where FR are those for the right moving ground states. The
latter being the only states considered for the right movers.

The quantum number m also becomes the helicity of the states as it represents an SU(2)L
symmetry which is within the Lorentz group in spacetime, (the SU(2)L also being embedded
in the current algebra and containing a U(1) from which the 0-modes are taken) [185, 186,
187, 40] 8.

3 complex variables ⇢, �, v in partition function

The fermion/helicity numbers m can now be added to the Narain lattice �2,2 introduced
in section 9.3.2, which already contains the momentum and winding numbers of the string
around the torus T 2. When these extra numbers are added the lattice becomes �3,2 [40].
In the context of the type IIA string theory with T-duality this means that the lattice has
SO(3, 2,Z) invariance. The lattice now requires 3 complex variables to parameterise its
underlying geometry. So far, in the previous subsection 9.3.2, we only have 2 variables �
and ⇢ associated to T 2 so we include a third parameter v 9. The parameters themselves
transform in the SL(2,Z) subgroup in the form of a vector representation.

The elliptic genus of K3, shown above in (9.3.7) [42], can be expanded in terms of Fourier
coefficients in the form of c(4h � m2), where h = kl can be written to compare with the
occupation numbers, described in section 9.2, for the quantum states

�(⌧,z)(K3) =
X

h�0,m2Z

c(4h�m2)e2⇡i(h⌧+mz). (9.3.9)

Now, as before, one must look for the free energy F so that one can find the partition function
in the form of Z = eF . For this free energy, as with the purely electric and magnetic examples
in sec. 9.3.2, it is known that the higher loop order terms do not contribute. Therefore, one
can again look for the 1-loop integral. In this case, one sums over the momentum modes
in the �3,2 lattice and factors in the coefficients from the K3 in (9.3.9) [40, 42]. This is to

8It can also be seen as a bundle over the torus within the target space
9Physically this represents a Wilson loop in the theory that can be taken in the volume occupied by the

fivebrane [40].
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include all possible combinations of modes wrapped within the K3 manifold 10

F1�loop =
1

2

Z

F

d2⌧

⌧2

X

pR,pL2 �3,2 n24Z�✏

ei⇡(⌧p
2
L�⌧̄p

2
R)c(n)ei⇡

n
2 , (9.3.10)

where, for the coefficients, we have c(n) = c(4h�m2) from the K3 elliptic genus in (9.3.9)
above. ✏ = 0, 1 for even and odd m respectively. Both the left and right moving momentum
modes [188], denoted by pL and pR, can be written in terms of the parameters ⇢, �, v

1

2
p2
R
=

1

4Y
|m1⇢+m2 + n1� + n2(⇢� � v2) + bv|2, (9.3.11)

1

2
(p2

L
� p2

R
) =

1

4
b2 �m1n1 +m2n2, (9.3.12)

where the numbers m1,m2, n1, n2, b can be taken as any integer. Here Y = ⇢2�2 � v22 repre-
sents the determinant of the matrix given by the imaginary parts of the complex parameters
⇢ = ⇢1 + i⇢2, � = �1 + i�2, v = v1 + iv2.

9.3.4 Expansion of K3 elliptic genus

The K3 elliptic genus, described previously in subsection 9.3.3, can be written in terms of
theta functions. This is because the affine SU(2) Lie algebra is a subalgebra within the
N = 4 algebra that describes the full superconformal sigma model on the K3 target space.
This decomposition [42, 188] can be written as

�(⌧,z)(K3) = h0(⌧)✓01(⌧, 2z) + h1(⌧)✓11(⌧, 2z), (9.3.13)

✓01(⌧, 2z) =
X

b22Z

q
b2

4 yb, ✓11(⌧, 2z) =
X

b22Z�1

q
b2

4 yb, (9.3.14)

where the theta functions in (9.3.13) are expanded on the second line in terms of odd or
even integer powers. The functions h0(⌧) and h1(⌧) encode the expansion coefficients of the
K3 elliptic genus [42]. The first terms in the series are shown here

h0(⌧) =
X

N⌘0 (mod 4)

c(N)q
N
4 = 20 + 216q + 1616q2 + 8032q3 + 33048q4 + 117280q5 + ... ,

(9.3.15)

h1(⌧) =
X

N⌘�1 (mod 4)

c(N)q
N
4 = q�

1
4 (2� 128q � 1026q2 � 5504q3 � 23550q4 � 86400q5 + ...).

10The integral is over the worldsheet torus which has a modular group with fundamental domain F.
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We can read off the first few coefficients as

c(�1) = 2, c(0) = 20. (9.3.16)

This can also be seen by expanding the elliptic genus as

�(⌧,z)(K3) = 2y + 2y�1 + 20 +O(q). (9.3.17)

When one takes the limit y ! 1 one obtains the Witten index of K3 which is given as:
�(⌧,z)(K3) = 24.

9.3.5 The 1-loop integral

The 1-loop integral (9.3.10) can be written in terms of the functions h0(⌧), h1(⌧) and the
momentum modes [42]. In this case, the integers m1,m2, b are summed over

I =

Z

F

d2⌧

⌧2

X

m1,m2,n1,n2

⇣X

b22n

qp
2
L q̄p

2
Rh0(⌧) +

X

b22n+1

qp
2
L q̄p

2
Rh1(⌧)� c(0)

⌘
. (9.3.18)

The next step here is to explicitly compute the one loop integral (9.3.10) in terms of the
moduli - this integral formulation for BPS algebras has been developed in the literature [43,
183], and explicitly computed for this example in [42, 51], by splitting it into 3 contributions

I = I0 + Ideg + Ind. (9.3.19)

These describe the contributions from 0-orbits I0, degenerate orbits Ind, and non-degenerate
orbits Ind under the action of the SL(2,Z) group describing the modularity of this integral.
The results for the 3 integrals can be written as:

I0 =
Y

⇢2

Z

F

d2⌧

(⌧2)2
�(⌧,0)(K3) =

Y

⇢2

⇡

3
24, (9.3.20)

Ind = � log
Y

k>0,l�0,b2Z

|1� ek⇢+l�+mv|c(4kl�m
2), (9.3.21)

Ideg = �⇡
3
c(0)�2 � log(Y )c(0) � log

Y

l>0

|1� el�|4c(0) + (�✏ � 1� log
8⇡

3
p
3
)c(0) + (9.3.22)

4⇡(
v22
�2

+ v2 +
�2
6
)c(�1)� log

Y

l>0,b=±1

|1� el�+mv|4c(�m
2) + log

Y

l>0,b=±1

|1� emv|4c(�m
2).
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Now the sum of the 3 contributions is computed to obtain I = I0 + Ideg + Ind. This then
becomes

I = �2 log kY 10|e⇢+�+v
Y

k>0,l�0,b2Z

(1� ek⇢+l�+mv)c(4kl�m
2)|2, (9.3.23)

where k = ( 8⇡
3
p
3
e1��E)10. The Euler Mascheroni constant is denoted by �E. Here the integral

has become a product involving factors over all the possible integer multiples of the moduli.
The coefficients of the elliptic genus expansion c(4kl�m2) are now present as the exponents
of the factors. The function [45, 46, 47], which is a Siegel modular form of weight 10, is
known as the Igusa cusp form

�10(⌦) = e⇢+�+v
Y

k>0,l�0,m2Z

(1� ek⇢+l�+mv)c(4kl�m
2), (9.3.24)

where

⌦ =

✓
� v
v ⇢

◆
, (9.3.25)

such that we can now write the 1-loop integral in terms of this Igusa cusp form

I = �2 log(kY 10|�10(⌦)|2). (9.3.26)

As in the case of the half-BPS states, we have the modulus squared of the product and to
find the partition function we must only take the holomorphic part. The free energy then
can also be written in the form

F1�loop = � log(kY 10|�10(⌦)|2) = log(Y 10|�10(⌦)|2) + const, (9.3.27)

and the partition function can [40], like the half-BPS states, be written as

Z = eF1�loop = eI = e� log(kY 10|�10(⌦)|2) = e� log(k)+log(Y 10|�10(⌦)|2). (9.3.28)

Finally, to construct the dyon counting formula, we must include the fivebrane 0-mode
contribution as both this and the 1-loop order contribute to the free energy. This 0-mode
contribution can be taken as the exponential of the electric and magnetic charges (P,Q)
[40], using their square, product and the moduli in the form

ei⇡(P
2
⇢+Q

2
�+2P ·Qv).

From this it now becomes possible to construct the dyon counting formula [40, 52, 53] in
the work of Cheng and Verlinde for BPS states by putting together the contributions from
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all the above factors. For the charges (P,Q) this can be put together to find d(P,Q) as 11

d(P,Q) =

I
d�d⇢dv

ei⇡(P
2
⇢+Q

2
�+2P ·Qv)

�10(⌦)
. (9.3.29)

9.4 Generating function as partition function

The denominator of this dyon degeneracy formula, derived in [40], can be considered a
partition function for the charges such that it counts the number of possible configurations
of a black hole with charge (P,Q). This function is also the Igusa cusp form introduced in
this section in (9.3.24). It is reviewed in great detail in [54], 12 and is indeed the 3 parameter
partition function of dyonic 1

4BPS states discussed in the more recent literature [52, 53, 54]
describing the N = 4 wall crossing phenomena. To remind ourselves, the expression for the
cusp form is

�10(⌦) = qyp
Y

k,l,m>0

(1� qkylpm)2C0(4kl�m
2), (9.4.1)

where C0(4kl � m2) are the Fourier coefficients of the Jacobi form �0,1(⌧, z) used in the
multiplicative lift. This is still also a multiplicative lift of the elliptic genus from (9.3.7),
which is now written in terms of the Jacobi form �(⌧,z)(K3) = 2�0,1(⌧, z), meaning that the
Fourier coefficients in the exponent are redefined by a factor of 2. We have also redefined
the variables from the previous subsection 9.3.5 such that ⇢ ! �, � ! ⌧ . They can now be
written as exponentials p = e2⇡i�, q = e2⇡i⌧ , y = e2⇡iv and organised into the matrix

⌦ =

✓
⌧ v
v �

◆
. (9.4.2)

This is the period matrix of a genus 2 Riemann surface [40]. The partition function for the
dyons is now given by

Z(⌦) =
1

�10(⌦)
=

1

p

Y

k>0,l�0,m

1

⌘18(⌧)✓21(⌧, v)(1� qkylpm)2C0(4kl�m2)
=

X

r��1,s��1,t

e2⇡i(r⌧+s⇢+tv)g(r, s, t),

(9.4.3)

⌘(⌧) = e
i⇡⌧
12

1Y

n=1

(1� e2n⇡i⌧ ) is the dedekind eta function,

✓1(⌧, v) = �e
1
4⇡i⌧+⇡i(v+ 1

2 )✓(⌧, v +
1

2
⌧ +

1

2
),

11One can let d(P,Q) = (�1)P ·Q+1
D(P,Q), where the factor was introduced by [41, 189] to relate the 4d

and 5d degeneracies.
12This function is a is the unique weight 10 cusp form defined in [45, 46].
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is an auxilary theta function that can be mapped to the Jacobi theta function.

This is the full description of the cusp form mentioned in (9.3.24), and is also known as
a product representation of a Siegel modular form. These are generalisations of elliptic
modular forms in which the arguments are period matrices of higher genus Riemann surfaces
with positive definite imaginary part. This function can also be written in terms of the
root system of the Borcherds-Kac-Moody algebra of which this is the Weyl denominator.
The auxilary theta function ✓21(⌧, v) contains the Weyl denominator of the Â1 subalgebra.
This will become important later in sec. 10.3 as we look at the generating functions for
subalgebras.

The degeneracy of dyonic BPS states with electric and magnetic charge (P,Q) is now defined
as

d(P,Q) = g(
1

2
Q2,

1

2
P 2, P ·Q) where

1

2
Q2,

1

2
P 2, P ·Q, (9.4.4)

are the 3 T-duality invariants that can be formulated in terms of these charges. We can also
transform v ! �v. From the expansion above one can see this is also the Fourier coefficient
of the Igusa cusp form 13

d(P,Q) =

I
d3⌦

e⇡i⇤P,Q(⌦)

�10(⌦)
, (9.4.5)

where the charge vector, and a basis of roots of the lattice of possible charge vectors, can
be written as

⇤P,Q =

✓
P · P P ·Q
P ·Q Q ·Q

◆
, (9.4.6)

↵1 =

✓
0 �1
�1 0

◆
, ↵2 =

✓
2 1
1 0

◆
, ↵3 =

✓
0 1
1 2

◆
.

Therefore the charge vector ⇤P,Q is now a linear combination of a basis of 3 positive roots of
the Borcherds-Kac-Moody algebra, ⇤P,Q 2

⇣
Z+↵1+Z+↵2+Z+↵3

⌘
. The roots of a basis are

those used by Cheng and Verlinde [53] to look at possible splittings of a dyon into electric
and magnetic constituents.

13In this way the degeneracy and the Igusa cusp form is written as in Cheng and Verlinde [53].
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9.5 Modularity, contour prescription, and wall crossing

Now one can discuss the contour prescription used to extract the Fourier coefficients from
the factors in the generating function. Specifically, the example of Â1 will be considered
using a contour in terms of 2 of the 3 complex variables. To consider a modular formulation
of this contour prescription it is important to understand how this works in the original
N = 4 dyon counting function from which this limit is taken.

9.5.1 Modularity and limits of Igusa cusp form

As explained in sec. 9.3 the full dyon counting formula was originally derived as the weight
10 Igusa cusp form �10(⌦). This is a Siegel modular form. Physically, the modularity
represents the S-duality transformations acting on the charges and moduli of the theory.
We can remember that the matrix ⌦ from (9.4.2) is a period matrix of a genus 2 Riemann
surface in the parameters. For now it can be understood as a general Riemann surface but
in section 9.5.3 we will see that the imaginary parts of the periods are proportional to the
normalised central charges. Various limits can be taken of this Riemann surface to make it
easier to visualise the situation with the charges.

Possible limits that can be taken

For example, one can see that when v = 0 the genus 2 surface surface can be split into 2
tori. In this case, the electric and magnetic charges correspond to cycles around the loops
of the 2 tori respectively. However, one can also look at a different limit where � = 0. For
this second example, one expects the generating function to include the combinations of
the periods of a genus 1 Riemann surface matching the action of the PSL(2,Z) modular
group from the Jacobi-theta function. Therefore, in the latter case one chooses the subgroup
acting just on the upper part of this matrix (⌧, v). In these two cases the period matrix can
be taken as

⌦v=0 =

✓
⌧ 0
0 �

◆
, ⌦�=0 =

✓
⌧ v
v 0

◆
. (9.5.1)

Furthermore, a simpler limit can be taken to give an expression just in (⌧, v), including the
Jacobi-theta function. This is the limit � ! +i1. This is ideal for studying wall crossing
just in these two variables and will be revisited in sec. 10.2.1.

Modularity

The Siegel upper-half plane H
+ is defined by Im[⌧ ], Im[�] > 0 and det(Im[⌦]) > 0. The

arguments of the Igusa cusp form must take values in this plane in order for this function
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to retain the modular property. One can then act on this plane with the group elements
g 2 Sp(2,Z) [50, 52, 54]. The period matrix then becomes

⌦ ! A⌦+ B

C⌦+D
. (9.5.2)

Here the group elements are defined by gJgt = J where

J =

✓
0 �I2
I2 0

◆
. (9.5.3)

This means that the block matrices satisfy the relations

ABt = BAt, CDt = DCt, and finally ADt � BCt = I2. (9.5.4)

When one writes the Igusa cusp form as 1/�10(⌦), one can generate the location of the poles
of this function by starting with one pole (e.g. at y = 1) and acting with elements g of the
group to generate the full set. The other poles then arise as images under the action of this
group.

For this Igusa cusp form, one can embed the PSL(2,Z) modular group within the Sp(2,Z)
group from (9.5.2 - 9.5.3). This can be considered the S-duality transformation acting on
the T-duality invariants of the charges from (9.4.6) 14

⇤P,Q =

✓
P · P P ·Q
Q · P Q ·Q

◆
.

This matrix transforms under S-duality by action of elements of the PSL(2,Z) subgroup,
while, as described above, the full Sp(2,Z) generates all the poles of the Igusa cusp form.
This means that the SL(2,Z) subgroup in matrix representation acts on the charges as:
⇤P,Q �! �⇤P,Q�t, and on the period matrix as ⌦ ! (�t)�1⌦��1. This transformation can
then be embedded within the Sp(2,Z) group [52, 54]. The embedding works as:

✓
A B
C D

◆
=

✓
(�t)�1 O
O �

◆
=

0

BB@

d �c 0 0
�b a 0 0
0 0 a b
0 0 c d

1

CCA . (9.5.5)

9.5.2 Contour prescription

One can now consider the integral over the N = 4 dyon counting function for a partic-
ular charge and consider what happens to this integral when one acts with the Sp(2,Z)
transformation. From this one can look to see if the contour in ⌦ shifts under this transfor-

14This is the matrix representing the charges in [52, 53].
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mation. The aim of the contour prescription is to keep this contour invariant under S-duality
transformations. In practice the degeneracies can be found by deforming S-duality invari-
ant contours for different charges into each other and picking up extra contributions to the
degeneracies from the poles.

Prescription for degeneracies

The degeneracies of the charges in (9.4.5), now written together as one vector ~Q = (P,Q), are
extracted from the Igusa cusp form before and after the S-duality transformation respectively
[50] using the formula

d( ~Q) =

I

C
d3⌦

e�i⇡ ~Q
t·⌦· ~Q

�10(⌦)
, d( ~Q0) =

I

C
d3⌦0 e

�i⇡ ~Q
0t·⌦0· ~Q0

�10(⌦0)
, (9.5.6)

where C is the contour. To determine the degeneracy for the new charge ~Q0 one has to
understand the Sp(2,Z) transformation of ⌦ ! ⌦0 and act on the contour with this. Under
this transformation one knows that the form of the differential remains invariant as well
as the form of the inner product of charges in the numerator such that one can write:
d3⌦ = d3⌦0. Furthermore, the Igusa cusp itself is invariant �10(⌦) = �10(⌦0), as well as the
product in the numerator ~Q · ⌦ · ~Qt = ~Q0 · ⌦0 · ~Q0t. So, the contour prescription set up for
C must also be one which is also invariant under this transformation. This can be taken as
a 3 torus in the Siegel upper half-plane [52, 48, 190, 49, 50] which takes the form in the 3d
complex space ⌧, �, v:

Re[⌧ ] 2 [0, 1], Re[�] 2 [0, 1], Re[v] 2 [0, 1]. (9.5.7)

The imaginary part of this contour is taken to be a large positive constant such that one
has:

Im[⌧ ] 2 N1 , Im[�] 2 N2 , Im[v] 2 N3. (9.5.8)

There is another way of writing this contour. One can remember that these variables are
defined as complex numbers in the Siegel upper-half plane such that: Im[⌧ ], Im[⇢] > 0
and Im[⌧ ]Im[⇢] > (Im[v])2. The Fourier coefficients are extracted by choosing a particular
contour prescription for a charge when specifying N1, N2, N3 (see sec. 9.5.3 below). This
contour is typically chosen at fixed imaginary part deeply within the Siegel upper-half plane
such that Im[⌧ ]Im[�] >> (Im[v])2+1. One then integrates over the real part of the contour
such that we can finally write the contour C as

0  Re[⌧ ],Re[�],Re[v] < 1 , Im[⌧ ]Im[�] >> (Im[v])2 + 1. (9.5.9)
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Moving between degeneracies

S-duality for the degeneracies defined as d( ~Q) = d( ~Q0), however, works only if there is no
possible crossing of walls of marginal stability. If one can cross a wall of marginal stability the
degeneracy can jump. To compute the degeneracies in general one must look for a different
contour prescription for each charge ~Q and ~Q0 separately as C and C 0. The contour, before
any poles are crossed, must be S-duality invariant for each charge satisfying the relations
(9.5.8-9.5.9) above.

Therefore, in general one can deduce [50] that the way to extract degeneracies from the pole
structure of the theory is to:

(i) For each charge define a specific contour under which the degeneracies are initially
S-duality invariant: that is invariant under SL(2,Z). In general, one can expect to
find different contours for different charges.

(ii) Start with a particular contour C for which one knows the degeneracies of charges in
the part of the charge lattice belonging to the fundamental cell.

(iii) Deform this contour C into another C 0.

(iv) Now during the deformation between 2 contours one can cross poles. So, these poles
contribution must then be added to the degeneracy.

9.5.3 Walls and central charges in N = 4

It has been determined that [49, 52, 53, 54] the walls of marginal stability correspond to
the boundaries of the regions of the moduli space where the different multi-centered dyonic
black hole solutions can exist. These multi-centered solutions are 1

4BPS, but they are bound
states of single-centered 1

2BPS states with parallel electric and magnetic charges that can
be transformed under S-duality into either pure electric or magnetic states. The walls of
marginal stability are the regions of the moduli space where the mass of the multi-centered
state is equal to the sum of the single-centered solutions. That is, there is a 1

4BPS dyonic
state that splits into two 1

2BPS states when

M(P,Q) = M(P1,Q1) +M(P2,Q2).

Walls and central charges

To see where the walls occur one must define a moduli dependence of the contour by writing
the period matrix ⌦ in terms of central charges. In this N = 4 model this can be described
by this matrix taking the form of: Im[⌦] = 1

✏
X, where X is a unit vector obtained by

normalising the central charges. The real part is given by Re[⌦] 2 [0, 1]. Here ✏ is a small
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positive real number that takes the contour out to infinity by having ✏ ! 0 such that the
components of ⌦ take large positive values that only depend on the sign of the components of
X but not their magnitude. The N = 4 central charge dependence can be written explicitly
in terms of a unit vector, such that X = ZP,Q

|ZP,Q| , where ZP,Q is the central charge of the dyon
with charges ~Q = (P,Q) 15. Here P,Q are the charges corresponding to the root from which
one wants to extract the degeneracy, and by the prescription given above (9.5.8-9.5.9), also
define the contour.

The space of possible unit vectors with |X| = 1 is hyperbolic. Therefore, one can now [53]
parameterise these vectors as:

X =
1

⌧2

✓
|⌧ |2 ⌧1
⌧1 1

◆
. (9.5.10)

Here ⌧ = ⌧1 + i⌧2 2 H
+ is the parameter mapping the hyperbola of unit vectors into

the upper half-plane. In this case, this can be incorporated into the contour prescription
discussed above. For this the large imaginary part in the contour becomes:

N1 =
1

✏

|⌧ |2
⌧2

, N2 =
1

✏

1

⌧2
, N3 =

1

✏

⌧1
⌧2
. (9.5.11)

Discrete attractors and Weyl chambers

The equations for the walls are given by the inner product ↵i(X) = (X,↵i) = 0. 16 The walls
are also the boundaries of the Weyl chambers W associated with the Weyl group of the root
system (9.4.6). If X varies in such a way that it crosses this locus of vanishing product with
a positive root then one crosses a wall, or equivalently a pole, and hence this state ceases to
contribute to the degeneracy. Here one can interpret this as a composite dyonic BPS state
with a particular charge decaying into 2 product states. This process then repeats itself
when the same initial charge can be split into a different combination of 2 product states.
The decay pattern then continues iteratively, such that one obtains a cascading discrete
attractor flow [53] 17 of composite BPS states, with a particular total charge but different
combinations of constituents disappearing across walls bounding infinitely many chambers.
This then ultimately reaches the fundamental Weyl chamber WF . Here one finds only the
states that can not further be decomposed - the so called “immortal dyons” in [52, 54].

15The central charge can be presented in terms of the normalised charge vector and the axion-dilaton
moduli [49, 53].

16Here ↵i 2 �+ (the set of positive roots). The inner product is defined by (X,Y ) = �det(Y )Tr(XY
�1)

[53].
17The attractor equation, this time for the N = 4 theory, is again derived from the central charge and the

flow is analogous for the attractor flow in sections 7 and 8 for the N = 2 examples [140, 191] but with the
difference that the flow is a discrete pattern of jumping across the walls in the direction of more unstable
BPS states.



10 | N = 4 BPS generating function and

Lie algebras

In this thesis a generating function is derived which counts the BPS states in the different
chambers of the moduli space and from which BPS degeneracies can be extracted. This is
also presented in the work “Generating functions for N = 2 BPS structures” and is covered
here in this chapter 10 and the following chapter 11.

We restrict the N = 4 generating function to that of subalgebras and use these to reproduce
the wall crossing for N = 2 analogs such as Argyres-Douglas and Seiberg-Witten theories
[1, 5]. The existence of BPS states in particular regions in the moduli space of these theories
was already looked at in the initial part of our research on attractor flow, described in
chapters 7 and 8 using the special geometry of the moduli space. In the following sections
we derive a generating function for theories with a BPS spectrum described by the roots of
the Lie algebras Â1 and A2. These generating functions have the potential to be generalised
to CY 3-folds with ADE-type singularities. They should also encode the wall crossing and
the existence conditions for the BPS states. Given that the singularities are ADE-type, and
the BPS states are represented by roots of the corresponding Lie algebra, one is looking
for associated invariants of the root system within the chambers bounded by walls. To
determine what they could be, one can look at what is known in this area so far in the
literature [40, 52, 53, 54, 50, 48, 190, 49] on generating functions of N = 4 black holes
introduced in section 9.3 and proceed to find an analog that matches the N = 2 wall
crossing in these examples.

The generating function derived in section 9.3, for N = 4, 1
4BPS states in 4d, culminated

in a Lie algebraic prescription for wall crossing for which analogs in N = 2 theories can
be found. It has been previously conjectured [42] and worked out explicitly in the work
of Cheng and Verlinde [53], that the dyon counting formula in (9.3.29) is related to the
Borcherds-Kac-Moody algebra. In particular, it corresponds to its Weyl denominator - the
Igusa cusp form from (9.3.24). This algebra and its Weyl denominator are described in
detail by Gritsenko and Nikulin [45, 46, 47]. In our research we use this result to extract
generating functions for subalgebras that match the root systems of N = 2 theories, such as
Â1. We then use these as an analogy from which to conjecture a more general approach to
generating functions in N = 2 theories with BPS root systems corresponding to other Lie
algebras, such as the ADE type Argyres-Douglas theories, previously discussed in sections

119
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3.1.2, 4.3 and chapter 5.1. It should also be noted that BPS algebras of this form have
also been discussed for 4d N = 2 heterotic string theory in an old result by Harvey and
Moore [172, 43] in which a generating function was also derived. However, the most recent
prescriptions for extracting degeneracies and understanding wall crossing are given by Cheng
and Verlinde [52, 53].

As the N = 4 walls are Weyl chamber boundaries we can match these with the BPS walls
introduced for the framed BPS states from GMN [17] in section 5.3 as well as the Jafferis-
Moore [37] D6-D2-D0 boundstates reviewed in section 5.4. This is done by defining the
N = 2 moduli used as the argument of the generating function. This means defining the
analog of the central charge function X = ZP,Q

|ZP,Q| in terms of central charges for the N = 2
theory such that the BPS walls match correctly. If we use the attractor flow existence
conditions from chapter 7 to exclude the BPS walls ending at a regular point in the moduli
space then we reproduce the scattering diagrams and wall crossing phenomena for the vanilla
BPS states. These are derived by Bridgeland [124] from Konsevich-Soibelmann operators
[30] (see section 5.3) and reviewed in [58]. It is also interesting to note that the BPS algebra
originally defined by Harvey and Moore has been recently matched [192] with the algebra
describing the scattering for the framed BPS states.

The dyon counting formula from [53] can be rewritten in terms of the root system in the
form of Weyl denominator for the Borcherds-Kac-Moody algebra. In this case, the formula
[53] from (9.3.29) becomes

(�1)P ·Q+1D(P,Q) =

I

C
d3⌦

 
ei⇡(

1
2⇤P,Q+⇢,⌦)

Q
↵2�+(1� e�i⇡(↵,⌦))mult(↵)

!2

, (10.0.1)

where ⇤P,Q is the charge vector, mult(↵) is the multiplicity of the root ↵ and ↵(⌦) = (↵,⌦)
1. One can now interpret the degeneracy as enumerating the number of ways one can write
the numerator of the dyon counting formula as a sum of 2 sets of roots, the sums being
positive. One can now let ⇤ = 1

2⇤P,Q + ⇢ be the highest weight of a Verma module 2

such that the stable composite BPS states can be counted as contributions to this weight.
Therefore, wall crossing causes a jump in the highest weight, which is an invariant within
the Weyl chambers. This principle is generalisable to Verma modules in N = 2 analogs.

10.1 Wall crossing and BPS generating function for sub-
algebras

We now start by deriving generating functions for subalgebras from the N = 4 dyon counting
function that can give us information about wall crossing in N = 2 theories. These should
act on a subset of the root lattice that one can choose. This can be done by looking at

1This inner product is defined by (X,Y ) = � det(Y )Tr(XY
�1).

2See section 11.1.1 for a definition.
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the wall crossing for 1
4BPS dyons that have charges corresponding to those we know exist

in N = 2 theories with affine A1 (also denoted by Â1) root lattice, such as Seiberg-Witten
theory or the D6-D2-D0 bound states described by Jafferis-Moore [37]. Then we can use
such a generating function as an analog counting function to determine existence of such
BPS states in these theories.

However, we first review the N = 4 interpretation. One can start by extracting BPS
degeneracies from the generating function (10.0.1) in the full N = 4 case. They are extracted
in the Siegel upper half-plane H

+. Once this is done one can then look at their wall crossing
phenomena. As discussed above in sec. 10, it is understood that this generating function
describes the wall crossing phenomenon of the splitting of multi-centered BPS black hole
dyons. This has been shown to work from 2 perspectives: the first is directly from the
generating function [53] and the second is by a contour prescription [52]. Starting with
the generating function (10.0.1), for particular values of the moduli, the function can be
expanded as a series expansion of the form 3

1

�10(⌦)
=

1X

p,q,r=�1

FKM(p, q, r)e�p↵1(⌦)�q↵2(⌦)�r↵3(⌦), (10.1.1)

where ↵1,↵2,↵3 are a basis of positive roots �+
(A,S) of the Borcherds-Kac-Moody superalgebra

g(A, S) 4 and FKM(p, q, r) are the Fourier coefficients of the square Weyl denominator.
However, remembering the condition from the work of Cheng and Verlinde [53], the series
expansion is only well defined for Im[i↵j(⌦)] > 0 5 for all roots ↵j that occur within the
product in the Weyl denominator. Only in this case do we know how to extract the Fourier
coefficients. This means that at a point in the moduli space where one has a finite number
of roots with negative vanishing imaginary part

Im[i↵j(⌦)] < 0, 8j 2 {1, ..., n}, Im[i↵k(⌦)] > 0, 8k 6= j. (10.1.2)

One must now rewrite the generating function such that it has only factors in the denomina-
tor with exponents all in the form Im[i↵j(⌦)] > 0, 8j 2 {1, ..., n}. It can then be expanded
again as a Fourier series where coefficients can be extracted. However, in this case the co-
efficients will jump. This is because, in rewriting the equation, one moves the exponential
factors into the numerator from which one obtains a shift in the degeneracies, meaning that
the degeneracies of a particular electric and magnetic charge before wall crossing become
those of a different charge on the other side of the wall. In this case, one can use S-duality
to change the basis used in the denominator back to one of positive roots, such that the
denominator is again written in terms of these roots, as it was before the jump occurred.

3Here we have redefined ↵(⌦) by absorbing the factor i⇡ into the complex variables in ⌦.
4We are using the notation of [45] such that A represents the Cartan matrix of the BKM algebra and S

is a subset of the indicies labelling the generators.
5The factor i is inserted here, following the convention of [52, 53], as Re[↵j(⌦)] > 0 for the sum to

converge.
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Alternatively, according to the second prescription [52], this can be understood in terms of
the contour C in (10.0.1) and the poles. The walls of marginal stability occurring at the
points Im[i↵j(⌦)] = 0 are passed as the contour crosses the poles at ↵j(⌦) = 0. For every
wall crossed, the BPS state associated to the root ↵i disappears from the spectrum.

10.2 Subalgebras of Borcherds-Kac-Moody

Remembering that our aim is to gain information about wall crossing in N = 2 supersym-
metric QFTs, we now start looking at multi-centered BPS dyons that decay in this theory
that are analogous to the BPS states with corresponding electric and magnetic charges ex-
isting in N = 2 theories. These charges should exist as subsets of the root lattice of the
Borcherds-Kac-Moody superalgebra g(A, S) discussed in [53], with an S-duality group that
leaves this sublattice invariant. Examples include the algebras gA1 ⇢ g

Â1
⇢ g(A, S) with

root systems �A1 ⇢ �
Â1

⇢ �(A,S). In particular, one can look at the simplest case of the A1

Lie algebra which just describes a single BPS state. For this case a discussion was started
in [50]. In this algebra, the only change of basis of the roots that can be done corresponds
to permuting the positive and negative root ±↵ ! ⌥↵. Furthermore, there is also the case
of the affine Lie algebra denoted by Â1. This has an S-duality and modular group given
by PSL(2,Z) [52, 53]. Both the Weyl denominators of A1 and Â1 exist as factors within
the Weyl denominator of the Borcherds-Kac-Moody algebra. It should therefore be possible
to proceed by extracting suitable degeneracies which correspond to the BPS states formed
from the expansions of the roots that occur in this subalgebra, and determine the jumps of
these degeneracies as the BPS states decay. This then acts as an analog for N = 2 BPS
states with a matching set of charges described by the same roots and where particular roots
can disappear across a wall.

10.2.1 Weyl denominator for the subalgebras

First, we must find the Weyl denominators for the subalgebras within the Weyl denominator
for the Borcherds-Kac-Moody algebra. To do this we can write the partition function (10.0.1-
10.1.1) more explicitly in the form of

1

�10(⌦)
= e�2⇡i⌧

1Y

n=1

(1� e2⇡in⌧ )�18
1Y

l=1

Z(⌦)

(1� e2⇡il⌧ )2(1� e2⇡il⌧+2⇡iv)2(1� e2⇡il⌧�2⇡iv)2
e�2⇡iv

(1� e�2⇡iv)2
,

(10.2.1)

where here the partition function from (10.0.1-10.1.1) is split into the various components
of the center of mass motion of a 5d rotating black hole, the Kaluza-Klein monopole con-
tribution, and a factor that contains the rest of the partition function from the D1-D5
Strominger-Vafa system, as discussed in [48, 54]. This contains the third complex variable
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�. We call this Z(⌦). This can be written as follows 6

Z(⌦) = e�2⇡i�
1Y

l�0,k>0,m

1

(1� e2⇡il⌧+2⇡imv+2⇡ik�)c(4kl�m2)
. (10.2.2)

Now that we know the partition function, one can extract the Weyl denominators for the
subalgebras A1 and its affinisation Â1. These should be present within the partition function
(10.2.1) on the first line. Specifically, these can be read off from the partition function as

1

�10(⌦)
=

 1Y

l=1

e�2⇡i⌧

(1� e2⇡il⌧ )2(1� e2⇡il⌧+2⇡iv)2(1� e2⇡il⌧�2⇡iv)2

 
e�2⇡iv

(1� e�2⇡iv)2

!

A1

!

Â1

1Y

n=1

(1� e2⇡in⌧ )�18Z(⌦). (10.2.3)

The factors shown here in the brackets labelled by A1 and Â1 are the Weyl denominators
of the subalgebras. Hence, as described in chapter 10, these roots exist as here as multi-
centered dyons and also undergo wall crossing across the boundary of the corresponding Weyl
chamber. Next one can extract particular degeneracies that know about the wall crossing for
the subalgebras. For example, if we take the limit of large � such that we have � ! +i1,
this ensures that none of the walls in the Z(⌦) partition function are crossed, because the
imaginary parts of the products with the roots are well above the walls of marginal stability.
This also means that the contour C from [52], used to extract the degeneracies of the roots,
is always satisfied. This is because, for: Im[⌧ ]Im[�] >> (Im[v])2 + 1, one can let Im[⌧ ] and
Im[v] be small and still well within the bound because of the large value for Im[�].

10.2.2 Degeneracies

Now, considering the fact that the partition function determines black hole degeneracies
[40, 53, 54] and their jumps during wall crossing [53], we now look to extract the particular
degeneracies that contain the Weyl denominators in (10.2.3). These will thereby exhibit wall
crossing of the roots in the subalgebra. We look at particular sets of Fourier coefficients.
These Fourier coefficients can be extracted from the dyon degeneracy formula (10.0.1) for
the Borcherds-Kac-Moody algebra. This generating function can be written more explicitly
in terms of the electric and magnetic charge invariants, and in general takes the form 7

(�1)P ·Q+1D(P,Q) =

I

C
d⇢dvd� ei⇡⇤P,Q(⌦)

 
e�(⇡iv+⇡i⌧+⇡i�)

Q
↵2�+(1� e�i⇡(↵,⌦))

1
2 c(|↵|2)

!2

. (10.2.4)

6
c(4kl �m

2) are Fourier coefficients of the K3 elliptic genus.
7
c(|↵|2) are again Fourier coefficients of the K3 elliptic genus defined by the value |↵|2 [53].
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The charge vector in N = 4 can in general be written as: ⇤P,Q(⌦) = �P ·P ⌧�Q·Q��2P ·Qv.
One can define integers 8

l =
1

2
P · P, k =

1

2
Q ·Q, m = P ·Q, (10.2.5)

and use these to relabel the degeneracies in terms of the Fourier coefficients introduced in
(10.1.1) for these integers called

(�1)P ·Q+1D(P,Q) = FKM(k, l,m). (10.2.6)

One can extract degeneracies in such a way that the coefficients describe the wall crossing
associated with a particular Weyl denominator of a chosen subalgebra. This can be done
by choosing a suitable sublattice of charges. One does this by fixing some of the above
invariants in the lattice, while letting others vary. For example, one could fix k = 1. From
this, one can define further degeneracies as

FKM(1, l,m) = f(l,m) =

I

C
e2⇡imv+2⇡il⌧d⇢dvd�

 
e�(⇡iv+⇡i⌧)

Q
↵2�+(1� e�i⇡(↵,⌦))

1
2 c(|↵|2)

!2

. (10.2.7)

Now if we start with the 3 dimensional complex integral over ⇢, v and � we can integrate out
�, so that what is left is a complex 2 dimensional integral over ⇢ and ⌧ . Now the degeneracies
we are left with depend just on 2 charges l,m. These degeneracies then produce an integer
valued count of the roots in the algebra also defined as in Cheng and Verlinde [53] as a
“second quantised multiplicity” of the roots. This is a count of how many combinations of
roots can add to produce the root associated to the charge vector in the degeneracy, where
one can choose 2 sets of positive roots that one can use to form the combinations.

10.3 Â1 as a subalgebra

We can now go back to the original equation (10.2.3) and extract a different set of coefficients.
This time we look for the Weyl denominator of Â1, which is a form of the Jacobi-theta
function or Jacobi triple product. This affine Lie algebra is another subalgebra of the
Borcherds-Kac-Moody algebra which the generating function for the 1

4BPS states describes.
This can be seen clearly when looking at the (real part of the) Cartan matrix for the
Borcherds-Kac-Moody algebra used in [40, 53]. In this case, the inner product between the
roots ↵i,↵j i, j = 1, 2, 3 of the form Ci,j = (↵i,↵j). The construction of this algebra was
already classified and related to the Igusa cusp form by Gritsenko and Nikulin in [45, 46, 47].
For the affine Lie algebra Â1 the basis only has 2 elements such that ↵i,↵j i, j = 1, 2. Here

8The inner product is invariant under SO(22, 6) and is defined on the lattice �22,6 [40, 170, 174].
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we again consider cij = (↵i,↵j) the 2 matrices become

Ci,j =

0

@
2 �2 �2
�2 2 �2
�2 �2 2

1

A , ci,j =

✓
2 �2
�2 2

◆
, (10.3.1)

where we can see that we can embed the matrix ci,j within the larger matrix and hence
one can see how the Â1 Lie algebra is contained within that for the Borcherds-Kac-Moody
algebra. In fact, we can see that there are now 2 different ways that the Cartan matrix Â1, ci,j
is contained in the larger Cartan of the Borcherds-Kac-Moody algebra Ci,j. This information
can be used to find the Weyl chambers, degeneracies, and wall crossing phenomena of Â1

within the construction for the Kac-Moody algebra.

This Weyl denominator can again be extracted as a generating function of particular degen-
eracies of the full Borcherds-Kac-Moody algebra. As discussed in sec. 10.2.2 the degeneracies
of the sum of roots (10.1.1-10.2.6) in the Kac-Moody algebra, given by FKM(p, q, r) 9, are
then a product of those of the subalgebras including that of the Â1. This can be seen by
decomposing the generating function

FKM(p, q, r) =

I
d3⌦

ep↵1(⌦)+q↵2(⌦)+r↵3(⌦)

�10(↵1,↵2,↵3)(⌦)
=

I
d3⌦

ep↵1(⌦)+q↵2(⌦)+r↵3(⌦)

✓(↵1,↵2)(⌦)2�̃10(↵1,↵2,↵3)(⌦)

(10.3.2)

=

I
d3⌦ ep↵1(⌦)+q↵2(⌦)+r↵3(⌦)

⇣X

k0,h0

f
Â1
(k0, h0)e�k

0
↵1(⌦)�h

0
↵2(⌦)

⌘⇣X

c,d,e

d�̃(c, d, e)e
�c↵1(⌦)�d↵2(⌦)�e↵3(⌦)

⌘
,

where we have decomposed the denominator into the product of the degeneracies of the affine
Lie algebra f

Â1
(k, h) and that of the partition function left over f�̃(c, d, e) after the factor

corresponding to the affine Lie algebra is extracted. After this is done, the degeneracies of
the Kac-Moody algebra can be written as the product

FKM(k0 + c, h0 + d, e) =
X

k0,h0,c,d

f
Â1
(k0, h0)d�̃(c, d, e). (10.3.3)

The next step for us is to look at the degeneracies f
Â1
(k, h) of the affine Lie algebra Â1,

where we change the labelling k0, h0 ! k, h as we restrict to the roots of this subalgebra. The
degeneracies d�̃(c, d, e) then come from the rest of the product including the factor ⌘(⌧)�18

from (10.2.3).
9Here, in general, we can re-write FKM (k, l,m) as FKM (p, q, r) by using a different basis of roots.
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10.3.1 Extracting generating function for Â1

The factor f
Â1
(k, h) itself in (10.3.3) is not directly a degeneracy (of the form f(l,m) in

(10.2.7)) of the Borcherds-Kac-Moody Weyl denominator because of the removal of the
factor of ⌘(⌧)�18 . However, it contains all the information about the wall crossing. This is
because this is factor containing only imaginary roots such that it does not change under
the Weyl reflections associated to the permutations of the other roots. Furthermore, the
wall Im[⌧ ] = 0 is not crossed in the N = 4 theory because the moduli stay within the
Siegel upper half-plane. If one considers only functions with 2 complex variables, this can
be interpreted as preserving the modularity of the eta and theta functions, with ⌧ being
defined on the complex upper half plane. If we look back to the product of the different
partition functions (10.2.3) and look at what is contained in the bracket, we can extract
Fourier coefficients of the function as

f
Â1
(⌧, v) =

1Y

l=1

e�2⇡iv�2⇡i⌧

(1� e2⇡il⌧ )2(1� e2⇡il⌧+2⇡iv)2(1� e2⇡il⌧�2⇡iv)2(1� e�2⇡iv)2
. (10.3.4)

Now one can write this in terms of the roots of the affine Lie algebra:

↵0(u) = �2⇡iv, v 2 C and �(u) = �2⇡i⌧, ⌧ 2 H
+. (10.3.5)

Then we can write the function in the form

f
Â1
(u) =

1Y

m=1

e↵0(u)+�(u)

(1� e�m�(u))2(1� e�m�(u)+↵0(u))2(1� e�m�(u)�↵0(u))2(1� e↵0(u))2
= (10.3.6)

1Y

m=1

e↵0(u)+�(u)

(1� e�m�(u))2(1� e�(m�1)�(u)+↵0(u))2(1� e�m�(u)�↵0(u))2
.

Now the coefficients we want to extract become

f
Â1
(k, h) =

I

�

d↵0(u)d�(u)e
k↵0(u)+h�(u) (10.3.7)

e↵0(u)+�(u)

Q1
m=1(1� e�m�(u))2(1� e�(m�1)�(u)+↵0(u))2(1� e�m�(u)�↵0(u))2

,

where the contour � ⇢ C is again that which was previously defined in the Siegel upper half-
plane, but this time restricted to the ⌧ and v planes. We define the charge vector restricted
to the Â1 subalgebra as

�k,h = k↵0 + h�. (10.3.8)
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We assume that the imaginary part of � is large so that it satisfies the contour C (see third
part of contour):

0  Re[⌧ ],Re[v] < 1, Im[⌧ ] > 0, Im[⌧ ](Im[�] ! +1) >> (Im[v])2, (10.3.9)

so the generating function now becomes

f
Â1
(k, h) =

I

�

d↵0(u)d�(u)e
�k,h(u)

e↵0(u)+�(u)

Q1
m=1(1� e�m�(u))2(1� e�(m�1)�(u)+↵0(u))2(1� e�m�(u)�↵0(u))2

.

(10.3.10)

Now we see that we have a function that acts in the same way (extracting the multiplicity)
of particular roots just for the affine Lie algebra Â1 as it does for the Borcherds-Kac-Moody
Lie algebra in (10.0.1). However, now we are just looking at the PSL(2,Z) part of the full
modular group in the Igusa cusp form.

S-duality

This generating function and coefficients f
Â1
(k, h) from (10.3.3) can be rewritten using an

S-duality transformation. These are PSL(2,Z) transformations that act as Weyl reflections,
or automorphisms on the fundemental Weyl chamber, of the Â1 Lie algebra at each point in
the moduli space. However, the S-duality condition of constant f

Â1
(k, h) at u and u0 does

not hold across the walls where roots can enter or leave the spectrum depending on which
direction the wall is crossed. The imaginary roots are not transformed under S-duality.

10.3.2 Contour prescription for Â1

To apply the contour prescription C discussed in [52] for the full Bocherds-Kac-Moody
algebra to the Â1 part � ⇢ C one must again separate the degeneracies associated to Â1 Lie
algebra (10.3.2-10.3.3) from that associated to the other roots of the Kac-Moody algebra
and then restrict the possible contours one can take to those extracting the degeneracies of
Â1 roots.

For this we look at the contour prescription again but this time only over the 2 variables
v and ⌧ . As before we define the contour in a modular invariant way. This time it must
remain invariant under PSL(2,Z). Here we are again left with the contour:

Re[⌧ ] 2 [0, 1], Re[v] 2 [0, 1]. (10.3.11)
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As before the imaginary part of this contour is a large positive constant such that we have:

Im[⌧ ] 2 N1, Im[v] 2 N2, (10.3.12)

where N1, N2 ! +1. This contour is taken to enclose part of the fundamental domain of
the PSL(2,Z) group. This means that every element in this region is contained here only
once for the orbit of this group. In the Figure 10.1 below we show 2 domains and enclose
the first one by a contour. For this contour, following [52], we are now looking at the pole at
v = 0 on the real axis but in general there are for Â1 also poles at v+n⌧, v�n⌧ = 0, n 2 Z

that can be mapped to the v = 0 pole under the modular transformations. The imaginary
part Im[v] is defined in such a way that the contour crosses the real axis as it jumps from a
large positive +N2 to a large negative number �N2 as the modulus changes sign

Im[v] > 0 �! Im[v] < 0. (10.3.13)

As the contour must remain invariant as this happens one must deform it back to its original
position. In doing so one picks up the contribution of the pole as the contour crosses the
real axis. This is the cause of wall crossing of the generating function. The residue from
this pole creates the jump in the degeneracies.

This should also give a consistent description for the other poles. These are crossed when the
contour for the particular charge one wants to extract the degeneracy of crosses Im[v±n⌧ ] =
0. As long as the contour is taken to be at a sufficiently large imaginary value, then only one
pole (and one wall) is crossed at a time. This is because only that particular combination
of moduli change sign.

10.4 Wall crossing for Â1 in N = 4

Now we understand how the degeneracies of 1
4BPS dyons can be extracted from the Igusa

cusp form as Fourier coefficients using a contour prescription. These degeneracies including
both single and multi-centered black holes. We have also seen how wall crossing represents
the split of a multi-centerd black hole into 2 electric and magnetic 1

2BPS states and its
effect on the dyon degeneracies as the multi-centered contribution to the wall is removed.
We have seen in (10.1.1) that this wall crossing can be encoded in a jump in the Fourier
coefficients representing the degeneracies. We know from [53] that this wall crossing for the
full Borcherds-Kac-Moody algebra can be encoded in a change in the highest weight of a
Verma module 10 which counts the BPS states. We will now proceed to show that this also
holds in the case of the Â1 subalgebra. So far, the Weyl denominator of Â1 has been found
as a factor in the generating function and the contour prescription found in a limit of the 3
complex variables in the full Igusa cusp form. What remains is the Lie algebraic formulation

10See section 11.1.1 equation (11.1.6) for a definition.
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Figure 10.1: This diagram shows the part of the contour �R1 in the v plane used to extract
the Fourier coefficients. This is depicted as the solid red line. The pole at v = 0 is crossed

as the contour jumps to �R2 from positive to negative infinity. In this case, a wall is
crossed.

of the wall crossing in terms of Verma modules. In the section 10.4.1 below we explicitly
calculate the change in the highest weight in the different chambers of Â1.

10.4.1 Wall crossing

The function we have above in (10.3.4) exhibits wall crossing behavior as the roots disappear
from the spectrum. This happens when the imaginary part of a particular root shown



10.4.2 Jumping between chambers 130

in the Weyl denominator vanishes and changes sign. As we remember from (10.1.1) the
exponentials must have modulus less than 1 for a well defined series expansion which is
convergent and allows one to extract the Fourier coefficients. This means that in our case,
for the Weyl denominator written in terms of the roots of the affine Lie algebra, shown in
(10.3.10), we must have:

|e�m�(u)| < 1, |e�(m�1)�(u)+↵0(u)| < 1, |e�m�(u)�↵0(u)| < 1, m � 1. (10.4.1)

Or equivalently this means that the imaginary parts Im[im�(u)+ i↵0(u)], Im[i(m�1)�(u)�
i↵0(u)] > 0. If we, as in the N = 4 black hole literature [48, 190, 52, 53, 51, 54], stay in the
Siegel upper half plane, or in the case of the Jacobi theta function just the modular upper
half plane, we must also constrain Im[im�(u)] > 0. So, we can now look at what happens
when a particular root crosses a wall:

Im[i(m� 1)�(u)� i↵0(u)] > 0 �! Im[i(m� 1)�(u)� i↵0(u)] < 0. (10.4.2)

We assume all the other roots retain a positive imaginary part. For this wall, a particular root
�(m�1)�+↵0 disappears or appears (depending on the direction) from the spectrum while
all other roots remain in the spectrum. This is therefore an example of wall crossing. In this
case, the denominator formula must be rewritten such that all the roots in the denominator
again satisfy the conditions on the imaginary part. This can be done by moving a root, for
example the �(m� 1)� + ↵0 root from (10.4.2), into the numerator.

10.4.2 Jumping between chambers

We can start with a simple example: we start in a chamber in which no root exists - the
fundamental Weyl chamber WF and we move in a direction in the moduli space such that
at the first wall of marginal stability a root appears. But only this root and no other roots.
For example, if we let a root �� � ↵0 enter the spectrum. The generating function from
(10.3.10) is rewritten as:

f
Â1
(k, h) =

I

�

d↵0(u)d�(u)e
�k,h(u) (10.4.3)

e↵0(u)+�(u)

1Q
l=1

(1� e�l�(u))2(1� e�(l�1)�(u)+↵0(u))2
1Q

m=1,m 6=1
(1� e�m�(u)�↵0(u))2

1

(1� e��(u)�↵0(u))2

�!
I

�

d↵0(u)d�(u)e
�k,h(u)
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e↵0(u)+�(u)

1Q
l=1

(1� e�l�(u))2(1� e�(l�1)�(u)+↵0(u))2
1Q

m=1,m 6=1
(1� e�m�(u)�↵0(u))2

e2�(u)+2↵0(u)

(1� e�(u)+↵0(u))2
. (10.4.4)

Now it can again be expanded in terms of the positive roots within the denominator, but
with an additional factor in the numerator. This factor causes a jump in the degeneracies of
the various roots. Depending on which region of the moduli space one is in, or in which Weyl
chamber W , there can be many of these factors which one must move into the numerator. In
general, we can keep moving in that direction such that we cross k walls of marginal stability.
If we start within the fundamental Weyl chamber we now have n 2 1...k additional roots in
the spectrum. This is a finite set of roots for which one must modify the generating function
as:

f
Â1
(k, h) =

I

�

d↵0(u)d�(u)e
�k,h(u) (10.4.5)

e↵0(u)+�(u)

Q1
l=1(1� e�l�(u))2(1� e�(l�1)�(u)+↵0(u))2

Q1
m=k+1(1� e�m�(u)�↵0(u))2

1
Q

k

m=1(1� e�m�(u)�↵0(u))2
,

=

I

�

d↵0(u)d�(u)e
�k,h(u)

e↵0(u)+�(u)

Q1
l=1(1� e�l�(u))2(1� e�(l�1)�(u)+↵0(u))2

Q1
m=k+1(1� e�m�(u)�↵0(u))2

Q
k

m=1 e
2m�(u)+2↵0(u)

Q
k

m=1(1� em�(u)+↵0(u))2
. (10.4.6)

Again, this is rewritten in a way such that the denominator is now expandable in terms
of Fourier coefficients which can then be extracted by the charge vector �k,h introduced
in (10.3.7-10.3.10). There is an alternative way to cross the walls. If one moves in the
other direction starting in WF , where no roots initially exist, a different set of roots start to
appear. In this case, the product formula after rewriting in a way that can be expanded as
a Fourier series, then becomes:

f
Â1
(k, h) =

I

�

d↵0(u)d�(u)e
�k,h(u) (10.4.7)

e↵0(u)+�(u)

Q1
l=1(1� e�l�(u))2(1� e�l�(u)�↵0(u))2

Q1
m=k+1(1� e�(m�1)�(u)+↵0(u))2

Q
k

m=1 e
2(m�1)�(u)�2↵0(u)

Q
k

m=1(1� e(m�1)�(u)�↵0(u))2
. (10.4.8)
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This time it is the other set of roots that appear in the spectrum and cause a shift in the
degeneracies.

10.4.3 Wall crossing in terms of highest weights

As done in Cheng and Verlinde [53] we can again write this in terms of a Verma module
associated to the affine Lie algebra with highest weight

� =
1

2
(�k,h + ↵0 + �). (10.4.9)

In this case, the formula as with the Bocherds-Kac-Moody algebra in Cheng and Verlinde
can be written as a square:

f
Â1
(k, h) =

I

�

d↵0(u)d�(u)

 
e�(u)Q1

m=1(1� e�m�(u))(1� e�(m�1)�(u)+↵0(u))(1� e�m�(u)�↵0(u))

!2

.

(10.4.10)

This can be used to see that each Weyl chamber W can be associated to a highest weight for
a particular representation, W� as when one moves in the moduli space, for example starting
in the fundamental Weyl chamber and moving in a particular direction, this highest weight
picks up a certain number of roots with each root corresponding to a particular wall that
has been crossed. So, as one starts in the fundamental chamber and moves, the highest
weight of the representation is modified in a way such that

�+
kX

m=1

((m� 1)� � ↵0), (10.4.11)

in one direction, and

�+
kX

m=1

(m� + ↵0), (10.4.12)

in the other direction. One can use the S-duality transformations to map the denominator
that is expandable in terms of a new Fourier series into one containing positive roots. Here
one can see that in every chamber the highest weight is different - representing a different
Fourier series and different black hole degeneracies.

Highest weight in the different chambers

The Weyl chambers of Â1 are shown in Fig. 10.2 below. Each region in the moduli space
has a unique combination of roots, with the combinations of roots shown in the Figure that
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exist within each chamber.

All possible highest weights

Highest weight in one direction In other direction

�+
P1

n=1

⇣
n� + ↵0

⌘
�+

P1
m=1

⇣
(m� 1)� � ↵0

⌘

�+
P

k

n=1

⇣
n� + ↵0

⌘
�+

P
h

m=1

⇣
(m� 1)� � ↵0

⌘

�

Table 10.1: Highest weight in modular upper half plane representing existing BPS
boundstates. This is also shown in Fig. 10.2.

This shows how one can start in a chamber with none of the roots existing and move to a
chamber, where the roots that exist appear when crossing a finite number of walls in either
direction. In the N = 4 theory one obtains discrete attractor flow as one moves towards the
fundamental Weyl chamber from either side.
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Modular upper half plane

Fundamental Weyl chamber

Lower half plane Im[v] = 0

Im[⌧ ] = 0

Im[v]� Im[⌧ ] = 0

Im[v] + Im[⌧ ] = 0

Im[v] + 2Im[⌧ ] = 0

Im[v]� 2Im[⌧ ] = 0

· · ·

· · ·

↵0 + 2�

↵0 + �

↵0

↵0 � �

↵0 � 2�

↵0 � �

↵0 + �

↵0

↵0

↵0 + n�

↵0 � n�

Figure 10.2: This figure shows the walls associated with the Â1 roots. These are the blue
lines and are found in the modular upper half of the ⌧ -plane. The dashed blue lines shown

are the continuation into the lower half plane.



11 | N = 2 analogs of the generating

functions

A generating function has been found in section 10.3 for BPS states described by the Â1 root
system in N = 4. In this case, the BPS degeneracies of states with particular charges can be
read off as Fourier coefficients or extracted using a contour integration. These were found
to encode wall crossing through either a jump in the Fourier coefficients or in the highest
weight of a Verma module (see Eq. 11.1.6). We now look for analog generating functions in
N = 2 theories from which one can observe the wall crossing phenomena in the same way,
and that can hence also act as counting functions for BPS states. This is done for the Â1

Lie algebra as well as the A2 root system. This is an ideal testing case that can in future
be generalised to further theories with BPS states described by ADE type root systems.
We conjecture that this generating function is the Weyl denominator associated to the root
system of the particular quiver describing the BPS states in the theory. Seiberg-Witten
theory and the Argyres-Douglas A2 theory are good models to start with. We look for a
different spectrum of framed BPS states existing in each Weyl chamber and also expect the
additional wall of marginal stability to be encoded in the generating function. To do this
we first introduce (in the next section 11.1) the definition of a root system in a Lie algebra.

11.1 BPS root systems and Lie algebras

The generating function of the degeneracies of the 1
4BPS dyons studied in [52, 53, 54] is

a function of the Cartan subalgebra h(A, S) of the Borcherds-Kac-Moody Lie superalgebra
g(A, S) associated with the N = 4 supersymmetric string theory on K3⇥T 2 that describes
the black holes. In this example the positive roots of the Lie algebra represent the possible
BPS states that can exist in the theory. The Weyl chambers represent the regions in which
these states are stable - the boundaries can be connected back to the moduli space of the
theory. This is also the case for the Lie algebras representing analogous BPS states in N = 2
theories. Here one can also consider the Lie algebra for each theory and look at the roots of
the Lie algebra to represent all the charge vectors in the theory. A quiver can be constructed
from the Cartan matrix, and mutations in the quiver correspond to Weyl transformations,
or changes in sign, of the roots, depending on which side of the wall of marginal stability

135



11.1 BPS root systems and Lie algebras 136

one does the analysis.

The general construction of a Lie algebra and its root system � is well known and reviewed
for example in [193, 194, 195, 196, 197, 198, 199]. A good introduction to infinite dimensional
examples such as affine and Kac-Moody algebras is given by Kac [200]. A Lie algebra can be
decomposed as g = h

L
↵2� g↵ where h ⇢ g is the Cartan subalgebra. The root subspaces

are defined as g↵ = {x, [h, x] = ↵(h)x, 8h 2 h}. A root therefore corresponds to an
eigenvalue of the action of the linear adjoint operators on a vector in the eigenspace g↵.
The explicit action on the coordinates can be written as Adh(xb) = [h, xb] = ↵b(h)xb. These
roots live in the dual linear vector space � ⇢ h⇤/{0}. One can also consider a representation
V of g, for which the weight space which is given by V� := {v 2 V : 8h 2 h, h · v = �(h)v}.
One can then generate all the weights in a representation from the root system using:
h · (x ·v) = [(�+↵)(h)](x ·v). If a root is simple it cannot be written as a linear combination
of other basis roots. If not it can be written in such a linear combination.

Definition 11.1.1. The Killing form is an inner product represented by the trace normal-
ization for adjoint representation generators. Consider a, b 2 gC. Their Killing form is
represented by

(a, b) = Tr[Ada, Adb], g⇥ g ! C. (11.1.1)

This can be computed by finding matrices representing adjoint operators for a particular
basis and then calculating matrix products.

Alternatively, this can also be calculated by writing the form in terms of brackets as
AdaiAdbj(xk) = [xi, [xj, xk]]. We remember that the root space is in the dual h⇤ of the Cartan
subalgebra h which can be understood in terms of a Killing form. For every root ↵ 2 h⇤, there
exists an isomorphism h⇤ ! h such that we have u, h↵ 2 h such that ↵(u) = (↵, u) = (h↵, u).
Hence, the contours from sec. 10.3.2 one can take to obtain the BPS degeneracies are pa-
rameterised in the Cartan subalgebra u 2 h. From this one can also define another inner
product between roots and real linear combinations of them

h↵, �i = (h↵, h�), h⇤ ⇥ h⇤ ! R. (11.1.2)

Now we can construct the Cartan matrix for any Lie algebra from its root system and the
inner product shown here. We show the examples for A1, Â1 and A2. The matrix contains
entries of the form

Ai,j = 2
h↵i,↵ji
h↵i,↵ii

. (11.1.3)

A1 : (2) •
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Â1 :

✓
2 �2
�2 2

◆
• ◆ •

A2 :

✓
2 �1
�1 2

◆
• �! •

A quiver can be constructed from this by plotting the roots and the arrows between them.
These are shown above to the right of the Cartan matrices. Finally, the Weyl group is a
subgroup of the isometry group of the root system which is generated by reflections through
the spaces perpendicular to the roots. These represent quiver mutations in the quiver
encoding the roots representing the BPS states. The transformations are generated by the
map

s↵(u) = u� 2
(↵, u)

(↵,↵)
↵. (11.1.4)

11.1.1 Weyl denominator and generating function

From a general root system associated to a Lie algebra one can define the Weyl denominator
formula, which was introduced for the Borcherds-Kac-Moody algebra in (10.0.1), and its
subalgebras (10.2.1) as the inverse of a product of factors involving all the positive roots of
the Lie algebra. We aim to find a generating function for BPS degeneracies corresponding
to a particular root for the N = 2 examples following the approach previously carried out
for the N = 4 cases. In general, as in the literature [52, 54, 48, 49], we expect this to take
the form of a contour integral over the Weyl denominator, although it should be possible
to read off the BPS state count from the denominator itself in terms of a highest weight.
We conjecture the following general result for this formula, that an integral of the Weyl
denominator over the Cartan subalgebra is related to a degeneracy of a particular root or
combination of roots representing BPS states in the Lie algebra.

Definition 11.1.2. Now to proceed, one must define the Weyl denominator with an addi-
tional charge factor as

e⇤(u)�⇢(u)

Q
↵2�+(1� e�↵(u))

, (11.1.5)

where r is the rank of the Lie algebra and ⇤ is analogous to the charge vector in [53]. The
product is over positive roots ↵ 2 �+. The Weyl vector ⇢ is the half sum of positive roots
⇢ = 1

2

P
↵2�+

↵i. All roots ↵i and weights �i are contained in a charge lattice ↵i,�i 2 �.

There is another object one can define in general from a semi-simple Lie algebra g and its
Borel (maximally solvable) subalgebra b. This is the Verma module. A detailed review of
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Verma modules is given in [201].

Definition 11.1.3. One first considers the Cartan subalgebra h again. Then one can define
a Verma module M�, with highest weight � 2 h⇤, in the adjoint by

Homg(M�, V ) = Homb(C�, V ), (11.1.6)

where V is a representation of g, and C� is the one-dimensional module on which elements
of h act on with �.

Verma modules are infinite dimensional, but one can take quotient modules with highest
weights that correspond to those of representations of finite semi-simple Lie algebras. The
character of a Verma module is (up to a shift by the Weyl vector ⇤(u) ! �(u) 1) the
inverse of the Weyl denominator. The exponent in the numerator of (11.1.5) should extract
Fourier coefficients from the denominator and can also be assigned a representation of the
Lie algebra or module to which it is the highest weight. Hence, we expect the stability of
BPS states to coincide with the stability of representations.

Definition 11.1.4. A Lie algebra also has a character function which includes a numerator
summing over the possible Weyl transformations of the representation in question. The full
Weyl character formula takes the form

ch� =

P
w2W (detw)ew(�+⇢)(u)

e⇢(u)
Q

↵2�+(1� e�↵(u))
, (11.1.7)

where w are elements of the Weyl group and � is the highest weight of the representation
chosen.

Our work in this chapter 11 determines how this generating function counts BPS states in
simple Argyres-Douglas examples. In the table below we list what we expect the generating
function to become when we substitute the Weyl denominators of the respective Lie algebras
into the general formulation. This is expected to be the function which determines what
BPS states exist in each chamber of the moduli space and will be verified as such in the
following subsections. This should reproduce the counts that have been obtained from other
methods such as quiver representations. In the next sections we look explicitly at each
example to reproduce the BPS state counts described for these theories in the literature and
describe the wall crossing in the new language involving root systems and Weyl chambers.

1One can redefine �(u) = ⇤(u) � ⇢(u) to absorb this shift if one is working with an inverse product to
move between these definitions.
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Generating function
P

w2W (detw)ew(�+⇢)(u)

e⇢(u)
Q

↵2�+ (1�e�↵(u))
The denominators are shown below

A1
e
⇤(u)

e⇢(u)(1�e�↵(u))

Â1
e
⇤(u)

e⇢(u)
Q1

m=1(1�e�m(↵0(u)+↵1(u)))(1�e�m(↵0(u)+↵1(u))�↵1(u))(1�e�(m�1)(↵0(u)+↵1(u))+↵1(u))

A2
e
⇤(u)

e⇢(u)(1�e�↵1(u))(1�e�↵2(u))(1�e�↵3(u))

11.2 Â1 root system in N = 2

One can start by looking at the root system for the affine Lie algebra Â1. This root system is
important because it describes several interesting examples of wall crossing in N = 2 QFTs.
This includes both the D6-D2-D0 brane system described by Jafferis and Moore [37] as well
as Seiberg-Witten theory. The generating function for this affine Â1 Lie algebra is already
known from the subalgebra of the N = 4 example and is the Weyl denominator formula.
This was already established in section 10.3 by extracting particular degeneracies from the
Borcherds-Kac-Moody algebra Weyl denominator in Cheng and Verlinde [52, 53]. The wall
crossing for this generating function has been found in sections 10.4 and 10.4.1. This is
depicted in Fig. 10.2 and is encoded in a change in highest weight of a Verma module.

It is important to note that in the N = 4 example, this only holds in the Siegel upper half
plane. This is because the Jacobi-theta function and the full Igusa cusp form are Jacobi
and Siegel modular forms respectively. This means that to preserve modularity of the Siegel
modular form, or of the Jacobi theta and eta functions, the analysis in section 10.4 as well as
that in the literature [40, 52, 53, 54], of which we have taken a limit here, must be confined
to the values Im[⌧ ] > 0. Here the variable ⌧ , from (10.3.5), can be parameterised as the ⌧
parameter of an elliptic curve, which always has a positive imaginary part.

Definition 11.2.1. We can define the imaginary or “affine” wall as the wall Im[⌧ ] = 0
separating the 2 half-planes corresponding to the 2 domains of definition of the modular
form and the Fourier coefficients.

Hence, the imaginary or affine wall is never crossed in the N = 4 theory. This is interpreted
in the work of Cheng and Verlinde as imaginary roots never leaving the spectrum which
is not the case in N = 2 theories we are looking at. If one is to use this function as an
analog counting function for theories in N = 2, to obtain the full spectrum for example of
Seiberg-Witten theory, one must analytically continue to a region where the full spectrum
of Â1 exists. Now values of Im[⌧ ] < 0 are allowed. This then gives 2 domains of definition
of the expansion coefficients.

One can start by considering that the theta function is defined for ⌧ in the upper half plane
as ✓(⌧, v). However, in the N = 2 examples the parameter ⌧ has an imaginary part that
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changes sign at the affine wall. For this one must define an analytic continuation of the
generating function into the lower half plane and hereby define a region in which all the
roots can exist including the imaginary root.

Definition 11.2.2. In this case, the actions of the roots on the Cartan subalgebra can be
written as 2 complex variables given by

�(u) = �2⇡i⌧, ⌧ 2 C and ↵0(u) = �2⇡iv, v 2 C, (11.2.1)

following (10.3.5) up to the extension of the range of ⌧ from H
+ to C.

Now the highest weight changes in all the possible chambers on both sides of the imaginary
wall starting in the fundamental chamber where none of the roots exist. For the other
domain of definition one can start in a chamber opposite to the first fundamental chamber.
In this chamber all the roots exist. One can then work backwards from this to find the
highest weight in other chambers.

11.2.1 Change in highest weight

Here we continue on from sections 10.4 and 10.4.1 by looking at the wall crossing of the
generating function (10.4.10), this time focussing on the function inside the square, which
we label as f 0

Â1
(u). This is done by using the highest weight of the Verma module associated

to the Weyl denominator for Â1. However, this is now generalised to wall crossing beyond
the affine wall. First, we recall that the generating function (10.4.10) in the fundamental
Weyl chamber can be written as

f 0
Â1
(u) =

e�(u)Q1
m=1(1� e�m�(u))(1� e�(m�1)�(u)+↵0(u))(1� e�m�(u)�↵0(u))

. (11.2.2)

This is written in terms of a highest weight � = 1
2(�k,h + ↵0 + �) of a Verma module as is

also done in Cheng and Verlinde [53]. As one crosses into different regions in the moduli
space the highest weight jumps, depending on how many Weyl chambers are crossed and
what direction one moves in. For example, we can start by moving to 2

f 0
Â1
(u) =

e�
0(u)

Q1
l=1(1� e�l�(u))(1� e�l�(u)�↵0(u))

Q1
m=k+1(1� e�(m�1)�(u)+↵0(u))

Q
k

m=1(1� e(m�1)�(u)�↵0(u))
.

2If one considers the generating function just in this form one also has a factor of -1 for every jump. For
example, we can include (�1)k in this equation.
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This is now a different representation with a different highest weight given by �0. Following
(10.4.11) the relationship between the highest weights is given by

�0 = �+
kX

m=1

⇣
(m� 1)� � ↵0

⌘
.

The remaining jumps to all the different chambers are discussed extensively in appendix
section B.1.1. We can keep passing through the remaining chambers until the full BPS
spectrum exists

f 0
Â1
(u) =

e�(u)
Q1

l=1 e
l�(u)+↵0(u)

Q1
l=1(1� el�(u)+↵0(u))

Q1
l=1 e

l�(u)

Q1
l=1(1� el�(u))

Q1
m=1 e

(m�1)�(u)�↵0(u)

Q1
m=1(1� e(m�1)�(u)�↵0(u))

, (11.2.3)

and the highest weight is

�0 = �+
1X

m=1

⇣
(m� 1)� � ↵0

⌘
+

1X

l=1

l� +
1X

n=1

⇣
n� + ↵0

⌘
.

It is possible to move in the other direction in which the later BPS states enter the spectrum
first. An example was also given by (10.4.12). The representations can be ordered in the
following way, such that one can write all the possible �0 in the table below. This is also
shown in Fig. 11.1 below. Here all the boundaries of the Weyl chambers which are also
the walls are shown in blue. These are now written in terms of the inner products with the
roots first given in (10.3.5). The roots that exist within each chamber are also shown.

11.2.2 Counting roots and weights in Verma modules

The BPS states with particular charge are represented by the roots of the Lie algebra. To
count these roots one uses the weight system of the Verma module as defined in (11.1.6).
The roots representing the charges of the BPS states are found by taking the differences
between the weights. One can start in the fundamental Weyl chamber where none of the
BPS states exists. One chooses an initial weight from (11.2.2) called �i 2 �. One can then
move in the 2 possible directions and pick up roots, which are added to the highest weight.
For every highest weight �0

i
all the possible weights under it exist. One can use the indices

in the table above h, k, l to label the weights. This means we can write � = �0,0,0 and
�0 = �h,k,l and for a particular representation which can run to infinity for �h,k,l where all
possible weights exist.
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Im[i↵0(u)] = 0

Im[i�(u)] = 0

Im[i↵0(u) + i�(u)] = 0
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· · ·
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· · ·
Fundamental Weyl chamber 1

Fundamental Weyl chamber 2

Figure 11.1: This diagram again shows the standard walls of the Weyl chambers of the
affine Lie algebra Â1 but this time extended into the lower half plane after the

continuation described above. The blue lines represent the BPS walls.
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All possible highest weights
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P
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⇣
(m� 1)� � ↵0

⌘

�

Table 11.1: All possible highest weights in the N = 2 analog of the Â1 Lie algebra. This is
also shown on Fig. 11.1.

Inclusion of modules

In each chamber there is then a different highest weight labelling a sub-module of a module
in a higher chamber denoted by M(�h,k,l) ⇢ M(�h0,k0,l0). This is also known as the weak
Bruhat ordering of the highest weights �h,k,l ! �h0,k0,l0 . Here this is extended across the affine
wall such that it covers two domains of definition of Weyl chambers and Verma modules M
and M̃ . One now includes an additional module G(�1,1,1l) between the 2 domains. One
can start in one fundamental Weyl chamber and move in two possible directions. For the
first direction, one can write the sequence of submodules as:

M(�0,0,0) ⇢ M(�1,0,0) ⇢ M(�2,0,0) ... M(�m�1,0,0) ⇢ M(�m,0,0) ... (11.2.4)

M(�1�2,0,0) ⇢ M(�1�1,0,0) ⇢ M(�1,0,0) ⇢ G(�1,1,1l) ⇢

M̃(�1,1�1,1l) ⇢ M̃(�1,1�2,1l) ... M̃(�1,k+2,1l) ⇢ M̃(�1,k+1,1l) ⇢
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M̃(�1,k,1l) ... M̃(�1,2,1l) ⇢ M̃(�1,1,1l).

This is the weight system in 1 direction, and these are all the weights that exist for a
particular representation in one direction one can take from the fundamental Weyl chamber
to the opposite chamber where all states can exist.

Difference in weights

Now one can define a prescription for determining whether a particular root exists. For this
we have a rule that the difference in the weights must be a sum of integer combinations of
roots, meaning that

�h,k,l � �h0,k0,l0 =
X

i

ni↵i 2 �. (11.2.5)

This means that if we know a set of weights that exist one can deduce the roots that exist
by taking the difference of each pair of weights and determining what the roots, that are
present, must be that span the differences. In the setup of the weight system above a new
root enters existence as the highest weight jumps. We have the differences as

�m,0,0 � �m�1,0,0 = (m� 1)� � ↵0, (11.2.6)

and

�1,n,1l � �1,n+1,1l = n� + ↵0. (11.2.7)

When these differences exist in the weight system the roots also enter the spectrum. For
the imaginary roots we have

�1,1,1l � �1,0,0 =
1X

l=1

l� 2 �. (11.2.8)

So, the imaginary roots enter the spectrum with this highest weight. Now that we have a
prescription for counting roots from highest weight Verma modules in (11.2.4) we can apply
this to counting BPS states in various N = 2 theories. Now, remembering (11.2.1), we
have inner products of the roots and vectors within a complex 2d moduli space of the form
↵0(u) 2 C and �(u) 2 C for all examples. However, for each specific example one can write
these complex numbers in terms of different complex numbers associated to the particular
theory, for example the central charges. Therefore, the same root system can give rise to
different wall crossing phenomena in different N = 2 theories.
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11.3 Example 1: Jafferis-Moore D6-D2-D0 bound state

Jafferis and Moore [37] define a class of generalised Donaldson-Thomas invariants that count
D6-D2-D0 boundstates which undergo sucessive jumps at walls defined by Â1 Weyl cham-
ber boundaries. In the region with the maximal number of boundstates, also known as the
Szendrői region [59], they are defined in terms of non-commutative Donaldson-Thomas in-
variants [19]. Here the relevant central charges, expressed in terms of the Kähler parameter
t = zP + ⇤ei�P 0, P ,P 0 2 H2(X,R), are Z�1(t) = ⇤3e3i� and Z�2(t) = �mz � n, n,m 2 Z

[37]. For this example, the parameters z and � are also those found in the topological
string partition function derived by A.S.T.T. [61] which reproduces the wall crossing for
these framed BPS states 3. When related to a topological string theory, the variables are
identified as the argument of the topological string coupling arg(�0) = 3� and the complex-
ified Kähler parameter z = t0. The central charges are obtained by taking the positive real
parameter ⇤ ! 1. In this case, the stability condition on the central charges takes the
form

h�1, �2iIm[Z�1(t)Z̄�2(t)] = �n⇤3Im[e3i�(�mz⇤ � n)] > 0. (11.3.1)

The physical walls that correspond to D6-D2-D0 bound states can be further be simplified
to: m = ±1, 0 such that the stability conditions become:

�nIm[�z⇤e3i� � ne3i�] > 0, �nIm[z⇤e3i� � ne3i�] > 0, �nIm[�ne3i�] > 0. (11.3.2)

Example 11.3.1. This can be matched to the parameters we have defined in (10.3.5) for
the N = 4 theory and can also be used in the N = 2 analog for the generating function in
(11.2.2). In this example, the analog is constructed from the Â1 root system by writing the
roots in terms of the central charges

±↵0(u) + n�(u) = �iZ�1(t)Z̄�2(t), n 2 Z, (11.3.3)

so that we now have the walls at Im[±i↵0(u) + ni�(u)] = 0, and can define the imaginary
part of the contour as 4

Relation of roots to central charges (11.3.4)

Im[±i↵0(u) + ni�(u)] = Im[Z�1(t)Z̄�2(t)],

Im[i↵0(u)] =
Im[z⇤e3i�]

✏
,

3This is done by taking the Borel transformation of the topological free energy along different rays.
4We follow a contour prescription analogous to the N = 4 case discussed in section 10.3.2.
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Im[i�(u)] = �Im[e3i�]

✏
, where

1

✏
= ⇤3.

This will generate the wall crossing of the Jafferis-Moore BPS states with splitting given by
charges (±1, n) if Im[±↵0(u) + n�(u)] changes sign. Each Weyl chamber in the lower half
of the Im[�(u)] axis then contains a different combination of BPS states. Examples of the
possible combinations of the moduli parameters include:

Combinations of roots acting on moduli (11.3.5)

±Im[i↵0(u)] = ±Im[z⇤e3i�]

✏
,

±Im[i↵0(u)]� Im[i�(u)] = ±Im[z⇤e3i�]

✏
+

Im[e3i�]

✏
,

±Im[i↵0(u)]� 2Im[i�(u)] = ±Im[z⇤e3i�]

✏
+ 2

Im[e3i�]

✏
,

±Im[i↵0(u)]� 3Im[i�(u)] = ±Im[z⇤e3i�]

✏
+ 3

Im[e3i�]

✏
,

... = ...

�nIm[i�(u)] = n
⇣Im[e3i�]

✏

⌘
.

If these equations are set to 0 these represent the walls, for the bound state in 2 parameters.
In this case, the lower half plane for the BPS walls for the Â1 root system matches the wall
crossing described in [37, 59, 19]. Below this is shown in Figure 11.2.

11.4 Example 2: Seiberg-Witten theory

Seiberg-Witten theory is represented by affine SU(2) Lie algebra or Â1. It was introduced
by Seiberg and Witten in [1] and reviewed extensively in e.g. [66]. The theory has also
been described by a 2 node quiver with 2 arrows • ◆ • (see [100, 97, 2, 4]). Another way
of looking at this is through the Seiberg-Witten curve, an elliptic curve that defines the
central charges and monodromies of the theory and is parameterised by a complex one-
dimensional modulus w 2 1 \ {�1, 1,1}. The number and type of BPS states that exist
within the theory depends on the region within this one-dimensional moduli space - there
exist two chambers. In one chamber this theory has infinitely many BPS states given by
the hypermultiplet dyons �m(↵0 + ↵1) � ↵1, �(m � 1)(↵0 + ↵1) + ↵1 and the W-boson
with a charge corresponding to the roots ↵0 + ↵1. In the other chamber only the 2 states
(a monopole and a dyon) exist as a basis ↵1 and ↵0. These results have been previously
derived through other methods including quiver mutations and attractor flow but are also
derivable via the generating function.
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�Im[e3i�z] + Im[e3i�] = 0

Im[e3i�z] + Im[e3i�] = 0

Im[e3i�z] = 0

Im[e3i�] = 0

· · ·

(1, 1)

(1, 2)

(1, 1)(1, n)(1, n)
· · ·

(0, n)

· · ·

(�1, n)
· · ·
(0, n)
· · ·
(1, n)
· · ·

(�1, n� 1)
· · ·
(0, n)
· · ·
(1, n)
· · ·

Figure 11.2: Walls for the bound states of D2-D0 branes to a large D6 brane.

As with the previous examples, to derive the BPS state counts through the generating
function one must read off the highest weight using the Weyl denominator of the Â1 Lie
algebra.

Definition 11.4.1. Again, we remember from (10.3.5-11.2.1) that the roots act on the
Cartan subalgebra, such that we have 2 complex variables:

↵1(u) = ⌧ 2 C, ↵0(u) = z 2 C and �(u) = ↵0(u) + ↵1(u) = ⌧ + z. (11.4.1)

Here we have redefined our basis of roots given in (10.3.5-11.2.1) by exchanging ↵0(u) and
↵1(u) to better compare to the charges existing in Seiberg-Witten theory.

One can also integrate to find Fourier coefficients in different chambers as in the N = 4
example in section 10.3.2. The counting function itself can be written as 5

f 0
Â1
(u) =

en↵0(u)+l↵1(u)

Q1
m=1(1� e�m(↵0(u)+↵1(u)))(1� e�m(↵0(u)+↵1(u))�↵1(u))(1� e�(m�1)(↵0(u)+↵1(u))+↵1(u))

,

(11.4.2)

=
en⌧+mz

Q1
m=1(1� e�m(z+⌧))(1� e�m(z+⌧)�⌧ )(1� e�(m�1)(z+⌧)+⌧ )

,

5The highest weight can now be written as � = n↵0(u) + l↵1(u).



11.4.1 Seiberg-Witten walls 148

where we follow (11.2.2) but with the roots exchanged and the introduction of a new labelling
of the highest weight using n, l 2 Z.

11.4.1 Seiberg-Witten walls

In Seiberg-Witten theory there is only 1 complex variable w parameterising the moduli space
of the Seiberg-Witten curve that enters the stability condition. The equation for the wall of
marginal stability can then be written as: Im[Z↵1(w)Z̄↵2(w)] = 0. We know that in Seiberg-
Witten theory there is one region of the moduli space with just 2 basis BPS states existing
and 1 other region on the other side of the wall with infinitely many BPS states existing -
the full spectrum of roots of the Â1 Lie algebra. This means, if we are to match this with
the chambers of the generating function, we must jump from one chamber to another and
thus obtain a change in BPS degeneracies that matches this. For this we must choose a
moduli prescription under which this jumping occurs.

For this we must be careful to distinguish the framed BPS states described in the work of
GMN [17] from the original vanilla BPS states described in the theory. The framed halo
BPS states are bound to a large core charge and the walls for these boundstates to form are
the BPS walls. The vanilla BPS states can also bind with each other when the second type
of wall, the wall of marginal stability, is crossed. The walls are labelled by:

MS↵0,↵1 : Wall of marginal stability (11.4.3)
W↵i : BPS wall (11.4.4)

If we write the walls in terms of the central charges of the theory, then the walls become not
the walls of marginal stability MS↵0,↵1 for the BPS invariants of Seiberg-Witten theory itself,
but are those for the framed halo BPS states 6 W↵i discovered in the paper of GMN [17] and
re-interpreted in the work of Andriyash, Denef, Jafferis and Moore [18] from a supergravity
perspective. These represent boundstates of the ↵i to a large core charge. However, the
intersection of these BPS walls W↵i occurs on the wall of marginal stability. This is because
if the imaginary part of all the central charges is vanishing, or in general Im[Z↵i(w)/µ] =
0, 8↵i, where µ 2 C is a complex parameter then the ratio of all the Z↵i(w)/µ must be real.
Hence, the condition on the wall of marginal stability Im[Z↵i(w)Z̄↵j(w)] = 0 is satisfied.

Therefore, one can consider that the walls for the framed halo BPS states W↵i form a cone
for which in the upper region exists the full infinite Seiberg-Witten BPS spectrum an in
the lower just the 2 basis states. Which region is which can be determined by the existence
conditions on the central charges discussed in our work on attractor flow following the ideas

6These are known as BPS walls.
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in [55, 57, 56].

Example 11.4.2. The identification between the roots and the central charges is as follows:

↵0(u) =
Z↵0(w)

µ
, ↵1(u) =

Z↵1(w)

µ
, �(u) =

1

µ
(Z↵0(w) + Z↵1(w)). (11.4.5)

Here we can take µ = ✏⇣, where ⇣ := ei✓, ✓ 2 {0, 2⇡} is a phase, and ✏ 2 R is a small
parameter that can be used to define the contour (see sec. 10.3.2) when extracting Fourier
coefficients. This is analogous to the N = 4 examples in [52, 53] where one takes contours
at infinity ✏! 0 to generate a consistent jumping of dyon degeneracies. In N = 2 language
the phase ⇣ is a complex parameter representing the phase of an infinitely heavy dyon to
which the framed particles are bound.

Now we will briefly review the wall crossing for the framed halo BPS states: On the upper
half plane the jumping occurs at the walls ±Im[i↵0(u)]+mIm[i↵1(u)+ i↵0(u)] = 0, m 2 Z.
We can choose the moduli that give the matched jumping for the framed halo BPS states.
The walls are given by the vanishing locus of the imaginary parts of the central charges:

Imaginary parts of central charges on one side of affine wall W↵0+↵1

Im[i↵0(u)] = Im[
Z↵0(w)

µ
], (11.4.6)

Im[i↵0(u)] + Im[i↵1(u) + i↵0(u)] = Im[
2Z↵0(w) + Z↵1(w)

µ
],

Im[i↵0(u)] + 2Im[i↵1(u) + i↵0(u)] = Im[
3Z↵0(w) + 2Z↵1(w)

µ
],

... = ....

where the dots represent an infinite continuation of this pattern of BPS walls. Now we can
look at the combinations on the other side of the affine wall and determine what happens
as these BPS walls are crossed:

On other side, and including W↵0+↵1 (11.4.7)

�Im[i↵0(u)] = �Im[
Z↵0(w)

µ
],

�Im[i↵0(u)] + Im[i↵1(u) + i↵0(u)] = Im[
Z↵1(w)

µ
],

�Im[i↵0(u)] + 2Im[i↵1(u) + i↵0(u)] = Im[
Z↵0(w) + 2Z↵1(w)

µ
],
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�Im[i↵0(u)] + 3Im[i↵1(u) + i↵0(u)] = Im[
2Z↵0(w) + 3Z↵1(w)

µ
],

... = ...

nIm[i↵1(u) + i↵0(u)] = nIm[
Z↵0(w) + Z↵1(w)

µ
].

All these walls intersect on the wall of marginal stability MS↵0,↵1 for the vanilla states. This
produces a cone with the full Â1 spectrum on one side and the basis states on the other.
The diagram below Fig. 11.3 shows the existence conditions for the framed halo BPS states
of Seiberg-Witten theory. The walls of the framed halo BPS states all intersect on the wall
of the vanilla BPS degeneracies. The inside of the wall represents the region where only 2
vanilla BPS states exist.

Reminder of Attractor flow existence conditions

Now to give an explanation of the wall crossing at MS↵0,↵1 we can look back at the existence
conditions for the attractor flow used by [57, 56] and applied again in [58, 62].

(i) We remember that for a BPS state to exist the endpoint of the flow must terminate
at a singular point.

(ii) If the flow terminates at a regular point in Seiberg-Witten and Argyres-Douglas theo-
ries the central charges vanish. This can be interpreted as contradictory, as the central
charges vanish at a point where the cycles in the elliptic curve do not pinch. Hence,
the BPS state does not exist.

One way of looking at the flow lines is as lines of constant phase, and indeed the BPS walls
W↵i satisfy these conditions because Z↵i(w)/µ 2 R on the W↵i . Therefore, we can use
the attractor flow existence conditions on the BPS walls W↵i by excluding walls that pass
through regular attractor points at which the central charge vanishes.

Existence conditions from generating function

In terms of the generating function, this condition can be stated such that the generating
function must not have any poles at regular points in the moduli space. To do this one
can redefine the factor in the denominator that contains the pole, at the wall of marginal
stability MS↵0,↵1 , where the central charges align. This can be done by writing the central
charge that causes the pole at a regular point in terms of a real function multiplying one
of the other central charges that vanishes at a regular point. Then one can choose such a
function that can be continued across the wall of marginal stability MS↵0,↵1 . This is then
no longer a root and can no longer be written as the linear combination of the other roots.
Hence, this BPS state doesn’t exist or contribute to any count of BPS states in a highest
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weight of a representation or module. One can then just consider the factor in the generating
function for the non-existing BPS state as just a normalisation.

We start by explicitly writing the generating function (11.4.2) in terms of central charges

e�(u)

Q1
m=1(1� e�

m
µ (Z↵0 (w)+Z↵1 (w)))(1� e�

m
µ (Z↵0 (w)+Z↵1 (w))�Z↵1 (w)

µ )(1� e�
(m�1)

µ (Z↵0 (w)+Z↵1 (w))+
Z↵1 (w)

µ )
.

(11.4.8)

Now we can write the factors representing central charges that vanish at regular points in
terms of ratios of the central charges such that:

Central charges in terms of ratio

�Z↵1(w)

µ

⇣
1 +

Z↵0(w)

Z↵1(w)

⌘
m =

Z↵1(w)

µ
rm(w), (11.4.9)

Z↵1(w)

µ

⇣
1� (m� 1)

�
1 +

Z↵0(w)

Z↵1(w)

�⌘
=

Z↵1(w)

µ
rm+1,m(w),

Z↵1(w)

µ

⇣
� 1�m

�
1 +

Z↵0(w)

Z↵1(w)

�⌘
=

Z↵1(w)

µ
rm,m+1(w),

rm(w) = �
⇣
1 +

Z↵0(w)

Z↵1(w)

⌘
m, rm+1,m(w) = 1� (m� 1)

⇣
1 +

Z↵0(w)

Z↵1(w)

⌘
, m > 2, (11.4.10)

rm,m+1(w) = �1�m
⇣
1 +

Z↵0(w)

Z↵1(w)

⌘
.

On the wall of marginal stability, the ratio of the central charges is real. Therefore, we have
on the wall of marginal stability: rm(w), rm+1,m(w), rm,m+1(w) 2 R.

Example of continuation through wall of marginal stability MS↵0,↵1

Now we find a continuation of the generating function through the wall of marginal stability
MS↵0,↵1 with a function that avoids the poles at a regular point in the moduli space. This
is done for the central charges in the exponents that would otherwise vanish at a regular
point on the other side of the wall by choosing real continuations of rm(w), rm+1,m(w), and
rm,m+1(w), such that the central charges now behave as those that flow to singular points.
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Definition 11.4.3. For example, one can choose 7

rm(w) = �
⇣
1 +

���
Z↵0(w)

Z↵1(w)

���
⌘
m, rm+1,m(w) = 1� (m� 1)

⇣
1 +

���
Z↵0(w)

Z↵1(w)

���
⌘
, m > 2,

(11.4.11)

rm,m+1(w) = �1�m
⇣
1 +

���
Z↵0(w)

Z↵1(w)

���
⌘
,

on the other side of the wall of marginal stability MS↵0,↵1 .

Now the generating function avoids all poles at regular points. Essentially the BPS walls
W↵i have collapsed into 2 walls representing the basis states. This means there are 2 BPS
states that exist in this region as the generating function can maximally count only 2 active
BPS states in its highest weight.

Example 11.4.4 (Excluded BPS states).

The exponents of the non-existing BPS states are no longer in the lattice of positive roots
Z↵1(w)/µ rm(w), Z↵1(w)/µ rm,m+1(w), Z↵1(w)/µ rm+1,m(w), m > 2 /2 �+. This is
because

Z↵1(w)

µ
rm(w) 6= m0�(u),

Z↵1(w)

µ
rm,m+1(w) 6= ↵0(u)�m0�(u) and (11.4.12)

Z↵1(w)

µ
rm+1,m(w) 6=� ↵0(u)�m0�(u).

Example 11.4.5 (Existing BPS states).
Now the only BPS states that can still be written as roots include ↵0(u) = Z↵0(w)/µ and
↵0(u)� �(u) = �↵1(u) = �Z↵1(w)/µ as these were not modified at the wall. The attractor
flow for these states terminates at singular points.

Continuation of generating function through MS↵0,↵1

On this side of the wall of marginal stability MS↵0,↵1 the generating function (11.4.8) can
be re-written as

e�(u)

(1� e�
Z↵0 (w)

µ )(1� e
Z↵1 (w)

µ )
Q1

m=1(1� e
Z↵1 (w)

µ rm(w))(1� e
Z↵1 (w)

µ rm,m+1(w))
Q1

m=3(1� e
Z↵1 (w)

µ rm+1,m(w))
,

7This is only one possible choice of continuation - in general there can be many possible continuations
one could choose.
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such that it now becomes

e�(u)

(1� e�
Z↵0 (w)

µ )(1� e
Z↵1 (w)

µ )
f
⇣Z↵1(w)

µ
rm(w),

Z↵1(w)

µ
rm,m+1(w),

Z↵1(w)

µ
rm+1,m(w)

⌘
,

(11.4.13)

where this is now a generating function of 2 BPS states only. All BPS walls W↵i have
collapsed onto two and the function f

�
Z↵1 (w)

µ
rm(w),

Z↵1 (w)

µ
rm,m+1(w),

Z↵1 (w)

µ
rm+1,m(w)

�
in

(11.4.13) can be treated now just as a normalisation. The framed wall crossing on this side
of the wall of marginal stability can now be tabulated.

Highest weight on side with 2 BPS states

�+ (↵0 � �) + ↵0

�+ ↵0 � �

�

Table 11.2: Highest weights of the modules when only 2 BPS states exist. Shown on lower
half of Fig. 11.3.

A complete tabulation (11.3) of crossing of both the BPS walls W↵i and the wall of marginal
stability MS↵0,↵1 can now also be written down.

The wall crossing on both sides of MS↵0,↵1 is depicted in Fig. 11.3. The crossing of MS↵0,↵1

can clearly be seen by looking at just the 2 outer BPS walls. These can be used to construct
a cone with upper and lower region. The upper region contains the full spectrum and the
lower just the 2 basis states. The parameter ⇣ can be varied such that the cone can be
taken at any point along the wall. On Fig. 11.3 we directly show the intersection of the
BPS walls W↵i with the wall of marginal stability MS↵0,↵1 . We choose a parameter ⇣1 = 1.
One can change the parameter from ⇣1 to ⇣2. This changes the intersection point of the
BPS walls with the wall of marginal stability, and gives a different cone, with the same
wall crossing behaviour. Such cones can be used to sweep all regions inside and outside the
wall of marginal stability. Indeed, we have actually reproduced the scattering diagram for
Seiberg-Witten theory developed by Bridgeland [124, 58].

This therefore reproduces the spectrum of Seiberg-Witten theory (see table (11.4)) with 2
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Im[Z↵0(w)] = 0

Im[Z↵0(w) + Z↵1(w)] = 0

Im[2Z↵0(w) + Z↵1(w)] = 0

Im[Z↵1(w)] = 0

Im[�Z↵0(w) + 2Z↵1(w)] = 0

Im[3Z↵0(w) + 2Z↵1(w)] = 0
· · ·

w1

↵0 + 2�

↵0 + �

↵0

↵0 � �

↵0 + �

↵0

↵0

↵0 + n�↵0 + n�

· · ·

n�
· · ·

↵0 + n�

· · ·
↵0 � n�

· · ·

n�
· · ·

↵0 + n�

· · ·

↵0 � n�· · ·
↵0 � 2�

n�
· · ·

↵0 � �

↵0

↵0 � �

Fundamental Weyl chamber 1

Fundamental Weyl chamber 2

MS↵0,↵1 : Im[Z↵0(w)Z̄↵1(w)] = 0

MS : wall of marginal stability

BPS walls

⇥

⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥

Figure 11.3: This diagram again shows the walls of the Weyl chambers of the affine A1 Lie
algebra, but with the wall of marginal stability for the vanilla BPS states in red. This time
we show the intersection of the BPS walls at the point w1 on the wall of marginal stability.
Here the existing BPS walls for Seiberg-Witten theory are shown in dark blue. The dashed

blue lines are those excluded by the existence condition of vanishing central charges at
regular points represented by the crosses on the ends of the line.
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Tabulation on both sides of the wall of marginal stability MS↵0,↵1

Side with full Â1 spectrum Side with 2 basis states

�+
P1

m=2

⇣
(m� 1)� � ↵0

⌘
+
P1

l=1 l� +
P1

n=0

⇣
n� + ↵0

⌘
�+ (� � ↵0) + ↵0

�+
P1

m=h+1

⇣
(m� 1)� � ↵0

⌘
+
P1

l=1 l� +
P1

n=0

⇣
n� + ↵0

⌘
�+ � � ↵0

�+
P1

l=1 l� +
P1

n=0

⇣
n� + ↵0

⌘
�+ � � ↵0

�+
P1

n=0

⇣
n� + ↵0

⌘
�+ � � ↵0

�+
P

k

n=0

⇣
n� + ↵0

⌘
�+ � � ↵0

�

Table 11.3: Complete tabulation of all highest weights for the Seiberg-Witten analog. The
first column is on the side of the wall with the full infinite spectrum. Second column is on

the side with just the 2 basis states. This is shown on Fig. 11.3.

BPS states in chambers

Chamber 1 ±(↵0 � �),±↵0

Chamber 2 ±↵0 + n�,±�

Table 11.4: Final existing BPS states in Seiberg-Witten theory on both sides of the wall of
marginal stability represented by the red line in Fig. 11.3.

basis states on one side of the wall and infinitely many on the other.
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11.5 Argyres-Douglas A2

In this example, we look at Argyres-Douglas theory represented by a 2 node quiver with 1
arrow • ! •. This theory has BPS states described by the root system of the SU(3) Lie
algebra [5]. As with Seiberg-Witten theory, this theory is parameterised by a complex 1d
moduli space of an elliptic curve consisting of a single parameter w 2 1 \ {�1, 1,1}. As
with Seiberg-Witten theory the number of BPS states that exist in the theory depends on
the region of the moduli space. It has been found that in one chamber this theory has 2
basis BPS states given by electric and magnetic monopoles ↵1 and ↵2. In the other chamber
3 BPS states exist including the 2 monopoles ↵1,↵2 and a dyon ↵3 = ↵1 + ↵2.

11.5.1 Introduction to counting function for Argyres-Douglas

A2 theory

One can conjecture that a similar generating function exists for other ADE Lie Algebras
that are not affine. The second part of the research in this work involves finding a similar
generating function and wall crossing behaviour for the Argyres-Douglas A2 theory [5] fol-
lowing the methods detailed in Cheng and Verlinde [53]. In this case, we again look for a
match between the boundaries of the Weyl chambers and the walls. If such a match is found
one can use an analogous formulation to that in Cheng and Verlinde to count the existence
of certain BPS states by looking at how many additional roots are added to the highest
weight in each Weyl chamber. For this example, only the Weyl denominator is needed to
determine the change in the highest weight of the Verma module. However, one can also
show that the full character also transforms in such a way under wall crossing. This means it
remains invariant up to an additional root being added or subtracted to the highest weight
every time a boundary of a Weyl chamber is crossed. When in the full character the highest
weight is of a representation.

11.5.2 A2 Weyl character

The Weyl character formula can be generalised from the characters of Bocherds-Kac-Moody
algebras to those for ADE type Lie algebras. In this way one can compare the prescription
for highest weights in Borcherds-Kac-Moody algebras to those in models with the A1, A2

and Â1 root systems. Again, following from sec. 11.1.1 for these roots systems the analog
counting function is written as the Weyl denominator that is simple to expand as a geometric
series. This being the denominator of the character (recall eq. 11.1.7) [199]

ch� =

P
w2W (detw)ew(�+⇢)(u)

e⇢(u)
Q

↵2�+(1� e�↵(u))
, (11.5.1)
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where the vector ⇢ = 1
2

P
↵i2�+ ↵i is again the Weyl vector - written as the half sum of the

positive roots. As mentioned before in section 11.1.1 w are the Weyl group elements and
one chooses a representation to start with that has a highest weight �.

The number and charge of the roots representing the BPS states should be distinct for every
possible Weyl chamber. As with Seiberg-Witten theory in 11.4.1 such a match again exists
for the framed BPS states from [17, 18]. In Cheng and Verlinde [53] the generating function
corresponds to the Weyl denominator of the Borcherds-Kac-Moody algebra. In this case, we
just look at the simple case of the SU(3) Weyl denominator. One can also look at the full
character of this Lie algebra. This is the Weyl character for the SU(3) Lie Algebra. One
can choose a complex 2 dimensional moduli parameter for example u = (u1, u2) to define in
which chamber one is in. This can then be substituted into the character formula.

Definition 11.5.1. The character itself reads:

�
e
�(u)� 2

(↵1,↵1)
((�+ 1

2 (↵1+↵2+↵3)),↵1)↵1(u) + e
�(u)� 2

(↵2,↵2)
((�+ 1

2 (↵1+↵2+↵3)),↵2)↵2(u) + e
�(u)� 2

(↵3,↵3)
((�+ 1

2 (↵1+↵2+↵3)),↵3)(↵3(u))

(1� e�↵1(u))(1� e�↵2(u)(1� e�↵3(u))
.

(11.5.2)

The highest weight of the representation is denoted as � and the roots system of the algebra
contains ↵1, ↵2, ↵3 = ↵1 + ↵2.

We know, e.g. from the quiver representation theory, that these roots correspond to BPS
states and that we should observe at least 2 chambers with 2 and 3 BPS states respectively.
The wall of marginal stability does however not match the Weyl chambers directly as these
Weyl chamber boundaries (as in the Seiberg-Witten example in sec. 11.4) correspond to
the BPS walls W↵i for the framed halo BPS states [17], which are different from the wall
of marginal stability MS↵1,↵2 . Here we will first look at the wall crossing for the BPS walls
W↵i in which there is one chamber with all the halo BPS states existing and another (which
we can label the fundamental Weyl chamber) with none of the BPS states existing.

Therefore, as with the N = 4 black hole example in the work of Cheng and Verlinde
[53], and the analogs of the Â1 Lie algebra, we again find wall crossing behavior with
the BPS walls corresponding to the boundaries Im[i↵i(u)] = 0. Furthermore, this again
manifests itself either as a shift in the highest weight or in the Fourier expansion coefficients
jumping between distinct Weyl chambers. For example, in the transition from the chamber
Im[i↵i(u)] > 0, 8i 2 1, 2, 3 to Im[i↵1(u)] < 0 Im[i↵2(u)] > 0, Im[i↵3(u)] > 0, we
determined that the highest weight changes such that ch�2 = ch�1�↵

0
2

after a suitable basis
transformation. In the following section 11.5.3 and in the appendix B.2.1 we calculate this
change for all the remaining chambers just from the denominator.

11.5.3 Wall crossing and change of basis for denominator

As with the affine Lie algebra we look at the denominator and try to expand it in the
different Weyl chambers. This alone should encode the wall crossing for the BPS walls in
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the same way that the Verma modules do in the Â1 case. The Weyl denominator of a general
Lie algebra, introduced in (11.1.5), is what can be expanded in the different Weyl chambers.
As with the case of degeneracies in N = 4 examples we can multiply the denominator by
an additional charge factor e⇤(u) and write it as a Verma module character

e⇤(u)

e⇢(u)
Q

↵2�+(1� e�↵(u))
=

e�(u)Q
↵2�+(1� e�↵(u))

, (11.5.3)

The product is over all positive roots and the exponentials must be negative to allow a
convergent geometric series expansion 8

1Q
↵2�+(1� e�↵(u))

=
X

�2N�+

K(�)e�(u), (11.5.4)

where K(�) is the count of all the possible combinations in which � can be expressed in
terms of an integral linear combination of positive roots [199]. Now we look at the specific
case of (11.5.3) for the A2 Weyl denominator

e�(u)

(1� e�↵1(u))(1� e�↵2(u))(1� e�↵3(u))
, (11.5.5)

where ↵3(u) = ↵1(u) + ↵2(u).

Weyl denominator expansion in different chambers

Now for each Weyl chamber in which we do the expansion we will change the basis of
positive roots in such a way that the exponents in the expansion remain negative for all
n,m, l, where n,m and l are the term numbers of this expansion. As discussed in [4] this
corresponds to taking successive Weyl reflections and can also can be thought of as quiver
mutations or changes of basis. Physically, this means choosing a basis of particles. Evaluated
at a particular modulus outside the fundamental Weyl chamber (after BPS walls have been
crossed) one must therefore take Weyl reflections of the form

w↵i(↵j) = ↵j �
2

(↵i,↵i)
(↵j,↵i)↵i. (11.5.6)

This is done to distinguish whether the expansions in the different Weyl chambers just
correspond to a different basis or quiver mutation (see [4]) by successive Weyl reflection, or
if they correspond to walls in the moduli space and actually distinguish whether there are
different numbers of BPS states present in the model. 9

8This formula can be expanded in this form [199] and is known as the Kostant partition function.
9In addition to the quiver mutation we are also exchanging ↵

0
1 and ↵

0
2 just to better distinguish the state

before and after the transformation.
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Im[i↵i(u)] > 0 8i 2 1, 2, 3 (11.5.7)
1X

n,m,n=0

e�(n↵1(u)+m↵2(u)+l↵3(u))

the exponents are � n↵1(u)�m↵2(u)� l↵3(u),

The expansion in the fundamental Weyl chamber is already in the required form with neg-
ative exponents so there is no change of basis required.

(11.5.8)
Im[i↵1(u)] < 0, Im[i↵2(u)] > 0, Im[i↵3(u)] > 0

�
1X

n,m,l=0

e(n+1)↵1(u)�m↵2(u)�l↵3(u),

�(n+ 1)(�↵1(u))�m↵2(u)� l(↵1 + ↵2(u)),

change basis ↵0
1 = ↵1 + ↵2 = ↵3, ↵

0
2 = �↵1, ↵

0
3 = ↵2,

expression becomes � ((n+ 1)↵0
2(u) +m↵0

3(u) + l↵0
1(u)).

In this Weyl chamber the exponent changes sign. We therefore perform a change of basis to
restore the negative exponents. This results in a shift in the highest weight by a single root.

So now the denominator in the new basis reads

� e(�
0�↵

0
2)(u)

(1� e�↵
0
1(u))(1� e�↵

0
2(u))(1� e�↵

0
3(u))

, (11.5.9)

such that the module jumps to one with highest weight �0 � ↵0
2 relative to that in (11.5.5).

We have continued the computation for the expansion of the Weyl denominator in the
remaining Weyl chambers. All the changes in the possible expansions are listed in appendix
B.2.1. For the remaining expansions it was always possible to write the expansion in terms
of a set of negative exponents. When this was done we always obtained a shift in one of the
coefficients.

Therefore, it is always possible to change the basis in such a way that all the exponents in
the expansion are negative in n,m and l for all n,m, l. These basis changes also correspond
to rotations of the positive plane. We have not found any obstructions to this. So, the
expansions are distinguished but only by which and how many roots are shifted by one in
the exponent and the negative pre-factor in front of the sum. This means that this shift
does in fact represent a jump in the number of existing BPS states and is not just a basis
change.
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Inclusion of modules and structure of chambers

In this way 6 chambers are found with different highest weight modules M(�n,m) which can
be defined in the same way as for the Â1 root system in (11.2.4). One can again write this
in terms of inclusions if we write �n,m = �+ n↵1 +m↵2.10 In one direction we have

M(�0,0) ⇢ M(�1,0) ⇢ M(�2,1) ⇢ M(�2,2), (11.5.10)

and in the other

M(�0,0) ⇢ M(�0,1) ⇢ M(�1,2) ⇢ M(�2,2). (11.5.11)

This means that there is indeed a non-trivial jump in the number of BPS states when
the series is expanded in different Weyl chambers. This can be seen by distinct expansion
coefficients and can be encoded in the distinct highest weight module.

Therefore, we have found 6 chambers with a different combination of roots (representing the
BPS charges) existing in each chamber. This should then correspond to 1 chamber with no
roots existing another with just ↵1 existing but with no other roots, another with ↵2 and
no other roots, another with ↵2,↵3, one with ↵1,↵3 and finally one with all 3 roots existing
as ↵1,↵2,↵3. This corresponds to the wall crossing for the framed BPS states. This can be
shown in a table.

All possible highest weights

�+ ↵1 + ↵2 + ↵3

�+ ↵1 + ↵3 �+ ↵2 + ↵3

�+ ↵1 �+ ↵2

�

Table 11.5: Highest weight states representing framed BPS boundstates in 6 Weyl
chambers.

Central charge representation of the roots

If one wants to connect this wall crossing to BPS walls one must again write the complex
inner products of the roots in terms of central charges. These walls can then be mapped

10To continue on from (11.5.9) we must let ↵
0
i
! ↵i.
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into the moduli space to see the wall crossing at the wall of marginal stability MS↵1,↵2 in
addition to that at the BPS walls W↵i .

Example 11.5.2. The roots can thus be written as follows:

↵1(u) =
Z↵1(w)

µ
, ↵2(u) =

Z↵2(w)

µ
. (11.5.12)

Here as with the Seiberg-Witten example we can let µ = ✏⇣ 2 C where ✏ 2 R is a small
parameter defining the contour and ⇣ := ei✓, ✓ : 0 2 {0, 2⇡} is the phase that is chosen.

The BPS walls can be written as the vanishing locus of the imaginary parts of the central
charges which read:

Im[i↵1(u)] = Im[
Z↵1(w)

µ
], Im[i↵2(u)] = Im[

Z↵2(w)

µ
], Im[i↵1(u) + i↵2(u)] = Im[

Z↵1(w) + Z↵2(w)

µ
].

Crossing the wall of marginal stability MS↵1,↵2

At the wall of marginal stability MS↵1,↵2 , the central charges align (as is the case for
Seiberg-Witten theory in section 11.4) such that their ratio is some real function ri(w) 2 R

along the wall. This means that on the wall of marginal stability MS↵1,↵2 one can write the
sum of the central charges as

Z↵1(w) + Z↵2(w)

µ
=

Z↵1(w)

µ

⇣
1 +

Z↵2(w)

Z↵1(w)

⌘
, (11.5.13)

and on the wall of marginal stability we have

r3(w)
Z↵1(w)

µ
,

where r3(w) = 1 +
Z↵2(w)

Z↵1(w)
2 R.

Now as in the example of Seiberg-Witten theory we follow the attractor flow existence
conditions from [57, 56, 58]. We again choose a continuation of the generating function
across the wall of marginal stability that avoids a pole at a regular point. The 2 basis
charges only have allowed poles at singular points so we must only change the continuation
for the composite state (11.5.13) above. For example, a possible continuation one can choose
is:

r3(w) = 1 +

�����
Z↵2(w)

Z↵1(w)

����� 2 R. (11.5.14)
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Example 11.5.3 (Exclusion of composite state). The function r3(w)Z↵1(w)/µ 6= ↵1(u)+

↵2(u). It is no longer a positive root in the A2 Lie algebra r3(w)
Z↵1 (w)

µ
/2 �+. Therefore,

it does not exist as a BPS state. To illustrate this further one can explicitly write the
generating function (11.5.5) in terms of central charges on both sides of the wall.

On one side :
e�(u)

(1� e�
Z↵1 (w)

µ )(1� e�
Z↵2 (w)

µ )(1� e�
Z↵1 (w)+Z↵2 (w)

µ )
. (11.5.15)

On the other :
e�(u)

(1� e�
Z↵1 (w)

µ )(1� e�
Z↵2 (w)

µ )(1� e�r3(w)
Z↵1 (w)

µ )
=

e�(u)

(1� e�
Z↵1 (w)

µ )(1� e�
Z↵2 (w)

µ )
f
⇣
r3(w)Z↵1(w)

⌘
,

where the function f
�
r3(w)Z↵1(w)

�
representing the non-existing BPS state can be treated

just as a normalisation factor. What is left for the 2 existing basis BPS states is then also
a factor in the integral representation of the double gamma function given for example in
Narukawa [202]. In this case, the existing 2 BPS states can also be tabulated in terms of
framed wall crossing. We can now tabulate all the wall crossing for both the BPS walls W↵i

Highest weight on one side of MS↵1,↵2

�+ ↵1 + ↵2

�+ ↵2

�

Table 11.6: Highest weights representing framed BPS states in all the chambers: this is on
the side of the wall of marginal stability where only the 2 basis BPS states in A2 exist.

and the walls of marginal stability MS↵1,↵2 together. This is plotted on Fig. 11.4 below.

We can now see from Fig. 11.4 that the wall crossing for the regular BPS states for the
Argyres-Douglas A2 BPS structure just has 2 regions - that is one region containing all 3
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On side with 2 On side with 3

�+ ↵1 + ↵2 �+ ↵1 + ↵2 + ↵3

�+ ↵2 �+ ↵1 + ↵3

�+ ↵2 �+ ↵1

�

Table 11.7: This is a complete tabulation for framed BPS states in all chambers present on
both sides of the wall of marginal stability for primitive wall crossing. See Fig. 11.4.

BPS states and their antiparticles ±↵1,±↵2,±↵3 and another region with just the 2 basis
states ±↵1,±↵2. In this case, the wall of marginal stability for the regular BPS states is
again the usual locus in the moduli space at which the ratio of the central charges is real.
We have also again recovered the scattering diagram for the A2 quiver from [124, 58]. For
this model, we have the following final count of the roots in the different chambers.

BPS states in chambers

Chamber 1 ±↵1,±↵2,±(↵1 + ↵2)

Chamber 2 ±↵1,±↵2

Table 11.8: Final existing BPS states in A2 Argyres-Douglas on both sides of wall of
marginal stability. That is on both sides of red line in Fig. 11.4.
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W↵2 : Im[Z↵2(w)] = 0 W↵1+↵2 : Im[Z↵2(w) + Z↵1(w)] = 0

W↵1 : Im[Z↵1(w)] = 0

↵3 ↵1

↵1 ↵3↵2

↵2

↵1 ↵2

↵2

↵1

w1

W : BPS wall

MS : Wall of marginal stability

MS↵1,↵2 : Im[Z↵1(w)Z̄↵2(w)] = 0

⇥

Figure 11.4: The BPS walls are shown by the lines in blue. The wall of marginal stability
is shown by the line in red. The dashed blue line is the BPS wall excluded by the existence

condition of vanishing central charge at a regular point.



12 | Uncoupled BPS structures and

topological strings

A class of BPS structures discussed in this thesis, including those with root systems of A1

(deformed conifold), and Â1 (resolved conifold), are also known as uncoupled BPS structures.
This means that BPS states with charges �i, �j 2 � and invariants ⌦(�i),⌦(�j) 6= 0 have
symplectic product h�i, �ji = 0 [20, 203]. They have a description in terms of topological
string theory and there should be a relation between the Lie algebraic generating functions
discussed in chapter 11 and partition functions of the topological string. These partition
functions should also encode the wall crossing phenomena that are seen in the different
chambers. Uncoupled BPS structures include those with topological free energies of the
form

F (�, {z�}) =
1

24

X

�2�

⌦(�) log

✓
2⇡i�

z�

◆
+
X

g�2

X

�2�

⌦(�)B2g

4g(2g � 2)

✓
2⇡i�

z�

◆2g�2

, (12.0.1)

where in this case ⌦(�) are the BPS invariants, z� = Z� are the central charges, and � is
the topological string coupling.

12.1 Deformed and resolved conifold

The simplest example of an uncoupled BPS structure is that associated to the A1 root
system. This just contains 1 BPS state with its antiparticle and there are no walls of marginal
stability. As mentioned above, this BPS structure arises from the deformed conifold [204, 60].
This is also the simplest example that we looked at for the attractor flow in chapters 7-8.
There we showed a single BPS state and its antiparticle existing by showing the flow lines
flowing to the attractor point at the origin of the moduli space.

Specifically, in this case of the deformed conifold, the free energy for the B-model topological
string [204] takes the form of

F (�, a) = ��2

✓
a2

2
log a� 3

4
a2
◆
� 1

12
log a+

1X

g=2

B2g

2g(2g � 2)a2g�2
�2g�2 , (12.1.1)
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where a = Z� 2 C, and we can call the last term �(�, a). We can proceed to take the Borel
transform, defined in chapter 6, of this function. However, we first discuss a generating
function and relate this to the Bernoulli numbers.

12.1.1 Deformed conifold generating function

One can expect the generating function for the A1 BPS structure to take the form of, or at
least contain the factor, (as the Weyl denominator for the A1 Lie algebra)

ex

(1� ex)2
. (12.1.2)

Indeed, we will see in sec. 12.1.1 and sec. 12.2.3, that this term is present in the Borel
transform and non-perturbative free energy, for the deformed conifold, respectively. This
can also be used (12.1.11) to write the Borel transform of the resolved conifold. For this
one must expand this function in terms of Bernoulli numbers. We can start by using the
generating function of Bernoulli numbers and substituting it into the required expression.

Bernoulli numbers

The Bernoulli numbers are defined by the expansion of the function

x

1� ex
=

1X

n=0

Bn

xn

n!
. (12.1.3)

Connection with Bernoulli numbers

The generating function can be constructed from these Bernoulli numbers

1X

g=2

B2g

2g(2g � 2)!
x2g�2 =

1X

g=2

(2g � 1)B2g

(2g)!
x2g�2 =

@

@x

⇣1
x

1X

g=2

B2g

(2g)!
x2g
⌘
= (12.1.4)

@

@x

⇣1
x

⇣ 1X

g=0

Bg

g!
xg � (1� x

2
+

x2

12
)
⌘⌘

,

such that we can now use x

1�ex
=
P1

g=0
Bg

g! x
g. Here we have B0 = 1, B1 = �1

2 , B2 = 1
6 .

These terms are substituted in and subtracted from the original series

@

@x

⇣ 1

1� ex
� 1

x
+

1

2
� x

12

⌘
= (12.1.5)

� ex

(1� ex)2
+

1

x2
� 1

12
,
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rearranging this we obtain the relation

ex

(1� ex)2
=

1

x2
� 1

12
�

1X

g=2

B2g

2g(2g � 2)!
x2g�2, (12.1.6)

such that we have now expanded in terms of Bernoulli numbers. This relation is known e.g.
in [20] and is useful both for writing down non-perturbative free energies and in determining
Gopakumar-Vafa invariants.

Borel transform

The relation that was derived for the Bernoulli numbers can be used in the Borel transform.
We remember defining this in section 6.2.1 in equations (6.2.1-6.2.4). Initially the Borel
transform of �(�, a), which reads as G(⇠, a) in the new variable ⇠, can be written as

G(⇠, a) =
1X

g=2

B2g

2g (2g � 2)!
⇠2g�3 1

a2g�2
=

1

⇠

✓
a2

⇠2
� e⇠/a

(e⇠/a � 1)2
� 1

12

◆
, (12.1.7)

where the right hand side of the equation is derived by substituting in the relation from
(12.1.6). This is indeed the Weyl denominator for the A1 Lie algebra, which, as we know
from chapter 10, can act as a counting function for BPS states.

12.1.2 Resolved conifold

The resolved conifold is another interesting example for the study of the non-perturbative
topological string partition function, as was done extensively in [61]. In this case, the free
energy expansion is known and one can act on it with a Borel transform along a chosen ray
that does not pass through any singularities. One can choose to take the integral between 2
particular singular rays known as stokes rays. If one crosses a singular ray to move between
2 regions one obtains a contribution to the free energy from the singularity known as a
stokes jump (remember section 6.2.2). For the resolved conifold it is possible to compute
the stokes jumps. This is interesting as the normalised partition function generated by the
stokes jumps reproduces the wall crossing for the D6-D2-D0 brane system in section 5.4
derived in Jafferis and Moore [37]. These stokes jumps also encode the jumps of the Weyl
denominator for Â1.
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Topological free energy for resolved conifold

The topological string free energy of the resolved conifold was derived in [24, 25] and is given
by the genus expansion [61] 1

F (�, t) =
1X

g=0

�2g�2F̃ (t) =
1

�2
Li3(q) +

B2

2
Li1(q) + �(�̂, t), (12.1.8)

where q = e2⇡it, �̂ = �/2⇡, t, �̂ 2 C
⇤ and the last term can be written as

�(�̂, t) =
1X

g=2

�̂2g�2 B2g

2g(2g � 2)

X

k2Z

(k � t)2�2g, k 2 Z, (12.1.9)

From this we can look at the Borel transform G(⇣, t) := B(�(�, t))(⇣) [61] of this term
where ⇣ is the new variable after the transformation

G(⇣, t) =
1X

g=2

1

⇣

B2g

2g(2g � 2)!

X

k2Z

(k � t)2�2g

⇣2�2g
. (12.1.10)

Now we can consider the variables in the form xk =
⇣

(k�t) so that we can now substitute the
relation derived above in (12.1.6) for each k. Then the expression finally becomes

G(⇣, t) =
X

k2Z

1

⇣

⇣⇣k � t

⇣

⌘2
� 1

12
+

e
⇣

k�t

(1� e
⇣

k�t )2

⌘
. (12.1.11)

One can see that this function (12.1.11) has poles at ⇣ = 2⇡im(t+ k), m 2 Z/{0} and use
this to derive the stokes jumps across these singular rays. The BPS partition function, as in
the case for the N = 4 generating function, can be found by taking the exponent of the free
energy ZBPS = eF . When the stokes jumps are computed one obtains logarithmic factors
that when put into this exponent reproduce the D6-D2-D0 partition function (5.4.13) in
section 5.4. This means there is a correspondence between the boundaries of Weyl chambers
of Â1 and the Stokes rays. There is also a map between Donaldson-Thomas and Gromov-
Witten invariants [28, 29] one can derive in this case with an appropriate change of variables
in the partition function.

12.1.3 Gamma and G-functions

We can remember from chapter 7 that the deformed conifold is realised by the curve y2 =
x2 � 4a 2 C

2, and corresponds to the Argyres-Douglas A1 BPS structure. The generating

1The polylogarithms are defined as Lis(q) =
1P

n=1

q
n

ns , s 2 C.
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function (from the non-perturbative topological free energy), which we just determined is
the Weyl denominator of the A1 Lie algebra, can also be written as a double gamma function.

Difference equation

Another way to determine the non-perturbative free energy is to find a solution to the
difference equation [60, 205]. This equation can be written as

F (�, a+ �)� 2F (�, a) + F (�, a� �) =
@2

@a2
F 0(a) , (12.1.12)

where the 0-order term F 0(a) is defined by

F 0(a) =
1

2
a2 log a� 3

4
a2 . (12.1.13)

It has been checked [60] that the non-perturbative free energy below uniquely solves the
difference equation

Fnp(�, a) := logG
⇣
1 +

a

�

⌘
+

a2

2�2
log �+

a

�
⇣ 0(0) +

1

12
log(�) + ⇣ 0(�1) . (12.1.14)

Hence, we see the appearance of the Barnes G-function G
�
1 + a

�

�
and ⇣ represents the ⇣-

function. Now we use a relation between the double gamma function and the G-function
solution to the difference equation (12.1.12) to derive integral representation of this solution
along the real axis, as well as a Wornorwitz type integral form.

12.2 Multiple gamma functions

It is interesting to study multiple gamma functions because one can also write the Weyl
denominators of A2 and other Lie algebras, associated to BPS structures covered in this
thesis, within this form. This allows one to conjecture a general relation between partition
functions for BPS structures, Lie algebras and gamma functions. The general form of the
multiple gamma function [202] is given by an integral representation

�r(z,!) = exp
⇣ 1

2⇡i

Z

L̃

e�zt(log(�t) + �)

t
Q

r

j=1(1� e�!it)
dt
⌘
, (12.2.1)

where we have ! = (!1, ...,!i, ...,!r), !i, z 2 C, and � is defined as Euler’s constant. The
contour L̃ is shown on Fig. 12.1 below.

However, in this section we will focus on the solution for the deformed conifold (the double
gamma function). The function r = 2 can be chosen as this is expected to correspond to
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L̄?
is orthogonal to the conjugate half-line

O

L̄ is the conjugate half-line

L is a half-line starting at the origin

L̃ is the contour for the gamma functions

•

Figure 12.1: Contour prescription for multiple gamma function.

our deformed conifold for a particular choice of !

�2(z,!1,!2) = exp
⇣ 1

2⇡i

Z

L̃

e�zt(log(�t) + �)

t(1� e�!1t)(1� e�!2t)
dt
⌘
. (12.2.2)

We can now define the Barnes G-function [206] such that

G(z + 1) = (2⇡)
z
2 e�

z+z2(1+�)
2

1Y

k=1

(1 +
z

k
)ke

z2

2k�z. (12.2.3)

The double gamma function for !1 = !2 = 1 can be related to the Barnes G function as 2

G(z) =
1

�2(z)
. (12.2.4)

To connect the general form of the double gamma function (12.2.2) to the double gamma
function in the generating function for the A1 BPS structure one must define the function

2These are the original Barnes gamma functions that have a different normalisation than the Gamma
functions in [202]. This is given by the Barnes modular constant k2.
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as �2(z) = k2�2(z, 1, 1). This can be written in terms of the integral representation

�2(z, 1, 1) = exp
⇣ 1

2⇡i

Z

L̃

e�zt(log(�t) + �)

t(1� e�t)2
dt
⌘
. (12.2.5)

12.2.1 Relation between integral representations

In the case of the resolved conifold it is possible to write the non-perturbative free energy in
terms of an integral representation on the positive real axis R+ called the Woronowicz form.
We derive a similar integral representation for the deformed conifold (12.1.14) using the fact
that the solution for the free energy can be written as a double gamma (or G) function.
Then we relate the double gamma function to an equivalent integral representation on the
positive real axis.

Second integral representation

First, we remind ourselves that the G-function can be written in terms of gamma functions
such that G(z) = 1/�2(z). Also, we know the relation G(z + 1) = �1(z)G(z) 3. Our aim
here is to relate 2 different integral representations, the first one being the gamma function
�2(z,!), and the second one corresponding to the integral

Z 1

0

x log(x2 + z2)

e2⇡x � 1
. (12.2.6)

To derive this relation we follow the derivation given in [206] on the theory of the Barnes
Function. Firstly, we must take logs of the expression relating the G-function to the gamma
functions:

logG(z + 1) = log
�
�1(z)G(z)

�
= log�1(z) + logG(z) = (12.2.7)

log�1(z)� log�2(z),

log�2(z) = log�1(z)� logG(z + 1),

1

2⇡i

Z

L̃

e�zt(log(�t) + �)

t(1� e�t)2
dt = log�1(z)� logG(z + 1) + const.

12.2.2 Relation between G and zeta function

A derivation for logG(z + 1) is described in [206]. This function can be expressed in terms
of the other integral representation. For this we use a relationship with derivatives of the
Hurwitz zeta function ⇣(t, z). The derivative is given by ⇣ 0(t, z) = d

dt
⇣(t, z) and a relation

3�1(z) = �(z) is the well known Euler Gamma function.
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between the G-function and these derivatives exists and is shown in [206]:

logG(z + 1) = z log�1(z) + ⇣ 0(�1, 0)� ⇣ 0(�1, z). (12.2.8)

This can also be written as an integral representation along the positive real axis and is
hereby a second integral representation of the double gamma function. This then becomes
the Woronowicz form from (12.2.6). This is given in equation (20) of Adamchick [206].

G-function and Woronowicz form

In terms of the G function this is given by

logG(z + 1) =
z2

2
log(z)� 3

4
z2 + z

log(2⇡)

2
+ ⇣ 0(�1, 0) +

Z 1

0

x log(x2 + z2)

e2⇡x � 1
dx, (12.2.9)

and in terms of the gamma function

1

2⇡i

Z

L̃

e�zt(log(�t) + �)

t(1� e�t)2
dt = log�1(z)�

z2

2
log(z) +

3

4
z2 � z

log(2⇡)

2
(12.2.10)

� ⇣ 0(�1, 0)�
Z 1

0

x log(x2 + z2)

e2⇡x � 1
dx+ const,

where the integral along the real axis is the integral representation we are looking for. This
therefore becomes a candidate for the Woronowicz form of the non-perturbative free energy
(12.1.14) of the deformed conifold. A derivation of this is presented in the appendix part C.

12.2.3 Removal of logarithm in gamma function

The integral form of the multiple gamma functions (12.2.1) contains a logarithm in the
numerator when using the contour prescription from Fig. 12.1, taken around a half line.
This half line starting at the origin as described in [202]. It would be interesting to see if a
contour prescription exists such that the integral representation takes only the form of the
Weyl denominator of the Lie algebra (A1 for the deformed conifold) without any logarithmic
terms. Furthermore, we should aim to find an integral form of the double gamma function
along the full real axis (see Fig. 12.2) analogous to that for the non-perturbative free energy
for the resolved conifold in [61]. So far, we have found the double gamma function as a
solution to the deformed conifold difference equation (12.1.12) with a further Woronowicz
integral representation (12.2.10) along the positive real axis R+. However, we also look for
an exact expression for the double gamma function as an integral along the full real axis R

of the A1 Weyl denominator.
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R+ i0

O
•

Figure 12.2: New contour for integral representation along real axis.

A difference equation for the multiple gamma functions

Here we will describe the derivation of an equation relating integral representations of gamma
functions along the full real axis. There exists a generalisation of the sine function [207, 208]
called the multiple sine function. For ! = (!1, ...,!i, ...!r) [202] this is defined as

Sr(z,!) = exp
⇣
(�1)r

⇡i

r!
Brr(z,!) +

Z

R+i0

ezt

t
Q

r

i=1(1� e!it)
dt
⌘
, (12.2.11)

where the Brr(z,!) are defined from the Bernoulli polynomials which can be written as an
expansion

treztQ
r

i=1(1� e!it)
=

1X

n=0

Brn(z,!)
tn

n!
. (12.2.12)

If one looks for the double sine function one must choose r = 2 to substitute into the
expression. The multiple sine function for r = 2 can be written in terms of the double
gamma function by substituting into the general relation between gamma and sine functions
described in [202, 208, 20]:

S2(z,!) = �2(z,!)
�1�2(!1 + !2 � z,!), (12.2.13)

logS2(z,!) = � log�2(z,!) + log�2(!1 + !2 � z,!). (12.2.14)

This can be rearranged to obtain

log�2(z,!) =�
⇣⇡i
2!
B22(z,!) +

Z

R+i0

ezt

t(1� e!1t)(1� e!2t)
dt
⌘
+ log�2(!1 + !2 � z,!),

(12.2.15)

where we have finally replaced the logarithm in the double gamma function (12.2.5) with
an integral along the real axis avoiding the origin. Its contour is shown on Fig. 12.2.
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Example for deformed conifold

Now we look back to the expression (12.2.15) relating log�2(z,!) and log�2(!1 + !2 �
z,!). We can relate these expressions explicitly by substituting the parameters used in the
non-perturbative deformed conifold from (12.1.14), and remembering the inverse relation
(12.2.4). For this we let z = 1+ a

�
and !1 = !2 = 1. Also, we can use the expressions, from

[202, 20], for Brr(z,!). We look for

B22(z,!1,!2) =
z2

!1!2
� !1 + !1

!1!2
z +

!2
1 + !2

2 + 3!1!2

6!1!2
. (12.2.16)

Now we can substitute everything into the expression:
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(12.2.18)

Here another difference equation for the double gamma function has been derived, in terms of
an integral along the real axis. This can also be rewritten by expanding one of the log�2(1±
a

�
, 1, 1), as done in appendix part C, in equation (C.1.2). Therefore, the other gamma

function can now be expressed in terms of the integral which can then be interpreted as an
integral representation contained within the non-perturbative free energy of the deformed
conifold.

12.2.4 Concluding remarks

Here we have seen that the non-perturbative free energy for the deformed conifold contains
the Weyl denominator of the A1 root system so we can conjecture a relation between the
wall crossing from Weyl denominators for An type root systems and the jumping depending
on the ray one chooses for the integral in the Borel transform of the topological free energy.
As for the resolved conifold in [61], the spectrum and partition function of framed BPS
states originally described by Jafferis and Moore [37] is obtained in this way, hence giving a
different partition function in the different chambers. This jumping matches that obtained
from the Â1 part of the dyon counting in sec. 10.1, on one side of the affine wall.

There should therefore be a general relation for the wall crossing of BPS structures be-
tween the generating functions of Cheng and Verlinde [52, 53], describing the splitting of
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multi-centered black holes, the Stokes jumps in this section, and wall crossing for the re-
lated Harvey-Moore [43, 44] BPS algebras. In the deformed and resolved conifolds one can
also notice a pattern of the Borel transformed free energy containing a sum over A1 Weyl
denominator identities for the BPS states in the spectrum which is suggestive for further
generalisation. Another direction this research could take is to further match the wall cross-
ing for the framed BPS states of GMN [17, 18] at BPS walls to the stokes jumps associated
to other ADE type BPS structures.



13 | Summary

We can now summarise all the results developed in this thesis. BPS states and their con-
struction in string theory have been introduced. In sections 3.1.2, 4.3, and 5.4 the BPS
structures associated with the Â1 Lie algebra, including Seiberg-Witten theory and the D6-
D2-D0 bound states of type IIA string theory on the resolved conifold, were reviewed, as
well as those associated with Argyres-Douglas theories. The current known formulations of
the wall crossing phenomena that have been used to determine the number of BPS states
in every region of the moduli space and the location of the wall(s) of marginal stability, in
these theories, have been reviewed in this thesis.

This includes quantum dilogarithm identities in section 3.1.2 describing matching products of
operators on either side of the wall of marginal stability as well as quiver methods in chapter
4 that allow the determination of the BPS spectra on either side of the wall, including the
decay of quiver representations 4.2 into subrepresentations as well as the mutation method in
4.2.2. The wall crossing formulae that encode the changes in the BPS indices are reviewed
in chapter 5. They are used to explain the wall crossing for framed BPS states [17, 18]
of GMN which represent bound states to a large core and have wall crossing across Weyl
chamber boundaries known as BPS walls. The discussions have focused on the examples of
ADE type Argyres-Douglas theories introduced in section 2.1.2 with particular focus on the
examples of A1 and A2. This is because these are the simplest cases and can be used as
testing cases to study BPS structures.

In our project “Special geometry, quasi-modularity and attractor flow for BPS structures”
[62] described in chapters 7 and 8 we used the attractor flow methods developed in the
literature for example in [55, 36, 56] to determine the existence of BPS states based on
the conditions of the endpoints of the flow. We applied these methods to Argyres-Douglas
theories of type A1, A2 and Seiberg-Witten theory and we found that this indeed reproduces
the spectrum of BPS states in these theories if one uses the split attractor flow on the wall
and the branch cuts to determine where which BPS states exist. We find the jump from 2
to 3 BPS states in the A2 model and from 2 basis states to the full infinite Â1 spectrum in
Seiberg-Witten theory.

In sections 9.2 and 9.3 the black hole literature [40] for the derivation of the generating func-
tion of 1

4BPS dyons is reviewed and related to the Weyl denominator of the Borcherds-Kac-
Moody algebra. The wall crossing for the dyons is reviewed in chapter 10: the connections

176
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of this wall crossing to the Weyl denominator is explained in the work of Cheng and Verlinde
[53], via both the highest weights of the Verma modules and the jumps in the coefficients of
the Fourier series, which in the N = 4 examples represent degeneracies of black holes with
a particular electric and magnetic charge invariants.

In chapters 10-11, in the project “Generating functions for N = 2 BPS structures”, we used
this prescription for wall crossing in N = 4 to construct an analog counting, or generating
function, that describes N = 2 wall crossing, for example for the BPS structures that arise
from Seiberg-Witten and Argyres-Douglas theories.

At first, in chapter 10, we extracted the Weyl denominators for the A1 and Â1 Lie algebras
from that of the Borcherds-Kac-Moody Lie algebra, and in chapter 11 (using the existence
conditions from 7.1.1), we found that the wall crossing encoded in these subalgebras matches
that in N = 2 systems. For example, in section 11.3, we used the fact that the D6-D2-D0
brane system discussed by Jafferis and Moore [37] also has a chamber structure for the
framed BPS states corresponding to the root system of Â1. This means that the Weyl
denominator for Â1 describes this wall crossing. We then proceeded to look for an analog
counting function for other N = 2 BPS structures in Argyres-Douglas 11.5 and Seiberg-
Witten theory 11.4. Following the same principle as we did for the first Â1 example we
investigated the Weyl denominator, and the full Weyl character, and found that again the
highest weight (and also any Fourier series expansion) jumps depending on which chamber
one is in. The proposed Weyl denominator formula is more general and we therefore expect it
to encode the wall crossing for further ADE type Argyres-Douglas theories. If one considers
the framed halo BPS states in Gaiotto Moore Neitzke [17] one can match the wall crossing
with the chambers for these states if one writes the moduli in terms of the central charges
and a suitable phase. The walls of the framed halo BPS states then intersect on the wall of
marginal stability of the “vanilla” BPS states (of the original unframed theory), for which
the counts can then be reproduced. For example, the jump between the 2 basis states and
the full Â1 root system for Seiberg-Witten theory. We hereby also recovered the scattering
diagram for these examples, introduced by Bridgeland in [124].

Finally, in chapter 12, relations to topological string partition functions were reviewed. A
result by [61] was studied. This reproduced the framed BPS indices and the wall crossing for
the D6-D2-D0 system, using jumps at Stokes rays, in a Borel transform of the free energy. We
also determined that the Borel transformed free energy for the deformed conifold contains
the A1 Weyl denominator. From this one can conjecture that the wall crossing of more
general framed BPS states, in BPS structures of An type, can also be derived from jumping
at Stokes rays in topological string free energies.

Conclusions

The conclusion of this thesis is that the construction of the generating function, that counts
BPS bound states within a highest weight, generalises from N = 4 dyons to analogs in 4d
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N = 2 QFTs. This result is important as it suggests a general formulation for the wall
crossing in BPS structures with multiple bound states that have their existence conditions
given by Weyl chamber boundaries associated to a particular root system. It suggests that
for such a BPS structure there exists both a BPS algebra of the Harvey-Moore type [43, 44],
a generalised generating function of the form used in [40, 52, 53, 54], and a BPS count given
by highest weight modules in a particular chamber. The pattern of Weyl chambers matches
the Bridgeland scattering diagram [124] when one considers the additional wall of marginal
stability.

In some examples, the stokes jumps of the Borel transformed free energy also match this
wall crossing, giving a partition function. All of this together indicates that for such a
generalised BPS structure there exist 2 generating functions encoding the same wall crossing
with a relation to be determined. Dyon counting functions representing microstates have
been derived for N = 4 black holes, for example [39] and [40, 49, 48, 190, 52, 53, 54],
but are not known in general for N = 2 black holes. The analog generating functions
constructed in this thesis, as well as the work on attractor flow existence conditions, helps
further our understanding of N = 2 examples in the special cases of A1, Â1 and A2 Lie
algebras. However, with more research it is hoped that these results can in future be
generalised to more involved examples. Suitable cases could include further ADE type BPS
structures or D4-D2-D0 bound states. Another possible direction is to relate these wall
crossing phenomena to walls existing in topological string partition functions via the OSV
conjecture developed for N = 2 in [146, 36]. The N = 4 dyon counting function used in
this thesis from [40] has been related to a topological partition function in this way in [189].
Further work on this would involve factorising generating functions for new black holes to
the absolute value squared of a topological string partition function on the particular target
space used for the construction.

Therefore, by constructing a new generating function, this thesis has deepened our under-
standing of wall crossing in a class of BPS structures and developed a new way of encoding
the stability conditions of the BPS bound states in various examples of supersymmetric
QFTs, string theory and supergravity. This generating function has also provided a new
way of counting the BPS states in the different chambers existing within the moduli spaces
of the theories.



A | BPS states and central charges

Here the series expansions are given for the central charges used in the attractor flow in
chapters 7 and 8. The expansions are carried out around the singular points.

A.1 Expansion of central charges around singular points

The monodromies Mus can be read off from these expansions at +1 and �1 by collecting
the logarithmic terms . For each singular point us 2 B we let u ! +1 + v or u ! �1 + v
respectively before expanding in Mathematica. We separate out the terms that are a
prefactor of log(v).

A.1.1 Argyres-Douglas A2 realised on ⌃I
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(i) Expansions around +1:
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(ii) Expansions around �1:
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A.1.3 Seiberg-Witten SU(2) theory
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(ii) Expansions around �1:
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B | Â1 changes in representation

The generating function extracted for the Â1 root system in chapter 10 and generalised to
N = 2 analogs in chapter 11 encodes highest weight Verma modules.

B.1 Original generating function

Here we look at the changes in the modules in all the chambers of the Â1 Lie algebra.
First, we look at the change in the generating function itself including the square factor on
the whole function and the prefactors from the Weyl vector of the original Borcherds-Kac-
Moody algebra. We start just in front of the affine wall as the generating functions before
have already been discussed in sec. 10.4 for the N = 4 case.

At first, in the chamber just in front of the affine root the generating function takes the
form

f(k, l) =

I

�

d↵0(u)d�(u)e
�k,l(u) (B.1.1)

e↵0(u)+�(u)
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2(m�1)�(u)�2↵0(u)

Q1
m=1(1� e(m�1)�(u)�↵0(u))2

.

Now if we are allowed to cross the affine root, the generating function in the chamber just
on the other side of the affine root becomes

f(k, l) =

I

�

d↵0(u)d�(u)e
�k,l(u) (B.1.2)
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.

Now we can continue to cross the walls

f(k, l) =
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(B.1.3)
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,

until we are in the chamber where all the states exist
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Finally one can reabsorb the factors in the numerator into a new representation such that
one can take �̃k,l = �k,l +

P1
k,l,m=1[(2l� + 2↵0) + (2l�) + (2(m� 1)� � 2↵0] so that one can

define a new function at infinity where all roots exist as
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(B.1.5)

Now from this one can extend the diagram with Weyl chambers into the other half plane.
This is what is shown in Fig. 11.1. for the N = 2 analogs.

B.1.1 Changes in highest weight

Now we write the generating function back in terms of a highest weight. This highest weight
then shifts in all the different chambers in the moduli space. The original generating function
is

f(k, l) =
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which we write as
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(B.1.7)

In terms of the highest weight �. Now we see how the generating function changes as we
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cross k walls in one direction
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We can keep moving in this direction such that we let k ! 1. In this case, the generating
function becomes
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The new highest weight becomes: �0 = �+
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the affine wall then you get an infinite number of affine roots added to the highest weight
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One can continue to cross walls in this direction with the integer p decreasing
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Now the final highest weight becomes
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in the chamber where all the BPS states exist.
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B.2 A2 Weyl character changes in representation

The full list of basis changes and computations for the change in the highest weight (de-
scribed in sec. 11.5) of the Weyl character/denominator of SU(3) is shown here. This is
distinct in the different Weyl chambers and subsequently reveals which framed halo BPS
states exist within each chamber. We then have the 6 chambers with the different possible
combinations of BPS states existing.

B.2.1 Weyl denominator expansions

We look at the possible expansions of the Weyl denominator and find that we can write it
in terms of negative exponents after a suitable change of basis of positive roots. However,
we obtain a shift in the exponents in one of the roots which generates different coefficients.
This indicates a wall has been crossed. For clarity, we here write the inner product as
↵(u) = (↵, u):

Im[i(↵1, u)] > 0, Im[i(↵2, u)] < 0, Im[i(↵3, u)] > 0, (B.2.1)
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expression becomes � ((n+ 1)(↵0
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C | Integral representations of double

gamma function

C.1 Derivation of relation

Following from sec. 12.2.2 we will show a derivation of the alternative integral representation
of the double gamma function here - this relation can be derived by taking the log of the
gamma function written as

1

�1(z)
= ze�z

1Y

m=1

(1 +
z

m
)e�

z
m . (C.1.1)

Now proceeding with the derivation, we write out in full: z log�1(z) � logG(z + 1) =
�z log( 1

�1(z)
)� logG(z + 1). This becomes
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This equation can be rearranged so that

1X
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k
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2
� z log�1(z) + logG(z + 1).

The other stage of this proof (using the method in the book “Special Functions q-series and
Related Topics” [209]) involves integrating the log of the gamma function on an interval.
Here the interval [0, z] is used. This can then be related back to the equation (C.1.3) above

Z
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� z).

This can be further rearranged such that the difference equation can be written in terms of
the integral. This becomes
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2
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Finally, we use the known result for this integral in terms of the zeta function, given in [209]
Z
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1� z + log(2⇡)

2
+ ⇣ 0(�1, z)� ⇣ 0(�1). (C.1.6)

So therefore, one can substitute this into the previous equation to obtain the result

logG(z + 1) = z log�1(z) + ⇣ 0(�1, 0)� ⇣ 0(�1, z). (C.1.7)

C.2 Writing relation as an integral representation

Now we can proceed with the rest of the proof starting with the values of the derivatives of
the zeta functions. The zeta functions derivatives are given by Adamchik [206] in equation
(3) as:
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The value of log�1(z) is also known in terms of z this reads as
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This is also known as Binet’s second formula. Substituting this into the expression below

logG(z + 1) =z
⇣
(z � 1

2
) log(z)� z +

log(2⇡)

2
+ 2

Z 1

0

arctan(x
z
)

e2⇡x � 1
dx) + ⇣ 0(�1, 0)� (C.2.3)
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(
z2

2
log(z)� z2

4
� z

2
log(z) + 2z

Z 1

0

arctan(x
z
)

e2⇡x � 1
dx+

Z 1

0

x log(x2 + z2)

e2⇡x � 1
dx.
⌘
,

and then collecting the terms the expression for the G function:

logG(z + 1) =
z2

2
log(z)� 3

4
z2 + z

log(2⇡)

2
+ ⇣ 0(�1, 0) +

Z 1

0

x log(x2 + z2)

e2⇡x � 1
dx. (C.2.4)

This corresponds to the equation (20) in Adamchik [206]. This now relates the 2 possi-
ble integral representations of the second gamma function. This expression relating the 2
integrals is written below

1

2⇡i

Z

L̃

e�zt(log(�t) + �)

t(1� e�t)2
dt = log(�1(z))�

z2

2
log(z) +

3

4
z2 � z

log(2⇡)

2
(C.2.5)

� ⇣ 0(�1, 0)�
Z 1

0

x log(x2 + z2)

e2⇡x � 1
dx+ const.

Hence, the double gamma function is now written in terms of an integral along the real axis.
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