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Abstract

The crystallographic data processing is investigated with the goal of extracting more structural informa-
tion from serial crysallographic experiments. Systematic errors resulting from uncontrollable aspects in
the experimental setup were reduced in several places, but most significantly by modelling the expected
intensity of partially observed intensities using Gaussian basis functions to improve merging. These im-
provements are tied in with several applications, like phasing of continuous diffraction and drug screening
for combating SARS-CoV-2.

Zusammenfassung

Der gesamte kristallographische Datenverarbeitungsprozess wird untersucht, um mehr Information über
die Struktur von Makromolekülen aus den Experimenten ziehen zu können. Systematische Fehler, die ein
unvermeidbarer Aspekt der Experimente sind, können an mehreren Stellen reduziert werden, insbeson-
dere durch die Modellierung nur unvollständig messbarer Intensitäten in Beugungsmustern mittels Gauß-
scher Basisfunktionen. Projekte aus der Anwendung der strukturellen Kristallographie, wie Methoden zur
Phasierung und die gezielte Suche nach Virustatika für SARS-CoV-2, werden vorgestellt, in welchen die
Verbesserungen teils zum Zug kommen.

Relevant publications

The following publications in peer-reviewed journals have led to sections of this thesis:

• Section 6.9 is based on ‘Crystal Diffraction Prediction and Partiality estimation using Gaussian basis
functions’ [1]

• Section 9 is based on ‘Hash Tables with Pseudorandom Global Order’ [2]
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1. Introduction

Chemistry mostly investigates and characterizes ensembles of molecules and their interactions in bulk.
The reactivity of atoms is determined by their electronic structure, which is well known and can be derived
from basic physical laws in good accordance with experimental results [3]. The reactivity of molecules
and especially macromolecules however is determined also by the three dimensional arrangement of their
atoms, which is less well known and exponentially harder to derive. Experimental methods that are able
to resolve these structures therefore are invaluable, and there are only a few which are able to achieve
this with sufficient resolution. The same goes for reactions between molecules. Having insight into the
movement of structures during a reaction can lead to a much better understanding. Among the methods
that are able to resolve structures of macromolecules at an atomic level, crystallography is the most prolific,
but it is being challenged from two sides. With smaller molecules up to small proteins, where NMR is
more convenient and provides better insight, and with large macromolecules, where electron microscopy
has been successful. All three methods struggle with dynamics and structural diversity differently. This
thesis however is primarily concerned with improving the processing of diffraction data, especially from
crystallography.

There are fundamental limits of how precisely nanoscopic structures can be measured, because each
measurement is an interaction that changes the object, and observations are quantized. In X-Ray crystallo-
graphy the interaction results in radiation damage and the quantization leads to a statistical distribution of
photon counts. Rotational crystallography often gets to within less than a factor 2 of the limiting photon
counting statistic, but when rotating the sample is not possible, the number of photons required for a
given precision in the determined structure is a magnitude higher. It is not far-fetched to postulate that
this is due to not yet sufficiently understood systematic effects, that distort the measurement seemingly
randomly. Those effects then have to be marginalized experimentally, thereby making up the lack of un-
derstanding with more random observations. This work is the search for the largest of these errors and a
proposed solution. Almost every step of the way from diffraction pattern to molecular structure estimate
was scrutinized looking for improvements.

The investigation was prompted by the initial success in clustering of crystallographic data to resolve
indexing ambiguities [4] showing that it is possible to resolve structural differences between individual
diffraction snapshots when they are very large, but not sufficient to resolve structural variation between
crystals of the same kind. However, the same algorithm was able to resolve relatively much smaller differ-
ences between diffraction datasets involving rotation [5, 6]. The hope is that when enough of these errors
can be corrected, finding structural variation between single crystals will become possible.



2. Synopsis

As data processing is essentially statistical inference from experimental results, section 3 will begin more
theoretically with an introduction on the statistical framework used later on. Most of this section can be
found in a good textbook like Kendall [7] and Gelman et al. [8], it is meant as a summary and refresher, but
the derivation of the optimal weights for a weighted median in section 3.7.1 is novel. Fourier transforms
are introduced in section 4 because they are one of the main computational tool used in this work be-
sides function optimization. The fundamental and well-known physical nature of diffraction experiments
is derived in section 5 fromMaxwell’s equation, briefly, to enumerate the important limitations of the com-
monly used approximate results, which serve as the basis for the Gaussian partiality model in section 6.9.
Modelling the partiality using Gaussian basis functions is the main contribution of this work to serial crys-
tallography, which is introduced in section 6.8 as a method of structural crystallography (section 6). Minor
contributions are an investigation of different merging algorithms in section 6.6, a small adjustment to the
Cromer-Mann coefficients to make them easier to work with and more physically sensible in section 6.7,
and section 6.10 is an example for the application of structural crystallography, where structural know-
ledge enabled us to find inhibitors to the SARS-CoV-2 Mpro more rationally. Lastly section 9 introduces a
memory efficient hash table that was developed during this work to accelerate detector calibration and the
appendix contains the tables for coefficients similar to the Cromer-Mann coefficients and derivations that
are too verbose.
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3. Statistics

Statistics is the discipline that describes populations and distributions based on data. Especially relevant
in the following will be distributions arising from the quantization of light and from other measurement
errors. Because quantum effects and measurement errors are hardly avoidable in any scientific experiment,
we first need to understand their distributions better, to then be able to infer more abstract properties from
noisy data and make the most out of the experimental results we can obtain.

The following is mostly an introduction to statistics as can be found in many introductory books. Sec-
tion 3.7.1, the optimal weights for the weighted median, is novel and section 3.8 on cuts and projetctions
of Gaussian probability densities is unique in its presentation and and generality.

3.1. Probability Distributions

A probability distribution is the mathematical description of the probability of outcomes. A probability
can either mean the asymptotic frequency of a given outcome (the frequentist perspective) or encode the
belief about the asymptotic frequency of the outcome given limited knowledge (the Bayesian perspective)
[7, Chap. 7]. A probability distribution can be expressed by its probability density, a function that, when
integrated over a range [a, b] of outcomes gives the probability for any one of these outcomes to occur [7,
Chap.1]. Random variables are denoted with capital letters and the corresponding realizations with lower
case letters. In this notation the probability P of the random variable X being part of the range [a, b] and
the probability density fX are related by the following integral:

P (a ≤ X ≤ b) =
∫ b

a

fX (x) dx

Or equivalently in terms of the cumulative distribution function FX , which is the integral of the probability
density, when the random variable is continuous, or the partial sum, when the random variable is discrete
[7, Chap. 5].

FX (a) = P (X ≤ a)

P (a < X ≤ b) = FX (b)− FX (a)

The inverse cumulative distribution function is the quantile function [7, Chap. 2]. It returns the limit a for
which samples from the distribution are less than or equal with the given probability P.

Themean value µ or expected value of the random variableX is the limit of the average of more and more
random samples [7, Chap. 2]. Given a probability density fX(x) it can be calculated with the following
integral:

E (X) =

∫
x fX(x) dx (1)

While the mean value µ depends on the location of the density, the central moments are a way to charac-
terize the shape of probability distributions [7, Chap. 3]. Central moments µn are defined as the expected

3



value of powers of deviations of random variables from the mean:

µn ≡ E [(X − E (X))
n
] (2)

The zeroth central moment is 1. The first central moment is 0, if it exists. The second central moment, if it
exists, is the variance, its square root is the standard deviation and commonly abbreviated with σ.

Var (X) ≡ E
[
(X − E (X))

2
]

(3)

The median value µ̃ is the value for which the cumulative distribution reaches 1/2, therefore the value of
the quantile function at 1/2:

µ̃ = F−1
X

(
1

2

)
(4)

The mode is the value of x with the highest probability density [7, Chap. 2].
The density of a probability distribution for values far from the mean is called the tail of the distribution
[7, Chap. 1]. Distributions that asymptotically have a higher density than the exponential distribution, are
said to be heavy-tailed [9]. Super-heavy tailed distributions have a decay asymptotically slower than xc

for any power c smaller than negative one [10]. If c were exactly negative one it would not be a proper
probability distribution any more, because the integral of x−1 is not finite.
The covariance is the variance of two or more random variables that can be inferred from the variance of
the other. The covariance between the random variables X and Y is given by the following expectation:

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] (5)

3.1.1. Functions of Random Variables

The application of a function to a random variable gives another random variable. Let Y = g (X), then
the cumulative distribution function of Y is FY (y) = P (g (X) ≤ y). If the function g (y) is monotonically
increasing, it can be inverted and the cumulative distribution function of Y is given by:

P (g (X) ≤ y) = FX
(
g−1
n (y)

)
if g (y) increasing (6)

If the function g (y) is monotonically decreasing, it can be inverted and the cumulative distribution function
of Y is given by:

P (g (X) ≤ y) = 1− FX
(
g−1
n (y)

)
if g (y) decreasing (7)

If the function is not bijective but piecewise monotonic, the inversion is ambiguous and the distribution
function needs to be composed of sums of the different branches of the inverse function over the monotonic
(and therefore unambiguous) sections [11].

The distribution of functions of several random variables can be derived by rearranging the function
to only depend on one variable, which can then be marginalized [12]. In general this can be hard to do,
but many functions can be assembled from products and sums. The exact distribution of the sum of two
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random variables X and Y can be calculated in the following manner:

f(x, y) = x+ y

f−1(y) = f(x, y)− x

f(x, y) = f(x, f−1(y))

pZ(z = x+ y) =

∫ ∞

∞
pXY (x, z − x)dx

If X and Y are independent, then pXY (x, y) = pX(x)pY (y) and this integral is the convolution of the
densities pX and pY :

pZ(z = x+ y) =

∫ ∞

∞
pX(x)pY (z − x)dx (8)

Similarly, ifZ = XY is the product of two independent random variables, then the probability distribution
pZ(z) can be computed with the following integral:

pZ(z = xy) =

∫ ∞

∞
pX(x)pY (

z

x
)
1

|x|
dx (9)

Because this procedure can get complicated quickly, even just for sums and products, one can get an ap-
proximation by computing just the mean and variance of functions of random variables instead of the
whole function. With help of the principle of maximum entropy (section 3.1.2) and using the same reason-
ing as in the central limit theorem in section 3.5, knowing just the mean and the variance can give a good
approximation of a probability distribution in most cases, so long they are defined and finite.

Just using the following rules for addition and multiplication, the mean and variance of distribution of
many functions can be derived, just like the functions themselves can often be composed from addition
and multiplication and their inverses alone [13, Chap. 4]. The inverse of addition can be composed by an
addition and a multiplication with negative one, but there is no simple relation between the mean and
variance of a random variable and its multiplicative inverse. If they exist, these properties can be derived
using equations 6 and 7 in most cases.

E(X + Y ) = E(X) + E(Y ) (10)

Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ) (11)

E(XY ) = E(X)E(Y ) + Cov(X,Y ) (12)

Var(XY ) = Var(X)Var(Y ) + Var(X)(E(Y ))2 + Var(Y )(E(X))2 (13)

Even more cases can be covered by recognizing situations where first-order approximations are sufficient
to estimate the error propagation [13, Chap. 4]. This is the case when the errors lie in an approximately
linear range of the function. If this is the case, then the expected value a function of a random variable is
approximately equal to the function applied to the expected value of the random variable and the standard
deviation is approximated by the first derivative evaluated at the expected value of the random variable
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times the standard deviation of the random variable:

E(f(X)) ≈ f(E(X)) (14)

Var(f(X)) ≈
(
df
dX

(E(X))

)2

Var (X) (15)

Now this still does not cover all functions of random variables and in some cases tedious integrals cannot
be avoided, but all techniques that will be used are covered.

3.1.2. Maximum Entropy and Minimum Information

The principle of maximum entropy states that, given some constraints or prior knowledge, the prior prob-
ability distribution, representing nothing more than this state of knowledge, is the distribution with the
maximum entropy [14]. The probability distribution with maximum entropy is also the one that is the most
probable, which alignswith theminimumdescription length principle, see section 3.4. For this reasonmany
common probability distributions are maximum entropy distributions given some constraints. Entropy is a
measure of the average information of all outcomes. The apparent paradox of maximum entropy represent-
ingminimum information in this context while usually representingmaximum information can be resolved
by realizing that this is due to a difference in the point of view [11]. Samples from a high entropy distri-
bution are ‘surprising’, highly informative and equivalently need a lot of data to encode them, precisely
because the knowledge about their distribution is low. The entropy H of a distribution with probability
p (x) is the expected value of the negative logarithm of the probability:

H (p) = −
∑

p (x) log (p (x)) (16)

For continuous distributions, only relative entropy can be calculated, which is defined as:

Hc (p) = −
∫

p (x) log (p (x)) (17)

Which is just the Kullback Leibler divergence for a (possibly improper) uniform prior and with the oppos-
ite sign [15]. Therefore maximizing the entropy amounts to minimizing the Kullback Leibler divergence.
Table 1 summarizes common probability distributions and the additional constraints under which they can
be shown to be of maximum entropy. The least informative prior distribution is the distribution for which
the expected information gained per sample is minimized. Sometimes however the least informative prior
depends on how the outcomes are measured, which is often not desirable. In this case Jeffreys [16] suggests
to use the prior that minimizes the information under the constraint that it does not change under repara-
metrization. For a probability density p(x) and given a possible smooth and continuous reparametrization
f(x), this is constraint is captured by the following equation:

pX (x) = p(Y =f(x)) (f (x))
∣∣∣∣df (x)dx

∣∣∣∣ (18)

However, the debate is not settled on the right prior distributions in certain cases, especially when they are
discrete. An example for this problem is finding an objective prior for positive integers, see section 3.4.1.

Many commonly encountered probability distributions can be derived from the principle of maximum
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entropy. In fact most of the relevant distribution in this work are either maximum entropy distributions
themselves or can be derived from maximum entropy distributions. Some of the following distributions
are described more readily using the Heaviside step function, which is defined as:

θ (x) ≡


0 if x < 0

1
2 if x = 0

1 if x > 0

(19)

The value at x = 0 is taken to be either 1/2, or 0, 1, or both. The exact choice is inconsequential for
everything that follows and so 1/2 was chosen for the symmetry.

The fundamental constraint, that the probability density must not be negative and must integrate to 1,
is not listed, because this is a constraint for all proper probability distributions in general.
The uniform distribution is the equal distribution of random variables within a range [a, b].
The exponential distribution is the distribution of positive random variables with a finite average, which
is parametrized by λ−1 [17, equation 19.1].
The Laplace distribution or double exponential distribution is the maximum entropy distribution for ran-
dom variables with a given expected absolute deviation to a mean value µ. The expected absolute deviation
is parametrized with b [18, equation 24.1].
The Poisson distribution is a discrete distribution with conditions analogous to the exponential distribu-
tion. But for large values of λ−1 it approaches a Gaussian distribution, which cannot be reached fully
because the Gaussian distribution is continuous [7, Chap. 5].
The Gaussian distribution is encountered so frequently that it is also known as the normal distribution. Its
instance with zero mean and unit variance is the standard normal distribution. It is the maximum entropy
distribution for continuous values with finite mean µ and variance σ2 [7, Chap. 5]. The reason why it is
such a good approximation in so many cases is the central limit theorem, see section 3.5.

distribution probability density constraints

uniform θ (x− a) θ (b− x)
b− a

x ∈ R | a ≤ x ≤ b

exponential λ exp (−λx) (x ∈ R |x ≥ 0) ∧
(
E (X) = λ−1

)
Laplace 1

2b
exp

(
−|x− µ|

b

)
(x ∈ R) ∧ (E (|x− µ|) = b)

Poisson λk exp(−λ)
k!

(k ∈ N | k ≥ 0) ∧
(
E (K) = λ−1

)
Gaussian

exp
(
− 1

2 (x− µ)
2
σ−2

)
√
2πσ2

(x ∈ R) ∧ (E (x) = µ) ∧
(
Var (x) = σ2

)
Table 1: Common probability distributions that can be derived by maximizing the entropy under simple

constraints.
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3.1.3. Other common probability distributions

In the previous section some common distributions were introduced with the maximum entropy principle.
Most probability distributions are maximum entropy distributions in some way, but the constraints under
which they are, are often not practical. These distributions arise more naturally from different assumptions,
for example by inverting probability distributions via Bayes theorem or by combining random variables of
other distributions.

TheDirac delta distribution is themost trivial distribution, describing absolute certainty that the random
variable X can only be equal to x0 [19, Chap. III]. It is defined as the function that integrates to 1 over all
sets containing x0 and assumes the value 0 everywhere but at x = x0. Because this definition is difficult
to express mathematically without infinite limits, the following definition uses the Heaviside step function
instead:

δ (x− x0) ≡
dθ (x− x0)

dx
(20)

While there is a condition under which the Cauchy distribution is the maximum entropy distribution1,
it is more typically derived from other distributions or other principles. It arises from the ratio of two
normal random variables or as the Fourier transform (see section 4) of exponential or doubly exponential
distributions. The probability density of the Cauchy distribution is [17, equation 16.1]:

p (x, x0, γ) =
1

πγ

(
1 +

(
x− x0
γ

)2
) (21)

The mean is undefined and the variance is infinite. Mode and median are equal to x0 and the shape para-
meter γ is equal to the expected median of absolute deviations of samples to x0 [17, Chap. 16].

Another distribution that arises from composing normal variables is the χ2-distribution. It is the sum
of squares of k independent and identically distributed random variables following a standard normal dis-
tribution2 [7, Chap.12]. Its probability density is given by:

p (x, k) =
xk/2−1 exp

(
−x

2

)
2k/2Γ

(
k
2

) (22)

Because the mean of each of the squared standard normal variables in the sum is 1, the mean of the sum
of k variables is k (equation 10). And similarly, because the variance of each standard normal variable is
1, the variance of the square is 2, because it is the product of two perfectly correlated random variables
(equation 13). The variance of χ2-distributed variables is the variance of the sum of k independent random
variables each with variance 2, which is 2k (equation 11).

The χ2-distribution, like the exponential distribution is a special case of the Gamma-distribution. It can
be derived as the distribution for the sum of α exponential random variables with the rate parameter β.

1E
[
log
(
1 + (x− x0)

2
)]

= 2 log
(
1 +

√
γ
)

2But it can also be seen as a maximum entropy distribution with the following two constraints: E (X) = k and E (log (X)) =
ψ (k/2) + log (2)
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The probability density is given by [17, equation 17.1]:

p (x, α, β) = exp (α log (β) + (α− 1) log (x)− βx)
Γ (α)

(23)

The mean is α/β and the variance α/β2. It is the conjugate for the Poisson distribution, see sections 6.6 and
3.3, and the conjugate for the exponential distribution also [20].

3.2. Maximum Likelihood Estimation

Given a probabilistic model, a probability distribution that depends on parameters, we know what out-
comes to expect. But if we don’t know the parameters, because they are hidden, i.e. not directly available
to us, one straightforward way to determine them is maximum likelihood estimation [7, Chap. 17]. The
parameters that maximize the likelihood function are the maximum likelihood estimate and represent the
most likely explanation for the observed data given amodel and that every value of the parameter is equally
likely. The Likelihood function is the probability density of the random variable viewed as a function of
the parameter. With respect to other parameters than the random variable, a probability density is not a
probability density any more, at least in general, and it might not even be integrable. Joint likelihoods of
uncorrelated observations are computed by multiplying them like probabilities.

When expressed in terms of parameters other than the random variable, this likelihood function is not
necessarily a probability density and might not even be integrable.

Because the logarithm is monotonic for positive real numbers, and likelihoods for observed data, like
probability densities, can only be positive, the minimum of the negative logarithm of the likelihood target
is equal to the maximum of the likelihood target log (L).

argmax
θ

(
N∏
i

L (Xi|θ)

)
= argmin

θ

(
−

N∑
i

log (L (Xi|θ))

)

The (negative) log-likelihood has two major computational advantages, firstly it is numerically more
stable, because additions are computationally more stable than multiplications, and secondly it transforms
Gaussian-like likelihood functions into quadratic or approximately quadratic equations, which are much
easier to optimize for. Additionally, for Gaussian-like likelihoods, the second order derivative (the Hessian
matrix ) of the negative log-likelihood conveniently is an approximation for the inverse covariance of the
parameters. Here the Gaussian distribution is generalized to higher dimensions, see section 3.8 for details,
hence the vectorial parameters ⇀

µ and the parameter matrix Σ.

∂2

∂
⇀
µ2

(
− log

(
exp

(
−1

2

(
(
⇀
x− ⇀

µ)
⊤
Σ−1 (

⇀
x− ⇀

µ) + log (|2πΣ|)
))))

= Σ−1

There are however several pitfalls with this method. The maximum likelihood estimate is often biased, that
is systematically lower or higher than the true parameters, because the mode and mean don’t necessarily
align [7, Chap. 17]. Also it has no sound way to select between different models, because often the model
with more parameters can give a better fit to the data, and therefore a higher likelihood, but this does not
necessarily mean that simply adding parameters leads to a better model. This is known as overfitting and
can be tested for by splitting data into two sets, one to fit the data to and another to test how good the
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model works on new data [8, Chap. 7]. So long the constraint ratio, the number of data points in relation
to the number of parameters, is high, these problems are not that severe. If we know in advance that some
values are more likely for the parameters, or if the distribution of parameters is relevant, or non Gaussian,
and not narrow, a better way to infer hidden parameters from observations is using Bayes theorem in the
following section.

3.3. Bayes Theorem

Bayes theorem relates the probability of an outcome A given another outcome B to the probability of B
given A [8, Chap. 1]:

P(A|B) =
P(B|A)P(A)

P(B)
(24)

While this equation is trivially true, it takes on an specific meaning in Bayesian statistics. The fact that
it is true can be shown by rearranging the two alternative ways of expressing the probability of A and B
happening simultaneously (∧ is the logical and operator).

P(A ∧B) = P(A)P (A|B)

P(A ∧B) = P(B)P(B|A)

→ P(A|B) =
P (B)P(B|A)

P(A)

Equation 24 is Bayes theorem and it can be used to update beliefs from observations and therefore can
almost serve as the basis of experimental science itself. It gives a clear method of inferring knowledge
about parameters or models from knowledge about outcomes and vice versa. Given a probability density
pX(x|a) that depends on a parameter a, and an outcomeX , Bayes theorem allows us to view the parameter
itself as a random variable. The probability density of the random variable A given the observationX = y

can then be inferred with [8, equation 1.1]:

pA(a|X = y) =
pX(y|a)pA(a)

pX(y)
=

pX(y|a)pA(a)∫
pX(o|a)pA(a)da

(25)

This is the posterior distribution of A, in a way it turns the likelihood function pX(y|a) into a proper
probability distribution, thereby forming a conjugate distribution to the first distribution as a function of
the random variableX . pA(a) and pX(x) are the prior distributions of A andX respectively, they contain
the beliefs prior to the observation. The new assumption about the distribution ofX given the observation
can be formed by integrating over all possible values of the parameter weighted by its posterior probability,
this is the marginalization integral [8, equation 1.4]:

pX(x) =

∫
pA(a|X = y)pX(x|a)da (26)

A point of contention often are the probabilities P(A) and P(B), and how they are determined in the
absence of prior information. This can be resolved by choosing the prior probability distributions that
represent the absolute minimum of information as measured by the Kullback-Leibler divergence DKL or
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relative entropy:

DKL (P || Q) =
∫
R
P(x) log

(
P(x)
Q(x)

)
dx (27)

The Kullback Leibler Divergence DKL [15] is an asymmetric measure for the difference between a probab-
ility distribution and a reference probability distribution. It quantifies the information gained in a Bayesian
update from a prior distribution q(x) to a posterior distribution by the likelihood function p(x). Equival-
ently it quantifies the additional information required when encoding values of the distribution in p(x)
when assuming they are distributed like q(x). Priors that minimize the Kullback Leibler Divergence are
known asminimum-information priors andmaximum-entropy distributions, see section 3.1.2 [8, Chap. 2.8].
But the major problem of Bayesian induction is the complexity of expressions arising after recursively ap-
plying Bayes theorem multiple times or when the underlying relationships are more complicated. In that
case full Bayesian inference often becomes infeasible. Approximate methods have been developed and the
principle of minimum description length in section 3.4 and maximum a posterior methods just determine
the most probable parameters, which is a direct improvement over the principle of maximum likelihood of
the previous section.

3.4. Maximum a Posterior and Minimum Description Length Principle

When full Bayesian inference is too tedious, and one still might want to choose the best set of paramet-
ers and model, a good compromise and improvement over the principle of maximum likelihood, is the
maximum a posterior target and the principle of minimum description length. The principle of minimum
description length stipulates that the model, which leads to the shortest description of the observed data
including a description of the model itself, in any sufficiently complex language of description, is the best
model, because it is the most probable interpretation of the data [21]. This is a generalization of Oc-
cam’s razor. No further specification of this description language is necessary, because the model with
the shortest description in one language is almost identical to the model with the shortest description in
some other language, given that both are Turing complete. Any programming language therefore can serve
as a stand-in.

Because the length of a sequence is inversely proportional to its probability, the two concepts are equival-
ent. Bayes principle of multiplying priors and likelihood functions then corresponds to the code length for
the model plus the code length for the observed data given the model, respectively. Finding the shortest
sequence therefore amounts to finding the model and parameters with the highest posterior probability
[21]. Despite the redundancy between these two concepts, the minimum description length principle can
be a mental crutch when the other concept seems to fail.

3.4.1. A Prior for Natural Numbers?

Discrete distributions often are uniquely challenging from a Bayesian perspective, because discrete out-
comes seem to only justify uniform prior distributions according to the principle of indifference. A uni-
form prior distribution cannot be proper, because its sum would diverge. Intuitively we might suspect that
smaller numbers are more frequent than larger numbers, but by howmuch? A prior distribution for natural
numbers may seem like an outlandish idea, but it is actually useful when modelling outlier distributions.
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Outliers, by definition, are those values about which we know the least, and outliers are never the main
focus of the analyis. From this it follows that the distribution that must be assumed for outliers is precisely
the minimum information prior. Simply not modelling their distribution and ignoring outliers would mean
that they will have an outsized effect on the location of the maximum for most likelihood functions. Thus,
the following derivation will be used in section 6.9.8 to make a maximum-likelihood approach more robust,
by allowing for otherwise unforseen detector readings.

According to the principles laid out by Jeffreys [22, Chap. 4.8, equation 1], the prior distribution for
positive integers is proportional to:

P(n|H) ∝ n−1 +O
(
n−2

)
(28)

Without knowing what is behind the term O(n−2), this is still not a proper prior distribution, but this
does not have to be a problem, because it is still σ-finite3 and therefore perfectly fine for Bayesian infer-
ence[23]. However, if we want a proper prior distribution for natural numbers we might look to different
concepts, like the minimum description length principle, because finite encoding guarantees densities with
finite integrals. To encode a natural number in any positional numeral system with base larger than one
takes a logarithmic amount of digits at a minimum, implying that the universal prior probability of a nat-
ural number can be at most 1/n. In addition to the number itself, the code needs to encode the length of
the code, with length proportional to ⌈log(n)⌉ and so on recursively until the number to encode is less
than one. There are so-called universal codes based on this concept, and they imply a probability density
approximately and proportional to:

u(x) =


u(log(x))

x
if x > 1

1 otherwise

This is the argument laid out by Rissanen [24], but instead based on binary logarithms. The original defin-
ition is as follows:

log∗2(x) =
{

log2(x) + log∗2 (log2(x)) if x > 1

0 otherwise

u(x) = 2− log∗2(x)

However, this distribution is still not normalized and it would be preferable if it were smooth. A smoother
version can be derived with analytic continuation:

u (x) =


u (log2 (x))

x
if x > 1

0.29

[
1−

(
x− 1

2

)2 − 1
4

1 + 1/ log (2)

]
otherwise

(29)

But we need to remember that this is still just an approximation to something that might not even exist,
because it is not known if all objective priors need to be proper priors.
2Big-O denotes the asymptotic behavior of a function for large inputs. O(f(x)) is the class of functions that are bounded by a

constant multiple of f(x) for all possible inputs.
3Every integral over any subset is finite.
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3.5. Sample Mean and Variance

The mean of a distribution is the first moment of the distribution. The sample mean is an estimator for the
mean from samples, essentially the Monte-Carlo integral equivalent to the defining integral of the expected
value in equation 1 [25, Chap. 17]. Estimators are not derived from a Bayesian framework, but like the
maximum a posterior method (section 3.4) they can be a good approximation for parameter estimation. In
analogy to the sample mean, the variance is the second central moment of the distribution and the sample
variance is an estimator of the variance of the distribution based on the average squared deviations of the
samples to the sample mean µS :

µs =

∑N
i=1 xi
N

(30)

σ2
s ≈

∑N
i=1 (µs − xi)2

N

This estimator for the variance is too low on average however, because the sample mean used in the formula
is only an estimate and biased towards the sample. Bessel’s correction term N

N−1 is used to correct this
bias due to the one degree of freedom that is taken up by the estimate of the mean. Using this correction,
an unbiased estimate for the sample variance can be formed [25, equation 17.10]:

σ2
s ≈

∑N
i=1 (xi − µs)

2

N − 1
(31)

The central limit theorem states that sums of independent random variables with finite variance approach a
Gaussian distribution with the variance given by the sum of individual variances. Accordingly, the average
of several random variables with finite variance also approaches a Gaussian distribution [7, Chap. 7.32].
Assuming the sum in the nominator of the fraction in equation 30 contains independent samples, their
variances add linearly. The division of the sum by the sample size corresponds to a reduction of the variance
by a factor of one over the sample size squared. Therefore the factor N cancels out and the estimate of the
variance of the average is:

σ2
µs
≈
∑N

i=1 (xi − µs)
2

N (N − 1)
(32)

For non-equal samples the sample mean and sample variance can be generalized to weighted mean and
weighted sample variance [26, Chap. 4]. The weighted mean and the weighted sample variance are defined
as follows:

wµs =

∑N
i=1 wixi∑N
i=1 wi

(33)

wσ
2
s ≈

∑N
i=1 wi (xi − wµs)

2∑N
i=1 wi

(34)

The weighted mean is employed when some samples are more important, more reliable, encompass more
samples of the same kind, or are more precise, all these aspects can be expressed as different weights for
the samples. If the samples are independent of each other, the variance of the weighted mean can be seen
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as the sum of variances of the weighted samples normalized by the sum of weights:

σ2
wµs

=

∑N
i=1 w

2
i σ

2
xi(∑N

i=1 wi

)2 (35)

An estimator with lower variance is more precise, and therefore we seek to minimize the variance in most
cases. This is a simple optimization problemwith thewell-known result that weights inversely proportional
to the variance of the samples minimize the variance of the weighted mean. It is no coincidence that the
weighted mean and variance calculation is analogous to multiplying Gaussian distributions and the result
is a distribution which represents the overlap between the individual distributions [26, Chap. 4]. This result
is the main motivation behind most applications of the weighted mean. If the weights are exactly reciprocal
to the variance of the samples, the variance of the weighted mean is exactly the reciprocal of the sum of
weights:

(
wi =

1

σ2
xi

)
→

(
σ2

wµs
=

1∑N
i=1 wi

)
(36)

If the weights are not exactly reciprocal to the variance of the samples or have some other meaning, estim-
ating the variance of the mean gets more complicated. Still there are some estimators worth noting, which
will be introduced in the following.

When the weights are observation frequencies, the variance estimate of the weighted mean can be de-
rived from the variance estimate of the unweighted mean in equation 32.

(wi = frequencies)→

σ2
wµs
≈

(∑N
i=1 wi (xi − wµs)

2
)

(∑N
i=1 wi

)2
−
(∑N

i=1 wi

)
 (37)

The weights only need to be inversely proportional to the variance of the samples in order to minimize
the variance of the weighted mean. If they are proportional, a maximum likelihood approach can yield
an estimate for the proportionality constant. An easier way of estimating it is to compare the observed
variance with the value that should be proportional. The sum of weights, which is inversely proportional
to the variance times the squared differences between the samples and the mean will be distributed like
a Chi-squared distribution. The exact distribution is of no further relevance, but the expected value of
this distribution is the proportionality constant. An estimate for the variance of the weighted mean with
weights inversely proportional to the variance can be found by cancelling out the proportionality constant
from the sum of weights by dividing it by said proportionality constant. The estimate will also be applicable
for frequency weights (proportional to the observation frequencies), because observation frequencies are
inversely proportional to the variance. With Bessel’s correction this leads us to a very similar expression
to equation 37.

σ2
wµs
≈

(∑N
i=1 wi (xi − wµs)

2
)

(∑N
i=1 wi

)
(N − 1)

(38)

However like that, this estimate can be biased and too low, because the uneven weights effectively decrease
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the sample size and the proportionality constant constitutes another degree of freedom. The effective
sample size of the weighted mean can be estimated using the ratio between the square of the sum of
weights and the sum of squared weights according to Kish [27, Chap. 8.2] and it can be used analogously
to the sample size also in Bessel’s correction term to correct the bias in the weighted sample variance:

Neff =

(∑N
i=1 wi

)2
(∑N

i=1 w
2
i

) (39)

wσ
2
s ≈

Neff

Neff − 1

∑N
i=1 wi (xi − wµs)

2∑N
i=1 wi

(40)

The effective sample size is equal to the sample size when all weights are equal and smaller when they are
uneven. This estimate is valid for all of the following cases where the true sample size of the weighted
average is unknown, independent of the meaning of the weights. From the weighted sample variance and
the effective sample size the variance of the weighted mean can then be estimated as follows [26, equation
4.23]:

(wi ∝ frequencies)(
wi ∝ σ−2

xi

) →

σ2
wµs
≈

(∑N
i=1 wi (xi − wµs)

2
)(∑N

i=1 w
2
i

)
(∑N

i=1 wi

)((∑N
i=1 wi

)2
−
(∑N

i=1 w
2
i

))
 (41)

When the weights are independent of the variance of the samples, and all samples are identically distrib-
uted, the variance of the weighted mean can be estimated from the unweighted sample variance and the
effective sample size. This estimator has very limited application, because the unweighted average would
be a better estimate for the mean in this case. This also explains why the unweighted mean appears in this
estimate:

σ2
wµs
≈

(∑N
i=1 w

2
i

)
(∑N

i=1 wi

)2
(∑N

i=1 (xi − µs)
2
)

N − 1
(42)

Endlich et al. [28] referencing Kish [27] estimate the variance of the weighted mean similarly to equa-
tion 41 but instead from the square weighted sample variance. The sum of square weighted deviations is
not immediately obvious in Endlich et al. [28] and Gatz and Smith [29], but it can be derived by symbolic
simplification. Then replacing the sample size with the effective sample size we get this estimator:

σ2
wµs
≈

∑N
i=1 w

2
i (xi − wµs)

2(∑N
i=1 wi

)2
−
(∑N

i=1 w
2
i

) (43)

This estimator was not derived from inverse variance weights, but from weights that are proportional to
the sampling probability. However, as can be seen in figure 1, it performs well in this case too. All estimates
are identical when all samples are weighted equally, i.e. all weights are the same. The higher the variance
of the weights, the more the different estimates deviate from each other. The expected worst case therefore
is that the weights are derived from inverse variance estimates when the variance estimates themselves
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(a) inverse variance weights (inv. exp.)

 0.01

 0.1

 1

 10

 10  100  1000

m
ed

ia
n 

ra
tio

 o
f v

ar
ia

nc
e 

to
 e

st
im

at
e

number of samples

(unweighted variance)/(eff. N-1)
(weighted variance)/(N-1)

(weighted variance)/(eff. N-1)
(square weighted variance)/(eff. N-1)

(b) Random weights (inv. exp.)
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(c) inverse variance weights (exponential)
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(d) Random weights (exponential)

Figure 1: Comparison of the different variance estimators using the median ratio of squared deviation to
variance estimate in 255 numerical experiments. In figure (a) the samples have exponentially
distributed variance and the weights are set as inversely proportional. In figure (b) the samples
have unit variance, but the weights are kept the same as for figure (a), that is they are distributed
as inversely exponential. Figure (c) and (d) have exponentially distributed weights, in (c) the
variances are set accordingly and in (d) the variance of the samples is kept constant. Ideally the
median ratio of estimated variance to actual variance would be close to

(√
2 erf−1 (1/2)

)2 ≈ 0.45
(indicated with the black dotted line), but when the assumptions about the weights are not met,
the estimates can deviate significantly. As can be seen, the estimators are sensitive to the nature
of the weights.
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are exponentially distributed, because the exponential distribution is the minimum entropy distribution
for a positive variable with finite mean. The inverse exponential distribution leads to much more disparate
weights and worse estimates from all estimators compared to when the weights themselves are distributed
exponentially. Four numerical experiments are shown in figure 1. Figures (a) and (b) show the expected
worst case. In (a) the weights are inversely proportional to the actual variance of the samples and in (b)
the samples have a fixed variance, but the weights are still distributed in the same way as in the first case.
Figures (c) and (d) show more well-behaved (and more representative for crystallographic data) examples
where the weights follow an exponential distribution, again once in agreement with the actual variance
of the samples and once independent. There is no one formula that directly and accurately estimates the
variance of the weighted mean for arbitrary weights, but the estimator using the sum of square weighted
squared deviations (equation 43) gives the best results in most circumstances. And none of the formulae
estimate the variance nearly as well as the sample variance estimates the variance of the equally weighted
mean. One potential solution are bootstrapping methods [29], based upon subsampling and computing
the variance between the samples, if there are enough samples to subsample different subsets. Preferably
the variance of the individual samples can be understood better or possibly modelled. More meaningful
weights would not only improve the variance estimate using equation 36, but also the estimate of the mean.

For the computation of the weighted mean, the weighted sample variance and the square weighted
sample variance a more numerically stable way is preferred over the literal computation of the previous
forumlae. This way also allows incremental computation in a single pass. For each new sample the sum
of weights (equation 44), the weighted mean wµs, the weighted variance wσ

2
s , the sum of squared weights

(equation 47), the square weighted mean w2µs and the square weighted average of squared deviations from
the square weighted mean w2σ2

s is updated from the previous value. The estimators based on the weighted
variance and square weighted variance can be trivially computed on demand from these values. The only
non-trivial case, the square weighted variance, is given in equation 50. The following algorithm is adapted
fromWest [30] and Hanson [31]. Equations 44 and 45 are identical to West [30]. Equation 46 is modified to
compute the weighted variance instead of the sum of squared deviations directly just like equation 45 does
for the mean and then simplified using the identity 51. Equations 47, 48 and 49 apply the same algorithm
but for squared weights.

i+1∑
j=1

wj

 = wi+1 +

 i∑
j=1

wj

 (44)

wµsi+1 = wµsi + (xi − wµsi)
wi(∑i+1
j=1 wj

) (45)

wσ
2
s i+1 = wσ

2
s i +

((
xi − wµsi+1

)
(xi − wµsi)− wσ

2
i

) w∑i+1
j=1 wj

(46)
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i+1∑
j=1

w2
j

 = w2
i +

 i∑
j=1

w2
j

 (47)

w2µsi+1 = w2µsi + (xi − w2µsi)
w2

i(∑i+1
j=1 w

2
j

) (48)

w2σ2
s i+1 = w2σ2

s i +
((
xi − w2µsi+1

)
(xi − w2µsi)− w2σ2

s i

) w2
i∑i+1

j=1 w
2
j

(49)

∑N
i=1 w

2
i (xi − wµs)

2(∑N
i=1 w

2
i

) = w2σ2
s + (wµs − w2µs)

2 (50)

There is an alternative to equation 46 (and similarly to equation 49) to compute the weighted variance that
does not depend on different values of the mean estimate. This involves two more multiplications, but it
is more amenable to symbolic differentiation and it avoids a common mistake in implementations of this
algorithm.

(
xi − wµsi+1

)
(xi − wµsi) =

∑i
j=1 wj∑i+1
j=1 wj

(xi − wµsi)
2 (51)

3.6. Empirical Distribution Function and Empirical Quantile Function

Given random samples drawn from a distribution, an approximation to the cumulative distribution function
and quantile function can be assembled by sorting the samples. The proportion of samples less than or equal
a value x will converge to the value of the cumulative distribution at the value x. The inverse empirical
distribution function is the empirical quantile function, which is an estimate for the proportion of values
less than a value x, based on the proportion observed so far. The estimate of the value of the q- quartile
from a sample has variance [7, equation 9.22]:

q (1− q)
Np (P−1 (q))

(52)

The variance depends on the proportion q in question, decreases linearly with the number of samples N ,
and the probability density of the value delimiting the quantile p

(
P−1 (q)

)
.
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3.7. Sample Median and Median Absolute Deviation

The median value of a distribution is the value where the cumulative distribution equals 1/2, meaning
values less than or equal the median are just as likely as values larger than or equal [7, Chap. 2.8]. Just
like the mean of a distribution can be estimated with the sample average, the median of a distribution
can be estimated with the sample median. When there is an even number of samples, all values between
and including the two middle most values are median values according to the definition. This ambiguity
is usually resolved by taking the average of the two middle samples. And like there is the central limit
theorem for the median, there is the median theorem for the sample median: The median µ̃s of a sample of
size N drawn from a distribution with density p(x) approaches a Gaussian distribution with mean µ̃ and
variance

(
4N (p (µ̃))2

)−1

for large sample sizes, if the density around the median of the distribution is
continuously differentiable and non-zero [32, Supp. mat.] [33].

σ2
µ̃s

=
1

4N (p (µ̃))
2 (53)

This is a special case of the variance of quartile estimates in equation 52. The nonzero and continuously
differentiable density condition of the median theorem takes the place of the finite variance as a precon-
dition for the convergence of the average in the central limit theorem. Equation 53 also allows a direct
comparison between the efficiency of the median and the mean given a distribution that the samples are
assumed to follow, for example Gaussian, Laplacian and uniform [25, Chap.17]. For the same number of
samples with the same variance, the variance of the median of Gaussian samples is π

2 ≈ 1.57 times larger
than the respective mean. If the samples come from a Laplacian distribution the median is just as efficient
as the mean. The median of uniform samples has three times higher variance than the mean. Despite
this apparent inferiority in common scenarios the median is very useful because it is robust with respect
to outliers and converges for distributions with infinite variance like the Cauchy distribution, where the
sample average does not converge. Outliers are samples with such extreme deviation from the median that
it is as if they come from a different distribution entirely. Just one sample with extreme deviation from
the mean will lead to an entirely different average, but the median will not be affected nearly as much, up
the point where just less than half of the samples are outliers. This is why often, instead of the mean, the
median will be used to give a more typical result that is not skewed by a few extreme cases. Just like the
sample variance estimates the variance of the samples, the median of absolute deviations from the sample
median and the interquartile range are estimates of the typical difference of a sample to the median and it
is a robust alternative (although slightly biased depending on the distribution) [7, Chap.2]. To estimate the
standard deviation of the sample median of samples from an unknown distribution, Woodruff[34] suggests
using the following formula:

σµ̃s ≈
x⌈ 1

2 (N+
√
N)⌉ − x⌊ 1

2 (N−
√
N)⌋

2
(54)

Because the median, by definition, is the value for which half the values are less than or equal and the other
half is greater than or equal, the probability of a value at position i in a ordered list of random samples being
closest to the true median follows a binomial distribution with a success probability p of 1/2. Therefore the
values at these positions correspond to µ̃ + σµ̃ and µ̃ − σµ̃ on average respectively, and their difference,
on average, is about two times the standard deviation. Knowing that the probabilities follow a binomial
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distribution, one can calculate a weighted squared deviation of the random samples to the sample median,
to improve the accuracy of the variance estimate slightly at the cost of robustness:

σ2
µ̃s
≈

N−1∑
i=0

(
N − 1

i

)(
1

2

)1−N

(xi − µ̃s)
2 (55)

Bootstrapping methods are available too.
Just like for the sample mean, the sample median can also be generalized to include weights. The

weighted sample median wµ̃s is any value which partitions the weights associated with values less than or
equal and the weights of the values larger than or equal so their sums differ the least:

wµ̃s = argmin
wµ̃s

∣∣∣∣∣∣
 ∑

{i|xi≤wµ̃s}

wi

−
 ∑

{i|xi≥wµ̃s}

wi

∣∣∣∣∣∣ (56)

Or alternatively, if the reader is more familiar with boolean expressions than with set expressions:

wµ̃s = argmin
wµ̃s

∣∣∣∣∣
(

N∑
i

wi (xi ≤ wµ̃s)

)
−

(
N∑
i

wi (xi ≥ wµ̃s)

)∣∣∣∣∣ (57)

The previous two formulations are useful, because they show the partitioning explicitly, but the following
expresses the weighted median more compactly:

wµ̃s = argmin
wµ̃s

N∑
i

wi |xi − wµ̃s| (58)

As for the non-weighted median, ambiguities can arise, which have to be resolved consistently, for example
using the average of the two values. However, no literature could be found on how to set the weights in
order to minimize the variance of the weighted median - unlike for the weighted average, where it is well
known that inverse variance weights minimize the variance of the weighted average. That is why in the
following section the optimal weights for the best convergence of the weighted median will be derived.

Figure 2: Relative weighting between
samples following a Gaussian
or uniform distribution with
identical variance each. The
ratio of the Gaussian density
to the uniform density at the
median is

√
6/π ≈ 1.38 , this

ratio is reached at around 0.58
on the x-axis, coinciding with
the minimum of mean squared
deviations of the weighted
sample median to the actual
median.
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3.7.1. Optimally Weighted Median

We assume all samples xi can follow a different probability distribution pi (x), otherwise different weight-
ing would have only very limited application and the non-weighted median would almost always be the
preferred choice. Consider a sorted list of weighted samples and the running sum of weights normalized
by the sum of all weights. This computes the empirical cumulative distribution of the weighted mixture
distribution, let the weighted cumulative distribution be wP (x).

wP (x) =

(∑N
i wi

∫ x

−∞ pi (y) dy
)

(∑N
i wi

)
Now consider the sum of weights associated with samples less than or equal to the true weighted median
wµ̃, normalized by the sum of all weights, let it be c:

c =

(∑
{i|xi≤wµ̃} wi

)
(∑N

i wi

)
Without knowing the median of each distribution, each weight has probability 1/2 of being part of this
sum or its counterpart. The variance introduced to the nominator by each weight is therefore 1/4 the
weights squared and the variance of c is approximated by the sum of individual variances divided by the
normalization factor squared:

σ2
c =

(∑N
i w2

i

)
4
(∑N

i wi

)2
The weighted sample median wµ̃s is the sample where the empirical weighted cumulative distribution
reaches 1/2. The expected value of c is 1/2 and its variance is the mean squared deviation between the em-
pirical partitioning which determines the weighted sample median and the partitioning which would lead
to the value closest to the weighted population median. Therefore the value where the weighted cumulat-
ive distribution reaches c has the same variance as the weighted median. Error propagation demands the
derivative of wP

−1 at 1/2 which is inverse to the derivative of wP at the weighted population median.

σ2
wµ̃s

= σ2
c

dwP
−1

dx
(c)

σ2
wµ̃s

= σ2
c

(
dwP

dx
(wµ̃)

)−1

σ2
wµ̃s

=

(∑N
i w2

i

)
4
(∑N

i wi

)2
(∑N

i wi

)2
(∑N

i wipi (wµ̃)
)2

σ2
wµ̃s

=

(∑N
i w2

i

)
4
(∑N

i wipi (wµ̃)
)2
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Figure 3: Numerical experiment with in-
verse density weighted Gaus-
sian random samples of differ-
ent size. The mean squared devi-
ation of the weighted median is
described well by equation 60 as
a function of the sum of squared
weights, which is indicated by
the red line.
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This is the variance we seek to minimize and a very similar optimization problem to the optimal weights
for the weighted average (compare equation 35). The weights that minimize the variance of the weighted
median are reciprocal to the probability density of the sample distribution at the median, as can be shown
by taking the first and second derivatives with respect to the individual weights. The first derivative can
only be zero for wi = pi (wµ̃) and the second derivative is positive, which are the necessary and sufficient
conditions for a global minimum:

dσ2
wµ̃s

dwj
=
wj

(∑N
i wipi (wµ̃)

)
− pj (wµ̃)

(∑N
i w2

i

)
2
(∑N

i wipi (wµ̃)
)3

d2σ2
wµ̃s

d2wj
=

1

2
(∑N

i wipi (wµ̃)
)2 − 2wjpj (wµ̃)

2
(∑N

i wipi (wµ̃)
)3 +

3 (pj (wµ̃))
2
(∑N

i w2
i

)
2
(∑N

i wipi (wµ̃)
)4

argmin
wi

σ2
wµ̃s

= pi (wµ̃) (59)

Numerical experiments as shown in figure 2 also confirm this result. When the weights are set proportional
to pi(wµ̃), the variance of the median is equal to 1/4 the inverse of the sum of probability densities at the
median squared (compare figure 3):

σ2
wµ̃s

=
1

4
(∑

(pi (wµ̃))
2
) (60)

When the weights are proportional, they are still optimal, but estimating the variance from the weights
directly with equation 60 is not possble any more because the proportionality constant is unknown. The
variance can still be estimated analogous to equation 55.

σ2
wµ̃s
≈

N∑
i

(xi − wµ̃s)
2
∫ ∑i

j wi

∑i−1
j wi

exp
(
−1

2

((
y − 1

2

)2

σ−2
c + log

(
2πσ2

c

)))
dy (61)
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Figure 4: Variance and kurtosis of the
weighted sample median divided
by its estimated standard devi-
ation (equation 61). The samples
are drawn from a scaled normal
distribution, where the weights
are drawn from an exponential
distribution and the divisors are
set accordingly.
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Figure 5: The median of absolute devi-
ations of the sample median of
samples following either a Gaus-
sian, a Laplacian or a uniform
distribution, with variances fol-
lowing an exponential distribu-
tion. The weights are set to a
power of the associated sample
variances and as can be seen the
optimal power is around −1/2.
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One possibly unexpected consequence of weights proportional to the probability density at the median is
that when the distribution of each sample has the same location and shape, and only differs in scaling, the
optimal weights are proportional to the inverse standard deviation as demonstrated in figure 5, not inverse
variances as for the weighted average. This is because a scaling by a factor amounts to a linear decrease of
the density at the median, but an increase of the variance by the same factor squared.
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3.8. Gaussian Probability Densities

The Gaussian or normal probability distribution from table 1 can be generalized to any number of dimen-
sions and it is a good approximation in many circumstances, hence the name normal. Its prevalence can be
explained by the principle of maximum entropy (see section 3.1.2) and the central limit theorem (see sec-
tion 3.5). Themultivariate probability density ϕ (⇀x,⇀µ,Σ) is a function of the vector⇀

x, the mean point ⇀
µ and

the symmetric covariance matrix Σ, which is the multidimensional generalization of the one-dimensional
variance. Each diagonal element contains the variance in that dimension, and off-diagonal elements con-
tain covariances. All vectorial quantities are marked with a small arrow on top and matrices have a bold
face. The probability density is given by:

ϕ (
⇀
x,

⇀
µ,Σ) ≡ exp

(
−1

2

(
(
⇀
x− ⇀

µ)
⊤
Σ−1 (

⇀
x− ⇀

µ) + log (|2πΣ|)
))

(62)

Where

ϕ is a probability density function of a Gaussian distribution
⇀
x is a point in space
⇀
µ is the mean value

Σ is the covariance matrix

As a side note, a multidimensional density like this can hardly be written without vectors and matrices
in general, specifically because of the matrix inverse. Expressing the matrix inverse Σ−1 in terms of the
individual entries of the matrix Σ is extraordinarily cumbersome. Only when the individual values of the
vector ⇀

x are uncorrelated, and the off-diagonal values of Σ therefore are zero, can the matrix expression
in the exponent be rearranged to:

(
⇀
x− ⇀

µ)
⊤
Σ−1 (

⇀
x− ⇀

µ) =

N∑
i

(xi − µi)
2

Σii
if allxi are uncorrelated

The normalization factor (|2πΣ|)−
1
2 was pulled into the exponent for a more compact equation. What

makes the Gaussian distribution especially useful, aside from its prevalence, is that products, convolutions,
cuts and projections can be performed symbolically. The joint probability of several uncorrelated outcomes
is given by the product of their probabilities. Equally, the probability density that satisfies all individual
probability distributions is computed by a point-wise product of the individual densities. The product of
Gaussian distributions is a scaled Gaussian with a mean given by the Σ−1 weighted arithmetic mean of
the individual means and a new covariance given by the inverse of the sum of those weights:

ϕ (
⇀
x,

⇀
µ1,Σ1)ϕ (

⇀
x,

⇀
µ2,Σ2) = ϕ (

⇀
µ1,

⇀
µ2,Σo)ϕ (

⇀
x, µ,Σ∗) (63)

Σo = Σ1 +Σ2

Σ∗ =
(
Σ−1

1 +Σ−1
2

)−1

µ = Σ∗
(
Σ−1

1
⇀
µ1 +Σ−1

2
⇀
µ2

)
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This result can be simplified further, when both densities are identical:

(ϕ (
⇀
x,

⇀
µ,Σ))

2
= ϕ (

⇀
µ,

⇀
µ, 2Σ)ϕ

(
⇀
x,

⇀
µ,

1

2
Σ

)
(64)

The probability distribution for the sum of two independent random variables is given by the convolution
of the individual distributions. The rules for combining the means and variances are equivalent to the
commonly employed error propagation, the means add, just like the variances.

ϕ (
⇀
x,

⇀
µ1,Σ1) ∗ ϕ (

⇀
x,

⇀
µ2,Σ2) = ϕ (

⇀
x,

⇀
µ1 +

⇀
µ2,Σ1 +Σ2) (65)

If the individual distributions are correlated, the means still add to form the sum, but there is an additional
summand for the variance of the sum, ΣX+Y = ΣX +ΣY + 2 cov (X,Y ). In case of perfect correlation
this reduces to

(√
ΣX +

√
ΣY

)2.
Marginalization integrals, conditional probabilities and multidimensional Fourier transforms sometimes

require projections onto and slices of Gaussian densities on subspaces. Projections on linear subspaces lead
to Gaussian densities and slices are Gaussian functions that are no longer proper densities, because they
don’t necessarily need to integrate to unity. Let the matrix A be the basis of the linear subspace and

⇀

b its
origin. The basis is composed of the basis vectors and it maps from the coordinates of the subspace to the
full space. Its pseudoinverse A+ maps any point ⇀

x onto the closest point in the subspace, because it is the
least squares solution to the following linear equation:

A
⇀
xs +

⇀

b =
⇀
x

argmin
⇀
xs

∣∣∣A⇀
xs +

⇀

b−⇀
x
∣∣∣2 = A+

(
⇀
x−

⇀

b
)

(66)

A+ = (A∗A)
−1

A (67)

Cuts on the subspace can be derived symbolically by substituting ⇀
x in equation 62 with coordinates on the

subspace ⇀
xs mapped back via A⇀

xs +
⇀

b:

exp
(
−1

2

((
A

⇀
xs +

⇀

b− ⇀
µ
)⊤

Σ−1
(
A

⇀
xs +

⇀

b− ⇀
µ
)
+ log (|2πΣ|)

))
Expanding the exponent,

exp
(
−1

2

(
⇀
xsA

⊤Σ−1A
⇀
xs − 2

⇀
xsA

⊤Σ−1
(

⇀
µ−

⇀

b
)
+
(

⇀
µ−

⇀

b
)⊤

Σ−1
(

⇀
µ−

⇀

b
)
+ log (|2πΣ|)

))

and then completing the square it can be seen that the covariance of the cut is
(
A⊤Σ−1A

)−1

. The mean
of the cut ⇀

µc needs to fulfill the following equation to complete the square:

A⊤Σ−1A
⇀
µc = A⊤Σ−1

(
⇀
µ−

⇀

b
)

⇀
µc =

(
A⊤Σ−1A

)−1

A⊤Σ−1
(

⇀
µ−

⇀

b
)

(68)

Contrary to what one might thinkA−1⇀
µ is not a solution becauseA is not invertible in general, the correct
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solution is
(
A⊤Σ−1A

)−1

A⊤Σ−1
(

⇀
µ−

⇀

b
)
, because

(
A⊤Σ−1A

)
is invertible so long A is of full rank.

This operation can also be seen as an orthogonal projection, just in a different space that is sheared by the
inverse covariance matrix. With these transformations the slice through a Gaussian density on a linear
subspace can be restated as:

exp
(
−1

2

(
(

⇀
xs −

(
A⊤Σ−1A

)−1

A⊤Σ−1
(

⇀
µ−

⇀

b
))⊤

A⊤Σ−1A

(
⇀
xs −

(
A⊤Σ−1A

)−1

A⊤Σ−1
(

⇀
µ−

⇀

b
))

+

(
A

(
A⊤Σ−1A

)−1

A⊤Σ−1
(

⇀
µ−

⇀

b
)
+

⇀

b−⇀
µ

)⊤

Σ−1

(
A

(
A⊤Σ−1A

)−1

A⊤Σ−1
(

⇀
µ−

⇀

b
)
+

⇀

b−⇀
µ

)
+ log (|2πΣ|)))

(69)

Or expressed in terms of ϕ (equation 62):

ϕ (A
⇀
xs,

⇀
µ,Σ) =

ϕ
(

⇀
xs ,

(
A⊤Σ−1A

)−1
A⊤Σ−1

(
⇀
µ−

⇀

b
)
,
(
A⊤Σ−1A

)−1
)
ϕ
(
A

(
A⊤Σ−1A

)−1
A⊤Σ−1

(
⇀
µ−

⇀

b
)
+

⇀

b ,
⇀
µ , Σ

)
ϕ
(
⇀

0 ,
⇀

0 ,
(
A⊤Σ−1A

)−1
)

(70)

When projecting a Gaussian density, the projected density is still a proper probability density and the mean
of the projected density is indeed just the mean of the distribution projected withA+, because a projection
corresponds to an integral along all orthogonal directions. The projection of the covariance matrix via(
A+
)⊤

ΣA+ can be understood with the projection slice theorem (see section 4) and the analytic Fourier
transform of the Gaussian probability density (equation 80) or alternatively with the singular value decom-
position of the covariance matrix[35]. And so the projection of a Gaussian density onto the linear subspace
A

⇀
x+

⇀

b is given by:

ϕ
(
⇀
xs,A

+
(

⇀
µ−

⇀

b
)
,A+ΣA+⊤

)
=

exp
(
−1

2

((
⇀
xs −A+

(
⇀
µ−

⇀

b
))⊤ (

A+ΣA+⊤
)−1 (

⇀
xs −A+

(
⇀
µ−

⇀

b
))

+ log
(∣∣∣2πA+ΣA+⊤

∣∣∣)))
(71)
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Figure 6: Illustration of cuts and projections of Gaussian densities visualized with an elliptical isoline where
(
⇀
x− ⇀

µ)
⊤
Σ−1 (

⇀
x− ⇀

µ) = 1. The subspace is given by A
⇀
xs +

⇀

b and drawn in purple. The slice of
the density along this line yields a Gaussian function. Its mean ⇀

µc is given by equation 68 and
its location in the superspace is A⇀

µc +
⇀

b. The covariance of the slice is
(
A⊤Σ−1A

)−1

, which
can be mapped back to the original frame with the matrix A. The projection of the density onto
the subspace gives rise to another density with mean ⇀

µp given by equation 66 and covariance(
A+ΣA+⊤

)
in the coordinates of the subspace, which mapped back to the original frame is

AA+Σ
(
AA+

)⊤.
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4. Fourier Transforms

The continuous Fourier transform decomposes a function by projecting it onto a continuous basis of or-
thogonal complex wave functions. The periodic basis functions are given by:

exp
(
−2πi⇀q⊤⇀

x
)

If it exists, the Fourier transform of a function is another function, which measures the coefficients ne-
cessary to reconstruct the original function with said complex wave functions. The dimensions of the
Fourier transformed function are reciprocal to the dimensions of the function. Because of this the Fourier
transform can be seen as a bidirectional mapping between ‘real space’ and the frequency components in
‘reciprocal space’. There are multiple definitions that differ slightly in regards to linear scaling factors, but
the following definition will be used in this work for maximum symmetry between transform and inverse
transform [36, Prologue]:

F⇀
x (f (

⇀
x)) (

⇀
q) ≡

∫ ∞

−∞
f (

⇀
x) exp

(
−2πi⇀q⊤⇀

x
)
d
⇀
x (72)

F−1
⇀
q

(f (
⇀
q)) (

⇀
x) =

∫ ∞

−∞
f (

⇀
q) exp

(
2πi

⇀
x⊤

⇀
q
)
d

⇀
q (73)

f̂ (
⇀
q) ≡ F⇀

x (f (
⇀
x)) (

⇀
q)

There are several properties of and identities involving the Fourier transform. In the following only those
most relevant to this work will be listed.

Linearity

The Fourier transform is linear, meaning that it is additive and homogeneous:

F⇀
x (f (

⇀
x) + g (

⇀
x)) (

⇀
q) = F⇀

x (f (
⇀
x)) (

⇀
q) + F⇀

x (g (
⇀
x)) (

⇀
q)

F⇀
x (af (

⇀
x)) (

⇀
q) = aF⇀

x (af (
⇀
x)) (

⇀
q)

This makes it act like a continuous analog to a multiplication with a matrix, while discrete Fourier trans-
forms can be written as a matrix directly.

Differentiation

Differentiation with respect to the dimensions of the transform are given by:

F⇀
x

(
dn

d
⇀
xn
f (

⇀
x)

)
(
⇀
q) = (2πi

⇀
q)

n F⇀
x (f (

⇀
x)) (

⇀
q) (74)

This identity will be used to solve a differential equations in section 5.
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Convolution theorem

The Fourier transform of a product of two functions is equal to the convolution of the Fourier transform of
the functions individually and the other vice versa:

F⇀
x (f (

⇀
x) g (

⇀
x)) (

⇀
q) = F⇀

x (f (
⇀
x) (

⇀
q)) ∗ F⇀

x (g (
⇀
x)) (

⇀
q) (75)

F⇀
x (f (

⇀
x) ∗ g (⇀x)) (⇀q) = F⇀

x (f (
⇀
x) (

⇀
q))F⇀

x (g (
⇀
x)) (

⇀
q) (76)

The shift theorem

The shift of a function f by a vector ⇀
s results in a modulation of its Fourier transform with a linear phase

ramp:

F⇀
x (f (

⇀
x+

⇀
s)) (

⇀
q) = exp

(
−2πi⇀s⊤⇀

q
)
F⇀

x (f (
⇀
x)) (

⇀
q) (77)

Conjugation

The Fourier Transform of the complex conjugate of a function f(x) is equal to the mirrored and complex
conjugated Fourier transform of the original function.

Fx

(
f (x)

)
(q) = Fx (f (x)) (−q) (78)

The discrete Fourier transform

The discrete Fourier transform (DFT) is the discrete analog to the continuous Fourier transform where both
input and output are sampled with the same number of equally spaced samples. The distance between the
samples in the output is reciprocal to the size of the input and vice versa. A finite input can be seen
to be the product of an input and a top hat function. The Fourier transform of this product is then the
convolution of the Fourier transform of the object and the Fourier transform of the top hat function, which
is the normalized sinc-function in one dimension. This is how, for finite signals, the continuous Fourier
transform can be interpolated from the discrete Fourier transform, but there are computationally more
efficient methods that trade some accuracy for more locality [37]. The discrete Fourier transform (DFT) can
be accelerated to require O(n log(n)) operations instead of the naive O(n2), which is why it is useful also
for accelerating convolutions and projections computationally. This accelerated discrete Fourier transform
is called fast Fourier transform (FFT) [38].

An important link between DFTs and the continuous Fourier transform is the Nyquist–Shannon
sampling theorem. The theorem is often stated in terms of band-limited signals, but there is a way to state
it without first defining what band-limited signals are. The theorem asserts that a periodic or constrained
function can be reconstructed entirely from frequency components at frequencies corresponding to integer
multiples of the frequency of repetition in the periodic signal, or corresponding to periodicities at integer
fractions of twice the maximum extent of the constrained function. This holds in each dimension of the
function independently. Conversely, if the Fourier transform of a function is a constrained function, it
is a band limited function, for which the sampling theorem holds in its common formulation. Sufficient
3Big-O denotes the asymptotic behavior of a function for large inputs. O(f(x)) is the class of functions that are bounded by a

constant multiple of f(x) for all possible inputs.
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sampling for a band-limited function is at intervals with half the periodicity of the frequency component
with the highest frequency [39]. There is a generalization of this theorem, that the samples need not be
equally spaced. The same number of samples at arbitrary but not identical positions is sufficient too.
In practice however, the more uneven the sampling is, the more even small measurement errors and
numerical errors are amplified [40].

Projection-Slice theorem

A slice through the origin of the Fourier transform of an object is equivalent to the Fourier transform of
a projection along the line orthogonal to the slice. This can be used to efficiently approximate projections
using the FFT.There, arbitrary cuts are only approximations, because the slice will not intersect the sample
points directly most of the time, and therefore the exact values on the slice need to be interpolated from
neighbouring values [41, 42].

The Fourier Transform of Common Functions

The Fourier transform of a Dirac delta distribution centered at 0 is a function, which is constantly 1. If the
delta distribution is shifted, the shift introduces a complex modulation according to the shift theorem:

F⇀
x (δ (

⇀
x−⇀

s)) (
⇀
q) = exp

(
−2πi⇀s⊤⇀

q
)

(79)

The Fourier transform of a shifted Gaussian distribution is a Gaussian function with inverse covariance,
centered at zero and instead modulated by a complex exponential:

F⇀
x

exp
(
− (

⇀
x− ⇀

µ)
⊤
Σ−1 (

⇀
x− ⇀

µ)
)

|2πΣ|
1
2

 (
⇀
q) = exp

(
−2π2⇀

q⊤Σ
⇀
q − 2iπ

⇀
µ⊤⇀
q
)

(80)

The rectangular function or top hat function is defined as:

rect (x) =


1 if |x| < 1

2

1
2 if |x| = 1

2

0 otherwise

(81)

Its Fourier transform is the sinc function:

sinc (x) ≡

1 if x = 0

sin (πx)
πx

otherwise

The Fourier transform of a Laplace distribution is a Lorentzian function, that is a non-normalized Cauchy
distribution. Conversely, the Fourier transform of a Cauchy distribution is similar to a Laplace distribution,
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however it is not normalized:

F⇀
x

exp
(
−|x− µ|

b

)
2b

 (
⇀
q) =

exp (−2πiµq)
(2πbq)

2
+ 1

(82)

F⇀
x

 1

πγ

(
1 +

(
x− x0
γ

)2
)
 (

⇀
q) = exp (−2πiq − 2πγ |q|) (83)

Following Applications

The Fourier transform of a probability distribution is its characteristic function, which can be used as an
alternative definition for the Dirac δ-Distribution and in a proof for the central limit theorem. However, the
main application of the Fourier transform is the analysis of periodicities. Waves and crystals are inherently
periodical and therefore the Fourier transform arises almost naturally when describing diffraction of waves.
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5. Diffraction of Waves

Whethermeasuring neutrons, electrons or photons, there is awave functionwhose squared amplitude gives
the probability density of measuring a particle at a point in time and space. The classical wave equations,
that is neglecting quantization into integer particles, describe most aspects of diffraction. For this work, as
for crystallography, the interaction of photons with matter is the most relevant, and because the behaviour
of neutron and electron radiation is mostly analogous to the behaviour of electromagnetic radiation, only it
will be described in greater detail. In the following, the Fourier diffraction theorem, a simplified description
for the interaction between waves and objects, will be derived from Maxwell’s equations.

5.1. Maxwell’s Equations

From Maxwell’s equations all aspects of classical electromagnetism can be derived [43, Chap. I]. There are
four fundamental equations. Gauss’s law describes the electric field

⇀

E generated by a spatial distribution of
charge density ρ. Gauss’s law for magnetism stipulates that the magnetic field

⇀

B has a divergence equal to
zero, implying that magnetic monopoles do not exist. Faraday’s law of induction governs how changes in
the magnetic field will lead to electromagnetic induction. Ampère’s circuital law with Maxwell’s addition
relates how electric current

⇀

J and changes in the electric field affect the magnetic field.
The formulations use special operators for a very compact notation. The nabla operator∇ is denotes the

vector of partial derivative operators:

∇ ≡


∂

∂x1
...
∂

∂xn

 (84)

The divergence operator ∇·, like the dot implies, denotes the scalar product of the nabla operator with a
vector-valued function: ∇·

⇀

f(
⇀
x) =

∑
i

∂fi
∂xi

. The curl operator∇× computes the infinitesimal circulation
of a vector-field in three dimensions with the cross product between the Nabla operator and a vector-valued
function:

∇×
⇀

f =


∂fx3

∂x2
− ∂fx2

∂x3
∂fx1

∂x3
− ∂fx3

∂x1
∂fx2

∂x1
− ∂fx1

∂x2


The Laplace operator ∇2 is defined as:

∇2f = ∇ · (∇f) (85)

For orthonormal coordinates this is equal to:

∇2f =
N∑
i

∂2f
∂2xi
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The Laplace operator applied to a vector valued function, also called the vector Laplace operator often
takes the same symbol as the regular Laplace operator, but because the definition is subtly different it will
be distinguished by an arrow on top.

⇀

∇2 is defined as:

⇀

∇2
⇀

f = ∇
(
∇ ·

⇀

f
)
−∇×

(
∇×

⇀

f
)

(86)

For orthonormal coordinates this reduces to:

⇀

∇2
⇀

f =

∇
2fx1

...

∇2fxn

 =


∑N

i

∂2

∂x2i
fx1

...∑N
i

∂2

∂x2i
fxn



Gauss law ∇ ·
⇀

E =
ρ

ϵ0

Gauss law for magnetism ∇ ·
⇀

B = 0

Faraday’s law of induction ∇×
⇀

E = −∂
⇀

B

∂t

Ampère’s circuital law ∇×
⇀

B = µ0

(
⇀

J + ϵ0
∂

⇀

E

∂t

)

Table 2: Maxwell’s equations in SI units [43, Eqns. I.1a&I.1b].

⇀

E electric field
⇀

B magnetic field
ρ electric charge per unit volume
ρf excess charge per unit volume
ϵ dielectric permittivity of the medium
ϵ0 dielectric permittivity of vacuum
µ magnetic permeability of the medium
µ0 magnetic permeability of vacuum
⇀

J current density vector

5.2. The Macroscopic Formulation of Maxwell’s Equations

There is an equivalent formulation of Maxwell’s equations describing the relations from a macroscopic
view. They are just as valid as the previous set and any one of them can be used to describe diffraction.
The derivation of the macroscopic formulation will be used mainly to introduces the quantities that are
necessary to define what linear isotropic media are.

First we introduce the electric displacement field
⇀

D, defined as
⇀

D ≡ ϵ0
⇀

E +
⇀

P [43, equation 6.63]. The
polarization density

⇀

P is the electric dipole at each point of the medium, whether permanent or induced.
The total charge density ρ is the sum of the density of free charge ρf and bound charge ρb. Only bound
charges can be polarized and so ρb = −∇ ·

⇀

P which is a different form of Gauss law. With this we can
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show that ∇ ·
⇀

D = ρf .

ρ = ρf + ρb (87)

ρ = ρf −∇ ·
⇀

P (88)

Substituting equation 88 into Gauss’ law we get:

∇ ·
⇀

E =
1

ϵ0

(
ρf −∇ ·

⇀

P
)

ϵ0∇ ·
⇀

E −∇ ·
⇀

P = ρf

∇ ·
⇀

D = ρf (89)

Analogously, we introduce the demagnetising field
⇀

H defined as
⇀

H ≡
⇀

B

µ0
−

⇀

M . The magnetization
⇀

M

is the density of magnetic dipole moments, whether permanent or induced, and their direction. The total
currents

⇀

J in a material can be decomposed into a sum of free currents
⇀

Jf , the magnetization current
⇀

Jm

and polarization current
⇀

Jp. Magnetization
⇀

M contributes to the total current as
⇀

Jm = ∇ ×
⇀

M . The

separation of paired charges when polarization is induced leads to the polarization current
⇀

Jp =
∂

∂t

⇀

P .
This allows us to restate Ampère’s circuital law as follows:

∇×
⇀

B = µ0

(
⇀

J + ϵ0
∂

⇀

E

∂t

)

∇×
⇀

B = µ0

(
⇀

Jf +∇×
⇀

M +
∂

∂t

⇀

P + ϵ0
∂

⇀

E

∂t

)

∇×
⇀

B

µ0
=

⇀

Jf +∇×
⇀

M +
∂

∂t

⇀

P + ϵ0
∂

⇀

E

∂t

∇×
⇀

B

µ0
−∇×

⇀

M =
⇀

Jf +
∂

∂t

(
ϵ0

⇀

E +
⇀

P
)

∇×
⇀

H =
⇀

Jf +
∂

∂t

⇀

D

Thereby we arrive at a different set of equations for materials that responds linearly and immediately to
electric and magnetic fields. They are listed in table 3.

Gauss law ∇ ·
⇀

D = ρf

Gauss law for magnetism ∇ ·
⇀

B = 0

Faraday’s law of induction ∇×
⇀

E = −∂
⇀

B

∂t

Ampère’s circuital law ∇×
⇀

H =
⇀

Jf +
∂

∂t

⇀

D

Table 3: The macroscopic formulation of Maxwell’s equations [43, Eqns. 6.62].
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5.3. Linear Media

There is a simplified set of equations that is structurally very similar to Maxwell’s equations, but only valid
in linear media. Linear media respond instantaneously and linearly to external electromagnetic fields. This
is a good first-order approximation in many cases, and makes analytic solutions easier.

In linear media the displacement field and free current and the magnetizing field are directly related to
the electric and magnetic field respectively [44, Eqns. 1.2]:

⇀

D = ϵ
⇀

E (90)
⇀

B = µ
⇀

H (91)
⇀

Jf = σ
⇀

E (92)

In general, the material properties ϵ, µ and σ are tensors. If the medium is locally without directional
dependence, they are scalars and the medium is called linear isotropic. Applying this simplification to the
macroscopic formulation of Maxwell’s equations we get an analogous set of equations, which is listed in
table 4.

Gauss law ∇ · ϵ
⇀

E = ρf

Gauss law for magnetism ∇ ·
⇀

B = 0

Faraday’s law of induction ∇×
⇀

E = −∂
⇀

B

∂t

Ampère’s circuital law ∇×
⇀

B

µ
= σ

⇀

E +
∂

∂t
ϵ

⇀

E

Table 4: Relations analogous to Maxwell’s equations for linear materials, with spatially and tempor-
ally varying electric permittivity ϵ, magnetic permeability µ and electric conductivity σ [44,
Eqns. 1.1&1.2].

5.4. The Fourier Diffraction Theorem

The two electromagnetic wave equations can be derived fromMaxwell’s equations without approximations
and describe the electromagnetic waves in the most general way [43, Chap. 6.2].

µ0ϵ0
∂2

⇀

E

∂t2
−

⇀

∇2
⇀

E = −∇ ρ

ϵ0
− µ0

∂
⇀

J

∂t
(93)

µ0ϵ0
∂2

⇀

B

∂t2
−

⇀

∇2
⇀

B = µ0∇×
⇀

J (94)

However, they are often too general to give insightful descriptions of diffraction phenomena. There is
an approximate solution to the wave equations, known as the Fourier diffraction theorem. The following
derivation mostly follows chapter 6 of Kak and Slaney [45]. Gauss law in linear isotropic materials can be
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expanded by applying the product rule for derivatives to be more usable in the steps to follow:

∇ · ϵ
⇀

E = ρf

ϵ∇ ·
⇀

E +
⇀

E∇ · ϵ = ρf

∇ ·
⇀

E +
⇀

E
∇ · ϵ
ϵ

=
ρf
ϵ

∇ ·
⇀

E +
⇀

E∇ · log ϵ = ρf
ϵ

(95)

In a source-free medium that is magnetically homogeneous there is no free current (
⇀

Jf = 0), no free charge
(ρf = 0) and the magnetic permeability µ is constant. Starting with the curl of Faraday’s law of induction
in linear isotropic media:

∇×
(
∇×

⇀

E
)
= −∇× ∂

⇀

B

∂t

∇
(
∇ ·

⇀

E
)
−

⇀

∇2
⇀

E = − ∂

∂t
∇×

⇀

B

∇
(
∇ ·

⇀

E
)
−

⇀

∇2
⇀

E = −µ ∂
2

∂t2
ϵ

⇀

E (96)

∇
(

⇀

E∇ · log ϵ
)
+

⇀

∇2
⇀

E = µ
∂2

∂t2
ϵ

⇀

E (97)

The wave equation for the electric field under these conditions (equation 97) can be derived. It is a spe-
cialization of the general wave equation (equation 93). Assuming the electric permittivity is a material
property, that does not change over time, the equation can be rearranged slightly:

∇
(

⇀

E∇ · log ϵ
)
+

⇀

∇2
⇀

E = µϵ
∂2

∂t2
⇀

E (98)

This equation however is still too complex for general solutions and we need more approximations. The
term∇

(
⇀

E∇ · log ϵ
)
introduces a coupling between the dimensions of the electric field. When the relative

spatial changes in the electric field are much larger than the relative spatial changes in the electric permit-
tivity, the term can be neglected, because it is much smaller than the other spatially dependent term

⇀

∇2
⇀

E.
This leads us to the following approximation:

⇀

∇2
⇀

E = µϵ
∂2

∂t2
⇀

E (99)

But in the intended application the spatial changes are on the same order of magnitude as the spatial
changes in the electric permittivity. There will be an appreciable error in this approximation, which can
largely be corrected for with a polarization correction term. This term will be introduced at a later time
and is mostly post hoc derived from geometric considerations.

Since each component of the electric field needs to fulfill equation 99 individually we can narrow our
analysis to any one of them and still describe the interaction (neglecting polarization effects) in approxim-
ation. This is the approach of scalar theory [43, equation 3-7]. The scalar wave equation, using the scalar
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function ψ is:

µϵ
∂2

∂t2
ψ = ∇2ψ (100)

Because we are not interested in the time dependence of the scalar function ψ and only its spatial compon-
ent u(⇀x), we can derive the following Helmholtz equation by separation of variables, which all stationary
states need to fulfill [46, Chap. 1 D-1, 47, Eqn 2.2]:

ψ = u (
⇀
x) v (t)

µϵ
∂2

∂t2
u (

⇀
x) v (t) =

⇀

∇u (⇀x) v (t)

µϵ ∂2v (t)

u (t) ∂t2
=
∇2u (

⇀
x)

u (
⇀
x)

∂2v (t)

v (t) ∂t2
=
µϵ∇2u (

⇀
x)

u (
⇀
x)

(101)

The left hand side of equation 101 is a function only of time, whereas the right hand side is only a function
of space. If both sides are constant, they form a solution to the scalar wave equation (equation 100).

∂2v (t)

v (t) ∂t2
= −ω2 (102)

µϵ∇2u (
⇀
x)

u (
⇀
x)

= −ω2 (103)

The second derivative of the field with respect to the time is the angular frequency ω squared negative.
This is the extent to which we are interested in the time dependent part, we want to know the spatial
distribution, which can be rearranged:

∇2u (
⇀
x)

u (
⇀
x)

= −ω
2

µϵ

(µϵ)
−1/2 is the speed of light in the medium at that position, therefore ω/

√
4π2µϵ is the inverse wavelength

or the local wavenumber k (x), equal to the inverse wavelength.

∇2u (
⇀
x)

u (
⇀
x)

= −4π2k (
⇀
x)

2

This can be rearranged to: (
∇2 + 4π2k (

⇀
x)

2
)
u (

⇀
x) = 0 (104)

Note that this equation is linear, therefore a linear combination of solutions is a solution too. To find the

3This is the crystallographers definition of k. Outside of crystallography k is the angular wavenumber, which differs by a factor of
2π, which would make the following equations slightly more compact, but the result slightly less so.
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solutions we manipulate the equation by multiplying out the object dependence on the left-hand side:

k (
⇀
x)

2
= (k0 + (k (

⇀
x)− k0))2 = k20 + 2k0 (k (

⇀
x)− k0) + (k (

⇀
x)− k0)2

o (
⇀
x) ≡ 4π2

(
2k0 (k (

⇀
x)− k0) + (k (

⇀
x)− k0)2

)
Defining o(⇀x) as the variation of k2 around a median value k20 this can be expressed more compactly as:

(
∇2 + 4π2k20

)
u (

⇀
x) = −o (⇀x)u (⇀x) (105)

The field u (⇀x) can be seen as composed of the incident field u0 (⇀x) not affected by the inhomogeneities
and the scattered field us (⇀x). The incident field is a solution to the homogeneous wave equation:

(
∇2 + 4π2k20

)
u0 (

⇀
x) = 0 (106)

By subtracting this partial solution from equation 105 we get:

(
∇2 + 4π2k20

)
us (

⇀
x) = −o (⇀x)u (⇀x) (107)

Noting that every integrable function can be composed by Dirac δ distributions, the product o (⇀x)u (⇀x) can
be expressed like this:

o (
⇀
x)u (

⇀
x) =

∫
o (

⇀
x′)u (

⇀
x′) δ (

⇀
x−⇀

x′) d
⇀
x′

Also, remembering that the equation is linear, a general solution to equation 105 can be found by first
finding a solution for a δ distribution. This solution is called Green’s function g (⇀x,⇀x′) and it is the impulse
response of the system:

(
∇2 + 4π2k20

)
g (

⇀
x,

⇀
x′) = δ (

⇀
x−⇀

x′)

Green’s function can be found by Fourier-transforming its definition, rearranging, and inversely trans-
forming its Fourier representation:

F⇀
x

((
∇2 + 4π2k20

)
g (

⇀
x,

⇀
x′)
)
(
⇀
q) = F⇀

x (δ (
⇀
x−⇀

x′)) (
⇀
q)(

−4π2 |⇀q|2 + 4π2k20

)
F⇀

x (g (
⇀
x,

⇀
x′)) (

⇀
q) = exp

(
−2πi⇀q⊤⇀

x′
)

F⇀
x (g (

⇀
x,

⇀
x′)) (

⇀
q) =

exp
(
−2πi⇀q⊤⇀

x′
)

4π2
(
k20 − |

⇀
q|2
) (108)

g (
⇀
x,

⇀
x′) =

− exp (−ik0 |⇀x−⇀
x′|)

4π |⇀x−⇀
x′|

(109)

The result in equation 108 depends on the number of dimensions and is here stated for three dimensions
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only. With this special solution we can synthesize the general solution for the scattered signal as such:

(
∇2 + k20

) ∫
o (

⇀
x′)u (

⇀
x′) g (

⇀
x−⇀

x′) d
⇀
x′ =

∫
o (

⇀
x′)u (

⇀
x′) δ (

⇀
x−⇀

x′) d
⇀
x′

us (
⇀
x) =

∫
o (

⇀
x′)u (

⇀
x′) g (

⇀
x−⇀

x′) d
⇀
x′

With Born’s first order approximation u (⇀x′) ≈ u0 (⇀x′) [45, equation 38] we can write the scattered field
as:

us (
⇀
x) =

∫
o (

⇀
x′)u (

⇀
x′) g (

⇀
x,

⇀
x′) d

⇀
x′ (110)

Note the similarity of this result to the Huygens-Fresnel principle, which states that every inhomogeneity
acts as a point source of radiation upon stimulation by an incident field. Green’s function in equation 109
takes the role of this point source. Because this result contains a convolution it is tempting to apply the
convolution theorem (equation 76) because point-wise multiplications are easier to visualize and compute
than convolutions.

F⇀
x (us (

⇀
x)) (

⇀
q) = F⇀

x

(∫
o (

⇀
x′)u (

⇀
x′) g (

⇀
x−⇀

x′) d
⇀
x′
)
(
⇀
q)

F⇀
x (us (

⇀
x)) (

⇀
q) = F⇀

x (g (
⇀
x,

⇀
x′)) (

⇀
q)F⇀

x (o (
⇀
x′)u (

⇀
x′)) (

⇀
q)

F⇀
x (us (

⇀
x)) (

⇀
q) = F⇀

x (g (
⇀
x,

⇀
x′)) (

⇀
q) [F⇀

x (o (
⇀
x′)) (

⇀
q) ∗ F⇀

x (u (
⇀
x′)) (

⇀
q)]

us (
⇀
x) = F−1

⇀
q

(F⇀
x (g (

⇀
x,

⇀
x′)) (

⇀
q)F⇀

x (o (
⇀
x′)u (

⇀
x′)) (

⇀
q)) (

⇀
x) (111)

The result in equation 111 is known as the Fourier diffraction theorem [45, equation 108] and it points to
a way to compute diffraction in an efficient manner. Discrete Fourier transforms can approximate con-
tinuous Fourier transforms and can be accelerated using the FFT. This way diffraction can be simulated by
Fourier-transforming the product of source and object, multiplying it with the Fourier transform of Green’s
function, and inversely transforming the product to retrieve the diffraction. Figure 7 shows this process on
the projected electron density of 1,3-Butanediol and a planar incident wave. First the Fourier Transform
of Green’s function was discretized onto a grid. Mapping the phase to the hue and the amplitudes to the
saturation, figure 7b is a visualization of equation 108 in 2 dimensions. The FFT gives Green’s function in
2 dimensions, which looks like a spherical wave in figure 7a. This is a dead end in the computation and
only depicted for completeness, the process will proceed with the Fourier representation for efficiency. The
plane wave in x direction has a constant amplitude but a varying phase. The product of this plane wave and
the object has the effect of patterning the object with its phase variation, which can be seen in figure 7c.
The convolution in equation 110 of the product of object and source with Green’s function can be computed
efficiently by way of a multiplication in Fourier space. Figure 7f is the element-wise product of figure 7b
and figure 7d. Its Fourier transform gives an approximation of the scattered signal us (⇀x) in figure 7e as
laid out in the Fourier diffraction theorem (remembering that polarization effects are still neglected).



(a) Green’s function – a spherical wave (b) The Fourier transform of Green’s function.

(c) Product of source and object. (d) Fourier transform of illuminated object.

(e) A simulation of the diffracted field. (f) Fourier transform of the diffracted field.

Figure 7: Simulation of diffraction using the Fourier diffraction theorem on a plane wave and the electron
density of 1,3-Butanediol. Color saturation encodes amplitudes and the hue encodes the phase.
The crosshair marks the origin in Fourier space, but not in realspace, as shifts are not relevant
there. The object in this example is the electron density of 1,3-Butanediol projected along one
axis. The source was chosen to be a plane wave.
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(a) Phases of the simulated diffraction using a discretiz-
ation of Green’s function.

(b) Phases of the simulated diffraction using only the
Fourier components of the object that lie on the
Ewald sphere.

(c) Amplitudes of the simulation using a discretization
of Green’s function.

(d) Amplitudes of the simulation using only the Four-
ier components of the object that lie on the Ewald
sphere.

Figure 8: Simulating diffraction from the a projection of 1,3-Butanediol with Green’s function and using
the Ewald sphere construction. Note that the simulations have qualitatively the same amplitudes,
but mostly unrelated phases.

5.5. The Ewald Sphere

The Fourier transform of the Green’s function (equation 108) has a pole of order 1 at k20 = |⇀q|2. This
condition forms a spherical shell and integrals approaching the shell from inside or outside the shell are
divergent. That is why the multiplication in equation 111 essentially only depends on the values on this
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very shell. In simpler terms and neglecting phase information, the Green’s function stamps out a spherical
shell from the shifted Fourier transform of the product of object and field. The spherical shell given by the
condition is the Ewald sphere [48, Chap. 1.3.4]. Comparing the simulated diffraction using a discretization
of Green’s function as outlined in figure 7 with the approximation to diffraction that is attained by only
leaving the Fourier components of the object that lie on the Ewald sphere, we can see in figure 8 that the
amplitudes are very similar, while the phases are more or less uncorrelated.

⇀
q = ∆

⇀

k =
⇀
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⇀

kin
⇀
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⇀
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⇀
q =
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0

Figure 9: The Ewald sphere construction. The spatial frequencies of the object are selected by the diffraction
condition, which is drawn as the Ewald sphere. All points on the Ewald sphere correspond to a
difference between a diffracted wave vector

⇀

kout and an incident wave vector
⇀

kout, both of which
need to have the same length, reciprocal to the wavelength.

Not only are many sources well approximated by a plane wave, but those that are not can be composed
by a sum or series of plane waves, and, due to the relation with the Fourier-transform, a plane wave gives
a simple solution for the Fourier diffraction theorem. The plane wave needs to have the same frequency as
the frequency used in the solution of the wave equation, or it would correspond to a different solution. If
u(

⇀
x) is a plane wave with wavenumber k0 pointing in the direction ⇀

win, its crystallographic wave vector
is

⇀

kin = k0
⇀
win, and its complex field amplitude is given by:
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The Fourier transform of this plane wave is a delta function shifted by the wavenumber k0. The convolution
of the object with the source therefore amounts to a shift of the Fourier transform of the object (compare
figure 7d) in the case of plane wave incident field, which leads to this particularly simple solution:
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2
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) (113)
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Because a plane wave just shifts the Fourier transform of the object, the Ewald construction chooses the
coordinate system relative to the Fourier transform of the object, so that the ⇀

q vectors directly correspond
to spatial frequencies, see figure 9. Instead of the object, the Green’s function, now the Ewald sphere,
is shifted by the incident wave vector. While this point of view is often convenient because of its direct
relation with the object, we need to keep in mind that it is not directly related to the Fourier transform of
the diffracted field, precisely because of this shift.

5.6. Bragg’s law - a far field approximation

All points on the Ewald sphere correspond to the plane waves that make up the diffracted signal. At the
same time the points on the Ewald sphere correspond to Fourier components of the object. Because the
Fourier transform of the object is shifted by k0 ⇀

w, the Fourier components of the object on the Ewald sphere
are orthogonal to the bisector between the incoming wave vector and the wave vector of the diffracted
wave. Therefore we can see by geometric construction, that the corresponding spatial frequencies need to
satisfy Bragg’s law:

λ = 2d sin(θ) (114)

With θ being the Bragg angle equal to half the angle of diffraction, see figure 10b.
Bragg’s law can also be shown in real space. Assuming a source and detector far away, the path length

difference between two paths of light diffracted at the object and observed at one point is asymptotically
equal on all planes orthogonal to the bisector of illumination and diffraction, because the path differences
form an isosceles triangle, with the two equal sides being the path difference once before diffraction and
once after. The phase difference between two paths can therefore be derived from any two points on
different planes, for example the two pine-green planes in figure 10a. If we choose the points to be as close
as possible on the two planes, like in the figure, one can easily see that the path difference for parallel
incoming and diffracted beams is equal to 2d sin(θ). For the maximum constructive interference between
multiple parallel planes with the same distance, the path difference must be a multiple of the wavelength,
and Bragg’s law follows.
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(a) Bragg’s law in realspace: Radiation reflects on planes (Fourier components) within the object. When the distance
between the planes d, the diffraction angle 2θ and the wavelength λ satisfy Bragg’s law, diffraction from all parallel
planes are in phase and maximal. The incident and diffracted beams are drawn with red and blue sections corres-
ponding to the positive and negative swings of the wave.
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(b) Bragg’s law in Fourier space: The difference between the incident wave vector and the diffracted wave vector (both
with length reciprocal to the wavelength λ) corresponds to a distance d in the object. The incident and diffracted
wave vectors form a equilateral triangle and therefore the length of the base is given by Bragg’s law. Green’s
function is stylized with a red and blue double-struck line corresponding to the pole at |⇀q| = λ−1, similar to
figure 9.

Figure 10: Geometry of Bragg’s law in real space and reciprocal space.
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5.7. Wavefunction Collapse

The only bit of quantum theory we cannot do without is the quantization of electromagnetic radiation into
photons. Matterwaves aremore obviouslymade up of quanta, like electron radiation and neutron radiation,
and the Fourier diffraction theorem is an even more applicable approximation in that case, as matter waves
are usually not polarized. But electromagnetic fields are quantized too. Quantum theory starts with the
observation, that the difference between energy levels stored in oscillations fundamentally is quantized.
And equivalently, waves can transfer energy only in quantized amounts. The unit of energy per oscillation
is Planck’s constant. This is hardly of any consequence in the previous analysis and especially for the
result. But it has obvious consequences in any measurement of the diffracted field. When the field is
observed, the observations require energy transfers, which come in the form of photons. The conversion
between wave function and observation probability is the squared amplitude of the wave, just like the
energy in a harmonic wave is proportional to its amplitude squared. This is called wave function collapse,
because the wave function corresponding to this quantum ceases to exist, or rather is converted into a
new state corresponding to the observation. Each observation is statistically independent from others,
apart from the shared probability of observation. From an experimental point of view this means that
the number of photons observed follows a Poisson distribution, which, not incidentally, is the minimum
entropy distribution for a non negative integer variable with given expected value. From the observed
photon counts and positions, the squared amplitude of the former wave function, that now has collapsed,
can be inferred. But crucially, this means that without time resolution higher than the frequency of the
waves, the phase is not observed directly.

5.8. Polarization Correction

We now have a scalar approximation for diffraction, but neglecting the term ∇
(

⇀

E∇ · log ϵ
)

going from
equation 98 to equation 99 did introduce some distortions. Neglecting it allowed us to treat all three com-
ponents of the vector independently as a scalar each. However, the components are not completely inde-
pendent, and electromagnetic waves are not a scalar quantity either. Some sound waves that propagate
differences in pressure are scalar, but electromagnetic waves propagate directional electromagnetic fields.
A change in the direction of the propagation of the electromagnetic field is not equally favorable in all
directions. The orientation of the electromagnetic field is the polarization and the effects and distortions
introduced by neglecting the vectorial nature of the fields are polarization effects. These effects can usually
be accounted for, with a term for polarization correction depending on the diffraction geometry and the
polarization only.

Radiation of any mixture of polarizations can be decomposed into orthogonal components. Therefore
let us first consider radiation that is perfectly polarized. All charges that can be polarized are polarized
to some extent by the electric field. The change in polarization in turn leads to secondary radiation. The
exact interplay is given by the electromagnetic wave equations (93, 94), but for the polarization factor it is
sufficient to look at the induced radiation from a single charge in isolation. An oscillating charge radiates
like a dipole antenna, only the component of the radiation orthogonal to the oscillation can propagate,
therefore the amplitude of the radiation depends on the angle between the two like the sinus of the angle
between them [49, Chap. 6.2, 50, equation 45]. Another way to express this is to subtract the component

45



of the inducing field vector
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E0 that is collinear with the direction of secondary radiation ⇀
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By manipulating the expressions for the intensity of the resulting field
∣∣∣⇀Es

∣∣∣2, we get:
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Going back to the idea of decomposing any mixture of fields into orthogonal polarized components, we can
define a variable p to be the degree of polarization of the incident field and⇀

n the normal vector to the plane
of maximum polarization (containing

⇀

E0 for a single component). Then, by adding the scattered signal of
both components, we get:

C (p,
⇀
n,

⇀
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⇀
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(
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)2)

+ (1− p)
(
1−

(
⇀
w⊤

out
⇀
n
)2) (116)

And with this we have sufficient approximations for diffraction in crystallographic experiments. If any-
thing, the level of detail is too great. Here the source and object were treated as arbitrary and abstract, in
section 6.9 they will be approximated.
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6. Structural Crystallography

Structural crystallography is one of the most prolific methods of determining macromolecular structures.
As alluded to in the introduction, themolecular structure is uniquely informative for chemistry and biology.
But all measurements have associated measurement errors and some cannot be avoided. The better the
experiment and the associated errors are understood, the less expmerimental data will be needed to draw
conclusions from it; up to a certain limit. Data processing nearly reaches the theoretical limit in some cases,
but in others it is still far from it. In the following, after introducing structural crystallography in general,
all steps of the data processing are revisited to identify possible improvements. Small advancements are
described in section 6.6 that were achieved by comparing estimators that are less affected by outliers in
detail. An incrementally better way to model the electronic structure of atoms is presented in section 6.7.
Themost significant contribution is the reduction of required diffraction data achivedwith an approximated
diffraction model, presented in section 6.9.

Using the latest and most powerful radiation sources, diffraction signals from nanoparticles are already
sufficient [51], but diffraction from single macromolecules still is too weak by some orders of magnitude,
even while free-electron-lasers are getting more powerful. Unordered arrangements of identical macro-
molecules at best provide a radially averaged signal, but crystals are ordered and provide structural in-
formation and diffraction strong enough to be measured. Structural crystallography therefore needs to
first produce crystals from the macromolecules, which is an art in itself, and then expose the crystals to
radiation. The radiation diffracts at the crystal and the diffraction signal carries the structural information.
For details on how the structure relates to the diffracted signal see the Fourier diffraction theorem (equa-
tion 111) and its derivation, but in short, the diffracted intensities are directly proportional to the Fourier
Amplitudes squared of the object. This is why the Fourier coefficients of the object are called structure
factors. For the short wavelengths needed for sufficient resolution of structural details, methods for meas-
uring phase information directly are not available. Only intensities can be observed, which are equal to the
amplitudes of the wave function squared. There are ways to reconstruct or substitute the phase inform-
ation, see section 6.5.6. Together, amplitudes and phases determine the variation of the refractive index
of the of the object, by way of the inverse Fourier transform. For electromagnetic radiation and electron
beams, the refractive index depends on the electron density, while for neutron radiation, it depends on the
nuclei themselves.

6.1. Crystals

Crystals are objects that have spatially ordered structures so that their Fourier transforms are sparse. For
almost all crystals this means, that they can be thought of repeating building blocks in three dimensions.
The vectors, whose integer linear combinations translate the building blocks to the periodic positions, are
the unit cell vectors. The unit cell vectors are often unimaginatively called ⇀

a,
⇀

b and ⇀
c. Together they

form the basis of the unit cell matrix U . In addition, the building blocks can have internal symmetries.
The minimum volume, that is needed to reconstruct the crystal using these internal symmetries and the
lattice translations, is the asymmetric unit. Structural crystallography aims to determine the structure of
crystalline compounds, by determining their symmetry and asymmetric unit using diffraction.
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6.2. The Laue Equations

The Laue equations can be seen as an idealized form of the Fourier diffraction theorem (equation 111).
Crystals with perfect three-dimensional periodicity have Fourier transforms with non-zero coefficients
only for spatial frequencies at integer fractions of combinations of the unit cell vectors. Any other spatial
frequencies are not aligned with the periodicity of the crystal. For planar incident waves this means that
the difference between the diffracted and the incident wave vector must align with an integer multiple of
the unit cell matrix, if diffraction is to be observed in this idealized experiment, see the Ewald construction
in figure 9. This set of relations is expressed by the Laue equations (here in matrix form):

U∆
⇀

k =

hk
l

 (117)

The integer vector (h k l) is called the Miller index. Each structure factor can be addressed with this unique
integer triplet. Given the unit cell parameters, initial crystal orientation and experimental geometry, the
equation can be rearranged, to give the crystal orientation and the point on the detector where a given re-
flection can be observed most intensely. Conversely, for a random orientation of the crystal, the probability
of any reflection (except the direct beam) to satisfy this diffraction condition is zero because the integer
indices on the right side of equation 117 are an infinitesimal subset of the attainable rational vectors on the
left side. Experimentally however, there is a neighbourhood close to the ideal diffraction condition where
diffraction can be observed at reduced intensity even though the Laue equations are not satisfied. Not
knowing which reflections will be observable for a given orientation and how intensely, is known as the
partiality problem [52]. Section 6.9 will introduce a way to estimate that neighbourhood and the reduction
in intensity, thereby addressing the partiality problem computationally.

6.3. Rotational Crystallography

In conventional rotation measurements each crystal is rotated, exposing it to the beam over a wide range
of orientations, while integrating the diffraction over small angular wedges. Under those circumstances
the Laue equations have been sufficient approximations for the diffraction condition. The rotation ensures
that almost all reflections within the observable resolution range of the diffractometer will reach their
optimum at some point during the rotation and can be fully recorded, thereby circumventing the parti-
ality problem. The process of calculating any or all aspects of diffraction patterns (peak position, shape,
intensity or full diffraction patterns), given unit cell parameters and experimental geometry is called “pre-
diction” in the context of macromolecular crystallography data processing. For monochromatic rotational
crystallography the deviations between measured and predicted peak positions are usually small, except
for reflections whose reflection condition is not affected significantly by the rotation. (Those few measure-
ments are typically discarded.) The rotation of the crystal during the exposure about a known axis and with
a known angular increment acts as a strong constraint for parameter estimation during the processing of
rotational crystallographic data. Using this information, the intensity of a reflection can be integrated and
corrected to yield the corresponding squared structure factor amplitude.
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6.4. Information Content in a Crystallography Experiment

Aside from the unit cell dimensions with almost negligible information content, the information we are
after is in the expected intensity of the structure factors. The structure factors carry the structural in-
formation. Viewing the object as a three-dimensional periodic function, the Laue conditions precisely
allow sufficient sampling, as introduced in section 4. However, when observing squared amplitudes only,
the number of constraints is halved, making structure determination from crystal diffraction inherently
dependent on prior or supplementary information. This conclusion will differ in section 7 on continu-
ous diffraction. Typically, the atomic composition, connectivity and bond lengths and angles, is the prior
information. Nevertheless it can be interesting to know how much information can be found in an exper-
iment. Knowing that the molecules are made up of atoms, but not knowing where the atoms are and how
well ordered the molecules are in the crystal, we know that each structure factor not constrained by sym-
metry follows a Gaussian distribution, because it is the sum of a relatively large number of values with finite
variance. The amplitude squared of a complex Gaussian random variable is the sum of two independent
Gaussian variables squared, and therefore distributed as an exponential distribution, which follows from
the χ2-distribution (equation 22). This argument was first presented in Wilson [53] and is since known
also as the Wilson distribution. With this assumption about the prior distribution we can calculate the in-
formation gained using the Kullback-Leibler-divergence between the prior and the posterior distribution.
For a step-by-step calculation, see appendix F, but for now suffice it to say that a typical observation with a
signal-to-noise ratio of 10 will yield an information gain of about 3 bit, and an exceptionally well observed
intensity with a signal-to-noise ratio of 50 will yield about 5 bit. Thus, the typical information content of
a macromolecular crystallography experiment is on the order of 1MB.

6.5. Common Crystallographic Data Processing Procedure

There is no necessity to process crystallographic data in any particular way, but the following procedure
has proven to be a successful framework against which any new method is measured. The data processing
starts with diffraction images and ends with a set of phased structure factors and a model structure. The
detectors need to be calibrated, then, to determine the unit cell and orientation of the crystal, the reflections
are indexed. Using the indexing solution, the reflections are integrated. Multiple observations of the same
structure factor amplitude squared are merged into a single estimate and the missing phases are determined
in the phasing step. The last step is the structure refinement, where a structural model is optimized to fit
the observations as well as possible. In the following, the individual steps of this protocol will be explained
in more detail.

6.5.1. Detector Calibration

Diffraction detectors measure signal strength as a function of position. The position should be well de-
termined and the way the signal of the detector depends on the diffraction signal should also be known.
Detector calibration is the process of determining the relation between detector signal and measured signal
and it is conceptually the first step in crystallographic data processing, even though one might return from
a later step and start over with amore precise expectation of the diffracted signal. And although some argue
that detectors should be well calibrated from the factory, in practice this hardly ever is the case, except for
single-photon counting detectors. Several types of detectors are in use for crystallographic experiments:
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direct indirect
electronic photochemical film phosphor screen + camera

integrating photon counting (naturally integrating) (naturally integrating)

Table 5: Classification of the detector types commonly employed in crystallography.

Most common are single-photon counting detectors, that detect photons one-by-one sequentially using
a pixel array of electrical sensors with threshold circuits. These detectors are popular because they have a
high signal-to-noise ratio, high quantum-efficiency, and typically do not requiremuch calibration after their
initial calibration. They are, however, not suitable for fast serial crystallography experiments, because the
threshold circuit takes longer to reset than each exposure, that way each pixel would saturate at one count
[54]. Serial femtosecond crystallography uses electronically integrating detectors. The photons interact
with the sensor material and release electrons, the total current is then read out at the end of the exposure
and converted to a digital signal.

No matter which detector, there is usually some level of detector calibration involved in the crystal-
lographic data processing pipeline, but the unique combination of precision and variability that can be
corrected for, integrating detectors often can profit most from calibration efforts. A common way to calib-
rate these detectors is using reference signals and using histograms, the latter approach will be addressed
in section 8.

6.5.2. Peak finding

The sparse Fourier transform of crystals leads to sharp peaks on the diffraction images in typical crystallo-
graphic experiments. This is used in the peak finding step. Simple image recognition algorithms are used
to detect peaks, by estimating the noise level of the background and classifying pixels into foreground and
background. Contiguous areas of foreground, if not too large, are typically coalesced into a single peak, of
which the integrated intensity and center of mass is reported [55, 56, 57].

6.5.3. Indexing

In the indexing step, indexing algorithms find the smallest unit cell that can explain as many of the peaks,
found in the peak finding step, as possible. Indexing algorithms typically use autocorrelations, Fourier
transforms [58], and in challenging situations with known unit-cell parameters with an exhaustive search
for the unit-cell orientation becomes feasible through a rotation space transform, discretization and his-
togram approach [59]. Several orientations of the unit cell can explain the same peak locations but with
different peak intensities in some space groups. When these indexing ambiguities arrive, they can be re-
solved automatically in most cases, using clustering [4]. If they cannot be resolved, the complete dataset
will be twinned, which reduces the contrast and information content of the dataset.

6.5.4. Integration

Using the indexing solution, an expectation of the diffraction pattern is formed, the prediction. The intens-
ity at the expected positions and potentially along images in the rotation is summed up and the background
is estimated from the surrounding area. Typically, the integration area is circular or rectangular, and the
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background is estimated in a belt around said integration area. The estimated background level is extrapol-
ated to the foreground area and then subtracted from the foreground sum. The standard deviation of the
integrated intensity is formed by the sum of the extrapolated background error, estimated from Poisson
photon noise and potential excess variability, and the Poisson noise of the foreground sum.

6.5.5. Scaling and Merging

The scaling step determines the scaling factors, that bring the observations from different crystals under
different conditions on a common scale. Merging takes the observations and scaling factors and produces
an estimate for the structure factors. A closer look at merging can be found in section 6.6. Each crystal
can potentially be larger or smaller than the others. Each time the experiment is repeated, the source could
fluctuate in intensity and the crystal could be aligned better or worse with the focus of the beam. Whatever
it may be, it is very common, that the observations with the same indices between two experiments are
related by a linear scaling factor, because the effects just described increase or decrease the intensity of
all reflections in each image equally. The diffracted intensities in the peaks is proportional to the modulus
square of the Fourier transform of the average electron density in the unit cells. If the unit cells differ from
one to the other in a uncorrelated manner, the average electron density appears smoothed.

The Debye-Waller factor describes the apparent smoothing of the electron density ρ (⇀x), caused by
disorder in the crystal, has on the measured intensities I (⇀q). The smoothing can be approximated by
the convolution with a three dimensional Gaussian distribution, with the expected squared displacement
correlation matrix B:

ρ (
⇀
x) = ρ0 (

⇀
x) ∗ exp

(
−1

2

(
⇀
x⊤B−1⇀

x+ log (|2πB|)
))

(118)

The measured signal intensity therefore appears dampened [60]:
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This dampening factor is called the Debye-Waller factor or B-factor.

6.5.6. Phasing

Because phases are not directly available experimentally, but essential for the Fourier inversion, a multitude
of alternatives has been invented. Molecular replacement uses the phases of another structure, and if its
structure is sufficiently similar to the one of interest, the resulting electron density is sensible enough to be
interpreted as the density of the new molecule. Direct methods use diffraction data with very high resolu-
tion and the prior information, that the electron density is essentially sparse at this resolution, because the
electron density of atoms forms a sharp peak around the core. Under these conditions the signal strongly
overdetermines the atomic structure, which enables direct methods [61, Chap. 16], among which iterat-
ive projection algorithms, like it is the case for diffuse diffraction in section 7 and multiple crystal forms
[62]. Single anomalous diffraction (SAD) and multiple anomalous diffraction (MAD) exploit the behaviour
of certain elements at certain wavelength to significantly shift the phase of the scattered wave when the
wavelength is close to resonance. This phase shift breaks the point symmetry of the diffraction signal in
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a predictable way that depends only on the position of the anomalous scatterers. When the anomalous
scatterers are sparse enough and the signal accurate enough to resolve the small anomalous differences
between point-symmetry related structure factors, the anomalous signal again is clearly overdefined and
algorithms exist to automatically find the likely positions of the scatterers. The known positions then often
restrict the phases of all structure factors enough, to produce an electron density estimate sensible enough
to recognize more and more parts of the molecular structure.

6.5.7. Structure Refinement

Given an initial guess of themolecular structure, the atomic coordinates are varied, their averagemovement
might be estimated, and unordered solvent is modeled, to maximize the correspondence of the computed
structure factor amplitudes of the model |Fc| to the observed structure factor amplitudes |Fo|. The electron
density of molecules is approximated e.g. with Cromer-Mann coefficients, because calculating the electron
density of molecules from first principles is very compute intensive and more precise than necessary. A
closer look on the Cromer-Mann coefficients can be found in section 6.7.

6.6. Merging in detail

In the following, several steps of the crystallographic data processing pipeline are going to be revisited in
more detail, starting with merging. As introduced in section 6.5.5, the goal of merging is to estimate the
squared amplitude of each structure factor given a set of observations of said quantity. Each observation of
a reflection, whether partial or integrated over a range of rotations, has an associated error estimate, first
given by the photon counting statistic and the background variance around the peak, and then possibly an
improved estimate given by an error model [63, 64]. If the experiments were perfectly reproducible and
the only or predominant source of noise was the photon counting statistic, the unweighted average of the
observed intensities would be a good estimator. Each observation would stem from the same Poisson dis-
tribution and have the same variance, therefore equal weighting is the only sensible choice. The variance
of the average would be the sum of all photon counts divided by the number of observations, because the
sum of independent Poisson variables is another Poisson variable. For non-scaled observations, these con-
ditions are mostly met, and the unweighted average has worked fairly well. From a Bayesian perspective,
the distribution parameter of the Poisson distribution can be inferred by multiplying the prior distribution
and the likelihood functions of the independent observationsXi and then normalizing the product if neces-
sary. The result is a gamma distribution with shape parameter α = 1+

∑N
i Xi and rate parameter β = N ,

if the prior for the distribution parameter λ is the improper uniform prior in the open range [0,∞). If we
instead follow Jeffreys reasoning to an improper prior proportional to λ− 1

2 , the shape parameter would be
given by α = 1

2 +
∑N

i Xi.
When the experimental conditions cannot be controlled as precisely, each observation will have a dif-

ferent variance and will need to be multiplied with a scaling factor to bring them all to a common scale.
For example in one setting the beam may be half as strong, so all observations will need to be scaled by
the factor two and the variance of these observations will be four times as large. Once the observations
are scaled, an unweighted average is not appropriate any more. Scaling an observation with a factor scales
its associated variance with the same factor squared. The weights that minimize the variance of the mean
of samples with different variance are inversely proportional to the variance of each sample. Assuming
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observations Xi, corresponding variances σ2
i and scaling factors ai, the weighted mean is:

∑
i

aiXi

a2iσ
2
i∑

i a
−2
i σ−2

i

=

∑
i

Xi

aiσ2
i∑

i a
−2
i σ−2

i

So far everything is fairly consistent. A large scaled observation has proportionally more weight, as it
should be. Two problems arise from the estimation of the variances. The distribution parameter is un-
known, and so the variance has to be inferred from the observation just like the distribution parameter. If,
as it is usually done because it is most convenient, the variance is estimated for each observation individu-
ally, the variance estimate could be zero, because even for a non-zero flux, observing no photons is possible.
But zero variance breaks the weighted mean estimator, the weighted mean would always converge to zero
eventually. Thus, the previous Bayesian reasoning serves as the justification for adding one photon count
to the variance estimate (x+ 1 instead of x).

However even then, observations that are larger
just by chance have a systematically larger and too
high variance estimate and vice versa for observa-
tions that are smaller just by chance. This biases the
result to smaller values by about one photon count,
see figure 11. For the most part, crystallography ac-
cepts this bias to keep the parallel and unidirectional
nature of data processing, because the bias is usually
small compared to the number of photons observed
and the other sources of noise. A solution would be
to update the variance estimate with the new expec-
ted intensity after merging. The other components
of the variance estimate of each observation are the
photon noise of the background, other background
noise and detector readout noise. Because of these
other sources of noise, the photon count can some-
times appear to be negative and a common fix is us-
ing the absolute value instead (1 + |x|).
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Figure 11: Highlighting the bias introduced when
using the Poisson variance estimate 1+x
for weighted averaging. The graph shows
the weighted mean of random values that
were sampled from a Poisson distribu-
tion as a function of the distribution para-
meter as black dots. Without bias the
mean values would cluster around the red
line, indicating the ground truth of the
numerical experiment.

To show the behaviour of different merging algorithms with experimental data, a typical dataset with
very abundant observations was chosen, to investigate the rate of convergence using subsampling. A good
merging algorithm is one that produces most similar estimates from different subsamples of the observa-
tions of the same structure factor, but a dissimilar estimate from a subsample of the observations of another
structure factor. However, this is not a definitive measure, just an approximation, the only real measure
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(a) Observed intensities and their standard deviation.
As can be seen the standard deviation is at least pro-
portional to the square root of the intensity due to
the Poisson photon counting statistic.
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(b) Scaled observations and the corresponding standard
deviation that is corrected with an error model.

Figure 12: Data for the reflection (0 0 16) in the A2a dataset before and after scaling. This is a typical
distribution of observations with estimated variances, except for the extreme abundance of ob-
servations, which is the reason why it it was chosen.

crystallographers will accept is how well the merged structure factors can be interpreted as the result of a
modelled molecular structure [65]. On the other hand, investigating the convergence rate of different mer-
ging algorithms allows a more informed search for a better merging algorithm. Experimental data deviates
from the previous assumptions, which is why it is worth to try different approaches, and see how they
behave in detail when there are values that are not likely explained by photon counting noise or similar
expected phenomena.
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(a) Merging of raw data.
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(b) Merging of scaled data.

Figure 13: Comparison of the four fundamental merging strategies in (a) for measured intensities, with
errors estimated from background subtraction and photon counting noise, and (b) after scaling,
partiality correction, and applying an error model.

The previously discussed bias is much worse when merging raw data using inverse variance weights,
because the observations (partially recorded reflections) do not follow a Poisson distribution, not even
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approximately. The distribution is much more similar to an exponentially modified Gaussian, and so there
are frequent values with low intensity and low variance estimates, which biases the weighted estimates
towards zero. Even though the weightedmean is themost consistent estimate in figure 13a, the unweighted
mean typically gives better agreement with model structures during structure refinement, because the
weighted estimates are compressed towards zero for all structure factors.

After scaling, partiality correction, and error modelling, there are frequent extreme outliers in the data-
set, because the partiality estimates are often close to zero. For estimation of the full intensity, that is
to correct for the partial nature of each observation, one would have to divide by the partiality estimate,
thereby frequently creating extreme values, see figure 12b. Most extreme outliers have associated error
estimates that reduce their impact in weighted merging strategies, but more robust strategies still have a
lower variance of the result, because not all outliers have a proportionally large error estimate. This is why
for scaled data, the histogram of the unweighted means could not be displayed in figure 13b, the estimator
is too inconsistent. The median, because it is more robust, is slightly better. The weighted mean suppresses
the outliers with a high variance estimate and is a fairly good estimate. The weighted median suppresses
the high variance observations and it is very robust. Together, this makes it the most consistent estimator
out of the four.

There are countless more advanced ways to estimate structure factors from diffraction measurements,
but three are especially relevant for different reasons. Firstly, the median-of-means (a simplified instance
of random subsample consensus), secondly, a recursive weighted average with a cutoff based on standard
deviations, both of which are well-known techniques, and thirdly, a maximum-likelihood estimate based
upon a mixture model, included because it fits into a more extensive maximum likelihood modelling ap-
proach. As discussed in sections 3.5 and 3.7, the mean is the most efficient estimator for square integrable
distributions, and the median has a larger variance, but is robust as long as less than half of the samples
are outliers. The median-of-means allows us to interpolate between the two, trading off some robustness
for greater efficiency. Median-of-means computes the median of several means of random subsamples.

Figure 14: Comparison of advanced mer-
ging algorithms that try to com-
bine robustness and efficiency.
The maximum-likelihood es-
timate is for a mixture model
with aGaussian foreground and
a Cauchy outlier distribution.
The median of means is the me-
dian of size 16 subsamples.
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Figure 14 shows the median of subsamples of size 16, which happens to be a good compromise here.
The size of the random subsamples is a hyperparameter, a parameter of the algorithm itself. Assuming
the samples are either outliers or not, as an abstraction, there is a fraction of outliers ϵ. The plain median
would be robust up to a fraction of 1/2, but a single outlier will contaminate the mean. Therefore the
optimal hyperparameter of the median-of-means is the size where the mean is computed from as many
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samples as possible while statistically only half the subsamples contain an outlier, which is achieved with
a subsampling-size just less than (log2 (1− ϵ))

−1. By that logic a subsampling-size of 16 corresponds to
an outlier fraction of 4.2%. The recursive σ cutoff merging algorithm computes the mean and variance,
in this case using the weighted versions, then excludes all samples that deviate more than a multiple of
the standard deviations from the mean and the mean and variance are updated. This process is repeated
until the set of samples does not change any further. The multiple is a hyperparameter, it can be be chosen
to be any positive number, determining the trade-off between efficiency and robustness. Given an outlier
fraction ϵ, a multiple of

√
2 erf−1 (ϵ− 1) includes the (1− ϵ) most central samples without including the

ϵ most extreme values. The commonly chosen multiple 3 corresponds to an assumed outlier fraction of
0.27%. The maximum likelihood estimator maximizes the following probability p(x) for all observations x
using their variance estimate σ2 by finding the optimal µ:

p(x) = (1− ϵ) exp
(
1

2

(
(x− µ)2 σ−2 + log

(
2πσ2

)))
+

ϵ

π (1 + x2)
(119)

It is a mixture distribution of a Gaussian and a Cauchy distribution for the outliers with proportion 1/16.
This estimator was included because a very similar target will be used later. All four algorithms compared in
figure 14 performed fairly well. What is essentially just one data point is not sufficient to draw a conclusion
when the difference is so small. Nonetheless the weighted median appears especially favourable, because
it does not introduce a hyperparameter that needs to be determined first.

6.7. Cromer-Mann Coefficients

The Cromer-Mann coefficients are an approximate description for the electron density of atoms, and there-
fore play an important role in structure refinement (section 6.5.7). The electron density around atomic
nuclei is mostly spherically symmetrical, because the electrostatic potential of the positively charged nuc-
leus itself is spherically symmetrical. Atomic and molecular orbitals are just small nuances on top of this
general trend. Taking the hydrogen atom as the most simplistic example, it can be derived analytically
that the electron density in the ground state is exponentially decreasing with the distance from the nuc-
leus. Experimental observations are in good agreement, however they show a slightly smoother electron
density because of atomic movement and experimental limitations. Atoms with more electrons have a
more varying radial distribution. To model electron densities and diffraction on an atomic scale, there is
the need for computationally efficient approximations. Due to ever present measurement errors, the re-
quirement for precision of the model is moderate and approximations are acceptable when they are more
easy to work with. Cromer and Mann have noted, that the electron density of all atoms in all states can
be described well with the sum of four Gaussian functions and a constant offset [66]. The coefficients of
this fit are know as the Cromer-Mann coefficients. This is especially convenient, as Gaussian functions
have analytical Fourier-transforms and derivatives. This approach is commonly employed when modelling
the electron density and diffraction of molecules. The Cromer-Mann coefficients are mostly sufficient and
have seen wide adoption, but there are three aspects that can be improved. Firstly, the constant offset is not
required for a good fit and it implies a δ−peak of the electron density at the core of the atom, which is un-
physical, but more importantly, slightly inconvenient to render onto a discrete grid. Secondly, some of the
variances as tabulated in IUCr [49] are negative. This means that the electron densities, that usually can be
derived by Fourier transforming the Gaussian model, are not defined in this case. One of the visually most
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Figure 15: Tabulated scattering factor
of hydrogen atoms [49, table
6.1.1.1] as a function of the
reciprocal space distance, in
black dots, fitted with the sum
of four Gaussian functions. In
red, minimizing the logarithmic
target in equation 120 and in
blue, according to the tabulated
parameters[49, table 6.1.1.4]
minimizing squared deviations.
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offending cases in this regard is the fit of the singly charged oxide ion, see figure 17. Thirdly, the tabulated
fit is the result of the minimization of squared deviations. On the surface, this seems like the sensible thing
to do, because minimizing squared deviations in real space also minimizes squared deviations in Fourier
space and the other way around. Since the Fourier transform is linear, the transform of a signal with noise
is equal to the sum of the transform of the signal and the noise individually. If the errors are uncorrelated
and uniform, the Fourier transform will be uncorrelated and uniform. And according to Parseval’s theorem
the sum of squared errors in the Fourier domain are equal to the sum of squared errors of the signal. There-
fore, an approximation minimizing squared errors minimizes (here only approximately because of uneven
sampling) the squared errors of the approximation in the Fourier domain. But in practice, measurement
errors are often proportional to the square root of the signal or even proportional to the signal instead of
being constant. Small errors of a small signal often are more significant than the same error of a large
signal. And this is why a new set of coefficients were derived by a constrained optimization procedure
using the least squares fit of gnuplot, supplying it with relative errors. A small offset was added to avoid
infinite weights for intensities approaching zero. Similar to the model of the Cromer-Mann coefficients,
the tabulated scattering factors were approximated as the sum of four Gaussian functions, but without a
constant offset. Each Gaussian function is multiplied by a factor ai and scaled along x = 2λ−1 sin(θ) with
a parameter bi.

a1 b1

a2 b2

a3 b3

a4 b4

 = argmin
a1,b1,a2,b2,a3,b3,a4,b4

∑
j=1

yj −
(∑4

i=1 ai exp
(
−2π2x2b2i

))
ϵ+ |yj |

2

(120)

The scale parameter of the Gaussian is naturally constrained to lead to positive variances because it appears
squared in equation 120. Since the sum of the coefficients ai is physically constrained to the number of
electrons of the atom, the sum should be constrained in the optimization procedure also. The method of
Lagrange multipliers exists for general constrained optimization problems, but in this specific case the
parameters can be transformed as to eliminate one variable and make the constraint implicit. A suitable
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parametrization that fixes the sum of ai to s is the following:

a1 =
(s
4
+ a′1 + a′3

)
a2 =

(s
4
− a′1 + a′3

)
a3 =

(s
4
+ a′2 − a′3

)
a4 =

(s
4
− a′2 − a′3

)
Thenewly derived coefficients can be found in appendix H.Theywill prove useful in section 7 for modelling
and optimizing the electron density of molecules, and the concept of using Gaussian functions as a basis
will reoccur in section 6.9.

Figure 16: The electron density of a hy-
drogen atom projected onto an
axis through the core. In
black the solution of the non-
relativistic Schrödinger equa-
tion [67, table 21–3], in red the
Fourier transform of the logar-
ithmic fit of the four-Gaussian
model to the tabulated scatter-
ing factor [49, table 6.1.1.1] and
in blue the Fourier transform of
the tabulated fit. Note the δ-
peak at 0 – a result of the con-
stant offset of the tabulated fit
[49, table 6.1.1.4]. 0.0001
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Figure 17: Tabulated scattering factor [49,
table 6.1.1.3] of singly charged
oxygen ions as a function of
the reciprocal space distance
in black and the corresponding
tabulated fit [49, table 6.1.1.4]
in blue and the new fit in red.
Mind the logarithmic scale on
the y-axis, visualizing relative
deviations.
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6.8. Serial Crystallography

In the last decades, methods have been employed in the field of macromolecular crystallography, which,
for various reasons, deviate from the rotational crystallography setup in significant ways. Themost notable
among these methods is serial crystallography, where crystals are measured only once and consequently
many crystals are needed for a complete dataset [68, 69]. An important subclass is serial snapshot crystallo-
graphy, where the crystals are illuminated without rotation. Without the rotation it becomes indispensable
to consider not just the ideal diffraction condition, but the partial intensity that can be observed when close
enough to the ideal diffraction condition. We know there is a steep fall off of intensity with deviation from
the exact condition in a monochromatic experiment with well ordered crystals. This steep fall off makes it
easy to define a small range that contains almost all observations of the same structure factor and hardly
any observations of anything else, even without knowing the shape of the fall off. Computing the average
of these observations with unknown partiality is called Monte Carlo integration in the context of serial
crystallography. It has been used to work around the problem of unknown partial intensities with great
success [70]. However, for the Monte Carlo integration to converge to an average with a small standard
deviation, each reflection needs to be measured multiple times. This approach assumes that the partialities
follow the same distribution, with finite first and second moments, for all reflections of a given resolution
shell. From this assumption it follows that the average converges to a value proportional to the non-partial
intensity, similar to integrating line profiles in powder diffraction.

The development of new methods has not stopped there however. Serial snapshot crystallography has
since been carried out with polychromatic, or so-called pink beam sources [71], electron beams [72] and
mosaic crystals. More exotic experiments are surely already planned. In these more general cases the
Laue equations are not sufficient, because inaccurate predictions of the peak positions and elongated peak
shapes cannot necessarily be overcome by just measuring several times more data to make use of Monte
Carlo integration. The Laue equations assume point-like peak shapes. In monochromatic experiments the
peaks are narrow and compact, so small integration radii or boxes are typically employed, and the Laue
equations are sufficient. But when two or more different and equally significant distributions are at play,
elongated peak shapes can be observed.

Figure 18 depicts the distributions that are assumed to be relevant and their effect on the diffraction
geometry. In polychromatic experiments the distribution of wavelengths, of which the width is called
bandwidth (pink arrows), together with a distribution in crystal orientation, called mosaicity (brown ar-
rows) can lead to elongated peak shapes. The other relevant distributions affecting the diffraction are the
size and shape of the crystal (reciprocal peak size in green), convergence (or divergence) (red arrows) of the
beam, and different strain (cyan arrows) throughout the crystal (that is a variation of unit cell parameters
throughout the crystal volume). Once there is more than one relevant distribution, the exact location of
the peak on the detector can no longer be determined solely by rearranging the Laue equations.
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Figure 18: The geometric construction used to generate the covariance matrices of the distributions of dif-
fractive power in reciprocal space and the volume probed by an incident beam. The arrows
indicate the components, akin to error bars, that the different distributions contribute to the
covariance matrix in a 2D cut. The same contributions have a different effect on kin, ∆k and
kout, and where they have an effect they are indicated with the same color as where they were
introduced. Also compare figure 9

6.9. Gaussian Partiality Modelling and Diffraction Prediction

As alluded to, serial crystallography could profit from a model describing diffraction from crystals in more
detail than the Laue equations, but more directly than the Fourier diffraction theorem. If partialities could
be estimated, their influence on the merged estimates would not have to be marginalized with so many
observations, but it could be corrected for, which would increase the amount of information that can be
gained from each diffraction image, which can also be seen in the much faster convergence of the estimates
during merging of corrected observations (compare figure 13a and 13b).

6.9.1. Previous approaches

The earliest approaches to dealing with partially recorded reflections relied upon the redundancy afforded
by rotation experiments, which makes them unapplicable in serial crystallography. Under those conditions
the partiality as a function of the crystal rotation can be reconstructed as a smooth function, because
it is overdetermined by the diffraction data. And using the reconstructed profile, the partially observed
reflections can be corrected [73, 74, 75].

An early approach in dealing with partial reflections that can be applied to single diffraction patterns
[52] assumed reciprocal peaks to be spheres. While the diffraction process is modelled similar to the earlier
approaches with the intersection of these small spheres with the Ewald sphere, here the rocking curve
is determined entirely by the intersection of the Ewald sphere with the reciprocal lattice spheres. The
reduction allows us to use thismodel even for single diffraction patterns. T. J. Greenhough and J. R. Helliwell
continued this approach and have generalized it to ellipsoidal shapes [76, 77, 78]. Andrews et al. [79]
showed that this approach can even be applied to Laue diffraction (with very high polychromaticity). The
model of Rossmann et al. was generalized by Ginn et al. [80] with a super-Gaussian distribution of Ewald
spheres given by the distribution of wavelengths and incidence angles, requiring a numerical integration
that is efficiently implemented in CrystFEL [81] as the partiality model xsphere. This model has 11 free
parameters per crystal in total: 9 for the unavoidable unit cell matrix and one each for the mosaicity radius
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and the profile radius.

Holton et al. [82] modelled the most relevant contributions, save the crystal shape transform, based on
the principles layd out in Greenhough & Helliwell [83] and Winkler et al. [75] (modelling mosaicity with
the intersection of a disk with the Ewald sphere). They also used Gaussian basis functions, but instead of
analytical integration of the different distributions, they computed numerical integrals to combine different
effects with automatic sampling. No attempt to match measured diffraction data with the proposed model
was described, on the contrary the message of the publication was the “untapped potential” that should be
realized if a method could be found to fit the simulation to experimental data.

The program package nXDS [50] is another software suite to process serial crystallographic data. The
partiality model used assumes an isotropic Gaussian decay of the partiality with the angular offset from
the ideal diffraction condition, making for simple symbolic expressions using Gaussians in one dimension
and a straightforward optimization of the parameters.

A different approach to computing the integrals that are required for estimating the partiality of reflec-
tions in still diffraction patterns uses ray-tracing principles [84]. This approach is much closer to what
would be called Monte-Carlo integration outside of crystallography.

An isotropic and simplified partiality model using multidimensional but isotropic Gaussian basis func-
tions has been implemented in CrystFEL and is the default for predicting spot locations and qualitative
visibility since version 0.9.0. It uses a simplified version of equation 146 below, but without squaring the
exponential term. The scalar projection of the covariance matrix orthogonal to the Ewald sphere is espe-
cially simple to calculate in this case. This model can also be used as a partiality model like xsphere and
it is selected with the keyword ggpm. This model is most comparable to the one used in nXDS [50]. Not-
able differences to that model are the formulation using the three-dimensional Gaussian function and the
concept of reciprocal peak width, which ascribes an additional constant width to peaks in reciprocal space
independent of beam parameters and mosaicity, an effect that is especially significant at low resolution.

The Gaussian-like appearance of peaks on the detector possibly inspired Mendez et al. [85] to impose a
Gaussian decay of intensity with distance from the ideal diffraction condition on the detector. The result
in equation 4 of Mendez et al. [85] is seen to be proportional to a special case of equation 128 of this work
when the covariance matrix Σ◦ is uniform in all dimensions and scaled appropriately. Conversely, the
result presented in this paper can be seen as a multidimensional generalization of the approach of Mendez
et al. [85]. The significance of this difference becomes most obvious when considering elongated peak
shapes in pink-beam experiments, which cannot be modelled by the approach of Mendez et al. [85], owing
to the isotropic nature of that model.

Dilanin et al. [86] imposed a peak shape on the detector to fit the whole pattern in a similar manner to
Mendez et al. [85], but instead of an isotropic Gaussian shape they used an isotropic pseudo-Voigt shape.
Pseudo-Voigt functions allow more heavy tailed shapes, and are thereby able to match shape transforms
better with their asymptotically inverse-quadratic decay. However, their derivation does not connect these
peakshapes with anything but the shape transform of the crystals. Our method generalizes a similar ap-
proach to non-isotropic peak-shapes and connects them to mosaicity, non-monochromaticity, the crystal
shape transform, the convergence and allows arbitrary compositions thereof. However, it is less general in
the sense that only Gaussian shapes are employed. This is a deliberate limitation, because of the analytical
difficulties that would be encountered with operations on anisotropic Cauchy distributions.
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6.9.2. Inspiration

There are three reasons why one would want to approximate diffraction using Gaussian basis functions.
Firstly, they can be combined to describe even distributions that are not Gaussian, as seen in section 6.7
with the Cromer-Mann coefficients, and they are convenient, because the Fourier transform of a Gaussian
distribution is another Gaussian. Secondly, a Gaussian distribution is the maximum entropy solution given
simplistic assumptions:

1. There is an optimal diffraction condition where the highest intensity is to be expected

2. Measured intensities are non-negative integers and have a finite expected value

3. The fall-off of intensity off the ideal diffraction condition is not immediate (otherwise virtually no re-
flections could be observed) and the distance of observed intensities to the ideal diffraction condition
has a finite expected value and finite variance

From this point of view with limited knowledge, the expected intensity of a given reflection is seen as a
probability distribution dependent on ∆

⇀

k. Going by the principle of maximum entropy, the distribution
that makes the least assumptions about the intensity values at a given offset from the optimal diffraction
condition is the Poisson distribution because this is the maximum entropy distribution of a positive integer
variable with finite variance. Experimentally, the same intensity with the same experimental geometry
indeed does follow a Poisson distribution, but with different crystals in a very similar orientation and with
different beam intensity and alignment, the intensity often approximately follows an exponential distri-
bution convoluted with a Gaussian measurement error, resulting in an exponentially modified Gaussian
distribution. This is because small deviations can have seemingly chaotic effects and the experimental
geometry cannot be controlled precisely enough.
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Figure 19: The observation frequency of low resolution intensities with a small offset from the Ewald sphere
(less than 1× 10−5 Å−1) looks like an exponentially modified Gaussian distribution. Such a dis-
tribution is expected when an exponentially distributed quantity is measured with some random
measurement errors.
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From these simplified assumptions it also follows that the dependence on the offset from the optimal
diffraction condition should resemble a Gaussian profile. This is because the Gaussian distribution is the
maximum entropy distribution for a random real vector with finite mean and variance, or, from an even
more restricted point of view, only knowing the absolute distance to the optimal diffraction condition, an
isotropic Gaussian profile. Experimentally, we can observe the approximately Gaussian profile as the main
trend of the intensity of a single reflection from a large crystal recorded at room-temperature, in very fine
rotation increments, see figure 20. A trend like this is typical for room-temperature crystals, cryogenic
crystals show a similar trend on average, but typically with even more extreme deviations. The fact that
experimental results can be approximated with Gaussian functions is the third reason. Unfortunately, the
deviations from the Gaussian profile are significantly greater than what can be explained by measurement
errors, thus a Gaussian rocking curve is only a first-order approximation. For small crystals, there cannot
be sufficient observations to measure such a profile directly, because they suffer from radiation damage too
much for repeatable experiments. But from a large set of small crystals and reflections, an average profile
can be determined, by accumulating the mean value of the intensity of the refletctions as a function of the
Ewald offset, the distance to the closest point on the Ewald sphere. It is the minimum difference between
the left and right-hand side of equation 117 when the direction of

⇀

kout can be chosen freely. Because the
crystals are not perfectly homogeneous and the indexing solutions are not equally accurate, we expect
an average of many rocking curves with different widths and slightly shifted off centre. As shown in
figure 6.9.2 for observations of reflections in several resolutions shells, the average intensity is highest
where the Laue equation is fulfilled and is rapidly declining. The observed profile is similar to a Gaussian
near the centre, but the tails are more like that of a Laplacian distribution. This could be due to the tails
of the individual profiles themselves or it could be an artefact of averaging. Attempts to improve the rate
of convergence in merging by using the average profile and with a better understanding of the probability
distributions that are involved, only lead to minor improvements. Naturally, the next step is to model the
partialities for each crystal individually.

Figure 20: A typical intensity pro-
file of a reflection under
rotation, here the reflec-
tion (0,1,9) of lysozyme
at room temperature,
generously measured by
Dr. Janina Sprenger, re-
search fellow at CFEL. It
can be approximated by
a Gaussian profile, but
the deviations are larger
than the measurement
error.
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Figure 21: Average observed diffraction intensity of granulovirus hull protein crystals as a function of the
distance to the Ewald sphere as given by the indexing solution. Imagine a distribution like in
figure 19 for the actual values in the vertical direction for each dot. Different colors indicate the
trends for different resolution ranges.

To summarize, the rocking curve is Gaussian according to the principle of maximum entropy and
simplistic assumptions. There is some experimental support for this assumption. If the result can be
approximated by Gaussian functions, which happen to be a fixpoint of the Fourier transform, can the
diffraction process be approximated with these functions too?

6.9.3. Derivation

The incident wave interacts with a three-dimensional object, which is described by its scattering potential,
which in turn is mainly determined by its electron density ρ. In the Born approximation and a mono-
chromatic incident wave with flux J0 (in units of energy per area), the photon flux density j (in units of
energy density as a function of solid angle) at each point on the detector can be described as the Fourier
transform of the electron density O(∆

⇀

k), evaluated at points corresponding to the difference ∆
⇀

k of the
incident wave vector

⇀

kin and scattering wave vector
⇀

kout, a term C correcting for polarization effects [87]
and the scattering cross-section as a proportionality constant. The vectors∆

⇀

k lie on a sphere with a radius
ν reciprocal to the wavelength λ, see figure 9 for the Ewald construction and see section 5 or Slaney and
Kak [88] for a derivation of the Fourier diffraction theorem.

In this approximation, diffraction is a linear operation, which means that the superposition principle
applies to the complex wave function of the diffraction. The diffraction of several objects is the sum of the
diffraction of these objects. The diffraction of an object by multiple sources is the sum of the diffraction
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of the object by each source. Depending on whether there is a fixed phase relation between the different
contributions to the total diffraction, the contributions add incoherently (assuming an integration over
a time interval several times the duration of the oscillation of the wave), that is as modulus squares, or
coherently, which is in the complex domain, before the modulus square operation. For a derivation of the
resulting average amplitudes of coherently and incoherently interacting waves see section 1.3.2. of Cowley
[87].

6.9.4. Decomposition Into Gaussian Basis Functions

Distributions of the sources and the objects are just an even further generalization of the superposition
principle; combining these distributions amounts to convolutions of the distributions. Three-dimensional
integrals of distributions over potentially curved paths however do not, in general, have a closed solution.
Numerical solutions are easy to determine, but compounded, derivative or derived properties (such as those
required for least squares minimization) grow in complexity, exponentially. Once one step is numerical, the
next steps will most likely have to be numerical too. It is therefore useful andmore insightful to have simple
closed-form approximations. Gaussian distributions, as well as products and sums thereof, have closed and
simple integrals when integrated over the whole domain or along a cut or a projection. Such integrals can
likewise be expressed as a sum of Gaussian functions and a constant term. Also their Fourier transforms
are well behaved. This way, integrating over multiple distributions still increases the complexity of the
result, but starting from a less complex baseline. This means that if one can express all distributions in the
model as a sum or series of Gaussian functions, the conditional integration of the resulting distribution
can be achieved symbolically. While not every distribution is suitably expressed as a weighted sum of
Gaussian distributions, a large family is [89]. Many natural distributions belong to this family. And for
most distributions used in the application of the method discussed here, the number of Gaussian basis
functions, for sufficient approximation, is very low. See section 3.8 for an overview of relevant identities
for products, squares and convolutions of Gaussian distributions.

The identities of equations 63 and 64 can be used to compose the expected flux in a particular diffraction
direction from the individual contributions of the source and of the object (see figure 18). As mentioned
above, the formulation of this composition depends on whether the distributions are assumed to be in a
fixed phase relation (coherent), or to have a randomly varying and uncorrelated phase shift (incoherent).
The following two identities, each first expressed using exponential functions and then in terms of ϕ (see
equation 62), are at the core of the method for analytical integration used in this work. The first is the
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integral of the product of two Gaussian densities, which is then squared (for coherent integration):[∫
Rn
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2
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For incoherent integration the integration and squaring operations are reversed:
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In Eqns. 121 and 122 we have used the definitions:

Σ◦ = Σ1 +Σ2
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)−1
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2
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As can be seen from the above expressions, the difference between coherent and incoherent integration
amounts to only a difference in scaling when both of the two distributions are single Gaussian distributions
(that is, not sums of several Gaussians). As a simplification and because the linear scaling factor is hardly
of any consequence, incoherent integration will be the default in the following, but the procedure can be
applied with minor modifications for coherent integration as well. Partial coherence can be dealt with by
splitting the coherent and the incoherent component into separate Gaussian functions and propagating
them appropriately, or by interpolating between the coherent and the incoherent solution based on the
degree of coherence, but this will not be considered any further in this work.
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6.9.5. Parametrization of the Illumination

The diffraction condition, indicating the spatial frequencies of the object that contribute to the diffraction
pattern, forms a spherical shell that passes through the origin, which was referred to above as the Ewald
sphere. If the incident beam is convergent or divergent, there is a distribution of incoming directions,
leading to a nest of spherical shells of equal radius in reciprocal space, whose centres lie on a spherical
cap such that they all intersect at the origin. The normal at the center of this cap is parallel to the mean
beam direction. The covariance matrix Σin of

⇀

kin due to convergence or divergence alone cannot really be
simplified in general, but if the distribution is isotropic, it can be written as:

Σin = σ2
inν

2
(
I − ⇀

win
⇀
w⊤

in
)

(123)

where σin is the standard deviation of the incidence angles (i.e. the convergence), I is the identity matrix
and vectors ⇀

w are unit vectors describing beam directions, derived from the wave vectors
⇀

k:

⇀
win =

⇀

kin

|
⇀

kin|

⇀
wout =

⇀

kout

|
⇀

kout|

Each beam direction, in theory, would need its own polarization correction, and this could be achieved by
integrating the polarization correction term for all the beam directions, but as small angles are assumed,
the polarization correction of the main beam direction is deemed sufficient for all.

If there are multiple sources with different wavelengths, i.e. if the wavelength distribution has a finite
bandwidth, the Ewald spheres have different radii and consequently the distribution of sphere centres,
previously on a spherical cap, is broadened radially. The 3D distribution of sphere-centres is approximated
as a sum of Gaussian kernels. If the angular distribution is assumed to be small and independent of the
distribution of wavelengths, it can be calculated by convolving the angle and wavelength distributions
to form a cumulative distribution. The convolution of Gaussian kernels amounts to a summation of the
respective covariance matrices, see equation 65.

The distribution of
⇀

∆k that sample the Fourier transform of the object and contribute to diffraction
in a given direction, i.e. a point on the detector, can be derived from the distribution of sphere centres.
The distribution of

⇀

∆k will be approximated as a Gaussian distribution with mean ⇀
µA and covariance

matrix ΣA. Since the diffraction process does not change the wavelength, the outgoing wave distribution
is perfectly correlated in wavelength with the corresponding incoming wave distribution. Differences of
fully correlated Gaussian distributions require taking the difference of the square root of the respective
covariance matrices. Given

⇀

kin and
⇀

kout are approximated as Gaussian distributions,
⇀

∆k is distributed as
a Gaussian around the mean value ⇀

µA corresponding to the difference of the mean of
⇀

kout and
⇀

kin. The
covariance matrix ΣA of the distribution of

⇀

∆k can be computed as the correlated difference between the
distribution of

⇀

kin with covariance matrix Σin and the distribution of
⇀

kout with covariance matrix Σout in
that particular direction: √

ΣA =
√
Σin −

√
Σout (124)
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The distribution of
⇀

kout with the covariance matrix Σout = σ2
ν

⇀
wout

⇀
w⊤

out is not affected by divergence and
only contains the wavelength distribution along

⇀

kout, and where σν is the bandwidth. The distribution of
⇀

kin is affected by both the wavelength distribution and the angular distribution of incident beams, pos-
sibly correlated. In the slightly less general case, where it is assumed that the angular distribution of the
incident beam is isotropic and is not correlated to its wavelength, the distribution of

⇀

∆k entirely due to
polychromaticity is:

ΣA = σ2
ν∆

⇀
w∆

⇀
w⊤ (125)

Combining this equation with equation 123 gives a way to estimate ΣA under simplified conditions:
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(126)

If we cannot assume that wavelength and incident angle are uncorrelated, Σin can be treated as a free
parameter instead, andΣA can be derived by roatating the component ofΣin that is due to polychromaticity
and therefore in line with the incident beam direction to each

⇀

kout . The distribution of
⇀

kout given Σin is
therefore:

Σout = rotate (⇀
win,

⇀
wout)

[(
⇀
w⊤

inΣin
⇀
win
) (

⇀
win
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in
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(127)

where rotate (⇀
win,

⇀
wout) is the rotation matrix of the rotation around the axis orthogonal to ⇀

win and ⇀
wout,

that would align ⇀
win to ⇀

wout. Then ΣA is given by equation 124.

6.9.6. Parametrization of the Crystal

Due to its periodicity, the Fourier transform of a crystal is concentrated in peaks. As discussed above,
these peaks are broadened by properties of the crystal, such as the finite width of the crystal, mosaicity
and strain. Here we define the separate effects that are modelled:
Mosaicity is commonly used to describe a rotational disorder of the crystal and can be seen as a dis-

tribution of orientations of the unit cell. Rotational disorder of an object in three dimensions will have
six degrees of freedom in general: Rotational disorder around three orthogonal axes and three covariance
terms between them.
Strain is the distribution of contractions of unit cells. Generally, for each real-space lattice point in three

dimensions there can be a different distribution of displacements in the direction of the origin and traverse
to it. In the following it will be assumed that the changes of the structure factors due to strain are negligible.

Mosaicity and strain taken together, considering correlations of the effects in three dimensions, require
a higher dimensional tensor that maps each point of reciprocal space to a cross-correlation matrix. In the
following, however, mosaicity and strain will be taken as uncorrelated and mosaicity will be approximated
to be isotropic. This means that mosaicity is assumed to be equal in all angular directions and mutually
independent of crystal strain. The integration in the following subsection (section 6.9.7) will however be
applicable with and without this simplification.
Reciprocal peak shape is the parameter that describes the distribution of each lattice point in recip-

rocal space, possibly due to the transform of the shape of a finite crystal, before being broadened by
the effects of mosaicity and strain. In general this is a free parameter, but e.g. if the shape transform
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is sinc(πx)sinc(πy)sinc(πz) (the Fourier transform of a cube), it could be approximated by a Gaussian
distribution with covariance ΣP = 1

4I . Because of the approximately quadratic decay in the observed
diffraction, as opposed to the exponential decay of the Gaussian, shape transforms are not approximated
efficiently by sums of Gaussian functions. Therefore, if the reciprocal peak shape is the predominant effect
that is broadening the diffraction condition, the approximate nature of the proposed model becomes most
obvious. The strength of the proposed method is the ability to combine different effects analytically, where
the convolved distributions naturally become smoother.

Integer multiples of the reciprocal unit cell matrix R span the locations ⇀
µP of the peaks in the Fourier

transform of the crystal: ⇀
µP = R

(
h k l

)⊤
(compare equation 117). The density around ⇀

µP is approx-
imated to be a Gaussian distribution with the covariance matrix ΣP . The cumulative distribution results
from the convolution of the individual distributions. Its covariance is therefore the sum of the covariance
matrix ΣP0

describing the shape transform, the effect of isotropic mosaicity σ2
m

(
|⇀µP |2 I −

⇀
µP

⇀
µ⊤
P

)
, and

the effect of uncorrelated strain σ2
s
⇀
µP

⇀
µ⊤
P . Here σm quantifies the mosaicity as the standard deviation

of rotational disorder, and σs quantifies the strain as the standard deviation of the relative unit cell size
variation.

6.9.7. Evaluation of Integrals

Given the distributions defined in Sec. 6.9.5 and 6.9.6, we are now in a position to compute the diffracted flux
density in a given direction ⇀

wout. This is done by evaluating particular integrals for each pair of Gaussian
basis functions of the distributions, as given below. Polarization and scaling terms were left out at this
point for clarity, because they are not affected by the integration. If at least one of the distributions is
assumed to have random or chaotic phases, the integration is incoherent. Thus, by using equation 122 and
the definition of ϕ in equation 62 we get the following result:
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If all contributions to the diffraction described by the two distributions have a constant phase relation, the
integration is coherent:
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The result of equation 129 is applied below in section 6.9.8 to compute a diffraction pattern that matches
the observed pattern. This requires the appropriate scaling and polarization correction. All in all there are
17 parameters describing each Gaussian function of the crystal (9 for the unit cell, 6 for the shape transform
and one each for mosaicity and strain) and 9 describing each Gaussian function in the source (3 parameters
for the direction and 6 for a possibly correlated distribution of illumination angles and wavelengths). The
source will typically not change for many crystals in a serial crystallography experiment and one Gaussian
function will give enough degrees of freedom to describe the diffraction of each crystal.

6.9.8. Pixel-wise diffraction pattern prediction

The first way this model can be used to process data, is to model each pixel of a diffraction pattern, making
use of as many constraints as possible in determining the hidden parameters and the structure factor amp-
litudes. A still diffraction pattern can be calculated by using the result of equation 129 for each point on
the detector, by applying a polarization correction C and scaling with the intensity of the incoming beam
and with the respective structure factor modulus square |F |2 of each reflection.
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where J0 is the incident beam flux, p is the degree of polarization, ⇀
n the normal to the polarization plane,

and F the structure factor. The flux measured in a pixel is the integral over all directions that fall into
the solid angle of that pixel summed up for all Miller indices with significant excitation. If the predicted
flux was constant over this area, the integral would be just proportional to the solid angle that the pixel
occupies.

The detector is assumed to be composed of rigid panels. Each panel has its own two-dimensional coordin-
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ate system consisting of the dimensions fs and ss defined in terms of the memory order, where fs (short
for fast scan) is the dimension of values stored consecutively and ss (short for slow scan) is the dimension
that is not. Each panel has a local coordinate system given by a 3× 2 matrix D for the two dimensions in
the plane of the panel and an offset vector ⇀

o for the absolute position in space of the corner corresponding
to the origin of the coordinate system of this panel. The solid angle of a pixel can be approximated with
the derivative of the normed directionality vector ⇀

wout with respect to the detector coordinates:

⇀
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(
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)
+
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) ∣∣∣∣∣D
(
fs

ss

)
+

⇀
o
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−1

(134)

⇀
wout = direction in which diffraction is to be predicted

D = matrix translating between panel coordinates and spatial coordinates
⇀
o = spatial coordinates of the reciprocal space origin in detector coordinates(

fs

ss

)
= coordinates of the pixel on the detector

For the following two derivations it will be useful to know the derivative of the direction ⇀
wout with respect

to its two coordinates in the detector panel’s coordinate system:
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The solid angle Ω is approximated by the length of the cross product of the pixel sides projected onto the
unit sphere:

Ω ≈
∣∣∣∣(∂ (⇀
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∂ ss
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)∣∣∣∣ (136)

However, the predicted peaks can be very narrow, and therefore the predicted flux can vary substantially
within a single pixel. To enable an efficient integration over the area, the predicted flux density can be
smoothened analytically without changing the total flux of the whole diffraction pattern. This is achieved
by introducing a Gaussian point spread function for the detector (the blue arrows in figure 18) with a
covariance matrix corresponding to 1/2 the extent of a pixel, or for greater accuracy, by oversampling the
pixel and applying the same procedure to the subpixels. Simply put, this smoothens the prediction to a
level where discretely sampling it only introduces minor artefacts, the main effect being a slightly reduced
contrast. The constant 1/2, of the aforementioned pixel extent, minimizes the maximum Kullback Leibler
DivergenceDKL [15] between the desired proper integral (b) involving the error function and the estimate
(c). Equation 137 shows a proof in one dimension, that can be generalized to higher dimensions for all
shapes for which a orthogonalizing coordinate transform can be found. It is natural to assume that the
same constant approximately minimizes this difference even when the sides are not strictly parallel. The
DKL is an asymmetric measure for the difference of probability distributions, taking into account that

71



under-estimating a probability is more detrimental than over-estimating it. It was chosen because the
predicted flux density is a scaled probability density.

DKL (P || Q) =
∫
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(137)

P = precise probability distribution

Q = approximation

µ = mean value

σ = standard deviation from the mean

σ+ = the constant to be solved for

Using the results of equations 137 and 135, the resulting covariance matrix of the smoothing function is:

ΣD =
ν2
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We now have a way of modelling the flux of each pixel. This is good enough for monochromatic experi-
ments, but to model polychromatic experiments we need to take into account that detector response signals
of integrating detectors are proportional to the total photon energy impinging on the detector. Integrat-
ing detectors are commonly chosen over counting detectors for SX experiments as they are not limited
to measuring one photon per pixel at a time. The following derivation uses the wavenumber k, which is
proportional to the impinging photon energy.

The average wavenumber of the polychromatic diffracted beam at the particular location of a given pixel
can be estimated from themean point of the distribution resulting from themultiplication of the distribution
of the source and the distribution of the peak of the crystal in reciprocal space (compare equation 63) by
rescaling the component collinear to the incident beam. We are only interested in the collinear component
because the deviation of

⇀

∆k in any other direction is not due to the wavelength distribution but due to
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other factors like convergence. The rescaling is necessary, because the correlated difference between
⇀

kin

and
⇀

kout, which necessarily have equal wavelengths, leads to a covariancematrix of
⇀

∆k that appears sheared
with respect to the covariance of

⇀

kin and compressed along the beam direction. A geometric visualization is
offered with figure 22 in lieu of a mathematical proof. The cosine of the angle of diffraction equals the scalar
product between the normalized incoming and outgoing wave vectors, leading to the following expression:
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Figure 22: Geometric explanation for formula 139 for the expected wavenumber. Convergence, orthogonal
to ⇀
win, and wavelength dispersion, in line with ⇀

win, are indicated as a box to highlight the shear-
ing of the covariance when forming the correlated difference between ⇀

win and ⇀
wout and their

respective variances. It can be seen that the length of
⇀

∆w projected onto ⇀
win is 1 − cos (2θ),

where 2θ is the angle of diffraction.

This way, the expected flux and distribution of wavelengths for each pixel in a diffraction pattern can be
predicted. As a side-note, this allows us to describe even diffraction patterns where the scattering factors
depend on the wavelength, like in MAD phasing, when the beam spectrum contains frequencies close to
resonances of atoms within the molecule. A simulation in figure 23 shows that this is possible in prin-
ciple, but with the introduction of yet another dimension of free parameters for the wavelength dependent
structure factors this is an advanced application. For now we will assume that structure factors are not
depending on the wavelength.
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Figure 23: Simulation of a pink-beam diffraction pattern of biotin bound to streptavidin without polariza-
tion, shown with false colors. The wavelength spectrum is modelled after the APS pink-beam
spectrum. Intensities are mapped to color saturation and the predicted wavelength is mapped
to hue. As can be seen, the crystal acts like a monochromator and separates the wavelengths
radially. A big black dot was added to show the direct beam position.

Having a distribution of photons of different wavelengths does not change the Poisson photon counting
statistic, but it leads to an additional variance in the measured intensity proportional to the width of this
distribution, because each photon measured can have a different energy. Thewidth of the wavenumber dis-
tribution in each pixel can be estimated from the shape of the product of the two Gaussians in equation 128
by projecting to the incoming beam and rescaling.

σk =
(
1− ⇀

w⊤
in

⇀
wout

)−1

√
1

2
⇀
w⊤

inΣ∗
⇀
win (140)

This is analogous to the expected wavenumber in equation 139. From the expected photon count, the ex-
pected wavelength and the constant g describing the detector response as detector counts per wavenumber,
the expected detector reading ŷ for a given pixel is given as the product:

ŷ = jkg (141)

To model random and systematic errors, the following two-parameter (α and β) error model is employed
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to predict the total variance:

σ2
ŷ = σ2

0 + g2 (α+ β |j|) |j|
(
k2 + σ2

k

)
(142)

This error model is essentially equivalent to [90, equation 3], but by substituting the measured intensity
with the expected intensity, the bias in merging introduced by error estimation based on observed intensit-
ies as shown in figure 11 is removed, if the errors before correction σ2

0 do not contain the photon counting
noise of the reflection intensity itself. The factor αmodels errors proportional to the square root of the ex-
pected signal, like those inherent to the photon counting statistic. The factor β models errors proportional
to the expected signal, systematic errors like due to a small misalignment of the indexing solution, leading
to relative errors. Constant errors are not modelled here, they are assumed to be fully captured by σ2

0 .

To connect the prediction ŷ with the measured data y we introduce a probability distribution described
by the density function f(y), which enables a maximum likelihood optimization. The probability distribu-
tion is a mixture distribution of a smoothened Gaussian that approximates a discrete Gaussian with the
additional variance 1

22 using the result in equation 137 and a super-heavy tailed outlier distribution u(y)
that models even extreme outliers like defective pixels with an assumed outlier fraction ϵ. Without any
further assumptions about the unexpectedly observed values it is natural that they should follow the prior
for natural numbers, see section 3.4.1.

f(y) = (1− ϵ)ϕ
(
y, ŷ, σ2

ŷ

)
+ ϵu(y) (143)

Crystal diffraction is sparse andmost pixels will not see significant diffraction. The pixels with significant
diffraction can be estimated conservatively by finding the potentially excited indices, using a region grow-
ing algorithm (see B.1.2) and then projecting the peak shape onto the detector (using equation 158). This
accelerates the prediction greatly while not affecting the result in any significant way. Because derivatives
can be computed analytically, the predicted diffraction pattern can be optimized by using pseudo-Newton
optimization methods like BFGS [91, 92, 93, 94] or gradient descent. In theory this should make the optim-
ization straightforward and efficient, but the target function has many local minima and plateaus. Together
with the associated computational cost, this is the reason why pixel-wise refinement of the Gaussian sum
model proposed in this paper so far has only been applied to individual diffraction patterns and not full
datasets. This method also depends on a pixel-wise background estimate and a detector geometry that
is determined well enough, such that predicted pixels coincide mostly with measured pixels. It demands
the computation of about 8kpx for a 4Mpx detector. Together this makes it computationally expensive,
requiring on the order of 10 single core computing hours per pattern (4GHz AMD A12). Therefore, this
method has not yet been connected with structure refinement directly, but has been used to show visually
that different diffraction patterns can be predicted accurately.
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(a) (b)

Figure 24: Comparison between (a) previously published diffraction data from a human serotonin receptor
[95] (on the left) and (b) predicted diffraction of the same image region after successful optim-
ization, with estimated background added. Diffraction is predicted using equation 116 with the
substitution Σo → Σo + ΣD , corrected for the solid angle with equation 136, equation 139 to
estimate the expected wavelength and summed up over all significantly excited Miller indices.
Intensities are scaled according to the reference intensities deposited in the PDB under 4NC3.
The bandwidth of the X-ray beam is estimated to be about 0.1% (LCLS states 0.2%∆E/E FWHM
for the CXI beamline [96].)

parameter degrees of freedom optimization

geometry description 9 for each panel yes
unit cell 9 yes
reciprocal peak shape 6 yes
mosaicity 1 yes
strain 1 yes
linear scale-factor 1 yes
B-factor 1 yes
error model 2 yes
source description 10 no

Table 6: Parameters that were optimized against pixel values
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(a) (b)

Figure 25: Comparison between (a) diffraction data (unpublished) of selenobiotine bound streptavidin crys-
tals and (b) predicted diffraction of the same image region with estimated background added.
Diffraction is predicted using equation 116 with the substitution Σo → Σo + ΣD , corrected
for the solid angle with equation 136, equation 139 to estimate the expected wavelength and
summed up over all significantly excited Miller indices. The diffraction was measured at ESRF
with a 1M Jungfrau detector using a pink beamwith 5% bandwidth FWHM.The structure factors
for the prediction are taken from the Streptavidin-norbiotin complex structure deposited under
1LCV in the PDB [97].

6.9.9. Merging Using Integrated Peak Intensities

This section describes the second application of the model presented in section 6.9.3: merge Gaussian
partiality corrected integrated intensities (MGPCII). First we derive an expression for the total intensity of
a reflection in a still diffraction pattern and then we describe a method of how to use this expression to
reduce the detrimental impact of partially recorded reflections on the estimates of structure factors.

An expression for integrated peak intensities
The total photon energy of one reflection can be computed by integrating the result of equation 129 over
all directions. This integral can be approximated when considering that the angular extent of a reflection
on the detector is small and the curvature as well as the change in width of the Ewald sphere is negligible
for the integral over a single reflection. The density of the Ewald sphere can therefore be approximated
as a planar Gaussian, decaying along the direction of diffraction, but constant orthogonal to it. First the
double integral is restated by using equation 128:∫

R3

∫
R3

(
ϕ
(

⇀
x,

⇀

kin − k
⇀
wout,ΣA

)
ϕ (
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x d
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The integral along all possible outgoing wave directions is then approximated with a projection onto the
outgoing wave direction with the highest intensity ⇀

wmax, which can be found by function optimization:

≈
(
ϕ
(

⇀

kin − k
⇀
wmax,

⇀
µP ,

⇀
w⊤

maxΣ◦
⇀
wmax

))2
|4πΣ∗|−

1
2 (146)

Σ−1
A = d−2 ⇀

wout
⇀
w⊤

out

d =width of the Ewald sphere at the projection point

The photon flux of each reflection in each pattern is estimated as the product of the result of equation 146
with the incident photon flux J0, the structure factor amplitude squared, a linear scaling factor a, a B-factor
correction term modelling a Gaussian decay of intensities due to random atomic displacements, and a term
for the polarization correction (equation 133). This leads to an expression analogous to equation 132, but
with an explicit linear and B-factor scaling instead of implicitly assigning those as terms in the structure
factors:
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The calculation of the mean wavenumber is analogous to equation 139:
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The width of the predicted wavenumber distribution is analogous to equation 140:
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(149)

The expected detector count for each reflection is the product of wavenumber, flux and a detector constant,
as in equation 141. Its variance is estimated with the same two-parameter error model as for the pixel-wise
prediction in equation 142.

Parameter Optimization for Merging
The purpose of merging is to produce accurate estimates of the scattering intensities, proportional to the
modulus squares of the structure factors, from a set of observed integrated peak intensities, see section 6.6.
To make use of equation 146 for that end, its free parameters need to be determined. The scattering in-
tensities are among the parameters to be determined, the other parameters are listed in table 7. To find the
optimal parameters a maximum-likelihood approach was chosen because it can be made more robust than
least squares, and it is still relatively easy to optimize for, also compare figure 14.
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parameter degrees of freedom optimization
geometry description 9 for each panel no
unit cell 9 yes
reciprocal peak shape 6 yes
mosaicity 1 yes
strain 1 yes
linear scale-factor 1 yes
B-factor 1 yes
error model 2 yes
source description 10 no

Table 7: Parameters that were optimized against integrated intensities

f(y) is the probability distribution to be optimized for each observation. Probabilities are assumed to
follow a mixture distribution of a Gaussian distribution and an outlier distribution o(y). The outlier dis-
tribution should be chosen as to best describe all measured intensities in general, without prediction or
scaling. In many cases a Cauchy distribution is a good choice because it fits the shape of the distribution
of integrated intensities well for frequently observed values and has an inverse quadratic decay like the
positive intensities. The exact shape of the outlier distribution is less relevant; its most important feature
is a heavy tail to make the maximum-likelihood approach robust.

f(y) = (1− ϵ)ϕ
(
y, ŷ, σ2

ŷ

)
+ ϵ o(y) (150)

o(y) = 1

πγ

(
1 +

(
y − y0
γ

)2
) (151)

o = outlier distribution

ϵ = outlier probability =
1

16

γ = (the scale parameter of the Cauchy distribution)

y0 = 0

This approach treats the scattering intensities like any of the other parameters of the model, which is
convenient, but it also means that it cannot directly be compared with the other merging algorithms in
isolation, because they only determine structure factor amplitudes and scaling is detached. The most com-
parable method would be the maximum-likelihood that was presented in section 6.6. The critical difference
between the two maximum-likelihood approaches is, that here we have a probability distribution for the
integrated intensities as observed, whereas in section 6.6 it is a probability for the ratio of observed in-
tensity and estimated partiality times scaling factors. Also, ratios are slightly less well-behaved, and are
mathematically not as convenient, as seen in section 3.1.1.
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6.9.10. Tests on Experimental Data

To show that equation 146 can be used to correct partially recorded reflections to improve the data qual-
ity, two serial femtosecond crystallography datasets were chosen: One calibration dataset of granulin mi-
crocrystals4 (dataset 1) and one dataset [98] that allows SAD phasing (dataset 2). The diffraction pat-
terns of both datasets were indexed and integrated with indexamajig of CrystFEL 0.9.1 [99]. To get a
baseline for comparison to our method the integrated intensities were merged with partialator 0.9.1
and partialator 0.8.0, using the partiality models ggpm, xsphere and unity and those merged in-
tensities were chosen that produced the best structure refinement results. The datasets were processed
once with and once without over-prediction, that is also integrating peaks further away from the diffrac-
tion condition, via the command-line option --overpredict. The effect of overprediction is shown
exemplary for the first dataset in figure 26, as can be seen, the additional reflections are mostly of low
intensity. Overprediction was not helpful when merging with partialator in any of the combinations
of options that were tested. Therefore, overprediction was not enabled for data points that were used as a
comparison to the new method. However, it consistently lead to better structure refinement results when
correcting partialities using the generalized Gaussian diffractionmodel andmaximum likelihood parameter
optimization during merging. This is why overprediction was enabled for that method.

Figure 26: Histogram of measured in-
tensities of dataset 1 in black
(without overprediction) and
red (with overprediction) over-
laid with the Cauchy outlier
distribution (γ = 1967.7) in
blue. The outlier distribution
was chosen as to describe the
measurements well, but also
to reserve some probability
especially for the extreme
values. Note that the additional
intensities due to overpredic-
tion are mostly small.
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The method described in Sec. 6.9.9 was applied to both datasets and the quality of the intensities was
compared to the partialator baseline. In addition, dataset 1 was investigated in more detail, in re-
gards to overfitting, to the correlation of prediction and measurement and the distribution of estimated
partialities, while the second dataset was used to test how much SAD phasing could be improved.

After optimization of the scaling parameters (in table 7) for dataset 1, the correlation between prediction
and measurement is high, see figure 27, but the relative error between prediction and measurement still is
about 25% and much larger than the photon counting error. The comparison of predicted and measured
partialities in figure 28 shows a strong correlation, which is exploited when correcting the measurements
using the partiality estimate. Unknown partialities increase the variance of the intensities before merging
and therefore of the merged intensities too. The variance can be reduced by partiality correction.

4This dataset is previously unpublished and was measured in October 2020 at the SPB beamline of the European XFEL in preparation
for bacterial insecticide crystals, by a team lead by Dominik Oberthür and Colin Berry. It has been deposited in the CXIDB with
the ID 203.
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(a) The first 1000 intensities as recorded in the granulin
dataset (dataset 1).
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(b) The intensities and predictions for the crystal with the
strongest diffraction in the same dataset.

Figure 27: Predicted intensities versus measured intensities with the photon counting error estimates in-
dicated by blue error bars and corrected error estimates by gray error bars. In red are datapoints
that were treated as outliers, dots in blue were treated as regular datapoints. The black line shows
where the points would lie, if the predictions were in perfect agreement with the measurements.

Figure 28: A scatter plot of the first 10000
predicted versus measured par-
tialities with a measurement er-
ror of less than 0.125 in the
granulin dataset (dataset 1).

Figure 29: Histogram of partialities meas-
ured to a precision better than
1/8 from the granulin dataset
(dataset 1). Partiality is the ra-
tio ofmeasured intensity to pre-
dicted intensity without parti-
ality estimate, that is only cor-
recting for merged intensity,
linear- and B-factor scaling.
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Figure 30: Predicted partialities compared
to measured partialities, with
photon counting error estim-
ates indicated by error bars.
The first 993 values from data-
set 1 in the order they are
recorderd to have an estim-
ated photon counting and back-
ground subtraction error of less
than 1/4 are displayed. The
black line shows where the
points would lie, if the predic-
tions were in perfect agreement
with the measurements.
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As it would be expected for the smoothened distribution of the function values of a Gaussian function
with uniform input5, the histogram of the measured partialities (figure 29) has an optimum at 0, corres-
ponding to a reflection that was not observable - most reflections in a given crystal orientation are not
observable, and also there is a very faint optimum at 1. The optimum at 1 corresponds to the flat top of the
intensity curve of an observation near its maximum intensity.

To test the amount of overfitting, dataset 1 was split randomly in two halves. The first half was used
to optimize the parameters of the scaling and partiality model in table 7 and the second half was used to
test the correspondence of prediction and measurement. The median correlation of 256 random prediction-
measurement pairs 6 decreased from 0.59 to 0.56, the reduction in correlation can be observed by comparing
figure 31a to figure 31b. This is evidence of some degree of overfitting, but also means that even half the
number of peaks is sufficient to arrive at roughly the same prediction. Thus, even though this methodwould
likely profit from additional constraints7, it still reduced the number of diffraction patterns necessary to
achieve a given data quality by about a factor of 2. R-factors after automatic refinement, see figure 32, were
consistently lower for MGPCII than for partialator.

Dataset 2 is of of the Adenosine receptor A2A, measured at LCLS using a wavelength of 2.7Å [98]. The
protein contains 22 sulphur atoms and the wavelength is close enough to the absorption edge to make SAD
phasing possible. This makes this dataset suitable to see to what extent partiality correction would improve
phasing success. For all merged intensity files a SAD phasing attempt was run using phenix.autosol [100],
the known protein sequence and a resolution cutoff of 2.3Å.

5for a derivation of the distribution before smoothing see appendix D
6to increase the robustness of the correlation, as there are outliers that skew the correlation to 0, −1 or 1 randomly
7Among the constraints that were left unused are the peak positions on the detector and the fact that the different unit cells matrices

are mainly just different rotations of each other.
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(a) Predicted and measured intensities from the first ran-
dom half-dataset of dataset 1 that was used to fit all
parameters to.
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(b) Predicted and measured intensities from the second
random half-dataset of dataset 1, using the paramet-
ers determined from the random first half-dataset of
dataset 1 (also compare figure 31a). Note the slightly
reduced correlation compared to figure 31a.

Figure 31: Two subsets of 10000 random pairs of predicted and measured intensities, one for the fit and one
to test the fit for overfitting.

Figure 32: Comparison of structure re-
finement results of the gran-
ulin dataset (dataset 1) us-
ing phenix 1.18-3855 to a
resolution of 1.8Åof MGPCII,
in green, and partialator
0.9, in violet. The bold dots
represent the free R-factor, the
small circles represent the R-
work. The partiality model
ggpm gave the best result for
partialator for all sizes of
subsets that were tested.
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Figure 33: Maximum HySS correlation
coefficient found during auto-
matic SAD phasing using
phenix.autosol from A2A
crystals [98] as a function of
the number of crystals used
during merging. The entries in
green are for MGPCII, whereas
the violet dots represent the
results of partialator.
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Figure 34: R-factors of the refinement
of structures built during
automatic SAD phasing using
phenix.autosol from A2A
crystals [98] as a function of
the number of crystals used.
The entries in green are for
MGPCII, whereas the violet
dots represent the results of
partialator. The solid dots
are R-free and the small circles
are R-work.  0.25
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As can be seen from the hybrid substructure search (HySS) correlation coefficient in figure 33 and the R-
factors that the automatic structure building and refinement achieved, see figure 34, the improved merging
efficiency is reproduced for the anomalous signal too.

6.9.11. Discussion

Using Gaussian basis functions, approximations were developed that have enough degrees of freedom to
account for most of the significant effects in macromolecular crystallographic experiments. These approx-
imations were used to simulate diffraction patterns, which were visually very similar to measured diffrac-
tion patterns. Partiality estimation and post-refinement using these functions have reduced the number
of measurements necessary for a given data quality in merged intensities. In the first example it reduced
the number of patterns required to achieve a given R-factor by about a factor of 2 compared to CrystFEL’s
partialator. In the second example S-SAD phasing succeeded with about a quarter of the diffraction
patterns. The range of datasets that were tested is not comprehensive, however, and partialator is not
the only alternative, nor necessarily the best program, just the most commonly used.

There are many differences between MGPCII and partialator, partiality estimation being only one
of them. Without exhaustive testing we are not able to tell precisely which differences provide the greatest
improvement. A significant improvement can however be attributed to the error model used, which has
been shown to improve merging on its own using a different approach [64]. Another important difference
is that ourmethod profits strongly from overprediction, addingmanymeasurements withmostly insignific-
ant intensities, by integrating reflections even if they are farther away from the ideal diffraction condition.
It may seem that overprediction should not improve the precision of the merged result as strongly as it
does, especially when the added intensities are mostly small or negative. However, the small intensity val-
ues outside of the diffraction condition act as a powerful constraint for determining reciprocal peak shape,
mosaicity and strain.

Even though polychromatic diffraction of mosaic crystals can be described qualitatively, automatic re-
finement has proven to be difficult so far because predicted peak positions can vary by more than half
the inter-Bragg distances. There are many more applications of approximating diffraction with Gaussian
basis functions that remain to be explored. Pixel-wise refinements, like done in the program diffBragg
[85], should lead to even better merging efficiency and a more precise detector geometry refinement at the
cost of more computation time. The model could also be used to predict the intensity of peaks per frame
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in a rotation series and therefore simplify the visual examination of the effectiveness of data processing,
especially for peaks laying along the axis of rotation.

Integrated peak intensities are an easier target to optimize for than pixel-wise intensities, because there
are many pixels per reflection. And because peak intensities are integrated over a larger pixel area on the
detector, the geometry description only needs to be accurate enough for most of the peak intensity to fall
within the integration area. But a consequence of integration is the drastic reduction of the number of
constraints. Whereas pixel-wise optimization uses thousands of pixels, albeit with somewhat degenerate
information8, the number of constraints in a traditional cell parameter and orientation refinement during
merging of a serial crystallographic datasets is just high enough to be clearly overdefined. This might
mean that for datasets of very weakly diffracting crystals and without additional constraints a pixel-wise
refinement is the only option.

Lastly, note the generaliy of this model: The same model can be used to simulate diffraction patterns
and integrated intensities of serial monochromatic and polychromatic crystallography experiments. The
analytical nature of this model makes analytical derivatives available, which is useful for mathematical
optimization. It also makes deriving properties like peak locations and shapes and integrals over angular
ranges and areas practical. Together this opens up a wide range of experiments where this model can be
applied.

6.10. Covid Pharmaceutical Screening

Finally, after revisiting almost all steps in the crystallographic data processing pipeline, we are rewarded
with a real life application of macromolecular X-ray crystallography. Structure determination has wide-
ranged applications. And due to the global pandemic the need to combat a novel virus arose suddenly.
Vaccines were not available yet, but the enzymatic machinery of the virus has one easily identified weak
point. The 3C-like protease, or main protease (Mpro), is responsible for digesting the primary translation
unit into several enzymes and structural proteins. As a peptidase it is a promising target, since there
are already several antiviral pharmaceuticals that target peptidases of other viruses. A massive X-ray
screening project [101] was initiated to test binding of around 6000 already approved pharmaceutical drugs.
If any would bind with high affinity, the likelihood would be great that the enzyme would be inhibited.
Since all compounds had already been tested on human subjects for other medical indications, they would
likely have acceptable side-effects and could be authorized for more quickly. There are several ways to
determine binding affinities experimentally, even inhibition constants can bemeasured directly, but because
our expertise is in crystallography, structure determination was the method of choice for us to test drug
binding. Also, crystallization is easily parallelized. While a crystal structure with a bound compound will
determine binding only qualitatively, not quantitatively, it does show the mode of binding and thereby
enables a more directed search for inhibitors. The following is an account focused only on my personal
scientific involvement in the otherwise extensive screening project.

Mpro was crystallized in presence of each drug. The crystals were measured with the rotational crystal-
lographic method, and processed with XDS [63]. They were phased by molecular replacement, using the
known structure without the possibly bound drug. If the electron density allowed it, the structure of the

8In a single Gaussian approximation each peak on the detector can be described with 6 variables: Height, x and y coordinate of
the centre, major and minor axis and orientation of the elliptical shape. Oversampling the shape does not add constraints in this
approximation.
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drug bound to the protein was modelled into it.

One of the first discoveries was the pharmaceut-
ical drug HEAT, an α-adrenergic receptor antagon-
ist. There extra electron density in the catalytic cleft
fitted the tetralone moiety of HEAT, but it seemed
as if the phenylethylamine moiety was missing, see
figure 35. The methylenetetralone is bound to the
catalytic cysteine via the sulphur in two distinct con-
formations, which are overlayd in the figure, which
is why the sulphur appears duplicated. Based upon
this observation a reaction mechanism in two steps
is proposed, see figure 36. In the first step the drug
is cleaved and activated by a base catalyst by depro-
tonatingHEAT in the 2 position of the tetralonemoi-
ety. The tertiary hydrogen is assessed to be decently
acidic for a C-H bond because of electron-pull and
resonance stabilization of the carbocation structure.
Phenylethylamine acts as a leaving group, leaving
behind the reactive 2-methylenetetralin-1-one. The
base

⊖
X was unknown at the time, and is theorized to

be Mpro itself [102], but it is also known, that the dis-
sociation of HEAT proceeds even in aqueous solu-
tions without any added base, albeit very slowly.
Also, 2-methylenetetralin-1-one is a possible inter-
mediate product in the synthesis of HEAT [103] and
therefore a potential impurity.

Figure 35: 2-methylenetetralin-1-one (from HEAT)
(in yellow) bound to the catalytic pocket
S1 of Mpro (mostly in gray). The ex-
perimentally determined electron density
(blue mesh) fits the proposed Michael ad-
ducts well. Adapted from Günther et al.
[104, figure 3].

H

⊖
X

⊕
N
H

HO

H2N + X
O

Figure 36: Decay of HEAT to 2-methylenetetralone
via deprotonation of the C-H acidic hy-
drogen in position 2.
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The proposed reaction mechanism for the inhib-
ition of Mpro by HEAT is as follows: After having
been activated by a base, the unsaturated ketone
moiety is a good Michael acceptor. Cysteine-145
of Mpro can easily be deprotonated and the nuc-
leophilic thiolate reacts with the Michael acceptor
at the easily accessible carbon of the unsaturated
methylene moiety. A bond is formed and the negat-
ive charge shifts through the conjugated system to
the oxygen atom to form an enolate. The enolate
will isomerize back to the ketone form. The keto-
enol tautomery is an equilibrium, but the ketone
is favored. As a result, the drug is permanently
bound to the catalytically active cysteine-145 of
Mpro, which will lead to an irreversible inhibition
of its peptidolytic activity. Thus we can summarize
that the reaction mechanism depends on three prop-
erties:
1. A leaving group that is stable enough to deliver
the drug, but also cleavable under these conditions.
2. A good Michael acceptor
3. A general affinity to the binding pocket.
The binding pocket is rather hydrophobic and the
natural substrates have have the consensus motive
[A/V/P/T][X][L/F/V/M][Q]↓[G/A/S/N] [105] using
the one-letter codes for the amino acids and ‘↓’ indic-
ating the cleavage site. This motive has a non-polar
residue just a few atoms away fromwhere the cleav-
age site would be, matching with the benzene ring
of HEAT.

⊖
S

C145
O

S
C145⊖

O

⊕
H

S
C145

O

Figure 37: In the proposed mechanism 2-
methylenetetralone acts as a Michael
acceptor and the sulphur of cysteine-145
of Mpro as a nucleophile. This reaction
forms a structure that fits the observed
electron density very well.
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OH

N
H

O

HEAT [IUPAC: 2-(beta-(4-hydroxyphenyl)ethylaminomethyl)tetralone]

O

N

Tolperisone [IUPAC: 2-methyl-1-(4-methylphenyl)-3-piperidin-1-ylpropan-1-one]

Figure 38: Aligned molecular structures of HEAT and tolperisone

Of all the compounds in the cocrystallization as-
say, only tolperisone has all of the just mentioned
three properties, and so the expectation was formed
that tolperisone should be binding as well. How-
ever, tolperisone did not show binding at first. There
are many things that can go wrong and initially the
situation was chaotic, so a negative result could not
be taken for granted. Also it is not guaranteed that
every enzyme-substrate complex can crystallize in
the first place. Further investigation then showed
that it in fact can cocrystalize, see figure 39, which
shows the Michael acceptor 4-MMPPO (2-methyl-1-
(4-methylphenyl)-propenone) derived from tolper-
isone, bound to the same catalytic cysteine as HEAT.
Just like with HEAT, it is also a known impurity
[106]. The proposed reaction mechanism has since
been refined to include putative catalyzing interac-
tions with the catalytic cleft of the enzyme [102].
Later binding assays did confirm these results and
both compounds could be shown to be antiviral with
a critical concentration EC50 of 19.17 µm for tolper-
isone and 24.05 µm for HEAT [101, figure 2].

Figure 39: 2-methyl-1-(4-methylphenyl)-propenone
(from Tolpersone) (in pink) bound to the
catalytic pocket S1 of Mpro (mostly in
gray). The experimentally determined
electron density (blue mesh) fits the
proposed Michael adducts very well. Ad-
apted from Günther et al. [104, figure 3].

Even though this project did not lead to a cure for Covid, it shows how powerful structural crystallo-
graphy and structural knowledge can be. Since then the virustatic drug Paxlovid was developed by Pfizer
based on the same principles.
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7. Structure Determination from Continuous Diffraction

Continuous diffraction is the non-discretized diffraction from single molecules or multiple molecules of the
same kind with the same alignment, but without periodicity. This makes it distinct from crystallography,
but many methods can be transferred, especially phasing and structure refinement. On the other hand,
continuous diffraction provides more information and therefore other methods were developed that are
mostly impossible with crystallographic data. The following is an exploration of how to transfer some of
the methods from crystallography to the richer continuos diffraction data.

According to the Nyquist-Shannon sampling theorem, the crystallographic structure factors provide
sufficient sampling for arbitrary crystal structures, or stated in another way, the discrete Fourier transform
is invertible. Any finer sampling would not provide additional constraints, because the samples would not
be independent any more. However, only the squared amplitudes of the structure factors are observed, and
so half the constraints, the phases, are missing. Knowing that the object is entirely real does not change this
assessment, because the reduction of variables by the factor two is matched by a reduction in the number
of constraints because the Fourier transform of a real function has a point-symmetry, this follows from
equation 78. Additional constraints are needed. In crystallography this is usually the prior knowledge
that molecules are made up of atoms and bonds with very particular angles and distances. If there is more
diffraction data, like from different crystal forms, that provide different sampling of the Fourier transform
[62], the constraint ratio is such that the solution is unique. Similarly, diffraction from singular objects also
provides twice asmany constraints in each dimension. This is because the squared amplitudes of the Fourier
transform of the object are equal to the Fourier transform of the autocorrelation of the object (equation
76). The autocorrelation of an object is two times as wide as the object in each dimension and each point is
a linearly independent combination of the values that describe our object (apart from the point symmetry
for entirely real objects). Sufficient sampling according to the sampling theorem is therefore twice of what
it was previously in each dimension. A more detailed account of this argument can be found in Morgan
et al. [107].

As introduced earlier however, diffraction from singular macromolecules is not strong enough yet to be
usable. But until the time comes there sometimes is diffuse diffraction from crystals that looks like the dif-
fraction from single molecules. This is due to a particularity of these crystals: The molecules are randomly
shifted as a unit each. The peaks in the diffraction pattern are due to the three-dimensional periodicity,
thus they only capture the average position and density, which is smoothed by the random shifts. The
correlated movements result in an eletron density average that appears smoother than the electron density
of each asymmetric unit. This dampens the peaks intensities, but between the peaks the diffraction from
the shifted molecules can be described by the Fourier transform of the difference between each shifted
molecule and the average density, like an edge-enhanced version of the electron density of this molecule.
In this way we have access to something that is very similar to single molecule diffraction, the diffraction
of an oriented arrangement of molecules of the same kind. Methods have been developed that make use
of the overconstrained nature of this data to reconstruct the electron density with iterative projection al-
gorithms [108]. Iterative projection algorithms work by iterating between two or more constraints trying
to fulfill each at a time until all are fulfilled, provided that they can be fulfilled at the same time. If the
problem is highly overconstrained and a solution exists, these algorithms often find solutions quickly even
for high dimensional problems. Of active research is the question of how to best adapt these methods when
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rotational disorder smears the diffuse diffraction radially, how measurement errors affect the method, and
how to help these methods with other prior information, especially about molecular structures.

On the surface iterative projection algorithms seem impossible to combine with structural information,
because it is hard to express structural constraints as a projection. In each step we would have to find the
structure that describes the diffraction or electron density as closely as possible, while still being structur-
ally sound. This is a very hard problem, especially in contrast to the projections that are usually employed.
Error reduction is the most trivial iterative projection algorithm, it iterates between two projections until
convergence. The first constraint is the finite support. Because we know the diffraction is from a single
molecule, the Fourier transform of the measured squared amplitudes is the autocorrelation of the object,
up to measurement errors. The autocorrelation is two times as large as the object itself in each dimension.
And with this we know the maximum extent of the object we want to reconstruct, this is the support con-
straint. The support constraint S (⇀x) is like a top hat in each direction with the known maximum extent.
Because the squared amplitudes are shift invariant (the shift is in the phase), the location is irrelevant and
for simplicity the support will be centered at

⇀

0. Applying the support constraint amounts to multiplying
the putative electron density ρ (⇀x) with the support:

ρ (
⇀
x)← ρ (

⇀
x) S (⇀x) =

ρ (
⇀
x) if S (⇀x) = 1

0 otherwise
(152)

The second constraint is that the Fourier amplitudes |F (
⇀
q)| of the current estimate of the electron density

need to correspond to the square root of the measured Fourier intensities
√
Ii:

F (⇀q)←
√

I (⇀q)F (⇀q)
|F (⇀q)| (153)

Integrating more constraints into this framework requires expressing them in terms of projections. But
there is a connection with function optimization, namely Newton’s method. If we take each point of the
unknown electron density inside the support as a variable we want to optimize for, and the sum of quad-
ratic distances between measured structure factor amplitudes and the structure factor amplitudes of the
reconstructed electron density as a target, the support constraint is always implicit and it can be shown
that the second projection corresponds to a Newtons update.

x← x− f(x)
(
∂f
∂x

(x)

)−1

Using Newtons method for finding minima and maxima of smooth functions involves the first and second
derivatives of the target function f, as a reminder:

x← x− ∂f
∂x

(x)

(
∂2f
∂x2

(x)

)−1

Calculating the first and second derivatives in preparation for Newtons method:

f (ρ (⇀x)) = 1

2

∫
dom(⇀q)

||F⇀
x (ρ (

⇀
x)) (

⇀
q)| − A (

⇀
q)|2 d⇀

q
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∂f (ρ (⇀x))
∂ρ (

⇀
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(ρ (
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∫
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q

(
F⇀

x (ρ (
⇀
x)) (

⇀
q)

|F⇀
x (ρ (

⇀
x)) (

⇀
q)|

(|F⇀
x (ρ (

⇀
x)) (

⇀
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⇀
q))

)
(
⇀
x) d

⇀
q
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(
ρ (

⇀
x)−F⇀

q

(
A (

⇀
q)F⇀

x (ρ (
⇀
x)) (
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q)
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x (ρ (

⇀
x)) (

⇀
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)
(
⇀
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)∫
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1d
⇀
q

∂2f (ρ (⇀x))
(∂ρ (

⇀
x))

2 (ρ (
⇀
x)) =

∫
dom(⇀q)

1d
⇀
q

Newtons update is:

ρ (
⇀
x)←

F
⇀
q

(
A (

⇀
q)F⇀

x (ρ (
⇀
x)) (

⇀
q)

|F⇀
x (ρ (

⇀
x)) (

⇀
q)|

)
(
⇀
x) if |F⇀

x (ρ (
⇀
x)) (

⇀
q)| > 0

ρ (
⇀
x) otherwise

Which is virtually identical to the second projection step of the error reduction algorithm, while the first
projection is always implicit. We can conclude that the error reduction algorithm is similar to Newtons
method minimizing the distance between simulated and measured amplitudes [109]. And more generally,
a projection is the solution to a least squares problem in that space. So iterative projection algorithms
can be emulated by cycling through complementary targets and optimizing them one by one. Typically in
mathematical optimization, multiple targets would be combined into a single target, which is then optim-
ized. This has the benefit of taking the shortest route to the next optimum and finding the best compromise
when not all targets can be satisfied completely or when they are not sufficiently constrained on their own.
But cycling through the targets has the opposite effect, which can be an advantage too, it explores more
of the parameter space, thereby increasing the tendency towards global instead of local optima [110]. A
hybrid approach can combine both aspects, by first exploring the space cycling through the targets and
then locking in and finding the best solution by optimizing all targets jointly. Intermediate solutions, for
example estimating the current uncertainty in the model and equivalently phase errors [111], or hybrid
input-output, exist also. What had been unexplored, was a way to include prior structural knowledge in
the phasing algorithms. To test the new options a program has been created, that applies these principles to
synthetic diffuse diffraction data. The distance between two diffraction patterns has no unit, the energetic
state of a structure is in units of energy per mole. But all targets can be expressed in terms of probability,
thereby bringing them onto the same scale. The minimum of quadratic distances corresponds to the max-
imum of Gaussian likelihoods and log-likelihoods, and the conversion between energy and probability in
a thermodynamic equilibrium is the Boltzmann-constant kB and the temperature T :

p(structure|molecule) = exp (−E/(kBT )) (154)

There are several libraries that can approximate the energetic state of molecular structures including de-
rivatives. The toolbox Open Babel [112] contains all necessary functions and was easy to integrate. Com-
plementary methods can determine the atomic composition and connectivity of the molecule with great
accuracy, so we do not need to concern ourselves with the probability of observing a specific molecule
p(molecule), only with the structure of a given molecule p(structure|molecule). The conversion factor
between quadratic distances (d2 between prediction and measurement) and log-likelihoods is the standard
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deviation σ, if we assume a normal distribution of measurement errors:

− log
(
p(d2)

)
=

1

2

(
d2

σ2
+ log

(
2πσ2

))
Other models, possibly some that are more robust, are possible too. Adding both targets to form a joint
target is like applying Bayes theorem:

p(model|data) = p(data|model)p(model)
p(data)

The prior probability of the data p(data) does not need to be determined explicitly. In a full Bayesian
inference step, it is simply the missing normalization factor that can be determined by integration. In a
maximum a posterior approach it is a constant that does not change the location of the optimum. Using the
modified Cromer-Mann coefficients, see section 6.7, the expected diffraction can be expressed analytically
and its derivatives can be computed symbolically using computations on the order ofO(nm), wheren is the
number of atoms andm the number of data-points. The diffraction and the derivatives can be approximated
with computational cost on the order O(n +m log(m)) using the FFT, by applying the FFT to a sampled
electron density and its derivatives, just like it is done in many crystallographic refinement schemes.

Lastly, crystals from biological macromolecules usually contain unstructured solvent reducing the con-
trast of the electron density. If we want to keep all options we had up to now, we need a way to model the
solvent that still allows efficient derivatives with respect to all model parameters, ideally symbolically. A
simple solvent model is the following. Everywhere where there are no atoms of the macromolecule, there
is solvent, starting at a certain distance, corresponding to the average distance between solvent molecules.
The solvent usually is water and the average distance between water molecules is around 3.1Å (σs). The
distance between atoms of the molecule and the solvent should be similar, but it possibly depends on the
kind of atoms as well. The average electron density of water (ρw) is 0.334Å−3. Both can be free parameters
of the model. The solvent is modeled with a constant density of 0.334Å−3, and by subtracting a Gaussian
with width 3.1Å for each atom of the molecule. Mathematically the solvent exclusion can be expressed by
a product of complementary probabilities:

ρs (
⇀
x) = ρw

(
1−

N∏
i

(
1− exp

(
−1

2
(
⇀
x− µi)

2
σ−2
s

)))
(155)

This expression can be expanded to yield an expression that is easy to approximate and Fourier-transform:
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⇀
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Higher order sums quickly subside and only products between nearby atoms contain significant cross-
terms because the Gaussian function is highly localized. Nearby contributions can be filtered out using
spatial indexing with only constant overhead. Then, an efficient approximation with a symbolic Fourier
transform can be found by neglecting all cross terms further than 3σ apart.
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(a) Electron density of anandamide projected onto the
xy-plane.
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(b) A cut through the Fourier amplitudes squared of the
electron density of anandamide. This is the kind of
data one could gather if diffraction from single mo-
lecules were strong enough.

The methods described were implemented in C++ and tested with synthetic data. The program code has
been published under https://github.com/1ykos/diffuse and preliminary experiments show
that structures of small molecules can be reconstructed, even from noisy data and when there is con-
siderable structural variability, like in the case of anandamide. Figure 40a shows the electron density of
anandamide, which can be retrieved from continuous diffraction like pictured in figure 40b without addi-
tional noise. The additional structural information helps a lot when the data is otherwise too noisy and the
initial guess is not too far off. However, even small structures can have several local energetic minima. Op-
timization of larger structures incur much higher computational cost and have not been investigated, but
there is no reason why the methods discussed should not work in principle. In conclusion, the main result
of this investigation is to show that iterative projection and function optimization are entirely compatible
and structural information can be integrated with iterative projection algorithms just like projection steps
can be used in structural refinement.
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8. X-ray Detector Calibration with Histograms

In integrating CMOS detectors (a common type of integrating detectors in crystallography) each pixel is
potentially slightly different and its associated analog-to-digital-converter (ADC) has slightly varying char-
acteristics, that can even drift over time. Therefore they need to be calibrated [113]. As it is experimentally
difficult to provide a consistent calibration signal of known intensity equally at each pixel, what is often
done while such a calibration signal is not available, is to record many images of a low signal, so that each
pixel sometimes measures no photon, and sometimes one or more. When the precision and resolution of
the ADC is high enough - which is usually the case, because they are designed to resolve single photons
- the signal levels per photon can be inferred and the offset and gain of each pixel can be calibrated. The
location of the first peak in figure 41 is the offset of this pixel, the width of the first peak is the noise floor
and the spacing between the peaks is the gain. As an intermediate step it is convenient to accumulate the
measurements for each pixel into a histogram. Because a histogram is a compressed representation of all
the data for each pixel, many quantities can be calculated more quickly. For gain switching detectors this
only works in the highest gain mode, in lower gain modes the precision is lower and the photon counts
cannot be inferred any more. Other methods need to be employed there, possibly using histograms as well.
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Figure 41: Histogram of observed detector values for one pixel in a series of 10000 images from a integrating
CMOS detector (model Jungfrau). The periodic peaks correspond to the typical values measured
for 1,2,3… photons. Five regularly spaced Cauchy functions were fitted to the histogram, the fit
is drawn in red.

There are several ways to compute a histogram, but when the data is sparse (that is, only a small fraction
of attainable signals weremeasured and it is not known in advancewhich fraction) the fastest way is to use a
hash table. The standardC++ hash table implementation however is fairlywasteful with computermemory,
especially for small data types, when few bytes that are typically recorded for each pixel in each of the tens
of thousands of images, and random access memory (RAM) is expensive. There is another way to compute
histograms, by first sorting the values, then counting consecutive runs of equal values. Because the read-
write patterns of the sorting algorithm quicksort are much more linear than the pseudorandom access
patterns of hash-tables, this would be feasible even with slower but cheaper memory, like memory mapped

8As a consequence of the requirement for stable data pointers, which is a rarely needed feature.
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files on SSDs. But the sheer volume of transactions will quickly degrade the flash storage cells. However,
counting the values while sorting them can drastically reduce the memory usage and even approach the
theoretical minimum. This can be achieved by using a sorted array of pairs of values and frequencies. For
each value, if it is already in the array, the associated frequency will be incremented. If the value is new,
an entry is created at the correct position in the ordered list. This way, the frequent lookups can be done
quickly using binary search, but the insertions need to shift half the array on average. Still, this solution is
sufficient, very memory efficient and fast enough. It can be much faster, if even just a small fraction of slots
scattered across the array were kept empty, so that insertions only need to shift the entries until a free slot
is encountered. This only works when the values and empty slots are distributed randomly, otherwise they
could cluster pathologically. For this exact purpose hashing is used in hash tables. A hash is a function
that distributes input values uniformly onto a range of output values with high probability. The hash table
patchmap is the result of this synthesis of sorting and hashing to achieve memory efficient hashing.

9. A Memory Efficient Hash Table

A hash table is a data structure commonly used to associate keys with values to implement dictionaries
or to test if a key is part of a set of keys to implement set operations. Hash tables are an essential part of
many algorithms because they allow associative retrieval of n elements in average constant time and have
a space complexity ofO(n). The keys are associated to the values by computing the hash value of each key
and storing the key-value pair in an array at the location indicated by this value. As long as there are no
collisions, that is two different keys that produce the same initial position, different hash map implement-
ations are conceptually identical. This can be the case in the limit for an infinitely large array or in the
case of a perfect hashing function that produces different locations for all keys. As memory is constrained
and there can be no one predetermined perfect hash function for arbitrary keys, the resolution of hash
collisions is the main signature of different hash map implementations. The better the hash collisions are
handled, the more of them can be allowed to occur and the smaller the internal array can be. Collision
resolution strategies are commonly classified into open addressing and chaining. A probing strategy finds
another free position in the same table. The position to store an entry is found by starting from the position
indicated by the hash value and then searching for a free bucket with some probing strategy. Chaining
means that each position in the array stores a pointer to a secondary data structure that stores all the
entries with the same hash value. Testing the initial position incurs a cache miss in most cases. A cache
miss is when data, that cannot be found in any of the caches of the CPU, is requested. The time it takes to
retrieve random data from the main memory usually determines the performance of a hash table and the
first cache miss cannot be avoided due to the pseudorandom nature of hashing. The second step (chaining
or probing) occurs more frequently the fuller the table becomes, it is a function of the load factor α. The
load factor is defined as the number of elements stored in the table divided by the total number of positions
available in the table. Therefore, for a given hash function and collision resolution scheme, the hash table
with a lower load factor is faster because it has to resolve the least collisions. The best hash table is the one
that enables insertions lookups and possibly deletions at the lowest cost. Cost in computing essentially is
two-dimensional - computation time and memory space needed. In different settings memory space and
computing time can be constrained differently, but in general the total cost is virtually proportional to the
product of time and space. The hash table with the best trade-off therefore is the one that can achieve the
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lowest cost given by said product. The patchmap is a hash table developed to achieve a good trade-off in
this regard.

The central idea of the novel probing scheme [114] is to use an ordering of the keys consistent with
the hash value of the key to resolve the collisions that occur in the hash table. Using sorting to resolve
hash collisions has been suggested before, most notably by Amble and Knuth [115]. The difference in the
proposed algorithm is not using the sorting given by the value of the key but the hash of the key. With
linear probing this leads to a global order of the keys stored in the hash table and therefore allows for
efficient lookup using interpolation search and binary search. Interpolation search has the best average
case and a binary search provides the best worst case complexity for lookups in a sorted array. This means
that the lookup, successful or not, of a key will have a worst case time complexity of O(log(n)), and an
average complexity of O

(
log
(
log((1− α)−1)

))
. These guarantees are as good as for optimally ordered

hash tables [116]9 and stronger than the guarantees that most other probing strategies can give for lookups
[117]. And just like for binary tree hashing, which approximates optimal ordering, the faster lookups come
at higher cost for insertions of up toO(n) for a full table, but are constant for tables that have a load factor
less than 1. Note that the probable worst case for advanced probing strategies equally is O (log(n)) as it
also approaches optimal ordering, and that robin hood hashing [118] with dynamic resizing achieves the
same worst case complexity with exceedingly high probability, as the hash table can be resized as soon
as the maximum displacement is larger than O(log(n)), but the iterative resizing is not guaranteed to
terminate with O(n) space. Robin hood hashing with dynamic resizing is successfully implemented in the
flat_hash_map and sherwood_map [119] of Malte Skarupke for example.

9.1. The Algorithm

The key-value pairs are stored in an array of size m. A binary mask of the same size is used to indicate
whether a bucket in the array is free or set. The proposed algorithm requires a hashing function, preferably
bijective, an order on the keys to be stored if the hashing function is not bijective and a mapping function
that compresses the range of the hash value onto the range of the size of the array while preserving the
order of the hash. The hash function can be any function that maps the keys onto positive integers less
than some integer, but as the resolution of collisions is essentially a variant of linear probing it is crucial
for good performance that the hash values are evenly distributed. The map function used is the product of
the hash value h withm and then dividing the result by the maximum hash value maxh plus one:

map(h) = ⌊ hm

1 +maxh
⌋

Two types of comparisons need to be considered, comparing keys with keys and keys with free bucket
positions. When comparing two keys a key is considered to be less if its hash value is less than the other
or in case the hash values are equal if the key itself is less than the other key. When comparing a key to an
empty position it is considered to compare less if the application of the map function to the result of the
hash function of the key is less than the position: position <map(hash(key)) .

9The authors cautiously claim that the average complexity of successful is bounded by a constant but give no proof.
9This can be computed efficiently for fixed width integer types using long multiplication with two fixed width integers of the same

length or a simple multiplication with a fixed width integer with double the size, followed by bit shifts, this technique is known
as fastrange [120].
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As long as there have been no collisions the keys
stored in the hash table are already in the order
given by the hash value. The lookup operation de-
pends on this order. The operations for insertion
and deletion therefore need to be implemented in a
way so that they uphold this order. This is achieved
by finding the closest free bucket starting from the
position indicated by map(order(key)). The key-
value pair is inserted into the free bucket and then
swapped with neighbouring entries until the order
of the hash table is restored, see figure 43. This pro-
cedure behaves like linear probing in a complexity
analysis and therefore needs the same number of
probes, O(1 + (1 − α)−2) [121, 6.4 Hashing]. The
term 1

4

(
α

(1−α)2 + α
)
has been found to describe the

required number of swaps wells. For a numerical
simulation see figure 42. Deletion works analogous
to insertion, but in reverse. The procedure for insert-
ing is conceptually identical to the insertion step in
Algorithm B in Knuth and Amble [115] with linear
probing, but instead of comparing the keys directly,
the hash value of the keys is being compared.
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Given a hash map where the keys are globally ordered, an interpolation search can be employed to
retrieve keys. Starting with the first and last element as lower_limits and upper_limit respectively
of the array, the range is iteratively subdivided by linear interpolation until the key at midpoint equals the
key that needs to be found or the range is empty or the maximum number of iterations has been reached.
If the number of iterations exceeds O(log(n)) the search switches to a binary search. Almost always the
interpolation search will terminate before that, but switching to a binary search guarantees that the search
will terminate in O(log(n)).

For a table that has been filled completely, the average time complexity for key retrieval will be
O(log(log(n))) and the worst case time complexity will be O(log(n)) as this case reduces to the search in
a sorted list of uniformly distributed integers. The algorithm for inserting new keys behaves like linear
probing in the way that primary clustering occurs. The complexity for lookup with a linear search would
therefore be 1

2 (1 + (1 − α)−1) for a successful lookup and at most one probe more for an unsuccessful
search. This is similar to algorithm B in Knuth and Amble [115], where the search can be concluded as
soon as a key outside of the search range is encountered. In contrast to these ordered hash tables, the
proposed hash table has a global order, made up of small patches that are ordered internally and with
respect to each other. This means probe positions can be interpolated from the keys at the upper and
lower limit starting from the beginning and end of the table, reducing the number of probes required for
lookups to 1 + log2(1 + log2( 2−α

2−2α )). The exact term depends on implementation details like the way the
position is interpolated. For a numerical simulation see figure 42.
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operation average worst case

insertion O(1 + (1− α)−2) O(n)

deletion O(1 + (1− α)−2) O(n)

lookup O(1 + log2(1 + log2( 2−α
2−2α ))) O(log2(n))

Table 8: Computational complexities for hash table operations in the patchmap. α = n
m is the load factor,

m the number of buckets and n the number of elements stored in the table.

operation average worst case

insertion O(1 + (1− α)−1) O(n)

deletion O(1 + (1− α)−1) O(n)

lookup O(1 + (1− α)−1) O(n)

Table 9: Computational complexities for hash tables using double hashing. α = n
m is the load factor,m the

number of buckets, n the number of elements stored in the hash table.

Step 0, the patch before insertion:
key x 6 2 5 7 9 3 6 x x …
hash x 1 2 3 3 4 5 6 x x …
mask 0 1 1 1 1 1 1 1 0 0 …

Step 1, inserting key 1 with hash 5 into a patch:
key x 6 2 5 7 9 3 6 1 x …
hash x 1 2 3 3 4 5 6 5 x …
mask 0 1 1 1 1 1 1 1 1 0 …

Step 2, restoring the order in the patch:
key x 6 2 5 7 9 1 3 6 x …
hash x 1 2 3 3 4 5 5 6 x …
mask 0 1 1 1 1 1 1 1 1 0 …

Figure 43: Three step scheme of inserting the key 1 with the hash value 5 into a patch in the patchmap.
The hash function is non bijective. The map function in this example is the identity function.
The key 1 is inserted at the position closest to map(hash(key))=5, which is position 8, then it is
swapped to the left until the order of the patch is restored.

9.1.1. Experimental Results

Using the proposed algorithm a hash table can be implemented that has a good tradeoff between memory
requirement and time used for lookup, insertion and deletion. The average time for inserting into, deleting
from and searching for a key that has 50% chance of being in the table has been computed for up to 227

keys, for hash tables mapping from 32 bit integers to 32 bit integers. The tests were carried out on a
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64 bit linux machine with an Intel Core i5-3320M CPU @ 2.60GHz and a CAS latency of 13.5 ns. The
patchmap was compared to khash from attractivechaos klib [122], Malte Skarupke’s bytell [123]
and his flat_hash_map [124] using robin hood hashing, google::sparsehash from the public
github release, sparsepp [125], a sparsehash fork and std::unordered_map. All executables
were compiled with the highest optimization level and using clang version 7.0.1.
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(a) successful lookup
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(b) unsuccessful lookup
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(c) insertions
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(d) deletions

Figure 44: Selected hash table implementations and their performance given in average memory efficiency
on the horizontal axis and average time for lookup, insertion and deletion of a random key
in nanoseconds on the vertical axis, computed for up to 227 keys. Insertion contains the time
needed for dynamic expansions. There are two points for the patchmap with two different
tradeoffs between memory efficiency and speed.
patchmap: •, khash: ×, bytell: +, google::sparse_hash_map: #,
google::dense_hash_map D, flat_hash_map: △, std::unordered_map: 3,
sparsepp: 2 The dotted line is the empirically determined typically achievable trade-off
between memory efficiency and speed as a function of the memory efficiency, given by
O(1 + (1−α)−1). The black line is an isoline for best trade-off that can be achieved, given this
trade-off, at any memory efficieny. Implementations that lie close to or below this line are
especially cost effective in the space-time metric.

From figure 44 it can be seen that the patchmap sits right at the apparent barrier outlined by other
good hashmap implementations like khash, bytell and google::sparsehash on amap of memory
usage and time efficiency. This broad comparison cannot capture all aspects of hash table performance and
it is unfair in several regards. The comparison to the std::unordered_map is unfair, as it has to adhere
to the c++ standard requiring that references to elements stay constant for all hash table operations. The
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hash tables sparsepp and google::sparsemap are designed to minimize the peak, instead of the
average memory consumption. Deleting elements from the table is done by marking elements as deleted
instead of actually removing them from the table in all implementations except the patchmap, bytell
and std::unordered_map. This saves time in the short run, but having deleted elements still in the
table can lead to a degradation of performance if these elements are allowed to accumulate. Such behavior
can be triggered by repeatedly inserting and erasing many keys, see table 10, but it is considered rare in
real world applications.

hash table slowdown rehashing
patchmap no none
bytell no none
std::unordered_map no none
flat_hash_map no none
sparsepp minor frequent
google::sparse_hash_map minor frequent
google::dense_hash_map severe rare
khash severe occasional

Table 10: Performance degradation of hash table implementationswhen keys from a fixed set are repeatedly
chosen at random and then alternatingly inserted or deleted from the hash table to show the effect
of many dead keys in the table.

9.1.2. Availability

An implementation of the patchmap as outlined here is available on github under an unmodified MIT
license:
https://github.com/1ykos/ordered_patch_map
And the accompanying publication can be found here:
https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/581
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9.1.3. Discussion

Sorting based on the hash is almost identical to robin hood hashing with bidirectional linear probing. When
deciding which key to displace and which to keep at a given position, the larger key will also be displaced
more than the smaller key. The crucial difference is that when ensuring an absolute order a guarantee
can be given for the worst time complexity because a binary search can be employed. The proposed data
structure is also very similar to the one used in Gonnet and Ian Munro [126] for sorting. The application is
different, and therefore deletions and the opportunity for interpolation search for lookups have not been
considered. But regarding the data structure itself, the only relevant difference is that the entries are hashed
and sorted based on a hash function.

Using a global ordering of the keys stored in a hash table, a worst case guarantee can be made of a time
complexity for associations of O (log(n)), and an average complexity of O(1+ log2(1+ log2( 2−α

2−2α ))) can
be achieved. Chaining hash tables can achieve better or at least equal bounds on the complexity of all hash
table operations. However, this comes at the cost of a higher degree of indirection due to the secondary
data structure containing the elements with the same hash value. This is why in practice chaining usually
performs worse in terms of memory efficiency and speed. The Cuckoo probing scheme even guarantees
O(1) lookups [127] but also with worse practical performance and only up to a certain load factor. Probing
strategies that approximate an optimal arrangement at a higher cost for insertion like Robin hood hashing
in conjunction with double hashing [118, 128], binary tree hashing [116] and the algorithm presented here
seem to have the same average case complexity for lookups, equally asymptotically approaching optimality
for high load factors. In practice the mask structure and the cache-friendly localized access pattern of the
linear probing allows to effectively lower the constants associated with insertion and deletion.

The fact that the patchmap can perform lookups quickly even when it is very full could make it suitable
for use cases where memory is constrained and the hash table itself is virtually static. But the quadratically
increasing costs for inserting and deleting elements when the patchmap fills up limit its utility when
insertion and deletion are frequent at the same time with extremely constrained memory. Other than that
the performance characteristics of the patchmap make it a good choice in cases when memory is only
moderately constrained.
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10. Reflection and Outlook

Nearly all steps in the data processing were investigated in order to find the largest systematic errors, to
correct them and to find minute structural differences between crystals. Only those steps where signific-
ant improvements could be made were presented. Ancillary projects were undertaken to enable others,
small improvements could be made in multiple aspects, and more substantial improvements demonstrate
the utility of Gaussian functions as a basis for a Fourier-friendly diffraction model. Connecting structure
refinement with iterative phasing methods and the sorting-based hash table are useful in their own right.
The new coefficients are a straight improvement over the Cromer-Mann coefficients, because they are more
easily sampled and Fourier-transformed and reduce the relative errors. Despite great efforts to improve
merging using a more detailed description of the probability distributions involved and more robust meth-
ods, the new methods were mainly beneficial for few observations, but the rate of convergence with more
and more data was not improved by much with these methods alone. However, these methods were in-
strumental when more of the variance in the measurements could be modelled and then reduced. Themore
accurate and more detailed model of crystal diffraction derived in section 6.9 enables a more efficient data
processing that requires half or less experimental data for the same precision in the result.

As the varying intensity overall had already been corrected for with methods inherited from rotational
crystallography (scaling), the partial nature of the measurements in diffraction patterns without rotation
was the next largest source of variance. A large part of the variance introduced by unknown partialities
could be reduced and it is not known how much more is possible due to the difficulties in parameter
optimization and the number of parameters required for even more accurate models, that might not be
well-constrained by the data any more. The extent to which partiality estimates can improve clustering
remains an open question, even though this was the initial impetus of this project – too much was, and
maybe still is, in the way, but with these improvements we are at least closer.

Refinement against the whole diffraction patterns, however, improves the constraint ratio considerably
and should improve the data processing efficiency once more. Full Bayesian induction with more inform-
ative prior information instead of a maximum likelihood approach with minimal prior information should
further improve data processing efficiency too. Alternatively, seeing how well the weighted median fared
against the maximum likelihood method for merging observations in section 6.6, minimizing the absolute
distances, while not being quite as efficient in theory, could turn out better in practice because of the com-
plications involved in function optimization that can often be circumvented when minimizing absoulute
distances. With enough improvements in this direction, it is expected that it will eventually be possible to
resolve structural differences between the individual crystals. This would mean not just the same inform-
ation from less data, but a different kind of information in addition.
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A. Toxicological Information

compound symbol hazard statements precautionary statements

HEAT H302
P264
P301+P312

tolperisone
H302, H315,
H319, H335

P261, P264
P280

4-MMPPO
H302, H312,
H315, H319,
H332

P261, P271,
P280, P302+P352,
P305+P351+P338

2-methylenetetralin-1-one
H302, H312,
H315, H319,
H332

P261, P271,
P280, P302+P352,
P305+P351+P338

B. Derivatives and derived properties

B.1. Derived properties

B.1.1. Peak shape on the detector

Looking at the predicted intensity as a function of the position
(
fs ss

)⊤
on the detector, and assuming

that the peak intensity falls into a small angular range (< 10◦) where the covariance matrices can be ap-
proximated as locally constant with good accuracy, an approximation of the peak shape on the detector can
be derived by factoring out the (approximately) constant terms from the exponential. For straightforward
computation and best approximation the direction with the highest intensity ⇀

wmax
out should be determined,

this can be achieved with any function optimization algorithm. Newtonsmethod is equivalent to iteratively
completing the square for the exponential term and, because the target function can be made very nearly
quadratic by taking the logarithm, it converges very fast. The detector coordinate system is commonly
given by a 2-by-3 transformation matrixD and an offset vector⇀

o. The outgoing wave direction is therefore
given by the normed position vector:

⇀
wout =

(
D

(
fs

ss

)
+

⇀
o

)∣∣∣∣∣D
(
fs

ss

)
+

⇀
o
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Thepoint
(
fs0 ss0

)⊤
denotes the peak position on the detector, i.e. the position of maximum flux. Using(

fs0 ss0

)⊤
the normed directionality vector can be approximated to first order as:

⇀
wout ≈

⇀
wmax

out +
∂ (

⇀
wout)

∂

(
fs

ss

) (
fs0

ss0

) ((
fs

ss

)
−

(
fs0

ss0

))

Equation 128 for the flux on the detector can be expressed as a scaled Gaussian (or a sum thereof), and
using the linearized expression for the directionality vector the intensity on the detector can be expressed
as:

j

(
fs

ss

)
≈ c exp

−1

2

k
⇀
wmax

out +
∂ (

⇀
wout)

∂

(
fs

ss

) (
fs0

ss0

) ((
fs

ss

)
−

(
fs0

ss0

))− ⇀
µ


⊤

Σ−1 ([...])


(157)

c = proportionality constant

The scaled Gaussian, that only appears to be three-dimensional, can be rearranged to show the two-
dimensional form using suitable substitutions:
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M =
∂ (

⇀
wout)

∂

(
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ss

) (
fs0

ss0

)

⇀
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(
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)
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k
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− ⇀
µ
)
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)−1

∆

(
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ss0

)
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⇀
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⇀

∆x−∆

(
fs0

ss0

))⊤
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(
⇀

∆x−∆

(
fs0

ss0
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+ (
⇀
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out )

⊤
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⇀
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wmax
out )−∆

(
fs0

ss0

)⊤

Σ′−1∆

(
fs0

ss0

)

∆

(
fs0

ss0

)
=

(
0

0

)
if the outgoing wave vector was optimal

f

(
fs

ss

)
≈ c exp

(
−1

2

(
⇀

∆x⊤Σ′−1
⇀

∆x+ (
⇀
µ− k⇀

wmax
out )

⊤
Σ−1 (

⇀
µ− k⇀

wmax
out )
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(158)

The peak on the detector can therefore be approximated by a scaled two-dimensional Gaussian (or sev-
eral), potentially broadened by the point spread function of the detector. The shape (without broadening)
is given by the two-dimensional covariance matrix Σ′ .

B.1.2. Asymptotically Optimal Prediction of a Diffraction Image in Areas With Flux Above
Threshold

The naive approach to calculating a diffraction image of a snapshot would be to compute the multiplication
of the sourcewith the object and the convolutionwith theGreen’s function via the FFT.This holds in general
in kinetic far-field approximation even for non-crystals. For a crystal the Fourier transform is sparse and
this is usually exploited by iterating over the Miller indices. The computational complexity isO(NhNkNl)

whereN is the number of indices to be considered in each direction. Because the Ewald sphere essentially
is two dimensional, we can come up with a solution to compute this in O(N2) by using a region growing
approach. Every reflection that exceeds a threshold has at least one neighbouring Miller index, which has
a virtual reflection at most as far as half the inter-Bragg distance that would exceed the threshold. Picture
a curve with some width going through a mesh. The curve intersects only some nodes of the mesh, but
for every node that it does there is at least one face (or enclosed volume for higher dimensions) that it
intersects. The path of the curve can be traced by testing neighbouring faces (or volumes) for intersection
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iteratively.

1: initialise list todo
| by finding the closest Miller index
| to each midpoint of each detector panel

2: while ( there are elements in list todo )
3: take one (h,k,l) from the list todo

add it to set done
4: if ( no point in volume around (h,k,l)

| can exceed threshold ) goto 2
5: add all neighboring indices to list todo
6: if ( flux of (h,k,l) is below threshold ) goto 2
7: predict the intensity of (h,k,l) on the detector

To implement the set operations efficiently and to actually achieve O(N2) asymptotic complexity, the
hash table patchmap [114] was used, but most other data structures with amortized constant lookups and
insertions would do as well because the limiting step is checking the overlap in step 4.

B.1.3. Maximum flux of virtual reflection in range (h± 1
2 , k ±

1
2 , l ±

1
2 )

Themaximumflux of any virtual reflectionwith fractional coordinates closer to a givenMiller Index (h, k, l)
than any other Miller Index can be conservatively estimated by taking the reflection at (h, k, l), and con-
volving its location with a width equal to one unit of (h, k, l) in reciprocal space while not changing the
normalization of equation 146. This distance corresponds to a covariance matrix equal to half the reciprocal
unit cell times half the reciprocal unit cell transposed, note the similarity to the result in equation 137. The
approximation is not sensitive to the assumed direction of maximum diffraction intensity ⇀

wmax , a rough
estimate is sufficient. For compactness the term

⇀

kin − k
⇀
wmax will be combined as µ⃗A:

max
h± 1

2 ,k±
1
2 ,l±

1
2

|4πΣ∗|−
1
2

(
ϕ
(

⇀

kin − k
⇀
wmax,

⇀
µP ,

⇀
w⊤

maxΣ◦
⇀
wmax

))2

= max
h± 1

2 ,k±
1
2 ,l±

1
2

(
exp

(
− 1

2 (µ⃗A −
⇀
µP )

⊤ ⇀
w⊤

maxΣ
−1
◦

⇀
wmax (

⇀
µA −

⇀
µP )

))2
|4πΣ∗|

1
2 |2π⇀

w⊤
maxΣ◦

⇀
wmax|

≈

(
exp

(
− 1

2 (
⇀
µA −

⇀
µP )

⊤ ⇀
w⊤

max
(
Σ◦ +

1
22RR

⊤)−1 ⇀
w⊤

max (
⇀
µA −

⇀
µP )

))2
|4πΣ∗|

1
2 |2π⇀

w⊤
maxΣ◦

⇀
wmax|

B.1.4. One Frame in a Rotation Series

The integrated intensity in a given outgoing direction ⇀
wout can be expressed as proportional to a Gaussian
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Figure 45: An illustration of region growing for identifying reflections with significant contribution to the
diffraction. The gray gridlines intersect at integer combinations that are the Miller indices of
the reflections in reciprocal space. The Ewald sphere, or diffraction condition more generally,
is assumed to be a smooth function and much thinner in one dimension than the others. It is
caricaturized with an ellipse sector in black. The algorithm starts at any of the light red or light
blue squares. For each blue square that intersects with the diffraction condition at any point,
the diffraction condition at the exact Miller index is evaluated. A significant contribution is
indicated with a blue dot, an insignificant contribution with a red dot. For each blue square all
new neighbours are inspected for intersections in the samemanner. Squares that do not intersect
the diffraction condition at any point are colored in light red and don’t prompt the inspection of
their neighbours.
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function, see equation 122. The intensity integrated over an oscillation range [β, γ] is then proportional to:

∫ γ

β

ϕ

⇀
µA,

(Gα U)
−1

hk
l


 ,Σ

 dα (159)

Gα = rotation matrix with angle α

U = unit cell matrix (real-space)

It can be evaluated by first finding the indices values that will be excited to a significant degree in the
outgoing arc section described by the position on the detector, the axis of rotation ⇀

g and the oscillation
range. Then the target function can be approximated by a one-dimensional Gaussian by developing a small
angle approximation around the rotationwith the highest predicted intensity and factoring out the constant
terms of the three-dimensional Gaussian. This one-dimensional Gaussian integrated for the given range
yields a difference of two error-functions.

Gmax = rotation matrix that yields maximal diffraction

⇀
µP = (Gmax U)

−1

hk
l


∫ γ

β

ϕ [
⇀
µA, (α

⇀
g × ⇀

µP +
⇀
µP ) ,Σ] dα (160)

σg =
(
(
⇀
g × ⇀

µP )
⊤
Σ−1 (

⇀
g × ⇀

µP )
)− 1

2 (161)

∫ γ

β

exp
(
− 1

2 (
⇀
µS −

⇀
µP )

⊤
Σ−1 (

⇀
µS −

⇀
µP ) +

α2

2σ2

)
|2πΣ|

1
2

dα (162)

exp
(
− 1

2 (
⇀
µS −

⇀
µP )

⊤
Σ (

⇀
µS −

⇀
µP )

)
|2πΣ|

1
2

∫ γ

β

exp
(
−1

2

α2

σ2
g

)
dα (163)

∫ γ

β

exp
(
−1

2

α2

σ2
g

)
=

√
πσ2

g

2

erf

 γ√
2σ2

g

− erf

 β√
2σ2

g

 (164)

A similar result is stated with equation 37 in section 3.6 of Kabsch [50].

C. Pixel-wise Backgound Estimation for Pixel-wise Diffraction
Pattern Prediction

Background estimation for the pixel-wise diffraction prediction was done by minimizing the following
function that acts similar to a boxed median filter or a boxed mean of the middle 75%, which both are much
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more easy to compute, but less flexible and slightly less smooth:

B(
⇀
µ,

⇀
σ) =

N∑
log((1− α)ϕ (yi, µi, σi) + αu(yi)) +

∑
adj. i,j

log
(
ϕ

(
µi, µj ,

1

4

√
σ2
i + σ2

j

))
(165)

α was typically 1/4, u is the outlier distribution from section 3.4.1 and yi are the pixel values. The function
is minimized by finding the optimal values for µi and σi. The indices enumerate the pixels and the second
sum goes over all pairs of adjacent pixels. This approach is very likely overcomplicated, but it did not turn
out to be a bottle-neck and was good enough.

D. Theoretical distribution of partialities

If the intensities of reflections decline like a Gaussian function when leaving the optimal diffraction con-
dition, and because the diffraction condition is essentially random, the distribution of partialities should
look like the distribution of function values of a Gaussian distribution with uniform input. The Gaussian
function, scaled to a peak height and variance of 1 is g(X) = exp

(
− 1

2X
2
)
. Its inverse function, not to be

confused with the inverse Gaussian distribution, is g−1(X) = ±
√
−2 log(X) . There is an ambiguity be-

cause g(X) is not strictly increasing or decreasing, but it is symmetric around the axisX = 0, and we can
therefore restrict the analysis to the increasing branch only. The random variableX is assumed to be uni-
formly distributed on some region symmetric to 0 on a support [−a, a]. The probability density therefore
is f(x) = 1

2a and the cumulative distribution function F(x) =
∫
f(x) = x

2a . The cumulative distribution
function of the random variable Y = g(X) is the distribution function of X applied to the inverse function

of g: P(g(X) < y) = P(X ≤ g−1(y)) = F(g−1(y)), which is
−
√
−2 log(y)
2a

. The density function is its

derivative,
(
−2y2 log(y)

)− 1
2

2a
. In the limit of a large interval [−a, a] this is not a proper density function

any more, as the integral
∫ 1

0

(
−2y2 log(y)

)− 1
2 dy is divergent.
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E. Pseudocode for the Implementation of the patchmap

insert(key,value) :
1. find the free position p

closest to map(hash(key))
2. mark p as set
3. insert the key-value pair at p
4. while there is a key to the right

that is less
4.1 swap the keys
4.2 swap the values
4.3 p ← p-1

5. while there is a key to the left
to which the key is less

5.1 swap the keys
5.2 swap the values
5.3 p ← p+1

erase(key) :
1. p ← find(key)
2. while there is a key right of p

where map(hash(key))>position
2.1 move the key-value pair left
2.2 advance p to the right

3. while there is a key left of p
where map(hash(key))<position

3.1 move the key-value pair right
3.2 advance p to the left

4. mark p as free
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find_binary(key,lower_limit,upper_limit) :
1. midpoint ← lower_limit+(upper_limit-lower_limit+1)/2
2. if midpoint is set and (key at midpoint = key)

then return midpoint
3. if (lower_limit = upper_limit)

then return not_found
4. if key is less than midpoint

then upper_limit ← midpoint
5. if midpoint

is less than
key to be found

then lower_limit ← midpoint
6. goto 1

find_interpol(key) :
1. lower_limit ← 0
2. upper_limit ← m-1
3. midpoint ← map(hash(key))
4. i := 0
5. if midpoint is set

if (key at midpoint = key)
then return midpoint

6. if (lower_limit = upper_limit)
then return not_found

7. if ( key to be found ) is less than ( midpoint )
then upper_limit := midpoint

8. if ( midpoint ) is less than ( key to be found )
then lower_limit := midpoint

9. i ← i+1;
10. if ( i > 2 log2(n+1) )

then return find_binary(key,lower_limit,upper_limit)
11. interpolate midpoint linearly
12. goto 5
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F. Information Content in a Crystallography Experiment

As generally understood and stated in [doi:10.1107/S0567739478001114] the intensities of crystallographic data of an macromolecule
follow this distribution:

q(I) =


1
a

exp
(
− I

a

)
for acentric reflections

1√
2π a I

exp
(
− I

2 a

)
for centric reflections

(166)

With a being the expected value of the intensity of a observation of the respective resolution.
This shall be our understanding of the prior knowledge of the intensities and the information we want to compare our measurement
with.

F.1. Kullback Leibler divergence of one acentric reflection

The measured probability of the Intensity (m(I)) is assumed to be normally distributed with a σ about some mean μ.

m(I) =
1

√
2π σ2

exp
(
−
(I − µ)2

2σ2

)
(167)

Using the prior given in equation 166 and the measurement given in equation 167 the best posterior distribution to assume is in a
Bayesian fashion:

p(I) ∝ p(I) p(I) (168)

p(I) ∝ exp

−

(
I +

σ2

a
− µ

)2

2σ2

 (169)

(170)

The normalization being:

N(µ, σ, a) =
√
π

2
s erfc

(
σ2 − aµ
√
2 a s

)
(171)

Therefore:

p(I) =

exp

−

(
I +

σ2

a
− µ

)2

2σ2


N(µ, σ, a)

(172)

The Kullback Leibler divergence is defined as:

x ∈ X∫
X

p(x) ln
(

p(x)
q(x)

)
dx

(173)

With p(I) given in equation 172 and q(I) given in equation 166 this leads to:

∫ ∞

0
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a
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2σ2
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ln



a exp

 I

a
−

(
I +

σ2

a
− µ

)2

2σ2


N(µ, σ, a)


dI
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√
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G. Kullback Leibler divergence of one centric reflection
The measured probability of the Intensity (m(I)) is assumed to be normally distributed with a σ about some mean µ.

m(I) =
1

√
2π σ

exp
(
−
(I − µ)2

2σ2

)
(179)

Using the prior given in equation 166 and the measurement given in equation 179 the best posterior distribution to assume is in a
Bayesian fashion:

p(I) ∝ m(I) q(I) (180)
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−
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√
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∫ ∞
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I being the Modified Bessel function of 1st kind.

Substitutem =
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a
− µ and s = 2σ2. Therefore the normalization is:
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p(I) =

I−
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−
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(187)

Using the Kullback Leibler divergence as defined in equation 173 and the prior probability (equation 166) this leads to:

∫ ∞
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H. Diffraction coefficients

Element a1 b1 a2 b2 a3 b3 a4 b4

H 0.469 638 2.796 147 0.331 895 4.488 439 0.175 999 1.655 800 0.022 468 0.805 602

He 1.009 644 2.554 832 0.810 983 1.349 816 0.165 539 0.704 624 0.013 835 0.320 445

H− 0.927 835 7.995 040 0.818 077 3.427 473 0.235 237 1.712 827 0.018 851 0.745 421

Li+ 0.855 993 1.422 468 0.748 054 0.864 078 0.198 515 2.198 062 0.197 438 0.439 046

Be2+ 0.813 819 0.672 912 0.810 919 1.088 263 0.251 140 0.350 013 0.124 121 1.683 482

Li 1.355 713 1.270 624 1.113 206 7.275 000 0.492 409 0.627 513 0.038 672 0.265 534

Be 2.136 119 5.119 039 1.309 668 0.905 829 0.506 497 0.469 440 0.047 716 0.207 513

B 3.102 097 4.006 238 1.181 633 0.760 291 0.637 362 0.410 679 0.078 908 0.192 048

C 4.011 164 3.301 365 0.945 650 0.400 276 0.904 577 0.749 382 0.138 608 0.183 268

Cval 2.368 571 2.705 016 1.692 973 4.597 300 1.383 146 0.421 487 0.555 310 0.864 189

N 3.249 948 3.336 847 2.037 919 1.855 856 1.433 762 0.432 659 0.278 371 0.189 957

O 3.352 978 3.029 993 2.909 810 1.699 105 1.397 255 0.388 624 0.339 956 0.177 663

F 3.667 382 1.532 356 3.574 023 2.755 160 1.348 116 0.355 950 0.410 479 0.168 144

O− 3.658 425 2.748 550 2.303 338 1.668 087 1.765 876 0.358 162 1.272 361 5.089 974

Ne 4.164 396 2.406 279 4.044 789 1.387 218 1.339 059 0.330 336 0.451 755 0.156 218

F− 4.009 196 2.458 145 2.886 534 1.486 208 1.776 285 0.321 628 1.327 985 4.488 852

Na+ 4.463 336 1.596 495 2.285 662 1.053 944 1.715 259 0.252 221 1.535 744 2.485 176

Mg2+ 4.378 824 1.419 565 2.564 082 0.960 053 1.712 221 0.231 010 1.344 874 2.120 374

Al3+ 4.458 561 0.989 396 3.302 221 1.476 155 1.849 306 0.240 861 0.389 911 2.105 115

Si4+ 4.310 907 0.890 421 3.253 868 1.279 333 1.838 968 0.222 654 0.596 256 1.750 282

Na 7.100 272 1.433 276 1.990 219 4.975 171 1.211 960 0.344 388 0.697 549 0.162 500

Mg 7.285 266 1.267 596 2.789 536 5.242 925 1.110 270 0.332 266 0.814 928 0.157 112

Al 7.353 636 1.129 451 3.707 178 5.012 139 1.004 390 0.324 313 0.934 797 0.152 374

Si 7.346 988 1.016 053 4.688 740 4.560 015 1.088 618 0.149 456 0.875 654 0.328 226

Sival 7.032 216 1.071 436 2.397 308 0.311 346 2.303 254 3.959 509 2.267 222 6.208 755

P 7.332 640 0.917 959 5.715 775 4.090 467 1.117 384 0.141 418 0.834 201 0.307 000

S 7.273 003 0.839 896 6.739 758 3.696 799 1.232 711 0.137 954 0.754 528 0.314 454

Cl 7.774 626 3.363 307 7.207 648 0.772 271 1.309 674 0.133 298 0.708 052 0.318 168

Ar 8.816 064 3.080 908 7.131 578 0.713 329 1.372 306 0.128 657 0.680 052 0.323 437

Cl− 7.116 470 0.770 379 6.553 076 3.132 626 2.314 658 5.523 547 2.015 795 0.205 104

K+ 8.057 524 2.532 703 7.302 060 0.631 059 1.588 830 0.106 785 1.051 586 4.079 753

Ca2+ 8.684 367 2.336 932 5.373 238 0.660 542 3.540 729 0.306 711 0.401 666 4.155 088

Sc3+ 8.907 891 2.095 819 5.635 720 0.568 927 3.022 038 0.299 456 0.434 351 3.521 159

Ti4+ 9.241 518 1.939 589 5.824 851 0.525 641 2.773 439 0.275 938 0.160 193 3.881 697

V5+ 9.399 400 1.797 509 6.139 738 0.484 906 2.399 717 0.248 742 0.061 145 4.486 421

K 8.638 781 2.545 528 7.206 442 0.622 594 1.602 215 0.132 156 1.552 562 8.374 726

Ti3+ 9.567 543 1.966 727 6.052 650 0.517 453 2.542 557 0.275 203 0.837 250 3.312 364

Ca 8.693 948 2.282 491 7.147 448 0.579 898 2.564 665 7.610 572 1.593 939 0.125 339

Ti2+ 9.649 037 1.983 587 6.304 933 0.509 245 2.288 979 0.272 535 1.757 051 3.444 562

V3+ 10.334 381 1.861 758 6.804 518 0.469 648 1.758 907 0.235 611 1.102 195 3.197 846

Sc 9.383 296 2.166 084 7.129 111 0.552 759 2.817 701 6.964 568 1.669 892 0.126 316

V2+ 10.283 176 1.883 769 4.482 337 0.304 200 4.228 614 0.564 536 2.005 872 3.319 885

Cr3+ 11.202 918 1.777 413 7.672 223 0.430 461 1.223 599 3.148 178 0.901 260 0.158 867

Mn4+ 11.873 294 1.692 464 7.833 412 0.413 504 0.806 629 0.131 339 0.486 664 3.401 520

Ti 10.179 911 2.037 452 7.132 532 0.517 294 3.070 890 6.386 433 1.616 667 0.115 598

Cr2+ 8.187 313 0.385 965 8.133 178 1.954 180 3.870 581 1.445 772 1.808 928 3.306 830

Mn3+ 8.181 363 0.367 702 7.729 015 1.501 534 4.902 977 2.002 181 1.186 645 2.946 096

V 10.991 500 1.923 636 7.101 716 0.488 573 3.295 553 5.914 157 1.611 231 0.110 253

Mn2+ 10.642 354 1.587 347 6.301 353 0.410 951 4.074 287 2.726 803 1.982 006 0.231 317

Fe3+ 11.176 003 1.506 508 6.461 772 0.388 878 3.546 739 2.446 656 1.815 486 0.218 522

Cr 12.053 584 1.849 519 7.095 113 0.465 262 3.231 251 5.050 360 1.620 051 0.106 205

Fe2+ 11.639 034 1.529 107 6.567 351 0.387 355 4.067 058 2.682 187 1.726 557 0.219 492

Co3+ 14.037 904 1.623 074 7.394 722 0.416 903 1.675 680 0.227 567 0.891 695 3.389 501

Mn 12.669 058 1.736 774 7.058 290 0.442 391 3.645 676 5.235 619 1.626 976 0.102 473

Co2+ 12.633 432 1.493 224 5.105 555 0.271 717 3.869 139 2.663 480 3.391 875 0.467 428

Ni3+ 14.863 713 1.573 282 7.641 299 0.411 021 1.628 209 0.224 726 0.866 778 3.390 221

Fe 13.469 371 1.647 444 7.021 916 0.421 012 3.887 224 4.893 841 1.621 489 0.098 215

Ni2+ 11.959 629 1.822 263 6.895 023 0.945 746 6.429 426 0.235 207 0.715 922 3.945 902

Co 14.283 606 1.569 695 6.995 793 0.402 696 4.094 384 4.619 481 1.626 217 0.094 890
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Cu2+ 11.050 786 1.267 041 8.086 054 0.309 981 6.465 339 1.912 235 1.397 820 3.062 180

Ni 15.092 870 1.498 328 6.973 239 0.385 895 4.304 544 4.372 673 1.629 347 0.091 674

Cu+ 11.273 317 1.849 420 8.489 049 1.017 072 6.776 762 0.237 011 1.460 872 3.813 865

Zn2+ 12.660 799 1.717 107 8.431 594 0.894 020 6.107 701 0.188 665 0.799 906 3.677 052

Ga3+ 11.837 074 1.154 305 8.007 750 0.286 182 6.857 022 1.706 549 1.298 153 2.597 809

Ge4+ 12.177 636 1.100 728 7.947 780 0.274 472 6.806 052 1.599 707 1.068 532 2.351 547

Cu 15.861 866 1.435 507 6.951 719 0.371 159 4.549 222 3.687 474 1.637 192 0.088 901

Zn 16.688 703 1.371 272 6.927 053 0.356 739 4.742 990 3.942 481 1.641 254 0.086 169

Ga 17.341 500 1.307 643 6.897 321 0.343 297 5.114 851 4.224 038 1.646 328 0.083 619

Ge 17.665 656 1.237 390 6.846 311 0.329 470 5.848 183 4.199 304 1.639 849 0.080 656

As 17.830 064 1.168 550 6.787 463 0.315 905 6.757 292 4.033 822 1.625 180 0.077 392

Se 17.924 155 1.104 717 7.742 381 3.829 332 6.732 412 0.302 794 1.601 052 0.073 635

Br 17.979 226 1.046 169 8.770 267 3.622 557 6.679 008 0.290 248 1.571 498 0.069 595

Kr 18.010 738 0.992 142 9.830 026 3.425 771 6.635 425 0.277 758 1.523 811 0.064 450

Br− 15.437 969 0.896 804 7.357 858 4.476 822 7.058 257 0.249 381 6.145 915 1.858 806

Rb+ 17.514 252 0.860 119 7.058 770 0.238 655 6.517 958 2.352 584 4.909 020 3.672 616

Sr2+ 17.898 144 0.843 153 10.021 256 2.615 292 7.236 353 0.238 344 0.844 248 4.363 407

Y3+ 16.617 093 0.940 599 9.914 059 0.287 196 5.734 424 2.685 174 3.734 424 2.685 296

Zr4+ 17.717 084 0.792 322 10.381 566 2.292 058 7.347 274 0.193 219 0.554 077 3.615 006

Nb5+ 17.783 062 0.754 853 10.831 963 2.167 269 7.147 105 0.180 536 0.237 869 3.807 918

Mo6+ 17.865 655 0.719 244 11.102 167 2.045 986 6.913 625 0.166 458 0.118 553 3.984 778

Rb 18.322 891 0.953 468 10.552 937 3.413 058 6.619 091 0.267 879 1.505 081 0.061 194

Mo5+ 17.935 356 0.720 594 11.532 924 2.111 139 6.936 389 0.167 478 0.595 331 3.547 452

Sr 18.732 182 0.921 941 11.148 183 3.460 001 6.608 005 0.259 681 1.511 630 0.059 857

Nb3+ 17.899 829 0.757 998 11.115 359 2.270 771 7.197 452 0.182 645 1.787 360 3.835 246

Y 18.960 588 0.886 882 11.961 710 3.405 289 6.603 060 0.250 461 1.474 642 0.055 852

Mo3+ 18.032 161 0.723 170 11.844 250 2.199 722 6.982 528 0.169 488 2.141 061 3.709 631

Zr 19.089 263 0.851 759 12.874 035 3.300 137 6.564 667 0.242 255 1.472 035 0.054 437

Ru4+ 18.364 515 0.655 397 13.347 439 2.033 358 6.355 173 0.132 064 1.932 873 3.302 506

Nb 18.988 271 0.813 337 14.046 963 3.099 587 6.674 891 0.231 476 1.289 876 0.033 718

Ru3+ 18.399 977 0.656 565 13.463 411 2.064 198 6.380 769 0.133 452 2.755 843 3.448 026

Rh4+ 18.628 745 0.623 388 14.181 082 1.970 531 5.946 142 0.103 961 2.244 031 3.179 959

Mo 19.034 464 0.778 502 15.095 300 2.968 318 6.635 790 0.221 541 1.234 446 0.025 254

Rh3+ 18.662 322 0.624 372 14.316 336 1.998 022 5.968 143 0.105 413 3.053 198 3.319 833

Pd4+ 15.660 235 2.056 621 13.824 561 0.726 445 11.778 993 0.289 229 0.736 211 3.960 722

Tc 19.246 530 0.756 495 15.851 553 2.920 806 6.665 848 0.216 759 1.236 069 0.022 204

Ru 17.342 297 0.614 445 12.980 296 1.828 082 7.666 003 3.935 837 6.011 404 0.145 908

Pd2+ 16.710 363 2.372 802 12.988 195 0.834 712 11.429 253 0.356 331 2.872 189 0.205 497

Rh 17.802 242 0.606 085 14.948 122 1.935 415 6.127 649 4.178 304 6.121 987 0.144 380

Ag2+ 17.161 820 2.089 482 13.013 120 0.300 904 12.942 635 0.738 763 1.882 425 3.992 135

Pd 18.285 102 0.623 182 16.702 826 2.097 766 6.766 207 0.152 292 4.245 864 4.189 627

Ag+ 17.173 750 2.106 563 13.144 553 0.302 849 12.874 187 0.743 302 2.807 511 4.137 271

Cd2+ 18.070 381 1.999 237 13.332 503 0.299 797 12.326 299 0.711 421 2.270 818 3.723 391

In3+ 18.875 121 1.894 960 13.439 171 0.295 829 11.825 275 0.678 146 1.860 433 3.414 459

Sn4+ 20.042 622 1.805 613 13.282 242 0.289 940 11.487 961 0.635 091 1.187 175 3.230 926

Sb5+ 20.078 495 1.698 941 13.297 377 0.284 704 11.103 907 0.606 575 1.520 222 2.867 505

Ag 18.315 666 0.598 808 18.194 445 2.041 694 6.639 716 0.144 880 3.850 173 4.731 523

Cd 18.916 563 1.954 597 18.329 119 0.574 567 6.462 895 0.136 124 4.291 423 4.887 115

Sn2+ 19.107 667 1.781 495 13.720 301 0.295 095 11.107 774 0.646 238 4.064 258 3.862 564

Sb3+ 18.968 920 1.667 488 13.780 631 0.290 205 10.638 430 0.616 938 4.612 018 3.378 141

In 19.542 060 1.896 292 18.063 497 0.565 471 6.815 672 0.145 216 4.578 771 5.232 591

Sn 19.930 558 1.779 296 18.008 421 0.533 292 6.401 586 0.133 543 5.659 436 5.008 159

Sb 20.081 657 1.703 361 17.905 035 0.518 542 6.571 297 4.832 884 6.442 011 0.131 391

Te 20.158 711 1.630 270 17.794 235 0.504 264 7.583 333 4.614 280 6.463 721 0.129 035

I 20.158 673 1.558 040 17.670 863 0.489 361 8.686 104 4.373 731 6.484 359 0.126 800

Xe 20.136 559 1.491 637 17.555 968 0.475 372 9.815 774 4.154 465 6.491 699 0.124 411

I− 20.749 852 1.525 179 18.497 482 0.455 170 9.763 760 4.642 482 4.988 907 0.085 674

Cs+ 20.758 715 1.325 652 15.506 880 0.399 587 11.112 385 3.597 658 6.622 020 0.221 985

Ba2+ 20.576 847 1.267 015 16.266 897 0.380 580 11.466 766 3.293 333 5.689 490 0.208 310

La3+ 20.477 686 1.218 631 17.187 606 0.362 830 11.685 045 3.061 163 4.649 664 0.191 311

Ce4+ 20.410 528 1.176 557 18.072 818 0.347 351 11.835 613 2.871 742 3.681 041 0.171 442

Cs 20.839 862 1.447 556 17.711 049 0.454 629 10.322 119 4.216 757 6.126 971 0.112 422

Ce3+ 21.115 756 1.198 427 18.249 276 0.347 834 12.045 528 2.994 450 3.589 440 0.171 626
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Pr4+ 21.077 250 1.175 435 16.880 867 0.352 880 11.869 593 2.836 177 5.172 290 0.193 921

Ba 21.538 235 1.441 891 17.607 371 0.451 875 10.360 884 4.433 384 6.493 510 0.119 553

Pr3+ 21.731 969 1.193 855 17.086 212 0.352 712 12.147 323 2.951 137 5.034 496 0.194 180

La 21.728 329 1.399 166 17.590 312 0.441 204 11.175 357 4.363 658 6.506 002 0.117 490

Nd3+ 21.740 175 1.102 562 21.024 755 0.295 545 9.032 166 2.424 803 5.202 904 3.310 391

Ce 22.447 360 1.373 379 17.599 980 0.431 945 11.431 528 4.242 426 6.521 131 0.115 507

Pm3+ 22.412 873 1.084 769 21.022 329 0.289 407 10.201 129 2.416 975 4.363 669 3.342 117

Pr 23.540 254 1.352 596 17.572 828 0.422 717 11.360 438 4.037 463 6.526 481 0.113 343

Sm3+ 23.060 332 1.066 243 21.006 650 0.283 379 10.755 233 2.373 879 4.177 785 3.318 962

Nd 24.320 196 1.324 704 17.559 915 0.413 275 11.606 715 3.932 243 6.513 174 0.111 016

Eu3+ 23.687 699 1.047 294 20.980 493 0.277 459 11.135 096 2.319 387 4.196 712 3.275 739

Pm 25.125 990 1.294 740 17.517 556 0.403 316 11.877 010 3.827 610 6.479 444 0.108 337

Eu2+ 23.938 474 1.055 439 21.039 486 0.278 283 11.295 161 2.336 155 4.726 879 3.530 912

Gd3+ 24.312 190 1.028 443 20.946 403 0.271 676 11.498 967 2.264 764 4.242 440 3.236 495

Sm 25.945 873 1.265 903 17.466 242 0.393 907 12.132 576 3.730 575 6.455 309 0.105 867

Tb3+ 24.946 581 1.009 614 20.900 872 0.265 993 12.142 240 2.221 608 4.010 307 3.242 896

Eu 26.745 159 1.236 326 17.408 393 0.384 306 12.434 219 3.633 633 6.412 230 0.103 133

Dy3+ 25.528 000 0.991 188 20.863 226 0.260 569 11.871 816 2.143 205 4.736 959 3.111 650

Gd 27.419 125 1.205 172 17.367 452 0.374 292 12.870 568 3.646 652 6.342 855 0.099 985

Ho3+ 26.121 679 0.973 178 20.820 074 0.255 292 11.868 250 2.077 686 5.189 997 3.031 468

Tb 28.398 703 1.178 655 17.272 243 0.364 758 13.041 363 3.452 056 6.287 691 0.097 130

Er3+ 26.729 833 0.955 867 20.778 773 0.250 241 12.067 562 2.024 261 5.423 832 2.975 635

Dy 29.226 260 1.153 302 17.252 510 0.356 071 13.304 453 3.373 036 6.216 777 0.094 051

Tm3+ 27.313 951 0.938 644 20.732 451 0.245 310 12.176 988 1.966 492 5.776 610 2.914 185

Ho 29.993 384 1.130 609 17.240 822 0.349 179 13.558 005 3.415 979 6.207 788 0.092 058

Yb3+ 27.923 121 0.922 396 20.692 866 0.240 637 12.448 254 1.920 728 5.935 759 2.869 117

Er 30.868 430 1.107 234 17.176 004 0.341 512 13.785 931 3.230 257 6.169 635 0.089 688

Yb2+ 28.223 692 0.929 007 20.765 054 0.241 562 13.286 691 1.969 267 5.724 564 3.143 612

Lu3+ 28.501 571 0.906 105 20.646 584 0.236 040 12.625 766 1.869 721 6.226 080 2.817 512

Hf4+ 28.847 980 0.884 589 20.532 734 0.230 744 12.515 804 1.807 028 6.103 483 2.621 308

Ta5+ 29.178 073 0.863 079 20.400 697 0.225 337 12.610 851 1.754 123 5.810 379 2.471 185

W6+ 29.521 819 0.842 701 20.276 645 0.220 196 12.984 540 1.714 999 5.216 995 2.359 439

Tm 31.690 965 1.085 800 17.143 092 0.334 824 14.014 143 3.164 613 6.151 800 0.087 707

Yb 32.506 495 1.065 554 17.129 734 0.328 632 14.232 739 3.102 425 6.131 033 0.085 716

Lu 33.411 362 1.047 616 17.119 457 0.322 908 14.336 910 3.165 807 6.132 272 0.084 057

Hf 34.027 279 1.024 429 17.071 349 0.316 592 14.785 836 3.171 410 6.115 537 0.082 258

Os4+ 31.114 160 0.811 651 20.102 244 0.211 129 15.295 075 1.815 657 5.488 522 2.963 842

Ta 34.470 518 0.997 571 16.980 327 0.309 267 15.480 430 3.133 490 6.068 725 0.080 176

Ir4+ 31.535 331 0.792 897 19.955 609 0.206 054 15.577 774 1.801 446 5.931 286 2.927 505

W 34.789 794 0.971 431 16.922 124 0.302 527 16.274 208 3.076 036 6.013 874 0.077 859

Ir3+ 31.741 685 0.795 832 20.012 955 0.206 797 16.002 265 1.845 526 6.243 095 3.152 636

Pt4+ 31.921 625 0.774 323 19.798 356 0.200 979 15.997 349 1.790 166 6.282 670 2.885 964

Re 35.076 964 0.945 011 17.142 116 3.011 512 16.866 887 0.294 978 5.914 033 0.074 947

Os 35.281 821 0.919 679 18.068 399 2.939 177 16.805 051 0.288 303 5.844 728 0.072 547

Pt2+ 32.281 031 0.780 317 19.939 995 0.202 874 16.983 611 1.876 248 6.795 363 3.350 125

Au3+ 32.430 934 0.757 919 19.668 483 0.196 368 16.980 512 1.815 625 6.920 071 3.028 015

Ir 35.458 074 0.894 404 19.059 546 2.861 295 16.770 150 0.280 785 5.712 230 0.068 974

Pt 35.246 233 0.863 775 20.524 789 2.717 948 16.724 185 0.272 301 5.504 793 0.063 875

Au+ 32.757 289 0.765 407 19.888 085 0.199 397 18.259 010 1.909 765 7.095 615 3.587 018

Hg2+ 32.867 542 0.742 095 19.558 435 0.192 199 18.251 936 1.840 971 7.322 087 3.192 526

Tl3+ 33.007 167 0.720 192 19.231 417 0.185 124 18.410 484 1.784 504 7.350 932 2.912 932

Pb4+ 33.171 175 0.699 237 18.891 333 0.177 908 18.846 266 1.738 603 7.091 227 2.709 966

Bi5+ 33.345 464 0.679 285 19.470 612 1.698 227 18.547 315 0.170 660 6.636 609 2.552 798

Au 35.344 182 0.839 375 21.627 205 2.640 996 16.683 576 0.264 743 5.345 037 0.059 467

Hg+ 32.944 717 0.748 446 19.811 879 0.195 808 19.181 911 1.887 315 7.061 492 3.697 184

Hg 35.768 450 0.823 354 22.261 856 2.625 175 16.719 907 0.259 044 5.249 787 0.056 207

Tl+ 33.051 873 0.731 194 19.737 842 1.846 164 19.719 260 0.192 133 7.491 025 3.725 910

Pb2+ 33.101 449 0.708 869 19.891 879 1.774 963 19.374 679 0.185 023 7.631 993 3.394 062

Bi3+ 33.169 526 0.687 827 20.086 620 1.711 763 19.034 095 0.178 040 7.709 759 3.139 209

Tl 36.263 196 0.810 079 22.772 320 2.624 566 16.756 068 0.254 420 5.208 416 0.054 106

Pb 36.792 372 0.798 558 23.214 673 2.632 981 16.830 689 0.250 003 5.162 266 0.051 825

Bi 37.334 220 0.789 142 23.580 435 2.651 119 16.875 340 0.246 998 5.210 006 0.051 816

Po 37.874 954 0.780 763 23.922 445 2.673 664 16.938 384 0.244 258 5.264 217 0.052 051

134



At 38.343 919 0.773 832 24.255 439 2.697 627 16.918 031 0.243 491 5.482 611 0.055 697

Rn 38.733 863 0.767 366 24.622 392 2.718 367 16.844 462 0.243 881 5.799 283 0.060 444

Ra2+ 32.750 466 0.612 715 22.345 558 1.481 191 18.668 772 0.165 015 12.235 204 3.483 634

Ac3+ 32.829 095 0.589 953 22.363 535 1.410 141 17.951 046 0.153 370 12.856 324 3.226 624

Th4+ 32.953 723 0.568 622 22.404 820 1.347 462 17.231 117 0.141 197 13.410 340 3.017 464

U6+ 33.333 367 0.528 766 22.545 179 1.239 026 15.717 529 0.113 184 14.403 925 2.689 223

Fr 39.130 969 0.763 746 24.878 004 2.754 028 16.721 948 0.246 202 6.269 079 0.066 975

Np6+ 33.003 560 0.526 755 22.514 616 1.232 003 16.419 334 0.126 042 15.062 490 2.633 769

Ra 39.469 306 0.763 457 25.021 576 2.804 292 16.500 037 0.252 050 7.009 081 0.075 564

U4+ 32.444 514 0.559 685 22.558 847 1.323 276 18.280 778 0.154 902 14.715 861 2.894 759

Pu6+ 32.625 458 0.525 128 22.537 298 1.226 758 17.171 371 0.137 499 15.665 873 2.580 524

Ac 39.945 130 0.760 506 25.233 314 2.852 104 16.759 683 0.250 608 7.061 873 0.075 237

U3+ 31.828 914 0.578 357 22.691 811 1.372 114 19.793 764 0.173 971 14.685 511 3.040 443

Np4+ 31.916 461 0.559 177 22.654 285 1.317 758 19.193 491 0.165 482 15.235 763 2.838 745

Th 29.545 645 1.174 559 28.694 760 0.483 106 17.228 973 3.781 848 14.530 622 0.125 618

Np3+ 31.258 710 0.578 090 22.847 704 1.366 402 20.738 743 0.182 882 15.154 843 2.979 754

Pu4+ 31.268 886 0.559 840 22.798 253 1.313 997 20.237 939 0.176 030 15.694 922 2.784 941

Pa 30.169 065 0.491 229 28.714 068 1.214 832 17.232 441 3.667 592 14.884 426 0.126 024

Pu3+ 30.559 529 0.579 257 23.056 376 1.362 607 21.830 070 0.192 093 15.554 024 2.922 697

U 31.239 661 0.494 429 28.545 567 1.247 677 17.067 740 3.655 891 15.147 032 0.125 954

Np 32.197 993 0.497 691 28.565 048 1.282 516 16.779 367 3.653 799 15.457 591 0.126 242

Pu 32.905 564 0.498 690 28.499 560 1.304 627 16.854 673 3.511 603 15.740 204 0.126 388

Am 33.563 940 0.499 222 28.948 487 1.333 049 16.468 228 3.511 851 16.019 345 0.126 519

Cm 34.158 675 0.499 296 29.871 802 1.365 086 16.295 699 0.126 636 15.673 824 3.650 558

Bk 34.597 614 0.498 116 30.603 778 1.385 366 16.553 710 0.126 665 15.244 897 3.655 690

Cf 34.979 821 0.496 577 31.458 289 1.403 780 16.808 138 0.126 685 14.753 753 3.668 383
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