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1 Introduction

Because any object or situation experienced by an individual is
unlikely to recur in exactly the same form and context, psychology’s
first general law should, I suggest, be a law of generalization.

Roger Shepard, 1987, p. 1317

As pointed out eloquently by Shepard (1987), in the real world almost nothing ever
happens twice in the exact same way. Whether or not this implies that a law of generalization
should be the first law of psychology, at the very least this observation emphasizes the
paramount importance of the ability to transfer knowledge between situations and stimuli.
Beyond the general importance of this cognitive ability, it also happens to be one that
humans excel in, which becomes especially apparent in contrast to artificial intelligence
(AI). While AI agents1 have reached superhuman levels in certain domains (e.g. the game
of Go (Silver et al., 2017)) and despite recent advances in the field (Lake et al., 2015; Y.
Wang et al., 2020), their ability to generalize and to learn from few examples stays far
behind human abilities (Witty et al., 2021).

It is therefore not surprising that considerable effort in cognitive science, psychology and
cognitive neuroscience has been put into the study of generalization and transfer learning.
Yet, our understanding remains sparse and as of today a coherent theory that accounts
for generalization in different contexts is missing. One likely reason lies in the fact that
different subdisciplines that have historically been fairly separated have studied different
applications of generalization in associative learning (Dymond et al., 2015; Ghirlanda &
Enquist, 2003), reinforcement learning (RL, Lehnert et al., 2020; Niv, 2019) and inductive
reasoning (Shepard, 1987; Tenenbaum & Griffiths, 2001a) in isolation. This separation has
led to contradictory explanations of behavioral and neural effects and few efforts have been
made to unify those (but see J. C. Lee, Lovibond, Hayes, & Navarro, 2019; Norbury et al.,
2018).

In this thesis, I will argue for an integrated view and propose an underlying mechanism
that is common to all these phenomena. To support this claim I will provide an opinionated
review of the relevant literature, theoretical considerations and empirical results from three
studies. In addition I will describe an improved method to estimate perceptual spaces, the
development of which I deemed necessary during my PhD.

1Throughout this thesis I will use the terms agents and organism interchangeably when referring to
learning entities. This is to emphasize that many of the concepts I discuss apply to artificial agents as well
as animals and humans.
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Chapter 1: Introduction

1.1 Stimulus generalization

Stimulus generalization (Ghirlanda & Enquist, 2003) describes a form of generalization
in associative learning or – to be more precise – in classical conditioning (Pavlov, 1927).
Classical conditioning is a mechanism by which organisms associate a previously neutral
stimulus (NS) with an outcome (unconditioned stimulus (UCS)) that leads to a certain
unconditioned response (UCR). An example for an UCS would be a painful electric shock
that most likely leads to a fast motor response (the UCR) like withdrawing the affected body
part. From a pattern of repeated observations in which a NS (like a picture) is followed
by the UCS, organisms infer an association and start responding in a certain way that
prepares them for the UCS when confronted with the former NS. When this happens, the
formerly neutral stimulus has become a conditioned stimulus (CS) and the response is called
a conditioned response (CR).

If, after having learned the association between the CS and the UCS, an organism
shows a reaction that mirrors the CR in response to a stimulus that is similar to, but not
identical with the CS, we speak of stimulus generalization (Ghirlanda & Enquist, 2003).
Likely the first description of this phenomenon was given by Pavlov (1927) who noticed
that his famously conditioned dog would show a CR to sounds that were similar to the
bell that it had been conditioned with. In the next decades, the first researchers conducted
empirical studies (Spence, 1937). Theoretical debates, e.g. about the role of perception in
generalization (Lashley & Wade, 1946) initiated a more formal scientific treatment.

1.1.1 Generalization gradients

Already in this early phase, Spence (1937) introduced generalization gradients as a means
to quantify stimulus generalization, a technique that until now is the most common way to
approach stimulus generalization empirically (Webler et al., 2021). Generalization gradi-
ents are closely linked to the typical study designs, that are a defining feature of research
on stimulus generalization (Dymond et al., 2015). In these designs, subjects first learn the
association between a CS and a UCS in a conditioning phase. Typically, this is contrasted
by another stimulus which is never reinforced. To distinguish those stimuli we call them the
reinforced CS (CS+) and the non-reinforced CS (CS-) respectively. In the following gen-
eralization phase, subjects are presented with stimuli that are parametrically altered along
a physical dimension (e.g. wavelength or size) and their expectation of an outcome given
those stimuli is measured via explicit ratings (Dunsmoor et al., 2009), psychophysiological
measures2 (Greenberg et al., 2013a; Onat & Büchel, 2015) or a startle response (Lissek
et al., 2008). In the case of non-human animals like pigeons, the strength of generaliza-
tion can be measured by stereotypic behavior like pecking (Guttman & Kalish, 1956; Soto
& Wasserman, 2010). The measured quantity can then be visualized and plotted against
the perceptual continuum that the generalization stimuli differed on and the emerging pat-

2Psychophysiological measures include, but are not limited to, skin conductance and pupil dilation re-
sponses.
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Chapter 1: Introduction

tern is called the generalization gradient (Figure 1.1). A typical finding is that the CR is
strongest to the CS+ and decreases monotonically with increasing perceptual dissimilarity
(Ghirlanda & Enquist, 2003). The shape of generalization gradients is usually described as

Figure 1.1: Canonical shapes of generalization gradients. Strength of responding along
a perceptual continuum of wavelength after conditioning with a stimulus at 550nm. The shape of
gradients is typically assumed to be either a) Gaussian or b) exponential.

exponential (Shepard, 1987; Spence, 1937) or Gaussian (Ghirlanda & Enquist, 2003; Onat
& Büchel, 2015). This discrepancy can mostly be attributed to aspects of study designs
like the number of learning examples (Shepard, 1987) or the perceptual distance between
stimuli (Ghirlanda & Enquist, 2003).

1.1.2 The role of perception

Indeed, an animal would be ill served by the assumption that just
because it can detect a difference between the present and a previous
situation, what it learned about that previous situation has no bearing
on the present one.

Roger Shepard, 1987, p.1319

The obvious correlation between perceptual dissimilarity, which implies discriminability,
and the strength of generalization has led researchers to propose that generalization is merely
a perceptual by-product, i.e. a failure to discriminate novel stimuli from the CS+ (Guttman
& Kalish, 1956; Struyf et al., 2015). As an argument for this mechanism, Guttman and
Kalish (1956) showed that pigeons show a steeper generalization gradient in regions of a
perceptual continuum in which they are known to have better discrimination abilities. De-
spite descriptions of phenomena that are not in line with a purely perceptual mechanisms,
like peak shifts (Baddeley et al., 2007), i.e. stronger responding to stimuli other than the
CS+ or intensity generalization (Ghirlanda & Enquist, 2003) and regardless of vehement
criticism of this proposal (Shepard, 1987), this view is still being defended today by some
researchers. Struyf et al. (2015) suggested that a Gaussian generalization gradient could
emerge from averaging responses over trials in which a novel stimulus is either correctly
classified as novel or confused for the CS+. Assuming Gaussian perceptual noise and that

3



Chapter 1: Introduction

subjects respond only to a stimulus they assume to be the CS+, this mechanism would
indeed lead to Gaussian gradients. To support this claim, the group reported that gener-
alization gradients are flat when only considering the subset of trials in which stimuli were
categorized as the CS+ (Struyf et al., 2017) and that misidentifying a stimulus as the CS+
leads to higher generalization (Zaman et al., 2019; Zaman et al., 2021). Contradicting the
idea of a perceptual mechanism, Tuominen et al. (2019) carefully accounted for perceptual
accuracy and found behavioral generalization gradients that were wider that what would
be expected based on perceptual confusion alone3. While they do report that gradients
in skin conductance do not extend beyond perceptual thresholds, this result is based on
a non-significant p-value and reflects the very common statistical misunderstanding that a
non-significant result provides evidence for the null hypothesis (Wasserstein & Lazar, 2016).

Since generalization is a very adaptive process, one could argue that this mechanism
lacks face validity. If for instance an early human narrowly escaped a tiger’s attack and
thus formed an association between the stimulus tiger and the outcome nearly dying, they
would be well advised to avoid lions as well, although it seems unlikely to confuse them with
tigers. In general, it does not appear plausible that such an important mechanism is a by-
product of perceptual imperfection. The ability to generalize is so fundamental to survival
that Shepard (1987) proposed it as the first law of psychology. It seems that the proposal
of a purely perceptual process is largely based on two aspects: Specifics of the employed
study designs and a fundamental confusion between the map and the territory (Korzybski,
1933).

With respect to the first point, many studies (e.g. Tuominen et al., 2019; Zaman et
al., 2019) employ very long generalization phases, i.e. many repetitions of the generalization
stimuli. Implicitly, the learning process is treated as if it were constrained to the conditioning
phase. However, this is not the case. In the generalization phase subjects are presented with
an abundance of trials in which they can learn that generalization stimuli are not followed
by an UCS and if one averages response over the whole phase, this average at least partly
consists of trials in which there is no uncertainty left about the predictive value of stimuli.
In addition, studies that claim to provide evidence for a perceptual mechanism often ask
subjects to identify whether a stimulus is the CS+ or not before providing an outcome
expectation rating (Struyf et al., 2017; Zaman et al., 2019). This design feature could lead
to a situation in which subjects feel obliged to respond as they would for the CS+ instead of
integrating their response over the perceptual uncertainty. Essentially, identifying a stimulus
and passive viewing are two different tasks and can lead to different outcomes.

To expand on the second point, it feels instructive to remember the purpose of empirical
research, namely the discovery of mechanisms and the use of empirical data to constrain the
theory development process. The idea of confusing the map with the territory goes back to
the philosopher Korzybski (1933) and describes a logical fallacy in which one treats a model
of a thing as the thing itself. When I apply this fallacy to the present context, the terri-

3Note that this study assumed constant discriminability, an assumption that is challenged by other studies.
This research is summarized in the next paragraph.
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Chapter 1: Introduction

tory is the actual generalization process, while the map are theories and empirical results.
Confusing the map with the territory thus refers to the attempt to come up with a mech-
anism that is able to explain empirical data without sufficient consideration of the validity
of this mechanism with respect to the actual underlying process. While it is possible that a
purely perceptual mechanism is able to explain most or even all results in a very narrowly
defined field, even just outside this field it is insufficient to explain the data. For instance,
in intensity generalization4, the typical finding is a monotonically increasing generalization
gradient. This implies stronger responding to some generalization stimuli than to the CS+,
even if those are clearly distinguishable (Ghirlanda, 2002). Having Occam’s razor in mind,
it seems unlikely that there are two completely independent mechanisms behind these very
related phenomena and thus a purely perceptual account is not sufficient as an overarching
theory of generalization.

Aversive conditioning and perceptual tunings. While perception is likely not the
whole story, discriminability is an important consideration in the context of generalization.
First of all, it is a definite lower bound. If a stimulus or situation is objectively different
from a known stimulus or situation, but one fails to discriminate it from the known one, one
would respond as if they were the same5. In addition to that, some studies have revealed
interesting perceptual consequences of aversive conditioning.

Based on the assumption that due to a better safe than sorry strategy, generalization
around stimuli with a negative association should be wider, a retuning of perceptual thresh-
olds has been proposed as one implementing mechanism of this strategy (Laufer et al.,
2016; Schechtman et al., 2010). In line with this suggestion, it has been shown that the just
noticeable difference (JND), a measure of perceptual tuning, increased around negatively
reinforced stimuli (Resnik et al., 2011), but not around neutral or positively reinforced stim-
uli (Laufer & Paz, 2012). While all these studies conceptualize generalization as a failure to
discriminate, which clearly emphasizes the role of perception, they do compellingly suggest
a role of perceptual retuning in generalization. These findings imply a necessity to account
for perceptual accuracy and changes thereof in studies on and theories of generalization.

1.1.3 Fear generalization

In the current millennium, most studies on stimulus generalization have been concerned
with a special case, namely fear generalization (Dymond et al., 2015). Fear generalization6

describes the tendency to react to unknown stimuli in a similar way as to stimuli that
have been associated with an aversive outcome like a painful electric shock (Dymond et al.,
2015). Research on fear generalization has produced a large body of behavioral (Dymond
et al., 2015) and neural (Webler et al., 2021) work, in parts due to its relevance as a potential

4Intensity generalization describes stimulus generalization along a continuum that changes quantitatively,
e.g. notes of the same frequency but with changing amplitudes.

5If this was all there is to generalization, it would be the inverse equivalent of discrimination and therefore
redundant.

6Or maybe more accurately threat generalization (LeDoux, 2014).
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Chapter 1: Introduction

clinical marker for anxiety disorders (Berg et al., 2020; Greenberg et al., 2013b; Lissek, 2012)
like the generalized anxiety disorder (GAD) and post-traumatic stress disorder (PTSD).

In general, research on fear generalization follows the study designs of earlier work on
stimulus generalization (Ghirlanda & Enquist, 2003). Typically, subjects are presented with
all stimuli (i.e. CS+, potentially CS- and generalization stimuli) before a conditioning proce-
dure in order to probe baseline responding. In a following conditioning phase, one stimulus
(the CS+) is probabilistically paired with an aversive outcome (e.g. an electric shock, Onat
& Büchel, 2015) while another stimulus (the CS-) is never paired with the outcome and thus
acts as a safety signal. Lastly, in the generalization phase, all stimuli are presented again
and some measure of outcome expectation or arousal is recorded7. One interesting aspect
of this line of research is that most studies are conducted as neuroimaging studies, using
functional magnetic resonance imaging (fMRI), which allows for an investigation of neural
aspects and has generated a vast amount of data and converging evidence on brain areas
that are involved (Webler et al., 2021).

Fear generalization studies overwhelmingly report behavioral generalization gradients as
they would be expected from the stimulus generalization literature (Dymond et al., 2015;
Kausche, Zerbes, Kampermann, Müller, et al., 2021; Lissek et al., 2008; Onat & Büchel,
2015). An interesting exception is one of the first behavioral studies on fear generalization
(Dunsmoor et al., 2009) and a replication of that study that also includes fMRI data (Dun-
smoor et al., 2011). These studies used stimuli that depicted a human face and differed
along a perceptual continuum of fearfulness from neutral to maximally fearful expressions.
In contrast to the typically symmetric gradients, the authors found monotonically increas-
ing gradients (Ghirlanda & Enquist, 2003) that are more typical for generalization along
intensity dimensions (like loudness, Ghirlanda, 2002). This was even true when the most
fearful face served as the CS-, which is in contrast to the literature on intensity generaliza-
tion. The authors interpret this as a mixture of associative learning processes and selective
sensitization for stimuli that are a priori linked to fear (Dunsmoor et al., 2009). A more
formal explanation of these findings might be given by a Bayesian approach that emphasizes
the importance of prior information (Tenenbaum & Griffiths, 2001a). This approach would
give a mathematical account for how the conditioning experience is integrated into prior
assumptions to generate the observed gradients.

Factors influencing fear generalization. Most of the research on fear generalization
is not primarily concerned with a behavioral generative model of generalization, i.e. an
explanation of why generalization gradients look the way they do, but rather with the
comparison of healthy controls and anxiety patients and the quest for a clinical marker for
anxiety disorders. However, some studies have explored factors that have an influence on
fear generalization. One important factor that seems to influence the width of generalization
is intensity of the UCS: Dunsmoor et al. (2017) report that subjects that received a stronger
UCS generalized more widely. This is in line with the idea of a better safe than sorry strategy

7See subsection 1.1.1.
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(Laufer et al., 2016; Schechtman et al., 2010). Another important factor is prior knowledge,
independently of how it is administered (Ahmed & Lovibond, 2015a, 2015b; Vervliet et al.,
2010). Vervliet et al. (2010) used stimuli that differed on two dimensions: Shape and color.
They instructed subjects that only one of these dimensions were predictive of the outcome
and found stronger generalization to stimuli that shared the relevant feature with the CS+
than to stimuli that shared the irrelevant feature. Ahmed and Lovibond (2015b) expanded
on this finding by replacing instructions with a phase in which subjects learned that either
color or shape predict an outcome. Their findings mirror those of Vervliet et al. (2010) in
that subjects generalized to stimuli that shared the relevant feature. Finally, Ahmed and
Lovibond (2015a) could replicate the findings of Vervliet et al. (2010) even when instructions
of feature relevance were given after the conditioning phase. These findings on the role
of prior knowledge are very interesting because they fit in nicely with two aspects that
have been emphasized in other research on generalization. First of all, the relevance of
prior knowledge is in line with the Bayesian interpretation of the results in Dunsmoor et al.
(2009) and Dunsmoor et al. (2011) and with Bayesian models of inductive reasoning that
I will describe later (see section 1.2, Shepard, 1987; Tenenbaum & Griffiths, 2001a). In
addition, the use of multidimensional stimuli and the induced different relevance of stimulus
dimensions provides a link to the concept of generalization via dimensionality reduction in
reinforcement learning (RL, see section 1.3, Niv, 2019).

Conceptual fear generalization. Another line of research that raises substantial ques-
tions about the idea of a purely perceptual mechanism of generalization especially in humans
is generalization on a conceptual level (Dunsmoor & Murphy, 2015). Dunsmoor et al. (2012)
used pictures of tools and animals as the CS+ and CS- category (counterbalanced between
subjects) and found generalization to other members of the same category despite percep-
tual differences between e.g. a hammer and a saw. Vervoort et al. (2014) expanded on this
finding and first induced arbitrary categories of visual stimuli in a learning task. Using these
arbitrary categories they found that associative learning as well as extinction generalized to
other members of the category. Boyle et al. (2016) showed that when words were associated
with an aversive outcome, these associations generalized to synonyms of these words. Lastly,
Morey et al. (2020) replicated the results of generalization within categories of animals and
tools (Dunsmoor et al., 2012) while simultaneously recording fMRI data8.

Avoidance generalization. While most of the research on fear generalization in humans
measures purely associative learning via explicit expectations or psychophysiological signals,
some studies have been concerned with the translation into behavior by measuring avoidance
behavior (Lommen et al., 2010; Norbury et al., 2018; van Meurs et al., 2014). Importantly,
this approach differs from RL, because the learning phase is still purely associative9. Still,

8summarized in subsection 1.1.5.
9While associative learning is passive and only concerned with the predictive value of stimuli, RL is active

and describes how an agent learns the value of different actions in different states from taking these actions
and observing the outcomes. For a more detailed description of RL, see section 1.3.
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the study of avoidance generalization adds ecological validity because it questions how these
associations translate into a binary choice between approach and avoidance.

The first study on avoidance generalization that I am aware of was actually primarily
concerned with the effect of neuroticism (Lommen et al., 2010). This is not the scope of this
thesis, but we can still learn from the results that avoidance gradients follow the structure
of gradients in purely associative generalization: Subjects tended to avoid stimuli that were
more similar to the CS+ more strongly just as they rated stimuli that were more similar to
be more likely to be associated with an outcome.

A few years later, van Meurs et al. (2014) used a farmer’s game in which subjects were
instructed to maximize their harvest. In an associative conditioning phase, subjects ob-
served a farmer going the short route to the harvesting field in the context of different
visual stimuli. One of these stimuli predicted a shock for both the farmer and the subjects
themselves. Afterwards, they went through an associative and then instrumental general-
ization phase. In the associative generalization phase, they rated the shock expectation for
different generalization stimuli without any behavioral choices. In contrast to that, they
had the option to take either the known, short route or a previously unobserved long route
when prompted with a stimulus in the instrumental generalization phase. The short route
led to a safe harvest but came at the risk of receiving a shock. Differing from this, the long
route never led to a shock, but came at the cost of potentially losing the harvest. The com-
parison of associative and instrumental generalization gradients revealed the same pattern
as in the study by Lommen et al. (2010): Subjects showed the highest shock expectation
and avoidance for the CS+ and a gradual decline with perceptual dissimilarity. In addition,
these two measures were strongly correlated between subjects.

Norbury et al. (2018) conducted another study in order to bridge the gap to instrumental
learning while controlling for perceptual accuracy. In line with previous studies they found
a correlation between associative and instrumental generalization (van Meurs et al., 2014),
wider generalization around negatively than neutrally reinforced stimuli (Laufer & Paz,
2012; Resnik et al., 2011) and independent contributions of perceptual and value-based
processes (Zaman et al., 2021).

Taken together, these findings emphasize the behavioral relevance of associative learning
and provide a bridge between purely associative generalization and generalization in RL.
This suggests that generalization is not purely a passive process, but it translates into
decisions and thereby allows us to adaptively interact with our environment.

1.1.4 Appetitive stimulus generalization

While the focus of generalization research in recent years has been on fear generalization,
a few studies have investigated generalization in the context of appetitive conditioning.
Andreatta and Pauli (2019) reported an experiment that closely followed the structure of
those in fear generalization research. They adapted the paradigm of Lissek et al. (2008)
to appetitive generalization by using an appetitive UCS instead of an electric shock. The
UCS consisted of either a salty or a sweet snack while the decision for either was made by
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subjects individually. The authors found generalization gradients that closely followed the
results of fear generalization studies (Lissek et al., 2008). Due to the conceptual similarity,
this study is well suited to compare the results of fear and appetitive generalization.

Other studies that can be considered as being concerned with appetitive generalization
are not as easily comparable to fear generalization since they use a less direct operational-
ization of an appetitive outcome. FeldmanHall et al. (2018) suggested that the mechanism
that is employed in stimulus generalization is also relevant in social interactions, specifically
when deciding whom to trust. To this purpose, they conducted a study in which subjects
played a game against opponents that were indicated by a picture of a face and displayed
different levels of trustworthiness. In the generalization phase, subjects had to chose with
whom to play out of a set of new potential players. Unbeknownst to the subjects, those
new faces were morphs of the players that they had already played against. In line with
other research on stimulus generalization in general (Ghirlanda & Enquist, 2003) and fear
generalization more specifically (Dymond et al., 2015), FeldmanHall et al. (2018) found
that subjects’ tendency to play with new players increased with perceptual similarity to the
trustworthy players in a typical generalization gradient. Kampermann et al. (2021) inves-
tigated the generalization of a conditioned placebo expectation. To this purpose they used
tonic heat pain stimuli and conditioned subjects to expect a pain reduction in the context of
a specific physician, a computer-generated face, by lowering the temperature while the face
was displayed. In contrast, another physician (i.e. another face) predicted less pain relief.
When probing the placebo response – a lowering in pain ratings – to faces that differed
from both previous faces, they found the Gaussian pattern that is typical for generalization
gradients. Subjects showed the strongest placebo response to the effective physician and
this effect decreased with perceptual dissimilarity.

These findings and their overlap with those from fear generalization research question
the (at least) implicit assumption that fear generalization is fundamentally different from
generalization in other contexts.

1.1.5 Neural correlates of stimulus generalization

Neuroimaging research on stimulus generalization typically uses fMRI to measure brain ac-
tivity non-invasively. Since this is only possible since the discovery of the blood oxygen level
dependent (BOLD) signal by Ogawa et al. (1990), this line of research follows the general
trend of research on generalization in cognitive neuroscience and is primarily concerned
with fear generalization. While this means that there is very limited data on appetitive
generalization, an astonishingly large fraction of fear generalization studies have used fMRI,
resulting in a large body of literature. Despite some typical inconsistencies in the naming of
brain areas that stem from a mix between anatomical (e.g. middle frontal gyrus (MFG)) and
loosely defined functional labels (e.g. dorsolateral prefrontal cortex (dlPFC)), those results
show lots of convergence with respect to brain areas that are involved (Webler et al., 2021).
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Neural generalization gradients. The approach of most of empirical neuroimaging
work on fear generalization has been a translation of behavioral gradients to the neural
domain. The focus has been on identifying areas that show generalization gradients which
follow behavior. In this context, a positively tuned area shows the strongest response to the
CS+ and a decline of this activity for stimuli with increasing perceptual dissimilarity to the
CS+. Negatively tuned areas show the opposite pattern with strongest deactivations for the
CS+. Notably, this approach is purely correlational and as such cannot distinguish between
the process of generalization itself and the results of generalization (such as enabling behav-
ioral output). Thus, it does not provide mechanistic insight into the neural implementation
of generalization.

Dunsmoor et al. (2011) conducted the first study that used this approach. They found
positive gradients in the anterior insula (aIC), thalamus and caudate nucleus (CdN) and
negative gradients in the rostral anterior cingulate cortex (rACC)10. Due to the focus on
fear and the assumed crucial (LeDoux, 2003), but increasingly questioned (Fullana et al.,
2016; Radua & Fullana, 2022) role of the amygdala in the context of threat processing, they
also investigated amygdala connectivity per stimulus and found increased connectivity with
visual areas for the CS+ and the closest generalization stimulus.

Shortly after that, two studies largely replicated these findings (Greenberg et al., 2013a,
2013b). In addition, Greenberg et al. (2013a) reported positive tunings in the dorsal anterior
cingulate cortex (dACC) and negative gradients in the primary somatosensory cortex (S1)
and Greenberg et al. (2013b) found positive gradients in the supplementary motor area
(SMA).

Lissek et al. (2014) extended the list with positive tunings in the MFG and the inferior
parietal lobule (IPL) and negative tunings in the hippocampus (HPC) and the precuneus
(PCU). Taken together those areas comprise the list of areas that were typically found
to show positive and negative tunings in following studies on fear generalization (e.g. Berg
et al., 2020; Kaczkurkin et al., 2016; Kausche, Zerbes, Kampermann, Büchel, & Schwabe,
2021; Kausche, Zerbes, Kampermann, Müller, et al., 2021; Lange et al., 2017; Onat &
Büchel, 2015; Tuominen et al., 2019; Webler et al., 2021).

Interestingly, similar results have been observed in studies that do not follow the typical
fear generalization design, namely in conceptual (Morey et al., 2020) and cue-context fear
generalization (de Voogd et al., 2020) as well as appetitive generalization (FeldmanHall et
al., 2018). These results suggest a more general neural model of generalization that is not
limited to fear.

The network view. In recent years, an interesting pattern in reported brain activations
has been observed: Virtually all of the brain areas that show tuned generalization gradients
are part of one of the three major brain networks11 (Menon, 2011; Raichle, 2015; Yeo et al.,
2011):

10Note that this activation likely maps onto the ventromedial prefrontal cortex (vmPFC) in other studies.
11Note that the naming of those networks is very inconsistent (Uddin et al., 2019). I am going to use the

names that I deem most established in the relevant literature (e.g. Berg et al., 2020; Niv, 2019).
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1. The default mode network (DMN) with important nodes in the vmPFC, HPC, pos-
terior cingulate cortex (PCC), PCU and middle temporal gyrus (MTG).

2. The salience network (SN) with hubs in the aIC and dACC.
3. The frontoparietal attention network (FPN), primarily comprised of the MFG and the

intraparietal sulcus (IPS) although other areas are sometimes considered part of the
network as well (e.g. CdN, Uddin et al., 2019).

Tuominen et al. (2019) were the first to explicitly mention this network structure of neural
results in fear generalization and linked deactivations in both the HPC and the PCC to the
DMN. Berg et al. (2020) extended on this and understood positive tunings in the MFG and
IPS as part of the FPN12 and the SN. Importantly, areas in the DMN consistently show a
negative tuning while the FPN and the SN are tuned positively, a pattern that is considered
established by now (Webler et al., 2021).

The correlational structure of the bulk of neuroimaging results in conjunction with our
understanding of how these networks interact (Goulden et al., 2014) allow for a possible
interpretation of almost all neuroimaging results in fear generalization: The established idea
of the interplay between those networks posits that the DMN is involved in self-referential
processes and famously more active in the absence of a task that requires attention (Raichle,
2015). In direct contrast, the FPN is linked to attention and planning and more active during
cognitively demanding tasks (Ptak et al., 2017). Lastly, the SN is thought to be involved in
the detection and processing of salient stimuli and to modulate the activity of other relevant
networks in response. In particular, activity in the SN is thought to initiate the switch
from a brain-wide default state to a task state by inhibiting the DMN and activating the
FPN (Goulden et al., 2014). One possible interpretation of the observed pattern of neural
generalization gradients is therefore purely based on the results of learning. Stimuli that
are more similar to the CS+ are more salient. This would lead to stronger activation of the
SN which then upregulates activity in the FPN and downregulates the DMN, proportional
to the salience of stimuli, in order to enable a fight-or-flight response. This interpretation
is quite pessimistic as it implies that most neuroimaging results tell us nothing about the
process of generalization itself and merely reflect arousal as a result of the learning and
inference process. However, as explained later, I do not think that we need to be that
pessimistic.

Mechanistic insights. A few studies went beyond the purely correlational approach and
tried to investigate the actual neural mechanism of generalization, typically using multivari-
ate approaches like representational similarity analysis (RSA, Kriegeskorte et al., 2008) or
model-based fMRI (Gläscher & O’Doherty, 2010).

Onat and Büchel (2015) reported a tuning in the inferior temporal cortex (ITC) that
didn’t follow the usual Gaussian or exponential shape, but was characterized as a cosine
curve with stronger responding to stimuli that were shown during the conditioning phase
(i.e. CS+ and CS-). Since these are the stimuli that subjects knew about the most after

12Although they call it the central executive network.
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conditioning, the authors interpreted this tuning as reflecting uncertainty. In addition, they
reported a hyper-sharp tuning in the aIC, i.e. a steeper gradient than in behavior. Using
multivariate pattern analysis (MVPA) they also found the representations of stimuli in the
aIC to be increasingly similar to the representation of the UCS, depending on the perceptual
dissimilarity to the CS+. These results contradict the idea of a purely perceptual process
and question the arousal-based network view (see above).

Norbury et al. (2018) used RL models to distinguish between perceptual processes and
value learning and found activity in the aIC and the striatum that reflected value-based
processing above and beyond what could be explained by perceptual generalization.

Lastly, de Voogd et al. (2020) investigated fear generalization within and between con-
texts. Using a decoding algorithm (Diedrichsen & Kriegeskorte, 2017), they found the
strength of context representation in the HPC to be linked to the strength of generalization.
Importantly, this finding emphasizes the role of the HPC with respect to cognitive maps
(Bottini & Doeller, 2020) and opens up a possible route towards a more general model of
generalization.

A hippocampal model of fear generalization. The most prominent model of fear
generalization was proposed by Lissek (2012), reiterated by Lissek et al. (2014) and recently
extended by Webler et al. (2021). Due to two major assumptions, namely that fear gener-
alization is different from other forms of generalization and that it is fundamentally based
on perception, this model is based on fear learning in the amygdala (LeDoux, 2003) and
pattern completion and separation in the HPC (McHugh et al., 2007; Rolls, 2013; Yassa &
Stark, 2011). The rough outline is as follows:

An aversive UCS leads to activation of the lateral nucleus of the amygdala (LA) via the
thalamus. The LA then activates the central nucleus of the amygdala (CE), which projects
to areas of a fear network that are instrumental in preparing an appropriate response (e.g.
aIC). A CS before conditioning does not directly activate the LA, but leads to a release
of glutamate. This is happening via the quick and dirty or low road that projects directly
from the thalamus to the LA without involving sensory areas like the visual cortex in the
case of visual stimuli. If this CS is followed by the UCS, the activation of the LA in the
context of released glutamate leads to long-term potentiation (LTP) that is mediated via
N-Methyl-D-Aspartat (NMDA) receptors. Following this neural learning process, the CS
can now activate the LA (and downstream the CE and aIC) in the absence of an UCS.
If a stimulus that is similar to the CS is presented after conditioning, the thalamus will
forward this information to both visual areas via the high road and to the amygdala via
the low road. The route via the amygdala will already activate fear areas given enough
overlap with the CS. The visual cortex will forward the information to the HPC, which
performs pattern separation or completion, depending on the perceptual overlap to the CS
(i.e. the representational similarity). In the case of pattern completion, it will activate
fear areas including the amygdala and the aIC. In the case of pattern separation, it will
activate the vmPFC, which in turns inhibits fear areas that were already activated by the
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amygdala. The latest iteration of the model (Webler et al., 2021) adds another effect of
the low route, namely a pre-activation of the cornu ammonis (CA) subfields CA1 and CA3,
which is supposed to bias the HPC towards pattern completion. In addition, they partly
acknowledge the network view by stating that fear areas including those of the SN activate
the FPN to recruit attentional resources.

At a first glance, this model is intriguing because it combines the animal literature on
fear learning with the human literature on fear generalization and one aspect of the role of
the HPC. Another strength is that it makes specific predictions for the direction of gen-
eralization gradients in different subfields of the HPC. This is because pattern completion
and separation are thought to be performed in different areas, with the CA3 being involved
in pattern completion while the dentate gyrus (DG) seems to perform pattern separation
(Rolls, 2013). However, the model has multiple empirical and conceptual shortcomings.
Starting empirically, Huggins et al. (2021) performed a segmentation of hippocampal sub-
fields and the nuclei of the amygdala and investigated their fear tunings separately. They
found a negative tuning in CA1, CA3 and DG, which directly contradicts the predictions
of the model. In addition, they did not observe any tuning in the LA or CE and found a
negative tuning in the basolateral amygdala (BLA). In general the role of the amygdala in
fear generalization is unclear due to inconsistent results (Dunsmoor et al., 2011; Kaczkurkin
et al., 2016; Onat & Büchel, 2015) and even the idea of the amygdala as the fear center
is increasingly controversial (Fullana et al., 2016; Radua & Fullana, 2022). In addition,
since the model is based on perceptual similarity, it cannot explain differential generaliza-
tion along different dimensions, if discriminability is matched (Ahmed & Lovibond, 2015a,
2015b; Vervliet et al., 2010).

Conceptually, the model has two implicit assumptions about fear generalization, namely
that it is fundamentally a perceptual process and that fear generalization employs a dif-
ferent neural architecture than other forms of generalization and is thus distinct. Those
assumptions can be derived from the focus on pattern separation and completion in the
hippocampus and on the amygdala respectively. As I have argued in previous sections, both
of these assumptions are questionable.

1.2 Bayesian models of inductive reasoning

The „universality, invariance, and elegance“ of Shepard’s exponential
law [. . .] are in themselves impressive, but perhaps ultimately of less
significance than the spirit of rational analysis that he has pioneered
as a general avenue for the discovery of perceptual-cognitive
universals.

Tenenbaum and Griffiths (2001a), p. 639

Another line of research in cognitive science that started with the seminal paper by
Shepard (1987) characterizes generalization as inductive reasoning. Although the examples
in that paper can be understood as a stimulus generalization, the approach is completely
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different because it is firmly rooted in rational analysis13 (J. R. Anderson, 1990). In contrast
to mechanistic explanations that describe the structure of phenomena, rational analysis is
concerned with their purpose. It considers the environment that an agent interacts with,
the goals that it is trying to achieve and some plausible constraints about what the agent
can do. Following these considerations, rational analysis tries to come up with an optimal
solution given the constraints (J. R. Anderson, 1990). This discrepancy explains why the
explanations of stimulus generalization and inductive reasoning diverge drastically — it does
not seem very reasonable to assume that generalization is based on perceptual confusion
when the goal is to adaptively behave in an ever changing world. As a consequence, although
almost all of empirical papers on stimulus generalization cite Shepard’s paper, the two
approaches have developed completely independently until very recent attempts to unify
them (J. C. Lee, Lovibond, Hayes, & Navarro, 2019).

1.2.1 Shepard’s universal law

In an attempt to form psychology into a first-class quantitative science, Shepard (1987) had
the ambitious idea to derive a universal law that transcends the boundaries of species and
would be the psychological equivalent to the law of gravity. Because a changing context
is an underlying problem for all cognitive abilities, he suggested that generalization would
be a good first cognitive universal. This priority is in stark contrast to the mechanistic
explanations in the previous sections, in which an organism first learns and then generalizes
(making it a second thought) and to previous approaches in stimulus generalization in which
generalization depends on similarity (Guttman & Kalish, 1956) which emphasizes similar-
ity as the primary concept. Shepard (1987) and others (Tenenbaum & Griffiths, 2001a,
2001b) have argued that similarity is an under-defined concept while generalization as an
objectively measurable quantity is not and turned the relationship around by estimating
similarity from generalization instead of the other way around. This approach necessar-
ily rejects the role of objective physical similarity in generalization and replaces it with
similarity in a psychological space that can be different for e.g. different species or individ-
uals. This is a necessary precondition for an universal law and accounts for phenomena in
which physical and perceived similarity do not match, such as tone frequencies14. Using
non-metric multidimensional scaling (NMDS)15, Shepard (1987) found that generalization
gradients across stimuli and species consistently follow an exponential decay with increasing
dissimilarity in the appropriate psychological space16. Motivated by this finding, Shepard
developed his exponential law.

The basic idea of Shepard’s law is that stimuli can be understood as points in psychologi-
cal space. In this context a psychological space is a conceptual metric space in which stimuli

13Although Shepard’s paper predates the definition of rational analysis, it is usually considered an example
of this approach.

14As an example, two tones that are apart by an octave are perceived as more similar to each other than
two tones that are apart by a fifth even though an octave is a larger distance in frequency space.

15see subsection 3.1.1.
16Note that the circularity of first estimating the psychological space from generalization data and then

describing generalization in this space is broken by imposing the constraint of a metric psychological space.
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are embedded. The distance between two stimuli in psychological space is the distance be-
tween their corresponding points and is inversely proportional to the perceived similarity
between the stimuli. The task of the agent is to infer natural kinds of stimuli that lead to the
same outcome. In the context of psychological space, natural kinds map onto consequential
regions, i.e. areas in psychological space (Shepard, 1987). More intuitively, a natural kind
is a subset of stimuli that lead to the same outcome and are clustered in a certain region of
psychological space. This region is called a consequential region. Although later extensions
go beyond this assumption (Tenenbaum & Griffiths, 2001a), Shepard’s original law is only
concerned with a special case of learning: Given that an organism observes that a single
stimulus x leads to a certain outcome (i.e. is part of a certain natural kind), how likely is
it that another stimulus y is part of the same natural kind. Mathematically speaking, an
organism is trying to compute the posterior probability g(y) that the relevant consequential
region includes the novel stimulus given that it overlaps the first stimulus. Assuming a fixed
size s, a uniform prior over the location of the consequential region and some constraints on
their shape, this probability can be computed as the volume of the overlap m(x, y) between
two regions, that are centered around x and y respectively, relative to the volume of a whole
consequential region m(x):

g(y|s) = m(x, y)
m(x) (1.1)

Because the size of the region is not known in practice, this uncertainty is accounted for by
integrating Equation 1.1 over all possible sizes:

g(y) =
∫ ∞

s=0
p(s)m(x, y)

m(x) ds (1.2)

Note that this equation is depending on a choice for the prior p(s). However, using sim-
ulations, Shepard (1987) showed that the shape of the resulting gradients is remarkably
indifferent to the prior p(s) and that an approximately exponential shape emerged for a
wide range of choices.

Even though this model is only applicable to cases in which an organism observes a single
consequential observation, it proved to be very influential and motivated extensions that
account for multiple observations (Tenenbaum & Griffiths, 2001a), sampling assumptions
(Navarro et al., 2012), multiple latent causes (Soto et al., 2014) and negative evidence
(J. C. Lee, Lovibond, Hayes, & Navarro, 2019; Voorspoels et al., 2015). I will discuss these
extensions in the following section.

1.2.2 Further Bayesian models

As a reminder, Bayes’ theorem is a result from probability theory that provides a mathe-
matical way to integrate prior knowledge with new information (Blitzstein & Hwang, 2015).
The basic formula is given by
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p(θ|y) = p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ , (1.3)

which simplifies a bit when solving the integral in the denominator:

p(θ|y) = p(y|θ)p(θ)
p(y) . (1.4)

And because p(y) is a constant, namely the normalizing constant, it can be dropped to yield
the unnormalized posterior distribution:

p(θ|y) ∝ p(y|θ)p(θ). (1.5)

The purpose of Bayes’ theorem is to update the belief state over θ given new evidence y. In
this context, p(θ) refers to the prior belief state, which is being updated using the likelihood
of the observed data p(y|θ) to arrive at the posterior belief state p(θ|y). Bayes’ theorem
is being used extensively in statistics (Blitzstein & Hwang, 2015; Gelman, 2014), but more
importantly for the present application, Bayesian inference has become a popular model of
behavioral and neural functioning because organisms in the real world constantly use new
information and prior knowledge (e.g. common sense) to interact with their environment
(Chater et al., 2006; Darlington et al., 2018; Gershman, 2015; Ma et al., 2006).

Probably the most important extension to Shepard’s law was given by Tenenbaum and
Griffiths (2001a). While the original formulation is Bayesian in nature, Tenenbaum and Grif-
fiths (2001a) rephrased the problem in the context of rational analysis (which was formally
developed after 1987) and gave a full Bayesian treatment of the problem. In particular,
they expressed the problem of generalization while emphasizing three main points that map
onto aspects of Bayesian inference. First, the prior knowledge of organisms that maps onto
the prior probability distribution. Second, the inference about new stimuli given the current
belief state, which is closely linked to the prior (eq. Equation 1.6) or posterior predictive
distribution (Equation 1.7, Gelman, 2014), depending on whether any new information
has been given or not. In contrast to the prior and the posterior distribution, which are
distributions over parameters, those are distributions over possible novel outcomes ỹ while
the parameters are being integrated over:

p(ỹ) =
∫
p(ỹ|θ)p(θ)dθ. (1.6)

p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y)dθ. (1.7)

Lastly, the mechanism by which new information is included refers to both the likelihood
function and Bayes’ theorem in general. Given this mapping, they derived that Bayesian
inference is an optimal solution to the posed problem.

Just like Shepard (1987), they assumed that there is a set of possible consequential
regions h ∈ H and some prior belief state p(h) over this set, i.e. which region is how likely a
priori. However, they relaxed the constraints that Shepard (1987) imposed on the shape of
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the consequential regions. As a consequence, the posterior can be computed over arbitrary
hypotheses sets H and those can be specific to different contexts. For instance, multiples of
10 seem more similar than e.g. the set {34, 35, 36} in some contexts, but not in others — a
fact than can be expressed in differences in H and p(h). Agents in the updated model are
assumed to use Bayes’ theorem to update their belief state about the relative plausibility of
different consequential regions:

p(h|y) = p(y|h)p(h)∑
h∈H p(y|h)p(h) . (1.8)

The most important contribution of the updated model is the addition of the size principle.
The likelihood of Shepard (1987) only considers whether or not the stimulus is contained in
a consequential region:

p(y|h) =

1 if y ∈ h

0 otherwise
(1.9)

This approach assumes that consequential regions and stimuli are sampled independently,
which Tenenbaum and Griffiths (2001a) refer to as weak sampling. However, this does not
differentiate between small and large regions. In the idealized case with a single observation,
this does not have a big impact. But since the full Bayesian formulation of Tenenbaum and
Griffiths (2001a) allows for multiple observations, it is important to account for the fact
that one would likely not generalize beyond a narrow range in psychological space, if all
consequential observations are very similar and one assumes that stimuli and consequences
do not appear randomly. To account for this, the authors proposed another likelihood
function in which the stimuli are sampled from the consequential region and where the
probability for being sampled is inversely proportional to the size of the region:

p(y|h) =


1

|h| if y ∈ h

0 otherwise
(1.10)

Tenenbaum and Griffiths (2001a) refer to this likelihood as strong sampling. This updated
function has the effect that the same observation is more likely given a smaller than a larger
consequential region and as a consequence, both larger number and smaller variations in
consequential examples lead to less generalization, which makes sense intuitively and has
been shown to be true in human experiments (J. C. Lee, Lovibond, & Hayes, 2019). Given
a belief state over the plausibility of consequential regions (i.e. p(h) or p(h|y)), an agent
can use hypothesis averaging to compute their expectation about whether a novel stimulus
is part of the same region C. For this purpose, they would sum the probability of all
consequential regions that contain the novel stimulus:

p(ỹ ∈ C|y) =
∑
h:ỹ∈h

p(h|y). (1.11)

Since Tenenbaum and Griffiths (2001a), incremental changes have been proposed.
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Navarro et al. (2008) introduced a continuous hypotheses space and derived an analytic
way to solve the model. Navarro et al. (2012) introduced mixed sampling, which is a
weighted average of weak and strong sampling and showed that most people seem to use
this approach. Soto et al. (2014) elegantly applied the same model structure to compound
generalization17 and added the idea of latent causes to the model (Gershman et al., 2015).
Voorspoels et al. (2015) integrated learning from non-consequential observations and intro-
duced helpful sampling. This sampling scheme assumes that stimuli and consequences are
provided by a helpful mentor in a way that is most likely to result in the correct inference.
This approach has a lot of face validity in the context of education where teachers are
assumed to provide the most helpful examples. But all of those extensions follow the same
basic structure of the model of Tenenbaum and Griffiths (2001a), which has proven to be a
powerful tool.

1.2.3 The relationship with stimulus generalization

As mentioned before, the development of the Bayesian inductive reasoning approach has
been almost completely independent of research on stimulus generalization until recently.
One reason for this is that these models assume a deterministic outcome structure. A stimu-
lus either always or never leads to an outcome. This is also apparent in the kind of tasks that
are used to test predictions of the model (e.g. J. C. Lee, Lovibond, & Hayes, 2019; Navarro
et al., 2008; Voorspoels et al., 2015). While stimulus generalization designs typically intro-
duce an emotional experience to the study design, inductive reasoning is concerned with
logical thinking under uncertainty. Typically, subjects are provided with a number of con-
sequential examples (e.g. stimulus x has some property) and then queried on new stimuli
(e.g. does stimulus y also have this property?). Until Voorspoels et al. (2015) added a treat-
ment of learning from negative evidence (i.e. stimulus x does not have this property.), only
positive examples were considered. The assumption of a deterministic outcome structure is
deeply rooted in the idea of fixed consequential regions. Unfortunately, it is incompatible
with the typically probabilistic reinforcement schedule in cognitive neuroscience, in which a
stimulus is followed by a consequence only in a subset of trials.

The only attempt to unify inductive reasoning models with stimulus generalization was
made by J. C. Lee, Lovibond, Hayes, and Navarro (2019). Given the similarities between
the two approaches, they queried whether stimulus generalization followed the same princi-
ples as inductive reasoning using two experiments and an adapted Bayesian model. In their
experiment, they found that behavior was in line with the predictions of their model and
concluded that inductive reasoning and stimulus generalization rely on a similar mechanism.
Their model differs from inductive reasoning models in that it does not assume deterministic
consequential regions. Instead, agents learn an association map, which is a mapping from
psychological space onto outcome probabilities. Generalization is possible via a smoothness
constraint which dictates that similar stimuli have similar outcome probabilities. Interest-
ingly, this model allows for a dimensional preference. This preference is implemented via

17Compound generalization is the ability to apply generalizations to novel combinations of stimuli.
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parameters that govern the probability of rapid changes in outcome probabilities within each
dimension. This model should in principle be able to implement dimensionality reduction
by assuming very low granularity along a certain dimension and thereby foreshadows my
own attempt to add representation learning to the equation.

1.3 Generalization in Reinforcement Learning

RL is a formal description of learning from experiences and rewards (Sutton & Barto, 2018).
The main assumption is that agents try to maximize a time-discounted expected return in
the future. That is, they learn to take actions in specific states that will generate the most
beneficial outcomes while devaluing rewards that are further away in the future. Formally,
RL is a collection of algorithms to solve a specific class of tasks, which are called Markov
decision processes (MDPs). MDPs are characterized by a state space, an action space, a
reward function, and a transition function. The state space is the set of all possible states,
i.e. all possible combinations of environment variables that an agent can be in. A state
could be e.g. the constellation of chess figures on the board or a physical location including
all environmental variables for a more realistic scenario. The action space is the set of all
possible actions that an agent can take in every state. These actions could be moving a chess
piece according to the rules or choosing a stimulus in a simple neuroscientific experiment.
The reward function is a mapping from states and actions to a scalar reward value. And
finally, the transition function is a probability distribution over the next state given the
current state and the action taken (Sutton & Barto, 2018).

RL agents solve a MDP by trying to maximize the expected return in the future, i.e. the
sum of all rewards they they receive in the future while discounting those that are further
away. This is done by learning the value of each action in each state, given by the state-
action value function Q(s, a), which is the expected return when taking action a in state
s:

Q(A = a, S = s) = E[R|A = a, S = s] (1.12)

In addition, agents learn a policy π, which is a behavioral rule that dictates their behavior,
conditional on the state-action value function. A policy is a probability distribution over
actions in each state:

π = p(A = a|S = s) (1.13)

Finally, given the policy and the state-action value function, we can define the state value
function V (S) by weighing the expected return of each possible action by the probability of
taking said action:

V (S = s) =
∑
a∈A

p(A = a|S = s)Q(A = a, S = s) (1.14)
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These two concepts, value functions and policies, are intertwined as the expected time-
discounted return in the future clearly depends on the behavior of the agent, which depends
on the policy. In order to learn both at the same time, agents use a behavioral algorithm
called generalized policy iteration (GPI). GPI is characterized by a back and forth between
the learning of a value function and a change in policy. Other approaches include off-policy
learning (Sutton & Barto, 2018), e.g. Q-learning, in which agents learn the value function
for the optimal policy while behaving according to any policy that allows for some amount of
exploration. State-action values are updated via the Bellmann’s equation using a prediction
error (Sutton & Barto, 2018). The prediction error is defined as the difference between the
current state-action-value and the sum of the immediate reward following this action as well
as the state-value of the following state. This update equation looks like this:

Qt+1(St, At) = Qt(St, At) + α(R+ Vt(St+1) −Qt(St, At)). (1.15)

In this context α refers to the learning rate and dictates how quickly agents update their
value estimates. Since many experiments in cognitive neuroscience use episodic task with
a single state transition, the expected reward in the future is just the expected immediate
reward and the update equation simplifies to the instrumental version of the Rescorla-
Wagner model18: (Rescorla & Wagner, 1972)

Qt+1(St, At) = Qt(St, At) + α(R−Qt(St, At)). (1.16)

RL has been a success story both in AI and cognitive neuroscience (Dayan & Niv, 2008;
Mnih et al., 2015; Sutton & Barto, 2018). In the latter, RL theory has been tremendously
successful in characterizing dopaminergic signalling in the striatum (Schultz et al., 1997) and
explaining human behavior in decision making tasks (Dayan & Niv, 2008). These results
suggest that RL is a feasible approach to describe human learning in tasks that show a
resemblance to a MDP.

A large proportion of research in RL uses simple designs with a finite set of stimuli and
without the need to generalize. In these contexts, simple models like Rescorla-Wagner mod-
els and simplified temporal-difference learning work remarkably well as measured by their
ability to explain behavioral data (Dayan & Niv, 2008). Since these models do not formally
provide a way to share knowledge between states or actions, agents need to encounter every
state and attempt every action in order to learn the respective expected return and to derive
an optimal policy. This is feasible in the context of a small number of states and actions
but quickly becomes intractable in even moderately complex problems (Sutton & Barto,
2018). Unfortunately, the real world is much more complex than the simple MDPs that
are used in RL research, a problem that has been noted and led to an increased interest in
generalization in the context of human research (Niv, 2019; Wu et al., 2018), AI (Lehnert
et al., 2020) and somewhere in between (Flesch et al., 2022).

18While omitting the β parameter.

20



Chapter 1: Introduction

1.3.1 Generalization as abstraction

A common theme that has emerged in this literature is the idea of generalization as abstrac-
tion of state spaces or task structures (Lehnert et al., 2020; Niv et al., 2015). Conceptually,
this means that agents do not learn about the full state space including variables that are
irrelevant for the task at hand, but instead learn value functions on a reduced space. This
approach aids in generalization as agents have to deal with a lower number of possible states
and because an abstracted state space is more likely to be shared between tasks than a full
state space. Abstraction can be achieved via dimensionality reduction. Because this has
been one of the most productive approaches in human RL research, I will expand on this
in the next paragraph. However, there are other ways to achieve abstraction, e.g. by ex-
ploiting correlations in the reward structure. For instance, Wimmer et al. (2012) found that
subjects learned to use correlated rewards between stimuli to guide their behavior in the
context of changing reward probabilities. Interestingly, this kind of learning seems to rely on
the DMN, which provides an interesting perspective on the interpretation of neural findings
in stimulus generalization. Using a similar, but more sophisticated approach to abstraction,
Wu et al. (2018) used an extensive state space, where every state consisted of a one armed
bandit and found that the underlying generalization can be well described as Gaussian pro-
cess regression, which indicates that subjects learned to exploit the correlational structure
in the state space.

1.3.2 Dimensionality reduction

The simplest way to reduce the complexity of high-dimensional spaces is to reduce the
number of dimensions. Mathematically speaking this is equivalent to a projection onto a
low-dimensional space using e.g. principal component analysis (PCA). Less sophisticated,
but still effective is to just ignore a subset of the dimensions. This proposal is interesting,
because it is backed up by a general tendency to simplify learning problems (Galdo et al.,
2022). In addition, it opens up a door to the vast literature on low-dimensional neural
codes (Badre et al., 2021; Bernardi et al., 2020; Bottini & Doeller, 2020; Fusi et al., 2016;
Summerfield et al., 2020) and selective attention (B. A. Anderson & Yantis, 2013; B. A.
Anderson et al., 2011; Brosowsky & Crump, 2021; Markovic et al., 2014; Yantis, 2008), that
can be understood as neural and behavioral dimensionality reduction respectively. Indeed,
dimensionality reduction is one of the main mechanisms that is being explored in the context
of representation learning (Badre et al., 2021; Niv, 2019), latent causal structure learning
(Eichenbaum et al., 2020; Tomov et al., 2018) and theoretical work on reusable neural codes
(Bottini & Doeller, 2020; Fusi et al., 2016).

Representation learning is concerned with the mechanism by which agents discover a
low-dimensional representation (Niv, 2019), that is appropriate for the task at hand (Badre
et al., 2021; Brosowsky & Crump, 2021; Loose et al., 2017). While a good representation
facilitates learning, it adds another step to the learning process, namely the discovery of
said representation. To investigate how this is implemented in the brain, Niv et al. (2015)
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used stimuli that differed on three dimensions. In each trial, subjects had to choose one
of three stimuli. Unbeknownst to them, only one dimension was predictive of reward in
each block. Thus, subjects had to learn the relevant dimension and the rewarded feature
on that dimension simultaneously. Niv et al. (2015) used a RL model to quantify the
subjective uncertainty about the relevant dimension and reported more activity in the FPN
when there was more uncertainty. This finding is compatible with a two-step process —
learning about dimensions and learning on dimensions — and implies a role of the FPN in
the first step. In this context, Leong et al. (2017) suggested that the FPN is responsible
to reallocate attentional resources to different stimulus dimensions, which is consistent with
the results of Niv et al. (2015) and can be understood as a rescaling of psychological space.
Interestingly, when summarizing this line of research, Niv (2019) emphasized the role of the
FPN in the discovery of an appropriate representation and the allocation of attention, but
located the actual encoding of the learned representation to the orbitofrontal cortex (OFC).
While this interpretation is consistent with results that show a role of the OFC in state space
representations and cognitive maps (Basu et al., 2021; Jones et al., 2012; Schuck et al., 2016)
and the suggested role of the FPN in selective attention (Yantis, 2008), it is somewhat at
odds with other results, that suggest that the FPN directly encodes representations (Badre
et al., 2021; Bernardi et al., 2020; Flesch et al., 2022; Jackson et al., 2017). I will discuss
this discrepancy in more detail in the next section.

Research on latent structure learning has extended this literature by adding a hierar-
chical task structure to the mix. Typically this has been done by contrasting cues with
context. The latent structure to be discovered are then different cue rules, depending on
the context, which maps onto different abstractions, or more specifically, the reduction of
different dimensions, depending on the context. For instance, Tomov et al. (2018) conducted
a study in which different stimulus features were predictive of a reward. This was dependent
on the context, which was another symbol that was displayed to subjects. Corroborating
the results of Niv et al. (2015), they found a structure learning signal in the FPN. They
also report an encoding of the full latent structure in the posterior hubs of the FPN and
the aIC. Eichenbaum et al. (2020) used a similar paradigm and could corroborate these
findings quite closely. Based on their results, they suggest that the FPN is responsible for
the search for and the discovery of a hierarchical task structure while the SN19 is responsible
for the encoding of this structure and the transfer to behavior. Slightly differing from these
findings, Vaidya et al. (2021) used a similar cue-context paradigm, but reported that the
FPN and the aIC directly encode the hierarchical task structure.

In summary, research on generalization in RL has overwhelmingly suggested a reliance
on abstracted representations. This has been investigated in representation learning (Niv,
2019) and latent structure learning (Tomov et al., 2018) as well as using correlated reward
structures (Wu et al., 2018).

19Nomenclature of brain networks is very messy (Uddin et al., 2019). While the authors call it the cingulo-
opercular network, this is equivalent to the SN.
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1.3.3 Neural mechanisms

Just like in the context of stimulus generalization, a consistent result has been the involve-
ment of regions of the FPN, the SN and the DMN, albeit some contradictions about their
specific role remain. In the following I will discuss those in the context of neural concepts
that seem relevant, namely task representations outside of generalization (Jackson et al.,
2017; Woolgar et al., 2011) and the geometry of neural representations (Badre et al., 2021;
Fusi et al., 2016).

Task representations. To resolve a conflict between competing interpretations of the
role of brain regions or networks, it can be helpful to consider related literature. In the
present case, when debating whether the FPN and the SN discover or encode abstracted
task representations or even both, I am going to review some examples from the literature
on task and stimulus representations that are relevant to, but not specifically concerned
with generalization.

Woolgar et al. (2011) used a simple design, in which subject had to learn a mapping from
keys to outcomes, while the mapping depended on the context. In order to distinguish which
task features were most strongly encoded, they used MVPA. This analysis revealed that
both the FPN and the aIC most strongly encoded the task rule, i.e. the relevant mapping.

Jackson et al. (2017) leveraged a categorization task in order to investigate whether
adaptive neural encoding is a potential neural equivalent to flexibly changing selective at-
tention. In this task, subjects had to categorize items that differed along two dimensions.
Between blocks, the relevant dimension changed. The authors found that neural representa-
tions in the FPN were flexibly updated and consistently represented the relevant dimension
more strongly than the irrelevant dimension.

In a similar vein, Flesch et al. (2022) employed a categorization task as well in which
stimuli differed along two dimensions, while the relevant distinction was along either axis.
They corroborated the findings of Jackson et al. (2017) and found low-dimensional repre-
sentations in dlPFC and IPS20, where the relevant dimension was encoded more strongly.
Interestingly, they reported converging evidence in that deep neural networks (DNNs, LeCun
et al., 2015) and the frontal eye field (FEF) of monkeys showed the same pattern.

Adding to the evidence across boundaries between species, Bernardi et al. (2020) re-
ported abstract, low-dimensional task encodings in the monkey dlPFC, anterior cingulate
cortex (ACC) and HPC.

In the context of these results and other studies that report empirical evidence for the
encoding of abstract task rules in the whole FPN or parts of it (e.g. Badre et al., 2010; Loose
et al., 2017), it seems unlikely that the role of the FPN in generalization is constrained to
the discovery of appropriate abstraction. Instead, they suggest a clear role in the encoding
of those low-dimensional abstractions. That is, the FPN likely encodes the abstracted task
and thereby provides this information to downstream areas.

20The major components of the FPN.
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Geometry of neural representations. Another relevant concept, that is more strongly
rooted in research on general coding properties of the brain is the geometry of neural rep-
resentations (Fusi et al., 2016). In the generalization context, the most relevant property
is the dimensionality of representations (Badre et al., 2021). As an example, consider a
defined area in the brain of an organism. If we present different stimuli to this organism,
who’s brain we are measuring, we can quantify the activity of each unit of measurement.
Depending on the modality and resolution of our measurement, we might consider single
neurons, electrodes, or in the context of fMRI voxels. For each presented stimulus we can
combine the activity of all units into a vector and thus understand the activity pattern as
a point in high-dimensional space. The dimensionality of this space is equal to the number
of measurement units. If we combine the vectors of all stimuli into a matrix, we can use
linear algebra to quantify the rank of that matrix or to determine the number of relevant
dimensions (Strang, 2021). Intuitively, if the activity pattern is the same, or a scaled version
of a single pattern, to all stimuli, the rank of the matrix is 1: All patterns (points) lie on the
same line. This would be the most extreme case of low-dimensional representations. If all
patterns are completely different, the rank of the matrix is the number of stimuli, assuming
that there are more units of measurement than stimuli. This would be the other extreme,
a very high-dimensional neural representation. In practice, the matrix is always going to
be full rank due to measurement noise21, but it is still possible to determine the relevant
dimensions using PCA or similar techniques.

In an elegant review, Fusi et al. (2016) discussed the role of high- and low-dimensional
representations in higher cortical areas. High-dimensional representations are easily distin-
guishable from each other. That implies that downstream areas, i.e. neuronal assemblies
that receive input from the higher cortical areas, can differentiate between them easily via
linear readouts, which allows for flexibility in behavior. In contrast, low-dimensional rep-
resentations are not easily differentiable and get treated as a single entity by downstream
areas as they do not encode aspects of certain inputs that would be needed to distinguish
them. This comes at a cost in flexibility but allows for more robustness. As an example,
Fusi et al. (2016) discuss categorization tasks, where it is beneficial to only encode those
features that determine class membership. Similarly, low-dimensional representations are
an obviously important consideration for generalization, since representational similarity
can be used by downstream areas to implement adequate behavior towards new stimuli or
situations.

Summerfield et al. (2020) linked structure learning, and thus a concept that is rele-
vant for generalization, to low-dimensional representations in the parietal cortex — parts
of which are important hubs of the FPN — and the hippocampus. Like Fusi et al. (2016),
they argue for the importance of low-dimensional representations in behavioral robustness
towards new situations. In addition, they suggest two interesting points. First, representa-
tions in the posterior parietal cortex (PPC) tend to be often one-dimensional, i.e. extremely

21Even multiple measurements of activity to the same stimulus are practically guaranteed to be somewhat
different.
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low-dimensional. Some evidence suggests that this allows for generalization between task
domains, e.g. the same representations could be used context-dependent and encode either
direction in physical space, time or numerosity. For instance, domains that share a con-
ceptual structure with physical space, such as time or interpersonal relationships, could
be encoded in the same way. This phenomenon is called primary conceptual metaphors
(Bottini & Doeller, 2020). Second, they argue for a complementary role of cognitive maps
in the HPC and enthorhinal cortex (EC) on one and the PPC on the other hand. In this
dichotomy, the HPC/EC would contain allocentric cognitive maps, i.e. encode the relation-
ship or spatial distance between concepts or stimuli relative to each other. In contrast, the
PPC would encode a more egocentric representation, i.e. encode the relationship or physical
distance of stimuli to the self. These differences in localization could explain discrepancies
in neural results from generalization studies when considering that for some tasks it might
be more relevant to encode the similarity of stimuli relative to each other, while in other
tasks the similarity of stimuli relative to the self might be more relevant.

A review on cognitive maps by Bottini and Doeller (2020) makes a very similar proposal
and suggests that a hippocampal-parietal system combines allocentric and egocentric rep-
resentations. They also argue for the importance of low-dimensional neural codes for the
discovery of similarities between stimuli and situations. The latter point nicely illustrates
the relevance of low-dimensional representations for generalization. It is possible that per-
ceived similarity between stimuli or situations is encoded via similar neural representations
and that this is the basis for generalization.

Badre et al. (2021) reviewed the importance of the dimensionality of neural represen-
tation with respect to cognitive control and task appropriate behavior. Like others, they
emphasize the distinction between high- and low-dimensional representations, where high-
dimensional representations allow for linear readout by downstream regions and thus behav-
ioral flexibility while low-dimensional representations ensure robustness and generalization.
Since the dlPFC, an important part of the FPN, is involved in cognitive control, they
emphasize representations in this area. Interestingly, different studies have found near max-
imal (i.e. very high) dimensionality in this area (Rigotti et al., 2013), while others reported
lower dimensionality (Bernardi et al., 2020). Badre et al. (2021) argue that this discrep-
ancy might reflect task demands and suggest that the dlPFC can flexibly switch between a
high-dimensional representation when small differences are relevant and a low-dimensional
representation when generalization is more important.

The consideration of the respective utility and suspected role of low- and high-
dimensional representations shows the importance of representational geometry with
respect to generalization, bridges the gap between work that focusses on fundamental
coding patterns in the brain vs. the neural basis of cognition and suggests that the former
can help with an interpretation of research on the latter. Given the focus of representation
learning on the role of the FPN and converging evidence for a involvement of this network
in stimulus generalization, it is surprising that the literature on the geometry of neural
representations is hardly considered in either of those disciplines.
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1.4 An integrated view

In the previous chapters I have reviewed three different sub-disciplines that investigate
generalization in different contexts:

1. Stimulus generalization in associative learning, often concerned with the generalization
of fear learning.

2. Models of inductive reasoning in cognitive science that use rational analysis to under-
stand mechanisms of reasoning under uncertainty.

3. Lastly, representation learning in RL that is concerned with the discovery and encoding
of low-dimensional abstractions that facilitate generalization.

In addition, I summarized key findings and opinions on the geometry of neural representa-
tions and the encoding of task structures that seem relevant. In this section, I will provide
an integrated view and identify commonalities in behavioral, computational and neural as-
pects. In this view, I will argue that there is substantial reason to assume an underlying
process that is common to all three applications and that it can be expressed reasonably
well in a Bayesian model that accounts for dimensionality reduction in a rational manner.

Behavioral aspects. Research designs in inductive reasoning (e.g. Navarro et al., 2008;
Voorspoels et al., 2015) and stimulus generalization (e.g. Dunsmoor et al., 2011; Onat &
Büchel, 2015) are quite similar to begin with. In fact, even the description of the relevant
task that was given by Shepard (1987) can be considered stimulus generalization. In his
example, a bird is confronted with the task of deciding which worms to eat after having had
a bad encounter with a particular worm. However, the research field that has emerged from
the work of Shepard (1987) has conceptualized generalization more strongly as inductive
reasoning, which has led to differences in study designs and scope with respect to stimulus
generalization. The typical difference in design between the two disciplines lies in the quality
of an encounter: Stimulus generalization uses actual experience, e.g. an electric shock, while
inductive reasoning confronts subjects with true or false statements and asks them to use
those to reason about new statements. A typical example for that would be: Given that
the statement „Object A has property X.“ is true, how likely is the statement „Object B has
property X.“ to be true? Recently, J. C. Lee, Lovibond, Hayes, and Navarro (2019) came to
the conclusion that fear generalization and inductive reasoning rely on similar mechanisms.

Similarly, designs in associative learning and RL often are not as different as it may seem
because RL studies often use a very simplified task that can be modeled using associative
learning models like the Rescorla-Wagner model (Rescorla & Wagner, 1972). However, stud-
ies on generalization in RL are typically more concerned with the mechanism of building an
abstraction and do not use generalization gradients like stimulus generalization studies do.
Instead they focus on multidimensional stimuli (Niv et al., 2015; Tomov et al., 2018) or corre-
lated state spaces (Wimmer et al., 2012; Wu et al., 2018). This makes a comparison harder,
but if we consider studies on stimulus generalization that used multidimensional stimuli, we
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can see that the effects are commensurate with the idea of dimensionality reduction (Ahmed
& Lovibond, 2015a, 2015b; Vervliet et al., 2010). Some studies used an instrumental gen-
eralization tasks in conjunction with an associative learning phase (Lommen et al., 2010;
Norbury et al., 2018; van Meurs et al., 2014). This approach can be considered somewhere
in between associative learning and RL. This is because RL is concerned with learning the
value of actions while associative learning is concerned with learning the predictive value of
stimuli. These studies employed a purely associative learning phase, but then investigated
how the learned associations translate into behavioral choices. A consistent result in those
studies was that instrumental generalization gradients are closely related to associative ones.

Computational aspects. Even more interesting and enlightening are similarities in how
generalization is conceptualized and in the underlying computations. Strikingly, the tasks
that associative learning and RL solve are much more closely related than one might think.
RL algorithms are used to solve MDPs. Associative learning omits the consideration of ac-
tions, which results in something that Sutton and Barto (2018) call Markov reward processes
(MRPs). MRPs and MDPs are closely related, as are state values in RL and associative
values in associative learning. Another notable parallel emerges when comparing consequen-
tial regions from inductive reasoning models with state space abstractions in RL. It seems
to me that consequential regions can be understood as abstractions of psychological space.
Consequently, learning the correct consequential region is akin to learning an adequate ab-
straction. Adding to this, the psychological space is an adequate abstraction to begin with.
Shepard (1987) argues that this space is shaped by evolution, but the distinction between
ontogenetic and phylogenetic learning in cognition is very hard to make and recent theories
have suggested that an appropriate hypotheses set of consequential regions is at least partly
learned within a lifetime (Austerweil et al., 2019). For this reason I suspect that the conse-
quential region approach and the dimensionality reduction (or more generally abstraction)
approach refer to very similar things. Lastly, the only inductive reasoning model that has
been adapted to associative learning showed computational similarities between inductive
reasoning and stimulus generalization (J. C. Lee, Lovibond, Hayes, & Navarro, 2019) and
already implemented a notion of dimensional relevance.

Neural aspects. Since no neuroimaging studies on inductive reasoning (in the sense of
Shepard (1987)) have been conducted, I will focus on results from stimulus generalization
and RL. The most striking similarity is the complete overlap in brain areas and networks.
Fear generalization studies consistently report positive generalization gradients in the FPN
and the SN and negative gradients in the DMN (Webler et al., 2021). Studies on repre-
sentation learning have emphasized those regions as well, with a role for the FPN and the
aIC22 in the discovery and encoding of task and state space abstractions (Leong et al., 2017;
Tomov et al., 2018; Woolgar et al., 2011). Other studies have suggested a similar role for
the HPC and vmPFC or OFC, which are parts of the DMN (Niv, 2019; Schuck et al., 2016).

22The aIC is a prominent part of the SN.
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This discrepancy is not solved as of now, but it might have to do with study designs. In
analogy to allocentric vs. egocentric cognitive maps and their respective localization in the
brain (Bottini & Doeller, 2020; Summerfield et al., 2020), it is possible that other aspects
of the task, like the presence of rewards or the inclusion of actions might influence where in
the brain those aspects are encoded.

Interpretations of the role of those structures differ even more wildly between stimulus
generalization and RL (Badre et al., 2021; Niv, 2019; Webler et al., 2021). But the strong
overlap is a promising sign for a common neural mechanisms and I suspect that some of the
contradictions can be resolved by making research designs more similar. For instance, there
is only a single neuroimaging study on stimulus generalization that uses multi-dimensional
stimuli until now (Onat & Büchel, 2015). Unfortunately, this study explicitly assumed those
stimuli to be arranged on a one-dimensional subspace and analyzed the data accordingly.
Given this, it is not surprising that dimensionality reduction has not been discussed in the
context of stimulus generalization.

1.5 Contributions of this thesis

With this thesis I intend to contribute towards discovering a common mechanism for gen-
eralization in different contexts. I have outlined my reasoning for this assumption in the
introduction. For this purpose, I will propose a novel Bayesian model that is similar to
previous approaches (J. C. Lee, Lovibond, Hayes, & Navarro, 2019), but emphasizes dimen-
sionality reduction as rational behavior. This resolves the contradiction between stimulus
generalization and associative learning on the one and representation learning on the other
hand while also omitting the distinction between learning about dimensions and learning
on dimensions. This model is described and motivated in chapter 2. Since this approach is
relying on an adequate way to control for psychological spaces and the method of Shepard
(1987) using NMDS is not applicable to the kind of data I will report, I also took the liberty
to develop a new hierarchical Bayesian method to estimate psychological spaces. I describe
this method in chapter 3. To test the predictions of my model I also conducted three stud-
ies. The first study uses fear conditioning and is purely behavioral. In the second study,
I replicate those findings and collected fMRI data to query the neural computations that
underlie the behavioral mechanism. Lastly, in a third study, I used appetitive instead of
aversive conditioning to show the scope of the proposed model beyond fear generalization.
These studies are described in chapter 4.
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2 An integrated Bayesian model of
generalization

After having reviewed the literature, we now turn to the question of what a unifying model
of generalization could look like. As I have argued in chapter 1, such a unifying approach
to generalization needs to account for stimulus generalization, inductive reasoning and rep-
resentation learning. While this list might not be exhaustive, it seems like a good starting
point. Stimulus generalization and inductive reasoning have been linked before (J. C. Lee,
Lovibond, Hayes, & Navarro, 2019), but an approach that accounts for all three is missing
as of yet. In this section I will first argue why previous Bayesian models do not account
sufficiently for the other fields. In an attempt to unify all three lines of research, I will
describe a novel Bayesian model of stimulus generalization, that integrates aspects from
inductive reasoning and representation learning.

2.1 Limitations of previous models

The biggest limitation of almost all previous Bayesian models (Navarro et al., 2008; Shep-
ard, 1987; Soto et al., 2014; Tenenbaum & Griffiths, 2001a, 2001b) is the assumption of
a deterministic consequential region. In the view of Shepard (1987), consequential regions
map onto natural kinds. Possibly due to his focus on single-shot learning, i.e. learning from a
single observation, this concept does not allow for variation in outcomes. It seems plausible
that eating a certain worm sometimes, but not always, leads to a certain outcome, but the
concept of deterministic consequential regions is incompatible with that. In the literature
that descended from Shepard’s work, the focus on generalization as inductive reasoning is
even stronger (Navarro et al., 2008; Tenenbaum & Griffiths, 2001a). This can be seen in the
research designs in which the statements that subjects are confronted with assume that a
certain stimulus has a property as compared to leads to an outcome. A stimulus has a prop-
erty or it does not, there is no variation. In other words, these models account for epistemic
uncertainty with respect to the true consequential region. All variation in generalization
gradients are due to this uncertainty. But this approach leaves out aleatoric uncertainty,
i.e. uncertainty about the outcome of a stimulus that is not due to a lack of knowledge but
due to inherent randomness in stimulus-outcome contingencies (Tenenbaum & Griffiths,
2001a). Such a randomness is given in almost all studies on stimulus generalization and
in RL due to probabilistic reinforcement schedules. As a consequence, consequential region
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models are not applicable to these studies. The mathematical reason for that can be found
in the likelihood function, independently of the sampling assumption (Navarro et al., 2012).
The likelihood of a consequential observation (i.e. a stimulus followed by an outcome) is
positive for any consequential region that contains this stimulus. Likewise, the likelihood of
a non-consequential observation is 1 given any consequential region that does not contain
this stimulus. However, a non-consequential observation given a region that does contain
this stimulus is 0. This leads to a posterior probability of 0 for this region. Since Bayes’
rule (Equation 1.3) uses multiplication to update the belief state, no further observations
can change this. Beyond the pure applicability, the deterministic outcome assumption has
a conceptual problem. If we account for randomness in outcomes, a next step would be to
link the outcome probability to the relative position within the consequential region. To
illustrate this point, imagine two glasses of water. One is very slightly contaminated with
dirt and the other one is dark brown. Those glasses can be viewed as points in psychologi-
cal space (Shepard, 1987). Both have a certain probability of leading to the same outcome,
namely getting sick, i.e. they are members of the same natural kind. But if we gave both
glasses to thirsty subjects and they had to choose one to drink from, it is very likely that
most subjects would choose the less contaminated water because they would infer that it is
less likely to make them sick. This difference is not due to uncertainty about the location
of the consequential region but due to inherent differences in outcome probabilities. This
thought experiment is evidence for a generalization process that accounts for the relative
position in a consequential region. A general theory of generalization should account for
that.

Some models do account for randomness in outcomes. Soto et al. (2014) proposed a
model that explains phenomena in compound generalization with the assumption of latent
causes. The learner infers the latent causes that are active in any given trial. Each latent
cause leads to a certain outcome magnitude and the expected outcome is the sum of those
weights over all active causes. The real outcome is than assumed to be drawn from a
normal distribution with the expected outcome as mean and some fixed very small variance.
While this accounts for some variation in outcome magnitude, the reason for it is mostly to
arrive at a probabilistic model. It also does not explain different outcome probabilities and
consequently does not link those to the relative position within a consequential region.

I am aware of only one model that is applicable to probabilistic reinforcement. J. C.
Lee, Lovibond, Hayes, and Navarro (2019) applied an inductive reasoning model to fear
generalization and proposed an alternative formulation that omits consequential region.
Instead, the agent learns an association map, which is essentially an outcome probability
for every point in psychological space. A smoothness constraint enables agents to generalize
to unobserved stimuli. This model can predict behavioral data from a fear generalization
experiment very well (J. C. Lee, Lovibond, Hayes, & Navarro, 2019).

The second limitation of the mentioned Bayesian models is that they do not account for
representation learning. This is not a shortcoming in and of itself, but it is a lacking feature
for a common mechanism of generalization. Some aspects of models can be considered as
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going in that direction. Shepard (1987) emphasized that psychological spaces are shaped
evolutionary. This implies the possibility that irrelevant dimensions are scaled differently
than relevant dimensions. But it does not explain context-dependence, which is necessary
because some dimensions are relevant in some but not in other circumstances. Also missing
is a mechanism to rescale those dimensions as a reaction to learning experiences. The
models of Navarro et al. (2008) and Soto et al. (2014) assume a probability distribution
over the size of consequential regions along every dimension. In principle this allows for
different relevance of dimensions. But those models do not account for variation in outcome
probabilities. Lastly, the Bayesian model of associative learning by J. C. Lee, Lovibond,
Hayes, and Navarro (2019) includes a parameter that indicates the dimensional relevance.
This parameter acts as the prior probability of any point being a mutation point, i.e. it
governs the smoothness of this dimension. This approach is an important step, but it does
not explicitly include dimensionality reduction.

As it turned out, this is relatively straightforward to implement in a Bayesian model. I
will formulate such a model in the following sections.

2.2 Conceptual description

Conceptually, the proposed model is similar to the model of J. C. Lee, Lovibond, Hayes,
and Navarro (2019) in that it omits deterministic consequential regions and instead assumes
that agents learn an associative map. But in contrast to J. C. Lee, Lovibond, Hayes, and
Navarro (2019), I impose more structure on the associative map. This comes at a cost of
flexibility, but it allows for a straightforward implementation of dimensionality reduction.

The basic idea is that agents have a belief state about the midpoint and the decay of the
associate map, i.e. where in psychological space the map is centered and how quickly prob-
abilities decrease with distance to the midpoint. In addition, they learn about the outcome
probability at the midpoint. The shape of the associative map needs to be defined a priori.
Empirical results suggest either a Gaussian or exponential shape (Ghirlanda & Enquist,
2003). In line with Shepard (1987), I chose an exponential shape, although arbitrary shapes
are possible (Tenenbaum & Griffiths, 2001a). Extensions of the model should implement a
distribution over different shapes for a more general model. An example for an exponential
associative map is shown in Figure 2.1.

Any set of values for the parameters of the associative map defines a probability of an
outcome for each stimulus. This probability is part of the likelihood and is being used
to update the aforementioned belief state about the parameters according to Bayes’ rule.
An important feature is that different values for the decay on different dimensions are
mathematically equivalent to a rescaling of dimensions. This point becomes clearer in
section 2.3. For extremely low values for the decay along a dimension, all points along that
dimension are treated equally, as shown in Figure 2.2. This is how the model implements full
dimensionality reduction. In addition it allows for partial reduction by scaling dimensions
differently.
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Figure 2.1: An example for an associative map in two-dimensional space. The outcome
probabilities are given by the color. Probabilities decrease exponentially with distance to the mid-
point. The strength of this decrease is given by the decay parameter.

Integral vs. separable dimensions. A noteworthy consideration in the context of this
model is the integrality vs. separability of dimensions that has important implications on
the shape of generalization (Soto & Wasserman, 2010). Integral dimensions are those that
are not separable by perception. For example, the color of an object is integral, because it is
not possible to distinguish the effects of hue and saturation. Separability is the opposite, i.e.
dimensions that can be perceptually separated, like the size and color of an object. Those
two types of dimensions lead to a different metric in psychological space. In theory, the
appropriate distance between objects should be the Euclidean distance for integral dimen-
sions and the cityblock (or Manhattan) distance for separable dimensions (Shepard, 1987).
Both types of distances are special cases of the so-called Minkowski metric. Alternatively,
the Minkowski metric is a generalization of both the cityblock and the Euclidean distance
and is defined as

d(x, y) =
(

n∑
i=1

|xi − yi|p
)1/p

(2.1)

where x and y are two points in n-dimensional space and p is the exponent. For p = 1,
the Minkowski metric is equal to the cityblock distance, the Euclidean distance is defined
as p = 2. This generalization allows for metrics that are neither nor, but somewhere in
between for values of 1 < p < 2. Soto and Wasserman (2010) showed in pigeons that p was
closer to 1 for integral and closer to 2 for separable dimensions, but the best-fitting values
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Figure 2.2: An example for dimensionality reduction. As the decay along one dimensions
approaches 0, all points on this dimension have the same outcome probability. While this is visualized
in a two-dimensional space, effectively both dimensions are reduced to one.

where somewhere in between.
Importantly, since integral dimensions are not distinguishable by definition, the concept

of dimensionality reduction only makes sense in the context of separable dimensions. For
this reason, I am only concerned with separable dimensions and accordingly use cityblock
distance in the next section. The model is still generalizable to integral dimensions, if one
assumes a single decay parameter and replaces the cityblock with the Euclidean distance.

2.3 Mathematical formulation

Following Shepard (1987), I consider stimuli to be arranged in a psychological space. An
associative map in this space is defined by the midpoint µ, the decay λ and the outcome
probability at the midpoint ρ. In a one-dimensional space, µ and λ are scalars, in higher
dimensional spaces they are vectors. The probability parameter ρ is always a scalar. For
any given stimulus s, the outcome probability depends on the weighted cityblock distance1

δs to the midpoint µ
1Intuitively, the cityblock or Manhattan distance is the sum of the absolute differences along all dimen-

sions.
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δs =
d∑
i=1

λi|si − µi|, (2.2)

where d is the dimensionality of the psychological space. Note, that a change in λi has the
exact same effect as rescaling the ith dimension. A value of 0 is equivalent to complete
dimensionality reduction, while smaller values for one than the other dimension indicate
partial dimensionality reduction. This way, dimensionality reduction is naturally included
in the model while the fully Bayesian approach gives a rational interpretation and omits the
distinction between learning on and learning about dimension since the model learns about
both using the same likelihood function and rational update rule.

Accounting for perception. Assuming perfect perception, given Equation 2.2 the prob-
ability of observing an outcome r for stimulus s would then just be the exponential function
of the negative weighted distance −δs multiplied by the outcome probability ρ:

p(r = 1|s) = ρe−δs . (2.3)

In reality, perception is not perfect and previous studies have established an important role
for the accuracy of perception in generalization (Laufer & Paz, 2012; Laufer et al., 2016;
Schechtman et al., 2010). It is therefore necessary to model the perceptual noise. Assuming
Gaussian noise and a set of N stimuli, we can define a perceptual confusion matrix A, that
depends on the standard deviation of perceptual noise σ. In this matrix, the element Ai,j

is the probability of perceiving stimulus sj when the true stimulus is si:

Ai,j = N (si|sj , σ2I)2 (2.4)

Because this approach is a discretization of the continuous psychological space, we need to
normalize the rows, so that they sum to 1. Using the confusion matrix, we can derive the
noise-accounted weighted distance δnoise from a vector δ of noise-free distances:

δnoise = Aδ (2.5)

And finally, the exponential function of the negative vector multiplied with ρ gives the
conditional outcome probabilities for all stimuli:

p(r = 1|s) = ρe−δnoise
s (2.6)

p(r = 0|s) = 1 − ρe−δnoise
s . (2.7)

Learning the belief state. So far we have treated µ, λ and ρ as fixed, but because those
are the parameters over which agents update their belief, they are variables. To account for

2The symbol I refers to the identity matrix. A scaled identity matrix as covariance matrix implies that
perceptual noise is uncorrelated between dimensions and has the same variance along them.
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the uncertainty about those variables, we need to condition on them:

p(r = 1|s,µ,λ, ρ) = ρe−δnoise
s (2.8)

p(r = 0|s,µ,λ, ρ) = 1 − ρe−δnoise
s . (2.9)

Integrating both possible outcomes into a single equation yields

p(r|s,θ) = (ρe−δnoise
s )r(1 − ρe−δnoise

s )1−r (2.10)

where I summarize µ, λ and ρ in the vector θ for readability. This is not yet the general
likelihood function, because the likelihood depends on the stimulus and the outcome. In
other words, we need to account for the sampling assumption, i.e. how the stimulus was
generated. This implies that the likelihood function is a joint probability of stimulus and
outcome p(s, r), that can be factored into the sampling assumption and the conditional
probability of an outcome according to the laws of probability (Blitzstein & Hwang, 2015):

p(s, r) = p(s)p(r|s). (2.11)

The sampling assumption p(s) is a probability distribution over the stimuli and depends
on the context. Since the data I collected is best explained by weak sampling3, p(s) is
constant and thus p(s, r) ∝ p(r|s), but other choice for p(s) are possible and allow for a
broad application of the model to different contexts. For weak sampling, Equation 2.10 is
the likelihood, but a more general equation would be

p(s, r|θ) = (ρe−δnoise
s )r(1 − ρe−δnoise

s )1−rp(s), (2.12)

because it accounts for different sampling assumptions, that can be included by plugging in
an appropriate choice for p(s).

The second crucial ingredient for the model is the prior on the parameters θ:

p(θ) = p(µ)p(λ)p(ρ). (2.13)

This prior strongly depends on the psychological space, the relevance of dimensions and the
context and is shaped by evolutionary processes and lifetime experiences. For example, there
seems to be some prior knowledge about threatening stimuli that is independent of having
had dangerous encounters with them (Öhman, 2009; Öhman & Dimberg, 1978; Öhman et
al., 2001). Likewise, some stimulus dimensions seem to be more relevant than others with
respect to certain outcomes. For instance, emotional expressions have a social signaling
function and do not need to be learned (Ekman & Oster, 1979). This consideration in the
context of a Bayesian model gives a rational explanation for the results of Dunsmoor et al.
(2009) and Dunsmoor et al. (2011).

Given the prior and the likelihood, the model is fully specified using Bayes’ rule. Because
3To review different sampling assumptions, see subsection 1.2.2 or Navarro et al. (2012).
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there is no constraints on the number of observations, the observed stimuli and outcomes
are summarized in the vectors s and r. The posterior distribution over the parameters is
given by

p(θ|s, r) = p(s, r|θ)p(θ)
p(s, r) (2.14)

∝ p(s, r|θ)p(θ). (2.15)

From belief state to generalization. The actual generalization given a belief state p(θ)
or p(θ|r, s) depends on the prior (Equation 1.6) or posterior predictive (Equation 1.7) dis-
tribution. In the context of this model, the agent can infer the probability of an observation
of a new stimulus and outcome s̃ and r̃ by integrating the conditional probability p(s̃, r̃|θ)
over the prior or posterior distribution:

p(r̃, s̃) =
∫
p(r̃, s̃|θ)p(θ)dθ (2.16)

p(r̃, s̃|s, r) =
∫
p(r̃, s̃|θ)p(θ|s, r)dθ. (2.17)

Typically, instead of judging the probability of a stimulus and and an outcome, agents
need to estimate the conditional probability that an outcome follows a stimulus. This is
also the case in typical experiments, in which ratings or psychophysiological measures are
collected as a reaction to a stimulus. Assuming that an agent already experienced stimuli
s and outcomes r, this probability is given by p(r̃|s̃, s, r). Following Equation 2.16 and
Equation 2.17, it is easy to see4 that the conditional posterior predictive probability of an
outcome can be computed by integrating p(r̃|s̃,θ) over the posterior5:

p(r̃|s̃, s, r) =
∫
p(r̃|s̃,θ)p(θ|s, r)dθ. (2.18)

Generating predictions. Because the posterior of this model (Equation 2.14) is in-
tractable, there is no closed form solution. Instead, to generate predictions, the model is
approximated by sampling from the posterior using Markov chain Monte Carlo (MCMC).
Using this approach, we can generate samples S(θ) from the posterior distribution:

S(θ) ∼ p(θ|s, r). (2.19)

Importantly, since the samples are distributed according to the posterior, we can compute
approximate posterior expectations by averaging over the samples:

4The only situation in which these wordings do not suck is when you’re the author. The proof for this is
left as an exercise to the reader.

5Fun fact: This principle is called The Law of the Unconscious Statistician (Blitzstein & Hwang, 2015).
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E[f(θ)] =
∫
f(θ)p(θ|s, r)dθ

≈ 1
N

N∑
i=1

f(Si(θ)).
(2.20)

Having implemented the model in a probabilistic programming language like Stan (Car-
penter et al., 2017), we first need to specify the prior distributions on the parameters in
order to generate samples. Because those priors are supposed to reflect assumptions about
the belief state of the agent, this is extremely context-dependent and I can give no general
way to do this. Specifying the priors is already enough to generate prior predictions, i.e.
to predict a generalization gradient before conditioning. However, to generate posterior
predictions, we need to specify the observations s and r. Since the model only considers
the distinction between outcome and no outcome, r is a binary vector. The observations
s can be given as the coordinates of the stimuli in psychological space. Alternatively, one
could give a vector of integers that specify the index and another object that contains the
positions. Predictions for the reaction to a stimulus s̃ given a belief state p(θ|s, r) can be
generated from the posterior samples S(θ) following Equation 2.20:

p(r̃|s̃, s, r) ≈ 1
N

N∑
i=1

p(r̃|s̃, Si(θ)). (2.21)

Model fitting. If we wanted to explain generalization data from subjects using the model,
i.e. fit the model to data, the property that we would try to characterize are the priors p(θ).
In particular, those priors have parameters that define the prior belief state. Those are the
so-called hyperpriors τ . A consideration of hyperpriors introduces new dependencies to the
posterior distribution (Equation 2.14)

p(θ|s, r, τ ) ∝ p(s, r|θ)p(θ|τ ) (2.22)

and the conditional posterior predictive distribution (Equation 2.18)

p(r̃|s̃, s, r, τ ) =
∫
p(r̃|s̃,θ)p(θ|s, r, τ )dθ, (2.23)

since different hyperpriors lead to different posteriors.
The data that we would use to fit values of τ are the generalization gradients, i.e. either

expectation ratings or psychophysiological signals, that I will call z. As a consequence,
we would need to define the likelihood p(z|s, r, τ ) of data given the hyperpriors and the
experienced stimuli and outcomes. Unfortunately, subjects do not respond perfectly and the
measurements likely do not live on the same scale as the posterior predictive probabilities6.
It follows that we need some mapping from p(r̃i|s̃i, s, r, τ ) to zi. A simple solution to this
would be a linear mapping assuming Gaussian errors

6Probabilities are naturally constrained to the range {0, 1}. Psychophysiological measurements are not.
Ratings could be translated to this range, but depending on the resolution of the rating scale, this is only a
rough approximation and still does not solve the problem of noisy responses.
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zi = β0 + β1p(r̃i|s̃i, s, r, τ ) + ϵ

ϵ ∼ N (0, σ),
(2.24)

which would yield the likelihood

p(zi|s̃i, s, r, τ ) ∼ N (zi|β0 + β1p(r̃i|s̃i, s, r, τ ), σ). (2.25)

This likelihood could be used to fit the model either using maximum likelihood estimation,
Bayesian inference or a grid search. The practical problem with that is that this likelihood
depends on the posterior p(θ|s, r, τ ), which is intractable and itself depends on τ . Therefore,
we would need to resample from the posterior for every different value of τ that we are
attempting in order to find the best-fitting value. Considering the cost of sampling from the
posterior once and the number of iterations that are typically needed to generate a stable
estimation of τ , this would be prohibitively expensive.

Crucially, this does not make the model useless. In fact, it is a common approach in
research on inductive reasoning (J. C. Lee, Lovibond, Hayes, & Navarro, 2019; Soto et al.,
2014) and outside (e.g. Behrens et al., 2007) to use intractable models to make predictions
and derive specific hypotheses from them. Fitting simpler models, performing statistical
tests or visually comparing empirical data to predictions can then be used to test the
validity of the model.
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3 An improved method for the estimation
of perceptual spaces

3.1 Measuring psychological spaces

As outlined in chapter 1, there is an intricate link between psychological spaces and cogni-
tive models of generalization, as virtually all theoretical approaches in inductive reasoning
since Shepard (1987) make use of the concept of consequential regions in psychological
space. The model I proposed in chapter 2 is no exception. The need to account for in-
dividual and group-level psychological spaces implies that a means to accurately measure
these spaces is of crucial importance. Among the proposed solutions to this problem, two
seem especially noteworthy: Multidimensional scaling (MDS) and maximum likelihood dif-
ference scaling (MLDS). In the following I will give a short description of both along with
their corresponding problems. Due to those problems, I was not fully content with apply-
ing these methods to my empirical studies. For this reason, I developed a novel method
based on MLDS. In this chapter I will describe this method and how it circumvents the
aforementioned problems.

3.1.1 Multidimensional Scaling

MDS describes a set of mathematical techniques that are used to perform dimensionality
reduction on high-dimensional data (Kruskal & Wish, 1978). The general idea of all these
methods is to find an embedding of high-dimensional data points p in a low-dimensional
space where the dimensionality has to be defined by the researchers a priori. All methods
take a dissimilarity matrix D as an input, in which the element Di,j is defined as some
distance measure (e.g. euclidean distance) between data points pi and pj . The optimal
embedding is defined as the one that minimizes the deviation between the original dissimi-
larities and some function of the distances in the low-dimensional space.

Non-metric multidimensional scaling (NMDS), as implemented in techniques proposed
by Shepard (1962) and Kruskal (1964) is especially relevant in the field of generalization.
Shepard (1987) proposed it as a method to derive a psychological space from generalization
data and therefore inverted the usual approach to look at generalization gradients in some
predefined physical space. This approach is constrained to a special kind of data, namely
the probability of showing a learned behavior towards a novel stimulus. Because the data
I collected and analyzed does not adhere to this format (see chapter 4), this approach was
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not applicable to the presented studies. Aside from that, it suffers from a few drawbacks
like the dependence on starting values in optimization-based methods (Borg & Mair, 2017)
and the lack of an accepted method of arriving at a group level solution (M. D. Lee & Pope,
2003). In addition, explicit dissimilarity ratings, as would be the input to MDS, suffer from
potential problems like individual judgment strategies (Schönemann & Lazarte, 1987) that
are independent of the true psychological space. This effect could be especially bad for
multi-dimensional stimuli where the dimensions differ in salience and valence.

3.1.2 Maximum Likelihood Difference Scaling

Originally, maximum likelihood difference scaling (MLDS) is a method to fit psychometric
functions for sub-threshold perceptual differences along a single dimension (Maloney &
Yang, 2003). As such it can’t be used to estimate higher-dimensional psychological spaces.
However, MLDS is an interesting starting point as the kind of data being used is less likely
to be influenced by rating tendencies since no explicit dissimilarity ratings are required.
Instead, MLDS uses indirect measures of stimulus dissimilarities as input. This data is
typically collected using two alternative forced choice (2-AFC) tasks in which subjects are
presented with two pairs of stimuli and have to rate the relative dissimilarity of the two pairs.
Assuming Gaussian perceptual noise and imposing some constraints to identify the model,
this problem can be formalized as a probabilistic model in which the likelihood of responses
depends on a one-dimensional embedding of stimuli1 ψ and the variance of perceptual noise
σ, which are the free parameters of the model. The optimal solution is found via maximum
likelihood estimation, i.e. it is defined as the parameter values for which the likelihood of
the responses is maximal. Computationally, this is achieved by minimizing the negative log
likelihood via a gradient-based optimization approach.

Mathematical formulation. The likelihood function for the original MLDS is
p(r|ψ, σ, s), where r is the set of responses of a subject and s is the sequence of quadruplets.
This can be computed in a few simple steps. Initially, the dissimilarity li,j between the
two stimuli i and j in a pair can directly be computed from ψ as the absolute value of the
difference between their positions in space:

li,j = |ψi − ψj |. (3.1)

From the dissimilarities in the first pair, consisting of stimuli i and j, and the second pair,
consisting of k and l, we can compute the relative dissimilarity Di,j,k,l, i.e. the difference
between the dissimilarities:

Di,j;k,l = li,j − lk,l (3.2)

Note that this is not the absolute value since the sign of D indicates which pair is more
similar. Assuming Gaussian perceptual noise, the likelihood of choosing the second pair
to be more similar for the response of a single quadruplet q, corresponds to the standard

1I.e. positions of stimuli in one-dimensional space.
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normal cumulative density function (CDF)2 at D, after normalizing it using the standard
deviation of perceptual noise σ:

p(rq = 1|ψ, σ, sq) = Φ
(
Dq

σ

)
. (3.3)

Intuitively this means that subjects are more likely to choose the more similar pair and the
probability of choosing the more similar pair increases with the magnitude of the difference
and decreases with the variance of perceptual noise. The likelihood of a set of responses r
is the product of the individual likelihoods:

p(r) =
∏
q∈s

rq. (3.4)

Note that this model is not identified so far as there are N+1 free parameters for N stimuli.
For a simple example of model identification, consider the following equation:

x+ y = 0.

This equation has two free parameters, x and y, i.e. there are N equations and N + 1
parameters. As a consequence, there are infinitely many solutions to this equation. In
the context of MLDS, this means that the solution is invariant to translation, scaling and
reflection. Intuitively, there are an infinite number of solutions that have the same likelihood
and an algorithm to find an optimal solution does not have a principled way to decide
between them. Since the purpose is to fit a monotonic psychometric function, Maloney
and Yang (2003) solved this problem by setting ψ1 and ψN , the endpoints of the stimulus
dimension to 0 and 1 respectively, which yields an identified model with N − 1 parameters.
In theory, ψ could be fixed for any two stimuli to identify the model.

Generalization to higher-dimensional spaces. While a generalization to higher di-
mensions is not necessary for the original application of MLDS, the likelihood function
(Equation 3.3) can be used to estimate higher-dimensional spaces with a few modifications.
This was done by Onat and Büchel (2015). First, the stimulus positions ψ are vectors,
not scalars. As a consequence, the absolute value in Equation 3.1 gets replaced with the
euclidean distance between the vectors

li,j = ||ψi −ψj || (3.5)

which does not change the one-dimensional case, but generalizes to an arbitrary number
of dimensions. Second, an additional constraint is needed to identify the model as an
additional invariance to rotation is present in e.g. the two-dimensional case. All invariances
are displayed in Figure 3.1, using the stimulus space from Onat and Büchel (2015) as an
example. To identify these models, one additional stimulus position per dimension needs to

2Indicated by Φ(x).
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Figure 3.1: Invariances of a two-dimensional MLDS model. This figure uses the stimulus
space from Onat and Büchel (2015) as an example. All depicted solutions yield the same likelihood,
assuming the standard deviation of perceptual noise is adjusted for the scaled version.

be constrained. E.g. in two dimensions, this can be achieved by constraining one stimulus
to lie on either side of the line that is defined by the two fixed stimulus dimensions. The
necessary constraints are depicted in Figure 3.2. Note that Onat and Büchel (2015) only
fixed one stimulus position, which does not constitute an identified model. Using maximum
likelihood estimation, this approach can still yield a reasonable estimate, as the optimization
algorithm will likely find the closest of infinite equivalent local minima. However, a Bayesian
approach that relies on sampling from a full probability distribution requires a fully identified
model.

3.2 Hierarchical Mean Posterior Difference Scaling

Even though generalized MLDS uses indirect dissimilarity ratings and thus solves one main
problem of MDS, some concerns remain: a) There is no way to quantify the uncertainty in
the estimate of positions, b) to arrive at a group solution, one needs to average estimates
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Figure 3.2: Constraints to identify a two-dimensional MLDS model. In order to account
for all invariances, three stimulus conditions need to be constrained. One option, that is shown here
is to fix two stimulus positions (left side) and constrain one additional position to be on a specific
side of the line defined by the two fixed positions (right side).

which gives the same weight to subjects that rated randomly as to those that rated con-
scientiously, c) there is no way to incorporate the assumption that psychological spaces are
correlated between subjects and d) prior knowledge about the psychological spaces. All of
these problems can be solved by formulating MLDS as a hierarchical Bayesian model (Gel-
man, 2014) while keeping the MLDS likelihood function (Equation 3.3). I call this approach
hierarchical mean posterior difference scaling (hMPDS).

Hierarchical parameter structure. In order to find a hierarchical Bayesian model spec-
ification for MLDS, I assumed individual stimulus positions ψsubject to be normally dis-
tributed around a group level stimulus position ψgroup with some unknown variance σ2

ψ. For
the x-position of stimulus i, this relationship is given by

ψsubjects,x,i ∼ N (ψgroup,x,i, σ2
ψ). (3.6)

Individual perceptual noise variances were estimated on the log scale to avoid sampling
problems that arise from the positivity constraint3. Individual log perceptual noise variances
σsubject were assumed to be normally distributed around a group level log variance with an
unknown between-subject variance σ2

σ and exponentiated to arrive back at the linear scale:

log(σsubjects) ∼ N (log(σgroup), σ2
σ). (3.7a)

σsubject = elog(σsubject) (3.7b)
3Variance as the expected squared distance to the mean can only be non-negative.
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Note that while a single group mean is estimated for each stimulus and dimension separately,
the between-subject variance is kept constant since estimating one variance parameter per
stimulus and dimension leads to identifiability issues. The interpretation for a single vari-
ance parameter is the general deviation of individual psychological spaces from the group
mean. Intuitively, Equation 3.6 says that psychological spaces are likely to be similar be-
tween subjects, i.e. the same stimuli tend to be perceived as more similar. In contrast to
the optimization based generalized MLDS, the aforementioned constraints (Figure 3.2) are
essential as only a fully indentified Bayesian models can be estimated using MCMC4. How-
ever, in practice it turned out to be sufficient to apply these constraints to the group level
and leave subject level parameters unconstrained, although this is likely to be depending on
the amount and precision of the available data.

Weakly informative priors. Since the group level parameters act as prior distributions
on the single subject parameters, we only need to specify priors on group level parameters5.
While the model might be identified with uninformative priors (depending on the amount of
data), the Bayesian approach enables us to incorporate prior knowledge about the stimulus
space into the analysis to allow for a more accurate posterior estimate. I outlined the
reasoning for the priors I used in my research in subsection 4.2.3, however there are a number
of valid approaches to arrive at (weakly) informative priors. These can e.g. be informed by
the stimulus creation process, pixel- or neural model-based estimates of similarity or results
from previous studies.

Model fitting and inference. Given Equations 3.3– 3.7, the posterior of the model is
fully specified. As for most somewhat complex Bayesian models, there is no closed-form
solution to the equations, but it can be estimated using MCMC, Variational Bayes (VB)
or a maximum a posteriori (MAP) estimate (Gelman, 2014). The specific approach I used
to fit Bayesian models is described in subsection 4.1.2. To arrive at a group and individual
solutions, I used the posterior mean of the group level and the subject level parameters,
respectively.

4A model that is not fully identified has a multimodal posterior distribution with an infinite number of
equivalent modes, which makes it impossible to sample from in practice.

5So-called hyperpriors.
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4 Empirical studies

The empirical part of this thesis consists of three separate studies. These were conducted
to test the predictions of the Bayesian model1, namely if the ratings of subjects followed a
model that includes dimensionality reduction and assumptions about the prior knowledge
and thereby integrates cognitive Bayesian models with representation learning. The first
study was purely behavioral and aimed at establishing the behavioral effects. The second
study repeated the design of the first study in the fMRI scanner to replicate the behavioral
findings of the first study and gain insight about their neural underpinnings. In particular,
I was interested if the dimensionality aspect in stimulus generalization followed predictions
from representation learning (see section 1.3) and in the neural correlates of prior knowledge.
In the third study I modified the design from aversive to appetitive conditioning in order to
broaden the scope of the established mechanisms from fear generalization to a more general
account of generalization.

4.1 General methods

Even though the studies differed in the setup and designs, some aspects stayed constant
throughout all of them. The relevant methods for these aspects are described in this section.

4.1.1 Stimulus Space

The stimulus space for all studies consisted of two-dimensional grids of computer generated
faces. These faces differed on the two dimensions facial identity and emotion. For each
dimension five warping steps were created by morphing two baseline identities into each
other with differing relative contributions and by using different amounts of emotional facial
expression. Because I compared two different emotional expressions, angry and happy, this
approach resulted in two separate 5x5 stimulus spaces (Figure 4.1).

Stimulus creation. Stimuli were created using the software FaceGen Modeller (Singular
Inversion, VA). In a first step I created two distinct facial identities. Next, these two
identities were morphed in 5 steps. The endpoints of this dimension were defined by the
unaltered original identities. The three combined faces were created by combining the
two identities with differing contributions of both faces (25%/75%, 50%/50%, 75%/25% of
the first vs. second identity). In the last step, I added 5 different amounts of emotional

1For a detailed description, see chapter 2.
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Figure 4.1: Stimulus spaces for all three studies. Stimulus spaces consisted of 5x5 grids of
computer generated faces. Faces differed on two dimensions in five steps each: Facial identity and
either a) angry or b) happy emotional expressions.
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expression (0-100% in steps of 25%), which resulted in the 5x5 grids that are displayed in
Figure 4.1.

4.1.2 Bayesian model fitting

All Bayesian models were programmed in the Stan probabilistic programming language
(Carpenter et al., 2017) as hierarchical models. Stan uses a MCMC approach called Hamil-
tonian Monte Carlo (HMC, Betancourt, 2018) to sample from the posterior distribution of
the model parameters. Because sampling algorithms like HMC tend to suffer from the cur-
vature that is typical for posteriors of hierarchical models (Betancourt & Girolami, 2013),
which results in convergence issues, all hierarchical parameters can be specified in a non-
centered manner (Betancourt, 2018). This approach is mathematically equivalent to the
centered one, but computationally more convenient as it avoids local correlations in the
posterior. All models were run using 4 chains with 2000 iterations each. Because HMC
needs to find the so-called typical set first before the sampler has found the stationary dis-
tribution and sample expectations match the expectations of the distribution, the first 1000
iterations per chain were treated as warm-up and discarded. As a consequence, posterior
expectations were computed using 4000 samples in total, unless more samples were needed
for convergence diagnostics.

Convergence criteria. The convergence of the MCMC chains was assessed using the R̂
statistic (Gelman, 2014; Vehtari et al., 2021), a quantity that measures whether different
chains and different parts of the same chains have sampled from the same distribution.
Successful convergence can be assumed for values of R̂ that are close to one. Following
recommendations of Gelman (2014), I used the criterion R̂ < 1.1. In cases where this
criterion could not be satisfied with the aforementioned 4000 iterations, I increased the
sample size by 1000 iterations per chain until convergence could be assumed. Additional
criteria that were used to assess potential problems with the sampling procedure were the
effective sample size (a measure of strong autocorrelation that can indicate local problems)
and the number of divergent transitions. Divergent transitions are a specific problem to
gradient-based MCMC samplers and indicate that the sampler is unable to sample from
a specific part of the posterior, typically indicated by Neal’s funnel (Betancourt, 2018),
because the step size is too small to keep track of the gradient-based trajectory of the
sampler particle2. The risk of divergent transitions is minimized by using a non-centered
parameterization, but with complicated models and relatively small amounts of data they
can still occur. In cases where I encountered divergent transitions, I decreased the step
size for the sampler until no divergences were observed3. In small number of cases this

2HMC follows a trajectory in the posterior space by simulating a Hamiltonian system. The step size is
the resolution by which this trajectory is approximated and the correct step size depends on the curvature
of the posterior distribution. If the curvature is very different between different locations, the step size is
likely too large to sample from regions with high curvature. For a more detailed explanation, refer to the
very good conceptual introduction by Betancourt (2018).

3This approach is detrimental to efficiency because it needs more computations of the posterior, but it
avoids divergent transitions.
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was insufficient to avoid divergent transitions. For these cases the validity of the results is
questionable and I have indicated those cases in the respective sections.

Posterior expectations. To use posterior samples for further use in the analysis in other
models or to compute parametric modulators for model-based fMRI analysis, I computed
posterior expectations for parameters and implied quantities (e.g. predicted shock expec-
tation ratings). Posterior expectations are computed from samples by averaging over the
respective values:

E[θ] = 1
N

N∑
n=1

Sn(θ). (4.1)

4.1.3 Model comparison

In some cases I fit multiple models to the same data. To compare these models with
respect to how well they explain the data while accounting for model complexity, I used
leave-one-out crossvalidation (LOO-CV). This approach fits a model to all but one data
points and evaluates how well the model can predict the left-out data point. Typically,
this means one has to fit the model once per data point. In the case of MCMC sampling,
this is often prohibitively expensive. To circumvent this problem, one can use importance
sampling to approximate posteriors that do not depend on a specific data point one at a time.
This approach is called Pareto smoothed importance sampling leave-one-out crossvalidation
(PSIS-LOO) and was proposed by Vehtari et al. (2017) and refined by Vehtari et al. (2019).
The PSIS-LOO approximation depends on the expected log predictive density (ELPD), i.e.
the average log posterior predictive density of left out data points. While the approach
by Vehtari et al. (2019) is very efficient because it only requires a single sampling run if
everything goes smoothly, it is not robust with respect to very informative data points.
These can be filtered out by observing the shape parameter of the Pareto distribution that
is used to approximate the importance weights for PSIS-LOO, but unfortunately the model
needs to be rerun manually for each very informative data point.

Silva and Zanella (2022) proposed an alternative method that requires an additional
sampling run in which one samples from an auxiliary distribution. This is more compu-
tationally expensive than the method by Vehtari et al. (2019) is in the optimal case. But
because it is robust with respect to informative data points, it is more efficient in practice as
it always requires just two sampling runs in total. I used this implementation in all model
comparisons.

Note that in contrast to classical information criteria like Akaike information criterion
(AIC) or Bayesian information criterion (BIC), LOO-CV does not require explicit penaliza-
tion for model complexity4. This is because LOO-CV is based on out-of-sample predictions,
which implicitly penalizes overfitting. In addition, adding parameters to a Bayesian model

4Usually model complexity is approximated by the number of parameters of a model. This is problematic
for Bayesian models because it does not account for the impact of narrow vs. wide priors. A model with
narrow priors is more rigid despite the same number of parameters.
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distributes the prior (and thus posterior) probability mass over a higher-dimensional pa-
rameter space, which reduces the ELPD and naturally penalizes model complexity.

4.2 Behavioral mechanisms of fear generalization

In the first study I intended to establish whether the proposed model can explain general-
ization behavior, i.e. whether the collected data was in line with the predicted behavioral
effects (see subsection 4.2.2). Importantly, the model makes specific predictions for the im-
pact of prior knowledge, the relative relevance of different stimulus dimensions and about
the dynamics of these effects. An appropriate task design needs to be set up in a way that
allows to probe all of these predictions.

4.2.1 Experimental design

The typical design in stimulus generalization experiments consists of three phases. A baseline
phase, in which all stimuli, i.e. the CS+, the CS- and the generalization stimuli, are shown
to collect baseline data. Following that, a conditioning phase, in which only two stimuli
are shown to the subject and one of the stimuli (the CS+) is reinforced probabilistically
while the other stimulus (the CS-) is never followed by an outcome. Finally, a generalization
phase, in which the subject is presented with all stimuli again and generalization data is
recorded.

This approach implicitly assumes that learning is constrained to the conditioning phase
and that one can record a stable response in the generalization phase. For this purpose,
often the CS+ is reinforced a few times to prevent extinction learning. However, one aspect
that cannot be investigated with this design are the dynamics of learning. This is especially
problematic because Bayesian models make specific predictions about those dynamics and
an investigation can help to differentiate between data that is consistent with a perceptual
model of generalization and data that is not. In addition, given the importance of perception
in generalization, it is important to account for individual psychological spaces of subjects
and possible changes thereof.

Top level structure of the design. To account for psychological spaces, the study
started with a perceptual task5. The data from this task was used to estimate the sub-
jects’ psychological space using hMPDS6. Following this, subjects went through the as-
sociative generalization phase. To investigate the dynamics of learning, I did not follow
the typical generalization design, but adopted another approach by Onat (2018). This
approach omits the distinction between the three phases and replaces them with so-called
microblocks, thereby combining conditioning and generalization phases. This allows to inves-
tigate changes to the belief state during learning by intermittently measuring the subject’s
response or concurrently collecting psychophysiological recordings. I used a painful electric

5Described in detail below.
6See chapter 3.
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shock as UCS, which is following the typical procedure in fear generalization (Webler et al.,
2021). To reduce between-subject variance, I employed a within-subject design, i.e. the
same subjects came on two separate days to take part in the angry and happy condition.
This top level structure is depicted in Figure 4.2.

Figure 4.2: Top level structure of the experimental design. Subjects went through a
perceptual task to estimate their psychological space. This was followed by the actual generalization
task, which consists of conditioning in microblocks (Onat, 2018) with shock expectation ratings in
between. Lastly, subjects repeated the perceptual task to control for changes in perceptual spaces.

Perceptual task. Because the concept of psychological spaces is crucial to some of the
considered models of generalization, I made sure that the actual psychological spaces of
subjects were accounted for and included in the analysis. Due to conceptual problems with
explicit dissimilarity ratings, I decided to avoid those and instead use more indirect measures
for the estimation of psychological spaces. For this purpose, subjects in all experiments
went through a so called quadruplet task. In these tasks, subjects were prompted with a
quadruplet of faces in each trial. A quadruplet consists of four faces where the upper and
lower two faces form a pair each (Figure 4.3).

Because the full stimulus space consists of 5∗5 = 25 faces, the number of possible quadru-
plets is prohibitively large to run a sufficiently large proportion of them within reasonable
time constraints. Since this makes it difficult to accurately estimate the psychological space,
I used a reduced stimulus space by only using a 3x3 subset of faces (Figure 4.4).

The task was programmed in MATLAB using Psychtoolbox3 (Kleiner et al., 2007). In each
trial, subjects had to choose the pair in which they thought the faces were more similar.
Quadruplets were shown for 6 seconds. Subjects were instructed to respond intuitively
within those 6 seconds. However, the response was self-paced and subjects could still make
their choice after the faces had vanished from the screen. This choice was made with the y

and m key on a keyboard with a German layout. The task consisted of a total of 388 trials.
This number was based on another study which used generalized MLDS with similar faces
(Onat & Büchel, 2015). The number of stimuli differed, but I used the same percentage
of possible quadruplets. To determine an informative sequence of quadruplets, I ran 2000
simulations with a hypothetical observer and random sequences and chose the sequence for
which the deviation between the assumed stimulus positions and the fitted positions was
minimal. This sequence was used for all subjects. To keep attention high and ensure good
data quality, the 388 trials were binned into four blocks of 97 trials each. Between blocks
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Figure 4.3: An exemplary quadruplet trial. The upper two and lower two faces form a pair each.
Subjects need to decide in which pair the faces are more similar to each other.

Figure 4.4: Reduced stimulus space for quadruplet task. Reduced spaces in the a) angry
and b) happy condition consisted of the outer 3x3 grid, including the center stimulus.

subjects were instructed to relax for a few moments before proceeding to the next block.
Subjects repeated this task before and after the conditioning procedure (see Figure 4.2).

51



Chapter 4: Empirical studies

The point of this approach was to control for potential changes in psychological spaces that
were induced by the learning experience of the conditioning paradigm.

Pain calibration. In the first study, I used an electric shock as the UCS. The shock
was delivered via a direct current stimulator (Digitimer Constant Current Stimulator, Dig-
itimer) and an electrode that was attached to the back of the left hand. Because pain
perception varies substantially between individuals given the same stimulus (Amir et al.,
2022), I calibrated the amplitude for each subject individually to ensure that I used a shock
amplitude that was painful, but bearable. To do so, I used a QUEST procedure (Watson
& Pelli, 1983). In this procedure, the subject receives a series of 12 shocks with amplitudes
that are suggested by the QUEST algorithm and has to rate whether the shock was painful
or not. This approach generates a pain threshold, which is defined as the amplitude that a
subjects perceives as painful in 50% of the repetitions. I set the amplitude for the UCS to
1.5 times that threshold. Before starting the experiment, subjects confirmed that the shock
amplitude was bearable and were informed that they could opt out of the experiment at
any time.

Main experiment. Subjects were informed about the procedure using written informa-
tion on the screen. Following that, they were presented with nine random faces and one
oddball trial. This was to familiarize them with the experiment and practice reacting to the
oddball face with the space bar. After that came the first rating block. Importantly, this
block was before any conditioning and allowed me to probe the prior without being con-
taminated by the learning experience. Following the rating, subjects were presented with
the faces and occasional reinforcement in pseudo-randomized microblocks (see below, Onat,
2018). After five microblocks, subjects gave another shock expectation rating for every face.
This was repeated for a total of 20 microblocks and five rating blocks.

Outcome measures. Psychophysiological recordings like electrodermal activity and
pupil dilation are notoriously noisy and have a relatively slow temporal component. For
this reason, model-based approaches to deconvolve the signal like ledalab (Benedek &
Kaernbach, 2010) or PsPM (Bach et al., 2013; Korn et al., 2017) are needed, especially in
rapid event related designs7. Unfortunately, those model-based approaches need a lot of
data to work reliably. Since I was interested in the dynamics of learning, i.e. could not
average over trials and used a lot of different stimuli, I resorted to shock expectation ratings
instead.

For the shock expectation ratings, subjects were presented with every face in random
order for 1.5 seconds and had to give a rating on a 10-point Likert scale with respect to the
question „How likely will this face be followed by a shock?“. The anchors of the scale were
„Not at all likely“ and „Very likely“.

7Rapid event related designs are designs in which trials are presented in quick succession, i.e. the time
between two trials is shorter than the duration of psychological responses.
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Figure 4.5: Schematic depiction of a microblock. a) Schematic view of the stimulus space
with the two dimensions Identity and Emotion. The center stimulus serves as the CS+ and is
probabilistically reinforced with an electric shock. b) One microblock consists of one presentation
per stimulus including the CS+ and a reinforced trial with the CS+. Not shown is the null trial and
an oddball trial that replaces the reinforced trial with the CS+ in 25% of the trials.

Microblocks for the dynamics of learning. Following Onat (2018), I used a mi-
croblock design. In every microblock, all stimuli are shown to the subject and the CS+ is
reinforced probabilistically. The center stimulus served as the CS+ in both, the happy and
angry condition (Figure 4.5a). Using concurrent psychophysiological and neural recordings
(as in Onat (2018)) or intermittent ratings between microblocks (as in my case), one can
investigate the dynamics of generalization. In my studies, every microblock consisted of
27 trials. One trial per stimulus including the CS+, which was not reinforced in this case,
one null trial in which nothing was presented and either a reinforced trial with the CS+ or
an oddball trial. Those were used to ensure ongoing attention and consisted of a blurred
face that was not recognizable. Subjects were instructed to react to this face. A schematic
depiction of a microblock is given in Figure 4.5b.

Before each trial, a fixation cross was shown in the middle of the screen for 850 ms.
The face was presented for 1.5 seconds in conjunction with a fixation cross. The fixation
cross jumped from the forehead to the mouth region and subjects were instructed to follow
it. This way I made sure that subjects perceived the full face and accounted for individual
differences in gaze patterns. In reinforced trials, the electric shock started 100 ms before
the end of the presentation. Inter-trial intervals (ITIs) were 3, 4, 5 or 6 seconds, each with
a probability of 25 % and equally distributed over trial types.

Preventing higher order learning. In order to prevent second-order learning (e.g.
which face follows which), the order of the stimuli was pseudo-randomized using a type
1, index 1 sequence (Aguirre et al., 2011; Nonyane & Theobald, 2006). These sequences
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balance second-order transitions between states. To generate such sequences, I ran the
designseqran C++ program8 for one hour. Full type 1, index 1 sequences consist of as
many microblocks as possible states, i.e. stimuli. For time constraints that I imposed in order
to keep data quality high, I used a truncated sequence of 20 microblocks. To generate this
sequence, I computed the lack of orthogonality between stimulus indicators and positions9

for all possible sub-sequences and chose the most favorable sub-sequence. Sequences for
individual subjects in all three studies were generated by keeping the indicators for null
trials, oddball trials and CS+ trials constant, while replacing the rest of the sequences with
random permutations of the remaining stimulus indicators.

Sample description. The sample of the behavioral study comprised a total of 53 sub-
jects, all of which had normal or corrected-to-normal vision and no history of neurological
or psychiatric disorders. Before starting the experiment, I informed subjects about the
experiment and obtained written consent.

Three subjects dropped out after the first day of the experiment, leaving me with 50
full data sets. Of these, 35 were female (15 male). The mean age was 25.96 with a range of
18-37. Because of scheduling conflicts, one subject each in the happy and angry condition
did not participate in the quadruplet task. Due to the hierarchical nature of the perceptual
model, I could include them in the analysis by entering their responses as missing data and
effectively replacing their parameters with the group level distribution.

4.2.2 Model predictions

Knowing the experimental design and the stimuli used, I could make predictions for the
five rating blocks by feeding the integrated Bayesian model (chapter 2) with the stimuli
and the reinforcement history. In addition I had to choose priors for the parameters of the
model that were consistent with what I believed to be the prior knowledge that subjects
brought into the experiment. The important aspect of the stimuli is that they differ on
two dimensions, but only one of them is informative with respect to an aversive outcome.
Emotional expressions have a social signaling function (Keltner & Kring, 1998). As a result,
our brains are primed to detect emotional expressions, which makes them more salient than
other stimuli (Hodsoll et al., 2011; Vuilleumier, 2005). One effect of this is that emotionally
salient stimuli are more easily conditioned than neutral stimuli (Dimberg & Öhman, 1996;
Orr & Lanzetta, 1980). Based on this, I assumed that the emotional dimension should be
more informative a priori. In the context of the Bayesian model, this should be reflected in
a prior that favors larger values for λ along the emotion dimension and smaller values on the
identity dimension. To implement this, I used Gamma10 priors with different parameters
on both dimension:

8Available at https://www.bioss.ac.uk/people/cmt/designseq.html.
9This refers to Equation 4 in Nonyane and Theobald (2006)

10I am using the Stan convention for parameterization with shape and inverse scale.
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λemotion ∼ Gamma(2, 1) (4.2)

λidentity ∼ Gamma(1, 1.5) (4.3)

Note that this is the same for angry and happy faces because in both cases the emotion
dimension was assumed to be more salient than the identity dimension. Those priors indicate
that the identity dimension is relatively irrelevant because differences on this dimension do
not change the outcome expectation by much. In addition, there is higher certainty about
λidentity than about λemotion. Accordingly, more new information is needed to overwrite this
belief state. In contrast, the prior on λemotion favors larger values, which indicates that the
emotional dimension is more informative. Both priors are shown in Figure 4.6.

Figure 4.6: Priors on λ. The prior distribution for λ is dependent on the social function
of emotional expressions and implicates that emotionality is more informative than identity with
respect to an aversive outcome. As a consequence, the prior on λemotion favors higher values than
the prior on λidentity, which corresponds to wider generalization along the identity dimension.

Another likely effect of the emotionality of faces are assumptions about the midpoint
µ, i.e. which faces are more likely to predict an aversive outcome a priori. Intuitively,
one would expect that angry faces appear more dangerous than both neutral and especially
happy faces. This is in line with the idea of preparedness (Ohman & Mineka, 2001; Seligman,
1970). However, some findings show that just like angry faces, happy faces are more easily
associated with an aversive outcome than neutral stimuli (Stussi et al., 2018, 2021). I believe
this can be explained by the salience only and does not justify the assumption that happy
faces are considered more dangerous. Expanding on that, Öhman and Dimberg (1978)
reported diminished extinction for angry, but not for neutral and happy faces and Orr and
Lanzetta (1980) reported faster aversive conditioning for angry than happy faces. Therefore,
I followed the preparedness hypotheses and assumed that the prior on µ is skewed towards
stronger emotional expression for the angry condition and towards neutral faces for the
happy condition. I did not expect the two identities to have a differential effect (i.e. none
of them appeared more dangerous a priori), so I used a uniform prior for µ on the identity
dimension:
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µangry ∼ Beta(6, 1) (4.4)

µhappy ∼ Beta(1, 6) (4.5)

µidentity ∼ Uniform(−1, 1) (4.6)

Those priors are depicted in Figure 4.711.

Figure 4.7: Priors on µ for aversive conditioning. The prior distribution for µ is dependent
on the social function of emotional expressions. a) Using angry faces, it is heavily skewed towards
more angry faces. b) In contrast, it is skewed towards more neutral faces when using happy faces.
c) Since none of the identities is more dangerous a priori, the prior for µ is uniform.

Lastly, I needed to define a prior on the outcome probability ρ. Because subjects were
informed that a face would be reinforced occasionally and because ρ is bounded between 0
and 1, I chose a Beta distribution that is skewed towards smaller values:

ρ ∼ Beta(1, 4) (4.7)

This prior is depicted in Figure 4.8.

Figure 4.8: Prior on ρ. In line with the instructions of an ooccasionally aversive outcome, the
prior is skewed towards smaller values.

Simulation. To make predictions, I simulated a Bayesian observer by implementing the
model in Stan. The priors I outlined in the previous section define a specific support for the

11Note that the priors on the emotion and identity dimension have different supports because the Beta
family of probability distributions is only defined for the range (0, 1) but the Uniform distribution I chose
has support on the interval [−1, 1]. The reasoning for this choice is given below.
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different parameters. In particular, I chose a Beta distribution for µemotion, which implies
a support on the interval (0, 1), but a Uniform distribution for µidentity with a support on
the interval [−1, 1]. Intuitively, the support of those priors is the extent of the psychological
space. The choice for different supports on both dimensions has two reasons. First, there are
natural endpoints for the emotional expression dimension as there are completely neutral
and completely emotional faces. The same is not true for identity, since faces that are
more dissimilar to either of the faces are imaginable. Second, my model as well as other
Bayesian models of inductive reasoning have an unintuitive property that was first pointed
out by Navarro et al. (2008): A uniform prior on the support of a midpoint parameter
does not imply a uniform generalization gradient, if the support is constrained to a specific
interval. This is because on average points in the middle of this interval are closer to the
midpoint of all possible consequential regions or associative maps than points at the edges,
which results in a generalization gradient that is peaked in the middle of the dimension.
This effect is incompatible with my assumptions about the information of facial identities.
Therefore, I chose a uniform prior on the identity dimension with a support that is wider
than the range of faces I considered. In particular, I considered faces with values in the
interval [−0.5, 0.5] on the identity dimension but a support of [−1, 1] for the prior. Besides
the priors, I needed to choose a standard deviation for perceptual noise. I used a value of
σ = 0.05 for all simulations. Predictions were generated by feeding the same sequence of
stimuli and outcomes into the model that were also used in the experiment. Predictions
that assumed the priors I outlined above are depicted in Figure 4.9. I inferred the following

Figure 4.9: Model predictions for partial dimensionality reduction. Predicted shock
expectation ratings for the five ratings in the a) angry and b) happy condition. These predictions
assume two effects of prior knowledge, the first one being that the emotion dimension is considered
more informative a priori, which is visible in a) and b). a) The midpoint of the associative map on
the emotion dimension µangry is shifted towards more angry faces and b) µhappy is shifted towards
more neutral faces.
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hypotheses from these predictions:

1. Ratings are initially primarily driven by the amount of emotional expression. Ratings
should be higher for angry than neutral faces and lower for happy than neutral faces.

2. This effect should decrease with increasing experience as new information is integrated.
3. (a) With ongoing conditioning, the proximity to the CS+ should become more rele-

vant.
(b) This effect should be stronger along the emotion than the identity dimension.
(c) The width of the proximity-based gradient should decrease with increasing expe-

rience and thus increased certainty.
4. The extent of belief updating should become slower from rating to rating.

Finally, another possible implementation of dimensionality reduction is a complete one,
where the identity dimension is completely ignored. This is equivalent to the assumption of
a one-dimensional space in which faces only differ on the amount of emotional expression.
I implemented such a model by removing the parameters µidentity and λidentity from the
model and only considering information about the emotional expression, not the identity of
faces. The predictions of this model are depicted in Figure 4.10.

Figure 4.10: Model predictions for full dimensionality reduction. Another possible pre-
diction for the ratings is that the identity dimension is completely ignored, which results in full
dimensionality reduction.

4.2.3 Computational modeling

Both the fitting of perceptual spaces and shock expectation ratings rely on hierarchical
Bayesian models. Perceptual spaces were fitted using hMPDS while behavioral data was
fitted using heuristic approximations to the Bayesian model. These are outlined in the
following paragraphs.
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Perceptual spaces. The data from the quadruplet task was fit using hMPDS to gener-
ate both single subjects psychological spaces and a group level estimate that accounted for
differences in estimation certainty between subjects. To identify the model I imposed the
necessary constraints12 by fixing the positions of two faces, for which I chose the minimum
and maximum emotional expression versions of the morphed identity (first and last row of
the middle column in Figure 4.4) and defined the positions to be {0.5, 0} and {0.5, 1} re-
spectively. In addition I constrained the position on the identity dimension for the medium
emotional expression version of the first identity (first column, second row in Figure 4.4) to
be below 0.5, i.e. to the left of the line defined by the two fixed positions. These constraints
were defined on the group level, while leaving all single subject stimulus positions uncon-
strained. I used information from the stimulus creation process to inform and constrain the
posterior. For this purpose I chose the positions in the optimal grid (Figure 4.11) as prior
means on group level stimulus positions. Priors were defined as normal distributions with
σ2 = 1:

ψgroup ∼ Normal(µψ, 1) (4.8)

This might sound narrow at a first glance but allows striking deviations from the expected

Figure 4.11: Optimal perceptual space. Based on the stimulus creation, the optimal percep-
tual space is a 5x5 grid of equidistant points in the range from 0 to 1.

solution that is implied by the prior means since the stimulus positions in the optimal
solution are constrained to the set {x, y ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Perceptual noise

12See Figure 3.2.
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standard deviations were sampled on the log scale with a standard normal prior on the group
level log standard deviation and a half normal prior with σ2 = 2 for the between-subject
variance.

log(σgroup) ∼ N (0, 1) (4.9)

σpsi ∼ HalfNormal(0, 2) (4.10)

log(σsubject) ∼ N (log(σgroup), σpsi) (4.11)

Interpolation of perceptual spaces. Perceptual spaces were fitted using a subset
of all stimuli because the number of possible quadruplets for 25 faces is very large13 and it
was unfeasible to sample a sufficient subset of those. Instead only 9 faces were used in the
quadruplet task. To arrive at the full perceptual space, I interpolated subjects’ perceptual
spaces using a second order polynomial linear regression. To be more precise, I computed
the mapping from the optimal positions of those 9 stimuli (and the square of those positions)
to the individually fitted positions. Applying the same mapping to the full grid of 25 stimuli
gave me a complete perceptual space per subject. Interpolated spaces were then procrustes
aligned to the optimal solution to generate the spaces that I used in further analyses.

Behavioral models. As argued in chapter 2, the full Bayesian model is intractable and
it is practically impossible to fit it to data. Instead, I derived heuristic approximations that
include parameters which can be interpreted with respect to the hypotheses that are implied
by the model predictions. All of these models take into account the individual perceptual
spaces. That is, the values for emotionality, identity and proximity to the CS+ for each
subject are based on the fitted perceptual spaces.

Model 1a: The simplest model integrates the hypotheses about the impact of emotion-
ality and proximity to the CS+ including simple temporal dynamics. This model assumes
that the ratings in each block t can be expressed as a linear combination of a baseline shock
expectation (β0), the impact of emotion (βemo), the impact of identity (βid) and the impact
of proximity to the CS+ (βprox). The error model is Normal, i.e. residuals are assumed to
be normally distributed around 0. As an equation, the predicted rating r̂s,f,t for subject s,
face f in block t was computed as

r̂s,f,t = β0 + βemo,s,temos,f + βid,s,tids,f + βprox,s,tproxs,f (4.12)

rs,f,t ∼ N (r̂s,f,t, σs) (4.13)

where emos,f refers to the value on the emotional dimension for stimulus f and subject
s and similarly for ids,f and proxs,f . The subscript s on parameters and independent
variables is needed because perceptual spaces and parameters were fitted for every subject

13To be precise, there are 303600 possible quadruplets.
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in a hierarchical Bayesian framework. To implement the temporal component, I assumed a
linear time dependence of parameters

βt = β0 + β1t (4.14)

where I omit the subscripts for subjects and predictor for readability. The same linear time
dependence was applied for all parameters. On the group level I used Normal priors on the
model components:

β0,group ∼ N (5, 5) (4.15)

β1,group ∼ N (0, 5) (4.16)

Subject level parameters were normally distributed around the group level parameter with
standard deviation σβ:

βs ∼ N (βgroup, σβ) (4.17)

σβ ∼ HalfNormal(0, 2) (4.18)

Importantly, this model only takes euclidean distance to the CS+ into consideration, i.e.
a distance measure that depends on both dimensions equally. This is by design because it
allows for a comparison with models that split the distance along the dimensions to test for
dimensionality reduction. Still, the model on its own allows for a test of hypotheses 1, 2
and 3a.

Model 1b: To include the idea of partial dimensionality reduction, model 2a splits the
distance to the CS+ into two components, one for each dimension. The model is otherwise
identical to model 1a. Thus, the predicted rating r̂s,f,t for subject s, face f in block t was
computed as

r̂s,f,t = β0 + βemo,s,temos,f + βid,s,tids,f
+ βprox−emo,s,tprox-emos,f + βprox−id,s,tprox-ids,f

(4.19)

where prox-emo and prox-id are the distances to the CS+ along the emotional and identity
dimensions, respectively. This model allows for a test of hypothesis 3b.

Model 1c: Finally, model 1c drops the identity altogether and is supposed to test the
hypothesis of full dimensionality reduction. Note that this assumption is incompatible with
the Bayesian model. Dropping the information about identity from Equation 4.12 yields
the following equation for the predicted ratings:

r̂s,f,t = β0 + βemo,s,temos,f + βprox−emo,s,tprox-emos,f (4.20)
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Model 2a: All models so far assume a simple linear temporal dynamic of effects.
Model 2a relaxes this constraint by adding another parameter λ that allows for non-linear
dynamics. Instead of Equation 4.14, the temporal update is

βt = β0 + β1tλ
t. (4.21)

This results in a decrease of belief updating for λ < 1, an increase for λ > 1 and constant
updating for λ = 1. Accordingly, λ allows for a direct test of hypothesis 4. The model is
otherwise identical to model 1a. Due to the strong effect of deviations from λ = 1 that
stems from the non-linear dynamic, I used a narrower prior than for the other parameters.

λ ∼ N (1, 0.5). (4.22)

This choice still allows for a wide range of values and is bordering on uninformative. Apart
from the temporal dynamics, that allow for a test of hypotheses 4, the model is identical to
model 1a.

Model 2b: This model is identical to model 2a except that it uses the split distance
measure of model 1b.

Model 2c: Model 2c combines the full dimensionality reduction of model 1c with the
non-linear temporal dynamics of model 2a. The model is otherwise identical to model 2a.

Model 3a: Model 3a incorporates hypothesis 3c, i.e. that the proximity-based part of
the generalization gradients should become narrower over time, as there is less uncertainty
left about the fact that only the CS+ predicts a shock. To implement this, I added another
parameter ρ that is itself exponentially time dependent:

ρt = ρt0

proxt = proxρt
0 .

(4.23)

Here, prox0 is the proximity that is implied from the fitted perceptual spaces. For values
of ρ < 1, generalization around the CS+ becomes wider over time, for values of ρ > 1 it
becomes narrower, which is the prediction of hypothesis 3c. Similar to λ, ρ0 has non-linear
effects and small deviations from 1 have a strong effect. To account for that, the prior is
narrower than for the β parameters:

ρ0 ∼ N (1, 0.5)

σρ ∼ HalfNormal(0, 0.5)
(4.24)

Model 3b: This model is similar to 2b, except that it adds the time-dependent prox-
imity parameter of model 3a.
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Model 3c: Likewise, this model implements full dimensionality reduction like model
2c, but adds the time dependent proximity parameter of model 3a.

4.2.4 Results

Perceptual spaces. I compared two models for perceptual spaces: one that assumes that
perceptual spaces are constant and one that assumes that they change over time due to the
conditioning process. This is especially important since some studies have suggested changes
in perceptual accuracy around negatively reinforced stimuli (e.g. Laufer et al., 2016). While
the model comparison I conducted can not account for local changes in perceptual accuracy,
it can account for fundamental distortions in perceptual spaces. The model comparison is
based on the ELPD of left out data points14. As shown in Table 4.1, the model that assumes
constant perceptual spaces explained the data better in both conditions15. An inspection of

Model
Condition Constant Dynamic
Angry -20472.03 -20562.04
Happy -20164.23 -20240.1

Table 4.1: Model comparison for perceptual spaces in behavioral study. In both condi-
tions, the model with a constant perceptual space fits the data better than the model with a dynamic
space as indicated by the ELPD. The winning model is indicated by bold numbers.

the group level solutions revealed that the perceptual spaces were fairly close to the intended
grid structure. From this I conclude that the perceptual spaces were approximately constant
over time and adhered to the intended structure. Group level solutions for the angry and
happy condition and an example interpolation for a single subject are shown in Figure 4.12.

Behavioral models. Mean ratings for the five rating blocks in both conditions are de-
picted in Figure 4.13a-b. At a first glance, the ratings seem to follow the predictions of
the Bayesian model strikingly well. In both conditions, ratings are initially driven by the
amount of emotionality. As the conditioning progresses, ratings become more and more
driven by the proximity to the CS+, where the proximity along the emotion dimension
seems to be more relevant. This is evident from the fact that subjects generalized more
strongly along the identity dimension.

The results of the model comparison for the behavioral study are shown in Table 4.2.
In general, models that assume partial dimensionality reduction (models 1-3b) fit the data
better than models that assume full dimensionality reduction (models 1-3c) and models that
assume no dimensionality reduction (models 1-3a). This is in line with the predictions of
the Bayesian model. The best fitting model was model 3b, which contains parameters for
non-linear temporal dynamics of the generalization gradients and a change in the width of
the proximity-based part of the generalization gradients over time.

14See subsection 4.1.3 for a detailed description.
15A higher ELPD implies better model fit.
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Figure 4.12: Group level perceptual spaces in behavioral study. Group level perceptual
spaces for a) the angry and b) happy conditions are aligned reasonably well with the intended grid
structure. c) Single subject perceptual spaces d) were interpolated to the full stimulus set and e)
procrustes aligned with the optimal grid structure. Black crosses indicate the optimal 3x3 and 5x5
solution. Subfigures c)-e) show the space of a representative subject from the happy condition.

Condition
Model Angry Happy
1a -11630.39 -11201.91
1b -11483.62 -11091.93
1c -11668.69 -11238.94
2a -11282.82 -10906.31
2b -11268.31 -10782.11
2c -11512.20 -11003.92
3a -11404.42 -10778.36
3b -11224.97 -10581.73
3c -11451.33 -10822.38

Table 4.2: Model comparison for behavioral models in behavioral study. The ELPD for
each model is given for the angry and happy conditions. The best fitting model for each condition
is model 3b, which is indicated in bold. This model assumes partial dimensionality reduction and
comprises all hypotheses that were derived from the Bayesian model.

A visual inspection of the posterior predictive check for this model revealed that model
3b fits the data well (Figure 4.13c-d). To test the different hypotheses more directly, I looked
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Figure 4.13: Mean ratings and posterior predictive checks for the behavioral study.
Mean ratings in both a) the angry and b) the happy condition follow the model predictions fairly
closely. The posterior predictive checks for c) the angry and d) the happy condition show that the
model fits the data well.

at posterior distributions on the model parameters that can be interpreted with respect to
the predictions of the model. Group level posterior distributions of the relevant parameters
and the implied contribution of the different components for every rating are depicted in
Figure 4.14.

In both conditions ratings were initially driven by the amount of emotionality, but not
identity or by the proximity to the CS+16, corroborating hypotheses 1a. The initial effect of
emotion was stronger in the angry than the happy condition. As the conditioning went on,
emotionality became less influential and ratings became more and more influenced by the
proximity to the CS+. There was a clear discrepancy between the dimensions as this effect
was much stronger along the emotionality dimension in both conditions. These findings were
predicted by hypotheses 2 and 3a-b. The changes from rating to rating became smaller over
time and the proximity-based part of the gradients became narrower, confirming hypotheses
4 and 3c respectively.

16Because these ratings are before any conditioning, subjects can not have learned about the CS+. There-
fore I attribute the slight deviations from 0 in the initial effect of proximity to inflexibilities in the model.
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Figure 4.14: Posterior distributions of the model parameters for the behavioral study.
a) Ratings in the angry condition are initially driven by the amount of emotionality. This effect
decreases with time. In contrast, identity is not relevant at all. b) Proximity to the CS+ is not very
relevant in the beginning. As the conditioning progresses, proximity becomes more relevant, with
a much stronger effect along the emotion dimension. c) The belief updating from rating to rating
and d) the width of the proximity-based part of the generalization gradients decrease with time.
e) Bar plots show the contribution of the different components to the five ratings. f) In the happy
condition, ratings are initially driven by the amount of emotionality as well, but the effect is in the
opposite direction and weaker than in the angry condition. Identity is irrelevant here as well. g)
Proximity to the CS+ does not play a significant role in the beginning, but becomes more relevant
with time and especially along the emotion dimension. Like in the angry condition, h) the belief
updating and i) the width of the proximity-based part of the generalization gradients decrease with
time. j) Bar plots show the resulting contribution of all features in all ratings.

4.2.5 Interim discussion

The results of the behavioral study are in line with the predictions of the Bayesian model.
Ratings followed the predictions of the model fairly closely. A model comparison of the
different model approximations revealed that the best fitting model was model 3b, which
assumes partial dimensionality reduction. Parameter inspections further corroborated that
the results are well in line with the hypotheses that I derived from the Bayesian model.

In summary, the data supports the assumptions of the Bayesian model. While this
study has a somewhat limited scope due to being a fear generalization study, the results
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encouraged me to continue with a fMRI study to investigate the neural mechanisms.

4.3 Neural mechanisms of fear generalization

The second study aimed to corroborate the findings from the previous study and to investi-
gate the neural mechanism that underlie the proposed model. To this end, I replicated the
first study, but collected fMRI data from the participants.

4.3.1 Behavioral methods

Apart from the fact that subjects lied in the scanner, the behavioral methods were almost
identical to the first study. Some minor differences were unavoidable. During pain calibra-
tion, I ran a dummy echo-planar imaging (EPI) sequence. This sequence was not included
in the analysis, as the only purpose was to account for possible effects of the scanner noise
on pain perception. Additionally, subjects gave their responses using a button box instead
of the keyboard.

Sample description. I collected behavioral and fMRI data from 62 subjects. Because I
only analyzed data from subjects that didn’t show problems in either of the two sessions, I
had to discard 12 data sets because of the following issues (# of subjects):

• structural abnormalities in the anatomical image (1)
• fell asleep (2)
• excessive head movement (2)
• dropped out after the first session (3)
• electrode dispatched (4)

This left me with 50 complete data sets that were included in the analysis. In addition,
three subjects in the angry and two subjects in the happy condition skipped the quadruplet
tasks due to scheduling conflicts. Those were treated as described in paragraph 4.2.1.

Behavioral data analysis. The analysis of behavioral data was identical to the first
study. I excluded one subject in the happy condition because they gave a constant shock
expectation rating of 1 for all ratings. Two further subjects kept the behavioral Bayesian
models from converging in the happy condition. As a result, I fitted all behavioral models
with data from 50 subjects in the angry and 47 subjects in the happy condition.

4.3.2 fMRI methods

MRI data collection. FMRI data were collected on a Siemens 3T PRISMA scanner
(Siemens, Erlangen, Germany) using a 64 channel head coil. To reduce the acquisition
time, I employed a multiband sequence (multiband factor = 3, TE = 30ms, TR = 1.526,
flip angle = 60°, FOV = 225 mm, GRAPPA PAT factor = 2, reference lines = 48). The field
of view consisted of 63 slices per volume with an isotropic voxel size of 1.5 mm. In addition,
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I collected a B0 field map to correct for inhomogeneities in the magnetic field. Before the
functional scans I also obtained a high-resolution (isotropic voxel size = 1 mm) anatomical
image using a magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence.

fMRI preprocessing. Preprocessing was conducted in MATLAB using SPM12 (Wellcome
Trust Center for Neuroimaging, London, UK). I discarded the first four EPI images per
run to avoid artifacts. The actual preprocessing consisted of spatial motion correction
(realignment and field map correction) and slice timing correction. Mean EPIs over all runs
were calculated and segmented to generate native tissue maps. Those were used to calculate
a flow field from the native subject space to standard Montreal Neurological Institute (MNI)
space in the DARTEL toolbox of SPM12. I did not normalize raw functional images, but instead
computed firstlevel analysis in native space and normalized the resulting images (e.g. beta
images or correlation maps). The normalized images were smoothed with a Gaussian kernel
(FWHM = 6mm) before entering them into the secondlevel analysis.

Univariate analysis. Univariate analysis was conducted in SPM12 using two general
linear models (GLMs). Both GLMs use outputs of behavioral models and can therefore be
considered model-based fMRI. Since model 3b showed the best fit to the behavioral data,
I used this model to generate the parametric modulators for both GLMs. The first GLM
was used to assess correlates of the modeled shock expectation. This is roughly equivalent
to the approach of typical fear generalization studies in which researchers are looking for
brain areas that show a generalization tuning (Webler et al., 2021), but it includes the
temporal dynamics. In the second GLM I exploited the fact that the shock expectation
was modeled as a linear combination of different features (e.g. the impact of emotion and
proximity). This allowed me to assess the contribution of those features independently and
probe the role of the FPN with respect to the different dimensions. In both GLMs I included
one intercept per run and six motion parameters (three translations and three rotations)
as regressors of no interest. Beta images from the firstlevel analysis were normalized to
MNI space and smoothed with a Gaussian kernel (FWHM = 6mm). Using these images,
I conducted a secondlevel analysis using a fixed effect analysis of variance (ANOVA) in
SPM12. Secondlevel analyses contained images from both sessions (angry and happy). The
rationale behind that choice is increased statistical power and that I was interested in effects
that are independent of the emotion. After estimating the model, contrasts were computed
as directed t-tests. I computed both negative and positive contrasts and applied a voxel-wise
α-threshold of p < 0.025. This threshold refers to the whole brain family-wise error (FWE)
corrected p-values to account for multiple comparisons and is equivalent to a two-sided t-
test at α = 0.05. Differential effects were computed as differential t-contrasts with a FWE
corrected threshold of p < 0.05. In some cases I had specific hypotheses about the role of
the FPN and used a small volume correction (SVC) within a mask of the FPN based on the
segmentation by Yeo et al. (2011).
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GLM 1: Shock expectation. For the first GLM I extracted model-predicted shock
expectation ratings from the behavioral model. In the model those are defined for five
ratings. To use them as parametric modulators on every trial, I interpolated them to 20
microblocks. In particular, in the model, time was modeled as the vector t = [0, 1, 2, 3, 4].
The interpolated values were then calculated by using the vector that contained 20 linearly
spaces values from 0 to 417 instead. This approach assumes that the belief state within a
microblock is constant. While this is technically not true, it is a reasonable approximation.
The GLM included regressors for the onset of faces and the onset of shocks. The interpolated
shock expectations were then entered as parametric modulators on the face onsets.

GLM 2: Feature contribution. Similar to the first GLM, I interpolated the features
that were used to model the shock expectation to 20 microblocks. The second GLM included
the same regressors and all features were entered as parametric modulators on the face
onsets. The features were:

• Baseline shock expectation: β0

• Impact of emotion: βemo ∗ emo
• Impact of identity: βid ∗ id
• Impact of proximity along the emotional dimension: βprox−emo ∗ prox-emo
• Impact of proximity along the identity dimension: βprox−id ∗ prox-id

Multivariate analysis. For the multivariate analysis I used RSA. RSA relies on beta
images from a firstlevel analysis. Because I wanted to investigate the time component of
representations, I used a least squares separate (LSS) approach (Mumford et al., 2012)
to generate one beta image for every single trial in order to limit the problems that can
arise from autocorrelation that is due to the slow BOLD signal. In the LSS approach, one
computes as many GLMs as there are trials. In each GLM, there is one predictor for the
trial of interest and one predictor for all other trials.

In RSA, one correlates different representational dissimilarity matrices (RDMs) with
each other. A neural RDM that describes the dissimilarities between the neural represen-
tations of different stimuli and a model RDM that describes the dissimilarities between the
stimuli based on a model or different properties. The neural RDMs are computed from the
beta images that were generated from the LSS GLM.

Since the purpose of my multivariate analysis was to investigate the dimensionality
of representations of faces and how they relate to the behavioral effects, I generated two
different model RDMs per subject. Those were based on the perceptual dissimilarities of the
faces along either the emotional or the identity dimension. The perceptual dissimilarities
were calculated using the absolute value of the difference between the values of faces along
that dimension18. Neural dissimilarities for each voxel were calculated using the correlation

17linspace(0, 4, 20) in MATLAB.
18This is equivalent to both the cityblock and the Euclidean distance, since those are the same in one-

dimensional space.
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distance
dcorr(x, y) = 1 − corr(x, y) (4.25)

between the representations of different faces x and y. To compute the correlations between
the neural and the model RDMs, I ran a searchlight analysis with a custom kernel and
a radius of 5 mm as implemented in the brainiak toolbox in Python. Correlations be-
tween model and neural RDMs were calculated as Spearman’s rank correlation coefficient.
The resulting correlation maps (one correlation per voxel) were then Fisher Z-transformed,
smoothed with a Gaussian kernel (FWHM = 6 mm) and entered into a secondlevel analysis
in SPM12. The secondlevel analysis was equivalent to the one described in the univariate
analysis.

Visualization of fMRI results. All fMRI results are visualized as thresholded t-maps.
I chose an uncorrected threshold of p < .0005 for visualization because the distribution
of sub-threshold activation is still informative. This is especially important in the context
of a network view because those sub-threshold activations give an idea about the overlap
between activity and brain networks. The chosen threshold corresponds to an uncorrected
two-sided t-test at α = .001. Colormaps indicate the direction of the effect. Red indicates
positive effects and blue indicates negative effects. Significant activations and deactivations
are indicated by circles or region names. All fMRI plots were generated using the nilearn

package in Python.

4.3.3 Behavioral results

Perceptual spaces. Subjects in the fMRI study went through the same perceptual task as
participants in study 1, including the repetition after conditioning. To investigate whether
spaces were subject to distortions due to the conditioning, I again fitted the two models
to the data, that I described for the previous study. Corroborating the findings from the
first study, the model that assumes constant perceptual spaces fit the data better than the
model that assumes that spaces change over time. This can be seen in the higher ELPD
as displayed in Table 4.3. A visual inspection of group level positions that were implied by

Model
Condition Constant Dynamic
Angry -19037.65 -19091.26
Happy -18672.03 -18800.57

Table 4.3: Model comparison for perceptual spaces in fMRI study. Results in the fMRI
study corroborate the results from the behavioral study. In both conditions a constant perceptual
space explains the data better than a dynamic space.

the model that assumes constant spaces indicated that the fitted spaces were very similar
to the one of participants in the first study. This can be seen in Figure 4.15, where I display
the posterior expectations of group level positions. In the fMRI study, the positions of
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faces were close to the intended positions along a perfect grid. Importantly, the dimensions
spanned an approximately similar range of values. This indicates that differences in the
width of generalization along these dimensions were due to prior assumptions and not due
to differences in discriminability.

Figure 4.15: Perceptual spaces in fMRI study. The perceptual spaces that were fitted to
the data in the fMRI study for the a) angry and b) happy condition. The positions of the faces are
close to the intended grid structure and very similar to those from the behavioral study.

Behavioral models. As can be seen in Figure 4.16a-b, mean ratings in the fMRI study
were similar to the ratings from the first study at a first glance. The major difference seems to
be that subjects learned faster and the initial bias towards emotional faces subsided quickly.
Apart from that, all the major hallmarks that were visible in the first study emerged again
in the fMRI study. Ratings were initially dependent on the emotional expression of faces
but depended increasingly on the proximity to the CS+ over time. As in the first study, this
effect was more pronounced along the emotional dimension. Another feature that I could
replicate from the first study was that the initial bias was stronger for angry than happy
faces, which is likely due to the congruence between negative emotions and pain (Seligman,
1970).

More formally, I fitted the same models to the data as in the first study. The results of
the model comparison (Table 4.4) confirmed the findings from the first study, as model 3b
was the best-fitting model and in general models that included separate distance measures
along both dimensions (i.e. models 1-3b) fit the data better than models that assume only
proximity along the emotion dimension (i.e. models 1-3c) and models that include the joint
cityblock distance along both dimensions (i.e. models 1-3a). Using the posterior predictive
check in Figure 4.16c-d, I concluded that model 3b explained the data very well.

A consideration of posterior distributions on model parameters corroborated the impres-
sions from the visual inspection of mean ratings and replicated the results from the first
study. As depicted in Figure 4.17, posteriors on the parameters for the initial impact of
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Figure 4.16: Mean ratings and posterior predictive checks for the fMRI study. a) While
subjects in the fMRI study learned about the relevance of proximity to the CS+ and unlearned the
initial impact of emotionality faster than in the first study, the pattern is otherwise very similar.
Initially, ratings depended on emotionality. Proximity – especially along the emotion dimension
– became more important over time. b) Similarly, subjects in the happy condition learned faster
than in the first study, but ratings showed a strong resemblance to the ones from the first study.
The differences in learning speed might be attributed to the change in setting, as being in a fMRI
scanner might have made subjects more attentive. c)-d) Posterior predictive checks show a strong
resemblance to the mean ratings and indicate that the model fits the data well, both in the c) angry
and d) happy condition.

the different features were around or close to 0 for identity and the proximity along both
dimensions, but clearly different from 0 for emotion. Again, this effect was stronger in the
angry condition. Parameters for the change of the impact indicate that the initial impact
of emotion vanished, the impact of identity did not change and the impact of proximity in-
creased along both dimensions, but much stronger so along the emotional dimension. With
respect to the non-linear temporal dynamics, the change from rating to rating went down
and the width of the proximity component went down. All of those findings are in the line
with the suggested hypotheses and the results from the first study.
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Condition
Model Angry Happy
1a -12143.48 -12366.98
1b -12038.73 -12149.18
1c -12224.96 -12337.97
2a -11834.45 -12055.02
2b -11684.78 -11814.15
2c -11899.48 -12036.83
3a -11760.16 -11981.41
3b -11562.81 -11724.3
3c -11804.61 -11915.1

Table 4.4: Model comparison for behavioral models in fMRI study. Model comparison
corroborated the finding from the first study, namely that the best fitting model is model 3b, the
one that includes all hypotheses that were based on the Bayesian model.

4.3.4 fMRI results

The analysis of fMRI data analysis consists of a univariate approach using two GLMs and
multivariate analysis using RSA. Those approaches are reported separately in the following
paragraphs.

Univariate analysis. Since model 3b provided the best fit to the data, I used this model
to generate parametric modulators for the model-based fMRI analysis. In particular, I inter-
polated model-predicted shock expectations and the features that comprise those expecta-
tions to 20 microblocks and entered posterior expectations of those quantities as parametric
modulators into GLMs. The interpolation and separation of the features is described in
more detail in subsection 4.3.2 and visualized in Figure 4.18.

GLM1. GLM1 used the interpolated shock expectations as parametric modulators
(Figure 4.18c). The results from the second-level ANOVA are depicted in Figure 4.19. I
found two distinct networks that either showed a positive and a negative generalization
tuning19. Virtually all positive tunings were located in regions of either the FPN or the SN
(Figure 4.19a). Negative activations were exclusively located in the DMN (Figure 4.19b).
The specific areas with significant positive and negative generalization tuning are listed in
the legend of Figure 4.19. These results corroborate findings from a meta-analysis on neural
correlates of fear generalization (Webler et al., 2021). However, unlike the studies that were
included in that meta-analysis, my analysis does not only measure the correlates of a final
behavioral outcome in a generalization phase, but instead tracks the temporal dynamics of
the generalization process. Still, due to the correlation nature, these findings suffer from
the same limitations as previous publications. Especially when viewing the activations
through the lens of brain networks, it is important to keep in mind that the analysis can

19In the context of this analysis, a positive tuning refers to a positive correlation of BOLD activity with
interpolated shock expectations, whereas a negative tuning refers to a negative correlation.
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Figure 4.17: Posterior distributions of the model parameters for the fMRI study.
Overall, posterior distributions are similar to those of the first study. In the angry condition, a)
the initial impact of emotion is clearly different from 0 and dimishes over time while the impact
of identity is relatively static around 0. b) The impact of proximity is negligible at the beginning
but increases over time, especially along the emotional dimension. c) From rating to rating, ratings
stabilize, and d) the width of the impact of proximity decreases. e) When viewing the amount of
dependence of the different ratings on the different features, the expected pattern of an initial impact
of emotion and an increasing impact of proximity along the emotion axis emerges. f) In the happy
condition, the initial impact of emotion is negative and trends towards 0 over time. g)-i) Apart from
that, the pattern of parameter estimates mirrors both the angry condition and the first study. j)
The relatively weaker initial impact of emotion leads to a faster, stronger dependence on proximity
along the emotional dimension and a faster decline of the impact of emotion.

not distinguish between the generalization process itself and the results of it. For instance,
stimuli for which subjects have a higher subjective outcome expectation are more salient,
which would lead to a SN mediated switch from DMN to FPN activity (Goulden et al.,
2014) – a pattern that is well in line with the reported activations.

GLM2 Due to the usage of interpolated features instead of the full shock expectation,
the second GLM provides a more fine-grained view and helps with the interpretation of
the role of different areas and networks. In addition, it allowed me to investigate how
the dimensional preference for the emotion dimension correlates with brain activity. This
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Figure 4.18: Interpolation of behavioral models to the fMRI study. a) Raw ratings
of a subject in the happy condition. b) The model predictions for the data in a). For the fMRI
analysis, these model predictions needed to be interpolated, because there are only five ratings, but
20 microblocks. This resulted in the predicted shock expectations for all micoblocks in c). For the
second GLM, I interpolated the features that additively make up the model predictions separately.
The resulting features are d) a baseline shock expectation per microblock, e) the impact of emotion,
f) the impact of identity, g) the impact of proximity along the emotional dimension and h) the
impact of proximity along the identity dimension.

is especially interesting due to the established role of the FPN in representation learning
(Niv, 2019). A second level ANOVA and directed t-contrasts revealed different significant
correlations with the distinct features.

I found a significant correlation of baseline shock expectation in the left PCU (Fig-
ure 4.20a). The PCU has been shown to be important in the context of social anxiety
disorder (SAD), as SAD patients showed both increased gray matter volume (X. Wang et
al., 2018) and functional and network deficits (Yuan et al., 2018) in this region. Those find-
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Figure 4.19: GLM1 results. Positive and negative correlations of BOLD responses with inter-
polated shock expectation ratings were found in two distinct networks. The first row shows glass plot
brain to give an idea about the distribution of those networks. a) Positive generalization gradients
were found in regions of the FPN – MFG, IPS and CdN – and in the aIC, a major hub of the SN.
b) Negative gradients appeared in all important regions of the DMN: vmPFC, HPC, MTG, PCC,
PCU and angular gyrus (AG).

Figure 4.20: GLM2: fMRI correlates of baseline shock expectation and emotion. a)
The baseline shock expectation was negatively correlated with BOLD activity in the left PCU. b)
The impact of emotion was negatively correlated with BOLD activity in the left parietal operculum
(PO), corresponding to the human secondary somatosensory cortex (S2).

ings indicate that the deactivation in my study might be specific to the use of facial stimuli.
A single significant negative correlation with the impact of emotion was found in the left
parietal operculum (PO), which corresponds to the secondary somatosensory cortex (S2)
in humans. This contrast is especially interesting, because it defines the neural correlates
of the prior knowledge about the predictive value of emotional expressions. A view at the
relevant literature suggests some interpretations. Adolphs et al. (2000) found that the S2 is
involved in the processing of emotional facial expressions. They investigated impairments
in emotion recognition in patients with brain legions and found lesions in S1 and S2 to be
associated with a deficit in the recognition of emotional expressions. Zeidan et al. (2015)
found that correctly cued pain stimuli led to greater activation in the PO than violated
expectations. This suggests a role of the PO in the assessment of congruency of outcomes
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with expectations. Drevets et al. (1995) reported results from a positron emission tomogra-
phy (PET) study, in which participants expected somatosensory stimulations. In this study,
blood flow in S2 decreased bilaterally during the anticipation of stimulations, among other
regions. Gijsen et al. (2021) conducted an electroencephalography (EEG) study in which
participants had to learn statistical regularities in patterns of somatosensory stimulations.
The found that the mismatch negativity20 correlated with Bayesian surprise, i.e. an uncer-
tainty weighted prediction error. Interestingly, they used source reconstruction and could
locate the source of the mismatch negativity in S2. This would indicate that deactivations
in S2 are used as a signal to update a belief state rather than an anticipatory signal. Of
course it is possible that the PO is involved in both processes. It is interesting to note that
the PO is involved in the processing of both emotional facial stimuli and somatosensory an-
ticipations. Those two processes together make S2 a prime candidate for the computation
of a prior expectation of pain given the emotionality of faces. This further suggests that the
encoding of prior expectations depends on the modalities of stimuli and outcomes.

Figure 4.21: GLM2: fMRI correlates of the impact of proximity to the CS+. a) Neural
correlates of the impact of proximity to the CS+ along the emotion dimension closely mirrored the
activations that were associated with interpolated shock expectation ratings with negative correlation
in the DMN (vmPFC, PCC and angular gyrus) and positive correlation in the FPN (MFG and IPS)
and the aIC. b) The impact of proximity along the identity dimension showed negative correlations
in the DMN as well (rMTG, PCC and AG), but virtually no positive correlations.

20A common EEG response to violations in expectations.

77



Chapter 4: Empirical studies

Correlations with the impact of proximity to the CS+ showed a very interesting pattern.
Activations related to the proximity along the emotional dimension closely mirrored the
correlations with the full interpolated shock expectation in GLM1, with negative correlations
in the DMN and positive correlations in the FPN and the aIC (Figure 4.21a). In stark
contrast, activations related to the proximity along the identity dimension were negatively
correlated with activity in the DMN, but positive correlations were virtually absent, even
at a liberal statistical threshold (Figure 4.21b). To statistically confirm this pattern, I
computed a directed contrast to identify areas that showed a stronger correlation with the
impact of proximity along the emotion than the identity dimension. This contrast revealed
a significant difference in the bilateral aIC and the right MFG (Figure 4.21c). Because I had
a special interest in the FPN, due to its importance in representation learning, I repeated
this analysis but constrained the FWE correction to this network, using a mask of the FPN
(Yeo et al., 2011) for SVC. This analysis indicated additional significant clusters in the left
MFG and IPS (Figure 4.21d).

Note that the close resemblance of the activation patterns in GLM1 and the impact
of proximity along the emotional dimension is not surprising, since subjects learned rela-
tively quickly in this study and as a consequence, ratings were primarily dependent on the
proximity on the emotion dimension for most of the time. Still, this fact can not explain
the discrepancy between the dimensions, namely why negative correlations with the DMN
persisted along both dimensions, while positive correlations appeared exclusively along the
emotional dimension. Due to the correlational structure of this analysis, it is hard to draw
definite conclusions, but this result is well in line with the role of the FPN and the aIC in rep-
resentation learning and could indicate that those regions encode a reduced representation
of stimuli, that is purely based on emotional expression.

Multivariate analysis. To further investigate, whether the results of GLM2 are based on
low-dimensional representations in the FPN, while circumventing the limitations of correla-
tional univariate approaches, I used a multivariate approach. One possible explanation for
the discrepancy of correlations with the impact of proximity along the two dimension would
be that the FPN and the aIC encode one-dimensional representations of the stimulus space.
To probe this, I constructed two different model RDMs per subject. Those RDMs depended
either on the emotionality or the identity of faces and for each RDM, only one dimension
was considered. When coding the stimuli with respect to the emotionality (displayed in
Figure 4.22a) and computing the difference between those values between all stimuli, one
can obtain the corresponding RDM (Figure 4.22b). The same procedure was applied when
coding stimuli according to their identity (Figure 4.22c-d). I constructed two RDMs for
each subject, a step that was necessary because I used individually fitted perceptual spaces
instead of a canonical space.
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Figure 4.22: Depiction of model RDMs. Model RDMs depend on the value of stimuli on one
dimension only. a) Schematic of stimulus space, when only considering the value on the emotion
dimension. b) The resulting model RDM depends on the absolute values of differences between
these values. d) When only considering the value on the identity dimension, c) the resulting model
RDM looks like this. Note that the dimensionality of stimulus spaces in a) and c) is 5x5 while the
dimensionality of the model RDMs is 25x25 as it is based on all possible combinations of stimuli.
The model RDMs result when traversing the stimulus space in column → row order. The depicted
spaces and RDMs are based on optimal grid. In practice I computed them based on individually
fitted perceptual spaces.

Static representations. In a first step, I averaged beta images across all repetitions
of a stimulus and used a searchlight analysis to compute correlation maps21 for each subject,
RDM and condition. I computed a second level ANOVA and specified a directed t-contrast
to identify brain areas in which the representation of stimuli dependent more strongly on
emotion than identity. This was the case only in the bilateral MFG, which is the anterior
part of the FPN. The differential activations are depicted in Figure 4.23. This result
supports the aforementioned interpretation of the results of GLM2 and (at least one aspect

21A correlation map is a brain image, where each voxel contains the Spearman correlation between the
model RDM and the neural RDM computed from the beta images.
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Figure 4.23: Static representations. Representations in the bilateral MFG are more strongly
dependent on emotional differences than on differences in the facial identity.

of) the role of the FPN in stimulus generalization. However, due to the averaging over all
presentations of stimuli, this analysis does not allow to draw conclusions about the temporal
component.

Dynamic representations. If the dimensionality of representations in the FPN is
relevant for the behavioral effects, one would expect that the representation of stimuli in
the FPN changes over time. In particular, subjects did learn that the position of stimuli on
the identity dimension was relevant, albeit slower and less pronounced than on the emotion
dimension. This behavior makes sense in the context of the Bayesian model, assuming
that subjects have a strong prior with respect to the irrelevance of the identity dimension.
Still, this belief update needs to be encoded in brain activity and representations, and if the
FPN plays the role of providing adequately dimensional stimulus representations, one would
expect a shift from a representation that only depends on emotion to one that comprises
both stimulus dimensions.

To test this hypothesis, I ran an additional searchlight analysis. Unlike in the previous
one, I did not use beta images that were averaged over the whole experiment, but instead
averaged them over all presentations of stimuli within a run22. This analysis resulted in 16
correlation maps per subject, one per run, model RDM and condition. To investigate the
temporal dynamics of representations, I first entered those maps into a second level ANOVA
and specified a generic F -contrast with one row per run and model RDM, while averaging
over conditions. This contrast was meant to identify brain areas in which the representation
of stimuli depends on at least one dimension in at least one run, independently of the
condition.

This contrast revealed a single significant cluster in the left MFG. Two more significant
clusters in the right MFG and the left IPS emerged when using SVC in a mask of the FPN.
Those clusters are depicted in the left column of Figure 4.24. To further investigate the

22One fMRI run consists of 5 microblocks, i.e. 5 presentations of each stimulus.
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Figure 4.24: Dynamic representations. I investigated the dynamics in the dependence of
neural representations on stimulus dimension in three RSA derived brain regions by computing the
correlation between neural RDMs and the different model RDMs for each run. a) Representations
in a peak voxel in the left MFG were initially dependent on emotion, but not on identity. Over the
blocks, there is an almost linear increase in the dependence on identity and a slight decrease in the
dependence on emotion. b) Representations in the right MFG showed a similar, but more noisy
pattern. c) In contrast, representations in the left IPS were initially dependent on both stimulus
dimensions and fairly static over time.

temporal dynamics of representations, I extracted the Spearman correlations between the
model RDM and the neural RDM for each run, condition and subject. When averaging
those correlation over conditions23, correlations in the left MFG showed a pattern of initial
correlations with the emotion RDM that decreased over time, while correlations with the
identity RDM were not present initially but emerged over time almost linearly (Figure 4.24a,
right column). A similar pattern was observed in the right MFG (Figure 4.24b, right
column). In the left IPS, correlations were more static and above zero for both model RDM
(Figure 4.24c, right column).

To test those patterns more formally, I modeled the time course of correlations with
a Bayesian hierarchical linear regression24. In this model, correlations were modeled as a
linear function of time, that is the Spearman correlation between the model RDM m and

23This is equivalent to the F -contrast that was used to identify the clusters.
24Note that formally the assumption of zero mean Gaussian residuals is violated, since correlations are

bounded in the range [−1, 1]. However, the observed values were not close to the boundaries. Accordingly,
this is unlikely to be a problem and due to the familiarity, simplicity and ease of interpretation I decided to
use a linear regression model.
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βm

βm,s

βm,s,c

for m in models

for s in subjects

for c in conditions

Figure 4.25: Hierarchical structure of regression model. Parameters β0 and β1 were nested
in three levels. Subject level coefficients in group level distributions and condition level coefficients
in subject level distributions. Models were treated as independent.

the neural RDMs at time t, for subject s in condition c is given by

ρs,t,c,m = β0s,c,m + β1s,c,m · t+ ϵ

ϵs,t,c,m ∼ N (0, σ2).
(4.26)

I used Normal(0, 0.1) priors on all group level β coefficients, which I consider weakly infor-
mative given the range of observed correlations, and standard normal priors on hierarchical
variance parameters. To account for the structure of the data, I included three levels of
hierarchy for all β parameters: subjects in group and conditions in subjects. This structure
is depicted in Figure 4.25. This analysis confirmed that representations in the left MFG
were exclusively dependent on emotion initially (Figure 4.26a, first row). With time, the de-
pendence on emotion went down, but the dependence on identity increased25 (Figure 4.26a,
second row). A similar pattern was observed in the right MFG, albeit the posteriors prob-
abilities are a bit more uncertain about the effect (Figure 4.26b). In contrast, posteriors
for the left IPS indicate that while the representation depends more strongly on emotion,
it is more static than in the MFG and depends on both dimensions from the beginning
(Figure 4.26c). These dynamics of representations in the MFG are well in line with the role
of the FPN in representation learning. The Bayesian model gives a rational explanation for
the observed change in dependence on the different dimensions of frontal representations.
Still, if these changes relate to the behavioral effects and their explanation via the Bayesian
model, I expected to see a correspondence between neural effects and behavioral effects on
a subject level. In particular, there should be a covariance between how much representa-

25While the 90% posterior highest density interval (HDI) includes zero for β1identity, the bulk of the
probability mass indicates an increase. Bayesian analysis is not supposed to be used as dichotomous decision
criterion.
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Figure 4.26: Posterior distributions of regression coefficients. a) In the left MFG,
the representation is initially dependent on emotion (p(β0emotion > 0) = 1), but not on identity
(p(β0identity > 0) = 0.59). With time, the dependence on emotion decreases (p(β1emotion < 0) = 1)
and the dependence on identity increases (p(β1identity > 0) = 0.92). b) Posterior distribution for
the left MFG indicate the same direction of effects, but are more uncertain about the magnitude of
the effects (p(β0emotion > 0) = 1, p(β0identity > 0) = 0.75, p(β1emotion < 0) = 0.85, p(β1identity >

0) = 0.93). c) Representations in the left IPS depend on emotion (p(β0emotion > 0) = 0.99) and
identity (p(β0identity > 0) = 0.91) from the beginning and are less dynamic than those in the MFG
(p(β1emotion > 0) = 0.71, p(β1identity > 0) = 0.58). d) The increase of the dependence on identity
of representations in the left MFG is significantly correlated with the increase of the influence of
proximity along the identity dimension in behavior in both conditions.

tions increasingly depend on identity in the MFG and how much the proximity to the CS+
along the identity dimension increasingly influences shock expectation ratings. To test this,
I extracted the corresponding parameters from the Bayesian regression of RSA correlations
and the best fitting behavioral model. The corresponding parameters are β1identity from
the regression model26 and β1identity from the behavioral model, which I extracted from
the model fits for individual subjects. I then correlated those two measures to investigate
whether there is a relationship between the two. As depicted in Figure 4.26d, the correlation
was significant for both the angry (r = 0.34, p = 0.015) and the happy condition (r = 0.4,
p = 0.004). This indicates that the dimensionality of representations in the MFG is related
to the width of generalization along stimulus dimensions.

4.3.5 Interim discussion

This study provides two important lines of evidence. First, I was able to fully replicate the
behavioral results from the first study in an independent sample. While this is not exactly
surprising as the study design was virtually the same, other than the measurement of fMRI

26Note that because the behavioral models were fitted to conditions separately, I also extracted condition
specific parameters from the RSA regression.
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data, it demonstrates the robustness of the results. This seems especially important in the
light of the replication crisis in psychology (Maxwell et al., 2015; Open Science Collabo-
ration, 2015). In addition, it gives reason to believe that the model-based investigation of
neural effects in the second study is based on a solid foundation.

Second, my neural results seem important with respect to the question of the role of the
FPN in stimulus generalization and how this relates to its role in representation learning.
Famously, the FPN is thought to be involved in the discovery or encoding of low-dimensional
representations (Niv, 2019; Tomov et al., 2018; Woolgar et al., 2011). So far this role has
been ignored in the context of stimulus and more specifically fear generalization (Webler
et al., 2021). My results indicate that the FPN plays a similar role when it comes to
the learning and encoding of an appropriately abstracted stimulus space in the context of
stimulus generalization. These results further question whether stimulus generalization and
representation learning, i.e. a relevant concept for generalization in RL are really as distinct
as they are often treated. In addition, the proposed Bayesian model provides a rational
explanation for behavioral and neural effects. A correlation between neural and behavioral
effects provides further support for the suggested role of the FPN and the proposed model
and implies behavioral relevance of representations in the MFG. I will expand on those
findings in the context of the big picture of this thesis in the general discussion.

4.4 Appetitive generalization in an online sample

The third study had the purpose to test whether the results from aversive conditioning
translate to appetitive conditioning as well. This is an important aspect as the proposed
mechanism of generalization is supposed to be a general one. If, as I propose, fear gener-
alization is not a fundamentally different process from other forms of generalization, then
a similar behavioral pattern should emerge for generalization of learned appetitive associa-
tions.

4.4.1 Methods

In contrast to the first two studies, this study was an online study. Apart from this and
the change from aversive to appetitive conditioning, the procedure was very similar to the
other studies. Some obvious differences were unavoidable due to the change of valence in
the UCS and the context of an online study.

Sample description. Subjects were acquired using the services of Prolific (https://www.
prolific.co/). The experiment itself was hosted on Pavlovia (https://pavlovia.org/). Because
this platform is incompatible with MATLAB and the PsychToolbox, I programmed the task
in Javascript using the jsPsych library (https://www.jspsych.org/). I imposed some
constraints on eligibility for subjects. Only subjects that reported German as their first
language, had completed at least 50 tasks on Prolific and had an approval rate of at least 95%
were allowed to take part. Subjects that chose to participate in the study were redirected
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to Pavlovia for the experiment. After a successful completion, they were redirected back
to Prolific. The payment was handled by Prolific and participants received 12£/h for their
participation.

Because of the difficulty to conduct a within-subject study on Pavlovia, subjects were
instead randomly assigned to the happy and angry condition. In total, I collected data from
104 subjects. The random allocation resulted in a somewhat unbalanced distribution of 48
subjects in the angry and 56 subjects in the happy condition. Of those 104 participants, 44
identified as female (60 as male). The mean age was 30.9 years with a range of 18 to 59.

Experimental procedure. After being forwarded to Pavlovia, subjects were informed
about the study and gave informed consent for their participation. After that, subjects took
part in the same quadruplet task as in the other two studies. I used the same sequences
and stimuli for this.

For the main generalization task, the stimuli, sequences of stimuli, stimulus durations
and ITIs were the same as in the first study. Instead of an electric shock as UCS, I used
money as reinforcement. Due to its cultural significance, monetary reward acts as a power-
ful secondary appetitive reinforcer with a similar neural profile to primary reinforcements
(Knutson et al., 2001). In rewarded trials, after the offset of the CS+, I presented the
CS+ face in conjunction with a dollar bill for 2 seconds. Subjects were informed that each
reinforced trial would result in a potential monetary gain of 0.25£ on top of the baseline
compensation. Since online studies have an additional concern with attention, I used the
oddball trials to ensure that subjects were vigilant. Subjects were informed that they needed
to react to the oddball trial with pressing the space bar and that the bonus they received was
directly dependent on their reactions. Subjects that reacted quickly enough to all oddball
trials received the whole bonus. If they reacted to half the oddball trials, they received half
and so on. Since there were 16 reinforced trials and thus a maximum bonus of 16∗0.25 = 4£
and 4 oddball trials, every successful reaction resulted in a 1£ bonus.

The expectation ratings differed in the question relative to the aversive studies. Due to
the different reinforcement, I collected reward expectation ratings instead of shock expecta-
tion ratings. The procedure was the same as in study 1, but subjects had to rate faces with
respect to the question „How likely is this face going to reward you with money?“.

Because I had established a constant perceptual space before in the first two studies and
in order to keep data quality high, I omitted the second quadruplet task. As a consequence,
I also did not compare different models for the perceptual spaces and instead fitted a single
model. The implied positions of stimuli from these models were used in the behavioral
models as described in the previous studies.

4.4.2 Model predictions

The predictions of the Bayesian model are depending on the valence of the emotional ex-
pression and the reinforcement. Accordingly, the predictions for the first and second study27

27See subsection 4.2.2.
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do not fit for the third study since the valence of the reinforcement is changed. According
to the preparedness hypotheses (Seligman, 1970), the valence of the expected outcome and
of the predictor need to be congruent. Still, emotionality is the more salient dimension and
the one that is a priori more likely to be informative with respect to an appetitive outcome.
For the prior distributions, this implies that the priors on λ, i.e. the strength of exponential
decay stayed the same as for aversive conditioning. The same is not true for µ, the midpoint
of associative maps. A simple, but reasonable way to include the change in valence in the
model predictions is to flip the priors on µemotion so that happy faces are more likely than
neutral faces to predict a reward while angry faces are less likely:

µangry ∼ Beta(6, 1) (4.27)

µhappy ∼ Beta(1, 6) (4.28)

The resulting predictions are exactly the same as in the first two studies, except that they
are for the other emotion respectively28.

4.4.3 Results

As a check for data quality, I looked at the distribution of the number of successful oddball
hits. This is depicted in Figure 4.27 and indicates ongoing attention in almost all subjects.

Figure 4.27: Distribution of the number of successful oddball hits. The vast majority of
subjects reacted to all oddball trials, with only two subjects reacting to less than half of the trials.

Perceptual space. Perceptual spaces in the online study (Figure 4.28) are very similar to
those in the other two studies. As in those, the fitted group level positions are aligned fairly

28Refer to Figure 4.9 and mentally exchange the rows with each other.
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closely with the grid that indicates the expected positions. Single subject positions were
included in the behavioral models to account for individual differences in the perceptual
spaces. Note that these spaces are based on a single iteration of the quadruplet task, while
positions in the first two studies were based on two iterations.

Figure 4.28: Perceptual space of the online study. As in the other studies, those are fairly
closely aligned with the grid that indicates the expected positions. This indicates that data quality
in the online study is comparable to data that was collected in the lab.

Behavioral models. Since the only difference in the rating data was the valence of the
reinforcement and consequently also the expected outcome (i.e. reward expectation ratings
instead of shock expectation ratings) and because I’m suggesting a general process of gen-
eralization that is independent of the valence, I fitted the same models to the data as in the
other two studies. Given my assumption of generalization as a valence-independent process,
I expected a similar pattern of results in the model comparison and parameter inspections.
Results from model comparison are shown in Table 4.5.

The emerging pattern suggests, that models that include proximity to the CS+ sepa-
rately for each dimension explained the data better than models with a compound or a
single measure for proximity. Additionally, models that included non-linear temporal dy-
namics for the strength of updating and the impact of proximity fitted the data better than
models that assumed linear dynamics and a static impact of proximity. The best fitting
model was model 3b, which is the same as in the first two studies. While the validity of the
ELPD is questionable for a subset of those models29, the overall pattern closely follows the
studies with aversive conditioning, which is in line with my assumption of a general process
of generalization.

A striking difference in mean ratings when comparing them to the other two studies is the
change in the initial impact of emotionality. As suggested by the preparedness hypothesis
(Seligman, 1970), I observed a flipped pattern, where happy faces were initially rated as

29Indicated with an asterisk in Table 4.5.
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Condition
Model Angry Happy
1a -11555.03 -13207.22
1b -11491.83 -13022.28
1c -11796.53 -13157.57
2a -11296.61 -12812.19*

2b -11093.63 -12596.48*

2c -11532.55 -12764.98*

3a -11154.05 -12802.83
3b -11077.13 -12558.48
3c -11409.12 -12703.5

Table 4.5: Model comparison for behavioral models in online study. Like in the other
two studies, model 3b showed the best fit. Importantly, this is despite the fact that the value of
reinforcement is different. Note that I observed divergent transitions in the fitting of some models.
Those cases are marked with an asterisk.

more likely to be rewarding than neutral faces. In contrast, angry faces were rated as less
likely to lead to a reward. Apart from that, mean ratings were very similar to those in
the other studies with an initial impact of emotionality that was followed by a gradual
decrease, while the impact of proximity became more relevant with time. This effect again
was stronger along the emotional dimension, indicating partial dimensionality reduction.
Additionally, the initial effect of emotionality was stronger in the congruent, i.e. the happy
condition. Recall that this effect was stronger in the angry condition in aversive conditioning.
Posterior predictive checks indicated that ratings could be explained well by the best-fitting
model.

To corroborate those initial findings and strengthen the overlap with the other two
studies, I again investigated the posterior distributions on parameters of the best-fitting
model. Those can be seen in Figure 4.30. Besides the fact that the impact of emotion was
flipped with respect to the different emotions when compared to the aversive conditioning
studies, overall a very similar pattern of posterior distributions with the same model emerged
in the present study. A detailed description of the parameter estimates is given in the legend
of Figure 4.30. Again, the invariance to the valence of the reinforcements indicates a general
process and is in line with the assumption that fear generalization is not fundamentally
different from other forms of generalization, e.g. in the context of appetitive generalization.

4.4.4 Interim discussion

The present study investigated the scope of the proposed mechanism by testing it in a
new context. In contrast to the widely held assumption that fear generalization is a special
case of generalization, among other reasons for the supposed dependence on the amygdala, I
showed that results from a study design that only differed in the valence of the reinforcements
from the aversive design in the first two studies led to very similar results. In particular, the
dynamics of ratings, the dependence on the emotionality of faces and the increased relevance
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Figure 4.29: Mean ratings and posterior predictive checks for the online study. a)
Mean ratings for the angry condition show an opposite and weaker effect of emotionality in the first
rating, when compared to the other studies. Other than that, the structure and dynamics of the
ratings are very similar. b) Likewise, ratings in the happy condition show an opposite and stronger
effect of emotionality and are otherwise comparable to those of the first two studies. c)-d) Posterior
predictive checks indicate that ratings could be explained well by the winning model in both the c)
angry and d) happy condition.

of the emotion dimension showed a striking invariance to the valence of reinforcements.
Solely the direction of the initial impact was reversed, which is in line with the preparedness
hypothesis and emphasizes the importance of prior knowledge over and above the salience
of dimensions. This finding in combination with the dynamics of belief updating strongly
suggest a Bayesian mechanisms that is independent of the kind of reinforcement.
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Figure 4.30: Posterior distributions of the model parameters for the online study.
a) In the angry condition, ratings were initially dependent on the emotionality of faces, with a
slight unexpected effect of identity. Ongoing conditioning reversed the effect of emotionality. b)
Unexpectedly, proximity to the CS+ in both axis had small initial impact on ratings. Since nothing
had been learned for the first ratings and this effect is not visible in mean ratings, I attribute this
to inflexibility in the model. Impact on both dimensions increased, with a stronger effect along the
emotion dimension. c) Updating from rating to rating slowed down and d) the impact of proximity
became narrower with time. e) As a result, ratings were initially driven mostly by emotion, but
towards the end most strongly dependent on proximity along the emotion dimension. f) Similarly, in
the happy condition, ratings were initially driven by emotionality and this effect decreased with time.
The direction of the effect is opposite to the angry condition and the previous studies. g) Proximity
to the CS+ was not relevant in the beginning but increased, especially along the emotion dimension.
h) The belief state became more stable over time, but i) the impact of proximity became narrower.
j) Over the ratings, the stronger impact of emotionality, compared to the angry condition stayed
more relevant over time, but like in the angry condition, proximity along the emotion dimension
became a strong driver of ratings.
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5 General discussion

The current thesis aimed to contribute of our understanding of human generalization. How
do people deal with an everchanging world and are able to apply knowledge that they have
acquired in certain situations and about certain stimuli to other situations and stimuli?
After having reported the theoretical, methodological and empirical work that I conducted
to this end, I now want to summarize the contributions of my thesis. In particular I want to
recapitulate on the specific questions I was trying to answer, briefly summarize and interpret
the results I have obtained and discuss their implication.

5.1 Recapitulation of the research question

As outlined in the introduction, I have identified three main subfields in which generalization
is discussed in different contexts: (1) Stimulus generalization, (2) generalization in RL and
(3) inductive reasoning. I have also given my reasons to believe that there is the possibility
of a common mechanism that would describe phenomena in all fields. That is not to say,
that these are the exact same thing, but it seems reasonable to assume that they rely at
least partly on the same mechanism. In order to proceed in that direction, I derived my
main research question that I wanted to answer in the course of this thesis: „How can
results and explanations from all subfields be integrated into a single model and what is
the neural implementation?“. It seems important to note that a fully satisfying answer to
this question is way beyond the scope of this thesis and will require a lot of further work by
people smarter than me.

5.2 Summary of theoretical and empirical results

Theoretical results

A formal attempt to propose a common mechanism and thereby unify those fields needs to
be able to explain a bulk of results from all fields and to comprise mechanisms that have been
shown to be a good match for empirical data. It therefore needs to be Bayesian in nature
to account for the vast and fruitful literature on inductive reasoning (J. C. Lee, Lovibond,
Hayes, & Navarro, 2019; Shepard, 1987; Tenenbaum & Griffiths, 2001a). It needs to include
some form of abstraction, e.g. dimensionality reduction, as this is a primary mechanism
in RL (Badre et al., 2021; Niv, 2019; Tomov et al., 2018). To provide an integration, it
should ideally provide a rational explanation for this abstraction in the context of a Bayesian
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model. Lastly, it needs to be applicable to probabilistic associative learning to account for
the literature on stimulus generalization in general (Ghirlanda & Enquist, 2003) and fear
generalization in particular (Dymond et al., 2015) and include a treatment of perceptual
inaccuracy (Schechtman et al., 2010; Zaman et al., 2019).

To my knowledge, such an attempt has not been made before, since previous approaches
aimed to integrate either inductive reasoning and stimulus generalization (J. C. Lee, Lovi-
bond, Hayes, & Navarro, 2019) or generalization in instrumental learning (i.e. RL) and
stimulus generalization by including an instrumental generalization phase (Norbury et al.,
2018; van Meurs et al., 2014).

Luckily, some theoretical parallels between the subfields that I believe have been over-
looked so far, can be used to facilitate this process. An obvious parallel between inductive
reasoning models that are based on the idea of a psychological space and consequential
regions (Shepard, 1987; Tenenbaum & Griffiths, 2001a) on the one side and RL, that is
concerned with state spaces on the other side, is the idea of a spatial configuration. To go
beyond that, the learning of an adequate state space representation and the learning of a
psychological space seem very similar to me. I assume that work that is concerned with
either of those two processes (e.g. Austerweil et al., 2019; Collins & Frank, 2013) will be
helpful in the future to extend and refine approaches that try to unify them.

The model that I have developed in this thesis is heavily influenced by the work of
Tenenbaum and Griffiths (2001a), Soto et al. (2014), and J. C. Lee, Lovibond, Hayes, and
Navarro (2019). The most important addition that I have made to the existing models is a
rational treatment of partial or full dimensionality reduction. The implementation of this is
based on a rescaling of perceptual dimensions according to their currently assumed impor-
tance. Importantly, this provides a bridge between inductive reasoning models, parts of the
literature on generalization in RL (Leong et al., 2017; Niv et al., 2015; Niv, 2019; Tomov
et al., 2018) and the role of low-dimensional neural representations as a neural mechanism
(Badre et al., 2021; Fusi et al., 2016). One important aspect that the full Bayesian treatment
adds is the omission of the distinction between learning about the relevant dimensions and
learning about the values on those dimensions. In addition, the model is able to account
for prior knowledge and provides a way to include it when making predictions.

To account for perceptual inaccuracy, the model includes a mechanism that implements
misidentification of stimuli that is based on the idea of a perceptual confusion matrix and
Gaussian perceptual noise.

Empirical results

Behavioral results. Even just looking at the raw data from the experiments, it is clear
that the data closely followed the predictions of the proposed model in all three studies. To
go beyond a purely qualitative assessment, I fitted a series of models to the data. Those
models incrementally include hypotheses that I derived from the full Bayesian predictions.
Empirically, the model that includes the most hypotheses fits the data best across all three
studies and all conditions. I interpret this as a strong indication that the model is a good
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match for the data. Importantly, I provide evidence for partial dimensionality reduction in
all three studies. This effect was previously understudied in the context of stimulus gener-
alization. While this is not proof of the validity of the model, it is a strong indication that
the actual process of generalization shares some important properties with the mechanism
of the model.

Neural results. Since previous neural results in stimulus generalization have been over-
whelmingly descriptive (Webler et al., 2021), I intended to investigate whether those findings
can be integrated with the literature on neural mechanisms of abstraction in RL. While
there are some inconsistencies in this literature, a common theme that has emerged is the
involvement of the FPN and the aIC in the process of either the discovery (Niv, 2019)
or the encoding (Loose et al., 2017; Tomov et al., 2018; Woolgar et al., 2011) of relevant
dimensions. Correlational results that I reported were equivalent to the typical neural gen-
eralization tunings in fear generalization (see Webler et al., 2021 for a meta-analysis). To
investigate the role of those areas further, I conducted another correlational analysis which
revealed a distinction between stimulus dimensions, with activity in the aIC and the FPN
being correlated with generalization along the emotional but not the identity dimension,
whereas the DMN did not show such a distinction. Seeing this as a first corroboration of a
similar role of the aIC and the FPN in the process of stimulus generalization as in the con-
text of RL, I used RSA to investigate this further. This analysis showed that the bilateral
MFG1 more strongly encoded the emotional dimension than the identity dimension of stim-
uli. Taking the temporal dynamics of those representations into account, the left MFG, but
to a certain extent also the right MFG, showed the expected pattern in which representa-
tions were initially more strongly correlated with the emotional dimension and then drifted
towards a two-dimensional representation. It turned out that individually, the increase of
representational dependency on the identity dimension in the left MFG was correlated with
decreased behavioral generalization along this dimension. This leaves the dimensionality
of representations in the MFG as prime candidate for the neural implementation of the
dimensionality reduction effect in behavior.

5.3 Implications for the field

5.3.1 Generalization as a perceptual process

The role of perceptual accuracy in stimulus generalization is still an ongoing debate (Laufer
& Paz, 2012; Laufer et al., 2016; Schechtman et al., 2010; Struyf et al., 2015, 2017; Zaman
et al., 2019). Although a number of studies have empirically contradicted the assumption
of generalization as a purely perceptual process (Kampermann et al., 2021; Onat & Büchel,
2015; Tuominen et al., 2019; Zaman et al., 2021), the fact that the idea of generalization as
a perceptual process has been around for at least 65 years is a testament to its resilience.
As a consequence, it seems reasonable to probe this idea with every study on generalization.

1As a reminder: The MFG is an important hub of the FPN.
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The idea of a purely perceptual process rejects an active Bayesian process2 and thereby
a formal mechanism to incorporate prior knowledge. As a consequence, popular models of
fear generalization provide no way to implement prior knowledge (Lissek, 2012; Lissek et al.,
2014). A second consequence is that generalization cannot differ between dimensions, as
long as they are matched with respect to their perceptual similarity. My results clearly show
that both of those assumptions are wrong. There is a very clear effect of prior knowledge
along the emotional dimension. In addition, the dimensionality reduction effect prevails
until the end of the conditioning phase. Those results add to the decisive evidence that
generalization is not merely a perceptual process.

5.3.2 Fear generalization as a distinct phenomenon

Especially in the last two decades, the idea of fear generalization as a distinct phenomenon
has been gaining traction. This is, at least implicitly, apparent from multiple observations.
Most of the research on stimulus generalization has been conducted in the context of aversive
conditioning (Dymond et al., 2015), there is a lot of debate about the overgeneralization of
fear in the context of anxiety disorders (Berg et al., 2020; Greenberg et al., 2013b; Lissek,
2012) and a neural model for fear generalization has been proposed, that is centered on
the amygdala (Lissek et al., 2014; Webler et al., 2021). In addition, changes in perceptual
tuning happen exclusively in the context of negative reinforcement (Laufer & Paz, 2012;
Laufer et al., 2016; Schechtman et al., 2010).

To directly address this issue, my work contrasted generalization in the context of aver-
sive and appetitive conditioning. The results showed a remarkable similarity of outcome
expectation ratings between the two types of reinforcement and further question the idea of
fear generalization being different from other forms of generalization. Going beyond that,
neural evidence from my fMRI study suggests that fear generalization and generalization
in RL rely on similar neural mechanisms, namely the discovery and encoding of relevant
dimensions. I will advance on this point in the next paragraphs.

5.3.3 A common mechanism of generalization

The fundamental question of my thesis was whether there is a common mechanism in human
generalization that spans different applications. While I do not mean to imply that this is
a question that I was sufficiently able to answer, I believe that the presented conceptual,
theoretical and empirical evidence supports the notion that this is indeed the case.

Conceptually, all of those different applications need to be implemented in the brain
somehow. I have argued that a consideration of research that is concerned with how the
brain works in general can be helpful when identifying the neural mechanisms of stimulus
generalization and generalization in RL (Badre et al., 2021; Bottini & Doeller, 2020; Fusi
et al., 2016). The fact that low dimensionality in neural representations is applicable to all
of those different applications is a strong argument in favor of a common mechanism.

2Other than those that implied in e.g. predictive coding.
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Theoretically, I have derived commonalities between models of generalization in RL
and inductive reasoning, both of which rely on a spatial model of the world and adequate
abstractions. This observation motivated me to derive a Bayesian model of generalization
that integrates ideas from RL and inductive reasoning and is applicable to research designs
in stimulus generalization. This enabled me to propose a draft of how the suggested common
mechanism could look like and to make predictions for a specific study design.

Empirically, I have shown that rating data from aversive and appetitive generalization
studies closely followed the predictions of the model, including those derived from the di-
mensionality reduction approach in RL.

5.3.4 Neural mechanisms of generalization

FMRI studies in RL have emphasized the role of the FPN (Niv, 2019; Tomov et al., 2018)
and the aIC (Tomov et al., 2018; Woolgar et al., 2011). In addition, relevant research has
suggested a role of cognitive maps in the OFC (Niv, 2019; Schuck et al., 2016), HPC and
PPC (Bottini & Doeller, 2020; Summerfield et al., 2020). Despite some contradictions with
respect to its role3, an involvement of the FPN seems to be the most consistent finding in
this literature.

This interpretation of the role of the FPN is missing in the literature on fear general-
ization, instead the classical view of the interplay between brain networks has emerged in
recent publications (Berg et al., 2020; Webler et al., 2021). This discrepancy between the
fields seems to arise from multiple factors, among them a focus on biomarkers for anxiety
disorders and the overwhelming use of one-dimensional stimuli in fear generalization. The
latter omits the need to think about dimensional relevance. In fact, I am not aware of a sin-
gle neuroimaging study on fear generalization that emphasized that aspect of generalization
and therefore its neural implementation.

Starting from the assumption that a common behavioral mechanism most likely relies
on common neural underpinnings, I probed the role of the FPN in fear generalization within
a two-dimensional stimulus space. My results support the idea of a common mechanism
and provide evidence for the behavioral relevance of the dimensionality of representations
in the FPN, with a strong focus on the MFG.

These results can also help to solve the contradictions in the literature on the role of the
FPN in RL. In contrast to the notion that the FPN is not involved in the encoding of the
learned abstraction (Niv, 2019), my results suggest that it is.

Taken together, these results are in line with a common neural mechanism in stimulus
generalization and representation learning and a consideration of other relevant literature
suggest low-dimensional neural representations as a plausible candidate.

3Niv (2019) implied the FPN in the discovery of relevant dimensions, other authors (Tomov et al., 2018;
Woolgar et al., 2011) propose that it encodes them.
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5.4 Limitations

While I believe that there is value in the presented work, there are some limitations that
should be considered.

First, the proposed model and the empirical studies deal with associative learning. There
are some strong parallels with generalization in instrumental learning, as the dimensionality
preference and the role of the FPN. Still it is not trivial to extend the model to instrumental
learning and multiple possible actions per state. In addition, the model only accounts for
a single latent cause4 and a single outcome intensity. Any study design that violates those
assumptions would need to extend the model, which in principle is possible.

Second, the hypotheses I derived from the model are fairly generic. I found evidence for
them in the data, but the same set of hypotheses could have been derived from a different
model that is not necessarily Bayesian. The principle of multiple realizability (Bechtel &
Mundale, 1999) states that the same cognitive state can be realized by different neural
mechanisms. As a consequence, the fact that data looks like model predictions does not
imply that the data was generated by that mechanism. However, this is very general criticism
of cognitive neuroscience and the Bayesian framework, that my model is based on, has been
very successful in explaining a vast amount of phenomena. In addition, even if the brain
does not perform Bayesian inference per se, Bayesian models are still a useful model for the
actual process.

Third, the work on generalization in RL and coding principles of the brain is vast and
a literature search is not easy since the work that is relevant does not necessarily cover
generalization itself, but rather mechanisms that enable generalization. This is why a lot
of relevant papers do not have the term generalization in their title. Because they are
often not considered in the work that is directly concerned with generalization, it is hard
to have a good overview of the complete literature. One thing I want to mention is that
my consideration of research in RL has likely been biased towards those studies that focus
on the FPN. This is in parts because it is most well-aligned with my own results and also
because work on mechanisms that are likely useful for the understanding of generalization
focus on other aspects. In particular, I believe the work on cognitive maps in different brain
regions deserves more attention in following work (Bottini & Doeller, 2020; Schuck et al.,
2016; Summerfield et al., 2020).

5.5 Future outlook

I hope that this work will prove to be useful in extending our understanding of generalization.
In this last section of my thesis I want to discuss some possible directions for future work
that I would deem interesting. Essentially, those are approaches that fill the gaps that I
identified in the previous section.

On a computational level, I think the model could be extended to account for aspects
4See Soto et al. (2014).
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that it does not account for yet. In particular, those are variations in outcome strength,
multiple latent causes and a consideration of instrumental learning. The latter would imply
a consideration of multiple actions per state which is not trivial. In contrast, the extension
to multiple latent causes should not be too complicated as one can take inspiration from
the elegant work by e.g. (Soto et al., 2014).

With respect to the neural mechanisms, I think future work should try to disentangle the
role of cognitive maps and the FPN in generalization. To provide a small teaser, Summerfield
et al. (2020) and Bottini and Doeller (2020) suggested an interplay between allo-centric
cognitive maps in the HPC and ego-centric cognitive maps in the posterior parietal cortex.
Likewise, the distinction between the encoding of the learned abstraction in either the OFC
(Schuck et al., 2016) or the FPN (Woolgar et al., 2011) could be due to differences in task
demands and potentially be resolved by a more detailed analysis of study designs.

Lastly, I think that research in all three subfields that I was concerned with would
hugely profit from a consideration of work outside of their narrow focus to arrive at a more
complete picture of generalization in the brain. I hope to have contributed towards such a
more unifying approach with this thesis.
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Abstract

In a dynamic environment, the ability to adapt to changes is a key factor for survival. This
cognitive ability is called generalization and the fact that humans excel at it is a major
reason for our evolutionary success. Commensurate with this, the literature on human
generalization is vast, but our understanding suffers from a lack of a unifying framework.
Instead, generalization in associative learning, in reinforcement learning and inductive rea-
soning are implicitly treated as separate entities. Stimulus generalization, i.e. generalization
of associative learning is most often studied in the context of fear conditioning and the ex-
planatory focus is typically strongly concerned with the role of perception. Generalization in
reinforcement learning is usually assumed to rely on abstractions of state spaces, e.g. via di-
mensionality reduction. Lastly, research on inductive reasoning proposes different Bayesian
mechanisms.

To arrive at a more general mechanism of generalization, I propose a Bayesian model
of generalization that integrates dimensionality reduction into a probabilistic framework
and is applicable to probabilistic reinforcement and therefore the typical study designs in
stimulus generalization. To test the predictions of the model and to find common ground
between stimulus generalization and abstraction in reinforcement learning with respect to
their neural signature, I conducted a series of experiments. Importantly, I used face stimuli
that differed on facial identity and facial expression, which allowed me to investigate di-
mensional preferences and their relationship with prior knowledge. In addition, the study
design contained time-resolved ratings to characterize the temporal dynamics. Using the
proposed model I could then make specific predictions for the data that I expected to arise
from those studies.

Behavioral ratings closely followed the predictions of the model in all three studies,
independently of the value of the reinforcement. Initial ratings were dependent on the
value and strength of the emotional expression but became increasingly dependent on the
perceptual similarity to the reinforced stimulus. The latter effect was stronger along the
emotion dimension in all studies. Model comparison confirmed that the data followed all of
the predictions of the model.

Using fMRI data from one of the studies, I found positive correlations with behavioral
generalization in the frontoparietal attention network and the salience network and negative
correlations in the default mode network. Importantly, generalization along the emotion
dimension was only associated with the frontoparietal attention network and the salience
network, which mirrors results from reinforcement learning. In a last step, I found that
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representations in the middle frontal gyrus mirrored the behavioral relevance of the different
dimensions.

Taken together, I present coherent theoretical considerations and empirical evidence for
a common mechanism of generalization that can be well explained as a Bayesian model
and suggest that low-dimensional representations of stimuli are one key neural mechanism
underlying generalization.
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Zusammenfassung

In einer dynamischen Umwelt ist die Fähigkeit sich anzupassen ein essentieller Prädiktor für
das Überleben. Diese kognitive Fähigkeit nennen wir Generalisierung und die Tatsache, dass
Menschen darin unübertroffen sind ist ein wichtiger Grund für unseren evolutionären Er-
folg. Dementsprechend ist die Literatur zu Generalisierung in Menschen sehr umfangreich.
Allerdings leidet unser Verständnis darunter, dass es keinen einheitlichen erklärenden Rah-
men gibt. Stattdessen werden Generalierung in assoziativem Lernen, Verstärkungslernen
und induktive Schlussfolgerung implizit als separate Entitäten behandelt. Stimulusgeneral-
isierung, d.h. die Generalisierung von assoziativem Lernen wird meistens im Kontext von
Furchtkonditioning erforscht und der Fokus der Erklärungsansätze liegt häufig auf der Rolle
der Wahrnehmung. Generalisierung im Verstärkungslernen wird meistens als Abstraktion
von state spaces, z.B. durch Dimensionsreduktion, erklärt. Und letztens, die Forschung zur
induktiven Schlussfolgerung schlägt verschiedene Bayesianische Mechanismen vor.

Um zu einem generelleren Verständnis von Generalisierung zu gelangen, schlage ich ein
Bayesianisches Modell der Generalisierung vor, dass Dimensionsreduktion in einen proba-
bilistischen Rahmen integriert und auf probabilistische Verstärkungen und damit auf die
typischen Forschungsdesigns in der Forschung zur Stimulusgeneralisierung anwendbar ist.
Um die Vorhersagen des Modells zu testen und Gemeinsamkeiten zwischen Stimulusgen-
eralisierung und Abstraktionen im Kontext von Verstärkungslernen mit Bezug auf deren
neuronale Signatur zu finden, habe ich eine Reihe von Experimenten durchgeführt. Hierbei
ist relevant, dass ich als Stimuli Gesichter verwendet habe, die sich in Bezug auf die Iden-
tität und die Art und Stärke des emotionalen Ausdrucks unterscheiden. Außerdem enthielt
das Studiendesign mehrere Einschätzungen der Probanden mit zeitlicher Auflösung, die es
mir ermöglichten, die zeitliche Dynamik zu charakterisieren. Mithilfe des vorgeschlagenen
Modells konnte ich dann spezifische Vorhersagen für die Daten machen, die ich als Ergebnis
der Experimente erwartet habe.

In allen Studien folgten die Einschätzungen der Probanden den Vorhersagen des Modells
ziemlich exakt. Dies war unabhängig von der Wertigkeit des Verstärkers. Anfänglich hingen
Einschätzungen primär von Wert und Stärke des Emotionsausdrucks ab, aber mit der Zeit
wurde die perzeptuelle Ähnlichkeit zum verstärkten Stimulus relevanter. Dieser Effekt war
in allen Studien stärker entlang der Emotionsdimension. Modellvergleiche bestätigten dass
die Daten allen Vorhersagen des Modells entsprachen.

Mithilfe von fMRT Daten aus einer der Studien konnte ich zeigen, dass Aktivität im
frontoparietalen Aufmerksamkeitsnetzwerk und im Salienznetzwerk positiv und Aktivität im
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Ruhezustandsnetzwerk negativ mit der Generalisierung im Verhalten korreliert war. Beson-
ders relevant war, dass die Generalisierung entlang der Emotionsdimension nut mit dem
frontoparietalen Aufmerksamkeitsnetzwerk und dem Salienznetzwerk assoziiert war, was
sich mit Ergebnissen aus der Literatur zum Verstärkungslernen überschneidet. In einem
letzten Schritt fand ich, dass Repräsentationen im mittleren frontalen Gyrus die Verhal-
tensrelevanz der verschiedenen Dimensionen widerspiegelten.

Zusammengenommen präsentiere ich kohärente theoretische Überlegungen und em-
pirische Evidenz für einen gemeinsamen Mechanismus der Generalisierung, der gut als
Bayesianisches Modell erklärt werden kann und schlage vor, dass niedrigdimensionale
Repräsentationen von Stimuli ein entscheidender neuronaler Mechanismus sind, der der
Generalisierung zugrunde liegt.
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