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Abstract

English Version The four chapters of this dissertation combine a set of empirical

analyses drawing from several quasi-experimental methods to foster a better under-

standing of the impacts of climate policies within the realms of environmental, health,

innovation, and financial economics. The first chapter provides a comprehensive

evaluation of the world’s largest implicit carbon tax reform. Leveraging multiple

synthetic control methods and a synthetic difference-in-differences estimator, we

compare carbon and air pollutant emissions of the actual and counterfactual German

transport sector following the 1999 eco-tax reform and find average reductions in

external damages of around 80 billion Euros. We further show that environmental

taxation induced low-carbon innovation and document much stronger demand re-

sponses to environmental tax increases than to market price movements, primarily

driven by increased tax salience in newspapers. Our results highlight the key roles

of salience and fuel substitution in mediating the effectiveness of carbon taxes to

deliver climate and health benefits. The second chapter examines the causal impact

of compensation payments for indirect carbon costs embodied in electricity prices for

energy-intensive sectors. We use confidential UK plant-level data to exploit firm-level

inclusion criteria in both a difference-in-differences with inverse probability weighting

and regression discontinuity framework. Our findings suggest that compensated firms

increased production and electricity use relative to uncompensated firms, with no

significant effect on energy intensity. While compensation lowers leakage risk, it also

implies large forgone opportunity costs of public funds and increased mitigation costs

of meeting national emission targets. The third chapter analyzes the relationship

between climate policy uncertainty and firms’ and investors’ behavior. Leveraging

newspaper data, we develop a set of new indices of climate policy uncertainty, cover-

ing the United States with monthly-level variation dating back to 1990, and analyze

their impacts on firm-level outcomes such as stock returns, share price volatility,

investments in research and development, and employment for all publicly-listed firms

in the country. We employ an identification strategy that differentiates sectors by
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their relative exposure to climate policy changes and show that climate policy uncer-

tainty tends to affect all these outcomes considerably, particularly in carbon-intensive

sectors, and often more so than existing indices of economic policy uncertainty. The

direction of the effect may, however, be driven by the underlying direction of the

uncertainty, which we measure explicitly. Finally, the fourth chapter provides novel

quasi-experimental evidence on the effects of air pollutants on defensive expenditures

and economic productivity to retrieve spatially resolved estimates of the willingness

to pay for air quality improvements. To address endogeneity concerns, atmospheric

temperature inversions are exploited as a source of quasi-random variation in the

spatial concentration of PM2.5. Using administrative data from England, I find that a

plausibly exogenous 1 µg/m3 PM2.5 shock significantly affects pharmaceutical expen-

ditures and GVA per capita, partly through increased work absenteeism. Leveraging a

counterfactual reduction of 1 µg/m3 of PM2.5, I show that health benefits are more

pronounced among the elderly and progressively distributed across income levels, while

productivity gains are regressive and concentrated in urban areas. These findings

imply that incorporating the spatial heterogeneity of pollution-reduction benefits into

policy design could enhance the efficiency of environmental regulations and contribute

to tackling health inequalities linked to pollution exposure.

Keywords: air pollution; carbon tax; climate policy; compensation schemes; elec-

tricity consumption; environmental inequalities; firm decision-making; investments;

low-carbon transition; uncertainty.

JEL codes: D22; D81; D83; D84; G10; G18; G32; H23; I12; J14; O32; Q48; Q51;

Q52; Q53; Q56; Q58.

Deutsche Übersetzung Die vier Kapitel dieser Dissertation kombinieren eine

Reihe von empirischen Analysen, die sich auf mehrere quasi-experimentelle Methoden

stützen, um ein besseres Verständnis der Auswirkungen der Klimapolitik in den

Bereichen Umwelt, Gesundheit, Innovation und Finanzwirtschaft zu fördern. Das

erste Kapitel bietet eine umfassende Bewertung der weltweit größten impliziten C02-

Steuerreform. Unter Verwendung mehrerer synthetischer Kontrollmethoden und eines

synthetischen Differenz-von-Differenzen-Schätzers vergleichen wir die Kohlenstoff-
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und Luftschadstoffemissionen des tatsächlichen und des kontrafaktischen deutschen

Verkehrssektors nach der Ökosteuerreform von 1999 und stellen eine durchschnit-

tliche Verringerung der externen Schäden von rund 80 Milliarden Euro fest. Darüber

hinaus zeigen wir, dass die Umweltbesteuerung zu kohlenstoffarmen Innovationen

geführt hat, und dokumentieren eine wesentlich stärkere Reaktion der Nachfrage

auf Umweltsteuererhöhungen als auf Marktpreisbewegungen, die in erster Linie auf

eine erhöhte Bekanntheit der Steuer in den Zeitungen zurückzuführen ist. Unsere

Ergebnisse verdeutlichen die Schlüsselrolle der Steuer-Salienz und der Kraftstoffsub-

stitution bei der Frage, wie wirksam Kohlenstoffsteuern sind, um Klima- und Gesund-

heitsvorteile zu erzielen. Das zweite Kapitel untersucht die kausalen Auswirkungen

von Ausgleichszahlungen für indirekte Kohlenstoffkosten, die in den Strompreisen

für energieintensive Sektoren enthalten sind. Wir verwenden vertrauliche Daten

aus Großbritannien auf Werksebene, um Einschlusskriterien auf Unternehmensebene

sowohl in einem Differenz-von-Differenzen-Rahmen mit inverser Wahrscheinlichkeits-

gewichtung als auch in einer Regressions-Diskontinuitätsanalyse auszunutzen. Unsere

Ergebnisse deuten darauf hin, dass die entschädigten Unternehmen ihre Produktion

und ihren Stromverbrauch im Vergleich zu den nicht entschädigten Unternehmen

erhöht haben, ohne dass sich dies signifikant auf die Energieintensität ausgewirkt

hätte. Die Entschädigung senkt zwar das Leckagerisiko, bedeutet aber auch hohe ent-

gangene Opportunitätskosten für öffentliche Mittel und erhöhte Minderungskosten für

die Erfüllung der nationalen Emissionsziele. Im dritten Kapitel wird die Beziehung

zwischen klimapolitischer Unsicherheit und dem Verhalten von Unternehmen und

Investoren analysiert. Auf der Grundlage von Zeitungsdaten entwickeln wir eine

Reihe neuer Indizes für klimapolitische Unsicherheit, die die Vereinigten Staaten mit

monatlichen Schwankungen seit 1990 abdecken, und analysieren ihre Auswirkungen

auf Ergebnisse der Unternehmensebene wie Aktienrenditen, Aktienkursvolatilität, In-

vestitionen in Forschung und Entwicklung und Beschäftigung für alle börsennotierten

Unternehmen des Landes. Wir verwenden eine Identifizierungsstrategie, die Sektoren

nach ihrer relativen Exposition gegenüber klimapolitischen Veränderungen unterschei-

det, und zeigen, dass klimapolitische Unsicherheit tendenziell alle diese Ergebnisse

erheblich beeinflusst, insbesondere in kohlenstoffintensiven Sektoren, und zwar oft

stärker als bestehende Indizes für wirtschaftspolitische Unsicherheit. Die Richtung des
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Effekts kann jedoch durch die zugrundeliegende Richtung der Unsicherheit bestimmt

werden, die wir explizit messen. Das vierte Kapitel schließlich liefert neuartige quasi-

experimentelle Erkenntnisse über die Auswirkungen von Luftschadstoffen auf die

Verteidigungsausgaben und die wirtschaftliche Produktivität, um räumlich aufgelöste

Schätzungen der Zahlungsbereitschaft für Verbesserungen der Luftqualität zu erhalten.

Um Bedenken hinsichtlich der Endogenität auszuräumen, werden atmosphärische Tem-

peraturinversionen als Quelle exogener dynamischer Variationen in der räumlichen

Konzentration von Schadstoffen genutzt. Unter Verwendung von Verwaltungsdaten

aus England stelle ich fest, dass ein plausibel exogener 1 µg/m3 PM2.5-Schock die

Arzneimittelausgaben und die Bruttowertschöpfung pro Kopf signifikant beeinflusst,

zum Teil durch erhöhte Fehlzeiten am Arbeitsplatz. Anhand einer kontrafaktischen

Verringerung der PM2.5 um 1 µg/m3 zeige ich, dass die gesundheitlichen Vorteile

bei älteren Menschen ausgeprägter sind und sich progressiv über die Einkommenss-

chichten verteilen, während die Produktivitätsgewinne regressiv sind und sich auf

städtische Gebiete konzentrieren. Diese Ergebnisse deuten darauf hin, dass die Ein-

beziehung der räumlichen Heterogenität des Nutzens der Schadstoffreduzierung in die

Politikgestaltung die Effizienz von Umweltvorschriften erhöhen und dazu beitragen

könnte, gesundheitliche Ungleichheiten im Zusammenhang mit der Schadstoffbelastung

zu bekämpfen.

Schlüsselwörter: Luftverschmutzung; Kohlenstoffsteuer; Klimapolitik; Ausgleich-

sregelungen; Stromverbrauch; ökologische Ungleichheiten; Unternehmensentscheidun-

gen; Investitionen; kohlenstoffarmer Übergang; Unsicherheit.

JEL-Codes: D22; D81; D83; D84; G10; G18; G32; H23; I12; J14; O32; Q48; Q51;

Q52; Q53; Q56; Q58.
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Chapter 1

Introduction

This chapter serves as an introduction to the doctoral dissertation and it is structured

as follows. First, it begins by exploring the overarching motivation and introducing

the central environmental issue at the core of its focus: climate change. Second, it

discusses different approaches to regulatory interventions to tackle climate change

externalities according to economic theory. Third, Section 1.2 outlines the focus of

each chapter and suggests directions for future research.

1.1 Motivation and research focus

Tackling climate change. Climate change is a complex and multifaceted global

challenge that requires the development of effective policy responses to mitigate

and adapt to its impacts. The scientific understanding of climate change and its

impacts has evolved over the past few decades, with increasingly robust evidence

linking human activities to rising temperatures and other climate-related changes

(IPCC, 2022). In the absence of a substantial reduction in greenhouse gas (GHG)

emissions within the coming decades, the increase in mean temperature and in the

number of extreme weather events will threaten livelihoods and likely exacerbate

poverty and accentuate existing inequalities, both on the global stage and within
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jurisdictions (Diffenbaugh and Burke, 2019). In response, there has been a growing

urgency to develop policy responses capable of not only mitigating and adapting

to the consequences of climate change but also shepherding the transition toward a

sustainable, low-carbon economy.

The complexity and scale of the climate change challenge necessitate a coordinated

global response. Policymakers face the task of devising climate policies that are

not only effective in reducing emissions but also equitable, politically feasible, and

economically viable. Achieving consensus on emission reduction targets, aligning

incentives among countries with varying levels of economic development, and ad-

dressing the distributional impacts of climate policies are some of the intricate issues

confronting policymakers (Barrett and Stavins, 2003; Lange et al., 2007). Economic

costs associated with climate change are substantial. Among others, the disruption

of agricultural activities, human loss of life due to increased frequency and severity of

weather extreme events, and damage to critical infrastructure impose significant eco-

nomic burdens (Deschênes and Greenstone, 2007; Newman and Noy, 2023). Effective

climate policies are instrumental in mitigating these costs and stimulating innovation

and investment in green technologies, positioning countries at the forefront of the

emerging low-carbon economy (Ambec et al., 2013).

Notably, climate change is not merely an environmental and economic issue but

also a critical determinant of public health (McMichael et al., 2006; Romanello

et al., 2021; Baker et al., 2022). Elevated temperatures, altered disease vectors, and

compromised air quality are among the pathways through which climate change

influences health outcomes. Robust climate policies, by curbing emissions, have the

potential to mitigate these adverse health effects and safeguard human well-being,

yielding substantial co-benefits (Parry et al., 2015; Vandyck et al., 2020). Furthermore,

consideration of the climate-health nexus is of utmost importance when addressing

the distributional concerns of climate policies, as it underscores the intricate interplay

between environmental impacts and their uneven societal repercussions. Vulnerable

populations, including low-income communities and marginalized groups, often bear

2



a disproportionate burden of the adverse impacts of climate change (Hallegatte and

Rozenberg, 2017). Consequently, climate policies must be designed with careful

consideration of the distributional implications to ensure that the benefits and costs

of mitigation efforts are equitably distributed (Banzhaf et al., 2019; Hernandez-Cortes

and Meng, 2023).

In the context of a globalized economy, international cooperation is a prerequisite for

effective climate policy. The evolution of climate policy on a global scale has been

characterized by a series of setbacks and periods of increased stringency, reflecting

the inherent complexities and diverse interests at play. The late 20th century

witnessed the emergence of international climate agreements, notably the United

Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the

Kyoto Protocol in 1997. However, subsequent negotiations faced substantial hurdles,

with the withdrawal of the United States from the Kyoto Protocol in 2001 serving

as a stark setback. Policy setbacks incur societal costs, as regulatory uncertainty

delaying investments in low-carbon technologies may raise GHG levels, exacerbating

climate change irreversibly, and ultimately increasing transition costs to a low-carbon

economy (Dorsey, 2019).

Nevertheless, the 21st century also bore witness to critical milestones, such as the

Paris Agreement in 2015, which marked a resurgence of global climate diplomacy.

However, challenges such as differing national interests, enforcement mechanisms, and

geopolitical tensions persist in the international arena, complicating the translation of

climate policy commitments into concrete action (Nordhaus, 2021). Simultaneously,

voluntary pledges announced by individual jurisdictions have been found to fall

considerably short of the ambitious targets set by the Paris Agreement to stay below

1.5 °C of global warming (Rogelj et al., 2016), thereby giving rise to legitimate

concerns regarding the sufficiency and effectiveness of existing mitigation efforts.

In summary, the exigency of addressing climate change lies at the nexus of envi-

ronmental, economic, and social imperatives. The efficacy of climate policies is
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contingent upon their ability to reconcile the challenges inherent in their design,

delivery, and evaluation. Navigating trade-offs between economic growth, social

equity, and environmental sustainability necessitates a nuanced understanding of

the complexities surrounding climate change and an unwavering commitment to

interdisciplinary, evidence-based policy design and assessment. Consequently, our

ability to address the detrimental effects of climate change and facilitate the shift

toward a low-carbon global economy hinges on a better understanding of the effects

of different approaches to climate policymaking.

Economic principles and climate policy. Economists have long identified the

emissions of GHGs as a market failure that requires to be addressed (Montgomery,

1972; Arrow et al., 1997). According to economic theory, there are broadly two

categories of public policy designs to regulate the emissions of GHGs. First, command-

and-control regulations, which involve establishing requirements for the specific

technology used (i.e., technology mandates) or setting maximum pollution levels

(i.e., performance standards), with subsequent monitoring and enforcement. Second,

market-based or incentive-driven approaches involve imposing a price on GHGs, such

as carbon dioxide, to incentivize emitters to reduce their emissions. Market-based

solutions can be further categorized into those that control the quantity of emissions

(e.g., cap-and-trade systems, which set a limit on the quantity of emission permits)

and those that regulate the price of emissions (e.g., Pigouvian taxes). Various criteria

can be employed to assess the advantages of different regulatory approaches. These

criteria may encompass economic efficiency, cost-effectiveness, the distributional

patterns of benefits and costs, the capacity to address uncertainties, and the feasibility

within the political landscape as potential metrics for evaluation (Goulder and Parry,

2008).

In terms of efficiency, theoretical evidence underscores the superiority of market-

based solutions over command-and-control regulations under first-best conditions.

This is primarily attributed to the inherent differences among emitters in their
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capacity to curb GHG emissions, as measured by their respective marginal abatement

costs (Newell and Stavins, 2003). Within this context, incentive-based instruments

prevail by aligning marginal costs with marginal benefits across all emitters provided

that they possess knowledge of their own abatement costs while policymakers do

not. Another theoretical advantage of market-based instruments lies in their ability

to harness all available emissions reduction avenues, while command-and-control

regulations often overlook some, especially those related to output reduction. Fi-

nally, incentive-based instruments typically generate revenues (except in cases where

emission permits are allocated across emitters at no cost) that have the potential

to mitigate other distortionary taxes and yield efficiency gains. The concept of

revenue recycling presents the prospect of a double dividend which could enhance

environmental quality while concurrently reducing the net welfare cost associated

with environmental policy, as discussed by scholars such as Baumol and Oates (1988),

Pearce (1991), Carraro et al. (1996), and Chiroleu-Assouline and Fodha (2014).

However, when confronted with the presence of multiple market failures, the unequivo-

cal superiority of market-based instruments may no longer hold on theoretical grounds

and a combination of different instruments may be warranted, such as market-based,

standards and public subsidies. A key example arises when the administrative costs

associated with monitoring emissions soar, rendering command-and-control regula-

tory approaches a more effective choice (Goulder and Parry, 2008). Additionally,

in scenarios characterized by pre-existing distortions within factor markets, clean

energy standards tend to outperform price-based instruments due to their lesser im-

plicit taxation on production factors. Without government intervention, competitive

markets are also expected to under-incentivize private investment in the development

and diffusion of new low-carbon technologies (Rosendahl, 2004; Fischer, 2008). This

holds true particularly when the social marginal cost of pollution deviates from the

market carbon price and uncertainties remain over the durability of the price signal

over the long term (Ambec et al., 2013). The appropriability problem due to the

public good nature of innovation implies that incentives for clean technology R&D
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will be inefficiently low, even if emissions’ externalities are appropriately priced.

This underscores the need to complement carbon pricing schemes with tailored

technology policies, such as government research support projects that can help

restore low-carbon invention efforts to an efficient level. Finally, the road transport

sector investigated in Chapter 2 serves as an illustrative example of multiple market

failures, encompassing not only GHG emissions, but also local air pollution, noise,

accident risks, and congestion, and thus necessitating the adoption of second-best

policies.

When deciding between price or quantity-based instruments, Weitzman (1974) asserts

that the choice hinges on the steepness of the marginal damage function, particularly

in situations involving uncertainty regarding aggregate emission reduction costs

— a common scenario in practical real-world applications. That is, price-based

instruments prove superior when the marginal damage curve exhibits flatness, while

quantity-based instruments are preferred when the curve demonstrates pronounced

steepness. This reasoning stems from the crucial importance of delivering precise

emission targets when even slight changes in emissions yield substantial increases in

damage costs. Accordingly, given the relatively flat nature of the marginal damage

curve in the context of climate change, economists have traditionally argued in

favor of a carbon tax. On a global scale, Weitzman (2015) further advocates for

a uniform carbon tax rather than internationally tradable permits, referring to

uncertainty surrounding country-specific abatement cost profiles as a key rationale

for this preference.

In terms of equity considerations, regulatory intervention can give rise to distributional

concerns, particularly when certain individuals bear a disproportionate burden of

the regulation. As a case in point, in high-income countries, carbon taxes have often

exhibited regressive characteristics if the tax revenues are not effectively redistributed

(Callan et al., 2009; Preuss et al., 2021; Köppl and Schratzenstaller, 2023). This

regressive nature arises because individuals with lower incomes tend to allocate a more

substantial proportion of their consumption expenditures toward carbon-intensive
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goods. Existing research has revealed that standards may exhibit a higher degree of

regressiveness compared to a carbon tax coupled with lump-sum transfers (Levinson,

2019; Davis and Knittel, 2019). The policy debate, however, often exclusively focuses

on the costs of environmental and climate policies for consumers. Applied modeling

studies suggest that the overall distributional effects, which consider also source-side

impacts on wages and capital incomes, are less regressive or even progressive (Goulder

et al., 2019). Nevertheless, this still ignores the distribution of environmental and

health co-benefits induced by local air pollution improvements, which are also likely

distributed progressively (e.g., Drupp et al., 2018, 2021; Hernandez-Cortes and Meng,

2023). Existing research has indicated that the regressive consumer-side impacts

of carbon taxes can be mitigated when the tax proceeds are redistributed through

lump-sum transfers to all households, as demonstrated, for instance, by studies by

Metcalf (2009), Klenert and Mattauch (2016), and Cronin et al. (2019). However,

lump-sum transfers may not entirely address horizontal equity issues due to the

significant variability in tax incidence within income deciles (cf., Fischer and Pizer,

2019).

In the current climate policy landscape, there is a broad consensus among economists

that putting a price on GHG emissions would be the central element of an efficient

policy response to climate change. This was highlighted in 2019 by the “Economists’

Statement on Carbon Dividends” (Wall Street Journal, 2019) and the “Economists’

Statement on Carbon Pricing” (EAERE, 2020), jointly signed by around 5000

economists. Yet, around 77% of global emissions are currently still not facing a

carbon price (World Bank, 2022). The lack of more widespread pricing may be

a consequence of its limited acceptability, primarily driven by concerns about its

efficiency and distributional implications (Klenert et al., 2018). For instance, recent

research underscores the significance of how policies are perceived (Maestre-Andrés

et al., 2019; Douenne and Fabre, 2022). Contextual factors, such as levels of political

trust, have also been recognized as influential determinants of policy acceptance

(Rafaty, 2018). These additional dimensions wield substantial influence on the
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reception, acceptance, and ultimate effectiveness of regulatory measures. On these

premises, a more solid and comprehensive evidence base on the impacts of carbon

pricing could play a pivotal role in enhancing its credibility and political support.

1.2 This dissertation

This doctoral dissertation comprises four empirical research papers, each dedicated to

exploring distinct facets of climate policymaking. These papers aim to provide novel

evidence on the effectiveness of climate policy measures (Chapter 2), examine the

trade-offs in policy design concerning mitigation and leakage (Chapter 3), analyze

the role of uncertainty in policy implementation (Chapter 4), and investigate the

spatial distribution of pollution-reduction benefits (Chapter 5). Below, I provide a

summary of the focus of each chapter while introducing the underlying methodological

approaches. Finally, I suggest directions for future research.

1.2.1 Chapter 2: Causal effects of fuel taxation and medi-

ating mechanisms for reducing climate and pollution

costs

.

Focus of this chapter. Chapter 2 is a joint collaboration with Sophie Behr

(The German Institute for Economic Research) and Moritz Drupp (University of

Hamburg). We draw on multiple causal inference methods to conduct an empirical

assessment of the world’s largest environmental tax reform, the German eco-tax,

which increased fuel taxes in Europe’s biggest transport sector in yearly steps from

1999 to 2003 up to 15.35 cents per liter.

The analysis begins by estimating the effects of the eco-tax on emissions of CO2,

PM2.5, and NOX and on low-carbon patenting in the German transport sector.
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First, we use the synthetic control method (SCM) (e.g., Abadie, 2021) to build

counterfactual Germanies with weighted combinations of donor countries and compare

emission paths of the German transport sector and its synthetic counterfactuals.

Second, we corroborate our results using the generalized SCM (GSCM) to construct

counterfactuals by modeling emissions and low-carbon patenting with interactive

fixed effects models (Xu, 2017) and restrict the donor pool to EU countries to rule

out that effects are driven by EU-wide regulation, like emission standards (e.g.,

Reynaert, 2021). Finally, we validate the robustness and external validity of our

findings by harnessing the staggered adoption of other environmentally-motivated

taxes in Europe in a synthetic difference-in-differences (SDID) design to address

potential impacts of concurrent unobserved idiosyncratic shocks (Arkhangelsky et al.,

2021).

In addition to our causal findings, we provide complementary evidence on mediating

mechanisms by leveraging semi-elasticity models harnessing cross-country panel

variation in fuel prices and tax rates. We further explore the role of fuel substitution

in navigating the trade-off between attaining climate and pollution targets. Finally,

we test whether different demand responses to the eco-tax with respect to market-

driven fuel price changes are induced by tax salience, which we measure explicitly

based on newspaper data. We thereby provide the first direct empirical evidence for

the hypothesis that consumers react more strongly to (environmentally-motivated)

fuel taxes the more salient they and their associated price increases are.

1.2.2 Chapter 3: Carbon pricing, compensation, and com-

petitiveness: Lessons from UK manufacturing

.

Focus of this chapter. Chapter 3 is a joint work with Elisabeth Isaksen (Ragnar

Frisch Centre for Economic Research) and Misato Sato (The London School of

Economics and Political Science). We empirically examine UK manufacturing firms’
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responses to an output-based carbon cost compensation scheme introduced in 2013

following the implementation of a carbon price floor. By shielding firms from the full

carbon cost, compensation results in partial carbon cost internalization and likely

compromises efficient carbon price incentives to decarbonize industrial production

and consumption. In particular, compensation payments based on production

volumes (known as “output-based allocation”) essentially reward firms for each unit

of production and mitigate the increases in marginal costs of production that result

from emissions pricing (Fischer and Fox, 2011) and provide an implicit production

subsidy (Fischer and Fox, 2007; Fowlie et al., 2016; Meng, 2017). Dampening

incentives to limit supply from energy-intensive sectors means that to achieve the

overall ETS cap, the mitigation burden shifts elsewhere (to other sectors or towards

greater emissions intensity improvements) which means allowance prices and overall

costs rise. This perverse production incentive effect has been highlighted in the

theoretical literature (Fischer, 2001; Demailly and Quirion, 2008; Böhringer et al.,

2012; Fischer and Fox, 2011) but downplayed in policy debates arguably due to the

lack of robust empirical evidence.

To explore the effects of output-based compensation payments, we combine two

quasi-experimental research designs; a difference-in-difference (DiD) design with

inverse propensity score weighting and a ”fuzzy” regression discontinuity design

(RDD). In both approaches, we exploit variation caused by the UK eligibility rules for

receiving compensation to identify effects. We obtained confidential microdata from

the UK secure data lab on economic variables and energy use at the plant level and

combined it with a publicly available list of firms that received compensation. While

eligibility for compensation is assessed at the firm level, the amount of compensation

paid is calculated at the plant level and is linked to the plant’s output. Compared

with firm-level analysis, more disaggregated plant-level data is advantageous because

firms may operate multiple plants across different sectors. We are comparing similar

plants belonging to compensated and non-compensated firms to isolate the effects of

the compensation for indirect carbon costs.
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1.2.3 Chapter 4: Climate policy uncertainty and the behav-

ior of firms and investors

.

Focus of this chapter. How does uncertainty in climate policy affect the behavior

of firms and investors? Chapter 4 sheds light on this question in a joint collaboration

with Stefano Carattini (Georgia State University), Antoine Dechezleprêtre (OECD),

and Tobias Kruse (OECD). To address this question, we built a novel index of

policy uncertainty specific to climate policy, which allows us to address this question

empirically. Our “climate policy uncertainty” index, or CPU, builds on the seminal

work of Baker et al. (2016) leveraging textual analysis of newspaper data to proxy

economic policy uncertainty and combines their original search strategy with keywords

related to climate policy. Our index runs monthly from 1990 onward and covers the

main newspapers in the United States. Then, we analyze the relationship between

CPU and firm outcomes such as share prices, implied volatility, employment decisions,

as well as investments in research and development.

Our approach also takes into account a crucial feature related to climate policy. While

in the case of standard economic policy, the economy tends to move along a given

trajectory determined by its steady state and uncertainty tends to be detrimental to

economic growth, in the case of climate change the economy needs to transition from

fossil-fueled activities to a cleaner way of production. Hence, the economy needs

to move from one equilibrium, which is carbon intensive, to another equilibrium,

which is much cleaner. Since climate change entered the policy arena in the 1980s,

both domestic and international climate policymaking have gone through important

achievements as well as numerous setbacks. If firms and investors respond to short-

term variation in the probability of future policy tightening, rather than adopting

long-term goals such as decarbonization, setbacks are likely to benefit them. For this

reason, our index is complemented by two sub-indices, aimed at measuring whether

the source of uncertainty is an acceleration in the process of decarbonization, or
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rather a deceleration.

The primary empirical goal of this chapter is to examine how economic outcomes

respond to greater uncertainty about climate policy, also depending on its drivers.

To do so, we exploit variations in our CPU index, and its sub-indices, across different

months, quarters, or years from 1990 onward. Specifically, we estimate fixed effects

models where we interact our news-based indices with the average carbon intensity

across 4-digit SIC industries. By doing so, we develop an identification strategy

that differentiates firms according to their relative exposure to climate policy risk.

Using panel data on publicly listed companies extracted from Compustat, our model

tests whether exposure to climate policy risk matters for economic outcomes when

greater uncertainty about climate policy materializes as measured by newspaper

article coverage.

1.2.4 Chapter 5: Pollution reduction benefits across space:

Quasi-experimental evidence from England

.

Focus of this chapter. How much pollution reduction is socially desirable, and

which societal groups would reap the greatest benefits from these reductions? From

a social welfare standpoint, answering these questions requires information on how

much individuals value pollution control, which can be assessed by retrieving empirical

estimates of their willingness to pay for ameliorating air quality.

To delve into these questions of key general economic and policy importance, in

Chapter 5 I provide novel quasi-experimental evidence on the causal effects of air

pollutants on (i) defensive expenditures as proxied by pharmaceutical expenditures

and (ii) economic productivity measured by GVA per capita to retrieve empirical

estimates of the social willingness to pay for air quality improvements that account

for heterogeneity in local-scale benefits. To address endogeneity concerns due to

residential sorting (cf. Heblich et al. 2021), atmospheric temperature inversions are
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exploited as a source of quasi-random dynamic variation in the spatial concentration

of air pollutants across England (e.g., Arceo et al., 2016; Dechezleprêtre et al.,

2019). I compile a novel and unprecedentedly granular dataset for England that

combines high-resolution vertical temperature profiles from the European Centre

for Medium-Range Weather Forecasts with gridded pollution maps, administrative

practice-level healthcare records covering 54 million residents, and data on economic

activities at the district level. The spatial resolution of my data allows me to exploit

within-district variation in thermal inversion exposure in a two-stage least squares

setting.

To explore spatial heterogeneity, I harness my causal estimation framework and simu-

late counterfactual reductions of 1 µg/m3 in PM2.5 and investigate the distributions of

both health and productivity benefits across the population and their correlation with

socio-economic factors. Additionally, I leverage the dynamic nature of the exogenous

source of variation in my empirical setting and explore how revealed preferences

have evolved over time. I rely on press coverage of the negative health effects of air

pollution to quantify the role played by changes in information exposure, which I

measure by constructing an index based on textual analysis of British newspapers’

articles.

1.2.5 Future research

Salience and instrument choice. The important role of tax salience in shaping

fuel demand that we document in Chapter 2 can have implications for instrument

choice. Due to inherently fluctuating prices, price salience may likely be less pro-

nounced in the case of emissions trading schemes. As such, increased fuel prices

may induce a lower demand response at a given carbon price rate. Investigating

the role of salience for demand responses when policy relies on emission trading

schemes is especially important given that the European Union has recently decided

to introduce a second emissions trading scheme that encompasses the transport sector
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and that may subsequently replace the current approach in many countries to levy

taxes on fuels. Such a shift to emission trading schemes may require more targeted

communication and information campaigns to yield comparable demand responses

as equivalent fuel or carbon tax rates. This is of particular relevance, especially

considering that the European Union has recently implemented EU ETS II for the

transport sector, signifying a shift away from fuel taxation as the primary policy

instrument for curbing greenhouse gas emissions. Future research should investigate

the differential salience effects of different policy instruments and compare differential

demand responses to different market-based approaches to carbon pricing.

Unilateral policies and mitigation responsibilities in a cap-and-trade. The

findings presented in Chapter 3 shed light on how unilateral policy actions taken

by individual jurisdictions can intersect with broader inter-jurisdictional climate

policies, such as the EU ETS, potentially resulting in the redistribution of mitigation

responsibilities among sectors and countries - the so-called waterbed effect (Perino,

2018). This has two significant implications. Firstly, compensation schemes can

lead to a relocation of mitigation efforts to sectors facing higher abatement costs.

Secondly, this sectoral redistribution can impact the distribution of co-benefits

arising from carbon mitigation (i.e., reduced emissions of air co-pollutants yielding

local health benefits). Investigating these two research directions is essential for

gaining a deeper understanding of the economy-wide consequences of carbon pricing

policies paired with compensation schemes. Such insights are crucial for policymakers

when evaluating these policy design choices in comparison to alternative methods of

utilizing auction revenues, including different revenue recycling mechanisms.

Distributional impacts of climate policy. Considering the spatial distribution

of benefits associated with various climate policy approaches has the potential to

enhance the efficiency of environmental and climate regulations, as discussed in

Chapter 5. Currently, there exists limited empirical evidence concerning the distribu-
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tional consequences of climate policies, with a predominant focus on consumer-side

impacts (Köppl and Schratzenstaller, 2023). Nevertheless, computational modeling

studies suggest that the overall distributional effects, when encompassing source-

side effects on wages and capital incomes, may be less regressive or even exhibit

progressive tendencies (Goulder et al., 2019). However, these analyses still overlook

the distribution of environmental and health co-benefits resulting from local air

pollution improvements, which, as demonstrated in Chapter 5, are likely to benefit

lower-income populations (e.g., Drupp et al., 2018, 2021; Hernandez-Cortes and Meng,

2023). Therefore, future research should prioritize expanding our understanding of

the distribution of different types of policy-induced costs and benefits to enable a

more comprehensive evaluation of the societal welfare impacts of diverse instruments.

Non-human benefits of climate policy. While much of the existing empirical

research on the co-benefits of climate policy primarily focuses on human impacts, it is

crucial to account that carbon mitigation and the resulting reductions in co-pollutants

can yield significant benefits within the non-human nature (Liang et al., 2020; Lin

et al., 2023; Sanderfoot et al., 2022). One example is the reduction in the deposition

of acidifying substances like sulfur dioxide (SO2) and nitrogen oxides (NOX), largely

originating from the combustion of fossil fuels. The deposition of these pollutants

can have far-reaching effects on biodiversity and terrestrial ecosystems (Zvereva and

Kozlov, 2010), potentially influencing vital ecosystem services, such as the soil carbon

cycle. Future research should aim to investigate the extent to which current levels of

air pollution deposition may be contributing to shifts in the balance between soil

carbon input and output which may ultimately affect the pace of climate change.

Future interdisciplinary explorations can shed light on additional non-human benefits

resulting from climate mitigation, helping to assess the optimal policy stringency

based on a more comprehensive range of benefits that extend beyond the realm of

human impacts.
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Updating official cost estimates. The official cost estimates to conduct cost-

benefit analyses of policies fostering air pollution reduction which have been men-

tioned in this dissertation are based on health effects driven by selected medical

conditions (i.e., affecting the respiratory and cardiovascular systems) and currently do

not account for direct productivity effects (Umweltbundesamt, 2012; UK-AIR, 2023).

These omissions pose the risk of significantly underestimating the comprehensive net

benefits attributable to such regulations. My findings from Chapter 5, along with

recent advancements in the literature (e.g., Dechezleprêtre et al., 2019; Leroutier

and Ollivier, 2022) show that productivity gains potentially represent a substantial

share of the benefits of pollution reduction. Additionally, an emerging body of litera-

ture has linked exposure to air pollution to additional health conditions, affecting

the central nervous system (Zhang et al., 2018). Accounting for such additional

potential health co-benefits, which more immediately benefit those that bear the

costs of higher carbon prices, may also be crucial for gathering greater support for

climate policies (e.g., Löschel et al., 2021). In forthcoming revisions of governmental

guidelines for policy appraisal, it is crucial to incorporate these additional benefits

into the assessment framework. Furthermore, my research supports the case for

equity weighting criteria in cost-benefit analysis that account for the distribution of

pollution reduction benefits among various socio-economic groups: such an approach

has the potential to foster policy intervention with a more equitable distribution

of net benefits, thereby contributing to enhancing their overall acceptability. The

principle of equity weighting is already discussed in the UK government’s guidelines

on cost-benefit analysis (Treasury, 2016) while distributional weights are currently

employed in Germany in the estimation of climate change damages (UBA, 2019).

16



Chapter 2

Causal effects of fuel taxation and

mediating mechanisms for reducing

climate and pollution costs

with Sophie Behr (The German Institute for Economic Research) and Moritz Drupp

(University of Hamburg)

SUMMARY. This chapter provides an assessment of how fuel taxation reduces

climate and pollution externalities with a quasi-experimental evaluation of the world’s

largest environmental tax reform. Leveraging multiple causal inference methods,

we compare carbon and air pollutant emissions of the actual and counterfactual

German transport sector following the 1999 eco-tax reform and demonstrate sizable

reductions in carbon, particulate matter, and nitrogen dioxide emissions. Using

official cost estimates, the eco-tax saved around 80 billion Euros of external costs,

predominantly relating to pollution reduction benefits. We further show that envi-

ronmental taxation contributed substantially to fostering low-carbon innovation. In

complementary analyses, we document much stronger demand responses to increases

in environmentally-motivated taxes than to market price movements, which we relate
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primarily to increased tax salience in newspapers. Our findings highlight the roles of

salience and fuel substitution in mediating the effectiveness of fuel taxes to deliver

climate and pollution reduction benefits.

2.1 Introduction

Fuel taxation is a key policy instrument to reduce negative externalities of fossil-

fuelled transportation (Parry et al., 2007; Sterner, 2007; Hintermann et al., 2021) and

has seen renewed interest due to concerns about climate change, air pollution, and

energy security (e.g., Grigolon et al., 2018; Parry et al., 2021). Understanding how

fuel taxation affects fuel demand is essential to effectively leverage this tool for policy.

Many assessments assume that demand responses to tax changes are equivalent to

those of market-driven price variations and estimate limited impacts of carbon taxes

(e.g., Green, 2021). In contrast, recent work highlights the considerable role of tax

salience effects (e.g., Chetty et al., 2009; Li et al., 2014), which may suggest that

more modest taxes may achieve politically targeted fuel reductions. Additionally,

carbon abatement represents only part of the economic benefits that can justify fuel

taxation. Importantly, transportation causes considerable health damages linked to

air pollution (e.g., Schlenker and Walker, 2016; Knittel et al., 2016) and reducing

fossil fuel use can thus yield substantial health benefits (e.g., Shaw et al., 2014; Parry

et al., 2015). Accounting for such health co-benefits may be important for gathering

public support for fuel or carbon pricing.

We investigate the effectiveness of fuel taxation in reducing carbon and air pollutant

emissions with a quasi-experimental assessment of the world’s largest environmental

tax reform: the German eco-tax. The reform increased fuel taxes in Europe’s biggest

transport sector in yearly steps from 1999 to 2003 up to 15.35 cents per liter. In

2003, implicit carbon costs due to the eco-tax amounted to �58 ($65) per tCO2 for

diesel and �66 ($74) for gasoline. This was then the second highest effective carbon
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price globally—higher alone than federal fuel taxes in the US, where regulation has

mainly focused on standards (Jacobsen et al., 2023), and only slightly lower than

the Swedish carbon tax on transport fuels that was levied on a much smaller tax

base (Andersson, 2019).

Our analysis starts by estimating effects of the eco-tax on emissions of CO2, PM2.5,

and NOX in the German transport sector drawing on a battery of causal inference

methods. First, we use the synthetic control method (SCM) (e.g., Abadie, 2021)

to build counterfactual Germanies with weighted combinations of control countries

and compare emission paths of the German transport sector and its synthetic

counterfactuals.1 Our SCM results imply that, between 1999 and 2009, the eco-tax

led to emission gaps of around 10% for CO2, 27% for PM2.5, and 13% for NOX on

average across specifications, and to an average reduction in external damages of

around 80 billion euros when using official cost estimates.2 We, second, corroborate

our results using the generalized SCM (GSCM) to construct counterfactuals by

modeling emissions with interactive fixed effects models, and restrict the donor

pool to EU countries to rule out that effects are driven by EU-wide regulation,

like emission standards (e.g., Reynaert, 2021). Finally, we validate the robustness

and external validity of our findings by harnessing the staggered adoption of other

environmentally-motivated taxes in Europe in a synthetic difference-in-differences

(SDID) design to address potential impacts of concurrent unobserved idiosyncratic

shocks. While modeling studies consistently indicate considerable health benefits

due to lower fossil fuel use (e.g., Shaw et al., 2014; Choma et al., 2021), This chapter

is the first observational study to quantify the climate and pollution reduction

benefits of fuel taxation in a quasi-experimental framework. Our assessment of

the world’s largest environmental tax reform complements studies on the role of

1We draw on a growing literature using SCMs to evaluate policies (e.g., Lindo and Packham,
2017; Cunningham and Shah, 2018), particularly for environmental regulations (e.g., Andersson,
2019; Isaksen, 2020; Bayer and Aklin, 2020; Leroutier, 2022).

2Our SCM results are robust to a host of placebo and sensitivity tests, including in-time placebos,
alternative donor pools, sets of predictors, different pre-treatment time frames, the exclusion of
one donor country at a time, and permutation tests that apply the SCM to every potential donor
country.
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emission standards to reduce climate and pollution externalities in the transport

sector (e.g., Auffhammer and Kellogg, 2011; Jacobsen et al., 2023; Reynaert, 2021)

and substantially extends investigations on the effectiveness of environmental taxes

that focused exclusively on carbon abatement.3

We further harness our battery of causal inference methods (SCM, GSCM, SDID) to

quantify the impacts of environmental taxation on the development of low-carbon

patented technologies, building on Aghion et al. (2016), who use transport fuel prices

to proxy carbon prices and link them to an increase in innovation in clean technologies

in the automobile sector. In contrast, we investigate low-carbon innovation induced

by environmentally-motivated taxation, which may yield a greater response due to

the higher salience (Sterner, 2012b). By focusing on economy-wide patent data, our

empirical strategy captures innovation in response to an implicit carbon price that

accounts for unregulated companies, upstream equipment manufacturers (Sanyal

and Ghosh, 2013), downstream suppliers (Popp, 2019) and new entrants to the

market (Noailly and Smeets, 2015), departing from existing firm-level observational

studies exploiting policy inclusion criteria (e.g., Calel and Dechezlepretre, 2016; Calel,

2020). We find that the eco-tax has led to a 6% average yearly increase in patented

low-carbon technologies concerning the transport sector. Our results thus indicate

considerable potential for fuel or carbon taxes for directing technological innovation

(Acemoglu et al., 2012) to increase the fuel efficiency and contribute to reducing

abatement costs (e.g., Popp, 2019).

Next, we enrich our causal analyses with explorations of mediating mechanisms,

focusing in particular on the roles of fuel substitution and tax salience.4 We build

on a large literature exploring effects of gasoline and energy prices on fuel demand

3Andersson (2019), Mideksa (2021) and a contemporaneous paper (Runst and Höhle, 2021)
examine the effectiveness of carbon or fuel taxes to reduce CO2 emissions using the SCM. We go
beyond in several dimensions by investigating effects on air pollution and low-carbon innovation, by
disentangling effects by fuel type to illuminate trade-offs between climate and pollution reduction
benefits, and by providing first direct evidence on the key role of tax salience.

4Analyzing other mechanisms suggests that the eco-tax has likely contributed to fostering
fleet renewal of passenger cars and to fewer passenger-kilometers travelled without reduced overall
economic activity.
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and emissions (e.g., Dahl and Sterner, 1991; Levin et al., 2017; Linn, 2019; Parry

et al., 2021), which often relies on fuel and energy prices as proxies for carbon prices

and use price changes over time to estimate impacts on fuel demand. Yet, fuel

prices are prone to endogeneity concerns, likely biasing price elasticity estimates

downwards (e.g., Kilian, 2009; Davis and Kilian, 2011; Coglianese et al., 2017). We

use cross-country panel variations in fuel-specific tax rate changes, coupled with

an instrumental variable approach, and a set of distributed lag models to account

for potential tax anticipation effects (cf. Kilian and Zhou, 2023). Our focus on

fuel-specific demand adjustments departs from previous studies that rely on changes

in gasoline consumption as a proxy for aggregate emission reductions (e.g., Davis

and Kilian, 2011; Rivers and Schaufele, 2015) and helps to illuminate the role of fuel

substitution. Accounting for gasoline-to-diesel substitution is crucial in the European

context given its high diesel share (Zimmer and Koch, 2017), and allows quantifying

trade-offs between climate and health benefits.

We first estimate price and tax elasticities of demand for gasoline and diesel to

disentangle behavioral responses in Germany. Our preferred specifications yield a

tax-exclusive price elasticity of demand for gasoline (diesel) of -0.32 (-0.26) and

an eco-tax elasticity of demand of -2.7 (-1.1). Fuel-specific eco-tax elasticities are

thus 4 to 8.5 times higher than the tax-exclusive price elasticity (a ratio referred

to as tax saliency ratio), in line with prior findings that changes in taxes are more

potent than equivalent market-driven price changes (e.g., Li et al., 2014; Rivers and

Schaufele, 2015; Andersson, 2019).5 This underscores potentially large biases in

policy evaluations that rely on responses to market-driven fuel price changes as a

proxy for the effect of environmental taxes.

We then use these fuel-specific tax elasticities to perform simulations and find that

around three-quarters of the (simulated) reduction in CO2 emissions is attributable to

5Kilian and Zhou (2023) reconsider the analysis by Li et al. (2014) using a distributed lag
model—as in Coglianese et al. (2017)—and find that the tax elasticity is not significantly different
from tax-exclusive price elasticity in the US after accounting for anticipation effects. In our setting,
even after accounting for anticipatory behavior, we still document sizable and significant tax saliency

ratios.
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lower gasoline use, partly driven by gasoline-to-diesel substitution. Conversely, almost

all decreases in PM2.5, and more than half of decreases in NOx emissions, are driven

by lowered diesel use due to the eco-tax. This highlights important trade-offs that

can arise between climate and air pollution targets, which is particularly relevant for

price instruments set on the carbon content of fuels that can foster fuel substitution.

Such fuel substitution is—with the exception of Linn (2019)—not accounted for in

existing policy evaluations. We complement Linn (2019) by relaxing the assumption

that consumers respond similarly to fuel taxes as to other changes in fuel prices.

We find that accounting for tax salience effects illuminates a much more sizable

trade-off between climate and health benefits. This trade-off, and the associated

inefficiency in targeting both climate and pollution targets with one price instrument,

is a more general feature of second-best taxation (e.g., Knittel and Sandler, 2018),

especially when it is not feasible to tax externalities directly (Jacobsen et al., 2023).

Nonetheless, both our causal estimates and simulation results using disentangled

elasticities provide evidence that the German eco-tax has led to sizable reductions in

these “untaxable” air pollution externalities.

Finally, we advance the literature on the role of salience for environmental policy (e.g.,

Li et al., 2014; Rivers and Schaufele, 2015; Huse and Koptyug, 2022) by developing

a framework to quantify the role of salience changes in the media in driving the

effects of the eco-tax. Similarly to Li et al. (2014), who show that a tax change

is associated with a greater increase in media coverage than a comparable change

in the tax-exclusive fuel price, we rely on media analysis to explicitly investigate

tax salience. Specifically, we construct a newspaper-based index to capture the

evolution of eco-tax salience based on textual analysis of German newspaper articles

(cf. Gentzkow et al., 2019). Leveraging annual variations in our salience index

within our elasticity models, we find that greater tax salience is associated with

lower consumption of both gasoline and diesel and that these effects increase with

the real eco-tax rate. Our simulations suggest that the salience of the eco-tax is

responsible for around 70% (55%) of the observed contraction in gasoline (diesel)

22



consumption. These results provide first direct evidence for the hypothesis that

consumers react more strongly to fuel taxes the more salient they are and imply that

targeted measures to increase salience may have considerable potential to enhance

the cost-effectiveness of price instruments to internalize externalities.

The chapter proceeds as follows. Section 5.4 details the methodologies employed

in our research designs. Section 5.3 discusses the data. Section 2.4 presents results

derived from SCMs, while Section 2.5 reports results on fuel and tax elasticities,

simulations, and additional mediating mechanisms. Section 2.6 quantifies climate

and health benefits, while Section 5.7 concludes. The Appendix contains institutional

details on the eco-tax reform and supporting materials for our analyses.

2.2 Methodology

2.2.1 Causal Inference Methods

This section introduces our causal inference methods—the SCM (e.g., Abadie and

Gardeazabal, 2003; Abadie, 2021), GSCM (Xu, 2017) and SDID (Arkhangelsky et al.,

2021)—and explains how we leverage them to estimate causal effects of environmental

taxation on carbon and air pollutant emissions and low-carbon innovation.

The SCM estimator. Suppose there are J +1 countries. Each country is indexed

by j, where j = 1 denotes the treated country (i.e., Germany), while j = 2, ..., J+1 are

untreated countries (the donor pool), which may be used to construct a control group.

The T time periods are divided into pre-treatment and post-treatment (i.e., after the

eco-tax reform in 1999) with T0 as the period prior to the policy (t = t0, t�1, ..., T0).

Denoting the intervention as I, the SCM considers that the observed outcome, yjt,
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is the effect from the treatment, �jtIjt, and the counterfactual outcome, yJ
jt
:

yjt = �jtIjt + y
J

jt
. (2.1)

The idea of the SCM is to construct a vector of weights over J donor countries

such that their weighted combination mimics the pre-treatment outcome of the

treated country. This weighted combination of donor units is the called a synthetic

Germany. Defining X1 as the k� 1 vector of the k characteristics of Germany in the

pre-intervention period, and X0 as the k � J vector with the same pre-treatment

characteristics for donors, the SCM algorithm identifies non-negative donor weights

W , such that
P

J+1
j=2 wj = 1, to minimize the divergence between pre-treatment

characteristics X1 and X0 of the treated country and the untreated donors. More

formally, the vector W � is chosen to minimize the mean square prediction error

(MSPE) over k pre-treatment characteristics:

MSPE =
kX

m=1

vm (X1m �X0m W )2 , (2.2)

where V is a matrix of non-negative components measuring the relative importance

of each predictor, vm. Given optimal weights w
�
j
for each j = 2, ..., J + 1 donor

country, the synthetic control at any time t is the weighted combination of the

outcome variable (e.g., CO2 emissions in the transport sector) in the donor countries,
P

J+1
j=2 w

�
j
yjt. The treatment effect �1t is then the difference between emissions in the

treated country y1t and emissions in the synthetic counterfactual in the post-treatment

period, t > T0:

�̂1t = y1t �
J+1X

j=2

w
�
j
yjt .

6 (2.3)

Choice of SCM predictors. There are various methods for choosing the relative

importance of predictors (vm) (Abadie and Gardeazabal, 2003; Abadie et al., 2010).

The standard approach selects the matrix V along weights W to minimize the

6The average treatment effect is thus given by: ˆ�1T = 1
T

PT
t=t1

(y1t �
PJ+1

j=2 w⇤
j yjt).
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pre-treatment difference between actual and synthetic Germany’s emissions, using

the synth package in STATA by Abadie et al. (2010). Despite being a primarily

data-driven approach, there is some discretion in specifying the SCM, which may

lead to cherry picking combinations of predictors to influence the result (e.g., Ferman

et al., 2020).7 Given a lack of consensus on how to choose the best specification, we

report results for a range of specifications used in previous SCM evaluations (see

Table 2.1).

Table 2.1: Overview of the specification choices for the SCMs

Specification Lagged outcome variable Selected literature examples

Baseline Lagged outcome in 1998 (t0) Andersson, 2019; Kaul et al., 2015; Leroutier, 2022

Lags (Mean) Pre-treatment outcome mean Abadie and Gardeazabal, 2003; DeAngelo and Hansen, 2014

Lags (All) Lagged pre-treatment outcome (t0, t�1, ..., T0) Bohn et al., 2014; Dustmann et al., 2017; Isaksen, 2020

Lags (Selected) Lagged outcome in 1971, 1980, 1991, 1998 Cavallo et al., 2013; Cunningham and Shah, 2018

Reunification Lagged outcome in 1991 and 1998 Specific to the German case (cf. Abadie et al., 2015)

Tax anticipation Lagged outcome in 1999 (t1) Abbring and Van den Berg, 2003; Coglianese et al., 2017

No covariates Lagged pre-treatment outcome (t0, t�1, ..., T0) Gobillon and Magnac, 2016; Lindo and Packham, 2017

Notes: Summary of SCM specifications. Specification denotes the name that we use for SCM specification henceforth. Lagged outcome variable specifies the
number and years of the pre-treatment outcome lags. All except No Covariates include as predictors (i) GDP per capita (PPP, in mio 2011 USD), (ii) gasoline
and (iii) diesel consumption per capita, (iv) the share of the urban population, and (v) the number of vehicles per 1000 people. SCM specifications for NOX

emissions also include (vi) PM2.5 emissions in the transport sector as a general proxy for air pollution to account for the impact of unilateral policies affecting
emission levels. We refer to the specification used by Andersson (2019) as the Baseline model. We start the post-treatment period in 1999 even if the first
fully treated year is 2000 to capture anticipation effects (cf. Section 2.A in the Appendix for details). Our Tax anticipation specification provides results when

we set t1 in the year 2000 for comparison.

Statistical inference for the SCM. A key advantage of the SCM is that it offers

an approach to causal analysis that does not rely on parallel pre-intervention trends

like difference in difference methods. Yet, it does not allow to employ standard

(large-sample) inferential methods, primarily because the number of suitable donors

and time periods are usually very limited. Abadie et al. (2010, 2015) and Abadie

(2021) suggest using placebo experiments using permutation techniques to make

inferences. We implement cross-sectional placebo tests by sequentially applying the

SCM algorithm to every potential donor country and compare estimated placebo

effects with the baseline results for Germany, after accounting for the quality of the

pre-treatment match, which we do by scaling effects by the relevant pre-treatment

root MSPE (RMSPE). Examining whether potential comparison countries show

7While Kaul et al. (2015) point out that including the entire pre-treatment periods of the
outcome variable as a predictor causes all other covariates to be obsolete, Ferman et al. (2020)
advise using all pre-treatment periods as it is less arbitrary.
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larger treatment effects helps assess the robustness of our results. A p-value is

then computed as the proportion of control units that have an estimated effect at

least as large as Germany’s. Suppose that the estimated standardized effect for

some post-treatment period is �̂1t and that the distribution of in-place placebo is

�̂PL

jt
= {�̂jt : j �= 1}, the one-sided and two-sided p-values are then given by:

p = Pr( �̂PL

jt
� �̂1t ) and p = Pr( �̂PL

jt
� �̂1t ) , (2.4)

p = Pr( |�̂PL

jt
| � |�̂1t| ) =

P
j �=1 1 ( |�̂PL

jt
| � |�̂1t| )

J
. (2.5)

Following Firpo and Possebom (2018) and Abadie and L’hour (2021), we implement

a one-sided test, which allows constructing p-values based on placebo effects, �̂PL

jt
,

that yield reductions in post-treatment emissions, as only reductions in emissions

due to fuel taxes are of interest for the rank statistics of country-level treatment

effects (we also report two-sided p-values). To evaluate how the significance of the

effects unfolds over time—as the eco-tax rate increased in yearly steps from 1999 to

2003 (see Figure 2.3)— we apply the permutation-based inference procedure for each

post-treatment year.

Generalized SCM with interactive fixed effects models. We additionally

draw on GSCMs (Gobillon and Magnac, 2016; Xu, 2017) based on a linear interactive

fixed effects (IFE) model (Bai, 2009). The GSCM expands the SCM in several

dimensions (see Xu, 2017 for details on the methodology). First, the GSCM allows

explicitly absorbing level differences and unobserved time-varying shocks specific

to each country with IFE. Second, by including relevant control variables, our IFE

model can control for time-varying covariates and explicitly capture heterogeneous

influences of other policies across countries, such as the different effects of EU-

wide emission standards on European economies and their emissions (cf. Bai,

2009). Third, the GSCM enhances the interpretability of SCM results by providing
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uncertainty estimates conditional on observed covariates such as standard errors

and confidence intervals to conduct statistical inference. A further advantage of the

GSCM estimator is its built-in cross-validation scheme which automatically selects

the model specification, limiting arbitrariness and reducing the risks of over-fitting.8

Synthetic difference-in-differences (SDID) with a staggered adoption

design. To further examine the internal and external validity of our SCM results,

we draw to a complementary research design that exploits the staggered introduction

of similar environmental fuel taxes within other European transport sectors in our

sample, for which causal effects on carbon emissions have been documented before:

Finland and Sweden (Andersson, 2019; Mideksa, 2021). To this end, we employ the

SDID methodology, which allows combining desirable features of a two-way fixed

effects difference-in-differences (TWFE-DID) and the SCM in a staggered adoption

setting. Specifically, the SDID estimator incorporates time and unit IFE within the

regression function together with unit-specific weights to ensure closely matched

pre-intervention trends as well as time-specific weights that reduce the influence of

time periods that significantly differ from post-treatment periods (see Arkhangelsky

et al., 2021 for details). This allows the SDID estimator to sidestep some of the

typical issues encountered in standard DID and SCM applications, which include

the inability to estimate causal relationships when parallel trends are not observed

in aggregated data for DID, and the requirement for the treated unit to be located

within a convex hull of control units in the case of SCM.9

In our setting, we harness the earlier introduction of carbon taxes in Finland in

1990 and Sweden in 1991 and leverage treatment status variation across multiple

jurisdictions to estimate the causal effects of environmental taxation with a staggered

adoption configuration.10 The key advantage of this design is that the additional cross-

8A key difference is that the GSCM employs dimension reduction before re-weighting implying
that, unlike the standard SCM, weights cannot be directly interpreted.

9The SDID estimator also exhibits greater flexibility than the standard SCM by allowing for
level differences between treatment and control groups.

10According to the World Bank (2022), the Finnish carbon tax was introduced in 1990 with an
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country variation further helps mitigate the impact of contemporaneous confounding

factors, such as potentially unobserved idiosyncratic external shocks unique to the

German context in the post-treatment period which might confound our estimations,

thereby enhancing the internal and external validity of our findings. Specifically,

the staggered introductions thus offer a suited empirical setting for curbing the

potential influence of concurrent alterations in policy, market dynamics, and societal

preferences within Germany subsequent to the environmental tax reform.

2.2.2 Semi-elasticity models

We subsequently complement our causal inference methods by estimating price and

tax elasticities of gasoline and diesel demand and use these to perform simulations

to investigate how tax effectiveness is mediated by salience and fuel substitution

using log-linear semi-elasticity models. We estimate fuel-specific elasticities, using

two different specifications (cf. Andersson, 2019). First, we calculate real price

elasticities and compare them to typical fuel demand elasticities (cf. Equation 2.6:

Real price elasticities). Second, in line with Li et al. (2014), we split the real price

into its three main elements: (i) the eco-tax, (ii) other existing fuel taxes (henceforth

the energy tax), and (iii) the remaining tax-exclusive component, here called the raw

price (cf. Equation 2.7: Eco-tax elasticities).

Real price and tax elasticity in Germany. To compare our findings to Anders-

son (2019), we first estimate a set of models based on variation in fuel demand within

Germany and use the estimated elasticities from Equation 2.7 to simulate predicted

pathways of CO2 and air pollution emissions under different taxation regimes.11 The

initial tax rate of $1.75 metric ton/CO2e and has steadily grown to $27 metric ton/CO2e by the
end of our sample in 2009. In Sweden, the initial rate amounted to around $41 metric ton/CO2e in
1991 and rose to $126 metric ton/CO2e over the same period.

11We refer to this specification as our Baseline model when discussing results in Section 2.5.
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static log-linear models for Germany are expressed as:

log(yt) = �0 + �1p
real

t
+ �2D

eco

t
+ ��Xt + �t (2.6)

log(yt) = �0 + �2p
excl

t
+ �3p

eco

t
+ �4p

energy

t + �2D
eco

t
+ ��Xt + �t (2.7)

Elasticity estimates obtained leveraging annual data within a static model typically

lie somewhere between short- and long-term elasticities, and are regarded as “inter-

mediate” (Dahl and Sterner, 1991). Outcome yt refers to log fuel consumption per

capita for gasoline or diesel in liters.12 p
real

t
is the real retail price, including VAT.

p
excl

t
is the retail price excluding the energy and eco-tax but with VAT, in real terms.

p
eco

t
and p

energy

t refer to the eco and energy tax, respectively, including VAT and are

included in the models as separate terms (cf. Equation 2.7). Deco

t
is a dummy equal

to one after the implementation of the eco-tax and zero otherwise. Xt is a vector

of control variables that includes GDP per capita, the unemployment rate, and a

time trend. The error terms are denoted by �t. We estimate the model using an OLS

regression. As autocorrelation is detected, we use the Newey-West-estimator, which

is robust against autocorrelation and heteroskedasticity.13

A standard concern with estimating fuel elasticities is an endogeneity problem, where

fuel demand can also affect supply and thus prices (e.g., Kilian, 2009; Coglianese

et al., 2017; Kilian and Zhou, 2023). Endogeneity due to reverse causality is arguably

a lesser source of concern in a single EU country setting, as crude oil prices are set

in a global market and changes in demand in a single country are thus expected to

have a relatively marginal impact on overall demand. One possibility to address this

issue is to adopt an instrumental variable (IV) approach. In line with Li et al. (2014)

and Andersson (2019), we complement our OLS regressions with an IV approach

and use the (Brent) crude oil price as an IV to validate the demand elasticities of

the real price of gasoline and diesel.

12Prior to taking logs, we convert fuel consumption to liters.
13Standard errors are calculated using lags chosen following Newey and West (1994).
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Fixed effects models with cross-country panel data. We further estimate a

set of fuel-specific fixed effects models harnessing cross-country panel variation in

fuel prices and tax rates to refine and validate our set of Real and Eco-tax elasticities

for Germany. Crucially, the additional variation across jurisdictions in the estimation

sample allows us to include a host of fixed effects to control more precisely for

unobserved time-varying confounding factors. The resulting static log-linear fixed

effects models are written as

log(yit) = �0 + �1p
real

it
+ ��Xit + �i + �t +D

eco

t
� �i + �it (2.8)

log(yit) = �0 + �2p
excl

it
+ �3p

eco

it
+ �4p

energy

it
+ ��Xit + �i + �t +D

eco

t
� �i + �it (2.9)

One key difference vis-a-vis Equation 2.6 and 2.7 is the inclusion of �i and �t,

which refer to country and time fixed effects, respectively. The former absorbs

any time-invariant characteristics that might affect fuel demand in each country

allowing us to focus on changes within countries over time whereas the latter captures

common time trends that affect fuel demand across all countries in the same way

(e.g., macroeconomic factors, technological advancements, or global demand changes).

The models allow for spatial autocorrelation by clustering standard errors at the

country-year level. We also now include our dummy indicator, Deco

t
, interacted with

country-specific dummies, �i, to absorb any unobserved jurisdiction-level shocks

affecting fuel demand after the implementation of the eco-tax (e.g., nationwide

policies affecting fuel demand). Finally, we add an EU-specific time trend among a

vector of cross-country control variables, Xt, to account for common trends in fuel

demand among European economies (e.g., EU-wide market and/or policy reforms).

2.3 Data

Our analysis is structured in two parts. In each step, we combine several data.

First, we resort to three causal inference methods (SCM, GSCM, and SDID) to
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evaluate effects of the eco-tax on CO2, PM2.5 and NOX emissions, and on low-carbon

innovation, building on a panel dataset of OECD countries. Second, we perform

complementary (non-causal) analyses on underlying mechanisms. To this end, we

estimate price elasticities relying on a time-series dataset constructed specifically

for Germany. We then examine the mechanism of tax salience in detail, relying on

textual analysis of German newspapers. Table 2.A1 in the Appendix provides a

detailed overview of all data sources used.

Emissions in the transport sector. To analyze the effect of the eco-tax reform on

CO2, PM2.5, and NOX emissions of the transport sector, we construct an annual panel

dataset of OECD countries from 1971 to 2009. We obtain CO2 emissions in metric

tons by multiplying total CO2 emissions from fuel combustion from the International

Energy Agency (IEA) by the share of total fuel combustion for transportation.

Annual emissions of PM2.5 (referring to both exhaust and non-exhaust) and NOX are

extracted from the Emission Database for Global Atmospheric Research (EDGAR)

v6.1.14,15 GDP data refers to expenditure-side real GDP at current purchasing power

parities (in million 2011 USD) from the Penn World Table. Data for population, the

share of urban population and diesel and gasoline consumption per capita in kg of

oil equivalent are from the World Bank, and the number of vehicles from Dargay

et al. (2007).

We limit our dataset to OECD countries, as these share more structural similarities

with Germany in terms of their economic situation, emissions, and form of government,

14We use EDGAR as this computes sectoral-level emissions based on the IPCC recommendations,
which assured consistency in time, harmonized sector definitions, and thus comparability across
countries. This has clear benefits over national emission inventories, which have two key caveats: (i)
a much shorter pre-treatment period (only 1990 onwards) and (ii) methodological inconsistencies in
officially-reported pollution data across time and countries, which may hinder direct comparability
and increase measurement error. Weights computed with shorter pre-treatment periods (T0), and
outcome variables with substantial noise, may increase biases in SCM (Ferman and Pinto, 2021)
and GSCM (Xu, 2017).

15Key benefits of looking at transport emissions directly include capturing changes in country-
specific emission factors for technologies in the transport sector, as well as fuel demand adjustments
made on the extensive margin in response to a fuel tax, such as substitution between modes of
transport.
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which is desirable for the SCM (Abadie, 2021). To build a suitable synthetic control

for Germany, we exclude a number of countries. First, data for the Baltic countries,

Costa Rica, Slovakia, Czech Republic, and Slovenia is very sparse (especially prior

to 1989), which is why we cannot consistently use them for the SCM starting from

1971. Second, we exclude countries that have implemented an explicit CO2 price in

the transport sector. This concerns Finland, Sweden, Norway, and the Netherlands

(Kossoy et al., 2015).16 As a number of countries implemented carbon taxes in

the transport sector in 2009 or shortly thereafter, our analysis focuses on the time

frame up to 2009.17 Third, we exclude countries that implemented fuel taxes in

the transport sector that are not labeled as carbon taxes—similar to the eco-tax

in Germany. This includes Italy, the UK (OECD, 2001), and Spain (Bosch, 2001).

Fourth, we exclude Japan due to its very successful top runner program implemented

in 1998 that set requirements for the fuel efficiency of vehicles (Osamu, 2012). Fifth,

we exclude Ireland due to its exceptional economic growth in the 1990s. Finally,

we exclude Austria and Luxembourg due to non-negligible fuel tourism.18 These

restrictions, mostly due to carbon and fuel taxation, leave us with a main sample

of 20 countries for the time frame from 1971 to 2009 that we use in our battery of

causal inference approaches (SCM, GSCM, SDID).19

16Although Denmark implemented a carbon tax around the same time, it did not include the
transport sector, which is why Denmark remains in the sample (Andersson, 2019). The same holds
for Poland, as its carbon tax in cost per ton of CO2 was negligible at a few cents (Kossoy et al.,
2015).

17Other key rationales to end our sample in 2009 include the introduction of a vehicle circulation
tax based on carbon emission rates implemented in Germany from July 2009 (Klier and Linn,
2015), the roll-out of low-emissions zones from 2008 onward (Wolff and Perry, 2010), stricter car
emission performance standards for new car types introduced in 2009 (Reynaert, 2021), as well
as the considerable collusion on emission control technologies by German carmakers thereafter
(Ale-Chilet et al., 2021).

18Luxembourg’s fuel sales are 5 to 8 times higher per capita than those of the neighboring
countries (Dings, 2004). Austria, too, has very low taxes with a tax minimum in 2005 and a
downward trend from 1997 onwards. This is a contrast to tax increases in Germany and Italy in
1999. As a result, more fuel tourism has likely taken place and emission data is not reliable (Dings,
2004).

19An exception is that the GSCM also runs with unbalanced samples which allow us to include
countries excluded due to sparse data in earlier periods (7 in total). For each method, we show
that our findings are not significantly altered by these sample restrictions in the Appendix.
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Low-carbon innovation: Patent data. To measure innovation, we use patent

data from the OECD Patent Database. Patent documents are categorized into

climate change mitigation patents in accordance with the Y02 tagging scheme of

the Cooperative Patent Classification. We extract a panel dataset of climate change

mitigation patents related to transportation (Y02T category) filed by inventors in

OECD countries spanning from 1985 (earliest availability) to 2009. We focus on

triadic patent families to improve the quality and the international comparability

of patent counts.20 Triadic patents are a sub-set of patents taken at the European

Patent Office, the Japan Patent Office and the US Patent and Trademark Office that

protect the same invention. Since only patents applied for in all three are included, we

address concerns related to home advantage and the influence of geographical location.

Moreover, triadic patents are generally of higher value: patentees only take on the

additional costs and delays of extending protection to other countries if they deem it

worthwhile (Aghion et al., 2016).21 Patents in our data are counted according to the

earliest priority date, which corresponds to the first patent application worldwide

and is, thus, closest to the invention date.

Consumption and real price of transport fuels. To estimate price and tax

elasticities and disentangle the different taxation changes, we first construct an

annual time-series dataset for Germany, spanning from 1971 to 2009.22 The data for

the gasoline and diesel prices reflect yearly consumer prices for both fuels including

VAT. We convert all nominal prices to real prices, including the energy and eco-tax

rates and the strategic reserve component (the Appendix details data sources). As

VAT is not only imposed on the tax-free price p but also on the eco and energy taxes,

20We treat multiple application filings of an invention (i.e., a patent family) as one innovation.
We focus on patent families to capture the number of low-carbon technologies that are developed
in Germany rather than the count of underlying patent applications.

21Considering the number of jurisdictions in which a patent application is filed is a common
approach to capture patent quality (e.g., Calel and Dechezlepretre, 2016).

22A peculiarity of Germany is its division until the year 1990. As there was no market economy
in East Germany, there were no market prices and no taxes in the same sense as in West Germany.
All prices that will be discussed in this chapter thus relate only to West Germany prior to 1991,
while price data from 1991 onwards, and all fuel consumption data, reflects the entirety of Germany.
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� eco and � energy, and the strategic reserve, � sr, in the same way as on the price, the

retail price p
r can be defined as:

p
r = (p+ � eco + � energy + � sr) � (1 + V AT ) (2.10)

To account for this, VAT is already included in each retail price element.23 All prices

given in Deutsche Mark (DM) are converted to Euro, and all nominal prices and

absolute tax rates into real 1995 values. We chose 1995 as a convenient base year

close to the implementation of the eco-tax. Whenever a tax rate changed within a

year, we weighted rates according to the date at which the change took place and

used these average tax rates. The (Brent) crude oil price used for the IV regressions

is from the IEA, converted from USD per barrel to �/l using the Eurostat (2020)

�/USD exchange rate.

Second, we construct an annual panel dataset with country-level diesel and gasoline

prices to expand our country-level time series. Data on gasoline (diesel) prices and

taxes is consistently available from the IEA for 24 (19) major countries starting from

1978 onwards.24 We harness the additional cross-country variation to estimate a set

of fuel-specific price and tax semi-elasticity models which employ a host of fixed

effects to control more precisely for unobserved time-varying confounding factors.

Salience: Newspaper data. We further examine the role of salience as a me-

diating mechanism of consumers’ responses to the eco-tax. To this end, we rely

on newspaper data as a reasonably representative proxy of tax salience within the

media, as newspapers still reached the majority of the adult population in Germany

in the mid-2000s. We extract information from the Factiva database, which stores

all articles published by major newspapers either in their print or online format, and

23If the eco-tax was raised by 10 cents, the fuel price would increase by 11.90 cents with a VAT
rate of 19%. Thus, the eco and energy tax rates include VAT. In our calculations, the price increase
is attributed to a change in the eco-tax rate.

24The difference in the number of jurisdictions covered by the IEA data for gasoline and diesel
prices stems from the lack of a sizable market for diesel in a number of jurisdictions.
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use this to develop a newspaper-based index to capture the evolution of salience of

the eco-tax-inclusive price based on textual analysis of newspaper articles (Gentzkow

et al., 2019). We restrict our analysis to the four largest newspapers retrievable

from Factiva, as relying on a single source provides consistent, comparable, and thus

more robust counts. While, as a consequence, our text analysis does not capture

Germany’s largest tabloid (BILD), it captures a representative account of newspaper

salience in four of the largest nationwide newspapers from both the center-left (Der

Spiegel and Die Zeit) and center-right spectrum (Die Welt and Focus).

We designed a text-based search strategy to identify newspaper articles that specifi-

cally discuss the repercussions of the eco-tax on the price increase of transport fuels.

We prefer this approach vis-a-vis focusing on articles that more broadly discuss the

ecological tax reform to ensure that our index more accurately proxies an indicator of

eco-tax price salience. Our main salience index is thus constructed using the number

of articles published in leading German national newspapers after 1991—as there was

no unified press prior to German reunification—that discuss the effects of the eco-tax

on fuel prices scaled by newspaper-specific publishing trends specific to the topic

of environmental taxation. We scale our frequency counts to ensure that spikes in

our index are not driven by newspaper-specific trends in reporting of environmental

issues, which has experienced steadily growing attention in the German public media

(Schmidt et al., 2013), and may reflect changes in editorial priorities over time. To

obtain newspaper article counts, we rely on a set of text-based search strategies that

identify around 5,700 unique articles. After scaling the raw counts, we standardize

each newspaper’s series, average across all papers, and normalize the resulting index

to 100 over the period. We follow the same standardization and normalization

procedure by Baker et al. (2016) to leverage newspaper data in an empirical setting.

A description of our search strategies and the steps to construct newspaper-based

indices is detailed in Section 2.E.2 of the Appendix.
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2.4 Results from Causal Inference Methods

This section presents how we leverage our battery of causal inference methods (SCM,

GSCM, SDID) described in Section 2.2.2 to estimate the impact of the eco-tax on

carbon and local air pollution emissions within the German transport sector. We,

first, focus on examining emission reductions according to the SCM, performing

inference using permutation tests and assessing their robustness using standard

sensitivity and placebo tests (cf. Section 2.4.1) before turning to the GSCM (cf.

Section 2.4.2). Subsequently, we use SCM and GSCM to examine impacts on low-

carbon innovation (cf. Section 2.4.3). Finally, we use SDID to examine the internal

and external validity of the SCM and GSCM findings on both emissions reductions

and low-carbon innovation (cf. Section 2.4.4). Additional supporting evidence is

available in Section 2.B of the Appendix.

2.4.1 Emissions reductions according to SCMs

Panels (a), (c) and (e) in Figure 2.1 plot the path of CO2, PM2.5 and NOX emissions

in the German transport sector (solid line) and in synthetic Germanies (dashed lines)

across specifications (cf. Table 2.1) from 1971 to 2009. The overlap between the solid

and dashed line before 1999 captures the quality of the pre-treatment fit achieved by

the SCM; the same comparison after 1999 plots the dynamic treatment effects for

the eleven years that followed. All panels reveal sizable emission reductions following

the eco-tax reform.

The validity of SCM effects depends on synthetic Germany’s ability to replicate

emissions from the German transportation sector prior to the eco-tax introduction.

Panels (a) and (b) show that prior to the treatment, emissions from transportation

in Germany and its synthetic counterpart exhibit a high degree of similarity, with

an average absolute difference of slightly more than 0.02 metric tons of CO2, less
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than 0.01 kg of PM2.5 and around 0.22 kg of NOX . Figure 2.A5 in the Appendix

plots the distribution of country-specific weights across all specifications and shows

that the composition of our synthetic Germanies varies considerably across outcomes

and specifications. Tables 2.A2 - 2.A4 in the Appendix compares the values of

key predictors for Germany prior to 1999 with those for our baseline synthetic

Germany (cf. Section 2.3). Overall, synthetic Germany exhibits a much more refined

fit compared with the donor pool average.

Panels (b), (d) and (e) of Figure 2.1 report the estimated gap in metric tons of

CO2 and kg of PM2.5 and NOX emissions across the seven SCM specifications

(colored lines), where Average refers to the average estimated emission gap (green

line). All specifications point to sizable decreases in CO2, PM2.5 and NOX emissions

in the transport sector following the eco-tax reform. Panel (b) shows that the

distance between Germany and the synthetic Germanies is steadily growing between

1999 and 2007.25 In 2007, this distance was on average -0.42 metric tons of CO2

per capita, equivalent to a 19 percent reduction. Between 1999 and 2009, annual

emission reduction amounted to 0.23 metric tons of CO2 per capita on average, which

cumulatively sums up to 208,216,572 tons of CO2. Panel (d) presents the emission

gap over time for PM2.5. On average, 0.15 kg of per capita PM2.5 less were emitted

each year in comparison to a scenario with no eco-tax, which amounts to total PM2.5

savings of around 135,632 tons. Finally, Panel (f) displays emission gaps for NOX .

Following the eco-tax reform, per capita NOX emissions were lower by 1.5 kg, on

average, with a cumulative reduction in NOX of 1,347,190 tons.

25There are different possible explanations for the convergence in emissions after 2007. An
obvious one is the financial crisis, which evolved into an economic crisis across the EU in 2008,
which likely affected German transport differently than that of donor countries, implying that
synthetic Germany may not describe the counterfactual after 2007/2008 as accurately as before.
Another explanation is decreasing fuel taxes in real terms. As the last increase of the eco-tax took
place in 2003, the real fuel tax on gasoline and diesel has been decreasing ever since then due to
inflation.
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Figure 2.1: Synthetic Control Method results for emissions

(a) Germany vs. Synth. Germany: CO2 (b) Change in CO2 emissions over time

(c) Germany vs. Synth. Germany: PM2.5 (d) Change in PM2.5 emissions over time

(e) Germany vs. Synth. Germany: NOX (f) Change in NOX emissions over time

Notes: The figure plots the estimated reductions in CO2, PM2.5 and NOX emissions relative to (synthetic)
counterfactuals. Panels (a) and (b) refer to reductions in CO2 emissions per capita in metric tons or percentage
terms (as indicated on the respective y-axis). Panels (c) - (f) refer to reductions in PM2.5 and NOX emissions per
capita expressed either in kg. Panels (a), (c) and (e) plot the absolute paths of emissions in Germany and Synthetic
Germanies for our specifications (see Table 2.1). Panels (b), (d) and (f) report gaps in emissions over time relative

to synthetic Germanies, estimated by our seven different SCM specifications and their average.
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Figure 2.2: Mean annual percentage gap in CO2, PM2.5 and NOX emissions

Notes: The figure plots the average annual percentage gap for each specification in CO2, PM2.5 and NOX

emissions between Germany and a synthetic counterfactual development reported in Figure 2.1.

Figure 2.2 plots mean annual changes in emissions in percentage terms to put into

perspective the distribution of the effect magnitudes from different specifications.

CO2 per capita emissions decrease, on average, from 8.1% to 13.4% between 1999

and 2009, conditional on the specification used, while PM2.5 and NOX per capita

emission reductions range between 22.4% - 30.3% and 10% - 16.5%, respectively.

Our finding that emission reductions due to the eco-tax are sizable is thus robust

across a range of specifications.

Inference from permutation tests for the SCM

We rely on permutation tests to gauge the significance of our treatment effects.

Figure 2.3 plots estimated one-sided p-values in each post-intervention year. We

report yearly permutations for a number of SCM specifications: (i) Baseline, (ii)

Baseline restricting the pre-intervention period after German reunification in 1991,

(iii) Tax Anticipation, and (iv) No covariates following Ferman et al. (2020). Overall,

the distribution of the estimated p-values is centered well below a 10% threshold

level, and generally below a 5% threshold, particularly after the last eco-tax rate

increase in 2003. The mean joint two-sided p-values are below 5% for CO2 and NOX

and below 1% for PM2.5 (see Figure 2.3).
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Figure 2.3: Inference results for the Synthetic Control Method

Notes: The figure plots estimated one-sided p-values (primary left-hand side y-axis) computed as the
proportion of effects from control units as great as the treated unit in each post-intervention period, after
scaling it by the relevant pre-treatment RMSPE (Abadie, 2021). Joint two-sided p-values represent the

proportion of placebos that have a ratio of post-treatment RMSPE over pre-treatment RMSPE at least as
large as the average ratio for Germany. The gray bars plot the annual real eco-tax rate in 1995 cents

(secondary right-hand side y-axis). The darker gray bars indicate the post-treatment periods where the full
nominal eco-tax rate increase fuel was in place.

Additional sensitivity and placebo tests for the SCM

Our findings are robust to a host of standard sensitivity and placebo tests, including

in-time placebos and the use of alternative donor pools.

In-time tests. For the in-time placebos, the year of treatment is shifted to a

number of years prior to the actual eco-tax reform. Any sizable and enduring

placebo effect would cast doubt on the validity of the results from Figure 2.1. Figure

2.A6 in the Appendix shows that the synthetic control closely resembles the actual

emission trajectories in Germany after the placebo treatment and that no significant

divergence is detected.

Alternative donor pools. To investigate the sensitivity of our emission results to

the composition of the donor pool, we perform the following tests: (i) implementing

the SCM without any sample restriction either with the inclusion of covariates

as predictors or solely based pre-treatment lags, (ii) excluding only countries that
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implemented carbon taxes, and (iii) “leave-one-out” tests (cf., Abadie et al., 2015),

where we sequentially exclude from the restricted donor pool all control countries

with a weight larger than 0.001 (0.1%). The results (see Figures 2.A7 and 2.A8 in

the Appendix) show that none of the possible alternative donor pool compositions

yield a consistent non-negative post-intervention gap.

2.4.2 Emissions reductions according to generalized SCMs

We next construct GSCM counterfactuals by modeling emissions of countries with

interactive fixed effects (IFE) models. First, we include controls to explicitly account

for the impacts of EU membership, namely a binary EU member indicator and a

dummy identifying EU member countries after 2005 (denoted IFE only).26 Second,

we additionally model each country’s emissions as a function of their economic activity

(Economic activity), proxied by GDP per capita (Bayer and Aklin, 2020). Finally, we

restrict the donor pool to EU countries (EU only) to further address concerns that

effects may be partly driven by EU-wide regulation, such as emission standards (e.g.,

Reynaert, 2021). The inclusion of IFE crucially curbs the heterogeneous influence

of other nationwide policies affecting emissions in our setting. Wald tests for pre-

treatment fitting checks show that all the different models capture the variability

in the data well prior to the eco-tax reform, validating the main identification

assumption. Table 2.2 summarizes our GSCM results. We report mean reductions

of emissions due to the eco-tax with bootstrapped 95% confidence intervals. Our

GSCM results are comparable in magnitude to the average SCM results reported

in Figure 2.1, pointing towards slightly larger magnitudes in carbon reductions and

26We include this dummy to control for potential spillovers due to the EU Emissions Trading
Scheme (EU ETS), introduced in 2005, and the EU-wide PM10 limits in cities, also introduced in
2005. These spillovers are likely not substantial, as transport emissions were not covered by the
EU ETS and have not decreased due to the scheme (Bayer and Aklin, 2020). Further, Germany
failed to meet the 2005 PM10 limits, triggering infringement proceedings in 2009, and EU-wide
PM10 limits on were not very effective initially, with 70% of all cities with larger populations than
250,000 having exceeded the limits at some point as of 2007 (Wolff and Perry, 2010). Some German
municipalities responded by implementing low-emission zones from 2008 onward, limiting access for
highly-polluting vehicles within city centers.
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Table 2.2: Effects of the eco-tax with a Generalized Synthetic Control

IFE only Economic activity EU only

Panel A: CO2 (t)

Mean [95% CI] -0.43 [-0.53; -0.34] -0.39 [-0.50; -0.25] -0.44 [-0.57; -0.29]

Panel B: PM2.5 (kg)

Mean [95% CI] -0.15 [-0.26; -0.04] -0.14 [-0.25; -0.07] -0.21 [-0.27; -0.13]

Panel C: NOX (kg)

Mean [95% CI] -1.98 [-3.32; -0.24] -1.65 [-3.09; -0.14] -3.34 [-5.33; -0.26]

Observations 1053 939 451
Countries 27 27 14

Wald test p-value <0.001 <0.001 <0.001

Notes: Summary of average treatment effects and 95% confidence intervals for different GSCM specifications. Wald test
p-values refer to pre-treatment fitting tests (cf. Xu, 2017): for each specification, we report the highest p-values across panels.
All models include IFE and a binary indicator for German reunification and post-intervention. IFE only includes a dummy for
EU membership and for EU member countries after 2005 Economic activity also controls for GDP per capita, while EU only

restricts the donor pool to EU countries.

almost identical average reductions in air pollution.27

2.4.3 Impacts on low-carbon innovation for SCM and GSCM

In this section, we provide complementary evidence on the role of the eco-tax in

spurring low-carbon innovation leveraging again the SCM and GSCM. Figure 2.4

plots the estimated gaps in low-carbon patents per million of the population over

time for both methods.28 In this context, the GSCM conveniently enables absorbing

level differences in the determinants of innovative behavior across time with IFE,

such as differences in government policies and support measures and human capital,

but also other key unobservable determinants of innovation such as cultural attitudes

toward risk-taking and entrepreneurship, making it a suited approach to quantify

innovation effects.29 Here, we can see that incorporating IFE translates into a

superior pre-treatment fit yielded by the GSCM vis-a-vis the standard SCM, which

27Table 2.A5 in the Appendix shows that our results are not affected by sample trimming.
Additionally, Figure 2.A13 in the Appendix compares the dynamic treatment effects across all our
different empirical strategies.

28We further report a smoothed specification using a three-year moving average to account for
the fluctuating nature of patent data (Griliches, 1990).

29This differs from the case of air emissions which are linearly associated with fuel consumption.
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Figure 2.4: Effects of the eco-tax on low-carbon patented technologies

(a) Germany vs. Synthetic Germany (b) Change in patents over time

Notes: Our Baseline SCM includes total triadic patents per capita, the share of climate change mitigation patents
related to transportation and a pre-treatment lag as predictors whereas No covariates is only based on

pre-treatment lags. Our different GSCM specifications with IFE include different sets of controls. IFE only: (i) a
binary variable identifying EU countries and (ii) a binary variable indicating whether a country was regulated by
EU-wide regulations after 2005. Innovation further accounts for: (iii) total triadic patents per capita and (iv) share
of climate change mitigation patents related to transportation. Our Main specification additionally controls for: (v)
GDP per capita. EU only : estimates our Main specification restricting the sample to countries in the EU. Moving
average: estimates our Main specification relying on a 3-year moving average instead of annual patent counts.

Panel (b) refers to our Main specification. Percentage increases are computed as the estimated increase of triadic
patents induced by the eco-tax scaled by the annual number of climate change mitigation patents related to

transportation in Germany.

serves to derive unbiased and robust estimates. The extended pre-intervention period

allows us to account for anticipatory behavior in the years leading up to the eco-tax

reform (e.g., Lemoine, 2017). Overall, we observe that all our different specifications

point to a sizable increase in low-carbon innovation following the eco-tax reform with

an additional 0.91 patents per million population each year.30 We also detect some

anticipatory innovation responses starting after the parliamentary debate on the

eco-tax reform first gained momentum in 1995 (Beuermann and Santarius, 2006).

Figure 2.4 presents effects in percentage and cumulative terms. The gray area plots

the cumulative number of additional patents throughout the post-intervention period,

while the green bar charts show the annual percentage increase in patents induced by

the eco-tax with bootstrapped 95% confidence intervals. On average, between 1999

and 2009, the eco-tax induced an annual increase of 6.1% in carbon mitigation patents

related to transportation, which cumulatively resulted in 826 additional patented

technologies vis-a-vis a scenario without the eco-tax. This finding complements

previous studies on the innovation response of regulated companies to carbon pricing

30Our results remain unchanged when we do not trim the sample (cf. Figure 2.A10 in the
Appendix).
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schemes (e.g., Calel and Dechezlepretre, 2016), which generally find limited aggregate

effects.31

2.4.4 Staggered treatment adoption with an SDID estimator

Finally, we present our complementary results from the staggered treatment adoption

design described in Section 2.2.1 to address the concern that contemporaneous

post-treatment trends could confound our SCM estimations for Germany, and to

investigate the external validity of our German case study. Table 2.3 displays the

average treatment effects of environmental fuel taxes on air emissions and low-carbon

patenting harnessing their gradual rollout in Finland (in 1990), Sweden (in 1991), and

Germany (in 1999). We also report average effects by country to assess heterogeneity.

Additional graphical evidence on the dynamic unfolding of effects by jurisdiction

and the pre-treatment time-weights employed in the SDID estimations is available in

Figures 2.A15-2.A17 in the Appendix.

Overall, the average SDID estimates for emission reductions are comparable in

magnitude to the SCM (cf. Figure 2.1) and GSCM results (cf. Table 2.2) for Germany,

with larger effects for nitrogen dioxides driven by Finland.32 The estimated average

effects on low-carbon innovation for the three countries point to a yearly increase of

0.6 patents per million population. This figure is around half in size compared to the

point estimate for Germany of 1.1, which is instead more comparable to the SCM

and GSCM estimate ranging between 0.9 and 1 (cf. Figure 2.4). Given Germany’s

31Two key differences may explain our larger magnitudes. First, employing an economy-
wide approach can additionally capture innovation occurring along the supply chain and across
unregulated agents, due to pass-through of regulatory costs or knowledge spillovers (Popp, 2019).
Second, innovation in the automotive industry is arguably of larger importance in Germany than in
other countries that do not feature comparatively large automobile industries.

32The larger NOX effects for Finland despite its lower tax rate may be, partly, explained by
two factors: (i) a period of economic recession during the 1990s which had deep and persistent
repercussions on the Finnish economy and labor market, plausibly affecting fuel demand (cf.
Mideksa, 2021) and (ii) a concurrent nationwide tax relief scheme on the registration of cars with
catalytic converters which might have contributed to shape and accelerate the fleet renewal rate
towards less-polluting vehicles (Ministry of the Environment, 1995). By contrast, Germany and
Sweden did not levy registration taxes on new vehicles (aside from VAT) but imposed considerably
higher and comparable fuel taxes (ACEA, 2022). Results based on Germany and Sweden only are
presented in Table 2.A13 in the Appendix.
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record of innovative culture and prominent market share in the automobile sector, it

is unsurprising that the average SDID estimate for the three countries indicates a

more modest impact of environmental fuel taxes on innovation relative to Germany-

specific estimates. Accordingly, we attribute greater external validity to our average

estimate, as it is better poised to mitigate the influence of the idiosyncratic features

of Germany’s innovative behavior within the transportation sector. Our calculations

suggest that the early introduction of implicit carbon pricing in Finland and Sweden

cumulatively translated into 134 additional low-carbon patented technologies vis-a-vis

a counterfactual scenario.

On the whole, our SDID cross-country findings corroborate the internal validity of

our synthetic control results of the German environmental tax reform on air emissions

and low-carbon patenting. Furthermore, while individual magnitudes differ across

countries in plausible ways, the SDID analysis also provides evidence of the external

validity of our synthetic control results on broadly comparable effects in terms of

emissions reductions, and with qualitatively robust but smaller effects on low-carbon

innovation.

Table 2.3: Effects of environmental taxes with a SDID staggered adoption design

CO2 emissions (t) PM2.5 emissions (kg) NOX emissions (kg) Low-carbon patents

Environmental fuel taxation -0.24*** -0.10*** -2.77*** 0.64**
(0.05) (0.03) (0.97) (0.29)

Observations 858 858 858 550
Countries 22 22 22 22

Average point estimates by country

Finland -0.24 -0.10 -4.19 0.15
Sweden -0.21 -0.07 -1.89 0.71
Germany -0.32 -0.14 -1.75 1.14

German SCM effects for comparison

Germany (SCM) -0.23 -0.15 -1.50 0.99
Germany (GSCM) -0.39 -0.14 -1.65 0.91

Notes: All outcome variables are expressed in per capita terms. Patents are expressed in per million population terms.
Standard errors are computed using the bootstrap variance estimation algorithm outlined in Arkhangelsky et al. (2021) based
on multiple treated units. All regressions include unit-specific and time-specific fixed effects and control for GDP per capita
and a binary variable indicating whether a country was regulated by EU-wide regulations after 2005. Results with additional
covariates can be found in Table 2.A14 of the Appendix. Germany (SCM) is based on our Average SCM results (cf. Figure 2.1)

whereas Germany (GSCM) refers to our Economic Activity GSCM specification (cf. Table 2.2).
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2.5 Results on Fuel and Tax Elasticities

This section leverages the semi-elasticity models described in Section 2.2.2 to dis-

entangle the effects of the eco-tax, the energy tax, and VAT in order to compare

behavioral responses from changes to the eco-tax rate and equivalent fuel real price

changes. We report elasticities leveraging both national time series and cross-country

panel variation.

2.5.1 Real price semi-elasticities for gasoline and diesel

Table 2.4 reports estimates from Real price elasticities specifications (cf. Section 2.2.2)

for gasoline (left panel) and diesel (right panel) consumption.33 Using our estimate

from column (1) in the left panel (cf., Table 2.4), we derive a real price elasticity of

gasoline of -0.54.34 The IV regression yields a very similar price elasticity of -0.50

(column (2) of Table 2.4), indicating that the endogeneity of gasoline prices is likely

not a major concern in our setting. To test the instrument’s relevance condition, we

use an F-test for that single instrument. For the price of gasoline, the F-statistic

is 69.47 suggesting that the relevance condition is fulfilled and that Brent crude oil

price can be considered a suitable instrument for gasoline prices. The cross-country

elasticity based on OECD data presented in column (3) also yields a very similar

elasticity of 0.50. The right panel of Table 2.4 displays results for diesel consumption

from the real price elasticity specification (cf. Section 2.2.2). The real price elasticity

of demand for diesel shown in column (1) of Table 2.4 is somewhat lower than for

gasoline at -0.34. The IV regression in column (2) yields an estimate of -0.28, which

deviates slightly more than the IV and OLS regressions for gasoline, but is still

33See Tables 2.A8 and 2.A9 in the Appendix for robustness results using a shorter time frame
(1991–2009).

34To calculate elasticities from our log-level model estimates (log(Y ) = a+ bX), the coefficient
for each tax is multiplied by the average sample mean of the real fuel price (90 cents for gasoline
and 76 cents for diesel), as the elasticity of demand is given by � = dY

dX � X
Y . This implies that

dY
dX = beaebX . Plugging in, we obtain � = beaebX

eaebX �X = bX.
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Table 2.4: Real price semi-elasticities for transport fuels

(1) (2) (3)
OLS: Baseline IV: Brent crude OLS: Fixed effects

Gasoline Price -0.00603** -0.00553* -0.00553***
(0.00278) (0.00305) (0.00103)

Instrument F-statistic 69.47
Price elasticity 0.54 0.50 0.50

Sample Germany Germany OECD
Controls X X X
Observations 38 38 765

(1) (2) (3)
OLS: Baseline IV: Brent crude OLS: Fixed effects

Diesel Price -0.00440*** -0.00361*** -0.00454***
(0.00103) (0.000856) (0.00147)

Instrument F-statistic 168.86
Price elasticity 0.34 0.28 0.34

Sample Germany Germany OECD
Controls X X X
Observations 39 39 574

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or
either gasoline or diesel consumption (as indicated by the column heading). Columns (2) use the Brent crude oil price as an
instrumental variable for the real fuel price. Results for gasoline consumption refer to 1972-2009 in column (1) due to missing

price data prior to 1972. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust.
Standard errors in columns (1) - (2) are calculated relying on the automatic bandwidth selection procedure following Newey
and West (1994). Standard errors in column (3) are clustered at the country-year level * p < 0.05, ** p < 0.01, *** p < 0.001.

sufficiently close to corroborate the magnitude of the real price elasticity for diesel.

Once again, our real price elasticity for Germany is almost identical to what we

yield in column (3) harnessing cross-country variation across OECD jurisdictions,

indicating that Germany does not display distinctive fuel price elasticity patterns

compared to other OECD countries, reinforcing the broader applicability of our

results. Overall, our estimates fall into the range of price elasticities of demand in

the literature (e.g., Frondel and Vance, 2014).

2.5.2 Tax semi-elasticities for gasoline and diesel

The left panel of Table 2.5 displays results for gasoline consumption from the Eco-tax

elasticities specifications (cf. Section 2.2.2).35 The OLS results in column (1) in

Table 2.5 indicate that the price elasticity of demand for the price excluding the

energy and the eco-tax (but including the VAT) is -0.32. The energy tax elasticity

of demand, instead, amounts to -0.22. Both elasticities are computed relying on

coefficients that exhibit a considerably lower significance. This contrasts the eco-tax

elasticity of demand, which is estimated at -2.7 and is thus around 8.5 times larger

than the tax-exclusive price elasticity. The eco-tax elasticity of diesel demand is also

significantly higher than that for the real price. The right panel of Table 2.5 displays

the results for the different tax rates for diesel. Using column (1) in Table 2.5, the

elasticity for the real price, excluding the energy and eco-tax, is -0.26. The energy

35We cannot reject the hypothesis of full pass-through, see Section 2.C in the Appendix.
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Table 2.5: Eco-tax semi-elasticities for transport fuels

(1) (2) (3)
OLS: Baseline OLS: Fixed effects OLS: Fixed effects

Raw price of Gasoline -0.00357* -0.00256 -0.00427**
(0.00179) (0.00165) (0.00163)

Energy Tax on Gasoline -0.00242 -0.00485*** -0.00413***
(0.00476) (0.00128) (0.000569)

Eco-tax on Gasoline -0.0306*** -0.0296*** -0.0247***
(0.00700) (0.00479) (0.00350)

Raw price = Eco-tax (p-value) <0.001 <0.001 <0.001
Eco-tax elasticity 2.7 2.7 2.2

Sample Germany OECD EU
Controls X X X
Observations 38 765 509

(1) (2) (3)
OLS: Baseline OLS: Fixed effects OLS: Fixed effects

Raw price of Diesel -0.00346*** -0.00525*** -0.00506**
(0.00104) (0.00164) (0.00187)

Energy Tax on Diesel -0.00729** 0.000388 0.000937
(0.00292) (0.00152) (0.00155)

Eco-tax on Diesel -0.0143*** -0.0232*** -0.0197***
(0.00359) (0.00351) (0.00328)

Raw price = Eco-tax (p-value) <0.001 <0.001 <0.001
Eco-tax elasticity 1.1 1.7 1.5

Sample Germany OECD EU
Controls X X X
Observations 39 574 415

Notes: The dependent variable is the log of fuel consumption in liters per capita of either gasoline or diesel consumption (as
indicated by the column heading). Results for gasoline consumption in column (1) refer to 1972-2009 due to missing price data prior
to 1972. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard errors in column (1)
are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). Standard errors in columns

(2) - (3) are clustered at the country-year level * p < 0.05, ** p < 0.01, *** p < 0.001.

tax elasticity of demand is -0.56, slightly higher than the price elasticity. The eco-tax

elasticity is again the highest level at -1.1, about 4 times larger than the tax-exclusive

price elasticity. These magnitudes and the corresponding tax saliency ratios are

corroborated by our set of fixed effects models both when leveraging panel variation

across OECD jurisdictions in column (2) and restricting the sample to EU members

only in column (3). It follows that an increase in the eco-tax predicts a stronger

response in demand than that of a market-driven price change for both gasoline and

diesel.36

Li et al. (2014) discuss two underlying reasons that would reconcile our findings and

explain the estimated stronger response to the eco-tax. The first one is persistence,

meaning that consumers rely on tax changes to build expectations for the future price

of gasoline. A tax increase may thus be perceived as more enduring than market-

driven price fluctuations, which, in turn, would stimulate a stronger consumer

response. The second is salience, meaning that consumers are more aware of the

price increase due to media coverage. We investigate the role of greater media tax

salience in driving behavioral responses to changes in the eco-tax in Section 2.5.4.

36We additionally amend our semi-elasticity models with a lead to test whether consumers
increased their purchases of transport fuel in anticipation of tax increases, which could potentially
bias estimated price and eco-tax coefficients (Coglianese et al., 2017). We do not find evidence of a
potential anticipatory effect, and the estimated real price and eco-tax elasticities are very similar to
the main result reported in Tables 2.4 - 2.5 (see Figure 2.A11 in the Appendix). One explanation is
that anticipatory behavior is a lesser source of concern when dealing with yearly data as compared
to relying on monthly variation.
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Figure 2.5: Predicted emissions by fuel under different taxation scenarios

(a) Gasoline consumption (b) Diesel consumption

Notes: The figures plot predicted emissions from the eco-tax specification of our log-level semi-elasticity models (cf.
Section 2.2.2) under different taxation scenarios. We rely on the estimated fuel-specific price and tax elasticities
computed from our estimates from column (1) in Table 2.5. Panel (a) refers to predicted emissions from gasoline
consumption, while Panel (b) covers diesel. In each panel, the left-hand side primary y-axis refers to per capita

CO2 in metric tons, while the right-hand side secondary y-axis refers to per capita PM2.5 in kg. The top green line
displays predicted emissions when the eco and energy tax elasticities are set to zero, and VAT is deducted from the
fuel price. For the yellow line, the eco and energy tax elasticities are set to zero but VAT is included. The purple
line shows how predicted emissions change when the eco-tax is set to zero, but we include the energy tax and VAT.
The black line provides predicted emissions using the full model with differentiated tax and price elasticities. The

corresponding simulations for NOX emissions can be found in Figure 2.A12 in the Appendix.

2.5.3 Emission scenarios and underlying mechanisms

We next rely on fuel-specific price and tax elasticities estimates from columns (1)

in Table 2.5 to predict CO2 and PM2.5 (and NOX) emissions for different taxation

scenarios, namely a scenario where no VAT and no taxes are introduced, a scenario

where either VAT or VAT and the energy tax is added to the price of fuels, and,

finally, a scenario where all are implemented.37 We refer to this as the Simulation

Approach.

Predicted emissions in the Simulation Approach. Panels (a) and (b) in

Figure 2.5 summarize the estimated evolution of CO2 (left-hand side primary y-

axis) and PM2.5 (right-hand side secondary y-axis) emissions by fuel in the German

transport sector under different tax regimes. The black line represents predicted

37The combustion of one liter gasoline (diesel) emits 2.235kg (2.66kg) of CO2 (US EPA, 2005).
Using this factor, the predicted log gasoline (diesel) consumption values can first be turned into
liters and then CO2 emissions. To estimate PM2.5 exhaust emissions from fuel consumption, we
rely on average emission factors by the European Environment Agency (EEA) for gasoline (diesel)
vehicles in Germany (Ntziachristos and Samaras, 2019) of 0.02 grams (1.12 grams) of PM2.5 per kg
of gasoline (diesel). Although EEA only reports emission factors for PM without specifying the size
range, it clarifies that PM mass emissions in vehicle exhaust mainly fall in the PM2.5 category.
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emissions accounting for all existing tax measures, including the eco-tax, energy tax,

and VAT. The purple line plots the estimated evolution of emissions in the absence

of the eco-tax, while the yellow line depicts the expected path of emissions with

neither the eco-tax nor the energy tax, solely incorporating VAT. The green line

shows predicted emissions without any tax policies. The gap between the black and

purple line highlights the estimated emission gap attributable to the eco-tax, while

the other lines represent alternative counterfactuals.

Panel (a) in Figure 2.5 shows that, between the years 1999 and 2009, the decrease in

emissions of CO2 (PM2.5) from gasoline induced by the eco-tax was around 0.27 tons

(0.002 kg) per capita on average per year. Similarly, Panel (b) provides the estimated

emission reductions for diesel. The corresponding mean decline in annual emissions

of CO2 (PM2.5) from diesel induced by the eco-tax was around 0.11 tons (0.04 kg)

per capita, i.e. less marked than for gasoline due to the lower eco-tax elasticity for

diesel.38

Panels (a) and (b) in Figure 2.6 contrast the estimated share of aggregate reductions

in emissions attributable to contractions in either gasoline or diesel use for CO2

and PM2.5, additionally including reductions in NOX emissions. On average across

our time frame, contractions in gasoline (diesel) use were responsible for around

72% (28%) of overall reductions in CO2 emissions. Conversely, reduced diesel use is

responsible for almost the entirety (95%) of the reduction of PM2.5 emissions. In

other words, on average, reductions in diesel consumption have contributed around

21 (0.4) times more to the decline in PM2.5 (CO2) emissions relative to gasoline.

Fuel substitution and abatement trade-offs. Diesel fuel vehicles contribute

considerably more to emissions of fine particulates, such as PM2.5, than gasoline

vehicles.39 However, diesel vehicles have lower CO2 emissions rates per traveled

38Note that our simulations for PM2.5 are not directly comparable to our SCM results as the
former only accounts for exhaust emissions, thus missing a share of total PM2.5 emission reductions.

39Relying on emission factors provided by the EEA for Germany, the average PM2.5 emission
factor for diesel vehicles is around 56 times larger than that for gasoline (Ntziachristos and Samaras,
2019).
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Figure 2.6: Share of total emission reductions by fuel due to the eco-tax

Notes: The figures above plot the share of total predicted emissions reductions by fuel type from our log-level
semi-elasticity models (cf. Section 2.2.2). The share of total emission reductions for each fuel type is computed
from the estimated post-treatment gap in emissions from gasoline (diesel) consumption due to the eco-tax, which

refers to the distance between the bottom black line and the purple line in Figure 2.5.

kilometer compared to gasoline vehicles, by around 20% for otherwise virtually

identical vehicles (Linn, 2019), as diesel engines are typically much more fuel-efficient.

It follows that policy measures that foster a switch from gasoline vehicles to diesel

vehicles (e.g., taxes based on the carbon content of fuels), could, in turn, lead to a

decrease in CO2 emissions but also an increase in PM2.5 emissions. Previous research

on fuel and carbon taxation has not explicitly considered this trade-off in policy

evaluations, with the exception of Linn (2019).

Figure 2.7 plots the estimated gasoline-to-diesel substitution induced by the eco-tax

(cf., Table 2.A11 in the Appendix), implying that part of the contraction in CO2

linked to reduced gasoline use came at the expense of greater PM2.5 emissions due

to fuel substitution. We estimate that the share of diesel consumption is predicted

to have increased by around 4% more than it would have had in the absence of

the eco-tax throughout the post-treatment period. Our calculations suggest that

gasoline-to-diesel substitution due to the eco-tax led to a cumulative increase in

PM2.5 exhaust emissions of around 25,000 tons.

Fleet renewal and passenger-kilometers. An important argument for regulating

emissions in the transport sector is that it can prompt a more rapid adoption of

more efficient vehicles (e.g., Jacobsen et al., 2023). Panel (a) in Figure 2.8 provides

descriptive evidence of the change in fleet renewal rate by plotting the share of new
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Figure 2.7: Substitution towards diesel due to the eco-tax

Notes: The figures plots the annual predicted substitution towards
diesel from our semi-elasticity models (cf. Table 2.A11 in the

Appendix).

passenger car registrations in the German fleet over time. We observe a discontinuity

following 1999: after the eco-tax reform, the share of new passenger cars increased

on average by 2%. Drawing a connection between this trend and our findings on

low-carbon innovation (cf. Section 2.4.3), it seems plausible that the eco-tax has

played a role in accelerating the adoption of cleaner vehicles, which could, at least

partly, explain the contraction in emissions. We then resort to our semi-elasticity

models to investigate how changes in the eco-tax rate affected the volume of road

passenger transport, proxied by passenger-kilometers (pkm). Panel (b) in Figure 2.8

shows that, on average, the eco-tax is associated with a decrease in pkm by around

6.5% (5.7%).40 These results offer suggestive evidence indicating that a share of the

estimated emission reductions can be attributed to both an accelerated fleet renewal

and a reduction in the volume of road passenger transport.

Decoupling. A common contention against the implementation of carbon taxation

revolves around potential detrimental effects on economic growth. We thus investigate

40We provide complementary, suggestive evidence that the eco-tax, and the consequent estimated
reduction in pkm, led to fewer road casualties (fatalities and injuries), which represent a considerable
externality of road transport (e.g., Anderson and Auffhammer, 2014). Again leveraging our semi-
elasticity models, we find that the introduction of the eco-tax is, on average, associated with
decreased road casualties by approximately 11% (cf. Figure 2.A14 in the Appendix). This
underscores that the externality reductions we capture here—focused solely on climate and health
benefits linked to air pollution—likely represent a conservative estimate of the benefits generated
by the eco-tax.
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Figure 2.8: Underlying mechanisms of reductions in emissions

(a) Fleet renewal (b) Passenger-kilometers (c) GDP per capita

Notes: Panel (a) plots the share of new passenger cars in the German fleet (aged 2 years or less) using data from
the UNECE Statistical Database. Panel (b) plots the estimated percentage reductions in passenger-kilometers

(pkm) by fuel for the average eco-tax rate of 13 cents. Data on pkm was retrieved from OECD Statistics. Panel (c)
plots the evolution of GDP per capita in Germany and compares it with synthetic counterfactual developments.

whether the observed reduction in emissions may have occurred alongside a reduction

in economic activity. Figure 2.8 plots the evolution of GDP per capita in Germany

relative to synthetic counterfactuals. Specifically, we rely on (i) the Baseline weights

to construct a no eco-tax synthetic GDP development and (ii) an additional SCM

specification where we further include lagged GDP in 1989 and 1991 as special

predictors to account for the effect of German reunification. In both cases, we do

not document any observable long-term negative effects on GDP from the eco-tax

reform.

2.5.4 Tax salience

Our analysis continues by quantifying the role of eco-tax price salience in the media

in driving the estimated effects of the eco-tax, drawing on a growing number of

economic studies leveraging newspaper data as source of variation in the salience of

events (e.g., Li et al., 2014; Baker et al., 2016; Beach and Hanlon, 2023).

Figure 2.9 illustrates the evolution of our newspaper-based indices. Panel (a) plots

general publishing trends related to environmental taxation scaled by the total number

of published articles. We observe a clear surge in news coverage of environmentally-

motivated taxation, particularly during the years leading up to and during the
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Figure 2.9: Evolution of salience in the media over time

(a) Environmental taxation (index) (b) Eco-tax price salience (index)

Notes: Based on yearly series from 1991 to 2009. Authors’ own calculations based on newspaper articles from
Factiva (cf. Section 2.3). The two indices have a Pearson’s correlation of 0.56. A detailed description of the

steps undertaken to construct the newspaper indices can be found in Section 2.E of the Appendix.

implementation of the eco-tax, indicating that the policy sparked substantial media

attention. However, this time series provides no insights into the specific focus of

these article counts and whether the price effects of fuel taxes were being discussed.

Thus, Panel (b) displays our eco-tax price salience index, introduced in Section 2.3,

which specifically traces variations in the salience of fuel price increases induced by

the eco-tax. We leverage changes in the eco-tax price salience index to investigate

how variations in tax salience affect fuel-specific consumption responses. Specifically,

we amend our semi-elasticity models (cf. Section 2.2.2) by additionally interacting

our eco-tax price salience index with the annual real rate of the eco-tax.41 This

allows us to empirically isolate how salience affects fuel use in accordance with the

evolution of the eco-tax. Our identification strategy captures the additional effect

on fuel demand decrease (at a given tax rate) due to to greater salience of eco-tax

induced price increases in the media.42

First, Columns (1) in Table 2.6 reports our coefficients of the amended semi-elasticity

model based on time-series fuel demand variation in Germany. The significant

negative interaction term indicates that greater eco-tax price salience is associated

41The interaction term will thus equal 0 prior to the eco-tax reform by design.
42Our regressions focus on salience in the previous year, as print and digital news coverage tend

to peak prior to actual or proposed changes to the eco-tax rate (cf. Li et al., 2014). Another key
rationale for this approach is that it may help lessen the scope for reverse causality.
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with lower consumption of both gasoline and diesel and that these effects increase with

the eco-tax rate. Furthermore, the eco-tax elasticities tend to converge to the tax-

exclusive real price elasticities after explicitly accounting for tax salience (henceforth,

the non-salient eco-tax elasticity), suggesting that much of the divergence in the

response for the increase in the eco-tax—relative to market-driven price changes—

can be explained by tax salience in our model. Gasoline demand tends to be more

responsive to variation in salience than diesel. This may be due for two reasons.

Despite nearly one-third of all passenger cars in Germany having diesel engines

at the time, diesel is widely used in freight transportation, which tends to be less

price-responsive. Additionally, corporate fleets often use diesel, where companies

cover part of the fuel cost, reducing consumers’ price sensitivity.

Second, to address potential measurement error and endogeneity concerns, Columns

(2) in Table 2.6 employs our fixed effects estimator to fit the amended semi-elasticity

model described above, harnessing cross-country panel data to obtain improved

within-country estimates.43 Notably, the inclusion of our set of time fixed effects here

allows us to control for any common developments across OECD and EU member

states as well as shifts in cultural norms and societal concerns specific to each country,

which can influence fuel demand based on attitudes toward car ownership, public

transportation, and environmental consciousness after the eco-tax reform. Looking

at the interaction term, our more refined fixed effects estimates yield comparable

magnitudes, which corroborate our initial findings based on the time-series regressions

based on Germany only. Furthermore, after controlling for the impact of tax salience,

the two approaches also notably yield very similar non-salient eco-tax elasticities.

Finally, to better disentangle eco-tax price salience from time-varying factors driving

media attention on the topic of environmental policy, Column (3) includes our

43National newspapers are plausibly a significant source of information in our setting, but they
may not be the sole determinants of tax salience for consumers. It is also plausible that our index of
eco-tax price salience is correlated with other factors that create awareness, such as public discourse,
government announcements, or advocacy campaigns which may introduce measurement errors in
our index. Nevertheless, while the presence of such measurement error may influence precision in
the magnitude of the estimated salience effects mediated solely by newspapers, it is less likely to
alter the direction and significance of our findings.
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Table 2.6: Effects of salience on fuel consumption

(1) (2) (3)
OLS: Baseline OLS: Fixed effects OLS: Fixed effects

Raw price of Gasoline -0.00280 -0.00262 -0.00257
(0.00176) (0.00164) (0.00164)

Energy Tax -0.00338 -0.00489*** -0.00488***
(0.00489) (0.00128) (0.00128)

Eco-tax -0.00773 -0.00683*** -0.00594***
(0.00557) (0.00113) (0.00145)

Eco-tax x Eco-tax price salience (lag) -0.00441** -0.00414*** -0.00467***
(0.00190) (0.000968) (0.00101)

Environmental taxation (lag) -0.0121**
(0.00559)

Raw price = Eco-tax (p-value) 0.319 0.069 0.189
Non-salient eco-tax elasticity 0.70 0.62 0.54

Sample Germany OECD OECD
Controls X X X
Observations 38 765 765

(1) (2) (3)
OLS: Baseline OLS: Fixed effects OLS: Fixed effects

Raw price of Diesel -0.00326*** -0.00533*** -0.00558***
(0.000900) (0.00163) (0.00159)

Energy Tax -0.00723** 0.000340 0.0000739
(0.00348) (0.00152) (0.00137)

Eco-tax -0.00818*** -0.00840*** -0.00647**
(0.00275) (0.00264) (0.00304)

Eco-tax x Eco-tax price salience (lag) -0.00120* -0.00272*** -0.00359***
(0.000689) (0.000925) (0.00106)

Environmental taxation (lag) -0.0184**
(0.00645)

Raw price = Eco-tax (p-value) 0.081 0.473 0.845
Non-salient eco-tax elasticity 0.62 0.63 0.49

Sample Germany OECD OECD
Controls X X X
Observations 39 574 574

Notes: The dependent variable is log total fuel consumption in liters per capita for either gasoline or diesel (see column
headings). Results for gasoline in column (1) refer to 1972-2009 due to missing price data prior to 1972. Standard errors in

column (1) are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). Standard
errors in columns (2) - (3) are clustered at the country-year level. * p < 0.05, ** p < 0.01, *** p < 0.001.

environmental taxation index (cf., Figure 2.9a) as an additional control. By doing

so, we can account for the relative impacts of underlying peaks in the coverage of

environmental taxes in the German news on fuel demand. Even in this case, the

effects of eco-tax salience still hold while the environmental taxation index exhibits

a significant and negative coefficient suggesting that deviations in news coverage of

environmentally-motivated fuel tax schemes are associated with an overall decrease

in fuel demand (a 10% increase reduces demand by around 0.1 - 0.2%).

To provide some perspective on the role of salience, let’s consider the average eco-tax

rate for gasoline (diesel) in real terms of 13 cents per liter. Our most conservative

estimates from column (1) suggest that when our salience index exhibits an increase

of a standard deviation relative to the mean, the additional reduction of gasoline

(diesel) consumption induced by salience amounts to 4.3% (1.2%).44 Leveraging our

results from column (1), Figure 2.10 plots predicted gasoline and diesel consumption

in the German transport sector under different taxation regimes and compares their

evolution with and without salience. According to our model, eco-tax driven price

44Our salience index exhibits a mean of 100 with a standard deviation of 76. A standard
deviation increase thus represents a 76% increase relative to the mean. Both fuel consumption
and the salience index are expressed in log terms in our model. Denoting the coefficient of the
interaction term as �6, we can interpret the estimated coefficients, �̂6, as follows: For the average
eco-tax rate of 13 cents, a standard deviation increase (or 76% increase relative to the mean) in our
salience index will lead to an additional percentage reduction in fuel consumption amounting to
13�[(1.01�̂6�1)�100]�0.76.
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Figure 2.10: Predicted fuel use under different tax and salience scenarios

(a) Gasoline consumption (b) Diesel consumption

Notes: The figures plot predicted fuel consumption from our amended log-level semi-elasticity models (cf.
Section 2.2.2 and 2.5.4) under different taxation scenarios. We rely on the estimated fuel-specific price and tax

elasticities computed from our estimates from columns (1) in Table 2.6. Specifically, Panel (a) refers to predicted
per capita gasoline consumption (in liters), while Panel (b) is based on predicted per capita diesel consumption (in
liters). The top green line displays predicted emissions in the absence of taxes, which means both the eco and

energy tax elasticities are set to zero, and the VAT is deducted from the fuel price. For the orange line, the eco-tax
elasticity is set to zero but the VAT-inclusive energy tax is now included. The red line shows how predicted

emissions change when we include both the eco and energy taxes with the VAT but we set salience (as proxied by
our newspaper-based index) equal to zero. The bottom blue line provides predicted emissions using the full model
described in Section 2.5.4 with the differentiated tax and price elasticities which additionally includes the salience

interactive term.

salience is responsible for around 70% (55%) of the contraction in gasoline (diesel)

consumption in our simulation. Overall, these results corroborate the hypothesis

that consumers react more strongly—relative to market prices—to environmental

taxes that are salient.45

2.6 Assessing climate and pollution reduction ben-

efits

While previous reports suggested that environmental improvements due to the Ger-

man eco-tax have been limited (Steiner and Cludius, 2010), we document substantial

reductions in emissions. To quantify benefits from reduced climate and pollution

costs, we apply official cost estimates from the first comprehensive guidelines by the

45Salience can interact with other mechanisms that may lead to larger tax salience ratios but
are hard to isolate, including the expected persistence of the price increase (e.g., Li et al., 2014) or
the moral desirability of demand reductions (e.g., Mideksa, 2021). Our tax salience effects may
thus also capture increased persistence expectations or a stronger signal that demand reductions
are socially desirable.
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Umweltbundesamt (2012). We, first, apply these to a prior evaluation of carbon

emission reductions and, subsequently, illustrate results for our simulations and

causal inference methods.

The Umweltbundesamt (2012) recommended using a social costs of carbon (SCC)

per ton of CO2 emitted in 2010 by 80 Euros (in 2010 Euros), and provided dis-

aggregated cost estimates for PM2.5 in the transport sector, distinguishing costs of

PM2.5 exhaust emissions released within (364,100 �/t) and outside of cities (122,800

�/t), recognizing that within city emissions contribute more to human health costs.

Using their reported breakdown of the share of PM2.5 within and outside of cities

for different transport modes, we compute a weighted average of PM2.5 damages.

External costs of NOx are not distinguished across locations, with an average cost

estimate of 15,400 �/t.46 We transform all cost estimates from a base year 2010 to

2022 values using official inflation statistics.

Steiner and Cludius (2010) estimate a price elasticity of fuel demand of -0.18 based on

household survey data and attribute -0.1 to the tax elasticity component, with which

they quantify reductions of CO2 emissions due to the eco-tax, amounting to 120 kg

CO2 per household per year. Multiplying with the yearly number of households in

Germany from 1999 to 2009, this sums up to 50.73 million tons of CO2 emissions.

Evaluating these emission reductions with the 2010 SCC in 2022 Euros yields a

climate benefit of 4.9 billion Euros (first bar of Panel (a) in Figure 2.11).

We, first, contrast this with results from our Simulation approach (Panel (a) in

Figure 2.11). Simulating emission reductions of CO2 relative to the counterfactual

without the eco-tax yields 344 million fewer tons, and an aggregate climate benefit of

around 35 billion Euros. We further simulate reductions of PM2.5 and NOx emissions

46The cost estimates provided by Umweltbundesamt (2012) were derived from the EU NEEDS
project which—in the time frame relevant for our historical analysis—provided the most compre-
hensive cost estimates available. In terms of damage sources, the full PM2.5 damages were related
to (human) health damages, which compares to a health damages share of 82% for NOx, where
the remaining share of damages derives from biodiversity loss (14%), crop yield damages (3%) and
material damages (1%). See Umweltbundesamt (2012) for further details.
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Figure 2.11: Reductions in external climate and pollution damages due to the
eco-tax

Notes: The figure plots the estimated reductions in external climate and pollution damages based on estimates
from (a) the Simulation Approach and (b) the Synthetic Control Methods on CO2 (green), PM2.5 (orange), and
NOx (blue) reductions and compares their magnitudes with the implied estimates from Steiner and Cludius (2010).
GSCM refers to our Economic Activity specification (cf. Table 2.2). Simulation results for PM2.5 emissions do not
account for non-exhaust emissions. Aggregate cost reductions are computed relying on pollutant-specific official

cost estimates provided by the Umweltbundesamt (2012) and expressed in 2022 Euros.

of 36,368 tons and 1.08 million tons,47 translating into pollution reduction benefits

of 31 billion Euros. In sum, the Simulation Approach suggests that the eco-tax has

reduced external damages by 66 billion Euros, 13 times as much as the previous

estimate.

We further consider alternative scenarios, first starting with a non-salient eco-tax

scenario. We estimate that external damage reduction would have been around

two-thirds smaller at 23 billion Euros in the absence of a salient eco-tax. Second, we

consider a scenario with no fuel substitution from gasoline to diesel induced by the

eco-tax.48 External damage reductions would have amounted to 55.5 billion Euros

with no fuel substitution, with a very different composition: While not switching to

diesel would have led to much lower climate benefits (34.9 vs. 18.7 billion Euros),

benefits to due reducing PM2.5 would have been higher (30.9 vs. 36.7 billion Euros).

47To estimate NOx emissions from fuel consumption, we rely on estimates from the EEA on
average emission factors for gasoline (diesel) vehicles in Germany (Ntziachristos and Samaras, 2019)
of 5.61 (20.1) grams of NOx per kg of gasoline (diesel).

48We compute the no fuel substitution scenario by holding annual traveled km per capita fixed.
As gasoline vehicles are less fuel efficient than comparable diesel vehicles, this assumption implies
that the foregone increase in diesel use due to fuel substitution translates into a 1.2 times increase in
gasoline use to account for lower fuel efficiency (Linn, 2019). Foregone gasoline-to-diesel substitution
is computed using column (3) in Table 2.A11 in the Appendix. We then add (subtract) the estimated
foregone substitution towards diesel to predicted gasoline (diesel) use from column (1) in Table 2.5.
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We now move to quantifying externality reductions using our causal inference esti-

mates, primarily relying on the SCM.49 The first three bars in Panel (b) of Figure 2.11

show results of our SCM for specifications yielding minimal, average and maximal

emission reductions whereas the last bar refers to our GSCM results. The average

across all seven SCM specifications suggests benefits from reduced carbon and pollu-

tion costs due to the eco-tax of 80.7 billion euros, more than 16 times as much as

the estimate by Steiner and Cludius (2010).50 The GSCM yields a slightly higher

benefit estimate at around 95 billion Euros (final bar in Figure 2.11). For comparison,

the average effect for Germany using the SDID methodology yields a reduction in

external costs of 91 billion Euros.

Overall, our results suggest that the eco-tax was orders of magnitude more effective

in reducing external damages than previously suggested. Crucially, evaluations of

fuel or carbon taxes that focus solely on climate benefits (e.g., Andersson, 2019;

Mideksa, 2021; Runst and Höhle, 2021) miss a substantial share of benefits. For the

case of the German eco-tax, we estimate that neglecting health co-benefits due to

reduced air pollution would miss the majority share—between 63% (GSCM), 69%

(SDID) and 75% (average SCM)—of the reductions in external damages.

2.7 Conclusion

This chapter provides the most comprehensive assessment thus far of the effectiveness

of fuel taxation to reduce climate and local pollution externalities with a quasi-

experimental evaluation of the world’s largest environmental tax reform. Our battery

of causal inference designs demonstrates that the German eco-tax introduced in 1999

49The SCMs and simulation results for PM2.5 emissions are not directly comparable, as the
latter relies on conversion factors that do not account for non-exhaust emissions (Ntziachristos and
Samaras, 2019).

50Note that the EDGAR data and the emission factors used in the simulation approach are
based on laboratory emission rates which tend to underestimate actual on-road nitrogen dioxides
and particulate matter emissions (Crippa et al., 2018), also partly due to the recent Dieselgate

scandal (Grange et al., 2020). Our estimated impacts on on-road emissions may thus represent
lower-bound estimates.
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has led to sizable reductions in CO2, PM2.5 and NOX emissions. Using official cost

estimates, we show that the eco-tax has saved more than 80 billion Euros of external

damages between 1999 and 2009. The majority of reductions in external costs relate

to reduced air pollution and associated health benefits. We further document that

the eco-tax has induced low-carbon innovation, leading to more than 800 additional

low-carbon patented technologies in Germany that may have contributed to lowering

abatement costs. The external validity of the estimated air emissions reductions in

Germany is corroborated by a synthetic difference-in-difference approach, leveraging

the staggered early implementation of environmental fuel taxes in Sweden and

Finland. By contrast, we only detect similarly substantial effects on low-carbon

innovation in Sweden, likely due to the importance of innovation in the automobile

industry in both Sweden and Germany.

In addition to our causal findings, we provide complementary evidence on mediating

mechanisms, suggesting that the eco-tax has likely contributed to fostering fleet

renewal of passenger cars and to reduced passenger-kilometers traveled, without

having reduced economic activity. We further highlight the key role of fuel substitution

for navigating the trade-off between attaining climate and pollution targets. Finally,

we show that the much higher demand response to the eco-tax is primarily due to

increased tax salience, which we measure explicitly based on newspaper data. We

thereby provide the first direct empirical evidence for the hypothesis that consumers

react more strongly to (environmentally-motivated) fuel taxes the more salient they

and their associated price increases are.

Overall, our results underscore the pivotal roles of co-pollution, innovation, fuel

substitution and tax salience for the effectiveness of fuel taxes to reduce external

damages and carry important policy implications. First, a sole focus on carbon

abatement—as is common in the literature (e.g., Andersson, 2019; Leroutier, 2022;

Runst and Höhle, 2021)—substantially underestimates the potential of taxes on fossil

fuels to reduce externalities.51 Thus, accounting for reductions in pollution costs and

51Our results likely still provide a lower-bound of eco-tax induced externality reductions, as the
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associated health co-benefits is crucial when evaluating the benefits of carbon pricing.

Accounting for such health co-benefits, which more immediately benefit those that

bear the costs of higher fuel prices, may also be crucial for gathering support for

fuel and climate policies (e.g., Löschel et al., 2021). Our finding is also relevant for

evaluating distributional effects. While the consumer costs of fuel taxation tend to

burden lower-income households disproportionately (e.g., Sterner, 2012a; Känzig,

2023), poorer households may also benefit disproportionately from better air quality

(e.g., Banzhaf et al., 2019; Hernandez-Cortes and Meng, 2023). Consequently, the

true incidence of fuel taxation is likely less regressive as often suggested based on

consumer costs only (e.g., Drupp et al., 2021).

Second, and relatedly, it is important for evaluations of fuel and carbon pricing

to consider the trade-offs that can arise between climate and air pollution targets

(e.g., Linn, 2019; Parry et al., 2021). We show that this is particularly relevant

in the context price instruments set on the carbon content of fuels that can foster

gasoline-to-diesel substitution. While this general feature of second-best taxation

(Knittel and Sandler, 2018) is less important in the US, due to a predominant share

of gasoline-fuelled cars, it is key when evaluating fuel pricing schemes in Europe

(Zimmer and Koch, 2017; Linn, 2019). We show that relaxing the assumption that

consumers respond similarly to fuel taxes as to other sources of fuel price variation

(Linn, 2019) suggests that policymakers have to navigate a much larger trade-off

between climate and pollution-reduction benefits.

Third, we shed light on the potential of environmentally-motivated taxation to

spur low-carbon innovation by capturing economy-wide responses to an implicit

carbon tax. Our approach thus complements previous studies that focused on the

innovation response of regulated companies (e.g., Calel and Dechezlepretre, 2016),

which generally find limited aggregate effects, and provides indirect evidence on

the potential magnitude of the additional innovation occurring along the supply

eco-tax may also have contributed to reducing congestion (e.g., Hintermann et al., 2021), fatality
risk (e.g., Anderson and Auffhammer, 2014) or the reliance on fossil imports and related security
concerns.
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chain and across unregulated agents, for instance, due to pass-through of regulatory

costs or knowledge spillovers. By permanently reducing abatement costs, induced

innovation is a key dimension to capture when conducting a comprehensive cost-

benefit assessment of the climate benefits of fuel and carbon taxation measures. Our

results document that regulatory-induced innovation responses to a carbon price can

be sizable when considering economy-wide effects.

Finally, our results underscore the crucial role of tax salience for fostering the

effectiveness of fuel taxation and carbon pricing (cf. Chetty et al., 2009; Li et al.,

2014; Rivers and Schaufele, 2015). This implies that complementary informational

measures may have considerable potential to foster climate, health and security

benefits through a greater demand response at a given tax rate, and hence enhance

the cost-effectiveness of price instruments to internalize externalities. This important

role of salience, however, is a double-edged sword for policy design. While this is

good news for policies aimed at reducing external costs or attaining specific climate

or pollution targets, as fuel or carbon taxes may yield larger demand responses than

is routinely considered in policy analysis using price elasticities estimated solely on

market-price movements (e.g., Edenhofer et al., 2019). Tax salience may, however,

also impede more stringent future policies due to stronger public resistance, such as

in the case of the French “Yellow vests” (Douenne and Fabre, 2022). Indeed, while

there were plans to further increase the eco-tax rate over time, the yearly increases

were discontinued in 2003 due to public resistance, and only picked up again in 2021,

then under the explicit label of carbon pricing.

63



2.A Background on the eco-tax and data sources

Taxing oils and fuels has a long history in Germany; the first mineral oil tax was

established in 1939 for several fuels, including fuel oil, and other mineral oils such

as gasoline and petroleum (Bundesministerium der Finanzen, 2014). In the 1980s,

Binswanger (1992) suggested an ecological tax to internalize the externalities from

the transport sector by implementing a tax at a low level and raising it until emissions

have decreased to an environmentally sustainable level (Knigge and Görlach, 2005).

The ecological fiscal reform (henceforth eco-tax reform) then came into effect in

April 1999 taxing fuels, gas, electricity, and heating oil (Bundesgesetzblatt I, S.378,

1999; Steiner and Cludius, 2010). Note that this means that most of the first half of

the year 1999 is not treated, which we consider in our analysis. In each year between

1999 and 2003, the fuel tax on gasoline and diesel was increased by 3.07 cents (6

Pfennig) per liter. This led to a total tax increase of 15.35 cents per liter for gasoline

and diesel and is hereafter referred to as the eco-tax.

The law was updated in 2002, when some tax rates were increased and special rules

implemented (Bundesgesetzblatt I, S. 2432., 1999; Bundesgesetzblatt I, S. 4602,

2002). Due to economic and social concerns, the eco-tax was exempted in other

sectors was subject to substantial exceptions; thus it only affected the price of fuels

and the use of electricity for less energy-intensive industries (Knigge and Görlach,

2005; Bach, 2009). For this reason, we focus our analysis on the German transport

sector only instead of total economy-wide emissions. Since 2003, the eco-tax rate has

not been changed, implying that nominal taxes on transport fuels have remained

the same since 2003 up until the introduction of an explicitly labeled CO2-price in

January 2021. The revenue generated by the eco-tax overwhelmingly goes toward

the German pension fund as reducing the statutory payments toward the pension

fund was one of the key goals of the tax reform (Beuermann and Santarius, 2006).

Out of the 18.7 billion euros that were raised by the eco-tax in 2003, 16.1 billion
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euros went to the pension fund (Kohlhaas et al., 2005).

Below, we report some descriptive statistics to provide context on the German

transport sector before and after the implementation of the eco-tax. Figure 2.A1

plots total fuel consumption by fuel type over time whereas Figure 2.A2 shows the

nominal mineral oil tax from 1939 to 2009 for gasoline and diesel. For real values

and other tax rates, please refer to Figure 2.A3. Over time, this law was changed

frequently until its name was eventually changed to energy taxation law in 2006

Bundesministerium der Finanzen (2014). This is why we refer to the mineral oil tax

as “energy tax” henceforth.

As mentioned in the main text, the German eco-tax is not a direct carbon tax,

however, it can be interpreted as one. As of 2020, the total energy tax per liter of

gasoline is 65.45 cents (Bundesministerium der Finanzen, 2014). The combustion

of one liter of gasoline emits 2.325 kg of CO2 (US EPA, 2005). If this is taken as a

base, the energy tax on gasoline indirectly amounts to 281.51� per ton of CO2. The

numbers are slightly different for diesel with 2.660 kg of CO2 emitted as a result of

the combustion of one liter and an energy tax of 47.04 cents per liter (US EPA, 2005;

Bundesministerium der Finanzen, 2014). Still, this amounts to a price of 176.84�

per ton of CO2. Prior to the eco-tax reform, the energy tax resulted in an indirect

carbon tax of 215.53� per ton of CO2 for gasoline and 119.17� for diesel. This

means, that the eco-tax increased the effective carbon price by 57.67� ($65.17) for

diesel and 65.98� ($74.56) for gasoline between 1999 and 2003. Thereby the eco-tax

effectively represented the second highest tax on CO2 in the world at that time.52

Figure 2.A4 compares the evolution of fuel-specific tax rates in Germany to the

OECD average to put magnitudes into perspective in relation to the donor pool of

countries employed for the synthetic control methods (SCMs).

The eco-tax reform was the major policy approach to curbing transport-related

52The World Bank (2020) counts seven CO2 taxes in 2003, with the highest in Sweden ($89.65),
followed by Norway ($44.53). The German eco-tax is not classified.
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emissions in Germany until the final years of our time horizon.53 Yet, towards the

end of our considered time horizon—constituting one of the reasons why we ended our

analysis in 2009—a few cities introduced environmental zones that restricted the entry

of certain vehicles to the city center starting in the year 2008. Subsequently, other

cities implemented and strengthened the standard of environmental zones. While

Holman et al. (2015) only show small improvements in local air quality in German

low emission zones, Wolff and Perry (2010) find that this policy was successful

in reducing negative health outcomes in the regulated areas, without examining

potential spillovers to other locations within Germany. Thus, while we cannot fully

exclude that low emission zones may have contributed to emission reductions in the

final two years of our analysis (where the magnitude of the estimated treatment

effects starts decreasing), they are very unlikely to be a considerable driver, as they

only affected a small number of cities at the end of our time frame.

Furthermore, as a response to the financial crisis in 2008, the German government

decided to boost new car sales by temporarily paying a scrappage subsidy. This

program was available from January 2009 until September 2009. A subsidy of 2500

Euro was available when disposing of one’s car under the condition that it was at

least nine years old and that a new car that fulfills certain vehicle emission standards

(i.e., the Euro Norm 4 criteria) is bought. Helm et al. (2023) show local air pollution

improvements following the policy. The next permanent nationwide taxation reform,

after the introduction of the eco-tax, concerned vehicle circulation taxation. The

reform was agreed on in 2009 and came into force on July 1st, 2009. With it, the

taxation method to calculate vehicle circulation taxes was adjusted to include CO2

emissions for cars that were first registered from July 2009 onward, which decreased

car registrations (Klier and Linn, 2015). Nevertheless, Flintz et al. (2022) conclude

that it did not have the necessary drive that is needed to abate emissions considerably.

53Solely some changes to tax breaks for commuters in Germany were revised in the core time
frame, with limited expected effects on emissions and/or innovation. Specifically, the maximum tax
break was increased between 2001 and 2004 to 0.36 Euro per kilometer for commuting distances up
to ten kilometers, for anything above up to 0.4 Euros per kilometer. In 2004 this law (EStG §9(1)4)
was changed to a universal tax break of 0.30 Euro per kilometer (Weiss, 2009).
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Both of these subsidies might have changed the composition of the newly registered

vehicles at the end of our time horizon, and indeed we observe a spike in fleet renewal

in the final year (see Panel (a) of Figure 2.8) which was still smaller than the spike

in fleet renewal following the introduction of the eco-tax. Our sample thus ends at

the onset of the next major nationwide policy reform concerning the transportation

sector following the eco-tax reform.

Figure 2.A1: Fuel consumption over time

(a) Total fuel use (b) Total fuel use by fuel type

(c) Diesel-to-gasoline ratio (d) Share of diesel and gasoline consumption

Notes: Data on fuel consumption is expressed in liters per capita or percentage terms, as denoted on the y-axis.
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Figure 2.A2: Nominal taxes of gasoline and diesel over time

Notes: The figure above plots nominal taxes of gasoline and diesel from 1939 to 2009 as
reported by the Bundesministerium der Finanzen (2014). Note that whenever a tax changes

throughout a year, the average tax is calculated and shown here. Numbers are in cents.

Figure 2.A3: Real fuel prices and their tax components over time

(a) Gasoline (b) Diesel

Notes: Prices are in 1995�. Own calculations.

Figure 2.A4: Fuel taxes in Germany and the OECD average

(a) Gasoline (b) Diesel

Notes: Prices are in USD using PPP. Source: IEA Energy Prices and Taxes Statistics.
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Table 2.A1: Data Sources

Variable Source

Share of CO2 emissions from transport Data downloaded from World Bank
CO2 emissions from fuel combustion IEA
PM2.5 ad NOX emissions from EDGAR EDGAR
Population World Bank
Expenditure-side real GDP at current PPPs (in mil. 2011
US$)

Penn World Tables

Urban population (% of total population) World Bank
Road sector diesel (1) and gasoline (2) fuel consumption per
capita (kg of oil equivalent)

World Bank (1), World Bank (2)

Road sector gasoline fuel consumption per capita (kg of oil
equivalent)

Mineralwirtschaftsverband

Consumer price index for Germany (1995=100) Statistisches Bundesamt (Destatis)
Strategic Reserve for Gasoline and Diesel in DM/t Erdölbevorratungsverband
Energy Tax for diesel and gasoline in cents per litre Bundesminesterium für Finanzen
Eco Tax for diesel and gasoline in cents per litre Bundesminesterium für Finanzen
Value-added tax rate Statista
Fuel prices and taxes for OECD countries IEA Energy Prices and Taxes Statistics

(Commerical data)
Unemployment Rate Bundesagentur für Arbeit
U.S. Crude Oil First Purchase Price (Dollars/Barrel) EIA
Euro/ECU exchange rates - annual data Eurostat
Vehicles ownership per 1,000 people Received from Professor Gately (Dargay

et al., 2007).
Low-carbon patents related to transportation: triadic patent
families (1) and total (2)

OECD (1), OECD (2)

Newspaper-specific article frequency counts Factiva (Commercial data)
Road passenger transport (pkm) OECD
Vehicle registrations by age UNECE
Road casualties OECD

2.B Additional results for the synthetic control

methods

This section of the Appendix provides additional supporting material and results

related to the synthetic control method (SCM) and its generalized version (GSCM).

Specifically, this section contains the following material: Tables 2.A2 - 2.A4 report

country-specific weights used for the construction of our synthetic counterfactuals in

Figure 2.1. The three panels in Figure 2.A6 plot in-time placebo tests when we assign

a fake treatment to Germany in 1995. Figure 2.A7 reports our results leveraging

the standard SCM when we do not impose any of the sample restrictions discussed

in Section 2.3. Figure 2.A8 reports leave-one-out tests (cf. Abadie et al., 2015) for
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our Baseline (i.e., Panels a, c and e) and No covariates specifications (i.e., Panels

b, d and f). The former is in line with the recommendations in Kaul et al. (2015),

while the latter follows Ferman et al. (2020). Finally, Figure 2.B.4 plots the dynamic

treatment effects estimated for each of our GSCM specifications presented in Section

2.4.2.

Table 2.A2: SCM for CO2: Pre-Treatment Predictor Means for Germany, Baseline
Synthetic Germany and the Sample Average

Variables Germany Synthetic Sample Mean

GDP per capita 22,197.42 23,615.94 17,972.24
Diesel consumption per capita 185.23 185.27 130.29
Gasoline consumption per capita 332.55 332.77 343.23
Share of urban population 0.73 0.73 0.73
Number of vehicles per 1,000 people 410.34 410.48 290.14
CO2 from transport in 1998 2.10 2.10 2.12

All variables except lagged CO2 per capita are averaged from 1971-1998. GDP per capita is measured at current PPPs in million

2011 USD. Gasoline and diesel consumption is measured in kg of oil equivalent. Share of urban population is measured as a

percentage of total population. CO2 emissions are measured in metric tons per capita and are retrieved from the IEA.

Table 2.A3: SCM for PM2.5: Pre-Treatment Predictor Means for Germany, Baseline
Synthetic Germany and the Sample Average

Variables Germany Synthetic Sample Mean

GDP per capita 22,197.42 22,346.93 17,972.24
Diesel consumption per capita 185.23 170.25 130.29
Gasoline consumption per capita 332.55 367.82 343.23
Share of urban population 0.73 0.75 0.73
Number of vehicles per 1,000 people 410.34 410.39 290.14
PM2.5 from transport in 1998 0.58 0.61 0.58

All variables except lagged PM2.5 per capita are averaged from 1971-1998. GDP per capita is measured at current PPPs in

million 2011 USD. Gasoline and diesel consumption is measured in kg of oil equivalent. Share of urban population is measured

as a percentage of total population. PM2.5 emissions are measured in kg per capita and are retrieved from the EDGAR v6.1

database.

Table 2.A4: SCM for NOX : Pre-Treatment Predictor Means for Germany, Baseline
Synthetic Germany and the Sample Average

Variables Germany Synthetic Sample Mean

GDP per capita 22,197.42 22,199.20 17,972.24
Diesel consumption per capita 185.23 179.35 130.29
Gasoline consumption per capita 332.55 303.51 343.23
Share of urban population 0.73 0.76 0.73
Number of vehicles per 1,000 people 410.34 360.88 290.14
PM2.5 from transport 0.50 0.50 0.42
NOX from transport in 1998 14.13 14.26 16.72

All variables except lagged NOX per capita are averaged from 1971-1998. GDP per capita is measured at current PPPs in million

2011 USD. Gasoline and diesel consumption is measured in kg of oil equivalent. Share of urban population is measured as a

percentage of total population. NOX emissions are measured in kg per capita and are retrieved from the EDGAR v6.1 database.
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Figure 2.A5: Comparing donor pool weights across SCM specifications

(a) Synthetic Germany: CO2

(b) Synthetic Germany: PM2.5

(c) Synthetic Germany: NOX

Notes: The figure plots the estimated country-specific weights assigned by the synthetic control algorithms across
our set of SCM specifications (cf. Table 2.1).
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2.B.1 Placebo in time

Figure 2.A6: In-time placebos

(a) CO2 (b) PM2.5 (c) NOx

Notes: The figure plots the in-time placebo for our results on (a) CO2, (b) PM2.5, and (c) NOX emissions where a
placebo treatment is assigned in 1995.

2.B.2 No sample restrictions

Figure 2.A7: Results with no donor pool restrictions

(a) CO2 (b) PM2.5 (c) NOx

Notes: The figure plots our Baseline SCM results without applying the sample description described in Section 2.3.
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2.B.3 Leave-one-out tests

Figure 2.A8: Leave-one-out tests

(a) CO2: Baseline results (b) CO2: No covariates results

(c) PM2.5: Baseline results (d) PM2.5: No covariates results

(e) NOx: Baseline results (f) NOx: No covariates results

Notes: The figure plots leave-one-out tests following Abadie et al. (2015) where we iteratively exclude countries that
receive at least a 1% in the construction of the synthetic counterfactual. More details can be found in Section 2.4.1.
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2.B.4 Generalized Synthetic Control Method (GSCM)

Figure 2.A9: GSCM with Interactive Fixed Effects Models

(a) Change in CO2 over time (b) Change in PM2.5 over time (c) Change in NOx over time

Notes: The figure plots the estimated gaps in emissions relative to a synthetic counterfactual development based on
a Generalized Synthetic Control Method with interactive fixed effects models Xu (2017). More details on the

GSCM specifications can be found in Section 2.4.2.

Table 2.A5: Effects of the eco-tax with the GSCM (No sample restrictions)

CO2 emissions (t) PM2.5 emissions (kg) NOX emissions (kg)

Mean [95% CI] -0.57 [-0.74; -0.30] -0.14 [-0.27; -0.07] -1.39 [-2.78; -0.21]

Observations 1482 1482 1482
Countries 38 38 38

Notes: All outcome variables are expressed in per capita terms. The table displays the estimated average gaps in emissions
relative to a synthetic counterfactual development based on a Generalized Synthetic Control Method with interactive fixed

effects models Xu (2017). More details on the GSCM specifications can be found in Section 2.4.2.

Figure 2.A10: Effects of the eco-tax with the GSCM on low-carbon patents (No
sample restrictions)

Notes: The figure plots the estimated gaps in emissions relative to a
synthetic counterfactual development based on a Generalized

Synthetic Control Method with interactive fixed effects models Xu
(2017). More details on the GSCM specifications can be found in

Section 2.4.2.
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2.C Elasticities

This Section is structured as follows. First, we provide evidence of tax pass-through

to prove that taxes are noticeable to consumers in our setting. Second, Tables 2.A7

- 2.A7 provide a host of robustness tests for our real and eco-tax elasticity results

presented in Section 2.5. Figure 2.A11 plots our elasticity results when employing a

distributed lag model with one lead to account for anticipatory behavior (Coglianese

et al., 2017; Kilian and Zhou, 2023).54 Table 2.A10 and 2.A11 provides evidence

of gasoline-to-diesel substitution in our setting again leveraging the semi-elasticity

models presented in Section 2.2.2. Figure 2.A12 displays predicted NOX emissions

under different taxation scenarios complementing Figure 2.5 in the main text. Figure

2.A13 compares the dynamic treatment effects across all the different empirical

strategies employed in our study, namely the (a) SCM, (b) the generalized SCM

and (c) the simulation approach.55 Finally, Figure 2.A14 leverages again the semi-

elasticity models to provide some complementary suggestive evidence on the average

effects of the eco-tax on road casualties (i.e., considering fatalities and injuries).

Tax pass-through. Before computing fuel-specific price and tax elasticities, we

check if the tax increases get effectively passed through to the retail price of fuel

to ensure that changes in taxation are noticeable to consumers (c.f. Andersson,

2019). We use first-differencing to regress the crude oil price i and the combined

nominal energy and eco tax � eco,energy on the retail fuel price p� of gasoline and diesel,

respectively:

�p
�
t
= �0 + �1��t + �2�� eco,energyt + �t (2.11)

54We additionally run first-differences models including different sets of leads and lags of the
normalized tax change, as in Kilian and Zhou (2023). We produce a distribution of p-values for
testing the null of equal effects between tax-exclusive and eco-tax price changes: Across all the
different specifications, we reject the null hypothesis of equal effects between tax-exclusive and
tax-only price changes in our setting. Results are available upon request.

55Note that simulated PM2.5 emissions are not directly comparable to our SCMs results as the
former do not account for non-exhaust emissions.
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The p-values of a linear Wald test show that for both regressions, the tax coefficient

�2 is not significantly different from unity.56 For gasoline, �2 equals 0.94 (with a

95% confidence interval of [0.79; 1.08]). The result is comparable for diesel, where

the coefficient is 0.86 [0.54; 1.17]. We repeat the estimation with the tax rates being

formally separated into energy and eco-tax in the model:

�p
�
t
= �0 + �1��t + �3�� energy,V AT

t + �4�� eco,V AT

t + �t (2.12)

Again, we are not able to reject the hypothesis that there is full pass-through.57

This indicates that fuel taxes have been noticeable for consumers and that we can

interpret our estimates of fuel-specific tax elasticities as price elasticities of demand.

56The p-value of the linear Wald test for ��2 = 1 is equal to 0.38 for gasoline and 0.34 for diesel.
57For gasoline, �3 equals 0.92 [0.75; 1.09] and �4 1.02 [0.83; 1.20]. While the eco-tax coefficient

for diesel is similar at 0.96 [0.49; 1.43], the one for the energy tax is slightly lower at 0.64 [0.02;
1.25]. The p-values of the linear Wald tests for ��3 = 1 are 0.34 for gasoline and 0.24 for diesel,
and 0.84 and 0.87 for ��4 = 1, respectively.
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Table 2.A6: Gasoline consumption

Real price Aggregate tax Eco-tax

Real price of Gasoline -0.00603**
(0.00278)

Raw price of Gasoline (only VAT) -0.00584* -0.00357*
(0.00331) (0.00204)

Energy + Eco Tax -0.00798**
(0.00375)

Energy Tax on Gasoline -0.00242
(0.00497)

Eco Tax on Gasoline -0.0306***
(0.00773)

Dummy Eco Tax -0.154 -0.144 0.104**
(0.131) (0.126) (0.0393)

Trend 0.00158 -0.00328 0.0240
(0.0138) (0.0118) (0.0210)

GDP per capita 0.000174 0.00893 -0.0245
(0.0116) (0.0168) (0.0318)

Unemployment rate 0.0292 0.0311* 0.00902
(0.0176) (0.0177) (0.0239)

Observations 38 38 38

Table 2.A7: Diesel consumption

Real price Aggregate tax Eco-tax

Real price of Diesel -0.00440***
(0.00103)

Raw price of Diesel (only VAT) -0.00384*** -0.00346***
(0.000908) (0.00104)

Energy + Eco Tax -0.0111***
(0.00141)

Energy Tax on Diesel -0.00729**
(0.00292)

Eco Tax on Diesel -0.0143***
(0.00359)

Dummy Eco Tax -0.0205 0.0574* 0.0794***
(0.0564) (0.0315) (0.0174)

Trend 0.0189*** 0.0104** 0.0187**
(0.00587) (0.00456) (0.00774)

GDP per capita 0.0177*** 0.0287*** 0.0201**
(0.00528) (0.00702) (0.00753)

Unemployment rate 0.0107* 0.0104* 0.00651
(0.00558) (0.00538) (0.00816)

Observations 39 39 39

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or
either gasoline or diesel consumption (as indicated by the column heading). Prices are in 1995€. Results for gasoline

consumption refer to 1972-2009 due to missing price data prior to 1972. Unemployment is measured as percentage of total
labor force. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard errors
are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, **

p < 0.01, *** p < 0.001.

Table 2.A8: Real price elasticities for gasoline after 1991

(1) (2) (3) (4)
OLS OLS OLS IV: Brent Crude

Real price of Gasoline -0.00698*** -0.00693*** -0.00510*** -0.00531***
(0.00142) (0.00150) (0.000592) (0.000640)

Dummy Eco Tax 0.105** 0.106*** 0.106*** 0.106***
(0.0371) (0.0354) (0.0164) (0.0135)

Trend -0.0237*** -0.0217* -0.0336*** -0.0332***
(0.00703) (0.0111) (0.00544) (0.00505)

GDP per capita -0.00311 0.00795 0.00793
(0.00686) (0.00636) (0.00575)

Unemployment rate 0.0181*** 0.0178***
(0.00309) (0.00268)

N 19 19 19 19

Table 2.A9: Real price elasticities for diesel after 1991

(1) (2) (3) (4)
OLS OLS OLS IV: Brent Crude

Real price of Diesel -0.00404** -0.00456*** -0.00358*** -0.00317***
(0.00161) (0.00112) (0.000318) (0.000315)

Dummy Eco Tax 0.0687*** 0.0635*** 0.0634*** 0.0632***
(0.0151) (0.0167) (0.0111) (0.00961)

Trend 0.0206*** 0.0108 0.00457 0.00384*
(0.00596) (0.00670) (0.00264) (0.00227)

GDP per capita 0.0172*** 0.0217*** 0.0211***
(0.00388) (0.00355) (0.00235)

Unemployment rate 0.0104** 0.0113***
(0.00388) (0.00378)

N 19 19 19 19

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or
either gasoline or diesel consumption (as indicated by the column heading). Columns (4) use the brent crude oil price as an
instrumental variable for the real fuel price. Prices are in 1995€. Unemployment is measured as percentage of total labor force.
Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard errors are calculated

relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, ** p < 0.01, ***
p < 0.001.
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2.C.1 Time-series elasticities with a distributed lag model

Figure 2.A11: Fuel-specific real price and eco tax elasticities with a lead

(a) Gasoline: Real price elasticity (b) Gasoline: Eco tax elasticity

(c) Diesel: Real price elasticity (d) Diesel: Eco tax elasticity

Notes: The figure plots the estimated fuel-specific elasticities of gasoline and diesel demand by amending our
log-level semi-elasticity models with the introduction of a lead (c.f. Section 2.2.2). Specifically, Panel (a) and (c)
show the real price elasticity of gasoline and diesel demand respectively (c.f. Table 2.4 and 2.4). Panel (b) and (d)
display the gasoline and diesel eco tax elasticities (c.f. Table 2.5 and 2.5). Prices are in 1995�. Results for gasoline
consumption refer to 1972-2009 due to missing price data prior to 1972. Unemployment is measured as percentage
of total labor force. Confidence intervals are based on Newey-West standard errors are heteroskedasticity and
autocorrelation robust. Standard errors are calculated relying on the automatic bandwidth selection procedure

following Newey and West (1994). * p < 0.05, ** p < 0.01, ***
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2.C.2 Fuel substitution due to the eco-tax

Table 2.A10: Fuel substitution: Diesel-to-Gasoline ratio

(1) (2) (3)
Diesel/Gasoline Diesel/Gasoline Diesel/Gasoline

Raw price of Gasoline (only VAT) 0.00187 0.00185 0.00184
(0.00241) (0.00124) (0.00126)

Energy Tax on Gasoline 0.00471*** -0.000316 0.000991
(0.00123) (0.00263) (0.00237)

Eco Tax on Gasoline 0.0175*** 0.0157*** 0.0126**
(0.00634) (0.00465) (0.00482)

Dummy Eco Tax -0.0108 -0.0619** -0.0377
(0.0276) (0.0296) (0.0242)

Trend 0.0126*** -0.00700 0.00671
(0.00306) (0.00700) (0.0152)

GDP per capita 0.0372** 0.0214
(0.0149) (0.0187)

Unemployment rate -0.0142

Observations 38 38 38

Table 2.A11: Fuel substitution: Share of Diesel

(1) (2) (3)
Share of Diesel Share of Diesel Share of Diesel

Raw price of Gasoline (only VAT) 0.000255 0.000250 0.000248
(0.000565) (0.000314) (0.000317)

Energy Tax on Gasoline 0.00179*** 0.000697 0.000917
(0.000396) (0.000658) (0.000721)

Eco Tax on Gasoline 0.00415*** 0.00376*** 0.00325***
(0.00144) (0.00110) (0.00108)

Dummy Eco Tax 0.00367 -0.00746 -0.00339
(0.00645) (0.00747) (0.00630)

Trend 0.00482*** 0.000554 0.00286
(0.000731) (0.00168) (0.00378)

GDP per capita 0.00810** 0.00546
(0.00352) (0.00491)

Unemployment rate -0.00239
(0.00420)

Observations 38 38 38

Notes: The dependent variable is either (a) the ratio of diesel-to-gasoline consumption in litres per capita or (b) the share of
diesel of total fuel consumption in percentage terms (as indicated by the column heading). Prices are in 1995€. Results for
gasoline consumption refer to 1972-2009 due to missing price data prior to 1972. Unemployment is measured as percentage of
total labor force. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard

errors are calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05,
** p < 0.01, *** p < 0.001.
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2.C.3 NOX emission under different taxation regimes

Figure 2.A12: Predicted NOX emissions by fuel under different tax scenarios

(a) Gasoline consumption (b) Diesel consumption

Notes: The figures above plot predicted emissions from the eco-tax specification of our log-level semi-elasticity
models (c.f. Section 2.2.2) under different taxation scenarios. We rely the estimated fuel-specific price and tax
elasticities computed from our estimates from column (3) in Tables 2.5 and 2.5. Panel (a) refers to predicted

emissions from gasoline consumption, while Panel (b) covers diesel consumption. In each panel the y-axis refers to
per capita NOX in kilograms. The top black line displays predicted emissions when the eco and energy tax

elasticities are set to zero, and VAT is deducted from the fuel price. For the gray line, the eco and energy tax
elasticities are set to zero but VAT is included. The light blue line shows how predicted emissions change when the
eco tax is set to zero, but we include the energy tax and VAT. The red line provides predicted emissions using the

full model with differentiated tax and price elasticities.
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2.C.4 SCMs and the Simulation Approach

Figure 2.A13: Gap in per capita emissions: SCMs vs Simulation Approach

(a) CO2 emissions (t) (b) PM2.5 emissions (kg)

(c) NOX emissions (kg)

Notes: The figures above plot the estimated average gap in per capita emissions from our synthetic control
experiments (c.f. Section 2.2.1) and the simulation approach based on our log-level semi-elasticity models (c.f.

Section 2.2.2). Nationwide reductions in emissions in the simulation approach have been computed by accounting
for predicted emission reductions from both gasoline and diesel. Note that simulated PM2.5 emissions are not

directly comparable to our SCMs results as the former do not account for non-exhaust emissions.

2.C.5 Impacts of the eco-tax on road casualties

Figure 2.A14: Effects of the eco-tax on road casualties

Notes: The dependent variable is the number of road casualties (i.e., including fatalities and injuries) in logarithmic
terms. The estimated effects refer to the average eco-tax rate of 13 cents. All regressions control for the fuel raw
price, the energy tax rate, GDP per capita (in 1995�), the unemployment rate, and include a time trend as well as
a dummy for the post-treatment period (i.e., equal to 1 after 1999). We use Newey-West standard errors that are

heteroskedasticity and autocorrelation robust following Newey and West (1994).

81



2.D Synthetic difference-in-differences

Table 2.A12: Effects of environmental taxes with an SDID staggered adoption
design (No sample restrictions)

CO2 emissions (t) PM2.5 emissions (kg) NOX emissions (kg) Low-carbon patents

Environmental fuel taxation -0.228*** -0.103*** -3.423** 0.349
(0.077) (0.025) (1.369) (0.312)

Observations 1209 1209 1209 775
Countries 31 31 31 31

Notes: All outcome variables are expressed in per capita terms. Patents are expressed in per million population terms.
Standard errors are computed using the bootstrap variance estimation algorithm outlined in Arkhangelsky et al. (2021), which
requires multiple treated units. All regressions include unit-specific and time-specific fixed effects and control for GDP per

capita and include a binary variable indicating whether a country was regulated by EU-wide regulations after 2005.

Table 2.A13: Effects of environmental taxes with an SDID staggered adoption
design (Germany and Sweden)

CO2 emissions (t) PM2.5 emissions (kg) NOX emissions (kg) Low-carbon patents

Environmental fuel taxation -0.250*** -0.098*** -1.835* 0.929***
(0.064) (0.037) (1.112) (0.137)

Observations 819 819 819 525
Countries 21 21 21 21

Notes: All outcome variables are expressed in per capita terms. Patents are expressed in per million population terms.
Standard errors are computed using the bootstrap variance estimation algorithm outlined in Arkhangelsky et al. (2021), which
requires multiple treated units. All regressions include unit-specific and time-specific fixed effects and control for GDP per

capita and include a binary variable indicating whether a country was regulated by EU-wide regulations after 2005.

Table 2.A14: Effects of environmental taxes with an SDID staggered adoption
design (Additional covariates)

CO2 emissions (t) PM2.5 emissions (kg) NOX emissions (kg) Low-carbon patents

Environmental fuel taxation -0.245*** -0.099** -2.771** 0.643***
(0.057) (0.039) (1.104) (0.246)

Observations 858 858 858 550
Countries 22 22 22 22

Notes: All outcome variables are expressed in per capita terms. Patents are expressed in per million population terms.
Standard errors are computed using the bootstrap variance estimation algorithm outlined in Arkhangelsky et al. (2021), which
requires multiple treated units. All regressions control for GDP per capita and include unit-specific and time-specific fixed
effects as well as a binary variable indicating whether a country was regulated by EU-wide regulations after 2005. Emissions

reductions are estimated by additionally controlling for pre-treatment diesel and gasoline consumption. For low-carbon
innovation, we control for pre-treatment triadic patents per capita.
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Figure 2.A15: Dynamic SDID effects in Germany and time-specific weights

(a) Change in CO2 over time (b) Change in PM2.5 over time

(c) Change in NOx over time (d) Change in patents over time

Notes: The figure plots the graphical results from our SDID staggered adoption design presented in Section 2.4.4.
Time weights are represented in light green at the bottom of the pre-intervention period.
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Figure 2.A16: Dynamic SDID effects in Sweden and time-specific weights

(a) Change in CO2 over time (b) Change in PM2.5 over time

(c) Change in NOx over time (d) Change in patents over time

Notes: The figure plots the graphical results from our SDID staggered adoption design presented in Section 2.4.4.
Time weights are represented in light green at the bottom of the pre-intervention period.
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Figure 2.A17: Dynamic SDID effects in Finland and time-specific weights

(a) Change in CO2 over time (b) Change in PM2.5 over time

(c) Change in NOx over time (d) Change in patents over time

Notes: The figure plots the graphical results from our SDID staggered adoption design presented in Section 2.4.4.
Time weights are represented in light green at the bottom of the pre-intervention period.
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2.E Salience analysis

The following section provides additional information on the salience analysis con-

ducted in Section 2.5.4. This section of the Appendix is structured in three parts.

First, we report the different search strategies that were used to extract frequency

counts of newspapers’ articles from Factiva. Second, we provide a detailed description

of the construction of our set of newspaper-based indices that were employed in the

empirical analysis. Finally, we present a set of robustness checks for our empirical

analysis of salience effects presented in Section 2.5.4.

2.E.1 Search strategies

Here below, we report the three different search strategies that were developed to

download articles’ count used in the construction of our indices. A brief description

of each strategy will follow. Strategy # 1 restricts our search to articles talking

about environmental/ecological taxation. This provides us with a clearer idea of

publishing trends directly related to environmental taxation and will be used to

scale frequency counts of a more targeted search strategy that specifically captures

price salience. Finally, Strategy # 2 is employed to identify articles talking about

environmental/ecological taxation and resulting in increases in fuel prices. Here, we

use a double AND operator to impose that at least one keyword from each of the

brackets that come after the operator must appear in the article.

Strategy #1: Environmental taxation trends. (Ökosteuer* or ”Ökologische

Steuerreform” or Umweltsteuer* or ”Ökologische Finanzreform” or Umweltabgabe*)

Strategy #2: Eco tax price salience. (Ökosteuer* or ”Ökologische Steuer-

reform” or Umweltsteuer* or ”Ökologische Finanzreform” or Umweltabgabe*) AND

(Dieselpreis or Benzinpreis) AND (Preissteigerung or Preisanstieg or Preiserhöhung

or Anstieg or ansteigen or steigen or zunehmen or Zunahme or Erhöhung or erhöhen
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or anheben or aufschlagen or Aufschlag or angestiegen or zugenommen or erhöht* or

angehoben or aufgeschlagen)

2.E.2 Using information in newspaper articles as an indicator

of salience

For each newspaper, we separately downloaded the annual count of articles that are

picked up by our search strategies. To account for publishing trends specific to the

topic of environmental taxation, we begin by computing a simple newspaper-specific

ratio of articles matching Strategy #2 over the frequency counts from Strategy #1.

A challenge with these raw article ratios is that the number of articles varies a lot

across newspapers and time, making it difficult to simply average the ratios across

several newspapers. We, therefore, apply the standardization approach of Baker

et al. (2016) to obtain our salience index.

We begin with the simple ratio of articles matching Strategy #2 divided by the total

article counts for Strategy #1 for each newspaper, and then divide this ratio by the

newspaper-specific standard deviation across all years. This creates a newspaper-

specific time series with a unit standard deviation across the entire time interval,

which ensures that the volatility of the index is not driven by the higher volatility

of a particular newspaper. We then average these standardized series across all

newspapers within each year. Lastly, we normalize the yearly series to a mean of

100 over the entire time interval to develop our main salience index. This procedure

allows us to explicitly capture variation over time in the price salience of the eco-tax

while accounting for newspaper-specific publishing trends concerning the topic of

environmental taxation.
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Table 2.A15: Effects of salience on gasoline demand (robustness)

(1) (2) (3) (4)

Raw price of Gasoline (only VAT) -0.00266 -0.00282 -0.00280 -0.000497
(0.00242) (0.00179) (0.00176) (0.00130)

Energy Tax -0.00610** -0.00243 -0.00338 -0.00717
(0.00234) (0.00505) (0.00489) (0.00427)

Eco Tax -0.00656 -0.0103 -0.00773 0.00947
(0.00492) (0.00632) (0.00557) (0.0105)

Eco Tax x Salience Index -0.00531*** -0.00433** -0.00441** -0.00199**
(0.00132) (0.00203) (0.00190) (0.000739)

L.Eco Tax x Salience Index -0.000459
(0.00197)

L2.Eco Tax x Salience Index -0.00622***
(0.00208)

Dummy Eco Tax -0.0227 0.0323 0.0135 -0.195
(0.0399) (0.0868) (0.0738) (0.116)

Trend 0.0153*** 0.0296** 0.0198 0.0135
(0.00391) (0.0143) (0.0221) (0.0206)

GDP per capita -0.00274 -0.00161 0.000913
(0.00310) (0.00316) (0.00298)

Unemployment rate 0.0101 -0.00325
(0.0256) (0.0213)

N 38 38 38 37

Table 2.A16: Effects of salience on diesel demand (robustness)

(1) (2) (3) (4)

Raw price of Diesel (only VAT) -0.00306*** -0.00318*** -0.00326*** -0.00197***
(0.000766) (0.00103) (0.000900) (0.000620)

Energy Tax -0.00103 -0.00537 -0.00723** -0.00773**
(0.00293) (0.00337) (0.00348) (0.00342)

Eco Tax -0.0119*** -0.00998*** -0.00818*** 0.000528
(0.00129) (0.00232) (0.00275) (0.00367)

Eco Tax x Salience Index -0.000999* -0.00123 -0.00120* 0.000337
(0.000497) (0.000732) (0.000689) (0.000440)

L.Eco Tax x Salience Index -0.00166*
(0.000891)

L2.Eco Tax x Salience Index -0.00187*
(0.000971)

Dummy Eco Tax 0.0821*** 0.0647** 0.0558* -0.0411
(0.0209) (0.0309) (0.0306) (0.0343)

Trend 0.0356*** 0.0262*** 0.0184* 0.0177
(0.00176) (0.00611) (0.00955) (0.0105)

GDP per capita 0.00131 0.00210** 0.00272**
(0.00101) (0.000995) (0.00106)

Unemployment rate 0.00636 0.00131
(0.00894) (0.00931)

N 39 39 39 37

Notes: The dependent variable is the log of fuel consumption in liters per capita, which refers to total fuel consumption or
either gasoline or diesel consumption (as indicated by the column heading). Prices are in 1995€. Results for gasoline

consumption refer to 1972-2009 due to missing price data prior to 1972. Unemployment is measured as percentage of total labor
force. Newey-West standard errors in parentheses are heteroskedasticity and autocorrelation robust. Standard errors are

calculated relying on the automatic bandwidth selection procedure following Newey and West (1994). * p < 0.05, ** p < 0.01,
*** p < 0.001.
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Chapter 3

Carbon pricing, compensation, and

competitiveness: Lessons from UK

manufacturing

with Elisabeth Isaksen (Ragnar Frisch Centre for Economic Research) and Misato

Sato (The London School of Economics and Political Science)

SUMMARY. Carbon pricing is often paired with compensation to carbon-intensive

firms, with the aim of mitigating carbon leakage risk. This paper examines the causal

impact of compensation payments for indirect carbon costs embodied in electricity

prices. We use confidential UK administrative microdata to exploit firm-level inclu-

sion criteria in both a difference-in-differences and regression discontinuity framework.

Findings suggest that compensated firms increased production and electricity use

relative to uncompensated firms, with no significant effect on energy intensity. While

compensation lowers leakage risk, it also implies large forgone opportunity costs of

public funds and increased mitigation costs of meeting national emission targets.
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3.1 Introduction

Policies to establish a carbon price have proliferated in recent years. Currently, 73 of

such initiatives collectively cover 23% of global emissions (The World Bank, 2023).

While carbon pricing is considered an essential part of the solution to achieving

a cost-effective decarbonization of the economy, there is a long-standing concern

that carbon price incentives are being compromised by the concessions offered to

industry (Fischer and Fox, 2007; Sterner and Muller, 2008; Rosendahl, 2008). For

example, the EU Emissions Trading System (EU ETS) gives energy-intensive sectors

free allocation of allowances for the direct costs of carbon emissions. Additionally,

some countries also compensate electro-intensive firms for the indirect carbon costs

embodied in electricity prices. These cost containment measures make the policy

more politically acceptable and are increasingly justified on grounds of alleviating

carbon leakage risk1 (Sato et al., 2022), thus target energy-intensive manufacturing

firms operating in regional or global markets with limited ability to pass through

carbon costs to consumers (Ganapati et al., 2020).

By shielding firms from the full carbon cost, however, such compensation may

compromise efficient carbon price incentives to decarbonize industrial production

and consumption. Studies have shown that adjusting free allocation volumes over

time can create incentives for polluters to emit more in the present to obtain more

free allocations in the future (Rosendahl, 2008)2 contrary to earlier claims that

market outcomes and efficiency are independent of how allowances were allocated

(Montgomery, 1972).3 Compensation linked to current production volumes essentially

provides an implicit production subsidy and dampens the carbon price signal (Fischer

and Fox, 2007; Fowlie et al., 2016; Meng, 2017), also limiting carbon cost pass through

1Carbon leakage is often defined as a policy-induced relocation of emissions to countries with
more lenient carbon policies.

2This is known as “output-based” allocation and is in contrast to allocation based on historic
output or emissions known as “grandfathering” or “ex-ante” allocation.

3Free allocation does not alter the emissions cap and therefore the aggregate effectiveness of a
carbon market. However, it is associated with inefficiency losses, as is explained below.
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to consumers and foregoing demand side substitution. This means that to achieve the

overall emission reduction targets, the mitigation burden shifts elsewhere (to other

sectors or towards greater emissions intensity improvements), which means carbon

prices and overall costs rise. This perverse production incentive effect has been

highlighted in the literature (Fischer, 2001; Demailly and Quirion, 2008; Böhringer

et al., 2012; Fischer and Fox, 2011) but downplayed in policy debates arguably due

to the lack of robust empirical evidence.

This paper contributes to the literature by empirically examining UK manufacturing

firms’ responses to an indirect carbon cost compensation scheme. Starting in 2013, the

EU ETS allows participating states to partially shield electro-intensive firms from the

indirect carbon cost induced by emissions trading, due to carbon cost pass-through

in the power sector (European Commission, 2020b). This is expected to continue,

for example, Germany, France and Poland have committed to compensating in total

an estimated e27.5 billion, e13.5 billion and e10 billion, respectively, between 2021

and 2030 (European Commission DG Competition, 2022). Given the large fiscal

implications involved and number of countries compensating indirect carbon costs,

there is surprisingly little empirical evidence on their impacts.4 Of the Member States

providing compensation the UK’s compensation was relatively generous because

electricity prices reflect relatively high carbon costs induced not only by the EU ETS

but also the carbon price floor implemented in 2013 that more than tripled the cost

of power sector emissions.

We combine two quasi-experimental research designs, namely a difference-in-difference

(DiD) design with inverse propensity score weighting and a ”fuzzy” regression

discontinuity (RD) design. The two methods complement each other by addressing

different types of potential selection biases, and by providing different types of

treatment estimates. In both approaches, we exploit the variation caused by the UK

4The UK, Germany, Belgium, the Netherlands, Greece, Lithuania, Slovakia, France, Finland,
Luxembourg, Poland, Romania Spain, and Norway all provide monetary compensation to electro-
intensive firms for higher indirect carbon costs induced by the EU ETS in 2020 (European
Commission, 2020b). The total compensation distributed in 2017 by EU countries (for indirect
costs incurred in 2016) amounted to e694 million (European Commission, 2018).
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eligibility rules for receiving the compensation to identify effects. To be eligible for

the program, a firm first needs to operate in a 4-digit NACE industry that is deemed

eligible for compensation. Second, eligible firms need to document that the firm’s

overall electricity costs as a share of gross value added (GVA) amounts to at least

5%, where calculations are based on historical values.5 Third, the firm needs to apply

to the compensation scheme, documenting that it meets the two eligibility criteria.

The second and third requirements imply that there are likely both compensated

and uncompensated firms operating plants in the same narrowly defined industries,

which we can exploit to identify how plants respond to higher indirect carbon costs

with and without compensation in place.

To examine how plants respond to indirect carbon cost compensation, we combine

confidential microdata from the UK secure data lab on economic variables and

energy use at the plant-level with a publicly available list of firms that received

compensation. While eligibility for compensation is assessed at the firm level, the

amount of compensation paid is calculated at the plant level and is linked to the

plant’s output. Compared with firm-level analysis, more disaggregated plant-level

data are advantageous because firms may operate multiple plants across different

sectors. In the analysis, we are comparing similar plants belonging to compensated

and non-compensated firms to isolate the effects of compensation for indirect carbon

costs, going well beyond previous analysis relying on cross-sectoral or cross-country

variation (Ferrara and Giua, 2022).

As a first step, we develop a static conceptual framework to elucidate how compen-

sation payments affect firms’ adaptation to indirect carbon costs. The compensation

payout is based on historical output multiplied by an electricity intensity benchmark,

but if an installation significantly extends (reduces) its production, then baseline

output can be increased (reduced) to reflect the capacity or production changes. Our

5Note that this criteria is calculated at the firm level, i.e., the legal entity, and not at the plant
level. This means that for firms operating multiple plants where some are very electro-intensive
while others are not, there may be electro-intensive plants belonging to firms that do not pass the
5% eligibility test.

92



framework illustrates how, analogous to output-based free allocation in emissions

trading, firms receiving compensation for the indirect carbon costs embodied in

electricity prices face weaker incentives to contract output, while the incentives to

improve electricity intensity of production remain intact. As a consequence, the

overall electricity use is expected to increase for compensated firms compared to

uncompensated firms.6

Our empirical analysis delivers three key results. First, in line with our theoretical

prediction, we find that compensated plants increased production relative to non-

compensated plants. Results from the DiD estimation show that compensation led

to an increase in the sales of own goods by around 16% in the post-treatment period

(2013–2015). These results are supported by the fuzzy RD design, where we find a 30%

increase in own sales for the compensated plants, with an estimated lower bound of

26% (reduced form estimate). Second, our results point to an increase in electricity use

(measured in physical units) of around 22% as a result of compensation accompanied

by no significant changes in electricity intensity. Relatedly, we additionally document

an increase in carbon emissions of approximately 22% for compensated plants vis-

á-vis their uncompensated counterparts.7 Finally, we find that energy intensity

(scaled by sales) did not experience any significant changes in both the DiD and RD

designs. Overall, we find robust evidence in line with our theoretical predictions

that incomplete carbon price internalization created by output-based compensation

provisions for carbon and energy-intensive industries weakens incentives to reduce

output and hence overall energy consumption. Our DiD findings exhibit robustness

across a range of tests, including variations in the time frames used to compute

p-scores, industry-specific effects defined at different digit levels, sample trimming

based on electricity intensity to mitigate the influence of outliers, considering different

time horizons in the estimations, extended post-treatment periods, and the utilization

6Analytical models on this topic tend to compare one allocation approach over another e.g.
Hagem et al. (2020); Fowlie et al. (2016). Our model instead compares the effect of treatment on
compensated firms with that on non-compensated firms.

7Due to the small sample size, the effects of compensation on electricity use in physical units,
carbon emissions and the associated measures of electricity intensity are only produced in the DiD
design.
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of diverse proxies for production and energy usage. Additionally, our results from

the RD design are robust to multiple bandwidth selections and alternative functional

forms (Lee and Lemieux, 2010).

Our findings provide several important policy implications for carbon pricing in

the UK and elsewhere where free allocation, compensation and exemptions remain

commonplace (European Commission, 2020a; The World Bank, 2023).8 While carbon

leakage may have been limited,9 industry compensation represents a substantial

forgone carbon tax revenue that could be employed towards driving forward the

transition to net zero. We find robust evidence that compensation encourages firms

to increase production and thereby pollute more, shifting the mitigation burden

elsewhere in the economy where emissions abatement may be costlier (Martin et al.,

2014b). Moreover, output-based compensation to industry also limits cost pass

through, thus also hindering mitigation through demand-side response (Quirion,

2009). Our results hence underscore the need for complementary measures to

encourage consumers to substitute away from energy- and carbon-intensive goods.

Our paper contributes to a broader literature on the incentives effects of indus-

try compensation in climate policy. Free allocation in emissions trading and the

distortions that can arise from specific designs of free allocation rules have been

extensively studied. For example, ex-ante free allocation based on historic activity

can generate large windfall profits (Laing et al., 2014) and over-allocation (Martin

et al., 2014b), and lead to early action problems, distorting investment decisions

or reducing incentives to phase out inefficient technologies (Sterner and Muller,

2008; Venmans, 2016) but can be rectified through benchmarking (Neuhoff et al.,

2006; Zetterberg, 2014); closure provisions create incentives to delay exit (Verde

et al., 2019); combining free allocation with activity thresholds create incentives to

artificially inflate output in low-activity installations (Branger et al., 2015). Our

8Even in the EU where the Carbon Border Adjustment Mechanism (CBAM) will be introduced
in 2026 to reduce the risk of leakage, free allocation is scheduled to continue until 2035 (Morgado
Simões, 2023).

9Given large volumes of free allocation, it is not surprising that studies on the EU ETS find
limited evidence to support leakage (Naegele and Zaklan, 2019; Verde, 2020)
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empirical analysis particularly complements literature on output-based free allocation

that primarily uses theoretical and modelling approaches and highlights perverse

production incentives while improving leakage outcomes (Fischer, 2001; Fischer and

Fox, 2007; Demailly and Quirion, 2008; Böhringer et al., 2014). Rosendahl and

Storrøsten (2015) show that output-based allocation (OBA) in general gives stronger

incentives to improve abatement technology due to a higher permit price but the

effects of OBA is heterogeneous across types of firms and sectors. Finally, research

has shown that opportunity costs of compensation are high in part because they are

coarsely or ill-targeted (Martin et al., 2014b; Fowlie and Reguant, 2022).

Some papers have explored other carbon cost compensation measures including

refunding of emission payments (Martin et al., 2014b; Hagem et al., 2020), and

relatedly, exemptions and rebates for energy taxes (Ito, 2015; Gerster and Lamp,

2023).10 On the compensation scheme for indirect carbon costs, to our knowledge,

there is only one other empirical analysis (Ferrara and Giua, 2022), but their empirical

approach using firms in other countries or sectors without compensation as controls

is problematic.11 We are the first paper to rigorously examine the effects of indirect

carbon cost compensation.

Our study also complements and expands the knowledge base on how carbon pricing

affects carbon and energy-intensive firms (Martin et al., 2014a; Petrick and Wagner,

2014; Aldy and Pizer, 2015; Klemetsen et al., 2020; Marin and Vona, 2021; Deche-

zleprêtre et al., 2023; Colmer et al., 2023)12, including the specific papers on the UK

Carbon Price Floor (Abrell et al., 2022; Leroutier, 2022). The latter studies examine

the direct impact of the policy on decarbonizing the UK electricity sector, while we

10In contrast to exemptions for energy- and carbon-related taxes, the CO2 price compensation
scheme is designed in a way that aims to restore some of the incentives created by the initial carbon
pricing policy. We would therefore expect the mechanism and impacts to differ from an exemption
scheme.

11To distinguish the compensation scheme’s causal effect from other factors unrelated to the
program is difficult under this choice of control group. The countries self-selecting into giving out
compensation are likely to be different from other countries in terms of observable and unobservable
factors. The sectors selected for compensation have been assessed as energy intensive and at high
risk of relocation, hence likely to be different from non-eligible sectors.

12See Laing et al. (2014), Martin et al. (2016) and Dechezleprêtre et al. (2023) for EU ETS
reviews and Green (2021) for a review of the empirical carbon pricing literature.
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study the indirect effects of carbon pricing via higher electricity prices, as well as

how these indirect costs are mediated through a compensation scheme.

The remainder of the paper is structured as follows. We first lay out a simple

conceptual framework to characterize the compensation scheme’s impact on firms in

Section 3.2. We then give some essential policy background on the UK carbon pricing

and compensation scheme, introduce the data, and provide descriptive statistics in

Sections 3.3. Section 3.4 details our two empirical strategies. Section 3.5 presents

our main results and compares the estimates from both strategies. Section 3.6

presents some back-of-the-envelope calculations to provide perspective on the trade-

offs between preventing leakage and fostering carbon abatement, before we conclude

in Section 3.7.

3.2 Conceptual framework

Here we use a simple framework to characterize the theoretical predictions of manu-

facturing plants’ behavior in the presence of indirect carbon costs with and without

compensation, drawing inspiration from Hagem et al. (2020) and Fowlie et al. (2016).

Suppose that production causes direct carbon emissions from the combustion of fossil

fuels (ei is the emission intensity or emissions per unit of output qi for firm i) as well

as indirect carbon emissions through the use of electricity (eli is the firm-specific

electricity intensity). Each firm can reduce its overall emissions (ei · qi) and electricity

use (eli · qi) by reducing production (qi) and/or by lowering the respective intensities

– by installing abatement equipment to lower ei or electricity saving technology to

lower eli. Suppose that firms face two types of carbon costs. First, firms pay a

direct carbon cost that depends on the output, qi, the emission intensity, ei, and an

equilibrium emission permit price, � , (or more generally, the monetized damages

associated with an additional tonne of carbon emissions). Second, firms face an

indirect carbon costs via carbon embodied in electricity prices that is a function
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of output, qi, the electricity intensity, eli, and the electricity price, pel(�el). Note

that the electricity price is a function of the carbon tax levied on the power sector:

pel(�el).13

We consider a sector that consists of firms indexed by i=1,....,n with each firm

producing quantity qi of a homogeneous good, operating in perfectly competitive

global markets where all firms are price takers.14 We apply the standard assumptions

that marginal costs of production is positive and increasing: c
�
i
> 0, c��

i
> 0 and

abstract from exit and entry decisions. The profit of a single plant is given by:

�i = pqi � ci(qi)�myi � nzi � �i(qi, ei(yi), �)| {z }
Direct carbon costs

��i(qi, eli(zi), pel(�el))| {z }
Electricity costs

(3.1)

where p is the product price, ci(qi) is the cost of output, qi – excluding electricity use

–, m is the (annuity) price per unit of abatement equipment yi, and n is the (annuity)

price per unit of electricity saving equipment zi. The parameter �i(qi, ei(yi), �)

indicates the direct carbon costs and the parameter �i(qi, eli(zi), pel(�el)) indicates

the electricity costs. The electricity costs include an indirect carbon cost component,

represented by �el, which is the carbon price in the electricity sector.

For direct carbon costs, we assume that permits are allocated based on units of

production multiplied by an industry-specific emission intensity benchmark, ēj i.e.

output-based allocation. Thus, direct carbon costs (�) to the firm will be:

�(qi, ei(yi), �) = qi · �(ei(yi)� ēj) (3.2)

13Assuming 100 % pass-through of carbon taxes in the power sector, the full carbon cost
associated with electricity generation is born by the users of electricity.

14This assumption is in line with the UK Government’s underlying assumption of UK firms
being unable to pass through domestic carbon taxes to product prices.
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(i) No compensation for indirect carbon costs

Under no compensation for indirect carbon costs, the cost of electricity consumption

(�) to the firm will be:

�(qi, eli(zi), pel) = qi · eli(zi) · pel(�el) (3.3)

where �el is the carbon price faced by electricity generators.15 Intuitively, any increase

(decrease) in �el or electricity intensity eli would translate into higher (lower) �.

Maximizing the profit function with respect to output qi and electricity saving

investments zi yields the following first-order conditions:

p� c
�
i
(qi)�

�direct carbon costsz }| {
� · [ei(yi)� ēj]

eli(zi)
= pel(�el) (3.4)

� n

qi · el�i(zi)
= pel(�el) (3.5)

The left-hand side of Equation (3.4) expresses the marginal cost of reducing electricity

use through output reductions, and the left-hand side of Equation (3.5) expresses

the marginal cost of reducing electricity use through technology investments.

(ii) Compensation for indirect carbon costs

If compensation is introduced to offset the indirect carbon cost component of

electricity prices, based on industry-specific electricity intensity benchmarks (denoted

by ēlj) and baseline output subject to dynamic updating,16 then it follows that the

15Assuming complete cost pass-through in the electricity sector, the carbon price faced by UK
power plants will be equal to: �el � � + Carbon Price Support.

16Both assumptions match how compensation payments for higher electricity costs induced by
the EU ETS are calculated across Member States, where baseline output is updated on a quarterly
basis and electricity consumption efficiency benchmarks (in MWh/tonne of output and defined at
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cost of electricity consumption (�) to the firm will be:

�(qi, eli(zi), pel) = qi ·
h

eli(zi) · pel(�el)| {z }
Electricity cost per tonne

� ēlj · �el · Ai| {z }
Compensation per tonne

i
(3.6)

where ēlj is the electricity intensity benchmark for industry j (tCO2/tonne) and A

is the aid share.17,18

Conditional on being compensated, maximizing the profit function with respect

to output qi and electricity saving investments zi yields the following first-order

conditions:

p� c
�
i
(qi)�

�direct carbon costsz }| {
� · [ei(yi)� ēj]

eli(zi)
= pel(�el)�

compensationz }| {
ēlj · �el · Ai (3.7)

� n

qi · el�i(zi)
= pel(�el) (3.8)

As (3.5) = (3.8), the first-order condition w.r.t. the electricity-saving investment zi

is the same regardless of the compensation payments for the indirect carbon costs.

Put differently, the social marginal cost of electricity reduction through technology

investments is equal to the level of the electricity price for all firms. However,

we see that the first-order condition w.r.t. output, qi, has changed relative to no

compensation: (3.4) �= (3.7). From (3.7) we see that the marginal cost of lower

electricity use through output reductions is no longer equal to the electricity price

pel(�el), but equal to pel(�el) minus the compensation payments per unit of output

(ēlj · �el · Ai).

Prodcom 8 level) are defined as the product-specific electricity consumption per tonne of output
achieved by the most electricity-efficient methods of production for the product considered (EU
2012/C 158/04).

17Over the time frame considered in this paper, the EU Commission recommendations state
that aid intensity should not exceed 85% of the eligible costs incurred in 2013, 2014 and 2015 and
80% of the eligible costs incurred in 2016 (EU 2012/C 158/04).

18In the case of complete pass-through of the power sector carbon price �el to electricity prices,
Ai = 1, and eli = ēlj , the compensation per tonne received by the firm would equal the increased
electricity cost per tonne due to the higher �el. If instead eli < ēlj , compensation payments per
unit of output will be larger than the carbon price-induced increase in the electricity price.

99



Introducing compensation payments for indirect carbon costs increases the cost of

reducing electricity use through output reductions, as reduced production leads to

lower compensation payments – this marginal loss of compensation via reduced

output equals ēlj · �el ·Ai. Hence, the firm’s marginal cost of reduced output exceeds

the social cost of reduced output. While higher electricity prices induced by carbon

pricing in the power sector make production more costly, compensation payments

make production less costly.

Testable predictions of firms’ production behavior

By comparing models (i) and (ii), we formalize the following hypothesis of how plants

respond to an increase in the indirect carbon cost �el:

• Prediction 1 Compensated plants’ production will contract less vis-á-vis un-

compensated plants.

• Prediction 2 Compensated and uncompensated plants have the same incentives

to invest in electricity-saving technology. Therefore, a similar effect of an

increase in �el on the electricity intensity is expected for compensated and

uncompensated plants.

• Prediction 3 Based on predictions 1 and 2, we expect that compensated plants’

overall electricity use will contract less vis-á-vis uncompensated plants

These predictions compare the effects of output-based compensation on treated and

non-treated firms, in contrast with the predictions in previous papers, which compare

the effects of output-based compensation on treated firms vis-á-vis other allocation

methods such as auctioning or grandfathering (e.g. Fowlie et al., 2016; Rosendahl,

2008).

In the following sections, we empirically test these theoretical predictions by applying

a difference-in-difference and regression discontinuity design to the UK indirect
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carbon cost compensation scheme. In the next section, we describe the research

design and data used in our empirical analysis.

3.3 Research Design and Data

3.3.1 Policy Background

The design of the carbon pricing and compensation schemes plays a central role in

our empirical strategy, so it is essential to understand how the relevant policies were

rolled out.

In 2005, a EU-wide carbon price was introduced for the manufacturing and power

sectors with the introduction of the EU ETS. The carbon price can affect manu-

facturing firms in two ways. First, regulated firms have to purchase and surrender

EU Allowances (EUAs) for each tonne of CO2 emitted in the previous year (direct

ETS costs). Second, firms also pay for the carbon price reflected in higher electricity

prices (indirect ETS costs) due to electricity producers passing forward the carbon

price on to consumers (Sijm et al., 2006; Fabra and Reguant, 2014; Hintermann,

2016). To prevent carbon leakage, the ETS Directive gives free allocation to leakage-

exposed sectors to limit their exposure to direct carbon costs. Since 2013, “the 2012

Guidelines” also allowed EU ETS countries to grant State aid to compensate selected

electro-intensive industries for indirect carbon costs (European Commission, 2020b).

In the UK, in addition to the EU ETS, a Carbon Price Floor was unilaterally

introduced on April 1 2013, applying only to electricity generation and immediately

raising the carbon price faced by UK power plants. The initial idea of the policy was

to first set the desired carbon price floor (path) and then stipulate the tax needed to

top up the EUA price with the Carbon Price Support (CPS). From 2016, however,

the UK Government decided to freeze the CPS at £18/tCO2, which meant that the

policy effectively functioned as an additional tax on carbon emissions that came on
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top of the EUA price. As seen from Panel (a) in Figure 3.1, CO2 prices faced by

power plants were 2-5 times larger than the EUA price.

Figure 3.1: Carbon prices and compensation payments in the UK

(a) Carbon Price Floor (e/tCO2) (b) Indirect carbon cost compensation (£m)

Notes: Panel (a) illustrates the two elements of the carbon price faced by UK power plants. For the period 2013
to 2015, the Carbon Price Support, i.e., the tax, was set to 4.94, 9.55, and 18.08 £/tCO2. From 2016, Carbon
Price Support (tax) was frozen at £18/tCO2. Approximate calculations using the yearly average of EUA prices
in e/tCO2 from sandbag.org.uk, the Carbon Price Support rates in £/tCO2 from Hirst (2018), and GBP/EUR
exchange rates. Panel (b) summarizes the annual compensation payments made by the UK government for EU
ETS and CPS indirect carbon costs communicated directly by the Department for Business and Trade through a
freedom of information request.

The UK CPS was expected to accelerate the decarbonization of the UK power

sector and came in response to the general concern in the years leading up to

phase III of the scheme that the EUA price was too low (UK BEIS, 2019); in

2012, the average allowance price was around e7/tCO2. But simultaneously, it

spiked substantial concerns about leakage and loss of competitiveness of UK electro-

intensive manufacturing firms vis-á-vis competitors abroad.19,20 To mitigate the

potential adverse effects on domestic firms and win political support, the CPS was

accompanied by a compensation scheme for the additional costs it entailed. This was

meant to start in 2013, but was only approved by the EU Commission in March 2014,

when it came into effect. This was combined with another compensation introduced

19Even before the Carbon Price Floor, UK industrial sectors voiced strong concerns about
electricity prices for several reasons. Over the past decade, UK manufacturing companies have
paid relatively high electricity prices compared to their counterparts in neighboring countries
such as France, Germany, and Italy, but the differences are mitigated by compensation for policy
costs; see Figure 3.A1 in Appendix 3.A. Electricity has been the main source of energy in the UK
manufacturing sector as a whole since 2006 (UK BEIS, 2018).

20Grubb and Drummond (2018) quantify the relative contribution of various components to
UK industrial prices. They stipulate that costs induced by the CPS and the EU ETS accounted
for approximately 25% of the industrial electricity price in 2016. Cambridge Econometrics (2017)
report a lower number: As a proportion of the industry electricity price in 2016, the indirect EU
ETS carbon cost and the CPS amounted to around 9%.
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in January 1, 2013 for the indirect carbon costs induced by the EU ETS. Since

2013, carbon prices have been higher in the UK due to the CPS (see Figure 3.A1 in

Appendix 3.A), but so were the compensations. Panel (b) in Figure 3.1 summarizes

the annual payments made by the UK government for compensation for EU ETS

and CPS indirect carbon costs, demonstrating an upward trend in correlation with

the rise in the price of EUA allowances in more recent years.

Eligibility

We exploit a discontinuity in the eligibility rules for indirect carbon cost compensation

to test the effect of the compensation on firms’ economic and environmental outcomes.

Eligibility for compensation for the indirect costs of both the EU ETS and the Carbon

Price Support was based on two criteria. First, the firm needs to manufacture a

product in the UK within an eligible sector defined by the 4-digit NACE code. The

European Commission selected a list of eligible sectors with a high risk of carbon

leakage.21 Appendix Table 3.A1 lists the 15 eligible industries according to the 4-digit

NACE code (European Commission, 2012).22

With the aim of a more targeted compensation scheme, the UK Government also

imposed a second eligibility criteria: a firm needs to show that its indirect carbon

costs (the combined costs of EU ETS and the Carbon Price Support) would amount

to 5% or more of its gross value added. Specifically, this so-called 5 % filter test was

calculated in the following way:

electricity consumption (MWh) x price impact (£/MWh)

Gross Value Added (£)
� 5%, (3.9)

21Generally, the compensation schemes need to comply with the principles set out in the
Environmental and Energy Aid Guidelines and the ETS State and Guidelines adopted by the
European Commission. The first set of guidelines states that Member States are allowed to partially
compensate large electricity users for the indirect costs of taxes on energy products, when those
taxes have the same aim and effect as the ETS carbon allowance price. The criteria for choosing
eligible firms and calculating compensation levels need to be the same as those in the ETS State
aid Guidelines.

22This list was subsequently revised down from 15 to 10 in 2020.
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where electricity consumption and gross value added (GVA) are average values for

the period 2005-2011, and the price impact was set to £19/MWh in real 2007 prices.

As calculations were based on historical values, there was a limited ability for firms to

adjust consumption or production to ensure that they were eligible for compensation.

Both electricity costs and GVA had to be calculated at the aggregate legal entity

level, i.e., the firm. For multi-plant firms, this implied that parts of the electricity

use and GVA might stem from activity unrelated to the manufacture of the eligible

product(s). If these activities were less energy intensive, it would lower the firm’s

average electricity intensity, and hence make it harder to meet the eligibility criteria.

Even if a firm meets the two criteria, it also needs to submit an application to receive

the compensation. Crucially for identification, the multiple criteria implies that we

might have three types of firms within a narrowly defined eligible industry: (i) firms

that passed the 5% filter test and received compensation, (ii) firms that would pass

the 5% filter test, but did not apply, (iii) firms that did not pass the 5% filter test.

This makes it possible to exploit within-industry variation to estimate impacts of

the compensation scheme.23

Compensation calculation

While the 5% test requires a calculation at the aggregate firm level, the amount

of compensation is calculated based on installation level data.24,25 Compensation

23In addition to the criteria listed, a firm was also eligible for compensation if it could document
that a close competitor received compensation. A close competitor is defined as a firm producing
the same product, as defined by the 8-digit Prodcom classification. Additionally, a firm is also
granted compensation if it can demonstrate that it failed the 5% test because of the inclusion of
business activity that did not relate to the manufacture of the eligible product(s).

24In the compensation scheme an installation was defined as a stationary technical unit where
one or more activities associated with the manufacture of the eligible product are carried out.

25It is then possible that two plants have the exact same electricity intensity (el/GVA) but only
one of the plants are eligible for compensation because the plant’s owner firm passes the eligibility
test. The ineligible plant might be part of a multi-plant firm, where the other plants are less energy
intensive. Generally, we would expect that firms with a secondary industry code that makes them
eligible are less likely to receive compensation compared to firms with a primary industry code that
is eligible.

104



payments based on installation-level data are calculated using the following formula:

Baseline output of product X (tonne)�

Electricity consumption efficiency benchmark (MWh/tonne)�

Emission factor (tCO2/MWh)�

[Carbon Price Support (£/tCO2) + EUA forward price at year t-1 (£/tCO2)]�

Aid share (e.g. 80%).

(3.10)

The baseline output corresponds to the average production of the eligible product in

tonnes per year at the installation over the reference period 2005–2011. However,

if an installation significantly extended its production, the baseline output could

be increased in proportion to the production extension. Also, if an installation

significantly reduced its production, the aid would be reduced according to a stepwise

function.26 Payments to firms are made quarterly, and firms were required to inform

the UK Government quarterly of any significant increases or reductions in their

production. There is hence a degree of dynamic updating of the baseline, which

means that compensation payments can potentially be affected by a firm’s recent

production.

3.3.2 Data sources

To examine the indirect effect of carbon pricing on manufacturing, we combine

several data sources at the firm and plant levels, primarily confidential microdata

from the UK secure data lab. While the disaggregated data offers rich detail, it also

poses challenges for analysis due to the relatively small sample size because some

26If production was reduced by less than 50%, there would be no reduction in the aid amount.
If reduced between 50% and 75%, an installation would only receive 50% of the aid amount. If
reduced by 90% or more, and installation would not receive any compensation. Conditional on
eligibility, there may be perverse incentives around the thresholds to artificially inflate production
especially during economic downturns in order to receive full compensation as documented in the
case of ETS free allocation by Branger et al. (2015).
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data sources are surveys.

Compensation schemes: A list of firms that received compensation for indirect

carbon costs between 2016 and 2019 is publicly available from the Department for

Energy Security and Net Zero (DESNZ)27 website. We assume that the same firms

also received compensation for the years 2013 to 2015.28 There were in total 59 firms

that received compensation in 2016 for the indirect costs induced by the EU ETS

and the Carbon Price Support.

Economic data: We use plant-level data29 on employment and economic outcomes

from restricted microdata maintained by the Office for National Statistics (ONS).

Our core dataset is the Annual Business Survey (ABS), which is an annual survey

of businesses covering production, construction, distribution, and service industries.

ABS is the largest business survey conducted by the ONS and covers around 62,000

plants. The sample design is a stratified random sample using three stratification

variables: employment, geography, and the 4-digit Standard Industrial Classification

(SIC) code. From the ABS, we collect information on SIC codes, employment, sales

of own goods, production value, turnover, gross value added (GVA), and energy

expenditures for the period 2005 to 2019.30,31 Monetary values are adjusted for

inflation, with 2010 serving as the base year, based on official inflation statistics.

27Formerly Department for Business, Energy & Industrial Strategy (BEIS)
28While information on which firms received compensation before 2016 is not publicly available,

we were told in conversations with the former Department for Business, Energy & Industrial
Strategy (BEIS) that it is safe to assume that the list of firms are approximately the same as for
2013-2015.

29A “plant” corresponds to a “reporting unit”, which holds the mailing address for the business
and is the unit for which businesses report their survey data to the UK Office for National Statistics.
A reporting unit represents an aggregation level that is more granular than an “enterprise unit”
(which may be subdivided into several reporting units) and more aggregated than a “local unit”
(which may be combined to form one reporting unit to reduce compliance costs). It is the lowest
aggregation level for which most business data are available. Within our sample, around 16% of
compensated enterprise units represent multi-plant firms. For more details see Criscuolo et al.
(2003).

30This includes a period of economic turmoil following the 2016 EU Referendum in the UK. We
show in robustness tests that the results are consistent including 2016-2019.

31The ABS was merged with the names of compensated firms by first manually matching the
compensated firms names with Bureau van Dijk’s Orbis data to obtain the Company Registration
Number (CRN), which can then be linked to the company IDs in the confidential data (Enterprise
Reference Number).
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Energy and Electricity use: To examine how electricity use is impacted by carbon

pricing and the compensation scheme, we collect detailed information from the

Quarterly Fuels Inquiry (QFI). The QFI provides quarterly information on the value

and the quantity of fuels used by a small sub-sample of UK manufacturing plants.

Before 2008 the survey covered around 1200 plants, while after 2008, the survey only

covered around 600 plants. The survey is maintained by the ONS on behalf of the

DESNZ. Unfortunately, this data is not available beyond 2015. Observations are

aggregated to the annual level and then linked to the ABS. Because the QFI covers

a smaller sample than the data on economic variables and is not available beyond

2015, to have sufficient power to test some of our hypotheses, we rely on reported

energy costs from the ABS as a proxy (see section 3.3.4).

Electricity related indirect emissions: To calculate indirect carbon emissions

embodied in electricity, we combine detailed electricity use in physical units from

the QFI with emission factors provided by the UK DESNZ.32

3.3.3 Descriptive statistics

Table 3.1 is based on plant-level microdata from the ABS and the QFI and shows

summary statistics by compensation status. The sample is restricted to manufacturing

industries (SIC 7-33).

To test our first hypothesis on the effect of compensation on production, we use sales

of own goods as our main dependent variable and proxy for production volumes,

and other proxies including total output, GVA, and total turnover in robustness

checks (see Panel A). Given that protecting jobs is a frequently used argument to

justify compensation, we also examine the effects of the compensation scheme on

employment but regard this outcome as less tightly linked to production volumes.

Comparing compensated and non-compensated plants, we see from Panel A in Table

32Government conversion factors for company reporting of greenhouse gas emissions can be
found here.
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3.1 that compensated plants are larger than the non-compensated manufacturing

plants in terms of both production, employment, and gross value added. We also

see that there is a limited number of compensated plants in our sample, ranging

from 70 to 119 depending on the variable of interest. By contrast, the number of

non-compensated manufacturing plants is between 8,976 and 16,180 plants.

To test our second hypothesis on electricity intensity impacts, we focus on electricity

use in kWh (from the QFI) as a share of sales of own goods (Panel B) and energy

purchases as a share of sales (Panel A), we also provide results for a wide range of

intensity measures in robustness checks.

To test the third hypothesis on the effects on electricity consumption, we focus on

electricity use in kWh (Panel B) as the variable that is closest to what we would

like to test. However, due to the smaller sample size in the QFI (34 compensated

plants and 739 non-compensated plants), we also examine the effects on the energy

purchases variable from the larger ABS (Panel A) even if this variable is a proxy for

electricity use.

Comparing compensated and noncompensated plants, we see that compensated plants

are larger, use more energy, and are more energy-intensive than noncompensated

plants. Clearly, we need to account for this selection bias in our estimation in order to

recover causal estimates of the compensation scheme.33 Table 3.1 also highlights the

challenge we face in terms of sample size, with the limited number of compensated

plants in our sample relative to the number of noncompensated manufacturing plants

particularly for the QFI sample.

33Additional descriptive evidence on our key outcome variables, including plots showing the
development in variables over time, are provided in Appendix 3.B.
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3.3.4 Using predicted electricity use to calculate the eligibil-

ity criterion

One key data challenge we face is the limited availability of plant-level data on

electricity consumption. The QFI is a relatively small sample and data on electricity

use in kWh is only available for a small subset of plants (Table 3.1, Panel B) up to

2015. To circumvent this problem, we use the relationship between energy purchases

(in £) from the ABS and electricity use (in kWh) from the QFI sample to predict

electricity consumption for the larger ABS sample up to 2019. Panel (a) in Figure

3.2 shows the strong and positive relationship between electricity use and total

energy purchases. The raw correlation ranges from 0.91 to 0.93, depending on sample

restriction (see Table 3.A2 in Appendix 3.C where we detail the procedure used to

make out-of-sample predictions of electricity consumption).34

Figure 3.2: Predicting electricity consumption from energy purchases

(a) Electricity - Energy correlation (b) Plants by the electricity cost share

Notes: Panel (a) plots the correlation between log electricity use and log energy purchase in 2011, with 95%
confidence interval and local smoothing. Panel (b) shows the distribution of plants by the electricity cost share,
using the formula outlined in Equation 3.9 and predicted electricity use. Data source: the Annual Business Survey
(ABS) and the Quarterly Fuels Inquiry (QFI). The population is restricted to plants in SIC 7-33 industries.

Predicted electricity consumption is then used to calculate the electricity cost intensity

for all plants in the sample, to evaluate the eligibility criterion described in Equation

3.9. As we will see in Section 3.4, having a measure of the electricity cost intensity

is important in the empirical strategies we use (as a matching variable in the DiD

34In robustness tests, we use energy purchases directly to calculate an energy cost intensity, and
instead infer the likely cut-off value; see Appendix 3.C.
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estimation and as the running variable ci in the RD design). Note that we do not

use predicted electricity use, or any variable derived from predicted electricity use,

as an outcome variable in the main analysis presented in Section 3.5.

Panel (b) in Figure 3.2 plots the distribution of the calculated electricity intensity

criteria based on Equation 3.9. We see that most firms’ intensity is much lower

than 5%. There is also no detectable bunching right above the 5% criterion, which

suggests that plants are not able to manipulate the running variable ci (see Section

3.4.2 for more details). A McCary test also gives no indication of bunching at the

5% eligibility cut-off; see Table 3.A20.

3.4 Empirical Strategy

Faced with challenges around selection bias and sample size, our approach to examin-

ing the indirect impacts of carbon pricing via electricity prices on manufacturing firms

with and without compensation schemes in place is the following. Acknowledging

that no single approach can adequately overcome all threats to identification, we

pursue two empirical strategies: i) a difference-in-differences (DiD) strategy with

inverse propensity score weighting and industry-specific time trends, and ii) a “fuzzy”

regression discontinuity (RD) design, where we exploit the discontinuous jump in the

probability of receiving compensation at the eligibility thresholds. We then compare

the results from the two strategies.

3.4.1 Difference-in-differences

Our first strategy is to exploit variation within narrowly defined industries in a

difference-in-differences (DiD) framework. When Compijt is a dummy that indicates

if firm i in industry j receives compensation payments at time t, the DiD estimator
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is written as:

yijt = �1Compijt +X
�
ijt

+ �i + �jt + �ijt, (3.11)

where yijt is a placeholder for a relevant plant-level outcome (e.g., production,

electricity use, or electricity intensity). X
�
ijt

is a vector of plausibly exogenous

covariates, �i are firm-specific fixed effects, and �ijt is the idiosyncratic error term.

The main identifying assumption is that, in the absence of compensation payments,

the compensated and uncompensated firms would have followed parallel trends in the

outcome variable. One potential threat to identification is industry-specific shocks.

By including industry-specific time dummies, �jt, we absorb time-varying shocks

at the 3-digit industry level, which means that identification is based on variation

within narrowly defined industries.35

However, there is still the possibility of selection bias within industries across treated

and non-treated groups, such as systematic differences in electricity intensity. To

account for such within-industry differences in observables, we combine the DiD

design with inverse propensity score weighting. Specifically, we use a propensity

score estimator to reweight plants in Equation 3.11 to reflect the differences in the

probability of getting compensation. We estimate the propensity score (p̂) based on

a proxy of the pre-treatment electricity intensity, and lagged values of the outcome

variable. On the former, we estimate the propensity score based on an electricity

intensity measure that is as similar as possible to the eligibility criteria (see Equation

3.9 in Section 3.3.1) where electricity intensity is defined relative to firm-level GVA.

As mentioned, due to the small sample size of the QFI, where electricity use is

reported, we instead use predicted electricity use to calculate the eligibility criteria;

(Section 3.3.4). The propensity score is calculated separately for each 3-digit SIC

industry, based on the period 2005-2011. These years correspond to the period

used by the UK Government to calculate the electricity cost share, which again

determines whether a plant passes the 5% filter test. The propensity score estimates

35We also show effects for 2 digit industries in robustness checks; see Section 3.5.1. Due to the
small sample size, there is a trade-off between accounting for detailed industry-specific trends and
ensuring that we have sufficient observations to recover precise estimates.
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are then transformed into weights and used in panel regressions. Specifically, we

weight each compensated plant by 1/p̂, and weight each uncompensated plant by

1/(1 � p̂). This allows us to recover an estimate of the average treatment effect

(ATE) of compensation on the outcome of interest (Imbens, 2004).36

To verify if pre-treatment trends are parallel and to examine how the treatment

unfolds over time, we also estimate a dynamic version of the DiD with leads and

lags. Specifically, we interact the treatment variable, Compijt, with time dummies,

where we use the year before the first treatment year as the reference category. If we

denote M as the number of leads and K as the number of lags, we can estimate the

unfolding of the treatment with the following regression:

yijt =
MX

m=0

��mCompijt�m +
KX

k=1

�+kCompijt+k +X
�
ijt
�2 + �i + �jt + �ijt, (3.12)

where lead m captures potential deviations in the pre-treatment m years before

treatment and lag k captures the effect of the policy k years after the start of the

treatment.

Even if pre-treatment trends are parallel, and we ensure that any differences in

initial electricity intensity are accounted for, there might still be a component of non-

random self-selection into the compensation scheme that influences the development

in production, energy use, and financial performance in the post-intervention period.

For example, as firms applying to the compensation scheme will likely incur fixed

costs in preparing the necessary accounting and administrative work, firms with

lower levels of electricity use (but still above the eligibility threshold) might find it

too costly to apply. While in principle selection effects can be addressed by adding

additional (time-varying) control variables and matching on additional pre-treatment

observables, selection might in part be driven by unobserved factors. It is therefore

difficult to fully account for potential self-selection effects.

36This approach avoids discarding non-matching observations, retaining a larger estimation
sample and hence greater statistical power for inference. See e.g., Guadalupe et al. (2012) for a
similar approach.
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Table 3.1: Summary statistics for the period 2005–2011, by compensation status

Compensated N Other N Difference

Panel A: Variables from the Annual Business Survey (ABS)

Sales of own goods 10.35 111 7.086 14770 3.264***
(1.506) (2.223) (0.211)

Total output 10.36 112 7.208 15503 3.149***
(1.457) (2.182) (0.207)

Total turnover 10.38 112 7.303 15713 3.073***
(1.436) (2.167) (0.205)

Production value 10.98 70 7.157 8976 3.819***
(1.219) (2.483) (0.297)

GVA (Market Prices) 16.04 118 13.37 15463 2.662***
(1.447) (2.074) (0.191)

Employment 5.157 119 2.925 16180 2.233***
(1.161) (1.694) (0.156)

Productivity (turnover / employment) 5.432 118 4.345 15708 1.087***
(0.806) (0.900) (0.0831)

Energy purchases (£) 6.583 99 3.275 15272 3.308***
(1.791) (2.232) (0.225)

Energy purchases /Sales -3.124 118 -3.898 14284 0.773***
(0.879) (0.893) (0.0825)

Energy purchases /Output -3.192 120 -4.035 15039 0.843***
(0.868) (0.931) (0.0853)

Energy purchases /Turnover -3.288 121 -4.118 15278 0.830***
(0.989) (0.917) (0.0837)

Energy purchases /Production -3.052 77 -3.989 8590 0.937***
(1.094) (1.014) (0.116)

Energy purchases /GVA -8.854 119 -10.15 14934 1.299***
(1.175) (1.169) (0.108)

Energy purchases /Employment 1.789 109 0.241 15310 1.547***
(1.324) (1.184) (0.114)

Panel B: Variables from the Quarterly Fuels Inquiry (QFI)

Electricity use (kWh) 17.44 33 14.99 729 2.451***
(1.796) (1.768) (0.315)

Electricity use / Sales 6.148 32 4.974 706 1.174***
(1.044) (1.213) (0.218)

Electricity use / Output 6.005 30 4.891 707 1.114***
(0.942) (1.197) (0.221)

Electricity use / Turnover 5.839 33 4.785 726 1.054***
(1.196) (1.230) (0.219)

Electricity use / Production 6.145 25 5.224 321 0.921***
(0.967) (1.125) (0.232)

Electricity use / GVA 0.530 32 -0.992 720 1.522***
(1.306) (1.331) (0.240)

Electricity use / Employment 11.53 31 9.712 728 1.819***
(1.321) (1.353) (0.248)

Electricity emissions 24.31 24 22.30 287 2.019***
(1.288) (1.356) (0.287)

Panel C: Variables that are calculated based on the ABS and QFI

Predicted electricity use (kWh)* 15.05 93 12.01 15248 3.037***
(1.563) (2.141) (0.222)

Electricity intensity based on Eq. (3.9) -3.889 116 -5.110 7130 1.220***
(0.942) (0.980) (0.0917)

Notes: The table shows summary statistics at the plant level for the period 2005–2011, which is the
baseline period used to determine eligibility for the compensation scheme. All variables are in logs.
The sample is restricted to manufacturing industries (SIC 7-33). N refers to the number of plants.
Source: ABS and QFI. *See Section 3.3.4 for details.
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3.4.2 Fuzzy regression discontinuity design (DiDiD-IV)

In an alternative empirical approach, we take advantage of thresholds that influence

the eligibility for treatment to identify causal effects.37 In our setting, we can exploit

that there is a change in the probability of treatment at two eligibility thresholds:

(i) the industry code, and (ii) electricity costs are at least 5% of GVA over a baseline

period. While these two thresholds may not perfectly determine whether a firm gets

compensation, they still create a discontinuity in the probability of treatment.

The intuition behind a fuzzy RD is related to the instrumental variable strategy, and

the fuzzy RD can be estimated using two-stage least squares. When compijt is a

dummy that indicates if firm i in industry j receives compensation payments in year

t, then the first stage, reduced form, and the second stage are:

First stage:

compijt = �1 postt � 1{ci � c0}� 1{eligj = 1}| {z }
Instrument

+X
�
ijt
� + �i + µijt (3.13)

Reduced form:

yijt = �2 postt � 1{ci � c0}� 1{eligj = 1}| {z }
Instrument

+X
�
ijt
� + �i + eijt

(3.14)

Second stage:

yijt = \�1compijt +X
�
ijt
�2 + �i + �ijt, (3.15)

where postt is equal to 1 for the year 2013 and onwards and 0 otherwise, 1{eligj = 1}

indicates if a plant operates in a 4-digit industry eligible for compensation, and

1{ci � c0} indicates if a plant’s electricity intensity is above the eligibility cut-off

37In general, regression discontinuity designs (RD) can be either sharp or fuzzy. A sharp RD
exploits the fact that passing a specific cut-off value deterministically leads to treatment. By
contrast, a fuzzy RD allows for a smaller jump in the probability of assignment to treatment at the
threshold (Imbens and Lemieux, 2008).
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c0 (Equation 3.9 in Section 3.3.1). ci is often referred to as the ”assignment” or

”running” variable. When the running variable exceeds the cut-off value, c0, it

induces a change in the probability of a plant receiving compensation. In our context,

higher electricity intensity increases, by definition, the likelihood that a plant i will

be closer to the cut-off. If the compensation scheme matters, this will induce a

change in the outcome variable, yijt at the cutoff. As not all plants that are eligible

receive compensation payments, the change in the outcome variable at the cut-off

needs to be rescaled by the jump in the probability of treatment, i.e.,: �1 =
�2
�1
. The

estimate corresponds to �1 in the second stage estimation (Eq. 3.15). Using a 2SLS

framework, we can estimate a weighted local average treatment effect (LATE) for

the compensated firms, where the weights reflect the ex-ante likelihood that plant

i is near the threshold (Imbens and Lemieux, 2008). This represents a LATE for

a small subgroup of the sample composed of highly electricity-intensive firms close

to the 5% cut-off and is therefore not directly comparable to the ATE, which is

evaluated based on the entire population of plants. As shown in Figure 3.2b, the 5%

threshold is in the right tale of the electricity intensity distribution. Therefore, the

subsample of observations used for estimating the LATE represents a small group of

highly electricity intensive plants.

Note that the increased probability of receiving compensation as the electricity

intensity crosses the eligibility cut-off (1{ci � c0}) only applies to plants operating

in eligible industries (1{eligj = 1}). The instrumental variable (IV) is hence the

interaction between these two indicator variables. By including postt � 1{eligj = 1}

and postt�1{ci � c0} in the vector of covariates X �
ijt
, we allow for eligible industries

and plants with an electricity intensity above the cut-off c0 to develop differently

over time.38 By exploiting variation along three dimensions (pre and post, eligible

and non-eligible industries, above and below the electricity cut-off), the empirical

38We allow for several different functional forms of postt � 1{ci � c0} in our regressions; linear
and 2nd degree polynomial distance from the cut-off and equal-sized bins on each side of the cut-off.
To control for postt � 1{eligj = 1}, we combine postt with a dummy variable indicating if the
2-digit SIC industry is eligible for compensation. We include the control at the 2-digit level, as
including industry-specific trends at the 3 or 4 digit level is too demanding and leaves us with very
little identifying variation.
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strategy could also be interpreted as a difference-in-difference-in-difference (DiDiD)

combined with instrumental variables (IV).

A causal interpretation of �1 relies on several identifying assumptions. First, the

probability of treatment has to jump at the cut-off, c0. This assumption is usually

evaluated by looking at the first stage (see Section 3.5.2). The second identification

assumption is that plants cannot manipulate the running variable, ci, which in our

case is the industry code and the electricity cost share. The latter is based on

historical electricity consumption and gross value added and is therefore difficult to

manipulate. A McCary test also shows no sign of bunching around the threshold

value (see Section 3.3.4). Industry codes are assigned to plants and should in principle

not be manipulable. Third, we must assume monotonicity, i.e., that crossing the

threshold cannot simultaneously cause some units to get compensation and others to

move out of the compensation scheme.

Beyond these identifying assumptions, one obvious threat to identification is the

small sample size, especially the small number of compensated plants included in the

QFI. Given the limited number of observations close to the threshold in our data,

we are forced to increase the bandwidth. This introduces the possibility of increased

bias, given that a wider bandwidth increases the likelihood of systematic differences

between firms positioned above and below the cut-off.

3.5 Treatment effects of the indirect carbon cost

compensation

3.5.1 DiD estimates of the average treatment effects

Tables 3.2 and 3.3 present the main results from the DiD estimation (Equation 3.11)

using data from the ABS and QFI, respectively. We additionally report p-values

116



from a mean comparison test of lagged outcomes categorized by treatment status to

present corroborative evidence on the robustness of the parallel trend assumption

after IPW. To recall, the ABS sample is larger than the QFI but energy purchase

is used as a proxy for electricity consumption. The treatment group is defined as

plants belonging to a firm that received compensation for the indirect carbon costs

induced by the EU ETS and the UK Carbon Price Support. In all regressions, the

sample is restricted to manufacturing industries (SIC 7-33) and plants with at least

one observation in the post-treatment period.

First in terms of production, in line with Prediction 1, our results indicate that

compensation led to an increase in our main proxy indicator “sales of own goods”

by around 16% in the post-treatment period. This estimated effect is based on a

comparison of compensated and non-compensated plants with similar electricity

intensity and sales figures in the pre-treatment period; see column (1) in Table 3.2.

The estimated treatment effect is robust across a number of tests which are presented

in Section 3.5.1. In other words, our results suggest that compensation is doing its

job in combating the displacement of production and carbon leakage that could arise

from climate policy induced electricity price differentials. Interestingly, we do not

find any significant effect on employment (cf. Table 3.A6), productivity or GVA (cf.

Figure 3.A7). In other words, our results fail to support claims that carbon pricing

or higher energy costs lead to job losses.

In terms of electricity intensity, both our results using the QFI (electricity use/sales,

Table 3.3 column 2) and ABS (Energy purchase/sales, Table 3.2 column 3) that the

difference between compensated plants and non-compensated plants is not statistically

significant. This is in line with Prediction 2.

As production is higher, we find broadly that overall electricity consumption is also

higher for compensated firms, broadly in line with Prediction 3. In other words, the

compensation is dampening the effect of the carbon price signal on discouraging

energy use and therefore emissions. Estimates using actual electricity use data from
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the QFI (Table 3.3 column 1 and 3) indicate that compensation increased electricity

use by 22%, and electricity-related carbon emissions by 23%. Instead when using

energy purchases data from the ABS as a proxy, we find a positive effect that is not

statistically significant (Table 3.2, column 2).

Table 3.2: Average treatment effects of compensation. 2010–2015.

Source: ABS

Sales of Energy Energy

own goods purchases intensity

(1) (2) (3)

Compensation 0.156** 0.300 -0.123
(0.0638) (0.182) (0.102)

Observations 532 303 688
N Compensated 27 14 27
N Other 97 65 157
Plant FE X X X
Year�Industry FE (3-digit SIC code level) X X X

Mean electricity intensity 05-11: compensated 0.035 0.036 0.031
Mean electricity intensity 05-11: other 0.035 0.033 0.036
P-value: mean-comparison test 0.725 0.524 0.107
Mean outcome pre-treatment: compensated 11.135 7.346 -3.147
Mean outcome pre-treatment: other 11.147 7.327 -2.980
P-value: mean-comparison test 0.944 0.961 0.248

Notes: Table shows the coefficient �1 estimated from Equation 3.11. Dependent variables are in logs. Standard
errors are clustered at the firm level. All regressions include year � industry fixed effects at the 3-digit SIC code
level, and are weighted by the inverse propensity score. We drop plants with an electricity intensity based on Eq.
(3.9) below 0.01. Data sources: Annual Business Survey (ABS) and Quarterly Fuels Inquiry (QFI). See reference
list for full citation. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.3: Average treatment effects of compensation. 2010–2015.

Source: QFI

Electricity Electricity Indirect CO2

use intensity emissions

(1) (2) (3)

Compensation 0.220** 0.140 0.225**
(0.0900) (0.189) (0.0884)

Observations 413 598 426
N Compensated 15 16 14
N Other 65 106 68
Plant FE X X X
Year�Industry FE (1-digit SIC code level) X X X

Mean electricity intensity 05-11: compensated 0.036 0.034 0.037
Mean electricity intensity 05-11: other 0.037 0.034 0.037
P-value: mean-comparison test 0.795 0.958 0.583
Mean outcome pre-treatment: compensated 17.305 5.936 23.491
Mean outcome pre-treatment: other 17.392 5.995 23.541
P-value: mean-comparison test 0.607 0.706 0.795

Notes: Table shows the coefficient �1 estimated from Equation 3.11. Dependent variables are in logs. Standard
errors are clustered at the firm level. All regressions include year � industry fixed effects at the 1-digit SIC code
level, and are weighted by the inverse propensity score. We drop plants with an electricity intensity based on Eq.
(3.9) below 0.01. Data sources: Annual Business Survey (ABS) and Quarterly Fuels Inquiry (QFI). See reference
list for full citation. * p < 0.10, ** p < 0.05, *** p < 0.01.
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ATEs over time

We also present the dynamic version of the DiD (Figure 3.A9, which plots the annual

DiD coefficients estimated from Equation 3.12 and shows how treatment effects

unfold over time. It also shows the validity of parallel pre-treatment trends leading

up to 2013 when compensation was first paid out (for indirect costs incurred in 2012)

– the same year as the introduction of the UK Carbon Price Support in the UK power

sector. Figure 3.A9, Panel (a) shows that difference in production levels between

compensated and non-compensated firms emerged already in 2013, but grew more in

2014. Figure 3.A9, Panel (b) instead shows that for electricity intensity (proxied by

energy purchases over sales), the gap widened in 2013 but closed in subsequent years.

Our main estimates are based on a post-treatment period that ranges from 2013 to

2015 as this is the only estimation window where information both from the ABS and

the QFI is available. Nevertheless, ensuring comparability across results for different

variables comes at the expense of shrinking the estimation sample size. Tables 3.4

and 3.5 provide additional results for outcome variables that are available beyond

that period to corroborate our findings from Table 3.2. The corresponding results

for employment are presented in Table 3.A6 in the Appendix.

Table 3.4: ATEs of compensation on sales. 2010–2019.

Sales of own goods

2015 2016 2017 2018 2019

Compensation 0.156** 0.164** 0.126* 0.147** 0.144**
(0.0638) (0.0763) (0.0705) (0.0701) (0.0693)

Obs 532 717 851 1069 1186
N compensated 27 36 39 40 40
N other 97 127 132 156 158
Energy intensity 05-11 (Treat) 0.035 0.035 0.035 0.034 0.034
Energy intensity 05-11 (Control) 0.036 0.037 0.036 0.036 0.036
p-value (mean-comparison test) 0.725 0.424 0.628 0.596 0.597
outcome pre-treatment (Treat) 11.135 10.867 10.831 10.744 10.743
outcome pre-treatment (Control) 11.147 10.905 10.906 10.844 10.844
p-value (mean-comparison test) 0.944 0.822 0.664 0.558 0.553

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity based on Eq. (3.9) below 0.01. Data sources: Annual
Business Survey (ABS), and Quarterly Fuels Inquiry (QFI). * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.5: ATEs of compensation on energy intensity (energy purchases/sales).
2010–2019.

Energy intensity

2015 2016 2017 2018 2019

Compensation -0.123 -0.0421 0.0519 0.0158 0.0177
(0.102) (0.112) (0.163) (0.111) (0.108)

Obs 688 989 1222 1445 1611
N compensated 27 42 45 45 45
N other 157 202 218 233 239
Energy intensity 05-11 (Treat) 0.031 0.030 0.037 0.031 0.031
Energy intensity 05-11 (Control) 0.036 0.034 0.037 0.036 0.035
p-value (mean-comparison test) 0.107 0.056 0.907 0.059 0.107
outcome pre-treatment (Treat) -3.147 -3.087 -2.750 -3.089 -3.090
outcome pre-treatment (Control) -2.980 -2.999 -2.990 -3.005 -3.013
p-value (mean-comparison test) 0.248 0.416 0.029 0.415 0.456

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity based on Eq. (3.9) below 0.01. Data sources: Annual
Business Survey (ABS), and Quarterly Fuels Inquiry (QFI). * p < 0.10, ** p < 0.05, *** p < 0.01.

Robustness checks for DiD estimation

Our DiD results are robust to a number of tests. To mitigate concerns about how the

global financial crisis might affect the computation of our p-scores, and our estimates

accordingly, we show that our coefficients are robust to the use of an alternative time

horizon to compute our p-scores ranging from 2010 to 2012 (see Appendix 3.E.6).

We also show how our results change when we trim the sample by dropping plants

with an electricity intensity based on Eq. (3.9) below different thresholds to ensure

that our results are not driven by sample trimming decisions (see Appendix 3.E.4).

Additionally, Appendix 3.E.3 shows how our results change when incorporating

industry-specific effects at a broader sectoral level (2-digit level), thereby trading off

some precision in the identification strategy to expand our estimation sample. Finally,

Tables 3.A12 - 3.A14 in the Appendix provide a set of alternative estimations relying

on different proxies for production and energy intensity from the ABS sample. These

findings are summarized in Figures 3.A7 - 3.A8 in the Appendix which provides a

graphical comparison of the estimated effects across the array of robustness tests

across all outcome variables.
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3.5.2 Fuzzy RD estimates of the local average treatment

effects

Turning now to the RD estimation, we start by presenting the graphical evidence

and estimated coefficients of the first stage and the reduced form, before turning to

the instrumental variable estimates (second stage). Note that we present estimates

from the first stage, reduced form and second stage using different functional forms

as controls.

First stage and reduced form

Figure 3.3 illustrates the first stage, showing the share of compensated plants for

different intervals of the electricity cost intensity. The sample is restricted to eligible

industries, and averages within each bin are based on data from the period 2005–2011.

Predicted electricity use is used to calculate the electricity cost intensity. As expected,

we observe a sharp discontinuous jump in the share of compensated plants as we

cross the eligibility cut-off; for plants with an electricity cost intensity between 5-6%,

over half of the plants receive compensation payments. The exact height of the bars

located to the left of the threshold is suppressed due to confidentiality reasons, but

the share of compensated plants is below 10% for those bins.

Table 3.6, Panel A, reports the estimated first stage based on Equation 3.13, where

we include both eligible and non-eligible industries as well as firm- and sector-year39

- specific fixed effects. The estimated coefficients reflect the probability of receiving

compensation payments if the plant is above the 5% eligibility cut-off and operates

in an eligible industry. The estimated probability of receiving compensation is 0.88

and the F-statistic of the excluded instrument is around 75. Thus, our first-stage

results show that our instrument is a strong predictor of receiving compensation.

39Sector-year fixed effects are included at the 2-digit level. Including this at the 3-digit level of
disaggregation was not possible due to issues of sample size.
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Figure 3.3: Share of compensated plants by electricity cost share. 2005-2011

Notes: Figure shows the share of compensated plants by the electricity cost share (electricity use*carbon price
impact/GVA), using predicted electricity use. The height of the bars reflect mean values for plants located within
the indicated electricity cost share bins. The precise height of the bars located to the left of the indicated threshold
is censored due to disclosure concerns. The sample is restricted to eligible 4-digit industries. Data source: Annual
Business Survey (ABS), and Quarterly Fuels Inquiry (QFI). See reference list for full citation.

Table 3.6: Local average treatment effects of compensation. 2010–2015. Fuzzy
RDD.

Source: ABS

Sales of Energy Energy

own goods purchases intensity

(1) (2) (3)

Panel A: First stage 0.879*** 0.879*** 0.879***
(0.101) (0.101) (0.101)

Panel B: Reduced form 0.264** 0.209 -0.0562
(0.125) (0.187) (0.134)

Panel C: Second stage 0.301** 0.238 -0.0639
(0.131) (0.199) (0.156)

Panel D: OLS 0.164 0.263** 0.103
(0.102) (0.130) (0.105)

Observations 253 249 335
N Compensated 20 20 20
N Other 49 48 27
F statistics 75.47 75.44 75.39
Functional form Bins Bins Bins

Notes: Tables show the coefficients estimated from the first stage, reduced form, and second stage of the fuzzy
regression discontinuity design. Dependent variables are given by the table headings and are measured in logs.
Standard errors are clustered at the firm level. The sample estimation period is 2010-2015. Cutoff value: 0.05.
Bandwidth: cutoff value +/-0.007. Bandwidth refers to the range of electricity intensity values (electricity use
* carbon cost / GVA) used to restrict the sample. Each stage of the estimation includes firm-level and 2-digit
sector-specific year fixed effects. Data source: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 3.4 shows graphical evidence of the discontinuous jump in our outcome

variables at the threshold value, i.e., the reduced form effect. The RD plots are

based on polynomial regressions over quantile-spaced bins, where we follow Calonico

et al. (2015) to determine the optimal number of bins. Each dot represents a local

mean for each bin. The figure shows a jump in sales of own goods (cf. Panel (a))

and electricity consumption (proxied by energy purchases, (cf. Panel (c)) at the 5%

eligibility cut-off, indicating that the compensation had an effect on these outcomes.

Table 3.6, Panel B, reports the reduced form coefficients estimated based on Equation

3.14. The coefficients represent a lower bound of the effect of the compensation

scheme (in the RDD sample) as not all plants that meet the eligibility criteria receive

compensation. The reduced form estimates could be interpreted as “intention to

treat”, which has the advantage that they do not rely on the exclusion restriction

for unbiasedness. A statistically significant jump in outcome is observed for sales of

own goods (0.26) but not for the other outcome variables. Additional results based

on alternative specifications, different samples, and different outcome variables are

presented in Appendix 3.H.

Figure 3.4: RD Plot based on quantile spaced number of bins. 2013-2015.

(a) Sales of own goods (log) (b) Energy Intensity (log) (c) Energy purchases (log)

Notes: Figure shows data-driven regression discontinuity plots using polynomial regression based on quantile-spaced
numbers of bins. Optimal number of bins has been selected following Calonico et al. (2015). Cutoff: 0.05. Data
sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI). See reference list for full citation.

Main RD estimates

We now rescale the jump in (reduced form) outcomes by the jump in the (first stage)

treatment probability to obtain the second stage estimates around the cut-off. A
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causal interpretation of the findings relies on the assumption that crossing the 5%

eligibility threshold only impacts plants via the probability of receiving compensation

and reflects a LATE. Due to the smaller sample size around the threshold, our RD

estimates are only based on the ABS sample.40 For our main results, we report

RD estimates with a +/-0.007 bandwidth (which restricts the sample to companies

whose electricity cost share amounts to an interval between 4.3% and 5.7%) following

the data-driven procedure to identify optimal estimation windows in RD settings by

Calonico et al. (2020). More details on this procedure can be found in Section 3.H.4

in Appendix 3.H.

Table 3.6 Panel C reports the second stage RD estimates. We find evidence of a

causal effect of compensation on production, proxied by sales, which increased by

30% for compensated plants relative to similar noncompensated plants. The effect

on electricity consumption, proxied by energy purchases, is positive and large (24%)

but not statistically significant, while we find a negative and non-significant effect on

energy intensity. Overall, these findings are in line with our three predictions and DiD

results and provide additional evidence that compensation for higher electricity prices

particularly boosts production volumes for the compensated. Overall, while pointing

towards the same general conclusions, compared to our ATEs, the RD estimates are

larger in magnitude, suggesting that as expected, the effects of compensation tend

to be larger for more electricity-intensive plants.

Robustness checks

We additionally perform a number of robustness tests to further investigate the

validity of our baseline RD findings. Specifically, we produce RD estimates with

different assumptions on the functional form where we amend Equations 3.13, 3.14,

and 3.15 by additionally accounting for the linear (see Table 3.A17 in the Appendix)

40The RD estimates for QFI variables yield statistically inconclusive results due to the very
limited sample size within the bandwidth considered for the estimation and cannot be reported due
to disclosure concerns.
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and quadratic (see Table 3.A18 in the Appendix) distance of each observation from

the threshold (cf., Section 3.4.2). We also examine the robustness of our main

estimations with different bandwidth choices and generate a distribution of estimated

effects across different estimation window sizes (see Section 3.H.5 in Appendix 3.H).

3.5.3 Comparing the DiD and RD estimates

The balance of evidence from DiD and RD approaches is summarized in Figure 3.5.

On the whole, results from both strategies indicate that the compensation scheme

had a positive impact on sales and energy consumption with no detectable significant

improvements in energy intensity. However, the magnitude of the treatment effect

estimates differs between the two approaches, with the local average treatment effects

(LATEs) estimated by the RD approach being larger than the average treatment

effects (ATEs) estimated by the DiD approach.

One first reason for this difference in magnitude is that the two strategies focus

on different populations with the RD approach focusing on a few plants around

the discontinuity threshold in the electricity intensity distribution (see Panel (b) in

Figure 3.2). This means that the RD approach may be interpreted as the treatment

effect of the compensation scheme for plants that are most likely to be affected by the

policy. In contrast, the DiD approach estimates an average effect of the compensation

scheme that is representative for the broader population of manufacturing plants,

regardless of their relative position in the electricity intensity distribution.

Another reason for the difference in magnitude may be linked to the identification

strategy used in each approach. Our DiD approach combined with IPSW assumes

that the weighted treatment and control groups are comparable in all other respects

except for the treatment. However, this assumption may not hold if there are

unobservable differences between the treatment and control groups that affect the

outcomes of interest. The RD approach, on the other hand, relies on a discontinuity

in the policy rule to identify the treatment effect. This means that the RD approach
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is better able to control for unobservable factors that may affect the outcomes of

interest.

Figure 3.5: Comparing ATEs and LATEs across ABS outcome variables.

(a) Sales of own goods (b) Energy purchases (c) Energy intensity

Notes: Figure compares estimated coefficients across different empirical strategies and estimation samples. DD
refers to the Difference-in-difference (DiD) estimates presented in Section 3.5.1. SS, RF, and OLS refer to the
second stage, reduced form, and OLS estimates, respectively, presented in Section 3.5.2. All outcome variables are
in log terms. Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI). See reference list
for full citation.

3.6 Discussion on policy implications

Assessments of the effectiveness of anti-leakage policies typically focus on whether

there is evidence of leakage occurring, without explicitly considering the costs of

measures. This section aims to shed light on the trade-offs between preventing

leakage and forgoing abatement.

Table 3.7 reports back-of-the-envelop calculations on the costs and benefits of the

compensation scheme based on our DiD estimates. The estimated value associated

with maintaining higher sales, calculated based on our DiD estimates of the average

treatment effect (Table 3.2), is in the ballpark of £2 billion per year. The increase

in production led to an increase in electricity use, cumulatively amounting to 2.35

TWh (or 2.5% of total annual industrial electricity consumption). The associated

annual increase in indirect CO2 emissions due to greater electricity use amounts to

approximately 1.5 million tonnes CO2.

The foregone reductions in indirect carbon emissions are valued at 36 to 377 million

£ per year, depending on the CO2 price assumption used. The upper bound estimate

126



Table 3.7: Costs and benefits

Total

Number of compensated firms 59
Estimated value of increased production £2,000 million / year
Estimated value of increased GVA £232 million / year
Estimated forgone reduction in electricity use 2.35TWh / year
Increased indirect emissions 1.56 million tonnes / year
Increased indirect emissions - lower bound £36 million / year
Increased indirect emissions - upper bound £377 million / year

Compensation for CO2 costs £72.4 million / year

Increase in production per £ of compensation £27.6
Increase in GVA per £ of compensation £3.2
Value of increased indirect emissions per £ compensation - lower bound £0.5
Value of increased indirect emissions per £ compensation - upper bound £5.2

Note: £ are reported in 2020-values. Compensation payments are computed by averaging the values reported between 2013
and 2019 (cf. Section 3.3.1). We calculate increases in production and indirect emission for the average compensated firm in
our sample by leveraging our DiD estimates of the average treatment effect presented in Table 3.2 and 3.3. Specifically, we
calculate firm-specific mean increases in sales (as a proxy for production) and indirect emissions by multiplying the corresponding
estimated ATE from Eq. 3.11 with mean pre-treatment outcome levels of sales (with a mean value of 173,749 thousand £)
and indirect emissions (with a mean value of 117,904 tonnes) in each compensated firm. We additionally compute the implied
increase in GVA leveraging our additional estimates summarized in Figure 3.A7. We obtain cumulative values by multiplying
the estimated mean firm-level increases by the total number of compensated firms. Lower bound increased indirect emissions (£)
are calculated based on the average EUA price in 2020 (which amounted to 22.83 £). Upper bound increased indirect emissions
(£) are estimated using UK official guidelines on the social costs of carbon (SCC) of £241 £ / tonne of carbon dioxide emitted.

uses current official recommendations on the social cost of carbon (SCC) from the

UK government41 while the lower bound estimate uses the average EUA clearing

prices as an alternative market-based proxy for the cost of a tonne of CO2. The

upper bound estimate is less informative here because given the ETS cap, the SCC

reflects abatement costs elsewhere in the economy.

The substantial increase in production indicates that the compensation scheme has

contributed to shielding energy-intensive firms from higher electricity costs by acting

as an implicit production subsidy. When comparing the magnitudes to the direct

annual cost of the scheme of around 72 million £ (cf. Section 3.3.1), each pound

of compensation on average has yielded more than one pound in production value

(proxied by sales) and GVA. Yet the collateral increase in indirect emissions among

compensated energy-intensive firms is sizable, corresponding to around 4.3% (1.3%)

of annual industrial (nationwide) emissions from electricity use.

Therefore, in line with empirical studies that find limited evidence of carbon leakage

41Under current guidelines, the UK government recommends using a social costs of carbon (SCC)
per tonne of carbon dioxide emitted of £241 (in 2020 £) for policy appraisal and evaluations. See
here for further details.
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from the EU ETS due to generous free allocation (e.g. Naegele and Zaklan, 2019),

our results indicate that the indirect carbon compensation scheme is working, insofar

as production displacement and carbon leakage is being discouraged. However, the

known downsides of preventing leakage through an output-based compensation have

also materialized. Compensation dampens the carbon price signal which is intended

to reduce emissions by discouraging the production of CO2 intensive goods. It creates

perverse incentives on the supply side to artificially inflate output, resulting in higher

emissions compared to a scenario without compensation.

Interestingly, indirect cost compensation had no statistically significant effect on

employment (cf. Table 3.A6), suggesting that increased electricity prices due to

carbon pricing have not led to the displacement of workers in electro-intensive sectors.

We also do not find any significant effect on GVA, which is a proxy for value added,

or on productivity (cf. Figure 3.A7). The scheme also did not hamper technological

improvements in terms of increased energy efficiency in compensated firms vis-á-vis

non-compensated firms.

These results have implications for both the economic efficiency and distributional

outcomes from carbon pricing. It is likely that compensation to electro-intensive

sectors increases the overall compliance cost for meeting mitigation goals. As

compensation targets energy-intensive sectors, abatement responsibilities in the EU

ETS would shift toward sectors with relatively lower energy intensity – due to the

so-called waterbed effect (cf. Perino, 2018). This shift represents an adjustment in

the distribution of the compliance costs associated with reducing CO2 emissions.

Sectors with lower energy intensity may find it costlier to implement emissions

reduction measures compared to energy-intensive sectors. As the abatement burden

shifts to these sectors, the cost-effectiveness of the emissions reduction program

may diminish and increase overall compliance costs for the cap-and-trade system

(Martin et al., 2014b). In the context of an inter-jurisdictional cap-and-trade system,

this additionally implies that unilateral compensation schemes have the potential

to shift the distribution of abatement responsibilities across countries, effectively
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redistributing not only carbon abatement costs but also the local health co-benefits

associated with reduced emissions of air pollutants from CO2 combustion (e.g.,

Cushing et al., 2018; Banzhaf et al., 2019; Hernandez-Cortes and Meng, 2023).

Additionally, under output-based compensation, theory predicts that producers will

not pass on the full CO2 cost to product prices (Quirion, 2009). Without the full

CO2 cost pass-through, incentives along the production and consumption chain

to substitution away from energy-intensive goods are dampened. This suggests

the need for supplementary consumption-based measures to encourage mitigation

through demand-side substitution. For example, embodied carbon standards, green

procurement, and climate excise contribution are discussed in the literature (Grubb

et al., 2022).

Finally, using ETS auction revenue to compensate energy-intensive companies for

higher carbon costs comes at the trade-off of other climate-related investments or

redistributing climate policy costs to the public through alternative revenue recycling

schemes (such as lump sum transfers), which could contribute to enhancing the

public acceptability of carbon pricing schemes (Baranzini et al., 2017; Douenne and

Fabre, 2022). The need to consider the opportunity costs of public funds devoted

to compensation schemes becomes more salient with the anticipated substantial

future payments driven by the recent surge in carbon prices within the EU ETS.

These forthcoming payments are expected to lead to substantial transfers that

disproportionately benefit a select few energy-intensive firms and their capital owners,

underscoring pivotal equity implications in the distribution of climate policy costs.

3.7 Conclusion

Governments pursuing ambitious climate policies encounter a complex challenge

characterized by a delicate balancing act. On one hand, they must incentivize

emission reduction efforts, and on the other, they must mitigate the risk of carbon
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leakage and competitive disadvantage for domestic industries. This conundrum

necessitates the deployment of comprehensive strategies. One approach is to pair

carbon pricing with schemes that compensate energy-intensive firms for higher carbon

costs or electricity prices. Such policies may help obtain political buy-in from industry

and alleviate adverse economic effects. At the same time, a carbon cost containment

measure by its nature is likely to delay industrial decarbonization.

While the downsides of output-based free allocation or compensation have been

known, perhaps they have been downplayed due to the lack of empirical evidence. We

use UK microdata and idiosyncrasies in the eligibility criteria to examine the impact

of indirect carbon cost compensation on firms output, electricity use, electricity

intensity, and emissions.

We find robust evidence that as intended, compensation limits carbon leakage. It

does so by attenuating the carbon price signal and discouraging energy-intensive firms

from reducing production, electricity use and emissions. Our back-of-the-envelop

calcluations suggest that each pound of compensation yields more than a pound in

production value and GVA, but the increase in indirect emissions among compensated

energy-intensive firms is also sizable.

In the context of a cap-and-trade scheme, these findings carry important implications

for the distribution of mitigation burdens across sectors. Dampening incentives to

limit supply from energy-intensive sectors means that to achieve the overall ETS cap,

mitigation shifts elsewhere (to other sectors or towards greater emissions intensity

improvements) which implies allowance prices and overall costs would rise (Martin

et al., 2014b).

Compensation for indirect carbon costs as well as free allocation is, however, likely

to prevail for some time.42 Free allocation in the EU ETS is also set to continue until

42The UK has committed to continued compensation to 2025 (Department for Business, Energy
& Industrial Strategy, UK, 2022) while international CO2 price differences prevail, and industrial
carbon neutral technologies are not yet widely available. In Europe, several governments have
already committed compensation payments until 2030.
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2028 (European Parliament , 2021) even after the introduction of the Carbon Border

Adjustment Mechanism (CBAM) to reduce leakage risk for EU exporters because

the proposed CBAM targets imports only. Indeed, free allocation continues to be

the default anti-leakage policy across emission trading schemes worldwide, not least

because it is hugely advantageous for obtaining political buy-in for carbon pricing

from industry (Sato et al., 2022). Our results help make these difficult trade-offs

faced by policy makers more explicit, by quantifying the increased production by

energy and emission intensive firms due to compensation payments.
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3.A Research context

3.A.1 Electricity prices in the UK and continental Europe

Electricity prices are kept low in continental Europe, often through discounts or

exemptions for industrial users. For example, in Germany, the regulatory approach

taken to recover network and policy costs protects electro-intensive industries by

recovering costs primarily from domestic and commercial users. By contrast, in the

UK these costs are spread relatively evenly across all electricity consumers. In France,

the industry has been able to collectively negotiate long-term contracts for lower

electricity prices, whereas the UK market has no collectively negotiated contracts

and few contracts with a duration beyond a couple of years ahead. Higher levels of

interconnection on the continent also allow policy choices to lower industrial electricity

prices. For example in Italy, the government facilitated large energy-intensive

companies to purchase cheap electricity from neighboring countries in exchange for

investments in expanding interconnection capacity. Furthermore, wholesale price

differences between the UK and continental Europe are driven by differences in fossil

fuel prices, renewable penetration, and the merit order effect (Grubb and Drummond,

2018).
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Figure 3.A1: Industrial electricity prices, pre-and post-compensation for selected
EU countries in 2016. EUR/MWh.

(a) Pre-Compensation (b) Post-Compensation

Source: Adapted from Scenario S2 in Grubb and Drummond (2018). Carbon price compensation covers EU
ETS costs and costs induced by the UK carbon price floor/tax.

3.A.2 Eligible 4-digit industries

Table 3.A1: Eligible industries

Industry NACE Rev. 1

Mining of Iron Ore 1310
Mining of chemical and fertiliser minerals 1430
Preparation and spinning of cotton-type fibres 1711
Manufacture of leather clothes 1810
Manufacture of pulp* 2111
Manufacture of paper and paperboard 2112
Manufacture of other inorganic basic chemicals 2413
Manufacture of other organic basic chemicals 2414
Manufacture of fertilisers and nitrogen compounds 2415
Manufacture of plastics in primary forms* 2416
Manufacture of man-made fibres 2470
Manufacture of basic iron and steel and of ferro-alloys 2710
Aluminium production 2742
Lead, zinc and tin production 2743
Copper production 2744

Note: For industries noted by �, only a subset of products are eligible for
compensation. Source: European Commission (2012)
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3.B Additional descriptive material

3.B.1 Magnitude of compensation payments

Figure 3.A2: Compensation payments as a share of electricity prices. 2013-2017.

Notes: Own calculations based on compensation formula and average electricity prices from the UK
Department for Business, Energy & Industrial Strategy (2018), Table 3.1.4: Prices of fuels purchased by
manufacturing industry in Great Britain.
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3.B.2 Descriptive evidence for outcome variables

Figures 3.A3 and 3.A4 provide additional descriptive evidence for our key outcome

variables. The raw mean trends exhibit a steady significant decrease in energy

intensity for the average plant in the sample, following the introduction of the

UK Carbon Price Floor in 2013 as can be seen in Panel (d), Panel (e), and Panel

(f) in Figure 3.A3. Although the raw pre-post mean comparison already provides

some exploratory evidence, it does not necessarily capture the causal effect of the

regulation, as there are many possible channels that could plausibly explain the

observed drop in energy intensity. Additionally, there has been a remarkable decrease

in production levels as shown by Panel (a), Panel (b), and Panel (c) in Figure 3.A3

both in the late 2000s and in 2016. These drops coincide respectively with the global

financial crisis in 2008-09 and the EU membership Referendum, that took place in

the UK in 2016 (Brexit). Descriptive evidence from Figure 3.A4 indicates that there

has been a tendency to increase electricity consumption and electricity intensity

among compensated plants vis-a-vis uncompensated plants (that do not exhibit any

trend deviation) following 2013.
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Figure 3.A3: Raw average trends in key outcome variables from ABS over time,
by year. 2005-2019.

(a) Sales of own goods (log) (b) Total output (log)

(c) Turnover (log) (d) Energy/Sales (log)

(e) Energy/Output (log) (f) Energy/Turnover (log)

Notes: Figures plot the average values of key outcomes variable over time by treatment status. Data sources:
Annual Business Survey (ABS). The vertical line indicates the year before the carbon price floor was introduced.
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Figure 3.A4: Raw average trends in key outcome variables from QFI over time, by
year. 2005-2015.

(a) Electricity use (log) (b) Electricity/Sales (log)

(c) Electricity/Output (log) (d) Electricity/Turnover (log)

Notes: Figures plot the average values of key outcomes variable over time over time by treatment status. Data
sources: Quarterly Fuels Inquiry (QFI). The vertical line indicates the year before the carbon price floor was
introduced.
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3.C Predicting electricity consumption

Table 3.A2: Simple correlation between electricity use and energy purchases. 2005–
2011

Electricity (log) Electricity (log) Electricity (log)

Energy purch. (log) 0.905*** 0.926*** 0.920***
(0.0112) (0.0135) (0.0228)

R2 0.645 0.670 0.669
Obs 3583 2324 805
Sample QFI, all SIC eligible SIC, 2 digit eligible SIC, 4 digit
Notes: Table shows correlations between electricity consumption and energy purchases. Both variables
are in logs. Electricity use is only available for plants part of the QFI. Data source: ARDx and QFI. *
p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.A3: Correlation between electricity use and energy purchases, employment,
and turnover. 2005–2011

Electricity (log)

Energy purch. (log) 0.567***
(0.0237)

Employment (log) 0.316***
(0.0400)

Turnover (log) 0.148***
(0.0323)

Constant 8.030***
(0.0740)

R2 0.740
Obs 3582
Sample QFI, all SIC

Notes: Table shows the correlation between predicted
and electricity use and observed energy purchases.
Regression include industry dummies at the 4-digit
level. Data source: ARDx and QFI. * p < 0.10, **
p < 0.05, *** p < 0.01.

Figure 3.A5: Comparing predicted and reported electricity use.

Notes: Box plot shows the distribution of predicted electricity use and reported electricity use. Sample is
restricted to units with reported electricity use. Data source: ABS and QFI.
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3.D Using energy purchases to calculate the run-

ning variable

As an alternative to using predicted electricity consumption to calculate the second

eligibility criteria, we have also tried to use infer the electricity intensity cut-off

value, X0, using total energy purchase in GBP. Total energy purchases and GVA

are available from the Annual Business Survey (ABS), hence avoiding the problem

om limited coverage of the Quarterly Fuels Inquiry (QFI). Figure 3.A6 plots the

share of plants that receive compensation, by pre-treatment energy intensity. Energy

intensity is defined as energy purchases divided by GVA, and the sample is restricted

to the eligible industries listed in Table 3.A1. From the figure, there is a clear jump

in the probability of a plant receiving compensation when the energy intensity is

above 12 %.

Figure 3.A6: Share of compensated plants, by average energy intensity.

Notes: Energy intensity is measured as plant-level energy costs divided by gross value added (GVA).
Values are averaged over the years 2009 to 2012. Sample is restricted to the eligible industries listed in
Table 3.A1, and to plants with an energy intensity less then 0.30 to account for outliers. The sample is
split into 20 bins containing an equal number of plants. Each data point in the graph reflects the average
share of compensated plants within each of these 20 bins. Data source: Annual Business Survey (ABS).

139



3.E Additional results: DiD

3.E.1 Complementary results based on the period 2010–2019

Table 3.A4: ATEs of compensation on sales. 2010–2019.

Sales of own goods

2015 2016 2017 2018 2019

Compensation 0.156** 0.164** 0.126* 0.147** 0.144**
(0.0638) (0.0763) (0.0705) (0.0701) (0.0693)

Obs 532 717 851 1069 1186
N compensated 27 36 39 40 40
N other 97 127 132 156 158
Energy intensity 05-11 (Treat) 0.035 0.035 0.035 0.034 0.034
Energy intensity 05-11 (Control) 0.036 0.037 0.036 0.036 0.036
p-value (mean-comparison test) 0.725 0.424 0.628 0.596 0.597
outcome pre-treatment (Treat) 11.135 10.867 10.831 10.744 10.743
outcome pre-treatment (Control) 11.147 10.905 10.906 10.844 10.844
p-value (mean-comparison test) 0.944 0.822 0.664 0.558 0.553

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.A5: ATEs of compensation on energy intensity (energy purchases/sales).
2010–2019.

Energy intensity

2015 2016 2017 2018 2019

Compensation -0.123 -0.0421 0.0519 0.0158 0.0177
(0.102) (0.112) (0.163) (0.111) (0.108)

Obs 688 989 1222 1445 1611
N compensated 27 42 45 45 45
N other 157 202 218 233 239
Energy intensity 05-11 (Treat) 0.031 0.030 0.037 0.031 0.031
Energy intensity 05-11 (Control) 0.036 0.034 0.037 0.036 0.035
p-value (mean-comparison test) 0.107 0.056 0.907 0.059 0.107
outcome pre-treatment (Treat) -3.147 -3.087 -2.750 -3.089 -3.090
outcome pre-treatment (Control) -2.980 -2.999 -2.990 -3.005 -3.013
p-value (mean-comparison test) 0.248 0.416 0.029 0.415 0.456

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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3.E.2 DiD Results for employment

Table 3.A6: ATEs of compensation on employment. 2010–2019.

Employment

2015 2016 2017 2018 2019

Compensation 0.0355 0.0292 0.0122 0.0230 0.0239
(0.0437) (0.0451) (0.0482) (0.0492) (0.0503)

Obs 669 923 1106 1337 1492
N compensated 28 40 42 43 43
N other 139 176 184 205 208
Energy intensity 05-11 (Treat) 0.035 0.035 0.035 0.035 0.035
Energy intensity 05-11 (Control) 0.035 0.037 0.037 0.036 0.036
p-value (mean-comparison test) 0.920 0.637 0.660 0.699 0.698
outcome pre-treatment (Treat) 5.401 5.306 5.295 5.246 5.245
outcome pre-treatment (Control) 5.363 5.108 5.130 5.116 5.117
p-value (mean-comparison test) 0.744 0.086 0.151 0.255 0.260
p-value (mean-comparison test) 0.907 0.555 0.478 0.312 0.220

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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3.E.3 Alternative definition of industry-year fixed effects

Table 3.A7: ATEs of compensation on sales within 2-digit industries. 2010–2019.

Sales of own goods (effects at 2-digit level)

2015 2016 2017 2018 2019

Compensation 0.146*** 0.185** 0.193*** 0.195*** 0.190***
(0.0536) (0.0720) (0.0741) (0.0707) (0.0724)

Obs 925 1189 1409 1709 1881
N compensated 31 41 44 45 45
N other 185 216 225 250 252
Energy intensity 05-11 (Treat) 0.045 0.039 0.040 0.038 0.038
Energy intensity 05-11 (Control) 0.035 0.035 0.035 0.034 0.034
p-value (mean-comparison test) 0.001 0.170 0.155 0.233 0.239
outcome pre-treatment (Treat) 9.538 10.729 10.718 10.669 10.667
outcome pre-treatment (Control) 11.003 10.876 10.862 10.810 10.813
p-value (mean-comparison test) 0.000 0.266 0.273 0.269 0.254

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 2-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.A8: ATEs of compensation on energy intensity (energy purchases/sales)
within 2-digit industries. 2010–2019.

Energy intensity (effects at 2-digit level)

2015 2016 2017 2018 2019

Compensation -0.0906 0.0808 0.130 0.114 0.108
(0.0622) (0.0961) (0.104) (0.0806) (0.0814)

Obs 1097 1447 1778 2080 2304
N compensated 39 49 54 56 56
N other 261 319 342 356 365
Energy intensity 05-11 (Treat) 0.035 0.039 0.039 0.034 0.034
Energy intensity 05-11 (Control) 0.037 0.037 0.037 0.037 0.037
p-value (mean-comparison test) 0.576 0.596 0.528 0.260 0.278
outcome pre-treatment (Treat) -2.999 -2.953 -2.937 -3.133 -3.133
outcome pre-treatment (Control) -2.973 -3.026 -3.013 -3.029 -3.038
p-value (mean-comparison test) 0.814 0.437 0.410 0.236 0.274

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 2-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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3.E.4 Alternative sample trimming

Table 3.A9: ATEs of compensation on sales with different trimming. 2010–2019.

Sales of own goods (Intensity >0.05)

2015 2016 2017 2018 2019

Compensation 0.136** 0.158** 0.130** 0.114* 0.115*
(0.0653) (0.0665) (0.0651) (0.0643) (0.0644)

Obs 914 1252 1552 1875 2081
N compensated 33 50 62 63 63
N other 199 249 277 309 315
Energy intensity 05-11 (Treat) 0.031 0.030 0.030 0.031 0.031
Energy intensity 05-11 (Control) 0.026 0.027 0.027 0.026 0.026
p-value (mean-comparison test) 0.123 0.255 0.189 0.070 0.062
outcome pre-treatment (Treat) 10.441 10.276 10.227 10.208 10.194
outcome pre-treatment (Control) 10.673 10.474 10.449 10.396 10.386
p-value (mean-comparison test) 0.233 0.254 0.204 0.277 0.270

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.05.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.A10: ATEs of compensation on energy intensity (energy purchases/sales)
with different trimming. 2010–2019.

Energy intensity (Intensity >0.05)

2015 2016 2017 2018 2019

Compensation -0.144 -0.0380 0.0105 0.0401 0.0322
(0.0908) (0.0974) (0.102) (0.0962) (0.0933)

Obs 997 1427 1789 2140 2371
N compensated 34 56 71 72 72
N other 234 299 331 363 371
Energy intensity 05-11 (Treat) 0.028 0.028 0.028 0.028 0.028
Energy intensity 05-11 (Control) 0.029 0.028 0.030 0.029 0.028
p-value (mean-comparison test) 0.785 0.920 0.432 0.665 0.757
outcome pre-treatment (Treat) -3.249 -3.094 -3.108 -3.108 -3.118
outcome pre-treatment (Control) -3.242 -3.254 -3.238 -3.252 -3.275
p-value (mean-comparison test) 0.969 0.124 0.198 0.152 0.117

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.05.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.A11: ATEs of compensation on QFi variables with different trimming.
2010–2015.

Electricity use Electricity intensity Carbon Emissions

Compensation 0.240*** 0.185 0.243***
(0.0831) (0.186) (0.0818)

Obs 472 712 490
N compensated 15 16 15
N other 76 128 79
Industry effects digit 1 1 1
Industry effects-year FE Yes Yes Yes
EUTL-year-Industry effects No No No
Energy intensity 05-11 (Treat) 0.036 0.033 0.036
Energy intensity 05-11 (Control) 0.034 0.031 0.032
p-value (mean-comparison test) 0.700 0.546 0.329
outcome pre-treatment (Treat) 17.299 5.901 23.512
outcome pre-treatment (Control) 17.360 5.960 23.562
p-value (mean-comparison test) 0.715 0.692 0.796

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 1-digit level and are weighted by the inverse
propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.05. Data
sources: Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

3.E.5 Alternative proxies for production and electricity in-

tensity

Table 3.A12: ATEs of compensation on total output. 2010–2019.

Total output

2015 2016 2017 2018 2019

Compensation 0.147* 0.185** 0.156* 0.150* 0.157*
(0.0798) (0.0868) (0.0895) (0.0884) (0.0902)

Obs 528 710 862 1105 1230
N compensated 26 37 40 41 41
N other 99 125 134 162 165
Energy intensity 05-11 (Treat) 0.035 0.034 0.035 0.034 0.034
Energy intensity 05-11 (Control) 0.036 0.037 0.037 0.037 0.037
p-value (mean-comparison test) 0.586 0.338 0.403 0.350 0.351
outcome pre-treatment (Treat) 10.960 10.752 10.721 10.651 10.650
outcome pre-treatment (Control) 11.116 10.873 10.839 10.778 10.778
p-value (mean-comparison test) 0.307 0.454 0.472 0.422 0.419

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.A13: ATEs of compensation on turnover. 2010–2019.

Turnover

2015 2016 2017 2018 2019

Compensation 0.141* 0.158** 0.159** 0.192** 0.195**
(0.0721) (0.0761) (0.0778) (0.0796) (0.0803)

Obs 550 755 907 1151 1270
N compensated 25 37 39 41 41
N other 105 133 141 168 170
Energy intensity 05-11 (Treat) 0.035 0.035 0.035 0.034 0.034
Energy intensity 05-11 (Control) 0.036 0.036 0.036 0.035 0.035
p-value (mean-comparison test) 0.725 0.603 0.681 0.722 0.722
outcome pre-treatment (Treat) 11.120 10.936 10.906 10.831 10.830
outcome pre-treatment (Control) 11.130 10.946 10.915 10.850 10.859
p-value (mean-comparison test) 0.954 0.954 0.957 0.906 0.858

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 3.A14: ATEs of compensation on energy/output. 2010–2019.

Energy/Output

2015 2016 2017 2018 2019

Compensation -0.0615 0.0728 0.0601 0.00245 0.00502
(0.128) (0.141) (0.141) (0.132) (0.125)

Obs 648 896 1145 1371 1524
N compensated 24 39 43 45 45
N other 150 179 201 217 223
Energy intensity 05-11 (Treat) 0.036 0.035 0.035 0.035 0.035
Energy intensity 05-11 (Control) 0.035 0.036 0.038 0.037 0.036
p-value (mean-comparison test) 0.982 0.858 0.341 0.463 0.754
outcome pre-treatment (Treat) -3.062 -2.966 -2.976 -2.952 -2.949
outcome pre-treatment (Control) -3.042 -3.033 -3.051 -3.058 -3.078
p-value (mean-comparison test) 0.907 0.555 0.478 0.312 0.220

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.A15: ATEs of compensation on energy/turnover. 2010–2019.

Energy/Turnover

2015 2016 2017 2018 2019

Compensation -0.0445 0.0134 0.0476 0.0319 0.00431
(0.101) (0.116) (0.146) (0.138) (0.135)

Obs 705 983 1232 1455 1609
N compensated 27 39 44 45 46
N other 162 206 224 238 241
Industry effects digit 3 3 3 3 3
Energy intensity 05-11 (Treat) 0.030 0.029 0.036 0.036 0.036
Energy intensity 05-11 (Control) 0.035 0.036 0.033 0.032 0.032
p-value (mean-comparison test) 0.075 0.009 0.145 0.113 0.042
outcome pre-treatment (Treat) -3.300 -3.254 -3.019 -3.029 -2.998
outcome pre-treatment (Control) -3.123 -3.128 -3.135 -3.170 -3.177
p-value (mean-comparison test) 0.181 0.221 0.268 0.180 0.090
outcome pre-treatment (Control) -3.042 -3.033 -3.051 -3.058 -3.078
p-value (mean-comparison test) 0.907 0.555 0.478 0.312 0.220

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level and are weighted by
the inverse propensity score. We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1.
Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

3.E.6 Alternative calculations of p-scores

In our main results, we estimate propensity score weights based on the period 2005-

2011. These years correspond to the period used by the Government to calculate the

electricity cost share, which again determines whether a plant passes the 5% filter

test.

In Table 3.A16, we show that our main results are robust to the use of an alternative

time horizon to compute our p-scores ranging from 2010 to 2012, which mitigate

potential concerns about how the global financial crisis might affect the p-score

estimation.
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Table 3.A16: ATEs of compensation on sales using different p-scores. 2010–2015.

ABS QFI

Sales Energy intensity Electricity use Indirect Emissions Electricity intensity

Compensation 0.121* 0.0762 0.166* 0.177* 0.118
(0.0646) (0.0839) (0.1000) (0.0981) (0.173)

Obs 474 629 489 464 630
N compensated 20 24 13 13 16
N other 84 137 84 78 113
Industry effects digit 3 3 1 1 1
Industry effects-year FE Yes Yes Yes Yes Yes
Energy intensity 05-11 (Treat) 0.034 0.031 0.043 0.042 0.035
Energy intensity 05-11 (Control) 0.038 0.036 0.034 0.034 0.033
p-value (mean-comparison test) 0.311 0.100 0.091 0.092 0.535
outcome pre-treatment (Treat) 11.213 -3.099 17.200 23.389 5.999
outcome pre-treatment (Control) 11.218 -3.076 17.329 23.598 6.032
p-value (mean-comparison test) 0.977 0.844 0.468 0.240 0.834

Notes: Table shows the coefficient �1 estimated from the DiD equation. Dependent variables are in logs. Standard errors are
clustered at the firm level. All regressions include year x industry fixed effects at the 3-digit SIC code level (ABS variables) or
1-digit level (QFI variables) and are weighted by the inverse propensity score. We drop plants with an electricity intensity (i.e.,
predicted electricity consumption/GVA) below 0.1. Data sources: Annual Business Survey (ABS), and Quarterly Fuels Inquiry
(QFI).
* p < 0.10, ** p < 0.05, *** p < 0.01.

3.F Graphical comparisons of DiD estimates

Figure 3.A7: Comparison of DiD estimates (1)

(a) Production and employment variables (b) Energy intensity proxies

Notes: All regressions include year x industry fixed effects at the 3-digit SIC code level (ABS variables) or 1-digit
level (QFI variables) and are weighted by the inverse propensity score. The post-treatment period is 2013–2015.
We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1. Data sources:
Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
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Figure 3.A8: Comparison of DiD estimates (2)

(a) Electricity use (b) Carbon emissions

(c) Electricity intensity

Notes: All regressions include year x industry fixed effects at the 3-digit SIC code level (ABS variables) or 1-digit
level (QFI variables) and are weighted by the inverse propensity score. The post-treatment period is 2013–2015.
We drop plants with an electricity intensity (i.e., predicted electricity consumption/GVA) below 0.1. Data sources:
Annual Business Survey (ABS), and Quarterly Fuels Inquiry (QFI).
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3.G Dynamic difference-in-differences results

Figure 3.A9: Treatment effects of compensation, by year. 2010-2015.

(a) Sales of own goods (log) (b) Energy intensity (log)

Notes: Figures plot the coefficients
P

M

m=0 ��m and
P

K

k=1 �+k estimated from equation 3.12. The dependent
variable is given by the subfigure headings. All dependent variables are in logs. The connected lines depict the
estimated yearly treatment effect, while the dashed lines indicate 95% confidence intervals. We drop plants with an
electricity intensity (i.e., predicted electricity consumption/GVA) below 0.01. All regressions include plant fixed
effects and industry specific year dummies at the 3 digit level. Standard errors are clustered at the firm level. Data
sources: Annual Business Survey (ABS) and Quarterly Fuels Inquiry (QFI).
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3.H Robustness Checks: Fuzzy RDD

3.H.1 Alternative functional specifications

Table 3.A17: LATEs of compensation. Fuzzy RDD controlling for linear distance
from the cut-off.

Sales of own goods Energy purchases Energy Intensity

Panel A: First Stage 0.899*** 0.924*** 0.924***
(0.0891) (0.0848) (0.0848)

Panel B: Reduced Form 0.254** 0.170 -0.0725
(0.125) (0.220) (0.150)

Panel C: Second Stage 0.282** 0.184 -0.0784
(0.129) (0.227) (0.167)

Panel D: OLS 0.160 0.274* 0.124
(0.107) (0.139) (0.115)

Observations 253 252 249
N Compensated 20 20 20
N Other 49 48 47
F statistics 101.69 118.73 118.63
Functional form Linear Linear Linear

Notes: Tables show the coefficients estimated from the first stage, reduced form, and second stage of the fuzzy
regression discontinuity design. Dependent variables are given by the table headings and are measured in logs.Each
stage of the estimation includes include postt � 1{eligj = 1} and postt � 1{ci � c0} and firm-level fixed effects
(see Section 3.4.2 for more details). Standard errors are clustered at the firm level. The sample estimation period
is 2010-2015. Cutoff value: 0.05. Bandwidth: cutoff value +/-0.007. Bandwidth refers to the range of electricity
intensity values (electricity use * carbon cost / GVA) used to restrict the sample. Data source: Annual Business
Survey (ABS), and Quarterly Fuels Inquiry (QFI). * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.A18: LATEs of compensation. Fuzzy RDD controlling for quadratic dis-
tance from the cut-off.

Sales of own goods Energy purchases Energy Intensity

Panel A: First Stage 0.923*** 0.917*** 0.918***
(0.103) (0.104) (0.104)

Panel B: Reduced Form 0.273* 0.0591 -0.211*
(0.140) (0.174) (0.124)

Panel C: Second Stage 0.296** 0.0644 -0.230
(0.138) (0.186) (0.144)

Panel D: OLS 0.150 0.254* 0.107
(0.110) (0.137) (0.131)

Observations 253 252 249
N Compensated 20 20 20
N Other 49 48 47
F statistics 79.91 77.79 77.87
Functional form Polynomial Polynomial Polynomial

Notes: Tables show the coefficients estimated from the first stage, reduced form, and second stage of the fuzzy
regression discontinuity design. Dependent variables are given by the table headings and are measured in logs.Each
stage of the estimation includes include postt � 1{eligj = 1} and postt � 1{ci � c0} and firm-level fixed effects
(see Section 3.4.2 for more details). Standard errors are clustered at the firm level. The sample estimation period
is 2010-2015. Cutoff value: 0.05. Bandwidth: cutoff value +/-0.007. Bandwidth refers to the range of electricity
intensity values (electricity use * carbon cost / GVA) used to restrict the sample. Data source: Annual Business
Survey (ABS), and Quarterly Fuels Inquiry (QFI). * p < 0.10, ** p < 0.05, *** p < 0.01.
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3.H.2 RD Results for employment

Table 3.A19: LATEs of compensation on employment with different functional
forms. 2010–2015. Fuzzy RDD.

Employment

Panel A: First stage 0.879*** 0.899*** 0.923***
(0.101) (0.0891) (0.103)

Panel B: Reduced form 0.0612 0.0693 0.0245
(0.125) (0.0837) (0.0858)

Panel C: Second stage 0.0696 0.0771 0.0265
(0.0890) (0.0893) (0.0916)

Panel D: OLS 0.0371 0.0290 0.0228
(0.0557) (0.0569) (0.0522)

Observations 256 256 256
N Compensated 20 20 20
N Other 50 50 50
F statistics 75.51 101.77 79.82
Functional form Bins Linear Quadratic

Notes: Tables show the coefficients estimated from the first stage, reduced form, and second stage of the fuzzy
regression discontinuity design. Dependent variables are given by the table headings and are measured in logs.Each
stage of the estimation includes include postt � 1{eligj = 1} and postt � 1{ci � c0} and firm-level fixed effects
(see Section 3.4.2 for more details). Standard errors are clustered at the firm level. The sample estimation period
is 2010-2015. Cutoff value: 0.05. Bandwidth: cutoff value +/-0.007. Bandwidth refers to the range of electricity
intensity values (electricity use * carbon cost / GVA) used to restrict the sample. Data source: Annual Business
Survey (ABS), and Quarterly Fuels Inquiry (QFI). * p < 0.10, ** p < 0.05, *** p < 0.01.

3.H.3 RD Manipulation Test using local polynomial density

estimation

Table 3.A20 reports the results of our density discontinuity tests (or manipulation

testing) following Cattaneo et al. (2020).

Table 3.A20: RD Manipulation test following Cattaneo et al. (2020)

2010 2011 2012

p-value (robust bias-corrected) 0.2194 0.3674 0.2361
Window +/-0.01 +/-0.01 +/-0.01
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3.H.4 RD bandwidth selection procedure

We implement the window-selection procedure based on balance tests for RD designs

under local randomization introduced by Calonico et al. (2015, 2017). Specifically,

this procedure involves constructing a sequence of nested windows around the RD

cutoff and undertaking binomial tests for the running variable and hypothesis tests for

a set of covariates. Then, the selected window is the largest window around the cutoff

such that the minimum p-value of the balance test is larger than 0.10. To produce

Figure 3.A10, we select proxies for production levels and energy intensity (i.e., sales

of own goods and electricity scaled by sales as a measure of intensity, respectively) as

covariates and focus on the pre-treatment period to select the largest inference window

where local randomisation is assumed to hold where we can empirically show that the

distribution of observed covariates does not change discontinuously at the threshold

to a significant extent. Here, we report the selection of covariates that produced the

most conservative (or lowest) p-values in our runs and opt for an optimal window of

+/-0.007 from the cutoff. As the choice of covariates bears an arbitrary component,

we run the same procedure outlined above with a different selection of covariates,

and the resulting p-value for the window length that we selected (+/-0.007) ranges

from around 0.14 (as shown below) to around 0.5 (when we include other production

values such as total output, turnover, and production value). We then test the extent

to which our results are affected by different bandwidth choices in the following

section. Nevertheless, due to the limited sample size around the threshold, we face

a trade-off between moving closer to the threshold where the assumption of local

randomisation becomes increasingly more plausible and model precision. See Section

3.4.2 for more details on our RD setting.
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Figure 3.A10: RD bandwidth selection procedure

Notes: Figure plots the minimum p-value of a balance test following Calonico et al. (2020).
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3.H.5 Alternative bandwidths

Figure 3.A11: Comparing LATEs on sales across different bandwidths. 2010-2015.

Notes: Figure plots the coefficients estimated from the second stage of the fuzzy regression discontinuity design.
Dependent variables are indicated in the caption and are measured in logs. Each stage of the estimation includes
include postt � 1{eligj = 1} and postt � 1{ci � c0} and firm-level fixed effects (see Section 3.4.2 for more details).
Standard errors are clustered at the firm level. The sample estimation period is 2010-2015. Cutoff value: 0.05.
Bandwidth: cutoff values range from +/-0.006 to +/-0.0105 with a 0.0005 step-wise increase in the estimation
window from left to right. Bandwidth refers to the range of electricity intensity values (electricity use * carbon cost
/ GVA) used to restrict the sample. Data source: Annual Business Survey (ABS), and Quarterly Fuels Inquiry
(QFI).
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Figure 3.A12: Comparing LATEs on energy intensity (scaled by sales) across
different bandwidths. 2010-2015.

Notes: Figure plots the coefficients estimated from the second stage of the fuzzy regression discontinuity design.
Dependent variables are indicated in the caption and are measured in logs. Each stage of the estimation includes
include postt � 1{eligj = 1} and postt � 1{ci � c0} and firm-level fixed effects (see Section 3.4.2 for more details).
Standard errors are clustered at the firm level. The sample estimation period is 2010-2015. Cutoff value: 0.05.
Bandwidth: cutoff values range from +/-0.006 to +/-0.0105 with a 0.0005 step-wise increase in the estimation
window from left to right. Bandwidth refers to the range of electricity intensity values (electricity use * carbon cost
/ GVA) used to restrict the sample. Data source: Annual Business Survey (ABS), and Quarterly Fuels Inquiry
(QFI).
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Figure 3.A13: Comparing LATEs on energy purchases across different bandwidths.
2010-2015.

Notes: Figure plots the coefficients estimated from the second stage of the fuzzy regression discontinuity design.
Dependent variables are indicated in the caption and are measured in logs. Each stage of the estimation includes
include postt � 1{eligj = 1} and postt � 1{ci � c0} and firm-level fixed effects (see Section 3.4.2 for more details).
Standard errors are clustered at the firm level. The sample estimation period is 2010-2015. Cutoff value: 0.05.
Bandwidth: cutoff values range from +/-0.006 to +/-0.0105 with a 0.0005 step-wise increase in the estimation
window from left to right. Bandwidth refers to the range of electricity intensity values (electricity use * carbon cost
/ GVA) used to restrict the sample. Data source: Annual Business Survey (ABS), and Quarterly Fuels Inquiry
(QFI).
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Chapter 4

Climate policy uncertainty and the

behavior of firms and investors

with Stefano Carattini (Georgia State University), Antoine Dechezleprêtre (OECD),

and Tobias Kruse (OECD)

SUMMARY. Whether and how firms are affected by uncertainty revolving around

the implementation of climate policy is pivotal to fostering a low-carbon transition

and has implications for the potential systemic risk related to the coordinated

implementation of ambitious climate policy. We develop a new index of climate

policy uncertainty, covering the United States with monthly-level variation between

1990 and 2018. We leverage the variations in our index to analyze the relationship

between climate policy uncertainty and firm-level outcomes such as stock volatility,

share price, investments in research and development, and employment for all

publicly listed firms in the country. We find that climate policy uncertainty tends

to considerably affect these outcomes, and often more so than existing indices of

economic policy uncertainty. The direction of the uncertainty matters as well,

as measured by sub-indices capturing whether the uncertainty reflects potential

acceleration or deceleration in climate policymaking.
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4.1 Introduction

Understanding the behavior of agents such as firms and investors is a crucial com-

ponent of economics, with important implications for society at large. Often, firms’

and investors’ decisions are analyzed with respect to a change in policy or another

aspect that determines the environment in which they operate. However, at least as

often firms and investors need to take decisions in a context of substantial uncer-

tainty. Within this context, economists have long recognized the role of uncertainty

(Bernanke, 1983; McDonald and Siegel, 1986), but only relatively recently started

measuring it in a systematic way (Baker et al., 2016; Hassan et al., 2019).

Climate change is one of the most pressing issues of this century. The need to

mitigate climate change has been known among scientists for some four decades

and in policy circles at least since the early 1990s. However, recent human history

shows that there is much more uncertainty on the implementation of climate policy,

domestically and internationally, than there is on climate change itself (Moore et al.,

2022). Hence, climate change, with its all-encompassing need for change, offers a

suitable context to examine the behavior of firms and investors under uncertainty.

How firms and investors respond to uncertainty related to climate policy also has

implications for climate mitigation. In particular, firms’ expectations about future

climate action may influence their decisions concerning innovation as well as the

choice of inputs, in particular labor and capital, which are crucial dimensions for the

transition to a cleaner economy. Yet, these dimensions have been examined mostly

in response to actual policy changes (Martin et al., 2014a; Aghion et al., 2016; Calel

and Dechezlepretre, 2016; Yamazaki, 2017).

Further, analyzing firms’ and investors’ responses to uncertainty in climate policy-

making is also informative for the analysis of transition risk, potential systemic risk

driven by the relatively abrupt implementation of ambitious climate policy after

decades of delay. With the Paris Agreement, countries committed to reducing green-
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house gas emissions to keep temperature increases within 1.5-2°C above pre-industrial

levels. Each signatory pledged to reduce emissions, in absolute terms or relative to a

business-as-usual scenario (Tobin et al., 2018). With the quantity-based approach

behind the Paris Agreement, voluntary pledges set the ambition. Then, policymakers

need to identify ways to make sure that a set of instruments is implemented to meet

the pledges. Hence, policies systematically trail ambition (Harstad, 2022). One

implication that follows from this approach is that firms may be misaligned with

long-run climate goals.

This misalignment could have, in turn, two main implications: first, firms may

continue to invest in “dirty” technologies, leading to continued emissions as well as

potential asset stranding and investors’ losses once policy risk is materialized (see

van der Ploeg and Rezai, 2020b for a review). As the former governor of the Bank

of England Mark Carney made clear in his well-known 2015 speech (Carney, 2015),

private losses should not be a concern for the regulator. Asset values should reflect

fundamentals and investors have known about the need to tackle climate change

for decades. However, adjustments in the stock market due to the abovementioned

asset stranding could potentially lead to a systemic shock, especially considering

that carbon-intensive sectors can represent up to half of an advanced economy’s

standard portfolio (Battiston et al., 2017; ECB, 2021). Many influential voices have

raised concerns about systemic risk related to a potentially abrupt transition to a

low-carbon economy, including central banks and financial regulators in some of the

world’s major economies (Carney, 2015; Vermeulen et al., 2018; Banque de France,

2019; Rudebusch, 2021). Hence, it is of fundamental importance to examine the

behavior of firms and investors in presence of uncertainty on the likelihood and

timing of future climate policy developments.

How does uncertainty in climate policy affect the behavior of firms and investors?

To address this question, we built the first index of policy uncertainty specific to

climate policy, which allows us to address this question empirically. Our “climate

policy uncertainty” index, or CPU, combines the original search strategy in Baker
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et al. (2016) with keywords related to climate policy. Our index runs monthly from

1990 to 2018 and covers the main newspapers in the United States. Then, we analyze

the relationship between CPU and firm outcomes such as share prices, volatility,

employment decisions, as well as investments in research and development.

Our approach also takes into account a crucial feature related to climate policy. While

in the case of standard economic policy, the economy tends to move along a given

trajectory determined by its steady state and uncertainty tends to be detrimental to

economic growth, in the case of climate change the economy needs to transition from

fossil-fueled activities to a cleaner way of production. Hence, the economy needs

to move from one equilibrium, which is carbon intensive, to another equilibrium,

which is much cleaner. Since climate change entered the policy arena in the 1980s,

both domestic and international climate policymaking have gone through important

achievements as well as numerous setbacks. If firms and investors respond to short-

term variation in the probability of future policy tightening, rather than adopting

long-term goals such as decarbonization, setbacks are likely to benefit them. For this

reason, our index is complemented by two sub-indices, aimed at measuring whether

the source of uncertainty is an acceleration in the process of decarbonization, or

rather a deceleration.

The primary empirical goal of this chapter is to examine how economic outcomes

respond to greater uncertainty about climate policy, also depending on its drivers. To

do so, we exploit variations in our Climate Policy Uncertainty (CPU) index, and its

sub-indices, across different months, quarters, or years from 1990 to 2018. Specifically,

we estimate fixed effects models where we interact our news-based indices with the

average carbon intensity across narrowly-defined industries. By doing so, we develop

an identification strategy that differentiates firms according to their relative exposure

to climate policy risk. Using panel data on publicly-listed companies, our model

tests whether exposure to climate policy risk matters for economic outcomes when

greater uncertainty about climate policy materializes as measured by newspaper

article coverage.
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Overall, we find that an increase in our index is associated with greater stock price

volatility and lower share prices, as well as reductions in R&D efforts and annual

employment levels. Our back-of-the-envelope calculations suggest that climate policy

uncertainty over the last two decades is responsible for an average upward shift in

volatility of approximately 3%, a decrease of around 13% in share prices, and decreases

in R&D investments of around 12%. Additionally, we detect negative but limited

effects on employment. Yet, our results exhibit considerable heterogeneity exist across

industries, with more pronounced effects observed in carbon-intensive sectors. Our

analyses also suggest that the direction of the estimated effects matters, so the impact

of climate policy uncertainty on the outcomes of interest depends on the underlying

drivers of climate policy uncertainty. Finally, further empirical investigations reveal

that firm-level economic outcomes are more sensitive to uncertainty about climate

policy when changes in expectations point towards more stringent regulation in the

future. Our results are robust to a host of sensitivity tests.

We contribute to four strands of literature. First, a growing literature examining the

role of policy uncertainty on a wide range of outcomes (Bernanke, 1983; McDonald

and Siegel, 1986; Hassett and Metcalf, 1999; Handley and Limão, 2015; Baker et al.,

2016; Hassan et al., 2019), including investments in green technologies in a set of

specific contexts (Fabrizio, 2013; Dorsey, 2019). We contribute to this literature by

introducing an index of climate policy uncertainty, which allows us to examine firms’

and investors’ responses to changes in the probability of climate policy tightening

for the largest firms in the United States over about four decades.

Second, a recent theoretical literature on firms’ and investors’ decisions under the

specter of future climate policy (Rozenberg et al., 2018; van der Ploeg and Rezai,

2020a; van Benthem et al., 2022), including implication in terms of systemic risk

(Carattini et al., 2021; Diluiso et al., 2021), and a recent set of empirical applications

testing the theory (Carattini and Sen, 2019; Sen and von Schickfus, 2020; Engle et al.,

2020; Krueger et al., 2020). We contribute to this literature by providing additional

empirical evidence on a range of firm-level outcomes from shocks in climate policy
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uncertainty.

Third, a stream of research examining the role of innovation in response to envi-

ronmental regulation, analyzing, theoretically and empirically, the role of directed

technical change (e.g., Bovenberg and Smulders, 1995; Porter and van der Linde,

1995; Popp, 2002; Acemoglu et al., 2012; Aghion et al., 2016; Calel and Dechezlepre-

tre, 2016; see also Ambec et al. 2013 for a review). Unlike the existing literature,

which infers mostly from existing policies, leveraging changes in stringency, our study

focuses on variations in uncertainty, leading to adjustments in firms’ beliefs about

the likelihood of future policy tightening or weakening.

Fourth, empirical literature shows relatively muted changes in employment following

the tightening of environmental regulation (Martin et al., 2014a; Yamazaki, 2017).

Also in this case, we contribute to the literature by covering changes in uncertainty

about potential regulatory changes, rather than only realized policy shocks, and

uncovering their effects on employment levels over a long period for a large number

of firms.

The chapter proceeds as follows. Section 4.2 introduces our CPU index as well as

its sub-indices. Section 4.3 describes the data and empirical approach. Section 4.4

presents our empirical results. Section 4.5 concludes.

4.2 Introducing the CPU index

4.2.1 Building the index

This study builds upon the work of Baker et al. (2016) in order to develop an

indicator of climate policy uncertainty using a comparable methodological approach,

which we detail in what follows. To build their index of Economic Policy Uncertainty

in the U.S., Baker et al. (2016) count the frequency of newspaper articles that
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contain the following trio of terms: (1) “economic” or “economy”; (2) “uncertain”

or “uncertainty”; and (3) “Congress”, “deficit”, “Federal Reserve”, “legislation”,

“regulation” or “White House”. To build our index of Climate Policy Uncertainty

(CPU), we similarly created a lexicon of words and combinations of words as our

search strategy. To ensure that we capture the right concept, we create a separate

lexicon of words for each of the three components (Climate, Policy, and Uncertainty).

The first category includes terms such as “pollution”, “CO2”, or “climate change”

which refer to a specific concern related to climate change. It also includes terms

referring to technologies addressing these concerns such as “solar PV” or “renewable”.

The second category includes terms related to policy-making such as “regulation”,

“legislation”, or “tax”, but also terms more specific to environmental policies such

as “emissions trading scheme” or “cap and trade”. The full list of keywords used

in these two components is listed in Appendix 4.A. The third category includes the

words “uncertain” or “uncertainty”. Selected articles have to include at least one

term from each category.

We initially created the lexicon in English in order to capture articles in English-

speaking countries. All keywords were then translated, by native speakers, in several

other languages. Appendix 4.A provides the keyword selection for all languages.1 In

this chapter, we use the English version, applied to the United States. The main

challenge in creating an indicator of policy uncertainty based on counts of newspaper

articles is the possible inclusion of “false positives”, which are articles that are not

relevant but are still selected based on the search strategy. Such false positive results

would inflate our index and incorrectly indicate higher levels of uncertainty. In turn,

they would introduce a downward bias in the empirical analyses. To reduce as much

as possible the likelihood of including such false positives, we read several hundreds of

1To ensure that our index is consistently observed across countries, we avoid using country-
specific terms. For example, we do not include the exact name of environmental ministries,
departments, or environmental protection agencies. The names of ministries or departments dealing
with environmental and climate change topics tend to change with governments, which makes them
difficult to track consistently across countries and time. In the United Kingdom, for instance, the
Department for Energy and Climate Change became part of the Department for Business, Energy
Industrial Strategy in July 2016 following a change in government.
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randomly selected articles and recursively adjusted the search strategy. We manually

coded the randomly selected articles as relevant and irrelevant. We were thereby able

to adjust the search strategy systematically to increase the ratio of relevant articles

to above 80%, which is considered a reasonable compromise between including as

many relevant articles as possible and limiting the extent of false positives.

To ensure that the selected articles talk about climate policy and not about the

climate in one part and about unrelated policies in another, we imposed the restriction

that terms from the policy category have to be located within the same paragraph

from the respective word in the climate category. We thereby contribute to ensuring

that the two terms are related to each other in the newspaper article. A difficulty

when using terms such as “environment” or “climate” is that they can also be used to

describe other concepts such as “business climate”, “business environment” or “policy

environment”. We therefore explicitly excluded all articles that used one of these

expressions. An additional challenge in creating topic-specific policy uncertainty

indices is that they tend to require many more search terms compared to general

economic policy uncertainty indicators. This is necessary to ensure that as many

topic-related events as possible are picked up. Baker et al. (2016) are able to obtain

comprehensive coverage of economic policy uncertainty with ten search terms for

the United States. For our climate policy uncertainty index, we apply more than

60 search terms. Since newspaper coverage of climate-related policy uncertainty is

typically smaller than coverage of economic policy uncertainty, our search strategy

needs to be sufficiently sensitive in order to observe as many topic-specific events

as possible. For the United States, the CPU index covers the years from 1990 until

2018. The main reason to start the index in 1990 is that, prior to that date, the

number of available newspaper articles is smaller and potentially too small.

To construct their indicator of economic policy uncertainty for the United States,

Baker et al. (2016) use data from 10 leading newspapers. Limiting the search to

leading newspapers ensures the quality of the underlying articles and avoids including

newspapers that only exceptionally report on the topic, spuriously creating huge
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volatility over time. For each newspaper, we separately downloaded the annual count

of articles that are picked up by our search strategy as well as the total number

of articles published by the outlet. Two online newspaper databases were used to

download the article counts, Factiva and Nexis, covering different sets of newspapers.

As an illustration, Figure 4.1 shows the annual article counts for the New York

Times (United States). These time series show the trends in overall articles (left

axis) and in articles on climate policy uncertainty (right axis). The number of

annual articles related to climate policy uncertainty varies between 0 and 300, with a

significant year-on-year variation. Overall, the frequency of articles on climate policy

uncertainty appears to have increased in the recent period, but the total number of

articles published has increased as well.

Figure 4.1: Article counts in the New York Times (US)

Note: Yearly series from 1990 to 2018.
Source: Factiva.

In order to account for this rising trend in total articles published, we first compute

a simple newspaper-specific ratio of articles on climate policy uncertainty over the

total article count by newspaper. This ratio is displayed in Figure 4.2 for the same
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newspaper, the New York Times. Over time, less than 2 in 1000 articles deal with

climate policy uncertainty in the New York Times, further justifying our choice to

use multiple keywords to cast as wide a net as possible given the specificity of the

topic of interest in the general press.

Figure 4.2: Ratio of CPU articles over total articles in the New York Times (US)

Note: Based on yearly series from 1990 to 2018.
Source: Factiva.

A challenge with these raw article ratios is that the number of articles varies a lot

across newspapers and time, making it difficult to simply average the ratios across

several newspapers in a given country. We, therefore, apply the standardization

approach of Baker et al. (2016) to obtain our CPU index. We begin with the simple

ratio of articles on climate policy uncertainty divided by the total article counts for

each newspaper, as illustrated in Figure 4.2. For each newspaper, we then divide

this ratio by the newspaper-specific standard deviation across all years. This creates

a newspaper-specific time series with unit standard deviation across the entire time

interval, which ensures that the volatility of the overall country-level index is not

driven by the higher volatility of a particular newspaper. We then average these

167



standardized series across all newspapers within each country by year. Lastly, we

normalize the country-specific series to a mean of 100 over the time interval.

Figure 4.3: CPU index in the United States

Note: Based on yearly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

4.2.2 Validating the CPU index

As a first approach to validate our index, and following Baker et al. (2016), we link the

country-specific peaks to relevant events such as the discussion or implementation

of major climate policies. To verify that our index varies in conjunction with

the respective events and the corresponding realization of uncertainty, we read the

headlines of the first hundred articles that were downloaded for the peak years. In the

United States, the index has pronounced peaks in 2001, 2010, and 2017, as shown in

Figure 4.3. The first peak in 2001 is linked to the Energy Plan published by the George

W. Bush administration that included environmental deregulation, in particular with
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respect to oil and gas explorations. While the event itself created climate policy

uncertainty by lowering environmental standards, the lengthy discussion around the

publication of the plan also contributed to the spike in the index. The spike in 2010

is driven by the Democratic party withdrawing a major bill on climate change due to

insufficient support in Congress. Moreover, the prior discussion on whether the bill

might achieve sufficient support in Congress and whether the Democratic party might

be willing to amend the bill contributed to the uncertainty. The third spike in 2017

is in turn related to uncertainty arising from President Trump’s withdrawal from the

Paris Agreement and efforts to revoke clean energy and climate policies. Appendix

4.B provides an extended list of major events in the United States relevant to climate

policy uncertainty, which we leverage later in this section as well as in the remainder

of the chapter. Visibly, such major events related to both instances of progress

as well as setbacks in dealing with climate change, supporting the generation of

sub-indices, as described in the next section, capturing these two forces, respectively.

Figure 4.4: CPU index and associated events in the United States

Note: Based on yearly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

In addition to the annual time series of the CPU index, we are also able to establish
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a monthly index for the United States, where the annual number of articles related

to climate policy uncertainty is high enough to be further disaggregated. This more

granular data allows us to examine the variation in the index in more detail, which

we do in Figure 4.5, as well as to analyze responses by high-frequency variables such

as share prices and volatility to climate policy uncertainty shocks, which we do in the

following sections, among other outcome variables, using either monthly or quarterly

series.

Figure 4.5: CPU index and associated events in the United States

Note: Based on monthly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

Based on a careful analysis of the newspaper article headlines and abstracts we are

again able to link the peaks to particular policy events and their corresponding

realization of uncertainty. Interestingly, we observe a trend in the topics of climate

policy uncertainty moving from energy-related issues largely concerned with energy

security and energy prices in the 1990s and early 2000s to increasing attention

explicitly given to air pollution and climate change issues from the late 2000s

onwards.2 The early events include the uncertainty around energy prices following

2Since our baseline search strategy includes keywords potentially relating to local air pollution,
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Iraq’s invasion of Kuwait as well as the above-mentioned discussion around the Energy

Plan of the George W. Bush administration in 2001 that included deregulation

in particular for oil and gas exploration. The later events include in particular

uncertainty arising around the discussion and abrupt withdrawal of a bill to regulate

ozone emissions in September 2011 under the Obama administration as well as

the election of President Trump, who then announced a planned withdrawal of the

United States from the agreement.

It is, however, important to note that, by design, annual (Figure 4.3) and monthly

(Figure 4.5) time series can identify different peaks. Such difference can arise if, for

instance, the discussion of a policy change spreads across many months within a

single year. The frequency per month may be relatively low, but if all the articles

are aggregated within a year, they can lead to a peak in the annual time series. In

the United States, this occurred for instance with the 2010 withdrawal of the climate

change bill under the Obama administration. While it appears as a spike in the

yearly chart, the spike in the monthly series is less marked. Figure 4.3 shows elevated

levels of climate policy uncertainty throughout 2010. The withdrawal of the bill was

not a major surprise as it had already appeared that the administration did not have

sufficient support in Congress to see it pass. Therefore, the combination of both

annual and monthly time series provides unique insights as it allows us to examine

all policy events from both perspectives. Section 4.D further compares the index

to other relevant measures, such as the EPU from Baker et al. (2016), the Chicago

Board Options Exchange’s CBOE Volatility Index (hereafter referred to as VIX),

and oil price volatility.

4.2.3 Extending the index

We provide two extensions to the index, which are documented in more detail,

including the keyword searches, in Appendix 4.A. First of all, since our baseline

we run an additional newspaper article search that excludes them. More details are provided in
Section 4.2.3.
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search strategy includes keywords potentially relating to local air pollution, we run a

new newspaper article search that excludes them. Figure 4.6 plots the evolution of

the two indices since 1990. Overall, they exhibit a correlation of 0.9923. The index

resulting from the narrower search, which we denote as N-CPU for Narrow Climate

Policy Uncertainty, is used for robustness tests in Section 4.4.2.

Figure 4.6: Comparing the evolution of the CPU and N-CPU indices

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

The second extension follows from an important observation about the difference

between our CPU index and the EPU index developed by Baker et al. (2016). While

in the case of standard economic uncertainty, any increase in the index, and thus

in the underlying uncertainty, is overall detrimental to economic output, the case

of climate policy uncertainty is very different. The EPU index largely measures

the effect of uncertainty as a destabilizing factor from a trajectory of economic

growth. In contrast, the CPU index measures the uncertainty surrounding the pace

at which the economy is expected to move from business as usual to carbon neutrality.

In this context, there is a trade-off between current economic output and climate
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change mitigation, so an increase in climate policy uncertainty has two effects: first,

a negative shock on economic output due to the direct effect of uncertainty, as

analyzed by Baker et al. (2016); second, an effect that depends on how beliefs on the

pace of the transition towards a cleaner economy are adjusted. Indeed, the process

of implementing climate policy, both domestically and internationally, has had many

instances of acceleration and deceleration. While when climate change entered the

political arena in the ’80s and ’90s expectations might have been that of a relatively

quick transition to fewer fossil fuels, as recommended by scientists, it later became

apparent that (international) climate change mitigation would have been harder

to achieve than coordination in banning products responsible for ozone depletion

as done with the Montreal Protocol. In more recent times, however, unilateral

initiatives, followed by the Paris Agreement, and the emergence of a new generation

of environmental leaders, have pointed to an acceleration in climate change mitigation.

Over only a few years, carbon pricing went from covering 15% of global emissions

to about 22.5% (The World Bank, 2023). Unless investors are totally aligned with

long-term climate goals as provided by climate scientists and unmoved by present

political developments, which do not seem the be the case (see e.g. Carattini and

Sen, 2019), we would expect stock markets to make gains when new developments

point to additional delays in climate action and to make losses, everything else equal,

when new developments point to an acceleration in climate action.

Hence, it is important not only to analyze variation in the CPU index but also

to try to disentangle its drivers, whether an increase in uncertainty suggests that

the transition is slowing or accelerating. To this end, we performed two additional

separate searches, adding keywords related to progress and failure, respectively, to

the standard keyword search. We denote the resulting sub-indices as CPU+ when

belief revision goes towards more climate action (hence “plus” for more action) and

CPU- when belief revision goes towards less climate action (hence ”minus” for less

action). Figures 4.7 and 4.8 plot the evolution of the sub-indices over time, linking

respective index-specific peaks to policy-relevant events.
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Figure 4.7: Quarterly CPU- index in the United States

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

Figure 4.8: Quarterly CPU+ index in the United States

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.
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4.3 Outcome data and empirical strategy

4.3.1 Outcome variables and descriptive statistics

To examine whether climate policy uncertainty has an impact on economic outcomes,

we combine several data sources on publicly listed firms. In particular, we investigate

firms’ and investors’ responses to uncertainty about climate policy by focusing

on share prices and volatility, research and development (R&D) expenses, and

employment. All variables except volatility are obtained from Standard Poor’s

Compustat, specifically from Compustat North America, which includes information

for companies listed in the United States and Canada. Additionally, we combine

information retrieved from Options Metrics, which provides firm-level historical

volatility over different time horizons since the mid-1990s in our main estimations,

as well as longer time horizons in alternative specifications. Table 4.1 is based on

firm-level information for publicly listed companies in the US between 1990 and

2018.

Table 4.1: Summary statistics

Variable Obs Mean Std. Dev. Min Max Median

Volatility (30 days) 298103 -1.042 .637 -6.398 2.47 -1.043
Share Price 1433855 .87 3.247 -13.816 13.423 2.053
R&D 288375 .768 2.324 -6.908 9.299 .761
Employment (Annual) 220356 8.692 38.375 0 2545.209 .574

Notes: Table shows summary statistics for publicly-listed companies in the US between the years 1990-2018
without sample restrictions. Variables are expressed in log terms.

We use daily data on volatility from Option Metrics’ volatility which provides

historical information on firm-level 30-day volatility. We include in our dataset all

options that have been traded on the Chicago Board of Options and Exchange since

1996.3 In line with Baker et al. (2016), we consider historical share price volatility

as a proxy for firm-level uncertainty. We then combine information on share prices,

3As the information on stock-price volatilities is only available from 1996, we check whether our
results change when running our estimations for other outcome variables from 1996 onward
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research and development (R&D) expenses, and employment for the entire universe

of publicly traded firms in the United States since 1990. Our analysis with share price

as an outcome variable covers around 10,000 listed companies in the United States.

Share prices refer to a stock’s closing price, which is the standard benchmark used

by investors to track its performance in time. Compustat North America provides

information on share prices since 1962, which allows us to analyze the relationship

between this outcome variable and the index since 1990. R&D expenses are included

in the sample to proxy firm-level innovative behavior. These expenses are defined as

the costs incurred throughout a given quarter that cover the development of new

products or services. Information on R&D expenses is only available since 1989.

Finally, employment refers to the annual level of employees in a given company since

1990.

Further, we are interested in analyzing whether the above-mentioned economic

outcomes are differently affected based on the exposure to climate policy risk of each

firm, which we proxy by emission intensity. To this end, we combine information on

emissions from the US Environmental Protection Agency (EPA). The EPA tracks

facility-level emissions of air pollutants, through the Greenhouse Gas Reporting

Program (GHGRP). The GHGRP collects annual information on the emissions of

different greenhouse gases, primarily on carbon dioxide (CO2).4

The reporting program provides data on individual facilities, thus offering an oppor-

tunity to disaggregate nationwide emissions estimates to narrowly defined industries

or specific companies. The database covers approximately 85% to 90% of total

greenhouse gas emissions in the United States from 2010 to 2018.5 This includes data

4Carbon dioxide is the greenhouse gas (GHG) emitted in the largest quantities: carbon dioxide
emissions reported in 2018 represented 90.9% of the total emissions of GHGs reported during the
year. Other greenhouse gases covered include methane (CH4), nitrous oxide (N2O), and fluorinated
GHGs (HFCs, PFCs, SF6). In 2018, methane emissions represent 7.6% of total GHG emissions,
N2O represented around 1.0%, and fluorinated gases accounted for around 0.5%.

5There are specific thresholds above which reporting is required within a given industry. In
general, the threshold is set at 25,000 metric tons CO2-e per year. However, all facilities in the
following industry categories must report regardless of annual emissions: Electricity Generation,
Petroleum Refineries, Adipic Acid Production, Ammonia Manufacturing, HCFC-22 Production
from HFC-23 Destruction, Nitric Acid Production, Petrochemical Production, Phosphoric Acid
Production, Silicon Carbide Production, Titanium Dioxide Production, Aluminum Production,
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on direct emissions reported by stationary sources, covering nearly all direct emissions

from electricity generation and most emissions from industry, which account for

approximately 50% of total nationwide emissions. In addition, this also includes

GHG data reported by suppliers of fossil fuels and industrial gases, which account

for the vast majority of emissions from transportation, commercial, and residential

sources, representing roughly 40% of total US emissions. The GHGRP does not

include emissions from the agriculture and land use sectors or other small sources of

emissions.

Our main model specifications differentiate firms by their relative exposure to climate

policy changes. The underlying intuition is that more pollution-intensive firms would

be more exposed to the possibility of more stringent climate regulation in the future.

To compute this exposure, we draw on facility-level information on air emissions

from the GHGRP. As a first step, we match Compustat firms to reporting facilities

using the names of their parent companies, which is provided by the EPA.

We do so using Standard Poor Capital IQ’s Identifier Converter which allows

identifying company identifiers of all public firms using company names. The

GHGRP database includes detailed ownership percentages of facilities by multiple

parents, and we rely on these values to assign each facility’s pollution to its parent

companies. Through this match, we yield parent firms’ annual levels of carbon

dioxide emissions, which we use to obtain firm-level intensities as the ratio of total

air emissions to total revenue. We then aggregate emission intensity levels to obtain

the ratio of air emissions to revenues in each four-digit industry by year.

Finally, we average these ratios to compute our exposure measure for each four-digit

SIC industry. Table 4.2 displays intensity by 4-digit SIC code averaged across main

industry group classifications. Nevertheless, there is substantial variation in average

carbon intensity across 4-digit SIC codes within industry groups. For instance,

carbon intensity in manufacturing ranges from relatively low values in the food

Cement Production, Lime Manufacturing, Soda Ash Production. More information on reporting
requirements by industry can be found here.
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industry to much higher levels for the manufacturing of cement and metal products.

Specifically, Cookies Crackers (SIC 2052) exhibits an average intensity of around

0.6 metric tons of carbon emissions per million of revenue generated compared to

3310 and almost 4300 metric tons per million in Cement, Hydraulic (SIC 3241) and

Fabricated Metal Products (SIC 3490) respectively. Similarly, intensity values in

Services range from 0.09 metric tons/million in Life Insurance (SIC 6311) to 4000

metric tons/million in Oil Royalty Traders (SIC 6792). Tables 4.A1 - 4.A4 in the

Appendix provide the corresponding intensity figures for a number of other selected

industries.

Table 4.2: Average carbon intensity by SIC code

Industry Description Range of 4-digit SIC Codes Average Intensity

Mining 1000-1499 9.92
Construction 1500-1799 9.27
Manufacturing 2000-3999 8.52
Transport, Communications, Electric, Gas and Sanitary Service 4000-4999 9.11
Wholesale and Retail Trade 5000-5999 8.79
Finance, Insurance and Real Estate 6000-6799 8.97
Services 7000-8999 7.61

Median Sample Intensity 9.34

Notes: Industry-level intensities are expressed as natural logs and averaged across SIC codes. CO2 emissions
are retrieved from the EPA Greenhouse Gas Reporting Program (GHGRP). Carbon intensities are measured in
myriagrams CO2-e to total revenue (in millions of dollars).

4.3.2 Empirical Strategy

The main empirical goal of this chapter is to examine how selected economic outcomes

respond to greater uncertainty about climate policy, also depending on its drivers.

To do so, we exploit variations in the Climate Policy Uncertainty (CPU) index across

different months, quarters, or years from 1990 to 2018. Our empirical strategy consists

in estimating fixed effects models where we interact our news-based index with the

measure of exposure to climate policy risk described in Section 4.3.1. This additional

source of variation allows controlling for unobserved time-varying confounders. These

specifications test whether effects for firms with greater exposure to climate policy

shocks covary more strongly with our index. In other words, the model tests whether

exposure to climate policy risk matters for economic outcomes when changes in
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uncertainty about climate policy materialize in the news. We estimate the following

equation:

ln yit = �1CPUt � Expj + �2X
0

jt
+ �t + �i + eijt, (4.1)

where yit represents one of the outcome variables presented in Section 4.3.1. CPUt

refers to our Climate Policy Uncertainty index in a given time period t, whereas

Expj refers to our intensity measures computed for each 4-digit SIC industry, j. eijt

is the idiosyncratic error term. The main identifying assumption in the model is that

companies operating in high-emitting sectors tend to be more exposed to climate

policy uncertainty. One potential threat to identification is firm and time-specific

shocks. By including firm-specific fixed effects, �i, and time fixed effects, �t, we

are able to capture time-constant firm-specific factors as well as absorb unobserved

time-varying shocks. Without the interaction term, CPUt is collinear with the time

fixed effects and drops out from the equation.

Furthermore, we include a vector of controls, X
0
, to evaluate to what extent our

CPU measure tells us anything different from other measures of uncertainty and

policy uncertainty. First, the most obvious choice is to control for variation in

the Economic Policy Uncertainty (EPU) index developed by Baker et al. (2016).

By doing so, we can assess whether our climate policy uncertainty index can be a

significant predictor of firm-level economic outcomes after controlling for the impact

of general economic policy uncertainty. Both indices are constructed using scaled

frequency counts of newspaper articles, but they differ conceptually. While the

EPU index is designed to measure policy-related uncertainty for the economy as a

whole, our CPU index quantifies uncertainty specifically related to climate policy.

Drawing on Baker et al. (2016), we interact ln(EPU) with SIC-specific contract

intensity. The latter reflects the average ratio of federal purchases to revenue in

each four-digit industry and captures exposure to uncertainty about government

purchases. The intuition is that the effects of economic policy uncertainty tend to

be more sizable in industries disproportionately relying on direct sales of goods and
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services to the federal government. Secondly, we test whether our results change

when controlling for overall economic uncertainty, approximated by the VIX index -

a common measure of expectations of further stock market volatility computed as

the 30-day volatility in the S&P500 index. Even in this case, we interact ln(VIX)

with SIC-specific contract intensity to differentiate firms by their exposure to overall

uncertainty. Finally, we additionally control for fluctuations in the price of oil proxied

by the West Texas Intermediate (WTI). This is because persistent spikes in oil prices

may also ultimately affect the performance and thus the valuation of companies

largely relying on carbon-intensive production processes.

4.4 Empirical results

4.4.1 Firm and investor behavior in response to uncertainty

shocks

We are interested in firms’ and investors’ responses to uncertainty along the following

outcome variables: share prices and volatility, research and development expenses,

and employment. In our empirical analyses, we focus first on our main index and

analyze its relationship with our main outcomes of interest. Then, we test the

robustness of our main findings with a host of sensitivity tests. Lastly, we analyze

belief revision, leveraging the sub-indices defined as CPU+ and CPU-.

We now describe the analyses using our main index. We start with share prices and

share price volatility. Table 4.3 displays results from regressing firms’ 30-day historical

stock price volatility and share prices on climate policy uncertainty. Our estimates

of interest are reported in the first row, with robust standard errors clustered at the

firm level. Taking advantage of the high-frequency nature of stock market variables,

we provide estimates using both monthly and quarterly time series of our index. Both

levels of aggregation provide unique perspectives into the evolution of climate policy
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uncertainty and contribute to providing a more complete picture for our empirical

analysis (see section 4.2). While the quarterly time series provides insights into the

effects of enduring uncertainty across months, the monthly series allows investigating

prompt responses to uncertainty shocks occurring within shorter time frames. In

our regressions, we use 30-day volatility implied by firm-level equity options. We

calculate the average volatility over all trading days in a given month or quarter to

match stock market data. Our sample extends from 1990 to 2018, as most of our

outcome variables are consistently available from 1990 onward only (as described in

Section 4.3.1). However, recall that information on stock price volatility is available

from 1996 onward only. Hence, in Table 4.7 we analyze all outcome variables using

1996 to 2018 as an estimation window.

Tables 4.3 and 4.4 report results from our monthly and quarterly-level specifications

respectively. Overall, our monthly-level estimates indicate that an increase in our

index is associated with greater historical stock price volatility and lower share prices.

Specifically, we find that for a firm with median exposure, a 1% increase in CPU over

a given month leads to an increase of around 0.05% in volatility (0.0055 x 9.34 =

0.047) and a reduction of 0.09% in share price (0.01 x 9.34 = 0.09). In line with our

expectations, we observe that firms operating in more carbon-intensive 4-digit SIC

industries tend to respond more strongly to variations in climate policy uncertainty.

Table 4.4 shows how these estimates change when turning to our quarterly-level

specifications. Overall, both specifications yield similar results, but the magnitude of

the estimated relationships is larger with quarterly series. To assess these magnitudes,

our quarterly-level coefficients now predict for a firm with median exposure that a

1% increase in CPU would lead to an increase of 0.08% in volatility and a reduction

of 0.3% in share price. These results reveal that stock market performances tend to

be more sensitive to spikes in climate policy uncertainty when the latter persists over

multiple months. Table 4.A5 in the Appendix extends our approach to the annual

series. Even in this case, results suggest that the more persistent the shock, the

larger the effect. Furthermore, to put our coefficients into perspective, the quarterly
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CPU index rose on average by 40.5 log points from 2000 to 2018. Assuming a median

exposure, this implies an estimated upward shift in volatility of approximately 3%

(0.405 x 0.00816 x 9.34 x 100) and an overall decrease of around 13% (0.405 x 0.0334

x 9.34 x 100) in share prices attributed to variation in the CPU. Nevertheless, the

estimated relationships between fluctuations in the CPU index and stock market

variables vary considerably in relation to industry-level carbon intensity. Tables 4.A1

and 4.A2 in the Appendix compute the implied changes in volatility and share prices

from 2000 to 2018 across different industries to explore heterogeneity across firms

more in detail.

Table 4.3: Effects of climate policy uncertainty on historical stock price volatility
(30-day horizon) and share prices in the US (monthly series).

Volatility (30) Share Price

(1) (2) (3) (1) (2) (3)

CPU x CO2 intensity 0.00571*** 0.00565*** 0.00509*** -0.0124** -0.0121** -0.00998***
(0.00159) (0.00159) (0.00141) (0.00484) (0.00483) (0.00352)

VIX x Contract Intensity 0.124 -0.511*
(0.0986) (0.269)

EPU x Contract Intensity -0.0540 -0.0407 0.512 0.473
(0.137) (0.137) (0.385) (0.384)

WTI x CO2 intensity 0.00338 -0.00996
(0.00280) (0.00972)

Search Strategy Original Original Original Original Original Original
N 273367 273367 273367 956480 956480 956480
R-squared 0.642 0.642 0.642 0.815 0.815 0.815
Number of firms 3237 3237 3237 8775 8775 8775
Firm effects Yes Yes Yes Yes Yes Yes
Time effects Month Month Month Month Month Month
First Year 1996 1996 1996 1990 1990 1990
Last Year 2018 2018 2018 2018 2018 2018

Notes: Variables are averaged across months and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

Next, Table 4.5 examines the extent to which variations in climate policy uncertainty

affect firm-level expenses in research and development and employment. As before,

our specifications differentiate firms by their relative exposure to climate policy

changes. Table 4.5 relies on the quarterly series, as these variables are not available

at the monthly level on Compustat.
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Table 4.4: Effects of climate policy uncertainty on historical stock price volatility
(30-day horizon) and share prices in the US (quarterly series).

Volatility (30) Share Price

(1) (2) (3) (1) (2) (3)

CPU x CO2 intensity 0.00892*** 0.00879*** 0.00816*** -0.0391*** -0.0385*** -0.0334***
(0.00252) (0.00252) (0.00233) (0.00854) (0.00853) (0.00640)

VIX x Contract Intensity 0.0942 -0.593**
(0.0995) (0.269)

EPU x Contract Intensity -0.116 -0.105 0.585 0.517
(0.148) (0.149) (0.459) (0.459)

WTI x CO2 intensity 0.00237 -0.0134
(0.00274) (0.00948)

Search Strategy Original Original Original Original Original Original
N 97863 97863 97863 440903 440903 440903
R-squared 0.689 0.689 0.689 0.786 0.786 0.787
Number of firms 3374 3374 3374 11033 11033 11033
Firm effects Yes Yes Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Quarter Quarter Quarter
First Year 1996 1996 1996 1990 1990 1990
Last Year 2018 2018 2018 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 4.5: Effects of climate policy uncertainty on R&D expenses and employment
in the US. 1990 - 2018 (quarterly series).

R&D Employment

(1) (2) (3) (1) (2) (3)

CPU x CO2 intensity -0.0296** -0.0295** -0.0312*** -0.0627*** -0.0630*** -0.0364***
(0.0128) (0.0128) (0.0109) (0.00809) (0.00810) (0.00560)

VIX x Contract Intensity -0.416 -0.382
(0.457) (0.244)

EPU x Contract Intensity 0.0430 0.0596 -0.330 -0.482* 0.585 0.517
(0.831) (0.828) (0.288) (0.288)

WTI x CO2 intensity 0.00577 -0.0384***
(0.0147) (0.00624)

Search Strategy Original Original Original Original Original Original
N 94915 94915 94915 79465 79465 79465
R-squared 0.889 0.889 0.889 0.943 0.943 0.943
Number of firms 3038 3038 3038 8273 8273 8273
Firm effects Yes Yes Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Year Year Year
First Year 1990 1990 1990 1990 1990 1990
Last Year 2018 2018 2018 2018 2018 2018

Notes: Variables are averaged across quarters or years and expressed as natural logs. Standard errors in parentheses
are based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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One of the main challenges to achieving a successful transition towards a low-

carbon economy is to create incentives to trigger firms’ investment in low-carbon

technologies. As anticipated, policy uncertainty introduces an element of risk for

private companies which may affect their investment behavior. Sustained additional

risk due to uncertainty about climate policy developments may therefore constitute

a potential barrier to delivering the necessary low-carbon investments. At the same

time, the direction of uncertainty is especially important in this context, as analyzed

in Section 4.4.4. In Table 4.5, we focus on the aggregate effect of a change in the

CPU index.

First, we consider the impact of CPU on research and development. As with share

prices, we find a moderately large and statistically significant negative coefficient on

climate policy uncertainty changes for R&D expenses, particularly for firms with high

exposure to climate policy changes. These results are in line with predictions from the

real options theory. High levels of uncertainty may depress firm-level investment by

prompting preventive delays due to investment irreversibility (Dixit, 1989; Pindyck,

1988; Bloom et al., 2007), which is an especially important source of concern in the

case of R&D investments (Dixit et al., 1994). Consider again the climate policy

uncertainty changes from 2000 to 2018. Assuming a median exposure, the implied

quarterly decreases in R&D expenses amount to almost 12%. In other words, in

the absence of climate policy uncertainty, our estimates predict that research and

development efforts since 2000 may have been greater by as much as one-tenth.

Even in this case, the implied changes in R&D investments vary substantially across

industries, ranging from an estimated modest decrease of around 2% for firms in

Life Insurance (SIC 6311) to reductions of more than 16% for those operating in

Fabricated Metal Products (SIC 3490).

Finally, we explore the relationship between climate policy uncertainty and employ-

ment. These analyses rely on yearly data, as company-level employment data are

available only at the annual level on Compustat. Our coefficients in Table 4.5 suggest

that uncertainty about climate policy is associated with negative effects on annual
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employment levels, particularly for firms in high-emitting sectors. Working again

with the changes in climate policy uncertainty from 2000 to 2018, we estimate that

for a firm with median exposure, the implied changes in annual employment is around

13%. The implied effects at the firm level are relatively moderate if we consider

that more than 80% of the companies in our estimation sample employ less than

10 workers (see Figure 4.A5 in the Appendix). Hence, the estimated relationship

between CPU and aggregate employment levels is expected to be modest. Tables

4.A3 and 4.A4 in the Appendix further investigate the relationship of climate policy

uncertainty changes to the cross-sectional structure of R&D investment rates and

employment levels across different industries.

4.4.2 Robustness tests

This section presents a number of additional results for robustness purposes. Our

main robustness tests, as presented in what follows, include (1) the use of an

alternative version of our index (N-CPU) introduced in Section 4.2.3; (2) a different

estimation window that ensures comparability across all our outcome variables; (3)

a number of other industry-level policy exposure measures. Table 4.7 assesses the

sensitivity of our results to an alternative version of our CPU index computed with a

search strategy restricted to climate policy keywords (see Appendix 4.A). By doing

so, we investigate whether the differences in topical scope between the original and

the restricted version of the index alter our estimations to a considerable degree.

The key rationale is to verify whether our estimated relationships might be driven

by uncertainty about policy developments targeting other environmental concerns,

such as local air pollution, rather than climate regulation. Results in Table 4.6 are

all comparable in terms of size and significance to those presented in Tables 4.4 -

4.5, suggesting that our estimations are fundamentally driven by uncertainty related

to policies addressing climate change.

Next, Table 4.7 explores whether our results change when running our estimations
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Table 4.6: Effects of N-CPU on volatility, share prices, RD expenses and employ-
ment in the US. 1990 - 2018 (quarterly series).

(3) (3) (3) (3)

Volatility (30) Share Price R&D Employment

CPU x Industry CO2 intensity 0.00860*** -0.0352*** -0.0312*** -0.0367***
(0.00237) (0.00654) (0.0112) (0.00548)

EPU x Contract Intensity -0.104 0.517 0.0613 -0.482*
(0.149) (0.459) (0.828) (0.288)

WTI x Industry CO2 intensity 0.00218 -0.0123 0.00645 -0.0374***
(0.00273) (0.00940) (0.0146) (0.00620)

Search Strategy Restricted Restricted Restricted Restricted
N 97863 441044 94915 79512
R-squared 0.689 0.786 0.889 0.943
Number of firms 3374 11033 3038 8276
Firm effects Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Year
First Year 1996 1990 1990 1990
Last Year 2018 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 4.7: Effects of climate policy uncertainty on volatility, share prices, RD
expenses and employment in the US. 1996-2018.

(3) (3) (3) (3)

Volatility (30) Share Price R&D Employment

CPU x Industry CO2 intensity 0.00816*** -0.0354*** -0.0346*** -0.0371***
(0.00233) (0.00667) (0.0113) (0.00574)

EPU x Contract Intensity -0.105 0.652 -0.407 -0.443
(0.149) (0.504) (0.917) (0.278)

WTI x Industry CO2 intensity 0.00237 -0.0125 0.00509 -0.0329***
(0.00274) (0.00918) (0.0134) (0.00596)

Search Strategy Original Original Original Original
N 97863 384403 82217 66711
R-squared 0.689 0.796 0.894 0.951
Number of firms 3374 10442 2865 7646
Firm effects Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Year
First Year 1996 1996 1996 1996
Last Year 2018 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4.8: Effects of climate policy uncertainty on volatility, share prices, RD
expenses and employment in the US. Alternative exposure measure (1).

(2) (2) (2) (2)

Volatility (30) Share Price R&D Employment

CPU x Industry CO2 intensity 0.00671*** -0.0318*** -0.0323*** -0.0590***
(0.00180) (0.00694) (0.0105) (0.00720)

EPU x Industry CO2 intensity -0.00494** -0.0139 0.0111 0.0242***
(0.00214) (0.00992) (0.0123) (0.00724)

Search Strategy Original Original Original Original
N 123871 520061 95708 87534
R-squared 0.711 0.794 0.889 0.941
Number of firms 4366 13341 3079 9155
Firm effects Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Year
First Year 1996 1990 1990 1990
Last Year 2018 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

starting from 1996. Our volatility measure retrieved from Options Metrics is only

available from 1996. Therefore, in order to test to what extent differences in terms of

significance and magnitude between our estimates could be potentially explained by

distinct estimation windows, we additionally estimate our main specifications using

a common time frame, i.e. 1996 to 2018. Even in this case, we yield comparable

results to Tables 4.4 - 4.5. Finally, we consider additional industry-level economic

policy exposure measures that we interact with the EPU index to investigate whether

different approaches to measuring exposure to government policy risks affect our

results.

First, we interact the EPU index with the measure of exposure to climate policy

risk described in Section 4.3.1. Results are presented in Table 4.8. The aim is to

provide a direct comparison between our CPU and the EPU index. Overall, the

estimated relationships between climate policy uncertainty and economic outcomes

are still comparable to our main specifications. The coefficient on EPU, however,

bears limited direct economic interpretation. Nevertheless, we see these results
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as additional supporting evidence that our index can be a significant predictor of

firm-level economic outcomes even after controlling for the impacts of economic

policy uncertainty.

Second, we compute Herfindahl-Hirschman (HHI) concentration indices using Com-

pustat information on sales and industry definitions. Within every SIC 4-digit

industry, we sum up the squared ratios of firm sales to the total industry sales in

the year prior to our estimation period. Then, we assign the estimated pre-sample

industry-level HHI to each firm and interact it with the EPU index. Companies may

exhibit different responses to changes in economic policy uncertainty depending on

the amount of competition among them. On the one hand, firms in sectors where

market power is more concentrated may be less sensitive to changes in EPU because

they have more monopolistic positions. On the other hand, companies operating in

more concentrated industries tend to be larger and more actively traded in the stock

market, making them more exposed to regulatory risk changes. Results are presented

in Table 4.9. Overall, both alternative measures and specifications yield significant

results similar to the results displayed in Tables 4.4 - 4.5 under specification (2).

4.4.3 Historical analysis

As discussed in Section 4.2.3, a pivotal aspect to investigate in the context of climate

policy developments is the direction of the uncertainty. Throughout the years, climate

action has experienced many instances of acceleration and deceleration. Greater

uncertainty may arise either from expectations of additional delays in climate action

or anticipated greater stringency in future climate regulation. In the following

section, we provide historical breakdowns for our main specifications to investigate

whether the direction of our estimated relationships changes in accordance with the

underlying drivers of climate policy uncertainty.

Table 4.10 reports our estimated coefficients when running specification (2) from

Tables 4.4 - 4.5 across consecutive shorter time frames in our sample. In line with
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Table 4.9: Effects of climate policy uncertainty on volatility, share prices, RD
expenses and employment in the US. Alternative exposure measure (2).

(2) (2) (2) (2)

Volatility (30) Share Price R&D Employment

CPU x Industry CO2 intensity 0.00595** -0.0373*** -0.0331*** -0.0571***
(0.00248) (0.00787) (0.0128) (0.00768)

EPU x HHI 0.0173 -0.196*** 0.0144 0.000169
(0.0108) (0.0305) (0.0390) (0.0192)

Search Strategy Original Original Original Original
N 108472 518800 95586 87434
R-squared 0.689 0.794 0.889 0.941
Number of firms 3706 13258 3074 9149
Firm effects Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Year
First Year 1996 1990 1990 1990
Last Year 2018 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

our expectations, the direction of the estimated effects seems to change depending

on the estimation window. For instance, although we primarily observe a significant

and negative effect on share prices throughout the entire estimation period, this

effect appears to turn positive between 2010 and 2014. This coincides with the

2010 withdrawal of the US climate change bill under the Obama administration

as well as the President’s retreat on stricter ozone standards over the following

year. Such developments may have signaled additional delays in climate action at a

national level, plausibly leading investors to revise their expectations of regulatory

risk downwards. Intuitively, we would expect stock markets to make gains when

new developments point to a setback in climate action unless investors are thinking

in terms of long-term climate goals. Similarly, the estimated effect for volatility

turns negative from 2015 onward in stark contrast to the trend that characterized

the preceding decade. This occurred in conjunction with the election of President

Trump, which represented a clear shift from the policy priorities and goals of the

preceding administration’s climate agenda. In addition, our results suggest that the

change in the direction of environmental policy in the United States under the Trump
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administration has been accompanied by significant reductions in R&D efforts.

Table 4.10: Historical Breakdowns (quarterly series).

Dependent Variable 1990 - 1994 1995 - 1999 2000 - 2004 2005 - 2009 2010 - 2014 2015 - 2018

volatility

CPU x CO2 Intensity 0.00231 -0.00458 0.0170*** 0.0132** -0.0146***
(0.00395) (0.00565) (0.00657) (0.00555) (0.00376)

Share Price

CPU x CO2 Intensity -0.00851* -0.00723** 0.000502 -0.0370** 0.0357*** -0.00457
(0.00503) (0.00332) (0.0116) (0.0159) (0.0135) (0.00674)

R&D Expenses

CPU x CO2 Intensity -0.0218 0.0103 0.0581*** -0.0271 -0.0402* -0.0462***
(0.0134) (0.00888) (0.0157) (0.0325) (0.0232) (0.0131)

Employment (Annual)

CPU x CO2 Intensity -0.0566*** 0.0146 0.0352** -0.0361** 0.00714 -0.0217***
(0.0122) (0.00964) (0.0138) (0.0166) (0.0110) (0.00581)

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

4.4.4 Belief revision

A key question that arises at this point of the analysis is how economic outcomes

respond to the different underlying drivers of uncertainty about climate policy. To

this end, we turn to the sub-indices introduced in Section 4.2.3, namely CPU+ and

CPU- (see Appendix 4.A). Making use of the sub-indices allows us to systematically

disentangle the effects of climate policy uncertainty when belief revision goes towards

more or less climate action. The estimated coefficients using both indices are

presented in Table 4.11.

Overall, these results suggest that economic outcomes are more sensitive to un-

certainty about climate policy when expectations point towards more stringent

regulation. Comparing the results for the two sub-indices, the coefficients on CPU+

consistently exhibit larger coefficients, in absolute value. This holds particularly

true in the case of share prices. Stock market reactions appear to be remarkably

more sensitive to uncertainty related to potential policy developments increasing
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climate ambition. This implies that the relationship between share prices and CPU

estimated by our main specifications is likely to be primarily driven by belief revision

towards more regulatory stringency. This also appears to be the case for the effect on

employment. In fact, when regressing annual employment levels on each sub-index

respectively, we only yield a significant coefficient for CPU+. The difference in the

estimated effects is less marked for the effects on volatility and R&D expenses.

Table 4.11: Effects of climate policy uncertainty on volatility, share price, RD
expenses and employment in the US. 1990 - 2018 (quarterly series).
Comparing CPU- and CPU+.

CPU- CPU+

Volatility (30) Share Price R&D Employment Volatility (30) Share Price R&D Employment

CPU x Industry CO2 intensity 0.00631*** -0.0174*** -0.00730* -0.00554 0.00850*** -0.0439*** -0.0174* -0.0422***
(0.00137) (0.00267) (0.00424) (0.00338) (0.00216) (0.00636) (0.0104) (0.00552)

EPU x Contract Intensity -0.124 0.548 0.0950 -0.394 -0.108 0.550 0.121 -0.426
(0.146) (0.459) (0.836) (0.291) (0.149) (0.457) (0.827) (0.289)

WTI x Industry CO2 intensity 0.00244 -0.0161* 0.00243 -0.0441*** 0.00214 -0.00979 0.00423 -0.0353***
(0.00275) (0.00972) (0.0150) (0.00650) (0.00271) (0.00934) (0.0144) (0.00612)

Search Strategy Negative Negative Negative Negative Positive Positive Positive Positive
N 97196 437888 94104 79509 97863 441044 94915 79512
R-squared 0.689 0.787 0.889 0.943 0.689 0.787 0.889 0.943
Clustered S.E. Yes Yes Yes Yes Yes Yes Yes Yes
Number of firms 3372 11032 3038 8276 3374 11033 3038 8276
Firm effects Yes Yes Yes Yes Yes Yes Yes Yes
Time effects Quarter Quarter Quarter Year Quarter Quarter Quarter Year
First Year 1996 1990 1990 1990 1996 1990 1990 1990
Last Year 2018 2018 2018 2018 2018 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01

4.5 Conclusion

Since private sector investments in low-carbon technologies are fundamentally depen-

dent upon expectations over future climate policy stringency, an important barrier to

private sector investment in such technologies may be policy uncertainty. Analyzing

firms’ and investors’ responses to climate policy shocks is also crucial to devising the

best possible approach to transition to a low-carbon economy, which may include a

wide array of environmental, fiscal, innovation, and macroprudential policies. How-

ever, firms and investors may not only react to realized climate policy shocks, but

also to changes in the probability of these shocks happening, which is what we define
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as climate policy uncertainty. Since climate change became a policy issue in the early

1980s, domestic and international climate policy has attempted, through periods of

progress and others of setbacks, to move the economy from a carbon-intensive to a

low-carbon equilibrium.

To capture firms’ and investors’ responses to climate policy uncertainty, we develop

a novel newspaper-based index capturing climate policy uncertainty in several major

economies and then study its relationship with a set of key firm-level outcomes for

the United States, covering publicly-listed firms from 1990 onward. We analyze

outcomes such as share price volatility and share price, employment decisions, and

investments in research and development. Our approach also accounts for the fact

that uncertainty may sometimes reflect a slowdown in the transition to a cleaner

economy, and sometimes to a breakthrough or acceleration. As a result, we developed

two sub-indices, capturing either source of uncertainty.

Overall, we find that an increase in climate policy uncertainty is linked with larger

historical stock price volatility as well as lower share prices. Similarly, climate policy

uncertainty is negatively associated with R&D investments and annual employment.

Our calculations indicate that climate policy uncertainty in the past two decades has

led to an average increase in volatility of approximately 3%, a decrease of around

13% in share prices, and a reduction of about 12% in R&D investments. We also find

some negative, albeit modest, impacts on employment. Notably, these effects vary

significantly across industries, with more substantial repercussions observed in carbon-

intensive sectors. The variation in R&D confirms previous research considering actual

policy changes as a source of variation, suggesting that firms base their decisions on

whether to innovate not only based on regulatory changes, but also on expectations

thereof. The negative, but rather small changes in employment are also consistent

with the existing literature, which points to relatively small changes in employment

following climate policy tightening. In all our results, the source of the uncertainty

matters, though. In periods in which climate policy was stalling, several outcomes

reacted positively to higher uncertainty, as it might have pointed to further divisions
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among legislators. Consistently, our sub-indices indicate stronger reactions to climate

policy uncertainty when the latter is driven more by policy tightening than inaction.

Our results suggest that the recent increase in climate policy uncertainty has sig-

nificantly slowed down investments in R&D in the most carbon-intensive sectors,

which are major contributors to greenhouse gas emissions and local air pollutants.

These findings offer micro-level evidence supporting the notion that stability in

climate policies is crucial for facilitating the transition towards a low-carbon economy.

Notably, deferred investments in low-carbon technologies will consequently result

in higher carbon concentrations, further exacerbating climate change, and might

significantly increase the cost of transitioning to a low-carbon economy irreversibly

(Dorsey, 2019). Incorporating mechanisms within the initial policy design to restrict

arbitrary adjustments may help mitigate uncertainty and minimize its adverse effects

and reduce the overall transition costs (Annicchiarico et al., 2022).

193



4.A Keyword selection

The following subsections report the keyword selection for our free-text search

strategies in Factiva in all languages.

4.A.1 English

Original Search Strategy: (energy or ”the environment” or environmental* or

”climate change” or ”global warming” or climate not (”business climate” or ”political

climate” or ”economic climate” or ”regulatory climate” or ”legal climate”) or carbon

or emission* or ”greenhouse gas” or GHG or ”carbon dioxide” or CO2 or methane or

CH4 or pollut* or ”sulphur oxide” or ”sulfur oxide” or SOx or ”sulphur dioxide” or

”sulfur dioxide” or SO2 or ”nitrogen oxide” or NOx or ”nitrogen dioxide” or NO2 or

”particulate matter” or ”fine particulates” or ”fine particle” or ”PM2.5” or ”PM10”

or ozone or renewable or hydro or ”wind power” or ”wind energy” or ”wind farm” or

”wind farms” or ”wind turbine” or ”wind turbines” or photovoltaic or PV or solar

or biomass or ”electric vehicle” or ”electric vehicles” or ”electric car” or ”electric

cars” or ”hybrid vehicle” or ”hybrid vehicles” or EV) same ((policy not “monetary

policy”) or policies or regulation* or legislation* or law or laws or fee or fees or tax

or taxes or standard or standards or certificate* or subsidy or subsidies or pricing or

ETS or feed-in-tariff* or ”trading scheme” or ”trading system” or ”cap and trade”

or ”emissions trading” or label or ”eco-label”) and (unclear or vague or uncertain or

uncertainty)

Restricted Search Strategy (N-CPU): (energy or “the environment” or envi-

ronmental* or ”climate change” or ”global warming” or (climate not (”business

climate” or ”political climate” or ”economic climate” or ”regulatory climate” or

”legal climate”)) or carbon or emission* or ”greenhouse gas” or GHG or ”carbon

dioxide” or CO2 or methane or CH4 or renewable or hydro or ”wind power” or
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”wind energy” or ”wind farm” or ”wind farms” or ”wind turbine” or ”wind turbines”

or photovoltaic or PV or solar or biomass or ”electric vehicle” or ”electric vehicles”

or ”electric car” or ”electric cars” or ”hybrid vehicle” or ”hybrid vehicles” or EV

) same ((policy not “monetary policy”) or policies or regulation* or legislation* or

law or laws or fee or fees or tax or taxes or standard or standards or certificate*

or subsidy or subsidies or pricing or ETS or feed-in-tariff* or ”trading scheme” or

”trading system” or ”cap and trade” or ”emissions trading” or label or ”eco-label”)

and (unclear or vague or uncertain or uncertainty)

Search Strategy with additional keywords related to progress (CPU+): (energy

or ”the environment” or environmental* or ”climate change” or ”global warming”

or climate not (”business climate” or ”political climate” or ”economic climate” or

”regulatory climate” or ”legal climate”) or carbon or emission* or ”greenhouse gas”

or GHG or ”carbon dioxide” or CO2 or methane or CH4 or pollut* or ”sulphur

oxide” or ”sulfur oxide” or SOx or ”sulphur dioxide” or ”sulfur dioxide” or SO2 or

”nitrogen oxide” or NOx or ”nitrogen dioxide” or NO2 or ”particulate matter” or

”fine particulates” or ”fine particle” or ”PM2.5” or ”PM10” or ozone or renewable or

hydro or ”wind power” or ”wind energy” or ”wind farm” or ”wind farms” or ”wind

turbine” or ”wind turbines” or photovoltaic or PV or solar or biomass or ”electric

vehicle” or ”electric vehicles” or ”electric car” or ”electric cars” or ”hybrid vehicle”

or ”hybrid vehicles” or EV) same ((policy not “monetary policy”) or policies or

regulation* or legislation* or law or laws or fee or fees or tax or taxes or standard or

standards or certificate* or subsidy or subsidies or pricing or ETS or feed-in-tariff*

or ”trading scheme” or ”trading system” or ”cap and trade” or ”emissions trading”

or label or ”eco-label”) and (unclear or vague or uncertain or uncertainty) and

(progress or implementation or adoption or consensus or action or success

or achievement)

Search Strategy with additional keywords related to failure (CPU-): (energy or ”the

environment” or environmental* or ”climate change” or ”global warming” or climate

not (”business climate” or ”political climate” or ”economic climate” or ”regulatory

195



climate” or ”legal climate”) or carbon or emission* or ”greenhouse gas” or GHG or

”carbon dioxide” or CO2 or methane or CH4 or pollut* or ”sulphur oxide” or ”sulfur

oxide” or SOx or ”sulphur dioxide” or ”sulfur dioxide” or SO2 or ”nitrogen oxide”

or NOx or ”nitrogen dioxide” or NO2 or ”particulate matter” or ”fine particulates”

or ”fine particle” or ”PM2.5” or ”PM10” or ozone or renewable or hydro or ”wind

power” or ”wind energy” or ”wind farm” or ”wind farms” or ”wind turbine” or

”wind turbines” or photovoltaic or PV or solar or biomass or ”electric vehicle” or

”electric vehicles” or ”electric car” or ”electric cars” or ”hybrid vehicle” or ”hybrid

vehicles” or EV) same ((policy not “monetary policy”) or policies or regulation* or

legislation* or law or laws or fee or fees or tax or taxes or standard or standards or

certificate* or subsidy or subsidies or pricing or ETS or feed-in-tariff* or ”trading

scheme” or ”trading system” or ”cap and trade” or ”emissions trading” or label or

”eco-label”) and (unclear or vague or uncertain or uncertainty) and (slowdown or

delay or disagreement or failure or rejection or postponement or setback)

4.A.2 French

(”l’énergie” or énergétiqu* or environmenta* or écologique* or “changement clima-

tique” or “réchauffement climatique” or climatique* or pollution or polluant* or

carbone or ”gaz à effet de serre” or ”dioxyde de carbone” or CO2 or méthane or CH4

or ”oxyde de soufre” or SO2 or ”dioxyde de soufre” or SOx or ”oxyde d’azote” or

NOx or ”dioxyde d’azote” or ”particules fines” or PM2,5 or PM10 or ozone or éolien*

or (solaire* not ”système solaire”) or photovoltäıque* or hydraulique* or biomasse

or ”énergies renouvelables” or ”énergie renouvelable” or ”voitures électriques” or

”voiture électrique” or ”voiture hybride” or ”voitures hybrides”) same ((politiqu*

not ”politique monétaire”) or réglementation* or lois or loi or redevance* or tax* or

impôt* or norme* or tarification* or ”tarif de rachat” or certificat* or subvention*

or ETS or ”marché d’émissions” or ”droits à polluer” or ”système d’échanges” or

”SEQE”) and (incertitude* or incertain or incertaine or incertains or incertaines or
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”peu clair” or ”pas clair”)

4.A.3 German

(Energiewende or ”Erneuerbare*Energien*Gesetz” or ”EEG-Einspeisevergütung” or

”EEG-Umlage” or Klimapolitik or Energiepolitik or Umweltpolitik or Lufreinhal-

tepolitik or Luftreinhalteplan or (”die Umwelt” or ökologisch or Klimawandel or

Erderwärmung or ”globale Erwärmung” or ”Klimaerwärmung” or ”das Klima” or

”dem Klima” or ”des Klimas” or Klima* or ”die Umwelt” or ”der Umwelt” or

Umwelt* or ”die Energie” or ”der Energie” or Energie* not (Geschäftsklima or

”politisches Klima” or ”wirtschaftliches Klima” or ”Wirtschaftsklima” or ”Reg-

ulierungsklima” or ”regulatorisches Klima” or ”Rechtsklima” or ”rechtliches Klima”

or ”gesellschaftliches Klima” or ”Gesellschaftsklima”) or Kohlenstoff* or Treibhaus-

gas* or THG* or Kohlendioxid* or Kohlenstoffdioxid* or CO2* or Methan* or

CH4* or Schadstoff* or Umweltverschmutzung* or Luftverschmutzung* verschmutz*

or Schwefeloxid* or SOx* or Schwefeldioxid* or SO2* or Stickoxid* or NOx* or

Stickstoffdioxid* or NO2* or Partikel* or Feinpartikel* or Feinstaub* or PM2,5

or PM10* or Ozon* or erneuerbar* or Hydro* or Windenergie* or Windpark* or

Windkraftanlage* or Photovoltaik* or PV or Solar* or Biomasse* or Elektrofahrzeug*

or Elektroauto* or ”E-Auto*” or Hybridfahrzeug* or Hybridauto*) same ((Politik

nicht Geldpolitik) or Richtlinie or Richtlinien or Reform or Reformen or Regulierung

or Regulierungen or Vorschrift or Vorschriften or Gesetz or Gesetze or Gebühr or

Gebühren or Abgabe or Abgaben or Maßnahme or Maßnahmen or Steuer or Steuern

or Standard or Standards or Zertifikat or Zertifikate or Subvention or Subventionen

or Preisgestaltung or Emissionshandel or ETS or Einspeisetarif or Einspeisetarife or

Einspeisevergütung or Einspeisevergütungen or Handelssystem or Handelssysteme or

”Cap and Trade” or Emissionshandel or Label or Kennzeichen or ”Umweltzeichen”

or ”Umweltabzeichen” or Umlage)) and (unklar or vage or unsicher or Unsicherheit)
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4.A.4 Spanish

(”la enerǵıa” or energétic* or ”medio ambient*” or ecológic* or ”cambio climático” or

”calentamiento global” or climatico or contaminación or contaminante* or polución

or carbono or ”gases de efecto invernadero” or ”dióxido de carbono” or CO2 or

metano or CH4 or ”óxido de azufre” or SO2 or ”dióxido de azufre” or SOx or ”óxido

de nitrógeno” or NOx or ”dióxido de nitrógeno” or ”part́ıculas finas” or ”part́ıculas

en suspensión” or PM2.5 or PM10 or ozono or eólic* or ”tecnoloǵıa* solar*” or

”panel* solar*” or ”placa* solar*” or ”central* solar*” or fotovoltaic* or ”enerǵıa

hidráulica” or hidroeléctric* or biomasa or ”enerǵıas renovables” or ”enerǵıas verdes”

or ”enerǵıas alternativas” or ”enerǵıas limpias” or ”renovables” or ”auto* eléctrico*”

or ”coche* eléctrico*” or ”auto* h́ıbrido*” or ”coche* h́ıbrido*”) same ((poĺıtica*

not ”poĺıtica monetaria”) or regulación* or ley or leyes or impuesto* or estándar*

or ”tarifa de alimentación” or certificado* or subsidio* or ETS or ”mercado* de

emision*” or ”derecho* a contaminar” or ”sistema de comercio” or ”ETS”) and

(incertidumbre* or inciert* or ”no es clar*” or “no está clar*” or ”no son clar*” or

”no están clar*”)

4.A.5 Italian

(energia or energetic* or ”l’ambiente” or ambiental* or ecologic* or “riscaldamento

globale” or climatic* or carbonio or (emissioni not(”emissioni obbligazionarie” or

”emissioni del Tesoro”)) or “gas a effetto serra” or “gas ad effetto serra” or “gas

serra” or “anidride carbonica” or CO2 or metano or CH4 or inquinament* or

inquinante or “ossid* di zolfo” or SOx or “diossido di zolfo” or “biossido di zolfo”

or “anidride solforosa” or “SO2” or “ossido di azoto” or “monossido di azoto” or

NOx or “diossido di azoto” or “biossido di azoto” or NO2 or “particelle fini” or

“particolato atmosferico” or “particelle solide” or “particelle piccole” or “polveri

sottili” or “particolato grossolano” or “particolato” or “materiale particolato” or
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“PM10” or “PM2,5” or ozono or rinnovabil* or idroelettric* or idraulic* or eolic*

or (solare not(“sistema solare” or “anno solare” or “eritema solare” or “ustione

solare” or “trattamento solare”)) or fotovoltaic* or biomass* or “auto elettric*”

or “vehicol* elettric*” or “auto ibrid*”) same ((politica not(“politica monetaria”))

or regolament* or regolamentazione or legislazione or legge or tasse or canone or

standard not(“Standard Poor’s”) or certificat* or * certificazion* or sussidi or

sussidio or sovvenzion* or ETS or “Sistema ES” or “feed in tariff*” or “conto

energia” or “scambio di quote” or ”regime di scambio” or ”sistema di scambio ” or

”decarbonizzazione” or “effetto serra” or ”cap and trade” or “mercato dei diritti per

l’emissione” or “etichett* ambiental*” or norma or norme or “marchio ambientale”

or eco-etichett* or “etichett* ecologic*” or “eco-label” or normative or normativa)

and (incerto or incerti or incertezza or incertezze) not (spread or bond)
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4.B Short history of climate policy in the United

States

1970. National Environmental Policy Act (NEPA) signed by President Nixon - ”The

Environmental Decade”.

1980. Carter signed into law a bill that established Superfund.

1980. Congress appointed the National Academy of Sciences to carry out a compre-

hensive study on the impacts of rising CO2 emissions.

1981. For the first time, a federal agency (EPA) declared that global warming was

”not a theoretical problem but a threat whose effects will be felt within a few years”,

with potentially ”catastrophic” consequences.

1988. The IPCC was established by the World Meteorological Organization (WMO)

and the United Nations Environment Programme (UNEP).

1990. Finland is the first country in the world to introduce a carbon tax (followed

the year after by Sweden and Norway).

1990. Amendments to the Clean Air Act of 1970: substantially increased the

authority and responsibility of the federal government (i.e. introduction of an SO2

cap-and-trade program).

1992. Bush opposed international efforts at the Earth Summit in Rio de Janeiro,

Brazil - ”new rules to limit carbon dioxide emissions would hurt economic growth”.

1997. The US Senate voted unanimously under the Byrd-Hagel Resolution that the

United States would not be ratifying the Kyoto Protocol.

2001. President Bush released his National Energy Policy (”NEP”).

2003. The Clear Skies Act fails to become federal law of the United States.

2005. The European Union Emissions Trading System (EU ETS) was launched.

2009. President Barack Obama in his inaugural address called for the expanded use

of renewable energy to meet the challenges of energy security and climate change.

2011. Obama Administration abandons plans for stricter ozone standards proposed
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by the Environmental Protection Agency that would have significantly reduced

emissions of smog-causing chemicals.

2015-2016. The United States became a signatory to the Paris Agreement.

2017. President-elected Donald Trump announced that the U.S. would cease all

participation in the 2015 Paris Agreement.
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4.C Estimated Outcome Changes

In order to investigate the relationship between climate policy uncertainty changes

to the cross-sectional structure of stock market variables, R&D investment rates,

and employment levels we compute the implied changes in our outcome variables

from 2000 to 2018, relying on the estimation presented in Section 4.4.

Table 4.A1: Estimated changes in volatility associated with CPU changes from
2000 to 2018 for firms in selected industries.

(1) (2) (3)

Outcome Measure And Industry Carbon �CPU Coeff. on ln(CPU) Estimated Change

Intensity (log) (log points) *Intensity (1x2x3) in %

volatility

Mining

Mining And Quarrying Of Nonmetallic Minerals 11.97 40.5 0.00816 4.0
Crude Petroleum Natural Gas 11.24 40.5 0.00816 3.7
Metal Mining 10.53 40.5 0.00816 3.5
Bituminous Coal Lignite Mining 10.07 40.5 0.00816 3.3

Manufacturing

Miscellaneous Fabricated Metal Products 12.97 40.5 0.00816 4.3
Cement, Hydraulic 12.71 40.5 0.00816 4.2
Miscellaneous Products of Petroleum Coal 11.97 40.5 0.00816 4.0
Agricultural Chemicals 11.91 40.5 0.00816 3.9
Pulp Mills 10.1 40.5 0.00816 3.3
Broadwoven Fabric Mills, Cotton 8.54 40.5 0.00816 2.8
Beverages 6.42 40.5 0.00816 2.1
Canned, Fruits, Veg, Preserves, Jams Jellies 5.93 40.5 0.00816 2.0
Cookies Crackers 4.12 40.5 0.00816 1.4

Transport, Communications, Electric, Gas and Sanitary Service

Electric Services 12.69 40.5 0.00816 4.2
Deep Sea Foreign Transportation of Freight 9.21 40.5 0.00816 3.0
Natural Gas Distribution 8.45 40.5 0.00816 2.8
Refuse Systems 8.4 40.5 0.00816 2.8

Finance, Insurance and Real Estate

Oil Royalty Traders 12.92 40.5 0.00816 4.3
Real Estate Investment Trusts 9.07 40.5 0.00816 3.0
Miscellaneous Business Credit Institution 3.31 40.5 0.00816 1.1
Life Insurance 2.22 40.5 0.00816 0.7

Services

Engineering Services 7.46 40.5 0.00816 2.5
Personal Services 4.31 40.5 0.00816 1.4

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4.A2: Estimated changes in share prices associated with CPU changes from
2000 to 2018 for firms in selected industries.

(1) (2) (3)

Outcome Measure And Industry Carbon �CPU Coeff. on ln(CPU) Estimated Change

Intensity (log) (log points) *Intensity (1x2x3) in %

Share Prices

Mining

Mining And Quarrying Of Nonmetallic Minerals 11.97 40.5 0.0334 16.2
Crude Petroleum Natural Gas 11.24 40.5 0.0334 15.2
Metal Mining 10.53 40.5 0.0334 14.2
Bituminous Coal Lignite Mining 10.07 40.5 0.0334 13.6

Manufacturing

Miscellaneous Fabricated Metal Products 12.97 40.5 0.0334 17.5
Cement, Hydraulic 12.71 40.5 0.0334 17.2
Miscellaneous Products of Petroleum Coal 11.97 40.5 0.0334 16.2
Agricultural Chemicals 11.91 40.5 0.0334 16.1
Pulp Mills 10.1 40.5 0.0334 13.7
Broadwoven Fabric Mills, Cotton 8.54 40.5 0.0334 11.6
Beverages 6.42 40.5 0.0334 8.7
Canned, Fruits, Veg, Preserves, Jams Jellies 5.93 40.5 0.0334 8.0
Cookies Crackers 4.12 40.5 0.0334 5.6

Transport, Communications, Electric, Gas and Sanitary Service

Electric Services 12.69 40.5 0.0334 17.2
Deep Sea Foreign Transportation of Freight 9.21 40.5 0.0334 12.5
Natural Gas Distribution 8.45 40.5 0.0334 11.4
Refuse Systems 8.4 40.5 0.0334 11.4

Finance, Insurance and Real Estate

Oil Royalty Traders 12.92 40.5 0.0334 17.5
Real Estate Investment Trusts 9.07 40.5 0.0334 12.3
Miscellaneous Business Credit Institution 3.31 40.5 0.0334 4.5
Life Insurance 2.22 40.5 0.0334 3.0

Services

Engineering Services 7.46 40.5 0.0334 10.1
Personal Services 4.31 40.5 0.0334 5.8

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4.A3: Estimated changes in RD expenses associated with CPU changes from
2000 to 2018 for firms in selected industries.

(1) (2) (3)

Outcome Measure And Industry Carbon �CPU Coeff. on ln(CPU) Estimated Change

Intensity (log) (log points) *Intensity (1x2x3) in %

R&D expenses

Mining

Mining And Quarrying Of Nonmetallic Minerals 11.97 40.5 0.0312 15.1
Crude Petroleum Natural Gas 11.24 40.5 0.0312 14.2
Metal Mining 10.53 40.5 0.0312 13.3
Bituminous Coal Lignite Mining 10.07 40.5 0.0312 12.7

Manufacturing

Miscellaneous Fabricated Metal Products 12.97 40.5 0.0312 16.4
Cement, Hydraulic 12.71 40.5 0.0312 16.1
Miscellaneous Products of Petroleum Coal 11.97 40.5 0.0312 15.1
Agricultural Chemicals 11.91 40.5 0.0312 15.0
Pulp Mills 10.1 40.5 0.0312 12.8
Broadwoven Fabric Mills, Cotton 8.54 40.5 0.0312 10.8
Beverages 6.42 40.5 0.0312 8.1
Canned, Fruits, Veg, Preserves, Jams Jellies 5.93 40.5 0.0312 7.5
Cookies Crackers 4.12 40.5 0.0312 5.2

Transport, Communications, Electric, Gas and Sanitary Service

Electric Services 12.69 40.5 0.0312 16.0
Deep Sea Foreign Transportation of Freight 9.21 40.5 0.0312 11.6
Natural Gas Distribution 8.45 40.5 0.0312 10.7
Refuse Systems 8.4 40.5 0.0312 10.6

Finance, Insurance and Real Estate

Oil Royalty Traders 12.92 40.5 0.0312 16.3
Real Estate Investment Trusts 9.07 40.5 0.0312 11.5
Miscellaneous Business Credit Institution 3.31 40.5 0.0312 4.2
Life Insurance 2.22 40.5 0.0312 2.8

Services

Engineering Services 7.46 40.5 0.0312 9.4
Personal Services 4.31 40.5 0.0312 5.4

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 4.A4: Estimated changes in employment associated with CPU changes from
2000 to 2018 for firms in selected industries.

(1) (2) (3)

Outcome Measure And Industry Carbon �CPU Coeff. on Log(CPU) Estimated Change

Intensity (log) (log points) *Intensity (1x2x3) in %

Employment

Mining

Mining And Quarrying Of Nonmetallic Minerals 11.97 40.5 0.0364 17.6
Crude Petroleum Natural Gas 11.24 40.5 0.0364 16.6
Metal Mining 10.53 40.5 0.0364 15.5
Bituminous Coal Lignite Mining 10.07 40.5 0.0364 14.8

Manufacturing

Miscellaneous Fabricated Metal Products 12.97 40.5 0.0364 19.1
Cement, Hydraulic 12.71 40.5 0.0364 18.7
Miscellaneous Products of Petroleum Coal 11.97 40.5 0.0364 17.6
Agricultural Chemicals 11.91 40.5 0.0364 17.6
Pulp Mills 10.1 40.5 0.0364 14.9
Broadwoven Fabric Mills, Cotton 8.54 40.5 0.0364 12.6
Beverages 6.42 40.5 0.0364 9.5
Canned, Fruits, Veg, Preserves, Jams Jellies 5.93 40.5 0.0364 8.7
Cookies Crackers 4.12 40.5 0.0364 6.1

Transport, Communications, Electric, Gas and Sanitary Service

Electric Services 12.69 40.5 0.0364 18.7
Deep Sea Foreign Transportation of Freight 9.21 40.5 0.0364 13.6
Natural Gas Distribution 8.45 40.5 0.0364 12.5
Refuse Systems 8.4 40.5 0.0364 12.4

Finance, Insurance and Real Estate

Oil Royalty Traders 12.92 40.5 0.0364 19.0
Real Estate Investment Trusts 9.07 40.5 0.0364 13.4
Miscellaneous Business Credit Institution 3.31 40.5 0.0364 4.9
Life Insurance 2.22 40.5 0.0364 3.3

Services

Engineering Services 7.46 40.5 0.0364 11.0
Personal Services 4.31 40.5 0.0364 6.4

Notes: Variables are averaged across quarters and expressed as natural logs. Standard errors in parentheses are
based on clustering at the firm level. Sample is restricted to companies with consecutive observations over the
whole period of time where they have been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas
Reporting Program (GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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4.D CPU index and other relevant measures

The following section compares the evolution of the CPU index to other relevant

uncertainty measures, such as the EPU from Baker et al. (2016), the Chicago Board

Options Exchange’s CBOE Volatility Index, and oil price volatility as proxied by

changes in West Texas Intermediate and Brent Crude.

Figure 4.A1: Comparing the evolution of the CPU to the EPU index developed
by Baker et al. (2016)

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.
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Figure 4.A2: Comparing the evolution of the CPU to the VIX index

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

Figure 4.A3: Comparing the evolution of the CPU to WTI Crude

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.

207



Figure 4.A4: Comparing the evolution of the CPU to Brent Crude

Note: Based on quarterly series from 1990 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.
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4.E Yearly time series

Table 4.A5: Effects of climate policy uncertainty on volatility, share prices, and
RD expenses in the US (yearly series).

(2) (2) (2)

Volatility (30) Share Price R&D

CPU x CO2 intensity 0.0128*** -0.0485*** -0.0346***
(0.00428) (0.00944) (0.0119)

Search Strategy Original Original Original
N 28367 130194 43151
R-squared 0.730 0.779 0.898
Number of firms 3358 11640 4587
Firm effects Yes Yes Yes
Time effects Year Year Year
First Year 1996 1990 1990
Last Year 2018 2018 2018

Notes: Variables are averaged across quarters and expressed as natural logs. Standard
errors in parentheses are based on clustering at the firm level. Sample is restricted to
companies with consecutive observations over the whole period of time where they have
been listed. CO2 emissions are retrieved from the EPA Greenhouse Gas Reporting Program
(GHGRP). Intensity measures are computed following the procedure described in Section
4.3.1.
* p < 0.10, ** p < 0.05, *** p < 0.01
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4.F Additional Descriptive Evidence

4.F.1 Employment levels in the estimation sample

Figure 4.A5: Frequency distribution of employment levels in the estimation sample
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Chapter 5

Pollution reduction benefits across

space: Quasi-experimental

evidence from England

SUMMARY. This study provides novel quasi-experimental evidence on the effects

of air pollutants on defensive expenditures and economic productivity to retrieve

spatially resolved estimates of the willingness to pay for air quality improvements.

To address endogeneity concerns, atmospheric temperature inversions are exploited

as a source of quasi-random variation in the spatial concentration of PM2.5. Using

administrative data from England, I find that a plausibly exogenous 1 µg/m3 PM2.5

shock significantly affects pharmaceutical expenditures and GVA per capita, partly

through increased work absenteeism. Leveraging a counterfactual reduction of 1

µg/m3 of PM2.5, I show that health benefits are more pronounced among the elderly

and progressively distributed across income levels, while productivity gains are

regressive and concentrated in urban areas. These findings imply that incorporating

the spatial heterogeneity of pollution-reduction benefits into policy design could

enhance the efficiency of environmental regulations and contribute to tackling health

inequalities linked to pollution exposure.
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5.1 Introduction

There is growing evidence that shows that modest concentrations of air pollutants af-

fect various economic outcomes, including human health1 and productivity2, through

changes in respiratory, cardiovascular, and cognitive functions, raising questions

about the efficiency of current ambient pollution standards. From a social welfare

perspective, optimal air pollution regulation requires information on the extent to

which individuals value the control of air pollutants, or - in other words - their

willingness to pay (WTP) for air quality improvements (Greenstone and Jack, 2013).

Defensive behaviors offer one viable channel for estimating part of the demand for

air quality improvements, as compensatory adaptation has an opportunity cost (e.g.,

Deschenes et al., 2017; Ito and Zhang, 2020). Nevertheless, an accurate measurement

of the WTP requires estimating both opportunity and direct costs associated with

air pollution (Becker, 1965; Grossman, 1972).

Yet, empirical estimates of the WTP for clean air are still scarce, primarily due to the

paucity of exogenous shocks in air quality for empirical applications. Furthermore,

the scarcity of suitable empirical settings typically limits the scope to carry out

heterogeneity analyses to account for how the WTP varies across space as this would

ideally require exploiting extended variation in air pollution for a broad representative

sample of the population. As a result, the lack of context-specific welfare estimates

prevents opportunities to enhance public welfare through the design of more efficient

air pollution regulation and more precise benefit-cost analyses that can accurately

account for the distribution of air pollution costs across the population (Muller and

Mendelsohn, 2009).

This paper estimates the causal effects of PM2.5 concentrations on nationwide (i)

defensive expenditures, as measured by expenditures on pharmaceuticals, and (ii)

1See Pope III and Dockery, 2006; Brook et al., 2010; Deryugina et al., 2019; Wu et al., 2020.
2These include Graff Zivin and Neidell, 2012; Hanna and Oliva, 2015; Dechezleprêtre et al.,

2019; He et al., 2019; Fu et al., 2021; Sarmiento, 2022.
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economic productivity, proxied by local gross value added (GVA) per capita. To this

end, I compile a novel dataset for England that merges granular vertical temperature

profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF)

with high-resolution gridded pollution maps, public health care records, and data

on economic activities at the district level. England’s centralized, publicly-funded

National Health System (NHS) provides access to healthcare records for its 54 million

automatically registered citizens, offering an ideal setting for this analysis. I find

that a plausibly exogenous 1 µg/m3 pollution shock causes significant increases in

pharmaceutical expenditures as well as a reduction in GVA per capita over the same

year. Specifically, I estimate that a 1 microgram per cubic meter (µg/m3) increase

in the annual average concentration of PM2.5 leads to an increment in expenditures

on pharmaceuticals of 32.7% (around £1.2 billion or £22 per capita annually) and

a reduction in gross value added (GVA) per capita of 1.6% (around £13 billion or

£425 per capita annually).

To circumvent concerns of endogeneity due to residential sorting (e.g., Chay and

Greenstone, 2005; Lee and Lin, 2018; Heblich et al., 2021), atmospheric temper-

ature inversions occurring at different pressure levels are exploited as a source of

quasi-random dynamic variation in the spatial concentration of pollutants across

England.3 Specifically, my empirical results are estimated by leveraging inversions

as an instrumental variable (IV) in a two-stage least squares (2SLS) framework. In

my baseline regressions, the instrument reflects the annual frequency of thermal

inversion detected within a given grid, defined as a positive upward temperature

gradient between the two pressure levels closest to the surface (defined as 1000 hPa

and 950 hPa). The higher level of granularity of my data compared to previous

studies allows exploiting within-district variation in thermal inversion exposure and

detect inversions on a high periodicity (i.e., 6 hours) to address concerns that har-

nessing low-frequency events as instruments may lead to inflated estimates due to

3See Hicks et al. (2016); Arceo et al. (2016); Chen et al. (2017); Jans et al. (2018); Dechezleprêtre
et al. (2019); Sager (2019); Molina (2021); Cui et al. (2023) for examples of similar approaches.
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low statistical power (Bagilet and Zabrocki-Hallak, 2022).4

On aggregate, my estimates are approximately 9 times higher than the current

damage cost per change in concentration used by the Department for Environment

Food and Rural Affairs (DEFRA) to conduct cost-benefit analyses of pollution

control policies in the UK. For comparison, the assumed damage cost of a 1 µg/m3

increase in PM2.5 equal £50.12 per capita annually (UK-AIR, 2023).5 The sizable gap

relative to my quasi-experimental estimates can be primarily ascribed to two crucial

differences. First, while current nationwide official cost estimates focus exclusively on

health costs induced by cardiovascular and respiratory conditions, which have been

traditionally associated with air pollution exposure (e.g., Ward 2015; Deschenes et al.

2017; Deryugina et al. 2019), this paper advances from the existing pollution-health

literature by building on recent epidemiological evidence and additionally accounting

for the effects of pollution on the nervous system (e.g., Wang et al., 2017; Zhang

et al., 2018; Peeples, 2020; Aguilar-Gomez et al., 2022; Cook et al., 2023; Krebs

and Luechinger, 2024). Second, despite a growing body of country-level evidence

regarding the adverse economic consequences of pollution (e.g., Dechezleprêtre et al.,

2019), the current damage cost per change in concentration in the UK have not yet

integrated the direct economic costs of pollution linked to non-health impacts. This

omission could significantly underestimate the overall societal benefits of such policies

(e.g., Hunt et al. 2016; Leroutier and Ollivier 2022; Borgschulte et al. 2022). In

contrast, I further quantify productivity losses induced by air pollution concentration

to provide more comprehensive damage estimates and inform the calibration of

environmental regulations that can help optimize both public health and economic

growth.

The IV estimates are robust to several robustness checks, including a battery of

different instrument definitions based on different pressure levels and nocturnal

4In contrast to existing studies that typically rely on NASA’s MERRA-2 database, which offers
data at a coarser 60km x 60km resolution, the vertical temperature profiles used in this study are
accessible at a much finer 10km x 10km resolution which substantially reduces measurement error.

5This value refers to the Central estimate. The upper-end annual value (the High case) of
£156.52 per capita is still almost 3 times lower compared to my quasi-experimental estimations.
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inversions, alternative proxies of air pollution concentrations, the inclusion of flexible

linear and quadratic weather controls, absorbing detailed heterogeneous local trends,

controlling for other ambient pollutants, and different clustering choices to account

for spatial autocorrelation. Moreover, they are significantly larger (by approximately

fourfold) than my ordinary least squares (OLS) estimates, indicating the potential for

sizable bias in observational studies of air pollution exposure that do not account for

its endogenous nature. Finally, I estimate a reduced form (RF) placebo specification

that includes leads and lags of my instrument to rule out any anticipatory behavior.

I additionally provide complementary evidence of a causal nexus between plausible

quasi-random pollution shocks and the number of sick leave certificates issued related

to pollution-exposure conditions to shed light on the absenteeism channel that links

health effects and foregone productivity (e.g., Holub et al., 2020). This finding carries

distributional implications as a reduced capacity to work due to pollution-driven

morbidity may trap low-income individuals in an illness-poverty cycle (cf. Ketcham

et al. 2019), due to their often disproportionate exposure (e.g., Colmer et al. 2020).

Reducing air pollution may thus additionally act as a channel to alleviate income

inequalities that could persist through succeeding generations (e.g., Isen et al. 2017;

Chetty and Hendren 2018).

In the second part of the empirical analysis, I leverage my quasi-experimental

framework to simulate counterfactual reductions of 1 µg/m3 in PM2.5 and investigate

the spatial heterogeneity of health and productivity benefits across demographics and

socio-economic groups. My findings suggest that health benefits tend to be larger for

the elderly population and progressively distributed along the income distribution.

This gap is consistent with previous literature pointing to existing inequalities along

the income distribution in the adaptive capacity to environmental damages (see

Drupp et al. 2021 for a recent review). Furthermore, By contrast, productivity

gains tend to be regressive and concentrated in large urban areas, with the largest

effects found in high-GVA districts of the capital. Precisely, my spatially-resolved

estimates of the implied WTP range from around £170 to more than £1500 per

215



capita, in comparison to a mean WTP of around £445 per capita that approaches

the conservative side of the distribution of the estimates. This extensive variability

demonstrates the potential for substantial bias in cost-benefit analyses based on

WTP estimates that do not account for spatial heterogeneity.

This paper’s main contributions to the literature are twofold. First, I contribute

to the quasi-experimental literature that evaluates the costs of air pollution. The

existing literature has focused primarily on health costs to individuals (e.g., Chay

and Greenstone, 2003; Chen et al., 2013; Schlenker and Walker, 2016; Anderson,

2020; Barreca et al., 2021), but often focuses exclusively on localized effects of Low

Emission Zones (e.g., Rohlf et al. 2020; Margaryan 2021), a specific demographic

(e.g., Currie and Neidell 2005; Knittel et al. 2016; Klauber et al. 2021) or investigates

the effects of pollution on a specfic array of health conditions (e.g., Neidell 2004).

Additionally, while the existing economics literature on the health costs of pollution

primarily investigates impacts on mortality - which largely concentrate among the

elderly population (Deryugina et al., 2019) - this study focuses on morbidity costs.

This allows to provide a more representative read-out of both acute and chronic

conditions induced by air pollution exposure.6 Although potential mortality effects

call for regulatory attention, my results show that overlooking the share of economic

costs attributable to morbidity impacts would lead to a severe underestimation of

the total economic costs of pollution.

From this strand of the literature, the most closely related study to my analysis is

Pimpin et al. (2018) which estimates the morbidity costs of air pollution to the NHS

in England by relying on microsimulations from prescription data.7 Simulations,

however, are prone to endogeneity concerns, potentially impeding the accurate

6Focusing on morbidity has at least two additional key advantages: (a) morbidity tends to be
a more sensitive indicator of pollution effects due to the relative immediacy of the impact; and
(b) indicators of morbidity effects - such as foregone economic productivity per capita - allow for
direct quantification of economic benefits rather than relying on existing estimates of the value of
statistical life (VSL).

7A key difference is that Pimpin et al. (2018) focus on a limited number of health conditions,
including asthma, chronic obstructive pulmonary disease, coronary heart disease, stroke, type 2
diabetes, dementia, and lung cancer.
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identification of causal effects and leading to a downward bias in the estimation.

The authors estimate that a 1 µg/m3 reduction in population exposure to PM2.5 and

NO2 would result in savings of approximately 100 million per year in NHS and social

care costs. This is considerably lower than my quasi-experimental estimates of the

health costs of PM2.5 pollution even before accounting for productivity losses. My

results suggest that neglecting the direct economic costs of pollution leads to a large

underestimation of its total societal costs.

Within this literature, a growing number of studies has also examined how pollution

affects productivity through its impacts on workers (e.g., Graff Zivin and Neidell,

2012; Chang et al., 2016; Meyer and Pagel, 2017; He et al., 2019; Chang et al., 2019;

Sarmiento, 2022; Adhvaryu et al., 2022), labor supply (e.g., Hanna and Oliva 2015)

or firm’s productivity (Fu et al., 2021). However, most of these studies are based

on specific settings (e.g., single or selected production sites operating in a single

sector) raising questions on their external validity as empirical inputs to compute

representative economy-wide estimates and conduct cost-benefit analyses to inform

policymaking. An exception is Dechezleprêtre et al. (2019) who provides causal

estimates on the effects of air pollution on economy-wide reductions in European

economic activity. In comparison, my study quantifies productivity effects relying

on more granular novel data which allows to provide more precise estimations and

disentangle heterogeneous effects across demographics and socio-economic strata.

This paper departs from the literature by providing the first nationwide quasi-

experimental estimates of the costs of air pollution that jointly account for both

health and productivity costs as well as their spatial heterogeneity.

Second, this paper relates to the literature on private adaptations to environmental

conditions. Previous studies have shown that individuals engage in a range of options

available to them for adapting to changes in environmental conditions, such as

defensive expenditures (e.g., Deschenes et al., 2017; Sun et al., 2017; Zhang and Mu,

2018; Williams and Phaneuf, 2019; Ito and Zhang, 2020) and avoidance behaviors

(e.g., Moretti and Neidell, 2011; Zivin et al., 2011; Chen et al., 2020). Nevertheless,
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only a handful of studies attempted to account for how private adaptation and the

implied WTPs vary across different demographics, but this is generally hindered by

data coarseness (cf. Drupp et al. 2021). My empirical analysis complements the

existing literature by providing novel quasi-experimental evidence on how accounting

for demand heterogeneity along the income distribution affects the computation of

revealed preference estimates of the societal benefits of air pollution reductions.

The remainder of this paper is structured as follows. Section 5.2 introduces a

conceptual framework to elucidate the focus of the empirical investigation and

detail how the effects of pollution on (i) defensive expenditures and (ii) economic

productivity relate to the WTP for clean air. Sections 5.3 and 5.4 describe the

data and the 2SLS strategy. Section 5.5 presents the empirical results. Section 5.6

discusses policy implications. Section 5.7 concludes.

5.2 Conceptual framework

Becker-Grossman health production function. This section lays out a con-

ceptual framework drawing on the Becker-Grossman health production function to

elucidate how the effects of pollution on (i) defensive expenditures and (ii) economic

productivity relate to the WTP for clean air (Becker, 1965; Grossman, 1972). The

model shows that an accurate measurement of the WTP requires knowledge of both

(i) and (ii), as well as an understanding of how air pollution affects health outcomes

- including morbidity and mortality. In this setting, the health production function

takes the following form:

H = H(D (�), � (P )) (5.1)

As shown in Eq. 5.1, pollution-driven sickness episodes, �, depend on the concen-

tration level (µg/m3) of the ambient pollutant (P ). Defensive expenditures (D) are

in turn determined by these episodes. Similarly to Graff Zivin and Neidell (2013)

and Deschenes et al. (2017), this model assumes that defensive expenditures can be

made before or after the exposure to pollutants and refers to both avoidance and
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mitigating behavior that reduces the negative health consequences from air pollution

exposure. Individuals gain utility from the consumption of non-health-related goods

(C), leisure (L), and health and are assumed to receive nonlabor income (I) from

either capital or transfer payments and to work for a given wage rate (w). The

individual utility maximization problem is:

max
C,L,H

L = U (C, L, H) + �[I + w(H)[T � L]� pCC � pDD] (5.2)

Given that defensive expenditures and the use of health care services ultimately

depend on ambient pollution levels, the relationship between health and pollution

levels can be expressed as the following total derivative of Eq. 5.1:

dH

dP
=

⇣�H
�D

�D

��
+

�H

��

⌘

| {z }
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⇣��
�P
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In this setting, the effect of air pollution on population health therefore depends on

two distinct components: the relationship between pollution and sickness episodes

(��/�P ) and the extent to which these episodes translate into lowered health status

(�H/��), which is mitigated by individual defensive behavior. Denoting the costs of

regulation (R) as pR, the marginal WTP for air quality improvements (wR) associated

with environmental regulation can be expressed in monetary terms with the following

decomposition:

�P

�R
pR = wR =

�D

�P
pD

| {z }
(I0)

+
�w

�H

dH

dP| {z }
(II0)

+
�U

�H

dH

dP

1

�
(5.4)

Equation 5.4 shows that the marginal WTP for clean air wR is composed of three

terms. The first term (I’ ) reflects the cost of defensive expenditures, valued at their

market price, pD. The second (II’ ) captures the effect of pollution on productive

working time, valued at the wage rate. Finally, the third component represents the
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disutility of pollution-induced sickness, valued in monetary terms. Optimal regulation

is defined at the point where the marginal costs of environmental regulation are

equal to the reduced costs associated with that marginal reduction in pollution. The

primary empirical goal of this paper is to develop a measure of marginal WTP that

is based on I’ and II’ .

Divergence from the Neoclassical framework. The remainder of this section

discusses how the empirical setting of this paper deviates from this neoclassical

framework.

First, England relies on a publicly-funded health system, thus the cost burden of

increased healthcare use would generally not affect individuals directly or, at least,

to a lesser extent as opposed to health systems based on private medical insurance.

That said, rather than affecting the total economic benefits of pollution control, the

funding structure of the healthcare system is expected to alter their distribution.

How costs are ultimately split is not expected to affect the estimation of the social

WTP (Deschenes et al., 2017).

Second, in the English public NHS, the marginal cost of pharmaceuticals to the

consumer may be smaller than their market price. Prescription medications face a

fixed charge that is updated every year and functions as a copayment for pharma-

ceuticals. As the remainder of the pharmaceutical cost is covered by the NHS, the

empirical estimation of the social WTP will account for the full transacted price of

pharmaceuticals (as listed in the national Drug Tariff)8 to capture the increase in

both private and public spending linked to their consumption.

Third, British legislation mandates that every employee has a legal right to a paid

sick leave should they be too ill to work, implying that temporary pollution-driven

sickness episodes are likely not going to materialize as individual wage reductions.

Lost work time due to pollution-driven sickness will still be accounted for in the

8The NHS Prescription Services produces the Drug Tariff monthly on behalf of the Department
of Health and Social Care and can be accessed here.
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empirical investigation as a cost to the economy, but one borne by employers in the

form of foregone productivity.

Fourth, the health outcome of interest in my empirical analysis is pollution-driven

respiratory, cardiovascular, and cognitive morbidity episodes treated by medications.

Finally, my WTP estimates provide a conservative lower-bound estimate of pollution

reduction’s total economic benefits: for instance, they do not account for additional

defensive investments (e.g., Ito and Zhang 2020), effects on mortality (e.g., Deryugina

et al. 2019) as well as additional benefits including material damage (e.g., Brim-

blecombe 2003) and other minor discomforts such as decreased visibility (Hyslop,

2009).

5.3 Data and descriptives

To carry out the empirical analysis, I compile a novel annual dataset spanning from

2012 to 2018 that merges nationwide gridded reanalysis pollution and weather data

with a comprehensive panel dataset of administrative healthcare records and official

data on local economic activity. This section describes the different data sources,

cleaning procedures, and key variables employed in this study.

Pharmaceutical prescriptions. Monthly pharmaceutical prescriptions are drawn

from NHS Digital for the period from 2012 to 2019. Practice-level national prescrip-

tion data is provided by the NHS in England and released under the terms of the

Open Government Licence. This study aims to capture sickness episodes induced

and exacerbated by pollution exposure that is treated by prescription medications

to account for both acute and chronic effects in the assessment of the economic

burden of morbidity.9 England offers an ideal setting to carry out this analysis as the

country relies on a publicly-funded universal NHS where residents are automatically

9Many existing studies look at emergency rooms or hospital visits, which tend to be representative
of more acute episodes rather than chronic morbidity. Acute effects only account for a limited share
of the overall burden of health conditions attributable to air pollution (Chanel et al., 2016).
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registered. The concentration of healthcare services into a single provider allows me

to exploit detailed comparable information on practice-level healthcare records for

an average of approximately 54 million registered patients across the country. The

dataset typically contains over 10 million records per month covering each practice

in England, providing information on the consumption of over 20 thousand different

prescription items.10

The key variables that I extract for my analysis are the practice code and its postcode,

the medication identifier, the number of prescription items, and the associated

expenditures as measured by the Net Ingredient Cost (NIC).11 Each medication is

classified under a specific therapeutic section within the British National Formulary

(BNF) chapter.12 Informed by the epidemiological literature, the categories selected

for this study are cardiovascular (BNF section 2), respiratory (BNF section 3),

and central nervous (BNF section 4) systems. General practitioner (GP) practices’

location has been geo-coded (cf. Figure 5.A12 in the Appendix) and assigned to 5km

x 5km grids under the British National Grid (BNG) reference system, which serves

as the unit of observation in the analysis.13 As I only observe the practice address, I

assume that people tend to register with practices closer to their residential address,

within the same grid. This assumption is supported by a recent study indicating

that, in England, individuals tend to select a practice located around 2 kilometers

away from where they live (Santos et al., 2017).

To account for potential reporting errors, I exclude extreme outliers identified as

practices reporting prescription items per capita above the 99th percentile. I ad-

10The data includes prescriptions written by GPs and other non-medical prescribers (such as
nurses and pharmacists) who are attached to practices. Where prescribing cannot be linked to a
practice, the data is excluded. This accounts for less than 0.1% of all prescribed items. It does not
include items that have been dispensed in England but prescribed in another country. Furthermore,
the prescription data does not cover voluntary private health insurance. However, the latter only
accounts for less than 0.03% of annual expenditures on medical goods in UK accounts (ONS, 2018).

11This refers to the net ingredient costs of prescribed items following the price listed in the
national Drug Tariff. I additionally observe total costs for the NHS linked to pharmaceutical
prescriptions in each practice which I leverage for robustness exercises.

12This can be accessed from here.
13Utilizing LAUs as an alternative level of aggregation produces results within the 95% confidence

intervals of my baseline findings (cf. Figure 5.A22).
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Figure 5.1: Prescription items per capita across income deprivation quintiles

Note: The boxplots above display the the distribution of prescription items per capita across income deprivation
quintiles, where 1 refers to the least deprived areas of the country and 5 represent the most deprived ones.

ditionally gather yearly information on practice characteristics from the General

Practice Workforce data available from 2012. It contains information on registered

patients, GPs headcount, its breakdown by age and gender, and country of qualifi-

cation. Descriptive evidence on the distribution of GPs, total patient counts, and

prescription items by therapeutic section throughout the country are summarized in

Figures 5.A10 and 5.A11.

Census-level socio-economic indicators. I match all practice postcodes with

the respective census output areas and their associated Index of Multiple Deprivation

(IMD). This is a multidimensional composite index including dimensions related to

income, employment, health, education, and crime. The four constituent nations

of the UK have each developed their own IMD. The IMD for England is published

by the UK Ministry of Housing, Communities and Local Government (MHCLG).

These have been built to identify small area concentrations of deprivation, and are

based on a methodology developed at the University of Oxford Social Disadvantage

Research Centre (Noble et al., 2006). I consider IMD scores at the Middle Layer

Super Output Area (MSOAs) level.14

14MSOAs are a statistical geography created for the Census of England and Wales with a typical
population between 7000 and 10000 people.
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Harnessing the IMD, the boxplots in Figure 5.1 provide descriptive evidence on how

demand for prescription items differs along the income distribution in the sample.

Specifically, I plot prescription items per capita across income deprivation score

quintiles. The somewhat lower median in wealthier areas (or, in other words, in the

first income deprivation quintile) implies that, on average, residents in these regions

require or use fewer prescription items compared to those in lower-income areas.

Interquartile ranges, instead, are comparable across income deprivation quintiles

indicating that the variability in prescription item usage is overall consistent among

income groups. This suggests that the majority of individuals in both wealthier

and poorer areas have prescription item counts that fall within a similar range,

implying a level of uniformity in pharmaceutical consumption across income brackets.

This preliminary descriptive understanding sets the stage for my subsequent causal

analysis of the impacts of pollution on health outcomes.

Sick leaves. I additionally retrieve information on the annual number of fit notes

issued by NHS local health authorities and diagnoses (identified by an ICD10

chapter).15 Digital fit notes, also known as the Med3 form, were introduced in April

2010 in England, Wales, and Scotland. Nevertheless, data is publicly available from

April 2015 onward only. A fit note is given after a patient has been sick for 7 days,

at which point they can no longer self-certify. Differently from the prescription

data, information on sick leaves is provided at the clinical commissioning group

level (CCG).16 CCGs were NHS organizations set up by the Health and Social Care

Act 2012 to oversee the delivery of healthcare services in local areas across England

but were abolished in 2022. One limitation pertains to the unavailability of precise

information on the exact count of lost workdays; instead, CCG data from NHS Digital

only captures the issuance of fit notes. I rely on this data to provide complementary

insights into the effect of air pollution on work absenteeism.

15This is the 10th revision of the International Statistical Classification of Diseases and Related
Health Problems (ICD). More information can be found here.

16Figure 5.A13 in the Appendix 5.A maps their distribution across the country.
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Economic activity. Information on annual estimates of balanced UK gross value

added (GVA) at the LAU level is obtained from the Office of National Statistics

(ONS).17 At the time of the analysis, England comprised a total of 317 local authorities

(or districts for simplification), covering the entire country (details can be found here

on the government website). In this study, GVA per capita serves as a proxy for

economic productivity. The primary rationale for this choice is that GVA stands

as among the most accessible metrics for gauging productivity, which facilitates

international comparisons to contextualize magnitudes. I combine information on

local economic activity with other official LAU-level statistics from the ONS such as

population and median gross weekly salary.

Thermal inversions as IV. Obtaining empirical estimates of the effects of air

pollution exposure is challenging, primarily due to the scarcity of exogenous shocks

in air quality driven by sorting dynamics (e.g., Heblich et al. 2021). To address

endogeneity, I rely on atmospheric temperature inversions at different pressure levels

as a source of exogenous variation in the spatial concentration of air pollutants (e.g.,

Dechezleprêtre et al., 2019). Figure 5.2 illustrates the concept of using inversions as

an IV for pollution.

To leverage inversions in a two-stage least squares (2SLS) framework, I rely on

vertical temperature profiles with a 10 km x 10 km resolution from the ECMWF

extracted from the UERRA dataset (Copernicus Climate Change Service, 2019). The

most recent complete year included in the dataset is 2018, which therefore determines

the last year in the estimation sample. The spatial granularity of this novel dataset

allows computing inversion episodes with greater precision and accuracy compared to

previous studies that have relied on this instrument. The interval between pressure

levels is 25 hPa, starting from the lowest 1000 hPa pressure level (which approximately

corresponds to 30m above sea level). I extract data on a 6-hour frequency on surface-

17LAU stands for local administrative units which is a classification of spatial units used for
statistical production across the European Union, aligning closely with district delineations in many
regions.
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Figure 5.2: Thermal inversion episodes as instrument for air pollution

Note: The figure above illustrates the concept of thermal inversions. Under normal conditions, air temperature
typically decreases with increasing altitude. However, under specific atmospheric conditions known as thermal

inversions, this natural relationship undergoes a reversal. During a thermal inversion, warmer air lies above cooler
air, hindering the vertical movement of air masses. This condition traps pollutants closer to the ground, leading to

the buildup of air emissions and reduced air quality.

level temperature (1000 hPa) and for the closest pressure levels, namely 975 hPa,

950 hPa, and 925 hPa.

I define inversions as a positive upward temperature gradient between the pressure

level considered (either 975 hPa, 950 hPa or 925 hPa) and the surface (1000 hPa)

calculated on a 6-hour frequency. The inversion instrument is defined as the annual

frequency of thermal inversion events detected within a given geographical unit. I

rely on the highest time frequency available to capture as many inversion events as

possible to address concerns that low-frequency events as instruments may lead to

inflated estimates due to low statistical power when estimating acute health effects

(Bagilet and Zabrocki-Hallak, 2022). In the definition of the instrumental variable,

there is a trade-off between relying on inversion episodes occurring closer to the

surface, which are more likely to induce a pollution exposure shock but exhibit lower

frequencies, and considering additional pressure levels. Such variation in frequency

counts can be seen in Figure 5.A8 which plots the matrix of the monthly frequency

of inversions at different pressure levels.

My baseline regressions rely on inversion episodes between the two pressure levels

closest to the surface (which corresponds to 1000 hPa and 950 hPa). This is

the first pressure level that does not exclude considerable areas of the country
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Figure 5.3: Correlogram of different definitions of inversion episode

Note: The figure plots the correlation matrix across different definitions of the instrumental variable. hPa925 refers
to inversion events occurring below a pressure level of 925 hPa; hPa950 refers to inversion events occurring below a
pressure level of 950 hPa; hPa975 refers to inversion events occurring below a pressure level of 975 hPa; Nights

refers to inversion events occurring at night and below a pressure level of 950 hPa.

at a higher altitude, which may otherwise result in unrepresentative results. As

a robustness check, I additionally consider inversion episodes occurring at night

to alleviate concerns regarding potential daytime inversions being noticeable for

individuals (cf. Sager 2019). Figure 5.3 plots the correlation matrix among alternative

inversion definitions utilized in the empirical analysis, illustrating consistently high

correlations between my baseline and alternative definitions. A graphical example

of the computation of inversion episodes below 950 hPa averaged across years is

provided in Figure 5.4. The corresponding figures for each year can be found in the

Appendix (cf. Figures 5.A1 - 5.A7).

Meteorological conditions. Gridded weather controls including mean ground-

level temperature (�C), precipitation (mm), wind speed (knots), and relative humidity

(%) are sourced from the UK Meteorological (Met) Office. While weather information

is accessible in the ECMWF dataset, I opt for ground measurements by the UK

Met Office due to their higher resolution (i.e., 5km x 5km grids), which reduces
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Figure 5.4: Distribution of inversion events (950 hPa) in the UK

Notes: The figure plots the distribution of annual inversion events below 950 hPa computed on a 6-hour frequency
averaged between 2012 and 2018. The spatial resolution corresponds to 5km x 5km grids following the BNG

reference system.

measurement errors.

Air pollutants. I rely on background pollution maps at 1km x 1km resolution

that are modelled each year under the UK Department for Environment, Food and

Rural Affairs (DEFRA) Modelling of Ambient Air Quality (MAAQ) contract. These

maps are used to provide policy support for DEFRA and, formerly, to fulfill the

UK’s reporting obligations to Europe and cover key major air pollutants, namely

concentrations of PM2.5, PM10, NOx, NO2, SOx, and C6H6. They are made publicly

available for public health research applications. Following the World Health Organi-

zation (2016), I focus on PM2.5 as a general indicator of air pollution and harness

information on other air pollutants for further robustness analyses.

The use of gridded reanalysis pollution data provides a key advantage for measuring

the average pollution exposure of people living in a specific area compared to
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pollution-monitor readings. Pollution monitors are often limited in number and

placed strategically to measure emissions from specific sources, such as highways.

Therefore, monitor readings may not provide an accurate reflection of the average

pollution exposure in a particular location (e.g., Zou 2021). In contrast, reanalysis

data synthesizes information derived from pollution monitors with the assistance of

a chemistry-transport model that takes into account all potential pollution sources,

thereby yielding a more comprehensive and holistic measurement of average exposure

to pollution. Figure 5.5 plots the average concentration distributions of two key

pollutants in my sample, namely PM2.5 and SOx, across England.

Figure 5.5: Distribution of PM2.5 and SOx concentrations across England

(a) PM2.5 (b) SOx

Notes: The figures above plot the distribution of PM2.5 and SOx concentrations in England across 5km x 5km
grids following the BNG reference system. The legend displays concentration defined in µg/m3. The corresponding

Figures for the other pollutants in my sample can be found in Figure 5.A9 in the Appendix.

Inequality in exposure to air pollutants. Figure 5.A15 in the Appendix

provides some additional descriptive evidence on the distribution of pollution concen-

tration across socio-economic characteristics. Specifically, they plot the pre-sample
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(values are for 2011) quadratic prediction of local pollutant concentration based

on income deprivation scores to investigate pollution exposure inequality along the

income distribution. Results across all pollutants provide descriptive evidence of the

degree of inequality in the distribution of pollution across different socio-economic

groups in the sample, allowing for nonlinearities. In line with exisiting studies,

these findings underscore a consistent regressive distribution of pollution exposure

across income brackets, displaying varying degrees among different air pollutants (cf.

Colmer et al. 2020; Jbaily et al. 2022). This initial descriptive exploration not only

lays the foundation for understanding the distribution of pollution across different

income groups before the period of analysis but also serves as a critical step in

justifying the adoption of an instrumental variable approach. By shedding light on

the disparities in pollution exposure, it underscores the need to address estimation

biases from existing pre-sample sorting dynamics and provides empirical support for

the use of instrumental variables in the empirical analysis (cf. Heblich et al. 2021).

5.4 Empirical strategy

2SLS estimation. The main empirical goal of this paper is to estimate the effects

of short-term exposure to air pollutants on morbidity and productivity, accounting

for potentially confounding factors. I model this relationship relying on a two-stage

estimation. In the first stage, I predict the concentration of different air pollutants

based on the observed frequency of thermal inversions occurring below a given

altitude h, as measured by atmospheric pressure levels (in hPa). In the second stage,

I estimate the effect of the predicted concentration estimate on (i) pharmaceutical

expenditures and (ii) GVA per capita. The main identifying assumption of my IV

approach is that, after flexibly controlling for a set of fixed effects and weather

variables, changes in a geographical unit’s annual frequency of inversion episodes are

unrelated to changes in any of the outcome variables except through their impact on
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air pollution.18

For each air pollutant p, the reduced form (Eq. 5.5), the first stage (Eq. 5.6) and

the second stage (Eq. 5.7) are written as:

y
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where y
p

i� j, t
is the natural logarithm of the outcome variable, which is either (i) the

expenditure on prescriptions for cardiovascular, respiratory, and nervous conditions or

(ii) GVA per capita in each geographical unit, i, within a LAU, j, and year, t. Cp

i� j, t

reflects the annual average concentration of pollutant p measured in µg/m3. The

model absorbs LAUs (�p

j
) and year fixed effects (�pt ), meaning that my identification

strategy exploits within-district variation in thermal inversion exposure (Correia

2016, 2019). The former absorbs, for instance, spatial variation in healthcare quality

and access, diagnostic standards, and environmental quality, whereas the latter

controls flexibly for common time-varying shocks, such as those induced by any NHS

or environmental policy changes in the sample period. The vector �p

i� j, t
includes

covariates such as yearly average wind speed, ground-level temperature, humidity,

and rainfall to account for other environmental factors that may affect the outcomes.

�p
i� j, t, h

is the idiosyncratic error term.

Since pollution observed in a given grid is likely driven by emissions elsewhere that

also affect nearby grids, all grid-level inferences allow for correlations in errors across

18An underlying assumption in my empirical strategy is that the assumed residence corresponds
to the location of exposure to air pollution. However, people are also exposed to air pollution
at their place of work, place of leisure, or while commuting. Should this not be the case, the
measurement error in pollution exposure would be inflated and my estimates could be biased toward
zero (attenuation bias). I additionally leverage night inversions to investigate the sensitivity of this
assumption.
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neighboring grids by relying on a more aggregate cluster dimension: my baseline

models rely on 50km grids from the BNG reference system but results are robust

to a range of clustering choices (cf. Appendix 5.B). All estimates are weighted by

either the number of patients (when modeling pharmaceutical consumption) or the

total population (when modeling GVA per capita) within a given geographical unit.

This is to account for the fact that the relevant population is unevenly distributed

across districts in the country and exposed to different levels of pollution depending

on their location. I additionally report OLS estimates of Eq. 5.7 to test whether

these are prone to bias as exposure to pollution is not randomly assigned and is

likely measured with error.

Identifying assumptions. The estimation of an unbiased estimate of the causal

effect of air pollution with an IV approach rests on meeting a set of identifying

assumptions. Precisely, these assumptions include (i) instrument relevance, (ii) the

exclusion restriction, and (iii) monotonicity - as outlined in Angrist and Imbens

(1995).

Instrument relevance requires a significant impact of inversion episodes on air pol-

lution concentrations, which can be directly tested through the first stage (cf. Eq.

5.6). The exclusion restriction implies that inversion episodes need to be randomly

assigned, meaning that inversions are expected to affect any outcome of interest only

through their impact on pollution concentration. Given that inversions originate from

continental-scale air movements, they are plausibly unlikely to be affected by local-

scale socio-economic factors that are being modeled in this study, supporting their

credibility as a source of quasi-random variation. That is, thermal inversions increase

pollution levels without being correlated with either the causes of polluting emissions

(e.g., industry or transport) or its effects (e.g., on health and productivity). To

further bolster the validity of the exclusion restriction, the 2SLS estimation employed

in this setting additionally controls for weather conditions that may correlate with

inversion frequency (e.g., temperature) while also impacting socio-economic outcomes.
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This ensures that the estimation is specifically isolating the effect of increased air

pollution, excluding the influence of other co-varying weather conditions. Finally, the

monotonicity assumption rules out scenarios where inversions consistently produce

an opposite impact on pollution compared to the overall trend (i.e., reductions rather

than increases in pollution concentrations). If these assumptions hold and treatment

effects remain constant conditional on a set of covariates, the 2SLS approach will

yield an unbiased estimate of the local average treatment effect (LATE).

5.5 Results

The following section presents results from the two-stage estimation strategy described

in Section 5.4. As a first step, I present the causal effects of instrumented pollution

shocks on nationwide (i) pharmaceutical expenditures and (ii) GVA per capita in

Section 5.5.1. Subsequently, in Section 5.5.2, I leverage these causal estimations to

simulate counterfactual reductions of 1 µg/m3 in PM2.5 and investigate the respective

distributions of predicted health and productivity benefits and their correlation with

socio-economic factors.

5.5.1 Nationwide effects on morbidity and productivity

Tables 5.1 and 5.2 report estimates of equation 5.7, where I regress (i) pharmaceutical

expenditures and (ii) GVA per capita (cf. Section 5.3) on instrumented pollution

and controls. One key difference between the estimation of (i) and (ii) is the unit

of observation. While the former estimation relies on data at the 5km x 5km grid

level, the latter is based on LAUs as it represents the highest available spatial

resolution (cf. Section 5.3).19 I begin by presenting first-stage and second-stage

19Another difference relates to the time fixed effects. The higher granularity of the data in the
estimation of effects on (i) pharmaceutical expenditures allows me to include region-specific year
(instead of nationwide year effects) effects to absorb variation in regional effects in my baseline
regression while leaving enough identifying variation to estimate the model. Figure 5.7 shows that
the inclusion of more detailed trends in the estimation of (ii) GVA per capita does not affect my
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results obtained from different definitions of inversion episodes, which are derived

considering different atmospheric pressure levels, h. Specifically, column (1) presents

results for my baseline regression model based on inversions between the two pressure

levels closest to the surface, namely 1000 hPa and 950 hPa (cf. Section 5.3). Column

(2) and column (3) report results when considering 925 hPa and 975 hPa, respectively,

as alternative upper pressure levels.

First-stage estimates. Panel A of Tables 5.1 and 5.2 display the estimates of

the first stage estimation from Eq. 5.6. The large first-stage F-statistics confirm

that the frequency of inversion episodes is a strong relevant predictor of air pollution

levels, implying that weak instrument bias is not a source of concern in this setting.20

The validity of the identification strategy is further corroborated by the results

of the Lagrange Multiplier (LM) test for under-identification. Taking column (1)

from Table 5.1 as an example, mean annual inversion episodes in our sample (which

amounts to 121 episodes) are estimated to cause an increase of around 0.9 µg/m3 in

annual average PM2.5 concentration (i.e., 0.00732 x 121). Column (2) and column

(3) show that the coefficients are not sensitive to harnessing different instrument

definitions. Similarly, Table 5.2 exhibits the corresponding results for the first-stage

estimation in the LAU-level sample, employed to model GVA per capita. Even in

this case, each column exhibits considerable statistical significance, affirming their

validity as instruments.

Second-stage estimates. Panel B of Tables 5.1 and 5.2 reports estimates of

Eq. 5.7, where I regress pharmaceutical expenditures and GVA per capita on

instrumented pollution and controls. Across the three specifications, the coefficients

on instrumented pollution show that a 1 µg/m3 increase in the concentration of any

of the pollutants significantly affects defensive investment behavior (cf. Table 5.1)

estimations (cf. Local trends).
20Following Deryugina et al. (2019), Tables 5.1 and 5.2 present first-stage F-statistics computed

assuming that errors are homoskedastic. This allows for comparison to the Stock and Yogo (2005)
critical values, whose validity relies on the homoskedasticity assumption.

234



Table 5.1: Effects of a 1 µg/m3 annual increase in PM2.5 on pharmaceutical expen-
ditures

(1) (2) (3)
Instrument: Inversion frequency below pressure level (h) h = 950 hPa h = 925 hPa h = 975 hPa

Panel A: First Stage (Eq. 5.6) 0.00732⇤⇤⇤ 0.00757⇤⇤⇤ 0.00661⇤⇤⇤

(0.00113) (0.00111) (0.00113)

Panel B: Second Stage (Eq. 5.7) 0.283⇤⇤ 0.243⇤⇤ 0.296⇤⇤

(0.114) (0.107) (0.124)

Cragg-Donald Wald F-statistic 888.3 803.3 767.2
Kleibergen-Paap rk LM statistic P < 0.000 P < 0.000 P < 0.000
N 41830 41830 41830
Weather Controls X X X
LAU Effects X X X
Time Effects Region x Year Region x Year Region x Year
Clustered Std Error 50km 50km 50km

Notes: Table shows the coefficients estimated from the first (Panel A) and second stage (Panel B) of the IV approach, where
the frequency of thermal inversions is used as an instrument for pollution concentrations (cf. Section 5.4). GP practices’

location has been geo-coded using GIS tools and assigned to 5km x 5km grids following the BNG reference system.
Pharmaceutical expenditures are reported by each registered practice and have been aggregated at a 5km x 5km grid level.

PM2.5 concentration refers to average background annual average concentrations in µg/m3 across 5km x 5km grids based on
data reported by DEFRA. Thermal inversions are defined as a positive upward temperature gradient from the surface, and

calculated on a 6-hour frequency using data from the ECMWF. Weather controls include mean ground-level temperature (�C),
precipitation (mm), wind speed (knots), and relative humidity (%). These are retrieved on a 3-hour frequency from the UK Met
Office and aggregated at the yearly level. See Section 5.3 for more details. All regressions control for the total number of GPs

in the area and are weighted by the total number of patients in each grid. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 5.2: Effects of a 1 µg/m3 annual increase in PM2.5 on GVA per capita

(1) (2) (3)
Instrument: Inversion frequency below pressure level (h) h = 950 hPa h = 925 hPa h = 975 hPa

Panel A: First Stage (Eq. 5.6) 0.0170⇤⇤⇤ 0.00931⇤⇤⇤ 0.0153⇤⇤⇤

(0.00147) (0.00141) (0.00146)

Panel B: Second Stage (Eq. 5.7) -0.0160⇤⇤ -0.0254⇤ -0.0142
(0.00784) (0.0135) (0.00896)

Cragg-Donald Wald F-statistic 181.9 47.79 135.2
Kleibergen-Paap rk LM statistic P < 0.000 P < 0.000 P < 0.000
N 2219 2219 2219
Weather Controls X X X
LAU Effects X X X
Time Effects Year Year Year
Clustered Std Error LAU LAU LAU

Notes: Table shows the coefficients estimated from the first (Panel A) and second stage (Panel B) of the IV approach, where
the frequency of thermal inversions is used as an instrument for pollution concentrations (cf. Section 5.4). GVA per capita

represents the ratio of local GVA, sourced from the UK ONS, divided by the total population in the LAU. PM2.5 concentration
refers to average background annual average concentrations in µg/m3 across LAUs based on data reported by DEFRA. Thermal
inversions are defined as a positive upward temperature gradient from the surface, and calculated on a 6-hour frequency using
data from the ECMWF. Weather controls include mean ground-level temperature (�C), precipitation (mm), wind speed (knots),
and relative humidity (%). These are retrieved on a 3-hour frequency from the UK Met Office and aggregated at the yearly

level. See Section 5.3 for more details. All regressions are weighted by the total population in each LAU. * p < 0.10, **
p < 0.05, *** p < 0.01.
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and economic productivity (cf. Table 5.2). More precisely, taking again the baseline

estimation from column (1), a 1 µg/m3 increase in PM2.5 causes a 32.7% increase

in pharmaceutical expenditure and 1.6% decrease in GVA per capita (following

exponential transformation).21

To provide perspective to the magnitude of the cost estimates, we can compute the

implied estimated annual nationwide health and productivity costs based on the

coefficients presented in Tables 5.1 and 5.2. Specifically, a 1 µg/m3 in the annual

concentration of PM2.5 translates into approximately £1.24 billion/year of additional

health costs and around £13 billion/year of productivity losses, as proxied by GVA

per capita.22 These findings highlight how both healthcare and productivity costs

individually represent a sizable share of the economic costs of air pollution exposure.

It follows that cost-benefit analyses based on empirical estimates that focus solely on

either one of the two cost elements are likely to underestimate the potential welfare

benefits associated with air pollution reduction. Taking PM2.5, considering both

health and productivity effects translates into a mean WTP of around £445 per

capita which is around 9 times higher than the current damage costs per change in

concentration reported by the UK government (UK-AIR, 2023).

Alternative model specifications. To corroborate the robustness of the findings

discussed above, I examine various alternative model specifications deviating from the

2SLS approach described in Section 5.4, which are summarized in Figure 5.7. Overall,

the series of robustness tests provides statistically comparable estimates, with my

baseline mean point estimates typically leaning towards the more conservative end

of their distribution.

First, I report results from a simple OLS estimation, where I directly regress phar-

maceutical expenditures and GVA per capita on PM2.5 pollution concentration and

21The estimated productivity losses attributable to PM2.5 are close to the upper bounds of the
estimated effects documented on a European Union-wide scale by Dechezleprêtre et al. (2019).

22I rely on statistics from the Office of National Statistics to extract the average number of
employed people in the country within the period under investigation, which is around 31 million.
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control variables (cf. OLS specification). Notably, in line with previous quasi-

experimental pollution studies (e.g., Deryugina et al. 2019), OLS results are consis-

tently lower in magnitude (around 4 times) compared to IV estimates, highlighting

the potential for bias in observational studies that do not account for the endogenous

nature of air pollution.

Second, to address potential concerns of bias stemming from avoidance behavior

associated with the visibility of daytime inversions, I introduce the use of night

inversions (cf. Sager 2019) as a simultaneous additional instrument (cf. Nights

specification).

Third, other potential concerns involve residual (i) unobserved local heterogeneity

over time which could introduce omitted variable bias (Gormley and Matsa, 2014)

and (ii) interactive weather conditions that might be (non-linearly) correlated with

inversions and affect pharmaceutical consumption or productivity (e.g., extreme heat

with high humidity). To this end, I introduce two additional specifications where (i)

detailed heterogeneous trends at either the grid or LAU level are absorbed23 in the

estimation (cf. Local trends specification), and (ii) I additionally control for both the

linear and quadratic interactions among the set of weather controls (cf. Interactions

specification).

Fourth, the estimation of causal effects resulting from PM2.5 pollution faces a challenge

due to the correlation between multiple air pollutants such as NOx or SOx, often

originating from the same emission sources (cf. Figure 5.6). Consequently, detected

adverse effects associated with air pollution may be attributable to any single or a

combination of these pollutants. To tackle this concern, I present coefficient estimates

of the impact of PM2.5 while incorporating NOx and SOx as covariates within the

2SLS estimation procedure (cf. Other pollutants specification). To additionally

support my findings in Tables 5.1 and 5.2, I additionally replicate my baseline results

23The process involves absorbing heterogeneous slopes with the estimator outlined in Correia
(2016, 2019), which accommodates distinct coefficients for individual regressors across each fixed
effect category.
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in column (1) using different measures of air pollution, namely PM10, NOx, NO2, SOx,

and C6H6. These results consistently provide qualitative support for my baseline

findings, as summarized in Tables 5.3 to 5.4.

Finally, I report results where I allow for serial correlation in errors by clustering

standard errors in two dimensions at the level of grids (or LAUs) and years (cf. Year

Cluster specification).

Figure 5.6: Correlogram of different air pollutants

Note: The figure plots the correlation matrix across different concentrations of air pollutants (in µg/m3). PM
refers to PM2.5.

Additional robustness tests. In the Appendix, I further conduct a placebo

exercise where I estimate a RF of my baseline specification (cf. Eq. 5.5) that

includes a set of leads and lags of my instrument to test whether the estimated

effects are driven by contemporaneous inversion episodes in a given year and mitigate

concerns that individuals may anticipate inversion episodes to a significant extent

thus biasing any estimation on instrumented pollution (see Figure 5.A21 in the

Appendix). Notably, the outcome of this placebo exercise rules out the prospect of

anticipation acting as a confounding factor in my estimations. The Appendix also

contains supplementary analyses displaying additional results on the impact of air

pollution on item demand and overall estimated cost increases to the NHS, which

are summarized in Figures 5.A19 - 5.A20. Finally, Figure 5.A16 in the Appendix
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presents separate estimations for each BNF therapeutic section (cf. Section 5.3).

The largest effects are detected for health conditions affecting the central nervous

system, indicating that the health effects of air pollution extend significantly beyond

the respiratory and cardiovascular diseases typically highlighted in prior research.

(e.g., Deschenes et al. 2017).

239



Figure 5.7: Alternative model specifications

(a) Pharmaceutical expenditures

(b) GVA per capita

Notes: The figures above plot the estimated effect from the second stage of the alternative specifications of Eq. 5.7
described in Section 5.5.1. Panel (a) refers to results for pharmaceutical expenditures, whereas Panel (b) is based

on results for GVA per capita. The bar charts display mean point estimates with overlaid lines representing
confidence intervals, respectively delineating 95% confidence intervals in gray and 90% confidence intervals in color.
Additional estimates based PM10, NOx, NO2, SOx, and C6H6 are summarized in Figures 5.A17 and 5.A18 and can

be found in the Appendix.
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Table 5.3: Effects of an annual increase in air pollution on pharmaceutical expen-
ditures

(1) (2) (3) (4) (5) (6)

PM2.5 PM10 NOx NO2 SOx C6H6

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (0.1 µg/m3) (0.1 µg/m3)

Panel A: OLS estimates 0.0679*** -0.0134 0.00551 0.0227** 0.0100*** 0.109***

(0.0168) (0.0171) (0.00616) (0.00636) (0.00155) (0.0198)

Panel B: Second Stage (Eq. 5.7) 0.283** 0.150** 0.0868*** 0.147*** 0.0600** 0.387**

(0.114) (0.0639) (0.0326) (0.0523) (0.0231) (0.147)

Cragg-Donald Wald F-statistic 888.3 1558.8 192.4 223.5 210.2 289.6

Kleibergen-Paap rk LM statistic P < 0.000 P < 0.000 P < 0.000 P < 0.000 P < 0.000 P < 0.000

N 41830 41830 41830 41830 41830 41830

Weather Controls X X X X X X
LAU Effects X X X X X X
Region x Year Effects X X X X X X
Clustered Std Error 50km 50km 50km 50km 50km 50km

Notes: Table shows the coefficients estimated from the first (Panel A) and second stage (Panel B) of the IV approach, where the
frequency of thermal inversions is used as an instrument for pollution concentrations (cf. Section 5.4). GP practices’ location has been
geo-coded using GIS tools and assigned to 5km x 5km grids following the BNG reference system. Pharmaceutical expenditures are
reported by each registered practice and have been aggregated at a 5km x 5km grid level. Pollution concentrations refer to average
background annual average concentrations in µg/m3 across 5km x 5km grids based on data reported by DEFRA. Thermal inversions
are defined as a positive upward temperature gradient from the surface below 950 hPa, and calculated on a 6-hour frequency using
data from the ECMWF. Weather controls include mean ground-level temperature (�C), precipitation (mm), wind speed (knots), and
relative humidity (%). These are retrieved on a 3-hour frequency from the UK Met Office and aggregated at the yearly level. See

Section 5.3 for more details. All regressions control for the total number of GPs in the area and are weighted by the total number of
patients in each grid. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table 5.4: Effects of an annual increase in air pollution on GVA per capita

(1) (2) (3) (4) (5) (6)

PM2.5 PM10 NOx NO2 SOx C6H6

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (0.1 µg/m3) (0.1 µg/m3)

Panel A: OLS estimates -0.00383 -0.00196 -0.00110 -0.00170 -0.000332 -0.00417*

(0.00309) (0.00257) (0.000831) (0.00151) (0.000378) (0.00236)

Panel B: Second Stage (Eq. 5.7) -0.0160** -0.0111** -0.00489* -0.00781** -0.00211** -0.0118**

(0.00784) (0.00547) (0.00250) (0.00393) (0.00106) (0.00589)

Cragg-Donald Wald F-statistic 181.9 265.0 117.7 147.6 146.3 239.2

Kleibergen-Paap rk LM statistic P < 0.000 P < 0.000 P < 0.000 P < 0.000 P < 0.000 P < 0.000

N 2219 2219 2219 2219 2219 2219

Weather Controls X X X X X X
LAU Effects X X X X X X
Year Effects X X X X X X
Clustered Std Error LAU LAU LAU LAU LAU LAU

Notes: Table shows the coefficients estimated from the first (Panel A) and second stage (Panel B) of the IV approach, where the
frequency of thermal inversions is used as an instrument for pollution concentrations (cf. Section 5.4). GVA per capita represents the
ratio of local GVA, sourced from the UK ONS, divided by the total population in the LAU. Pollution concentrations refer to average
background annual average concentrations in µg/m3 across LAUs based on data reported by DEFRA. Thermal inversions are defined
as a positive upward temperature gradient from the surface below 950 hPa, and calculated on a 6-hour frequency using data from the

ECMWF. Weather controls include mean ground-level temperature (�C), precipitation (mm), wind speed (knots), and relative
humidity (%). These are retrieved on a 3-hour frequency from the UK Met Office and aggregated at the yearly level. See Section 5.3

for more details. All regressions are weighted by the total population in each LAU. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Health-productivity-poverty nexus. The estimated sizable declines in economic

productivity may be attributed to various underlying mechanisms. For instance,

previous literature points out that air pollution shocks may manifest in increased

absenteeism (e.g., Holub et al. 2020), diminished worker productivity (e.g., Leroutier

and Ollivier 2022), direct impact through agricultural productivity (e.g., Avnery et al.

2011), or by hampering the accumulation of human capital (e.g., Ebenstein et al.

2016). All of these channels offer plausible explanations for the observed reductions

in economic activity. In this section, I provide additional causal evidence to link

pollution-driven morbidity to productivity losses by investigating work absenteeism

as a driving factor. Specifically, I estimate the causal effects of pollution shocks on

countrywide work absenteeism leveraging information on the local issuance of sick

leaves.

To carry out this analysis, I amend the empirical strategy described in Section 5.4

in three ways. First, the analysis is carried out by exploiting variations within

clinical commissioning groups (CCG) instead of leveraging within-district variation.24

Second, the estimation sample begins in 2016, which reflects the more restricted

temporal coverage of the sick leaves data. Third, I estimate the reduced-form effect

of thermal inversions (cf. Eq. 5.5) on the number of sick leaves issued in a given

period with a Poisson regression to accommodate the need to model count data. The

results of the RF approach should be interpreted as the effect of a general pollution

shock induced by a thermal inversion episode rather than the effect of a specific

pollutant.25

Table 5.5 reports results across the different health domains under investigation. The

estimated Poisson regression coefficients report that pollution shocks are associated

with a general increase in the issuance of sick leaves across all categories. The largest

effect is detected for health conditions related to the central nervous system (column

3 in Table 5.5). Taking the estimated effect for all diagnoses from specification (1),

24This is the highest level of resolution at which sick leaves data by diagnosis is available.
25The key rationale behind this approach is the more limited power in the model due to the

reduced number of observations which may be too demanding for a 2SLS estimation.
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we can interpret the Poisson regression coefficients as follows: a standard deviation

increase in pollution shocks driven by inversions26 would lead to an overall increase

of around 6% in sick leaves (i.e., 33� [e0.00184 � 1]� 100%). This roughly translates

into an annual increase of 23 thousand sick leaves being issued nationwide.

Although the limited granularity of sick leave data prevents the precise quantification

of total lost workdays, these causal insights imply that increased absenteeism repre-

sents a relevant mechanism contributing to productivity losses due to air pollution.

This finding also implies that a reduced capacity to work caused by pollution might

trap low-income individuals in a cycle of mounting morbidity and poverty (cf. Isen

et al. 2017; Chetty and Hendren 2018; Ketcham et al. 2019), due to their higher level

of exposure.

Table 5.5: Effects of air pollution on the issuance of sick leaves by diagnosis.

(1) (2) (3) (4)

All Cardiovascular Nervous Respiratory

Inversion episodes 0.00184* 0.00219* 0.00257** 0.00149

(0.000954) (0.00126) (0.00115) (0.00100)

N 1701 567 567 567

Controls X X X X
Time Effects NHS Region x Year NHS Region x Year NHS Region x Year NHS Region x Year

CCG Effects X X X X
Clustered Std Error CCG CCG CCG CCG

Notes: Table shows the coefficients estimated from the RF of the IV approach, where the number of sick leaves is regressed on the
frequency of thermal inversions (cf. Section 5.4). Sick leaves refer to the annual count of fit notes issued in each CCG. Year effects are
specific to each NHS region in the country, namely London and Central, North, and South of England. Thermal inversions are defined
as a positive upward temperature gradient from the surface below 950 hPa, and calculated on a 6-hour frequency using data from the
ECMWF. Weather controls include linear and quadratic mean ground-level temperature (�C), precipitation (mm), wind speed (knots),

and relative humidity (%) as well as their interactions. These are retrieved on a 3-hour frequency from the UK Met Office and
aggregated at the yearly level. See Section 5.3 for more details. All models additionally control for the total number of GPs and

patient counts within older age brackets (i.e., 45-64, 65-74, and 75-84). Regressions are weighted by the total number of registered
patients in each CCG. * p < 0.10, ** p < 0.05, *** p < 0.01.

5.5.2 Spatial heterogeneity

The empirical analysis continues by examining spatial heterogeneity. To this end,

I leverage the second-stage predicted estimates from Equation 5.7 to compute a

counterfactual pollution reduction scenarios as follows:

26This equals an increase of 33 episodes in the annual frequency of inversions when considering
inversion episodes occurring below 950 hPa.
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\� y
PM2.5
i� j, t

= b�PM2.5
1 �Ĉ

PM2.5
i� j, t

(5.8)

Specifically, I focus on a 1 µg/m3 nationwide reduction in the annual concentration

of PM2.5 (i.e., �Ĉ
PM2.5
i� j, t

= 1 µg/m3) to map the distribution of the corresponding

predicted (i) health and (ii) productivity benefits per capita across the country.

Health benefits. Panel (a) in Figure 5.10 plots predicted health benefits per

capita induced by the simulated 1 µg/m3 reduction shock in PM2.5 estimated from

Eq. 5.8. Here, health benefits are defined as the reduction in pharmaceutical

expenditures per registered patient due to a 1 µg/m3 decrease in PM2.5. Overall,

we observe significant heterogeneity across different areas, with values ranging from

less than £1 to around £140 per capita (cf. Panel (a) in Figure 5.9). Leveraging

census-level variation in the IMD (cf. Section 5.3), I systematically explore how the

distribution of the estimated benefits varies across different socio-economic strata and

how this affects the computation of the implied WTP. Specifically, to delve deeper

into spatial disparities, I compute quadratic predictions ( \� y
PM2.5
i� j, t

= �̂0+ �̂1x+ �̂2x
2)

of health benefits in my sample based on income deprivation scores, accommodating

nonlinearities. These correlational results are presented in Panel (b) of Figure 5.9

and reveal that health benefits from PM2.5 reduction tend to be distributed pro-poor,

exhibiting a non-linear increase with income deprivation.

Specifically, predicted health benefits increase by around threefold along the spectrum

of income deprivation, from roughly £10 to £30 per capita. This result is consistent

with prior findings in the literature that highlighted how households’ adaptive capacity

to environmental shocks tends to correlate with disposable income (cf. Drupp et al.,

2021), which can in turn exacerbate environmental inequalities along the income

distribution. Case in point, other than sorting themselves into less polluted areas,

households within the upper end of the income distribution are also more likely to
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afford preemptive defensive expenses, such as purchasing an air purifier (e.g., Ito and

Zhang 2020), which would, in turn, explain the reduced health impacts following

a pollution shock.27 Contingent on fulfilling its identifying assumptions, the 2SLS

design addresses potential sorting bias by leveraging on quasi-random shocks in

pollution. Hence, this implies that the observed differential effects across income

groups are plausibly driven by residual differences in adaptive capacity rather than

self-selection based on pollution concentrations.

Finally, I harness the same approach to investigate the distribution of health benefits

across the age structure of registered patients across the sample. As illustrated in

Panel (c) of Figure 5.9, when the age structure of the patient cohort skews towards a

larger proportion of individuals aged 65 years or older, the predicted health benefits

exhibit a discernible non-linear increase. Precisely, predicted health benefits exhibit

a fourfold range (£6 - £25 per capita) across the spectrum of elderly patient shares.

This insight has significant policy implications, suggesting that pollution-reduction

interventions can have disproportionately positive effects on the health status of older

demographics, corroborating previous findings on mortality effects (e.g., Deryugina

et al. 2019).

27While England’s public NHS is expected to mitigate income inequalities in healthcare access,
my dataset lacks information on individual households’ adaptive capacity, preventing the inclusion
of additional preemptive defensive behavior investments (and their distribution) in my analysis.
Hence, my estimates present a conservative estimate of health-related air pollution costs (cf. Section
5.2).
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Figure 5.8: Distribution of health benefits

(a) Frequency distribution (b) Income deprivation (c) Patients’ age

Notes: Panel (a) displays the frequency distribution of predicted health benefits from a µg/m3 PM2.5

reduction in the second-stage estimation (cf. Eq. 5.8). Panel (b) reports the quadratic prediction of predicted
health benefits based on income deprivation scores with the corresponding 95% confidence intervals. Panel (c)
plots the quadratic prediction of predicted health benefits based on the share of patients aged 65 or more in a

given grid with the corresponding 95% confidence intervals.

Productivity benefits. Panel (b) in Figure 5.10 builds upon the same simulated

reduction shock in PM2.5 from Eq. 5.8 and presents findings on the distribution

of productivity benefits per capita. These benefits reflect variations in GVA per

capita attributed to the simulated reduction in PM2.5 concentration. This graph

highlights the presence of substantial spatial heterogeneity, with estimated economic

advantages stemming from productivity gains spanning a wide spectrum, ranging

from roughly £170 to over £1500 per capita. Panel (a) in Figure 5.9 illustrates the

frequency distribution of the estimated productivity benefits. Overall, these findings

show how the higher data granularity uncovers substantial spatial heterogeneity

in pollution-driven productivity effects that would be overlooked in nationwide or

regional studies (Dechezleprêtre et al., 2019).

Leveraging a quadratic prediction again ( \� y
PM2.5
i� j, t

= �̂0 + �̂1x + �̂2x
2), Panel (b)

shows that predicted economic benefits arising from productivity gains display a

non-linear increase alongside the rise in median weekly income in the area, which

implies that the direct economic advantages associated with pollution reduction are

regressively concentrated in more affluent areas of the country.

To gain further insights into this pattern, Panel (c) in Figure 5.9 provides a ranking

of LAUs in England, listing those with the highest estimated productivity benefits
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Figure 5.9: Distribution of productivity benefits

(a) Frequency distribution (b) Median weekly income (c) Areas with highest benefits

Notes: Panel (a) displays the frequency distribution of predicted productivity benefits from a µg/m3 PM2.5

reduction in the second-stage estimation (cf. Eq. 5.8). Panel (b) reports the quadratic prediction of predicted
health benefits based on median weekly incomes in a given LAU with the corresponding 95% confidence

intervals. Panel (c) plots a ranking of the 10 highest estimated productivity effects across areas in England,
excluding the financial district (i.e., the City of London) due to its outlier status. A map plotting the

distribution of LAUs in the London region can be found in the Appendix (cf. Figure 5.A14).

in descending order. Notably, the most significant effects are primarily driven by the

London area, with Westminster (home to the United Kingdom’s Houses of Parliament)

occupying the top position in the ranking. This ranking, however, crucially excludes

the financial district of the City of London, where the estimated productivity benefits

translate into a sizable annual figure of more than 100 thousand pounds per capita,

due to the concentrated presence of numerous high-GVA financial service activities

in this area. Collectively, these findings suggest that when considering productivity

effects alone, prioritizing pollution reduction efforts in urban areas would likely prove

more efficient.

5.6 Policy implications

Spatial disparities and distributional trade-offs. Overall, the findings pre-

sented in Section 5.5.2 provide important insights into the complex trade-offs that

policymakers must navigate when designing pollution reduction policies. The ob-

served spatial disparities in productivity benefits, as highlighted in Section 5.5.2,

underscore the pivotal role of local economic factors in shaping the outcomes of

these policies. High-earning urban centers, exemplified by London, are poised to
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Figure 5.10: Distribution of benefits of a µg/m3 PM2.5 reduction

(a) Health benefits (b) Productivity benefits

Notes: The figures above plot the distribution of benefits across England induced by a 1 µg/m3 nationwide
reduction in the annual concentration of PM2.5 based on predicted values from Eq. 5.8. The resolution is contingent
on the highest available spatial granularity. Panel (a) refers to health benefits due to reduced pharmaceutical

spending, whereas Panel (b) refers to productivity gains as proxied by GVA per capita. In the legends, displayed
values are capped at the 99th percentile of the value distribution to ensure a clearer representation of the data.

benefit significantly from pollution reduction initiatives due to their concentration of

economic activities and high productivity levels. This urban advantage implies a dis-

proportionate positive direct economic impact of nationwide air quality improvements

in such areas.

It follows that failure to acknowledge spatial heterogeneity may result in overestimat-

ing or underestimating the economic gains associated with local pollution reduction

measures, which can subsequently misguide spatial resource allocation and policy

prioritization. Nevertheless, how such productivity gains are distributed among

socio-economic strata within different regions is ultimately mediated by many factors,

such as national fiscal redistributive policies or the underlying distribution of capital

ownership and wages, which I do not directly observe in my sample.
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While urban regions may experience more substantial economic gains, the health

benefits stemming from an overall pollution reduction exhibit a distinct distribution.

These health advantages, as discussed, tend to favor individuals and communities

that are economically disadvantaged, particularly among the elderly population. This

pro-poor characteristic underscores the potential for air quality improvements to

alleviate existing health inequalities (cf. Section 5.3) and improve the health status of

vulnerable segments of the population with less adaptive capacity to environmental

damage. Neglecting to consider this distributional dimension has the potential to

introduce bias in WTP estimates by not accurately reflecting the preferences and

health improvements experienced by various socioeconomic and demographic groups

(cf. Bento et al. 2015).

It follows that accounting for spatial heterogeneity in pollution-reduction benefits

has the potential to enhance public welfare through the design of more efficient

regulation and more precise benefit-cost analyses that can accurately account for the

distribution of different types of air pollution benefits across the population (Muller

and Mendelsohn, 2009). Therefore, the challenge for policymakers lies in finding

a balance between the distribution of different types of societal benefits to design

effective and equitable local pollution reduction strategies. An approach that has

been discussed in the literature entails distributional weights, which can be chosen

to reflect societal inequality aversion in line with ethical considerations (Adler, 2016;

Drupp et al., 2021).28

Co-benefits of climate policy. Finally, my findings also carry important policy

implications concerning the quantification and distribution of co-benefits of climate

change mitigation, which may foster air pollution reductions as a byproduct of

decreased reliance on fossil fuels (e.g., Wagner and De Preux 2016; Vandyck et al.

28The principle of equity weighting has already been enshrined in the UK official guidelines on
cost-benefit analysis (Treasury, 2016). Distributional weights are also integrated into Germany’s
approach for estimating climate change damages (UBA, 2019). These two real-world instances
exemplify the use of equity and distributional weights in economic and environmental policy
assessment.
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2020; Basaglia et al. 2023). Currently, the public discourse typically centers around

the costs of climate policies for current consumers, which tend to be regressive in

developed countries (Sterner, 2012a; Klenert and Mattauch, 2016). Applied modeling

studies indicate that overall distributional outcomes, additionally incorporating

source-side impacts on wages and capital incomes (Fullerton and Muehlegger 2019),

exhibit a reduced regressive nature or sometimes even demonstrate a progressive

trend (Goulder et al., 2019). Yet, this still ignores the distribution of health benefits,

which I demonstrate to be potentially sizable and distributed pro-poor. Hence,

the overall distributional burden of climate policy might be less prominent than

previously assumed on poorer households, who typically endure higher exposure to air

pollutants. Relatedly, this suggests that policy-driven air quality improvements may

offer a potential avenue for mitigating environmental inequities (e.g., Cushing et al.,

2018; Hernandez-Cortes and Meng, 2023). Considering and effectively communicating

these health co-benefits, which provide immediate benefits to individuals impacted

by policy costs, could significantly contribute to gaining support for stricter climate

policies (Löschel et al., 2021), which face considerable political and public resistance

(Carattini et al., 2019; Douenne and Fabre, 2022).

5.7 Conclusion

There is currently limited empirical evidence to inform policymaking on which

nationwide environmental policies would be socially desirable. This paper provides

the first quasi-experimental estimate of the nationwide cost of air pollution that

jointly accounts for both health and productivity costs and examines their spatial

heterogeneity.

To address spurious correlation concerns in the distribution of air pollution, I exploit

atmospheric temperature inversions as a source of exogenous dynamic variation in

the spatial concentration of air pollution across England. I find that a plausibly
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exogenous 1 µg/m3 pollution shock causes significant increases in pharmaceutical

expenditures as well as a reduction in GVA per capita over the same year.

Specifically, I find that a 1 µg/m3 increase in the annual average concentration of

PM2.5 leads to an increment in expenditures on pharmaceuticals of 32.7% (or £1.2

billion annually) and a reduction in gross value added (GVA) per capita of 1.6% (or

around £13 billion annually). Taken together, these estimates amount to a total per

capita damage of approximately £445. In comparison, this value significantly exceeds

current cost estimates used by the UK government to assess nationwide optimal

policy stringency and previous findings in the literature that focused exclusively on

either health or productivity costs (cf. Pimpin et al., 2018; Dechezleprêtre et al.,

2019; UK-AIR, 2023).

Furthermore, I leverage my causal estimates to simulate counterfactual reductions

of 1 µg/m3 in PM2.5 and investigate the individual distributions of both health and

productivity benefits and their correlation with demographic and socio-economic

factors. While health benefits tend to be larger for the elderly and progressively

distributed along the income distribution, productivity gains tend to be regressive

and concentrated in large urban areas.

These findings carry four key policy implications. First, accurately measuring both the

health and productivity impacts of pollution is pivotal to providing comprehensive

damage estimates that inform the calibration of environmental regulations that

optimize both public health and economic growth. Failure to capture either cost

dimension likely results in underestimating the societal benefits associated with

pollution reduction measures, which can subsequently misguide spatial resource

allocation and policy prioritization.

Second, the empirical evidence presented in this study suggests that neglecting local

variations in the demand for air quality can introduce sizable bias into WTP estimates,

potentially compromising the accuracy and validity of cost-benefit assessments of

optimal environmental policy stringency. Policymakers face the challenge of balancing
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different types of societal benefits to design efficient and equitable local pollution

reduction strategies. This may involve considering distributional weights for economic

and environmental policy assessment, as proposed in the literature (e.g., Adler 2016).

Third, I provide complementary causal insights linking pollution-driven productivity

losses to work absenteeism. This finding carries further distributional implications as

a reduced capacity to work due to pollution-driven morbidity may trap low-income

individuals in an illness-poverty cycle (Ketcham et al., 2019), owing to their typically

disproportionate exposure (e.g., Samoli et al. 2019; Colmer et al. 2020). Reducing

air pollution could thus further serve as a means to alleviate income disparities

that might endure across successive generations (e.g., Isen et al. 2017; Durlauf and

Seshadri 2018; Chetty and Hendren 2018).

Finally, while prior economics literature on the health costs of pollution primarily

focuses on its effects on mortality (e.g., Deryugina et al. 2019), my findings show

that disregarding the economic burden of morbidity impacts would significantly

underestimate the overall economic costs of pollution. Additionally, I show that these

impacts extend beyond respiratory and cardiovascular diseases typically considered

in previous studies (e.g., Deschenes et al. 2017).
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5.A Descriptive evidence

5.A.1 Yearly spatial distribution of inversion events

Figure 5.A1: Distribution of inversion events (950 hPa) in 2012

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2012.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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Figure 5.A2: Distribution of inversion events (950 hPa) in 2013

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2013.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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Figure 5.A3: Distribution of inversion events (950 hPa) in 2014

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2014.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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Figure 5.A4: Distribution of inversion events (950 hPa) in 2015

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2015.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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Figure 5.A5: Distribution of inversion events (950 hPa) in 2016

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2016.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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Figure 5.A6: Distribution of inversion events (950 hPa) in 2017

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2017.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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Figure 5.A7: Distribution of inversion events (950 hPa) in 2018

Notes: The figure plots the distribution of inversion events below 950 hPa computed on a 6-hour frequency in 2018.
The spatial resolution corresponds to 5km x 5km grids following the BNG reference system.
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5.A.2 Temporal distribution of inversion episodes

Figure 5.A8: Frequency monthly counts of inversion episodes

(a) 950 hPa (b) 925 hPa

(c) 975 hPa (d) Nights (950 hPa)

Notes: Figures plot a matrix of frequency counts of inversion events occurring each month below a given pressure
level (hPa) indicated by the figure heading.

260



5.A.3 Concentrations of PM10, NOx, NO2 and C6H6 in µg/m3

across England

Figure 5.A9: Distribution of air pollutants concentrations across England

(a) PM10 (b) C6H6

(c) NOx (d) NO2

Notes: The figures above plot the distribution of pollution concentrations in England averaged from 2012 and 2018
across 5km x 5km grids following the BNG reference system. Pollution concentration refers to average background
annual average concentrations in µg/m3 across 5km x 5km grids based on data reported by DEFRA. The legend

displays concentration defined in µg/m3.
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5.A.4 Prescription data: descriptive statistics

Figure 5.A10: Spatial distribution of GPs and patients across England

(a) GPs

(b) Total patients

Notes: Figures plot the distribution of the average number of general practitioners (GPs) and the total number of
patients reported by each registered practice to NHS Digital aggregated at a 5km x 5km grid level.
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Figure 5.A11: Spatial distribution of prescription items by therapeutic section

(a) Cardiovascular

(b) Respiratory

(c) Central nervous

Notes: Figures plot the distribution of the average number of yearly prescription items by therapeutic section
issued by each registered practice to NHS Digital aggregated at a 5km x 5km grid level.
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5.A.5 Mapping of GP practices across England by postcodes

Figure 5.A12: Spatial distribution of GP practices in English regions

Notes: The figure above displays the geographic distribution of GP practices in England, utilizing Geographic
Information System (GIS) tools.
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5.A.6 Clinical Commissioning groups in England

Figure 5.A13: Spatial distribution of Clinical Commissioning groups (CCGs) in
England

Notes: The figure above plots the distribution of Clinical Commissioning groups (CCGs) in England.
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5.A.7 LAUs in London

Figure 5.A14: Spatial distribution of LAUs in the London region
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Notes: The figure is sourced from the Office for National Statistics (ONS) website and plots the distribution of
LAUs (which correspond to boroughs) in the London region.
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5.A.8 Pre-existing pollution exposure inequalities along the

income distribution

Figure 5.A15: Quadratic predictions of pollution concentrations in 2011 based on
income deprivation scores

(a) PM2.5 (µg/m3) (b) PM10 (µg/m3)

(c) NOx (µg/m3) (d) NO2 (µg/m3)

(e) SOx (µg/m3) (f) C6H6 (µg/m3)

Notes: Quadratic predictions of the pollutant concentration (as indicated in the heading) with the 95% confidence
interval based on income deprivation scores with histograms plotting the frequency distributions of each variable

indicated in the x- and y-axis. See Section 5.3 for more details.
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5.B Robustness analyses

5.B.1 Effect of air pollution by therapeutic section

Figure 5.A16: Results by therapeutic section

(a) Cardiovascular

(b) Respiratory

(c) Central nervous

Notes: The figures above plot the estimated effect from the second stage (Eq. 5.7) of the 2SLS estimation
described in Section 5.4 by BNF therapeutic section. The bar charts display mean point estimates with overlaid
lines representing confidence intervals, respectively delineating 95% confidence intervals in gray and 90% confidence
intervals in color. Pharmaceutical expenditures are reported by each registered practice and have been aggregated
at a 5km x 5km grid level. Pollution concentration refers to average background annual average concentrations in
µg/m3 across 5km x 5km grids based on data reported by DEFRA. Weather controls include mean ground-level
temperature (�C), precipitation (mm), wind speed (knots), and relative humidity (%). All regressions additionally

control for the total number of GPs and are weighted by the total number of patients in each grid.
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5.B.2 Additional model specifications by air pollutant

Effects on pharmaceutical spending

Figure 5.A17: Results by by air pollutant

(a) PM2.5 (1 µg/m3) (b) PM10 (1 µg/m3)

(c) NOx (1 µg/m3) (d) NO2 (1 µg/m3)

(e) SOx (0.1 µg/m3) (f) C6H6 (0.1 µg/m3)

Notes: The figures above plot the estimated effect from the second stage (Eq. 5.7) of the 2SLS estimation
described in Section 5.4. The bar charts display mean point estimates with overlaid lines representing confidence

intervals, respectively delineating 95% confidence intervals in gray and 90% confidence intervals in color.
Pharmaceutical expenditures are reported by each registered practice and have been aggregated at a 5km x 5km
grid level. Pollution concentration refers to average background annual average concentrations in µg/m3 across
5km x 5km grids based on data reported by DEFRA. Weather controls include mean ground-level temperature
(�C), precipitation (mm), wind speed (knots), and relative humidity (%). All regressions additionally control for
the total number of GPs and are weighted by the total number of patients in each grid. 950 hPa represents the
baseline specification presented in the paper. Details on alternative specifications can be found in Section 5.5.1.
LAU cluster and 5km Grid report results for the baseline model with clustered standard errors at the LAU and

5km grid level, respectively.
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Effects on GVA per capita

Figure 5.A18: Results by air pollutant

(a) PM2.5 (1 µg/m3) (b) PM10 (1 µg/m3)

(c) NOx (1 µg/m3) (d) NO2 (1 µg/m3)

(e) SOx (0.1 µg/m3) (f) C6H6 (0.1 µg/m3)

Notes: The figures above plot the estimated effect from the second stage (Eq. 5.7) of the 2SLS estimation
described in Section 5.4. The bar charts display mean point estimates with overlaid lines representing confidence
intervals, respectively delineating 95% confidence intervals in gray and 90% confidence intervals in color. The
outcome is GVA per capita which represents the ratio of local GVA, sourced from the UK ONS, divided by the

total population in the LAU. Pollution concentration refers to average background annual average concentrations in
µg/m3 across LAUs based on data reported by DEFRA. Thermal inversions are defined as a positive upward
temperature gradient from the surface, and calculated on a 6-hour frequency using data from the ECMWF.

Weather controls include mean ground-level temperature (�C), precipitation (mm), wind speed (knots), and relative
humidity (%). All regressions are weighted by the total population in each LAU. 950 hPa represents the baseline

specification presented in the paper. Details on alternative specifications can be found in Section 5.5.1.
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5.B.3 Effects on prescriptions items and total costs to the

NHS

Figure 5.A19: Effects of air pollutants on prescriptions items

(a) PM2.5 (1 µg/m3) (b) PM10 (1 µg/m3)

(c) NOx (1 µg/m3) (d) NO2 (1 µg/m3)

(e) SOx (0.1 µg/m3) (f) C6H6 (0.1 µg/m3)

Notes: The figures above plot the estimated effect from the second stage (Eq. 5.7) of the 2SLS estimation
described in Section 5.4. The bar charts display mean point estimates with overlaid lines representing confidence
intervals, respectively delineating 95% confidence intervals in gray and 90% confidence intervals in color. The

outcome is the number of prescription items reported by each registered practice and has been aggregated at a 5km
x 5km grid level. Pollution concentration refers to average background annual average concentrations in µg/m3

across 5km x 5km grids based on data reported by DEFRA. Weather controls include mean ground-level
temperature (�C), precipitation (mm), wind speed (knots), and relative humidity (%). All regressions additionally

control for the total number of GPs and are weighted by the total number of patients in each grid. 950 hPa
represents the baseline specification presented in the paper. Details on alternative specifications can be found in
Section 5.5.1. LAU cluster and 5km Grid report results for the baseline model with clustered standard errors at

the LAU and 5km grid level, respectively.
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Figure 5.A20: Effects of air pollutants on total costs to the NHS

(a) PM2.5 (1 µg/m3) (b) PM10 (1 µg/m3)

(c) NOx (1 µg/m3) (d) NO2 (1 µg/m3)

(e) SOx (0.1 µg/m3) (f) C6H6 (0.1 µg/m3)

Notes: The figures above plot the estimated effect from the second stage (Eq. 5.7) of the 2SLS estimation
described in Section 5.4. The bar charts display mean point estimates with overlaid lines representing confidence
intervals, respectively delineating 95% confidence intervals in gray and 90% confidence intervals in color. The
outcome is the estimated overall cost to the NHS (e.g., accounting for discounts from suppliers and deducting

patients’ out-of-pocket expenses) reported by each registered practice and has been aggregated at a 5km x 5km grid
level. Pollution concentration refers to average background annual average concentrations in µg/m3 across 5km x
5km grids based on data reported by DEFRA. Weather controls include mean ground-level temperature (�C),

precipitation (mm), wind speed (knots), and relative humidity (%). All regressions additionally control for the total
number of GPs and are weighted by the total number of patients in each grid. 950 hPa represents the baseline
specification presented in the paper. Details on alternative specifications can be found in Section 5.5.1. LAU

cluster and 5km Grid report results for the baseline model with clustered standard errors at the LAU and 5km grid
level, respectively.
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5.B.4 Reduced form (RF) with leads and lags

Figure 5.A21: Dynamic RF effects on prescriptions items

(a) One lag and one lead (b) Two leads

Notes: The figures above plot the estimated 99% confidence intervals from the reduced form (Eq. 5.5) estimation
described in Section 5.4. Specifically, the model regresses pharmaceutical expenditures on the frequency of

inversion episodes and includes a set of leads and lags of inversion events (as indicated by the figure heading).
Pharmaceutical expenditures are reported by each registered practice and have been aggregated at a 5km x 5km
grid level. Weather controls include mean ground-level temperature (�C), precipitation (mm), wind speed (knots),
and relative humidity (%). All regressions additionally control for the total number of GPs and are weighted by the

total number of patients in each grid.

5.B.5 LAUs as alternative unit of observation

Figure 5.A22: Effects of a 1 µg/m3 annual increase in PM2.5 on pharmaceutical
expenditures

Notes: The figures above plot the estimated effect from the second stage (Eq. 5.7) of the 2SLS estimation
described in Section 5.4. The bar charts display mean point estimates with overlaid lines representing confidence

intervals, respectively delineating 95% confidence intervals in gray and 90% confidence intervals in color.
Pharmaceutical expenditures are reported by each registered practice and have been aggregated at the LAU level.
PM2.5 concentration refers to average background annual average concentrations in µg/m3 across LAUs based on
data reported by DEFRA. Weather controls include mean ground-level temperature (�C), precipitation (mm), wind
speed (knots), and relative humidity (%). All regressions additionally control for the total number of GPs and are
weighted by the total number of patients in each grid. Year effects controls for year fixed effects and represents the
baseline specification. Regional trends additionally absorb heterogeneous trends across English regions whereas

50km trends account for trends at the 50km x 50km grid level.
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5.C Changes in defensive behavior over time

The concluding section of the empirical analysis delves into the temporal evolution of

defensive behavior and investigates the influence of shifts in pollution information on

these changes. I begin by assessing whether revealed preference estimates vary over

time: Figure 5.A23 plots the estimated second-stage coefficients on the effects of a

PM2.5 shock on the demand for prescription items across different time windows in

the sample. The figure illustrates an upward trend in the estimated demand effects

over time, indicating an average increase in defensive behavior responses to pollution

increases.

Figure 5.A23: Effects of PM2.5 on demand for pharmaceuticals over time.

Note: The figure plots the results of the 2SLS estimation framework outlined in Section 5.4 when splitting the
sample before and after 2015. estimations All estimations include yearly effects, fixed effects at the municipality
level, and control for surface-level temperature, rainfall, wind speed, and relative humidity in a given grid. The
time frame considered for each estimation is indicated in the x-axis. The two bars plot 90% confidence intervals.

Drawing on a growing number of economic studies leveraging newspaper data as

source of variation in the salience of events (e.g., Li et al., 2014; Baker et al.,

2016; Beach and Hanlon, 2023), I empirically evaluate the extent to which greater

information provision in the media could explain this trend leveraging textual analysis

of newspaper articles. Specifically, I construct a newspaper-based index to capture

variation across time in the public discourse within England on the health implications

of exposure to air pollution. The index reflects the frequency of print and online
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articles in leading newspapers, namely The Guardian, The Telegraph, and The

Independent that contain terms related to a discussion on the health effects of air

pollution.29

Exposure to pollution information through newspapers. First, I developed

a search strategy to identify newspaper articles that discuss air pollution which

contain keywords such as ”particulate matter” or ”aerosol particles” or ”PM2.5” or

”air pollution” and then narrow down the focus to articles that explicitly discuss

the health effects of pollution exposure by additionally including terms such as

”health” or ”morbidity” or ”mortality” or ”sick*” ”ill*” as well as terms related to

the health domains more commonly linked to pollution, for instance, ”respiratory”

or ”cardiovascular” or ”nervous”. scaled by newspaper-specific publishing trends to

ensure that spikes in our index are not driven by newspaper-specific shocks. After

scaling the raw counts, I standardize each newspaper’s series, average across all

papers, and normalize the resulting index to 100 over the period, following the same

standardization and normalization procedure by Baker et al. (2016) to leverage

newspaper data in an empirical setting. The complete search strategy and a detailed

description of the steps undertaken to construct my newspaper index is discussed

later in the Appendix.

Figure 5.A24 plots the evolution of the newspaper-based index over the period of

time under investigation.30 In general, there has been a consistent and substantial

rise in newspaper coverage of air pollution, reflecting greater awareness of environ-

mental topics (Schmidt et al., 2013) and mirroring the expanding scientific literature

connecting air pollution exposure to an increasingly diverse range of health conditions

(Romanello et al., 2021). In the remainder of this section, I will leverage variations

29I restrict the analysis to the three largest newspapers retrievable from Factiva, as relying on a
single source provides consistent, comparable, and thus more robust counts.

30Particulate matter pollution has dominated the mainstream public discussion on the health
effects of air pollution over the last decades. It is therefore difficult to disentangle articles that deal
with the effects of specific air pollutants other than fine particles. For this reason, variations in the
newspaper-based index should be interpreted bearing in mind that most of the increase in pollution
information provision is disproportionately linked to fine particles.
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in the newspaper-based index to empirically investigate how changes in pollution

information available to the wider public affect defensive investment responses.

Figure 5.A24: Evolution of the newspaper index over time. 2012–2018.

Note: Based on yearly series from 2012 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva. The following search strategy was

applied to identify newspaper articles used to compute this index: (particulate or ”particulate matter” or
”suspended particulate matter” or ”aerosol particles” or ”PM2.5” or ”particulate emission*” or ”air pollution”) and
(health or morbidity or mortality or sick* ill* or death or harmful or respiratory or cardiovascular or nervous)

The role of pollution information in the news. Table 5.A1 presents the

estimated effects attributed to changes in the newspaper index. I amend my reduced

form equation (see Eq. 5.5) by including two additional coefficients: (1) an interaction

between the newspaper index and the concentration of PM2.5, and (2) an interaction

between the squared newspaper index and PM2.5. The quadratic form facilitates

the identification of any non-linear relationships between information provision and

defensive behavior. By having an interaction term, my identification strategy captures

the additional effect on demand for pharmaceuticals - at a given PM2.5 concentration

- due to to additional pollution information in the media. Crucially, the interactive

term allows for incorporating fixed effects without dropping the newspaper index

due to collinearity with time effects.

Comparing columns (1) and (2), the estimated coefficients reveal that an increment

in pollution exposure as proxied by the newspaper-based index correlates with

an increase in pharmaceutical demand, yet at a diminishing rate. To gauge the
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Table 5.A1: Exposure to pollution information in the news and demand for phar-
maceuticals

Items (log) Items (log)

PM2.5 (µg/m3) � News Index (log) 0.0163*** 0.0638***

(0.00338) (0.00755)

PM2.5 (µg/m3) � News Index (log)2 -0.00969***

(0.00120)

Controls X X
N 41830 41830

Notes: Tables show the coefficients estimated from the reduced form of the IV approach,
where the frequency of thermal inversions is used as an instrument for pollution con-
centrations. GP practices’ location has been geocoded using GIS tools and assigned
to 5km x 5km grids in accordance with the Ordnance Survey National Grid reference
system. Total items prescribed are reported by each registered practice to the NHS
Business Services Authority (BSA) and have been aggregated at a 5km x 5km grid
level. Pollutants’ concentration refers to background annual average concentrations
on a 5km x 5km grid as reported by the British Department for Environment, Food
and Rural Affairs. Thermal inversions are defined as a positive upward temperature
gradient from the surface, and calculated on a 6-hours frequency using data from the
ECMWF. Climate controls are retrieved on a 3-hours frequency from the UK Met Office
and aggregated at the yearly level. Coefficients are weighted by the population of each
LAU so as to be representative of the average citizen in England rather than the average
LAU.
* p < 0.10, ** p < 0.05, *** p < 0.01.

magnitude of these coefficients, let’s consider the median PM2.5 concentration in the

estimation sample (9.74) and the coefficients from column (2), a 5% rise in the index

is linked to an approximate 0.75% increase in demand for prescription items. Taken

together, these findings indicate that the provision of information regarding the

effects of pollution plays a significant role in shaping revealed preferences in line with

recent findings by Ito and Zhang (2020). This implies that when access to information

is limited, consumers’ actual willingness to pay for air quality enhancements may

be underestimated. Unequal access to information across socioeconomic strata is

therefore likely to play an important role in generating spatial disparities in defensive

behavior. The extent of unequal access to information across socioeconomic strata is

therefore likely to play an important role in generating spatial disparities in defensive

behavior (cf., Ramı́rez et al., 2019; Hausman and Stolper, 2021).
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5.D Computing the newspaper-based index

Search Strategy: (particulate or ”particulate matter” or ”suspended particulate

matter” or ”aerosol particles” or ”PM2.5” or ”particulate emission*” or ”air pol-

lution”) and (health or morbidity or mortality or sick* ill* or death or harmful or

respiratory or cardiovascular or nervous)

To construct my newspaper-based index I limited the search to leading newspapers

to ensure the quality of the underlying articles and avoid including newspapers

that only exceptionally report on the topic, spuriously creating huge volatility over

time. Here, I focus on the Independent, the Telegraph, and the Guardian, which are

the largest newspapers in the country covered by Factiva. For each newspaper, I

separately downloaded the annual count of articles that are picked up by my search

strategy as well as the total number of articles published by the outlet. To account

for potential trends in publishing over the years, I start by computing a simple

newspaper-specific ratio of articles matching my search strategy over the total article

count by newspaper. A challenge with these raw article ratios is that the number

of articles varies a lot across newspapers and time, making it difficult to simply

average the ratios across several newspapers in a given country. I, therefore, apply

the standardization approach of Baker et al. (2016) to obtain my newspaper index. I

begin with the simple ratio of articles on climate policy uncertainty divided by the

total article counts for each newspaper (see Figure 5.A25), and then divide this ratio

by the newspaper-specific standard deviation across all years.

This creates a newspaper-specific time series with a unit standard deviation across

the entire time interval, which ensures that the volatility of the index is not driven

by the higher volatility of a particular newspaper. I then average these standardized

series across all newspapers within each country by year. Lastly, I normalize the

yearly series to a mean of 100 over the time interval.
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Figure 5.A25: Ratio of matching articles over total articles

(a) The Independent (b) The Guardian

(c) The Telegraph

Notes: Based on yearly series from 2012 to 2018.
Source: Authors’ own calculations based on newspaper articles from Factiva.
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steuerreform.

Bundesgesetzblatt I, S.378 (1999). Gesetz zum einstieg in die ökologische steuerreform.
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