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Preamble

This dissertation, submitted as a cumulative thesis, was prepared under the guidance of Prof.
Dr. Volker Abetz at the Institute of Membrane Research, Helmholtz-Zentrum Hereon
(Geesthacht, Germany) and the Institute of Physical Chemistry, University of Hamburg
(Department of Chemistry, Faculty of Mathematics, Informatics, and Natural Sciences). The
work began on January 05, 2020, and was submitted on August 11, 2023. It includes reprints
of three first-author publications, with summaries provided for each and acknowledgement of

the contributions of co-authors and collaborators.
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(Pronounced as Shree)

“While addressing the Guru (term for a "mentor, guide, expert, or master"), Sashtra (word
that means "precept, rules, manual, compendium, book or treatise"), Pujyasthana (meaning
holy places, places of knowledge or worship), the word Shree should be added at the
beginning. Prostrating before them in devotion.”

— Lord Shiva (KulArnava Tantram, Chapter 11, Verse 43.) (Pandit, Vidyaratna and
Woodroffe, 1999)
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1. Abstract

Polymer based microfiltration and ultrafiltration membranes are commonly manufactured
using methods that take advantage of the phase-inversion phenomenon essential in
creating porous structures. To facilitate phase-inversion, organic solvents are
fundamental ingredients in manufacturing porous polymer membranes. Commonly used
organic solvents such as N-methyl-2-pyrrolidone (NMP), Dimethylacetamide (DMAC),
Dimethylformamide (DMF), Dimethyl sulfoxide (DMSO), Tetrahydrofuran (THF), etc.
are classified as hazardous materials by most health and environmental agencies.
Exposure to organic solvents is associated with liver and lung diseases in humans and
animals. Their improper disposal can pose a significant threat to the environment. The
development of alternative membrane manufacturing methods that do not use organic

solvents is a need of the hour since an eventual prohibition of some of them is foreseen.

Like porous polymer membranes, another class of materials called polymer foams are
defined by their porous nature. However, most polymer foams’ production methods do
not involve any organic solvents. Therefore, the implementation polymer foams as
polymer membranes offers the potential to eliminate organic solvents, making the
membrane manufacturing process more sustainable, safe, and environmentally friendlier
than the current state-of-the-art membrane manufacturing methods. Although polymer
foams are used in some filtration applications such as air filters that restrict macroscopic
particle sizes, they cannot be implemented as membranes for microscopic separation
applications such as ultrafiltration due to the unavailability of open-celled nanocellular

foams.

Therefore, based on the abundant state of the art available in the field of polymer
membranes and polymer foams, this work aims to develop open-celled nanocellular

polymer foams capable of ultrafiltration. Development of methods that deliver such
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foams is pursued, and the creation of foam-based ultrafiltration membranes is aimed, thus

eliminating organic solvent usage.

Polyethersulfone (PESU) was selected as the base material to produce polymer foams
owing to its prominent use in ultrafiltration (UF) membranes. A blend of PESU and
poly(N-vinylpyrrolidone) (PVP) was developed and characterized for batch foaming.
This method was found to yield nanocellular foams. However, these foams were not
directly usable for UF applications due to the presence of a non-foamed skin layer. The
non-foamed skin layer was eliminated using an innovative sandwich sample method and
aqueous sodium hypochlorite (NaOCI) solution treatment. The resultant foam was found
to exhibit retention performance that was comparable to state-of-the-art UF membranes,

while the water flux required significant improvements.

In order to investigate the potential of a similar blend combination i.e. PESU along with
a water-soluble polymer for large-scale production of foams, foam extrusion was pursued,
and PESU/poly(ethylene glycol) (PEG) blends were investigated. Unlike the PESU/PVP
blend, manufactured through melt-state compounding, the PESU/PEG blend was
developed material absorption i.e. by allowing liquid PEG to absorb within PESU taking
advantage of the porous structure of PESU flakes and was directly used in foam extrusion.
The blend composition was optimized to produce continuous microcellular open-celled
foams when CO. and H2O were utilized as foaming agents at specific process settings.
Additionally, adding PEG resulted in a processing temperature 120 — 150 °C lower than
that of PESU (320 °C — 350 °C). Using an annular slit nozzle, extruded hollow fibers with

open-celled foam structure with an average cell size of 5 um were produced.

The same PESU/PEG blend, when extruded without any foaming agents, resulted in the
formation of uniformly distributed closed cell pores with an average pore size of 500 nm

throughout the extrudate. However, the extrudate did not maintain the hollow fiber shape
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due to low melt elasticity at the nozzle. Also, the absence of open porosity posed a

significant challenge in any utilization for permeation.

In order to address these limitations, a ternary blend PESU/PEG/PVP was developed
using the same material absorption method as PESU/PEG. The extrusion of this blend
without using any foaming agents resulted in an increased melt elasticity, thus retaining
the nozzle's hollow fiber geometry. Also, the ternary blend's extruded hollow fiber
showed a higher porosity than the PESU/PEG blend. Subsequently, through optimization
of the processing parameters, the porosity was increased. After post-treatment of the
hollow fibers with aqueous NaOCI, large portions of PEG and PVP were dissolved,
further increasing porosity and making the fibers partially open cellular and permeable.

This enabled the functionalization of these hollow fibers as membranes.

The different miscibilities of PVP and PEG with PESU resulted in different dissolution
mechanisms, combined with the surface evaporation of PEG from the extruded fibers
synergistically, resulting in different surface and internal porosities. As a result, the
separation layer on the outer surface of these extruded hollow fiber membranes was found
to have a pore size of approximately 100 nm and an internal open pore size of <1 um. In
addition, filtration performance and water flux comparable to state-of-the-art

ultrafiltration (UF) membranes were observed.

This study found polymer foaming as a viable alternative to traditional polymer
membrane production methods that rely on organic solvents. Flat sheet and hollow fiber
foam-based membranes were produced using binary and ternary blends of PESU, PVP,
and PEG. The characteristics and performance were found to be comparable to those
produced using production methods that involve the use of organic solvents. However,
further optimization and improvements are needed to fully realize this method's potential.
Nevertheless, this research opens up new horizons and fields of research in developing

foam-based ultrafiltration membranes that are more sustainable and safe.
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2. Zusammenfassung

Bei der Herstellung polymerbasierter Mikrofiltrations- und Ultrafiltrationsmembranen
werden in der Regel Verfahren eingesetzt, die sich fur die Schaffung pordser Strukturen
das Ph&nomen der Phaseninversion zunutze machen. Zur Erleichterung der
Phaseninversion sind organische Losungsmittel ein wesentlicher Bestandteil der
Herstellung pordser Polymermembranen. Haufig verwendete organische Losungsmittel
wie  N-Methyl-2-pyrrolidon  (NMP),  N,N-Dimethylacetamid (DMAc), N,N-
Dimethylformamid (DMF), Dimethylsulfoxid (DMSO), Tetrahydrofuran (THF) usw.
werden von den meisten Gesundheits- und Umweltbehdrden als Gefahrstoffe eingestuft.
Die Exposition gegeniiber organischen Losungsmitteln wird unter anderem mit Leber-
und Lungenkrankheiten bei Menschen und Tieren in Verbindung gebracht. lhre
unsachgemale Entsorgung kann eine erhebliche Gefahr fir die Umwelt darstellen. Die
Entwicklung alternativer Membranherstellungsmethoden, die ohne organische
Losungsmittel auskommen, ist ein Gebot der Stunde, da ein Verbot einiger dieser Stoffe

absehbar ist.

Wie pordse Polymermembranen zeichnen sich auch die Polymerschaume durch ihre
pordse Struktur aus. Die meisten Verfahren zur Herstellung von Polymerschaumen
kommen jedoch ohne organische Losungsmittel aus. Daher bietet die Verwendung von
Polymerschdumen als Membranen das Potenzial, organische L&sungsmittel zu
eliminieren, was den Herstellungsprozess von Membranen nachhaltiger, sicherer und
umweltfreundlicher macht als die derzeitigen modernen Membranherstellungsverfahren.
Obwohl Polymerschdaume in einigen Filtrationsanwendungen wie z.B. Luftfiltern
verwendet werden, die makroskopische PartikelgréRen begrenzen, kénnen sie nicht als
Membranen fur mikroskopische Trennanwendungen wie z.B. Ultrafiltration eingesetzt

werden, da offenzellige nanozelluldre Strukturen nicht verfughbar sind.
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Daher zielt diese Arbeit auf die Entwicklung offenzelliger nanozellulérer
Polymerschaume ab, die zur Ultrafiltration fahig sind, auf der Grundlage des
umfangreichen Stands der Technik auf dem Gebiet der Polymermembranen und
Polymerschaume. Es werden Methoden entwickelt, die solche Schdume liefern, und es
wird die Herstellung von Ultrafiltrationsmembranen auf Schaumbasis angestrebt,

wodurch die Verwendung organischer Losungsmittel vermieden wird.

Polyethersulfon (PESU) wurde als Ausgangsmaterial fir die Herstellung von
Polymerschdumen ausgewdhlt, da es héaufig in Ultrafiltrationsmembranen (UF)
verwendet wird. Eine Mischung aus PESU und Poly(N-vinylpyrrolidon) (PVP) wurde
entwickelt und fiir das Batch-Schaumen charakterisiert. Es wurde festgestellt, dass diese
Methode offenzellige nanozellulédre Schaume ergibt. Diese Schaume waren jedoch nicht
direkt fir UF-Anwendungen verwendbar, da sie eine nicht geschdumte Hautschicht
aufwiesen. Die Bildung dieser nicht geschdumten Hautschicht wurde durch eine
innovative  Sandwich-Probenmethode und eine Behandlung mit  wassriger
Natriumhypochloritlésung (NaOCI) umgangen. Es wurde festgestellt, dass der daraus
resultierende Schaum eine Rickhalteleistung aufwies, die mit den modernsten UF-
Membranen vergleichbar war, wahrend der Wasserdurchfluss erheblich verbessert

werden musste.

Um das Potenzial einer ahnlichen Mischungskombination, d.h. PESU zusammen mit
einem wasserloslichen Polymer, fir die grof3technische Herstellung von Schaumstoffen
zu untersuchen, wurde die Schaumextrusion weiterverfolgt und PESU/Polyethylenglykol
(PEG)-Mischungen wurden untersucht. Im Gegensatz zur PESU/PVP-Mischung, die
durch Schmelzcompoundierung hergestellt wurde, wurde die PESU/PEG-Mischung
durch Materialabsorption entwickelt. Flissiges PEG wurde unter Ausnutzung der pordsen
Struktur von PESU-Flocken absorbiert und die Mischung wurde direkt in der
Schaumextrusion verwendet. Die Mischungszusammensetzung wurde optimiert, um
kontinuierliche mikrozellulare offenzellige Schaume zu erzeugen, wenn CO> und H20 als

Schaumbildner bei bestimmten Prozesseinstellungen verwendet wurden. Dariiber hinaus
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fuhrte die Zugabe von PEG zu einer Verarbeitungstemperatur, die 120 - 150 °C niedriger
war als die von PESU (320 °C - 350 °C). Unter Verwendung einer ringférmigen
Schlitzdise wurden extrudierte Hohlfasern mit offenzelliger Schaumstruktur und einer

durchschnittlichen Zellgré3e von 5 um hergesteli.

Wurde dieselbe PESU/PEG-Mischung ohne Schaumbildner extrudiert, so bildeten sich
im gesamten Extrudat gleichméRig verteilte geschlossene Zellporen mit einer
durchschnittlichen Porengrde von 500 nm. Allerdings behielt das Extrudat aufgrund der
geringen Schmelzelastizitat an der Dise nicht die Hohlfaserform bei. AuRerdem stellte
das Fehlen offener Poren eine groRe Herausforderung bei der Anwendung fiir die

Permeation dar.

Um diese Einschrénkungen tberwinden zu kdnnen, wurde eine terndre Mischung aus
PESU/PEG/PVP entwickelt, die die gleiche Materialabsorptionsmethode wie PESU/PEG
verwendet. Die Extrusion dieser Mischung ohne Verwendung von Schaumbildnern fuhrte
zu einer erhéhten Schmelzeelastizitat, wodurch die Hohlfasergeometrie der Diise erhalten
blieb. AulRerdem wiesen die extrudierten Hohlfasern der ternaren Mischung eine héhere
Porositat auf als die der PESU/PEG-Mischung. Durch die Optimierung der
Verarbeitungsparameter konnte die Porositat anschlieBend erhoht werden. Durch eine
Nachbehandlung der Hohlfasern mit wassriger NaOCI-Ldsung wurden grof3e Teile von
PEG und PVP aufgelost, was die Porositat weiter erhdhte und die Fasern teilweise
offenzellig und durchldssig machte. Dies ermdglichte die Anwendung dieser Hohlfasern

als Membranen.

Die unterschiedlichen Mischbarkeiten von PVP und PEG mit PESU flhrten zu
unterschiedlichen  Auflésungsmechanismen, die in  Kombination mit der
Oberflachenverdampfung von PEG aus den extrudierten Fasern synergistisch zu
unterschiedlichen Oberflachen- und Innenporositaten flhrten. Infolgedessen wurde

festgestellt, dass die Trennschicht auf der &uBeren Oberfliche dieser extrudierten
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Hohlfasermembranen eine Porengrofle von etwa 100 nm und eine innere offene
PorengroRe von < 1 pm aufwies. Dartiber hinaus wurden Filtrationsleistung und
Wasserdurchfluss  vergleichbar mit modernen Ultrafiltrationsmembranen  (UF)

festgestellt.

In dieser Studie wurde festgestellt, dass das Schdumen von Polymeren eine praktikable
Alternative zu den herkdmmlichen Verfahren zur Herstellung von Polymermembranen
darstellt, die auf organische Lésungsmittel angewiesen sind. Unter Verwendung von
bin&ren und terndren Mischungen aus PESU, PVP und PEG wurden flache Platten und
Hohlfasermembranen auf Schaumbasis hergestellt. Es wurde festgestellt, dass die
Eigenschaften und die Leistung vergleichbar sind mit denen von Membranen, die unter
Einsatz organischer Losungsmittel hergestellt werden. Es sind jedoch weitere
Optimierungen und Verbesserungen erforderlich, um das Potenzial dieser Methode voll
auszuschopfen. Nichtsdestotrotz erdffnet diese Forschung neue Horizonte und
Forschungsfelder fir die Entwicklung von Ultrafiltrationsmembranen auf Schaumbasis,

die nachhaltiger und sicherer sind.
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3. Introduction

Membrane science and technology is a highly researched and rapidly growing field that
focuses on permeable barriers for substance separation, filtration, adsorption, and
purification. Together, principles from material science, chemistry, physics, and
engineering play a role in delivering its numerous applications in industries such as water
treatment, biomedical, chemical processing, gas separation, etc. Over the past few
decades, new and improved materials and processes have led to greater efficiency and
sustainability in membrane science, offering innovative solutions to a broad spectrum of
new challenges such as distillation, selective ion separation, hemodialysis, CO2, CHa, H>
separation and capture, etc. (Halder et al., 2017; Pulyalina et al., 2018; Abdul Latif et al.,
2021; Norddahl et al., 2021; Rahman, 2021)

To design, optimize, and implement membrane-based processes, it is essential to have a
deep understanding of the materials, from molecular structure to physical properties, high
customization of manufacturing processes, and a complete overview of the operating
conditions of these membranes. The field of membrane science continues to progress,
with the development of new materials and fabrication techniques that cater to the needs
and demands of the new world. Depending on the requirement, different materials,
including polymers, composites, ceramics, and metals, are used to develop membranes,
each offering unique properties and limitations. In the past few decades, polymer
membranes have gained widespread popularity for their versatility, affordability,
adaptability, and exceptional performance. (Baker, 2012; Singh, 2015; Drioli, Giorno and
Fontananova, 2017; Liguori et al., 2020; Nunes et al., 2020; Abetz, Brinkmann and
Sozbilir, 2021; Arumugham et al., 2021)
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3.1. Polymer Membranes

Polymer membranes are versatile and widely used in various industries. They are porous
objects made of polymers used for separating, filtering, and absorbing various particles,
fluids, and molecules (Abetz, Brinkmann and Sozbilir, 2021). The type of polymer
membrane utilized depends on the target application and the size of the particles to be
separated. The polymers and the processes involved can be tailored to achieve desired
pore sizes and porosities that facilitate separation and exclusion of required scale and
level. In addition to filtration, polymer membranes can be used for absorption processes
(Ahmad et al., 2010; Klingberg et al., 2019). They are ideal for gas and liquid separations,
with their selective permeability allowing for the effective separation of different
components, including specific ions. By customizing the polymer materials and
processes, polymer membranes can be tailored specifically to attract or repel particles or
molecules based on their size, charge, or polarity. (Ulbricht, 2006; Abetz, Brinkmann and
Sozbilir, 2021; Glass et al., 2021)

In the field of filtration membranes, polymer membranes can be divided into subtypes
based on the level of separation, including microporous, ultrafiltration, nanofiltration, and
reverse osmosis membranes (Abetz, Brinkmann and Sozbilir, 2021). Microporous
membranes have pore sizes ranging from 0.1 to 10 micrometers and are used for removing
microorganisms, protein aggregates, and suspended matter from liquids. Ultrafiltration
membranes have pore sizes ranging from 10 to 100 nanometers and are used for removing
colloidal matter, viruses, and macromolecules from liquids. Nanofiltration membranes
have pore sizes ranging from 1 to 10 nanometers and are used for removing ions,
oligomers, and small organic molecules from liquids. Reverse osmosis membranes have
pore sizes of less than 1 nanometer and are used for desalination and removing dissolved
inorganic salts from liquids. (Ferry, 1936; Spivakov and Shkinev, 2005; Al Aani, Mustafa
and Hilal, 2020)
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Permeate

Feed

—>

- Membrane module

Membrane

- Rejected component
Retentate
- Permeating component
Figure 1: Basic illustration of a membrane system. Feed solution containing

small (green) and large (red) particles in a liquid (blue) being separated by a
membrane (orange) resulting in a permeate solution containing only small particles

while a solution concentrated with red particles is rejected as a retentate.

Figure 1 shows a basic illustration of a membrane system. As the solution passes through
the porous membrane, the solutes larger than the membrane's pore size are retained on
the membrane surface, while the solvent and smaller solutes pass through the membrane
and are collected. This passed solution is known as ‘permeate'’. The solutes retained on
the membrane surface are called the 'retentate’. (Xu and Alsalhy Qusay, 2004; Pezeshk
et al., 2012; Grunig et al., 2020; Abetz, Brinkmann and Sozbilir, 2021)

The performance of an ultrafiltration membrane is characterized by its permeability and
selectivity. The permeability of a membrane is defined as the intrinsic membrane's ability

to allow the solution to pass through the membrane independent on the membrane
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thickness, whereas selectivity is a measure of its ability to retain solutes of a particular
molecular weight or size from the passed solution. The membrane's material, surface area,
thickness, pore size, pore types, etc., are a few of the critical factors that influence the
permeance and selectivity of the membrane. In addition, operating conditions such as
incoming pressure, operational temperature, and type of membrane module also influence

the performance of these membranes. (Siddiqui, Arif and Bashmal, 2016)

The pores in polymer membranes can also be classified based on their geometry and
connectivity. These include round, cylindrical, slit-shaped, cone-shaped, inkbottle, blind,
and interconnecting pores. Round pores are spherical, while cylindrical pores are circular
in cross-section and elongated along the membrane axis. Slit-shaped pores are narrow
channels that run parallel to the membrane surface and extend perpendicular towards the
depth, whereas interconnecting pores are interconnected channels that allow for the
transport of larger molecules. Apart from open and closed pores, there are pores open at
only one end. The shape and connectivity of the pores in a membrane can significantly
impact its separation performance, and the fabrication of polymer membranes plays a
vital role in determining the porous properties. (Rouquerol et al., 1994; Zdravkov et al.,
2007; Siddiqui, Arif and Bashmal, 2016; Gu et al., 2020)

3.1.1. Ultrafiltration

As mentioned before, ultrafiltration is used to separate solutes of high molecular weight
and size from a solution. The typical pore sizes in ultrafiltration membranes between 10
and 100 nanometres allow the separation of solutes with molecular weights ranging from
1000 to 1 million Daltons (Ferry, 1936; Spivakov and Shkinev, 2005; Youcai, 2018). As
these sizes find high use in various industries, including food and beverage,
pharmaceuticals, biotechnology, wastewater treatment, chemical, etc., development of
highly efficient and affordable ultrafiltration membranes deems high value and

importance.
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Ultrafiltration membranes are made of various polymers such as polyethersulfone,
poly(vinylidene fluoride), cellulose acetate, etc., as well as modern composite materials
involving carbon nanotubes, activated carbon and also the class of polymers, called block
copolymers that have the ability to microphase separate which is responsible for
exceptional isoporous structures (Radjabian et al., 2014; Abetz, 2015; Schulze et al.,
2015; Georgopanos et al., 2016; Rahman, 2021). Ultrafiltration is driven mainly through
the transmembrane pressure applied by the solution on the membrane surface to perform
size exclusion. (Xu and Alsalhy Qusay, 2004; Pezeshk et al., 2012; Griinig et al., 2020;
Abetz, Brinkmann and Sozbilir, 2021)

Besides water filtration, the primary application of ultrafiltration membranes where
suspended solids, colloids, bacteria, etc., are removed from the water, ultrafiltration has
several other applications in other industries. For example, ultrafiltration membranes have
many uses in the food industry, such as concentrating milk, separating whey proteins,
clarifying fruit juices, filtering alcohol, etc. In biomedicine, ultrafiltration membranes are
used to purify proteins and peptides, dialysis, isolate viruses & bacteria, concentrate drug
formulations, and separate and purify DNA and RNA. (Tang et al., 2009; Chamberland
et al., 2019; Al Aani, Mustafa and Hilal, 2020; Castro-Mufioz et al., 2020; Vu, LeBlanc
and Chou, 2020; Bazrafshan et al., 2021; Murugan et al., 2021; Alavijeh and Baltus,
2022)

3.1.2. Types of Polymer Membranes

Polymer membranes have different shapes and sizes, including flat-sheet membranes and
hollow fiber membranes. For generalized and industrially scaled applications, membrane
modules are constructed as assemblies of multiple membranes, providing in this way the
necessary membrane area which is necessary for a certain separation application. Both
flat-sheet and hollow fiber membranes are used in their respective modules that are

available in various sizes and shapes. Depending upon the application requirements,
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multiple membrane modules can be designed for parallel or continuous setups in a more

extensive filtration/separation system.

Flat-sheet membranes comprise a thin, porous polymer layer cast or constructed on a thick
flat porous substrate for support. The pore sizes of the thin layer are generally much
smaller than the substrate. Flat-sheet membranes, as shown in Figure 2, are used in gas
separation and liquid filtration applications where high flux and low pressure are required,
such as in water treatment, CO- capture, and reverse osmosis. These membranes can be
cut into different shapes and sizes, stacked on top of one another, or spiraled onto a
cylindrical core to fit different process requirements. (Pezeshk et al., 2012; Yin, Zhu and
Deng, 2013; Zhou et al., 2020; Abdul Latif et al., 2021; Mantel et al., 2022)

Figure 2: A flat sheet membrane roll.

Hollow fiber membranes, as shown in Figure 3, are cylindrical tubes with a hollow core
and a thin wall. They are used for applications requiring a large surface area to dissipate
the incoming pressure and yield a high flux. Multiple hollow fiber membranes are stacked

together into a module such that the permeate enters all fibers from the hollow cross-
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section and exits through their walls simultaneously. This leads to a large surface area in
a compact module. Both liquid and gas separation applications are carried out using

hollow fiber membranes.

Figure 3: Hollow fiber membrane.

The most commonly used materials for polymer membranes are polyacrylonitrile (PAN),
polyethylene (PE), polyamide (PA), polypropylene (PP), poly(vinylidene fluoride)
(PVDF), and polyarylsulfones such as polysulfone (PSU), Polyethersulfone (PESU) and
polyphynelinesulfone (PPSU). Properties, such as mechanical strength, thermal stability,
chemical resistance, fouling performance, philicity, etc. are assessed when selecting the
polymer for any required application. For example, PE and PP are economical polymers
frequently utilized for water treatment due to their excellent chemical resistance and
decent mechanical strength (Razzaz, Mohebbi and Rodrigue, 2018; Luo, Xie and Qin,
2021). Meanwhile, PVDF is a costlier material for high-temperature and high-pressure
applications because of its exceptional thermal stability and chemical resistance (Wang,
Li and Teo, 1999). Polyarylsulfones offer enhanced thermal and mechanical stability,
chemical resistance, and high-performance filtration properties, making them ideal for
demanding applications in various industries, including medical, chemical processing,

and water treatment. However, most membrane applications use polymers that contain
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additives or are polymer blends or copolymers that influence specific membrane
properties such as the material’s attraction or repulsion towards certain compounds,
surface roughness, porosity, etc. (Liu et al., 2011; Al Malek et al., 2012; Yin, Zhu and
Deng, 2013; Wang et al., 2014; Fang et al., 2015; Guo, Nicolae and Kumar, 2016;
Tsehaye, Velizarov and Van der Bruggen, 2018; Grinig et al., 2020; Zhou et al., 2020;
Mantel et al., 2022)

3.1.3. Polymer Membrane Manufacturing
Processes

The most common method to manufacture polymer membranes is phase
separation/inversion. Phase inversion involves a change in the state of a polymer solution
from a homogeneous solution to a heterogeneous one, forming a porous solid polymeric
membrane. Various phase separation techniques involving varied mechanisms depend on

the polymer used, the application aimed, and expected performance.

Solution casting or evaporation-induced phase separation is a simple process for
manufacturing flat-sheet polymer membranes. A polymer is dissolved in a compatible
organic solvent to form a homogeneous polymer solution. The solution is then cast onto
a flat surface, and the solvent evaporates until a solid polymeric membrane remains. The
choice of solvent, its concentration and rate of evaporation strongly influence the final
membrane's properties, such as morphology and mechanical strength. This process is
inexpensive, given its simplicity and upscalability. However, it lacks the customizability
of other techniques and is typically used for producing low-performance membranes used

in simple filtration applications. (Lalia et al., 2013; Galiano, 2015)

Thermally Induced Phase Separation (TIPS) is another process that removes thermal
energy to induce phase separation of a polymer solvent system with an upper critical

solution temperature (miscible only at higher temperature). The process has various
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advantages, including simplicity and high reproducibility. The polymer is generally
dissolved in a low molecular weight solvent at high temperatures, generally above the
polymer's melting point/glass transition temperature. This solution is then cast, similar to
the solution casting process. However, as the solution is cooled down in a controlled
manner, phase separation occurs due to immiscibility of the components. Phase
separation can also be driven by crystallization and in fact most TIPS polymers are
semicrystalline. (Fu et al., 2006; Kim et al., 2016; Liu et al., 2016)

The Non-Solvent Induced Phase Separation (NIPS) method is a versatile and cost-
effective approach that produces high-performance polymer membranes with well-
controlled morphologies and mechanical and separation properties. A non-solvent is a
substance that does not dissolve a particular solute (in this case, a polymer) in a given
solvent (in this case, an organic solvent), resulting in the solute separating from the
solution. The polymer is first dissolved in the solvent to form a polymer solution, which
is then added to a non-solvent. The controlled interaction between the polymer-solvent
solution and the non-solvent causes phase separation, forming a porous polymer
membrane. The properties of the final membrane, such as the pore size and its
distribution, mechanical strength, and selectivity, can be tailored by adjusting the
polymer, solvent, and non-solvent type,, and processing conditions. Other additives to
tailor specific properties or membrane performance can be added during this process.
Temperature, evaporation time and humidity play a crucial role in the NIPS process. The
NIPS process can be used to manufacture both hollow fiber and flat sheet membranes.
(Xu and Alsalhy Qusay, 2004; Sankhala et al., 2017; Noor et al., 2018; Liu et al., 2019;
Wang et al., 2019; Grinig et al., 2020)

For flat sheet membrane manufacturing through the NIPS process, the polymer solution
is cast onto a substrate and immersed into a coagulation bath where the non-solvent
solvent exchange occurs, causing the polymer to phase separate and form a porous
structure. The solvent is then allowed to evaporate, yielding a thin film of the polymer.

Similarly, for manufacturing hollow fiber membranes, a process known as spinning is
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used. First, the polymer-solvent solution is forced through a small orifice with a needle
called a spinneret. Next, it is mixed with a non-solvent when exiting the spinneret, which
causes the solution to precipitate out of the polymer and form a porous fiber. The fiber is
then collected onto a spool or winding drum, resulting in a hollow fiber membrane. This
process can be performed using either a dry-spinning or a wet-spinning process. In the
dry-spinning process, as the fiber is extruded through a spinneret, the solvent is
evaporated by air-drying or bypassing the jet through a heated chamber, leaving behind a
solid polymer fiber. The fiber is then collected on a rotating drum, forming a continuous,
porous fiber. In the wet-spinning process, the fiber is extruded through a spinneret, passed
through a spinning bath, mainly consisting of the non-solvent, and helps stabilize the
fiber. The fiber is then collected directly from the spinning bath or further dried to remove
any remaining solvent from the fiber. Figure 4 shows an illustration of continuous process

of membrane production employing NIPS. (Lalia et al., 2013; Tree et al., 2018)

Spinning is an efficient and scalable process, allowing for a high degree of control over
the fiber diameter, pore size, and membrane structure. The properties of the final
membrane can be tuned by adjusting the spinning conditions, such as the bore fluid flow
rate, spinning speed, temperature, solution concentration, additives, etc. Spinning can also
produce hollow fiber membranes with high mechanical strength and permeability,
making them suitable for various separation applications, such as water treatment and gas
separation. However, spinning leads to challenges, such as high-volume reproducibility,
that must be addressed. In addition, slight variations in the process can result in defects
in the membrane structure, such as cracks or voids, which can affect its performance and
durability. (Ahmad, Otitoju and Ooi, 2019)
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Figure 4: An illustration of a continuous process of flat sheet membrane production
(left) and hollow fiber membrane production (right) employing the non-solvent
induced phase separation. Reprinted (adapted) with permission from Tree et al., 2018.
Copyright 2023 American Chemical Society. (Tree et al., 2018)

3.1.4. Organic Solvents

Organic solvents play a crucial role in the discussed membrane fabrication methods as
they serve as the medium for dissolving the polymer and facilitating the formation of
pores in the membrane. The pore formation mechanism depends upon solvent
evaporation, causing voids as the polymer condenses into a porous membrane. The
solvent is chosen based on the polymer and the process involved. Therefore, the choice
of solvent and its concentration strongly influence the membrane's morphology and pore
size. (Wienk et al., 1996; Ahmad, Otitoju and Ooi, 2019)

The most commonly used organic solvents in the manufacture of polymer membranes are
N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide
(DMSO), dimethylacetamide (DMACc), and tetrahydrofuran (THF). The choice of
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solvents depends mainly on the polymer used, but every solvent has its unique
characteristics. For example, DMF and NMP share similar solubility, but NMP has a
higher boiling point than DMF. On the other hand, DMSO is a polar solvent with a good
swelling capability towards most polymers. (Monge, Darcos and Haddleton, 2004; Guan
et al., 2006; Dong et al., 2021; Shi, Xu and Qiu, 2022)

Outside of the membrane fabrication world, organic solvents have significant
disadvantages. Organic solvents are flammable, toxic, and have a negative impact on
human health and the environment. NMP having a low flash point makes it a fire hazard.
It also causes skin, eyes, and respiratory tract irritation on short exposures and may lead
to long-term health disorders (Akesson, 2001; ILO and WHO, 2021). DMF is linked to
several human disorders including liver damage and has a high vapor pressure causing it
to evaporate rapidly (Redlich, Beckett and Cullen, 1987; Redlich et al., 1987, 1988; CDC,
1990). DMSO is hygroscopic and can cause equipment corrosion during storage,
transport, and operation (Ellson et al., 2005). Some organic solvents are planned to be
banned by certain governments due to the risks associated with their use (European
Union, 2023).

Many researchers have devised alternatives to organic solvents to address these
disadvantages, namely green solvents. These green solvents include PolarClean, ionic
liquids, triethylphosphate (TEP), methyl lactate, y-valerolactone (GVL), etc. Some
researchers have also explored processes that do not use organic solvents but are based
on other ways of phase inversion, such as salt dilution-induced phase separation, which
takes advantage of polyanionic and polycationic interaction (Emonds et al., 2021).
However, although providing promising results, such processes, and green solvents bear
disadvantages. For example, the process of salt dilution-induced phase separation makes
use of expensive materials making the process uneconomical. lonic liquids'
manufacturing process is neither clean nor energy efficient, and they exhibit insufficient
biodegradability (Kamp et al., 2021). If exposed to the environment, TEP can cause

eutrophication in water bodies, stimulating algae growth and devastating natural
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ecosystems. Methyl lactate is unable to dissolve most polymers. (Figoli et al., 2014; Dong
et al., 2021; Emonds et al., 2021; Kamp et al., 2021)

In the industry, the disposal or reuse of organic solvents involved in manufacturing
polymer membranes is typically done through distillation and recycling. Distillation
involves separating the solvent from the polymer solution, allowing the solvent to be
reused or safely disposed of (Schuldt, Brinkmann and Georgopanos, 2021). Recycling
involves the reuse of the solvent in subsequent batches of the polymer solution (Razali et
al., 2015). However, distillation requires a significant investment in equipment. In
addition, it can be energy intensive, and recycled organic solvents suffer from a loss of
quality over time, leading to unacceptable product quality and contamination. (Seader J.
D., 1997; Gadalla et al., 2005)
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3.2. Polymer Foams

One of the key aspects that provides polymer membranes with their intrinsic ability of
filtration and separation is their inherent porosity. The pores' interconnection, sizes, and
porosity determine the filtration and separation performance. Similarly, polymer foams
are a class of materials that are characterized by their low density and pores. Foams,
however, generally do not require organic solvents in their production processes up to
large scale.

Polymer foams are mainly classified as closed-cell foams or open-cell foams. Closed-cell
polymer foams have a cellular structure in which the cells are entirely enclosed within a
continuous macromolecular phase, creating a low-density, soft, and impermeable
material. Some applications of closed-cell foams are thermal insulation, floatation
devices, protective packaging, structural insulation panels, sports equipment, etc. Open-
cell polymer foams have a cellular structure in which the cells are interconnected, creating
a network of open pores throughout the solid macromolecular phase. These
interconnections allow air and liquids to flow through these foams, making open-cell
foam soft and flexible. These foams generally have a lower bulk density and porosity than
closed-cell foams. Open cell foams are commercially used for furniture & automotive
cushioning, bedding materials, sponges, air filters, sound insulation, etc. Figure 5
provides a cross sectional schematic of closed and open cell foam. (Khemani, 1997;

Okolieocha et al., 2015; Gama, Ferreira and Barros-Timmons, 2018)
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Figure 5: (a) Closed-cell foam structure; (b) Open-cell foam structure.

To manufacture foams, the first general step is that a foaming agent impregnates the
polymer matrix under significant pressure. Foaming takes advantage of the plasticizing
effect of the foaming agent on the polymer chains, allowing foaming to occur at
temperatures well below the polymer's processing temperatures. The degree of reduction
of the polymer's glass transition temperature by a foaming agent is influenced by the
amount of it that can enter the polymer matrix at a specific temperature and pressure, i.e.,
the sorption capacity. The sorption of a foaming agent can be measured in any solid
polymer by performing a sorption measurement using a balance. Similarly, the diffusion
of the foaming agent through the polymer influences the foaming characteristics, which
can also be calculated based on the sorption balance measurements. Sorption and

diffusion measurements are discussed in section 4.1.5 in detail.

After the foaming agent diffuses within the polymer matrix at a particular pressure and
temperature, the polymer-foaming agent exists in a homogenous phase. Change or
fluctuations in the boundary conditions leads to nucleation. In polymers, nucleation is the
initial formation of a new phase (generally called the daughter phase) that has the
potential to grow and become a larger nucleus within the parent phase. This new phase
has lower free energy than the original parent phase. In polymer foaming, the parent phase

is the polymer melt, and the daughter phase is the bubble or foam cell. The difference in
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the Gibbs free energy between the two systems drives the transformation from the parent
phase to the daughter phase. The classical nucleation theory is the most commonly used
empirical theory to explain the mechanisms of cell nucleation and growth in polymeric
foams. The theory assumes that the nucleus (bubble) is a spherical droplet with a sharp
boundary and that all nuclei have the same physical properties as the bulk. It also
considers the effect of pressure drop on cell nucleation but disregards the effect of
pressure drop rates. The cell nucleation theory assumes that instantaneous pressure drop
is followed by instantaneous nucleation, although the pressure drop occurs over a span of
time. The theory also describes the bubble interface as an infinite flat plane surface.
Although these assumptions have limitations, the cell nucleation theory provides a basic
conceptual understanding of the nucleation process. It is therefore used to explain the
mechanism of bubble nucleation and growth in polymer foams. (Oxtoby, 1998; Kim et
al., 2011; Xu et al., 2013; Jung, 2014; Okolieocha et al., 2015)

There are two types of nucleation, homogenous nucleation and heterogeneous nucleation.
As the names convey, the formation of cells occurring solely as a response to changes in
temperature, pressure, or movement is defined as homogenous nucleation. Heterogenous
nucleation, on the other hand, involves triggering through the presence of foreign
particles, additives, or pre-existing defects, such as cavities that act as the centers for
nucleation. (Costeux et al., 2015; Okolieocha et al., 2015; Mokhtari Motameni Shirvan,

Famili and Golbang, 2016)

A form of Gibbs free energy equation (equation (1)) is used to define the nucleation
process. The Gibbs free energy change AGy is at its maximum when the radius of nucleus
R,, is equal to the critical radius r*. The critical radius can be defined as the minimum
radius a nucleus must have to become a stable cell in the polymer matrix. Below this
radius, the nucleus is reabsorbed into the polymer as the energy is insufficient for a
nucleus growth. The free volume AV, ., due to the presence of additives can be
ignored for pristine polymers. The critical radius depends on the pressure difference AP

and interfacial energy v,z as given in equation (2) providing equation (3) for determining
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the Gibb’s free energy barrier for homogenous nucleation AGg o, AS heterogenous
nucleation is triggered by and around the additives or defects, the particle type and
topography of its surface play an additional role in influencing the nucleation. The shape
factor S(6) as given in equation (4) is dependent on the contact angle 6 between the
bubble and the surface of the particle. This results into equation (5) denoting the Gibb’s
free energy barrier for heterogenous nucleation AGg ., as a product of the Gibb’s free
energy barrier for homogenous nucleation and surface factor. This lowers the activation

energy needed for bubble formation as shown in Figure 6.

4
AGE(Rn) = _§T[R%AP + nR%Yaﬁ - AVfree vol

(D)

. _ PV

" TP
)

. 16my2
AGE,Hom = 3AP2ﬁ
..03)
NOE %(2 + 3 cos(8) — cos3(0))

(@

Page | 27



Organic-solvent-free Fabrication of Ultrafiltration Membranes using Polymer Foaming and Extrusion

Free energy change (AG)

P

7

AGE,Het = AGE,HomS(Q)

(5

Nucleus forms - -} Nucleus grows >

<+« Newly formed
& interface

N

O

O AGE,.’wm
G
Critical radius r* I |
— R
. Radius R,
D > AGE pet
IfR, <7 | IfR, > 1"
Nuclei re-dissolve | Nuclei grow AGE hom

Figure 6: Bubble nucleation and nucleus growth as function of free energy change

and its dependence on critical radius. (Okolieocha et al., 2015)

Due to imperfections of the cell nucleation theory, researchers have developed various

modifications that take various factors into consideration. Some of these factors are

different contact angles based on the variety of shapes and sizes of nucleating

agents/defects, the polymer-filler interaction, the interaction between the foaming agents

and the polymers, etc. (Okolieocha et al., 2015; Mokhtari Motameni Shirvan, Famili and
Golbang, 2016)
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In the processing of thermoplastic foams, the most commonly used physical foaming
agent is carbon dioxide (CO>). It has been widely established to provide highly porous
foams in most foaming processes. Along with high permeability in polymers, it offers
plasticization effect which reduces the polymer’s viscosity. This reduced viscosity causes
an increased amount of diffusion, which enables higher expansion and foamability.
Especially, CO> in the supercritical state produces highly porous foams with high cell
nucleation. (Han et al., 2002; Sauceau et al., 2011; Okolieocha et al., 2015; Chauvet,
Sauceau and Fages, 2017; Owusu-Nkwantabisah, Staudt and Lesser, 2018; Jin et al.,
2019)

Other foaming agents include nitrogen, water, air, Freon, hexane, dichloroethane and
certain other organic liquids. Chemical blowing agents are mainly used in manufacturing
elastomeric foams. They include sodium bicarbonate, hydrogen peroxide, etc. (Han, Kim
and Malhotra, 1976; Gutmann et al., 2010; Jin et al., 2019)

3.2.1. Manufacturing Polymer Foams

There are several methods for manufacturing polymer foams, including batch foaming,
foam extrusion, injection molding, compression molding, and chemical foaming. Unlike
the processes used to manufacture polymer membranes, the following methods do not

involve organic solvents.

3.2.1.1. Batch Foaming

Batch foaming, also known as solid-state foaming, is a technique commonly practiced by
researchers to examine the foaming performance of various polymers at various
processing conditions. Additionally, it offers high control of process parameters allowing
high reproducibility of the foaming results. The method takes advantage of the sorption

of the foaming agent into the polymer at temperatures well below the polymer's glass

Page | 29



Organic-solvent-free Fabrication of Ultrafiltration Membranes using Polymer Foaming and Extrusion

transition temperature by exerting high pressure. The two-stage process in batch foaming
involves diffusion of gas into the polymer followed by controlled expansion of foam cells
at higher temperatures. As shown in Figure 7, in the first stage, a polymer sample is placed
within a pressure vessel at a given temperature, and a foaming agent is introduced at high
pressure. The pressure vessel is allowed to stay in this state for a given amount of time
until equilibrium is reached. The equilibrium is generally determined by the time taken
for the sample to be thoroughly saturated with the foaming agent. For the second stage,
the pressure vessel is depressurized, and the sample is exposed to a higher temperature
for a limited time, generally ranging between a few seconds to a few minutes. This high-
temperature exposure could include immersing the sample in an oil bath, inserting it in a
preheated oven, or placing it between hot plates. This higher temperature, also known as
foaming temperature, softens the polymer and simultaneously causes the expansion and
release of the diffused foaming agent. This expansion of the foaming agent within the
polymer matrix in the presence of heat leads to the formation of foam cells. The foaming
temperature can be below the glass transition temperature of the pristine polymer as the
diffused gas within the polymer chains enables their mobility, thus resulting in glass
transition occurring at a lower temperature. However, the foaming temperature may also
be higher depending on the resultant foam properties. Complex shapes of polymers pre-
formed using techniques such as compression molding, injection molding, or additive
manufacturing can be foamed using this batch foaming. As it is a discontinuous process,
the boundary conditions can be set with high customization and accuracy. The polymer,
foaming agent, as well as the process parameters such as loading temperature, pressure,
time, and foaming temperature, time, influence the final properties of the foam such as
pore size, porosity, density, open/close cells, pore density, mechanical strength, etc. Batch
foaming being a discontinuous, lengthy, and non-scalable process, limits its execution on
a large scale. However, the customizability and accuracy offered at small scale by batch
foaming, makes it attractive for studying the foaming performance of new polymers or
polymeric materials. (Miller, Chatchaisucha and Kumar, 2009; Guo and Kumar, 2015;
Guo, Nicolae and Kumar, 2015; Okolieocha et al., 2015)
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Figure 7: Illustration showing batch foaming also known as solid-state foaming

process.

A significant drawback of the batch foaming process is the non-foamed 'skin layer’
lurking on the surface of the batch foamed sample. As the whole sample is covered with
this non-foamed layer, no cell structures are seen unless the sample is cross-sectioned or
through any cracks occurring in the sample during foaming due to expansion. Between
the loading and the foaming stage of batch foaming, there is a time gap when the samples
are depressurized and subjected to foaming temperatures. During this time, desorption of
the foaming agent occurs from the sample. This desorption begins at the surface and
progresses inwards until the sample is subjected to foaming temperatures, where the
remaining foaming agent causes foaming. Due to the absence of a foaming agent on the
surface of the samples, the surface layer does not foam, leading to the formation of the
skin layer. Figure 8 shows a schematic of a cross-sectional scanning electron micrograph
of a batch foamed polymer sample showing the progression of foam structure through
sample thickness. Thus, although an open-celled foam structure is achieved in a polymer

sample during batch foaming, the skin layer does not allow the usage of this foam for
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permeation. A solution to this is proposed and successfully implemented in this work.
(Kumar and Weller, 1994; Guo, Nicolae and Kumar, 2015)

Outer surface
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Large pores with[ : ) O O O O
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0 o

Small pores with
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Figure 8: lllustration indicating variation of the microstructure across the thickness

in cross-sectioned polymer foam, foamed using batch foaming.

3.2.1.2. Foam Extrusion

Foam extrusion is a well-established technology for producing foamed polymer
extrudates, and it can be easily scaled up for industrial production. Unlike batch foaming,
foam extrusion is a continuous process that utilizes the physical mixing of the polymer
melt with the foaming agent at elevated temperatures and pressures. Foam extrusion is
based on ‘melt extrusion’, the more widely used polymer processing technique only
second to injection molding. Melt extrusion is a process of melting polymer pellets in an
extruder at elevated temperatures, allowing the required mixing and releasing the melt in
a two-dimensional form through a nozzle. The two-dimensional form allows a continuous

production of extrudate that takes its shape as the melt cools down. Additional to the
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extruder, foam extrusion typically consists of an inlet for the foaming agent in case of
physical foaming agents, with optional additions of mixing elements such as twin-screw,
static or rotary mixers, melt pumps, etc. (Huang, 2000; Sauceau et al., 2011; Lee and
Park, 2014)

As shown in Figure 9, the polymer is fed through the hopper and is allowed to melt in the
initial heating zones of the extruder whose rotating screw transports the polymer melt
towards the nozzle due to the screw’s helical profile. The foaming agent is then introduced
into the extruder and thoroughly mixed with the polymer melt under elevated pressures
and temperatures. The high pressures facilitate the diffusion of the foaming agent within
the polymer matrix. In addition, the high temperatures help to reduce the viscosity of the
melt. In certain polymers, the high temperatures further accelerate the diffusion into the
polymer matrix up to a certain temperature limit. As the material exits the extruder
through a nozzle towards ambient conditions, the foaming agent nucleates due to the
change in temperature and pressure and expands into cells, forming a foam structure. (Lee
et al., 2000; Lee and Park, 2014)

Polymer
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Figure 9: A basic foam extrusion schematic. A single screw extruder with four

heating zones having an inlet for foaming agent at the compression zone of the screw,
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connected to static mixers, a melt pump and a nozzle, working in a serial

configuration to deliver a foamed extrudate.

Like batch foaming, various factors influence the formation of cells or pores, such as the
polymer, foaming agent, feed rate, extruder temperature, extruder type (amount of mixing
taking place), nozzle size, nozzle temperature, pressures, etc. Most thermoplastics
polymers can be foam extruded. However, the quality and properties of the foam depend
on the factors discussed before. Many researchers have studied the influence of various
processing conditions on the foaming behavior of various polymers using foam extrusion.
Besides the polymer and the foaming agent, the most influential process parameter
determined by these studies is the nozzle temperature, as the pressure & temperature drop
that facilitates the cell/pore formation occurs at the nozzle. (Park, Behravesh and Venter,
1998; Lee and Park, 2014; Standau, Zhao, et al., 2019; Yeh et al., 2019; Shabani et al.,
2021; Doyle, 2022; Kalia et al., 2022)

In foam extrusion, the extruder temperatures are generally set slightly below the
processing temperatures of the respective polymers due to the plasticization effect
occurring due to the introduction of a foaming agent, thus decreasing the viscosity.
Generally, the nozzle temperature is set lower than the extruder temperatures. A lower
nozzle temperature increases viscosity, leading to high pressures that facilitate better
nucleation. However, the hindrance towards bubble expansion caused by the increased
viscosity may lead to smaller pore sizes and low porosity. On the other hand, a high nozzle
temperature leads to a lower viscosity allowing low resistance to bubble growth, causing
fewer cells to be nucleated in the first place due to lower pressures. Therefore, it is
essential that optimum nozzle temperatures are identified and set to obtain the desired
foam quality. Similarly, other processing conditions need to be optimized individually
and in combinations. (Verreck et al., 2006; Standau, Castellon, et al., 2019; Shabani et
al., 2021; Kalia et al., 2022)
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Although not as accurate and controllable due to its large scale, foam extrusion provides
a simple and flexible method for producing polymer foams. Due to its continuous
production, foam extrusion is a cost-effective and scalable technology for producing
foamed polymer extrudates of various shapes and sizes, with applications in the

construction, packaging, and automotive industries. (Lee and Park, 2014)

3.2.1.3. Other Foaming Techniques

Chemical foaming is a method in which two chemical components react to expand and
produce a polymer foam. Polyurethane (PU) foams are mainly manufactured using this
process. PU foam is created by mixing two components, a polyol, and an isocyanate
prepolymer, in the presence of a foaming agent and a catalyst such as an amine, which
then react exothermically and expand to form a foam structure while simultaneously
solidifying over time. For producing PU foam products, the mixture is poured into a mold
immediately after mixing the two components, where expansion and solidification are
allowed to occur, producing the final PU foam product. PU foams can be manufactured
as both closed-cell and open-cell foams. (Sambasivam, White and Cutting, 2016; Gama,

Ferreira and Barros-Timmons, 2018; Skleni¢kova et al., 2021)

Foam injection molding, also known as microcellular injection molding, is a process that
combines injection molding and foaming. Similar to foam extrusion, inlets on the screw
barrel allow the influx of the foaming agent into the polymer melt. Using the lateral
movement of the screw, this mixture is injected into the mold, where it foams into the
mold’s shape. After cooling, the foamed product is ejected and ready for further use. The
process is commonly known as the MuCell® process due to the first patented
microcellular injection molding machine. Like injection molding, this process is widely
used in the industry to manufacture foamed articles and products on a large scale. (Wang
et al., 2018; Jiang et al., 2021)
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3.2.2. Polymer Foams as Membranes

Although filtration is a widely used application of open-cell foams, the application of
polymer foams as separation membranes has yet to be widely pursued. Of those
attempted, there have never been any foams capable of ultrafiltration. Producing a foam
with cell sizes in the nanometer range and maintaining open cellularity would allow the
implementation of this foam as an ultrafiltration membrane is produced in the form of
thin films (to resemble flat sheet membranes) and hollow fibers (as hollow fiber
membranes). Interestingly there have been many studies and successful attempts by
researchers to manufacture foams with cell sizes in the nanometer range. However, they
were closed cellular foams lacking permeation. (Huang, 2000; Krause, van der Vegt and
Wessling, 2002; Sorrentino, Aurilia and lannace, 2011; Gong, Taniguchi and Ohshima,
2014; Guo and Kumar, 2015; Guo, Nicolae and Kumar, 2015, 2016; Brincat et al., 2016)

3.2.3. Other Melt Extrusion Techniques for
Manufacturing Membranes

Using melt extrusion, some researchers have attempted to develop permeable membranes
with separation performance via cold stretching. As the polymer melt exits the extruder,
it is stretched by rollers or conveyors with a drawing speed higher than the extruder
throughput. The stresses caused due to these tensile forces exerted while drawing the
extrudate cause formation of microcracks throughout the extrudate, which act as pores.
Apart from polymer and extruder parameters, another significant factor influencing the
porous morphology is the degree of stretching. The porosity results from crazing, a
pore/cavity formation phenomenon occurring due to the induction of external stresses
combined with crystalline structures in the polymer matrix. Thus, this method is limited
to semi-crystalline polymers and unsuitable for amorphous polymers. (Kim et al., 1994;
Xanthos et al., 2002; Chandavasu et al., 2003; Feng et al., 2018; Luo, Xie and Qin, 2021)
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3.3. Polymers

One of the initial decisions in choosing a polymer for foaming is based on the presence
of crystallinity. Although high crystallinity improves the mechanical properties of
polymers, semi-crystalline polymers with high crystalline content are not preferred for
producing highly porous foams due to their low foamability. The presence of crystalline
structures hinders the diffusion of the foaming agent into the amorphous parts of the
polymer leading to foam with low porosity. However, due to low costs, certain
commercial semi-crystalline polymers, polyethylene (PE), and polypropylene (PP), are
used to manufacture foamed products. For foaming such polymers, the process settings
are optimized such that a low amount of crystallinity exists. Further, these crystallites act
as nucleation sites during foaming, thus allowing uniform foaming. (Tabatabaei Naeini,
2012; Okolieocha et al., 2015)

In amorphous polymers, the molecular weight of the polymer also plays a vital role in the
foaming results. A high molecular weight due to presence of high free volume delivers
high porosity and smaller cell sizes. However, high molecular weight also increases the
processing temperatures by increasing the viscosity of the polymers. In addition, high
molecular weight polymers are generally expensive and difficult to produce. (Zhang,
Rodrigue and Ait-Kadi, 2003; Yeh et al., 2020)

Many researchers have used polymer blends taking advantage of the synergetic
performance of more than one polymer to deliver highly porous foams with small cell
sizes. Preparation of a blend comprising miscible as well as non-miscible polymers can
uniquely enhance the foaming characteristics. For example, miscible polymers form
homogenous blends where homogenous nucleation occurs throughout the polymer
delivering a uniformly distributed foam structure. Non-miscible polymers, on the other
hand, form heterogeneous blends in which the minor component acts as nucleation

locations for bubble formation. A uniform distribution of the various blend components
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is desired in this case. (Ruckdaschel et al., 2010; Barwinkel et al., 2016; Kong et al.,
2016; Pinto, Dumon and Rodriguez-Perez, 2017; Haurat and Dumon, 2020)

Polymer blends are generally manufactured using a twin-screw compounding extruder.
First, the polymers are pre-mixed and inserted in the extruder, where they are melted and
allowed to mix as the melt travels through a series of mixing elements on the extruder
screw. Finally, the blend emerges from the extruder nozzle and is generally cut into pellets
using a granulator. Another method of manufacturing polymer blends uses a common
organic solvent in which both polymers are dissolved. After mixing, the solvent is allowed

to precipitate, leaving behind a polymer blend.

3.3.1. Polyethersulfone

Polyarylsulfones such as polysulfone (PSU), polyethersulfone (PESU), and
polyphenylsulfone (PPSU) are a class of high-performance thermoplastic polymers.
Polyethersulfone (PESU) is a well established polymer for manufacturing ultrafiltration
membranes. PESU’s molecular structure, as shown in Figure 10 contains aromatic rings,
ether linkages, and sulfonyl groups that provide thermal, chemical, and structural
stability, making PESU ideal for applications requiring high strength, high temperature,
and chemical resistance. The glass transition temperature of PESU lies between 220 °C —
240 °C, depending on the molecular weight. This high thermal stability enables
processing temperatures ranging from 320°C to 400°C for melt processes such as
extrusion and injection molding. The use of high temperatures in its processing accounts
for its high costs compared to economic polymers such as PS, PP, PE, etc. The presence
of sulfonyl groups and ether linkages in PESU provides high resistance to various
chemical solvents and aggressive environments, making it ideal for anti-fouling
membrane applications. The presence of two aromatic groups provides high mechanical
strength providing structural resistance to high pressures. (Qi and Huang, 1998; Giesa
and Schmidt, 2001; Lutz, 2010; Biernat, 2018; Tsehaye, Velizarov and Van der Bruggen,
2018; BASF SE, 2022)
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Figure 10: Molecular structure of PESU.

Using batch foaming, Krause et al. manufactured PSU uniform open-celled foams with
cell sizes averaging 1 pm. The thin-film application of these foams was aimed at
manufacturing membranes. However, this manufacturing process involved using the
organic solvent THF whereas, without its use, open cellularity could not be achieved.
They reported open-cell structures on the walls of the microcells ranging between 10 and
100 nm in one study and between 50 and 200 nm in another. In addition, the influence of
critical carbon dioxide on the foaming performance was studied. Similar results were
reported when PESU was used. However, this manufacturing process involved using the
organic solvent THF whereas, without its use, open cellularity could not be achieved.
(Krause et al., 2001; Krause, van der Vegt and Wessling, 2002)

Sorrentino et al. used two similar methods of solid-state foaming on PESU, PPSU, and
other polymers, one where the foaming temperature was reached in the pressure vessel
before depressurization and one where the vessel was depressurized before subjecting the
samples to the foaming temperature using an oil bath. To differentiate between the
processes in their study, they named the former batch foaming process and the latter solid-
state foaming process. The processes delivered closed cell foams with average cell sizes
of approximately 1 um for PESU and PPSU. They also reported the presence of
nanopores on the cell walls of the microcells. In addition, a dense skin layer on the foamed
samples hindered any permeability for these foams. (Sorrentino, Aurilia and lannace,
2011)
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Guo et al. reported PSU and PPSU foams with microcellular cell sizes that contained open
porous cell walls with cells ranging between 20 and 40 nm. Although thorough
permeability was not achieved, the interconnection between the nanocellular ‘bi-
continuous’ pores was established. The formation of nanopores on the cell walls was
evaluated, and stress-induced nucleation and spinodal decomposition were proposed as
the likely reasons. Gong et al. studied the same phenomenon using polycarbonate (PC)
foams. They justified the formation of such structures due to the biaxial tensile
deformation caused by the stretching of fibrils in the polymer matrix due to nucleation
and bubble growth. (Gong, Taniguchi and Ohshima, 2014; Guo, Nicolae and Kumar,
2015, 2016)

Owusu-Nkwantabisah et al. created open-cell PESU foams using supercritical CO» and
superheated water as co-blowing agents in solid-state foaming. As a result, microcellular
open-celled foam with cell sizes between 4 and 10 pm was achieved. (Owusu-
Nkwantabisah, Staudt and Lesser, 2018)

Using foam extrusion, Huang manufactured PESU closed cell foams with cell sizes
averaging 10 um. An annular slit nozzle was used to extrude the said foam in hollow-
fiber geometry. The high-temperature characteristics of PESU leading towards high
viscosity required the extruder temperatures of 350 °C, and a nozzle temperature of 280

°C was the lowest possible. (Huang, 2000)

3.3.2.  Poly(N-vinylpyrrolidone) and Poly(ethylene
glycol)

In polymer membranes, along with the primary matrix polymer, two commonly used
polymers are Poly(N-vinylpyrrolidone) (PVP) and Poly(ethylene glycol) (PEG). Their
pore-opening characteristic and water-solubility make them attractive for manufacturing

polyarylsulfone membranes. In addition, such membranes have been reported in the
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literature to bear high hydrophilicity and state-of-the-art ultrafiltration performance. (Al
Malek et al., 2012; Hao et al., 2012; Raviv and Klein, 2012; Ibrahim, EI-Wassefy and
Farahat, 2017; Dai et al., 2019; Aili et al., 2020; Dibrov et al., 2020; Gronwald and
Weber, 2020; Gronwald et al., 2020; Grinig et al., 2020; Jaleh et al., 2020; Zhang et al.,
2021; Choi, Ingole and Park, 2022)

Poly(N-vinylpyrrolidone) (PVP) is a water-soluble polymer made of repeating N-
vinylpyrrolidone monomers, available in a wide range of molecular weights ranging from
2500 to 1000000 Da. It has good film-forming properties due to less frictional properties.
PVP finds intensive use in the pharmaceutical, food, and cosmetic industries due to its
non-toxicity and affinity to polar molecules. Along with its role as a pore-opener in
fabricating polymer membranes, PVP also improves properties such as accelerating phase
separation in processes involving organic solvents and increasing water flux. PVP can be
incorporated into the polymer matrix or applied as a membrane surface coating. Similar
to PESU, PVP is soluble in NMP. (Haaf, Sanner and Straub, 1985; Buhler, 2005;
Gothlich, Koltzenburg and Schornick, 2005; Ashland, 2013; Tiron, Vlad and Balta, 2018;
BASF SE, 2023)

Figure 11: Molecular structure of PVP (left) and PEG (right).
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Poly(ethylene glycol) (PEG) is a versatile, water-soluble polymer known for its
biocompatibility and low toxicity. PEG is synthesized by the polymerization of ethylene
oxide. However, molecular weights above 20,000 Da are generally referred to as
poly(ethylene oxide) (PEO). With molecular weights ranging from 200 to a few million
Daltons, PEG finds its applications widely in the pharmaceutical and cosmetic industry,
as well as in adhesives and paints. Along with water, PEG is soluble in ethanol, benzene,
and various other solvents. PEG has a high affinity towards CO; and is therefore used in
gas separation membranes for CO. absorption. (Lilleparg, Georgopanos and Shishatskiy,
2014; Rahman et al., 2015; Halder et al., 2018)

In water filtration membranes, the hydrophilic nature of PEG allows for high water flux
and low fouling. However, the mechanical properties are weakened with high amounts of
PEG. In melt processing of polymers resistant to high temperatures, adding PEG reduces
the processing temperature, thus acting as a plasticizer. (Car et al., 2008; Porter, Sackett
and Liu, 2009; Ma et al., 2011; Dimitrov and Tsvetanov, 2012; Hutanu, 2014; Francolini,
Hall-Stoodley and Stoodley, 2020; Zarrintaj et al., 2020; Shah et al., 2021)
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4. Methods

The principles behind the methods used in this work are mentioned in this section. The
exact steps and conditions for the carried-out measurements and experiments are already
published in the articles of this cumulative work. However, for specific methods

mentioned here, more details are provided.
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4.1. Material Characterization Methods

4.1.1. Differential Scanning Calorimetry

In polymer characterization, differential scanning calorimetry (DSC) is a widely used
thermal analysis method. This technique measures the difference in heat flow between a
sample and a reference material as a function of temperature or time under controlled
heating and cooling conditions. The amount of heat absorbed or released by the sample
is measured, which helps determine and study the thermal events occurring in the sample
at that specific background conditions. Thermal events associated with changes in the
material, such as glass transitions, melting, crystallization, decomposition, etc., and
reactions occurring within the sample can be observed. The polymer's structure and
properties can be inferred from this information. This allows a better understanding of the

polymer and can assist vastly in its identification and applications.

DSC is carried on a calorimeter which consists of two compartments, one for the sample
and another for reference material. The reference material is generally inert, or the
compartment is kept empty. During the measurement of the sample, both compartments
are subjected to inert gas and are maintained at a constant temperature difference by being
subjected to the same temperature program. As the sample and reference are heated or
cooled, they may undergo phase transitions (e.g., melting, crystallization, glass transition)
that absorb or release heat. These thermal events cause a change in the heat flow to the
sample and reference pans, which are then detected by a differential thermocouple. The
differential thermocouple records the difference in heat flow between the sample and
reference as a function of temperature. The heat flow is determined by measuring the
temperature difference between the sample and reference pans and converting it to a
voltage signal. This voltage is then converted to a digital signal that can be displayed and
analyzed on a computer. The resulting data are then plotted as a function of temperature,
with the heat flow on the y-axis and temperature on the x-axis, into so-called

thermograms. The thermograms are analyzed to identify the thermal events associated
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with changes in the polymer and to determine their characteristic parameters, such as the
glass transition temperature, melting point, crystallization, etc. Multiple heating/cooling
cycles are carried out with precise control over the temperature. The heating/cooling rate
can also be controlled as certain thermal events may or may not occur at specific rates,
whereas the effect of this rate on the intensity of these events may also be studied. Figure
12 provides a basic illustration of a calorimeter. (Kong and Hay, 2002; Schick, 2009;
Kalogeras, 2016; Drzezdzon et al., 2019; NETZSCH, 2023b)

Reference Sample
compartment compartment

Protective
gas

Furnace block
with heating coils O

Purge Gas

Figure 12: Differential scanning calorimeter measurement cell’s schematic

representation.

The glass transition temperature (Tg) is an essential parameter for polymers. It is usually
determined from the DSC data as the onset of a step change in the heat flow signal during
heating. This step change is associated with the relaxation of the amorphous regions of
the polymer from a rigid to a rubbery state, indicative of the mobility of the polymer
chains. The melting point (Tm) is determined from the endothermic peak in the heat flow
signal during heating and is associated with the melting of the crystalline regions of the

polymer. The enthalpy of fusion is calculated from the area under the melting peak and
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is related to the energy required to melt the crystalline regions of the polymer. Figure 13
provides an overview of a DSC thermogram. (Kong and Hay, 2002; Schick, 2009;
Kalogeras, 2016; Drzezdzon et al., 2019)

(2) Heating scan T Oxidation

- ce Cold
(typically 10-20 C/min) /crystallization

Thermal
degradation

Exo

Heat flow, dQ/d ¢

Hysteresis T

Glass peak c

transition

Crystalline
melting

Endo

- (1) Cooling scan

Crystallization

Temperature, 7

Figure 13: Interpretation guide of a sample DSC thermogram. Reprinted (adapted)
with permission from Kalogeras et. al, 2016. Copyright 2023 John Wiley and Sons.

For the characterization of the thermal properties of the polymers and polymer blends
used in this work, DSC was carried out. Although denoted specifically in each published
article, due to its wide use in this work, Table 3 shows the parameters used in DSC for

respective polymers.
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Polymer/ | Temperature | Heating | Temperature | Heating Ty
Polymer | Intervals for | Rate for | Interval for | Rate for | Determinati-
Blend First Two First Third Cycle Third on
Cycles [°C] Two [°C] Cycle [K
Cycles min1]
[K
min~!]
PEG -130 to 100 -130 to 260 30 Third heating
interval
PESU 25 to 260 - - Second
heating
interval
PESU/PV 25 to 260 - - Second
P 10 heating
interval
PESU/PE -130 to 180 -130 to 260 30 Third heating
G interval
PESU/PE -130 to 260 -130 to 260 20 Second
G/PVP heating
interval

Table 3: Parameters of Differential Scanning Calorimetry (DSC).

The Ty of a polymer blend comprising of miscible polymers can be determined by

following the Couchman equation (equation (5)) and Fox equation (equation (6)).

Similarity or dissimilarity between a polymer blend’s calculated Tq and the measured Ty

can be used to determine the homogeneity or heterogeneity of the said blend. The

information such as the polymers’ T4 and the change in heat capacities is obtained using

DSC.

WoAcCp 2 ln(Tg,z /Tg,l)

In(T, /T, =

( g/ g,1) W1ACy 1+WaAcy ;
1 w w
= =20 + M
Ty Tgr Ty

...(6)

()
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where,

wi = Mass fraction of polymer I

Cp. = Heat capacity of polymer I

Tg1 = Glass transition temperature of polymer |
w, = Mass fraction of polymer I1

Cp2 = Heat capacity of polymer 11

Tg2 = Glass transition temperature of polymer |1
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4.1.2. High Pressure DSC

High-pressure differential scanning calorimetry (HP-DSC) is an expanded form of DSC
where the sample and reference compartments are kept in a pressure vessel. This pressure
vessel can then be pressurized with gas while carrying out a measurement. The used gas's
effect and pressure on the thermal characteristics and events are analyzed. Carbon dioxide
(CO2) is commonly used for HP-DSC. (Hohne, 1999; Rol3 and Frerich, 2021; Mettler-
Toledo, 2022)

As CO: is a plasticizing agent, its presence decreases the Tq and the Trm of polymers while
increasing the crystallization rate. As discussed earlier, CO> molecules can diffuse into
the polymer chains and increase the free volume, reducing the intermolecular forces and
making the polymer chains more flexible. This displacement of Tg and Tm of the polymer
due to CO; varies for different polymers as well as can be dependent on CO; pressure. As
the diffusion of CO- into the polymer matrix and the following plasticization effect is
highly important in polymer foaming, performing HP-DSC on polymers gives a
comprehensive understanding of the same. For example, a polymer sample, showing high
displacement in Tg when applied with certain CO. pressure may be predicted to foam
better, whereas a small or no displacement in Tq may indicate a disappointing foaming

performance. (Héhne, 1999; Huang et al., 2016)

In this work, HP-DSC was employed to investigate the influence of CO, pressure on the
thermal properties of PESU and PESU/PVP blends such that their foaming performances
could be predicted and compared. To determine the saturation time, a diffusion coefficient
D and the sample particle radius R, of the polymer powder were used. Saturation time

. R . .
was calculated using t,; =;” which allowed running the measurement only after

allowing the sample to saturate with CO; in this time.
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4.1.3. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) is used to determine the thermal stability and
composition of polymers by measuring the change in mass as a function of temperature
and time. This method is widely used to characterize polymers to determine their
decomposition behavior. TGA can also support in the identification of the composition

of polymer mixtures.

The basic principle of TGA is to measure the weight loss of a sample as it is heated under
controlled conditions. The TGA instrument consists of a balance, a furnace, a temperature
controller, and a computer. The balance measures the mass of the sample, and the furnace
can provide a controlled heating rate or a constant temperature, and depending on the type
of experiment, (mass loss of the sample as a function of temperature or time). The analysis
of TGA data involves the interpretation of the thermograms. The different stages of the
thermal degradation process are identified by looking for changes in the amount and the

mass loss rate, which correspond to different thermal events.

As shown in Figure 14, TGA works by heating the crucible holding the sample in a
controlled environment, typically under an 'inert’ non-reactive and non-flammable gas
such as Argon or Nitrogen, which is used to prevent reactions such as oxidation occurring
in polymers primarily due to exposure to high temperatures in the presence of air. The
gas is introduced into the sample chamber to displace air, thus creating a controlled
atmosphere at ATM. There are multiple ways of using TGA, such as adiabatic and
isothermal heating. In adiabatic heating, the sample is heated at a constant rate, and the
change in mass is recorded as the temperature increases, whereas, in isothermal heating,
the sample is heated to a certain temperature, and this temperature is maintained for a

certain amount of time where the mass change is recorded as a function of time.
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Furnace with =
temperature control
Sample

Gas

Weighing Scale

Figure 14: lllustration of a TGA instrumentation.

In polymers, the mass change when exposed to high temperatures may occur due to
various thermal events, such as decomposition, oxidation, dehydration, sublimation,
vaporization, and desorption. The temperature at which a significant weight loss occurs
is an indicator of the thermal stability of the polymer sample. TGA also provides
indications that help determine the drying temperatures, processing temperature ranges,
and presence of any unfamiliar component in the polymer sample. The determination of
drying temperatures is carried out by observing the mass loss below and above 100 °C.
For example, a non-pre-dried polymer having a slight mass loss between 50 — 60 °C may
need drying temperatures of no more than 60 °C, whereas another one experiencing mass
loss only after 120 °C may require a higher drying temperature. This also indicates that
the former polymer would be softer than the latter, i.e., it has a lower glass transition
temperature, which allows the polymer chains to move enough, allowing water to escape

the polymer matrix and evaporate.
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Determining at what temperature the decomposition of a polymer occurs is of high
importance as it allows for setting appropriate processing temperatures for polymers. In
the case of blending polymers, if one polymer has a glass transition temperature near the
decomposition temperature of the other, blending using melt-compounding is not
feasible. The composition of a particular polymer blend may also be determined if the
decomposition of the individual components occurs at different temperatures. The percent
mass loss at the respective temperature indicates the amount of the polymer component
in the sample. The purity of a sample can also be determined by noticing mass losses
occurring at unexpected temperatures. A polymer's thermal stability over time can also

be analyzed using isothermal TGA.

(Coats and Redfern, 1963; Gabbott, 2008; Ng et al., 2018; Rigoli et al., 2019)

As in this work melt-processing of polymers is important, TGA was used to determine

their thermal stability.
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4.1.4. Rheology

Rheology is defined as the science of flow. It studies the relationship between the force
and deformation of matter and is mainly used in materials that display flow-like
properties. In the field of polymers, rheology is a vital tool used to study how the polymer
deforms at various temperatures, frequencies, and loads. This allows a detailed outlook
of the viscoelastic properties often found for polymers. (Giles, Wagner and Mount, 2005;
Ebnesajjad, 2015; Widyatmoko, 2016)

Viscoelastic properties are a combination of two properties: viscosity and elasticity.
Viscosity is the measure of a material’s resistance to flow, where higher values mean high
resistance, i.e., less flow, and lower values mean low resistance. When constant stress is
applied to a viscous material, it deforms constantly and maintains the final form upon
stress release. Elasticity is the measure of a material’s ability to recover its original shape
after deformation. The more elastic a material is, the more it can be deformed until the
original shape is unrecoverable. Viscoelastic materials such as polymers exhibit both
these characteristics. In polymers, various properties, including molecular weight,
chemical composition, additives, temperature, processing conditions, etc., significantly
affect their viscoelastic behavior. Therefore, measurement of the viscoelastic behavior is

crucial in polymer characterization. (Papanicolaou and Zaoutsos, 2011)

Rheological properties of polymers, such as viscosity, storage and loss moduli, strain-
softening, etc., are most commonly studied using a shear rheometer. However, other
devices, such as viscometers, extensional rheometers, etc., are also used to provide certain
viscoelastic characteristics of the polymers. When analyzing using a shear-rheometer, a
controlled deformation is applied to a sample, and the resulting stress and strain are
measured. There are various configurations a rheometer may be configured with, which
can be classified into two types, one used on samples that are solid at room temperature
and another that are used to measure liquids and solutions. The former configuration may

be a plate-plate, plate-cone, cone-cone, or double cone-plate geometry where the sample
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is placed between plates/cones, and one of them applies deformation to the sample
relative to the other. In the latter configuration, the liquid sample in a cylinder and another
cylinder/spindle rotates or oscillates. In both configurations, the rheometer measures the
force resulting from the deformation and computes it to provide the associated stress and
strain. This allows for further calculations that provide the sample's viscoelastic
properties, such as complex moduli, viscosity, etc. Figure 15 illustrates a plate-plate
geometry configuration operating in oscillatory motion in a rheometer. (Ramli et al.,
2022)

Oscillates at given
stress or strain
amplitude

e

Polymer sample

N

Remains stationary

Figure 15: Illustration of a plate-plate geometry configuration operating in

oscillatory motion in a rheometer.
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The material stiffness or its resistance of deformation is measured by the complex

modulus (G*),

G* = Tmax ...(8)

Ymax

where, 0 qx 1S the applied stress and ¥,y qx IS the measured strain in a controlled strain
measurement, whereas in a controlled stress measurement g, 4, IS the measured stress

and Yimax 1S the applied strain.

In a viscoelastic material, the storage modulus (G°) represents the elastic component to
the complex modulus, whereas the loss modulus (G’ represents the viscous component.

Their relationship can be determined using the following equations,

G*=G"+iG" ...(9)
G
tand = = ...(10)

The complex viscosity (n*), providing the total resistance to flow, can be found using the

following equation,
« _ G
n== ...(11)

where, w is the applied angular frequency.
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Rheological measurements can be performed in various ways, depending on the desired
properties of the polymer. The following table shows common types of experiments used
to study the viscoelastic behavior of polymers.

Sweep Type Constant Parameter Information Provided
Frequency Shear amplitude, Temperature Complex modulus (G*) i.e. the elastic
(G") and viscous (G™) components of a
material's response, loss tangent (tan
d), crossover frequency (where G' and
G" intersect)

Amplitude Frequency, Temperature Linear viscoelastic range, nonlinear
viscoelastic properties, yield stress and
strain, amplitude region where the
relationship between applied stress
and resulting strain is linear

Time Frequency, Temperature Time-dependent viscoelastic
properties such as relaxation time,
creep compliance, etc., thermal
stability, crosslinking in polymers
Temperature Frequency, Strain amplitude Temperature-dependent viscoelastic
properties, glass transition temperature
(Tg), melting point (Tm),

Table 4: Common experiments in shear-rheometry.

The rheological behavior of polymers can be described using various mathematical
models, which attempt to describe the relationship between the deformation of the
material and the applied stress or strain. Some of the commonly used mathematical

models in rheology of polymers are:
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Model Description Illustration Equation Uses
Maxwell | A simple y=1 (E + l) ...(12) | Characterization
Model viscoelastic £ noG of viscoelastic

model where, properties of
consisting of a y = stain, G: shear polymer melts
spring and a modulus, 7= time of | 34 solutions
dashpot in relaxation, = Viscosity,
series t=time
Kelvin- | Asimple a(t) = ne(t) + E€'(t) | Characterization
Voigt viscoelastic ...(13) of elastomeric
Model model " . where, materials
consistingofa | o 73— mmw—o n = viscosity, E =
spring and a Young's modulus, &(t) =
dashpot in instantaneous strain, g'(t)
parallel = strain rate
Power A model Characterization
Law describing non- o =ny"...(14) of viscoelastic
Model Newtonian properties of
flow of where, polymer melts
materials with a | ¢ = shear stress, y = shear rate, n = power | and solutions
power-law law index
dependence
Bingham | A model Characterization
Model describing the _ . of polymer melts
behaviour of o= oyt sy ..(15) and solutions
materials that h under processing
exhibit a yield o W e_re, . . . conditions
stress before o, = yield stress, nz = Bingham viscosity
flow occurs
Carreau- | A model - Too n-i Characterization
Yasuda | describing To—Tleo [1+ ()T a...(16) of polymer
Model shear thinning solutions and
behaviour using Where, 1o = zero shear viscosity, 1o, = melts (1, = 0)
a shear rate infinite viscosity, k = characteristic time, a | under processing
dependent = parameter denoting the transition between | conditions
parameter Newtonian and power law
Cross A model Characterization
Model describing of viscoelastic
pseudoplastic properties of
flow with N=Mw _ _ 1 .(7) polymer melts,
asymptotic No—Meo  1+(ky)™ solutions and
viscosities. dispersions

Table 5: Mathematical models used to describe viscoelastic behaviour in polymers.
(Osswald and Rudolph, 2015; NETZSCH, 2023a)
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These models are used to describe the complex viscoelastic behavior of polymeric
materials. By fitting experimental data to these models, one can extract useful information

about the polymers' molecular architecture, relaxation behavior, and flow properties.

Rheological data can also be used to study the miscibility of polymeric blends. A polymer
blend exhibiting viscoelastic behavior similar to a homopolymer can be classified as a
homogenous blend. To study the miscibility of blends that showed single glass transition
in DSC, the time temperatures superposition principle was used to investigate the
viscoelastic behavior of the blends. The William-Landel-Ferry (WLF) equation was used
to describe the dependence of the horizontal shift factor ar on temperature T in
constructing master curves for amorphous polymers. The shift factor ar provides the
degree of temperature dependence of dynamic moduli for the polymer (Haenelt et al.,
2014; Schulze et al., 2015). The shift factor for polymer melts can be determined using

the following equation.

ar = nr
NTref

...(18)

Where, nr is the viscosity at temperature T and 7r,..r is the viscosity at reference
temperature Trer. For temperatures higher than 100 K than the glass transition temperature,
the shift factor can also be described in terms of activation energy by using the Arrhenius

equation as follows.

log(ar;) = —i(l— : ) ...(19)

2303R\T  Tref

Where, E,, is the activation energy and R is the universal gas constant. (Naya et al., 2013)
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When studying blends that exhibit multiple glass transitions in DSC measurements, the
time-temperature superposition principle does not apply, and the construction of a WLF
curve is not possible. This is due to the presence of two glass transition temperatures,
which indicates a considerable degree of heterogeneity. To investigate the rheological
properties of such blends, a "Han plot" was constructed by plotting the frequency-
dependent storage versus the loss modulus at various temperatures for both PESU and the
selected blends. The resulting data points were consolidated into a linear curve by fitting
the lower values of the loss modulus, from which the slope values were determined. A
value of 2 in the low-frequency range indicates a completely homogeneous polymeric

system, while lower values indicate a non-homogeneous mixture. (Kalogeras, 2016)
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4.1.5. Sorption and Diffusion Measurements

Polymer-gas interactions are understood by analyzing the sorption and diffusion of the
gas with the polymer. These are important in analyzing the performance of gas separation
membranes. In addition, the foaming performance of a polymer can be predicted by
analyzing the diffusion of the foaming agent within the polymer at various pressures and
temperatures. Sorption is the process by which a gas molecule is adsorbed onto the surface
of a polymer, whereas the movement of gas molecules through the polymer matrix is
defined by diffusion. (Lilleparg, Georgopanos and Shishatskiy, 2014)

A sorption balance is used for sorption and diffusion measurements. To measure the
sorption of a gas in a polymer, gravimetric method is used. In this method, the gas is
injected into an evacuated chamber holding the polymer sample at a certain pressure. The
sample’s thickness to diameter ratio is maintained as low as possible to minimize sorption
occurring from the cylindrical side, thus providing accurate analysis of the diffusion
occurring over the thickness of the sample. The change in the weight Am of the polymer
is measured over time, thus providing information on the sorption of the gas adsorbing

onto the polymer.
Am:—FEgXP :msc+m5+mA—(VSC+VS+VA)',0 (20)
Where,

Fgxp = experimental force

g = gravitational constant
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mS¢ = mass of sample container

mS = mass of sample in vacuum

m# = mass of adsorbent

V¢ =volume of sample container

Vs = volume of sample

V4  =volume of adsorbent (For excessive adsorption only, else = 0)
p = density of gas

The change in m# is observed over time or increasing pressure as per the carried-out
experiment. However, excessive adsorption occurring in the case of a rough surface of
the sample needs to be corrected accordingly. Various parameters such as the pressure,
pressure rate, temperature, heating/cooling, and concentration of a specific gas in a gas
mixture, can be experimented with to study the sorption behavior at various working

conditions.

The diffusion coefficient D, is a measure of the amount of gas passing through the

polymer under the given conditions. It is calculated using the following relationship,

M; Drt
=4 ...(21
Moo ml? (21)
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where:

M, = mass of gas absorbed by sample at time t

M, = mass of gas absorbed by sample at time t — oo; i.e., equilibrium
l = thickness of the cylindrical sample

M
Values used for M—twere lower than 0.6.

[oe]

Understanding a polymer's sorption and diffusion properties can give a good overview of
the foaming behavior of the same polymer. Diffusion is significantly increased by the
plasticization phenomena in glassy polymers as well as the existence of rubber phases in
a polymer matrix. Therefore, a polymer with a high diffusion coefficient undergoes better
nucleation and expansion during the foaming process. (Barrer and Rideal, 1939; Frisch,
1980; Barrer, 1984; Wang and Kamiya, 1995; Gendron, 2004; Gutmann et al., 2010; Lee
and Park, 2014; Lilleparg, Georgopanos and Shishatskiy, 2014; Schulze et al., 2015;
Halder et al., 2017)
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4.1.6. Gel Permeation Chromatography

Gel Permeation Chromatography (GPC), also known as Size Exclusion Chromatography
(SEC), is a technique used to determine a polymer sample's molecular weight and
molecular weight distribution. GPC operates on the principle of separating polymeric
species based on their hydrodynamic size. The technique is based on the concept that
smaller polymer chains penetrate more deeply into the pores of the gel, whereas larger
chains do not penetrate as deeply and are eluted more quickly. (Moore, 1964; Toray,
2022)

The GPC system consists of three main components: a pump, a column, and a detector.
The pump forces the sample through the column packed with porous beads, usually made
of styrene-divinylbenzene copolymers or silica gels. The sample is dissolved in a suitable
solvent and injected onto the column. As the sample passes through the column, the
different polymer chains elute at different times, depending on their molecular weight. A
differential refractive index (RI) or UV-visible detector is generally used. The detector
measures the difference in refractive index between the column's mobile phase and the
stationary phase. The difference in refractive index measures the polymer concentration
in the column. This data is analyzed by generating a chromatogram. Figure 16 provides

an overview of GPC principle. (Agilent Technologies, 2015)

In order to determine the molecular weight of the polymer, the GPC system needs to be
calibrated using a set of standard samples with known molecular weights. One common
calibration method is polystyrene calibration, which involves using a series of polystyrene
standards of known molecular weights. The samples are run through the column using
the same solvent and conditions as the unknown sample, and the retention time of each
standard is determined. A calibration curve is then generated by plotting the logarithm of
the molecular weight of the standards versus their retention time. The molecular weight
of the unknown sample is then determined by comparing its retention time to the

calibration curve. (Gaborieau and Castignolles, 2011; Waters, 2023)
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In addition to determining molecular weight, the polymer's molecular weight distribution
(MWD) can also be calculated using data obtained from GPC. The MWD can be
calculated from the chromatogram using mathematical models, such as the Schulz-Zimm,
the Log-Normal, or the Polydispersity Index model. The MWD of a polymer can
influence its properties, such as mechanical properties, glass transition temperature,

processing behavior, etc. (Miyake, 1960)
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Figure 16: lllustration showing principle of GPC. Detection of molecules of different
molecular weights is visualized on a chromatogram versus elution time; Molecular

weight is derived from elution time according to the calibration.

This work used GPC for determining molecular weight and MWD of certain polymers,

and to analyze the same in the samples of retention test discussed further in section 4.3.3.
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4.1.7. Infrared Spectroscopy

Fourier-transform infrared (FTIR) spectroscopy is used to study the chemical
composition and molecular structure of chemical compounds such as polymers. FTIR is
based on the absorption/transmittance of infrared radiation by a polymer sample, which
is used to identify the polymer's molecular structure. The different functional groups
present in polymers absorb/transmit different wavelengths of radiation. Infrared radiation
interacts with the polymer by stretching and bending molecular bonds. This absorbance

or transmittance is used to identify the specific functional groups in the polymer.

First, the sample is prepared as a thin film, pellet, or solution and then placed onto the
spectrometer. An infrared beam enters the interferometer within the spectrometer and
passes through a beam splitter where it is split to be travel onto a fixed mirror and a
moving mirror. The light then travels back onto the splitter and is recombined causing
interference and is directed onto the sample followed by the detector. This allows
measurement of the spectral information of wavelengths at once. The information of the
light intensity versus the movable mirror’s position is Fourier transformed and plotted
into a plot of light intensity versus wavenumber. The reference spectra containing the
background IR absorbance/transmittance is the subtracted mathematically from the

sample’s plot, thus providing the IR spectrograph of the material. (Bruker, 2023)

FTIR data analysis involves identifying the functional groups and molecular vibrations
present in the sample. This is done by comparing the spectrum of the sample to a library
of spectra of known compounds and identifying the peaks that correspond to specific
functional groups. In addition, quantitative information on the sample composition can
be obtained by analyzing the intensity of corresponding peaks versus a sample with
known composition. This can be useful when comparing samples of similar components.
(Smith, 2021)
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4.2. Processing Methods
4.2.1. Blend Formulation

Polymer blends are mixtures of two or more macromolecular compounds that form a
material with different properties. They are divided into three categories, such as
immiscible, compatible, and miscible blends. The constituent polymers of immiscible
blends, , co-exist in separate phases, and their respective T4 are observed. They are also
known as heterogenous blends. A compatible blend is an immiscible blend that exhibits
uniform physical properties macroscopically due to strong interactions between
constituent polymers. Miscible blends, also known as homogenous polymer blends, form
a single-phase structure and exhibit a single Tq. Some polymer blends are also partially
miscible, i.e., they exhibit multiple glass transitions but are shifted towards one another

compared to their constituent polymers. (Kalogeras, 2016; Qin, 2016)

Polymer blends can be formed using chemical techniques, such as dissolution in organic
solvents as well as physical techniques such as melt-state compounding,,, material
penetration, etc. Below are the two methods used mainly in this work. The technical
details of the equipment and process settings are provided in their published articles about

this cumulative work and are not repeated in this section.

4.2.1.1. Compounding

Compounding is a widely used technique to blend two or more polymers, especially in
the plastics industry. The polymers are inserted into a compounding extruder, most
commonly a twin-screw extruder, where they are melted at temperatures above
their Tq or Ty and allowed to physically mix by the screw action while being transported
towards the nozzle, where they are extruded into the desired form and granulated/cut to
be stored. Various factors influence the mixing and the blend morphologies during

compounding, such as processing parameters like the temperature profile, residence time,
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screw speed, screw profile, mixing elements, degassing, etc., as well as material
properties such as the blend composition, viscosity ratio, elasticity ratio, interfacial
tension, etc. Figure 17 shows the evolution of polymer along a twin-screw compounding

extruder’s axis. (Lee and Han, 2000)

As having both constituent polymers in a melt state is an essential requirement for
compounding, polymers having T4 closer to each other are preferred. However, polymers
with significant differences in Tgcan be blended using a compounding extruder.
However, the processing temperature required for every component should be well below

the lowest decomposition temperature among all components. (Cassagnau et al., 2005)

In this work, PESU, as flakes and PVP as powder, were physically mixed at room
temperature after vacuum drying. Following another drying cycle, this mixture was
inserted in a twin-screw extruder as shown in Figure 18 that extruded a PESU/PVP blend

into a cylindrical extrudate that was continuously cut into pellets using a granulator.
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Figure 17: Evolution of polymer along a twin-screw compounding extruder’s axis.

Reprinted (adapted) with permission from Lee and Han, 2000. Copyright 2023 Elsevier.

Figure 18: Twin-screw compounding extruder used in this work.
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4.2.1.2. Material Penetration

Less commonly used than compounding, material penetration is another method that
allows the formation of polymer blends. Similar to the dissolution of polymer granulate
in organic solvent, where the solvent first penetrates into the polymer and mobilizes the
polymer chains, a liquid polymer can be absorbed within a solid polymer. However, after
mobilizing the polymer chains, an organic solvent causes the polymer chains to fall apart,

but a liquid polymer stays within the solid polymer’s chain thus forming a blend.

In this work, a novel method involving material penetration was attempted. The capillary
forces induced by the porous structure of PESU flakes were taken advantage of to absorb
polymer and polymer mixtures that were in liquid state. By physically mixing vacuum-
dried PESU flakes with liquid PEG or liquid PEG/PVP mixture, the liquid was allowed
to soak into the flakes and absorbed into the polymer matrix while continuous movement

was provided as shown in Figure 19.

Figure 19: Material penetration of PEG liquid into PESU flakes by rotating flasks

containing their mixture.
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4.2.2. Batch Foaming

The principles of batch foaming are already discussed in section 3.2.1.1. In this work, as
shown in Figure 20, a high-pressure vessel was used for the loading phase, whereas hot
plates of a hydraulic press were used for the foaming phase. The temperature of the high-
pressure vessel was controlled, while the pressure of the foaming agent was determined
by a high-pressure syringe pump connected to a dip-tube bottle. After the completion of

the loading phase, the pressure was released, and the samples were placed onto the hot

plates for foaming. The foaming time and temperature were controlled whereas it was
carried out at ATP.

Figure 20: High pressure vessel (left) and hot plate hydraulic press (right) used for

batch foaming in this work.
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4.2.3. Extrusion and Foam Extrusion

The principles of extrusion and foam extrusion are already discussed in section 3.2.1.2.

As shown in Figure 21, a Brabender single screw extruder coupled with static mixers and
a melt pump was used for foam extrusion in this work. Granules, pellets, and flakes of
the polymers were inserted. The extruder was equipped with two inlets to inject two
blowing agents simultaneously. An annular slit nozzle was used to extrude hollow fiber
geometry. Temperature and pressure control were established at every element of the
extruder.

Figure 21: Single screw extruder coupled with static mixer, melt pump and nozzle,

used for foam extrusion.
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4.2.4. Post-treatment

Treatment of polymer membranes using inorganic aqueous solutions of sodium
hypochlorite (NaOCI) and hydrogen peroxide (H20:) is a common practice to remove the
soluble components from the membranes, thus increasing the porosity of the membranes.
In this work, aqueous NaOCI was used to dissolve water-soluble polymers such as PVP
and PEG from the foamed membranes. Removal of these components termed the foams

permeable for water and allowed ultrafiltration. (Grinig et al., 2020)
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4.3. Foam & Membrane Characterization
Methods

4.3.1. Scanning Electron Microscopy

Scanning electron microscopy (SEM) is a commonly used microscopic method in
research and industry. The micrograph generated using this technique resembles a
photograph and can be easily interpreted. The main advantage of using this type of
microscopy is the resolution and magnification at scales up to a few nanometers. As
visible light's wavelength lies between 400 and 650 nm, it is difficult for optical
microscopes to visualize samples around or below this range. Electrons, however, are
'dimensionless’ sub-atomic particles that co-exhibit particles, and wave-like properties
can be used to visualize these lengths. Their scattering off a surface can be recorded and
amplified to determine the topography of the surface at a few nanometers.
(ThermoFischer Scientific, 2023)

SEM focuses a beam of electrons on a surface and records and amplifies the reciprocating
signals to visualize the topography of the surface. To avoid any interaction of electrons
with anything other than the sample, the sample is placed in an column.Two types of
columbs can be used, viz. environmental column and ultra-high vacuum sealed column.

Figure 22 illustrates the principles of a scanning electron microscope.
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Figure 22: Illustration of a scanning electron microscope. (Michler, 2016)

As illustrated in Figure 22, the electron gun shoots electrons that are lensed onto the
sample. To obtain a sharp image of the surface, the sample is coated with an electrically
conducting material. As the electrons bounce back from the sample surface, they are
detected using a backscattering (BSE) detector as well as a secondary (SE) detector. BSE
detectors detect the electrons scattered back from areas below the sample's top surface,
thus providing depth contrast. These electrons have higher energy than the SEs and
originate deeper within the sample. SE detectors, on the other hand, detect the low-energy
electrons emitted from the sample's surface due to the electron beam interactions. SEs
originate from the top few nanometers of the sample's surface and are sensitive to the
sample's topography and texture. SE imaging can reveal fine details of the sample's
surface, such as surface morphology, surface roughness, and surface features. These
signals are visualized as a grayscale image containing a length scale based on the
magnification. (Michler, 2016)

SEM is an essential tool to visualize the cells and pores of polymer foams and membranes

in high resolution and determine their sizes and morphological features. As this work
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engages in microcellular and nanocellular cell sizes, as well as determination of the
open/closed cellularity of these foams, in the further application as membranes, the

accurate determination of pore sizes, porosity, and pore type was pursued using SEM.

4.3.2. Permeability

In the characterization of polymer membranes, the measurement of permeability of the
substances it is designed to separate from, is one of the most important methods. For
membranes involving water or liquid filtration applications, the water-flux through these

membranes is measured.

The amount of pure water passing through a unit square surface area of the membrane per

unit time at unit pressure is called the water flux. Water flux is calculated using equation

(8).

|4
L = — ..(22)

Where L = water-flux, V = volume of water passed through the membrane, t =time, A =

membrane surface area, P = transmembranic pressure.

Apart from these parameters, water flux depends on other factors such as the membrane

material, type, morphology, porosity, tortuosity, ambient temperature, etc.
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4.3.3. Retention Test

The performance of membranes designed for separation applications is characterized by
their ability to separate specific sizes of particles/molecules. A retention test is performed
to test the separation performance of such membranes. A 'feed’ solution of pure water and
a solute is passed through the membrane. The solution passed through the membrane is
called the permeate, and the retained solution is called the retentate. The amount of solute
in the feed, permeate, and retentate is measured, and its ratio is calculated using equation

(9). Figure 1 provides an overview of their flow through a membrane.

Rp=1-22 ..(23)

mpg

Where R = retention coefficient, mp = amount of solute in permeate, m; = amount of

solute in feed.

In the measurement of retention of ultrafiltration membranes, water-soluble molecules
such as PEO, Dextron, etc. of desired and standardized molecular weight are used. Their
concentrations in the feed, permeate, and retentate are determined using GPC as discussed

in section 4.1.6.

4.3.4. Tensile Test

Tensile testing is a mechanical testing method widely used to analyze the mechanical
properties of materials. It involves applying tension to a material sample by pulling it
until deformation or breakage is observed. It is usually used as a destructive test process
providing information about a material's tensile strength, yield strength, toughness, and
ductility. However, non-destructive tests can also be performed such as to evaluate the

elasticity of rubbers.
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Tensile testing machines typically consist of a loading frame, a crosshead that moves
vertically, and grips that hold the specimen in place. The specimen is secured between
the grips and by moving the crosshead upwards, which exerts tensile force onto the
sample by pulling one end against the one held stationary. The amount of force applied
is measured by a load cell, and a displacement transducer measures the displacement of
the crosshead. These measurements allow for the calculation of stress and strain values,
which are used to determine the material's mechanical properties (Davis, 2004).
Mechanical properties, such as tensile strength, yield strength, elongation, and modulus
of elasticity, are obtained using tensile tests on polymers. By plotting a stress-strain curve
as shown in Figure 23 a tensile test can be evaluated. This information is used to select
appropriate materials for specific applications, design products, and optimize processing
conditions. (Worgull, 2009; Yang, 2019)

The tensile testing of polymer foams takes place similarly to that of polymers. However,
the mechanical properties of foams are influenced by the foam morphology and density.
Foams exhibit rate-dependent behavior, and prediction can be complicated due to various
structural responses arising from trapped gases within the foam cells. Generally, foams
exhibit low tensile strength than the parent polymer, but the possession of high ductility
makes polymer foams significantly attractive for various applications. In this work,
tensile testing was performed on polymer foams and membranes to measure their
mechanical strength using a universal tensile testing machine as shown in Figure 24. The
effects of different materials, process settings and morphologies on the tensile strength of
foams and membranes are studied. As membranes operate under high pressure in their
modules, testing their mechanical strength is essential. In addition, the quantification of
foam and membrane characteristics such as brittleness and ductility are possible using
tensile testing. (Fu et al., 2006; Kabir, Saha and Jeelani, 2006; Zhang, Lu and Zhao, 2014;
Liu et al., 2019)
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Figure 23: A stress-strain curve of different types of polymers denoting various
information such as stress at break (oB), strain at break (eg) and yield stress (03)

obtained from tensile testing. The Young’s modulus (E) of the brittle polymer can
be calculated by measuring the slope of the red dashed line i.e. the elastic region.
The area under the curve denoted by blue color is measured to calculate the

deformation energy of the respective polymer.
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Figure 24: Universal tensile testing machine used in this work.
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5. Objective of This Work

The current state-of-the-art techniques and processes for manufacturing polymer
membranes capable of ultrafiltration use organic solvents. Due to their disadvantages, a
vital requirement for alternative methods arises. This need is recognized by a few
researchers, which led to the development of alternative methods involving green organic
solvents and techniques using uneconomic polymeric systems. Melt-extrusion followed
by bi-axial stretching, an organic-solvent-free process, is limited to semi-crystalline
polymers. Polymer foaming, a method widely used industrially and in polymer research
for obtaining porous polymers, is only sparsely investigated for the fabrication of
membranes. The significant barrier to using foams as ultrafiltration membranes is the lack
of open-celled morphologies that contain pore sizes smaller than 1 pum. Therefore,
ultrafiltration-level separation cannot be achieved using these foams. The following Venn
diagram in Figure 25 visualizes the state-of-the-art research in foams. Some researchers
have been able to produce polymer foams with nanocellular cell sizes, while some have
been able to produce open cellular polymer foams. However, no nanocellular open-celled

permeable foams were not available at the beginning of this work.

Open-celled
permeable
foams

_ Nanocellular
Noams

Figure 25: A Venn diagram visualizing the state-of-the-art of polymer foams.
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Therefore, this work aims to manufacture ultrafiltration membranes, both as flat sheet
membranes and hollow fiber membranes, using foams. Commercial amorphous polymers
already used in ultrafiltration membranes are selected to develop open-celled permeable
nanocellular polymer foams. A high permeability of these foams, a consequence of open
cellularity, would be achieved by aiming for high porosity. At the same time, the cell size
should be restricted to a few nanometers to cause a 90% MWCO for molecules of PEO
with a molecular weight of 1 million Da, a criterion used to classify ultrafiltration

membranes.

PESU, a high-performance polymer preferred commonly in manufacturing ultrafiltration
membranes is selected. By forming binary and ternary blends of PESU with water-soluble
polymers such as PEG and PVP, these works take advantage of the extensive research
available in polymer blends, characterization, processing, foams, and ultrafiltration
membranes. Material development using intensive polymer characterization techniques,

as discussed in section 4.1 was pursued.

To realize the main goal ‘nanocellular open-celled foam capable of ultrafiltration’ in

continuous large-scale production, following steps were followed.

Step1:  Complete realization of the goal as a prototype on a small scale.

Step 2:  Setting up a continuous large-scale production with only partial realization of

the goal.

Step 3:  Complete realization of goal at a continuous large scale.

Table 6 shows the steps along with their respective processes and pursued forms.
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Step Goal Scale Process Form
1 Nanocellular open-celled foam | Small, prototype | Batch foaming | Flat sheet
2 Open-celled microcellular | Large, Foam Hollow
foam continuous extrusion fiber
3 Nanocellular open-celled foam | Large, Foam Hollow
continuous extrusion fiber

Table 6: Steps with respective goals, scale, the selected proceess and forms.

The characterization of the manufactured foams and membranes thereof is pursued

mainly using scanning electron microscopy, water-flux measurements, and retention tests

as explained in section 4.3.
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6. Cumulative Part

Upon successful completion, each step described in the objective was manifested into a
scientific article published in academic journals. As illustrated in Figure 26, the three
first-authored publications, together encompass this work into a cumulative doctoral
dissertation.

Nanocellular
foam

Open-celled
foam

- Article 1
Large-scale
continuous [ Article2
production

- Article 3

Figure 26: A Venn diagram visualizing the scope of each published article of this

cumulative work.

Every article contains a smooth flow of information, i.e., aim, current state-of-the-art,
research necessity, methodology, results realization, discussion of observations and
inferences, and conclusion. However, gaining insight into how one article's inferences
helped the next one's inception is important. Therefore, along with every article's reprint,
brief information is provided, which assists the reader in understanding the journey the

author(s) went through, the scientific and engineering challenges faced, and the
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circumstances that led to the realization of successful results. Therefore, certain

unpublished information is provided.
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6.1. Article 1: Open-Celled Foams of
Polyethersulfone/Poly(N-
vinylpyrrolidone) Blends for
Ultrafiltration Applications

Authors: Aniket Raje, Kristian Buhr, Joachim Koll, Volker Abetz, Ulrich A. Handge
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Given its prototype nature, the first step was based on batch foaming to control the
characteristics precisely. For this, polyethersulfone was selected as it was already a
desired ultrafiltration membrane material, with literature supporting its decent foaming
characteristics. Blends with poly(N-vinylpyrrolidone) were developed and extensively
characterized to determine their miscibility and thermal and rheological properties. This

allowed confirming their suitability in processing and foaming.

In batch foaming, water, along with CO; as foaming agents, delivered highly porous
foams that contained closed-cell morphology around a few micrometers whose cell walls
had open nanocellular pores connecting the microcells. However, a non-foamed skin
layer on the outer surface of these foamed samples hindered the implementation of these

foams as membranes.

To find a solution, various shapes and sizes of samples were tried, along with machining
foamed samples. However, the foaming results did not improve. During trials with thin
rectangular samples, due to some irregularities in laying the PESU/PVP blends’ samples
correctly in the sample holder of the batch foaming reactor, some samples were found
stuck on the inner wall of the reactor when the reactor was depressurized after the loading
phase. The stuck areas of these samples appeared strangely different than those that were
not stuck. Instead of discarding them, they were immediately foamed in the foaming stage
as per protocol. After foaming, the samples were studied using scanning electron
microscopy (SEM). It was revealed that the stuck regions of the samples foamed vastly
different than the non-stuck regions as the non-stuck regions foamed as the earlier
samples. The stuck regions did not possess a non-foamed skin layer, and the foam was
open-celled with cell sizes less than 1 um. As discussed in this article, studying the reason
behind this phenomenon led to the development of two sample manufacturing techniques,
one of which led to a permeable open-celled foam with an average pore size of ~ 100 um

and ultrafiltration capabilities.
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This study validated the idea of using polymer foams as ultrafiltration membranes and

motivated the upscaling of this process utilizing foam extrusion, as attempted in Article

2.
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Abstract: Since membranes made of open porous polymer foams can eliminate the use of organic
solvents during their manufacturing, a series of previous studies have explored the foaming process
of various polymers including polyethersulfone (PESU) using physical blowing agents but failed
to produce ultrafiltration membranes. In this study, blends containing different ratios of PESU and
poly(N-vinylpyrrolidone) (PVP) were used for preparation of open-celled polymer foams. In batch
foaming experiments involving a combination of supercritical CO, and superheated water as blowing
agents, blends with low concentration of PVP delivered uniform open-celled foams that consisted
of cells with average cell size less than 20 um and cell walls containing open pores with average
pore size less than 100 nm. A novel sample preparation method was developed to eliminate the
non-foamed skin layer and to achieve a high porosity. Flat sheet membranes with an average cell
size of 50 nm in the selective layer and average internal pore size of 200 nm were manufactured by
batch foaming a PESU blend with higher concentration of PVP and post-treatment with an aqueous
solution of sodium hypochlorite. These foams are associated with a water-flux up to 45 L/(h m? bar).
Retention tests confirmed their applicability as ultrafiltration membranes.

Keywords: polymer membranes; open-celled foams; solvent-free membrane fabrication;

polyethersulfone; ultrafiltration

1. Introduction

Ultrafiltration is an established membrane separation technique that is implemented
to filter out nanoparticles by means of size exclusion or particle capture [1]. Ultrafiltration
is used to purify liquids, e.g., water, whey, poly(vinyl alcohol) [2]. Porous polymeric
membranes for ultrafiltration are typically manufactured using processes such as the
non-solvent induced and thermally induced phase separation process (NIPS and TIPS, re-
spectively) [3-7]. These processes involve organic solvents such as N,N-dimethylacetamide
(DMAc), N-methyl-2-pyrrolidone (NMP), formic acid and N,N-dimethylformamide (DMF)
and are classified as harmful chemicals [8-11]. Some of them are associated with liver
disease in human beings [12]. The contamination of environmental water supply due to
the disposal of organic solvents poses a serious risk. On-site incinerations are a common
practice due to economic reasons [13]. To avoid wastage of organic solvents, in membrane
industry it is a general practice to recirculate organic solvents using distillation, which
consumes high amounts of energy leading to increased carbon emissions [14,15].

Over the past decades, polymer foaming is seen as a possible alternative to these
organic solvent-based processes for fabrication of membranes. Various studies use the
discontinuous process of batch foaming or solid state foaming [16]. Batch foaming involves
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a two-stage process where a physical gaseous blowing agent such as carbon dioxide (CO,)
diffuses into a polymer at elevated temperature and pressure for a limited period. The
temperature is generally below the glass transition temperature of the gas-loaded polymer
causing it to remain in a so-called “solid state”. After completion of this stage, this polymer
is exposed to a higher temperature for a short time, which causes nucleation and expansion
of foam cells by taking advantage of the softened polymer. This creates a closed-celled or
open-celled foam structure depending on the polymer properties and processing conditions.
Open-celled polymer foams, when customized to desirable cell size, deliver a permeance
that enables them to be implemented as separation membranes. As the aim of this work is
to produce prototype ultrafiltration membranes without the use of organic solvents, we
develop a manufacturing process using the batch foaming technique.

Krause et al. [17] produced closed-cellular polymer foams with an average pore
diameter in the micrometer range (~100 um) from PSU. After preparation of the said foam,
they used the organic solvent tetrahydrofuran (THF) to form open pores in the nanometer
range within the walls of the micro-sized cells. Krause et al. [18] used discontinuous
solid state foaming of PSU/polyimide blends with CO; as physical blowing agent to
develop nanocellular foams. Microcellular open-cellular foams (diameter in the range of
1-10 pm) were achieved by the use of organic solvents. Nanocellular foams (range of
pore diameter 2-50 nm) were achieved by increasing the CO, saturation levels such that
CO; stays in a continuous phase, which leads to an open-celled structure. Although these
foams find potential application as ultrafiltration membranes, their production involved
the use of an organic solvent to achieve open pores smaller than 1 um. Similarly, Gong
etal. [19] produced porous cell walls in microcellular polycarbonate foams by using acetone
with CO, during foaming. The use of acetone induced crazing within the polymer thus
resulting in a porous structure on the microcell walls. Without the use of organic solvents,
Sorrentino et al. [20] and Guo et al. [21-23] developed foams with a similar structure. They
investigated the foaming of high performance polymers including PESU and found that
PESU exhibited nanocellular foams whereas the other investigated polymers exhibited
pores with a diameter only in the micrometer range. They reported the formation of a
nano-structure on the cell walls of microcellular foam of PESU and polyetherimide (PEI)
without the use of organic solvents. This nano-structure appeared to have a tendency
towards making the cell walls of the microcellular foams partially porous with pores less
than 1 um in diameter. Guo et al. [21,22] applied a solid state CO, foaming process on
PSU and PPSU where they used low temperatures between —10 °C to 60 °C for loading
the samples with CO, without using organic solvents. They reported a similar nanoscale
structure on the cell walls of the closed microcellular foams. They describe this structure
as a ‘network of stretched struts’ that are nanoscale fibers formed due to stress-induced
nucleation or spinodal decomposition, i.e., a biaxial tensile deformation caused by the
expansion of cells. Although this structure appears uniformly distributed on the cells, it
does not appear to be open-celled foam. To obtain open pores within these foams, a higher
porosity would be desirable such that pores would be created within such a nanoscale
structure due to high degree of stretching.

Li et al. [24] used assisted mold foaming to manufacture polysulfone foams with high
expansion ratios. They applied mechanical pressure on CO,-loaded polysulfone samples
while subjecting them to foaming temperatures. By using this method, high expansion
ratios were obtained in the resulting foams. However, the cell size was above 15 um and
only a closed-cellular structure was achieved.

CO; has been established as an ideal blowing agent for delivering high porosity poly-
mer foams [16,25,26]. Inaddition, CO, in supercritical state provides better foaming results
than gaseous CO; in subcriticial phase [16,27]. Hu et al. [28] studied the use of ethanol as a
co-blowing agent during the foaming of polysulfone (PSU) and poly(phenylene sulfone)
(PPSU). The expansion ratio and the foaming temperature window of the foams were sig-
nificantly increased due to the use of co-blowing agent. Owusu-Nkwantabisah et al. [29]
used a combination of supercritical CO, and superheated H,O to produce PESU foams and
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found a significantly increased level of porosity and interconnectivity between pores as com-
pared to a PESU foam that was foamed by using only supercritical CO,. Schulze et al. [30]
also achieved open-celled foams using block copolymers and CO; as foaming agent in
the presence of water during the loading process. Water in superheated state has a signif-
icantly reduced polarity such that it shows solvent properties [31]. Therefore, the usage
of superheated water with supercritical CO, (shH,O + scCO;) for foaming emerges to
be promising.

Polyarylsulfones such as polyethersulfone (PESU), polysulfone (PSU) and polyphenyl-
sulfone (PPSU) have been widely studied for obtaining permeable foams [17,18,20-22,29].
PESU is widely used for membranes as it provides high thermal stability due to its high
glass transition temperature, good chemical stability due to the presence of sulfonyl groups
and ether linkages, and favorable structural stability due to the presence of two aromatic
groups in the repeating unit [32]. PESU membranes are also preferred for ultrafiltration ap-
plications due to their capability to deliver reliable retention values and high porosity [33].
Some researchers used poly(N-vinylpyrrolidone) (PVP) as a water-soluble “pore-opener”
along with poly(arylsulfones) to produce ultrafiltration membranes from solutions in
organic solvent [33—40]. Therefore, due to the proven application of PESU and PVP in
ultrafiltration membranes, we use blends of PESU and PVP in this work. Shi et al. [41] used
PMMA /PVDF blends to achieve highly porous nanocellular foams. The use of PVDEF to
form a miscible blend with PMMA was determined to increase the porosity and decrease
cell size in both macro and micro cells. Therefore, we plan studies to confirm the misci-
bility of PESU and PVP, and observe the effect of polymer content on various material
characteristics and foaming results.

Ultrafiltration requires an average pore diameter between 10 nm and 100 nm in the
selective layer. Thus, open-cellular foams with cell size of approximately 100 nm are tar-
geted. As PVP is soluble in a variety of commonly available compounds such as water
and aqueous solutions of sodium hypochlorite (NaOCl), a permeable selective layer could
be created through the dissolution of PVP. NaOCl is selected due to its proven suitability
for post-processing of PESU/PVP membranes [33,35,39]. The outer surface in batch foams
commonly contains cracks that occur due to the expansion of the sample during foaming,.
If the cell size of the foam cells were in the range of micrometers, these cracks would
lead to functional failure as ultrafiltration membrane and deem the selective layer useless.
Therefore, the cell size is also desired to be similar to the cell size of the selective layer
such that flaws occurring on the surface during foaming can be easily compensated by the
internal structure. We focus on manufacturing completely open nanocellular foams, which
the previous studies [17-30,41-43] did not fully realize. In recent years, the research on
polymer foams has shifted towards composites involving graphene and other nanopar-
ticles to deliver highly porous microcellular and nanocellular foams [44-49]. However,
this is out of the scope of this work, as we focus on obtaining the said foam from the
pristine polymers.

Batch foaming often yields a non-foamed outer layer after foaming due to fast diffusion
of the blowing agent [21]. In order to employ these foams as membranes, an intuitive
method is developed to avoid this non-foamed layer and at the same time improve the
foam quality. We aim to achieve a complete open-cellular foam structure with a nanometer
cell size by combination of batch foaming and post-treatment in inorganic solvents. The
membranes prepared using this organic solvent-free method would be permeable to water
and have retention values that are near to those of ultrafiltration membranes based on
methods using organic solvent in their manufacture.

2. Materials

In this study, commercial grades of polyethersulfone and poly(N-vinylpyrrolidone)
BASF Luvitec® K 30 (PVP K 30) were used for blend preparation. The blends were obtained
from BASF SE (Ludwigshafen, Germany). Two variants of PESU that varied in molecular
weight were used viz., BASF Ultrason® E 2010 (PESU E 2010) and BASF Ultrason® E 3020
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P (PESU E 3020 P). Although high molecular weight PVP such as PVP K 90 is used in
the fabrication of ultrafiltration membranes, PVP K 30 (BASF Luvitec® K 30 molecular
weight around 40,000 Da [50]) is used here because CO> shows a higher miscibility with low
molecular weight PVP than with high molecular weight PVP [51]. The blend formulations
and nomenclature are given in Table 1.

Table 1. Nomenclature of blends with respect to their composition.

PESU PVP K 30
Blend Name
Type Content [wt%] Content [wt%]
L-8 PESU E 2010 92 8
L-16 PESU E 2010 84 16
L-24 PESU E 2010 76 24
L-32 PESU E 2010 68 32
H-8 PESU E 3020 P 92 8
H-16 PESU E 3020 P 84 16
H-24 PESU E 3020 P 76 24
H-32 PESUE 3020 P 68 32

BASF Luvitec® K 90 (PVP K 90) and Kapton® foil (Polyimide (PI) foil) was chosen
for preparing sandwich-type samples. All materials were dried in a vacuum chamber at
130 °C for 24 h before further use.

For post-treatment, sodium hypochlorite (Roth GmbH & Co. KG, Karlsruhe, Germany)
and sodium bisulfate (Roth GmbH & Co. KG) were used.

3. Experimental and Methodology
3.1. Material Characterization

Differential scanning calorimetry (DSC) measurements were carried out using a
calorimeter DSC 1 (Mettler Toledo, Gieflen, Germany), and analyzed using STARe
SW 16.20 software (Mettler Toledo). 40 puL aluminum pan with a mono-perforated lid
was filled with approximately 10 mg of polymer. A heating rate of 10 K min~! in the
temperature interval from 25 °C to 260 °C in a nitrogen atmosphere was chosen. Heating-
cooling-heating cycles were executed. Then the glass transition temperature was deter-
mined by analyzing the second heating interval.

The glass transition temperatures and the heat capacities when changing from the
glassy to the rubbery state of the homopolymers were used in the Equation (1) as derived by
Couchman [52] and the glass transition temperatures were used in Equation (2) as derived
by Fox [53] to find the expected glass transition temperature of miscible blends at various
polymer mass fractions.

wipAcy, i1 In(Tg 1/ Ty, 1)
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In Equations (1) and (2), Ty is the glass transition temperature of the blend, w; and wy;
are mass fractions, Ac, ; and Ac) i1 are the differences of the heat capacity when changing
from the glassy to the rubbery state measured using DSC, and T, ; and Ty j; are the glass
transition temperatures of polymers I and II respectively.

High pressure differential scanning calorimetry (HP-DSC) measurements were car-
ried out using a calorimeter HP-DSC 1 (Mettler Toledo), and analyzed using STARe
SW 16.20 software (Mettler Toledo). The aluminum pan with a multi-perforated lid was
filled with approximately 7 mg of powdered polymer. The sample was rinsed with CO, for
5 min in the equipment. First, a heating rate of 10 K min~! was applied from 25 °C to 260 °C
in a CO; atmosphere at 1 bar. Then, the sample was allowed to cool down to 150 °C and then
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held at this temperature for 3 h at the desired CO, pressure (1 bar, 10 bar, 20 bar or 30 bar).
The sample was then heated up to 260 °C at a heating rate of 10 K/min while maintaining
the CO; pressure. Considering the diffusion coefficient of D = 3 x 10~% cm?/s for PESU at
room temperature [54,55] and the sample particles having radius of R = 100-150 um, the
saturation time can be calculated using fss = R%/D,i.e., approximately between 55 and
130 min. Since, saturation time decreases with increasing temperature due to softening of
the polymer, the selected time of 3 h is sufficient for saturation for PESU and the blends at
150 °C. The T was determined by analysing the final heating interval when the sample
was assumed to be saturated with COs.

For rheological measurements, cylindrical samples measuring 8 mm in diameter and
2 mm in thickness were prepared using compression molding at 270 °C for a total time of
10 min. For compression molding of PESU and blend samples, a hot press (Paul-Otto Weber,
Remshalden, Germany) was used. As PVP K 30 was available in powder form, cylindrical
samples measuring 8 mm in diameter and 2 mm in thickness were prepared using Vacuum
MR Hei-End (MeltPrep GmbH, Graz, Austria) at 240 °C. It was ensured that the samples had
no air bubbles, cracks, weld lines or rough surfaces through visual inspection. Rheological
measurements were carried out on an Anton Paar MCR 502 rheometer with a plate-plate
geometry. Frequency sweeps in the frequency range between 0.01 and 100 rad/s were
carried out at temperatures 190, 200, 220, 240 and 260 °C for PVP K 30, and at 260, 280,
300 and 320 °C for the other materials. The frequency sweeps started with the highest
frequency. The master curves were constructed using the software LSSHIFT developed
by Honerkamp and Weese in 1993 [56]. For amorphous polymers, the dependence of the
horizontal shift factor ar on temperature T in the construction of master curves can be
described using the William-Landel-Ferry (WLF) equation [57],

c1 (T - T,‘(,f>

2+ (T_ Tief) e
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The WLF parameters c¢; and c; were obtained by applying a least-squares fit of
Equation (2) to the master curves at reference temperature T, ¢ using LSSHIFT.

3.2. Batch Foaming

The batch foaming process was carried out on samples similar to those used for
rheological measurements. Batch foaming can be divided into two stages. In stage one, i.e,,
the loading phase, samples were placed in a high pressure vessel (highpreactor BHM-500,
Berghof, Eningen, Germany). CO, gas was used as a foaming agent and was inserted
into the vessel through an inlet from a dip-tube bottle (99.995% purity, Linde PLC, Dublin,
Ireland) using a high pressure syringe pump (Teledyne ISCO, Lincoln, NE, USA) at room
temperature up to a pressure value that was calculated based on the combined gas law
using the desired temperature and CO; pressure. The vessel was then heated to the desired
loading temperature ranging from 125 to 175 °C. This temperature was maintained for a
loading time of 24 or 48 h, depending on the experiment. In some trials, water was used
as a co-foaming agent along with CO,. In these trials, the vessel was filled with 40 mL
ultrapure water. Immediately after completion of the loading interval, the pressure was
released in a controlled manner for 7 s ensuring a pressure drop to ambient pressure and to
initiate foaming (stage 2). Immediately, the samples were placed for 100 s between two hot
plates of a hot-press at the desired foaming temperature that ranged between 210 to 270 °C.

3.3. Membrane Manufacturing

Blends H-8 and H-32 (with weight fractions 92 /08 wt% and 68/32 wt%, respectively)
were the main materials of interest for manufacture of membranes and were additionally
produced by blending PESU E 3020 P with PVP K 30 in a twin screw extruder (Brabender,
Duisburg, Germany). Blend samples for preparing sandwich-type layers were prepared by
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compression molding. These sandwich-type samples contained a separate PVP layer where
BASF Luvitec® K 90 (PVP K 90) was used due to higher ductility and mechanical stability
compared to PVP K 30. Each layer was manufactured separately with the dimensions
shown in Figure 1. Two manufacturing methods were used, method I (Figure 1a) where
PVP layers were made from an aqueous PVP solution (ratio 50/50 wt%), and method II
(Figure 1b) where compression molded PVP layers were used. For both methods, the blend
films were manufactured using compression molding at 270 °C. In the first method, the
blend sample was adhered to the polyimide foil using the aqueous PVP solution as PVP
has adhesive properties [58]. The samples were allowed to dry for up to 24 h. In the second
method, the temperature used for compression molding was 240 °C for PVP K 90. The
layers, as shown in Figure 1b were placed on top of one another and pressed for 3 min
together at 205 °C under 20 kN loading using a hot press (Paul-Otto Weber). Polyimide
foil was used at the top and the bottom layer as a protection during handling. In both
methods, the polymer blend film would thus be completely covered by another polymer,
i.e.,, PVP K 90, and would be implemented as a membrane later. Batch foaming was carried
out on these samples using the same process explored previously. The first method of
sandwich-type samples was initially implemented on both blends and the second method
was only used with the better performing blend.

@ 20 mm

Polymer blend 11"1’1;3?1’:‘(::1 B o

(@)

@ 26 mm

@ 20 mm

: _____ s

v,

|

{:] Polymer blend w PVPK 90 - PI foil

(b)

Figure 1. Scheme of a sandwich-type sample: (a) Method I; (b) Method IL

The foamed samples were subjected to post-treatment using an aqueous solution of
0.1 wt% sodium hypochlorite (pH = 11.5). Samples were initially inserted as a solution in
a closed glass bottle at a maintained temperature of 80 °C for 24 h. During this time the
solution became saturated with PVP K 90 and the PI foils detached themselves. The polymer
of interest with some remenents of PVP K 90 on its surface was carefully transferred in a
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new solution of NaOCl in a new bottle and subjected to a temperature of 80 °C for 48 h.
The choice of this temperature was based on the results of solubility tests of non-foamed
polymer films (cf. Supporting Information). To wash out the residual NaOCl and active
chlorine, the samples were rinsed in decalcified water at 35 °C for 10 min, aqueous solution
of 0.5 wt% sodium bisulfite at 20 °C for 10 min and finally with decalcified water at 80 °C
for 10 min [33].

3.4. Foam Characterization and Membrane Properties

Scanning electron microscopy (SEM) was used to characterize the foams. For large
samples, foams were broken using liquid nitrogen to retain their nanostructure. For smaller
samples, foams were cut using a sanitized sharp razor blade which caused smearing of
the nanoscale structures present in the cutting plane. The average cell size was measured
for selected foams using the scanning electron micrographs and the measurement tool
in Photoshop CS6 (Adobe, San Jose, CA, USA). The porosity was measured for selected
foams from the micrographs by measuring the number of pixels taken by visible cells and
calculating the percentage versus the total number of pixels in the micrographs.

Density measurement was carried out using the buoyancy method on a density
measurement device (Mettler Toledo, Gieflen, Germany). Water-flux measurements were
carried out on samples after completion of post-treatment using a membrane-holding cell
with a diameter of 20 mm and an in-house constructed testing facility. The measurements
were carried out with decalcified water at 7 bar pressure.

Retention tests were carried out using a Millipore cell that held a solution of 0.01 wt%
poly(ethylene oxide) (PEO) in water of average molecular weight 400,000 Da. The broad
molecular weight distribution of the chosen PEO allowed filterability of various length
molecules to be observed. The solution was allowed to mix thoroughly using constant
magnetic stirring in a closed flask for 24 h before using in retention tests. The feed solution
and the permeate solutions were collected and further analysed using gel permeation
chromatography (GPC). The retention coefficient R was calculated using the Equation (4)
where, wp and wp are the mass fractions of PEO in permeate and feed solutions respectively.

wp

R=l=2 @)

4. Results and Discussion

4.1. Material Characterization

In our DSC measurements, all homopolymers and blends showed a single glass
transition. As an example, Figure 2 shows the DSC graph of blend L-32.
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Figure 2. Heat flow versus temperature in second heating of blend L-32 showing single glass transition.
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This provides an indication that the homopolymer chains are mixed on a segmental
level in a single phase within these blends. As seen in Figure 3ab, the blends with
high molecular weight PESU undergo a higher reduction of glass transition temperature
with increase in PVP content than low molecular weight PESU. This suggests a higher
reduction of free volume caused by PVP K 30 in the blends with higher molecular weight
PESU than in the blends with lower molecular weight PESU. Figure 3a,b also show the
change in glass transition temperature due to change in polymer content as prediction
of Equations (1) and (2) based on the glass transition temperatures of polyethersulfone as
polymer I and poly(N-vinyl pyrrolidone) as polymer II. Blends with PESU E 2010 exibited
glass transition temperatures near the predicted values of both equations, whereas in
blends with PESU E 3020 P the observed glass transition temperatures are more close to the
values predicted by Equation (1). The predictions of Equation (1) correspond closely with
both L-x and H-x blend combinations as the change in heat capacities at glass transition
are dissimilar for both blend components and the ratio between their glass transition
temperatures is unequal to unity. As stated by Couchman [52], when a polymer blend
fulfils the premise of Equation (1), it provides an indication that the blend is composed of

miscible polymers.
240_ T T T T 1 1 240_ T T | FSL7Y [ R T ]
220 | ] 20 F =
a : B ]
2. 200 | - 2. 200 - —
R r ] R B i
180 2 180 -
- @ Blend Lx - - Blend H-x b
= Prediction of eq. (1) b [ — - Prediction of eq. (1) 3
B Prediction of eq. (2) l L Prediction of eq. (2) J
160.‘..I....I....I....I....I....I..., 160.|..I....I....I....I....I....l...
-20 0 20 40 60 {0} 100 120 -20 0 20 40 60 :{0] 100 120
wy, [%] w,, [%]
(a) (b)

Figure 3. Glass transition temperature versus weight concentration of PVP in blends and predictions
of Equations (1) and (2) based on glass transition temperatures of homopolymers; (a) Blends with
PESU E 2010 (L-x) (b) Blends with PESU E 3020 P (H-x).

The influence of CO; on the thermal properties of the materials was studied by
using HP-DSC. Compared to the sharp glass transition occurring observed by DSC under
nitrogen, the glass transition occurs gradually spreading over a larger range of temperature.
This spread increases with increasing CO, pressure as seen in Figure 4a for blend L-8.
In some blends and materials, the glass transition occurred gradually without a distinct
inflection point. Figure 4b shows a linear decrease of glass transition temperature with
increasing CO, pressure for both grades of PESU. However, for PVP K 30 the glass transition
temperature stayed constant above 10 bar CO; pressure. These influences on PESU and
PVP act proportionally in the blends according to their weight contents. With increasing
CO; pressure blends with 8% PVP content undergo a larger decrease in T, than blends with
32% PVP. A larger free volume in a polymer leads to a lower glass transition temperature.
Therefore, the HP-DSC measurements show that CO, has a larger effect on the free volume
in PESU than PVP K 30 [59,60]. Foaming was observed in some of the samples after removal
from the device.
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Figure 4. HP-DSC results for selected blends: (a) Effect of CO, pressure on glass transition tempera-
ture of blend L-8 (b) T at various CO, pressures (Some materials did not show an identifiable glass
transition at 30 bar).

The effects of composition and type of the polymer blends on the dynamic moduli
of the blends were determined by rheological analysis. In PESU, the storage modulus G’
remains lower than the loss modulus G” at frequencies lower than the crossover point. With
decreasing angular frequency, in double logarithmic presentation, the storage modulus
decreases with a slope nearly equal to 2 and the loss modulus with a slope nearly equal to 1.
PVP K 30 does not adhere to the slopes equal to one and two of storage and loss modulus,
respectively, and shows an increasing storage modulus with decreasing angular frequency
because of thermally induced crosslinking. Since crosslinking increases the elasticity of the
polymer, it could lead to a limited foam expansion and collapse during foaming of pure
PVP or blends with high content of PVP. The data for pristine PESU and PVP are provided
in the Supporting Information. The master curves of the moduli vs. angular frequency
measurements shown in Figure 5a,b show that the blends translate the behaviors of PESU
and PVP K 30 with their polymer contents correspondingly. Since both PESU and PVP are
amorphous polymers [61,62], the temperature dependence of the horizontal shift factor in
the construction of master curves for their blends can be described using the Equation (3)
where reference temperature of 320 °C was chosen. As seen in Figure 5c,d, both blends
obey the WLF equation which provides another evidence that PESU and PVP are miscible
at both high and low concentrations of PVP [63,64].
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Figure 5. Cont.
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Figure 5. Rheological analysis of selected materials: (a,b) Master curve of blends H-8 and H-32;
(c,d) Shift factor and WLF fit of blends H-8 and H-32.

4.2. Batch Foaming

In the experiments where CO, was used as a foaming agent, all selected materials
yielded mostly closed-cellular foams. PVP K 30 delivered the lowest density foams among
all materials in most trials. However, in some trials, during the foaming stage, the PVP
samples initially grew into 3—4 times the original size as observed visually, and collapsed
instantaneously after 45 to 60 s of exposure to the foaming temperature. This foam collapse
occurred only when the loading pressure was set to 50 bar but did not occur in the trials
conducted at 100 bar. As PVP is a highly elastic material in the melt state, the expansion
caused by bubble growth is easily reversed, thus attaining the original size. Figure S10
in the Supporting Information show that this collapse has resulted into a crushed foam
structure. Foams of blends with 32% PVP had the highest porosity among the blends. This
increase in porosity due to increase of PVP content supports the findings by Shi et al. [41]
where the increase in the polymer content of the minor component in the single-phase
polymer blend yielded in higher porosity.

Although majorly closed microcellular foams, the blends L-8 and H-8 exhibit a certain
nanoscale structure on the cell-walls of the microcellular foams as shown in Figure 6. As dis-
cussed in the Introduction, many researchers have found this structure in foams of various
polymers at certain processing conditions. Fukasawa et al. [65] and Gong et al. [19] found a
similar structure in polycarbonate foams under certain processing conditions. Their struc-
ture consisted of partially open pores formed within this structure. Fukasawa et al. [65]
linked the formation of these pores to the crystallization of polycarbonate resulting in
a fibrillary structure that was stretched as a result of bubble growth in the amorphous
region during foaming. This explanation was based on various studies that focused on the
crystallization of polycarbonate where such fibrillary structure was also reported. However,
this explanation remains a speculation as evidence of CO, induced crystallization cannot be
identified in their samples. Gong et al. [19] and Guo et al. [21-23] provide explanations that
seem more plausible towards the cause of this structure. Gong et al. [19] explained that the
formation of the fibril structure on the cell walls is due to the phenomenon called crazing.
The nucleation and bubble growth induced due to foaming in the polymer results in biaxial
tensile deformation. Thus, the fibrils are stretched and result in the formation of voids.
They also found a direct relation of the strain energy around the pores during nucleation
and bubble growth towards the formation of the nanostructure. Guo et al. [21-23] found a
similar structure in polysulfone, polyphenylsulfone and a cyclic olefin copolymer. They
named the structure as bicontinuous structure and suggest that an open or closed nanoscale
structure may be a result of stress induced nucleation. Although the reasoning given by
Gong et al. [19] and Guo et al. [21-23] differ, they agree in that the structure is caused by
stretching induced by the growth of micro cells.
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Figure 6. Scanning electron micrographs of selected foams manufactured using foaming agent CO;:
(a,b) Blend L-8; (c,d) Blend H-8.

In our case, the blends L-8 and H-8 delivered similar structure on the cell-walls of the
microcells, which however is not open porous. This can be explained by the lack of sufficient
deformation provided during the growth of microcells since a higher expansion during foaming
is required for fabrication of open-celled foams [22,23]. A higher expansion would lead towards
streching the nanostructure enough such that open nanocellular foams are obtained.

Initially in the trials with CO; and water, the effect of foaming temperature was
analyzed. The parameters loading temperature (150 °C), loading time (48 h), pressure
(100 bar) and foaming time (100 s) were kept constant.

As expected, when using CO, and water as foaming agent an increased porosity was
found in foams of blends H-8 and H-32 in the microcells as seen in Figures 7 and 8. Blend
H-32 showed a higher porosity and partially open-cellular foam, but failed in providing any
nanoscale structure. Foams of blends L-8 (cf. Supporting Information Figure S7) and H-8
contained high uniformity and similar cell size. The walls of these cells were made of a mesh
of open pores smaller than 200 nm. The increased porosity enabled formation of pores within
the nanoscale structure. This structure was seen at samples foamed at temperatures of 210,
230 and 250 °C for both materials. At270 °C, this structure was not found. Comparing the
porosity and the cell size distribution, the foaming temperature 230 °C provides an average
cell size below 100 nm and the highest porosity of this type of pores was larger than 20%.
At this foaming temperature, among the two blends, H-8 blend provides the lowest average
cell size while maintaining a high porosity in both microcells and the smaller open pores. To
maintain connectivity between the microcells through the smaller open pores, an overall high
porosity is also desired. Therefore, blend H-8 is taken as an optimum candidate for the further
tests by selecting the foaming temperature as 230 °C. As shown in Figure 9, the average
size of the pores on the microcell walls in the foams obtained using loading temperature as
150 °C is below 100 nm and has a porosity larger than 25%. The loading temperature 175 °C
delivers higher porosity and larger cell size than the loading temperature 150 °C in both
microcells and the pores on their cell-walls. Scanning electron micrographs of the effect of
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loading temperature is available in the Supporting Information as Figure S9. A higher loading
temperature softens the polymer more and aids in faster diffusion of the foaming agents.
This results in higher porosity and larger microcells during the foaming stage. An increased
growth of microcells causes higher stretching of the cell walls wherein the nodal structures
aid in creation of larger pores. Similarly, a lower loading temperature causes a lower solubility
of foaming agents in the polymer and results in low porosity and smaller cell sizes. Therefore,
the originally selected loading temperature of 150 °C appears ideal in this case for the blend
H-8 such that an interconnectivity is achieved.

(b)

Figure 7. Scanning electron micrographs of foams of blend H-32 manufactured at loading time 48 h,
pressure 100 bar, loading temperature 150 °C, foaming time 100 s and foaming temperature 230 °C:
(a) Using only CO, as foaming agent; (b) Using CO, and H,O as foaming agents.

Figure 8. Scanning electron micrographs of foams manufactured using blowing agent CO, and H,O
at loading time 48 h, pressure 100 bar, loading temperature 150 °C, foaming time 100 s and foaming
temperature 230 °C for Blend H-8: (a) internal structure at 500 x magnification; (b) internal structure
at 20,000 x magnification; (c) structure near the surface at 500 x magnification; (d) internal structure
at 2500 x magnification.
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Figure 9. Average cell size and porosity: (a) Average cell size vs. foaming temperature in foams of
blend L-8; (b) Average cell size vs. foaming temperature in foams of blend H-8; (c) Porosity vs. foam-
ing temperature in foams of blends L-8 and H-8; (d) Average cell size vs. loading temperature in
foams of blend H-8; (e) Porosity vs. loading temperature in foams of blend H-8.

Owusu-Nkwantabisah et al. [29] analysed the effects of using H,O along with CO,
as a foaming agent for foaming of polyethersulfone and found that using scCO; + shH,O
as foaming agent delivered an increased porosity and in some cases, open pores. As the
structure found in foams H-8 and L-8 previously could develop open pores if the overall
porosity is increased, scCO, + shH,O was used as foaming agent.
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4.3. Membranes

All foams discussed in Section 3.2, exhibit a solid non-foamed skin layer of approxi-
mately 20-50 um thickness similar to as shown in Figure 9¢c. To use these foams for their
permeation properties, this outer layer is necessary to be eliminated and thus sandwich-
type samples were used. The sandwich-type samples have an additional layer of another
polymer, PVP K 90 in this case, such that it behaves as a faux outer layer where the escape
of diffused foaming agent would take place during depressurization thus limiting the
non-foamed surface layer towards the PVP K 90. This allows the polymer of interest to
stay completely foamed. During post-treatment, the PVP layers dissolve into the NaOCl
solution and the thoroughly foamed polymer of interest is obtained.

During the batch foaming of sandwich-type samples that were prepared using aqueous
solution of PVP, blend H-8 showed a similar internal foam structure as it was seen in the
previous batch foaming experiments. However, the surface layer was foamed with a
separate foaming pattern, i.e., with smaller closed-cells with an average diameter of 100 nm
and blind open pores on the surface. Figure 10a,b show the microstructure of foam of blend
H-8 manufactured using sandwich method. The influence of using the sandwich-type
samples can be seen but applicable results were not delivered. Blend H-32 however, yielded
a completely permeable open nanocellular foam with slit type open pores as shown in
Figure 10d on the surface with average width 50 nm as shown in Figure 10f. This foam
structure was available only in the regions indicated in green in Figure 10c. The region
highlighted in red were non-foamed as seen in Figure 10e. This indicated that the blend
layer was too thick. The sample could therefore not be used for testing permeation. Also,
in some samples, the blend layer was not fully covered by the PVP due to the adhesive
solution not flowing in certain areas between the PI foil and the blend. This caused certain
samples to have non-foamed skin layers in the regions where the blend film was not
covered by PVP K 90.

(¢)

Figure 10. Cont.



Polymers 2022, 14,1177

15 of 22

()

Figure 10. Scanning electron micrographs of sandwich-type samples manufactured using method I,
batch foamed and post-treated: (a) Cross section of blend H-8; (b) Microstructure observed in the skin
layer from figure (a); (c) Cross section of blend H-32; (d) microstructure observed in smaller green
box and commonly found across the area enclosed by larger green boxes in figure (c); (e) Observed
solid structure in the smaller red box and commonly found across the area enclosed by the larger red
box in figure (c); (f) Outer surface of blend H-32.

To overcome these issues, thinner blend samples were used in method II of preparing
sandwich-type samples, and to ensure completely sealed covering of the blend layer, the
PVP layer was compression molded instead. Since only blend H-32 delivered promising
results, only blend H-32 was subjected to further experiments using the second method of
preparing sandwich-type samples. After batch foaming, along with the blend layer, the
outer PVP K 90 layer foamed. This PVP foam could be dissolved during post-treatment.
Figure 11 show that the blend layer yields a completely permeable open-cellular foam with
cell sizes less than 300 nm. The membranes after post-treatment as shown in Figure 12
had a thickness in the range of 300 to 350 um, approximately two times thicker than the
polymer layer in the sandwich-type samples. This open-cellular structure was not observed
in the foams of blend H-32 that were manufactured during the batch foaming trials using
cylindrical samples as seen in Figure 7. Comparison of the morphologies after the loading
phase of batch foaming, after foaming and after post-treatment, shows that the internal
open-cellular structure is obtained only after foaming and the post-treatment aids in the
removal of the outer PVP layer and provides an open porous surface. This open porous
surface has an average cell size around 50 nm and is slightly larger than the internal porous
structure of the foam which is around 200 nm. Therefore, due to this pore size, this porous
surface is capable of functioning as a selective layer for ultrafiltration [2].

1.0
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Figure 11. Retention coefficient of membrane manufactured using sandwich-type samples vs. mo-
lar mass.
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Figure 12. Scanning electron micrographs of sandwich-type sample manufactured using method
II with blend H-32, after batch foaming and post-treatment: (a) cross section; (b) internal structure;
(c) surface.

The mechanism behind the realization of such a structure using sandwich-type sam-
ples is depicted in Figure 13. In a standard sample, during the loading phase, the foaming
agent dissolves within the sample over time ty and attains near-saturated state. During
depressurization of the batch foaming reactor, the dissolved foaming agent begins to escape
from the polymer matrix. The rate of escaping is highest at the surface and lowest in the
middle of the sample. This occurs as long as the depressurization time along with the time
taken to transfer the samples from the reactor to the foaming temperatures, is larger than
zero. Therefore, the samples are no more in their fully saturated state. This yields low
level of nucleation and causes closed-cellular foams with non-foamed outer surface layer.
Therefore, blend H-32 when foamed as a standard sample, yielded closed microcellular
foam as seen in Figure 7b. In sandwich-type samples, when one polymer is covered by
another polymer, under similar conditions the amount of time taken for the foaming agent
to dissolve within both polymers until saturation, t, is larger than time t, due to larger
thickness and different diffusion coefficients. During depressurization, similar to standard
samples, the foaming agent begins escaping from the sample, but this occurs mainly in the
outer polymer. As the internal polymer layer is tightly enclosed by the outer polymer layer,
any escape of foaming agent from internal polymer would need permeation of the foaming
agent through the outer polymer layer. As the outer polymer is different from the inner
polymer, they have different permeation and solubility properties. The internal polymer
remains near to its completely saturated state and delivers highly porous nanocellular foam
whereas, the non-foamed outer surface layer is restricted to the outer polymer. Therefore,
based on this principle, an open-celled foam with cell size in nanometers was realized
in blend H-32 using this method as seen in Figure 14. Removal of the outer polymer
was required to use the inner polymer for any applications. Thus, selection of the outer
polymer as a water-soluble or inorganic solvent soluble polymer is essential such that the
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post-treatment of the sandwich-type sample would lead to dissolution of the outer layer
and the internal layer stays unaffected.

Loading Phase
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Figure 14. Scanning electron micrographs of sandwich-type sample manufactured using method
II with blend H-32 after batch foaming before post-treatment: (a) at 200x magnification; (b) at
10,000 x magnification on layer with Blend H-32.

Three membrane samples from blend H-32, viz. A, B and C were tested for water flux
and yielded a flux of 10, 35 and 45 L/(h m? bar), respectively. These values of water flux
are similar to those seen with polyethersulfone ultrafiltration membranes manufactured
using methods involving organic solvent [66,67]. Since larger membrane thickness adds
further resistance to water flow, future studies could employ thinner samples so as to
increase the water flux. As seen in Figure 11, retention tests reveal a retention coefficient
above 0.9 for PEO with molecular weight higher than ~260,000 Da for sample C and an
average of ~480,000 Da for all measured samples. Since retention of molecules between
103-10° Da is classified under ultrafiltration [1,68,69], these values although near the
upper limit, provide evidence that these membranes have potential for ultrafiltration.
Although the performance of this developed membrane is lower than modern ultrafiltration
membranes manufactured using organic solvents [39,70-73], these membranes provide
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a genesis towards large-scale development of ultrafiltration membranes using foaming.
Future studies focus on optimizations and improvements of the membranes to match the
ultrafiltration standards of membranes manufactured using other methods and also on
developing ways to manufacture them efficiently and on a large scale.

5. Conclusions

Batch foaming experiments on PESU /PVP blends using CO, as blowing agent show
a clear influence of PVP content on the foaming behavior. Foams of PESU blends with
32% PVP exhibited the highest density and foams of blends with 8% PVP show a ten-
dency towards formation of a fibril structure on the cell walls of the closed-cells. Using
superheated H,O with CO; as foaming agents the porosity of the foams was significantly
increased. This lead towards increased expansion of the fibril structures on the walls of
foam cells thus creating a smaller porous structure connecting the larger cells. Optimal
processing conditions and blend compositions for obtaining high porosity and lowest cell
size were found. The samples, however, contain a solid non-foamed surface layer which
hinders the direct application of the open-celled foam as membranes. Sample preparation
methods developed by us eliminated the formation of the non-foamed surface layer, and at
the same time allowed the sample to be in near-saturated state. Using this method, blend
with 8% PVP foams completely including the outer surface but cannot deliver a complete
open-cellular foam. A blend with 32% PVP however, due to high saturation of foaming
agent, exhibits complete open-cellular foam containing porous surface with average surface
cell size of 50 nm and average internal cell size of 200 nm. These open nanocellular foams
provide an average water flux of 30 L/(h m? bar) and an average retention coefficient above
0.9 for PEO with molecular weights above 480,000 Da confirming the proof of concept for
proposed application of these foams as ultrafiltration membranes.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/ 10
3390 /polym14061177 /s1, Figure S1: Time taken to dissolve PVP K 30 samples in water at various
temperatures. Figure S2: Scanning electron micrographs of post-treated blends in NaOCl at various
temperatures: (a) Surface of film of blend H-8 at 80 °C (b) Surface of film of blend H-32 at RT;
() Surface of film of blend H-32 at 80 °C; (d) Cross-section of film of blend H-32 at 80 °C. Figure S3:
IR spectra of blend, non-foamed blend H-8 and after foaming with various foaming agents. Figure S4:
DSC 2nd heating curves of non-foamed blend H-8 and after foaming with various foaming agents.
Figure S5. Master curves of selected materials from rheological analysis: (a) PESU E 2010; (b) PESU E
3020 P; (c) PVP K 30; (d) Blend L-8; (e) Blend L-32. Figure S6. Results of thermogravimetric analysis
for selected materials. Figure S7. Scanning electron micrographs of blend L-8 foams manufactured
using blowing agents CO, and H,O at loading time 48 h, pressure 100 bar, loading temperature
150 °C, foaming time 100 s and various foaming temperatures: (a,b) 210 °C; (c,d) 230 °C; (e,f) 250 °C;
(g/h) 270 °C. Figure S8. Scanning electron micrographs of blend H-8 foams manufactured using
blowing agents CO, and H,O at loading time 48 h, pressure 100 bar, loading temperature 150 °C,
foaming time 100 s and various foaming temperatures: (a,b) 210 °C; (c,d) 250 °C; (e,f) 270 °C. Figure S9.
Scanning electron micrographs of foams of blend H-8 at the loading time 48 h, pressure 100 bar,
foaming temperature 230 °C, foaming time 100 s, the blowing agent CO; and H,O and various loading
temperatures: (ab): 125 °C; (c,d): 175 °C. Figure S10. Scanning electron micrograph of collapsed
PVP foam manufactured using blowing agent CO; at loading time 48 h, pressure 50 bar, loading
temperature 150 °C, foaming time 100 s and foaming temperature 250 °C. Figure S11. Scanning
electron micrographs of sandwich-type sample manufactured using method II with blend H-32:
(a,b) after loading phase without subjecting to foaming temperatures (Similar settings and method
used as Figure 12).
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Abbreviation
Symbols used in Equations (1)—(3).

Symbol Parameter Unit
Ty Glass transition temperature of the blend K
wy Mass fraction of polymer I -
Cp,1 Heat capacity of polymer I mW
Te1 Glass transition temperature of polymer I K
Wi Mass fraction of polymer II -
Cp,11 Heat capacity of polymer II mW
Ton Glass transition temperature of polymer II K
ar Horizontal shift factor -
c1, € WLF parameters K
T Temperature °C
Trer Reference temperature °C
R Retention coefficient -
wp Mass fraction of PEO in permeate E
wWr Mass fraction of PEO in feed -
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In Article 1, as PESU/PVP blends successfully manufactured nanocellular open-celled
permeable foams capable of ultrafiltration, the upscaling of this process utilizing foam

extrusion was explored.

PESU/PVP blends were manufactured by compounding using a twin-screw extruder
(Brabender). For compounding, temperatures between 320 °C to 370 °C were used to
combine PESU and PVP as polymer melts. The resulting blend’s extrudates were
transported to a granulator using a conveyer belt and obtained as blend pellets. An average
rate of 100 g per hour was achieved while producing the blend. Screw speeds ranging
from 10 to 60 RPM were applied. For batch foaming, small quantities (~ 50 — 100 g) of
PESU/PVP blends were compounded in this extruder using these configurations.
However, larger quantities of around 1 — 2 kg per trial were needed for foam extrusion,
and the longer production times to produce these amounts of PESU/PVP blends caused a
series of failures. First, the blend’s yellow and transparent color gradually darkened and
ended up as straight-up black. Subsequently, the extruder experienced blockage and

caused damage to the twin-screw elements.

The processing temperatures suitable for PESU to melt were too high for PVP, which
caused gradual degradation, whereas the thermal crosslinking phenomenon in PVP
caused the blockage. Initially, the residence time was too less for this to occur. However,
over time, the accumulation of PVP in certain dead zones in the extruder caused the
thermally overexposed PVP to come out of the extruder along with the blend. As a result,
it was concluded that PESU/PVP blend is not producible in large quantities and therefore

was unsuitable for large-scale production to be used in a foam extruder.

Therefore, based on the same principles used in selecting PVP led to selecting PEG. As
explained in detail in this article, the PESU/PEG blends were produced using neither
compounding nor organic solvents but using material penetration by taking advantage of

the porous morphology of the PESU flakes.
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In line with Article 1, extensive material characterization was also used for this study.
Due to the discovery of two glass transition temperatures in DSC measurements,
rheological measurements were used to plot Han plots which determined the miscibility
of the blends. The partially miscible blends also showed an indication of a gel state
present in these blends. In addition, sorption experiments were performed to study the
sorption and diffusion behavior of CO. in the PESU/PEG blends. The material
characterization allowed for going ahead with foam extrusion by suggesting processing

temperatures and foamability of the blends.

Due to the plasticization effect of PEG, the processing temperature required for this blend
was 200-235 °C, around 120-150 °C lower than those required by PESU. These blends
were extruded using the foam extruder through an annular slit nozzle, thus obtaining a
continuous hollow fiber geometry. Using CO: and water as co-blowing agents were
attempted for the first time in foam extrusion and yielded higher porosity and cell
uniformity than using CO,. The optimum PESU/PEG blend composition yielded open-

celled continuous foam with the smallest cell size in literature for extruded foams.

This study paved the way to produce open-celled foam continuously using foam extrusion

in continuous hollow fiber geometry.
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Abstract: Polyethersulfone (PESU), as both a pristine polymer and a component of a blend, can be
used to obtain highly porous foams through batch foaming. However, batch foaming is limited to
a small scale and is a slow process. In our study, we used foam extrusion due to its capacity for
large-scale continuous production and deployed carbon dioxide (CO;) and water as physical foaming
agents. PESU is a high-temperature thermoplastic polymer that requires processing temperatures
of at least 320 °C. To lower the processing temperature and obtain foams with higher porosity, we
produced PESU/poly(ethylene glycol) (PEG) blends using material penetration. In this way, without
the use of organic solvents or a compounding extruder, a partially miscible PESU/PEG blend was
prepared. The thermal and rheological properties of homopolymers and blends were characterized
and the CO; sorption performance of selected blends was evaluated. By using these blends, we
were able to significantly reduce the processing temperature required for the extrusion foaming
process by approximately 100 °C without changing the duration of processing. This is a significant
advancement that makes this process more energy-efficient and sustainable. Additionally, the effects
of blend composition, nozzle temperature and foaming agent type were investigated, and we found
that higher concentrations of PEG, lower nozzle temperatures, and a combination of CO, and water
as the foaming agent delivered high porosity. The optimum blend process settings provided foams
with a porosity of approximately 51% and an average foam cell diameter of 5 um, which is the lowest
yet reported for extruded polymer foams according to the literature.

Keywords: polyethersulfone; poly(ethylene glycol); foam extrusion; polymer blends; open-cell foam

1. Introduction

Polyarylsulfones, such as polysulfone (PSU), polyethersulfone (PESU) and polyphenyle-
nesulfone (PPSU), are high-performance thermoplastic polymers that are used for many ap-
plications where high strength, high temperature and chemical resistance are required [1-4].
PESU has thermal, structural and chemical stability due to the combination of sulfonyl
groups and aromatic rings in its molecular structure [5]. The high-thermal stability of
PESU, a desirable property, enables the use of processing temperatures between 320 °C and
400 °C for extrusion and injection molding [4,6]. This high-temperature processing partially
accounts for the high material and production costs. Polyarylsulfone foams have been
studied for the last couple of decades for use in various applications. Using the method
of batch foaming, highly porous microcellular foams, as well as nanocellular foams, have
been produced with PESU, PSU, PPSU and their blends [7-14].

Foam extrusion is a continuous process used to obtain foamed polymer extrudate.
It is possible to scale-up the method to an industrial level easily. Unlike batch foaming,
which relies on the absorption of the foaming agent into the polymer in the semi-solid
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state over a longer period to ensure cell nucleation, foam extrusion uses physical mixing at
temperatures where the polymer softens or is in the melt state.

The main component of foam extrusion is an extruder with an inlet for the foaming
agent. Temperature profiles and screw speed are set on the extruder and a feed rate for
the physical foaming agent is specified. The foaming agent mixes with the polymer melt
within the extruder at significantly higher pressures than ambient pressure. The foaming
agent is dispersed and dissolved due to this high-temperature and high-pressure mixing,
reducing the viscosity of the melt [15]. The foaming agent nucleates and expands into pores
as the material exits the extruder through a nozzle. This expansion is dependent on various
parameters, such as the polymer type, foaming agent, nozzle temperature, pressure, etc.
The foamed extrudate takes the shape of the nozzle in two dimensions, as the extrusion
process is a continuous process [16].

Huang [17] investigated the foaming of PESU using CO, at various melt temperatures
and obtained closed-cell foams with an average cell size of 10 um at the lowest possible
processing temperature of 280 °C. Extrusion below this temperature was not possible due
to excessive extruder pressures (high viscosity of the melt).

In previous studies, researchers used polymer blends that delivered higher porosity
and smaller cell sizes than their respective homopolymers [14,18-21]. As the processing
temperatures for PESU lie near or above the degradation temperatures of most poly-
mers, it is essential to lower the processing temperature. Poly(N-vinylpyrrolidone) (PVP),
a water-soluble polymer, results in improved porosity and pore size in foams of blends
with PESU manufactured using batch foaming [14,22]. PVP, however, is susceptible to
crosslinking at higher temperatures and is not directly processable in an extruder with
PESU [23]. Poly(ethylene glycol) (PEG), another water-soluble polymer [24,25], is also
a plasticizer [26,27]; i.e., blending a high-temperature resistant polymer with it would lead
to lowered processing temperatures. PEG is used in various applications ranging from
medicine to industry [28,29]. Similar to PVD, in the manufacturing of membranes using
the non-solvent-induced phase separation process, PEG is used as a pore opener [30,31].
The fabrication of open porous foams is of great importance for the fabrication of polymer
membranes [14] and for the creation of sorption foams [32]. These technological applica-
tions led us to investigate the possibility of obtaining such structures. Thus, a blend of
PESU/PEG was selected in this work, as it could potentially produce highly porous foams
using foam extrusion.

Our aim was to produce PESU/PEG blends with PESU as the matrix component that
can be processed at significantly lower processing temperatures than pristine PESU. The
formation of blends using organic solvents and compounding is well-known, as well as
being a common industrial practice. Organic solvents are classified as auxiliary substa-
nces—i.e., substances to be reduced or eliminated wherever possible—and are harmful
to human health [33-35]. Compounding requires the use of high temperatures to melt all
polymer components and consumes energy in similar amounts as a foam extruder. Further-
more, this removes the significance of using a plasticizer as a blend component. Material
penetration of organic liquids into polymers has been successfully proven by Gutmann
etal. [36] and, as low-molecular-weight PEG is a liquid at room temperature, absorption of
PEG into the PESU matrix was pursued. In this way, we prepared blends of PESU with
low-molecular-weight PEG without using melt-state compounding or organic solvents.

Out of three low-molecular-weight PEGs, the one in which no crystalline formation
was detected and which had the lowest viscosity at near-room temperature was selected
and blended with PESU in various proportions. The processibility of these blends in foam
extrusion was determined using polymer characterization techniques, such as thermal
analysis and rheology. Using foam extrusion, foams were manufactured from the selected
blends with various process settings and the effects of blend composition, foaming agent
type and nozzle temperature were studied. An annular slitnozzle was selected for extrusion
in order to create hollow-fiber-geometry extrudates. This would enable the use of these
foams as hollow-fiber membranes in separation applications in the future.
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The use of CO; as a foaming agent, especially in the supercritical state, to achieve
porous foams in both batch foaming and foam extrusion is widely accepted and studied
by researchers [17,37—-46]. Sorption measurements have been conducted to understand the
influence of blend composition on CO, diffusion [44,47]. The use of water along with CO,
as co-foaming agents increases the porosity of foams and provides smaller cell sizes than the
foams obtained when only using CO, as a foaming agent [13,14,48]. Evans et al. observed
a twentyfold decrease in the viscosity of polyamide in extrusion when superheated water
was used [49]. We used CO, and water together as foaming agents and confirmed their
better performance in processing and foam formation in comparison to foams manufac-
tured using only CO,. Using CO; and water together as foaming agents delivered more
uniform foams than only CO,. Evaluation parameters that provide open-celled foams, such
as average cell size and porosity, the optimum blend composition and process settings,
were identified.

2. Experiment
2.1. Materials and Methods

In this study, all polymers used were commercial grade. The type of PESU was selected
based on previous foaming studies [10,14,17]. PESU homopolymers, BASF Ultrason® E
3010 (PESU E 3010) in the form of granules and BASF Ultrason® E 3020 P (PESU E 3020 P)
in the form of flakes were kindly provided by BASF SE (Ludwigshafen, Germany). As PEG
in liquid form was desired, low-molecular-weight PEG 200, 400 and 600 were obtained
from Sigma-Aldrich (St. Louis, MO, USA) in liquid form.

PESU /PEG blends were produced by adding liquid PEG to PESU flakes in a 5 L
cylindrical glass container. The required proportions of PESU and PEG were added in small
portions at a time such that the net mass of the mixture added at once was 50 g. Specifically,
to prepare the PESU/PEG 80/20 blend, 10 g of PEG was added to 40 g of PESU, summing
up to a total of 50 gin the 5 L container. This addition was repeated 32 times, resulting in
a total of 1.6 kg of polymer, and the container was filled approximately up to 4 L, leaving
1L of air in the container after closing. Not filling the container completely allowed free
movement of the mixture during rotation. Following that, the glass container was closed
and placed on mechanical rollers at 20 rpm for 24 h. This facilitated the uniform distribution
of the PEG around the PESU flakes and the thorough mixing of the components. This
method can be graphically interpreted from Figure 1.

i sl Liquid PESU and PEG together Spinning container to
olyethersulfone Poly(ethylene glycol) in glass container ) ens'urg . Blend PESU/PEG
(PESU) flake (PEG) = uniform distribution e
(20 rpm)

Inherit porous structure

Unevenly distributed Absorption of PEG in
PEG among PESU PESU
Flakes

Figure 1. Schematic representation of the method followed for the blending of PEG with PESU.

The mixture was dried for a minimum of 24 h at 50 °C under vacuum before use.
For foam extrusion, the blended flakes were used directly after drying, whereas for ma-
terial characterization, the blended flakes were ground into powder using a grinder and
particles < 350 um were filtered using an industrial sieve.
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The blend formulations, along with the nomenclature, can be found in Table 1. Here,
only blends with PEG 200 are shown due to the selection of this molecular weight based on
the material characterization, as discussed later.

Table 1. Nomenclature for PESU/PEG blends.

PESU E 3020 P PEG 200
Blend Name
Content (wt%) Content (wt%)
E3_PEG200_08 92 8
E3_PEG200_14 86 14
E3_PEG200_20 80 20
E3_PEG200_26 74 26

2.2. Material Characterization

Gel permeation chromatography (GPC) was performed in dimethylacetamide using
5 u PSS SDV gel columns (PSS GmbH, Mainz, Germany) at a flow rate of 1 mL min~!
(VWR-Hitachi 2130 pump) and 50 °C. For the detection of the concentration, a Waters
UV photometer (typically operated at A = 254 nm) and a Waters 2410 refractive index (RI)
detector (A = 930 nm) were used. A Waters 717 autosampler with an injection volume of
60 uL was used for the injection of samples. The raw data were analyzed using the PSS
WinGPC Unity software package (PSS GmbH, Mainz, Germany). To calculate the apparent
average molecular weight and distribution, polystyrene standards (PSS GmbH, Mainz,
Germany) calibration was used.

Differential scanning calorimetry (DSC) was undertaken using a DSC 1 calorimeter
(Mettler Toledo, Gieflen, Germany) and analyzed with the software STARe SW 16.20 (Met-
tler Toledo, Gieflen, Germany). An aluminum pan with a capacity of 40 uL was filled
with approximately 10 mg of polymer and closed with a mono-perforated lid. Heating-
cooling-heating cycles were implemented at a heating rate of 10 K min~! in a nitrogen
atmosphere. The first two temperature intervals for PEG, PESU and PESU/PEG blends
were —130 to 100 °C, 25 °C to 260 °C and —130 to 180 °C, respectively. For PESU, the glass
transition temperature was determined by evaluating the second heating interval. For PEG
and PESU/PEG blends, a third heating—cooling cycle was used from —130 to 260 °C. The
heating rate for this cycle was set to 30 K min ™! to obtain a pronounced glass transition
signal [50].

For rheological measurements of PEG, 0.67 mL of the liquid polymer was measured
in a cone-plate geometry with an Anton Paar MCR 502 rheometer (Anton Paar, Graz,
Austria). A shear amplitude of 5% was applied and viscosities were measured in the
angular frequency range from 0.01 to 100 rad /s.

For rheological measurements of polymers in a glassy state at room temperature, cylin-
drical samples (8 mm diameter, 2 mm thickness) were prepared using compression molding.
A hot press (Paul-Otto Weber, Remshalden, Germany) was used. The temperatures chosen
for PESU and PESU/PEG blends were 270 °C and 200 °C, respectively. Samples that were
free from defects, such as dents, weldlines, air-bubbles, scratches, etc., resulting from com-
pression molding were used. Rheological measurements were carried out on an Anton Paar
MCR 502 rheometer (Anton Paar, Graz, Austria) with a plate—plate geometry. Frequency
sweeps in the frequency range between 0.01 and 100 rad /s were carried out at 260, 280,
300 and 320 °C for PESU and 160, 180, 200, 220 and 240 °C for the blends. The frequency
sweeps started at the highest frequency.

Absorption of PEG 200 into PESU was observed by immersing samples of PESU into
PEG 200 in an evacuated nitrogen environment at room temperature for 24 h. Then, 1 mm
thick compression-molded samples with a diameter of 24 mm were used after drying under
a vacuum for 24 h. The mass of the samples was measured before immersion into PEG
200 and after 24 h in PEG 200 using a weighing scale. Before measurement, the samples
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were dried clean using Kimtech® Science Precision Wipes (Irving, TX, USA) and blow-dried
using pressurized nitrogen gas [36].

Sorption experiments were carried out with a IsoSORP® Static gravimetric sorption
analyzer from Rubotherm (Bochum, Germany). Flat sheet samples (diameter: 14 mm,
thickness: 0.5 mm) were prepared using compression molding. For compression molding,
the blend flakes were added to a mold with four voids of the required dimensions and
the mold was inserted into a hot press (Paul-Otto Weber, Remshalden, Germany) to be
subjected to 200 °C for 10 min. A vacuum was applied from the fourth minute and
a force of 60 kN from the sixth minute. The mold was then removed and allowed to
cool down towards room temperature when the samples were removed. The thicknesses
of the isotropic flat sheet samples were measured with a DELTASCOPE® FMP10 digital
micrometer (Fischer, Sindelfingen, Germany). The densities of the flat sheet samples were
estimated with the buoyancy method using an Excellence XP105DR analytical balance
(Mettler Toledo, Gieflen, Germany) and auxiliary liquid FC-770 (3M, Saint Paul, MN, USA),
as described elsewhere [51]. The measurement protocol for the sorption experiments and
the interpretation of the results were undertaken following previous studies [51-53]. All
samples were dried in a vacuum for 48 h. A CO, pressure of 50 bar was applied and samples
of selected polymers were measured at 35 °C, 50 °C and 75 °C. The weight concentration
of CO; per gram of polymer was measured and the data points were smoothed using an
adjacent averaging method in Origin (OriginLab, Northampton, MA, USA). The diffusion
coefficient Dr at temperature T was calculated by fitting the kinetic sorption curve using
the theory of Fickian diffusion following the equation below [54,55]:

M; B Dyt
Y A Vi @
where:

M = mass of gas absorbed by sample at time £;

M., = mass of gas absorbed by sample at time t — oo; i.e., equilibrium;

I = thickness of the cylindrical sample.

Values used for 1\%: were lower than 0.6.

The apparent density p;, of the polymer granules and flakes was measured by filling
a graduated cylinder (Hirschmann EM Techcolor, Erberstadt, Germany) up to 10 mL with
the respective polymers without compression. The mass of the polymer M was measured

and the apparent density was calculated.

2.3. Foam Extrusion

An Extrusiograph 19/25D single-screw extruder (Brabender GmbH & Co. KG, Duisburg,
Germany) was used for foam extrusion. This extruder was coupled with two static mixers
with diameters of 2 cm each and a combined length of 16 cm. A melt pump maintained
a speed of 10 rpm for all experiments. An annular slit nozzle with a 2 mm outer diameter
and 1 mm inner diameter was used with the aim of preparing hollow fiber specimens.
The extruder configuration is shown in Figure 2. The temperatures and pressures in the
extruder and components were constantly monitored using WINExt software (Braben-
der Technologies GmbH, Duisburg, Germany). Pressure sensors were present in zone 3,
zone 4 and before the nozzle.

Foaming agents, CO; and water were pressurized using two separate high-pressure
syringe pumps (Teledyne ISCO, Thousand Oaks, CA, USA). Water and CO, were injected
at zone 3 of the extruder through different inlets on the same longitudinal point of the
extruder’s axis, separated by 90° on the extruder barrel. The source of CO, was a dip-tube
bottle (99.995% purity, Linde PLC, Dublin, Ireland) and ultrapure water was used.

Extruder temperatures approximately 100-130 °C higher than the observed glass
transition temperatures for the respective blends were set to obtain better mixing due to
lower viscosity. Table 2 shows the extruder temperatures for the materials that could be
processed in the extruder.
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Figure 2. Tllustration of the foam extruder setup; H = hopper, SM = static mixer, P = melt pump,
N = nozzle.

Table 2. Temperatures set on extruders for selected materials.

Material Teat
({@]

E3 PEG_14 230
E3_PEG_20 200

For the trials conducted to study the effect of nozzle temperature on the foaming
behavior, the screw speed was set to 10 rpm, and the feed rates of CO; and water were
both 0.5 mL/min.

At the beginning of each trial, the nozzle temperatures were equal to the extruder
temperatures and CO; and water were injected after ensuring that a constant extrudate
was obtained from the nozzle at 10 rpm without any unstable extruder pressures. To
observe the effects of the changed extruder setting, the extruder was allowed to run for
20 min before collecting samples. This ensured that the collected sample corresponded to
the given settings. To observe the effect of nozzle temperature on the foam, the samples
were collected for nozzle temperatures moving from the highest to the lowest possible
nozzle temperature.

2.4. Foam Characterization

The morphologies of the polymer, polymer blend and their foams were examined using
scanning electron microscopy (SEM) on a Merlin microscope (Carl Zeiss AG, Oberkochen,
Germany) at an acceleration voltage of 3 kV. Extrudates were cross-sectioned using liquid
nitrogen and sputter-coated with approximately 2 nm of platinum [56]. The average cell
size was measured for selected foams using the measurement tool in Photoshop CS6
(Adobe, San Jose, CA, USA) from the scanning electron micrographs. The porosity was
measured for selected foams from the SEM micrographs by measuring the number of pixels
occupied by visible cells and calculating the percentage versus the total number of pixels in
the micrographs. Three micrographs were measured per sample.

Tensile tests were performed at room temperature using a Zwick Roell Z020 (Zwick
Roell, Ulm, Germany) and a load cell of 1 kN. Extrudates with a length of 110 mm were used.
The tests were operated and evaluated using the program TestXpert III (Zwick Roell, Ulm,
Germany), and data on the true stress and the nominal strain were obtained. Three sam-
ples with each process setting were measured and an average curve was calculated until
breakpoint. FTIR spectroscopy was performed with the blend and its extruded foams using
a Bruker Alpha-P platinum attenuated total reflector equipped with a diamond head
(Bruker, Billerica, MA, USA). The measurements were performed by recording 32 scans
with a resolution of 4 cm ™! within a spectral range of 4004000 cm ! [57].

The dye uptake test was performed by dipping a 20 mm long extrudate into a 0.1 mg
solution of 1-1 methylene in ethanol. The change in the color of the extrudate to blue
indicated the uptake of the solution into the extrudate.
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3. Results and Discussions

Although PESU E 3010 was directly usable in the extruder, we selected PESU E 3020 P
for blending with PEG due to its porous structure, as seen in Figure 3.

Figure 3. Scanning electron micrograph of PESU E 3020 P flake: (a) cross-section, (b) surface
morphologies.

The average molecular weights and the molecular weight distributions of PESU E
3010 and E 3020 P were examined using GPC and determined to be similar (see the
Supplementary Materials). According to the material manufacturer, the third numbers in
the material names (1 and 2) indicate granules and flakes, respectively, while the suffix P in
PESU E 3020 P denotes the material’s intended use for solution preparation [4].

Although low-viscosity polymers can be mixed with a high Ty polymer in a single
phase using a compounding extruder [58], since we used porous PESU flakes, we could
obtain the absorption of the liquid PEG in an easier way. Therefore, low-molecular-weight
PEG 200, PEG 400 and PEG 600 were selected as possible candidates for blending with
PESU due to their liquid state at room temperature. The capillary action of this porous
structure allowed for liquid PEG to enter the flakes and facilitated the absorption of PEG
into the PESU matrix. The phenomenon of absorption was confirmed with an absorption
test on compression-molded samples, where, for a surface area of 452.38 mm? (sample
mass 0.72 g), the mass uptake after one day of immersion in liquid PEG was 0.17%. Due to
the porous structure, the active area for material penetration increased enormously, as the
pore sizes were in the range of a few micrometers. This significantly increased the ratio
of the surface area of contact between PEG and PESU to the volume of PEG. Therefore,
PESU/PEG blends were formed.

The viscosities of PEG 200, PEG 400 and PEG 600 at 25 °C were measured as 55, 98,
and 190 mPa s, respectively. As we made use of the porous structure of PESU flakes to
assist with the absorption of liquid PEG, the lowest viscosity was favored. As seen in
Figure 4, PEG 400 and PEG 600 demonstrated melting peaks during the third heating cycle
of the DSC. These melting peaks indicated the presence of crystallinity in PEG 400 and PEG
600. As crystallinity is not desired in polymer foaming [59], PEG 400 and PEG 600 were not
selected for further investigation. PEG 200 had the lowest viscosity, a low glass transition
temperature and did not indicate signs of crystallinity; therefore, it was chosen for blending
with PESU. Compression-molded samples of PESU/PEG200 blends were opaque and white
in color. This provided our first impression that complete miscibility would not occur for
this blend comprising transparent amorphous polymers [60].
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Figure 4. Heat flow measured using differential scanning calorimetry (DSC) during the third heating
cycle of PEG 200, 400 and 600.

Figure 5a shows the third heating cycle of the DSC for the blend E3_PEG200_20. The
glass transition of PEG 200 was visible in the blend at —82 °C and a second glass transition
was seen at 97 °C. This appearance of a new glass transition temperature that did not
belong to any of the polymer components suggested the formation of a miscible polymer
blend. This supported the hypothesis that PEG would be absorbed into the PESU matrix
after being absorbed on a macro scale by the capillary effect of the porous PESU flakes.
Above 160 °C, the heat flow measurement exhibited noise, which hindered the observation
of the thermal behavior of the blend around the glass transition temperature of PESU;
i.e., 227 °C. This noise occurred during the DSC measurements, likely because the boiling
point of PEG 200 lying at 200 “C under atmospheric pressure [61] and the known leaching
of PEG from the blend matrix [62]. For blends of fully miscible polymers, the expected
glass transition temperature for each mass fraction can be predicted using the Couchman
equation (Equation (2)) [63] and the Fox equation (Equation (3)) [64,65]. The glass transition
temperatures and the changes in heat capacities from the glassy to the rubbery state in the
homopolymers were used in the equations.

wirAcy,i1ln (Tg /Ty 1)
In(Ty/Typ) = : . : 2
l‘l( g/ g,I) IUIACp,I + 'wIIACp,H ( )

1 wr wir

= 3
T, Tg1 Ten ®)

where
wr = mass fraction of polymer [;
cp,1 = heat capacity of polymer [;
Tg1 = glass transition temperature of polymer I;
wir = mass fraction of polymer II;
cp,i1 = heat capacity of polymer II;

Ty 11 = glass transition temperature of polymer IL.
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Figure 5. (a) Heat flow measured using differential scanning calorimetry (DSC) during the third
heating cycle of blend E3_PEG200_20 showed the occurrence of two glass transitions; (b) observed
second glass transitions (T, ;) of PESU/PEG blends versus weight percentage of PEG and the
predictions from Equations (2) and (3).

Predictions of Equations (2) and (3) did not accurately predict the glass transition tem-
peratures of the blends at various weight compositions. Compliance with these equations
would indicate the formation of homogeneous, single-phase polymer blends [14,64,66].
However, the glass transitions observable in Figure 5b were close to the values predicted
by Equation (2), and their decrease with an increase in PEG content provided an indication
of some degree of miscibility between the two polymers. The evaluation and quantification
of miscibility were undertaken by analyzing the rheological measurements of the blends.

Figure 6a shows that the complex and loss moduli increased in a similar way versus
angular frequency for blend E3_PEG200_20. Their slopes lay between 0.35 and 0.75. This
behavior cannot be described with the Maxwell model where G’« w? and G”« w hold in
the terminal regime. These results correspond to power laws, with both the storage and
loss moduli following the power laws G’ G”« w®?, indicating microphase separation or
another multiphase complex material in the gel state [67]. The data shown in Figure 6a and
in Figure S2a—c in the Supplementary Materials for the PESU/PEG blend at a temperature
of 160 °C indicate slopes near 0.5 already at high frequencies where evaporation was
negligible. This was also an indication that the polymers were not fully miscible [68-71].
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Figure 6. Rheological results for blend E3_PEG200_20: (a) frequency sweep: magnitude of moduli
versus angular frequency at various temperatures; (b) time sweep: magnitude of moduli versus time
at 200 °C.

As all the rheological measurements were carried out, moving from the highest fre-
quencies to the lowest frequencies, the sample was subjected to its corresponding tempera-
ture for approximately 1.5 h. Exposure to temperatures near &+ 40 °C of the evaporation
temperature of PEG 200 accelerated the leaching of PEG from the samples [72]. This re-
sulted in more accurate values at the highest frequencies, which were relevant for assessing
the performance during extrusion, as discussed further below. During the measurements
at lower frequencies, the blend samples had a lower net amount of PEG within them than
at the previous frequency. This was confirmed by performing time-sweep experiments
(Figure 6b). The storage and loss moduli increased equally over time when exposed to
a measurement temperature of 200 °C. Plotting a master curve using the time—temperature
superposition principle for the blends would not have resulted in accurate values due to the
presence of two glass transition temperatures, which indicated heterogeneity, and the large
difference between them (>100 K) [73,74]. Rheological measurements at higher tempera-
tures were not pursued due to the rapid evaporation of PEG, which would have resulted
in a significant change in the polymer composition over the course of the measurement,
thus providing misleading values. The frequency-dependent storage modulus and the loss
modulus at various temperatures for PESU and the selected blends were plotted against
each other, resulting in a “Han plot” [75]. The resulting plot points were consolidated
into a linear fitted curve for lower values of the loss modulus for which the slope values
were found. Theoretically, a value of 2 in the low-frequency range indicates a completely
homogenous polymeric system, and lower values tend to indicate a non-homogenous
mixture [76-80]. As seen in Figure 7, PESU, being a homopolymer, exhibited a slope value
near 2. The blend with 8% PEG had a slightly higher slope than the rest of the blend
compositions, which had nearly equal slopes around 1.1. Therefore, based on these values
and the thermal analysis, it was concluded that PESU and PEG 200 could form a partially
miscible system or an even more complex system, such as a gel state.
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Figure 7. (a—e) Han plots of PESU and blends PESU/PEG200; (f) slopes of Han plots.

Rheological analysis carried out on the PESU/PEG blends showed a decrease in
complex viscosity with an increase in PEG content at a given temperature, as seen in
Figure 8a. The difference between the viscosities of the blend with 8% PEG and the blend
with 14 % PEG was the largest, whereas the difference between the blend with 20% and
26% was the smallest. These differences were similar to those seen in glass transition
temperatures in DSC measurements. This provided an indication that, above a certain
percentage between 20% and 26%, PESU was fully saturated with PEG and excess PEG
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formed a coexisting phase. This was seen in the results for the frequency sweep, as the
complex viscosities tended to increase with lower frequencies and the viscosity—frequency
curves did not resemble those of typical homopolymers [81-83]. Applying the Cox-Merz
rule, as the frequency was replaced by the shear rate, the values of viscosities at shear
rates at 100 s~ ! tended to lie below 10,000 Pa s [84]. As the data points for this frequency
were measured at the beginning, the loss of PEG was minimal and the values confirmed
the processibility of these blends in an extruder at 200 °C [82,85-89]. Figure 8b shows
the influence of temperature on the viscosity of blend E3_PEG200_20. This indicated the
temperature range below which this blend could be processed in the foam extruder.

EI LRRLL | LR LLLL | LB RRLLL | LR | LB RRALL | T T 107 E
- m E3_PEG200_08 E
C > e E3 _PEG200 14 E . = 1680°C
b . s E3_PEG200_20 10° k- " e 180°C
E s A S v E3_PEG200_26 3 3 .. e ¥ 4 200°C
- a — || - 22 o
B s, l.- E w == = .o. .I. : 243“2
E vide " | © 107 F A, ®e "
E VYSaA .. - E o E e o
- v e ) ™ 3 - v A A L4 °
- Ye4sc. . : T=o Yoy ha, %oy "s
’0..'0. o * 4 * YNy A ety

3 ‘0;.:" e | = 10"k S oy T Vygta, Sl
E Yéale 3 — E g . 'Vv: Ry WY
" Complex Viscosity Yva : 3 " Complex Viscosity *e0 o ; v : A

= ] v -
L 7=200°C 10° |- Blend: E3_PEG200_20 ‘el
E 7p=5% 3 E ¥v=5%
[ 1 lllllll 11 lllllll 1 llllllll { BiT | Illllll 11 lllllll 1 11 ¥

1072 10 10° 10! 10° 1 i | 1 10° 10! 107

o [rad/s] o [rad/s]
(a) (b)

Figure 8. Magnitude of complex viscosity: (a) PESU/PEG200 blends at 200 °C; (b) blend
E3_PEG200_20 at various temperatures.

The kinetic sorption curves for the glassy polymer below Ty can be interpreted as
indicating Fickian behavior as a function of the square root of time [90,91]. Similarly, all
experiments with pure PESU and with PEG blends resulted in linear plots of the sorption
as a function of the square root of time. The influence of PEG content on the CO, sorption
properties of PESU/PEG blends was evident at all temperatures, as seen in Figure 9. The
diffusion coefficient of the blends increased with the increase in PEG content. As seen in
Figure 9a, in blend E3_PEG200_20, the magnitude of the increase in the diffusion coefficient
with temperature was much higher than the decrease in the total concentration of CO5.
By plotting the log of the diffusion coefficient versus the inverse of the temperature, as
shown in Figure 9b, the values of PESU and blend E3_PEG200_08 fit linearly and could be
defined with the Arrhenius equation [62,92]. Blend E3_PEG200_20, however, yielded too
high values for the diffusion coefficient at 75 °C, which did not fit linearly with the other
measured temperatures. Plasticization phenomena in the glassy polymer and the existence
of rubber phases in the polymer matrix could have caused this high diffusion [55]. This
high diffusion coefficient for blend E3_PEG200_20 could be beneficial during foaming to
obtain highly porous foams with finer cell sizes [16,36,93].
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Figure 9. Sorption measurements results: (a) concentration of CO, in blend E3_PEG200_20 versus
time at various temperatures; (b) Arrhenius plot of diffusion coefficients of blends.

In the foam extruder, the third zone, called the degassing zone, contained a larger
internal volume, as the screw’s inner diameter was the lowest among the zones. Further-
more, CO, and water inlets were present in this zone. For the injection of foaming agents,
a high melt pressure should be maintained in this zone. Failure to maintain this pressure
causes the foaming agents to find the path of least resistance in the wrong direction of
the extruder and escape from the hopper, resulting in blowback. The blended flakes were
inserted into the extruder directly. Due to the low apparent density of blend E3_PEG200_08,
as seen in Figure S3 in the Supplementary Materials, the difference between the volumes
assumed by the blend’s flakes and its melt was higher than for the other blends. Therefore,
the same mass of flakes that took up the entire screw volume at the hopper could not fill
the complete volume of the degassing zone after melting. Therefore, no melt pressure
could be generated at this zone. This caused a reverse flow of foaming agents through
the hopper, resulting in blowback. Therefore, foam extrusion could not be carried out
with blend E3_PEG200_08. Due to their higher apparent densities, blends E3_PEG200_14
and E3_PEG200_20 were successful in increasing the pressure in the degassing zone and,
therefore, foam extrusion was possible. Blend E3_PEG200_26 exhibited separation of PEG
from the flakes in the initial zones of the extruder, causing flooding of the extruder with
liquid PEG. Some amount of PEG remained within the porous structure of the PESU flakes
after mixing and could not be absorbed within the PESU matrix. This suggested that
26% PEG was too high an amount to be absorbed into the PESU porous structure of the
flakes. The theological results shown in Figure 8a indicate that, although the percentage
weight difference of PEG in the blends was similar, the difference between the viscosities of
the blends with E3_PEG200 20 and E3_PEG200_26 was much lower than the difference
between E3_PEG200_14 and E3_PEG200_20. Therefore, absorption of PEG 200 within the
PESU matrix was limited to a value slightly above 20% and attained saturation. In this way,
the upper and lower limits of the PEG200 concentration in the blend for foam extrusion
trials were identified.

In trials of the blend E3_PEG200_20 using only CO, as the foaming agent, the extruder
pressures rose higher than 200 bar at a nozzle temperature equal to or lower than 170 °C.
Due to limitations in the pressure generation of CO, for injection, it was not possible to
conduct trials at these nozzle temperatures. To study the foaming behavior of the blend in
the extruder, the nozzle temperature was maintained at 180 °C and CO, feed rates of 0.25,
0.50 and 0.75 mL/min were applied. The effect of the CO, feed rate can be seen in the SEM
micrographs in Figure 10. The higher amount of CO, caused more CO, to dissolve into the
polymer blend, which resulted in a more swollen polymer phase. However, the pressure at
the nozzle was not high enough for this amount of CO> to achieve high nucleation and,
subsequently, higher porosity. The foam created using only CO; as the foaming agent



Polymers 2023,15,118

14 of 24

was underwhelming compared to the extruded PESU foam [17]. The CO; feed rate of
0.5 mL/min was selected for further experiments since the pore size and porosity were
comparatively acceptable, while the operation of the extruder was stable.

Figure 10. E3_PEG200_20 foams manufactured using only CO, as the foaming agent at various CO,
feed rates: (a) 0.25 mL/min; (b) 0.5 mL/min; (c) 0.75 mL/min. Images show close-up views of the
cross-section of the extrudate.

The introduction of water along with CO» decreased the viscosity of the melt in the
entire extruder. It was possible to process the blend E3_PEG200_20 with CO, and water as
foaming agents at lower nozzle temperatures up to 145 °C. This agreed well with the results
from Evans et al. [49], who found a twentyfold decrease in the viscosity of melts due to the
introduction of superheated water into the melt system. The effect of nozzle temperature
on the foam quality was studied by injecting equal amounts of CO, and water into the
foam extruder, as it was identified as one of the most influential extruder settings for the
foam quality due to cell nucleation taking place there [16,42,45,94-97]. This was studied
for all processable blends; i.e., blends E3_PEG200_14 and E3_PEG200_20. Lower nozzle
temperatures led to an increase in the pressure measured in the extruder near the nozzle,
as shown in Figure 11. The difference between the pressures of the two blends correlated
qualitatively with the difference between their viscosities, as shown in Figure 8a. The
same effect on the pressures was expected if the extruder temperatures were set similarly
to the nozzle temperatures. This validated our approach of analyzing the rheological
results to predict the performance of the extruder. The measurement of pressure took place
approximately 10 cm before the nozzle exit. The pressure in the extruder decreased along
the longitudinal axis towards the melt exit in the nozzle and was, therefore, lower than the
pressure at the pressure-measuring site near the nozzle [89]. Nevertheless, only the nozzle
temperatures that led to a pressure lower than 300 bar were used due to safety precautions.
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Figure 11. Pressure measured before the nozzle (10 cm) of the foam extruder for PESU /PEG blends
at respective nozzle temperatures.

Blend E3_PEG200_14 was processed in the foam extruder at 230 °C and the effect of
nozzle temperature was studied between 155 °C and 175 °C, whereas blend E3_PEG200_20
was processed in the foam extruder at 200 °C and the effect of nozzle temperature was
studied between 145 °C and 165 “C. Comparing the SEM micrographs in Figures 12 and 13,
blend E3_PEG200_20 provided better foam than blend E3_PEG200_14 at lower nozzle
temperatures. The effect of nozzle temperature can be seen in both cases, with lower nozzle
temperatures yielding higher nucleation and porosity. The lowest nozzle temperature
for each blend provided the smallest cell size and highest porosity, as seen in Figure 14.
The porosity at higher nozzle temperatures for both materials was slightly higher than
the lower adjacent temperature due to the formation of large pores that were essentially
macro-cellular in nature. This occurred as the higher nozzle temperature led to lower
viscosity, causing the nucleated pores to coalesce and form larger pores in the extrudate.
This explains the increases after 155 °C and 170 °C for E3_PEG200_14 and E3_PEG200_20,
respectively. At 145 °C, blend E3_PEG200_20 yielded uniform microcellular foam with
an average cell size of 5 um and a porosity of 51%. This average cell size was smaller
than those found in the literature on extruded foams obtained from pristine polymers,
as the lowest average cell size for the polystyrene foams produced by Han et al. was
approximately 7 um [41,98]. Lee et al. achieved an average cell size of 5 um using foam
extrusion, but they used LDPE/clay nanocomposites [99]. The porosity value was, however,
lower compared to the values in the literature [43,100]. The cells seen in Figure 13b appear
to be interconnected, and the foam can be classified as open-celled foam [37]. Furthermore,
the dye uptake test revealed uptake of the solution of 1-1 methylene blue in ethanol due to
the color changing from white to blue. This indicated that the capillary effect enabled the
absorption of the solution into the foam, thus confirming the open cellularity [101-103].
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Figure 12. E3_PEG200_14 foams at various nozzle temperatures (TN): (a,b) Ty = 155 °C;
(c,d) Tn =160 °C; (e,f) Tn = 165 °C; (g,h) TN = 170 °C; (i,j) Tn = 175 °C. The images of the en-
tire cross-sections of the extrudates are given, along with close-up views of the cross-sections of
the extrudate.

Figure 13. E3_PEG200_20 foams at various nozzle temperatures (Ty): (a,b) Ty = 145 °C;
(c,d) Ty = 150 °C; (e f) Ty = 155 °C; (g,h) Ty = 160 °C; (i,j) Ty = 165 °C. The images of the en-
tire cross-sections of the extrudates are given, along with close-up views of the cross-sections of

the extrudate.

By carrying out tensile tests on the foamed extrudates of blend E3_PEG200_20, the
effect of nozzle temperature on the mechanical properties of the foams was observed. Stress
versus strain curves, as seen in Figure 15, indicated that a decrease in nozzle temperature
led to a lower E modulus while decreasing the tensile strength. However, an exception
occurred for the nozzle temperature 160 °C, which led to a higher tensile strength than
165 °C. This can be correlated with the increase in the overall porosity due to larger pores,
as seen in Figure 14, but, at the same time, more volume was achieved without pores. This
mechanical analysis also showed that an increase in porosity increased the ductility but
also decreased the tensile strength significantly.

The cell walls of this foam were porous on their own at the nanocellular level, as seen
in Figure 16. This phenomenon has been previously observed in batch foaming in several
studies [11,14,104]. The expansion of microcellular cells in foam during foam expansion
expresses the tension within the polymer and causes stretching. This stretching leads to
fibril-like structures that remain connected to each other and pores are created between
them. In a previous work, it was possible to control the pore size and expansion of these
structures in PESU /PVP foams manufactured using batch foaming [14]. This was beyond
the scope of this work. We suspected that a similar process took place where the bubble
growth occurred as the extrudate exited the foam extruder, resulting in stretching of fibrils
within the polymer melt and, thus, causing this structure to form. This is the first instance
that such a nanocellular structure has been observed in a foam created via extrusion. The
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pores on the cell walls of microcells were not considered when measuring the average cell
size of the complete foams.
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Figure 14. Porosities of foams obtained from the blends E3_PEG200_14 and E3_PEG200_20 at different
nozzle temperatures during foam extrusion.
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Figure 15. Tensile tests of foamed extrudates of blend E3_PEG200_20 at different nozzle temperatures
during foam extrusion.
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Figure 16. Porous structure observed inside the microcellular foam of the blend E3_PEG200_20.

Comparing Figure 10 with Figure 13, the improvement in foam quality due to the
usage of water along with CO, as a foaming agent was very significant. This supports
the findings of other research, where the usage of water along with CO, led to increased
porosity and low pore size [13,14,48]. When water was injected into the extruder, it was in
a superheated phase, as the extruder possessed pressures in the range of 100-300 bar and
temperatures around 200 °C. Superheated water has a polarity similar to that of organic
solvents [105] and, thus, aids in pore formation [49]. The presence of the nanocellular pores,
as seen in Figure 15, may also have been observed as a result of the removal of PEG from
the polymer matrix due to superheated water, similarly to the phase inversion process, or
due to evaporation. The thermal and chemical behavior of the produced extrudate was
further investigated.

The spectroscopical analysis provided some more information regarding the blending
of PEG with PESU after the extrusion process. A comparison of the peaks of PESU in
the FTIR spectra of blend E3_PEG200_20 and its extruded foam, as shown in Figure 17,
indicated no changes in the characteristic vibrations of PESU and PEG. This indicated
that no chemical reactions took place. Since the principle peaks of PESU remained similar
in both the blend and the extrudate, the chemical stability and resistance of PESU were
retained in the extruded foam. Comparing the DSC measurement of the blend’s foam
with the blend, an increase of 26 °C was seen after foam extrusion (see Figure S4 in the
Supplementary Materials). The amount of PEG appeared to have been reduced, most likely
due to evaporation, as the extruder temperatures were near the boiling point of the PEG.
This change was also visible in the FTIR spectrum, as the intensities of PEG peaks in the
blend’s extruded foam were slightly lower than in the original blend. This also agreed
with the observations from the rheological measurements discussed above, since the low
molecular weight of PEG enables its leaching from the polymer matrix [72]. This effect
would be beneficial for the production of extruded porous hollow fibers based on PESU via
foam extrusion.
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Figure 17. FTIR spectra of PESU E 3020 P, blend E3_PEG200_20, the extruded foam of blend
E3_PEG200_20 and PEG200.

4. Conclusions

PESU/PEG blends were manufactured using the absorption of low-molecular-weight
liquid PEG into PESU by taking advantage of the porous structure of the PESU flakes. The
polymers were partially miscible, as shown by thermal and rheological measurements.
Blends with suitable compositions could be extruded. The sorption of CO; in selected
blends was investigated, and it was found that PEG increased the diffusion coefficient of
the blend, and it essentially increased with increases in temperature, providing insight
into the foaming characteristics of the blends. Blend PESU/PEG 80/20 was processable in
a foam extruder at 200 °C; i.e., 150 °C lower than the extruder temperature required for
pure PESU. The use of water along with CO, as the foaming agent was confirmed to lower
the viscosity of the polymer—foaming agent mixture in the extruder even more than when
using only CO> and resulted in highly porous foams with smaller cell sizes. At certain
process settings, the PESU/PEG 80/20 blend provided the lowest average pore size of 5 um
and a porosity of 51%. The mechanical properties of certain foams were also evaluated, and
it was found that an increase in porosity led to a slight increase in the ductility but, at the
same time, a significant loss in tensile strength. FTIR measurements confirmed the retention
of the PESU chemical structure in the produced foams, but a certain amount of PEG was
lost due to evaporation during the foam extrusion; however, this was not problematic due
to the aim of obtaining porous hollow fibers later on.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/polym15010118 /s1. Figure S1: Gel permeation chromatography
for PESU E 3010 and E 3020 P. The molecular weight estimation was based on calibration with
polystyrene standards; Figure S2: Rheological investigations of the PESU/PEG200 blends: storage
modulus G’ and loss modulus G” versus angular frequency at various temperatures for blend
(a) E3_PEG200_08, (b) E3_PEG200_14 and (c) E3_PEG200_26; Figure S3: Apparent densities of PESU
E 3010 granules, PESU E 3020 P flakes and PESU/PEO blend flakes; Figure S4: DSC third heating
cycle for foam of blend E3_PEG200_20; extrusion foamed using CO, and water.
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Nomenclature
Symbol  Parameter Unit
Tg Glass transition temperature K
w Mass fraction of polymer %
cp, Heat capacity of polymer mW
t Time s
M; Mass of gas absorbed by sample at time ¢ g
Mo Mass of gas absorbed by sample at time t — oo; i.e., equilibrium g
Papparent  Apparent density g/mL
Toxt Extruder temperature °E
N Nozzle temperature °C
Py Nozzle pressure bar
G’ Storage modulus Pa
G” Loss modulus Pa
w Angular frequency rad/s
In*l Complex viscosity Pas
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The hollow fibers manufactured using the optimum blend combination in Article 2, when
tested for permeability using the same experimental setup as in Article 3, yielded high

water flux, as shown in Figure 27.
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Figure 27: Water flux through the extrusion foamed hollow fibers of blend
PESU/PEG 80/20 produced at various nozzle temperatures. Hollow fibers produced
at Tnozte = 145 °C and 150 °C, due to low tensile strength, could not bear any water

pressure above ATP and thus could not be tested for water flux.

As expected from the average pore size of these fibers, there was no retention of any

molecules of PEO when tested for retention.

On the cell walls of the PESU/PEG foam, a nanocellular structure, as shown in Figure 16
of Article 2, was seen as a first in foam extrusion. As such a structure was reported
multiple times in literature for polymer foams manufactured using batch foaming process,

the reasoning behind it in this case of foam extrusion was hypothesized to be similar, i.e.,
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the stretching caused due to microcellular foam expansion leading to the formation of
nanocellular pores. However, as the goal of scaling the process to a continuous open-
celled foam production in hollow fibers was achieved, the study was concluded without

exploring the nanocellular pores in detail.

As the task for the third step of this work was developing continuous hollow fiber
membranes capable of ultrafiltration, the nanocellular pores found in the previous step
were of interest. However, contrary to the hypothesized explanation, pores with average
pore sizes smaller than 1um were found uniformly distributed in the extrudate of the same

blend, i.e., PESU/PEG 80/20, without the involvement of any foaming agents.

This phenomenon was studied in detail and was instrumentalized in more porous extruded
hollow fibers by developing a ternary polymer blend of PESU/PEG/PVP. The know-how
gained from Article 1 on PESU/PVP blends and the absorption blending technique used
in Article 2 for PESU/PEG blends were highly beneficial in developing this ternary blend.
Furthermore, the effect of various blend combinations and extruder settings on the
morphology of these extruded hollow fibers was studied by conducting pore analysis
using SEM. However, the hollow fibers were impermeable to water due to their solid

outer surface and non-interconnected pores.

As PEG and PVP, both water-soluble polymers, were washed out by immersing the
extruded hollow fibers into an aqueous solution of NaOCI, the internal porosity of the
hollow fibers increased, allowing interconnected microcellular pores and a porous outer
surface with average pore size ~ 50 nm was obtained. This significant difference between
the pores on the outer surface and the rest of the hollow fiber was due to the difference in
the composition of the polymer blend between the outer surface and the rest of the fiber
occurring during extrusion and the different dissolution mechanisms of PEG and PVP in
aqueous NaOCI. This synergistically allowed the extruded hollow fibers to have a

separation layer on the outer surface. Thus, along with a decent water flux, these hollow
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fiber membranes revealed ultrafiltration capabilities. Moreover, as PEG and PVP were

almost washed out of the fibers, these fibers comprised nearly only PESU, allowing for

high-temperature stability together with decent mechanical strength.

Thus, continuously produced hollow fiber membranes capable of ultrafiltration were

produced without the use of organic solvents, therefore achieving the goal of step 3 of

this work successfully.

6.3.1. Author Contributions

Aniket Raje (A.R.), Joachim Koll (J.K.), Erik S. Schneider (E.S.), Prokopios
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ARTICLEINFO ABSTRACT

Keywords: Hollow fiber membranes are traditionally manufactured using the spinning process, which takes advantage of the

Organic solvent-free phase separation/inversion for the creation of a porous structure. In this work, the use of melt extrusion led to the

E(;lyaeﬁﬂlzersulfone fabrication of hollow fiber membranes without the use of organic solvents. Following post-treatment, the
trafiltration

fabricated partially dense fibers are transformed into porous fibers. In detail, ternary blends of polyethersulfone/
poly(ethylene glycol)/poly(N-vinyl pyrrolidone) (PESU/PEG/PVP) were developed by combining a solvent-free
liquid mixture of PEG/PVP into PESU. Using a single screw extruder, this blend was melted and extruded using
an annular slit nozzle where PEG functioned as a plasticizer, i.e., decreased processing temperatures, while PVP
aided in retaining the hollow fiber geometry. These hollow fibers were comprised of uniformly closed pores,
occurring due to the expansion and formation of bubbles of evaporating PEG nucleated by PVP during extrusion.
By immersing these fibers into an aqueous solution of sodium hypochlorite (NaOCl), PEG and PVP were removed,
which led to an open porous structure with pore sizes between 100 nm and 1 pm throughout the membrane. The
outer surfaces of the hollow fibers were found to contain a higher PVP content than the inner surface. As PVP and
PESU are miscible, i.e., blended in a single phase, treatment with NaOCl led to the creation of open pores on the
outer surface with pore sizes between 10 and 150 nm, thus deeming the outer surface functional as a separation
layer. The effect of blend composition, extrusion settings, and post-treatment parameters on membrane
morphology, water flux, thermal characteristics, and tensile strength was studied, while after the modification,
near-pristine PESU membranes were pursued. A water-flux of 28 L/h m” bar and a molecular weight cut-off
(MWCO) of 90%, 75%, and 40% for poly(ethylene oxide) of an average of 1000 kDa, 400 kDa, and 100 kDa
molecular weight, respectively, proved that via extrusion it is possible to produce hollow fiber membranes for
ultrafiltration without the use of organic solvents.

Melt extrusion
Extruded hollow-fiber membranes

1. Introduction

Hollow fiber membranes have been widely used and studied in the
last four decades as they offer high surface area per unit volume and
provide high permeability and selectivity for certain applications [1,2].
They are typically manufactured using the spinning process, which uses
phase separation processes such as thermally induced phase separation
or the non-solvent induced phase separation (NIPS) process, etc. [3-8].
These processes are widely used due to the possibility of producing
hollow fibers on a large scale continuously [9]. This process has been
improved over the years and hollow fiber membranes of various pore
sizes, porosities, selectivities, and/or permeabilities have been devel-
oped using different polymers by various researchers. However, this
process makes use of organic solvents as an important component that

* Corresponding author.
E-mail address: prokopios.georgopanos@hereon.de (P. Georgopanos).

https://doi.org/10.1016/j.memsci.2023.121837

aids in the formation of pores through phase inversion. Organic solvents
such as N-methyl-pyrrolidone (NMP), tetrahydrofurane (THF), N,
N-dimethylformamide (DMF), N,N-dimethyacetamide (DMAc) are
generally used and their selection depends upon their compatibility with
the polymers used. Many organic solvents, due to their harm to health
[10] and the environment [11,12], are classified by various regulatory
authorities as hazardous and it is advised to reduce their use wherever
possible [13-16].

Since the publication of the principles of Green Chemistry in 1998
[171, some researchers have attempted to reduce the number of organic
solvents used for membrane manufacturing, while some have suggested
using sustainable solvents [18-41]. In the membrane industry, organic
solvents are recirculated to avoid their wastage, which consumes high
amounts of energy, leading to increased emissions [42-44]. Using salt
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dilution-induced phase separation, researchers have been able to
manufacture ultrafiltration and nanofiltration polymer membranes. This
process takes advantage of the state of the art of the NIPS process using
polyanions and polycations without the use of organic solvents during
their processing [45,46]. In this work, the aim is to develop an organic
solvent-free hollow fiber membrane manufacturing method for
commercially inexpensive polymers that are already proven to function
well as membrane materials.

Melt extrusion, a process independent of the use of any organic
solvents, is used on a large scale in the plastics industry to manufacture
continuous products such as pipes, wire-sheath, tapes, etc. The extruder
melts and homogenizes the polymer while the extruder’s nozzle shapes
it into a desired shape as the polymer extrudate exits the extruder. Most
thermoplastic polymers that are solid at room temperature and do not
undergo cross-linking or degradation on exposure to heat can be
extruded using melt extrusion [47]. For example, melt extrusion of
polymers such as polypropylene, polyethylene, polycarbonate, poly-
vinylchloride, polyamide, polysulfone, among others, has been studied
by a number of researchers and implemented in the industry [48-54].

A polymer melt, when extruded through an annular slit nozzle, can
produce hollow fibers whose length is not limited since this can be a
continuous process, but the diameter is possible to be controlled by the
size of the slit nozzle. To use these hollow fibers in liquid separation
applications as membranes, they need to be porous, permeable and
capable of performing a certain degree of separation of substances
included in the liquid. Foam extrusion is a well-established method of
manufacturing porous extrudate. At the turn of the century, it was
attempted to use foam extrusion to manufacture hollow fibers from
commercially available polymers [55,56]. Using melt extrusion coupled
with foaming, Huang et al. created hollow fiber membranes from pol-
ysulfone with pore sizes between 15 and 20 pm and from polycarbonate
with pore sizes between 5 and 10 pm [57,58]. However, for ultrafil-
tration, pore sizes below 100 nm are necessary [59]. However, even
after twenty years, foam extrusion cannot produce open-cellular pores
with pore sizes in the nanometer range to use as hollow fiber membranes
[54,60-62]. Using batch foaming, without the use of organic solvents,
flat sheet membranes capable of ultrafiltration were manufactured [63],
but the method is limited to its scale and additionally is a slow and
non-continuous process.

Melt extrusion, followed by cold /hot-stretching of the extrudate to
create a porous structure has been attempted by some researchers.
Permeable flat-sheet and hollow fiber membranes manufactured using
this method achieved pore sizes down to 50 nm, and exhibited separa-
tion capabilities [64-78]. Similar to foam extrusion, the morphology
depends on the polymer type and the extruder settings. However, the
tensile force exerted during the stretching also plays a vital role. This
method is suitable for semi-crystalline polymers, as the crazing phe-
nomenon responsible for pore creation takes advantage of the crystalline
structures [79-82].

In this study, using an annular slit nozzle on a single screw melt-
extruder, extruded hollow fibers of a polymeric blend were produced.
This blend was developed based on polyethersulfone (PESU), a
commercially available polymer, widely used for developing ultrafil-
tration membranes given its excellent chemical, thermal and structural
stability [4-6,8,19,25,83-97]. The other components of this blend are
water-soluble polymers, such that, the extruded hollow fibers can be
treated using inorganic aqueous solutions for their removal. Removal of
the water-soluble polymers would then result in a porous structure. The
pore size would depend on the miscibility of the polymers and the
porosity of the polymer content will be defined by the content of the
water-soluble part.

Due to its known application as a pore-forming agent in polymer
membranes, low molecular weight polyethylene glycol (PEG), a water-
soluble polymer, is selected [3,9,70,93,98-100]. In a previous study,
by absorbing liquid-state low molecular weight PEG into PESU,
PESU/PEG blends were manufactured [54]. The availability of PESU in
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the form of flakes takes advantage of their porous structure, inducing a
capillary effect on the liquid PEG and significantly influencing the ab-
sorption of PEG into PESU matrix. The most optimum blend combina-
tion found in the study was PESU/PEG 80/20. This blend combination
was processable in the extruder at processing temperatures ~120 °C
lower than that of PESU homopolymer. The miscibility of the PESU/PEG
blends was investigated and a partially miscible blend, along with some
indications of a gel state, was found. This blend, however, yielded a
microcellular foam. In this study, we choose to begin with the same
blend and extrude without the use of foaming agents.

The extrudate of this blend is found to contain uniformly distributed
closed cells resembling a foam but fails in maintaining the hollow fiber
structure. The cause is investigated and based on material character-
ization, as an improvement, another PESU-miscible polymer Poly(N-
vinyl pyrrolidone) (PVP) [63] is introduced to the blend, thus creating a
ternary blend. This ternary blend, at its optimum combination, yields
extruded hollow fibers with higher porosity than the binary PESU/PEG
blend and maintained the hollow fiber shape after exiting the extruder
nozzle. The optimum blend composition and extruder settings are found
and the extruded hollow fibers are treated using an aqueous solution of
sodium hypochlorite (NaOCl) such that PEG and PVP are dissolved from
the blend and a near-pristine PESU membrane is attained. This increases
the overall porosity and also creates open pores on the surface of the
hollow fibers that render the extruded hollow fibers permeable to water.
The effects of various post-treatment parameters on their characteristics,
such as water flux, thermal behavior, porosity, etc., are studied and the
most influential post-treatment parameters on the dissolution of various
components of the blends are found. The filtration performance of the
optimized hollow fiber membrane is tested. Thus using a completely
organic-solvent-free manufacturing method, hollow fiber membranes
are developed whose performance is comparable to the state-of-the-art
ultrafiltration membranes that are manufactured using organic solvents.

2. Experimental
2.1. Materials

Commercial grade PESU BASF Ultrason® E 3020 P was offered by
BASF SE (Ludwigshafen, Germany) in the form of flakes. PEG 200 in
liquid form was purchased from Sigma Aldrich (Taufkirchen, Germany).
PVP BASF Luvitec® K 30 was received from BASF SE in powder form.
Sodium hypochlorite (NaOCl) with a label concentration of 12% was
purchased from Sigma Aldrich. The concentration of active Cl” content
was determined regularly using titration and the pH using a digital pH
measurement device (Mettler Toledo, GiePen, Germany). Ultrapure
water having resistivity >18.2 MQ cm ! was obtained from a Millipore
(Merck, Darmstadt, Germany) Direct-Q® UV water purification system
[101].

2.2. Blend production

The absorption blending method used to manufacture PESU/PEG
blend was followed as mentioned in another publication [54]. To
manufacture PESU/PEG/PVP blends, PEG/PVP solutions were prepared
by dissolving PVP powder into PEG liquid by physical mixing in a
container for 24 h at room temperature in a fume hood. This PEG/PVP
solution was then mixed with PESU flakes, similar to the method used

Table 1

Nomenclature of blends used in this study.
Blend Name PESU [%] PEG [%] PVP [%]
PO 80.0 20 0
P2.5 77.5 20 25
P5 75.0 20 5.0
P7.5 72.5 20 75
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for PESU/PEG blend. The polymer composition of the blends developed
is given in Table 1, along with the nomenclature of the blends.

2.3. Material characterization

2.3.1. Differential scanning calorimetry (DSC)

DSC 1 (Mettler Toledo, Giefen, Germany) calorimeter was used for
DSC and the software STARe SW 16.20 (Mettler Toledo, Giefen, Ger-
many) was used for data evaluation. A 40 pL aluminum pan was filled
with ~10 mg of polymer and closed with a mono-perforated lid. The
heating-cooling-heating cycles were cairied out in a nitrogen atmo-
sphere. The temperature interval for the PEG/PVP solution was —130 to
100 °C. The heating/cooling rate for the first two cycles was 10 K min !
and 30 K min ! for the third heating to obtain a pronounced glass
transition signal [102]. Glass transition temperature (T;) was evaluated
from the third heating. PESU/PEG and PESU/PEG/PVP blends were
measured between —130 and 260 °C at a heating/cooling rate of 20 K
min ' and T, was evaluated from the second heating.

2.3.2. Thermogravimetric analysis (TGA)

TGA was conducted using a TG 209F1 Iris (NETZSCH Geratebau
GmbH, Selb, Germany) to observe the thermal stability of polymers. A
heating rate of 10 K min~! was used in a temperature interval of
25 °C-900 °C under argon gas.

2.3.3. Rheology

For rheological measurements on polymer solutions, 0.67 mL of the
solution were measured with a cone-plate geometry tool of an Anton
Paar MCR 502 rheometer (Anton Paar, Graz, Austria). Viscosities were
measured between the frequencies 0.01-100 rad/s at a shear rate of 5%.

2.3.4. Turbidity experiment

Equal parts (1:1 b y weight) of PEG 200 and aqueous NaOCl solutions
(0.1%, 0.2%, 0.4%) were mixed at room temperature twice. The
turbidity was observed at room temperature for all solutions. To observe
the turbidity at the post-treatment temperatures chosen in this study,
one set of bottles of each concentration was subjected to 45 °C in a
controlled water bath. In contrast, another set of bottles was subjected to
70°C similarly. After 2 h of exposure to this temperature, the turbidity of
the solutions was visually observed and noted. This experiment was
video recorded for monitoring and observation of changes continuously.

2.4. Extrusion of hollow fibers

Hollow fibers were extruded using the single screw extruder Extru-
siograph 19/25 (Brabender GmbH & Co. KG, Duisburg, Germany). The
complete extruder setup consisted of two static mixers with a combined
length of 20 em, one melt pump and an annular slit nozzle, in a hori-
zontal setting. The melt pump’s gears were removed so as to take
advantage of the melt-travel length offered by the pump’s construction,
allowing the screw speed to determine the throughput of the extruder. A
custom-made ‘Tubing die head’ (Brabender GmbH & Co. KG, Duisburg,
Germany), having a 2 mm opening and 1 mm centered needle was used
as the annular slit nozzle (see supporting information Fig. 51). Due to
presence of melt-pressures up to 200 bar at the nozzle of the melt-
extruder, a mechanically stable bore for carrying a bore fluid was not
possible to be constructed at these dimensions. However, for particular
polymers at certain nozzle temperatures, the melt would form a hollow
fiber profile with 2 mm outer diameter and 1 mm inner diameter, thus
eliminating the need for a bore fluid. The nozzle extruded the extrudate
onto a flat conveyor belt whose speed was manually adjusted to match
the extrudate speed without exerting any tension or resistance. The
chosen extruder temperatures, as seen in Table 2 were 100-120 K higher
than the glass transition temperatures of the blends, as observed in DSC
measurements.
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Table 2
Extruder process settings for the fabrication of the melt-extruded hollow fiber
membranes.

Extrusion Values
settings
Polymer blend Blend Blend P2.5 Blend P5 Blend P7.5
PO
Extruder 200°C 220°C 235°C Not processable
temperature with the extruder
Nozzle 150°C 150, 160 150, 160, 170,
temperature and 170 °C 180 and
190°C
Screw speed 10 10 RPM 3,6and 10
RPM RPM
Nozzle outer 2 mm
diameter
Nozzle inner 1 mm
diameter
Bore Solid needle
Bore fluid Not applicable
Drawing/ Not used
Stretching

2.5. Post-treatment of hollow fibers

The post-treatment was carried out by inserting the extruded hollow
fibers into a closed bottle of an aqueous solution of NaOCL. The effects of
various concentrations of NaOCl solution, temperature, time and pH on
the membrane properties were studied. The concentration range of the
solutions was 0.01491-0.05964 M, whereas room temperature [103],
45 °C and 70 °C were chosen. Temperatures above 70 °C were avoided
due to approaching the glass transition temperature of blend PO (97 °C).
The temperature was regulated using a jacket heating setup, ultrapure
water was used to dilute NaOClI to the required concentration, and hy-
drochloric acid was used to change the pH value wherever required.
Fig. 1 illustrates the schematics of the extruded hollow fiber fabrication
process.

2.6. Hollow fiber membrane characterization

2.6.1. Scanning electron microscopy

Scanning electron microscopy (SEM) was carried out on a Merlin
microscope (Carl Zeiss AG, Oberkochen, Germany) at an accelerating
voltage between 1 and 3 kV, while the detectors used were a high-
efficiency secondary electron (HE-SE2) detector and an in-lens second-
ary electron detector. Samples of hollow fibers were cross-fractured
using liquid nitrogen. For cross-sectional imaging of the entire hollow
fiber, samples were cut using a sharp razor blade instead of fracturing in
liquid nitrogen. Prior to examination, all specimens were sputter-coated
with 1.5 nm of platinum using a CCU-010 coating device (Safematic,
Switzerland).

2.6.1.1. Pore analysis. For pore analysis, scanning electron microscope
images of freeze-fractured samples were recorded at a magnification of
7000x. The SEM images were acquired at an accelerating voltage of 1
keV using the HE-SE2 detector. Before measurement, the freeze-
fractured specimens were sputter-coated with 1.5 nm platinum. Pore
analysis was performed with the software IMS (Imagic Bildverarbeitung
AG, Switzerland). Pore analysis included the measurement of the mean
pore diameter (in the following referred to as ‘pore size’) and the area
ratio of pores to the total surface area (in the following referred to as
‘porosity’). Pores that projected an area smaller than 2000 nm? on the
SEM images were excluded from the analysis.

2.6.2. Tensile test

Tensile tests were performed at room temperature using a Zwick
Roell Z020 (Zwick Roell, Ulm, Germany) using a load cell of 1 kN.
Hollow fibers having a length of 55 mm were used. The hollow fibers
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Fig. 1. Melt-extruded hollow fiber membranes preparation procedure.

were dried at 50 °C for 24 h before tensile testing, except for the fibers
that were water soaked for 24 h prior to testing.

2.6.3. Water flux

Water flux measurements were performed on individual hollow fiber
membranes having lengths between 50 and 70 mm. The measurement
setup was an in-house built setup where pressurized ultrapure water was
pumped into the fibers in a dead-end setup at 1 bar overpressure for 2 h
[104].

2.6.4. Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy (FTIR) was performed on
the inner and outer surface of the extruded hollow fiber membranes
using a Bruker Alpha-P, platinum attenuated total reflection equipped
with a diamond head (Ettlingen, Germany). The measurements were
performed by taking 64 scans with a resolution of 4 cm™' within a
spectral range of 400-4000 cm

2.6.5. Retention tests
Retention tests were performed using an in-house built setup at 1 bar
overpressure using solutions of 0.02% poly(ethylene oxide) (PEO) with
molecular weights equal to My, = 8 kDa, 400 kDa, 100 kDa, and 1000
kDa in ultrapure water [6]. The PEO solutions, feed, retentate and
permeate were analyzed using gel permeation chromatography (GPC).
The retention coefficient R was calculated using Equation (1), where wp
and wr are the mass fractions of PEO in permeate and feed solutions,
respectively.
=1--2 @

Wg
3. Results and discussion

The absorption of low molecular weight PEG into PESU to form
PESU/PEG blends was possible due to the liquid state of PEG 200 taking
advantage of the porous morphology of PESU flakes. Using foam
extrusion, the blend PO is able to produce porous membranes in hollow
fiber shape using an annular slit nozzle in foam extrusion [54]. How-
ever, in this study, without using any foaming agent, the same blend

could not maintain the shape of the annular slit nozzle after exiting the
extruder. The melt’s low viscosity at the lowest possible nozzle tem-
perature (Ty) of 150 °C and the absence of a bore fluid, led to the
collapse of the hollow fiber structure leading to an extrudate, as shown
in Fig. 2(a). At first glance, this blend’s extrudate seems improper for
further research, but looking at increased magnification in scanning
electron microscopy images provides a revelation. Uniformly distributed
pores with an average pore size of 270 nm ranging between 70 nm and
700 nm (5th & 95th percentile) across the extrudate, as seen in Fig. 2(b)
are observed. This result served as a starting point in exploring the
reasoning behind these pores and improving them to create permeable
extruded hollow fiber membranes.

As PEG 200 is a liquid, its boiling point lies around 200 °C [105].
Organic liquids, absorbed into polymers are known to behave as foam-
ing agents, thus providing porous morphology in certain foaming
methods [106,107]. As the extrusion temperatures are set near or higher
than the boiling point of the PEG used, it expands during the extrusion
process and leaves behind pores as the blend exits the nozzle. As the
extrudate cools down, the PEG reverts to the liquid state and stays in the
extrudate, which is then reabsorbed into the PESU matrix. The porous
structure remains unchanged due to the increase in the melt-viscosity of
the blend due to lower temperatures. The similar thermal decomposition
behavior in TGA of the blend PO and its extrudate, as well as their similar
second glass transition temperatures* as shown in Fig. 3(a) and (d),
respectively, confirm that the composition of the blend stays the same
after extrusion. Removal of one blend component, mainly using organic
solvents, to create or increase porosity is a common practice in mem-
brane science. PEG is a water-soluble polymer and can be removed from
the blend using water or inorganic solvents such as NaOCl [108,109].
Therefore, the removal of PEG 200 from the PO blend was pursued by
immersing the extrudates in 0.2% aqueous solution of NaOCI for 120 h
at 45 °C. This post-treatment caused partial removal of PEG, leading to
increased temperature resistance, glass transition temperature and in-
ternal porosity as seen in Fig. 3(a), (d) and 4(a-b), respectively. Com-
plete removal was not possible due to the porosity of the extrudate being
too low for the NaOCI solution to reach every nook and corner of the
extrudate.
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Fig. 2. Scanning electron micrographs of extrudate of blend PO extruded at Ty = 150 °C (a) cross-section (overview); (b) cross-fracture at 2000x magnification.

Fig. 3. Thermal analysis of blends PO, P2.5 and P5.
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3.1. Effect of PVP concentration

Decreasing the amount of PEG from PESU/PEG blend might resultin
the maintenance of the hollow fiber shape at the nozzle. However, as the
expansion of PEG creates a porous structure, high amounts of PEG are
desirable. In addition, PEG functions as a plasticizer, i.e., it reduces the
processing temperatures of the blend. Theoretically, an increase in the
amount of water-soluble polymer, i.e., PEG in the blend would appear as
a solution to obtain the highest possible porosity during post-treatment.
However, processing amounts of PEG larger than 20% in such a blend is
not possible in the extruder [54]. Thus to proceed with the same
approach, PVP, another water-soluble polymer also used as a
pore-forming agent in PESU membranes, was selected [6,54,92,103,
110-113]. PVP when blended with PESU increases nucleation and
porosity in foams obtained using batch foaming [63]. PVP is also
water-soluble in the presence of NaOCl [6,103,112]. The addition of
PVP to PEG resulted in a highly viscous PEG/PVP solution. This solution
was transparent and had a yellowish color. The measured dynamic
viscosities of solutions with 0%, 10%, 20% and 30% PVP in PEG 200
were 56, 545, 2320 and 9787 mPa s, respectively. These percentages
correspond to the ratio of PEG and PVP in blends PO, P2.5, P5 and P7.5,
respectively. The viscosities of PEG/PVP solutions increase significantly
with an increase in PVP content. As the formation of the blend relies on
the absorption of liquid into PESU flakes by capillary forces exerted by

(d)

the porous flakes as well as their rough surface, a very high viscosity
would not be feasible for this method. Therefore, blend formulation will
not take place above a certain amount of PVP. Due to the high viscosity
of PEG/PVP 70/30 solution (9787 mPa s), PEG/PVP solution was not
fully absorbed into PESU. This resulted in the blend P7.5 not being
processable as the unabsorbed solution blocked the extruder hopper.

However, the blends P2.5 and P5 were processable in the extruder.
The extrudates of blend P2.5 did not form a hollow fiber geometry at the
nozzle similar to the blend PO except for the lowest nozzle temperature,
i.e., 150 °C, where the desired geometry was obtained. Extrudates of
blend P5 produced a hollow fiber geometry at all nozzle temperatures.
PVP is known to cross-link on exposure to high temperatures [114],
which causes an increase in the storage modulus, thus increasing elas-
ticity. Therefore, the storage modulus of blends increases with an in-
crease in PVP content allowing the fibers to maintain the shape of the
annular slit nozzle, thus producing hollow fibers. The cross-sections of
the extrudate from the blends P2.5 and P5 at various nozzle tempera-
tures are shown in the supporting information in Figs. S3 and 54.

As seen in Fig. 4, the scanning electron micrographs of fibers
extruded at nozzle temperature 150 °C for the blends PO, P2.5 and P5
reveal that the addition of PVP increases the porosity of the extrudate.
This porosity is further increased after post-treatment with an aqueous
solution of 0.2% NaOClI at 45 °C for 120 h. The thermal decomposition
behavior and the second glass transition temperature observed for the
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Fig. 4. Scanning electron micrographs of cross-fractured extrudates extruded at
Ty = 150 °C and U = 10 RPM: (a) non-post-treated extrudate of blend PO; (b)
post-treated extrudate of blend PO; (c) non-post-treated extrudate of blend P2.5;
(d) Post-treated extrudate of blend P2.5; (e) non-post-treated extrudate of blend
P5; (f) post-treated extrudate of blend P5.

extruded hollow fibers, before and after the post-treatment, as shown in
Fig. 3, shows that the post-treatment increased the thermal resistance of
the fibers for all the blends. This change is more pronounced for the
blends with higher concentrations of PVP. As the increase in PVP
contributed to increased porosity, NaOCl solution could reach more
volume of the material, thus dissolving more larger amount of polymer.
The glass transition temperature observed for post-treated extruded
hollow fiber of blend P5 is 202 °C, nearest to that of PESU (228 °C [63]).
With these results, it can be said with confidence that the post-treatment
dissolved the PEG and PVP from the extruded hollow fibers of blend P5,
thus leading towards highly porous hollow fibers comprising mostly
only PESU.

3.2. Effect of extruder speed

To study the influence of extruder screw speed on the extruded
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hollow fibers of blend P5, a constant nozzle temperature of 150 °C was
selected and three screw speeds were tried. The extrudates produced at 3
and 6 RPM were too brittle to handle, making a realistic application of
them as hollow fiber membranes impossible. However, the ones pro-
duced at 10 RPM were more structurally stable. Performing tensile tests
of these fibers quantified their structural stability, as seen in Fig. 5(a).
The tensile tests revealed very low stress at break below 5 MPa and 9
MPa for fibers produced at a speed of 3 and 6 RPM, respectively, while
also a much higher value of 25 MPa for the fibers produced at 10 RPM
was observed. A low screw speed means that the foaming agent, PEG in
this case, is exposed to the extruder temperature for a longer time
leading to higher expansion and the creation of larger pores [115]. In
addition, longer exposure of PVP to the extruder temperature causes a
higher degree of cross-linking, thus causing the fibers to be stiffer. Fig. 5
(b) shows the tensile test results of extruded hollow fibers produced at
Ty = 150 °C and compares the tensile strength between untreated hol-
low fibers and those treated with 0.2% NaOCl at 45 °C for 120 h. The
increased porous structure due to the post-treatment reduces the stress
at break by 40%. The tensile performance of an extruded hollow fiber
that was soaked in water for 24 h after post-treatment is also investi-
gated to observe the realistic mechanical behavior the fibers would face
if applied in a membrane module for water filtration at a certain pres-
sure. The value of stress at break is higher than those found in the
literature for polymeric hollow fiber membranes [3,9,85,91], thus
confirming the mechanical stability of these hollow fibers when used as

membranes.
3.3. Effect of nozzle temperature

By performing pore analysis on extruded hollow fibers, the influence
of certain processing parameters on the membrane-relevant properties
such as pore size and porosity was determined. Fig. 6(a) shows that with
decreasing nozzle temperature, the average pore size decreases and the
porosity increases except for the fibers fabricated at 160 °C. In this case,
a larger median pore size than that of the fibers made at 150 °C and
170 °C as well as the highest porosity can be observed. This is a similar
behavior to various foam extrusion studies done where an optimum
temperature is found between the highest and lowest possible nozzle
temperature [54,115,116]. With a decreased nozzle temperature, the
nozzle pressure increases causing more nucleation whereas, the expan-
sion of the pores is restricted due to increase in the viscosity of the melt
caused by the decreased temperature, which leads to smaller pore sizes.
At 150 °C, although the higher viscosity of the melt caused the pores to
remain smaller, the increased pressure was unable to overpower the
high viscosity to cause higher porosity, as it did at Ty = 160 °C. An
optimum nozzle temperature is where the pressure inside the extruder is
high enough and melt-viscosity low enough to lead to the smallest pore
sizes and high porosity.

3.4. Effect of post-treatment

After post-treatment, the increase observed in porosity is similar to
hollow fibers extruded at all nozzle temperatures, thus the highest
porosity was observed for hollow fibers extruded with Ty = 160 °C, as
seen in Fig. 6(b and c). The extruded hollow fibers did not exhibit any
water flux before the post-treatment. However, as Fig. 6(d) shows, after
the post-treatment the ones extruded at nozzle temperatures between
150 °C and 170 °C did have water flux through them. Nozzle tempera-
ture 160 °C provided the highest water flux and 150 °C the lowest. The
highs and lows of water flux results correspond to the porosity values of
the post-treated extruded hollow fibers. The fibers extruded at 180 °C
and 190 °C, although they had porosity equal to or higher than the fibers
created at 170 °C after post-treatment, they failed to provide a water
flux. This is mainly due to the formation of too large pores that increase
the porosity value although interconnections between pores are missing.
Therefore, it can be said that, for the extruded hollow fibers that are
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Fig. 5. Tensile tests on extruded hollow fibers: (a) effect of rotational speed of extruder screw on the tensile strength of extruded hollow fibers of blend P5; (b)
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permeable, the porosity values correspond directly to the amount of
water flux. The obtained water flux at certain process settings provides
the first indication of the possible usage of these porous hollow fibers as
membranes.

Fig. 7 shows the scanning electron micrographs of post-treated
extruded hollow fibers of blend P5. In Fig. 7(b), the cross-sectional
micrograph shows that the internal pores are partially connected to
each other. These connections could also have led to higher pore sizes
detected during pore analysis as an increased average and median pore
size is seen for fibers extruded at this temperature in Fig. 6(b). The pores
on the inner and the outer surface in Fig. 7(c) and (d), respectively,
together with the cross-sectional pores, facilitate the permeability of
water through these fibers, as seen in the water flux results of Fig. 6(d).
The inner surface appears rough with pore sizes ranging from a few
hundred nanometers to a few micrometers. However, the pores on the
outer surface are much smaller, i.e., below 150 nm. The rough surfaces
does not allow for a correct measurement during pore analysis and
therefore are not measurable similarly to the cross-sectional pores.
During extrusion, at the annular slit nozzle, the outer surface of the fiber
is directly exposed to the metallic surface throughout the nozzle that is
actively tempered, while the internal pin that aids in the formation of

the hollow fiber geometry is not. This exposes the outer surface of the
extrudate to a higher temperature than the inner surface. Therefore, as
PEG is known to leach out of the blend and evaporate at temperatures
near to its boiling point [54,117], the outer surface has a much lower
amount of PEG than the rest of the hollow fiber. After evaporation of
PEG from the outer surface, mostly PESU and PVP remain, whose blend
is miscible [63]. Due to the complete miscibility of PESU/PVP, removal
of PVP through post-treatment yields a pore size of less than 100 nm.
The partial miscibility of PESU/PEG/PVP blend as observed due to the
presence of two glass transitions in DSC measurements, causes the rest of
the hollow fiber, including the inner surface, to yield a larger pore size.
Also, the shear stress on the outer surface occurring during extrusion
produces a layer of dense polymer [4], avoiding any foaming to take
place from the remnants of PEG. Therefore, due to this dense surface, the
non-post-treated extruded hollow fibers had no water flux. Measure-
ment of the exact temperatures of the metal surfaces of the nozzle was
not possible due to the very small nozzle dimensions between 1 and 2
mm.

By performing FT-IR spectroscopy on the inner and outer surfaces of
untreated extruded hollow fibers, the qualitative content estimation of
PVP can be identified. Fig. 8 clearly indicates a difference between the
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Fig. 7. Scanning electron micrographs of extruded hollow fiber of blend P5 extruded at Ty = 160 °C and post-treated using an aqueous solution of 0.2% NaOCI for
120 h at 45 °C: (a) cross-section image of the whole fiber, (b) cross-fracture showing the interior of the fiber wall, (c) inner surface and (d) outer surface of the

hollow fiber.
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version of this article.)

intensity of the principle vibrations of PVP (at 1655 nm ') between the
inner and outer surface when a principal PESU vibration is taken as a
reference. These measurements support the above hypothesis related to
surface pore formation, as the outer surface has a higher amount of PVP
content than the inner surface. The pores on the outer surface of the
hollow fibers are not present uniformly throughout the fiber and non-
porous areas exist on the outer surface of the post-treated hollow fi-
bers, as shown in supporting information Fig. S6. This leads to a lower
water flux, as shown in Fig. 6(d), than the PESU ultrafiltration hollow
fiber membranes in literature [3,5,7,85,118,1 19].

To optimize the hollow fibers even further in obtaining higher
porosity and flux thereof, the influence of post-treatment parameters is
investigated. It can be theoretically appealing to dissolve the water-
soluble polymers only partially, thus obtaining much better separation
performance due to the smaller pore sizes. However, for filtration ap-
plications where water or water-based substances are used, the flux
through the membrane would eventually cause the remaining water-
soluble polymers to leach out of the fibers, thus increasing the pore
sizes and not delivering the expected separation performance. There-
fore, complete or near-complete dissolution of the water-soluble poly-
mers is aimed during the post-treatment. The amount of time taken for

0.2% NaOCl to dissolve PEG and PVP from the extruded hollow fibers
can be visualized by the change in glass transition temperature over time
in Fig. 9. The closer the glass transition temperature is to that of PESU
(228 °C [63]), the less amount of PEG and PVP are present in the fibers.
The glass transition temperature of the fiber remains unchanged be-
tween 100 h and 120 h, which indicates that there is no change seen in
the polymer composition of the extruded hollow fiber. Therefore, the
initially selected time of 120 h is ideal for this concentration to ensure
maximum dissolution.

Fig. 10 shows the effect of the post-treatment temperature on the
characteristics of the extruded hollow fibers. At 0.2% concentration,
although the pore sizes do not change significantly with increasing
temperature, the internal porosity peaks at 45 °C where the water flux is
also at the highest. Fig. 11 shows the effect of the concentration of an
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Fig. 9. Effect of the post-treatment time on the glass transition temperature of

the extruded hollow fibers when treated with an aqueous solution of 0.2%
NaOCl at 45 “C.
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Fig. 10. Effect of temperature on the extruded hollow fibers treated with aqueous solution of 0.2% NaOCI for 120 h. (a) Pore size distribution and porosity; (b)

Water flux.
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Fig. 11. Effect of concentration of NaOCl aqueous solution on the extruded hollow fibers after 120 h at 70 °C. (a) Pore size distribution and porosity; (b) Water flux.

aqueous solution of NaOCl on the fiber characteristics at 70 °C. Here as
well, the concentration providing the highest internal porosity and
highest water flux is the same. However, it appears that the solution
concentration does not have any noticeable effect on the internal pore
sizes of the extruded hollow fibers. Internal porosities for all concen-
trations are of a similar order, i.e., between 15 and 20%. However, this
internal porosity is unable to allow water flux through the hollow fibers
when post-treated at 0% concentration, i.e., only water. As discussed
earlier, the outer surface of the fibers becomes porous by the sole
dissolution of PVP from PESU/PVP blend. Although pure water can
dissolve PVP as a homopolymer, it is unable to dissolve it from the
PESU/PVP surface of the fibers in contrast to the aqueous solution of
NaOCl. This can be confirmed by observing the SEM of the outer surface
of this water post-treated fiber in Fig. S7 of supporting information,
which is non-porous. Therefore, failure of dissolution of PVP from the
outer surface leads towards non-permeability of the extruded hollow
fibers treated with pure water. Fig. 12 shows the effect of the pH of 0.1%
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solution of NaOCl on the fiber characteristics at 70 °C. The internal
porosity, pore size distribution and water flux are highest at 12.35 pH
value. However, the median and average internal pore sizes are not
significantly different.

By comparing selected data from the above results, as visualized in
Fig. 13, it can be observed that the effect of temperature on the porosity
and the water flux of the extruded hollow fibers is different at different
concentrations of NaOCl. As discussed earlier, NaOCl is the major
driving force for the dissolution of PVP from the fibers than water,
whereas the dissolution of PEG is dependent on both water and NaOCl.
However, the lowest critical solution temperature (LCST) for the solu-
tion of PEG and aqueous NaOCl is different for different concentrations
of NaOCl. This temperature affects the dissolution of PEG into NaOCl
solution at the treatment temperature, thus affecting the formation and
expansion of pores. This was qualitatively verified by carrying out
turbidity experiments on solutions of equal amounts of PEG and aqueous
solution of NaOCI at various concentrations at different temperatures.
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Fig. 12. Effect of pH of 0.1% NaOCl aqueous solution on the extruded hollow fibers after 120 h at 45 °C. (a) Pore size distribution and porosity; (b) Water flux.
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Fig. 13. Effects of temperature at different concentrations of NaOCI for 120 h on the extruded hollow fibers’ characteristics. (a) Pore size distribution and porosity;

(b) Average water flux.

As shown in Fig. 14, the solution with 0.4% NaOCI was turbid at all
temperatures, the solution with 0.2% NaOCl was turbid at 70 “C and the
0.1% solution was clear at all measured temperatures. As the 0.2%
NaOCl solution failed to dissolve PEG at 70 °C completely, the internal
porosity remained low, thus causing lower water flux to occur. For 0.1%
NaOCl, complete dissolution of the same amount of PEG is possible at
both 45 and 70 °C, which causes the porosity and water flux of the fibers
not to show a significant difference. At 45 °C, although the internal
porosity of the fibers treated with 0.1% and 0.2% concentrations of
NaOCl remains similar, the water flux is higher for 0.2%. As NaOCl fa-
cilitates the dissolution of PVP from the outer surface, creating open
pores while its higher concentrations yield a better flux. As 0.4% NaOCl
fails to dissolve enough PEG from the fiber itself, it fails to increase the
internal porosity, thus causing a lower water flux.

3.5. Performance of an optimized extruded hollow fiber membrane

This investigation shows that 0.2% NaOCI at 45 °C for 120 h can
assist in the highest dissolution of PVP. Still, the highest dissolution of
PEG is possible at higher temperatures with pure water. Therefore, an
extruded hollow fiber of blend P5 extruded at Ty = 160 °C with a screw
speed of 10 RPM when immersed in 0.2% NaOCl at 45 °C for 120 h and
then immersed with pure water at 70 °C for 120 h should aid in the
maximum possible dissolution of the water-soluble components of the
extruded hollow fiber. A fiber treated using these parameters yielded the
highest water flux measured till now of 28 L/h-m?.bar and the highest
glass transition temperature measured till now of 206 °C during the
second heating in DSC measurement. This showed that the water-soluble
components were dissolved at most and the highest possible porosity
was achieved. This glass transition temperature is similar to that found
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Fig. 14. Clarity/turbidity observed during turbidity experiment at different
concentrations of NaOCl on equal parts PEG 200.

10

in the literature for PESU hollow fiber membranes prepared using wet
spinning [4].

In order to validate this extruded hollow fiber for membrane appli-
cations, retention tests were carried out to observe the separation of
molecules of poly(ethylene oxide) of various molecular weights dis-
solved in water. Fig. 15 shows the retention coefficients obtained by this
post-treated extruded hollow fiber for different molecular weights of
PEO.

The hollow fiber membrane provides a retention coefficient of 0.9, i.
e., 90% molecular weight cut-off (MWCO) for molecules of PEO 1000
kDa. This confirms that the post-treated extruded hollow fibers are
capable of ultrafiltration [90,120,121]. The retention coefficient de-
creases with a decrease in the PEO molecular weight. In addition, due to
the outer surface not being completely open, the water-flux is low. The
retention and water-flux are lower than those found in the literature
with fibers manufactured using conventional methods involving organic
solvents and semi-crystalline melt-extruded membranes fabricated by
stretching [3,5,7,32,64-78,85,118,119,122,123]. However, the devel-
opment of porous hollow fibers, capable of performing ultrafiltration
and having a measurable flux, from an entirely new method, which does
not use organic solvents, neither utilizes melt-state compounding for
developing the blend, nor has to be processed at the processing tem-
peratures of PESU, i.e., 300-350 °C, provides a gateway towards various
studies involving optimizations of each aspect of this process.

3.6. Future scope

In future studies, to maximize performance or develop other mem-
brane applications, other polymers could be used instead of the ones
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fiber membranes for PEO of various molecular
weights

1.0 -
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Fig. 15. Retention test results: Retention coefficients versus molecular weights
of PEO permeating the extruded hollow fiber membrane.
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used here. One could use another molecular weight of PESU or a
different water-insoluble polymer than PESU, such as polyacrylonitrile
(PAN), etc., other water-soluble polymers could replace PEG, PVP or
both; post-treatment with water-based solutions other than NaOCI can
be experimented with depending on the polymer; an overall optimiza-
tion of materials and process could speed up the membrane fabrication.
Furthermore, as the separation layer is on the outer surface of the hollow
fiber membrane, more precise membrane characterization can be car-
ried out by performing outside-inside water flux and retention mea-
surements. The recovery of PEG and PVP from the aqueous NaOCl
solution after post-treatment will lead towards a highly sustainable
process, whereas a better combination of polymers could yield enough
porosity such that performing post-treatment to enable water perme-
ability is not required. This, however, is out of the scope of this work.
This method can also be used to produce extruded flat-sheet ultrafil-

tration membranes by using a flat slit nozzle at the extruder.
4. Conclusion

The discovery of uniformly distributed pores in the extrudate of
blends of polyethersulfone/poly(ethylene glycol) (PESU/PEG) led to-
wards a series of improvements to porous hollow fiber membranes that
indicated ultrafiltration capabilities. A ternary blend of PESU/PEG/Poly
(N-vinyl pyrrolidone) (PESU/PEG/PVP) was developed whose extruded
hollow fibers were treated with aqueous solution of sodium hypochlorite
(NaOCl). The blend was produced through material penetration method,
using neither organic solvents nor melt-state compounding. It was found
that the addition of PVP to the PESU/PEG blend matrix resulted in the
extruder retaining the hollow fiber shape due to added elasticity. This
also resulted in an increase of porosity that was further increased by the
treatment with NaOCl after which water-permeability was obtained.
Effects of various process settings such as extruder screw speed, nozzle
temperature, post-treatment time, temperature, concentration, pH on
the extruded hollow fibers’s properties such as pore size, porosity and
waterflux were investigated. Complete or near complete dissolution of
PEG and PVP was aimed and the glass transition temperature of the post-
treated hollow fiber was used as an indicator to determine the saturation
time where near-PESU hollow fibers remained. A non-linear effect of
temperature was seen on the fiber characteristics for certain concen-
trations of NaOCl. Turbidity measurements concluded that PEG and PVP
have different mechanisms of dissolution that depend upon the con-
centration of the NaOCI solution, such as the insolubility of PEG at
higher concentrations of NaOCI at higher temperatures. The outer sur-
face with a very high concentration of PVP delivered nano-cellular open
pores connected to the larger internal pores of the rest of the fiber, with
higher concentration of PEG. The synergetic performance of PEG and
PVP was instrumental in creating the separation layer that resulted in
the optimized fiber having a 90% MWCO for PEO 1000 kDa and
reasonable filtration for lower PEO molecular weights. The produced
hollow fiber membranes do not possess the state-of-the-art performance
of those produced using other methods involving organic solvents.
However this novel method delivers membranes in hollow fiber geom-
etry with a decent water flux of 28 L/h-m?.bar and ultrafiltration per-
formance in one single study, providing a dawn of opportunities towards
realizing state of the art performance. This method, of producing hollow
fiber ultrafiltration membranes without using organic solvents, brings
membrane science one step closer towards reaching sustainability;
whereas future improvements, such as the recovery of PEG and PVP
after post-treatment, or material/process optimizations deeming the
post-treatment unnecessary, would make total sustainability attainable.
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/. Discussions

The process of polymer foaming was successful in manufacturing ultrafiltration
membranes, both as flat-sheet and hollow fiber membranes. Blending a high-performance
water-insoluble polymer with water-soluble polymers, foaming the said blend
continuously, and removing the water-soluble polymer using aqueous inorganic

solutions, created water-permeable membranes capable of ultrafiltration.

Previously not tried combinations of many state-of-the-art techniques led to the
achievements of this work. However, certain novel ideas were implemented as well, such

as,
e A method to avoid non-foamed skin layer in batch foaming.

e A method of creating a polymer blend using material penetration by taking
advantage of the major polymer's porous flakes and the minor polymer's liquid

state.

e Foam extrusion using CO. and H20 as co-blowing agents.
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7.1

Summary of Findings of This Work

The published articles, as well as the brief information provided in Section 6, provide an

apt summary of the results and findings based on the goals set for each step of this work.

However, various scientific findings could be significant individually for further research.

Therefore, the following list is provided to assist the reader in distinguishing the

inferences individually.

The complete miscibility of PESU and PVP was confirmed.

Blending PESU (Avg. My = 65000 Da) and PVP K 30 using compounding works
only up to certain grams of the blend. Afterward, due to crosslinking and

decomposition of PVP, the extruder undergoes problems.

PESU/PVP’s foam, manufactured using batch foaming where CO; and water as
co-foaming agents are used, shows a dual foam structure, i.e., microcellular
closed-celled foam with nanocellular open pores on its cell walls. Both these

morphologies are codependent and can be controlled by the process parameters.

The non-foamed skin layer occurring on polymer samples subjected to batch
foaming can be bypassed by sticking another removable or dissolvable material

on the sample surface and foaming them together.

Aqueous solution of sodium hypochlorite can dissolve PVP K 30 from the surface
of a compression molded sample made of blend PESU/PVP creating nanocellular

blind pores.
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e A disc sample comprising a PESU (Avg. My = 65000 Da) / PVP K 30 (68/32)
blend, enclosed on both sides with compression molded PVP K 90, when batch
foamed using CO. and water as co-foaming agents, yields a nanocellular open-
celled foam. The foamed sample can be accessed by dissolving the PVP K 90
enclosure in aqueous solution of sodium hypochlorite. This sample provides a

water flux and possesses ultrafiltration capabilities.

e PESU flakes’ porous nature can assist the absorption of liquid PEG 200 into the
PESU matrix, leading toward a partially miscible blend. The highest amount of
PEG absorbable was between 20% and 26%. This method eliminates the use of

compounding or organic solvents.

e The plasticizing nature of PEG causes the glass transition of the blend to be 100-
120 °C lower than PESU homopolymer, translating into a reduction of the

processing temperatures in the extruder.

e Using water and CO- as co-foaming agents in extrusion increases porosity and

cell uniformity.

e PESU (Avg. My = 65000 Da) / PEG 200 (80/20) blend produces open-celled foam
with an average cell size of 5 um at the optimum process settings using CO, and

water as co-foaming agents in foam extrusion.

e With increasing porosity, the tensile strength of a foam decreases while its

ductility increases.
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e Without any foaming agent, PESU/PEG blend’s extrudates possess uniformly
distributed closed-cell foam-like morphology. The reason is the expansion and

reabsorption of PEG into the blend matrix during the extrusion process.

e PVP K 30 powder can be dissolved in liquid PEG, forming a highly viscous
transparent yellowish solution. This solution can be absorbed in PESU flakes
forming a PESU/PEG/PVP blend similar to PESU/PEG blend.

e The miscibility of PESU, PEG and PVP can be visualized by the illustration in
Figure 28.

Polyethersulfone

Poly(N-vinyl pyrrolidone)

Poly(ethylene glycol) p B ruymisciole

1 . . .
Partially miscible

+ [ v

1

Figure 28: lllustration showing mutual miscibility of polymers based on the findings

of this work.

e Similar to PESU/PEG blend’s extrudates, PESU/PEG/PVP blend’s extrudates

also demonstrate foam-like morphology. However, with higher porosity.
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e The desired hollow fiber shape is not maintained when using an annular slit nozzle
in extruding PESU/PEG blend. However, PESU/PEG/PVP’s extrudates maintain

a hollow fiber shape due to increased elasticity from adding PVP.

e Using aqueous solution of NaOCI, PEG and PVP can be washed out of the
PESU/PEG/PVP blend’s extruded hollow fibers, leading to higher porosity, cell

interconnection, and water-permeability.

e PEG and PVP have different temperatures of optimum dissolution in aqueous
solution of NaOCI. This dissolution depends on the concentration of NaOClI,

temperature, pH, etc.

e Leaching out of PEG from the outer surface of the extruded PESU/PEG/PVP
hollow fibers due to high nozzle temperatures causes the outer surface of the

extruded hollow fibers to have a higher concentration of PVP than PEG.

e The complete miscibility of PESU and PVP, leading towards a dispersion of
respective polymers within a few nanometers, causes the PVVP-rich outer surface
to exhibit a nanocellular porous structure when PVP is washed out by sodium
hypochlorite. Whereas the partial miscibility of PESU and PEG, leading towards
a dispersion of the respective polymers in a few micrometers, causes the rest of
the extruded hollow fiber, richer in PEG content, to exhibit a microcellular porous

structure.

e Post-treatment of an extruded PESU/PEG/PVP hollow fiber with aqueous
solution of NaOCI using an optimum combination of process parameters leads to

formation of separation layer with an average pore size of 50 nm and
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interconnected internal pores. This causes the hollow fibers to be permeable to

water and display ultrafiltration capabilities.
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7/.2. Future Scope

The foams manufactured in this work can be directly implemented as ultrafiltration
membranes, especially the continuously manufactured hollow fibers from Article 3.
Ultrafiltration membranes were manufactured using pre-existing techniques of polymer

foaming without the use of organic solvents.

However, these membranes have lower performance than the state-of-the-art
ultrafiltration membranes manufactured using techniques involving organic solvents.
This realization is out of the scope of this work; however, material and process
optimizations can be pursued to improve the performance of these membranes to match
or exceed the state-of-the-art. Article 3 provides some ideas that could be implemented

to increase the efficiency of the developed process and improve product performance.

Not only membrane science but a wide range of polymer research and industry can gain
from the findings and developments of this work. For example, nanocellular open-celled
foams not only aid in ultrafiltration applications but also can be implemented for heat

exchange applications taking advantage of the Knudsen effect. (Krause et al., 2001)

Apart from eliminating the need for organic solvents in manufacturing ultrafiltration
membranes, other developments from this work can also be implemented as sustainable
solutions. These developments include energy-saving techniques such as reducing
processing temperature using a plasticizer, eliminating compounding extruder for
blending polymers, and excluding a physical blowing agent from foam extrusion using a

blend component from a ternary blend to act as a blowing agent additionally.
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9.1. Article 1: Open-Celled Foams of
Polyethersulfone/Poly(N-
vinylpyrrolidone) Blends for
Ultrafiltration Applications

9.1.1. Graphical Abstract

Open nanocellular foam

Figure 29: Graphical abstract of article 1.
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Supporting Information
A - Material Characterization

1. Effect of temperature on solubility

For water solubility tests on PVP K 30, cylindrical samples measuring 8 mm in
diameter and 2.3 mm in thickness were prepared using the pressing device Vacuum MR
Hei-End (MeltPrep GmbH). Samples, one at a time, were immersed in Millipore water
measuring 60 mL in volume. Tests were carried out at temperatures 25 °C, 40 °C, 60 °C
and 80 °C with constant stirring using a magnctic stirrer. Time taken for complete
dissolution was measured.

The tests showed an increased rate of solubility with increase in temperature. The
tests were performed in water, but it is assumed to have a similar effect on a dilute
solution of NaOCI.
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Figure S1. Time taken to dissolve PVP K 30 samples in water at various temperatures

2. Solubility tests in aqueous solution of NaOCI
Solubility tests were carried out for the blends H-8 and H-32 in aqueous solutions of
NaOCl. Films of the respective blends of thickness 0.4 mm and width 21 mm were

extruded using a twin screw extruder (Brabender, Duisburg, Germany) with a slit die.




Samples of length 25 mm were cut from the respective films. 0.1 wt% NaOCI solution
with a pH value 11.5 was used because at this pH value, NaOCl has no interaction with
PESU but dissolves PVP K 30 [35]. Two different temperatures, i.e. room temperature and
80 °C were chosen. Samples were inserted in the solution in a closed glass bottle at the
given temperatures and were subjected to constant stirring using a magnetic stirrer for
48 hours. To wash out residual NaOC], the samples were rinsed in decalcinated water at
35 °C for 10 minutes, Sodium disulfate (Na2520s) at room temperature for 10 minutes and
finally with decalcified water at 80 °C for 10 minutes. The effect of this treatment was
observed using SEM.

Scanning electron micrographs showed no change on the surface of blend H-8 at
both room temperatures and 80 °C. Blend H-32 did not undergo any visible change when
treated with the NaOCl solution at room temperature. However, at 80 °C, uniform blind
open pores appeared on the surface. These pores were of two sizes, smaller pores between
3 nm to 5 nm and larger pores between 20 nm to 50 nm. The depth of the larger pores
was limited to approximately 50 nm. This confirms that although PVP is blended with
PESU in single phasc, it can be removed from the surface through post-treatment thus
resulting in a porous structure. If the material is already porous on the inside, these
surface pores could function as a selective layer thus implementable in ultrafiltration

applications.

© | ' )

Figure S2. Scanning electron micrographs of post-treated blends in NaOClI at various temperatures: (a) Surface of film of
blend H-8 at 80 °C (b) Surface of film of blend H-32 at RT; (c) Surface of film of blend H-32 at 80 °C; (d) Cross-section of
film of blend H-32 at 80 °C



3. Infrared spectrometry
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Figure S3. IR spectra of blend, non-foamed blend H-8 and after foaming with various foaming agents

Fourier transform infrared (FTIR) spectroscopy was carried out on some materials
and their corresponding foams using a Bruker Alpha-P, platinum attenuated total
reflection, equipped with diamond head (Bruker, Massachusetts, USA). Using FTIR
spectroscopy, the chemical bonds in the material H-8, its foam using foaming agent CO:
and its foam using foaming agent CO: and H2O were analyzed. There is a significant
difference between the material and the foams. The IR spectra of foams with both foaming
agents show identical behavior. Due to foaming, a significant decrease in the sulfone (S=O)
group, vinylene (C=C) group, and alkene (C=C) group can be scen. Exposure to loading
temperature and sudden change in temperature after depressurization from loaded phase
for foaming seem to cause the polymer system to undergo certain amount of degradation.
Certain residual material was also observed on the inner lining of the reactor that could
be wiped using organic solvents, indicating that they could be byproducts of these
degradations.

4. DSC on unfoamed and foamed blend H-8
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Figure S4. DSC 2°¢ heating curves of non-foamed blend H-8 and after foaming with various foaming agents

DSC measurements show minor and statistically insignificant differences between
glass transition temperatures of material H-8 and its foams.



5. Rheological Analysis
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Figure S5. Master curves of selected materials from rheological analysis: (a) PESU E 2010; (b) PESU E 3020 P; (c) PVP K 30; (d)
Blend L-8; (e) Blend [.-32



6. Thermogravimetric analysis

Thermal gravimetric analysis (TGA) was carried out using a TGA 209 G1 220-11-
0019-L Iris instrument (Netzsch, Selb, Germany). Measurements were carried out from 25
to 900 °C at a heating rate of 10 K min—1 in an argon atmosphere.

TGA provided an overview of their stability and decomposition temperature. In
Figure 5(a), in argon environment, it can be observed that PESU E 3020 P starts degrading
only at 475 °C, confirming a high thermal stability. PVP begins to degrade at temperatures
which are higher than its glass transition temperature of 172 °C up to 410 °C and then
rapidly decomposes up to 475 °C to a final relative mass of 4%. In the blends with 32%
PVP K 30, this effect is seen slightly as the mass degrades up to 376 °C. In the blends with
8% PVP K 30, the polymer degrades up to 400 °C. Since blends with 32% PVP K 30 content
show only 20% of mass reduction of pure PVP K 30, some sort of shiclding cffect caused
by PESU can be assumed in these blends.
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Figure S6. Results of thermogravimetric analysis for selected materials

B - Foams and membranes

1. Scanning electron micrographs of foams of blends foamed using CO: and H:0 versus foaming
temperature




(f)

(h)

Figure S7. Scanning electron micrographs of blend 1-8 foams manufactured using blowing agents CO2 and H20 at
loading time 48 h, pressure 100 bar, loading temperature 150 °C, foaming time 100 s and various foaming temperatures:
(a), (b) 210 °C; (c), (d) 230 °C; (e), (f) 250 °C; (g), (h) 270 °C
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Figure S8. Scanning electron micrographs of blend H-8 foams manufactured using blowing agents COz and H20 at
loading time 48 h, pressure 100 bar, loading temperature 150 °C, foaming time 100 s and various foaming temperatures:
(a), (b) 210 °C; (), (d) 250 °C; (e), (f) 270 °C
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Figure S9. Scanning electron micrographs of foams of blend H-8 at the loading time 48 h, pressure 100 bar, foaming
temperature 230 °C, foaming time 100 s, the blowing agent COz and H20 and various loading temperatures: (a), (b): 125 °C;
(), (d): 175 °C.

2. Miscellancous scanning electron micrographs

Figure S10. Scanning electron micrograph of collapsed PVP foam manufactured using blowing agent COz at loading time 48 h,
pressure 50 bar, loading temperature 150 °C, foaming time 100 s and foaming temperature 250 °C
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(b)

Figure S11. Scanning clectron micrographs of sandwich-type sample manufactured using method II with blend H-32: (a), (b)
after loading phase without subjecting to foaming temperatures (Similar settings and method used as I'igure 12)
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9.2. Article 2: Open-Celled Foams from
Polyethersulfone/Poly(Ethylene
Glycol) Blends using Foam Extrusion

9.2.1. Graphical Abstract
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Figure 30: Graphical abstract of article 2.
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9.3. Article 3: A Novel Organic Solvent-
Free Method of Manufacturing
Polyethersulfone Hollow Fiber
Membranes using Melt Extrusion

9.3.1. Graphical Abstract
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Figure 31: Graphical abstract of article 3.
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Figure S3: Cross-sectional scanning electron micrographs of extruded hollow fibers of blend P2.5 at various nozzle
temperatures (Tn); Only Tn = 150 delivered hollow fiber shape.

!

150 °C 170 °C

Figure S4: Cross-sectional scanning electron micrographs of extruded hollow fibers of blend P5 at various nozzle
temperatures (Tn); All nozzle temperatures yielded hollow fiber shape.
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Figure S5: Rheological results of a time-sweep undertaken on an Anton Paar MCR502 Rheometer (Anton Paar, Graz,
Austria) with a plate-plate geometry on compression molded samples of Poly(N-vinyl pyrrolidone) (PVP) K 30 at an
angular frequency of w = 0.1 rad/s at Trer= 220 °C. The compression molding protocol is followed as given elsewhere
[1]. The higher storage modulus and the increase in the moduli over time when exposed to the given temperature
indicate crosslinking taking place in the sample.

Figure S6: Scanning electron micrograph f the outer surface ofa pot-treated éxtruded hollow fiber of blend P5
extruded at Tv= 160 °C and post-treated with 0.1% NaOCl at 70 °C for 120 h; The post-treatment only partially creates
pores on the outer surface thus leading to lower water flux. Porous regions are outlined in blue.



Figure S7: Scanning electron micrograph of the outer surfaceof a post-treated extruded hollow fiber of blend P5
extruded at Tv= 160 °C and post-treated with water at 70 °C for 120 h; The rough surface is a sign of some amount of
dissolution of PVP from the fiber’s outer surface but failure to lead to pores.
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Figure S8: Results of turbidity test: (a) 0.4% aq. NaOCl in PEG (1:1) bottles showing turbidity at room temperature;
(b) NaOClin PEG (1:1) at various concentrations after exposure to 45 °C (above) and 70 °C (below) for 2 h; (c)
Turbidity observed only in solution with 0.4% aq. NaOCl when exposed to 45 °C for 2 h (left) and turbidity observed in
0.2% and 0.4% aq. NaOCl when exposed to 70 °C for 2 h (right).
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9.4. Software/Websites Used

Software used for writing this dissertation are provided in Table 10. The details of the

software used in the published article are provided in them and not repeated here.
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Software / Website

Vendor

Used for

URL

Acrobat Reader

Adobe. San Jose, CA,
USA

PDF editing

https://get.adobe.com/r
eader/

Adobe Photoshop

Adobe. San Jose, CA,

Graphic design,

https://www.adobe.co

Jurgen Riegel &
Werner Mayer

USA Figures, Illustrations m/products/photoshop.
html
Bing Chat Microsoft. Seatle, WA, | Literature research https://www.bing.com
USA
Endnote Clarivate, London, UK | References and https://get.clarivate.co
Citations m/endnote/
Excel Microsoft. Seatle, WA, | Tables, Equations, https://www.microsoft.
USA Calculations com/de-de/microsoft-
365?rtc=1
FreeCAD Open source; Creators: | Figures https://www.freecad.or

g

Grammarly Premium

Grammarly. San
Francisco, CA, USA

Grammar and
Language improvement

https://get.grammarly.c
om/grammarly/

iLovePDF Desktop

iLovePDF. Barcelona,
Spain

PDF editing

https://www.ilovepdfde
sktop.com/

View, CA, USA

Notepad Microsoft. Seatle, WA, | Data Clipboard https://www.microsoft.
USA com/de-de/microsoft-
3657rtc=1
Origin OriginLab. Graphs, Data https://www.originlab.c
Northampton, MA, Processing om/
USA
Paint Microsoft. Seatle, WA, | Figures, lllustrations https://www.microsoft.
USA com/de-de/microsoft-
3652rtc=1
PowerPoint Microsoft. Seatle, WA, | Figures, lllustrations https://www.microsoft.
USA com/de-de/microsoft-
3652rtc=1
Scholar Google. Mountain Literature research https://get.google.com/

scholar/

Science Direct

Elsevier. Amsterdam,
The Netherlands

Literature research

https://www.sciencedir
ect.com/

VI, USA

Word Microsoft. Seatle, WA, | Writing and formatting | https://www.microsoft.
USA com/de-de/microsoft-
3657rtc=1
Zotero Corporation for Digital | References and https://get.corporation.
Scholarship. Vienna, Citations com/zotero/

Table 10: Software/websites used for this work
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9.5.

Safety Hazards

under Pressure

Substance GHS-Symbol Hazard Precautionary
Statements Statements
Carbon dioxide GHSO04: Gas H280 = P410 + P403

contains gas
under pressure;
may

store in accordance
with regulations
and store in a well-

(harmful), irritant
to
skin, eyes or

explode if ventilated place
heated.

Ethanol GHS02: H225 = Highly | P210 = Keep away
Flammables self- | flammable from heat, hot
reactive liquid and surfaces, sparks,
substances, vapor, H319 = | open flames, and
self-heating, Causes serious | other ignition
flammable gas, eye irritation. | sources. No
organic peroxides smoking, P233 =

Keep container

tightly closed,

P305+P351+P338 =
GHSO07: Acute If in eyes: Rinse
toxic cautiously with
(harmful), irritant water for several
to minutes. Remove
skin, eyes or contact lenses, if
respiratory tract, present and easy to
skin sensitizer do. Continue rinsing.

Hydrogen chloride GHSO05: H290 = May P280 = Wear
Corrosive to be corrosive to | protective
metals, metals, gloves/protective
burns skin, H314 = Causes | clothing/eye
damages severe skin protection/face
eyes burns and eye | protection,

damage, P303+P361+P353 =
@ H335 = May If on skin (or hair):
cause Take off
GHS07: Acute respiratory immediately all
toxic irritation contaminated

clothing. Rinse skin
with water [or
shower],
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respiratory tract,
skin sensitizer

P304+P340 = If
inhaled: Remove
person to fresh air
and keep
comfortable for
breathing,
P305+P351+P338 =
If in eyes: Rinse
cautiously with
water for several
minutes. Remove
contact lenses, if
present and easy to
do. Continue rinsing,
P310 = Immediately

call a poison
center/doctor
Polyethersulfone - - -
Poly(ethylene glycol) - - -
Poly(N- - - -
vinylpyrrolidone)
Sodium hydroxide GHSO05: H314 = Causes | P280 = Wear
Corrosive to severe skin protective
metals, burns and eye | gloves/protective
burns skin, damage clothing/eye
damages protection/face
eyes protection,
P305+P351+P338 =
@ If in eyes: Rinse
cautiously with
water for several
minutes. Remove
contact lenses, if
present and easy to
do. Continue rinsing,
P310 = Immediately
call a poison
center/doctor
Sodium hypochlorite GHSO05: H290 = May P273 = Avoid
Corrosive to be corrosive to | release to the
metals, metals, H314 = | environment, P280 =
burns skin, Causes severe | Wear protective
damages skin burns and | gloves/protective
eyes eye damage, clothing/eye
H410 = Very | protection/face

toxic to aquatic

protection,
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%

GHSO09: Toxic to
aquatic
Environment

life with long
lasting effects

P310+P330+P331 =
If swallowed: rinse
mouth. Do NOT
induce vomiting,
P303+P361+P353 =
If on skin (or hair):
Take off
immediately all
contaminated
clothing. Rinse skin
with water [or
shower],
P305+P351+P338 =
If in eyes: Rinse
cautiously with
water for several
minutes. Remove
contact lenses, if
present and easy to
do. Continue rinsing,
P310 = Immediately
call a poison
center/doctor

Table 11: Safety instructions and hazardousness of used substances.
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