
Cumulative Doctoral Dissertation

Towards Flexible and Resilient Next
Generation Time Sensitive Networks

submitted by

Nurefşan Sertbaş Bülbül

Dissertation to receive the title Dr. rer nat.

Faculty of Mathematics, Informatics and Natural Sciences
Departments of Informatics

Computer Networks (NET) Group

Hamburg, 09.10.2023

Reviewers

Prof. Dr. Mathias Fischer
Prof. Dr. Andreas J. Kassler

Disputation date: 21.12.2023

ii

Abstract
Mission-critical communication requires delivering data in real-time, reliably, and securely.
Over the past few years, mission-critical networks have become more complex due to cheap
commercial off-the-shelf equipment and increasing convergence with other networks like the
Internet. They have to cope with more diverse and dynamic traffic with ultra-high reliability
and various quality of service (QoS) requirements. Time-sensitive networking (TSN) has been
introduced to address these issues by unifying diverse networking equipment and protocols to
facilitate the transmission of convergent data flows over cost-effective and easily deployable
standard Ethernet technologies. Moreover, the redundancy mechanisms offered by TSN en-
hance the network reliability and ensure seamless communication during single link or node
failures. However, configuring these networks and ensuring resilience against attacks while
maintaining the desired QoS remains challenging and thus needs further investigation.

Accordingly, this cumulative thesis presents contributions to support the self-adaptive and
efficient configuration of time-sensitive networks and methods for increasing their resilience
against denial of service (DoS) attacks.

To bring self-adaptation to time-sensitive networks and make them more efficient, we present
a framework that makes them fully transparent to end hosts and eliminates the need for their
involvement. Furthermore, we propose reconfiguration heuristics to improve the network uti-
lization and to accommodate more flows in the network without sacrificing the QoS. Lastly, we
explore the potential of machine learning as a low-cost alternative to optimize flow reservations
within time-sensitive networks.

To increase the resilience of time-sensitive networks against DoS attacks and maintain the
QoS, we propose different admission control strategies via in-network filtering to enforce flow
reservations. Moreover, we investigate the impacts of calibrated attacks in time-sensitive
networks and discuss a few countermeasures to prevent them. Lastly, we present a distributed
denial of service (DDoS) attack detection and collaborative filtering approach that operates at
the network layer and protects time-sensitive hybrid networks that carry time-triggered and
best-effort traffic at the same time.

By integrating the flexible configuration strategies and resilience aspects presented, we con-
tribute to advancing next-generation time-sensitive networks. While these enhancements are
significant steps forward, they do not address all challenges in the TSN domain, indicating
that further research and development efforts remain essential.

iii

Zusammenfassung
Bei der unternehmenskritischen Kommunikation müssen Daten in Echtzeit, zuverlässig und
schnell übermittelt werden. In den letzten Jahren sind unternehmenskritische Netzwerke auf-
grund günstiger kommerzieller Standardgeräte und der zunehmenden Konvergenz mit anderen
Netzwerken wie dem Internet immer komplexer geworden. Sie müssen einen vielfältigeren
und dynamischeren Datenverkehr mit besonders hoher Zuverlässigkeit und verschiedenen An-
forderungen an die Dienstqualität (QoS) bewältigen. Time Sensitive Networking (TSN) wurde
eingeführt, um diese Probleme zu bewältigen, indem es verschiedene Netzwerkkomponenten
und -protokolle vereinheitlicht, um die Übertragung von konvergenten Datenströmen über
kostengünstige und leicht zu implementierende Standard-Ethernet-Technologien zu erleichtern.
Darüber hinaus erhöhen die von TSN angebotenen Redundanzmechanismen die Zuverlässigkeit
des Netzwerkes und stellen eine nahtlose Kommunikation bei Ausfällen einzelner Verbindungen
oder Knoten sicher. Der Aufbau dieser Netzwerke und die Sicherstellung der Widerstands-
fähigkeit gegen Angriffe bei gleichzeitiger Aufrechterhaltung der gewünschten Dienstgüte bleibt
jedoch eine Herausforderung und bedarf daher weiterer Untersuchungen.

Dementsprechend werden in dieser kumulativen Dissertation Beiträge zur Unterstützung der
selbstanpassenden und effizienten Konfiguration zeitempfindlicher Netzwerke und Methoden
zur Erhöhung ihrer Widerstandsfähigkeit gegen Denial-of-Service-Angriffe (DoS) vorgestellt.

Um die Selbstanpassung in zeitkritischen Netzwerken zu ermöglichen und sie effizienter zu
machen, stellen wir ein Framework vor, der sie für die Endhosts völlig transparent macht
und ihre Beteiligung überflüssig macht. Darüber hinaus schlagen wir Rekonfigurationsheuris-
tiken vor, um die Netzwerkauslastung zu verbessern und mehr Datenströme im Netzwerk
unterzubringen, ohne die Dienstgüte zu beeinträchtigen. Anschließend untersuchen wir, wie
maschinelles Lernen als kostengünstige Alternative zur Optimierung von Flussreservierungen
in zeitabhängigen Netzwerken vorteilhaft eingesetzt werden kann.

Um die Widerstandsfähigkeit zeitempfindlicher Netze gegen DoS-Angriffe zu erhöhen und die
Dienstgüte aufrechtzuerhalten, schlagen wir verschiedene Zulassungskontrollstrategien mittels
netzinterner Filterung vor, um Flussreservierungen durchzusetzen. Darüber hinaus unter-
suchen wir die Auswirkungen kalibrierter Angriffe in zeitkritischen Netzwerken und diskutieren
einige Gegenmaßnahmen, um diese zu verhindern. Schließlich stellen wir einen Ansatz zur
Erkennung von verteilten Denial-of-Service-Angriffen (DDoS) und zur kollaborativen Filterung
vor, der auf der Netzwerkebene arbeitet und zeitempfindliche hybride Netzwerke schützt, die
gleichzeitig zeitgesteuerten und Best-Effort-Verkehr übertragen.

Durch die Integration der vorgestellten flexiblen Konfigurationsstrategien und Ausfallsicher-
heitsaspekte tragen wir dazu bei, zeitempfindliche Netzwerke der nächsten Generation vo-
ranzubringen. Obwohl diese Verbesserungen einen bedeutenden Fortschritt darstellen, können
sie nicht alle Herausforderungen im TSN-Bereich bewältigen, was zeigt, dass weitere Forschung
und Entwicklung auf diesem Bereich weiterhin nötig sein wird.

iv

Acknowledgement

I would like to begin this section by acknowledging the immense journey that pursuing
a PhD entails. The path has long been filled with challenges, growth, and unwaver-
ing dedication. This is not merely an academic accomplishment; it represents years
of relentless pursuit of knowledge, countless hours of research and analysis, and a pro-
found commitment to pushing the boundaries of human understanding. Throughout
this journey, I have been fortunate to receive support, guidance, and inspiration from
many individuals, without which this achievement would not have been possible.

First and foremost, I would like to thank my supervisor, Prof. Mathias Fischer, as I will
stay grateful for his guidance and support provided throughout my PhD journey. His
constant commitment to discipline and dedication to the pursuit of knowledge served
as a constant source of inspiration. As a female researcher, I deeply appreciate his
consistent encouragement and support, which played a pivotal role in my academic and
personal growth.

I would also like to express my appreciation to my research group as a whole. Your
collaborative spirit have been instrumental in my academic growth. I want to express
my gratitude to Malte Hamann for his warm welcome when I first arrived in a new
country and university. I am deeply thankful for the support and friendship of Florian
Wilkens. His humor has brightened even the most challenging academic tasks. Tatjana
Wingarz is a cherished friend, and our shared interests and personalities have made
our interactions feel like looking into a mirror. It was a chance to work with Cornelia
Brülhart; her cheerful disposition not only smoothed our professional interactions but
also turned each encounter into a delightful experience. I must also thank Mathias
again for hiring Doğanalp Ergenç and enabling our fruitful partnership. We’ve not only
worked together but also our friendship extended beyond our workplace with a few
conference trips together.

Finally, my family holds a special place in my heart, as they have consistently been
my pillars of strength and constant supporters throughout my life’s journey. They have
never hesitated to stand by my side, wholeheartedly endorsing my decisions and dreams.
I want to thank my life partner, Şeref, for this unyielding belief in my potential, which
has been a constant source of motivation, propelling me to pursue my goals. I am
profoundly grateful for the love, guidance, and support he provides, which continue to
shape my path and inspire me to reach new heights. Lastly, I want to extend my deepest
gratitude to my unborn child, who has already brought an immense sense of joy and
purpose into my life. You are a source of boundless hope, and I am excited to embark
on this new chapter of life with you by my side.

v

TO MY PARENTS
for raising me to believe that anything was possible

AND TO MY HUSBAND
for making everything possible

vi

Contents

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Research Questions . 3
1.3 Contributions . 5
1.4 Thesis Organization . 10
1.5 List of Publications . 11

2 Background 13
2.1 Basics of Time Sensitive Networks . 13
2.2 IEEE Time Sensitive Networking Standards 14

3 Self-Adaptive and Efficient Configuration of Time Sensitive Networks 20
3.1 Dynamic Self-configuration of Time Sensitive Networks 21
3.2 Reconfiguration Strategies for Time Sensitive Networks 26
3.3 Machine Learning-based Intelligent Configuration of Time Sensitive Net-

works . 32

4 Resilience against Denial of Service Attacks for Time Sensitive Networks 40
4.1 Admission Control Strategies for Time Sensitive Networks 41
4.2 Calibrated Attacks Against TSN Frame Preemption and Countermeasures 47
4.3 Dynamic and Scalable DoS Attack Detection and Filtering 54

5 Conclusion 59

Bibliography 65

Acronyms 68

vii

Appendices 71

A Paper 1: SDN-based Self-Configuration for Time-Sensitive IoT Networks 73

B Paper 2: Towards SDN-based Dynamic Path Reconfiguration for Time-
sensitive Networking 82

C Paper 3: Reinforcement Learning assisted Routing for Time Sensitive Net-
works 92

D Paper 4: TSN Gatekeeper: Enforcing Stream Reservations via P4-based
In-network Filtering 99

E Paper 5: Preemptive DoS attacks on Time Sensitive Networks 108

F Paper 6: SDN/NFV-based DDoS Mitigation via Pushback 115

viii

List of Figures

1.1 Industrial time-sensitive network scenario. 2
1.2 The main contributions of this thesis using a centralized configuration

architecture as the foundation for TSN. 6
1.3 An overview of developed services and used enabler technologies regarding

individual thesis contributions. 9

2.1 IEEE 802.1Q TSN family of standards included in the scope of this thesis
(*). 14

2.2 TSN configuration models. 15
2.3 IEEE 802.1Qbv time aware shaper mechanism. 17
2.4 TSN switch with the IEEE 802.1Qci ingress filtering. 18
2.5 Frame preemption effect on the latency: (a) Non-preemptive frame trans-

mission (b) Preemptive frame transmission. 19

3.1 Flowchart of the learning module at the edge switches of the time-sensitive
network. 23

3.2 Self-configuration impact on the time-sensitive traffic delivery. ©2021
IEEE. 25

3.3 Dynamic flow handling scenarios. 27
3.4 Performance evaluation of flow migration in time-sensitive network. ©2022

IEEE. 31
3.5 Simplified RL model where an agent interacts with the environment to

maximize long-term rewards through state transitions. 34
3.6 RL: reinforcement learning based routing approach for TSN 35
3.7 Performance comparison of RL with other benchmarking approaches. ©2022

IEEE. 38

4.1 Simple time-sensitive network where switches are empowered by the P4-
based filtering capability to enforce flow reservations in the network’s
ingress. 43

4.2 Flowcharts of the proposed filtering approaches. 44
4.3 Filtering performance on the delivery of time-sensitive traffic. 46
4.4 Preemption effect on particular scenarios: (a) express frames to block

preemptable frames, (b) express frames delaying each other, (c) preempt-
able frames delaying each other, (d) preemptable frames to block express
frames. ©2023 IEEE. 49

ix

4.5 Attacker observations regarding only class seven traffic is configured to
express. ©2023 IEEE. 51

4.6 Injecting express traffic to delay specific preemptable flow(s). ©2023 IEEE. 52
4.7 Injecting express traffic to delay specific express flow(s). ©2023 IEEE. . 53
4.8 An example iptables filtering rule from the extracted attack signature.

©2020 IEEE. 56
4.9 Attack mitigation with pushback mechanism. ©2020 IEEE. 56

x

List of Tables

1.1 The organization of the thesis. 10

3.1 The summary of path (re)configuration strategies. ©2022 IEEE. 32

4.1 Evaluation of AOI and LMP algorithms with varying attack types. ©2020
IEEE. 57

xi

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Mission-critical networks (MCNs) are essential for the efficient and resilient operation
of critical systems, such as industrial networks, transportation systems, and emergency
services. They are required to be highly reliable, often incorporating redundancy and
failover mechanisms to ensure availability. Besides, these networks have strict quality
of service (QoS) criteria, e.g., low and bounded latency. However, ensuring a high
degree of reliability while adhering to these strict QoS requirements is a challenging
task when using traditional networking technologies. This is where IEEE 802.1 time-
sensitive networking (TSN) comes in as a solution. It offers deterministic, low-latency
communication over Ethernet networks and is standardized by the IEEE task group
[IEE17a]. TSN ensures the prioritization and dependable delivery of critical traffic
while allowing different traffic classes with different QoS requirements to coexist on the
same network. Thus, it supports and enables efficient and resilient operation of critical
infrastructures.

TSN has a wide variety of application scenarios that are defined by a set of IEEE
standards e.g., industrial automation. The convergence of information technology (IT)
and operations technology (OT) in automotive and industrial automation environments
requires effective network management solutions that can facilitate real-time communi-
cation and guarantee optimal levels of QoS for different criticality traffic. TSN closes
this gap by presenting different network management and configuration mechanisms.
Figure 1.1 shows a typical TSN use case, namely an in-factory network. Each machine
or device in the field layer is connected to TSN switches1 via Ethernet, allowing them
to communicate in real-time. For instance, the temperature sensor must measure the
temperature regularly to ensure the safe operation of devices like motors that have to
operate within a specific temperature range. If the temperature exceeds the safety limit,
this data must be sent to the control system in real-time, as it might be needed to slow
down or shut down the motor. Large communication delays result in motor damage,
leading to production delays and safety hazards. TSN can ensure that critical data is
prioritized and delivered with low latency and high reliability. On higher levels, the TSN

1Throughout this thesis, the term flow is used interchangeably with stream, and switch is used
interchangeably with bridge in the context of TSN terminology, as elaborated in Section 2.1.

1

Figure 1.1: Industrial time-sensitive network scenario.

controller is logically centralized; i.e., it has a global view in topology and traffic, which
is required to realize network control logic such as routing and flow scheduling. At the
application layer, several applications run on top of the controller and can implement
more specific functionality, e.g., traffic monitoring, QoS management.

While TSN is evolving towards new use cases with increasing dynamicity and hetero-
geneity in network elements and in the traffic, and complexity of configuration, ensuring
the network’s resilience against attacks to maintain the desired QoS becomes harder.
This poses the following major problems:

Problem 1: Traditional time-sensitive networks typically rely on a prior fixed con-
figuration scheme that requires the active participation of TSN-aware static network
entities. In such networks, paths for data flows are usually established at the startup
time of an application and remain as it is during the lifetime of the flow. This limits
the adaptability of the network in the case of changing flow resource requirements. Fur-
thermore, nowadays, mobile assets are increasingly deployed in industrial environments.
For instance, mobile robots can perform tasks like transporting goods as automated
guided vehicles (AGV) or assisting in manufacturing processes [Gin21]. This mobility
leads to even more dynamics; devices often change their place thus, flows are added or
removed from the network more frequently, resulting in fragmented link bandwidths.
This requires more dynamic traffic management solutions and increases the complexity
as this brings updates of many configuration parameters.

Problem 2: In the future, it is expected that time-sensitive networks will serve as a
backbone of modern communication systems require strict resiliency measures. Refer-

2

ring to the example scenario illustrated in Figure 1.1, an external attacker gaining access
can launch a cyber attack like denial of service (DoS), specifically targeting the TSN
infrastructure. By flooding the network with an overwhelming traffic volume, the at-
tacker disrupts the precise synchronization of machines and robots or even shuts down
the entire production line. Moreover, latency, a unique concern in this environment, is
critical for performance and security. Unexpected delays or interruptions can breach
strict QoS requirements and disrupt production. However, security was not the primary
focus during Ethernet network design and also of TSN. Therefore, addressing threats
specific to TSN mechanisms is essential for ensuring the resilient operation of these
networks and maintaining continuous and predictable network performance.

Hence, the increasing complexity arising from diverse QoS demands and increasing
dynamicity requires additional network management strategies. While these strategies
should facilitate the network configuration and orchestration, they must also ensure
resilience and meet QoS criteria.

1.2 Research Questions

TSN is a promising solution for future MCNs, but it introduces significant configuration
and resilience issues. In the remainder of this section, we2 first introduce research ques-
tions regarding the self-adaptive and efficient configuration of time-sensitive networks
and then research questions regarding the resilience against denial of service attacks
within these networks.

Although several TSN standards have been established, configuring these networks is
still challenging. This is mainly because of the significant number of configuration
parameters that are jointly configured by TSN-aware end hosts and TSN switches.
Moreover, the dynamic nature of these networks, such as changes in traffic patterns,
needed to be signaled to the network to adapt to such changing conditions. Thus, the
main research question that emerges from this context is as follows:

RQ1: How to design an autonomous configuration solution for seam-

less TSN resource reservation without requiring end hosts to be

TSN-aware, while ensuring the desired QoS and reducing the configu-

ration overhead?

Following the self-configuration of time-sensitive networks, it has become significant
to efficiently utilize the network resources, such as bandwidth, as the number of flows
increases during the network lifetime. In standard TSN deployments, routing paths
are typically configured at the startup time of an application and remain fixed. This

2For better readability, the author refers to herself as we in the remainder of the thesis. Her main
contributions are explicitly stated in case of collaboration with other authors.

3

can lead to suboptimal assignments of flows as they cannot adapt to changing network
conditions, and some links/switches may be underutilized while others may become
overloaded. As a result, a new research question arises as follows:

RQ2: How to dynamically reconfigure time-sensitive networks at

runtime to efficiently use network resources considering reconfigu-

ration overhead? Is it feasible to do this in real-time?

To configure time-sensitive networks while considering both limited network resources
and individual end-to-end latency requirements, optimization problems can be employed
to determine the optimal routing paths. The optimization problems seek solutions for
the given objective by ensuring all constraints are met. However, varying QoS require-
ments of internet of things (IoT) applications and larger network topologies increase
the computational complexity exponentially. Thus, machine learning (ML) driven re-
source reservation strategies became promising alternatives for optimization problems.
Accordingly, the main research question that emerges from this context is as follows:

RQ3: How can ML-driven strategies be leveraged to achieve effi-

cient resource reservations in TSN? How close can these strategies

approximate optimal performance?

These research questions towards a self-adaptive and efficient configuration of time-
sensitive networks consider dynamic environmental conditions (RQ1), more efficient re-
source distribution through reconfiguration (RQ2), and low-cost, scalable resource allo-
cations with the help of ML (RQ3).

In addition to the management and organization of TSN, the resilient operation of
these networks is essential. Any malicious attempts in such systems can have significant
consequences, leading to serious financial, operational, and safety risks. The need for
reliable measures becomes increasingly apparent as more industries adopt TSN technolo-
gies. Therefore, in the subsequent sections, we will establish several research questions
related to resilience against DoSattacks, specifically in time-sensitive networks.

Time-sensitive networks are precisely calibrated to ensure that delays in the network are
deterministic. However, this predictability can make TSN susceptible to malicious ele-
ments, such as compromised talkers or switches that behave in an entirely unanticipated
manner. Thus, detecting such behaviors and mitigating these malicious attempts im-
mediately is important for legitimate time-sensitive traffic. Here, the following research
question arises:

RQ4: What types of admission control strategies could effectively

enforce flow reservations, and what would be the associated deploy-

ment costs?

4

There are different TSN mechanisms for guaranteeing bounded latency depending on
the application and/or traffic requirements. Given that these mechanisms exhibit de-
terministic behavior, attackers can capture traffic characteristics. They can use this
information to target the network by specific DoS attacks to degrade the QoS of TSN.
Therefore, the main research question here is:

RQ5: What information can an attacker gain from passive monitoring

of TSN traffic, and is this information exploited for attacking

time-sensitive networks? Moreover, what countermeasures can be

used to protect the network against such malicious activities?

Not only does the violation of resource reservation limits lead to a degradation of QoS,
but collaborative attackers can also instigate a DoS. This can be even more challenging
to detect since the end hosts adhere to their limits, making them appear completely
legitimate. Thus, detecting such behaviors and mitigating these malicious attempts
immediately is important for TSN to maintain QoS. Here, the following research question
arises:

RQ6: How can malicious and legitimate traffic distinguished, and how

this be leveraged to eliminate or minimize the impact of attacks in

near-real-time?

These research questions address the resilient operation of time-sensitive networks via
dynamic admission control strategies (RQ4), impacts and countermeasures of calibrated
attacks (RQ5), as well as dynamic DoS attack detection and mitigation mechanisms
(RQ6).

1.3 Contributions

This section answers the stated research questions regarding flexible and resilient time-
sensitive networks and summarizes the contributions of this thesis. The contributions
are grouped according to the two primary objectives of this thesis: (i) ensuring self-
adaptive and efficient configuration and (ii) ensuring resilience against DoS attacks for
time-sensitive networks. The following sections highlight our key findings, represented
in Figure 1.2. Here, we presume one generic TSN deployment is based on a central
network configuration. Then, we illustrate our developed mechanisms per contribution
and their possible placement in the network accordingly.

5

Figure 1.2: The main contributions of this thesis using a centralized configuration ar-
chitecture as the foundation for TSN.

6

Self-Adaptive and Efficient Configuration of Time Sensitive Net-
works

This section overviews our contributions regarding the self-adaptive and efficient con-
figuration of time-sensitive networks. Within this context, we will present (i) a dynamic
self-configuration framework for removing the end-host-related dependencies, (ii) re-
configuration strategies for better resource utilization, and (iii) machine learning-based
intelligent configuration for TSN.

C1: Dynamic Self-configuration of Time Sensitive Networks
This contribution handles the dynamic self-configuration of time-sensitive communica-
tion. Here, we benefit from the software-defined networking (SDN) concept that sepa-
rates the control plane from the data plane, allowing centralized software to dynamically
manage and configure network resources, enhancing flexibility and programmability. We
propose a self-configuration framework for TSN in [SEF21] that follows the plug-and-
play nature of Ethernet networks and can help to address RQ1. The framework removes
the end-host-related dependencies of TSN. Flows are initially placed on default paths to
extract traffic characteristics before migrating them to better or even optimal paths. To
obtain the traffic characteristics, we monitor incoming network traffic at edge switches,
and we use these characteristics to move flows to optimal paths while maintaining hard
real-time guarantees. For that, we formulated an optimization problem. Our solution
can automatically extract traffic resource requirements and is completely transparent
to the end hosts.

C2: Reconfiguration Strategies for Time Sensitive Networks
This contribution addresses the challenge of dynamically reconfiguring the path of time-
sensitive flows while adhering to strict latency constraints. To address research question
RQ2, in [SEF22], we propose flow placement heuristics that add distinct constraints
to the optimization problem presented in our previous work [SEF21]. Additionally, we
leverage concepts from SDN, such as global network view in near-real-time, to gather and
integrate application requirements into the network resource configuration process. Our
heuristics offer reconfiguration solutions for different environments, and we assert that
by considering the reconfiguration overhead and the characteristics of the environment,
an appropriate reconfiguration strategy can be chosen.

C3: Machine-Learning-based Intelligent Configuration of Time Sensitive Networks
This contribution dynamically handles the resource reservation for time-sensitive net-
works. For that, we propose an approach based on reinforcement learning (RL) that
interacts with the network environment and learns the optimal resource allocations, e.g.,
routing paths [SF22]. With this, we can address research question RQ3. The objective, a
reward function in the RL approach, is thoughtfully designed to ensure that individual

7

flow deadlines are met. A straightforward solution to this resource reservation prob-
lem is formulating a mixed integer linear programming (MILP), known to be NP-hard
and thus computationally complex. Thus, our proposed RL-based approach stands as
a low-cost alternative solution.

Resilience against Denial of Service Attacks for Time Sensitive Net-
works

This section overviews our contributions regarding the resilient operation of time-sensitive
networks, which ensures the transmission of time-sensitive data within strict time con-
straints, preventing potential disruptions that could harm critical operations. Accord-
ingly, we will present (i) network admission control strategies specifically designed for
TSN, (ii) calibrated attacks to TSN frame preemption mechanism and countermea-
sures, and (iii) dynamic and scalable DoS attack detection and collaborative filtering
approaches.

C4: Admission Control Strategies for Time Sensitive Networks
This contribution handles the vulnerabilities of the standard resource reservation mech-
anism of the TSN, which is susceptible to traffic overload and DoS attacks. To address
the research question RQ4, we propose a programming protocol-independent packet pro-
cessors (P4)-based dynamic in-network attack filtering solution in [SKF23], to defend
the network against compromised or faulty network elements such as talkers or switches
directly on the data plane.

C5: Calibrated Attacks against TSN Frame Preemption and Countermeasures
This contribution focuses on calibrated attacks against TSN frame preemption. To ad-
dress the research question RQ5, various potential attack scenarios are described, and
their potential impacts on network performance are evaluated in [SF23]. Furthermore,
a methodology is presented to demonstrate the feasibility of these scenarios by utiliz-
ing passive observation of TSN traffic by the attackers and degrading the QoS in the
network. Lastly, we also discuss a few countermeasures to avoid these attacks.

C6: Dynamic and Scalable DoS Attack Detection and Filtering
This contribution focuses on handling more larger-scale collaborative attacks. To ad-
dress the research question RQ6, we employ attribute-oriented induction (AOI)-based
attack signature extraction strategy for deriving filtering rules with up-to-date data sets
containing different types of DoS attacks. Then, we collaboratively filter attacks close
to its source with the help of SDN and network function virtualization (NFV) concepts
in [SF20]. Even though TSN is not used as an environment in this study, these filtering
strategies can be directly coupled with time-sensitive networks to mitigate DoS attacks.

8

Figure 1.3: An overview of developed services and used enabler technologies regarding
individual thesis contributions.

A comprehensive representation of our contributions regarding various technologies and
methods to provide different services for varied use cases is presented in Figure 1.3. We
use different technologies that enable us to implement different methods, e.g., reinforce-
ment learning and heuristics. These methods provide different network services, such
as DDoS detection and mitigation. The figure also includes typical use cases that could
benefit significantly from the provided services within the context of this thesis.

Further Contributions

In addition to the contributions mentioned above, we developed further solutions for
designing next-generation networks. In our previous work, [WBC+20], we introduce
a virtualized testbed that can be seamlessly integrated with actual automation hard-
ware. This approach eliminates the requirement for costly dedicated hardware setups
for security testing and enables the evaluation of security strategies with greater flexi-
bility. In [SEF22], we summarize key insights and outline potential research directions
for enhancing the reconfigurability of time-sensitive flows.

Furthermore, we highlight the importance of TSN protocols for mission-critical systems
and the need for advanced methods, particularly artificial intelligence (AI)/ML models,
to design and maintain time-sensitive networks within these systems. In [ESM+23], we
discuss and emphasize the necessity for TSN datasets to facilitate research on AI/ML
based techniques for TSN systems and explore alternative designs to create realistic
datasets. Moreover, in [SF23], we propose to use a reinforcement learning-based adap-
tive scheduling approach to utilize network resources more efficiently and increase the

9

Chapter Section Contribution Publications
Chapter 1: Introduction
Chapter 2: Background

Chapter 3: Self-Adaptive and Efficient
Configuration of Time Sensitive Networks

Section 3.1 C1 [SEF21]
Section 3.2 C2 [SEF22]
Section 3.3 C3 [SF22]

Chapter 4: Resilience against Denial of Service
Attacks for Time Sensitive Networks

Section 4.1 C4 [SF23]
Section 4.2 C5 [SKF23]
Section 4.3 C6 [SF20]

Chapter 5: Conclusion

Table 1.1: The organization of the thesis.

schedulability of the time-sensitive flows. We also present and discuss centralized and
distributed configuration options.

Furthermore, we have also explored the application of network programmability con-
cepts, such as SDN and P4, to enhance the security of next-generation networks.
In [MSEF21], we investigate how programmable network components can be leveraged
to detect and prevent router spoofing attacks at the data plane level, thereby safeguard-
ing IPv6 networks. Furthermore, in [SEB+22], we analyze the vulnerabilities in the SDN
data plane and propose a trust-based framework to identify compromised nodes.

We have omitted the specific details of those contributions to maintain a coherent sto-
ryline focused on the main contributions of this thesis, which primarily pertain to the
self-adaptive and efficient configuration and resilient operation of time-sensitive net-
works.

1.4 Thesis Organization

Throughout the rest of this cumulative thesis, we present our publications in the realm
of dynamic self-(re)configuration and rersilient operation of time-sensitive networks.
Each publication will be presented under the relevant section, aligned with its design
goals, and cover the core concepts, key findings, and main takeaways. Since this is a
cumulative thesis, we have rephrased and condensed some of the original content. All
the original publications can be found in the appendices. The overall organization of
the thesis is shown in Table 1.1.

In Chapter 2, we will introduce the foundational concepts of time-sensitive networks.
We will also provide a brief overview of the TSN protocols relevant to this thesis.

In Chapter 3, we present our contributions to the self-adaptive and efficient configu-
ration of TSN. Specifically, Section 3.1 provides an in-depth explanation of the TSN

10

self-configuration framework (C1). In Section 3.2, we present methods for a dynamic re-
configuration of time-sensitive networks (C2). Lastly, Section 3.3 introduces a ML-based
configuration strategy for larger TSN topologies (C3).

Chapter 4 summarizes the contributions to the resilience of time-sensitive networks
against DoS attacks. In Section 4.1, we present admission control strategies to maintain
strict QoS guarantees in the case of compromised or faulty network entities exist (C4).
Section 4.2 summarizes calibrated attacks against TSN frame preemption mechanisms
and discusses several countermeasures with respect to C5. In Section 4.3, we present a
strategy to differentiate DoS traffic and legitimate traffic; then we present both small
and large-scale collaborative attack filtering strategies, as related to C6.

Finally, Chapter 5 summarizes all contributions and presents further research directions.

1.5 List of Publications

Thesis Contributions

[SEF21] Sertbaş Bülbül, Nurefşan, D. Ergenç, and M. Fischer. SDN-based Self-
Configuration for Time-Sensitive IoT Networks. International Conference on
Local Computer Networks (LCN), 2021.

[SEF22] Sertbaş Bülbül, Nurefşan, D. Ergenç, and M. Fischer. Towards SDN-based
Dynamic Path Reconfiguration for Time-sensitive Networking. IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2022.

[SF20] Sertbaş Bülbül, Nurefşan and M. Fischer. SDN/NFV-based DDoS Mitigation
via Pushback. ICC 2020 - 2020 IEEE International Conference on Commu-
nications (ICC), 2020.

[SF22] Sertbaş Bülbül, Nurefşan and M. Fischer. Reinforcement Learning assisted
Routing for Time Sensitive Networks. 2022 IEEE Global Communications
Conference (GLOBECOM), 2022.

[SF23] Sertbaş Bülbül, Nurefşan and M. Fischer. Preemptive DoS attacks on Time
Sensitive Networks. (to appear at) 2023 IEEE Global Communications Con-
ference (GLOBECOM), 2023.

[SKF23] Sertbaş Bülbül, Nurefşan, J.J. Krüger, and M. Fischer. TSN Gatekeeper:
Enforcing stream reservations via P4-based in-network filtering. In 2023 IFIP
Networking Conference (IFIP Networking), 2023.

11

Further Contributions

[ESM+23] D. Ergenç, Sertbaş Bülbül, Nurefşan, L. Maile, A. Arestova, and M. Fischer.
Towards Synthesizing Datasets for IEEE 802.1 Time-sensitive Networking.
2nd International Workshop on Machine Learning and Networking (Ma-
LeNe), 2023.

[MSEF21] M. Mönnich, Sertbaş Bülbül, Nurefşan, D. Ergenç, and M. Fischer. Miti-
gation of IPv6 Router Spoofing Attacks with P4. ACM Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS), EuroP4
Workshop, 2021.

[SEB+22] Sertbaş Bülbül, Nurefşan, O. Ermis, Ş Bahtiyar, M. U. Çağlayan, and
F. Alagöz. Trust Enhanced Security for Routing in SDN. 2022 1st In-
ternational Conference on 6G Networking (6GNet), 2022.

[SEF22] Sertbaş Bülbül, Nurefşan, D. Ergenç, and M. Fischer. Evaluating Dynamic
Path Reconfiguration for Time-sensitive Networks. Würzburg Workshop on
Next-Generation Communication Networks (WueWoWas’22), 2022.

[SF23] Sertbaş Bülbül, Nurefşan and M. Fischer. Adapting to the Flow: Reinforce-
ment Learning for Dynamic Priority Assignment in TSN. 2nd International
Workshop on Machine Learning and Networking (MaLeNe), 2023.

[WBC+20] F. Wilkens, S. Botzler, J. Curts, S. Dinter, M. Hamann, V. Hubbe, A. Kor-
nivetc, Sertbaş, Nurefşan, and M. Fischer. Towards Flexible Security Test-
ing of OT Devices. 2020.

12

Chapter 2

Background

In this chapter, we provide an overview of IEEE 802.1 time-sensitive networking, in-
cluding key terminology (Section 2.1) and a concise description of relevant standards
(Section 2.2).

2.1 Basics of Time Sensitive Networks

Understanding the fundamental terminology associated with TSN is essential for gaining
insight into the key concepts and mechanisms that enable deterministic, low-latency
communication over Ethernet networks.

First, the logical flow of time-sensitive data within the network, from one end-host to
another, is called stream. Each stream has specific QoS requirements and is assigned a
unique identifier to differentiate it from other streams. TSN categorizes different types
of network traffic into traffic classes based on their priority and QoS requirements such
as data delivery guarantee, tolerance to jitter, and packet loss. Thus, each traffic class
is treated accordingly during transmission to meet the desired performance goals.

From the architectural perspective, main TSN components are end hosts and bridges.
The end host called talker is a network device or application that generates and transmits
time-sensitive data or streams. Talkers are responsible for initiating the transmission of
time-critical information into the network. They typically adhere to specific timing re-
quirements and utilize TSN mechanisms to ensure the timely delivery of their data. The
end host called listener is also a network device or application that receives and con-
sumes time-sensitive data or streams. Listeners rely on the accurate and timely arrival
of data from talkers to perform their intended operations or provide the desired ser-
vices. Listeners employ TSN mechanisms to synchronize their reception and processing
of time-sensitive information.

Lastly, bridges in TSN refers to a network device that connects multiple TSN domains
or segments. It serves as an intermediary between different time-sensitive networks,
facilitating the exchange of time-sensitive data. TSN bridges are equipped with TSN-
aware capabilities and employ TSN mechanisms, such as scheduling and prioritization,
to ensure seamless and deterministic forwarding of time-sensitive traffic across network
segments.

13

TSN talkers, listeners, and bridges collectively contribute to effectively implementing
and operating time-sensitive communication within time-sensitive networks. Talkers
generate and transmit time-sensitive data, listeners receive and consume that data, and
bridges enable the interconnection and synchronization of time-sensitive traffic across
different TSN domains.

In the subsequent section, we provide a concise overview of the classification of some
widely adopted TSN standards within the scope of this thesis.

2.2 IEEE Time Sensitive Networking Standards

TSN is not addressed in a single standard; its collection of capabilities is governed and
managed by separate IEEE standards and can be classified in four as seen in Figure
2.1. The time synchronization standards describe mechanisms to provide a network-
wide precision clock reference. The scheduling standards specify different mechanisms
to limit network delays. At the same time, policing and redundancy standards keep non-
time-sensitive traffic from messing things up and describe redundancy for the link/node
failures. Lastly, the control and orchestration standards describe how to configure and
maintain these TSN mechanisms.

All standards can be combined as required depending on the requirements of the working
environment, e.g., traffic types. While TSN encompasses a broad family of standards,

Figure 2.1: IEEE 802.1Q TSN family of standards included in the scope of this thesis
(*).

14

this thesis specifically concentrates on the core standards associated with the configu-
ration and security of time-sensitive networks.

(a) Fully distributed

(b) Centralized network/distributed user (c) Fully centralized

Figure 2.2: TSN configuration models.

IEEE 802.1Qat Stream Reservation Protocol (SRP) and IEEE 802.1Qcc

Enhancements to SRP

The IEEE task group has presented the SRP to describe the resource reservation for
specific traffic streams traversing a bridged local area network and thus provide admis-
sion control to the time-sensitive network [IEE10]. With SRP, end hosts declare their
traffic specification that characterizes the bandwidth a stream can consume to the net-
work. This declaration contains fields such as maximum frame size, stream identifier,
max frame interval, and priority. Then, the network reserves the resources to guarantee
the transmission and reception of data streams across a network with the requested
QoS. Furthermore, SRP also describes other mechanisms for the dynamic maintenance

15

of those resources in case of new stream registration and de-registration to establish
end-to-end stream paths. Therefore, it is one of the essential TSN standards.

To provide specifications for the configuration of TSN features in a SRP, including the
SRP configuration, the IEEE TSN task group also presented IEEE 802.1Qcc Enhance-
ments to SRP standard [IEE18]. The propagation of the configuration information
within the network depends on the used configuration scheme. The standard proposes
three different configuration schemes (i) a fully distributed model, (ii) a centralized net-
work/distributed user model, and (iii) a fully centralized model, as shown respectively
in Figure 2.2.

In the fully distributed model, as shown in Figure 2.2a, the end hosts (i.e., talkers and
listeners) communicate the user requirements directly over the TSN user/network pro-
tocol, and these requirements propagate along the topology. The network is configured
without a centralized entity; thus, each bridge configures itself with limited local knowl-
edge. In some cases, complete knowledge of the network might be necessary to obtain
best configuration. Thus, in the centralized network/distributed user model, as shown
in Figure 2.2b, end hosts still directly talk with the network, e.g., bridge. But the con-
figuration information is directed to/from a centralized network configuration (CNC)
entity, and then the resource reservation is made using a remote network management
protocol so that the talker/listener information is communicated directly between the
edge bridge and the CNC rather than propagating the information to the interior of the
network.

Moreover, some TSN use cases, such as industrial control applications, may require
detailed knowledge of each end host’s application software/hardware. To do so, the
fully centralized model is as shown in Figure 2.2c, also has a centralized user configu-
ration (CUC) entity that discovers end hosts, retrieves end host capabilities and user
requirements, and configures TSN features in end hosts. Here, the user-to-user protocol
between the CUC and end hots is left out of the scope of this standard.

IEEE 802.1Qca Path Control and Reservation (PCR)

The path control and reservation (PCR) protocol specifies extensions to the interme-
diate station to intermediate station (IS-IS) protocol for configuring multiple paths in
bridged networks [IEE16b]. It utilizes shortest path bridging (SPB) with a hybrid mode
of SDN, where the IS-IS protocol handles fundamental operations, while an SDN con-
troller manages explicit paths through path computation element (PCE)s located on
dedicated server nodes. By integrating control protocols such as equal cost tree (ECT)
and multiple spanning tree instance (MSTI), IEEE 802.1Qca facilitates the manage-
ment of multiple topologies, a configuration of explicit forwarding paths for each stream,
bandwidth reservation, data protection, redundancy, and the distribution of flow syn-
chronization and control messages. Thus, the IEEE 802.1Qcc can be used in conjunction
with the IEEE 802.1Qca and TSN traffic shapers.

16

IEEE 802.1Qbv Enhancements to Traffic Scheduling:
Time-Aware Shaper (TAS)

The IEEE 802.1Qbv time-aware shaper (TAS) is one of the core TSN mechanism that is
designed especially to meet the hard deadlines of highly time-critical applications such as
industrial control applications [IEE16d]. To ensure high-priority traffic has guaranteed
access to a medium at a specific instant, TAS uses a window-based transmission similar
to time division multiple access (TDMA) and time-aware transmission gates.

The architectural model of an 802.1Qbv compliant switch is shown in Figure 2.3. Each
port in the switch has eight queues, a transmission gate for each queue, and a pro-
grammable gate control list (GCL). An incoming frame is processed by the switch and
placed into the related queue depending on the traffic class. For instance, the first queue,
Q7, is responsible for the mission-critical traffic, while the last queue, Q0, is responsible
for the best-effort traffic. A traffic class can access the transmission medium only if the
transmission gate of the queue is set to open.

The programmable GCL triggers the opening and closing gate events and operates
according to the configured transmission schedule. For the given scenario in the figure,
the GCL is configured at the T1 window to allow only gate 7 to be open, and the rest
is closed until the next transmission window. Lastly, a transmission selection algorithm
decides which frames should be forwarded first, as several streams may exist in the same

Figure 2.3: IEEE 802.1Qbv time aware shaper mechanism.

17

traffic class. The time-sensitive network task group does not define a standard method
to generate transmission schedules, so it is still an ongoing research area.

IEEE 802.1Qci Per-Stream Filtering and Policing (PSFP)

The IEEE 802.1Qci per stream filtering and policing (PSFP) is the only security stan-
dard in the TSN family that enforces some regulations to ensure conformance with the
traffic contract of the streams [IEE17b]. It works at the switch’s ingress to protect
the outgoing queues against faulty and/or malicious endpoints and switches. This kind
of stream blocking is essential for TSN as it has to meet and guarantee certain traf-
fic requirements, such as bounded end-to-end latency and zero jitter. For instance, in
an autonomous driving scenario where a multitude of sensors need a timely delivery,
erroneous input may cause congestion and violation of strict QoS requirements.

Detecting and limiting the faulty stream(s) is necessary to protect the transmission of
other non-faulty streams on egress and maintain the promised QoS. This functional-
ity has been conceptually described in the related standard, shown in Figure 2.4, and
contains three layers. Initially, the stream filters decide which gates and meters handle
frames of a specific stream id. Then, depending on the related stream filter configura-
tion, the frame is sent to the related time-based gate that ensures timely traffic delivery
by filtering based on the configured schedule. Thus, it supports applications where the
transmission and reception of frames across the network are coordinated. Finally, as
a part of the stream filter configuration, the frame is sent to the related flow meter,
which enables further fine-grained filtering, such as bandwidth enforcement or frame
length-based policing.

Thus, these three layers enable the deployment of different filtering policies and protect
against bandwidth violation, malfunctioning, attacks, etc. After the ingress filtering, if
that frame is not dropped, it is sent to the shaping and queuing module depending on
its traffic priority and finally forwarded to the next hop from the related outport. Here,
the standard outlines the overall architecture, while the specific logic employed within
these layers remains an open research area.

Figure 2.4: TSN switch with the IEEE 802.1Qci ingress filtering.

18

IEEE 802.3br Interspersing Express Traffic and 802.1Qbu Frame Pre-
emption

The IEEE 802.3br interrupting [IEE16a] and the IEEE 802.1Qbu interspersing [IEE16c]
express traffic are TSN mechanisms designed to enhance network performance by al-
leviating congestion in critical sections of the network. Traffic classes are assigned to
either express, non-preemptable, or preemptable. It enables high-priority express traffic
to interrupt the transmission of lower-priority preemptable traffic, keeping the shared
portion of the interrupted traffic. This allows for a smoother traffic flow on a network
and lowers the chance of missing/dropping packets of the critical traffic assigned to an
express.

The effect of the frame preemption on the latency of different traffic classes is shown
in Figure 2.5. In a standard Ethernet, when high-priority traffic arrives while the low-
priority traffic is under the transmission, it has to wait until the current frame trans-
mission is completed, as shown in Figure 2.5a. This may introduce a major delay, as in
the worst case, a non-time-critical frame might block a time-critical high-priority frame.
However, with the preemption, as shown in Figure 2.5b, high-priority express traffic
can interrupt the ongoing transmission of preemptable traffic with a minimal overhead,
highlighted with gray, and start transmission. After this transmission, low priority pre-
empted frame can continue to be transmitted. The benefit of this mechanism on the
frame transmission latency, the difference between τa and τb, is considerable, especially
for the isochronous traffic class, which requires transmission without interference in a
few microseconds.

Figure 2.5: Frame preemption effect on the latency: (a) Non-preemptive frame trans-
mission (b) Preemptive frame transmission.

19

Chapter 3

Self-Adaptive and Efficient
Configuration of Time Sensitive
Networks

For many years, networks have mostly remained static. Administrators had to plan and
configure network components, such as routers, switches, and firewalls. This process
was time-consuming and required in-depth expertise. These manual interventions lead
to potential downtimes and inefficiencies. In a vision of future networking scenarios, the
ability of a network to autonomously adapt its configuration, encompassing parameters
and settings, in response to evolving conditions or requirements becomes increasingly
significant. Network controllers/administrators may need to deploy specialized net-
work elements to monitor and analyze network traffic to derive performance metrics
continuously. Leveraging this information, the network can intelligently fine-tune its
configuration to bolster performance, enhance reliability, and seamlessly accommodate
the demands of evolving networks.

In the context of TSN, these adjustments can include dynamically allocating network
resources, optimizing routing paths based on QoS requirements, and modifying the pa-
rameters of network protocols to adapt to changing traffic patterns or the addition/re-
moval of network components. Furthermore, in these networks, strict timing constraints
need to be kept.

In this chapter, we summarize our contributions on the self-adaptive and efficient con-
figuration of TSN as follows:

• Section 3.1 presents a SDN-based self-configuration framework for TSN that analyzes
the network traffic at the edge of the network to automate the resource reserva-
tion process [SEF21]. This contribution addresses the autonomous configuration of
time-sensitive networks to make TSN transparent by removing end-host-related de-
pendencies and answering RQ1.

• Section 3.2 presents different path (re)configuration strategies for improving the re-
source utilization of time-sensitive networks to avoid sub-optimal flow assignment
[SEF22]. This contribution addresses the dynamic configuration of routing paths in
TSN at runtime, considering the reconfiguration overhead and answering RQ2.

20

• Section 3.3 presents a RL-based approach that learns the good routes to send time-
sensitive flows depending on their strict QoS requirements [SF23]. The solutions found
by this approach are not necessarily optimal, as finding best routes requires solving
an optimization problem. This contribution addresses an intelligent configuration of
TSN via a ML-driven algorithm and answers RQ3.

In the subsequent sections, we outline our contributions regarding the self-adaptive and
efficient configuration of TSN, referencing Section 2.2, to bridge the existing gap in the
literature. Each section presents (i) a set of fine-grained research questions, (ii) our
related publications, and (iii) the summary of contributions and the main takeaways.
Furthermore, we emphasize how our work leverages and contributes to relevant TSN
standards.

3.1 Dynamic Self-configuration of Time Sensitive Networks

This section introduces a SDN-based self-configuration framework for the TSN to answer
how to efficiently make resource reservations while ensuring QoS and reducing end host
complexity as formulated in RQ1.

Currently used resource reservation procedures in the literature rely on the active partic-
ipation of end hosts to communicate their traffic requirements before the actual commu-
nication. However, for highly heterogeneous environments such as industrial networks,
end hosts may not be aware of TSN but still require a certain QoS to be satisfied by
the network. Also, the dynamic maintenance of these resources, e.g., flow registrations,
requires further signaling and configuration efforts. Thus, configuration mechanisms
should ease this process and help to adopt existing TSN protocols for future networking
scenarios.

Existing works regarding the configuration of time-sensitive networks either configure
the network based on apriori knowledge of the network traffic or consider only specific
use cases [NDR16, ASS19]. Thus, we believe that plug-and-play self-configuration might
address these research gaps. Accordingly, the following questions arise as a refinement
of RQ1:

• RQ1.1: How to use self-configuration that presumes no active participation of end
hosts, and how does it affect the time-sensitive traffic delivery performance?

Moreover, the robustness of the self-configuration framework and its adaptiveness on
the runtime is another research direction not addressed in the literature. Hence, the
following additional questions arise:

• RQ1.2: How accurately can we extract traffic characteristics at the network’s edge
and of which resource requirements?

21

These research questions motivated the following publication. In [SEF21], we introduce
a self-configuration framework that automates the flow reservation without the need to
involve end hosts and compare it with the standard SRP of TSN (See Section 2.2). Our
simulation results indicate that although the proposed approach increases the average
delay of critical frames by less than 1%, a certain level of real-time guarantee can be
provided without prior knowledge of the flows 1:

Nurefşan Sertbaş Bülbül, D. Ergenç, M. Fischer. SDN-based Self-

Configuration for Time-Sensitive IoT Networks. IEEE 46th Conference

on Local Computer Networks (LCN), 2021.

The remainder of this section presents the details of our SDN-based self-configuration
framework and the respective publication [SEF21] is attached in Appendix A.

L Methodology

Our self-configuration framework, SC-TSN, eliminates the need for end hosts to declare
any traffic requirements before actual communication. This enables more heterogeneous
environments, such as industrial networks, where any host, even those not TSN-aware,
can join the network.

To provide this functionality, we empower the switches at the edge of a TSN so that they
monitor the traffic initiated by the talker and try to extract traffic patterns. During this
learning time, all frames belonging to this flow are routed over a default path of the link-
weight-based shortest paths. After several observed packets, the edge switch obtains the
traffic characteristics of the talker, whether it follows a time-triggered (TT) or best-effort
(BE) pattern. The edge switch sends this pattern to the centralized SDN controller,
CNC. With the knowledge of the flow’s resource requirements, the CNC calculates the
optimal path and configures the data plane accordingly. Once this configuration is in
place, frames belonging to this flow are routed over the optimized paths, ensuring the
flow’s desired QoS requirements.

The optimal path computation in our system is formulated as a MILP problem, referred
to as time sensitive optimal routing (TSOR). TSOR aims to identify the best end-to-end
paths and TAS gate lists for each switch along those paths. It considers the specific
requirements of the flow, including resource needs and QoS constraints. For instance,
the end-to-end latency should not exceed a certain value, such as the period of the flow.
While TSOR is not this thesis’s contribution, the focus is primarily on the extraction
process of traffic characteristics. For a more comprehensive understanding of TSOR in-

1For the given publication, the main contribution belongs to this thesis, including the design of
the overall self-configuration framework, its implementation, and evaluation. The second co-author
modeled and implemented TSOR with its complexity analysis. The third co-author helped improve the
paper’s quality with his valuable feedback.

22

Figure 3.1: Flowchart of the learning module at the edge switches of the time-sensitive
network.

cluding its formulation and methodology, please refer to the original publication [SEF21]
(Appendix A).

Figure 3.1 shows the flowchart of the learning module we developed for the edge switch.
The learning module is positioned at the switch’s ingress; once the module processes the
frame, it is forwarded to the relay unit, which determines the frame’s next hop. In the
learning module, the arrival time of frames for each flow is recorded, and the following
steps are employed to extract traffic characteristics:

i. It uses a frequency domain periodogram to identify the dominant periods. This
involves computing the discrete Fourier transform of the observations to analyze
the signal’s power spectral density. Then, it can determine the dominant periods
by identifying the frequencies that carry the most energy [VYC05].

ii. Relying solely on frequencies may be insufficient due to potential noise interfer-
ence. To mitigate the impact of noise, it employs the 99% confidence technique
to establish a threshold [LDH+10]. Any periods below this threshold are consid-
ered misleading and are subsequently removed. This approach helps distinguish

23

periodicity hints from noise in the Fourier transform.

By following these steps, we effectively extract traffic characteristics while mitigating
the impact of noise and false period hints generated by spectral leakage.

iii. In the final step of the period extraction process, it validates the identified peri-
odicity hints using autocorrelation. During this phase, it examines whether the
candidate period aligns with the valley of the autocorrelation function. If the
candidate period remains within the valley, it is interpreted as a false alarm and
subsequently discarded. Conversely, if the candidate period does not align with
the valley and exhibits a distinct correlation peak, it is considered a valid period.

Our learning module can further refine and validate the extracted periods by utilizing
autocorrelation, ensuring their accuracy and reliability. Then, this period is saved for
the flow, and in the remaining frame arrivals, the learning module just checks if the new
arrival still obeys the previously extracted traffic pattern.

¤ Key Results

We have comprehensively evaluated our SC-TSN framework. For that, we measured the
ratio of delayed TT frames that arrived after their deadline. This allows us to assess the
effectiveness of the self-configuration mechanism in meeting timing constraints. Further-
more, we measured the accuracy of the learning module in adapting to changing network
conditions. We also performed simulations with dynamic traffic scenarios to evaluate
the impact of flow bifurcation on the acceptance rate of flows. To provide a baseline for
comparison, we also evaluated the native SRP protocol, where talkers announce their
resource requirements and a centralized controller employs TSOR to configure the TSN
switches. By comparing the SC-TSN framework with the SRP protocol, we demonstrate
that the individual flow’s QoS constraints can still be satisfied without the involvement
of the end hosts.

We implemented the self-configuration framework using the OMNeT++ network sim-
ulator. The simulation model incorporated the self-configuration module. The TSOR

optimization was implemented separately using CPLEX and then integrated into the
simulation. While there is a cost associated with solving optimization problems using
TSOR, we have chosen to exclude it as we need to solve it for both our framework and
the competitor. Furthermore, we assume a fixed processing time for switches to simplify
the model, and we believe this to be a reasonable assumption as network elements be-
come more powerful and thus can potentially process data more quickly. More detailed
information regarding the simulation parameters and the network topologies employed
in our evaluation can be found in the original paper [SEF21](Appendix A).

To create a diverse test scenario, we simulated half of the flows as critical TT and
the other half as BE with more relaxed latency requirements. In our experiments, we

24

Figure 3.2: Self-configuration impact on the time-sensitive traffic delivery. ©2021 IEEE.

examine the impact of increasing interarrival times of BE frames generated using the
Poisson distribution that represents sporadic traffic behavior. Here, BE traffic stands
as background traffic, potentially leading to congestion and making scheduling more
challenging. Figure 3.2 shows the percentage of the delayed TT frames with a 95%
confidence interval. We observe that, across all varying BE loads, the SC-TSN framework
results in a slightly higher delayed frame ratio compared to SRP, approximately 0.25%
higher. In return, we remove a big assumption that end-hosts must initially declare
their requirements. It is important to note that this small number of latent frames
corresponds to those initially forwarded through the default path, as we anticipated.

For further results regarding the SC-TSN framework, the performance of the learning
module, and its impact on the time-sensitive traffic delivery, we kindly refer you to the
original paper [SEF21] (Appendix A).

 Discussion and Implications

Self-configuration of time-sensitive networks is a vital capability that allows them to
adapt, optimize, and maintain their performance in dynamic and demanding environ-
ments. By automating the configuration process and removing end host involvement,
we improve the efficiency of TSN.

As a crucial element of the self-configuration concept, our contribution empowers edge
switches in TSN to automatically extract flow characteristics and enable further auton-
omy in other TSN mechanisms such as TAS. Our experiments show that our proposed
self-configuration framework, SC-TSN, introduces only a slight additional delay in deliv-
ering the first few frames of a flow for making TSN completely transparent to end hosts.
The overhead is negligible, especially for long-lasting flows.

25

However, given the mission-critical nature of some systems, there may be use cases
where flows cannot tolerate any additional latency introduced by SC-TSN. In such cases,
our self-configuration framework also allows for a SRP-like hybrid configuration, where
highly critical flows can be manually configured, while SC-TSN autonomously configures
the rest of the flows. With this, we can answer RQ1.

Combining the advantages of automated self-configuration with the flexibility of man-
ual configuration for critical flows, our approach strikes a balance between ensuring
reliable communication for time-critical applications and maintaining the efficiency and
autonomy of TSN. This approach facilitates the widespread adoption of self-configuring
time-sensitive networks, further enhancing their adaptability and performance in real-
world scenarios.

3.2 Reconfiguration Strategies for Time Sensitive Networks

This section introduces different dynamic path (re)configuration strategies for TSN to
find out the feasibility of flow migrations in real-time under strict latency constraints,
as we also formulated in RQ2.

The dynamic traffic scenarios in which traffic characteristics such as period may change
during the network’s lifetime imply a change in the required network resources. This
change can manifest in two ways: a decrease or increase in the resource requirements.
If the demand’s resource requirement decreases, the CNC can adjust the resource reser-
vations accordingly without requiring any modifications to the routing. This flexibility
allows for efficient resource utilization. If the demand’s resource requirement increases,
e.g., more bandwidth due to shorter sending periods, the CNC can update the re-
source reservations accordingly. However, in such a scenario, the current placement of
flows within the network may not permit a straightforward increase in resources for the
repetitive flows. This situation may require a re-evaluation of the flow placement and
potentially an update on the routes.

We present a simple scenario in Figure 3.3 to provide a better illustration. In this
scenario, there are three flows: f1 (represented by the red straight line), f2 (represented
by the green dashed line) and f3 (represented by the blue dotted line). For simplicity,
let’s assume that all flows have a bandwidth requirement of one unit and all links in the
network have an identical capacity of two units. Initially, in Figure 3.3a, all flows can be
easily accommodated in the network as the total required bandwidth does not exceed
the capacity of the links. However, let us consider a situation where the bandwidth
requirement of f2 increases from one unit to two units due to dynamic traffic behavior.
Due to the limited link bandwidths, f2 can no longer be routed over the existing path.
To address this, there are two potential approaches:

Flow bifurcation: One option is to bifurcate the flow, as shown in Figure 3.3b. In this
case, the flow is divided (as f 1

2 and f 2
2) and sent over two different routes, each of which

26

S1

S3

S4

S2

S5

(a) Initial state.

S1

S3

S4

S2

S5

(b) With flow bifurcation.

S1

S3

S4

S2

S5

(c) With flow migration.

Figure 3.3: Dynamic flow handling scenarios.

can still satisfy the desired QoS constraints. This approach allows for the utilization of
multiple paths to handle the increased bandwidth requirement, and its feasibility within
the context of the TSN environment is explored in [ZWY+21].

Flow migration: Another possibility is to migrate f2 to another path as represented
in Figure 3.3c, which we discuss further details in the remainder of this section. By
finding an alternate path to accommodate the increased bandwidth requirement, f2 can
continue to be routed without violating the desired QoS constraints.

Flow migration enables load balancing by redistributing network traffic to alleviate con-
gestion and enhance overall performance. In case of network failures or link congestion,
it helps maintain connectivity by redirecting flows along alternative paths. A resource
utilization can deteriorate over time as flows are placed as they arrive. When flows are
not migrated, this results in sub-optimal flow assignment. Thus, (re)configuration of
some of the network resources like link bandwidth time to time would be a reasonable
solution.

Even though flow placement considering QoS is one of the most important design prob-
lems in TSN, existing literature has limited coverage regarding the incremental addition
of flows. Moreover, many relevant papers assume that routing paths are pre-determined
and do not address the aspect of a path (re)configuration [NDR17, YCW22]. Therefore,
the following questions arise in the context of RQ2:

• RQ2.1: What will be the best strategy to (re)configure the network that minimizes
(re)configuration cost while maximizing the network utilization?

27

• RQ2.2: How do reconfiguration strategies impact the timing requirements of the traf-
fic?

The research questions form the basis for examining performance aspects of the dynamic
path (re)configuration in TSN, specifically focusing on delivering time-sensitive traffic
and network utilization. Accordingly, the following publication introduces different
(re)configuration approaches and compares their performance, scalability, and as well
as their potential real-world applications 2:

Nurefşan Sertbaş Bülbül, D. Ergenç, M. Fischer. Towards SDN-based

Dynamic Path Reconfiguration for Time-sensitive Networking. IEEE/I-

FIP Network Operations and Management Symposium, 2022.

In the rest of this section, we present the details of proposed path (re)configuration
strategies. The respective publication [SEF22] is also attached in Appendix B.

L Methodology

Managing the resources in TSN is challenging, given the strict QoS constraints and
dynamic traffic nature. To ensure an efficient utilization of resources, it is necessary to
adjust the network. As discussed in Section 3.1, flow migration can be used for resource
optimization. It allows for the dynamic relocation of flows within the TSN based on the
current network conditions, such as congestion levels or changes in network topology. By
migrating flows, the network can adapt to varying demands and optimize the allocation
of resources with respect to QoS requirements.

By leveraging flow migration, time-sensitive networks can achieve several benefits. First,
it enables efficient resource utilization by dynamically reallocating flows to less congested
or more suitable paths. This reduces the risk of bottlenecks and improves overall network
performance. Second, flow migration enhances the network’s ability to react to changing
traffic patterns or the network topology, e.g., as a result of node or link failures, ensuring
adaptability and flexibility. Finally, it contributes to meeting the QoS requirements of
time-sensitive applications by optimizing resource allocation in real-time. However, it
is important to note that flow migration also introduces challenges, such as disruptions
and additional latency during the transition of a flow to a new path.

Therefore, to test the feasibility of real-time flow migration in TSN, we propose three
path (re)configuration strategies. To set a baseline for comparison, we use the original

2For the given publication, the main contribution belongs to this thesis, including the design,
implementation, and evaluation of the reconfiguration framework including the proposed heuristics.
The same time-sensitive optimal routing model, TSOR, which the second co-author modeled, has been
re-used in this study in the form of TSOR-U and TSOR-R. The third co-author helped to improve the
paper’s quality with his valuable feedback.

28

optimization problem, TSOR, which is already introduced in Section 3.1, and then present
alternative strategies.

Restricted path reconfiguration, TSOR-R: The strict time constraints of time-sensitive
environments necessitate the allocation of flows on specific paths that meet the required
QoS constraints. Once a path satisfies these requirements, it remains unchanged to
ensure consistent and reliable communication. This pre-assignment constraint is an in-
tegral part of the optimization problem introduced in Section 3.1, which we call TSOR-R,
representing the time-sensitive optimization problem with restricted configuration. In-
cluding this constraint in our optimization problem serves the purpose of maintaining a
stable configuration scheme, particularly for critical and high-priority demands. While
this constraint may reduce the flexibility of routing options, ensuring the predictable
and timely delivery of time-sensitive traffic is crucial. By keeping the previous assign-
ments fixed, TSOR-R guarantees a consistent configuration that minimizes disruptions
and fluctuations in the network. This stability is of utmost importance in time-sensitive
environments, in which even slight variations in latency can have significant conse-
quences.

Reconfiguration at every path request, TSOR-U: One strategy to maximize the num-
ber of flow embeddings using TSOR is replanning all path configurations from scratch.
This involves removing the pre-assignment constraint from TSOR, resulting in an unre-
stricted version called TSOR-U. This way, all flows in the network can be reconfigured,
including their migration to different paths and changing the gate configurations to
achieve optimal allocation, considering newly arriving flows. However, this unrestricted
approach comes with additional costs, including the delay of signaling to the controller,
computation of solutions, and possible packet loss during the migration. This addi-
tional configuration time may introduce variability and potential delays in the network,
affecting the timely delivery of time-sensitive data.

Reconfiguration at every k-th path request, TSOR-P: One approach to address this
additional path computation time is to utilize TSOR-R for embedding new flows in the
network. However, continuously using TSOR-R for each flow request may lead to sub-
optimal resource utilization, particularly when dealing with many flows. To overcome
this issue, we propose an alternative solution called TSOR-P (time-sensitive optimization
problem with periodic reconfiguration). TSOR-P involves periodically reconfiguring the
network after a certain number of flow requests, denoted as by k.

Reconfiguring the assignments periodically helps to adapt to changes in traffic patterns
and optimize the allocation of network resources. Instead of reconfiguring after every
flow request, TSOR-P waits until a sufficient number of requests have accumulated. This
strategy reduces the frequency of reconfiguration while ensuring timely adaptations to
the changing flow demands. Furthermore, the reconfiguration period in TSOR-P can

29

be enhanced by monitoring the network statistics and analyzing the number of late
packets. The imbalanced resource utilizations due to join/leave operations of flows lead
to increased late packets. In such scenarios, it may be a sensible approach to reduce the
value of k to increase the frequency of network reconfigurations.

Threshold-triggered reconfiguration, TSOR-T: A straightforward strategy that a net-
work operator can employ is to compute both TSOR-R and TSOR-U to measure how close
the resulting solutions for flow assignments are. If they differ by more than a threshold, τ
an unrestricted reconfiguration along TSOR-U is carried out. This strategy called TSOR-T

(time-sensitive optimization problem with threshold-based reconfiguration), allows for
reconfigurations based on a pre-defined threshold.

This threshold-based approach in TSOR-T provides a practical mechanism for network
operators to determine when a reconfiguration is necessary. It provides a trade-off be-
tween TSOR-U and TSOR-R, as it regularly evaluates the current configuration’s proximity
to the optimal allocation.

¤ Key Results

We evaluate our reconfiguration strategies by assessing the flow acceptance ratio and
the resulting reconfiguration overhead in a realistic simulation via OMNeT++. The
acceptance ratio refers to the proportion of flows that can be successfully embedded. A
flow cannot be embedded if no end-to-end path satisfies a particular flow’s QoS require-
ments. Consequently, the acceptance ratio serves as a measure of resource utilization
efficiency.

To evaluate the different strategies, we utilize the same simulation setup as described
in Section 3.1 and more details in our original publication [SEF22] (Appendix B). Our
simulations employ a traffic mix of TT and BE flows and use different distributions to
pick their data rates. This approach allows us to demonstrate the dynamic increase in
communication demand within a resource-constrained system. Our primary objective
in these experiments is to investigate the trade-off between the acceptance ratio and the
reconfiguration overhead while measuring the time-sensitive delivery performance of the
proposed heuristics: packet delay and loss.

Figure 3.4a (top) plots the reconfiguration overhead for the different strategies. The
reconfiguration ratio indicates the proportion of reconfigured flows to the total number
of flows. The configuration time, as depicted in Figure 3.4a (bottom), represents the
time elapsed until the reconfiguration has been completed.

TSOR-R does not reconfigure the existing flows and thus has a reconfiguration ratio of
zero. TSOR-U has the highest reconfiguration ratio since it reconfigures for each arrival of
a new flow for reconfiguration. The results of TSOR-T and TSOR-P are in between others.
The parameter selection influences their effectiveness. For the decreasing the threshold

30

TSOR-R TSOR-P TSOR-T TSOR-U
0

1

2

Re
co

nf
ig

ur
at

io
n

Ra
ti

o
0

0.44

1.58
2.13

TSOR-R TSOR-P TSOR-T TSOR-U
0

100

Co
nf

ig
ur

at
io

n
Ti

m
e

[
s]

17
63.7

137.4
189

(a) Reconfiguration overhead for TSOR

0 20 40 60 80 100 120
Num of accepted flow requests

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 D

el
ay

ed
 F

ra
m

e
Ra

te

TSOR-U
TSOR-R
TSOR-P
TSOR-T

(b) Missing deadline ratio with respect to
number of accepted flows

Figure 3.4: Performance evaluation of flow migration in time-sensitive network. ©2022
IEEE.

in TSOR-T and k values in TSOR-P would approximate the results to TSOR-U. As the
configuration time is closely linked to the number of reconfigurations, the findings align
with the reconfiguration ratio.

Furthermore, we also evaluate the time-sensitive traffic delivery performance of these
strategies, as depicted in Figure 3.4b. In this evaluation, we considered a frame delayed if
its end-to-end latency exceeded the deadline of the flow. When comparing the strategies
with the same number of accepted flows, we observe that TSOR-U exhibits the lowest
delayed frame rate, which supports our claim. However, TSOR-R had the highest delayed
frame rate, as it lacked the ability to re-evaluate the current resource distribution,
resulting in limited opportunities to select optimal paths for new flows. Both TSOR-

P and TSOR-T outperform TSOR-R and closely approach the performance of TSOR-U.
However, it is important to note that beyond a certain threshold, around 110 flows in
this particular experiment, the number of delays significantly increased in TSOR-U. This
phenomenon occurs when certain links get highly utilized, leaving limited capacity for
accommodating new flows.

More detailed analysis of different scenarios can be found in the original publication
[SEF22](Appendix B).

 Discussion and Implications

The presented TSOR strategies seem to enable a balance between reconfiguration over-
head and seem to provide good QoS at low reconfiguration overhead for various use case
scenarios. Our evaluation highlights the significance of considering the trade-offs be-
tween resource optimization and flow acceptance when choosing the most suitable TSOR
strategy. This understanding is crucial for aligning the strategy with the specific require-

31

Strategy Reconfiguration Trigger Flexibility QoS
Configuration
Overhead

TSOR-U After every flow High Medium High
TSOR-R No reconfiguration Low High Low
TSOR-P After every kth flow Medium Low Medium
TSOR-T Exceeding predefined threshold Medium Low Medium

Table 3.1: The summary of path (re)configuration strategies. ©2022 IEEE.

ments of a given network environment. Network administrators can effectively manage
resources by considering these trade-offs and ensure optimal QoS for time-sensitive traf-
fic.

Accordingly, in Table 3.1, we summarize the proposed heuristics regarding their flex-
ibility in resource use, resulting QoS, and reconfiguration overhead. A proper recon-
figuration strategy can be selected depending on the requirements of the environment.
For example, reconfiguring at every path request would be an option for utilizing all re-
sources in a highly dynamic small or medium-scale environment where flows are added
and removed over time. However, its computation overhead and cost of deployment
make this approach impractical. It would be only meaningful to do this if the current
placement is too far away from the optimal placement. Alternatively, reconfiguring at
every kth path request and reconfiguring only when the solution deviates more than a
threshold from the optimal solution seems to result in a larger number of accepted flows
at moderate configuration overhead. For that, the parameter selection plays an impor-
tant role. The selection of lower k values and reconfiguration thresholds increases the
reconfiguration frequency. Therefore, they appear promising reconfiguration solutions
for time-sensitive scenarios. In assessing the feasibility of the real-time reconfiguration
considering the reconfiguration overhead, we can answer RQ2.

3.3 Machine Learning-based Intelligent Configuration of

Time Sensitive Networks

This section introduces a RL-based routing method that determines the routing path
for diverse scenarios and addresses RQ3. It adaptively evaluates paths and considers the
flow deadline constraints to ensure effective routing decisions.

Configuring routing in TSN to maintain QoS requirements becomes challenging with
many constraints, such as scheduling-driven delays and strict flow deadlines. Tradi-
tional shortest-path routing algorithms are inadequate as they result in high latency
as a result of congestion and, thus, violation of flow deadlines. Their slow convergence
speed is also unsuitable for dynamic networks [WC92]. In contrast, researchers have uti-
lized centralized network control paradigms such as SDN integrated with optimization.

32

However, in particular problems such as joint routing and scheduling, this becomes
NP-hard and exhibits high computational complexity, particularly for large networks
[FDR18].

Here, RL-based routing could be an alternative solution to the inabilities of traditional
routing and the complexity issues in ILP-based routing approaches. This gives rise to
the following research question in addition to RQ3:

• RQ3.1: Can RL be used for flow allocations in TSN? To what extent can it approxi-
mate the optimal solution, and what are the associated trade-offs?

This research question is the foundation for utilizing reinforcement learning to accom-
modate flows in TSN considering the QoS. For the remainder of this section, we present
the details of our RL-based routing approach that we name as RL and its design choices.

Accordingly, the following publication introduces RL assisted routing approach specif-
ically designed for TSN and compares its performance with other benchmarking algo-
rithms such as shortest path and integer linear programming3:

Nurefşan Sertbaş Bülbül and M. Fischer. Reinforcement Learning

assisted Routing for Time Sensitive Networks. IEEE Global Communi-

cations Conference (GLOBECOM), 2022.

The respective publication [SF22] is also attached in Appendix C.

L Methodology

Our reinforcement learning-based routing solution, RL, can provide near-optimal solu-
tions for the time-sensitive routing problem while significantly reducing computational
complexity compared to ILP. However, one notable shortcoming of reinforcement learn-
ing is its often extended convergence time, which we do not have when solving the
optimization models. Despite the potential for extended convergence times, reinforce-
ment learning offers the advantage of adaptability and the ability to learn complex
decision-making processes, leading to robust and flexible solutions once the learning
phase is completed.

RL uses Q-learning, a popular reinforcement learning algorithm based on trial and error
learning. In Q-learning, an agent interacts with states and takes actions to maximize
cumulative rewards. The Q-learning algorithm provides a foundation for training in-
telligent agents to make sequential decisions in dynamic environments. It employs the
so-called Q-table to store the estimated value of each state-action pair. The agent up-
dates the Q-table through repeated iterations by applying the Bellman equation, which

3In the forementioned publication, the whole contribution belongs to this thesis. The co-author
helped to improve the quality of the paper with his valuable feedback.

33

calculates the expected future rewards. By iteratively exploring and exploiting the envi-
ronment, the agent gradually learns the optimal policy to maximize long-term rewards.
This procedure is illustrated in Figure 3.5 visually.

Figure 3.5: Simplified RL model where an agent interacts with the environment to
maximize long-term rewards through state transitions.

Reinforcement-learning-based time-sensitive routing To deploy RL, we use a central-
ized SDN controller by leveraging its global view to employ centralized routing algo-
rithms and simplify configuration processes. This framework allows us to dynamically
reconfigure routing paths with respect to the requirements of time-sensitive flows.

Our SDN-based framework is shown in Figure 3.6. After the talker requests resources
for a flow, the request is forwarded to the controller, and the RL agent determines the
routing path based on its current policy. This policy is dynamically updated based on
the feedback from the data plane (e.g., TSN switches) that is included as a reward. The
decision of the RL agent, the so-called action, refers to the routing path in our design,
for which the controller then configures the data plane, e.g., TSN switches accordingly.
In this design, a state is a traffic matrix representing the current network load, and
with each action, the system transits from one state to another. Then, the talker can
start to communicate over the reserved path. In the background, the last switch on
the path reports statistics, such as end-to-end latency of the frame, to the controller as
feedback. Based on the statistics, a reward is calculated for the associated action and
routing path, which is used to update the RL model.

We aim to acquire the optimal routing policy that maximizes the cumulative reward
over time. To achieve this, a crucial step is defining a reward function that guides the
policy towards the desired behavior: finding the good routes to satisfy individual flow
deadlines in our specific environment.

To prioritize deadline satisfaction rather than latency, we have established a unique
reward function received upon successful frame reception. The reward, R is calculated

34

Figure 3.6: RL: reinforcement learning based routing approach for TSN

as follows:

(3.1)R =

{
1 + ∆t

D
, if ∆t ≥ 0

∆t
D
, otherwise

where D represents the flow’s deadline, which we assume is equivalent to its period.
∆t is the remaining time until the deadline, which can be computed by taking the
difference between the end-to-end latency, tE2Elatency, of the frame and its deadline.
Here, the reward values for the actions (e.g., selected path) can be either positive or
negative. We define the reward for the non-negative ∆t values by dividing ∆t by the
deadline D so that flows with closer deadlines get a greater reward for the same ∆t
values. Additionally, to give a positive reward in case the deadline is met, even though
∆t is zero, we add 1. For the negative ∆t values that represent the missed deadlines, we
use ∆t proportional to D as a penalty, which is also a negative number. After enough
iterations, the reinforcement learning algorithm integrates the negative penalty values
into the learned policy to guide the agent away from undesirable actions. Therefore,
we can choose paths for flows that offer a higher deadline satisfaction rate for newly
registered flows. This tailored approach allows Q-learning to effectively learn the optimal
routing policy while considering the important aspect of meeting flow deadlines.

Algorithm 1 shows the pseudo-code of our algorithm that runs on the SDN controller.
The aim is to develop a policy to select a path from origin src to destination dst.
Initially, when there is a path request, the ϵ-greedy policy chooses one action from the
vector of feasible actions (Line 3-8). The algorithm explores the feasible action space
with a probability ϵ. Also, since there is no pre-knowledge about the paths, it searches
for a path with a higher reward with a probability of 1− ϵ.

35

Algorithm 1: Q-learning based routing - control plane

Input: Learning rate: α
Discount factor: γ
Exploration and exploitation parameter: ϵ
List of paths: P
Network link-states: S

1: Initialize Q: Q(s,a)
2: while Path request received from src to dst with a deadline D do
3: Generate a random number m
4: if m < ϵ then
5: select random action, a = P[rand(0, numOfPaths)]
6: else
7: select action, a = Qmax(s, a)
8: end if
9: Install forwarding rules for the selected action a (aka path)

10: end while
11: while Reward update message from the data plane do
12: Updates Q-table and moves a new network state:
13: Q(st, at) = (1− α)Q(st, at) + α[R(st, at) + γmaxat+1Q(st+1,at+1)]
14: end while
15: return Optimal routing policy

The ϵ value is usually chosen small so that the policy may take advantage of knowledge
about the present state most of the time. After the action selection, the SDN con-
troller enforces related forwarding rules to the data plane, and the end host starts the
transmission (Line 9).

When frames over this path are received by the destination switch Sdst, it computes
the reward for this transmission as shown in Algorithm 2 and sends it to the controller.
The SDN controller uses the reward to update the Q-table for the related path with the
equation given in Line 13 in Algorithm 1.

The given Q-table formulation represents how an agent updates its estimate of the
expected cumulative reward Q(st, at) based on the immediate reward, R(st, at), that is

Algorithm 2: Q-learning based routing - data plane (e.g., switch Sdst)

Input: Received frame, f , from src to dst with a deadline D
1: while f .destination == Sdst do
2: tE2Elatency = f.arrivalT ime− f.creationT ime
3: ∆t = D − tE2Elatency

4: R =

{
1 + ∆t

D , if ∆t ≥ 0
∆t
D , otherwise

5: Computed reward, R, is sent to the controller
6: end while

36

received after taking an action (at). Here, the formulation also includes the maximum
expected cumulative reward in the next state (st+1) and the learning rate (α) and
discount factor (γ) parameters. The learning rate parameter determines how much new
information is incorporated into the existing Q-value. Smaller α values make learning
more stable but slower, while larger values make learning faster but less stable. The
discount factor parameter represents the agent’s preference for short-term rewards over
long-term rewards. Smaller γ values make the agent focus more on immediate rewards,
while larger values focus more on long-term rewards.

¤ Key Results

We comprehensively evaluate our reinforcement learning-based framework, referred as
RL, via OMNeT++ simulations and in realistic TSN scenarios. To assess the perfor-
mance of RL, we compare it against two benchmarking solutions: shortest path (SP) and
optimal routing via integer linear programming (OPT).

The SP approach directs traffic along the shortest paths, often leading to congestion on
specific switch ports or links within the network. Due to its simplicity and minimal com-
putational requirements, we utilized SP as a baseline to compare it against our proposed
RL approach. Conversely, OPT, which we introduced in Section 3.1, as an optimization
problem TSOR, determines the optimal allocation of resources and routing paths. We
consider OPT as an upper bound for evaluating the effectiveness of RL, measuring how
closely RL can approach the optimum solution.

To evaluate our approach, we create various mixed traffic scenarios that include both
TT and BE traffic types, each with different QoS requirements. Additionally, we test
our framework on topologies of different sizes to assess its scalability. For more in-
depth information regarding simulation parameters and specific details, please refer to
our corresponding publication [SF22] (Appendix C). Our evaluation aims to assess the
performance and effectiveness of our RL framework within the context of TSN environ-
ments.

To evaluate the delivery performance of our RL model and benchmarking approaches,
we utilize a medium-scale topology. Initially, we embed best-effort flows to saturate
the network resources. Subsequently, we generate 180 TT flows for a low average link
utilization (approximately 15%), 450 TT flows for a medium average link utilization
(approximately 45%), and 900 TT flows for a high average link utilization (approxi-
mately 75%). The deadline satisfaction rate of the TT traffic was then measured, as
shown in Figure 3.7a for the different link utilizations. As expected, congestion sig-
nificantly decreases the satisfaction rate in the high utilization case (e.g., from 99.26%
to 97.63% in OPT). Notably, the satisfaction rate in SP experiences a more substantial
decrease, dropping from 98.78% to 94.17% due to its limited ability to use alternative
paths during congestion. However, the RL algorithm is close to OPT, with a 96.12%
deadline satisfaction rate. In other words, only 3.88% of the frames fail to meet their
deadlines, even in higher utilization scenarios.

37

(a) Time-sensitive traffic delivery perfor-
mance. (b) (Incremental) path computation time.

Figure 3.7: Performance comparison of RL with other benchmarking approaches. ©2022
IEEE.

Moreover, we conduct experiments using small-scale (e.g., Epoch) and large-scale (e.g.,
Surfnet) topologies to assess the scalability of the algorithms. For that, we measure the
path computation time while progressively increasing the number of flow requests. The
results, presented in Figure 3.7b with a 95% confidence interval, demonstrate interesting
insights. Notably, both SP and RL approaches, based on table look-up, exhibit similar
path computation times, even for large topologies like Surfnet. However, the path
computation time of the OPT solution remains acceptable for small topologies, as can
be seen in the top Figure 3.7b, but significantly increases as the topology grows larger
(See Figure 3.7b-bottom). These results support our claim that OPT may not be suitable
for large-scale scenarios due to its runtime complexity. Here, it should also be stated
that RL has an implicit cost, which is the convergence time referring to the number of
iterations needed for RL agents to learn an effective policy that achieves a satisfactory
level of performance.

For additional results concerning other QoS metrics, including the deadline satisfaction
rate of individual traffic classes, as well as end-to-end latency and jitter, we refer readers
to the original publication for more comprehensive details [SF22] (Appendix C).

 Discussion and Implications

Our evaluation provides several interesting highlights. First, using reinforcement learn-
ing for efficient path allocation in flows with individual QoS constraints proves to be a
promising solution. By relying on the environment’s feedback, it avoids the need for a
priori knowledge about the network, making it suitable for real-world scenarios. The
achieved deadline satisfaction rate of 96.12% indicates the effectiveness of the proposed

38

approach, even in the highly utilized cases. This rate closely approaches the optimum
and outperforms the congestion-prone shortest path routing method.

Moreover, the computation time of the RL remains constant as the network size in-
creases, in contrast to the exponentially growing complexity of the MILP solution. This
highlights the scalability of the RL, making it a viable option for larger networks where
MILP becomes impractical.

The proposed approach aligns well with the evolving concept of self-configuration in
networking. It offers flexibility and adaptability in diverse network conditions, show-
ing promise for future network deployments and dynamic topology changes. However,
further research is needed to enhance the resilience of the RL algorithm under varying
network conditions and to consider the transmission scheduling aspect of TSN. More-
over, employing helper techniques, e.g., experience replay, where past experiences are
stored and re-included in the model, or using different exploration strategies to balance
exploration and exploitation may fasten the convergence time of the algorithm, which
is often crucial in real-world scenarios.

Overall, the findings of this study demonstrate the potential of RL in addressing the effi-
cient path allocation problem in networks with individual QoS constraints and answers
RQ3.

39

Chapter 4

Resilience Against Denial of Service
Attacks for Time Sensitive Networks

Time-sensitive networks must maintain continuous and reliable data transmission with-
out significant delays or disruptions. This has been made possible by deploying various
fine-tuned time-based mechanisms standardized by the IEEE 802 TSN task group, which
ensures that certain QoS. One unique attack vector for TSN environment is the time
itself. Attackers can cause violation of strict QoS requirements by introducing signifi-
cant delays. That might not directly impact availability but can negatively affect the
resilient operation of critical applications. Moreover, these attacks cause congestion and
undermine the network’s ability to provide predictable and low-latency communication.
Therefore, in order to maintain such guarantees, it is necessary to avoid the operation
of any faulty or malicious end hosts or switches.

Despite its significance in mission-critical systems like automotive, avionics, and in-
dustrial networks, resilience has not been considered sufficiently in the design of TSN.
While severe cases can arise due to this oversight, addressing potential threats and im-
plementing appropriate countermeasures is essential. Hence, this chapter describes our
contributions towards the resilient operation of time-sensitive networks. For that, this
thesis makes the following contributions:

• In Section 4.1, dynamic admission control strategies based on P4 are presented as a
link-layer network function [SKF23]. This solution defends time-sensitive networks
against malicious network elements and faulty talkers or switches. This contribu-
tion addresses the enforcement of all end-hosts to obey their reserved resource limits
considering the filtering overhead and answers the RQ4.

• In Section 4.2, DoS attacks against the TSN frame preemption mechanism and their
potential implications are summarized. The section describes an attack strategy to
degrade the QoS of TSN and shortly discusses potential countermeasures [SF23]. This
contribution shows the feasibility of attacks even with passive network monitoring
answers the RQ5.

• In Section 4.3, a SDN/NFV based reactive attack filtering [SF20] is presented [SF20].
It first efficiently describes the attack signature by distinguishing the attack and

40

legitimate traffic and then filters the attack traffic. This contribution helps to protect
the network from flooding network elements and answers the RQ6.

In the subsequent sections, we present our contributions within this domain, referencing
Section 2.2, to bridge the existing gap in the literature. Each section is then structured
to present (i) a set of fine-grained research questions, (ii) our related publications, and
(iii) the summary of contributions and their takeaways. We will emphasize how our
work leverages and contributes to the relevant TSN standard.

4.1 Admission Control Strategies for Time Sensitive Net-

works

This section introduces different admission control strategies for filtering malicious or
faulty traffic at the ingress of the TSN switches and addresses RQ4. These strategies
aim to satisfy desired QoS by preventing the network from unintended traffic.

TSN requires end hosts to pre-register their traffic requirements, ensuring the allocation
of essential resources along the entire end-to-end path. This proactive approach involves
prior agreement between the end host and the network before communication occurs.
Thus, the network can guarantee a specific QoS for the requesting end host, talker.
All elements within the network must adhere to their designated resource limits, e.g.,
using only the allocated bandwidth. Malicious talkers that exceed their reserved traffic
volume can induce congestion of switches along the path. This congestion can violate
the bandwidth guarantees of legitimate flows. Thus, the ingress traffic should be checked
and verified at the ingress of the TSN switch.

The IEEE task group has proposed the IEEE 802.1 Qci standard as a solution for ingress
traffic filtering that surpasses its reserved resources. However, the current state of the
standard remains largely conceptual, lacking a concrete algorithm for implementation
[IEE17b]. Only a limited number of studies have proposed algorithms compatible with
the standard. However, these studies often assume that the configuration parameters
are set initially and remain unchanged throughout the network’s lifespan [LWF+21]. Al-
ternatively, they may focus combination solely on specific TSN mechanisms [MHKS19].
Such use-case-driven or static configurations limit the potential benefits of the protocol’s
dynamic capabilities. Thus, this presents an ideal use-case scenario for implementing
dynamic and adaptable filtering solutions using P4, a versatile and programmable net-
working language. Since P4 provides fine-grained control over packet processing and
enables dynamic modifications, it is a promising tool for implementing customizable se-
curity functionalities. Therefore, the following more fine-grained questions arise in the
context of RQ4:

• RQ4.1: How does the proposed P4-based filtering approaches perform compared to
no filtering applied regarding end-to-end latency and frame loss?

41

Describing the traffic that needs to be filtered is a crucial step in the filtering procedure.
However, in the context of TSN, ingress filtering may not necessitate the extraction of
these attack signatures, as it relies on resource reservation in advance.

Accordingly, the following publication introduces P4-based ingress attack filtering frame-
work to avoid the malicious attempts that might affect the delivery of the legitimate
time-sensitive traffic 1:

Nurefşan Sertbaş Bülbül, J.J. Krüger, M. Fischer. TSN Gatekeeper:

Enforcing stream reservations via P4-based in-network filtering.

The International Federation for Information Processing (IFIP) Net-

working Conference, 2023.

In the remainder of this section, we present the details of our local admission control
strategies. Respective publication [SKF23] is also attached in Appendix D.

L Methodology

P4-based In-network Attack Filtering As a main working principle of TSN, resources
are reserved before the actual communication to guarantee stringent QoS. It is assumed
that every entity in a time-sensitive network obeys these reserved limits. However,
malicious or faulty talkers might exceed their reserved bandwidth. Our P4-based ingress
filtering framework, TSN Gatekeeper, restricts all talkers to their reserved bandwidth
and maintains QoS for the resilient operation of the network.

Figure 4.1 gives an overview of TSN Gatekeeper, which filters the unauthorized traffic
at the network’s ingress. For that, TSN Gatekeeper implements two P4-based filtering
strategies aligned with the TSN’s IEEE 802.1 Qci standard. These strategies differ in
handling traffic, e.g., per-class or per-flow (aka per stream). Here, deciding how to
filter is another design choice, and TSN Gatekeeper proposes two policing strategies:
thresholding or blocking. When filtering according to a threshold, traffic up to the
advertised limit is forwarded, and any exceeding traffic is blocked. This has clear benefits
in certain situations, such as a temporarily faulty end host can be kept in the network
while effectively containing its threats. An alternative is to block the flow entirely when
it exceeds the advertised limit. Unlike the first strategy, all traffic is dropped at the
ingress, even when the flow later returns to its initial parameters.

Before giving the details of the individual strategies, it is important to mention that
P4-based security offers several advantages. It provides flexibility due to programmable
network devices, enabling the implementation of security protocols tailored on TSN

1For the given publication, the main contribution belongs to this thesis, including the design of
the system in the context of his master’s thesis. The second co-author has implemented and evaluated
the designed system. The third co-author helped to improve the quality of the paper with his valuable
feedback

42

Figure 4.1: Simple time-sensitive network where switches are empowered by the P4-
based filtering capability to enforce flow reservations in the network’s ingress.

requirements. Furthermore, it enables quick updates and modifications to security pro-
tocols in response to changing network conditions and evolving threats. This enables
the precise handling of network traffic, including admission control and filtering.

As a first step, TSN Gatekeeper initially checks the maximum frame size and the ingress
port of the received frame, which is already negotiated as a part of the resource reser-
vation process (See SRP in Section 2.2). Frames that exceed the maximum size are
dropped to prevent potential switch congestion. To prevent attackers from flooding
frames with spoofed StreamIds, e.g., to disrupt or interfere with the transmission of le-
gitimate talkers, ingress port verification is conducted. So that the frames that come at
the wrong ports are dropped. Following these initial verifications, TSN Gatekeeper de-
ploys two dynamic filtering solutions, namely metered ingress filtering and gated ingress
filtering, which are described as follows:

(a) Metered ingress filtering: The deployment of metered ingress filtering benefits
from the portable switch architecture (PSA), a target architecture that provides
standard data types, counters, meters, and other externs for P4 programmers.
The PSA ensures the portability of P4 programs across different targets. We
use direct meters from the PSA primitive and propose ingress filtering based on
the leaky bucket algorithm, where the burst size, BS, defines the initial bucket
size. The bucket size is then increased by the pre-configured information rate,
IR, per second and decreased upon a packet arrival. The IR parameter can be
computed using the talker-advertise message, representing the number of frames
per measurement interval. The BS can be interpreted as the maximum number
of frames by which a flow can exceed the advertised rate. This parameter proves
useful in handling frame delays that may require the transmission of frames, even
for legitimate flows. When the BS falls below zero, packets are marked as red;
otherwise, they are considered green. We attach a direct meter to the forwarding
table to implement this filtering behavior. It is automatically executed when
a matching entry exists. The burst size and information rate parameters can
be configured per table entry through the P4Runtime API, which serves as the

43

Static
protection

Apply
Meter

Frame
color

Forwarding
Module

Policing
strategy

Drop
frame

Clone to
CPU

Blocking

Threshold
 enforcing

Frame

Red

Green

(a) Flowchart of the metered ingress filtering

Static
protection

Forwarding
Module

Policing
strategy

Drop
frame

Yes

Threshold
 enforcing

Frame

Execute Gate
(Increment/Reset)

Find
GateId counter< Max

Blocking

No

Yes

set StartOfInterval
 to Block-Indicator

No

(b) Flowchart of the gated ingress filtering

Figure 4.2: Flowcharts of the proposed filtering approaches.

conceptual control plane. It is important to note that this control plane belongs
to P4 and is not a centralized controller.

A flowchart is given in Figure 4.2a. After the initial checks, the metered-based fil-
tering marks the frame as either red or green. The green frames will be forwarded
accordingly, while red frames are dropped based on the policing configuration, ei-
ther thresholding or blocking. While the frame is directly dropped in thresholding,
CPU cloning informs the control plane in the blocking. This way, the controller
can block the flow and do a de-registration.

(b) Gated ingress filtering: P4 also supports registers as a general-purpose data type
that facilitates the implementation of fully customized algorithms. Unlike meters,
registers cannot be used per-table-entry or per-flow (aka per-stream) basis. To
address this limitation, we use a concept named gates, inspired by the per-class
filtering approach in the IEEE 802.1Qci standard. A gate merges the traffic char-
acteristics of multiple flows and treats them as a single flow. By employing more
gates, we achieve finer-grained filtering capabilities, albeit with increased memory
requirements.

It is important to note that gates do not enforce per-flow policies but work based on
the per-class filtering principle. As long as the total traffic at a gate does not exceed
its capacity, the transmission of any individual flow is not restricted. In other
words, the allowed transmission capacity for a gate may not be distributed equally
among the flows assigned to that gate. However, this approach is reasonable
as it aligns with the class-based queuing delays in TSN. Thus, gate selection
becomes an important design principle here. For instance, deterministic gate
selection algorithms can be exploited by attackers to specifically target certain
flows by injecting traffic to those gates. Therefore, using a hash function or similar
deterministic gate selection methods is unsuitable. Thus, for the sake of simplicity,
we follow the fill empty first (FEF) approach that fills empty gates first so that
any flow violation will have a limited effect on others as it is also limited to a

44

particular gate. Such an approach may suffer if many flows exist on the gate.
However, the design of a proper gate algorithm is left out of scope.

A flowchart is given in Figure 4.2b for gated ingress filtering. After the initial
checks, the frame is handled by the gate determined by the gate selection al-
gorithm. Then, a frame counter, which increases with each incoming frame, is
checked to determine whether it exceeds the Max value, which is given by the
controller. To accommodate the varying intervals and the number of frames sent
by different traffic classes in TSN, we adopted a common observation interval and
adjusted the frame count accordingly. This counter within the given observation
interval operates as a bandwidth check for the gate, as we know the frame size
from the flow reservation. With that, it rejects and drops frames that exceed the
predetermined bandwidth. Thus, the frame is forwarded if the current counter fits
that limit. Otherwise, depending on the policing strategy, it is dropped. However,
unlike metered ingress filtering, this blocking mechanism operates without involv-
ing the control plane, allowing gates to be closed at the line rate. Additionally,
this approach requires less memory since it does not require copying packets to
the CPU for further control plane processing.

For further details and explanation, please refer to our original publication [SKF23]
(Appendix D).

¤ Key Results

The ingress filtering approaches within TSN Gatekeeper are implemented using the P4
behavioral model version 2 (bmv2), emulating attacks on Mininet. It is worth noting
that the software switch bmv2 used may not be specifically designed for performance
evaluations and may not accurately reflect the performance of the mechanisms on a
hardware switch. However, for a fair comparison between the approaches, it is suitable.

As attacker model, we use a babbling idiot representing a talker who correctly adver-
tises traffic and receives a corresponding listener-ready message but then sends more
traffic than advertised and thus exceeds the allocated bandwidth. We use a four-switch
ring topology and placed end hosts randomly in the network. Different traffic types are
generated for realistic experiments, including isochronous, cyclic, event-triggered, and
best-effort traffic, which are typical TSN traffic classes. In our experiments, we evaluate
the performance of four different filtering strategies implemented within the TSN Gate-

keeper. These strategies include metered and gated approaches configured with either
thresholding or blocking. We compare the performance of these approaches with the
scenario where no filtering was applied. Results of the filtering performance in terms of
frame loss rate and end-to-end frame latency are shown in Figure 4.3.

Figure 4.3a shows end-to-end frame latencies dependent on different filtering approaches
as box plots. It can be observed that the average latencies among the tested approaches

45

(a) End-to-end latency for mixed traffic sce-
narios (b) Frame loss for mixed traffic scenarios

Figure 4.3: Filtering performance on the delivery of time-sensitive traffic.

do not exhibit significant differences. However, meter-based filtering with thresholding
or blocking results in lower and more consistent end-to-end latencies, which is significant
for TSN. It is, however, important to note that solely considering latency values might be
insufficient, as it only reflects the end-to-end latency of successfully transmitted frames.

Hence, examining the frame loss metric is also important and even of greater significance
for TSN. In Figure 4.3b, a significant number of frame losses can be observed due to
the babbling idiot. Merely considering average values would be misleading since TSN
guarantees a certain QoS, necessitating the consideration of worst-case frame loss rates.
Without filtering, the attacker impacts legitimate flows substantially, leading to frame
losses of up to 68% as in the No-Filter case. However, it is important to note that all
filtering approaches significantly reduce the frame loss rate compared to this maximum
value. In the worst-case scenario, the filtering approaches decrease the frame loss rate
for legitimate flows to approximately 24% (in the upper bound of meter-blocking) and
approximately 48% (in the upper bound of gate-thresholding). This demonstrates the
substantial benefits of these approaches.

For further results regarding the impact of an increasing number of attackers, refer to
our original publication [SKF23] (Appendix D).

 Discussion and Implications

Our P4-based in-network attack filtering framework, TSN Gatekeeper, is tested in an
emulated mininet environment. The results indicate that TSN Gatekeeper effectively
reduces frame loss rates for legitimate traffic while adding only minimal filtering over-
head. Consequently, it has the potential to meet the stringent performance requirements
in time-sensitive environments.

46

Furthermore, the proposed filtering approaches align with the IEEE 802.1Qci standard.
The flexibility, programmability, and low-latency capabilities of P4 make it an excellent
choice for attack filtering, enabling precise and adaptable security measures to be applied
to network traffic. This design also eliminates the need for a centralized controller, which
is crucial for handling attacks in real-time. Moreover, thanks to P4, TSN Gatekeeper

can be easily extended to support further filtering criteria, such as filtering based on
burst sizes or maximum frame lengths.

4.2 Calibrated Attacks Against TSN Frame Preemption

and Countermeasures

This section analyzes the feasibility of the calibrated attacks against TSN frame preemp-
tion mechanism by describing a few attack scenarios. To answer RQ5, it demonstrates
how an attacker can leverage insights gained from passive monitoring to degrade the
network performance and discusses potential countermeasures.

Frame preemption temporarily halts the transmission of lower-priority frames when a
high-priority frame arrives. This capability ensures the timely delivery of time-sensitive
traffic, such as real-time control messages or audio/video flows, and minimizes dis-
ruptions caused by lower-priority traffic. Furthermore, it facilitates the coexistence of
different traffic types, supporting time-sensitive and non-time-sensitive applications on
the same network infrastructure.

Determinism within TSN can pose a security threat as attackers may exploit extended
periods of network monitoring to gather valuable insights. For instance, they can mon-
itor the network and keep track of frame transmissions, observing when a critical frame
is being forwarded by a specific TSN node. This may result in unexpected long delays
and violations of QoS constraints. Therefore, analyzing the current frame preemption
protocol against calibrated attacks is crucial to enhance the resilient operation of the
network and maintain desired QoS levels.

However, the preemption mechanism is considered one of the core mechanisms in time-
sensitive networking for bounding latency and has not been viewed as a security vul-
nerability [AHG21, HFG+20]. So far, there is a lack of discussion on the vulnerabilities
of the preemption mechanism from the attacker’s perspective in the existing literature.
Therefore, the following questions arise in addition to the RQ5:

• RQ5.1: How can an attacker monitor the network to estimate the used preemption
scheme in the switch?

• RQ5.2: How can passive monitoring information be leveraged to degrade the QoS for
time-sensitive traffic, and how it impacts the end-to-end latency of the critical traffic?

47

Accordingly, the following publication introduces a comprehensive analysis of frame
preemption protocol against calibrated attacks such as DoS attacks and discusses several
preventive measures to mitigate these attacks 2:

Nurefşan Sertbaş Bülbül and M. Fischer. Preemptive DoS attacks on

Time Sensitive Networks. Submitted to IEEE Global Communications

Conference (GLOBECOM), 2023.

In the remainder of this section, we present the details of an attack on frame preemption
on time-sensitive traffic. The respective publication [SF23] is attached in Appendix E.

L Methodology

Throughout the study, we describe various attack scenarios based on different configu-
rations of traffic classes, e.g., preemptable or express. Then, we discuss their potential
impacts on network performance. Following this analysis, it is essential to assess the
potential information that an attacker could extract from the network and to explore
how it can utilized to attack the network. Understanding the impact of a successful
attack on critical traffic delivery is crucial for designing countermeasures to mitigate
such attacks effectively.

Frame Preemption Scenarios Since preemption categorizes the traffic as express or
preemptable, four possible scenarios may occur. We describe these scenarios to analyze
the possible configurations and examine their potential implications thoroughly. By
that, we can gain insights into the behavior and consequences of preemption within the
TSN framework. The four scenarios, illustrated in Figure 4.4, are as follows:

(a) Express frames block preemptable frames: The frame preemption mechanism can
significantly decrease waiting times of high-priority traffic. However, it is impor-
tant to note that frames can be preempted multiple times, resulting in additional
overhead due to the frame-splitting process. In such scenarios, switches require
enhanced processing capabilities to identify and handle preemptable frames. Ad-
ditionally, within the frame payload, adding control information, as illustrated as
a gray block in Figure 4.4, is necessary to facilitate the resumption of preempted
frame transmissions. This overhead can considerably delay the frame transmission
and potentially lead to the starvation of preemptable frames and the depletion of
switch buffers. As demonstrated in Figure 4.4a, even though the preemptable
frame f1 arrives before the express frames, f3, f4, f5, it has to wait. As in this
example, sending consecutive express frames results in multiple preemptions of
f1 and long delays. Also, the other preemptable frame, f2, faces a similar long

2For the given publication, the whole contribution belongs to this thesis. The co-author helped to
improve the quality of the paper with his valuable feedback.

48

f5 /ef4 /ef3 /e

f2 /p

f1 /p

f4 /pf2 /e

f1 /p f3 /p

f2 /e

f4 /e

f3 /e

f5 /e

f1 /p

f3 /e

f1 /p
< 144 bytes

f3 /ef1 /p

(a)

(b)

(c)

(d)

Figure 4.4: Preemption effect on particular scenarios: (a) express frames to block pre-
emptable frames, (b) express frames delaying each other, (c) preemptable frames delay-
ing each other, (d) preemptable frames to block express frames. ©2023 IEEE.

waiting time. This highlights the challenges associated with multiple preemptions

49

and a potential impact on traffic delivery.

(b) Express frames delay each other: Although express frames cannot preempt each
other, they can still introduce delays that impact time-sensitive traffic. In Fig-
ure 4.4b, an attacker can exploit this by sending specific priority frames before
receiving a high-priority time-critical frame. Let us consider the scenario where
the green frames occur periodically, and the attacker has extracted this period.
By strategically inserting higher priority frames before resuming transmission of
f2 (specifically, before f5), the attacker can cause f5 to wait for the transmissions
of f3 and f4. This additional delay imposed by the attacker, adjusted based on
the extracted transmission period, can induce a violation of the timing constraints
of f5. In the worst-case scenario, all express flows in the network utilize the same
egress port, increasing the potential impact of these delays on time-sensitive traffic.

(c) Preemptable frames delay each other: According to the standard preemption
mechanism, preemptable frames cannot preempt each other. When these pre-
emptable frames are forwarded based on a first-come, first-served approach, as
recommended by the standards, some frames may experience prolonged waiting
times. Although these frames are classified as preemptable, they may still possess
relatively softer timing constraints [OYN20]. However, attackers can exploit this
situation by sending a long preemptable frame before transmitting lower-priority
frames. As depicted in Figure 4.4c, if another preemptable frame, denoted as f3, is
inserted just before the transmission of a time-critical, yet low-priority, preempt-
able frame, referred to as f4, the latter frame will be forced to wait until both f1
and f3 have been transmitted. Consequently, the attackers’ deliberate insertion of
frames can significantly delay the delivery of lower-priority preemptable frames,
undermining their timely transmission.

(d) Preemptable frames block express frames: While express/preemptable frames
cannot preempt express frames, this rule has certain exceptions. According to
the preemption standard, further preemption is not permitted if the fragment size
fails to meet the minimum Ethernet frame size requirement. Consequently, in
the worst-case scenario illustrated in Figure 4.4d, the express frame must wait to
transmit 143 bytes, the longest non-preemptable size. This restriction implies that
the express frame experiences delay due to the minimum frame size requirement
despite the preemption mechanism in place.

Black Box Time-Sensitive Network Traffic Analysis The described scenarios show the
feasibility of executing a calibrated attack when the network traffic and the configuration
scheme (preemptable or express) are known. This requires that the attacker has com-
plete knowledge of the network. Accordingly, we investigate the worst-case attack that
attacker can observe the ingress and egress of the switch, as the TSN nodes are black
boxes for the attacker. By analyzing the captured traffic, the attacker can extract the

50

time differences between transmitted messages (e.g., frames) and other traffic parame-
ters such as priority and period. Additionally, the attacker may employ a traffic-analysis
attack to ascertain when a particular node forwards a specific frame or determines its
processing location at a given time.

Based on passive network observation, the attacker can see the transmitted frames,
their traffic priority, and their ingress and egress time to/from the TSN switches. With
this, the attacker can calculate minimum, maximum, and average latency as well as
the variance values per traffic class. However, considering the different traffic scenarios,
the variance of the traffic class serves as a reliable metric that helps the attacker to
estimate the employed frame preemption configuration. For example, Figure 4.5 repre-
sents an observation result where only the priority seven traffic is configured as express
traffic, while the others are preemptable. Thus, only the priority seven traffic has a
constant variance independent from the incoming traffic class. As illustrated in the
figure, other preemptable classes experience changes in variance values regarding the
injection of different traffic classes. Therefore, here, the determinism of TSN increases
the predictability of the network. Then, the attacker may perform traffic injection at
a particular time to a certain TSN node with a desired traffic class to carry out a cali-
brated attack and degrade the QoS of the network. This particular time can be selected
depending on the target frame transmission, e.g., just before the transmission of the
preemptable frame to preempt it.

Figure 4.5: Attacker observations regarding only class seven traffic is configured to
express. ©2023 IEEE.

51

¤ Key Results

We have evaluated frame preemption via extensive simulations in in-vehicle network
use cases. For that, we have employed OMNeT++ as our simulation tool. We use
four distinct traffic classes: control signals, sensor data, raw data from cameras or
radars (lidar), and best-effort traffic. In this context, the best-effort traffic does not
require specific timing guarantees and represents non-time-critical traffic. The remaining
traffic classes contain time-critical traffic. Therefore, these data flows have predefined
deadlines. Further details about the simulation environment and the parameters can be
found in the original publication [SF23] (Appendix E).

With the help of passive network monitoring, the attacker obtains the used configura-
tion scheme in frame preemption and extracts traffic characteristics of the talker, as
shown under the self-configuration concept in Section 3.1. An active attacker can inject
malicious traffic into the network based on this information.

The illustrative scenario shown in Figure 4.4a describes the attacker injecting express
frames as bursts to block preemptable frames. Accordingly, this scenario has been tested
in a realistic TSN environment, and the results are shown in Figure 4.6. The results
indicate that even a single express flow, which generates multiple bursts periodically, can
cause a significant delay of preemptable traffic, S1 and S2. In the worst case, preempting
several times may cause the starvation of the preemptable traffic. This is not visible in
the figure but can be inferred from our simulation results.

Moreover, Figure 4.7 shows that an attacker can add further delays to express traffic by
injecting express traffic as in the scenario shown in Figure 4.4b. Specifically, the initial

Figure 4.6: Injecting express traffic to delay specific preemptable flow(s). ©2023 IEEE.

52

Figure 4.7: Injecting express traffic to delay specific express flow(s). ©2023 IEEE.

end-to-end latency of the express flows S1 and S2, around 250µs, significantly increases
with the injection of malicious traffic flows S3 and S4. In the worst case, this may lead
to a violation of QoS constraints in the deadlines, resulting in packet loss.

 Discussion and Implications

Frame preemption is one of the mechanisms employed within TSN to bound latency and
ensure deterministic communication. This means that the latencies stick to the given
upper bounds, but at the same time, this increases the predictability of the network.
However, it is worth noting that this predictability can lead to notable degradation in
QoS and also opens the possibility for preemptive DoS attacks. The findings confirm
that based on the passive observation of a time-sensitive network, e.g., monitoring a
single input and output port of a switch, can be exploited by malicious attackers.

Developing additional strategies that restrict the monitoring of the attacked network by
attackers is beneficial to address this issue. One effective approach is introducing more
dynamicity into the network, such as traffic routing dynamicity. Implementing dynamic
routing paths within the network can make it harder for attackers to predict the current
routing path of the flow. This complicates identifying patterns and predicting future
events, even with an increasing attack budget regarding longer reconnaissance time or
more powerful computational resources [ESKF23]. Here, the objective is to make it
challenging for attackers to ascertain the forwarding of a particular flow by a specific
TSN node or determine its processing location at any given time. These efforts align
with our overarching goal of improving the resilience of time-sensitive networks against

53

DoS attacks and answers RQ5.

4.3 Dynamic and Scalable DoS Attack Detection and Fil-

tering

This section introduces an approach for extracting an attack signature for describing
the DoS attack patterns and filtering such attacks locally at the switch or network-wide
through collaborative efforts. It addresses RQ6.

In the previous sections, we introduce attacks that violate their resource limitations
and degrade the network performance, which may have more severe outcomes for TSN.
Nevertheless, this is not the only scenario threatening the network’s resilient operation.
In certain situations, end hosts may transmit traffic in alignment with their resource
reservations, making them appear legitimate and evading detection by filtering mecha-
nisms. However, when end hosts collude, this strategy can lead to a DoS situation for
the network

In such scenarios, the first step is extracting the attack signature that successfully dif-
ferentiates attack and legitimate traffic. After that, this signature is used for mitigating
these attacks and keeping the malicious traffic away from the network. However, filtering
DDoS traffic is challenging as it originates from multiple distributed sources. To address
that, content delivery networks employ special hardware to be distributed across the
edge; however, this may still struggle to handle extremely large-scale DDoS due to the
limited processing capacity [LM21]. Using rate limiting with hardware appliances can
be effective in some scenarios, but it also has limitations, such as limited scalability and
typically relying on pre-configured rules and policies. Software-based or hybrid solutions
offer better adaptability, scalability, and control than hardware-based DDoS mitigation
solutions [SM23]. As a result, the following additional questions emerge:

• RQ6.1: How can targeted attacks such as DDoS be accurately identified and mitigated
in near-real-time while ensuring legitimate traffic is not impacted?

Accordingly, the following publication introduces a methodology for attack signature
extraction by examining only the packet header and a proposed collaborative approach
for attack mitigation. While it may not be specifically tailored for TSN, the centralized
network controller of TSN makes it suitable for such a collaborative attack filtering 3:

Nurefşan Sertbaş Bülbül and M. Fischer. SDN/NFV-based DDoS Mitiga-

tion via Pushback. IEEE International Conference on Communications

(ICC), 2020.

3For the given publication, the whole contribution belongs to this thesis. The co-author helped to
improve the quality of the paper with his valuable feedback.

54

In the rest of this section, we present the details of our local and collaborative attack
mitigation strategies. The respective publication is also attached in Appendix F.

L Methodology

DDoS traffic cannot be easily filtered, as it comes from distributed sources. That high-
lights the importance of finding good representations of the attack traffic that differenti-
ates the legitimate traffic. Even if the attack pattern is very well described, filtering that
traffic on-premise still overloads the local firewall with the fixed processing capacity. To
address that, we revise the pushback mechanism introduced in [MBF+02] to mitigate the
impact of a DDoS by informing upstream network devices to block malicious traffic. We
leverage SDN/NFV to position the filtering functionality dynamically in the network.
It has two main building blocks as following:

i. Extraction of the attack signatures via attribute-oriented induction

Finding good representations of the attack patterns, namely the attack signatures,
is essential for effective attack mitigation. For this purpose, we use attribute-
oriented induction (AOI), a generalization technique to capture attack behavior
that is usually spread across multiple flows and from distributed sources, e.g.,
DDoS attacks. Unlike approaches based on machine learning that generalize data
on a tuple-by-tuple basis, AOI employs attribute-by-attribute generalization. This
approach is highly effective for generating high-level representations.

Our AOI based signature extraction method does not require deep packet inspec-
tion; it only works with the packet headers and checks a few attributes only.
Since attackers can easily spoof IP addresses, we use autonomous system number
(ASN)s. The selected tuples are source ASN srcASN, source port srcPort, destina-
tion ASN dstASN, destination port dstPort, and protocol prot. Then, these tuples
are used by AOI to generalize the captured network traffic and create clusters of
similar traffic flows. Here, different hierarchies can be used for the generalization
step. In this study, we use a range for the port numbers, AS membership for the IP
addresses, and TCP/UDP-based generalization. Following the generalization, the
pattern of the biggest cluster is selected as the attack signature. Then, depending
on the environment, this signature is used for filtering the malicious attack traffic.
For instance, the IPtables rules in Figure 4.8 b can be easily derived from the
extracted signature in Figure 4.8 a. Since the actual values of the attributes such
as IP addresses and port numbers that we use to extract the attack signature
are known; we can reuse them in the generated IPtable rule accordingly. In the
example, we replace the ASN with the related IP addresses, ip1,ip2, and ip3.

55

Figure 4.8: An example iptables filtering rule from the extracted attack signature.
©2020 IEEE.

ii. Mitigation of the attacks via pushback mechanism: We use the pushback mech-
anism to mitigate identified attacks efficiently and protect networks from severe
congestion as a result of a rapid increase in traffic, e.g., from a DoS attack. The
benefit of this mechanism is apparent in large scenarios in which the attacker aims
to block the communication between local networks or between the network con-
troller and entities within the network. The overall system illustration is given in
Figure 4.9. Traffic received by an SDN domain contains both the malicious traffic
(from R2 and R5) as well as the legitimate traffic (from R5). Once the attack
has been detected, traffic will be analyzed further to generate attack patterns so
as not to drop legitimate traffic, e.g., coming along R5. Thus, the centralized
SDN controller monitors the traffic continuously based on the reports from the
switch at the ingress of the SDN domain, S3. When the controller detects any
attack pattern, this is used to create an open flow protocol (OFP) rule, and S3 is
configured with this rule to filter out the traffic that fits this pattern.

If the attack surpasses the capacity of S3, the pushback mechanism is triggered,
initiating collaborative attack mitigation. The derived rule is propagated from
R1 to R2, R3, and R5. Informed routers begin filtering traffic, ensuring the at-

Incoming
Traffic

R2

R3

R4

R5

R1

SDN domain

congested linkslegitimate usersmalicious sources

Pushback

ISP Network

S2

S3
S1

Figure 4.9: Attack mitigation with pushback mechanism. ©2020 IEEE.

56

tack traffic is filtered out before reaching the victim. In certain scenarios, such as
collaborating with a non-SDN network, we can introduce this filtering functional-
ity by initializing VNF. This collaborative mitigation approach aims to preserve
network resources for legitimate users by restricting the spread of attack traffic.

The pushback mechanism works for traditional and hybrid networks such as TSN.
The difference here may be that pushback filters at the network layer, while TSN
operates at the link layer. In practice, combining these two layer filtering functions
would be useful, as the link layer filtering controls the admission to the local
network, and network layer filtering controls traffic between different networks or
segments.

¤ Key Results

We evaluate AOI based performance in extracting attack signatures on different real-
world datasets such as CICDDoS [SLHG19], CICIDS [SLG18], ISCXIDS [SSTG12] and
CTU-13 [GGSZ14]. To demonstrate the effectiveness of AOI in distinguishing attacks
regardless of the attack type or dataset, we evaluate the classification rate (CR), false
positive rate (FPR), and recall values. Additionally, we compare AOI with one approach
from the related work that uses longest matching prefix (LMP) approach that internet
routers use to choose a forwarding entry from a routing table. In this setup, LMP refers
to sorting the destination IP addresses of the dropped packets by prefixes and defining
the attack signature as the most frequent prefix.

Accordingly, the evaluation results are summarized in Table 4.1. Except for the CICD-
DoS dataset, AOI performs better than LMP regarding all metrics. FPR clearly shows
that LMP fails to differentiate attack and legitimate traffic. For the CICDDoS dataset,
the LMP approach demonstrates a slightly better CR compared to AOI. However, LMP
fails to differentiate between legitimate and attack traffic effectively. While LMP drops
an additional 2% of attack traffic compared to AOI (difference between the CRs), it also
discards 39.41% of legitimate traffic (FPR), whereas AOI only drops 4.73%. This high
rate of dropping legitimate traffic results from the dataset’s source and destination IP
distribution. As only one IP is under attack, LMP decides to drop all traffic directed to

Attribute Oriented Induction Longest Matching Prefix
Dataset CR Recall FPR CR Recall FPR
CICIDS 0.9955 1.0 0.012 0.6900 1.0 0.8456
CTU-13 0.9988 0.9995 0.018 0.7063 0.7265 0.7467
CICDDoS 0.9747 0.9748 0.0473 0.9979 0.9991 0.3941
ISCXIDS 0.9036 0.9958 0.2270 0.7471 0.9958 0.6056

Table 4.1: Evaluation of AOI and LMP algorithms with varying attack types. ©2020
IEEE.

57

that IP, including legitimate traffic. However, AOI employs five attributes for filtering,
resulting in the preservation of 95.27% of legitimate traffic from being dropped. Thus,
in scenarios like this, when a single server is targeted instead of a complete network, the
attack signature generated by the LMP matches all traffic designated to the server and
drops the legitimate traffic.

For further enhancements on the AOI and processing overhead, e.g., CPU consumption,
please refer to our original publication [SF20] (Appendix F).

 Discussion and Implications

Section 4.1 presents a proactive defense approach operating at the link layer with a
fixed network position and capacity, TSN Gatekeeper. However, in certain scenarios,
there may be a need to dynamically position security features across the network where
they are most needed. In such cases, utilizing SDN/NFV-based pushback mechanism be-
comes crucial. These mechanisms aim to handle attacks locally and then collaboratively
push back the filtering rules to filter attack traffic close to their origin. The pushback
mechanism operates at the network layer and fits hybrid networks well. Moreover, it
helps protect network resources from being wasted and enhances the QoS. Although
we have not specifically tested this mechanism within a TSN setting, its generic nature
suggests it could offer substantial benefits to such networks, albeit at a different layer.

Our findings indicate that extracting attack signatures and filtering based on them can
effectively mitigate DDoS.

58

Chapter 5

Conclusion

Mission-critical networks serve as the backbone for various industries, from manufac-
turing and transportation to healthcare and telecommunications. They can host non-
critical and critical traffic flows that require stringent quality of service (QoS). While
increasing heterogeneity and connectivity render them more vulnerable to failures and
attacks, conventional networking paradigms cannot satisfy these requirements. There-
fore, time-sensitive networking (TSN) emerged to enable the coexistence of traffic of
different criticality with different QoS requirements in the same network. Moreover,
TSN is based on standardized Ethernet equipment enhanced with time-sensitive fea-
tures. However, the current standardization of TSN cannot fully support new use cases
that demand more dynamicity, heterogeneity, and complexity. Therefore, in this thesis,
we address this gap by presenting a few solutions for the autonomous configuration
and resilient operation of time-sensitive networks, which are not addressed yet in the
standards.

Accordingly, in this cumulative thesis, we propose more flexible configuration solutions
to enable time-sensitive networks to adapt to changing traffic more. Furthermore, we
introduce methods for increasing the resilience of time-sensitive networks against denial
of service (DoS). We first define several research questions regarding the self-adaptive
and efficient configuration of time-sensitive networks related to transparent resource
reservation (RQ1), dynamic network reconfiguration (RQ2), and machine learning (ML)-
based low-cost network configuration (RQ3). Then, we define our research questions
regarding the resilient operation of time-sensitive networks related to admission control
(RQ4), the feasibility of calibrated attacks leveraging network monitoring (RQ5) and
lastly, DDoS attack detection and collaborative filtering (RQ6). Then, we address those
questions by presenting the details of our six contributions (identified with C) throughout
the six research articles. Our contributions aligned with the respective research questions
are summarized.

Self-Adaptive and Efficient Configuration of Time Sensitive Networks: Our contri-
butions to self-adaptive and efficient configuration of time-sensitive networks consists of
(C1) a dynamic self-configuration framework for removing the end-host-related depen-
dencies, (C2) reconfiguration strategies for better resource utilization, and (C3) machine
learning-based methods for the intelligent configuration.

59

RQ1: How to design an autonomous configuration solution for seam-

less TSN resource reservation without requiring end hosts to be

TSN-aware, while ensuring the desired QoS and reducing the configu-

ration overhead?

C1. The configuration of TSN requires TSN-aware end hosts and their active participa-
tion in the resource reservation negotiation process. Accordingly, for transparent
resource reservation in TSN, we propose a self-configuration framework in [SEF21]
(Appendix A), SC-TSN, that follows the plug-and-play nature of Ethernet networks.
The framework removes the end-host-related dependencies of TSN and enhances
the switches at the edge with the traffic characteristics extraction modules. This
way, we can automatically extract traffic resource requirements and put flow to
a suitable routing path that satisfies its individual QoS. SC-TSN provides a time-
sensitive delivery guarantee without the prior knowledge of flows, with only a slight
increase in the average frame delay rate (less than 1%).

RQ2: How to dynamically reconfigure time-sensitive networks at

runtime to efficiently use network resources considering reconfigu-

ration overhead? Is it feasible to do this in real time?

C2. In standard TSN deployments, routing paths are typically configured when an ap-
plication is initiated and remain static. This can lead to suboptimal assignments
of flows when flows change. This results in some links/switches being underuti-
lized while others may become overloaded. Accordingly, we propose different flow
placement heuristics in [SEF22] (Appendix B). These heuristics are based on the
optimization problem presented in our previous work [SEF21] and offer reconfigu-
ration solutions for different environments, assessing the reconfiguration overhead
and the characteristics of the environment. Unlike reconfiguring the network for
every new flow request, which is impractical for this environment, proposed heuris-
tics can decrease the configuration time up to three times while accommodating
more flows.

RQ3: How can ML-driven strategies be leveraged to achieve effi-

cient resource reservations in TSN? How close can these strategies

approximate optimal performance?

C3. Finding multiple routing paths in TSN with different QoS requirements and limited
network resources is challenging. Therefore, we propose an approach based on re-
inforcement learning (RL) that interacts with the network environment and learns

60

the optimal resource allocations [SF22] (Appendix C). We design our reward func-
tion considering the individual flow deadlines. With our reinforcement learning-
based routing approach, we can decrease the computational overhead significantly
compared to computing the optimal solution, e.g., via optimization problem. Our
evaluation results indicate that our approach, RL, can satisfy QoS requirements for
96.12% of all frames even for the high link utilizations, which perform close (≈ 1.5
%) to the optimal solution with a low computation cost.

Resilience against Denial of Service Attacks for Time Sensitive Networks: Our con-
tributions to the resilience against denial of service attacks for time-sensitive networks
include (C4) deploying admission control strategies to enforce flow reservations (C5),
investigating the impacts of calibrated attacks and countermeasures, and (C6) dynamic
and scalable denial of service (DoS) attack detection and collaborative filtering.

RQ4: What types of admission control strategies could effectively

enforce flow reservations, and what would be the associated deploy-

ment costs?

C4. TSN requires a precise configuration of switches. Any violation of a configuration
might directly impact the performance of the network. Thus, detecting deviations,
e.g., due to compromised or faulty network entities, and mitigating them imme-
diately is important. For that, we propose a programming protocol-independent
packet processors (P4)-based admission control strategies via in-network attack fil-
tering in [SKF23] (Appendix D) to defend the network directly on the data plane.
Employed filtering strategies can decrease the frame loss rate of the legitimate
flows significantly, e.g., ≈24% in meter-blocking and ≈48% in gate-thresholding
strategies.

RQ5: What information can an attacker gain from passive monitoring

of TSN traffic, and is this information exploited for attacking

time-sensitive networks? Moreover, what countermeasures can be

used to protect the network against such malicious activities?

C5. The determinism of TSN mechanisms ensures that data transmission and commu-
nication operate predictably within predefined time bounds. This determinism is
crucial for guaranteeing the reliability and precision required in applications such
as industrial automation and real-time control systems. Attackers might use this to
capture traffic characteristics and launch tailored DoS attacks on the network to de-
teriorate the QoS. Considering this, we investigate the standard frame preemption

61

mechanism and demonstrate DoS attacks in [SF23] (Appendix E). Our simulation
results indicate that, depending on the scenario, even a single attacker can cause
significant delays for specific traffic classes and degrade the QoS of the network.
Furthermore, we introduce countermeasures against such attacks, e.g., randomizing
a few parameters in the network to invalidate/limit the attacker’s knowledge.

RQ6: How can malicious and legitimate traffic distinguished, and how

this be leveraged to eliminate or minimize the impact of attacks in

near-real-time?

C6. In the proactive filtering approaches deployed at fixed positions with a fixed pro-
cessing capacity, filtering rules are pre-determined and remain static. This lack of
adaptability makes the network vulnerable to DoS attacks. Thus, in [SF20] (Ap-
pendix F), we utilize attribute-oriented induction (AOI) approach for extracting
signatures of DoS attacks on the fly. Our results indicate that AOI can extract
signatures with a very high recall value of 97.48% and result in a classification rate
of more than 90.36% even in the worst case. Filtering rules can be directly applied
locally or pushed to the upstream networks of malicious traffic, enabling a collabo-
rative approach to tackle DoS. This solution works on the network layer and could
complement the filtering solution at the link layer as presented in C4 for TSN.

In conclusion, this thesis focuses on the self-adaptive and efficient configuration of time-
sensitive networks and highlights the importance of resource optimization and QoS
management in modern network environments. Furthermore, our efforts related to the
resilience against DoS attacks uncover a limited number of potential DoS scenarios
that might be critical for such networks. Lastly, we believe that integrating efficient
configuration and resilience mechanisms to counter DoS attacks plays a significant role
in shaping the future of time-sensitive networks, enabling them to meet the demands of
an increasingly interconnected world.

Future Work

This thesis contributes novel solutions to self-adaptive and efficient configuration and
resilient operation of TSN. However, we see further potential for future work in the
following areas:

TSN in future (mobile) networks: As TSN will further evolve and contribute to be
adopted in mission-critical applications, their seamless integration with existing net-
works, including legacy systems and emerging technologies like 5G and IIoT, becomes

62

necessary. Such integration brings new possibilities for enhanced communication and
coordination across diverse network infrastructures, improving overall system efficiency
and responsiveness. Thus, investigating the integration of TSN into wireless technologies
such as 5G is valuable future research.

Exploring distributed mechanisms in TSN: Centralized network control mechanisms
within TSN have proven their effectiveness in ensuring deterministic and reliable com-
munication. These mechanisms are very useful in scenarios in which a global network
view is beneficial. The central controller can make more informed decisions regarding
resource allocation, traffic prioritization, and QoS. However, as a centralized controller is
a single point of failure, distributed approaches scale better and are more fault-tolerant.
There is a lack of hybrid models that leverage the strengths of both central and dis-
tributed mechanisms, thereby achieving a balance between scalability, determinism, and
adaptability. This approach would be particularly valuable in large-scale and dynamic
network environments. Therefore, deploying hybrid solutions by shifting some functions
from the centralized controller to switches is an interesting future work.

Integration of digital twin concept in TSN research: Digital twins are virtual replicas
of physical systems or processes and provide a real-time, data-driven representation of
their behavior. Thus, integrating this concept into TSN enables researchers to conduct
complex simulations in a risk-free environment with real data. They can be used to
simulate the impact of policies before implementing them into the actual network, so
it helps in making informed decisions and avoiding unintended consequences. Thus,
it contributes to the efficiency and resilience of TSN and maintaining QoS. Therefore,
building a digital twin to asses possible outcomes of the management decisions or predict
the future behavior of the network stands as valuable future research areas.

Supporting future networking scenarios: The future of dynamic networking scenarios
for TSN may require reshaping how we manage and optimize critical communication
systems. The fusion of TSN technology with 5G networks and edge computing induces
new use case scenarios requiring dynamic network management due to more dynamic
traffic. The self-configuration framework presented in this thesis is the first step to
support more dynamic traffic scenarios. Thus, future work is needed to include more
dynamic scenarios, such as dynamic period changes on the fly. Also, not only the detec-
tion of the new periods but also how to handle these new demands, e.g., by relocating
the flow or sending the flow over multiple paths, is an interesting research question.

Use of ML for optimizing TSN: TSN often operates in dynamic and complex environ-
ments where it is often hard to uncover patterns, dependencies, and correlations. Thus,
ML-based methods have significant potential to be used in TSN due to their ability

63

to analyze, predict, and adapt to complex network conditions in real-time. The rein-
forcement learning-based routing solution presented in this thesis has promising results
regarding QoS-aware resource allocation. Moreover, it has further potential use cases in
TSN such as predicting the network traffic patterns or future demands to optimize QoS,
optimizing packet scheduling algorithms to minimize the packet delays, or analyzing
network traffic patterns to identify suspicious activities. Thus, by leveraging machine
learning, time-sensitive networks can better meet the stringent requirements of critical
applications in diverse domains.

Flow (re)placement strategies for TSN: Several scenarios, such as failures and dy-
namic traffic patterns, might require the replacement of the flows in the network while
maintaining the timing requirements. As a part of this thesis, we introduce a few
heuristics and asses their impacts on the TSN performance. Alternatively, scheduling
flows proactively by anticipating future network demands or considering the possible
replacement cost in the replacement decision process are engaging strategies for future
research.

Investigating the calibrated attacks with varying attacker budget: In the calibrated
attacks presented in this thesis, we assume the worst-case attacker has some network
knowledge, such as network topology. Here, assessing the feasibility of attacks refer-
ring to different levels of information and capabilities that an attacker possesses is an
interesting future research. For instance, whether an attacker with less knowledge can
exploit the frame preemption mechanism to attack the network needs further investiga-
tion. Moreover, other TSN standards regarding their resilience against such calibrated
attacks might also need to be assessed.

64

Bibliography

[AHG21] Anna Arestova, Kai-Steffen Jens Hielscher, and Reinhard German. Simulative
evaluation of the TSN mechanisms time-aware shaper and frame preemption
and their suitability for industrial use cases. In 2021 IFIP Networking Con-
ference (IFIP Networking), pages 1–6. IEEE, 2021.

[ASS19] Abdullah Alnajim, Seyedmohammad Salehi, and Chien-Chung Shen. Incre-
mental Path-Selection and Scheduling for Time-Sensitive Networks. In 2019
IEEE Global Communications Conference (GLOBECOM), pages 1–6, 2019.

[ESKF23] Doganalp Ergenc, Florian Schneider, Peter Kling, and Mathias Fischer. Mov-
ing Target Defense for Service-Oriented Mission-Critical Networks. In 2023
32nd International Conference on Computer Communications and Networks
(ICCCN), pages 1–10, 2023.

[FDR18] Jonathan Falk, Frank Dürr, and Kurt Rothermel. Exploring practical limita-
tions of joint routing and scheduling for TSN with ILP. In 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), pages 136–146. IEEE, 2018.

[GGSZ14] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An
empirical comparison of botnet detection methods. Computers & Security,
45:100–123, 2014.

[Gin21] Ginthör, David and Guillaume, René and Nayak, Naresh and von Hoyningen-
Huene, Johannes. Time-Sensitive Networking for Industrial Control Networks.
Springer International Publishing, 2021.

[HFG+20] David Hellmanns, Jonathan Falk, Alexander Glavackij, René Hummen,
Stephan Kehrer, and Frank Dürr. On the Performance of Stream-based,
Class-based Time-aware Shaping and Frame Preemption in TSN. In 2020
IEEE International Conference on Industrial Technology (ICIT), pages 298–
303, 2020.

[IEE10] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropolitan
Area Networks–Virtual Bridged Local Area Networks Amendment 14: Stream
Reservation Protocol (SRP). IEEE Std 802.1Qat-2010, pages 1–119, 2010.

[IEE16a] IEEE 802.1 TSN Task Group. IEEE Standard for Ethernet Amendment 5:
Specification and Management Parameters for Interspersing Express Traffic.
IEEE Std 802.3br-2016 , pages 1–58, 2016.

[IEE16b] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropolitan
Area Networks — Bridges and Bridged Networks - Amendment 24: Path
Control and Reservation. IEEE Std 802.1Qca-2015, pages 1–120, 2016.

65

[IEE16c] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropolitan
Area Networks – Bridges and Bridged Networks – Amendment 26: Frame
Preemption. IEEE Std 802.1Qbu-2016, pages 1–52, 2016.

[IEE16d] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropolitan
Area Networks – Bridges and Bridged Networks - Amendment 25: Enhance-
ments for Scheduled Traffic. IEEE Std 802.1Qbv-2015, pages 1–57, 2016.

[IEE17a] IEEE 802.1 TSN Task Group. IEEE 802.1 Time-Sensitive Networking (TSN),
2017.

[IEE17b] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropolitan
Area Networks–Bridges and Bridged Networks–Amendment 28: Per-Stream
Filtering and Policing. IEEE Std 802.1Qci-2017, pages 1–65, 2017.

[IEE18] IEEE 802.1 TSN Task Group. IEEE Standard for Local and Metropolitan
Area Networks–Bridges and Bridged Networks – Amendment 31: Stream
Reservation Protocol (SRP) Enhancements and Performance Improvements.
IEEE Std 802.1Qcc-2018, pages 1–208, 2018.

[LDH+10] Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye. Min-
ing Periodic Behaviors for Moving Objects. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, KDD ’10, page 1099–1108, New York, NY, USA, 2010. Association for
Computing Machinery.

[LM21] Zihao Li and Weizhi Meng. Mind the amplification: cracking content delivery
networks via DDoS attacks. In Wireless Algorithms, Systems, and Appli-
cations: 16th International Conference, WASA 2021, Nanjing, China, June
25–27, 2021, Proceedings, Part II 16, pages 186–197. Springer, 2021.

[LWF+21] Feng Luo, BowenWang, Zihao Fang, Zhenyu Yang, and Yifan Jiang. Security
Analysis of the TSN Backbone Architecture and Anomaly Detection System
Design Based on IEEE 802.1 Qci. Security and Communication Networks,
2021.

[MBF+02] Ratul Mahajan, Steven M Bellovin, Sally Floyd, John Ioannidis, Vern Pax-
son, and Scott Shenker. Aggregate-based congestion control. Computer Com-
munication Review, 32(3), 2002.

[MHKS19] Philipp Meyer, Timo Häckel, Franz Korf, and Thomas C Schmidt. DoS
Protection through Credit Based Metering - Simulation-Based Evaluation for
Time-Sensitive Networking in Cars. Proceedings of the 6th International OM-
NeT++ Community Summit, 2019.

66

[NDR16] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. Time-Sensitive
Software-Defined Network (TSSDN) for Real-Time Applications. In Proceed-
ings of the 24th International Conference on Real-Time Networks and Sys-
tems, RTNS ’16, page 193–202, New York, NY, USA, 2016. Association for
Computing Machinery.

[NDR17] Naresh Ganesh Nayak, Frank Dürr, and Kurt Rothermel. Incremental flow
scheduling and routing in Time-Sensitive Software-defined Networks. IEEE
Transactions on Industrial Informatics, 14(5):2066–2075, 2017.

[OYN20] Mubarak Adetunji Ojewale, Patrick Meumeu Yomsi, and Borislav Nikolić.
Multi-level preemption in TSN: feasibility and requirements analysis. In 2020
IEEE 23rd International Symposium on Real-Time Distributed Computing
(ISORC), pages 47–55. IEEE, 2020.

[SLG18] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward Gen-
erating a New Intrusion Detection Dataset and Intrusion Traffic Characteri-
zation. 2018.

[SLHG19] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A Ghorbani.
Developing Realistic DDoS Attack Dataset and Taxonomy. IEEE, 2019.

[SM23] Denis Salopek and Miljenko Mikuc. Enhancing Mitigation of Volumetric DDoS
Attacks: A Hybrid FPGA/Software Filtering Datapath. Sensors, 23(17),
2023.

[SSTG12] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for intru-
sion detection. Computers & Security, 31(3):357–374, 2012.

[VYC05] Michail Vlachos, Philip Yu, and Vittorio Castelli. On periodicity detection
and structural periodic similarity. In International conference on data mining.
SIAM, 2005.

[WC92] Zheng Wang and Jon Crowcroft. Analysis of shortest-path routing algorithms
in a dynamic network environment. ACM SIGCOMM Computer Communi-
cation Review, 22(2):63–71, 1992.

[YCW22] Zihan Yu, Suzhi Cao, and Xin Wang. An Online Incremental Schedul-
ing Method for Time Sensitive Networks Combined with Routing. In 2022
7th International Conference on Intelligent Computing and Signal Processing
(ICSP), pages 934–939, 2022.

[ZWY+21] Yao Zheng, Shuo Wang, Shuwen Yin, Binwei Wu, and Yunjie Liu. Mix-flow
scheduling for concurrent multipath transmission in time-sensitive networking.
In 2021 IEEE International Conference on Communications Workshops (ICC
Workshops), pages 1–6. IEEE, 2021.

67

Acronyms

AGV automated guided vehicles.

AI artificial intelligence.

AOI attribute-oriented induction.

AS autonomous system.

ASN autonomous system number.

BE best-effort.

CNC centralized network configuration.

CPU central processing unit.

CR classification rate.

CUC centralized user configuration.

DDoS distributed denial of service.

DoS denial of service.

ECT equal cost tree.

FEF fill empty first.

FPR false positive rate.

GCL gate control list.

IIoT industrial internet of things.

ILP integer linear programming.

IoT internet of things.

IP internet protocol.

IS-IS intermediate station to intermediate station.

68

IT information technology.

LMP longest matching prefix.

MCN mission-critical network.

MILP mixed integer linear programming.

ML machine learning.

MSTI multiple spanning tree instance.

NFV network function virtualization.

OFP open flow protocol.

OT operations technology.

P4 programming protocol-independent packet processors.

PCE path computation element.

PCR path control and reservation.

PSA portable switch architecture.

PSFP 802.1Qci per stream filtering and policing.

QoS quality of service.

RL reinforcement learning.

SDN software-defined networking.

SPB shortest path bridging.

SRP IEEE 802.1Qat stream reservation protocol.

TAS IEEE 802.1Qbv time-aware shaper.

TCP transport control protocol.

TDMA time division multiple access.

TSN time-sensitive networking.

TSOR time sensitive optimal routing.

69

TT time-triggered.

UDP user datagram protocol.

VNF virtual network function.

70

Appendices

71

Copyright Notice
This appendix presents publications as originally published and reprinted with permission
from the corresponding publishers. The copyright of the original publications is held by the
respective copyright holders; see the following copyright notices.

• ©2021 IEEE. Reprinted, with permission, from N. Sertbaş Bülbül, D. Ergenç and
M.Fischer, SDN-based Self-Configuration for Time-Sensitive IoT Networks, Interna-
tional Conference on Local Computer Networks (LCN), 2021.

• ©2022 IEEE. Reprinted, with permission, from N. Sertbaş Bülbül, D. Ergenç, and
M.Fischer, Towards SDN-based Dynamic Path Reconfiguration for Time-sensitive Net-
working, IEEE/IFIP Network Operations and Management Symposium, 2022.

• ©2020 IEEE. Reprinted, with permission, from N. Sertbaş Bülbül and M. Fischer,
SDN/NFV-based DDoS Mitigation via Pushback, IEEE International Conference on
Communications (ICC), 2020.

• ©2022 IEEE. Reprinted, with permission, from N. Sertbaş Bülbül and M. Fischer,
Reinforcement Learning assisted Routing for Time Sensitive Networks, IEEE Global
Communications Conference (GLOBECOM), 2022.

• ©2023 IEEE. Reprinted, with permission, from N. Sertbaş Bülbül and M. Fischer,
Preemptive DoS attacks on Time Sensitive Networks, IEEE Global Communications
Conference (GLOBECOM), 2023.

72

Appendix A

Paper 1: SDN-based Self-Configuration
for Time-Sensitive IoT Networks

Abstract

The convergence of Information Technology (IT) and Industrial Operations Technology (OT)
results in efficient network management solutions for automotive and industrial automation
environments. However, configuring real-time Ethernet networks while maintaining the de-
sired QoS is challenging due to the dynamic nature of OT networks and the high number of
configuration parameters. This paper introduces a Software-Defined Network (SDN)-based
self-configuration framework for the time-sensitive networks (TSNs). Unlike standard TSN,
we remove end-host-related dependencies and put streams initially on default paths to ex-
tract traffic characteristics by monitoring network traffic at edge switches. Communicated to
a central SDN controller, these characteristics allow moving streams to optimal paths while
maintaining hard real-time guarantees, for which we also formulate an optimization problem.
According to the results, although the proposed approach increases the average delay of crit-
ical frames by less than 1%, a certain level of real-time guarantee can be provided without
prior knowledge of the streams.

Reference

Nurefşan Sertbaş Bülbül, D. Ergenç, M. Fischer. SDN-based Self-

Configuration for Time-Sensitive IoT Networks. IEEE 46th Conference

on Local Computer Networks (LCN), 2021. ©2021 IEEE.

Contribution

In the forementioned publication, the contributions of this thesis are designing the whole
framework, implementing a simulation model, and evaluating the overall proposal. The second
co-author modeled and implemented the optimization model (TSOR) and its complexity analysis
and integration into the self-configuration framework. The third co-author helped improve the
paper’s quality with his valuable feedback.

73

SDN-based Self-Configuration for
Time-Sensitive IoT Networks

Nurefşan Sertbaş Bülbül , Doğanalp Ergenç, Mathias Fischer
Department of Computer Science, University of Hamburg, Germany

Email:{sertbas, ergenc, mfischer}@informatik.uni-hamburg.de

Abstract—The convergence of Information Technology (IT)
and Industrial Operations Technology (OT) results in efficient
network management solutions for automotive and industrial au-
tomation environments. However, configuring real-time Ethernet
networks while maintaining the desired QoS is challenging due
to the dynamic nature of OT networks and the high number
of configuration parameters. This paper introduces a Software-
Defined Network (SDN)-based self-configuration framework for
the time-sensitive networks (TSNs). Unlike standard TSN, we
remove end-host-related dependencies and put streams initially
on default paths to extract traffic characteristics by monitoring
network traffic at edge switches. Communicated to a central SDN
controller, these characteristics allow moving streams to optimal
paths while maintaining hard real-time guarantees, for which
we also formulate an optimization problem. According to the
results, although the proposed approach increases the average
delay of critical frames by less than 1%, a certain level of real-
time guarantee can be provided without prior knowledge of the
streams.

Index Terms—self-configuration, time-sensitive networks, soft-
ware defined networking, network management

I. INTRODUCTION

The advent of Industry 4.0 and the Industrial Internet of
Things (IIoT) enable new manufacturing scenarios that in-
clude advanced robotics, artificial intelligence, smart sensors,
and cloud computing. In such scenarios, control of physical
processes assumes a time- and safety-critical (and therefore
guaranteed) delivery of messages. The IEEE 802.1 working
group has proposed time-sensitive networking, TSN, standards
to empower regular switched Ethernet with real-time (RT)
capabilities. As a result, TSN enables the coexistence of criti-
cal time-sensitive and traditional Ethernet traffic with various
QoS classes, such as low priority and best effort (BE). It
also offers a wide range of functions for RT systems, such
as time synchronization, reliability, scheduling, and network
management.

In TSN, the management and configuration of a network
are described in the IEEE 802.1Qcc stream reservation pro-
tocol (SRP) standard [3]. SRP specifies how to schedule
a time-sensitive stream by allocating the required network
resources. Moreover, the standard defines alternative network
configuration and management schemes that leverage SRP.
Several studies are suggesting that complementing the TSN
with a networking concept such as software-defined networks,
SDN, is a beneficial configuration solution [4], [5], [18]. With
additional protocols (e.g., Netconf and Openflow), SDN allows
for instant configuration of routes and transport schedules

based on a central control plane [10]. It also allows split up
flows for transmission on multiple paths for load-balancing,
using the available bandwidth more efficiently, and making
network-wide configurations such as time-synchronization.

However, the proposed configuration schemes rely on the
active participation of end hosts to communicate service
features and communication requirements to a centralized or
decentralized management component. This approach requires
the manual configuration of highly heterogeneous edge hosts
to demand the necessary resources from the network. It can
be edge hosts, low-power sensors and actuators, entire cyber-
physical systems, or robots that may or may not support the
required TSN registration protocols. For large systems and
many connected end hosts, even with SDN, their configuration
can be cumbersome and requires ongoing maintenance. There-
fore, we believe that plug-and-play self-configuration can help
adopt existing TSN protocols for future networks and devices.
However, the self-configuration of TSN networks is not part
of the current standards.

The main contribution of this paper is a novel SDN-based
self-configuration approach for TSN networks in IoT scenar-
ios. In our approach, end-hosts do not need to be TSN-aware,
and they obtain the required network resources transparently.
With that, we eliminate the talker responsibility of propagating
new traffic parameters each time. That eases the configuration
specifically for highly dynamic environments with a large
number of hosts. Accordingly, our contributions are:

• We introduce a self-configuration approach on the basis
of SDN for TSN networks and this at the expense of
marginal additional delay for the routing of streams.

• We formulate the time-sensitive optimal routing (TSOR)
model as a mixed-integer linear programming (MILP)
model. TSOR considers the optimal routing problem
together with the service-based stream configuration re-
garding the main characteristics of TSN.

• We propose a learning component that detects traffic
characteristics and eases the SRP process for various
scenarios.

• We evaluate our approach via realistic OMNet++ simula-
tions. Our evaluation results indicate that we can extract
related traffic parameters in near real-time. That results
in a slight increase in end-to-end delay only for less than
1% of time-triggered (TT) traffic.

The remainder of this paper is structured as follows: Section

II summarizes related work on TSN stream registration. Sec-
tion III describes current TSN configuration approaches. In
Section IV, we introduce our overall architecture. We evaluate
our approach and describe our simulation results in Section
V. Finally, Section VI concludes the paper and summarizes
future work.

II. RELATED WORK

In this section, we present the literature survey on the
configuration of TSNs. Offline scheduling approaches as in
[13] statically allocate network resources for the given com-
munication patterns, e.g., TT traffic. That approach works
in specific scenarios, e.g., automotive systems, where the
communication streams are already known at design time.
However, to meet the high priority QoS requirements of future
industrial networks, dynamically routing packets depending on
the current state, e.g., switch workloads, requires a dynamic
configuration, including a dynamic resource allocation.

For TSN, a configuration of the network resources to
transfer TT traffic is described in IEEE 802.1Qcc [3] on
the architectural level. Due to lack of concrete specification,
the authors of [6] propose a configuration architecture named
Software-Defined Flow Reservation based on OpenFlow pro-
tocol. However, they only describe the essential components
as proof of concept to manage network resources in RT and
register time-sensitive streams while routing and scheduling
mechanisms are left out of scope. In [12], a generic concept
for secure and time-sensitive communication in industrial net-
works is described. Similar to [6], there is no further evaluation
or the details of implementation. Besides, the configuration of
the RT traffic is left as an open issue.

In [8], a stream-specific bandwidth and buffer capacity
reservation mechanism is proposed. Global knowledge of the
controller is used in routing to compute an appropriate network
configuration. They also simplify the end-hosts by removing
clock synchronization and employ a time-division multiple
access mechanism. However, their MILP-based path-finding
approach is too complex to deliver results in RT. In [16], a
combined routing and scheduling algorithm is proposed for
incrementally adding or removing time-sensitive streams at
runtime. The approach schedules transmission at the edges,
which requires only limited schedule updates. While it does
not require any configuration on switches, it assumes that hosts
have proper clock synchronization and are involved in the
scheduling process.

These studies mainly focus on TT traffic under significant
assumptions such as having apriori information about the
traffic and TSN-aware clock synchronized hosts. Authors in
[9] propose a concept of a configuration agent including a
monitor, an extractor, and a scheduler component to make
RT switches self-configurable. However, they consider only
TT traffic and left sporadic traffic as future work. Also, they
propose an abstract end-to-end architecture and do not evaluate
the overall system.

III. BACKGROUND ON IEEE 802.1QCC

In TSN, the configuration starts at end-hosts named talkers
and listeners, the source and destination nodes. A talker sends
its specific traffic requirements to the edge switch to request
network resources and scheduling. Then, this switch either (i)
computes the required resources and schedules for the related
traffic and forwards the request to other switches or (ii) directly
forwards the request to a central controller that can configure
all the switches on the path towards the listener accordingly.
Afterward, the talker starts sending frames to the network.

In the rest of this section, the background information on the
TSN configuration models is given, including the description
of the models, user configuration parameters, and the stream
reservation protocol.

A. TSN Configuration Models

In the current standard, three configuration schemes are
described at the architectural level.

In the fully distributed model, an end-host communicate
with the edge switch to declare its traffic requirements, and the
switch forwards the requirements to the other core switches in
the network (See Fig. 1-a). Here, switches are not configured
by a central entity but in a distributed manner with their
local knowledge. Such a configuration is not suitable for
mechanisms that require collaboration between bridges, e.g.,
scheduling via time-aware shapers [2].

In the centralized network/distributed user model, user
configuration is still distributed, and edge switches share re-
quirements of the end-hosts with a central entity named central
network configuration (CNC) instead of propagating them
through other switches (see Fig. 1-b). Since some scenarios,
such as gate configuration at the switches, require network-
wide knowledge and high computational power, CNC offers

Talker Listener

Talker

Centralized User
Configuration

Centralized Network
Configuration

Listener

Talker

Centralized Network
Configuration

Listener

Management User/Network Conf Info

(a)

(b)

(c)

Fig. 1: TSN configuration models.

a better configuration with its global knowledge and higher
computational capabilities than forwarding plane elements.

In the fully centralized model, both user and network
configurations are centralized by centralized user configuration
(CUC) and CNC (see Fig. 1-c). End-hosts communicate
directly with the CUC for requirement declaration. Unlike the
previous models, the CUC configures the end-hosts, and this
also involves further interaction with the end-hosts. In this way,
packet transmission schedules of the end-hosts are configured,
which might be required to satisfy strict timing requirements.

Regardless of the model, there are two types of config-
uration information exchanged between end-hosts and the
network; talker/listener request and status as a reply. The
talker/listener request includes several fields such as transmis-
sion parameters (e.g., max frame size and frame interarrival
time) and stream identifier. A reply message contains status
information such as related StreamID, the status of the current
stream configuration, and failure information if a failure exists.

B. Stream Reservation Protocol
SRP is an extension of the IEEE 802.1Q standard that

describes how to manage resource reservations in LANs [3].
It defines how to specify and propagate talker registrations
through the network with guaranteed QoS. SRP runs at bridges
by recording relevant information about the connected end-
hosts, such as communication latency between a talker and a
listener and current stream registrations. The bridges use such
information to provide guaranteed QoS for the TSN streams.

SRP can be used in a centralized and a distributed manner
as defined in [3]. A distributed model only helps to configure
a limited number of parameters with the local information
in a switch. In the centralized model, SRP can be used to
communicate between the talker/listener and CNC. Initially,
the talker requests the required bandwidth resources for a
stream. As long as there are sufficient bandwidth resources
on a selected path for the stream, that capacity is allocated for
the related stream, and the switches are configured accord-
ingly. SRP also enables talkers/listeners to join later or leave.
However, it requires direct messaging between the end-hosts
and the switches.

As mentioned, SRP requires the active involvement of the
end-hosts through that resource reservation process. Here,
our goal is to remove such end-host-related dependencies.
Accordingly, in the next section, we present our TSN self-
configuration approach in detail.

IV. TSN SELF-CONFIGURATION APPROACH

In this section, we introduce our SDN-based dynamic self-
configuration approach for TSN that we name SC-TSN. In SC-
TSN, we remove end-host-related dependencies of standard
TSN in which hosts need to actively communicate their traffic
requirements. Instead in SC-TSN, edge-switches automatically
learn traffic characteristics by routing streams via default paths
first and then migrating them once the characteristic is known.

In the remainder of this section, we first describe the
overall framework, then we explain how we extract traffic
characteristics, and how we compute paths for TSN streams.

OPCE

CNC

Monitoring

(i)
Local

Learning

Traffic
parameters

Path
Configuration

TED

RE

Talker

Optimized
Paths

DPCE Default
Paths

(ii)

(iii) (iv)

Fig. 2: Overall system architecture.

A. SC-TSN Overall System

We follow the distributed user and centralized network
configuration model for our system design as shown in Fig. 2.
In contrast to standard TSN, end-hosts directly start commu-
nicating via the edge switch (i) and the edge switch extracts
traffic characteristics seamlessly (ii). Here, switch treats the
traffic like low priority traffic until the traffic characteristics
are extracted. Then, the extracted characteristics are forwarded
to the SDN-enhanced CNC (iii). The global network view of
the CNC enables highly optimized flow assignments and a
fast response to varying demands. For that, the CNC computes
paths and installs the required flow rules (iv).

All streams are initially perceived as BE traffic unless
otherwise is declared, e.g., pre-configuration might still be
necessary for safety-critical applications. Then, these streams
are forwarded via the default paths without resource reserva-
tion until we have successfully obtained their characteristics
(see Section IV-B). A default path is defined as a path
with sufficient link capacity for immediate and temporary
use but not necessarily optimal. With that, we decrease the
configuration delay until an optimal path is being found.
Such paths are computed in the background by the Default
Path Computation Element (DPCE) (see Section IV-C). The
required information for computing paths such as network
topology and current network status, e.g., link utilization, is
obtained via the Monitoring Module. It collects OpenFlow
statistics from the data plane and stores them in the Traffic
Engineering Database (TED). Then, DPCE uses this informa-
tion to compute paths based on the current network status.

In the meantime, the edge switch analyzes the received
streams to learn their traffic characteristics and derive their
resource and scheduling requirements. For that, we empower
edge switches with learning capabilities to extract the traffic
patterns such as the frame period p and the maximum frame
interarrival time pmax . Suppose the stream is classified as TT
after a certain time. In that case, the Optimal Path Computation
Element (OPCE) computes an optimal path for that stream
on the fly by solving the optimization model TSOR (see
Section IV-D). Then, the stream is migrated to the new path
via the reconfiguration element(RE). We also monitor streams

in the aftermath to ensure that they still transmit with the
extracted traffic parameters. When the characteristics of a
stream change, we calculate the deviation from the previously
extracted period, restart the learning procedure, and update the
configuration, which might induce another stream migration.

Note that SC-TSN does not intend to replace the existing
SRP mechanism completely. Instead, it is a hybrid mechanism
compatible with the current standards. Even though SC-TSN
does not presume information about stream characteristics,
we might still use an SRP-like stream registration to de-
clare end-host requirements directly. Since switches support
802.1Q priority levels, such a configuration can be used to
ensure a certain level of service guarantee for highly critical
applications. SC-TSN is helpful for less critical application
scenarios that generate sporadic traffic, e.g., BE or event-
triggered (ET), which starts at an arbitrary time. Even though
abruptly changing traffic patterns in critical systems is not
very common, hosts can change their traffic behavior during
runtime. With SC-TSN, we could directly handle such changes
dynamically without waiting for further end-host declarations.
Thus, SC-TSN helps to configure small to large-scale systems
where different traffic types such as cyclic/periodic (e.g.,
signal transmission) or acyclic/sporadic (e.g., event-driven) can
coexist.

B. Learning Traffic Parameters

As explained previously and according to the TSN stan-
dards, the talker informs the network controller about its traffic
requirements before the actual communication starts. That
requirement specification includes frame size and interarrival
time of the frames, which are used to allocate the required re-
sources. In contrast, in SC-TSN the edge switches learn traffic
parameters by observing the traffic at the network’s ingress.
These edge switches are enhanced by learning capabilities to
analyze receiving traffic to extract related parameters. Since
we try to learn traffic characteristics at the edge, we do not
need to consider interference from other traffic as in switch-
to-switch links. However, we still need an intelligent solution
here instead of getting the average interarrival time as a period.

In the signal processing literature [7], [17] analyzing se-
quences in the frequency domain with Fourier transformation
and autocorrelation for periodicity detection is widely used.
The Fourier transformation works well for short periods, but
may generate many false positives. Thus, the authors of [19]
combine Fourier transformation and autocorrelation to detect
both short and long periods. In this paper, we use this approach
for learning the necessary TSN stream characteristics.

We record the arrival time of the frames for each stream
and then try to find the period in the frequency domain.
For that, we first transform observations to a time sequence
xt = xt1 , xt2 , ...xtn where xtk = 1 means that a frame
arrived at tk. Then, we look at the signal power spectral
density by computing the discrete Fourier transform to iden-
tify the frequencies that carry most of the energy. In other
words, the power spectral density analysis can discover the
most dominant periods. These periods are then validated with

Fig. 3: Period extraction for a sample sequence.

autocorrelation. In that phase, if the candidate period stays
at the valley of the autocorrelation function, it is interpreted
as a false alarm and is discarded. Otherwise, it is considered
a valid period. The period extraction steps are illustrated in
Fig. 3. As can be seen from the power spectrum, there are
several period candidates that need to be further analyzed by
autocorrelation. The periods that stay at the hill (as seen in
the autocorrelation plot) are verified as an exact period. When
the Learning Module detects this period, it triggers the OPCE
to compute the optimal paths for the extracted parameters.

C. Default Path Computation

To compute default paths for low priority streams, we use
a link-utilization-based shortest path algorithm. Furthermore,
we use dynamic link weights that the SDN controller updates
based on the current link utilization.

To increase the stability of the forwarding tables and limit
path changes, we follow the methodology proposed by [20].
We summarize this methodology in pseudo code in Algo-
rithm 1. For each link, we map the current link utilization,
ui, to the link weight, Wn

i , via a linear weight mapping
function f . Due to the used mapping function, the link weights
remain fixed for low utilization values, which keeps the routing
overhead low. Then, we compute the weighted average of the
last three-link weights, Wnew

i . We only update the link weight
if the change exceeds the threshold, e.g., θ = 20% of its

Algorithm 1: Link Weight Update Process
Current link utilizations U ← [u1, u2, u3, ...uk]
foreach ui ∈ U do

Wn
i = f(ui)

Wnew
i = α1W

n
i + α2W

n−1
i + α3W

n−2
i

if (Wnew
i −Wn−1

i) ≥ θ then
Wn

i ← set to Wnew
i

else
Wn

i ← set to Wn−1
i

previous value. Finally, we compute the shortest paths with
the updated link weights.

With that, DPCE can dynamically update link weights and
computes new paths with the shortest path algorithm. In case
of path changes, it will send new flow rules to update the flow
tables of the related switches. Then, these paths are stored to
be used for low-priority streams.

D. Optimal Path Computation

By utilizing the Learning Module and DPCE, our system
can extract the traffic characteristics of an incoming stream at
edge switches. Depending on the link utilization, it selects the
default paths to deploy low priority streams, which does not
always require to assign them to their optimal paths.

However, high-priority streams with strict timing require-
ments cannot be assigned to the default paths as it might result
in missing deadlines. Once a stream is classified to have a high
priority, its extracted parameters are passed to the OPCE to
compute the optimal path. Accordingly, we formulate TSOR
as a MILP model to be used by OPCE as an optimization
framework to migrate high-priority streams to suitable paths
regarding their time-sensitive requirements.

Using the model, we find (i) end-to-end paths for given
demands under different QoS requirements within limited
network resources and (ii) gate configurations for each switch
that minimizes the overall end-to-end communication latency.
The gate configuration is the primary mechanism of the core
TSN protocol, IEEE 802.1Qbv Time-aware Shaper (TAS)
that ensures end-to-end deterministic communication via strict
time-division scheduling for the streams of different QoS
classes [2], [15]. In TAS, on each (egress) port of a switch,
there are eight priority queues that store frames of streams
with different priorities, including best-effort, before they are
forwarded to the destination. Each queue is controlled by
a gate to forward a frame. When a gate is open, the next
frame in the respective queue is sent at a given time. Eight
gates corresponding to the eight priority classes are configured
by a gate driver via a gate control list (GCL) that decides
which gate(s) should be open at which time. This mechanism
overall constitutes a frame-forwarding schedule with respect
to the priority classes to satisfy strict timing requirements.
Eventually, the gate configuration is the prominent feature
of the optimization model that enables to derive port-based
flow assignment regarding capacity and delay requirements
and combines the routing problem with the characteristics of
TSN.

In TSOR, we utilize two optimization variables. xdp is a
binary variable to decide if demand d ∈ D is assigned to
directed path p ∈ Pd. Here, each d is defined between a talker
and a listener, where D is the set enumerating all demands.
Accordingly, Pd represents the set of paths computed between
those two particular end-points. ges, is a continuous variable
defined within [0, 1] and represents the frequency of an open
gate on the egress port of link e ∈ E for the service class
s. Thus, ges specifies the priority given to service class s on
a directed link e. While ges = 1 infers that the gate for s

should be open all the time and the capacity of the entire link
e is used for that type of demands, ges ≈ 0 means that any
demand of service type s is not active at all on the respective
port and thus, the gate is closed. Otherwise, the respective
gate for the service class s on link e is open as proportional
to 0 < ges < 1. From this perspective, ges is affected by
the total required resources for the demands of service type s
as the available capacity, e.g., bandwidth, of e is distributed
among those demands according to their service type. Note
that each demand is associated with a service class according
to the evaluation of the Learning Module.

The constraints and the objective function of TSOR are
described below.

∑

p∈Pd

xdp = 1 ∀d ∈ D (1)

Constraint (1) is defined to ensure that each demand d ∈ D
is assigned to exactly one path p ∈ Pd. Note that we assume
here that all flows are non-bifurcated, e.g., not divided into
multiple paths.

∑

d∈D

∑

p∈Pd

xdpαephd ≤ ce ∀e ∈ E (2)

Constraint (2) is the link capacity constraint and guarantees
that each link e has sufficient capacity ce to handle the total
load hd of all demands d ∈ D assigned to any path p having
e, s.t. αep = 1.

∑

s∈S
ges = 1 ∀e ∈ E (3)

Constraint (3) represents the configuration of the gate control
list of e for each class of service s. As the gates, i.e., enabling
queues of an egress port, share limited link resources, only a
set of them can be practically open at the same time. Here, a
gate for class s is decided to be open on link e as proportional
to the value of ges.

∑

p∈Pd

∑

e∈E
xdpαep

[
loe + lqe(1− ges)

]
≤ ld ∀d ∈ D (4)

Constraint (4) is the latency constraint to ensure that the
end-to-end latency on path p is always below the latency
requirement of demand d, which is ld. Considering that s is the
service class of d, the gate configurations ges for that service
class through the all link e belongs to path p, s.t. αep = 1,
impacts the end-to-end latency. Note that while higher values
of ges positively impact the latency at link e as it enables
the traffic of service type s more often, smaller ges causes
an increased latency due to queueing delay in the respective
gate. Accordingly, we add the delay factor lqe to proportion
1− ges and to represent the queueing delay. Apart from that,
a base delay loe representing the port and link characteristics,
e.g., packet processing and propagation delay, is considered
for each link. While those design parameters, lqe and loe , can
be set according the system and network properties, we use

lqe = 0.5 and loe = 1.0 in our simulations.

ges −
∑

d∈D

∑

p∈Pd

xdpαep
hd
ce
≥ 0 ∀e ∈ E,∀s ∈ S (5)

Constraint (5) forces ges to be proportional to the total traffic
load of service type s forwarded through the link e. Otherwise,
it would lead to packet drops due to the congestion.

xdp ≥ adp ∀d ∈ D,∀p ∈ Pd (6)

Lastly, constraint (6) fixes the demands that are already
assigned to a certain path p, i.e., adp = 1. Using adp,
TSOR can assign incoming demands incrementally without
violating a potential set of already-assigned demands. adp is
given as input to the problem. Note that although keeping
the previous demands fixed before allocating a new demand
reduces the flexibility of routing, it is essential to have a
stable configuration scheme, especially for the critical and
high-priority demands. That is, reconfiguring the network
also has a certain cost, e.g., delay for migrating demands,
sending control packets to the switches, and can hinder the
deterministic communication requirements. The evaluation of
that cost might be critical for real deployments, but it is out
of the scope of this paper.

min
∑

d∈D

∑

p∈Pd

∑

e∈E
xdpαep

[
loe + lqe(1− ges)

]
(7)

Our objective function (7) minimizes the overall latency of
the selected paths, which is calculated similar to the latency
constraint (4).

Regarding the complexity, TSOR has O(|D||P |+ |E|) op-
timization variables where the number of paths is proportional
to the total number of links |E|. Note that even though ges
depends on the number of service classes |S|, it is fixed
to eight at the TSN context and thus, we assume that as
a constant. In terms of the number of constraints, TSOR
is bounded by O(|D||P | + |E|) constraints with the same
assumption on the number of services.

Another important complexity issue of TSOR is the lin-
earization of non-linear constraints and the objective function.
The model with all linear equations makes the problem more
convenient to be solved by state-of-the-art linear optimization
tools. Therefore, we linearized the multiplication of a binary
variable xdp and non-binary variable ges in the constraint (4)
using McCormick envelopes [14] introducing some additional
complexity.

V. EVALUATION

This section evaluates SC-TSN and compares it to a TSN
configuration with SRP for varying traffic load and topology
sizes. First, we explain the evaluation setup and metrics. Then,
we summarize our evaluation results.

A. Experimental Setup

We implemented SC-TSN in OMNeT++ v5.5.1 using its
INET framework and extending the SDN4CoRE framework
[10]. SDN4CoRE enables to configure both SDN and TSN
capable switches. We developed four applications: OPCE,
DPCE, Monitoring, and the switch learning module. To find
the optimal path assignment for streams, we implemented the
TSOR presented in Section IV-D in CPLEX 12.7.0.

In our experiments, we used three real-world network
topologies from the Topology Zoo dataset: Getnet, Integra, and
Garr201001 as summarized in Table I [11]. A given topology
node is mapped to an edge switch with learning capabilities
if its node degree is smaller than the average node degree and
as a backbone switch otherwise. We assumed that end-hosts
are connected only to edge switches.

Since different service classes (e.g., TT and BE) can coexist
in the same TSN network, we generated mixed traffic scenarios
for a comprehensive evaluation. For TT traffic, we uniformly
selected talker-listener pairs whose packet sending periods
are chosen uniformly between 2-20 ms as stated in [1]. We
initiated the TT traffic at different time instances and set the
fixed frame size as 1522 bytes as in [10]. For BE traffic, we
use the same packet size (i.e., 1522 byte) and exponentially
distributed packet interarrival times [15]. We set the same
packet generation rate at each BE traffic source and configured
them to start transmission at the beginning of the simulation.
We also set our simulation time to 50 seconds and statistic
collection period to 2 seconds for link weight updates. The
results are given with a 95% confidence interval.

We compare our approach with SRP, which is explained
in Section III-B. In SRP, everything is given, and all the
conditions for an optimal deployment are already there before
the actual communication starts. Thus, it is the ultimate
competent for SC-TSN. Since SC-TSN needs sufficient time
to extract traffic behavior with confidence, we want to show
that frames handled during that phase will not suffer from
significantly increased latencies. For that, we use the following
metrics:

• End-to-end (E2E) latency: The latency of frames until
they reach their destination.

• Delayed TT frame rate: The ratio of TT frames whose
E2E latency is larger than its period to the total frames.

• Classification rate (CR): The ratio of correctly classified
TT and BE frames to the total frames.

• The true negative rate (TNR): The ratio of correctly
classified BE frames.

TABLE I: Topologies used in simulation.

Metrics \ Networks Getnet Integra Garr201001
Average node degree 2.29 2.67 2.52
of edge switches 4 16 38
of backbone switches 3 11 16
of edges between switches 8 36 68
of hosts per switches 10 5 2
Total number of nodes 47 107 130

Fig. 4: Classification performance of the learning module.

B. Results

In this section, we first summarize our results on the
performance of the learning module at edge switches. Then,
we compare SC-TSN with the SRP-based configuration in
terms of the end-to-end latency.

1) Performance of learning traffic parameters: We eval-
uated the classification performance of our learning module
for BE and TT traffic under different BE loads. For that, we
kept the same TT streams for each experiment and varied the
interarrival time of BE frames, and measured CR and TNR.
Fig. 4 shows the accuracy independent of the interarrival time
of BE frames. The results indicate that we can classify in
between 99.52% and 99.85% of TT and BE frames correctly.
We also see that the TNR is between and 94.84% and 99.52%
for different rates of BE traffic. For light BE load, e.g., when
the mean of BE traffic is 1000ms, we can classify almost
all BE streams correctly. However, when the interarrival time
decreases, our learning approach starts to classify BE frames
as TT. We run these experiments directly in the simulation
environment because even though we use the same traffic
loads, different factors such as queuing delays affect the
frames’ arrival time.

To sum up, our results indicate that the BE classification
rate does not change significantly with an increasing load. In
case of the misclassification of BE traffic as a TT, we use the
optimal paths instead of the default ones. This may decrease
the E2E latency of BE frames. However, the misclassification
of TT traffic around 0.5% does not significantly affect E2E TT
latency because only the first few frames of each TT stream
are misclassified. In that case, only those frames are sent via
the preconfigured default paths.

TABLE II: E2E latency of TT frames for varying BE load.

SRP SC-TSN
Mean BE

traffic
Mean
[ms]

Max
[ms]

Mean
[ms]

Max
[ms]

10ms 1.31 10.52 1.35 17.30
20ms 1.30 4.31 1.32 11.44
50ms 1.29 2.67 1.30 8.08
100ms 1.29 2.48 1.30 6.24

1000ms 1.29 2.47 1.29 5.80

Fig. 5: Delayed TT frame rate.

2) Impact of learning on the delivery performance: We
measure how the delay of TT streams is affected by an
increasing BE traffic. We used the Integra topology and set
the number of TT streams to half of the number of nodes
and BE streams to half of the number of the TT streams.
Then, we repeated the experiment for different interarrival
times (µ) of the BE frames, from 10ms to 1000ms as in Table
II. We measured the latency and the delayed frame rate. As
expected, SRP and SC-TSN are quite close; they have nearly
the same average and minimum TT latency values. Since we
use stream priorities at the switches, the average latency of
the TT frames is not significantly affected by the increasing
load of the BE traffic. However, we observe an increase in
the maximum latency. Our approach has a higher maximum
latency than SRP because of the learning process. Before the
extraction of the exact period, the received frames are routed as
low priority traffic; if otherwise is not preconfigured, and send
via the default routes. Therefore, they might be significantly
delayed. To check this, we measure the delayed TT frame rate,
as seen in Fig. 5 and we observe that SC-TSN has a higher
delayed frame rate as expected.

Our learning module may classify BE frames as high pri-
ority and send over optimal paths as explained previously. We
see that SC-TSN has lower BE latency than the SRP between
10 ms to 50ms. Even though it seems like the BE classification
rate increases in that interval (see Fig. 4), the number of BE
frames is also increasing. In contrast, the number of TT frames
remains the same. Thus, the effect of misclassified BE frames
becomes more visible and we observe lower BE latency in
SC-TSN, as shown in Table III.

Lastly, we measure how TT frames are affected by network

TABLE III: E2E latency of BE frames for varying BE load.

SRP SC-TSN
Mean BE

traffic
Mean
[ms]

Max
[ms]

Mean
[ms]

Max
[ms]

10ms 1.57 119.85 1.54 121.24
20ms 1.56 121.2 1.55 121.50
50ms 1.45 115 1.45 118.28
100ms 1.38 102.1 1.36 101.1

1000ms 1.38 73.77 1.36 72.57

Fig. 6: Performance comparison for varied sized topologies.

topologies of different sizes as given in Table I. As in
the previous experiments, we set the number of TT streams
proportional to the number of nodes in the network. Thus,
we have 23 TT and 11 BE sources in Getnet, 53 TT and
26 BE sources in Integra, and 65 TT and 32 BE sources in
Garr201001 topologies. Fig. 6 shows that the time for solving
the optimization problem does not significantly affect the E2E
latency for small topologies such as Getnet. However, for
medium- and large-size topologies, Integra and Garr201001
in our setup, we observe that the latency increases quickly.
A critical finding at that experiment is that the latency of TT
and BE frames converges in the larger topologies since the
solution time of the optimization problem increases with the
topology size.

VI. CONCLUSION

Configuration of TSN is a challenging task and requires
considerable engineering efforts. Although the alternative con-
figuration schemes have been introduced in the IEEE 802.1Qcc
standard, the self-configuration of TSN is not covered. This
paper proposes an SDN-based hybrid self-configuration frame-
work for the TSN networks, SC-TSN, in accordance with
the plug-n-play nature of Ethernet networks. In that sense,
end-hosts do not need to declare their traffic requirements
in advance. Instead, the SC-TSN adapts itself to the stream
traffic requirements and reserve the required resources for
routing the data traffic. SC-TSN also allows for an SRP-like
stream registration procedure via the SDN Northbound API for
highly critical traffic. Experiments indicate that SC-TSN can
successfully detect traffic characteristics with an over 97.85%
classification rate. Moreover, it does achieve results close to
SRP with a minimal increase in the E2E latency and the
delayed frame rate.
guarantee bounded latency. However, the configuration of gate

As explained in [2], bounded latency for TT frames can be
assured by configuring which 802.1Q priorities are allowed
to pass through a particular port at a specific time. Other-
wise, E2E latencies are negatively affected by each traversed
switches’ queuing delays on the multi-hop routes. Since we
do not use time-aware gates at switches, it is challenging to

control lists is possible with the SDN, as shown in [10]. As
we consider the gate configuration in our optimization model,
TSOR, it is also a valuable future work to extend our whole
design, including gate-configuration features.

As a part of future work, we plan to examine the perfor-
mance of SC-TSN with more comprehensive scenarios where
the traffic patterns are dynamically change and eventually
triggers re-routings much more often. Also, evaluating SC-
TSN in network failure scenarios requiring sudden route
changes could be another possible study.

REFERENCES

[1] “Time sensitive networks for flexible manufacturing testbed -
description of converged traffic types.” [Online]. Available: https:
//www.google.com/url?sa=t%2C

[2] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” pp. 1–57, 2016.

[3] “IEEE standard for local and metropolitan area networks–bridges and
bridged networks - amendment 31: Stream reservation protocol enhance-
ments and performance improvements,” 2018.

[4] J. L. Du and M. Herlich, “Software-defined networking for real-time
ethernet,” ICINCO, 2016.

[5] M. Ehrlich, D. Krummacker, C. Fischer, R. Guillaume, S. S. P. Olaya,
A. Frimpong, H. de Meer, M. Wollschlaeger, H. D. Schotten, and
J. Jasperneite, “Software-defined networking as an enabler for future
industrial network management,” in ETFA. IEEE, 2018.

[6] T. Gerhard, T. Kobzan, I. Blöcher, and M. Hendel, “Software-defined
flow reservation: Configuring ieee 802.1 q time-sensitive networks by
the use of software-defined networking,” in ETFA. IEEE, 2019.

[7] R. Gove and L. Deason, “Visualizing automatically detected periodic
network activity,” in VIS. IEEE, 2018.

[8] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time QoS with
software defined networking,” in CloudNet. IEEE, 2014.

[9] M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat, “A configuration
agent based on the time-triggered paradigm for real-time networks,” in
IEEE WFCS, 2015.

[10] T. Häckel, P. Meyer, F. Korf, and T. Schmidt, “SDN4CoRE: A simulation
model for software-defined networking for communication over real-
time ethernet,” in International OMNeT++ Community Summit, 2019.

[11] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” JSAC, 2011.

[12] T. Kobzan, S. Schriegel, S. Althoff, A. Boschmann, J. Otto, and
J. Jasperneite, “Secure and time-sensitive communication for remote
process control and monitoring,” in ETFA. IEEE, 2018.

[13] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees for
real-time systems using SDN,” in RTSS. IEEE, 2017.

[14] G. P. Mccormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems,”
Math. Program., 1976.

[15] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Performance comparison of IEEE
802.1 TSN time aware shaper and asynchronous traffic shaper,” IEEE
Access, 2019.

[16] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software defined networks,” IEEE Trans-
actions on Industrial Informatics, 2017.

[17] T. Puech, M. Boussard, A. D’Amato, and G. Millerand, “A fully auto-
mated periodicity detection in time series,” in International Workshop
on Advanced Analysis and Learning on Temporal Data. Springer, 2019.

[18] S. Schriegel, T. Kobzan, and J. Jasperneite, “Investigation on a dis-
tributed SDN control plane architecture for heterogeneous TSNs,” in
WFCS. IEEE, 2018.

[19] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and struc-
tural periodic similarity,” in International conference on data mining.
SIAM, 2005.

[20] H. Wang and M. R. Ito, “Dynamics of load-sensitive adaptive routing,”
in ICC. IEEE, 2005.

Appendix B

Paper 2: Towards SDN-based Dynamic
Path Reconfiguration for Time-sensitive
Networking

Abstract

Future networks will need to support a large number of low-latency flows. In time-sensitive
networks (TSN), paths for data flows are usually established at startup time of an application
and remain untouched until the flow ends. There is no way to migrate existing flows easily to
alternative paths without inducing significant additional delay or wasting resources. There-
fore, the resource-utilization of TSN might degrade over time leading to a sub-optimal flow
assignment. In this paper we address this problem by combining Software-defined Networking
(SDN) that provides better control on network flows with TSN to be able to seamlessly mi-
grate time-sensitive flows. We propose a SDN-based dynamic path reconfiguration algorithm
for accommodating TSN flows and formulate it as optimization problem. By exploiting the
control plane’s global view, we evaluate different dynamic path configuration strategies under
deterministic communication requirements. Our simulation results indicate that reconfiguring
the flow assignments from time to time can improve the latency of time-sensitive flows and
can increase the number of flows embedded in the network in worst-case scenarios.

Reference

Nurefşan Sertbaş Bülbül, D. Ergenç, M. Fischer. Towards SDN-based

Dynamic Path Reconfiguration for Time-sensitive Networking. IEEE/I-

FIP Network Operations and Management Symposium, 2022. ©2022 IEEE.

Contribution

In the forementioned publication, the contribution of this thesis is to propose the overall idea,
implement the variations in a simulation model, and conduct the evaluation. The second
co-author designed and implemented the restricted and unrestricted versions of the optimiza-
tion model (TSOR). The third co-author helped improve the paper’s quality with his valuable
feedback.

82

Towards SDN-based Dynamic Path Reconfiguration
for Time Sensitive Networking

Nurefşan Sertbaş Bülbül , Doğanalp Ergenç, Mathias Fischer
Department of Computer Science, University of Hamburg, Germany

Email:{sertbas, ergenc, mfischer}@informatik.uni-hamburg.de

Abstract—Future networks will need to support a large num-
ber of low-latency flows. In time-sensitive networks (TSN), paths
for data flows are usually established at startup time of an appli-
cation and remain untouched until the flow ends. There is no way
to migrate existing flows easily to alternative paths without induc-
ing significant additional delay or wasting resources. Therefore,
the resource-utilization of TSN might degrade over time leading
to a sub-optimal flow assignment. In this paper we address this
problem by combining Software-defined Networking (SDN) that
provides better control on network flows with TSN to be able to
seamlessly migrate time-sensitive flows. We propose a SDN-based
dynamic path reconfiguration algorithm for accommodating TSN
flows and formulate it as optimization problem. By exploiting
the control plane’s global view, we evaluate different dynamic
path configuration strategies under deterministic communication
requirements. Our simulation results indicate that reconfiguring
the flow assignments from time to time can improve the latency
of time-sensitive flows and can increase the number of flows
embedded in the network in worst-case scenarios.

Index Terms—SDN, dynamic flow migration, reconfiguration,
TSN, path computation, consistent updates

I. INTRODUCTION

Real-time Internet of things (IoT) driven by 5G networks
and autonomous vehicular networks rely on low-latency and
deterministic networking. Many safety-critical applications
served by such networks, e.g., robots in automation envi-
ronments, require a bounded latency and a reliable delivery
of data. A violation of latency constraints can, in the worst
case, result in physical damage. To address real-time and
deterministic communication requirements of time-sensitive
and safety-critical systems, TSN standards are proposed by the
IEEE 802.1 working group. TSN offers several protocols to
enable the coexistence of different traffic classes with varying
communication requirements in the same network.

The IEEE 802.1Qcc Stream Reservation Protocol (SRP)
standard describes the management and configuration of TSN
[1]. End-hosts declare their traffic requirements in the TSN
before the actual communication. Then, these time-critical
transmissions are scheduled to bound the undesired queuing
delays, and underlying networking elements on the routing
path are enforced to obey these schedules. However, new time-
sensitive flows cannot be directly embedded in high traffic
scenarios due to capacity limitations on certain links and
the effect of link usage on latency. Hence, accommodating
new flows at runtime and adapting existing flows accordingly
becomes a challenging problem.

The authors of [2] show that both path splitting, i.e., sending
flows over multipath and path migration lead to more flexible
embeddings and better resource utilization. For that, already
occupied resources need to be released by migrating flows to
other paths. It requires to reconfigure the data plane while
maintaining the quality of service (QoS). However, in time-
sensitive networks, flow configuration is done initially, and re-
lated flow assignments remain fixed. During a reconfiguration,
it is required to take down the related flow and make a new
reservation, which consumes time. Therefore, reconfiguration
in standard TSN networks is not efficient.

In this paper, we address the problem of dynamic path
(re)configuration for TSN networks on the basis of SDN to
enable the migration of network flows under strict latency
constraints. The application of SDN concepts like global
network view on real-time networks enables the collection and
inclusion of application requirements into the configuration of
network resources. Our main contributions are:

• We formulate the time-sensitive optimal routing problem
(TSOR) with mixed-integer linear programming (MILP).
We propose four different path configuration strategies by
adding varying degrees of routing constraints to TSOR.

• Solving the MILP is not the same as a realistic evalu-
ation in a real-time network. Apart from the number of
embedded flows, the (re)configuration overhead should be
considered. Therefore, we have built a realistic simulation
of a TSN network in OMNeT++ and solve TSOR to
obtain the optimal solution. With that we quantify the
reconfiguration cost for a TSN network.

• We evaluate the presented strategies regarding the number
of flows embedded into the network, reconfiguration
time, and their effect on time-sensitive traffic latency.
The simulation results indicate that our alternative path
configuration strategies can embed more flows up to 4%
without any additional delay to the time-sensitive traffic.

The remainder of this paper is structured as follows:
Section II summarizes the related work on state of the art
approaches for path migration problem. In Section III, we sum-
marize our overall system and introduce the TSOR. Section IV
describes our evaluation results. Section V concludes the paper
and summarizes future work.

II. RELATED WORK

Several approaches can be adapted to this domain to solve
the flow migration problem, such as deploying and migrating

virtual network functions (VNFs). In [3], the VNF mapping
and scheduling problem is formalized as a mixed-integer prob-
lem (MIP) considering the VNF requirements such as delay
and priority. If delay requirements are violated, they trigger
delay-aware rescheduling, including the existing VNFs into
the reconfiguration for a higher acceptance ratio. The authors
of [4] formalize the delay-aware VNF placement and routing
as an NP-hard optimization problem. Then, they solve it via an
approximation, which achieves close-to-optimal performance
in terms of acceptance ratio and maximum link load ratio.
In [5], different approaches for a dynamic rescheduling of
the placement of VNFs are proposed. The re-optimization ap-
proach strictly preserves latency constraints by being triggered
at every time instance but requires many VNF migrations.
Alternatively, they also propose time-triggered re-optimization
with either fixed or dynamically updated (depending on the
network resources and controlled by the operator) trigger
times. In [6], the authors propose a MILP optimization model
to decide between either migration of VNFs or their re-
instantiation. In addition to VNF related constraints such as
availability of VNFs’ services, maximum delay, and maximum
resource consumption, e.g., memory and CPU, they also
consider the update time for the data plane as a convergence
constraint derived from SDN.

Our work extends these concepts and maps them to the
real-time flow migration problem with more strict real-time
constraints. If VNFs are in the data path, the migration of
stateful VNFs requires additional mechanisms and protocols
to keep the states throughout the migration process. However,
in this study, we focus on the flows only.

There is limited literature focusing on the incrementally
adding flows in TSN. However, most related papers as-
sume that routing paths are known apriori and left the path
(re)configuration out of scope. In [7] authors propose an SDN-
based resource allocation mechanism for accommodating new
flows at runtime. They also propose an indirect path migration
algorithm in case direct path migration is not feasible. How-
ever, they focus on the feasibility of migration, and migration
overhead (e.g., end-to-end latency and number of reconfigured
paths) is not analyzed. Also, their flow migration definition
only involves routing path changes; does not take schedule
changes into account. Since TSN is designed to isolate flows
either spatially through different routes or temporally through
different schedules, separating routes from schedules may limit
the QoS. In contrast to the related work so far, few publica-
tions address scheduling together with the path computation
problem [8], [9]. In [10], an SDN-based self-configuration
framework for TSN networks has been presented. The central
SDN controller, initially puts streams to the default paths and
then moves streams to optimal paths based on the extracted
stream characteristics. To find optimal paths that maintain hard
real-time guarantees, not only the path length but also the
latency deriving from the schedule configurations are taken
into account.

Our work partially intersects with these studies by com-
bining routing paths with schedules. However, as in some

PCECNC

Path
Configuration

Talker

Computed
Paths

Listener

Path
Request

Reservation
Handler

Traffic
Requirements

CE

Fig. 1. Overall system block diagram

of the mentioned studies, we do not compute time-division
multiple access-based schedules in which multiple frames
are transmitted one after the other, each using its time slot.
Instead, we embed the gate opening frequency into our path
computation formalization as we explain in the following
section. Moreover, unlike the existing optimization models that
solve path assignment problems with rather simple metrics
such as path lengths and link weight, our model includes
the gate configuration as a TSN-specific aspect. We defined
the optimal routing problem together with the service-based
stream configuration regarding the main characteristics of
TSN. At that point, we differ from the related work.

III. SYSTEM DESIGN

In this section, we introduce our SDN-based dynamic re-
configuration solution for TSNs. We first describe the overall
framework, and afterward, we explain four different path
configuration strategies in detail.

A. Overall System

We propose a (re)configuration framework for the time-
sensitive networks by benefitting from the SDN. The global
view of the centralized SDN controller enables the deployment
of centralized routing algorithms and eases the configuration.
Thus, routing paths could be reconfigured dynamically on
the runtime considering the requirements of the time-sensitive
environments.

We illustrate our SDN-based framework in Fig. 1. To
communicate in such a network, the end-host, a talker in TSN,
needs to inform the network to allocate required resources
before the actual communication. The talker initiates that
process by sending a talker-advertise message to the edge
switch. Then, the edge switch forwards the traffic requirements
of the flow, which are obtained from the talker-advertise
message to the SDN-supported centralized network controller
(CNC). The global network view of the CNC enables effi-
cient use of network resources and fast responses to varying
network conditions. Here, the reservation handler records the

OpenFlow
 Switch ListenerTalker Reservation

Handler PCE CE

talker
advertise

trigger computed
paths

forwarding rules

listener
ready

transmission

Central Network Controller

Fig. 2. Time sequence of the overall system

received request and triggers the path computation element
(PCE). Then, PCE computes a new path considering the traffic
requirements, current resource utilization, and the topology.
The computed path is sent to the configuration engine (CE),
and related forwarding rules are distributed via the data plane,
guaranteeing the consistency of the data plane.

In some cases the computed path may not be free and
requires the migration of existing flows. Here, CE migrates
flows sequentially, ensuring consistency, and then the new flow
is accommodated. After all forwarding rules are successfully
updated at the respective switches, the reservation handler
sends a listener-ready message to the talker. Then, since
required resources for the transmission have already been
provided, the talker starts to send data via the allocated path.
This procedure has been illustrated in the time chart in Fig. 2.

B. Path Computation Engine

In the following, we present the time-sensitive optimal
routing (TSOR) problem with varying degrees of routing
constraints. Removing such constraints from the model im-
proves the solution quality regarding accommodating flows
while adding computational complexity. Figure 3 illustrates
the flowchart for the path computation and configuration
processes. If all constraints can be satisfied, PCE returns with
a solution that may require changes in the previous flow
assignments. Otherwise, it rejects the flow without embedding.

1) Problem Formulation: We formulate TSOR as a MILP
model to migrate high-priority flows to suitable paths. Using
the model, we find (i) end-to-end paths for given demands
under different QoS requirements within limited network
resources and (ii) gate configurations for each switch that
minimizes the overall end-to-end communication latency.

The gate configuration is the primary mechanism of the core
TSN protocol, 802.1Qbv Time-aware Shaper (TAS) that en-
sures end-to-end deterministic communication for the streams
of different QoS classes via strict time-division schedul-
ing [11], [12]. In TAS, on each (egress) port of a switch,
there are eight priority queues that store frames of streams
with different priorities, including best-effort, before they are
forwarded to the destination. Each queue is controlled by a
gate to forward a frame. When a gate is open, the next frame
in the respective queue is sent at a given time. Eight gates

corresponding to the eight priority classes are configured by
a gate driver via a gate control list (GCL) that decides which
gate(s) should be open at which time. This mechanism overall
constitutes a frame-forwarding schedule with respect to the
priority classes to satisfy strict timing requirements.

min
∑

d∈D

∑

p∈Pd

∑

e∈E

xdpαep

[
loe + lqe(1− ges)

]
(1)

∑

p∈Pd

xdp = 1 ∀d ∈ D (2)

∑

d∈D

∑

p∈Pd

xdpαephd ≤ ce ∀e ∈ E (3)

∑

s∈S

ges = 1 ∀e ∈ E (4)

∑

p∈Pd

∑

e∈E

xdpαep

[
loe + lqe(1− ges)

]
≤ ld ∀d ∈ D (5)

ges −
∑

d∈D

∑

p∈Pd

xdpαep
hd

ce
≥ 0 ∀e ∈ E,∀s ∈ S (6)

The formulation of TSOR is given in Equations 1-6. Table I
also summarizes all the variables and parameters used in the
model. To formalize our problem, we utilize two optimization
variables: xdp and ges. xdp is a binary variable to decide if
demand d ∈ D is assigned to directed path p ∈ Pd. Here,
each d is defined between a talker and a listener, where D is
the set enumerating all demands. Accordingly, Pd represents

elementary
flow

 migrationsn-step
migration

talker starts transmission

New demand : Dn+1

Previous paths : P1, ... , Pn

PCE computes new paths
P'1, ... , P'(n+1)

Yes

No

Solution
exist

Yes

Is migration
necessary?

Dn+1 is not
embedded

No

Dn+1 is
embedded

Fig. 3. Flowchart for the path configuration

TABLE I
TERMS AND DEFINITIONS IN THE OPTIMIZATION PROBLEM. Base TYPE CONTAINS THE FUNDAMENTAL ELEMENTS OF THE MODEL. ConstantS ARE

NETWORK- AND SERVICE-RELATED PARAMETERS GIVEN AS INPUT. VariableS REPRESENT THE PARAMETERS TO BE OPTIMIZED.

Type Symbols Set Interval Definition

Base

d D A demand between a pair of nodes
p Pd A (candidate) path to be assigned to demand d
e E A link (edge) between nodes
s S [0, 7] A quality of service class

Constant

ce ℜ∗ [0,∞] Maximum link capacity of e
hd ℜ∗ [0,∞] Traffic volume of d
αpe ℜ∗ [0,1] Binary variable to indicate if link e belongs to path p
ld ℜ∗ [0,∞] Latency requirement of d
lqe ℜ∗ [0,∞] Queueing delay factor on link e
loe ℜ∗ [0,∞] Default latency on link e due to port and link characteristics
adp Z∗ [0,1] Binary variable to indicate if demand d allocated to path p in the previous configuration

Variable
xdp ℜ∗ [0,∞] Binary variable to decide if demand d allocated to path p
ges Z∗ [0,1] Opening frequency of the gate for service class s on link e

the set of paths computed between those two particular end-
points. ges, is a continuous variable defined within [0, 1] and
represents the frequency of an open gate on the egress port
of link e ∈ E for the service class s among eight possible
classes. Thus, ges specifies the priority given to service class
s on a directed link e. While ges = 1 infers that the gate for s
should be open all the time and the capacity of the entire link
e is used for that type of demands, ges ≈ 0 means that any
demand of service type s is not active at all on the respective
port and thus, the gate is closed. Otherwise, the respective
gate for the service class s on link e is open as proportional
to 0 < ges < 1. From this perspective, ges is affected by
the total required resources for the demands of service type s
as the available capacity, e.g., bandwidth, of e is distributed
among those demands according to their service type. Note
that each demand is associated with a particular service class
randomly and given as an input.

Our objective function (1) minimizes the overall latency of
the selected paths. The variables in the objective function are
explained in detail in the context of the latency constraint (5).
Constraint (2) ensures that each demand d ∈ D is assigned
to exactly one path p ∈ Pd. Here, we assume that all flows
are non-bifurcated. Constraint (3) guarantees that each link
e has sufficient capacity ce to handle the total load hd of
all demands d ∈ D assigned to any path p including e, s.t.
αep = 1. Constraint (4) represents the configuration of the gate
control list of e for each class of service s. As the gates, i.e.,
enabling queues of an egress port, share limited link resources,
only a set of them can be practically open at the same time
but proportional to the value of ges. Constraint (5) ensures that
the end-to-end latency on path p is always smaller than the
maximum allowed latency for demand d, which is ld. Besides,
the gate configuration ges on the respective egress port of each
link e that belongs to path p, s.t. αep = 1, impacts the end-
to-end latency. Constraint (6) forces ges to be proportional to
the total traffic load of service type s forwarded through link
e. Note that while higher values of ges positively impact the
latency at link e, as it enables the traffic of service type s
more often, a smaller ges causes an increased latency due to
queueing delay in the respective gate. Accordingly, we add

the delay factor lqe to the proportion 1 − ges to represent the
queueing delay. Apart from that, a base delay loe representing
the port and link characteristics, e.g., packet processing and
propagation delay, is considered for each link. While those
design parameters, lqe and loe , can be set according to the system
and network properties, we use lqe = 0.5 and loe = 1.0 in our
simulations.

xdp ≥ adp ∀d ∈ D,∀p ∈ Pd (7)

Constraint (7) is the pre-assignment constraint that fixes the
demands that are already assigned to a certain path p, i.e.,
adp = 1 from an existing configuration. adp is given as input
to the problem. For instance, when a new flow has to be
scheduled, the former configuration with existing flows can be
held intact to find a new path with a suitable gate configuration
only for the new flow. Note that although keeping the previous
demands fixed before allocating a new demand reduces the
flexibility of routing, it is important to have a stable con-
figuration scheme especially for the critical and high-priority
demands. That is, reconfiguring the network has also a certain
cost, e.g., delay for migrating flow, sending control packets
to the switches, and can hinder the deterministic communica-
tion requirements. Therefore, enabling reconfiguration by flow
migrations requires to involve such costs in the end-to-end
latency. The use of the preassignment constraint is discussed
further in the following section.

Considering the complexity, TSOR has O(|D||P | + |E|)
optimization variables where the number of paths are directly
related to the number of links. Note that even though ges
depends on the number of service classes, it is, at least in
TSN context, defined as eight (including best-effort) and thus
we assume that as a constant. In terms of the number of
constraints, TSOR is bounded by O(|D||P |+ |E|) constraints
with the same assumption on the number of services. Another
important complexity issue is the non-linear constraints and
the objective function. It is easily possible to linearize the
multiplication of a binary variable xdp and non-binary variable
ges using, for instance, McCormick envelopes [13] introducing
some additional complexity. Therefore, we take TSOR as a

linear problem that makes it more convenient to be solved by
the state-of-the-art linear optimization tools.

2) Path Configuration Strategies: Incremental flow
scheduling in TSN will change the link and switch utilization
over time, affecting the end-to-end latency of chosen paths.
Thus, we present different path configuration strategies with
varying degrees of routing constraints.

a) Reconfiguration at every path request: To maximize
the number of flows embedded via TSOR, replanning all
path configurations from scratch is a strategy. For that, we
remove the pre-assignment constraint from TSOR and present
unrestricted version as TSOR-U. With that, we allow all
flows to be reconfigured, e.g., migrated to different paths
changing the gate configuration as well, to find the optimal
allocation, including newly arriving flows, with a certain
cost of reconfiguration. Here, the cost includes the delay of
frames due to the control packets exchanged between the
controller and switches to configure the data plane for each
migrated flow. Therefore, even though it can flexibly configure
the network resources, it introduces additional configuration
overhead, which may hinder the deterministic communication
requirements. To address that issue, we also present the
following strategies:

b) Restricted path reconfiguration: The strict time con-
straints of such time-sensitive environments lead to the ac-
commodation of flows on certain paths and leave these paths
untouched as long as the path meets the delay requirements.
Therefore, we have a pre-assignment constraint in our opti-
mization problem that keeps the previous assignments fixed.
We name this restricted version of our optimization problem,
TSOR-R. Although such a constraint reduces the flexibility of
routing, it is important to have a stable configuration scheme,
especially for critical and high-priority demands.

c) Reconfiguration at every k-th path request: To shorten
the time for finding paths, we can still use TSOR-R for embed-
ding new flows. However, this will lead to inefficient use of
resources, especially for a larger number of flows. Therefore,
another solution is to reconfigure the assignments from time to
time to ensure better resource utilization. For that, we propose
TSOR-P that reconfigures the network after having received
k flow requests. Therefore, it can adapt the reconfiguration
period dynamically in dependence on the arrival rate of flows.
This strategy can also be improved by monitoring the system
and extracting a pattern for the latency violations to compute
optimal reconfiguration times.

d) Threshold-triggered reconfiguration: The most
straightforward strategy TSOR-T a network operator can
apply is to use TSOR-R to embed a new flow and to compute
TSOR-U to measure how close the resulting solution is to
TSOR-U. Then, we only reconfigure if the computed objective
exceeds a pre-defined threshold.

We use Fig. 4 to describe two scenarios for explaining
the difference between our path configuration strategies. For
simplicity, we have three flows, f1, f2, and f3 with the same
size, and each link has one flow capacity. Suppose initially

only f1 is routed in the network as in Fig. 4-a. Two different
situations can arise for new arriving flows, either (b) or (c):

In the first case, f2 flow arrives and assume that the
computed optimal path for f2 is S2 to S4, which is not used
by other flows. Therefore, f2 can be directly placed on this
path as seen in Fig. 4-b. Here, all path configuration strategies
produce this selection as an optimal solution without a flow
migration.

In the second case, let us assume that f3 flow arrives and
the computed optimal path for f3 is S3 to S4, which is already
occupied by flow f1. Here, the migration of f1 is required to
another path (e.g., S1-S2-S4), and this can happen directly
as in Fig. 4-c and then the link between S3 to S4 becomes
free. With TSOR-U, since it reconfigures the network from
scratch, it finds the solution by migrating f1 to its new path
first and then accommodating f3. However, since TSOR-R does
not allow for a reconfiguration, it does not accommodate f3
in the network and reject. It depends on the current network
state whether TSOR-T and TSOR-P can find a solution for f3
or not.

C. Configuration Engine

The CE is responsible for applying the flow rules for the
paths generated by the PCE consistently. Since all switches
may not be updated simultaneously, changes in the network
configuration may cause incorrect forwarding behavior and
performance disruptions. In literature, this is known as network
update problem [14]. To ensure correct forwarding behavior
when changing the flow assignments, we use a two-phase
tagging mechanism proposed in [14]. With that, both the
initial and final rules are installed on all switches, and the
packets are tagged with the version number of the respective
forwarding rule. All switches on the path are updated with
the new flow rules, and each updated switch sends an ACK
to the controller. When the controller has received an ACK
from all related switches, packets entering the network are
tagged with the new version number to match the new flow
rule. As a drawback, this mechanism doubles the number of
flow entries on switches. However, this could be solved by
regularly deleting old rules.

IV. EVALUATION

In this section, we evaluate the reconfiguration overhead for
time-sensitive traffic by applying the strategies introduced in
Section III-B. First, we briefly explain the evaluation setup and
metrics. Then, we evaluate the performance of the proposed
strategies at varying traffic loads. Finally, we summarize our
evaluation results.

A. Experimental Setup

To measure the reconfiguration overhead and its effects
on the time-critical communication, solving MILP-based path
configuration as standalone is insufficient. Thus, we imple-
mented the presented path configuration strategies in CPLEX
12.7.0 and simulated the TSN network in OMNeT++ v5.5.1.
For that, we used the INET framework and extended the

S1

S3

S4

S2
S5

f1

(a) Initial state (b) No migration case

S1

S3

S4

S2
S5

(c) Migration case

f1

f3

S1

S3

S4

S2
S5

f1

f2

Fig. 4. Example scenario

SDN4CoRE framework [15] that enables the configuration of
SDN and TSN capable switches. We developed three appli-
cations for the control plane: a reservation handler module, a
path computation element, and a configuration engine, whose
details are presented in Section III.

For our experiments, we used the Integra topology, as
represented in Fig. 5, whose average node degree is 2.67,
from the Topology Zoo dataset [16]. It contains 27 switches
and 36 edges. We consider all nodes in the topology to be
OpenFlow-enabled TSN switches. Since the relative results
are not changed, we set the link capacity to 30Mbps for the
sake of simplicity.

Since there is no publicly available data set for TSN traffic,
we obtained the traffic generation parameters from TSN papers
and tried to model TSN traffic as realistic as possible.

As time-triggered (TT) traffic, we used cyclic traffic and
select the transmission period uniformly between 2-20 ms and
a data size between 50 and 1000 bytes as defined in [17].
Thus, the data rate can take values in between [0.02-4.0]
Mbps. We also generated traffic using pareto, uniform, and
normal distributions in the given data rate range. With that,
we tried to evaluate in more diverse traffic scenarios. In
pareto distribution, a large portion of the generated traffic has
low data rates. In contrast, uniform and normal distributions
represent medium data-rated applications in this setup. A
typical application for the cyclic traffic is the input/output
updates exchanged between actuators, sensors, and PLCs in
an industrial facility.

Since different service classes coexist in the same TSN
network, we also generated best-effort (BE) traffic that has
no timing guarantee. For that, we set the packet size to 1500
bytes and use exponentially distributed packet inter arrival
times [12]. We set the same packet generation rate at each
BE traffic source and start BE traffic at the beginning of the

Fig. 5. The Integra topology used in the evaluation [16]

TABLE II
SIMULATION PARAMETERS

Category Parameter Value

Time-triggered traffic
Transmission period Uniform(2,20) ms
Frame size 50-1000 bytes
Data-rate distribution pareto, uniform, normal

Best-effort traffic Transmission period Exponentially distributed
Frame size: 1500 bytes

Topology Num. of switches 27
Num. of edges 36
Link capacity 30Mbps

Simulation Duration 50 sec

simulation. A typical example for the BE traffic can be retriev-
ing application data (e.g., telemetry). Table II summarizes the
simulation parameters.

B. Evaluation Metrics

We used the following metrics to evaluate our path config-
uration strategies:

• Acceptance Ratio: The ratio of TT flows that can be
successfully served by the network.

• Missing Deadline Ratio: The ratio of delayed frames
whose delay exceeds the delay requirement to the re-
ceived frames.

• Reconfiguration Ratio: The ratio of the number of paths
changed during reconstruction to the number of flows.

• Configuration Time: The time before the actual commu-
nication starts. Thus, it includes the potential migration
latency and the tag-based data plane configuration time.

C. Results

This section compares the path configuration strategies
in terms of their acceptance ratio and reconfiguration overhead.

Acceptance Ratio We measured only the acceptance ratio
of TSOR-R and TSOR-U to draw the limits of our optimization
problem. Since different data rates affect how flexible TSOR
can accommodate flows, we measured the average acceptance
ratios independence on different data rate distributions as
shown in Fig. 6.

The experiments were repeated 100 times for each scenario,
and the results are given with a 95% confidence interval. Here
the acceptance rate does not differ a lot thus the confidence
intervals are very small. Since TSOR-U can fully utilize all
data plane resources, it has higher acceptance ratio on the

100 500 700 1200
0.75
1.00 1.00 0.94 0.88

0.74

1.00 0.94 0.86
0.71

Pareto(k = 0.02, = 1.1)

50 100 150 200
0.75
1.00 1.00

0.88 0.80 0.69

0.99
0.86 0.77 0.66

Uniform (a = 0.02, b = 4)

50 100 150 200
0.75
1.00 1.00 0.95

0.83
0.72

1.00 0.94
0.81

0.68

Normal (= 2.01, = 0.6)

Num of TT flow requests

Ac
ce

pt
an

ce
 R

at
io

TSOR-U TSOR-R

Fig. 6. Acceptance ratio with varying data rate distributions

average in all distributions. However, TSOR-R leaves less
room to accommodate new flows, as the previously installed
flows are not touched. So this limits the acceptance ratio of
TSOR-R. Also, the difference between TSOR-R and TSOR-U
becomes more visible when the number of TT flow requests
increases due to limited flexibility of TSOR-R. The difference
becomes more significant around 4% in some cases (e.g.,
200 TT flows case in normal distribution). Also, between the
distributions we see that the lower data rates as in pareto
allow accommodating more flows than other medium-sized
distributions, which are uniform and normal in this setup.

Reconfiguration Overhead To measure the reconfiguration
overhead and its effects on the delivery of TT traffic, we
simulated a TSN network in OMNeT++. Since the relative
results do not change significantly for different distributions,
we generated 200 normally distributed TT and 50 BE flows.
Then, we measured the reconfiguration overhead with pre-
sented evaluation metrics.

Table III shows the simulation results for TSOR. Note that,
even though we simulated also BE traffic in the network, we
do not count it while we compute accept ratio. For that reason,
accept ratios seems lower here. We measured the missing
deadline ratio, which is mainly related to the quality of chosen
paths. Since TSOR-R cannot flexibly change the assigned
paths based on the current network status, some links may be
overloaded while there are spare link resources. Thus, it has

TABLE III
OMNET RESULTS WITH BEST-EFFORT TRAFFIC

TSOR-U TSOR-R TSOR-P TSOR-T
Acceptance
Ratio [%] 52.81 49.2 51.18 51.93

Missing Deadline
Ratio [%] 5.41 5.83 4.94 4.47

0 20 40 60 80 100 120
Num of accepted flow requests

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 D

el
ay

ed
 F

ra
m

e
Ra

te

TSOR-U
TSOR-R
TSOR-P
TSOR-T

Fig. 7. Missing deadline ratio respect to number of accepted flows

the highest missing deadline ratio. Here the first expectation
is that TSOR-U has the lowest missing deadline ratio since
it can flexibly use the resources. However, there is a hidden
effect: the network utilization directly influences the delay, but
the impact gets more significant the more utilized a network
is. In other words, since TSOR-U can embed more flows, the
network load and therefore the average TT latency increases,
which also increases the missing deadlines.

To highlight this, we also plotted the cumulative density
function of the missing deadline ratio in dependence on the
number of accepted flows in Fig. 7. Here, for the same number
of accepted flows, we can see that TSOR-U has the lowest
delayed frame rate, which supports our claim. In TSOR-P, we
set k to 20, so that reconfiguration is triggered for every 20th
received request. Therefore, it can adapt resources depending
on the received traffic rate. In TSOR-T, reconfiguration is only
triggered if the solution quality in terms of latency exceeds a
certain threshold, e.g., 1%. Thus, both TSOR-P and TSOR-
T perform better than TSOR-R and are close to TSOR-U.
However, after a certain point, which is around 110 flows in
this experiment, the number of delays increases significantly in
TSOR-U. Thus, even though it has the lowest missing deadline
ratio until there, it will not performs better than the TSOR-P
and TSOR-T after that point.

Fig. 8 shows the reconfiguration overhead of TSOR versions
for the same number of flows. In Fig. 8 top, TSOR-R has
the smallest reconfiguration ratio, i.e., zero, since it does
not allow reconfiguration. However, TSOR-U has the highest
due to frequent reconfigurations. In TSOR-P, the number of
reconfigurations is directly related to the number of flows
and independent of the current network status. Therefore,
it increases with a higher number of flows. Even though
TSOR-T is triggered per received request, the thresholding
mechanism avoids unnecessary reconfigurations. However, the
performance of TSOR-P and TSOR-T is highly related to the
chosen parameters. Decreasing the threshold in TSOR-T and

TABLE IV
PATH (RE)CONFIGURATION STRATEGIES

Strategy Reconfiguration Trigger Flexibility Time-sensitive
traffic latency

Configuration
Overhead

TSOR-U After every critical flow High Medium High
TSOR-R No reconfiguration Low High Low
TSOR-P After every k-th critical flow Medium Low Medium

TSOR-T After every critical flow that requires
sufficient* changes Medium Low Medium

k-value in TSOR-P will approximate solutions to the TSOR-U.
We defined the configuration time as the potential migration

latency and the data plane configuration time. Thus, it is
directly affected by the number of reconfigurations and re-
configured switches on the path. Therefore, we see the similar
results in Fig. 8 bottom, which shows the configuration time
of the TSOR. Frequent reconfigurations in TSOR-U increase
configuration time, while limited reconfigurations in TSOR-
R result in lower configuration time. As in the Fig. 8 top,
both TSOR-P and TSOR-T performs in between TSOR-R and
TSOR-U.

In our simulations we excluded the time to solve the MILP
optimization models, i.e., they were solved in zero time, to
fairly compare the different embedding methods. However, the
actual time required to solve the MILP is still in a reasonable
range, e.g., around 7.3s for 100 flows. This is a significant
overhead for TSN, but only in TSOR-U the MIP needs to be
solved for every new flow. TSOR-R builds upon the previous
solution. Thus, sorting in a new flow for TSOR-R requires
only around 4 ms in our settings. The other strategies (TSOR-
T/P) require to solve the optimization model for all flows from
time to time. They will then migrate embedded flows from
their potentially sub-optimal paths to their optimal ones. Even
tough their performance is highly related to the configuration
parameters such as k in TSOR-T and the triggering threshold
in TSOR-P, this migration can be done seamlessly without
packet loss and increased latencies. We summarize our path
reconfiguration strategies in Table IV.

TSOR-R TSOR-P TSOR-T TSOR-U
0

1

2

Re
co

nf
ig

ur
at

io
n

Ra
ti

o

0
0.44

1.58
2.13

TSOR-R TSOR-P TSOR-T TSOR-U
0

100

Co
nf

ig
ur

at
io

n
Ti

m
e

[
s]

17
63.7

137.4
189

Fig. 8. Reconfiguration overhead for TSOR

V. CONCLUSION

This paper presents and evaluates dynamic path configura-
tion strategies for SDN-enabled time-sensitive networks. We
defined a restricted optimal flow placement model that adapts
path assignments based on the current resource utilization.
Then, we present three heuristics to maximize the number of
accepted flows while meeting the communication requirements
of TT applications. Our restricted optimization model yields
the results in terms of configuration time and serves as a
benchmark for other heuristic solutions.

We believe that a proper reconfiguration strategy can be
selected depending on the requirements of the environment.
For example, in a highly dynamic small or medium scale
environment where flows are added and removed over time,
reconfiguring at every path request would be more appropriate
for utilizing all resources more efficiently. Our simulation
results indicate that it increases the number of flows that can
be embedded by up to 4%. However, it may not be desired
for large-scale networks to migrate flows that frequently.
Alternatively, reconfiguring at every k-th path request and
reconfiguring only when the solution deviates more than a
threshold from the optimal solution achieve a larger number
of accepted flows at moderate configuration overhead. For that,
the parameter selection plays an important role. The selection
of lower k values and reconfiguration thresholds increases the
reconfiguration frequency. Therefore, they appear as promising
reconfiguration solutions for time-sensitive scenarios.

We envision that due to failures or dynamic traffic patterns,
flow migration would be triggered more often. However, in
such cases the performance becomes a significant design
criteria, especially for time-sensitive networks. Therefore, we
showed the feasibility of such migrations in real-time with
this paper. As future work, we would like to include different
aspects, e.g., minimizing the required flow migrations and
splitting flows into multiple paths. Such aspects enable more
balanced flow placement with better resource utilization.

REFERENCES

[1] “IEEE standard for local and metropolitan area networks–bridges and
bridged networks - amendment 31: Stream reservation protocol enhance-
ments and performance improvements,” 2018.

[2] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, pp. 17–29, 2008.

[3] J. Li, W. Shi, P. Yang, and X. Shen, “On dynamic mapping and
scheduling of service function chains in sdn/nfv-enabled networks,” in
IEEE GLOBECOM, 2019, pp. 1–6.

[4] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang, and X. Fu, “Delay-
aware virtual network function placement and routing in edge clouds,”
IEEE Transactions on Mobile Computing, vol. 20, pp. 445–459, 2021.

[5] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vnf placement at the network edge,” in IEEE INFOCOM, 2018.

[6] H. Hawilo, M. Jammal, and A. Shami, “Orchestrating network function
virtualization platform: Migration or re-instantiation?” in IEEE Cloud-
Net, 2017.

[7] P. Danielis, G. Dán, J. Gross, and A. Berger, “Dynamic flow migration
for delay constrained traffic in software-defined networks,” in IEEE
GLOBECOM. IEEE, 2017, pp. 1–7.

[8] A. Alnajim, S. Salehi, and C.-C. Shen, “Incremental path-selection and
scheduling for time-sensitive networks,” in IEEE GLOBECOM, 2019.

[9] N. G. Nayak, F. Dürr, and K. Rothermel, “Incremental flow scheduling
and routing in time-sensitive software-defined networks,” IEEE Trans-
actions on Industrial Informatics, vol. 14, no. 5, pp. 2066–2075, 2017.

[10] N. S. Bülbül, D. Ergenç, and M. Fischer, “SDN-based self-configuration
for Time-Sensitive IoT Networks,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN), 2021, pp. 73–80.

[11] “IEEE Standard for Local and Metropolitan Area Networks–Bridges

and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” pp. 1–57, 2016.

[12] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. Elbakoury, “Performance comparison of ieee 802.1
TSN time aware shaper (TAS) and asynchronous traffic shaper (ATS),”
IEEE Access, vol. 7, pp. 44 165–44 181, 2019.

[13] G. P. Mccormick, “Computability of Global Solutions to Factorable
Nonconvex Programs: Part I – Convex Underestimating Problems,”
Math. Program., 1976.

[14] D. Li, S. Wang, K. Zhu, and S. Xia, “A survey of network update in
SDN,” Frontiers of Computer Science, vol. 11, no. 1, pp. 4–12, 2017.

[15] T. Häckel, P. Meyer, F. Korf, and T. Schmidt, “SDN4CoRE: A simulation
model for software-defined networking for communication over real-
time ethernet,” in International OMNeT++ Community Summit, 2019.

[16] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[17] A. Ademaj, D. Puffer, D. Bruckner, G. Ditzel, L. Leurs, M.-P. Stanica,
P. Didier, R. Hummen, R. Blair, and T. Enzinger, “Industrial automation
traffic types and their mapping to QoS/TSN mechanisms,” 2019.

Appendix C

Paper 3: Reinforcement Learning
assisted Routing for Time Sensitive
Networks

Abstract

Recent developments in real-time critical systems pave the way for different application sce-
narios such as Industrial IoT with various quality-of-service (QoS) requirements. The most
critical common feature of such applications is that they are sensitive to latency and jitter.
Thus, it is desired to perform flow placements strategically considering application require-
ments due to limited resource availability. In this paper, path computation for time-sensitive
networks is investigated while satisfying individual end-to-end delay requirements of critical
traffic. The problem is formulated as a mixed-integer linear program (MILP) which is NP-
hard with exponentially increasing computational complexity as the network size expands. To
solve the MILP with high efficiency, we propose a reinforcement learning (RL) algorithm that
learns the best routing policy by continuously interacting with the network environment. The
proposed learning algorithm determines the variable action set at each decision-making state
and captures different execution times of the actions. The reward function in the proposed al-
gorithm is carefully designed for meeting individual flow deadlines. Simulation results indicate
that the proposed reinforcement learning algorithm can produce near-optimal flow allocations
(close by ∼ 1.5%) and scales well even with large topology sizes.

Reference

Nurefşan Sertbaş Bülbül and M. Fischer. Reinforcement Learning

assisted Routing for Time Sensitive Networks. IEEE Global Communi-

cations Conference (GLOBECOM), 2022. ©2022 IEEE.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-author
helped to improve the quality of the paper with his valuable feedback.

92

Reinforcement Learning assisted Routing
for Time Sensitive Networks

Nurefşan Sertbaş Bülbül and Mathias Fischer
University of Hamburg, Germany

Email:{sertbas, mfischer}@informatik.uni-hamburg.de

Abstract—Recent developments in real-time critical systems
pave the way for different application scenarios such as Industrial
IoT with various quality-of-service (QoS) requirements. The most
critical common feature of such applications is that they are sensi-
tive to latency and jitter. Thus, it is desired to perform flow place-
ments strategically considering application requirements due to
limited resource availability. In this paper, path computation for
time-sensitive networks is investigated while satisfying individual
end-to-end delay requirements of critical traffic. The problem is
formulated as a mixed-integer linear program (MILP) which is
NP-hard with exponentially increasing computational complexity
as the network size expands. To solve the MILP with high
efficiency, we propose a reinforcement learning (RL) algorithm
that learns the best routing policy by continuously interacting
with the network environment. The proposed learning algorithm
determines the variable action set at each decision-making state
and captures different execution times of the actions. The reward
function in the proposed algorithm is carefully designed for
meeting individual flow deadlines. Simulation results indicate that
the proposed reinforcement learning algorithm can produce near-
optimal flow allocations (close by ∼ 1.5%) and scales well even
with large topology sizes.

Index Terms—delay aware routing, TSN, reinforcement learn-
ing, resource allocation, routing optimization

I. INTRODUCTION

With the rapid advancement of communication technologies
future industrial networks are expected to support a large num-
ber of Internet-of-Things (IoT) devices with a wide range of
QoS needs. Critical applications, e.g., remote robotic surgery,
requires guaranteed data transfer with bounded low latency,
low delay fluctuations, and no data loss. Thus, low-latency
and deterministic networking is a prerequisite for real-time
IoT. The IEEE 802.1 working group has suggested time-
sensitive networking (TSN) standards to address the real-
time and deterministic communication requirements of time-
sensitive and mission-critical systems. TSN is an Ethernet
extension that allows mission-critical applications with varying
QoS requirements to take advantage of Ethernet’s high band-
width and cheap commercially available off-the-shelf (COTS)
hardware.

Diverse QoS requirements and the exponentially increasing
TSN network traffic make it difficult to manage networks
[1]. More specifically, sending time-critical traffic over routes
that preserve individual QoS requirements of the flows be-
comes more challenging. Several solutions were proposed by
researchers to allocate network resources (e.g., link bandwidth)
efficiently under resource constraints. Using a shortest-path

routing algorithm is not suitable as serious congestion and
increased latencies that violate strict flow deadlines might be
the result. Besides, its slow convergence speed is not suitable
for dynamic networks. For that, many researchers formulate
this problem as a mixed-integer linear program, which is NP-
hard and its computational complexity increases exponentially
increasing as the network size expands [2], [3].

As an alternative, reinforcement learning has attracted much
attention from researchers due to its intelligent decision-
making and large-scale applicability. It has obvious advantages
in routing applications such as high throughput and low latency
and enables adaptive routing. Such features make it a promis-
ing solution for time-critical networks by reducing system
costs in conjunction with meeting user expectations. Moreover,
reinforcement learning also supports the self-configuration
concept for TSN and it can be used as a black-box optimization
in continuous time.

The main contribution of this paper is the application of
reinforcement learning to the problem of optimal routing
of time-sensitive flows considering individual flow deadlines.
Accordingly, our contributions are:

• We propose a reinforcement learning-based routing
method that determines the best routing path for various
scenarios by adaptively evaluating paths depending on the
flow deadline constraints.

• We evaluate our approach via realistic OMNeT++ sim-
ulations and compare it with benchmarking algorithms
regarding the runtime and time-sensitive traffic delivery
performance. The simulation results indicate that our RL-
based routing approach scales well with the increasing
topology sizes and still produces nearly-optimal flow
allocations.

The remainder of this paper is structured as follows: Section
II summarizes related work on reinforcement learning-based
routing approaches. Section III describes the basics of the Q-
learning algorithm. In Section IV, we introduce our overall
architecture. We evaluate our approach and describe our sim-
ulation results in Section V. Finally, Section VI concludes the
paper and summarizes future work.

II. RELATED WORK

Reinforcement learning has been already applied to finding
efficient paths in the networking domain. Depending on the
environment, several QoS metrics have been used to define the
reward function such as available link bandwidth, link delay,

packet loss ratio [4], [5], deadline [6]. In [7], the authors use
reinforcement learning to find efficient paths that maximize
the network throughput and minimize communication delay
in software-defined networks (SDN). However, the solution
requires deploying one agent per switch.

The most commonly used method in reinforcement learning
applications is Q-learning which is known for its learning
efficiency and applicability to various problems. In [8], the
authors propose a delay-based reward mechanism to update
link weights and find the next switch to forward the packet.
Even though their experiments show that the Q-learning-based
strategy selects paths with low less delay, their approach is
not applicable to the TSN environment and also generates
additional probe packets to poll the current network status. The
authors of [6], proposed a Q-learning approach named safe
RL for the real-time routing problem. For that, they defined
edges with their average expected and worst-case delays that
are determined by the pre-processing phase. Then, each node,
locally, decides on the next node to forward by checking
whether the deadline of the packet will be satisfied or not.
However, they train their model using a fixed deadline, so that
the generated Q-table only works for a fixed deadline which
is not realistic for such an environment. Instead, they would
need to train RL for every possible deadline to obtain their in-
dividual Q-tables, which is impractical. Another problem is the
trustworthiness of the worst-case bounds and knowledge of the
distribution of the average delay of the edges. To address these
issues, the authors in [9] propose a table-driven algorithm
assuming a priori knowledge of the exact delay probability
distributions of the edges. Moreover, they also propose an
RL-based approach in case such an estimation is unknown or
dynamic. Unlike [6], their Q-learning implementation does
not require training for every possible deadline. They reward
every action, which is from one node to another, and update
Q-values directly.

However, such hop-by-hop approaches are not directly
applicable to TSN, since TSN needs to ensure a maximum
number of hops and end-to-end latency for flows. Here the
solution can be either redesigning the reward mechanism by
considering the hop count or taking the action set as a set of
end-to-end paths instead of hops. We define an action as a
selection of a path from among the possible paths that ensure
the maximum hop count and reward as a function of meeting
the flow’s deadline. The presented design is then evaluated
using realistic TSN simulations.

III. REINFORCEMENT LEARNING MODEL: Q-LEARNING

Reinforcement learning is a sort of machine learning al-
gorithm in which agents are rewarded for their actions. Q-
learning which was first introduced in [10], is a model-free
reinforcement learning method based on the Markov decision
process (MDP), but unlike MDP, it’s possible to learn without
knowing anything about the environment beforehand.

For that, the agent takes feedback from the environment,
called a reward, and uses that feedback to evaluate the prior
actions. So, a reward function indicates what is good (or bad)

in an immediate sense. The aim of the RL agent is to maximize
the long-term reward. The Q-learning algorithm is usually
modeled by three tuples as S,A,R, where S is a set of states,
A is a set of actions, and R is a reward function. Here, every
decision that an agent takes is called as action. With the taken
action agent moves from the current state st to a new state,
st+1. The state-to-state transition denotes a movement from
one state to the next, with the action being the selection of
the next best state. More formally, Q-learning is based on the
action-value pair Q(s, a) where s ∈ S, and a ∈ A where S
is a set of states and A is a set of actions. Each action is
rewarded afterward by the reward function R and it is desired
to select an action that delivers the most benefit (e.g., reduced
latency) in the current system conditions.

During the learning process, a policy (Q-table) is maintained
and the entries (Q-values) in the Q-table are updated iteratively
by the following equation

(1)Q(st, at) = (1− α)Q(st, at)

+ α[R(st, at) + γmaxat+1Q(st+1,at+1)]

where α is a learning rate that shows how much the model
will learn new values vs the old values. The γ is the discount
factor that balances immediate and future rewards. Both α and
γ values takes real numbers in the range of 0 to 1. Q(st, at)
is the Q-value at time t and shows the expected reward for
the given state-action pair, st and at. Here, the Q-value is not
directly assigned but rather updated using a mechanism similar
to gradient descent depending on the learning rate which can
be realized as a decaying function. As a result, by selecting
an appropriate learning rate, α, Q(st, at) can converge to an
ideal value.

IV. Q-LEARNING BASED TIME-SENSITIVE ROUTING

In this section, we introduce our RL-based routing solu-
tion for TSNs. We first describe the overall framework, and
afterward, we explain our routing solution in detail.

A. System Overview

We propose an RL-based routing framework for TSN by
combining it with SDN and a central network controller. The
global view of a centralized SDN controller enables to use of
centralized routing algorithms and thus eases the configuration.
Routing paths can be reconfigured dynamically considering
the requirements of the time-sensitive flows and corresponding
reward values can be collected as feedback to the installed flow
path.

We illustrate our SDN-based framework in Fig. 1. Here, the
end-host, a talker in TSN, declares its flow traffic requirements,
e.g., the deadline, by sending a talker-advertise message to the
controller (i). Then, the stream registration module records the
parameters extracted from the message and requests a path
from the RL model that satisfies the latency requirement (ii).
The RL model decides on a routing path and then the controller
installs the required forwarding rules using the data plane
configuration module (iii). Afterward, the controller informs
the related talker by sending a listener-ready message which

(i),(v)

(iv)
...

Stream
Registration

Module

Talker Listener

(v)

RL Data plane
Configuration

Statistics

(i)

(ii)

(iii)

(iv)

(iii)

(vi)

(vii)

Fig. 1. Overall system block diagram

states that resources are allocated for the related transmission
(iv). When the talker receives a listener-ready message, it will
start streaming by sending frames via the switch close by
and the data plane will forward frames to the listener (v). As
a feedback mechanism, the end switch will report measured
statistics such as latency to the controller (vi). These collected
statistics are used to compute the reward value for the related
action, and routing path, and update the RL model (vii).

B. Time sensitive Routing Problem

We used a reinforcement learning strategy based on Q-
learning for delay-sensitive routing in the TSN environment
because traffic conditions in dynamic networks may lead to
updated routing paths based on traffic delay encountered at
each switch and link in the network.

In our design, the agent is the SDN controller and it gets
feedback from the data plane (e.g., TSN switches). A state is
a traffic matrix that represents the current network load and an

Algorithm 1: Q-learning based routing - control plane

Input: Learning rate: α
Discount factor: γ
Exploration and exploitation parameter: ϵ
List of paths: P
Network link-states: S

1: Initialize Q: Q(s,a)
2: while Path request received from src to dst with a deadline D

do
3: Generate a random number m
4: if m < ϵ then
5: select random action, a = P[rand(0, numOfPaths)]
6: else
7: select action, a = Qmax(s, a)
8: end if
9: Install forwarding rules for the selected action a (aka path)

10: end while
11: while Reward update message from the data plane do
12: Updates Q-table and moves a new network state:
13: Q(st, at) =

(1− α)Q(st, at) + α[R(st, at) + γmaxat+1Q(st+1,at+1)]
14: end while
15: return Optimal routing policy

Algorithm 2: Q-learning based routing - data plane
(e.g., switch Sdst)

Input: Received frame, f , from src to dst with a deadline D
1: while f .destination == Sdst do
2: tE2Elatency = f.arrivalT ime− f.creationT ime
3: ∆t = D − tE2Elatency

4: R =

{
1 + ∆t

D
, if ∆t ≥ 0

∆t
D
, otherwise

5: Computed reward, R, is sent to the controller
6: end while

action taken by the controller is a selection of a path to route
the new incoming flow. To eliminate the problems that may
occur in hop-by-hop route selection, as stated in Section II, we
define the selection of an end-to-end path as an action. In other
words, we limit the set of possible actions to ensure to meet
the maximum number of hops constraint of TSN and we use
the reinforcement learning policy to decide which end-to-end
path (action a ∈ A) to take from the current state s.

The aim here is to learn the optimal routing policy that
maximizes the accumulated reward over time. For that, it is
needed to define a reward function that guides the policy to
the desired behaviour, i.e., routing while preserving individual
flow deadlines in our environment. Thus, unlike the previous
studies, we define our reward function that is received at
the end of successful frame reception based on deadline
satisfaction instead of latency. The reward, R is obtained
after the successful reception of a frame and is calculated as
follows:

(2)R =

{
1 + ∆t

D , if ∆t ≥ 0
∆t
D , otherwise

where D is a flow deadline and ∆t is the remaining time
until the deadline, which can be computed by taking the
difference between end-to-end latency, tE2Elatency, of the
frame and its deadline. Here, the reward values for the actions
(e.g., selected path) can be either positive or negative. For the
non-negative ∆t values, we define the reward by dividing ∆t
by the deadline D so that, flows that have smaller deadlines
will get a greater reward for the same ∆t values. Additionally,
to give a positive reward in case the deadline is met, even
though ∆t is zero, we add 1. For the negative ∆t values that
represent the missed deadlines, we use ∆t proportional to D
as a penalty which is also a negative number. After a time,
negative rewarded actions are slowly going to be filtered out,
while actions that lead to a positive reward are going to appear
more frequently. Therefore, we will be able to choose paths for
flows that offer a higher deadline satisfaction rate for newly
registered flows.

Algorithm 1 shows the pseudo-code of our algorithm that
runs on the SDN controller. The aim is here to develop a policy
to select a path to send a packet from origin src to destination
dst. Initially, when there is a path request, the ϵ-greedy policy
chooses one action from the vector of feasible actions (Line
3-8). Here, the algorithm explores the feasible action space
with a probability ϵ at the same time while a search for a

Fig. 2. Real world evaluation topologies; small-scale(Epoch), medium-scale(BtEurope), large-scale(Surfnet)

path that has a higher reward with a probability of 1− ϵ since
there is no pre-knowledge about the paths. The ϵ value usually
selected a small number so that the policy may take advantage
of knowledge about the present state the majority of the time.
After the action selection, the SDN controller will enforce
related forwarding rules to the data plane and the host will
start the transmission (Line 9). When frames over this path
are received by the destination switch Sdst, the reward for
this transmission is computed as shown in Algorithm 2 and
sent to the controller. The SDN controller uses obtained reward
to update Q-table for the related path and makes use of this
state-action value function to make a more informed decision
(Line 11-14 in Algorithm 1).

V. EVALUATION

In this section, we evaluate our RL-based routing model
for time-sensitive traffic and compare the proposed approach
against other benchmark algorithms. First, we briefly explain
the evaluation setup and metrics. Then, we evaluate the perfor-
mance of our RL-based routing model at varying traffic loads.
Finally, we summarize our evaluation results.

A. Experimental Setup

We have simulated realistic TSN networks in OMNeT++
v5.5.1 using the INET and SDN4CoRE frameworks that
enable the configuration of TSN switches via SDN [11].
With that setup, we evaluate the quality of the routing paths
generated by the proposed RL model in terms of different
metrics such as end-to-end latency, deadline satisfaction rate,
jitter, and run time.

For our experiments, we used different real-world topolo-
gies, e.g., Epoch, BtEurope, and Surfnet, selected from the

Topology Zoo dataset [12] as shown in Fig. 2. We consider all
nodes in the topology to be OpenFlow-enabled TSN switches.
Since the relative results are not changed, we set the link
capacity to 30Mbps for sake of simplicity and set the simula-
tion time to 40 seconds. Due to the lack of publicly available
data set for TSN traffic, we obtained the traffic generation
parameters from TSN papers and tried to model TSN traffic as
realistic as possible [13]. For that, we generated isochronous
and cyclic traffic as time-sensitive traffic. The isochronous
traffic has the highest priority, its period changes uniformly
between 500 us to 2 ms and the payload is set to 50 bytes.
This type of traffic can be used for controller-to-controller and
controller-to-I/O-communication where data must be produced
and delivered consistently and where packets are delivered
with bounded latency. We also generated cyclic traffic which
still has high priority (e.g., 5 and 6), but is less critical than the
isochronous traffic. The period of this type of traffic changes
between 2-20 ms and the payload size changes between 50-
1000 bytes. Example applications for this type of traffic may
include input/output updates sent to/from actuators and sen-
sors and a programmable logic controller in a manufacturing
facility with short cycle times usually. We also generated best-
effort (BE) traffic that has no assurance of timing and started
our simulations with a larger number of existing BE flows in
the network to measure the performance of the routing models
when additional time-sensitive flows arrive. For our Q-learning
model, we set the learning rate (α) to 0.7, the discount factor
(γ) to 0.9, and the exploration parameter (ϵ) to 0.3. Table I
summarize our simulation parameters.

B. Evaluation Metrics

We used the following metrics to evaluate our model:

TABLE I
SIMULATION PARAMETERS

Pattern Period Application
Data Size Priority

Traffic Characteristics

Isochronous Periodic 0.5-2 ms Fixed, 50 Bytes 7

Cyclic Periodic 2-10 ms Fixed, 50-500 Bytes 6
Periodic 11-20 ms Fixed, 500-1000 Bytes 5

Best-Effort Sporadic - Variable, 30-1500 Bytes 2

Num of
switches

Num of
edges

Average
node degree

Total number
of nodes

Topologies
Epoch 6 7 2.33 26
BtEurope 24 37 3.08 119
Surfnet 50 68 2.72 210

Fig. 3. Path computation time

• (Incremental) path computation time: It is the time
required for path computation for nth flow when there
are (n− 1) flows in the network.

• Deadline satisfaction rate (DSR): It is the ratio of
frames whose delay does meet its delay requirements.

• End-to-end delay (E2E): It is the end-to-end latency of
frames until they reach their destination.

• Jitter: It is a variation of the E2E latency of frames.

C. Benchmarking Algorithms

a) Shortest Path (SP): It is the basic routing method,
which directs data traffic via shortest paths, concentrating
the data load on a few select links in the network. As a
result, certain switch ports/links become congested. Higher
contention means longer transmission latencies which might
be a problem for the delivery of time-critical traffic. Since
this will be the most straightforward solution with a minimal
computation cost, we use SP as a lower bound for our approach
to compare.

b) Optimal Routing via Integer Linear Programming
(OPT): In [14], we introduced the time-sensitive optimal
routing problem and a MILP formulation to find suitable
paths that satisfy the end-to-end latency requirements of the
demands. The objective is to minimize the overall latency of
the selected paths considering the TSN-specific mechanisms
such as gates at the egress of TSN switches. Since it will find
the optimal resource allocation and routing path, we take it as
an upper bound for the presented RL approach and measure
how close RL gets to the optimum.

D. Results

This section compares our RL model with other benchmark
algorithms in terms of presented evaluation metrics.

a) Path computation time: To evaluate the scalability
of the algorithms, we used small-scale (e.g., Epoch) and
large-scale (e.g., Surfnet) topologies and then measured path
computation time independence on an increasing number of

Fig. 4. Deadline satisfaction rate

flow requests. The experiments were repeated 40 times for
each scenario, and the results are given with a 95% confidence
interval in Fig. 3. The x-axis represents the index of the
current received flow request and the y-axis represents the time
needed to embed the last received flow into the network on the
logarithmic scale. Since both SP and RL are based on table-
look-up, their computation time does not differ significantly
even for large topologies such as Surfnet. However, while the
pathfinding time of OPT is still acceptable in small topologies
as in Fig. 3-a, it significantly increases when the topology gets
larger as in Fig. 3-b. Thus, the results support our claim that
OPT may not be suitable for large-scale scenarios due to its
runtime complexity.

b) Time sensitive traffic delivery: To measure the de-
livery performance of our RL model and the benchmarking
approaches for TSN, we simulated a realistic TSN network in
OMNeT++. For these experiments, a medium-scale topology,
that is BtEurope in our scenario, is used. We embedded best-
effort flows initially to saturate the network resources. We
also generate 180 time-triggered flows for low average link
utilization (≈ 15%), 450 time-triggered flows for medium
average link utilization (≈ 45%) and 900 time-triggered
flows for high average link utilization (≈ 75%). Then, we
measured the deadline satisfaction rate of time-triggered traffic
in dependence on varying link utilizations as shown in Fig. 4.
As expected, the satisfaction rate decreases significantly in the
high utilization case (e.g., from 99.26% to 97.63% in OPT)
due to the already occupied resources. However, we see much
considerable decrement in SP, from 98.78% to 94.17% due to
the lack of ability to find better paths in case of congestion.
For the RL algorithm, it can be said that it stays close to OPT
with the 96.12% deadline satisfaction rate. In other words,
only (1 − DSR = 3.88%) of the frames do not meet their
deadlines even for the higher utilization scenarios.

We also measure the deadline satisfaction rate of individual
traffic classes (DSR-7, DSR-6, DSR-5), E2E latency, and jitter
as given in Table II. Here, the reason behind the high deadline
satisfaction rate in all algorithms (e.g., 100% DSR for priority

TABLE II
OMNET SIMULATION RESULTS

Low utilization Medium utilization High utilization
SP RL OPT SP RL OPT SP RL OPT

DSR-7 98.4 % 98.81 % 99.03 % 95.05 % 96.33 % 97.12 % 92.51 % 94.95 % 96.82 %
DSR-6 100 % 100 % 100 % 99.86 % 99.93 % 99.98 % 99.01 % 99.57 % 99.98 %
DSR-5 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %
E2E latency 260 µs 230 µs 210 µs 420 µs 340 µs 280 µs 600 µs 530 µs 340 µs
Jitter 180 µs 150 µs 140 µs 320 µs 260 µs 200 µs 410 µs 400 µs 250 µs

5 traffic) is that lower priority traffic has higher deadlines.
For instance deadlines of the priority 5 traffic can take values
between 11-20 ms while priority 7 traffic has much more strict
deadlines between 0.5-2 ms (See Table I). Here, we see once
again that while there is only 98.4% of DSR in low utilization,
this decreases to 92.51% in the high utilization scenario for
SP. It can also be seen that RL still stays close to OPT, e.g.,
1,8% less deadline satisfaction then the OPT at worst.

In addition to the DSR, we also measure the E2E delay and
jitter. Even though the results are still better than SP and close
to OPT, the difference may not be that obvious. Because while
designing our reward function, we chose to meet the deadlines
instead of minimizing the delay and imposing a penalty when
there are unsatisfied deadlines. For example, in a case in which
the deadline is 5 ms, there is no difference in terms of RL in
terms of sending this traffic via a 2 ms route versus sending
it via a 4.9 ms route. Therefore, seeing E2E delays closer to
SP compared to OPT can be explained in this way.

VI. CONCLUSION

In this paper, we studied the efficient path allocation prob-
lem for flows with individual QoS constraints. The problem
can be solved by a mixed-integer linear program (MILP),
which is NP-hard and becomes exponentially more complex
as the network size grows, or with a straightforward routing
such as the shortest path which results in congestion for highly
utilized networks. This motivates us to employ reinforce-
ment learning to obtain near-optimal solutions to route the
time-sensitive flows with reduced computational complexity.
Here, since supervised learning approaches require a priori
knowledge about the network which is not feasible for our
scenario, we believe reinforcement learning would be a perfect
fit as it completely relies on the environment’s feedback for
its decisions. Our results show that the proposed approach
achieves to satisfy deadlines with a rate of 94.95%, even in
the worst case for the most critical traffic, which is close to
the optimum and its run time complexity does not increase as
the topology size increases (as in the MILP).

We believe that the presented approach in this study can
work under the self-configuration concept which the network-
ing community shifts towards. Thus, more research is needed
to make the proposed technique more resilient by training

across more diverse network conditions (e.g., failures and
dynamic changes in the topology). As future work, we plan to
extend our algorithm to also generate not only the routes but
also the transmission schedules of TSN.

REFERENCES

[1] Y. Seol, D. Hyeon, J. Min, M. Kim, and J. Paek, “Timely survey of time-
sensitive networking: Past and future directions,” IEEE Access, vol. 9,
pp. 142 506–142 527, 2021.

[2] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “Ilp-based joint routing and scheduling for time-triggered
networks,” in Proceedings of the 25th International Conference on Real-
Time Networks and Systems, 2017, pp. 8–17.

[3] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of
joint routing and scheduling for tsn with ilp,” in 2018 IEEE 24th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA). IEEE, 2018, pp. 136–146.

[4] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. S. da Fonseca,
“Intelligent routing based on reinforcement learning for software-defined
networking,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 870–881, 2021.

[5] A. A. Magadum, A. Ranjan, and D. G. Narayan, “Deepqosr: A deep
reinforcement learning based qos-aware routing for software defined data
center networks,” in 2021 12th International Conference on Computing
Communication and Networking Technologies (ICCCNT), 2021, pp. 1–7.

[6] G. N. Seetanadi, K.-E. Årzén, and M. Maggio, “Adaptive routing with
guaranteed delay bounds using safe reinforcement learning,” in Proceed-
ings of the 28th International Conference on Real-Time Networks and
Systems, 2020, pp. 149–160.

[7] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, “Rl-routing:
An sdn routing algorithm based on deep reinforcement learning,” IEEE
Transactions on Network Science and Engineering, vol. 7, no. 4, pp.
3185–3199, 2020.

[8] T. Mahboob, Y. R. Jung, and M. Y. Chung, “Optimized routing in
software defined networks–a reinforcement learning approach,” in In-
ternational Conference on Ubiquitous Information Management and
Communication. Springer, 2019, pp. 267–278.

[9] K. Agrawal, S. Baruah, Z. Guo, J. Li, and S. Vaidhun, “Hard-real-time
routing in probabilistic graphs to minimize expected delay,” in 2020
IEEE Real-Time Systems Symposium (RTSS), 2020, pp. 63–75.

[10] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, 1992.

[11] T. Häckel, P. Meyer, F. Korf, and T. Schmidt, “SDN4CoRE: A simulation
model for software-defined networking for communication over real-
time ethernet,” in International OMNeT++ Community Summit, 2019.

[12] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[13] A. Ademaj, D. Puffer, D. Bruckner, G. Ditzel, L. Leurs, M.-P. Stanica,
P. Didier, R. Hummen, R. Blair, and T. Enzinger, “Industrial automation
traffic types and their mapping to QoS/TSN mechanisms,” 2019.

[14] N. S. Bülbül, D. Ergenç, and M. Fischer, “SDN-based self-configuration
for Time-Sensitive IoT Networks,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN), 2021, pp. 73–80.

Appendix D

Paper 4: TSN Gatekeeper: Enforcing
Stream Reservations via P4-based
In-network Filtering

Abstract

Real-time communication is crucial for mission critical scenarios, such as industrial automation
and automotive applications. To meet these applications’ strict quality of service (QoS) re-
quirements, a new set of specifications, known as time- sensitive networking standards (TSN),
has been proposed. TSN requires pre-registration of data streams before actual communica-
tion to help guarantee bandwidth and ensure constrained end- to-end latency. However, this
mechanism is vulnerable to traffic overload and denial of service (DoS) attacks. This paper
proposes a P4-based dynamic attack filtering as a link-layer network function to defend TSN
against malicious network elements, such as faulty talkers or switches, directly on the data
plane. Our experiments indicate that our P4-based implementation can filter malicious traffic
with minimal overhead and minimize frame losses for legitimate traffic.

Reference

Nurefşan Sertbaş Bülbül, J.J. Krüger, M. Fischer. TSN Gatekeeper:

Enforcing stream reservations via P4-based in-network filtering.

The International Federation for Information Processing (IFIP) Net-

working Conference, 2023.

Contribution

For the given publication, the main contribution belongs to this thesis. The second co-author
implemented and evaluated several parts of TSN Gatekeeper in the context of a master’s thesis.
The third co-author helped to improve the quality of the paper with his valuable feedback.

99

TSN Gatekeeper: Enforcing stream reservations
via P4-based in-network filtering

Nurefşan Sertbaş Bülbül, Joshua Jannis Krüger and Mathias Fischer
University of Hamburg, Germany

Email:{nurefsan.sertbas, joshua.krueger, mathias.fischer}@uni-hamburg.de

Abstract—Real-time communication is crucial for mission
critical scenarios, such as industrial automation and automotive
applications. To meet these applications’ strict quality of service
(QoS) requirements, a new set of specifications, known as time-
sensitive networking standards (TSN), has been proposed. TSN
requires pre-registration of data streams before actual communi-
cation to help guarantee bandwidth and ensure constrained end-
to-end latency. However, this mechanism is vulnerable to traffic
overload and denial of service (DoS) attacks. This paper proposes
a P4-based dynamic attack filtering as a link-layer network
function to defend TSN against malicious network elements, such
as faulty talkers or switches, directly on the data plane. Our
experiments indicate that our P4-based implementation can filter
malicious traffic with minimal overhead and minimize frame
losses for legitimate traffic.

Index Terms—time-sensitive networks, programmable data
planes, ingress filtering, per-stream policing, babbling idiots

I. INTRODUCTION

Ethernet is a family of standards that enables high-
throughput communication in diverse wired-networking en-
vironments. It has also been proposed for use in modern
embedded environments with real-time requirements, such
as industrial and in-car networks [2]. However, these new
application domains have introduced new requirements that
Ethernet was not initially prepared to satisfy. For instance,
self-driving cars with hundreds of time-sensitive sensors create
new challenges for the underlying Ethernet architecture, such
as timely delivery and bounded latency guarantees. To address
these challenges, the IEEE time-sensitive networking task
group has proposed a set of standards that can be used
when the application has no tolerance for frame loss due to
congestion and guaranteed upper bounds on end-to-end latency
[3]. These standards also allow the coexistence of traffic with
different priorities, such as high-priority time-critical and low-
priority best-effort traffic, to be sent over the same physical
infrastructure.

Time-sensitive networking relies on end hosts’ pre-
registration of traffic requirements to allocate the necessary
resources along the end-to-end path. With this, the end host
agrees with the network before the actual communication, and
thus the network can provide a certain level of QoS for the
requested end host, the talker in TSN. Every entity in TSN is
expected to obey its reserved resource limits, such as staying
within the allocated bandwidth. However, this mechanism
is vulnerable to malicious network elements, such as faulty
talkers or switches. A malicious talker may send more traffic

than it previously reserved, which may cause congestion at
the switches on the path and can violate bandwidth guarantees
on all streams, even the legitimate ones. This phenomenon is
called the babbling idiot, and whether it is intentional or not,
it must be avoided to maintain determinism in such a network.

To overcome this issue, the IEEE TSN Task group has
proposed the IEEE 802.1Q Qci Per-Stream Filtering and Polic-
ing (PSFP) standard [1]. The standard introduces a cascaded
filtering mechanism that blocks or limits excessive amounts of
data to protect queues from DoS attacks. Moreover, it enables
the application of fine-grained policing decisions. However,
the filtering approach has yet to be explicitly defined; it is
only conceptually defined.

In this paper, to dynamically enable such filtering func-
tionality within the network at line rate, we leverage network
programmability via P4 language, which has recently attracted
attention from both the research community and the industry
[4]. P4 enables the implementation of novel network functions
for various use cases, such as fine-grained packet handling
and advanced packet forwarding, even without a centralized
controller. It can also handle packets at line rate dynamically
and flexibly. This makes it possible for network designers to
create fine-grained networks aware of the applications and data
being delivered, allowing the network to meet mission-critical
requirements such as latency assurances [5]. Thus, due to such
benefits, P4 has a good potential to accelerate innovations
in time-sensitive networks [6]. Accordingly, our contributions
are:

• We present two ingress filtering mechanisms that comply
with the concepts introduced in the IEEE 802.1 Qci
standard to safeguard switch queues against DoS attacks.
We leverage P4 to implement the proposed filtering
functionality directly at the data plane, eliminating the
need for a centralized controller

• We evaluate the effectiveness of our approach by con-
ducting experiments using randomly generated network
topologies. We compared the performance of our pro-
posed filtering mechanisms with the scenario where no
filtering policy is deployed. Our evaluation results in-
dicate that our filtering approaches incur minimal over-
head, even with an increasing number of attackers, and
effectively mitigate the impact of DoS attacks on switch
queues and prevent the loss of legitimate traffic.

The remainder of this paper is structured as follows: Section

II describes basic TSN mechanisms and summarizes the state
of the art. In Section III, we introduce our overall architecture.
We evaluate our approach and describe our evaluation results
in Section IV. Finally, Section V concludes the paper and
summarizes future work.

II. BACKGROUND AND RELATED WORK

A. Time Sensitive Networking

In a typical time-sensitive network, the sender of the data, a
talker, announces the desire to send data by sending a talker-
advertise message that defines the traffic characteristics of the
stream. In this context, a stream refers to a data flow between
the sender and receiver, such as the talker and listener(s) in
TSN, and is identified by a unique stream identifier (StreamId).
The talker-advertise message is propagated over the network
depending on the configuration scheme, either centralized or
distributed. All listeners receive the message, and only the
listener(s) interested in receiving the related stream replies.
The reply message, listener-ready, is forwarded in the reverse
direction of the talker-advertise message back to the talker.
On a listener-ready message switches on the path, re-check
whether the resources to guarantee fault-free transmission are
available. If so, the resources are reserved, and the listener-
ready message is forwarded to the next switch. Eventually, the
listener-ready message reaches the talker, which initiates the
process, and the stream transmission can begin. If a stream
is no longer needed, the talker and listener can cancel the
associated resources by sending a cancel message [7].

With this pre-configuration, required resources, e.g., band-
width, are reserved before communication. So that network
can provide a specific latency guarantee for the related trans-
mission. Here it has been assumed that every TSN node
obeys its reserved resource limits, e.g., stays within allocated
bandwidth. However, when there is an unauthorized attempt
to use resources, e.g., DoS attacks by flooding, the network
may no longer provide the promised QoS. To deal with
traffic exceeding its pre-defined limits, a threshold-enforcing

can be applied, in which traffic up to the advertised limit is
forwarded, and any exceeding traffic is blocked. It does have
a clear benefit in certain situations where a temporarily faulty
end-host, which returns to normal operations after a period
of violation, could be kept in the network while effectively
containing its threats. Alternatively, the stream can be entirely
blocked when it exceeds the advertised limit. Unlike the first
one, all traffic is dropped at the ingress, even if the stream
would later returns to behave as advertised.

The IEEE task group has proposed IEEE 802.1 Qci standard
for ingress filtering traffic that exceeds its registered band-
width guarantees. This filtering standard helps maintain the
established service quality for specified traffic and streams,
protect queues from unwarranted traffic (e.g., deliberate DoS
attacks), and mitigate the effects of bandwidth violations
and malfunctioning. The standard proposes a cascaded layer
of filtering and policing as shown in Fig. 1. In the first
layer, stream filters decide which gates and meters will be
responsible for the arriving frame. In other words, when a
frame arrives at the switch’s ingress, the stream filter matches
the StreamId to a specific, though not necessarily dedicated,
stream gate and flow meter for policing and filtering. The
second layer, a stream gate, is a two-state filter. In the open
state, frames can pass to the responsible flow meter for further
filtering. In the closed state, frames will be dropped. The
state can change on a schedule which can be carried out by
defining the gate control list or based on interaction by the
control plane. Lastly, the flow meters enable the deployment
of more fine-grained algorithms and decide whether the frame
is allowed to pass. After the flow meter allows a frame, it
gets queued in the network node for remaining forwarding or
processing. This filtering mechanism supports the following
policing actions [8]:

• Time-based policing: This can be carried out using stream
gates as it has two states: open and closed. Frames
that arrive when the gate is closed are directly filtered
(discarded) so that this mechanism aims to support ap-

Fig. 1: IEEE 802.1Qci per-stream filtering and policing [1]

plications where the transmission and reception of frames
across the network are coordinated.

• Rate-based policing: This can be carried out using flow
meters by specifying frame rate parameters. Then, the
meters apply to stream(s) and allow policing of streams
that exceed the configured rate.

• Burst-based policing: This can be carried out using flow
meters so that the length of the supported burst is set,
and frames will be filtered accordingly.

• Frame length-based policing: This can be carried out
using flow meters to filter frames based on the maximum
frame lengths.

Authors in [9], propose an IEEE 802.1Qci-based attack
detection system that applies filtering based on bandwidth and
arrival time. For that, they propose a two-rate, three-color
marker-based mechanism that can successfully drop illegit-
imate traffic. However, the configuration parameters of the
presented approach are assumed to be set at the beginning and
remain the same during the network’s lifetime. Such a static
configuration could be a valid assumption for specific use
cases, e.g., in-vehicle networks. Still, such a solution would
only partially benefit from the protocol’s capabilities. Also,
only the periodic, time-triggered traffic has been taken into
account; but it needs to be clarified how to derive the filtering
rules for aperiodic traffic, e.g., burst traffic. In [10], a filtering
mechanism based on one of the existing traffic shapers in TSN,
Credit Based Shaper, is proposed, and its compatibility with
the 802.1Qci filtering is shown via OMNeT++ simulations.
However, feasibility analysis with other traffic shapers is left
as a future work.

B. P4 based Security

Several studies exist in the literature to add such attack
filtering functionality to the network, either using centralized
or distributed configuration options. Here, software-defined
networks (SDN) could be an option with the global network
view of the centralized SDN controller [11]. However, a
centralized control plane can easily be a bottleneck in many
scenarios, especially for recovery and connectivity protection
[12], [13]. Also, the communication delay between data and
the control plane may limit the reaction time of the controller
as well [14]. Thus, such an implementation suffers from cen-
tralized controller dependency and causes scalability problems.
Besides, standard SDN-based solutions are able to configure
only per-flow forwarding policies and do not allow per-packet
priority enforcement. Thus, these shortcomings of the SDN
further motivate researchers to use the P4-based data planes,
which enable processing packets at a line rate and remove the
need for a centralized controller. Moreover, unlike the Open-
Flow protocol, which is used as a standard protocol between
controller data plane communication in SDN, P4 enables the
definition of more fine-grained packet fields and, therefore,
deployment of more use case-specific security solutions.

P4 has been used frequently in the literature to bring security
functionality to the data plane and reduce the experienced
latency by removing the remote controller involvement [15].

Using P4-based data planes in blockchain architecture, authors
in [14] show that several attacks on the blockchain, including
DoS, can be discovered before transaction packets get to
the control plane. In [16], P4-based data paths are used to
minimize latency and add security monitoring functionality
for industrial 5G networks. Their results show that latency
can be decreased by around half. In [17], authors use P4 to
improve the routers to filter router spoofing and man-in-the-
middle attacks directly on the data plane. Authors in [18] use
P4 to detect spoof and volumetric attacks close to the source
in order to protect the network. Their approach is scalable and
controller-independent, thanks to the P4.

The flexible configuration options of the P4-based switches,
either centralized or distributed, make P4 a promising solution
for mission-critical networks. Thus, we believe that combining
the merits of IEEE 802.1Qci and P4 marks a significant step
in protecting future time-sensitive networks.

III. P4-BASED INGRESS FILTERING

This section introduces our P4-based ingress filtering ap-
proaches for TSNs and how we dynamically deploy that
strategy in time-sensitive networks. We first describe the
overall frame filtering procedure, and afterward, we explain
our filtering approaches in detail.

A. Overall System

In time-sensitive networks, as explained in Section II-A,
talkers must inform the network about the required resources
before initiating transmission. Once the reservation is made, it
is crucial to ensure that the talker complies with the declared
traffic requirements. To achieve this, we propose a P4-based
ingress filtering solution designed to run on the programmable
data plane of a P4-enabled TSN switch. The solution uses P4
to implement a lightweight firewall at the edge of the TSN,
which protects switches from being attacked or overloaded.

We envision the proposed P4-based filtering solution as a
link-layer network function, as there could be other functions
for different purposes, such as intrusion detection, load bal-
ancing, etc. (represented by X and Y in Fig. 2). The P4-based
filtering solution can work independently at the edge switch
without a centralized controller. However, it is still possible
to configure P4-enabled TSN switches with different policies
using a centralized network controller. We illustrate the overall
architecture in Fig. 2 for both distributed and centralized
configuration architectures, as our P4-based filtering approach
works in both cases.

In the distributed architecture, a talker communicates with
the edge switch to declare its traffic requirements (i), and the
switch forwards the requirements to the other core switches
in the network (ii). Here, switches are not configured by a
central entity but in a distributed manner with their local
knowledge. Our P4-based ingress filtering approach can also
be configured as it derives filtering rules from the stream
reservation messages. Then, interested listeners will subscribe
to that stream (iii), and the talker will be informed to start
transmission (iv). In the centralized architecture, the talker

(a) Distributed configuration architecture

(b) Centralized configuration architecture

Fig. 2: P4-based ingress filtering as a link-layer network function for TSNs

and listener communicate directly with the centralized user
and network controller (i, ii). Then, the central controller sends
switch configurations to the switches (iii). Here, the centralized
controller can specify filtering rules and configure the ingress
filtering module accordingly. Lastly, the talker is informed of
the transmission, and then it starts stream transmission (v).

The presented filtering approach has two main blocks
static and dynamic. We present a static mechanism as a first
checkpoint, including maximum frame size and ingress port
verification. Here, frames exceeding the maximum size are
dropped to avoid possible switch congestion. Since attackers
can still flood frames with the spoofed StreamIds to block
or harm the transmission of other (legitimate) talkers, it is
also necessary to verify the ingress port. After the initial
verifications as a second checkpoint, we deployed our dynamic
filtering solutions, namely metered ingress filtering and gated
ingress filtering, as we describe in the following sections.

B. Metered Ingress Filtering
In the deployment of metered ingress filtering, we benefit

from the portable switch architecture (PSA), which is a target
architecture that defines standard data types, counters, meters,
and other externs that P4 programmers can use as required.
The P4 language design aims to maintain minimal consensus
between switch vendors, excluding extended features. How-
ever, switch vendors can utilize architecture definitions to

support more features and enable rapid innovation and proof of
concepts before all parties accept them. Here, the PSA makes
such P4 programs portable across different targets.

Based on the PSA primitive, we use direct meters derived
from the RFC 2698 [19]. Conceptually, they are similar to the
buckets and are defined by the initial burst size (BS). Then,
the bucket size is increased by the pre-configured information
rate (IR) times per second and decreased on the arrival of a
packet. Here, the IR parameter can be computed based on the
talker-advertise message as it represents the number of frames
per measurement interval. The burst size can be interpreted
as the number of frames by which a stream is allowed to
exceed the advertised rate. Such a parameter would be helpful
in case of frame delays that may normally require the frame,
even the legitimate streams. If the bucket size falls below zero,
packets are marked red, while otherwise, they are green. We
use this mechanism for filtering by attaching a direct meter
to the forwarding table, which is automatically executed in
case a matching entry exists. The burst size and information
rate parameters can be configured per table entry via the
P4Runtime API, which conceptually stands as a control plane.
Note that that is the control plane of the P4, not a centralized
controller.

After applying the meter and marking the frame as red or
green, frames are handled differently depending on the filtering

(a) Flowchart of the metered ingress filtering (b) Flowchart of the gated ingress filtering

Fig. 3: Flowcharts of the proposed filtering approaches

strategy, either threshold-enforcing or blocking, as shown in
Fig. 3a. In the threshold-enforcing strategy, a frame is directly
dropped if marked as red. Otherwise, if the frame is marked
as green, we forward them to the egress to be forwarded to
the next hop. In the blocking strategy, red-marked frames are
cloned to the CPU port, and the control plane is notified.
Then, the control plane removes the registration of this stream,
and the frame will be dropped. The green marked frames are
handled similarly as in threshold-enforcing.

C. Gated Ingress Filtering

Another data type that the P4 language supports are registers
which serve a general purpose and ease the implementation
of fully customized algorithms. However, unlike the meters,
it is not possible to use registers as per-table-entry or per-
stream. Thus, we use a concept called gates, which works like
a per-class filtering approach in the IEEE 802.1Qci standard.
A gate merges the traffic characteristics of multiple streams
and handles them as a single stream. Using more gates will
allow more fine-grained filtering while increasing the memory
requirements. Another critical point here is since it does not
enforce per-stream policies, as long as the sum of the traffic at
that gate is not exceeded, it does not limit the transmission of
any stream. In other words, the allowed transmission capacity
for that gate may not be shared equally along the streams
assigned to the same gate. However, that is still reasonable as
we deal with class-based queuing delays in the TSN.

The basic flowchart of the gated ingress filtering approach is
shown in Fig. 3b. When a frame arrives at the switch, a static
check is performed as described previously. Then, it looks
for a predetermined gate for the stream. If there is no such
configuration, the frame will be dropped directly. Otherwise,
it fetches the other gate configuration parameters using its gate
identifier, GateId.

A core pillar of the gate mechanism is the gate selection
function, as it decides which stream is handled by which gate
and directly affects filtering. In order to design a good gate

selection function, there are some issues to be addressed. For
instance, deterministic algorithms ease the prediction of the
GateId; an attacker with sufficient knowledge can abuse this
mechanism to target specific streams by injecting traffic to that
gate. Thus, a hash function like a gate selection function would
not be appropriate. Another problem can be using large frames
as the frame size is checked independently from the gate so
that an attacker sending a low number of frames with large
frame sizes can inject his/her frames in a gate with streams
that have the opposite characteristic and exceed bandwidth
by a high degree. Forcing all streams to adhere to the same
maximum frame size is a solution but one unsuitable for
practical use. A non-deterministic gate selection algorithm is
expected to sufficiently mitigate this attack angle, as it does
not allow the specific targeting of a gate with a large number
of allowed frames.

An important design principle is finding a proper gate
selection function to address all mentioned drawbacks. For
simplicity, we left the gate selection function selection out
of this paper’s scope and used a simple strategy: fill empty
first (FEF). Thus, it fills empty gates first so that any stream
violation will have a limited effect on others as it is also limited
to a particular gate. Such an approach may suffer if many
streams exist on the gate or the attacker advertises early.

After executing the related gate, a frame counter which
is increased for every frame arrival is checked. Here the
Max value needs to be calculated and configured by the
controller. Since different traffic classes in TSN send traffic
at varying intervals and a varying number of frames, we used
a common observation interval and recalculated the number
of frames for that common observation interval. Therefore,
this counter checkpoint behaves as a bandwidth check for
the gate, which rejects and drops the frame if it exceeds the
predefined bandwidth. Unlike metered ingress filtering, the
blocking mechanism involves no control plane; gates can be
closed at a line rate. This also means less memory as it does
not require CPU cloning.

D. Compatibility with the IEEE 802.1Qci Standard

The filtering mechanisms presented in this paper align with
the IEEE 802.1Qci standard. In the metered ingress filtering
with thresholding, all three steps of the PSFP pipeline are
handled by a single table. The forwarding table has an attached
colored meter. Therefore, it is both a stream filter and a flow
meter. In this case, the relationship between stream filters and
flow meters is one-to-one, which is not required, but explicitly
allowed in PSFP. The stream gate does not have a technical
expression, but conceptually it can be interpreted as always in
the open state. The metered ingress filtering with a blocking
mechanism sends a notification message to the controller once
the colored meter is triggered. Then, the associated table entry
from the forwarding table is deleted. The PSFP pipeline can
conceptualize this by the control plane setting the stream gate
to the closed state.

In the gated ingress filtering approach, the stream gates
are always in the open state. Otherwise, the approach is
aligned with the PSFP structure. As described in Section
III-C, there are two functions, find-gate and execute-gate,
which are implemented as tables and are precisely aligned
in both the conceptual and the technical sense to the stream
filter and the flow meter, respectively. The arbitrary algorithm
the flow meter executes is based on a counter reset with
each measurement interval and differs between the threshold-
enforcing and blocking variants.

IV. EVALUATION

In this section, we measure the performance of presented
filtering approaches for time-sensitive networks and compare
them against the normal case when no filtering solution is
applied. For that, we briefly explain the evaluation setup and
then evaluate the performance of filtering approaches regarding
frame loss and end-to-end latency of frames.

A. Setup

We have implemented the presented dynamic filtering ap-
proaches on the P4 behavioral model version (bmv2) and emu-
lated the attacks on Mininet. Note that the employed software
switch bmv2 was not designed for performance evaluations
and is not necessarily representative of the performance of the
mechanisms on a different target. For example, table access
could take significantly longer (or shorter) time in a hardware
switch. This could significantly influence the results; however,
the relative results will remain the same. Apart from emulating
the packet processing logic of a P4-Switch on bmv2, we
have implemented the control plane in Python 3.6.9. It further
interacts with the data plane using the P4Runtime API. All
experiments were run on a dual-core Intel(R) Core(TM) i5-
7200U CPU with 2.50GHz and 8GB of DDR4 RAM. The
machine runs Ubuntu 18.04.6.

As topology, we use a ring topology containing four
switches as ring topologies are commonly used in embedded
networks, such as cars and factories; it is also common in TSN
[20]. As attack traffic, we use a simple attack model known
as a babbling idiot in the literature [21], [22]. In the TSN

context, a babbling idiot is a talker who correctly advertises
traffic and receives a corresponding listener-ready message
but then sends more traffic than advertised and exceeds the
allocated bandwidth. We randomly placed talkers, listeners,
and babblers in the network. As a TSN traffic, we generated 20
random traffic scenarios, including isochronous, cyclic, event-
triggered, and best-effort traffic, which are typical TSN traffic
classes as described in [8] as follows:

• Isochronous Traffic: It is a periodic traffic that requires
reserving resources before its period ends. Thus, it can
be characterized by an interval and a number of frames
per interval. An example of isochronous traffic could be
a distance sensor in a car, whose values are constantly
required by the emergency brake assistant.

• Cyclic Traffic: It is also as periodic as isochronous traffic
but contains a fixed length of idle times in between. It
sends n frames in every x seconds at an isochronous rate
r. An example of cyclic traffic could be a timed sensor
or device measurement report.

• Event Traffic: It generates single frames sporadically
at non-predictable and non-uniform intervals. Network
control messages or user input can be an example of such
traffic.

• Best-Effort Traffic: Most time-sensitive networks also
allow a portion of best-effort traffic, i.e., traffic for
which the network makes no guarantees regarding arrival
or maximum latency. It is sporadic traffic that can be
modeled as a random burst.

B. Results

This section evaluates the performance of the presented
filtering approaches, Meter, and Gate configured with either
Thresholding or Blocking. Then, these approaches are
compared with the case there is no filtering applied in terms
of their frame loss rate and end-to-end frame latency.

Filtering performance on the delivery of TSN traffic: In
order to compare the filtering performance of the presented
strategies, we measure the frame loss rate and end-to-end
frame latency, which we aim to minimize for legitimate
traffic with ingress filtering. Since the results would be highly
affected by the type of traffic, we generate 20 scenarios to
make a fair comparison between approaches. For that, we
generate 60% isochronous traffic with a period of 10 ms, 20%
cyclic traffic with a 1-5 s period, 15% event-traffic with a
period between 200 ms-1 s, and finally, 5% best-effort-traffic.
Results are shown in Fig. 4.

As shown in Fig. 4a, even though the average latencies do
not differ significantly between the tested approaches, meter-
based filtering, thresholding, or blocking has lower and more
bounded end-to-end latencies, which has essential significance
in TSN. Also, it might not be sufficient to look only at the
latency values as it shows only the end-to-end latency of
successfully transmitted frames. Due to the babblers, we see a
high number of frame losses in Fig. 4b. It would be misleading
to look only at the averages as the TSN promises a certain

(a) End-to-end latency for mixed traffic scenarios (b) Frame loss for mixed traffic scenarios

Fig. 4: Filtering performance on the delivery of TSN traffic

QoS; the worst-case frame loss rate must also be considered.
When No Filter is applied, the babblers will significantly affect
legitimate streams, and they may experience frame losses up to
68%. It is important to note that the maximum frame loss rate
in any filtering approach is well below this value. Here, even
in the worst case, we could still say that filtering approaches
decrease the frame loss rate of the legitimate streams to
≈24%(as in the upper bound of meter-blocking) and ≈48%
(as in the upper bound of gate-thresholding). Thus, it is clear
that for some scenarios, they have a huge benefit.

Filtering performance regarding an increasing number
of babblers: To analyze the filtering performance in case of an
increasing number of bubblers, we simulate single and multi-
babblers scenarios and measure how it affects the end-to-end

latency of the TSN traffic. For the metered filtering, we set the
burst size to 100. In gated filtering, we set the number of gates
to 64, and we assumed that if the frame is delayed, we can
still tolerate that, and we do not block that stream completely.
For that, we set the number of tolerated exceeding frames to
half the number of streams currently in the gate. Results are
shown in Fig. 5.

Filtering adds additional latency to the frame processing;
thus, results in Fig. 5a may be interpreted as the difference
between No Filter and filtering solutions due to the filtering
overhead. However, it should be noted that there is also a
babbler in the given test scenario, which further delays the
frames of the legitimate stream. To clarify, we repeat the
experiment by increasing the number of babblers to three, as

(a) End-to-end latency with a babbler. (b) End-to-end latency with 3 babblers.

Fig. 5: Effect of babblers on the end-to-end latency

shown in Fig.5b. The additional latency the multiple babblers
caused is minor, around 0.5 milliseconds for the No Filter case.
For the filtering approaches, the effect of babblers is noticeable
but very minor, as we expected. Another result that can be
derived from here is the overhead of blocking mechanisms
due to cloning to CPU, which also increases as the number of
babblers increases. Therefore, they are no longer better than
the thresholding mechanisms, as in Fig 5a.

V. CONCLUSION AND FUTURE WORK

This paper proposes P4-based dynamic ingress filtering
approaches for securing time-sensitive networks from denial-
of-service attacks. We proposed a metered filtering mechanism
that operates per stream and achieves low latency results,
even for high traffic demands. Alternatively, we also proposed
a gated filtering mechanism that fits the per-class filtering
concept and enables the deployment of more customizable
algorithms. We tested the presented approaches in an emulated
mininet environment, and the results show that our filtering
approaches can limit frame loss rates of legitimate traffic
significantly with only a minimal filtering overhead. Thus,
the proposed approaches have the potential to meet strict
performance requirements in time-sensitive environments.

As part of our future work, we plan to expand our imple-
mentation by incorporating intrusion detection and incident
reporting functionality. This enhancement would enable the
controller to receive notifications of detected violations, trig-
gering related mitigation mechanisms. Additionally, the PSFP
is a proactive approach typically deployed in fixed network
positions with a fixed capacity. A promising research direction
would be to investigate filtering the attacks that exceed the
switch’s capacity, for which SDN/NFV-based reactive solu-
tions [23] seem promising as they can flexibly position security
functionalities in the network. Moreover, the autonomous
configuration of PSFP is another future research direction
that aligns perfectly with the concept of self-configured TSN
[24]. By adapting related parameters based on changing net-
work conditions, the PSFP’s effectiveness could be further
enhanced.

REFERENCES

[1] T. Jeffree, P802.1Qci – Per-Stream Filtering and Policing, Sep 2017.
[Online]. Available: https://1.ieee802.org/tsn/802-1qci/

[2] S. A. Nsaif and J. M. Rhee, “Seamless ethernet approach,” in 2016
IEEE International Conference on Consumer Electronics (ICCE), 2016,
pp. 385–388.

[3] N. Finn, “Introduction to time-sensitive networking,” in IEEE Commu-
nications Standards Magazine, vol. 2.2, 2018, p. 22–28.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[5] R. Bifulco and G. Rétvári, “A survey on the programmable data plane:
Abstractions, architectures, and open problems,” in 2018 IEEE 19th
International Conference on High Performance Switching and Routing
(HPSR), 2018, pp. 1–7.

[6] N. Nayak, U. Ambalavanan, J. M. Thampan, D. Grewe, M. Wagner,
S. Schildt, and J. Ott, “Reimagining automotive service-oriented com-
munication: A case study on programmable data planes,” IEEE Vehicular
Technology Magazine, pp. 2–12, 2023.

[7] Standard for Local and Metropolitan Area Networks - Virtual Bridged
Local Area Networks - Amendment: 9: Stream Reservation Protocol
(SRP), 2010. [Online]. Available: https://www.ieee802.org/1/pages/802.
1at.html

[8] “Time sensitive networks for flexible manufacturing testbed
characterization and mapping of converged traffic types,” Mar 2019.
[Online]. Available: https://hub.iiconsortium.org/portal/Whitepapers/
5eb04d87d2df3f001102b6fe

[9] F. Luo, B. Wang, Z. Fang, Z. Yang, and Y. Jiang, “Security Analysis of
the TSN Backbone Architecture and Anomaly Detection System Design
Based on IEEE 802.1 Qci,” Security and Communication Networks,
2021.

[10] P. Meyer, T. Häckel, F. Korf, and T. C. Schmidt, “Dos protection through
credit based metering - simulation-based evaluation for time-sensitive
networking in cars,” Proceedings of the 6th International OMNeT++
Community Summit, 2019.

[11] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[12] R. Kandoi and M. Antikainen, “Denial-of-service attacks in openflow
sdn networks,” in 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), 2015, pp. 1322–1326.

[13] D. Merling, W. Braun, and M. Menth, “Efficient data plane protection
for sdn,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). IEEE, 2018, pp. 10–18.

[14] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, and K.-K. R. Choo, “P4-
to-blockchain: A secure blockchain-enabled packet parser for software-
defined networking,” Computers & Security, vol. 88, p. 101629, 2020.

[15] Y. Gao and Z. Wang, “A review of p4 programmable data planes for
network security,” Mobile Information Systems, vol. 2021, pp. 1–24,
2021.

[16] K. Gökarslan, Y. S. Sandal, and T. Tugcu, “Towards a URLLC-Aware
Programmable Data Path with P4 for Industrial 5G Networks,” in 2021
IEEE International Conference on Communications Workshops (ICC
Workshops), 2021, pp. 1–6.

[17] M. Mönnich, N. S. Bülbül, D. Ergenç, and M. Fischer, “Mitigation of
IPv6 Router Spoofing Attacks with P4,” in Proceedings of the Sym-
posium on Architectures for Networking and Communications Systems,
ser. ANCS ’21. New York, NY, USA: Association for Computing
Machinery, 2022, p. 144–150.

[18] G. Simsek, H. Bostan, A. K. Sarica, E. Sarikaya, A. Keles, P. Angin,
H. Alemdar, and E. Onur, “DroPPPP: A P4 Approach to Mitigating
DoS Attacks in SDN,” in Information Security Applications, I. You, Ed.
Cham: Springer International Publishing, 2020, pp. 55–66.

[19] D. J. Heinanen and D. R. Guerin, “A Two Rate Three Color Marker,”
RFC 2698, Sep. 1999. [Online]. Available: https://rfc-editor.org/rfc/
rfc2698.txt

[20] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and
F. Dürr, “Scaling tsn scheduling for factory automation networks,” in
2020 16th IEEE International Conference on Factory Communication
Systems (WFCS), 2020, pp. 1–8.

[21] G. Buja, A. Zuccollo, and J. Pimentel, “Overcoming babbling-idiot
failures in the FlexCAN architecture: a simple bus-guardian,” in 2005
IEEE Conference on Emerging Technologies and Factory Automation,
vol. 2, 2005, pp. 8 pp.–468.

[22] O. Daniel and O. Roman, “Fault injection framework for assessing
fault containment of ttethernet against babbling idiot failures,” in
2018 IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), 2018, pp. 1–6.

[23] N. S. Bülbül and M. Fischer, “SDN/NFV-based DDoS Mitigation via
Pushback,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1–6.

[24] N. S. Bülbül, D. Ergenç, and M. Fischer, “SDN-based Self-Configuration
for Time-Sensitive IoT Networks,” in 2021 IEEE 46th Conference on
Local Computer Networks (LCN), 2021, pp. 73–80.

Appendix E

Paper 5: Preemptive DoS attacks on
Time Sensitive Networks

Abstract

Time-sensitive networking (TSN) is a promising technology for real-time communication in
industrial and auto- motive networks. The frame preemption is one of its key features, which
allows high-priority traffic to interrupt the transmission of low-priority traffic to decrease
the delay of critical traffic. However, the deterministic nature of TSN frame preemption
also renders it vulnerable to denial of service (DoS) attacks that can significantly reduce the
quality of service (QoS) of flows by increasing delays and packet loss. This paper introduces the
concept of preemptive DoS attacks and evaluates their impact on TSN QoS performance. For
that, we describe a strategy that attackers can use to estimate the used preemption scheme in
the switch and then show how an active attacker can use this information to degrade the QoS
of TSN. Our simulation results indicate that even a single attacker can significantly deteriorate
the QoS of TSN traffic. To counter such attacks, we also discuss possible countermeasures,
such as dynamic changes in the runtime to limit the knowledge of the attacker in this paper.

Reference

Nurefşan Sertbaş Bülbül and M. Fischer. Preemptive DoS attacks

on Time Sensitive Networks. Accepted and to appear at IEEE Global

Communications Conference (GLOBECOM), 2023. ©2023 IEEE.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-author
helped to improve the quality of the paper with his valuable feedback.

108

Preemptive DoS attacks on Time Sensitive Networks
Nurefşan Sertbaş Bülbül and Mathias Fischer

Department of Informatics, Universität Hamburg, Germany
Email:{nurefsan.sertbas, mathias.fischer}@uni-hamburg.de

Abstract—Time-sensitive networking (TSN) is a promising
technology for real-time communication in industrial and au-
tomotive networks. One of its key features is frame preemption,
which allows high-priority traffic to interrupt the transmission of
low-priority traffic, thereby reducing the delay of high-priority
critical traffic. However, the deterministic nature of TSN frame
preemption also makes it vulnerable to denial of service (DoS)
attacks, which can severely impact flow quality of service (QoS)
by increasing delays and packet loss. In this paper, we introduce
the concept of preemptive DoS attacks and evaluate their impact
on TSN QoS performance. We describe a strategy that attackers
can use to estimate the preemption scheme configured in the
switch and then demonstrate how an active attacker can use this
information to degrade TSN QoS. Our simulation results indicate
that even a single attacker can significantly deteriorate the QoS
of TSN traffic. It is important to address this vulnerability in
TSN and develop countermeasures to prevent preemptive DoS
attacks from occurring.

Index Terms—TSN, frame preemption, time-sensitive network-
ing, traffic analyzing attacks, calibrated attacks, denial of service

I. INTRODUCTION

Real-time communication has become increasingly critical
in various industries, such as avionics, industrial, and automo-
tive, where rapid and reliable data exchange is essential for
safe and efficient operation. In these industries, traffic flows
generated by time-critical (TC) applications with stringent
requirements for bounded latency and low jitter often share
communication channels with the flows originating from non-
time-critical (NTC) applications. However, standard Ethernet
does not provide any inherent guarantees for delivering time-
sensitive data as it was not initially conceived for real-time
applications and strict timing requirements.

In standard Ethernet, frames transmitted non-preemptively
may experience significant queuing delays if there is no
mechanism to interrupt transmissions. In the worst case, a
high-priority TC frame may be delayed by a lower-priority
NTC frame already being transmitted. Once the NTC frame
has completed transmission, the TC frame will be processed
as soon as possible. This may be fine for light traffic scenarios.
However, for heavy traffic, long queuing delays might be the
result. Using jumbo frames whose maximum transmission unit
could be larger than 9k bytes can cause delays around 120 µs
per 100 Mbps to switch in the worst case [1], [2]. This is a
considerable latency for TC traffic.

The IEEE Time-Sensitive Networking task group has pro-
posed standards that enhance Ethernet with real-time capabil-
ities and various QoS classes to address that problem. Particu-
larly, the IEEE 802.3br and IEEE 802.1Qbu standards propose

a frame preemption mechanism allowing the preemption of
certain traffic classes in favor of other classes [3], [4]. With
that, frames configured as express can suspend transmission
of the frames configured as preemptable. Hence, it enables
processing and forwarding high-priority frames immediately
upon arrival without being delayed by low-priority frames.
Furthermore, it has been shown that with preemption, the
waiting time for higher-priority packets becomes independent
of the number of low-priority packets [5].

Although TSN frame preemption is crucial to TSN’s real-
time capability, it also creates potential security risks. It
still suffers from worst-case delays that could be orders of
magnitude longer than average, even when using only a single
express traffic class [6]. Moreover, it can cause the starvation
of NTC frames and exhaustion of full switch buffers [1].
These cases can occur spontaneously in a regular network
and can be abused by attackers to target specific flows or,
more generally, to increase the queueing delay. For instance,
an attacker could send express traffic to the target switch just
before the targeted traffic, causing long waiting times and a
DoS. Therefore, the preemption mechanism requires further
research, as it is a relatively new addition to the TSN family,
and its vulnerability to preemptive DoS attacks needs to be
thoroughly investigated.

This paper explores the vulnerabilities of TSN frame pre-
emption and their implications for TSN networks. For that, an
attacker first needs to passively monitor the network to extract
useful information, such as the used configuration scheme in
the preemption mechanism. Then, based on the observations,
(s)he can attack the preemption mechanism. Accordingly, our
contributions are:

• We identify various potential attack scenarios and discuss
their possible impacts on network performance. In the
process, we introduce the concept of preemptive DoS
attacks.

• We demonstrate how even the passive observation of a
TSN, e.g., monitoring a single input and output port of
a switch, can be prolonged by attackers. Furthermore,
with the OMNeT++ simulations, we show how feasible
using the collected information to launch attacks is. Our
simulation results indicate that even a single attacker can
cause significant delays for specific traffic classes.

The rest of this paper is structured as follows: Section
II briefly describes the frame preemption mechanism and
describes the state of the art. In Section III, we examine
the vulnerabilities of the preemption mechanism and define

SF
D MAC header Qtag

SM
D

-
E

Preamble

SM
D

-
Sx Payload MCRC IFG

Preamble

SM
D

-
C

x FCnt Payload MCRC IFG

Payload FCS IFGPreamble

SM
D

-
C

x FCnt

Preamble

Preamble

Payload FCS IFG

Payload FCS IFG

MAC header Qtag

MAC header Qtag

18 42-1500

60-1500

16

Standard MAC frame

Express MAC frame

Preemptable MAC frame (first fragment)

Preemptable MAC frame (intermediate fragment)

Preemptable MAC frame (last fragment)

Fig. 1: MAC Frame Format

threats. We give feasibility results in Section IV. Finally,
Section V concludes the paper and summarizes future work.

II. BACKGROUND AND RELATED WORK

Frame preemption is a TSN mechanism that allows critical
traffic to interrupt the lower criticality traffic transmission
to satisfy strict timing requirements. Since preemption is
defined on a transmission port of a switch, it requires changes
both in the medium access control (MAC) layer and bridge
management protocol. Accordingly, these two mechanisms
are described in two standards: IEEE 802.1Qbu for bridge
management and IEEE 802.3br for the Ethernet MAC.

At the egress port of the bridge, frames are handled dif-
ferently depending on the configuration. The express MAC
(eMAC) and preemptable MAC (pMAC) layers handle frames
differently depending on whether they are configured as
express or preemptable. Preemption can only occur between
express and preemptable frames, and frames in the same class
cannot preempt each other. Besides, frames of express classes
cannot be preempted; they can only preempt preemptable
frames. In preemption, the preempted frame’s transmission
is resumed until the express frame’s transmission finishes.
Therefore, it is ensured that high-priority traffic configured as
express can no longer be delayed by low-priority preemptable
traffic. The preempted frame can continue transmission from
where it left off only after this point.

As a result of the preemption, preemptable frames are split
into fragments. To make the frame preemption transparent to
the Ethernet’s physical layer, the basic MAC frame structure
is preserved as shown in Fig. 1. Each frame starts with a
preamble and ends with a cyclic redundancy check, FCS
or MCRC, and an inter-frame gap (IFG). In express frame
format, the start frame delimiter (SFD) field is replayed by
SMD-E (start MFrame delimiter - express) to signal the
express frame afterward. The first fragment of the preemptable

frame also has a very similar structure, signaling by SMD-
Sx (SMD - start fragment) field. Following the first one,
all fragments are signaled by SMD-Cx (SMD - continuation
fragment) and a fragment counter (FCnt). This way, fragments
can be combined at the MAC layer in order. Since IEEE
802.3br only allows one level of preemption, the MAC header
and Q-Tag fields are transmitted once in the first fragment,
allowing a bigger payload in the later fragments.

According to the standards, all MAC frames/fragments
must meet the minimum Ethernet frame size requirement
of 84 bytes. For the smaller fragments, the payload needs
to be padded accordingly. However, padding is not allowed
in the preemption, which results in some constraints to the
payload sizes in the fragments. The smallest frame that can be
preempted has a payload of 102 bytes, as it can be split into 42
bytes and 60 bytes to form a start and continuation fragment
that fulfills the minimum Ethernet frame size. Considering the
frame formats, the longest lower priority frame/fragment that
can block an express frame is 143 bytes long, as proven in
[2].

There have been several studies on the worst-case analysis
of frame preemption and its effects on end-to-end transmission
delays, as described in [1]. The authors tested a custom
preemption mechanism in [7], and the implementation results
confirm that latency and jitter of real-time traffic are reduced
compared to standard priority-based Ethernet in the mixed
traffic scenarios. For the practical use of frame preemption,
an optimization framework was presented in [8] for assigning
frames to preemptable or express queues and then deciding
the optimal allocation of the queues as preemptable or express.
The results of this study showed that the queuing configuration
had a considerable impact on performance.

In [9], authors state a problem that an express frame
can cause long delays over the preemptable frames. Also,
since preemptable frames cannot preempt each other in some

(a) (c)

(b)

f5 /ef4 /ef3 /e

f2 /p

f1 /p

f4 /pf2 /e

f1 /p f3 /p

f2 /e

f4 /e

f3 /e

f5 /e

f1 /p

(d)

f3 /e

f1 /p
< 144 bytes

f1 /p f3 /e

Fig. 2: Preemption effect on particular scenarios: (a) express frames to block preemptable frames, (b) express frames delaying
each other, (c) preemptable frames delaying each other, (d) preemptable frames to block express frames

scenarios, huge delays may occur regardless of the timing
constraints of preemptable frames. Thus, the authors propose
a modification of the MAC layer by adding a third interface
named tpMAC. So, express frames can preempt all classes,
and frames assigned to tpMAC can also preempt preemptable
frames. This way, the waiting time for the preemptable traffic
classes with timing constraints can be shortened. The imple-
mentation aspects of this preemption mechanism are discussed
in [10]. The authors focus mostly on implementation details
and present a scalable architecture that can run in application-
specific integrated circuits (ASIC) and field-programmable
gate array (FPGA) platforms. Another solution to that problem
is proposed in [11]. It requires modification of the pMAC and
does not add a third interface as in [9]. Simulation results
confirm that the presented mechanism achieves better response
times for high-priority frames and only slightly impacts the
response times of low-priority frames.

Recent work in [11] addresses the limitations of the current
preemption mechanism. They claim that high-priority frames
can experience significant blocking delays in certain cases,
and they propose a credit-based preemption mechanism to
lower the maximum blocking time of the express frames.
However, to our knowledge, the preemption mechanism’s
vulnerabilities have yet to be discussed from the attacker’s
perspective in related work. This paper analyzes the limita-
tions and malicious use of the standard frame preemption
mechanism by simulations in a realistic TSN environment.
Then, a few candidate solutions will be discussed to handle
these limitations.

III. TSN FRAME PREEMPTION SCENARIOS

This section analyzes the preemption mechanism and
lists its performance shortcomings for low and high-priority
frames.

A. Preemption Effect on Particular Service Types

Frame preemption is already proposed to handle possible
misuse of low-priority frames for targeting timing constraints
of the high-priority frames. For that, high-priority express
traffic is saved from the long waiting times due to low-
priority traffic. However, even though it helps high-priority
traffic preserve its timing constraints, frame preemption still
has shortcomings. In the following, we list the effects of the
different preemption cases on certain traffic classes.

Scenario-a: Express frames block preemptable frames:
The frame preemption mechanism can decrease significant
waiting times of high-priority traffic. However, a preempt-
able frame can be preempted multiple times, which induces
overhead as a part of the frame-splitting process that can
significantly delay the transmission of preemptable traffic.
This may also lead to the starvation of preemptable frames
and the exhaustion of switch buffers. As can be seen in
Fig. 2-a, even though the preemptable frame f1, arrives
before the express frames, f3, f4, f5, it has to wait. As in
this example, sending consecutive express frames results in
multiple preemptions of f1 and, therefore, long delays. Also,
the other preemptable frame, f2, faces a similar long waiting
time.

Scenario-b: Express frames delay each other: Even
though express frames can not preempt each other, they can
still cause delays. An attacker can send certain priority frames
before the reception of a time-critical high-priority frame, as
shown in Fig. 2-b. Suppose that green frames are periodic
and the attacker has extracted that period. The attacker can
insert higher priority frames before the next transmission of
f2 (so f5). In that case, f5 needs to wait for the transmissions
of f3 and f4. The attacker can adjust the number of inserted
frames considering the extracted transmission period to delay

the transmission of f5 and violate its timing constraints.
Furthermore, in the worst case, all express streams in the
network use the same egress port.

Scenario-c: Preemptable frames delay each other: Ac-
cording to the standard preemption mechanism, preemptable
frames cannot preempt each other. If preemptable frames are
forwarded in a first come, first served manner, as suggested
in the standards, some low-priority but critical frames may
suffer from long waiting times. Such frames are classified as
preemptable but still may have softer timing constraints [12].
However, attackers can send a long preemptable frame before
transmission to delay such lower-priority frames for longer
periods. As can be seen in Fig. 2-c, if another preemptable
frame f3, would be inserted just before the time critical but
low priority preemptable frame f4. In this case, f4 needs to
wait until f1 and f3 have been transmitted.

Scenario-d: Preemptable frames block express frames:
Even though neither express nor preemptable frames can
preempt express frames, there are some exceptions in theory.
As we mentioned in Section II, further preemption is not
allowed if the fragment size does not meet the minimum
Ethernet frame size requirement. Thus, the express frame
needs to wait for the transmission of 143 bytes which is the
longest non-preemptable size in the worst case, as can be seen
in Fig. 2-d.

B. Configuration of Preemption Service Classes

Apart from the blocking possibilities of certain traffic
services to each other, an improper configuration of these
classes can also lead to threats. A higher-priority queue can
be mapped to a pMAC, and a lower-priority queue can be
mapped to an eMAC. Even though we do not expect such
scenarios in practical implementations, improper or illegiti-
mate configurations may occur.

IV. EVALUATION

In this section, we simulate a simple TSN network to show
vulnerabilities of the standard frame preemption mechanism
considering the defined attack scenarios presented in Section
III. First, we briefly explain the evaluation setup and the
attacker model. Then, we show the feasibility of the attacks
on the TSN preemption mechanism. Finally, we summarize
our simulation results.

A. Experimental Setup

We use OMNeT++ discrete event simulation framework for
the simulative analysis with NeSTiNg simulation model de-
veloped for time-sensitive networks by extending inet library
[13], [14]. For our experiments, we used a simple topology as
shown in Fig. 3 in which we have two legitimate transmitting
end-hosts per class, a talker in TSN, and one malicious talker,
a single TSN switch and single receiving end-hosts, listener
in TSN, as we only need to monitor the ingress and egress of
a single switch. Also, we set the link capacity to 100 Mbps
for simplicity. Finally, the experiments are repeated for 20
scenarios, and results are given with confidence intervals.

.

.

.

Fig. 3: Test topology

TABLE I: Simulated TSN traffic

Type Period Deadline Payload size
Q7 Control 10-40 ms Same as

period

10-100 Byte
Q6 Sensor 40-100 ms 100-200 Byte

Q5 CAM,
Radar 20-100 ms 400-1500 Byte

Q0 Best effort 50-100 ms - 1500 Byte

Since there is no publicly available data set for TSN
traffic, we obtained the traffic generation parameters from
TSN literature and tried to model TSN traffic as realistically
as possible [8]. Considering in-vehicle networks as a use case,
we generated four traffic classes; control signal, sensor data,
raw data from camera or radar (lidar), and best-effort traffic,
as shown in Table I. The best effort in this scenario does
not require any timing guarantee and represents the non-time
critical traffic. On the other hand, the remaining traffic classes
are usually used by time-critical applications; thus, these data
flows have specific traffic deadlines and represent time-critical
traffic.

We also assume the preemption mechanism is appropriately
configured as described in Section III-B. Hence, we assume
low-priority queues are not configured as express when there
is high-priority traffic in the network. We listed a few configu-
ration scenarios in Table II. Here, P represents a related queue
configured as preemptable, while E represents an express
queue. For instance, in the third configuration, queues seven
(Q7) and six (Q6) are configured as express, while others are
configured as preemptable.

TABLE II: Possible frame preemption configurations

Configuration Q7 Q6 Q5 Q0
#1 P P P P
#2 E P P P
#3 E E P P
#4 E E E P
#5 E E E E

B. Evaluation Metrics

We used the following metrics to evaluate our scenarios:
• Observed Mean Variance in Delay: The mean-variance

of the observed delay of either the applied scenario (e.g.,
class i traffic injection) or the initial status where no
traffic is injected.

• Mean Stream Latency (MSL): The average latency of
streams until they reach their destination.

C. Attacker Model

To show how the malicious talkers can abuse the preemption
mechanism, the attack model needs to be defined, stating its
capabilities. Here, two different attack models can be used as
follows:

• Attackers with full knowledge: Attacker knows everything
about the network. For instance, the attacker can calculate
upper bounds for the queuing delay at each hop as (s)he
knows about talkers’ behavior.

• Attackers with partial knowledge: Here, the attacker can
either (i) passively monitor the network and capture
traffic or (ii) actively send certain priority probe packets
to the network. Then, the attacker analyzes the time deltas
between sent messages and their corresponding responses
on specific links. Then, the attacker may perform traffic-
analysis attacks to learn when a particular node forwards
a specific frame or where it will be processed at the given
time.

An attacker with full knowledge can manipulate the network
easily due to the deterministic nature of TSN. However,
it becomes challenging with limited knowledge. Thus, this
paper assumes that the attacker initially has zero knowledge.
Furthermore, we only assume that the switch configuration
does not change during our observation period, which we
select as 100µs. During this period, the attacker monitors
a series of messages at the ingress and egress of the target
switch and sees the switch as a black box. Furthermore, the
attacker can control a few talkers. In that case, it can inject
traffic from a specific class to delay certain traffic flows.

D. Results

This section presents how an attacker can perform traffic
analysis and how the scenarios defined in Section III become
feasible based on the attacker’s observations.

Traffic analysis: Assuming that the switch is a black box
for an attacker, we only monitor the ingress and egress of the
TSN switch and hold statistics per class, such as experienced
frame delay. Thus, the attacker can perform traffic analysis
by analyzing the relations between packets passing through
the observed switch. For that, we record the arrival and
departure times of the frames for all classes and extract
minimum, maximum, and average latency and the variance
of the latency values per class from the observed latency
values. Preliminary results show that minimum, maximum,
and average latency values differ significantly based on the
generated traffic scenarios. However, relating these metrics
with the used frame preemption configuration is hard.

Thus, we use the variance of the measured latency by
injecting different classes of traffic and see how much it
affects the latency of other classes (See Fig. 4). However, that
does not require active traffic injection of the attacker; it may
also be possible that the attacker just passively monitors the
network where new talkers join the network and start sending

Fig. 4: Attacker observations in case of configuration 2 is used

traffic. Results of configuration #2, where only Q7 is set as
an express, are shown in Fig. 4. It can be differentiated from
the other classes independent of the injected traffic class; it is
unaffected as it has a right to preempt other classes. In some
cases where two express frames arrive simultaneously, we
may see slight delays. However, this effect does not vary the
results. Moreover, experiments using the other configurations
in Table II resulted in parallel results and confirmed our claim
that variance is an excellent metric for estimating the used
configuration scheme, e.g., express traffic classes.

Injecting malicious traffic into the network: After the
traffic analysis, the attacker can predict a specific traffic class
assigned to a preemptable or an express. Then, using this
information, it can perform the scenarios described in Section
III. To show its feasibility, we simulate two scenarios and
measure the success of the attacks in terms of the mean latency
of the streams. Finally, we configure the Q7 as an express and
the remaining queues as preemptable. For simplicity, we set
the link capacity to 10 Mbps so that it is possible to see the
preemption effect even with a small scenario.

In the first scenario, we generate two express streams, S1
and S2, and two preemptable streams. Then, we measure the
mean end-to-end latency of express traffic as shown in Fig.
5a. Here, we left minimum and maximum values out as they
are very narrow. Initially, we see that S1 and S2 have very low
MSL, around 250 µs. Then, assuming the attacker passively
monitored the network and detected S1 and S2 as express
traffic, s(he) sends express traffic before S1 and S2 start
transmission. Here, we set this value as 2µs so that, as shown
in the timing diagram, 2µs before the transmission of S1 and
S2, the attacker injects express traffic. Since express frames
cannot preempt each other, we see a significant increase when
malicious express traffic, S3, and S4, is injected into the
network. The preliminary results show that it is possible to
carry out a calibrated attack to delay the targeted streams
further. In the worst case, this may cause a violation of QoS
constraints, e.g., missing deadlines.

In the second scenario, to show how preemptable traffic
is affected by the express traffic, we initially generate two

(a) Injecting express traffic to delay specific express stream(s) (b) Injecting express traffic to delay specific preemptable stream(s)

Fig. 5: Injecting malicious traffic into the network

preemptable streams, S1 and S2. Then, we measure the mean
end-to-end latency of preemptable traffic as shown in Fig.
5b. In case the attacker sends express frames during the
transmission of preemptable frames, they can be preempted.
For that, we inject express frames as bursts. Results claim that
even a single express stream that generates multiple bursts
periodically can cause a significant delay of preemptable
traffic. In the worst case, preempting several times may cause
the starvation of the preemptable traffic.

V. CONCLUSION

Frame preemption is one of the mechanisms in TSN that
helps limit the waiting time of certain traffic classes so that
strict QoS requirements can be satisfied. However, security has
yet to be one of the main design concerns. Since the primary
application domains of the TSN protocols are mission-critical
systems, it is crucial to explore potential threats and apply
candidate countermeasures. This paper presents a few vul-
nerabilities of the standard frame preemption mechanism and
describes scenarios that malicious end hosts can abuse. Then,
we simulate a typical TSN network and show how much useful
information an attacker can extract and how this information
can potentially be used to violate the QoS constraints of TSN
traffic so denial of service.

In our future work, we intend to explore more intricate
scenarios involving multiple switches to enhance the impact
of attackers, even though a single switch can already cause
significant delay. Additionally, to mitigate these attacks, we
intend to deploy different strategies limiting the attacker’s
knowledge of the network using the moving target defense
(MTD) concept. By introducing diversity into the network,
MTD can randomize certain features and prevent attackers
from predicting network traffic. This will make it harder for
attackers to identify patterns and predict future events despite
an increased attack budget. Specifically, we aim to make it
difficult for attackers to determine when a particular flow
is being forwarded by a specific TSN node or where it is
being processed at any given time. These efforts are part of
our broader goal to enhance the security of time-sensitive
networks.

REFERENCES

[1] W.-K. Jia, G.-H. Liu, and Y.-C. Chen, “Performance evaluation of IEEE
802.1 Qbu: Experimental and simulation results,” in 38th Annual IEEE
Conference on Local Computer Networks. IEEE, 2013, pp. 659–662.

[2] D. Thiele and R. Ernst, “Formal worst-case performance analysis of
time-sensitive Ethernet with frame preemption,” in 2016 IEEE 21st
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), 2016, pp. 1–9.

[3] “IEEE Standard for Ethernet Amendment 5: Specification and Manage-
ment Parameters for Interspersing Express Traffic,” IEEE Std 802.3br-
2016 (Amendment to IEEE Std 802.3-2015 as amended by IEEE
St802.3bw-2015, IEEE Std 802.3by-2016, IEEE Std 802.3bq-2016, and
IEEE Std 802.3bp-2016), pp. 1–58, 2016.

[4] “IEEE Standard for Local and Metropolitan Area Networks – Bridges
and Bridged Networks – Amendment 26: Frame Preemption,” IEEE Std
802.1Qbu-2016 (Amendment to IEEE Std 802.1Q-2014), 2016.

[5] Z. Zhou, Y. Yan, S. Ruepp, and M. Berger, “Analysis and implementa-
tion of packet preemption for time sensitive networks,” in 2017 IEEE
18th International Conference on High Performance Switching and
Routing (HPSR). IEEE, 2017, pp. 1–6.

[6] D. Hellmanns, J. Falk, A. Glavackij, R. Hummen, S. Kehrer, and F. Dürr,
“On the Performance of Stream-based, Class-based Time-aware Shaping
and Frame Preemption in TSN,” in 2020 IEEE International Conference
on Industrial Technology (ICIT), 2020, pp. 298–303.

[7] J. Kim, B. Y. Lee, and J. Park, “Preemptive switched ethernet for
real-time process control system,” in 2013 11th IEEE International
Conference on Industrial Informatics. IEEE, 2013, pp. 171–176.

[8] T. Park, S. Samii, and K. G. Shin, “Design optimization of frame
preemption in real-time switched ethernet,” in 2019 Design, Automation
and Test in Europe Conference (DATE). IEEE, 2019, pp. 420–425.

[9] M. A. Ojewale, P. M. Yomsi, and B. Nikolić, “Multi-Level Preemption
in TSN: Feasibility and Requirements Analysis,” in IEEE 23rd Interna-
tional Symposium on Real-Time Distributed Computing (ISORC), 2020.

[10] M. Knezic, M. Kovacevic, and Z. Ivanovic, “Implementation Aspects
of Multi-Level Frame Preemption in TSN,” in 2020 25th IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation
(ETFA), vol. 1, 2020, pp. 1127–1130.

[11] M. Ashjaei, M. Sjödin, and S. Mubeen, “A novel frame preemption
model in TSN networks,” Journal of Systems Architecture, vol. 116, p.
102037, 2021.

[12] M. A. Ojewale, P. M. Yomsi, and B. Nikolić, “Multi-level preemption
in TSN: feasibility and requirements analysis,” in 2020 IEEE 23rd
International Symposium on Real-Time Distributed Computing (ISORC).
IEEE, 2020, pp. 47–55.

[13] J. Falk, D. Hellmanns, B. Carabelli, N. Nayak, F. Dürr, S. Kehrer, and
K. Rothermel, “NeSTiNg: Simulating IEEE time-sensitive networking
in OMNeT++,” in Proceedings of the 2019 International Conference on
Networked Systems, Garching b. München, Germany, Mar. 2019.

[14] “INET framework.” [Online]. Available: https://inet.omnetpp.org/

Appendix F

Paper 6: SDN/NFV-based DDoS
Mitigation via Pushback

Abstract

Distributed Denial of Service (DDoS) attacks aim at bringing down or decreasing the avail-
ability of services for their legitimate users, by exhausting network or server resources. It
is difficult to differentiate attack traffic from legitimate traffic as the attack can come from
distributed nodes that additionally might spoof their IP addresses. Traditional DoS mitiga-
tion solutions fail to defend all kinds of DoS attacks and huge DoS attacks might exceed the
processing capacity of routers and firewalls easily. The advent of Software-defined Networking
(SDN) and Network Function Virtualization (NFV) has brought a new perspective for network
defense. Key features of such technologies like global network view and flexibly positionable
security functionality can be used for mitigating DDoS attacks. In this paper, we propose a
collaborative DDoS attack mitigation scheme that uses SDN and NFV. We adopt a machine
learning algorithm from related work to derive accurate patterns describing DDoS attacks.
Our experimental results indicate that our framework is able to differentiate attack and legit-
imate traffic with high accuracy and in near-realtime. Furthermore, the derived patterns can
be used to create OpenFlow (OF) or Firewall rules that can be pushed back into the direction
of the attack origin for more efficient and distributed filtering.

Reference

Nurefşan Sertbaş Bülbül and M. Fischer. SDN/NFV-based DDoS Mitiga-

tion via Pushback. IEEE International Conference on Communications

(ICC), 2020. ©2020 IEEE.

Contribution

In the forementioned publication, the whole contribution belongs to this thesis. The co-author
helped to improve the quality of the paper with his valuable feedback.

115

SDN/NFV-based DDoS Mitigation via Pushback
Nurefşan Sertbaş Bülbül and Mathias Fischer

Department of Computer Science, University of Hamburg, Germany
Email:{sertbas,mfischer}@informatik.uni-hamburg.de

Abstract—Distributed Denial of Service (DDoS) attacks aim at
bringing down or decreasing the availability of services for their
legitimate users, by exhausting network or server resources. It is
difficult to differentiate attack traffic from legitimate traffic as the
attack can come from distributed nodes that additionally might
spoof their IP addresses. Traditional DoS mitigation solutions fail
to defend all kinds of DoS attacks and huge DoS attacks might
exceed the processing capacity of routers and firewalls easily.
The advent of Software-defined Networking (SDN) and Network
Function Virtualization (NFV) has brought a new perspective for
network defense. Key features of such technologies like global
network view and flexibly positionable security functionality can
be used for mitigating DDoS attacks. In this paper, we propose
a collaborative DDoS attack mitigation scheme that uses SDN
and NFV. We adopt a machine learning algorithm from related
work to derive accurate patterns describing DDoS attacks. Our
experimental results indicate that our framework is able to
differentiate attack and legitimate traffic with high accuracy and
in near-realtime. Furthermore, the derived patterns can be used
to create OpenFlow (OF) or Firewall rules that can be pushed
back into the direction of the attack origin for more efficient and
distributed filtering.

Index Terms—DDoS, pushback, pattern generation, NFV, SDN

I. INTRODUCTION

DDoS attacks are malicious attempts to interrupt services
by congesting networks, consuming server resources, or dis-
rupting the availability of the network components. It is hard
to differentiate DoS attack traffic from legitimate traffic, as
attackers also try to mimic legitimate traffic and can easily
spoof IP source addresses.

Moreover, so-called Flash Crowds (FC) that manifests in
large amounts of traffic from legitimate users occur naturally
and hard to differentiate from DoS attacks as they share similar
traffic characteristics [1]. Only when attack traffic can be
clearly differentiated from legitimate traffic, the attack traffic
can be filtered without affecting the legitimate traffic. For that,
several network traffic analysis methods have been proposed
in the literature. Although some of the methods can be easily
implemented, they have poor performance and low detection
accuracy [2], [3].

Current mitigation solutions are mostly based on dedicated
appliances such as firewalls. However, they use predefined
security policies that fail to identify and drop new attack
patterns. Cloud-based mitigation solutions have resources to
handle these attacks, but cannot guarantee end-to-end security.
For this reason, not all service providers want to use them.

Recently, the introduction of SDN and NFV technologies
facilitates new network security solutions. NFV decouples
the software implementation of network functions from the

underlying hardware by virtualization, and therefore functions
can be started when and where they are needed. SDN can
be seen complementary to NFV and can be used to manage
NFV infrastructure with the help of SDN specific features like
global network view, traffic analysis, and the configuration
of dynamic packet forwarding. By leveraging SDN and NFV
features, it is possible to defend the network against DDoS
attacks even for huge traffic volumes that normally would
exceed the deployed firewall capacity [4]–[7].

An efficient mitigation should minimize false positives and
maximize true positives so that only malicious traffic can
be identified and blocked. Considering the current attacking
schemes, the system should be able to deploy on-demand
functions when and where they are needed so that the system
can react to varying types and sizes of attacks. While doing
so, it needs to operate with low latency and react attacks on
time.

In this paper, we propose an SDN-NFV-based DDoS attack
mitigation framework that filters malicious traffic and pushes
back the filtering rules upstream into the direction the ma-
licious traffic is coming from. Benefitting from the idea that
carrying out some tasks locally may help to achieve a common
goal globally [8], our mechanism detects attack locally and
pushes it back. Such a mechanism can efficiently drop attack
traffic close to its origin [9], [10]. However, to filter malicious
traffic an aggregate of the malicious DoS traffic is needed
that can be easily implemented either as SDN flow rule or a
firewall rule. For that, we propose to apply the generalization
and summarization algorithm, AOI, in this domain [11]. It
extracts patterns that describe the majority of the traffic, which
usually manifests in a pattern for the DoS traffic during an
attack. Afterwards, the attack can be mitigated via SDN/NFV
by informing intermediate routers to filter the traffic that fits
the pattern. Our paper makes thus the following contributions:

• We revise the original Pushback mechanism introduced
in [9] with the use of SDN/NFV to handle the limitations
of traditional networks. SDN eases the collaboration not
only between the forwarding entities but also between
networks. Therefore, attacks can be directly mitigated by
OF. We might also need NFV to pushback the attack if
we are outside of the SDN domain.

• We evaluated AOI for deriving filtering rules with up-to-
date data sets that contain different types of DoS attacks.
We conclude that it can effectively differentiate attack
from legitimate traffic, and can be used for deriving
filtering rules for attack traffic. These rules can be used
at upstream routers to filter traffic closer to its origin.

• Our results indicate that the proposed algorithm works
independently of the type of DDoS attack. Results show
that AOI can identify the attack and legitimate traffic
with high accuracy. It drops 99.25% of the attack traffic
while dropping only 7.61% of the legitimate traffic on
average. When combined with sampling, it allows for a
near-realtime derivation of filtering rules.

The remainder of this paper is structured as follows: Section
II summarizing current DDoS attack detection and mitigation
approaches. Section III presents a novel DDoS mitigation
framework using NFV and SDN. We give some simulation
results and evaluate our approach in Section IV. Finally,
Section V concludes the paper and outlines our future work.

II. RELATED WORK

In this section, we will survey the literature on pattern
generation and the mitigation of DoS attacks.

a) Pattern Generation: Patterns may be extracted from
the network traffic by analyzing attributes like IP addresses,
protocols and port numbers. These patterns are useful for
describing how the attack looks like. Therefore, generating
a proper pattern significantly affects attack mitigation per-
formance. A generated pattern should be accurate enough
otherwise, it may filter unintended packets. Pattern generation
plays a significant role in the concept of Aggregate-based
Congestion Control (ACC) [9]. The idea behind it is that an
overall increase in the traffic cannot be described by a single
flow because attack traffic is usually spread across more than
one flow. Therefore, traditional flow-based solutions fail to
identify an aggregate of packets, which can be defined as a
collection of packets coming from one or more flows that share
the same attributes, e.g, destination IP addresses [10].

The authors introduce a method called Longest Matching
Prefix (LMP) to describe aggregates in the concept of ACC. It
is used in routers to choose a forwarding entry from a routing
table. In the ACC concept [10], attack patterns are generated
based on the longest matching prefix of the dropped traffic by
routers. Destination IP addresses of the dropped packets are
extracted and sorted by prefixes. The most frequent prefix is
selected as a signature of the congestion. Then, this signature
is used for filtering the traffic that causes congestion at the
corresponding router and upstream routers. That approach
operates near to real-time and is easy to implement as it
only uses destination IP addresses. However, LMP fails to
differentiate legitimate traffic from attack traffic, when not a
complete network but a single server is targeted. In such a
scenario, the generated signature matches all traffic designated
to the server and drops the legitimate traffic as well.

As an alternative to LMP, AOI can be adapted to this domain
for generating attack patterns. AOI is a summarization machine
learning algorithm that learns from example techniques [12].
The main difference between machine learning is derived from
the method of generalization. While data is generalized on
tuple by tuple basis in machine learning, AOI uses attribute
by attribute generalization. It is an effective approach to extract
rules from a set of data and generate high-level representations.

Thus, it has been used in different fields like alarm clustering
and, summarizing the relational databases. In [13], it is used
for clustering thousands of alarms into clusters. The algorithm
repeatedly replaces alarm attributes with more generalized tags
which are defined by generalization hierarchies. At the end,
alarms are represented more compact and has more compact
representations. In other words, general information about the
alarm, e.g., a privileged or a non-privileged port was used, is
kept instead of its actual values e.g., a specific port number.
By merging similar alarms, clusters are generated and the
biggest cluster produced by AOI reflects the majority of the
alarms in the respective set. However, the performance of the
AOI is highly dependent on the termination criteria and the
abstraction hierarchies that need to be provided beforehand.
Another use case may be a signature generation for traffic.
Incoming traffic can be clustered by identifying dominant
characteristics and a related pattern for each cluster is derived.
Then, the derived patterns can be used for filtering traffic.

b) Attack mitigation: Mitigation mechanisms for DoS
attacks can be distinguished into three groups: The first group
consists of traditional approaches that use appliances like
firewalls, intrusion prevention, and detection systems. They
are deployed at fixed network positions with a fixed capacity.
In other words, they rely on predefined policies and not able
to make run-time decisions on their own. Thus, they will fail
to handle unknown attacks, as well as the attacks, exceed their
capacity [14]. The second group is cloud-oriented approaches
that come with privacy drawbacks and increase the network
latency due to a re-routing via the cloud [15]. By considering
those issues, network operators have two options, namely to
deploy appliances in a distributed or centralized manner. In
the distributed scenario, high volume defense appliances like
firewalls that can handle each type of known attacks can be
deployed at each aggregation points. The centralized scenario
provides deploying fewer appliances at central locations by
rerouting traffic towards the center [16]. Although the second
scenario seems more cost-effective, there are some critical
issues to be addressed. Such a centralized approach requires
rerouting the traffic explicitly, which causes latency and ad-
ditional communication overhead. Also, the traffic can be
monitored by third parties, which violates the privacy of the
users [17].

The advent of SDN and NFV has brought a new perspective
for network defense [18]. Key features of such technologies
like global network view and flexibly positionable security
functionality can be used for mitigating DDoS attacks. SDN
can be used for enforcing a security policy by instructing
forwarding entities to behave accordingly and NFV can be
used for deploying Virtual Network Functions (VNFs) to
propagate DDoS traffic from the victim network towards the
source. The authors of [19]propose a DDoS attack mitigation
framework including a pushback mechanism using SDN. The
paper focuses on how to share attack information with the
corresponding SDN controller, assuming the attack detected
and identified. However, the proposed framework does not
include a method to extract attack patterns.

Fig. 1: Attack mitigation with pushback mechanism

III. SDN/NFV BASED COLLABORATIVE ATTACK
MITIGATION

In this section, we introduce a collaborative SDN/NFV-
based DDoS mitigation framework. For that, we first describe
the overall framework and then we explain how we generate
the attack signature and how we pushback the attack in detail.

A. Overall architecture of SDN/NFV based Pushback

The proposed framework which is shown in Figure 1
includes different components. SDN specific features facilitate
the detection of attacks and take related mitigation actions
on time. SDN controller can detect an attack at the ingress
switch, which is S3, by analyzing the incoming traffic. Our
intention in this paper is not to propose a new DDoS detection
algorithm. Therefore, we select an entropy-based attack detec-
tion that is widely used in literature [20]. Entropy measures
the randomness of flows during the given time window. If
the randomness increases then the entropy also increases.
In our case, if the number of the packets that have the
same destination IP and destination port will increase quickly,
entropy decreases sharply. Once the attack has been detected,
traffic will be analyzed further for generating attack patterns
which are significantly important as not to drop legitimate
traffic (e.g., coming along R5). The pattern generation module
derives an OF rule that describes the attack traffic. Then, the
controller pushes the derived rule in S3 to filter unwanted
traffic in the first phase of the attack mitigation. In case that the
attack exceeds the capacity of the S3, the pushback mechanism
will be triggered and collaborative attack mitigation will be
initialized. The derived rule is propagated from R1 to R2
and R3, and subsequently to R5. Informed routers start to
filter traffic so that, the attack traffic will be filtered before it
arrives to the victim. In some cases, like collaborating with a

Fig. 2: Generalization Hierarchies

non-SDN network, we might bring this filtering functionality
by initializing the VNFs. Such a collaborative mitigation
approach aims to make network resources available for the use
of legitimate users by limiting the propagation of the attack
traffic.

B. Pattern Generation for Deriving Filtering Rules

Attackers can easily spoof the IP addresses thus; we use
Autonomous System Numbers (ASNs) instead IPs. We define
our patterns using five attributes as source ASN (srcASN),
source port (srcPort), destination ASN (dstASN), destination
port (dstPort), and protocol (prot). Then, we apply the AOI
algorithm on incoming network traffic to generalize it and
create clusters of similar traffic flows. We use generalization
hierarchies as shown in Figure 2. Port numbers are generalized
three categories according to the range. We categorize IP
addresses by AS membership. Then, protocols are categorized
as TCP or UDP.

After the generalization, we select the pattern of the biggest
cluster as an attack signature and transform the derived signa-
ture to IPtables rules that will be used for filtering traffic in the
next step. For instance, assume that the pattern generated by
AOI is shown by (a) in Figure 3. This can easily transform into
a filtering rule which is shown by (b). Basically, it drops the
packets coming from https port, which is 443, and designated
to a registered port, which is defined in the range of 1024 to
49151. The source ASN is not assigned, therefore, we do not
take it into account. There may exist more than one IP address
located in the given destination AS. This mapping could be
stored in the SDN controller and related IP addresses can be
extracted. This translation can be done fast. Now, we have a
filtering rule and we describe how we can use this rule for
mitigating DoS attacks in the next paragraphs.

iptables -I INPUT -p tcp --sport 443
-d ip1,ip2,ip3 --dport 50466 -j DROP

(a)

(b)

prot=tcp, srcASN=NA, srcPort=https,

dstASN=8075, dstPort=unregistered-port

Fig. 3: Transforming pattern to filtering rule example

C. Mitigating Attack by SDN/NFV-based Pushback
To efficiently mitigate identified DDoS attacks, we use

the Pushback mechanism. It protects networks from severe
congestions due to a rapid increase in traffic as a result of a
DoS attack. Although the Pushback is a mechanism known
from the state of the art, we empower it with the use of SDN
and NFV and with a novel scheme to distinguish DDoS and
legitimate traffic.

Large networks may contain multiple interconnected local
networks, controlled by a single SDN controller. The attack
may aim to block the communication between local networks
as well as the communication between controller and entities
within the network. In such a scenario, the traffic increase at
the switch can be detected via the responsible SDN controller.
This can be done by the Monitoring module as a result
of the periodic flow-stats request/reply mechanism as shown
in Figure 4. The Attack Detection submodule analyses the
collected traffic. In case of attack has been detected, an attack
signature is generated and translated to a filtering rule. The
derived rule is pushed to the respective switch via the OF. If
the traffic exceeds the capacity of the switch, the Attack Miti-
gation submodule has been triggered to initialize the Pushback
mechanism. For the Pushback, it might be necessary to use
NFV to deploy firewall VNFs to filter attack traffic outside
of the SDN domain. For that, the NFV module initializes the
VNF instances to deploy the filtering rule in upstream routers.
The controller pushes the related forwarding rules to re-route
the attack traffic between the VNFs. Thus, the attack traffic is
dropped iteratively in each router close to the attacker.

As long as we are in the SDN domain, NFV is not necessary
for the Pushback. Assuming a scenario in which multiple SDN
domains are connected, the extracted attack information is
shared with the neighboring network’s controller. The receiv-
ing controller validates the source of information by checking
an additional certificate to authenticate the legitimacy of the
transmitting controller. Then, the related rules will be installed
at the connected nodes depending on the attack information.
As a result, malicious flows are dropped. All neighboring SDN
controllers perform the same procedure. In this way, DDoS
attacks can be filtered collaboratively.

IV. EVALUATION

In this section, we briefly outline the evaluation setup and
metrics to evaluate the proposed pattern generation method,
AOI, and LMP. We measure the quality in terms of attack and
legitimate drop rates, and the performance in terms of CPU
time consumption. Then, we briefly introduce the datasets that
we used in our evaluation. Finally, we give our evaluation
results.

A. Evaluation setup and metrics

We implemented the AOI and LMP algorithms in Python.
We use the Pyasn module that enables offline and historical
ASN lookups using BGP archives. Attack detection in our
implementation based on entropy as in [25]. We use the pattern
generation approach as introduced by us in Section III-B.

Monitoring
Attack

Detection &
Mitigation

NFV
Orchestrator

Data Plane

SW1 SW2 ... SWn

SDN
Controller

Neighbor

Network

stats-req

insert drop rule
no more

resources

propagate �ltering rules

attack
detected

stats-req

stats-req

stats-reply

stats-reply

stats-reply

start
pushback

set routing paths between VNFs
initialize VNFs

Fig. 4: Timing sequence diagram for our framework

We measure the strength of a defense mechanism with
following metrics depending on how well it can detect and
how fast does it react against attacks [26]:

• Classification Rate (CR): Ratio of the correct outcomes
of the detection mechanism (true positives and true neg-
atives) over the total outcomes.

• Recall: The ratio of true positives over the total desired
positive outcomes.

• False Positive Rate (FPR): It is the ratio of the number of
negatives wrongly categorized as positive over the total
number of actual negatives.

B. Datasets

We evaluate our approach on four datasets that we briefly
summarize in Table I. All datasets have attack and legitimate
traffic data while background traffic is also included in CTU-
13 dataset. Although there are several attacks in these datasets,
we are only interested in the DoS attacks. Our aim is to show
AOI can differentiate attacks independent from the attack type
or dataset, while LMP can work well only for multi designated
attacks. We run our experiments for NTP amplification DoS,
ICMP-UDP-HTTP DDoS, DoS slowloris, DoS Slowhttptest,
DoS Hulk, DoS GoldenEye, and IRC Botnets.

C. Results

The focus of this paper is to derive filtering rules efficiently
and to use these rules to mitigate the attacks via SDN/NFV.
For that, we conduct a set of experiments to investigate the
performance of our framework. In our experiments, we extract
patterns for different DDoS attack scenarios and investigate
to which extent we can differentiate attacks from legitimate
traffic. Our evaluation results for the different DDoS datasets
(cf. Section IV-B) are shown in Table II. The CR shows
the rate of correctly identified attack and legitimate traffic.
Looking only at CR may be misleading, because it does not
say anything about the individual classes. One class could
be perfectly classified, while the other class is completely
misclassified. Thus, we computed also Recall and FPR. The
Recall metric shows how much of the DoS traffic has been
detected. The FPR summarizes how much of the legitimate
traffic has been classified as DoS.

Dataset Time Description Attacks DoS type
CICDDoS [21] 01/2019 To resemble real-world data, some human behavior

models have been used for generating naturalistic
legitimate background traffic

Reflection-based DDoS attacks: PortMap, Net-
BIOS, LDAP, MSSQL, UDP, UDP-Lag, SYN,
NTP, DNS, SNM

one-to-one

CICIDS [22] 07/2017 Contains most up-to-date common attacks by re-
sembling true world real-world data

Brute Force FTP, Brute Force SSH, DoS, Heart-
bleed, Web Attack, Infiltration, Botnet and DDoS

mixed

ISCXIDS [23] 06/2010 Generated by analyzing real traces to create agent
profiles. Created profiles are used in a testbed
environment to generate the resulting dataset.

Brute Force SSH, HTTP DoS, DDoS by IRC
Botnet

many-to-one

CTU-13 [24] 08/2011 Captured on the main router of the CTU University
and contains a capture of several botnet scenarios

Different botnet scenarios including UDP-ICMP
DDoS

mixed

TABLE I: Summary of used datasets

In the CICIDS dataset, most attacks have been carried out
by multiple sources attacking a single victim. Since there is
only one victim, it is easy to drop all packets targeting that
destination. As can be seen from the results, both algorithms
have 1.0 Recall value, which means that they drop all DoS
packets. However, this may cause dropping legitimate traffic to
the same IP as well as it happens with LMP. This can be seen
from the CR; it differs significantly due to the miss-classified
legitimate traffic. Also from the FPR, AOI only drops 1.20%
of the legitimate traffic while LMP drops 84.56%. This shows
that even though both algorithms can efficiently classify DoS,
LMP is not able to differentiate legitimate and attack traffic.

The CTU dataset contains background traffic in addition to
legitimate and attack traffic. Thus, the Recall value for LMP is
lower than for the other datasets, because the extracted attack
signatures are highly affected by background and legitimate
traffic. Thus, DoS packets may not get dropped. Also, when
dropping traffic that shares the same destination IP, a high
portion (74.67%) of the legitimate traffic is lost as well.

For the CICDDoS dataset, LMP seems to perform slightly
better than AOI in terms of the CR. However, LMP fails
to differentiate legitimate traffic from attack traffic. While
it drops 2% more attack traffic than AOI, it drops 39.41%
of the legitimate traffic and AOI only 4.73%. Such a high
legitimate drop rate derived from the distribution of the source
and destination IPs. In the dataset, only one IP is under attack,
which means that LMP decides to drop all the traffic that goes
to this IP. In this case, legitimate traffic to this IP will be also
dropped. However, AOI uses five attributes for filtering, so that
it saves 95.27% of the legitimate traffic from being dropped.

In the ISCXIDS dataset, there is a big difference in CR
between AOI and LMP, which is caused by miss-classified
legitimate traffic. The Recall values indicate that both algo-
rithms are able to detect nearly all attack traffic. However,
LMP drops 60.56% of legitimate traffic while AOI only drops
22.70%, which is still much better than LMP.

Our experimental results reveal that AOI and LMP effi-

ciently detect DoS traffic, but LMP falls behind in differentiat-
ing legitimate from DoS traffic. In all datasets, LMP efficiently
detects attack traffic, because DDoS attacks generally target
one or a set of IPs. Since LMP only looks at destination
IPs, it is able to drop most attack traffic, but also a large
part of legitimate traffic as well. AOI performs better here,
as it uses multiple attributes instead of only one attribute as
in LMP. Thus, AOI allows for more fine-grained filtering and
differentiation of attack and legitimate traffic.

Finally, we focus on improving the performance of AOI. For
that, we implement two different packet sampling approaches
namely Systematic sampling (S1), which takes each kth sam-
ple, and Random sampling (S2), which selects packets with
1/k probability as explained in [27]. Then, we run experiments
to see it can we improve the runtime of the pattern generation
without sacrificing accuracy. We measure FPR and Recall
values in dependence on different values of k as shown in
Figure 5. S1 achieves lower FPR than AOI up to a certain
point. After that point, the FPR starts to increase while the
Recall values decrease for S1. In other words, S1 achieves
better performance for low values of k. However, it cannot
differentiate legitimate traffic as accurately as previous for the
higher values of k. Unlike S1, the results of S2 are slightly
inferior from AOI even for smaller k values. Since it collects
random samples, we repeated the experiment 20 times for
avoiding outliers. Based on the results, S2 can be used to
achieve nearly the same classification accuracy as pure AOI.

We showed the detection performances of the algorithms,
but security does not come free. We also need to consider
the performance in terms of CPU time consumption. For that,
we plot the CPU time consumption of both algorithms in
dependence on an increasing number of packets in Figure
6. We investigate how the response time of the algorithm
changes with an increasing number of packets. LMP is faster
than AOI as expected, because it only takes the destination
IP into account for filtering. Even though AOI makes several
ASN lookups and filters based on five attributes, it can extract

Attribute Oriented Induction Longest Matching Prefix
Dataset CR Recall FPR CR Recall FPR

CICIDS 0.9955 1.0 0.012 0.6900 1.0 0.8456
CTU-13 0.9988 0.9995 0.018 0.7063 0.7265 0.7467
CICDDoS 0.9747 0.9748 0.0473 0.9979 0.9991 0.3941
ISCXIDS 0.9036 0.9958 0.2270 0.7471 0.9958 0.6056

TABLE II: Evaluation of AOI and LMP algorithms with varying attack types

Fig. 5: Classification performance after sampling

Fig. 6: CPU time consumption of pattern generation

attack signatures in a few seconds which is still reasonable.
Our results indicate that sampling-based AOI, achieves better
performance and stays close to LMP. Therefore, AOI with
sampling achieves a high classification accuracy and runs close
to real-time as LMP.

V. CONCLUSIONS

In this paper, we propose a collaborative DDoS mitigation
framework by leveraging SDN/NFV technologies. To derive a
pattern for filtering attack traffic, we adapt Attribute-Oriented
Induction (AOI) in this domain. Our two-phased mitigation
framework first tries to handle attacks locally. In case that
huge volume attack that exceeds the capacity, pushback is
initiated. We also describe how the attack is pushed back by
NFV in non-SDN domains. An attack can be filtered close to
the source of the attack and network resources are saved from
being wasted. The evaluation on different datasets indicates
that attack traffic can be differentiated from legitimate traffic
by using a simple AOI generalization scheme. Furthermore,
the results show that the most popular method from the state
of the art, LMP, performs poor and drops high portions of
the legitimate traffic. At the same time, our AOI scheme on
top of sampled packets allows for a more accurate distinction
of attack and legitimate traffic at low additional performance
overhead.

REFERENCES

[1] A. Shameli-Sendi, M. Pourzandi, M. Fekih-Ahmed, and M. Cheriet,
“Taxonomy of ddos mitigation approaches for cloud computing,” Jour-
nal of Network and Computer Applications, vol. 58, pp. 165–179, 2015.

[2] Y. Chen and K. Hwang, “Collaborative detection and filtering of
shrew DDoS attacks using spectral analysis,” Journal of Parallel and
Distributed Computing, vol. 66, no. 9, pp. 1137–1151, 2006.

[3] G. Carl, G. Kesidis, R. R. Brooks, and S. Rai, “DoS attack-detection
techniques,” IEEE Internet computing, vol. 10, no. 1, pp. 82–89, 2006.

[4] B. Rashidi and C. Fung, “Cofence: A collaborative DDoS defence using
NFV,” in CNSM. IEEE, pp. 160–166.

[5] A. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman, “Vfence:
A defense against DDoS attacks using NFV,” in COMPSAC. IEEE,
2016, pp. 431–436.

[6] C. J. Fung and B. McCormick, “Vguard: A DDoS attack mitigation
method using NFV,” in CNSM. IEEE, 2015, pp. 64–70.

[7] L. Zhou and H. Guo, “Applying NFV/SDN in mitigating ddos attacks,”
in TENCON. IEEE, 2017, pp. 2061–2066.

[8] M. Stein, M. Fischer, I. Schweizer, and M. Mühlhäuser, “A classification
of locality in network research,” ACM Computing Surveys (CSUR),
vol. 50, no. 4, pp. 1–37, 2017.

[9] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Aggregate-based congestion control,” Computer Commu-
nication Review, vol. 32, no. 3, 2002.

[10] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-based
defense against DDoS attacks,” 2002.

[11] Y. Cai, N. Cercone, and J. Han, “Learning in relational databases: an
attribute-oriented approach,” Computational Intelligence, vol. 7, no. 3,
pp. 119–132, 1991.

[12] J. Han, Y. Cai, and N. Cercone, “Knowledge discovery in databases: An
attribute-oriented approach,” in VLDB, vol. 18, 1992, pp. 574–559.

[13] K. Julisch, “Clustering intrusion detection alarms to support root cause
analysis,” TISSEC, vol. 6, no. 4, pp. 443–471, 2003.

[14] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mecha-
nisms: classification and state-of-the-art,” Computer Networks, vol. 44,
no. 5, pp. 643–666, 2004.

[15] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, “DDoS
attacks in cloud computing: Issues, taxonomy, and future directions,”
Computer Communications, vol. 107, pp. 30–48, 2017.

[16] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDoS defense,” in USENIX, 2015, pp. 817–832.

[17] T. Alharbi, A. Aljuhani, and H. Liu, “Holistic DDoS mitigation using
NFV,” in CCWC. IEEE, 2017, pp. 1–4.

[18] C. C. Machado, L. Z. Granville, and A. Schaeffer-Filho, “Answer:
Combining NFV and SDN features for network resilience strategies,”
in ISCC. IEEE, 2016, pp. 391–396.

[19] S. Hameed and H. Ahmed Khan, “Sdn based collaborative scheme for
mitigation of DDoS attacks,” Future Internet, vol. 10, no. 3, p. 23, 2018.

[20] S. Behal and K. Kumar, “Detection of DDoS attacks and flash events
using information theory metrics–an empirical investigation,” Computer
Communications, vol. 103, pp. 18–28, 2017.

[21] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping realistic ddos attack dataset and taxonomy.” IEEE, 2019.

[22] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
2018.

[23] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Computers & Security, vol. 31, no. 3, pp. 357–374,
2012.

[24] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compar-
ison of botnet detection methods,” Computers & Security, vol. 45, pp.
100–123, 2014.

[25] R. Wang, Z. Jia, and L. Ju, “An entropy-based distributed DDoS
detection mechanism in SDN,” in 2015 IEEE Trustcom/BigDataSE/ISPA,
vol. 1. IEEE, 2015, pp. 310–317.

[26] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against DDoS flooding attacks,” IEEE communications surveys & tuto-
rials, pp. 2046–2069, 2013.

[27] D. Tammaro, S. Valenti, D. Rossi, and A. Pescapé, “Exploiting packet-
sampling measurements for traffic characterization and classification,”
International Journal of Network Management, vol. 22, no. 6, pp. 451–
476, 2012.

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Ort, Datum Unterschrift

	Title
	Abstract
	Zusammenfassung
	Acknowledgement
	
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Research Questions
	1.3 Contributions
	1.4 Thesis Organization
	1.5 List of Publications

	2 Background
	2.1 Basics of Time Sensitive Networks
	2.2 IEEE Time Sensitive Networking Standards

	3 Self-Adaptive and Efficient Configuration of Time Sensitive Networks
	3.1 Dynamic Self-configuration of Time Sensitive Networks
	3.2 Reconfiguration Strategies for Time Sensitive Networks
	3.3 Machine Learning-based Intelligent Configuration of Time Sensitive Networks

	4 Resilience against Denial of Service Attacks for Time Sensitive Networks
	4.1 Admission Control Strategies for Time Sensitive Networks
	4.2 Calibrated Attacks Against TSN Frame Preemption and Countermeasures
	4.3 Dynamic and Scalable DoS Attack Detection and Filtering

	5 Conclusion
	Bibliography
	Acronyms
	Appendices
	A Paper 1: SDN-based Self-Configuration for Time-Sensitive IoT Networks
	B Paper 2: Towards SDN-based Dynamic Path Reconfiguration for Time-sensitive Networking
	C Paper 3: Reinforcement Learning assisted Routing for Time Sensitive Networks
	D Paper 4: TSN Gatekeeper: Enforcing Stream Reservations via P4-based In-network Filtering
	E Paper 5: Preemptive DoS attacks on Time Sensitive Networks
	F Paper 6: SDN/NFV-based DDoS Mitigation via Pushback

