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Abstract

Quantum gases of ultracold atoms are ubiquitous in modern physics as they offer
excellent isolation from the environment as well as fine-grained control over their

relevant characteristics such as interparticle interactions. Almost arbitrary spatial ar-
rangements of these particles can be realized and manipulated by employing external
potentials. This versatility renders ultracold atoms an ideal platform for the simula-
tion of other quantum system as well as promising candidates in the field of quantum
information. However, the corresponding theoretical description usually involves com-
plex many-body problems which can rarely be solved analytically, thus rendering the
development of powerful numerical approaches crucial.

The present thesis employs the family of multi-layer multi-configuration time-
dependent Hartree (ML-MCTDH) methods in order to simulate ultracold quantum
many-body systems. While this class of ab-initio approaches originates from the descrip-
tion of molecular dynamics in quantum chemistry, it was later applied to a plethora of
other problems and extended to capture indistinguishable particles such as ultracold
atoms. The strength of this class of algorithms stems from the fact that they employ
variationally optimal, time-dependent basis functions in order to obtain a compact repre-
sentation of the many-body wave function. The construction of hierarchical multi-layer
ansätze allows for the treatment of large and complex composite quantum systems. The
present thesis focuses on the development of methodological and implementational
improvements as well as the application of the method to novel scenarios.

Even though ML-MCTDH methods can often yield compact representations of the
many-body wave function, they too cannot escape the exponential scaling of compu-
tational complexity as the number of particles increases or when strong correlations
in the system require numerous basis functions in order to obtain accurate results. In
recent years, various different approaches have been proposed to tackle this problem and
reduce the numerical effort. Unfortunately, these schemes cannot be easily transferred
to ultracold atom setups or are unable to adapt to non-trivial dynamics. Hence, a novel
dynamical pruning approach targeting bosonic particles is developed in the scope of the
present thesis. The scheme automatically selects the most relevant many-body states
and adapts to the time-evolution of the system. The algorithm is benchmarked using
two typical scenarios motivated from ultracold atom physics and found to capture the
physics accurately while significantly reducing the computational effort in some cases.

A particularly fascinating aspect of quantum simulation is the emulation ultrafast
processes such as electronic dynamics with slower-moving atomic particles. In light of
this strategy, controlled collisions of ultracold atoms confined in moving potential wells
may serve as a test bed to unravel the fundamental processes in atom-atom collisions
by taking on the role of electrons. Furthermore, similar scenarios have been proposed
as a means to generate entanglement and implement quantum gates in the context
of quantum computing. Therefore, the second focus of the present dissertation is to
investigate the nonequilibrium dynamics of bosonic particles in colliding potential wells
which can be realized experimentally using optical tweezers. This study illuminates the
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main signatures of the dynamics such as entanglement build-up as well as the transport
and untrapping of particles.

Quantum spin models are relevant in many areas of physics such as quantum informa-
tion or condensed matter physics and have been realized experimentally using ultracold
atoms or in the related field of Rydberg atoms, among others. The theoretical description
of these systems is often challenging, especially when disorder comes into play. Disorder
can result in a high level of degeneracy in the low-energy spectrum and the violation of
the so-called area law of entanglement entropy which is a fundamental assumption of
many numerical approaches, such as those based on matrix product states. The present
thesis studies how the ML-MCTDH method can handle such scenarios by computing
the ground states of different disordered models and comparing the results with other
established numerical approaches. ML-MCTDH is found to yield accurate results even in
the presence of strong disorder and should be considered as another promising approach
for the investigation of quantum spin systems.
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Zusammenfassung

Ultrakalte atomare Quantengase sind aufgrund ihrer exzellenten Isolation von der
Umgebung und der präzisen Kontrollierbarkeit ihrer relevanten Eigenschaften

wie der Wechselwirkung zwischen den Teilchen in vielen Bereichen der modernen
Physik allgegenwärtig. Unter Verwendung externer Potenziale lassen sich nahezu be-
liebige räumliche Anordnungen dieser Partikel realisieren und manipulieren. Diese
Vielseitigkeit macht ultrakalte Atome zu einer idealen Plattform zur Simulation anderer
Quantensysteme und zu vielversprechenden Kandidaten im Bereich der Quantenin-
formationstechnologie. Eine entsprechende theoretische Beschreibung solcher Systeme
beinhaltet jedoch meist komplexe Vielteilchenprobleme, die selten analytisch gelöst
werden können. Aus diesem Grund ist die Entwicklung leistungsfähiger numerischer
Ansätze von essentieller Bedeutung.

Die vorliegende Arbeit verwendet multi-layer multi-configuration time-dependent
Hartree (ML-MCTDH) Methoden, um ultrakalte Vielteilchensysteme zu simulieren.
Diese Familie von ab initio Algorithmen stammt aus dem Bereich der Quantenchemie
zur Beschreibung molekularer Dynamik, wurde aber später auf eine Vielzahl anderer
Probleme ausgeweitet und um die Beschreibung ununterscheidbarer Teilchen erweitert.
Die Stärke dieser Methoden beruht auf der Verwendung von variationell optimalen,
zeitabhängigen Basisfunktionen, um eine kompakte Repräsentation der Vielteilchenwel-
lenfunktion zu erhalten. Durch die Konstruktion hierarchischer, mehrschichtiger Ansätze
lassen sich komplexe zusammengesetzte Quantensysteme mit vielen Freiheitsgraden
behandeln. Die vorliegende Thesis setzt sich mit der Entwicklung methodischer und
implementierungstechnischer Verbesserungen sowie der Anwendung der Methode auf
neuartige System auseinander.

Wenngleich ML-MCTDH Methoden in vielen Fällen zu einer kompakten Darstellung
der Vielteilchenwellenfunktion führen, können auch sie dem exponentiellen Anstieg
des numerischen Aufwands nicht entkommen, der mit der Erhöhung der Teilchenzahl
einhergeht oder wenn signifikante Korrelationen eine Vielzahl an Basisfunktionen er-
fordern. In den letzten Jahren wurden verschiedene Ansätze vorgeschlagen, um die
Rechenzeit der Methoden weiter zu reduzieren. Allerdings lassen sich diese Schemata
nicht ohne weiteres auf ultrakalte Atome übertragen oder sind für nicht-triviale Dy-
namik ungeeignet. Im Rahmen der vorliegenden Arbeit wird deshalb ein neuartiger
Beschneidungsalgorithmus für bosonische Ensembles entwickelt, der die wichtigsten
Vielteilchenzustände automatisch selektiert und diese Auswahl dynamisch an die Zeit-
entwicklung des Systems anpasst. Anhand zweier typischer Szenarien aus dem Feld der
ultrakalten Atome wird demonstriert, dass die Methode die Physik akkurat beschreibt
und in einigen Fällen den numerischen Aufwand deutlich reduziert.

Ein besonders faszinierender Aspekt der Quantensimulation ist die Möglichkeit ultra-
schnelle Prozesse wie die Dynamik von Elektronen mit langsameren, atomaren Teilchen
zu emulieren. Vor diesem Hintergrund können kontrollierte Kollisionen ultrakalter Ato-
me in bewegten Potentialtöpfen zum Verständnis der fundamentalen Prozesse in Zusam-
menstößen zwischen Atomen beitragen, in dem sie die Rolle von Elektronen übernehmen.
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Darüber hinaus wurden ähnliche Szenarien zur Erzeugung von Quantenverschränkung
und der Realisierung von Quantengattern im Rahmen der Quanteninformationsverar-
beitung vorgeschlagen. Deshalb setzt sich die vorliegende Dissertation in einem zweiten
Schwerpunkt mit der Nichtgleichgewichtsdynamik bosonischer Teilchen in kollidieren-
den Potentialtöpfen auseinander, die experimentell mit optischen Pinzetten realisiert
werden können. Diese Studie beleuchtet die wichtigsten Signaturen der Dynamik wie der
Erzeugung von Quantenverschränkung, dem Teilchentransport und dem Entkommen
der Partikel aus den Potentialen.

Quantenspinmodelle tauchen in vielen Bereichen der Physik wie der Quanteninfor-
mation oder der kondensierten Materie auf und wurden experimentell unter anderem
mit ultrakalten Quantengasen und Rydberg-Atomen realisiert. Die theoretische Beschrei-
bung dieser Systeme ist anspruchsvoll, insbesondere wenn Unordnung zu einem hohen
Ausmaß an Entartung im Niederenegiespektrum führt. Dies kann in einer Verletzung
des Flächen-Gesetzes der Verschränkungsentropie resultieren, dessen Gültigkeit eine
fundamentale Annahme vieler numerischer Ansätze darstellt, zum Beispiel von Me-
thoden die auf Matrix-Produkt-Zuständen basieren. Aus diesem Grund untersucht die
vorliegende Arbeit in einem dritten Fokus, inwiefern ML-MCTDH solche Szenarien
bewältigen kann. Zu diesem Zweck werden die Grundzustände verschiedener ungeord-
neter Modelle berechnet und die Resultate mit anderen etablierten Methoden verglichen.
Es zeigt sich, dass ML-MCTDH auch in der Gegenwart von starker Unordnung genaue
Ergebnisse liefert und daher als ein weiterer vielversprechender Ansatz zur Beschreibung
von Quantenspinsystemen in Betracht gezogen werden sollte.
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1
Ultracold Atom Physics

Ultracold atoms are a ubiquitous tool in modern physics and the subject of a vast
number of experimental as well as theoretical studies. Section 1.1 provides a brief

history of the development of the field and highlights some of the most important mile-
stones as well as prominent applications. Section 1.2 introduces the different theoretical
and numerical approaches that can be used to study the involved many-body problems.

1.1. Overview of Ultracold Atom Physics

Inspired by Bose’s work [1] on Planck’s law of black body radiation [2], Einstein devel-
oped a quantum theory of an ideal gas of indistinguishable particles with integer spin
also known as bosons [3, 4]. One of the most striking predictions of this theory is the
existence of a peculiar state of matter at extremely low temperatures, the Bose-Einstein
condensate (BEC), which is characterized by an occupation of the lowest quantum state
by a macroscopic number of particles. In this phase, the atoms condense into a single
quantum state and exhibit a coherent matter wave behavior that can be described by a
single macroscopic wave function. Early on, the formation of BECs was suspected to
play a crucial role for the understanding of superfluidity in liquid 4He [5] as well as
in the so-called BCS theory [6, 7] that explains conventional superconductivity by the
condensation of bosonic quasiparticles called Cooper pairs.

Even though the theory of Bose gases was developed in the 1920s, it took until 1995
before the first experimental realizations of BECs were achieved in gases of ultracold
sodium atoms in the group of Ketterle [8] and rubidium atoms in the group of Cornell
and Wiemann [9] for which they have been awarded the 2001 Nobel Prize in physics1.
The preparation of such systems required the development of experimental techniques
to cool atoms to very low temperatures which includes evaporative cooling [15–18] as
well as optical cooling such as Doppler [19, 20], Sisyphus [21] or Raman [22, 23] cooling.
In order to prevent the atomic cloud from dispersing, external potentials are used to
confine the particles. Over the years, scientists have devised different trapping methods
such as magnetic [24] or magneto-optical [25–30] traps. For their contributions to the
development of cooling and trapping techniques for neutral atoms, the 1997 Nobel Prize
in physics was awarded to Chu, Cohen-Tannoudji and Phillips [31–33].

Nowadays, ensembles of ultracold atoms can be realized with a controlled number of
particles [34–36] in almost arbitrarily shaped external potentials [37] including optical
lattices [38–41] or harmonic [42] and ring traps [43]. Tuning the confinement of the
particles allows the creation of one- [44–47], two- [44, 48, 49] or three-dimensional [50,

1Since then, BECs have been realized in various other physical systems including photons in microcavi-
ties [10] or quasi particles such as polaritons [11–13] and magnons [14].
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1. Ultracold Atom Physics

51] systems. Optical tweezers allow for the manipulation of atomic clouds [52–56] as
well as individual atoms [36, 57] while tweezer arrays [54, 58, 59] allow for the design
of complex spatial arrangements of particles. Quantum gas microscopy provides a tool
for the high-resolution imaging of the spatial distribution [60–66] of ultracold atoms.
Furthermore, this technique enables access to correlation properties [67–69] as well as the
detection of single particles [70, 71]. Feshbach [72, 73] and confinement-induced [74–77]
resonances provide fine-grained control over the interparticle interactions, thus providing
access to different physical regimes.

Inspired by this experimental progress, the fundamental properties of ultracold bosons
have been studied in great detail, including elementary excitations [78] such as soli-
tons [79–82] and vortices [81, 83], as well as collective modes of the whole gas [78,
84–87]. The dynamics and static features of ultracold atoms in various different trapping
potentials are the subject of many experimental and theoretical studies. For example,
the dynamics of bosons in a double-well exhibits interesting effects such as correlated
pair tunneling [88–90], self trapping [91–93] or the Josephson effect [91, 94] originally
known from superconductors [95]. Another common scenario is the investigation of
bosons trapped in an optical lattice which can undergo a transition from a superfluid to a
Mott insulating phase [50, 96] and exhibit phenomena like unconventional, multi-orbital
superfluidity as well [97–99]. The nonequilibrium dynamics of lattice setups poses
interesting questions regarding thermalization [47, 100–103], ballistic versus diffusive
expansion of an atomic cloud [104, 105] and other peculiar transport processes [106–109].
Strong repulsive interactions between the particles can lead to the formation of a so
called Tonks-Girardeau gas of fermionized bosons [110, 111] which has been observed
experimentally in optical lattices [46, 112]. The phenomenon of superfluidity was a
large driving force for the development of the field of ultracold atoms and lead to the
discovery of other exotic states of matter in recent times. One example is the formation of
quantum droplets [113] in dipolar dysprosium [114–120] and erbium [121] BECs. Here,
the competition between long-range dipole-dipole attraction and a stabilizing repulsion
induced by quantum fluctuations [122] leads to the formation of self-bound droplets.
Very recently, supersolids, i.e., spatially ordered matter with superfluid properties, have
been observed in BECs of atomswith largemagnetic dipole moments [123–125]. Their ex-
istence has been conjectured for many decades [126–128], but their realization remained
elusive for a long time [129–131]. The control over the particle number in ultracold
atom experiments allows for the realization of few-body systems. While the physical
behavior of such microscopic ensembles can serve as an ingredient for our understanding
of many-body physics [132–136], they exhibit a rich phenomenology of their own [137].
For example, ultracold few-body systems serve as a test bed for Efimov physics [138] that
predicts the existence of three-body bound states [139, 140] which have been confirmed
experimentally with ultracold cesium [141, 142], potassium [143] and lithium [144]
atoms.

The realization of mixtures of different, distinguishable atomic species is of great
interest in the research of ultracold atoms as they provide a rich landscape of physical
phenomena. By employing different elements [145–150], isotopes [151–156] or hyperfine
states [157–165] binary Bose-Bose [166, 167], Fermi-Fermi [168, 169], and Bose-Fermi
mixtures [170–173] have been prepared in the laboratory. The fundamental properties
of atomic mixtures including collective [160, 174, 175] and elementary excitations, such
as solitary waves [161, 162, 176], have been examined in experimental and theoretical
studies. By controlling the interactions between andwithin the different atomic species in

2



1.1. Overview of Ultracold Atom Physics

a Bose-Bosemixture, different physical regimes can be realized [177]. Especially scenarios
involving a sizeable interspecies interaction are of great interest. The entangled composite
fermionization regime [178–180] occurs for weak intraspecies interactions in which the
two gases segregate as a whole. Strong interactions within both species lead to full
fermionization [181–183] in which the system can be mapped to an ideal Fermi gas [177],
analogue to the Tonks-Girardeau gas [110, 111]. One of the key features of composite
mixtures is that they can undergo a miscible-immiscible transition as the interspecies
interaction is tuned while one of the intraspecies interactions is weak [157, 158, 184–
190] providing control over the phase separation. This phenomenon is closely linked to
the dynamical formation of domains [191–193] and certain vortex patterns [191, 194].
Furthermore, control of the phase separation is of immediate experimental relevance
in the context of sympathetic cooling [195, 196] where the cooling of an atomic gas is
affected by the presence of a second species.

Other highlights in the exploration of binary mixtures include the formation of deeply
bound dipolar molecules [197–199] or the formation of quantum droplets [164, 165]
based on a competition between attractive interspecies and repulsive intraspecies interac-
tions [113]. Similar to scenarios considering a single atomic species, the few-body regime
of binary mixtures exhibits a rich phenomenology. For example, the highly particle
number imbalanced case of a few impurity particles immersed in a bath of majority
particles, serves as a test bed for polaron physics [169, 200–208] which plays a key role in
semiconductors [209–212] and superconducting materials [213–216]. Furthermore, het-
eronuclear Efimov states have been observed in ultracold atoms [217–219], extending the
previously studied homonuclear setups [141–144]. More recently, mixtures comprising
more than two components such as triple mixtures have been realized as well [220–223].

Their excellent tunability and isolation from the environment renders ultracold atoms
an ideal platform to simulate a plethora of other quantum systems [224–226]. Recent
experiments have linked them to interesting questions in condensed matter physics [227–
231] including topological matter [232, 233] and high temperature superconductiv-
ity [234]. By exploiting the fact that dynamical processes of atoms occur on much slower
time scales compared to electron dynamics, ultra-fast processes such as molecular dy-
namics [235] or light-matter interaction [236–238] have been emulated. Applications
inspired from elementary particle physics cover among others the zitterbewegung of
Dirac particles [239, 240], Schwinger pair production [241] or quarks [242, 243]. Fur-
thermore, ultracold Fermionic atoms have been employed to model the low-density
crusts of neutron stars [244, 245] and analogues to black holes have been discovered in
BECs [246, 247]. The field of atomtronics [248, 249] focuses on the development of atomic
analogues for electronic devices such as transistors and diodes by employing ultracold
atoms. Furthermore, the link between ultracold neutral atoms and topological matter has
been established [233, 250] by creating artificial gauge fields in optical lattices. Histori-
cally, laser-induced tunneling [38, 251] has been proposed to create synthetic magnetic
fields [252, 253] or spin-orbit couplings [254–257] leading to the realization of topolog-
ical band structures [257–260]. Other approaches rely on exploiting internal states of
atoms such as hyperfine states to implement synthetic dimensions [261–263] where the
different sublevels serve as fictitious lattice sites, potentially allowing to study topological
effects associated with higher dimensions, such as the four-dimensional quantum Hall
effect [264]. A different direction, coined Floquet engineering, employs time-periodic
modulations of quantum systems to create topological band structures [265–267]. For
example, artificial gauge fields can be induced by shaking optical lattices containing
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ultracold atoms [232, 268–270].
Ultracold neutral atoms are a promising platform for the rapidly emerging field of

quantum technologies that encompasses quantum communication, computing, simula-
tion and sensing. In this domain, academic researchers and commercial stakeholders
strive to exploit the unique properties of quantum physics in order to develop appli-
cations that could directly impact many areas of industry and everyday life. In the
realm of quantum sensing and metrology, ultracold atoms have been used successfully
to develop different kinds of very precise sensors [271] such as gravimeters [272, 273],
motion detectors [274], gyroscopes [275] and sensors for electromagnetic fields [276,
277]. Optical clocks based on ultracold neutral atoms in free fall [278, 279] or trapped
in optical lattices [280] have already reached excellent accuracy, closing in on cesium
fountain clocks. Various ways of implementing quantum spin models using ultracold
neutral atoms have been proposed, rendering them an interesting platform for the field
of quantum simulation and computing [51, 226, 281].

Many of the advances regarding the preparation and control of neutral atom sys-
tems, benefited the further development of the related field of Rydberg physics which
is concerned with the study of Rydberg atoms [282], i.e., neutral atoms with one or
more valence electrons excited to a very high principal quantum number 𝑛. Nowadays,
experimentalists are able to realize states with 𝑛 ≈ 300 in the laboratory [283] while
astronomical measurements have discovered carbon atoms with 𝑛 ≈ 1000 in the rem-
nants of supernovae [284]. Rydberg states are equipped with a rather long radiative
lifetimes that scale as 𝑛3 and which are typically in the order of 100µs for 𝑛 ≈ 50 [285].
Throughout most of the 20th century, researchers focused on the fundamental properties
of Rydberg atoms such as their spectra [286, 287], interactions with electromagnetic
fields [288, 289] as well as their collisional behavior [290–294].

Compared to ground state atoms, Rydberg states exhibit exaggerated characteristics.
The extent of the electronic cloud scales as 𝑛2 with the principal quantum number and
the large distance between the Rydberg electron and the atomic core leads to significant
electric and magnetic dipole moments. The resulting susceptibility of Rydberg atoms to
electromagnetic fields was exploited by Haroche et al. in their experiments investigating
the creation and annihilation of photons in cavities, which was awarded with the 2012
Nobel Prize in Physics [295]. The development of refined cooling and trapping techniques
for ultracold neutral atoms [31–33] culminating in the first realizations of BECs [8, 9]
further accelerated the development of Rydberg physics. In this context, the year of 2000
is of particular significance as the publication of three seminal papers marked a turning
point for the importance of Rydberg atoms for modern physics. Firstly, the blockade
mechanism [296] suppresses the excitation of additional Rydberg atoms in the vicinity
of an already excited atom [297–302]. Secondly, in a similar spirit laser coupling to a
Rydberg level allows control over the interaction between two ground state atoms [303],
a process known as Rydberg dressing [304–308]. Finally, a novel molecular binding
mechanism between Rydberg and ground state atoms was predicted [309] which leads
to the formation ultra-long-range Rydberg molecules [310–313].

In recent years, Rydberg atoms have become a promising platform for the development
of quantum technologies. Due to their high sensitivity to external fields, caused by their
large dipole moments, Rydberg atoms are useful for the development of sensors for
electric and magnetic fields [277] in the context of quantum sensing [314]. The imple-
mentation of single-photon switches [315–317] and transistors [318] renders Rydberg
atoms a potential building block of complex quantum networks in the context of quan-
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tum communication. In a similar spirit, photon-photon gates have been realized using
Rydberg atoms [319–321] and can serve as component in the design of photonic quantum
computers and simulators [322–324]. Additionally, Rydberg atoms pose a promising
platform for the implementation of quantum simulators [224, 325] and computers [285,
326–329] in their own right. Arrays of optical tweezers have already been employed to
achieve large numbers of Rydberg qubits [330–335]. The excellent control over the spatial
atom arrangement intrinsic to this approach lends itself to the solution of combinatorial
optimization problems [328, 336] in the context of variational quantum algorithms such
as the quantum approximate optimization algorithm [337]. In this light, disordered spin
models such as the ones studied in [FK3] are of particular interest [338–341].

1.2. Theoretical Description of Ultracold Atoms

The indisputable success in the experimental preparation of ultracold atom systems
necessitates a theoretical many-body description of interacting atoms in the low-energy
regime. Unfortunately, the involved many-body problems are not easily solvable, es-
pecially when taking realistic atom-atom interactions into account. Therefore, most
approaches have to rely on approximations and simplifications. In the following, an
overview of the different theoretical approaches is provided.

In general, a quantum system can be described in terms of its density matrix 𝜌(𝑡)
whose time-evolution is governed by the von Neumann equation. This formalism can
capture both pure, andmixed states, such as thermal ensembles. Furthermore, it is useful
for the description of open quantum systems2 [344] which are also relevant for ultracold
atom physics [345, 346]. As the present thesis focuses on closed quantum systems in
the ultracold regime, i.e., extremely low temperatures 𝑇 ≈ 0, the system is typically
assumed to be in a pure state that can be captured in terms of a wave function |Ψ(𝑡)⟩.
The time-dependent Schrödinger equation3 [347]

𝑖𝜕𝑡 |Ψ(𝑡)⟩ = �̂�(𝑡) |Ψ(𝑡)⟩ (1.1)

determines the time-evolution of |Ψ(𝑡)⟩ driven by the generally time-dependent Hamil-
tonian �̂�(𝑡). When considering a constant Hamiltonian �̂�(𝑡) = �̂�, the solution of the
initial value problem given by Eq. (1.1) with respect to some initial state |Ψ(0)⟩ is given
by

|Ψ(𝑡)⟩ = 𝑒−𝑖�̂�𝑡 |Ψ(0)⟩ = ∑
𝑖

⟨𝐸𝑗 ∣ Ψ(0)⟩ 𝑒−𝑖𝐸𝑗𝑡 ∣𝐸𝑖⟩ . (1.2)

The dynamics is then governed by the eigenenergies 𝐸𝑗 and the eigenstates ∣𝐸𝑗⟩ of �̂�
which can be obtained by solving the eigenproblem given by the stationary Schrödinger
equation

�̂� ∣𝐸𝑗⟩ = 𝐸𝑖 ∣𝐸𝑗⟩ . (1.3)

While the solutions of Eq. (1.3) provide access to static properties, often the nonequilib-
rium dynamics of a system is of interest which can be triggered by a variety of protocols
(see Fig. 1.1). For example, the system can be prepared in a state that is not an eigenstate

2To this end, the von Neumann equation is then extended by dissipative terms that account for the
interactions with environment, arriving at master equations such as the famous Lindblad equation [342,
343].

3In this work, the convention ℏ = 1 is used.
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(a) Non-eigenstate (b) Quench (c) Pulse sequence

Figure 1.1.: Examples of protocols to trigger nonequilibrium dynamics in a quantum
system. (a) The system is initially prepared in a state that is not an eigenstate
of the underlying Hamiltonian. (b) A parameter of the system is suddenly
changed (quenched), triggering a dynamical response of the system. (c) The
system is driven using a time-dependent Hamiltonian. This example shows
a sequence of pulses changing one of the parameters of the system, e.g., the
strength of an external field.

of the underlyingHamiltonian (see Fig. 1.1a), a physical parameter such as the interaction
strength or the shape of the external trap can be changed rapidly in a so-called quantum
quench (see Fig. 1.1b) or the system can be driven by a time-dependent Hamiltonian,
e.g., a sequence of laser pulses (see Fig. 1.1c). In this context, many interesting questions
arise such as the thermalization of the system [102, 348], the build-up of correlations
and entanglement as well as the design of optimal control schemes [349, 350].

Solving the Schrödinger Eqs. (1.1) and (1.3) is formidable task, and analytical solutions
are only available for a limited number of systems. Especially when considering many-
body systems, approximations and simplifications are inevitable. In typical ultracold
atom setups, the scattering length is much smaller than the average interparticle distance
and collisions occur at low momenta. Therefore, it is reasonable to assume 𝑠-wave
scattering to be the dominant interaction process [78, 351], which can be modeled using
a 𝛿-potential in one-spatial dimension while regularized potentials have to be employed
in higher dimensions [352–359]. Under this assumption, the Schrödinger equation
of two bosons subject to a spherically symmetric harmonic potential has been solved
analytically [353]. However, this result is of limited usefulness since usually many more
atoms are involved. The Lieb-Liniger model [360, 361] employs a Bethe ansatz [362,
363] to describe spinless bosons in one spatial dimension while also considering short-
range contact interactions. As it assumes periodic boundary conditions and does not
incorporate an external potential, it is not applicable to trapped atoms. In most cases,
analytical solutions are not available, rendering the development of powerful numerical
approaches crucial.

Exact diagonalization employs numerical algorithms to compute the eigenenergies and
eigenstates of the Hamiltonian, thus providing a full description of the quantum system
under consideration. It relies on choosing a suitable finite basis set in order to obtain
a matrix representation of the Hamiltonian which subsequently can be diagonalized.
The computational complexity of solving the full eigenproblem given by an 𝑛 × 𝑛 matrix
scales as 𝒪(𝑛3) [364, 365], rendering it a costly operation. Since the number of basis states
usually grows exponentially with the number of particles when treating many-body
problems, exact diagonalization quickly becomes prohibitively expensive both in terms
of required memory and computational time. When studying the static properties of
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a system, it is often the case that only a few of the energetically lowest eigenstates are
of interest. In this case, iterative methods to compute extremal eigenvalues such as the
implicitly restarted Lanczos method [366] or the Davidson algorithm [367] can treat
larger systems than general full diagonalization routines. Another advantage of these
methods is that they can be implemented matrix-free, i.e., do not require the explicit
construction of the Hamiltonian matrix but rather rely on a function that computes the
action of the Hamiltonian on a given state vector. In the context of ultracold atoms, exact
diagonalization is typically limited to a handful of particles [177, 180, 368–370] such that
more advanced tools are required that can represent the wave function in a compact
manner when larger many-body systems are of interest.

Another powerful class of numerical schemes for the simulation of ultracold many-
body systems that should not go unmentioned, are quantum Monte Carlo methods. A
variety of specialized approaches have been developed to describe ground state sys-
tems [371–374], finite temperature ensembles [375–379], and real-time dynamics [380,
381]. Fundamentally, these methods all rely on some sort of stochastic sampling of
the quantum many-body state or the expectation values of observables. Consequently,
they are subject to statistical errors that have to be mitigated by employing sufficiently
large sample sizes. Furthermore, most quantum Monte Carlo algorithms can fail to
describe fermionic systems due to the so-called sign problem, causing the simulation
runtime to increase exponentially with the number of particles [382]. Despite these draw-
backs, quantum Monte Carlo methods have seen remarkable success in the description
of various quantum systems that are inaccessible to other approaches.

It is often the case that mean-field approaches provide a reasonable approximation of
the underlying many-body problem. The Hartree-Fock [383–386] method provides a
mean-field description of indistinguishable particles by starting from a single number
state given in an initial basis which is subsequently optimized in order to minimize the
energy functional, i.e., by solving the stationary Schrödinger equation iteratively. For
fermions, the Pauli exclusion principle [387] dictates that every particle has to occupy a
different single-particle state, thus uniquely determining the number state of the mean-
field ansatz. Bosons on the other hand are not subject to any such constraint and multiple
particles can occupy the same single-particle state. Consequently, it is not clear a priori
which bosonic number state yields the best mean-field description. A particularly famous
Hartree-Fock ansatz for bosons is employed in the framework of the Gross-Pitaevskii
equation [388–390]which provides a description of bosons subject to an external potential
and contact interactions. In the ultracold regime, a gas of weakly interacting bosons is
assumed to be condensed [391], i.e., all particles occupy the same single particle state,
i.e.,

Ψ(𝑥1, … , 𝑥𝑁, 𝑡) =
𝑁

∏
𝑖=1

𝜑(𝑥𝑖, 𝑡) . (1.4)

The Gross-Pitaevskii equation can then be derived from this ansatz by applying the
variational principle to the corresponding energy functional and reads

𝑖𝜕𝑡Ψ(𝑥, 𝑡) = [− 1
2𝑚

𝜕2
𝑥 + 𝑉(𝑥) + 𝑔|Ψ(𝑥, 𝑡)|2] Ψ(𝑥, 𝑡) , (1.5)

where 𝑉(𝑥) denotes the external potential and 𝑚 the particle mass. The nonlinear term
|Ψ(𝑥, 𝑡)|2Ψ(𝑥, 𝑡) accounts for the interaction between the bosons, strength of which is
given by 𝑔 = 4𝜋𝑎𝑠/𝑚 with respect to the 𝑠-wave scattering length 𝑎𝑠. Equation (1.5)
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resembles a nonlinear Schrödinger equation describing an effective one-body problem
that can be solved numerically [392]. The Bogoliubov approach [78, 393, 394] can be
employed on top of the Gross-Pitaevskii equation in order to describe weak perturbations
of the condensate. To this end, one performs a suitable transformation which leads to a
description in a picture of quasi-particles, phonons, which represent the elementary exci-
tations of the condensate. The mean-field description provided by the Gross-Pitaevskii
frameworkworks remarkablywell in the limit of many particles and has been successfully
applied to the description of particular BEC excitations [78] such as dark [82, 395, 396]
and bright [397, 398] solitons as well as vortices in higher dimensions [399, 400]. By ac-
counting for quantum fluctuations bymeans of the Lee-Huang-Yang correction [122, 401]
an extended Gross-Pitaevskii equation can be derived [114, 121, 402, 403] that is useful
for the description of supersolids [123–125] and self-bound quantum droplets [117, 123].
The Gross-Pitaevskii can be generalized to multi-component BECs straightforwardly
where it can describe phenomena such as dark-bright solitons [162, 404–406]. Due to
its construction, the Gross-Pitaevskii ansatz cannot describe scenarios in which a signif-
icant depletion of the condensate occurs, i.e., additional states come into play. Such a
fragmentation is usually driven by the build up of substantial interparticle correlations
or entanglement and can manifest in defects such as symmetry breaking [407]. The
Gross-Pitaevskii description breaks down when considering sizeable interactions among
the bosons, e.g., when treating a Tonks-Girardeau gas of fermionized bosons [110, 111] or
the Mott insulating phase of bosons trapped in an optical lattice [50, 408]. While in some
cases an adequate mean-field description can be obtained by considering multi-orbital
ansätze [409–415], more sophisticated beyond-mean-field approaches are essential for
the description of correlated systems.

Nowadays, experimentalists possess excellent control over the number of particles [34–
36] and scenarios with few particles exhibit rich physics [137] such as the formation
of Efimov three-body bound states [138] or impurity physics in the context of atomic
mixtures [204, 205, 207, 208]. It is often the case that the system is governed by strong
correlations and significant entanglement, especially when investigating non-trivial
nonequilibrium dynamics, for example after sizeable quantum quenches [416–419]. In
this case, the mean-field picture does not provide an adequate description of the physics
and the development of powerful numerical approaches that provide a beyond-mean-
field description of many-body systems becomes crucial. The framework of multi-layer
multi-configuration time-dependent Hartree (ML-MCTDH) [420–423] provides a set of
powerful ab initio methods towards the dynamics of many-body wave functions that can
take the relevant correlations within the system into account. This family of algorithms
originates in quantum chemistry where it was employed to treat high-dimensional
molecular dynamics problems [420, 424–428]. The fundamental idea is to employ small
sets of time-dependent, variationally optimal basis functions in order to obtain a compact
representation of the many-body wave function. The concept of multi-layering [421, 422,
429] is then used to construct complex wave function ansätze that can be tailored towards
the underlying problem. Later extensions allow for the treatment of indistinguishable
particles, i.e., bosons [430–432] and fermions [430, 433–442], which is fundamental for
the description of ultracold atom systems. The present thesis employs ML-MCTDH
methods for the description of quantum spin models as well as bosonic ensembles.
Therefore, Chapter 2 provides a thorough introduction of the theoretical framework of
ML-MCTDH and its variants.

Fundamentally, ML-MCTDH relies on a hierarchical decomposition of the many-body
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wave function closely linking it to another powerful class of numerical approaches, tensor
network states [443–445]. The most prominent example in this family of wave function
ansätze are matrix product states (MPS) [446–449] which have been extremely successful
in the description of one-dimensional systems due to the availability of powerful algo-
rithms such as the density matrix renormalization group method (DMRG) [450–453].
Other approaches are more tailored to the description of quantum critical [454–458] or
multidimensional systems [459–469]. Section 2.5 provides a more detailed overview
over the different methods and their relation to ML-MCTDH.
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2
Theoretical Framework

The present thesis investigates the static properties and nonequilibrium dynamics of
quantum many-body systems focusing on bosonic ensembles and spin models. To

this end, the framework ofML-MCTDHmethods is employed in order to obtain a beyond-
mean-field description that captures all relevant correlations. Originally developed for the
numerical treatment of high-dimensional problems1 in quantum chemistry comprising
many distinguishable degrees of freedom (DOFs), these approaches rely on variationally
optimized basis functions in order to obtain a compact representation of the many-body
wave function. Later extensions allow for the simulation of indistinguishable particles,
namely bosons, fermions, andmixtures thereof, rendering themattractive for applications
in ultracold atom physics.

The present chapter provides an in-depth overview over this theoretical framework,
starting in Section 2.1 with the underlying time-dependent variational principles (TD-
VPs) that determine the time evolution of the different wave function ansätze. Section 2.2
introduces the standard approach to multi-configurational wave packet dynamics, which
is then extended to the multi-configuration time-dependent Hartree (MCTDH) method
in Section 2.3 by introducing an additional layer of time-dependent basis functions,
yielding a more compact representation of the wave function and thus allowing for
the description of larger systems. The ML-MCTDH approach discussed in Section 2.4
uses a recursive construction consisting of MCTDH wave functions, rendering even
higher-dimensional problems tractable. Section 2.5 highlights the relation between the
ML-MCTDH formalism and tensor network states, which are a powerful tool for the
description of quantummany-body systems. A commonality of all ML-MCTDHmethods
is that they rely on a time-independent, primitive basis in order to construct the respec-
tive wave function ansätze as well as the involved operators. The choice of these basis
functions ultimately relies on the physical scenario under consideration and Section 2.6
describes the most common strategies. Section 2.7 shifts the focus towards indistinguish-
able particles by introducing the multi-configuration time-dependent Hartree method
for bosons (MCTDHB) method and briefly discusses its multi-layer extension as well as
the alternative approach of ML-MCTDH in second quantization representation (SQR).
Finally, Section 2.8 shows how the ML-MCTDH family of methods for wave packet dy-
namics can be employed in order to access the static properties of quantum many-body
systems by switching to imaginary time propagation.

1In this context, “high-dimensional” refers to the large number of involved DOFs and not to physical
problems taking place in a high-dimensional Euclidean space.
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2.1. Time-Dependent Variational Principles

The time-evolution of a wave function |Ψ(𝑡)⟩ is determined by the time-dependent Schrö-
dinger equation [347]

𝑖𝜕𝑡 |Ψ(𝑡)⟩ = �̂�(𝑡) |Ψ(𝑡)⟩ (2.1)

where �̂�(𝑡) is the (potentially time-dependent) Hamiltonian that describes the system
at all times 𝑡. In a mathematically rigorous treatment of quantum mechanics, the wave
function is represented by state vectors residing in an infinitely dimensional Hilbert
space [470]. Consequently, numerical approaches to quantum dynamics have to resort
to truncating this space and employing a wave function ansatz Ψ(𝑡) = Ψ(𝑡; {𝛼𝑖(𝑡)}) with
a finite number of parameters {𝛼𝑖(𝑡)}2 [471]. The TDVP [472, 473] can be applied to
obtain equations of motion (EOMs) for these parameters such that the approximate wave
function is as close to the exact solution of the time-dependent Schrödinger equation
as possible in the given constrained space. The TDVP can be viewed as an alternative
formulation of the Schrödinger equation Eq. (2.1) through the variation of an action
functional. By introducing the Lagrangian

𝐿 (Ψ(𝑡), Ψ∗(𝑡)) = ⟨Ψ(𝑡) ∣ 𝐻 − 𝑖𝜕𝑡 ∣ Ψ(𝑡)⟩ (2.2)

and demanding that the variation of the action functional vanishes, i.e.,

𝛿𝑆 = 𝛿
𝑡2

∫
𝑡1

𝐿 (Ψ(𝑡), Ψ∗(𝑡))d𝑡 != 0

with 𝛿Ψ(𝑡1) = 𝛿Ψ(𝑡2) = 0 ,

(2.3)

the time-dependent Schrödinger equation can be recovered3. It should be noted that
other TDVPs can be found in the literature, namely the Dirac-Frenkel [474, 475]

⟨𝛿Ψ(𝑡) ∣ 𝐻 − 𝑖𝜕𝑡 ∣ Ψ(𝑡)⟩ = 0 (2.4)

and McLachlan variational principle [476]

𝛿∥𝜃(𝑡) − 𝐻Ψ(𝑡)∥2 = 0 (2.5)

where 𝜃(𝑡) = 𝑖𝜕𝑡Ψ(𝑡) is varied. As long as the parameters {𝛼𝑖(𝑡)} of the wave function
ansatz are complex analytic, the three TDVPs are equivalent4 [420, 477, 478]. Therefore,
the Dirac-Frenkel TDVP (2.4) is employed throughout the remainder of the present
thesis since it is the simplest and the one most commonly used in the literature.

It can be shown [420, 423], that the TDVPs conserve the norm of the wave function

d
d𝑡

‖Ψ(𝑡)‖2 = 0 (2.6)

and, as long as the Hamiltonian is Hermitian and time-independent, the total energy of

2In the following, we refrain from explicitly denoting these variational parameters for the sake of brevity.
3Here, the wave function is assumed to be normalized, i.e., ⟨Ψ(𝑡) | Ψ(𝑡)⟩ = 1. See References [472, 473] for
a more detailed discussion.

4It can be shown that the Lagrangian TDVP (2.3) is then equivalent to the real part and the McLachlan
TDVP (2.5) to the imaginary part of the Dirac-Frenkel TDVP (2.4).
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the system,
d
d𝑡

⟨Ψ(𝑡) | 𝐻 | Ψ(𝑡)⟩ = 0 . (2.7)

2.2. The Standard Method

The pure state of a closed quantum system with 𝑁 DOFs 𝑥1, … 𝑥𝑁 is described at all times
𝑡 by the many-body wave function |Ψ (𝑡)⟩ = ∣Ψ (𝑥1, … , 𝑥𝑁, 𝑡)⟩. Depending on the physical
scenario under consideration, DOFs could for example be the real-space coordinates of
particles, internal degrees of freedom of an atom, or the orientation of a molecule. As
mentioned when discussing the TDVP in Section 2.1, the numerical treatment requires
the truncation of the Hilbert space to some finite dimension. The traditional approach to
this problem employs a finite, time-independent basis

{𝜒(𝜅)
𝑗𝜅

(𝑥𝜅)} 𝑗𝜅 = 1, … , 𝑛𝜅 (2.8)

for each DOF. Here, 𝑛𝜅 denotes the finite number of basis functions associated with
the DOF 𝑥𝜅. The many-body wave function is then expanded as a superposition of all
possible combinations of basis functions

|Ψ(𝑡)⟩ =
𝑛1

∑
𝑗1=1

⋯
𝑛𝑁

∑
𝑗𝑁=1

𝐴𝑗1…𝑗𝑁(𝑡)
𝑁

⨂
𝜅=1

∣𝜒(𝜅)
𝑗𝜅

(𝑥𝜅)⟩ (2.9)

using time-dependent coefficients 𝐴𝑗1…𝑗𝑁(𝑡). This construction is illustrated as a tree
diagram in Fig. 2.1, similar to the graphical notation used for tensor network states (see
Section 2.5) and will come in handy later when considering the more complex ansätze
used in MCTDH and ML-MCTDH.

The notation can be greatly simplified by introducing a multi-index

𝐽 = (𝑗1, 𝑗2, … , 𝑗𝑁) (2.10)

that provides a single unique index for all possible values of the individual indices 𝑗𝜅.

𝑥1

𝑛1

𝑥2

𝑛2

𝑥3

𝑛3

𝑥4

𝑛4

Ψ(𝑡)

{𝜒(𝜅)
𝑗𝜅

(𝑥𝜅)}
𝑛𝜅

𝑗𝜅=1

Figure 2.1.: Tree diagram for the standard wave packet ansatz Eq. (2.9) for 𝑁 = 4 DOFs.
Time-independent bases {𝜒𝑗𝜅(𝑥𝜅)} containing 𝑛𝜅 basis functions are em-
ployed for each DOF 𝑥𝜅. The many-body wave function Ψ(𝑡) then takes
all possible combinations of basis states into account.
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Every multi-index 𝐽 is associated with a specific combination of basis functions

∣Φ𝐽⟩ =
𝑁

⨂
𝜅=1

∣𝜒(𝜅)
𝑗𝜅

(𝑥𝜅)⟩ (2.11)

which is also referred to as a configuration or Hartree product. The wave function ansatz
(2.9) can then be written as the time-dependent superposition

|Ψ(𝑡)⟩ = ∑
𝐽

𝐴𝐽(𝑡) ∣Φ𝐽⟩ (2.12)

comprising 𝑁𝐶 = ∏𝑁
𝜅=1 𝑛𝜅 possible configurations.

If only a single basis function is used for each DOF, i.e., 𝑛𝜅 = 1 ∀𝜅 = 1, … , 𝑁, the
ansatz contains a single Hartree product, and only provides a mean-field description of
the system that does not take correlations effects into account. In this case, interaction
terms can be reduced to terms acting on individual DOFs by integrating the remaining
DOFs out. While in some scenarios, for example when considering weak interactions,
such a mean-field description might be sufficient or at least provide some insight into
the system, it fails to describe many exciting physical phenomena that are driven by
strong correlations and entanglement, for example the dynamics after strong quantum
quenches. For a beyond-mean-field description, at least two basis functions are required
for each DOF such that 𝑁𝐶 ≥ 2𝑁 scales exponentially with respect to the number of
DOFs 𝑁 rendering the standard ansatz only feasible for small systems.

Finally, the EOM governing the time evolution of the coefficients 𝐴𝐽(𝑡),

𝑖𝜕𝑡𝐴𝐽(𝑡) = ∑
𝐿

⟨Φ𝐽 ∣ �̂� ∣ Φ𝐿⟩ 𝐴𝐿(𝑡) , (2.13)

can be obtained by applying the Dirac-Frenkel TDVP (2.4) to Eq. (2.12)

2.3. The Multi-Configuration Time-Dependent Hartree Method

The standard approach to wave packet dynamics presented in Section 2.2 provides a
beyond-mean-field description of quantum many-body dynamics by employing a time-
independent, i.e., fixed, basis. However, in many physical scenarios a much smaller
number of time-dependent basis functions is sufficient to describe the physics accurately
providing a much more compact representation of the wave function and rendering the
treatment of larger systems feasible.

In order to motivate this concept, it is instructive to introduce the notion of an active
space which is defined as a hyperplane embedded in the complete Hilbert space and is
spanned by a set of time-dependent basis functions. Now, as time evolves, the active
space may move and rotate within the full Hilbert space such that it best describes the
wave function at all times. In general, its dimension 𝑑(𝑡), and therefore the number of
required basis functions may change over time. However, 𝑑(𝑡) is typically bounded by a
finite upper value 𝑑max = max𝑡 𝑑(𝑡) when considering a finite time interval 𝑡 ∈ [0, 𝑇] such
that 𝑑max time-dependent basis functions are sufficient at all times. Figure 2.2 visualizes
the concept of an active space using an example where the state of the system resides in
an instantaneous, two-dimensional active space moving through a three-dimensional
Hilbert space.
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𝜒1

𝜑1(𝑡1)
𝜑2(𝑡1)

𝜒2

𝜒3

𝜑1(𝑡2)

𝜑2(𝑡2)

𝜑1(𝑡3)𝜑2(𝑡3)

Figure 2.2.: Illustration of the concept of an active space. In this example, the wave
function can be fully described by two basis functions 𝜑1(𝑡) and 𝜑2(𝑡) at
all times during the evolution. If a fixed basis {𝜒𝑖} is employed instead,
three basis vectors are required to capture the wave function at all times
highlighting that often a time-dependent, optimized basis can yield a more
compact representation.

The idea of employing a time-dependent basis is actually quite old. The time-dependent
Hartree method [383–385, 474, 479] employed a single time-dependent basis function
per DOF and was used to provide a mean-field description of simple molecular prob-
lems [479–484]. By additionally incorporating time-dependent, unitary transformations
in the wave function, the time-dependent rotated Hartree approach [485, 486] is able to
take correlations between the DOFs into account. Inspired by the standard ansatz for
wave packet dynamics (2.12), multi-configurational approaches were developed for a
beyond-mean-field treatment of quantum dynamics. Early approaches [487–489] relied
on employing problem-dependent projection operators, the choice of which is not always
obvious and impacts the results significantly. The MCTDH method [420, 424–428] does
not suffer from this drawback and provides a general framework for ab-initio quantum
dynamics using a multi-configurational ansatz. It can be viewed as the dynamical ex-
tension of the multi-configurational self-consistent field theory for stationary quantum
chemistry problems and has been applied to wide range of problems that are inaccessible
to other methods [490–505].

In the following sections, the MCTDH method is described in detail. Section 2.3.1 in-
troduces the underlying wave function ansatz while Section 2.3.2 outlines the constraints
that have to be imposed in order to lift its ambiguity. Section 2.3.3 explains the EOMs that
drive the time-evolution of the many-body wave function. Finally, Section 2.3.4 estab-
lishes the concept of mode combination, i.e., the combination of multiple physical DOFs
into logical coordinates, which is crucial for the application of the MCTDH method to
large systems and serves as the foundation for its multi-layer extension (see Section 2.4).

2.3.1. Wave Function Ansatz

The MCTDH method employs a time-dependent basis {𝜑𝑖(𝑥𝜅, 𝑡)}𝑚𝜅
𝑖=1 of so-called single

particle functions (SPFs) or orbitals for each DOF 𝜅. These basis functions are defined
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𝑥1

𝑥1

𝑛1

𝑚1

𝑥2

𝑥2

𝑛2

𝑚2

𝑥3

𝑥3

𝑛3

𝑚3

𝑥4

𝑥4

𝑛4

𝑚4

Ψ(𝑡)

{𝜑(𝜅)
𝑗𝜅

(𝑥𝜅, 𝑡)}
𝑚𝜅

𝑗𝜅=1

{𝜒(𝜅)
𝑗𝜅

(𝑥𝜅)}
𝑛𝜅

𝑗𝜅=1

Figure 2.3.: Tree diagram of a MCTDH ansatz with 𝑁 = 4 degrees of freedom. The
wave function is spanned by time-dependent single particle functions (SPFs)
on the layer below, which in turn are represented in the time-independent,
primitive bases on the lowest layer.

with respect to the underlying, time-independent (primitive) basis

∣𝜑(𝜅)
𝑖 (𝑥𝜅, 𝑡)⟩ =

𝑛𝜅

∑
𝑗=1

𝑐(𝜅)
𝑖𝑗 (𝑡) ∣𝜒(𝜅)

𝑗 (𝑥𝜅)⟩ . (2.14)

They are typically chosen to be orthonormal, i.e.,

⟨𝜑(𝜅)
𝑖 (𝑥𝜅, 𝑡) ∣ 𝜑(𝜅)

𝑗 (𝑥𝜅, 𝑡)⟩ = 𝛿𝑖𝑗 , (2.15)

a property which is preserved throughout the time-evolution. Instead of expanding the
many-body wave function directly in the underlying primitive basis as in the standard
approach in Section 2.2, the wave function is now written in terms of the SPFs as

|Ψ(𝑡)⟩ =
𝑚1

∑
𝑗1=1

⋯
𝑚𝑁

∑
𝑗𝑁=1

𝐴𝑗1…𝑗𝑁(𝑡)
𝑁

⨂
𝜅=1

∣𝜑(𝜅)
𝑗𝜅

(𝑥𝜅, 𝑡)⟩ . (2.16)

For the further discussion, it is instructive to rewrite (2.16) in terms of configurations
∣Φ𝐽(𝑡)⟩ which are now time-dependent as they contain products of SPFs instead of
primitive basis functions (see Eq. (2.12)):

|Ψ(𝑡)⟩ = ∑
𝐽

𝐴𝐽(𝑡) ∣Φ𝐽(𝑡)⟩ . (2.17)

As with the standard ansatz (2.12), the MCTDH ansatz can be illustrated using a tree
diagram, see Fig. 2.3. A comparison with Fig. 2.1 highlights that the addition of the SPFs
introduces a new layer to the wave function expansion hierarchy.

In a many physical scenarios, the number of SPFs is much smaller than the number of
primitive basis functions, i.e.,

𝑁
∏
𝜅=1

𝑚𝜅 ≪
𝑁

∏
𝜅=1

𝑛𝜅 , (2.18)

exploiting that the dynamics typically only takes place in a small subspace of the Hilbert
space. If this is the case, the MCTDH ansatz contains much fewer configurations com-
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pared to an equivalent ansatz that employs a time-independent basis. When applying
MCTDH to a many-body problem, it is important to ensure its convergence with respect
to the number of SPFs in order to ensure that they span a large enough space. By follow-
ing the same line of reasoning as in Section 2.2, at least two SPFs per DOF are required for
a beyond-mean-field description, i.e., 𝑚𝜅 ≥ 2. Consequently, even though MCTDH typi-
cally yields a much more compact wave function than the standard, time-independent
approach, the number of configurations still grows exponentially as the number of DOFs
𝑁 increases, i.e.,

𝑁
∏
𝜅=1

𝑚𝜅 ≥ 2𝑁 . (2.19)

Even though this behavior again limits the feasible system size, MCTDH has been suc-
cessfully applied to molecular problems that included 12–14 correlated coordinates [421,
506–509]. The mode combination of multiple physical DOFs into logical coordinates
presented Section 2.3.4 further increases the tractable number of coordinates.

2.3.2. Constraint Operator

The wave function ansatz given by Eq. (2.16) is not unique. An equivalent wave function
∣Ψ̃(𝑡)⟩ = ∑𝐽 ̃𝐴𝐽(𝑡) ∣Φ̃𝐽(𝑡)⟩ can be obtained by performing a unitary transformation 𝑼(𝜅)(𝑡)
of the SPFs, i.e.,

∣ ̃𝜑(𝜅)
𝑗 (𝑡)⟩ =

𝑚𝜅

∑
ℓ=1

𝑈(𝜅)
𝑗ℓ (𝑡) ∣𝜑(𝜅)

ℓ (𝑡)⟩ (2.20)

and undoing it by applying the inverse transformation to the coefficients,

̃𝐴𝑗1…𝑗𝑁(𝑡) = ∑
ℓ1…ℓ𝑁

(𝑈(1)(𝑡))−1
ℓ1𝑗1

⋯ (𝑈(𝑁)(𝑡))−1
ℓ𝑁𝑗𝑁

𝐴ℓ1…ℓ𝑁(𝑡) . (2.21)

The ambiguity can be lifted by imposing additional constraints which have to be chosen
such that the variational space is not narrowed down. By fixing

𝑖 ⟨𝜑(𝜅)
𝑗 (𝑥𝜅, 𝑡) ∣ 𝜕𝑡 ∣ 𝜑(𝜅)

ℓ (𝑥𝜅, 𝑡)⟩ = ⟨𝜑(𝜅)
𝑗 (𝑥𝜅, 𝑡) ∣ ̂𝑔(𝜅) ∣ 𝜑(𝜅)

ℓ (𝑥𝜅, 𝑡)⟩ = 𝑔(𝜅)
𝑗ℓ (𝑡) (2.22)

the representation becomes unique [420]. Here, a constraint operator ̂𝑔(𝜅) for each DOF
𝜅 is introduced that can be chosen arbitrarily as long as it is Hermitian in order to ensure
orthonormality of the SPFs5.

2.3.3. Equations of Motion

Applying the Dirac-Frenkel TDVP (2.4) to the wave function ansatz Eq. (2.17) yields
EOMs for the coefficients 𝐴𝐽 and the SPFs 𝜑(𝜅)

ℓ (𝑥, 𝑡). From the variation with respect to
the coefficients, one obtains the equation

𝑖𝜕𝑡𝐴𝐽(𝑡) = ∑
𝐿

⟨Φ𝐽(𝑡) ∣ �̂�(𝑡) ∣ Φ𝐿(𝑡)⟩ 𝐴𝐿(𝑡) −
𝑁

∑
𝜅=1

𝑚𝜅

∑
ℓ=1

𝑔(𝜅)
𝑗𝜅ℓ

(𝑡)𝐴𝐽𝜅
ℓ
(𝑡) (2.23)

5The operator �̂�(𝜅)(𝑡) defines the transformation to transform the SPFs computed with �̂�(𝜅)(𝑡) = 0 to the
ones computed with a given �̂�(𝜅)(𝑡). The evolution of the corresponding unitary transformation matrix
𝑼(𝜅)(𝑡) is given by 𝑖𝜕𝑡𝑼(𝜅)(𝑡) = 𝒈(𝜅)⊺𝑼(𝜅)(𝑡) with the solution 𝑼(𝜅)(𝑡) = 𝒯 exp (−𝑖 ∫𝑡

0 𝒈(𝜅)⊺(𝑡′)d𝑡′)
where 𝒯 is the time-ordering operator. See Ref. [423] for details.
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that governs their time-evolution. Here, 𝐽𝜅
ℓ = (𝑗1, … , 𝑗𝜅−1, ℓ , 𝑗𝜅+1, … , 𝑁) denotes the

multi-index 𝐽 with the 𝜅th index fixed to ℓ . Compared to the EOM of the standard ansatz
(see Eq. (2.13)), Eq. (2.23) contains an additional term that incorporates the constraint
operator discussed in Section 2.3.2 in order to lift the ambiguity in the ansatz. If ̂𝑔(𝜅) = 0
is chosen, both sets of EOMs are identical. Similarly, a variation with respect to the SPFs
yields the corresponding EOMs for the SPFs which takes the form6

𝑖𝜕𝑡 ∣𝜑(𝜅)
𝑗 ⟩ = �̂�(𝜅)

𝑚𝜅

∑
𝑘=1

𝑔(𝜅)
𝑗𝑘 ∣𝜑(𝜅)

𝑘 ⟩ + (1 − �̂�(𝜅))
𝑚𝜅

∑
𝑘,ℓ=1

(𝝆(𝜅),−1)𝑗𝑘 ⟨𝐻⟩(𝜅)
𝑘ℓ ∣𝜑(𝜅)

ℓ ⟩ . (2.24)

The projector

�̂�(𝜅)(𝑡) =
𝑚𝜅

∑
𝑗=1

∣𝜑(𝜅)
𝑗 (𝑡)⟩ ⟨𝜑(𝜅)

𝑗 (𝑡)∣ (2.25)

projects onto the instantaneous SPF basis. In order to define the remaining ingredients
to the SPF EOM, it is instructive to introduce the single-hole functions

∣Ψ(𝜅)
ℓ ⟩ = ⟨𝜑(𝜅)

ℓ ∣ Ψ⟩

=
𝑚1

∑
𝑗1

⋯
𝑚𝜅−1

∑
𝑗𝜅−1

𝑚𝜅+1

∑
𝑗𝜅+1

⋯
𝑚𝑁

∑
𝑗𝑁

𝐴𝑗1…𝑗𝜅−1ℓ𝑗𝜅+1…𝑗𝑁 ∣𝜑(1)
𝑗1

⟩ ⋯ ∣𝜑(𝜅−1)
𝑗𝜅−1

⟩ ∣𝜑(𝜅+1)
𝑗𝜅+1

⟩ ⋯ ∣𝜑(𝑁)
𝑗𝑁

⟩
(2.26)

given by the overlap of the total wave function |Ψ⟩ with the ℓth SPF of the 𝜅th DOF. These
functions define the mean-field elements

⟨𝐻⟩(𝜅)
𝑖𝑗 (𝑡) = ⟨Ψ(𝜅)

𝑖 (𝑡) ∣ �̂�(𝑡) ∣ Ψ(𝜅)
𝑗 (𝑡)⟩ . (2.27)

In order to ensure a performant evaluation of these elements, theHamiltonian is generally
assumed to be in a sum-of-product form, where each term is written as a product of
single-particle operators acting on different DOFs, i.e.,

�̂�(𝑡) = ∑
𝑟

𝑐𝑟

𝑁
⨂
𝜅=1

ℎ̂(𝜅)
𝑟 (𝑥𝜅, 𝑡) . (2.28)

Then, each term in the Hamiltonian is composed of operators that act on different DOFs
and can be treated independently. Otherwise, the costly and cumbersome numerical
evaluation of multidimensional integrals would be required. This particular Hamiltonian
structure still covers a wide range of physical systems and is a typical assumption for
various of numerical methods, especially ones that rely on hierarchical tensor decom-
positions [510–513]. Often, the POTFIT algorithm [423, 428, 514, 515] can be used to
approximate terms that are not in this product form by employing a Tucker decompo-
sition [516, 517]. It should be noted that more involved schemes exist [518–521] that
perform better on very large product spaces.

Finally, the reduced one-body density matrix is defined as

𝜌(𝜅)
𝑖𝑗 (𝑡) = ⟨Ψ(𝜅)

𝑖 (𝑡) ∣ Ψ(𝜅)
𝑗 (𝑡)⟩ . (2.29)

6It should be noted that all objects occurring in Eq. (2.24) are time-dependent, but their time-dependence
is omitted for brevity.
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2.3. The Multi-Configuration Time-Dependent Hartree Method

It should be noted that the inverse of the matrix given by the elements (2.29) enters
the SPF EOM (2.24) which can be problematic when 𝝆 becomes singular, i.e., any of
its eigenvalues becomes zero. In order to resolve this issue, 𝝆 is usually replaced by a
regularized density matrix 𝝆(𝜅)

reg with lim
𝜀→0

𝝆(𝜅)
reg = 𝝆(𝜅) such as [420, 522]

𝝆(𝜅)
reg(𝑡) = 𝝆(𝜅)(𝑡) + 𝜀 exp (−𝝆(𝜅)(𝑡)/𝜀) . (2.30)

Here, 𝜀 is a small regularization parameter, typically 𝜀 ≤ 10−8, that controls the error in-
troduced by the regularization. By varying 𝜀, convergence with respect to this parameter
can be checked in order to ensure that the regularization does not lead to unphysical
results.

The EOMs (2.23) and (2.24) are typically simplified to

𝑖𝜕𝑡𝐴𝐽(𝑡) = ∑
𝐿

⟨Φ𝐽(𝑡) ∣ �̂�(𝑡) ∣ Φ𝐿(𝑡)⟩ 𝐴𝐿(𝑡) (2.31)

and

𝑖𝜕𝑡 ∣𝜑(𝜅)
𝑗 (𝑡)⟩ = (1 − �̂�(𝜅)(𝑡))

𝑚𝜅

∑
𝑘,ℓ=1

(𝝆(𝜅),−1(𝑡))𝑗𝑘 ⟨𝐻⟩(𝜅)
𝑘ℓ (𝑡) ∣𝜑(𝜅)

ℓ (𝑡)⟩ (2.32)

by employing the standard gauge ̂𝑔(𝜅) = 0 for all DOFs 𝜅. In this representation, the effect
of the projection operator �̂�(𝜅) becomes more evident. The expression (1 − �̂�(𝜅)) ensures
that any change to the current SPF basis stems from a rotation outside the subspace
spanned by the current basis, thus preventing unnecessary rotations within the currently
spanned space. Another common choice of constraints is the natural orbital gauge [420,
523–525], where the SPFs coincide with the natural orbitals, i.e., the eigenfunctions
of the one-body density matrix (2.29). Choosing ̂𝑔(𝜅) to be identical to the one-body
Hamiltonian acting on the 𝜅th DOF [420] can reduce the numerical effort for certain
applications [420, 526] since the mean-fields (2.27) are evaluated only using interaction
terms.

The most straightforward way of implementing the MCTDH method is to directly
solve the EOMs (2.23) and (2.24) using standard numerical integration techniques for
ordinary differential equations [365, 527, 528] which includes linear multistep methods,
the Bulirsch-Stoer algorithm or embedded Runge-Kutta formulae. This approach is
referred to as variable mean-field (VMF) integration in the literature. However, it is
often the case that the matrix elements ⟨Φ𝐽(𝑡) ∣ �̂�(𝑡) ∣ Φ𝐿(𝑡)⟩ in (2.23) and the products
𝝆(𝜅),−1(𝑡) ⟨𝑯⟩(𝜅) (𝑡) change much slower than the underlying SPFs and coefficients. For
this reason, constant mean-field (CMF) integration schemes have been devised [420, 522,
529] that update the aforementioned quantities less frequently in order to reduce the
computational effort while only introducing a small loss in accuracy. The basic principle
is to keep the slowly changing ingredients of the EOMs constant before updating them
according to the current values of the coefficients and SPFs. Particularly, when many
coefficients or terms in the Hamiltonian have to be considered, constant mean-field
(CMF) integration can lead to a significant reduction in the simulation runtime. In
practice, the computational cost can further be reduced by exploiting the linear nature
of Eq. (2.31) and updating the coefficients using specialized algorithms [530] such as
split-operator [531–533], Chebyshev [534] or Lanczos [535] methods.

19



2. Theoretical Framework

2.3.4. Mode Combination

The MCTDH method is efficient if a smaller number of time-dependent functions com-
pared to the size of the primitive basis can be employed to capture the dynamics of the
system accurately. In the discussion so far, the SPFs were assumed to be one-dimensional
functions of a single physical coordinate. Often, however, it is favorable to combine multi-
ple coordinates (modes) and effectively introduce multidimensional SPFs [536–538], e.g.,
grouping the euclidean coordinates of a particle into a single logical vector coordinate. A
combined treatment of correlated DOFs can greatly reduce the number of required SPFs.
Another situation in which mode combination can be helpful, is the treatment of DOFs
with small primitive basis sizes. Here, the space spanned by the time-dependent SPFs
cannot be much smaller than the one spanned by the primitive basis size and cannot
yield a significant reduction of the computational effort. The combined Hilbert space
of multiple DOFs is much larger and offers more potential for compression than the
individual Hilbert spaces. Using mode combination, MCTDH has been shown to be
able to simulate molecular scenarios comprising 15–24 correlated coordinates [490, 495,
496, 539] or system-bath setups with up to 100 correlated DOFs [491, 492, 538], thus
drastically increasing the feasible system size.

In order to formally introduce the concept of mode combination, we define �̃� logical
coordinates 𝑞𝜆, with 𝜆 = 1, … , �̃�, containing 𝑝𝜆 physical coordinates each, i.e.,

𝑞1 = (𝑥1, … , 𝑥𝑝1
)

𝑞2 = (𝑥𝑝1+1, … , 𝑥𝑝1+𝑝2
)

⋮

(2.33)

It is instructive to use a shorthand notation 𝛼(𝜆) = 1 + ∑𝜆−1
𝑖=1 𝑝𝑖 for the first and 𝛽(𝜆) =

∑𝜆
𝑖=1 𝑝𝑖 for the last DOF associated with the 𝜆th logical coordinate such that the SPFs

can be rewritten as

∣𝜑(𝜆)
𝑖 (𝑞𝜆, 𝑡)⟩ =

𝑛𝛼(𝜆)

∑
𝑗𝛼(𝜆)=1

⋯
𝑛𝛽(𝜆)

∑
𝑗𝛽(𝜆)=1

𝑐(𝜆)
𝑖;𝑗𝛼(𝜆)…𝑗𝛽(𝜆)

(𝑡)
𝛽(𝜆)
⨂

𝜅=𝛼(𝜆)
∣𝜒(𝜅)

𝑗𝜅
(𝑥𝜅)⟩ . (2.34)

The SPFs ∣𝜑(𝜆)
𝑖 (𝑞𝜆, 𝑡)⟩ are now functions of the logical coordinates 𝑞𝜆, i.e. multidimen-

sional with respect to the physical coordinates 𝑥𝜅. Even though they reside in the product
space of the Hilbert space spanned by the individual primitive bases, they might span
only a subspace in which the dynamics takes place, thus reducing the numerical effort.
Figure 2.4 shows a tree representation of a MCTDH wave function that employs the
combination of 5 physical DOFs into 2 logical coordinates.
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𝑞1

𝑥1

𝑛1

𝑥2

𝑛2

𝑥3

𝑛3

𝑚1

𝑞2

𝑥4

𝑛4

𝑥5

𝑛5

𝑚2

Ψ(𝑡)

{𝜑(𝜆)
𝑗 (𝑞𝜆, 𝑡)}

𝑚𝜆

𝑗=1

{𝜒(𝜅)
𝑗 (𝑥𝜅)}

𝑛𝜅

𝑗=1

Figure 2.4.: Tree diagram of aMCTDHwave functionwith 𝑁 = 5 degrees of freedom that
uses mode combination in order to introduce two logical coordinates 𝑞1 and
𝑞2. The first logical coordinate combines 𝑝1 = 3 physical DOFs starting from
𝛼(1) = 1 and ending at 𝛽(1) = 3. The second logical coordinate comprises
the remaining 𝑝2 = 2 physical DOFs starting from 𝛼(2) = 4 and ending at
𝛽(2) = 5.

2.4. The Multi-Layer MCTDHMethod

The multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) [421, 422,
429] method extends MCTDH by introducing additional layers to the wave function
ansatz. This is achieved by applying the concept of mode combination described in
Section 2.3.4 to the logical coordinates, grouping them to higher-level logical coordinates
with associated SPFs. By repeating this construction, intricate wave function ansätze
with many layers can be designed. While this approach adds more complexity to the
method, it can drastically improve the compactness of the wave function representation
as each new set of SPFs offers potential for further truncation. Hence, ML-MCTDH has
been successfully applied to a variety of problems including dynamics calculations of
hundreds or thousands of correlated DOFs [FK3, 429, 540–546] which are beyond the
reach of MCTDH. Due to the recursive nature of the wave function ansatz, the notation of
the ML-MCTDH formalism is rather involved. In the present section, the basic concepts
of the method are introduced with the help of an example and simplified notation. For
a full general description of the method including the EOMs, the reader is referred to
Appendix A as well as the literature [421, 422, 547].

Figure 2.5 shows the diagrammatic representation of a ML-MCTDH wave function for
a system comprising five physical DOFs, 𝑥1, … , 𝑥5, which contains one additional layer
compared to MCTDH. In practice, ML-MCTDH wave function ansätze usually involve
more DOFs and layers, but the fundamental concepts remain the same. Furthermore,
highly imbalanced trees with varying depths of each subtree can be designed as well. As
before, the leaves of the tree correspond to the physical DOFs that are each associated
with a set of time-independent, primitive basis functions which are used to represent the
SPFs on the layer above 𝜑(𝜆)

𝑖 (𝑞𝜆, 𝑡). In this example, the SPFs are one-dimensional, i.e.,
𝑞𝜆 = 𝑥𝜆, but more involved ansätze may additionally employ mode combination of the
physical coordinates. The conceptually new step of ML-MCTDH is to introduce another
layer of SPFs Φ(𝛾)

𝑖 (𝑄𝛾, 𝑡) which are spanned by the SPFs of the layer below. The many-
body wave function Ψ(𝑡) is then written as a MCTDH wave function in terms of product
states of the higher-level SPFs, each of which can also be understood as a MCTDH wave

21



2. Theoretical Framework
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Ψ(𝑡)

{Φ(𝛾)
𝑖 (𝑄𝛾, 𝑡)}

𝑀𝛾

𝑖=1

{𝜑(𝜆)
𝑖 (𝑞𝜆, 𝑡)}

𝑚𝜆

𝑗=1

{𝜒(𝜅)
𝑗 (𝑥𝜅)}

𝑛𝜅

𝑗=1

Figure 2.5.: Tree diagram of a ML-MCTDH wave function. Compared to MCTDH, this
example employs one additional layer of SPFs to describe a system comprising
five physical DOFs.

function with respect to the SPFs of the layer below highlighting the recursivity of the
method. The EOMs governing the time-evolution of the various expansion coefficients of
the ansatz can be derived using the TDVPs discussed in Section 2.1 and exhibit a similar
structure to those of MCTDH.

A priori, it is not necessarily clear which tree structure is best suited to describe a given
problem. Different topologies can result in vastly different simulation runtimes while
usually yielding comparable results as long as proper convergence with respect to the
number of SPFs is ensured. Furthermore, tree transformations allow switching between
equivalent tree structures [548] by changingwhich node is the root of the tree. Compared
to MCTDH, checking for convergence of the ML-MCTDH method is complicated by the
presence of many nodes in the tree structure, each associated with a SPF number that
has to be chosen large enough. Tree diagrams such as the one shown in Fig. 2.5 provide a
clear and convenient way to visualize the often very complex tree structure. By labeling
the edges with the numbers of SPFs and primitive basis functions, the wave function
ansatz is uniquely determined.

2.5. Tensor Network States

Tensor network states [443–445] play a crucial role in the theoretical description of
quantum many-body systems by performing various kinds of tensor decompositions
of the full wave function. Since the ansätze used for MCTDH method and its multi-
layer extension can also be classified as tensor network states, a brief overview of this
subject is provided in the following. The Penrose diagrammatic notation [549] for tensor
network states is employed throughout this section. Ref. [550] provides a detailed
introduction into this graphical formalism using many examples of tensor network states
and associated algorithms.

The pure state of a composite quantum system consisting of 𝑁 subsystems associated
with local Hilbert spaces ℋ1, … , ℋ𝑁 resides in the product Hilbert space ℋ = ℋ1 ⊗ ⋯ ⊗
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2.5. Tensor Network States

ℋ𝑁 and is given by a rank-𝑁 tensor 𝐴𝑗1𝑗2…𝑗𝑁 as

|Ψ⟩ =
𝑑(ℋ1)

∑
𝑗1=1

𝑑(ℋ2)

∑
𝑗2=1

⋯
𝑑(ℋ𝑁)

∑
𝑗𝑁=1

𝐴𝑗1𝑗2…𝑗𝑁 ∣𝑗1⟩ ⊗ ∣𝑗2⟩ ⊗ ⋯ ⊗ ∣𝑗𝑁⟩ , (2.35)

see Fig. 2.6a. The total dimension of the full Hilbert space 𝑑(ℋ) = 𝑑(ℋ1)⋅𝑑(ℋ2)⋅…⋅𝑑(ℋ𝑁)
determines the number of coefficients of 𝐴𝑗1𝑗2…𝑗𝑁 which grows exponentially with the
number of subsystems 𝑁. Comparing (2.35) with Eq. (2.9), shows that the standard
ansatz for wave packet dynamics presented in Section 2.2 is equivalent to a propagation
of the full coefficient tensor. In order to make a numerical treatment of large systems
feasible, various approximations have been developed.

Mathematically, the MCTDH wave function ansatz (2.16) corresponds to a Tucker
decomposition [551–554] of the full rank-𝑁 coefficient tensor, factorizing it into a much
smaller core tensor and a set of low-rank auxiliary tensors [516, 555] (see Fig. 2.6b). It
can also be understood as a higher-order singular value decomposition [516]. The special
case of a Tucker decomposition into two auxiliary tensors is equivalent to the Schmidt
decomposition of the system into two subsystems [556] and provides easy access to
the entanglement entropy between the two parts. ML-MCTDH constructs the wave
function ansatz by repeating this decomposition, introducing a new layer in each step,
in a scheme which is also known as the hierarchical or H-Tucker format [557–559]. The
resulting recursive tensor structure is also known as a tree tensor network state in the
literature [560–564], see Fig. 2.6c for an exemplary diagram.

Matrix product states (MPS) [446–449] also known as tensor trains [565] are another
particularly popular and powerful class of tensor network states. Here, the coefficient
tensor is factorized into a sequence of rank-3 tensors7, see Fig. 2.6d. MPS are extremely
useful for the investigation of spin chains and other one-dimensional systems such as the
Bose-Hubbard model due to the availability of efficient algorithms. The most prominent
example is the DMRG method [450–453] to compute eigenstates of the Hamiltonian.
DMRG has proven to be a powerful tool to compute the eigenstates of various one-
dimensional lattice models [566–571], but also continuous systems in the context of
quantum chemistry [572–578] and higher-dimensional lattices [579–582]. The dynamics
of the system can be studied with the time-evolving block-decimation [463, 583–586] that
relies on the Trotter-Suzuki decomposition [587, 588] of the time-evolution operator up
to some finite order. This approach is most efficient for nearest-neighbor interactions by
exploiting that certain parts of the Hamiltonian commute with each other [589] but can
also be extended to incorporate long-range interactions by introducing SWAP gates [590].
Recently, other schemes to access the dynamics have been developed by applying TDVP
to MPS [591–595]. A MCTDH method for MPS has been devised as well [596] where,
in contrast to the other aforementioned methods, the bond dimension (the size of each
tensor) is kept fixed during the time-evolution, similar to the fixed number of SPFs in
(ML)-MCTDH. Consequently, some of these algorithmic ideas for MPS have also been
transferred to tree tensor network states such as TDVP-based time evolution scheme [597,
598]. Larsson demonstrated in the context of a quantum chemistry application [513] how
a DMRG-like algorithm for tree tensor network states can be employed to compute many
eigenstates efficiently, exceeding the capabilities of the relaxation schemes available to
ML-MCTDH (see Section 2.8).

7When considering non-periodic boundary conditions, the first and last tensor are of rank-2.
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PEPS (projected entangled pair states) [459–469] are the natural extension of MPS
to systems that reside in more than one spatial dimension. The coefficient tensor is
decomposed into a network of low-rank tensors according to the underlying lattice
geometry that are each contracted with their neighbors. Figure 2.6e shows an example
for a 2D square lattice, where the many-body state is factorized into rank-5 tensors. The
given example does not employ periodic boundary conditions, such the tensors at the
edges and corners are of rank-3 and rank-4.

More involved and specialized types of tensor network states have also been developed.
One particularly noteworthy example is the mutli-scale entanglement renormalization
ansatz (MERA) [454–458] (see Fig. 2.6f) that is tailored towards the description of
ground states at quantum critical points. When treating a 𝑑-dimensional system, the
corresponding MERA describes a 𝑑 + 1-dimensional holographic geometry with the
additional dimension corresponding to the length scale.
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2.5. Tensor Network States

(a) Full coefficient tensor of a many-body
wave function. Each leg corresponds
to the index running through the basis
states of a particular DOF.

Core

Auxiliary

(b) Tucker decomposition of the full coefficient
tensor into a core tensor and two auxiliary ten-
sors. This example corresponds to a MCTDH
wave function describing fiveDOFs combined
into two logical coordinates using mode com-
bination.

(c) Tree tensor network states employ the
H-Tucker format that relies on repeated
Tucker decompositions of the auxiliary ten-
sors. These tensorial structures form the
basis of the ML-MCTDH wave function
ansatz. The present example corresponds
to eight physical DOFs.

(d) MPS or tensor trains factorize the full co-
efficient tensor into a product of small ma-
trices, here shown for seven DOFs.

(e) PEPS are the natural extension of
MPS to more than one spatial di-
mension, here shown for a 4 × 4
square lattice.

(f) MERA employs a complex tensor network structure
aiming to describe the system at multiple length
scales making it useful at quantum critical points.

Figure 2.6.: Diagrammatic Penrose representation [549] of different kinds of tensor net-
work states obtained by decomposing the full coefficient tensor. The nodes
correspond to tensors, connecting edges to contractions and legs to uncon-
tracted indices.
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2.6. Primitive Bases

The numerical approaches discussed in Sections 2.2 to 2.4 rely on a primitive, time-
independent basis for each physical DOF in order to construct the wave function ansatz
and to represent operators like the many-body Hamiltonian. So far, the basis functions
were not further specified since their choice depends on the physical problem at hand.
In the following, common ways of constructing the primitive basis are presented. Sec-
tion 2.6.1 introduces the finite basis representation (FBR) that employs a finite set of
basis functions motivated by analytically solvable single-particle problems. The discrete
variable representation (DVR) discussed in Section 2.6.2 is based on the FBR and diago-
nalizes the position operator. Thereby, it allows for a more efficient computation of matrix
elements of the potential energy operator compared to FBR. The fast Fourier transform
(FFT) scheme outlined in Section 2.6.3 exploits transformations to momentum space
to reduce the numerical effort of applying differential operators to the wave function.
This approach is particularly useful when large numbers of grid points are considered.
Finally, Section 2.6.4 describes how internal DOFs can be taken into account using the
example of spin-1⁄2 DOFs.

2.6.1. Finite Basis Representation

The FBR [599–607] is a straightforward approach to provide primitive basis functions
for spatial DOFs and employs the analytical eigenfunctions of well-known one-body
problems. Several examples relevant to the present thesis are listed below8:

• Quantum harmonic oscillator

𝜒𝑗(𝑥) = 1
√2𝑗𝑗!

(𝑚𝜔
𝜋

)
1/4

𝐻𝑗 (√𝑚𝜔(𝑥 − 𝑥0)) 𝑒− 1
2 𝑚𝜔(𝑥−𝑥0)2

𝑗 = 0, … 𝑛 − 1
(2.36)

• Periodic exponential functions (Fourier)

𝜒𝑗(𝑥) = 1
√𝐿

exp(𝑖
2𝜋𝑗
𝐿

(𝑥 − 𝑥0))

−𝑛′ ≤ 𝑗 ≤ 𝑛′

𝑛 = 2𝑛′ + 1

(2.37)

• Particle in a box

𝜒𝑗(𝑥) =
⎧{
⎨{⎩

√ 2
𝐿 sin( 𝑗𝜋(𝑥−𝑥0)

𝐿 ) for 𝑥0 ≤ 𝑥 ≤ 𝑥𝑁+1

0 elsewhere
𝑗 = 1, … , 𝑛

(2.38)

It should be noted that these basis sets impose certain boundary conditions on the
problem, e.g., periodic boundary conditions 𝜒𝑗(𝑥 + 𝐿) = 𝜒𝑗(𝑥) in the case of Eq. (2.37) or

8More examples, especially for angular DOFs, can be found in Refs. [420, 423].
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hard-wall boundary conditions 𝜒𝑗(𝑥0) = 𝜒𝑗(𝑥0 + 𝐿) = 0 in the case of Eq. (2.38) which
are reflected in the resulting many-body wave function and operators.

In the FBR, it is assumed that the matrix elements of the position operator 𝑥 as well as
of the first two derivative operators, 𝜕𝑥 and 𝜕2

𝑥,

𝑄𝑖𝑗 = ⟨𝜒𝑖 ∣ ̂𝑥 ∣ 𝜒𝑗⟩ ,

𝐷(1)
𝑖𝑗 = ⟨𝜒𝑖 ∣ 𝜕𝑥 ∣ 𝜒𝑗⟩ ,

𝐷(2)
𝑖𝑗 = ⟨𝜒𝑖 ∣ 𝜕2

𝑥 ∣ 𝜒𝑗⟩ ,

(2.39)

are known analytically [420]. Hence, the evaluation of the kinetic energy operator is
straightforward when computing matrix elements of the Hamiltonian. Computing the
matrix elements of the potential operator, which is a function of the position operator
�̂� = 𝑉( ̂𝑥), is in general non-trivial and relies on numerical integration that can take
a considerable amount of computing time to the point of being infeasible. Instead, to
achieve an efficient evaluation of matrix elements of the potential operator, one assumes
the potential to be a function of the matrix representation 𝑸 of ̂𝑥, i.e., 𝑽FBR = 𝑉(𝑸) [608].
The potential matrix elements can then be evaluated diagonalizing 𝑸 = 𝑼𝑿𝑼† with
𝑋𝑖𝑗 = 𝛿𝑖𝑗𝑥𝑖 and are given by

𝑉FBR
𝑖𝑗 =

𝑛
∑
𝑘=1

𝑈𝑖𝑘𝑉(𝑥𝑘)𝑈∗
𝑘𝑗 . (2.40)

However, the assumption of the potential being a function of the position operator matrix
instead of the operator itself would only be exact when operating in a complete basis
set. While ⟨𝜒𝑖 ∣ 𝑉( ̂𝑥) ∣ 𝜒𝑗⟩ ≠ 𝑉FBR

𝑖𝑗 in general, 𝑉FBR still provides a useful and efficient
approximation that can yield accurate results if 𝑛 large enough.9 It has been shown that
the FBR of the potential (2.40) is equivalent to a Gaussian quadrature formula [609]
when the representation of the position operator is tridiagonal. This property can be
used for an efficient computation of the matrix representation of the potential operator
in the FBR as well as the DVR introduced in the next section.

2.6.2. Discrete Variable Representation

In the aforementioned FBR approach, the wave function is represented with respect
to the eigenstates of some one-body problem. The DVR [471, 600, 607–609] takes an
additional conceptual step by transforming to a new primitive basis,

̃𝜒𝑖(𝑥) =
𝑛

∑
𝑗=1

𝜒𝑗(𝑥)𝑈𝑗𝑖 , (2.41)

which diagonalizes the position operator by construction, using the matrix 𝑼 from the
previous section The wave function is then represented with respect to a set of grid
points, i.e., the eigenvalues of the position operator. In the newly defined DVR basis,
the evaluation of the often complicated potential operator becomes straightforward
as the position operator becomes diagonal [599–603, 605, 607, 610–612] showcasing

9Ref. [420] includes a very illustrative example on why this construction is not exact using a harmonic
potential.
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why the DVR approach is favorable for a numerical simulation. However, the repre-
sentation of differential operators is problematic. Local interpolation would lead to
finite-difference formulae which are not very accurate [423]. Instead, one switches back
to the FBR representation (2.39) where the matrix elements of the differential operators
are known analytically and transforms into the new DVR basis using the matrix 𝑼 (from
Section 2.6.1).

It should be noted that advanced DVR approaches have been devised as well which
are more commonly used in quantum chemistry applications. For example, Manthe
refined the DVR scheme to the so-called correlated DVR or CDVR [613–615] that employs
time-dependent primitive basis functions and aims to provide an accurate description
with fewer basis functions by treating separable parts of the potential exactly instead
of by quadrature. The DVR can be classified as a collocation method, which are typical
approaches for the solution of partial differential equations [616] and commonly used for
the numerical solution of the Schrödinger equation [617–622]. Recently, other collocation-
based approaches have been devised within the framework of MCTDH [623–626] that
aim at obviating the need for a sum-of-product form for the potential but have not yet seen
wide-spread adoption. Compared to the complex potential energy surfaces in quantum
chemistry problems, that motivate the development of such refined approaches, the
trapping potentials encountered in ultracold atom setups are rather simple and low-
dimensional. Hence, for these physical scenarios one typically applies the traditional
DVR scheme.

2.6.3. Fast Fourier Transform

The DVR introduced in Section 2.6.2 allows for an efficient application of potential opera-
tors requiring only 𝒪(𝑛) operations since the corresponding matrix representations are
diagonal. However, when many grid points, of the order of 𝒪(102) [420], are used10, the
application of the non-diagonal kinetic energy operator, or any other differential operator
for that matter, can become computationally expensive due to the 𝒪(𝑛2) complexity
of matrix-vector multiplications. This numerical effort can be drastically reduced by
performing a Fourier transformation, i.e., by switching from real space to momentum
space [488, 599, 610]. In momentum space, the non-local differential operators become
local expressions, e.g.,

𝜕𝑥𝜑(𝑥)
ℱ
→ 𝑖𝑘 ̃𝜑(𝑘)

𝜕2
𝑥𝜑(𝑥)

ℱ
→ −𝑘2 ̃𝜑(𝑘) ,

(2.42)

which can be applied with a complexity of 𝒪(𝑛) to a state vector, the result of which is
then transformed back to real space. In practice, the FFT algorithm [627, 628] allows to
apply these transformations efficiently with a complexity of 𝒪(𝑛 log𝑛). Except for the
modified application of differential operators, this FFT scheme is equivalent to a DVR
based on periodic exponential functions (2.37) and imposes the same periodic boundary
conditions on the problem. Typically, the exponential DVR performs faster for small
grids (𝑛 ⪅ 16 grid points) while the FFT scheme is considerably more performant for
large grids (𝑛 ⪆ 100) [420].

10For example in Ref. [FK2]
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2.6.4. Spin Basis

The previous Sections 2.6.1 to 2.6.3 introduced approaches to construct primitive bases
for continuous spatial DOFs and how to represent the corresponding kinetic as well as
potential operators. In many physical scenarios, however, one encounters DOFs that
are already described by a finite number of states such as internal DOFs of atoms. For
example, if the 𝜅th DOF is a spin-1/2 DOF, we can employ the 𝑧-basis as the primitive
basis

∣𝜒(𝜅)
1 ⟩ = |↑⟩

∣𝜒(𝜅)
2 ⟩ = |↓⟩

(2.43)

and represent the Hamiltonian using the Pauli matrices [629]

𝜎0 = (1 0
0 1) 𝜎𝑥 = (0 1

1 0) 𝜎𝑦 = (0 −𝑖
𝑖 0 ) 𝜎𝑧 = (1 0

0 −1) . (2.44)

In [FK3] this primitive basis is applied to treat a variety of intricate quantum spin
models. The extension to higher total spins is straightforward, only requiring a matrix
representation of the involved operators. The flexibility of the (ML)-MCTDH approach
also allows for the simultaneous treatment of discrete internal and continuous motional
DOFs which is of great importance in many physical scenarios such as in the presence of
spin-orbit coupling [630–632].

2.7. The MCTDHMethod for Bosons

In order to simulate the dynamics of ultracold atoms, numerical approaches are required
that can describe indistinguishable particles, i.e., fermions and bosons. The many-body
wave function of an ensemble of such identical particles must be symmetric under the
exchange of two bosons and antisymmetric under the permutation of fermions. While
the MCTDH method and its multi-layer extension have proven to be powerful and
versatile tools to treat the dynamics of quantum many-body systems, they assume the
DOFs/particles to be distinguishable anddo not take any particle exchange symmetry into
account. Even though it is, in principle, possible to manually symmetrize the coefficient
vector of MCTDH [135], specialized approaches, namely the multi-configuration time-
dependent Hartree method for fermions (MCTDHF) [430, 433–442] and MCTDHB [430–
432] have been developed. They directly take the particle exchange symmetry into
account when constructing the many-body wave function and allow for a much more
efficient treatment of indistinguishable particles. Since the present thesis focuses on the
bosonic problems, only the MCTDHB method is discussed in the following. This method
has been employed to explore a variety of different physical setups including optical
lattices [416, 418, 419, 633–636], harmonic potentials [633, 637–639] and double-well
traps [432, 639–641].

First, in Section 2.7.1, the underlying many-body wave function ansatz is introduced.
Section 2.7.2 describes theHamiltonian structure that is typically assumedwhen applying
MCTDHB and leads to the EOMs presented in Section 2.7.3. Section 2.7.4 provides a
brief overview of the multi-layer extension of MCTDHB which allows treating Bose-Bose
mixtures and was recently extended to Bose-Fermi as well as Fermi-Fermi mixtures by
incorporating MCTDHF. Finally, in Section 2.7.5, MCTDHB is compared to the SQR of
ML-MCTDH, which is an alternative approach to treat indistinguishable particles.
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2.7.1. Wave Function Ansatz

The development of MCTDHB was inspired by earlier works that employed two time-
dependent orbitals for description of bosonic dynamics [642, 643] as well as by the
development of MCTDHF for fermionic systems [433, 434, 436, 437, 644]. Like MCTDH,
MCTDHB employs a basis {𝜑𝑖(𝑡)}𝑚

𝑖=1 of 𝑚 variationally optimal, time-dependent SPFs
or orbitals which are represented with respect to an underlying primitive basis (see
Eq. (2.14)). Instead of employing Hartree products as in MCTDH, MCTDHB spans the
many-body wave function with respect to bosonic number states or permanents [645]
constructed from the instantaneous SPF basis, thus directly taking the particle exchange
symmetry into account. In contrast to fermions, which are subject to the Pauli exclusion
principle [387], multiple bosons may occupy the same orbital, resulting in

𝑁𝐶 = (𝑁 + 𝑚 − 1
𝑁

) (2.45)

possible ways of distributing 𝑁 bosonic particles over 𝑚 orbitals. Each of these combina-
tions can be associated with a number state vector

𝒏 = (𝑛1 𝑛2 ⋯ 𝑛𝑚)⊺ ∈ ℕ𝑚
0 with

𝑚
∑
𝑖=1

𝑛𝑖 = 𝑁 (2.46)

of integer numbers, which denote the occupation numbers of the different single particle
states. The corresponding number states are given by

|𝒏; 𝑡⟩ = ⎛⎜⎜
⎝

𝑚
∏
𝑖=1

( ̂𝑏†
𝑖 (𝑡))𝑛𝑖

√𝑛𝑖!
⎞⎟⎟
⎠

|vac⟩ (2.47)

where |vac⟩ denotes the vacuum state. ̂𝑏†
𝑖 (𝑡) and ̂𝑏𝑖(𝑡) are the bosonic creation and anni-

hilation operators with respect to the 𝑖th SPF that obey the commutation relations [646]

[ ̂𝑏𝑖(𝑡), ̂𝑏†
𝑗 (𝑡)] = 𝛿𝑖𝑗

and [ ̂𝑏𝑖(𝑡), ̂𝑏𝑗(𝑡)] = [ ̂𝑏†
𝑖 , ̂𝑏†

𝑗 ] = 0 .
(2.48)

Finally, the wave function ansatz of the MCTDHB method reads

|Ψ(𝑡)⟩ = ∑
𝒏|𝑁

𝐶𝒏(𝑡) |𝒏; 𝑡⟩ , (2.49)

where the sum runs over all possible 𝑁-particle number states. Figure 2.7 shows the
graphical representation of this ansatz.

It should be noted that MCTDHB provides a mean-field description when considering
a single orbital, i.e., 𝑚 = 1. If additionally contact interactions [78, 351] are considered
between the particles, the method is then equivalent to solving the Gross-Pitaevskii
equation (1.5). In general, the number of coefficients (2.45) increases exponentially with
a growing number of particles 𝑁 or orbitals 𝑚. The amount of correlation in the system
dictates how many SPFs are required to accurately describe the physics and therefore
limits the number of bosons. The stronger the correlations, the more orbitals are required,
and the fewer particles can be treated. In the low excitation regime, where only few
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Figure 2.7.: (a) Tree diagram for the MCTDHB wave function ansatz of bosons in one
spatial dimension. The plus sign indicates a bosonic node containing bosonic
number states built from the SPFs of the node below, highlighted with a
triple line. (b) Mode-combination (see Section 2.3.4) allows treating particles
in more spatial dimensions as well, here shown for three dimensions, by
combining multiple primitive bases.

orbitals are sufficient, up to 𝒪(104) particles have been considered [637, 640, 647, 648].
In other cases the method is limited to a few particles when significant correlations are
present [649–651], rendering many orbitals necessary.

2.7.2. Structure of the Hamiltonian

In order to derive the MCTDHB EOMs, one usually assumes a Hamiltonian of the form

�̂� =
𝑁

∑
𝑖=1

ℎ̂(𝑥𝑖, 𝑡) +
𝑁

∑
𝑖=1
𝑗>𝑖

�̂�(𝑥𝑖, 𝑥𝑗, 𝑡) (2.50)

that consists of both one-body terms ℎ̂(𝑥𝑖, 𝑡) 11 and two-body interactions �̂�(𝑥𝑖, 𝑥𝑗, 𝑡)
covering a wide range of physical systems. However, it should be noted that in general
the MCTDHB method can be extended to handle higher order interaction terms. This
opportunity is of relevance in light of the increased interest in three-body [132, 652–
659] and even four-body [660–663] physics in recent years which includes fascinating
topics such as Efimov physics [138, 141, 664] or the continuum limit of certain anyonic
models [665].

In order to apply the Hamiltonian Eq. (2.50) to a MCTDHB wave function on the level
of the number states, it can be expressed in second quantization [646, 666, 667] as

�̂� =
𝑚

∑
𝑎,𝑏=1

ℎ𝑖𝑗 ̂𝑏†
𝑖

̂𝑏𝑗 + 1
2

𝑚
∑

𝑖,𝑗,𝑘,𝑙=1
𝑊𝑖𝑗𝑘𝑙 ̂𝑏†

𝑖
̂𝑏†
𝑗

̂𝑏𝑘 ̂𝑏𝑙 (2.51)

with respect to the bosonic creation and annihilation operators (see Eq. (2.48)). The
11Such as an external potential 𝑉(𝑥𝑖, 𝑡) or the kinetic energy operator proportional to −𝜕2

𝑥𝑖
.
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matrix elements ℎ𝑎𝑏 and 𝑊𝑎𝑏𝑐𝑑 are determined by the integrals

ℎ𝑎𝑏 = ⟨𝜑𝑎 ∣ ℎ(𝑥) ∣ 𝜑𝑏⟩ = ∫ 𝜑∗
𝑎(𝑥)ℎ̂(𝑥)𝜑𝑏(𝑥)d𝑥 (2.52)

and

𝑊𝑎𝑏𝑐𝑑 = ⟨𝜑𝑎𝜑𝑏 ∣ �̂�(𝑥, 𝑥′) ∣ 𝜑𝑐𝜑𝑑⟩ = ∬ 𝜑∗
𝑎(𝑥)𝜑∗

𝑏(𝑥′)𝑊(𝑥, 𝑥′)𝜑𝑐(𝑥)𝜑𝑑(𝑥′)d𝑥d𝑥′ (2.53)

which are typically evaluated by exploiting the quadrature property of the DVR basis
(see Section 2.6.2).12

The aforementioned operator structure allows for one-body terms and two-body
interactions. In the ultracold regime, 𝑠-wave scattering is the dominant interaction
process between particles [78, 351]. The interaction term is then given by a contact
interaction 𝑊(𝑥𝑖, 𝑥𝑗) = 𝑔𝛿(𝑥𝑖−𝑥𝑗) which simplifies the integral (2.53). However, while the
assumption of a 𝛿-potential is a valid approach in one spatial dimension, it breaks down
in two or three dimensions [668–670] due to ultraviolet divergence such that effectively
no scattering occurs [671]. A regularized 𝛿-interaction [352, 354–357, 359] has been
employed to overcome this problem in analytical studies [353, 358] though it is not useful
for numerical methods that operate in second quantization like MCTDHB [671]. Other
approaches like the introduction of high-momentum cut-offs [669, 672–676] also cannot
be easily transferred. Instead, it has been shown that carefully chosen Gaussian model
potentials are the most suitable approach for mimicking the short-range interactions of
ultracold bosons within the MCTDHB framework [671]. The POTFIT algorithm [514,
515] can then be used to obtain a sum-of-product form of such potentials which often
leads to a numerical bottleneck as the number of terms in the Hamiltonian increases
substantially.

2.7.3. Equations of Motion

The EOMs for the coefficients 𝐶𝒏(𝑡) and the SPFs ∣𝜑𝑗(𝑡)⟩ are derived by applying the
Dirac-Frenkel TDVP (2.4) to the wave function ansatz (2.49) while usually assuming the
structure of the Hamiltonian given in Eq. (2.51). Variation with respect to the coefficients
𝐶𝒏(𝑡) yields the corresponding EOM

𝑖𝜕𝑡𝐶𝒏(𝑡) = ∑
𝒎

⟨𝒏; 𝑡 ∣ (�̂�(𝑡) − ̂𝐺) ∣ 𝒎; 𝑡⟩ 𝐶𝒎(𝑡). (2.54)

Here,
̂𝐺 = 𝑔𝑎𝑏 ̂𝑏†

𝑎 ̂𝑏𝑏 (2.55)

is the constraint operator that lifts the ambiguity of the wave function ansatz (see Sec-
tion 2.3.2), expressed in second quantization. As before, the time-dependence of the
bosonic operators is not explicitly shown for the sake of readability. By varying with
respect to the SPFs, one obtains the respective EOM13

𝑖𝜕𝑡 ∣𝜑𝑗⟩ = �̂� ̂𝑔 ∣𝜑𝑗⟩ + (1 − �̂�) ⎡⎢
⎣
ℎ̂ |𝜑𝑗⟩ +

𝑚
∑

𝑘,ℓ,𝑝,𝑞=1
(𝝆(1))−1

𝑗𝑘 𝜌(2)
𝑘ℓ𝑝𝑞�̂�ℓ𝑞 ∣𝜑𝑞⟩⎤⎥

⎦
. (2.56)

12The time-dependence of the matrix elements, SPFs and bosonic operators has been omitted for the sake
of brevity.

13Omitting the time-dependence of all ingredients as in the MCTDH EOMs.
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Here, �̂� denotes the projection operator on the instantaneous SPFs basis, see Eq. (2.25).
Similar to MCTDH, the inverse of the one-body density matrix

𝜌(1)
𝑖𝑗 (𝑡) = ⟨Ψ(𝑡) ∣ ̂𝑏†

𝑖
̂𝑏𝑗 ∣ Ψ(𝑡)⟩ , (2.57)

enters the SPF EOM and needs to be regularized, see (2.30). Additionally, due to the
assumption of two-body interactions, the reduced two-body density matrix

𝜌(2)
𝑖𝑗𝑝𝑞(𝑡) = ⟨Ψ(𝑡) ∣ ̂𝑏†

𝑖
̂𝑏†
𝑗

̂𝑏𝑝 ̂𝑏𝑞 ∣ Ψ(𝑡)⟩ (2.58)

and the mean-field interaction

�̂�𝑎𝑏(𝑥, 𝑡) = ⟨𝜑𝑎 ∣ �̂�(𝑥, 𝑥′, 𝑡) ∣ 𝜑𝑏⟩ = ∫ 𝜑∗
𝑎(𝑥′, 𝑡)�̂�(𝑥, 𝑥′, 𝑡)𝜑𝑏(𝑥′, 𝑡)d𝑥′ (2.59)

appear in Eq. (2.56). When deriving the MCTDHB EOMs for Hamiltonians that contain
more than two-body interactions, the corresponding higher-order density matrices and
mean-fields will enter the corresponding SPF EOM.

Usually, the standard gauge ̂𝑔 = 0 is chosen, leading to the simplified EOMs

𝑖𝜕𝑡𝐶𝒏(𝑡) = ∑
𝒎

⟨𝒏; 𝑡 ∣ �̂�(𝑡) ∣ 𝒎; 𝑡⟩ 𝐶𝒎(𝑡) (2.60)

and

𝑖𝜕𝑡 ∣𝜑𝑗⟩ = (1 − �̂�) ⎡⎢
⎣
ℎ̂ |𝜑𝑗⟩ +

𝑚
∑

𝑘,ℓ,𝑝,𝑞=1
(𝝆(1),−1)𝑗𝑘𝜌(2)

𝑘ℓ𝑝𝑞�̂�ℓ𝑞 ∣𝜑𝑞⟩⎤⎥
⎦

. (2.61)

2.7.4. Multi-Layer MCTDHX

The realization of mixtures of distinguishable atomic species such as different elements,
isotopes or hyperfine states is of great interest in the field of ultracold quantum gases
as it exhibits a rich variety of intriguing phenomena (see Section 1.1). In order to
provide a theoretical description of such systems, schemes have been developed to
describe Bose-Bose, Bose-Fermi or Fermi-Fermi mixtures by unifying the MCTDHB and
MCTDHF methods. Early approaches [441, 677, 678] relied on expanding the wave
function with respect to products of the number states for each species, i.e., ∣𝒏𝐴; 𝑡⟩ ⊗
∣𝒏𝐵; 𝑡⟩. However, such a construction quickly becomes intractable due to the enormous
number of coefficients involved. The multi-layer multi-configuration time-dependent
Hartree method for mixtures (ML-MCTDHX) approach achieves a much more compact
representation by introducing multi-layering to the wave function ansatz. Originally
developed for the description of bosonic mixtures [679, 680], the method was later
extended to include fermionic species by incorporating MCTDHF [681]. Since the
present thesis is concerned with the description of a single bosonic species, only the
wave function ansatz of ML-MCTDHX will be briefly reviewed here for the sake of
completeness. Ref. [681] provides an excellent review of the method including the EOMs.
ML-MCTDHX has been successfully applied to a variety of problems such as impurity
physics [208, 682, 683], breathing dynamics [370, 638] and solitons [684, 685].

For a two-component mixture, the many-body wave function is expanded in the first
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Figure 2.8.: Tree diagram of the ML-MCTDHX wave function to describe a binary mix-
ture of two bosonic species 𝜎 ∈ {𝐴, 𝐵}. The ansatz can be understood as
employing multiple MCTDHB wave functions, often referred to as species
basis functions, for each species and combining them in the ML-MCTDH
sense.

layer as a superposition

|Ψ(𝑡)⟩ =
𝑆𝐴

∑
𝑖=1

𝑆𝐵

∑
𝑗=1

𝐴𝑖𝑗(𝑡) ∣Φ𝐴
𝑖 (𝑡)⟩ ∣Φ𝐵

𝑗 (𝑡)⟩ (2.62)

of so-called species basis states ∣Φ𝜎
𝑖 (𝑡)⟩ where 𝜎 ∈ {𝐴, 𝐵} denotes the species. For each

species, a time-dependent SPF basis is employed, and the species basis states are given
as superpositions of the corresponding number states

∣Φ𝜎
𝑖 (𝑡)⟩ = ∑

𝒏𝜎|𝑁𝜎
𝐶𝑖;𝒏𝜎(𝑡) ∣𝒏𝜎; 𝑡⟩ . (2.63)

Consequently, the species basis states be understood as MCTDHB or MCTDHF wave
functions. Figure 2.8 shows a tree diagram representing a ML-MCTDHX ansatz for
a binary mixture. The flexibility of ML-MCTDH allows to extend this construction
further by including additional species, as done recently for triple mixtures [208, 686],
or coupling to other types of distinguishable DOFs.

2.7.5. ML-MCTDH in Second Quantization Representation

The second quantization representation (SQR) of ML-MCTDH [687, 688] provides an
alternative to MCTDHB and MCTDHF for the description of indistinguishable particles
and has been successfully applied to charge transport processes [545, 687, 689–692]. In
the following, a brief introduction of ML-MCTDH-SQR for bosons is provided, but the
method can be readily applied to fermions as well [688]. Instead of incorporating the
particle exchange symmetry by spanning the many-body wave function with respect
to permanents or determinants, ML-MCTDH-SQR directly operates in the occupation
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number basis. When considering a bosonic model comprising 𝐿 orbitals or sites, the
ML-MCTDH-SQR method treats the occupation number of each orbital as a DOF. The
occupation number basis

∣𝜒(𝜅)
1 ⟩ = |0⟩ ∣𝜒(𝜅)

2 ⟩ = |1⟩ … ∣𝜒(𝜅)
𝑁+1⟩ = |𝑁⟩ , (2.64)

allowing zero to 𝑁 particles to occupy each orbital, provides the corresponding primitive
basis. Operators are then given as a sum of products of bosonic creation, annihilation
and number operators. The corresponding matrix elements read

⟨𝜒(𝜅)
𝑖 ∣ ̂𝑏†

𝜅 ∣ 𝜒(𝜅)
𝑗 ⟩ = √𝑗𝛿𝑖,𝑗+1

⟨𝜒(𝜅)
𝑖 ∣ ̂𝑏𝜅 ∣ 𝜒(𝜅)

𝑗 ⟩ = √𝑗 − 1𝛿𝑖,𝑗−1

⟨𝜒(𝜅)
𝑖 ∣ ̂𝑛𝜅 ∣ 𝜒(𝜅)

𝑗 ⟩ = (𝑗 − 1)𝛿𝑖,𝑗

(2.65)

in the occupation number basis14.
In contrast to MCTDHB and MCTDHF, which consider only number states with a

fixed total number of particles, ML-MCTDH-SQR contains configurations of different
particle numbers. Notably, the ansatz spans the full Fock space [667] of zero to 𝑁𝐿

particles when considering 𝐿 orbitals each containing up to 𝑁 particles. Therefore,
ML-MCTDH-SQR provides a more general description, allowing to describe models
that do not conserve the particle number and which are inaccessible to MCTDHB and
MCTDHF. However, when systems that are restricted by particle number conservation
are considered, themethod is often at a disadvantage due to the large number of irrelevant
configurations in the wave function ansatz. During the derivation of the MCTDHB and
MCTDHF EOMs, one assumes a certain structure of the Hamiltonian (see Eq. (2.51))
thus limiting the kinds of terms that may occur, typically one- and two-body operators.
ML-MCTDH-SQR on the other hand treats the occupation of the different orbitals as
DOFs and can straightforwardly incorporate higher order terms as long as they can be
written in a sum of product form.

It should be noted that the creation and annihilation operators of the original ML-
MCTDH-SQR approach given by (2.65) are time-independent. The recently developed,
optimized second quantization representation (OSQR) [694, 695] improves this approach
by employing variationally optimal, time-dependent operators ̂𝑏†

𝜅(𝑡). These operators
are represented with respect to time-independent, primitive operators 𝑎†

𝜇 as

̂𝑏†
𝜅(𝑡) =

𝑛
∑
𝜇=1

𝑐𝜇𝜅(𝑡)𝑎†
𝜇 . (2.66)

This construction can reduce the number of coefficients in the wave function ansatz
siginificantly, when fewer time-dependent than primitive operators are required to
describe the system accurately.

14The matrix representations of the equivalent fermionic operators are not as straightforward. In order
to capture the particle exchange symmetry correctly, the creation and annihilation operators acting on
the 𝑖th site accumulate a phase factor that depends on the occupation of all previous sites 1 to 𝑖 − 1
resulting in 𝑖-body operators. The treatment can be significantly simplified [687, 693] by employing the
Jordan-Wigner transformation [666].
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𝜏
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Figure 2.9.: Typical convergence behavior of the total energy 𝐸(𝜏) as a function of the
imaginary propagation time 𝜏 using (a) normal relaxation and (b) improved
relaxation. The jumps in the total energy seen in panel (b) correspond to the
updating of the top-level coefficients via exact diagonalization.

2.8. Relaxation Procedures

The MCTDH family of methods introduced in Sections 2.3, 2.4 and 2.7 is a set of algo-
rithms to study the quantum dynamics of many-body systems by computing the time
evolution of a given initial state. However, by switching to propagation in imaginary
time 𝜏 = 𝑖𝑡, they can also be applied to obtain eigenstates of the Hamiltonian by means
of energy relaxation [420, 423]. This is particularly useful for large systems where an
exact diagonalization of the Hamiltonian matrix [696–700] is prohibitive due to the
involved computational effort and memory requirements. Obtaining eigenstates of the
Hamiltonian allows studying static properties of the system or providing initial states
for the propagation in real time. For example, it is common practice to compute the
interacting ground state of an ultracold bosonic system starting from a configuration
where all particles occupy the same SPF. The result can than serve as an initial state to
study real time dynamics.

First, in Section 2.8.1, the principle of energy relaxation is introduced. Section 2.8.2
discusses a more advanced relaxation algorithm that has been developed in the frame-
work of the ML-MCTDH family of methods and combines imaginary time propagation
with exact diagonalization in order to achieve faster convergence and allows computing
excited states as well. Section 2.8.3 describes how to handle a pitfall when treating particle
number conserving systems of indistinguishable particles using ML-MCTDH in SQR.

2.8.1. Energy Relaxation

The goal of energy relaxation is to compute the ground state of the Hamiltonian starting
from some initial trial state |Ψ(0)⟩. By propagating the wave function according to the
time-dependent Schrödinger equation in imaginary time, i.e.,

𝜕𝜏 |Ψ(𝜏)⟩ = −�̂� |Ψ(𝜏)⟩ , (2.67)

it will evolve towards the ground state [601]. This behavior becomes more apparent
when formulating the solution of Eq. (2.67) in the eigenbasis {∣𝐸𝑛⟩} of the Hamiltonian:

|Ψ(𝜏)⟩ = ∑
𝑛

𝐴𝑛𝑒−𝜏𝐸𝑛 ∣𝐸𝑛⟩ . (2.68)
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The coefficients 𝐴𝑛 = ⟨𝐸𝑛 ∣ Ψ(0)⟩ depend on the initial conditions and are determined
by the overlap of |Ψ(0)⟩ with the eigenstates of the Hamiltonian. The contribution of
each eigenstate to the instantaneous wave function decays exponentially according to
the corresponding energy eigenvalue such that after a sufficiently long propagation time,
the lowest energy state becomes the dominant component (see Fig. 2.9a). If the overlap
between the initial state and the ground state is finite, i.e., 𝐴0 > 0, Ψ(𝜏) converges
arbitrarily close to the ground state after long enough imaginary propagation times. It
should be noted, that the norm of the wave function given by Eq. (2.68) is not conserved.
The norm can be restored by manually renormalizing the wave function or employing
the modified Schrödinger equation

𝜕𝜏 |Ψ(𝜏)⟩ = − (�̂� − ⟨Ψ(𝜏) ∣ �̂� ∣ Ψ(𝜏)⟩) |Ψ(𝜏)⟩ , (2.69)

instead of Eq. (2.67) [420].
The convergence speed of the energy relaxation is dictated by the overlap between

the ground state and the initial state as well as its energetic separation from the excited
states. A large overlap as well as a large energetic gap lead to faster convergence while
the opposite situation can be detrimental to the efficiency. In the case that the ground
state is degenerate, the wave function will converge to an arbitrary linear combination of
the degenerate states.

In principle, it is possible to compute excited states using energy relaxation by ensuring
that the wave function is orthogonal to energetically lower lying states. However, this
approach is very cumbersome in practice since it first requires to compute the lower
states and then continuously projecting them out, which is challenging as the involved
SPF bases might differ. A better approach is to employ the improved relaxation algorithm
discussed in Section 2.8.2. In many scenarios, improved relaxation also converges faster
than energy relaxation when computing the ground state.

2.8.2. Improved Relaxation Algorithm

Computing the ground state of a Hamiltonian using energy relaxation as described in
Section 2.8.1 relies on the exponential damping of the excited states which is an inherently
slow process often requiring long propagation times to achieve adequate accuracy. The
improved relaxation algorithm [423, 426, 688, 701] often achieves faster convergence
by combining imaginary time propagation with exact diagonalization into a hybrid
approach that provides access to excited states as well.

In order to obtain the working equations of the improved relaxation algorithm, the
time-independent variational principle is applied to the ML-MCTDH ansatz (A.1) [688,
701]. The variation with respect to the top-level coefficients 𝐴(1)

𝐽 yields an eigenvalue
equation,

∑
𝐾

⟨Φ(1)
𝐽 ∣ �̂� ∣ Φ(1)

𝐾 ⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐻𝐽𝐾

𝐴(1)
𝐾 = 𝐸𝐴(1)

𝐽 , (2.70)

which can be solved by diagonalizing the matrix 𝑯 = (𝐻𝐽𝐾) to obtain the eigenener-
gies as well as the eigenvectors in the current SPF basis. Variation with respect to the
SPFs then yields highly non-linear equations which could be solved iteratively but are
difficult to converge [688, 701] similar to early multi-configuration self-consistent field
theory [702]. Instead, the improved relaxation algorithm alternates between updating
the top-level coefficients via diagonalization and then rotating the SPFs via imaginary
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time propagation while keeping the top-level coefficients fixed. By always choosing
the 𝑛th eigenstate when performing the diagonalization, the wave function converges
towards the 𝑛th eigenstate of the Hamiltonian as long as there exist significant overlap
between the initial state and the relevant low-energy spectrum. To this end, it can be
beneficial to add random noise to the initial state to ensure that it contains contribu-
tions from all important eigenstates. Figure 2.9b shows the convergence behavior of the
improved relaxation algorithm exhibiting jumps in energy due to the sudden update
of the top-level coefficients while the timespans of energy relaxation show a smooth
exponential decay similar to the standard relaxation algorithm (see Fig. 2.9). Typically,
one is interested in obtaining one of the lowest energetic eigenstates such that algorithms
to compute extremal eigenvalues are applicable. These methods have the advantage
that they only require to compute the action of the Hamiltonian on a vector instead
of its full matrix representation and can treat much larger problems than algorithms
which compute the full spectrum at once. Examples for such numerical methods are the
implicitly restarted Lanczos method [366] provided by ARPACK [703] or the Davidson
algorithm [367].

2.8.3. Relaxation in Second Quantization Representation

When treating particle number conserving Hamiltonians such as the Bose-Hubbard
model [38, 96, 704], one is routinely interested in computing ground states that corre-
spond to a specific particle number which might not necessarily be the state with overall
lowest energy. The wave function ansatz of the ML-MCTDH method in SQR allows for
all possible particle numbers from 0 to 𝑁𝐿 when considering 𝐿 sites that may contain up
to 𝑁 bosons each (see Section 2.7.5). In the absence of numerical errors, this would not
constitute a problem since the particle number is a constant of motion under the time
evolution with a particle number conserving Hamiltonian, and it would be sufficient
to choose an initial state with the correct number of bosons. However, inaccuracies
like the regularization of the one-body density matrix (see Eq. (2.30)) or the overall
inexactness of floating point arithmetic can lead to small contributions of configurations
with a different particle number. If the corresponding states exhibit lower energies than
the desired state, they are enhanced under imaginary time evolution and can become
the dominant contributions to the wave function. It should be emphasized that these
inaccuracies do not pose an issue for real time propagation as they remain small due
to the norm conservation of the wave function, leading only to negligible contributions
from undesired states to the final state.

In order to overcome the issue with energy relaxation and enforce the numerical
stability of the method, a penalty term is usually added to the Hamiltonian which
penalizes and suppresses configurationswith a different particle number than the desired
one. An intuitive choice is a quadratic penalty term which increases the energy of
unwanted states

�̂�penalty = 𝜆⎛⎜⎜
⎝

𝐿
∑
𝑖=1

̂𝑛𝑖 − 𝑁⎞⎟⎟
⎠

2

(2.71)

according to some large parameter 𝜆 > 0. To be used in the ML-MCTDH method,
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Eq. (2.71) can be written in a sum-of-products form as

�̂�penalty = 𝜆
𝐿

∑
𝑖,𝑗=1

̂𝑛𝑖 ̂𝑛𝑗 − 2𝜆𝑁
𝐿

∑
𝑖=1

̂𝑛𝑖 + 𝜆𝑁2. (2.72)

In this form, it becomes evident that �̂�penalty generates 𝐿2 + 𝐿 + 1 additional terms in
the Hamiltonian which becomes quite costly for large systems. To overcome this poor
scaling behavior, Ref. [695] suggests using the term

�̂�penalty;2 = 2𝜆
𝜁2 cosh⎛⎜⎜

⎝
𝜁 ⎛⎜⎜

⎝

𝐿
∑
𝑖=1

̂𝑛𝑖 − 𝑁⎞⎟⎟
⎠

⎞⎟⎟
⎠

(2.73)

with large positive parameter 𝜆 and a small positive parameter 𝜁 instead. When written
in a sum-of-product form,

�̂�penalty;2 = 𝜆
𝜁2 𝑒−𝜁𝑁

𝐿
∏
𝑖=1

𝑒𝜁�̂�𝑖 + 𝜆
𝜁2 𝑒𝜁𝑁

𝐿
∏
𝑖=1

𝑒−𝜁�̂�𝑖 − 2𝜆
𝜁2 , (2.74)

only three additional terms are added to the Hamiltonian, one of which is a constant
that may be omitted. A Taylor expansion of Eq. (2.73) in the parameter 𝜁,

�̂�penalty;2 ≈ 𝜆⎛⎜⎜
⎝

𝐿
∑
𝑖=1

̂𝑛𝑖 − 𝑁⎞⎟⎟
⎠

2

⏟⏟⏟⏟⏟⏟⏟
�̂�penalty

+
𝜁2𝜆
12

⎛⎜⎜
⎝

𝐿
∑
𝑖=1

̂𝑛𝑖 − 𝑁⎞⎟⎟
⎠

4

+ 𝒪 (𝜁4) (2.75)

highlights that Eq. (2.71) and Eq. (2.73) are asymptotically equivalent for 𝜁 → 0. Despite
its obvious advantages when it comes to the number of terms added to the Hamiltonian,
we found the second penalty term to perform worse with respect to the simulation
runtimes, most likely due to an increase in stiffness of the EOMs, and also much harder
to control due the presence of two parameters.
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3
Outlines of Scientific Contributions

The present cumulative dissertation is based on the scientific contributions published in
the References [FK1], [FK2] and [FK3] which are summarized in this chapter. More

detailed explanations can be found in the included manuscripts provided in Chapter 4.

3.1. Dynamical Pruning of the Non-Equilibrium Quantum
Dynamics of Trapped Ultracold Bosons

The MCTDHB method presented in Section 2.7 has proven to be a powerful and versatile
ab-initio approach for the investigation of the nonequilibrium dynamics of bosonic many-
body systems that provides a beyond-mean-field description. Like other numerical
approaches, MCTDHB faces the challenge of an exponentially growing dimension of
the Hilbert space when studying large systems. The number of configurations that are
taken into account grows rapidly as the number of particles and/or SPFs increases, see
Eq. (2.45). Various approaches in the scope of the MCTDH family of methods have been
devised in the literature in order to tackle this issue and reduce the computational effort.
For instance, configuration selection schemes for MCTDH [705, 706] as well as restricted
active space (RAS) schemes for MCTDHF [707–710] and MCTDHB [711] have been
developed. These procedures try to exploit the observation that not all configurations
are equally important for the description of the dynamics and rely on considering only
the most relevant Hartree products/number states. Since this selection is static and does
not adapt to the dynamics, these approaches are not able to account for the fact that the
importance of a configuration may change over time. Furthermore, the a priori removal
of important configurations may restrict the evolution of the system artificially leading to
unphysical results. Hence, a good selection is crucial for the success of these approaches,
often requiring in-depth knowledge of the underlying physics. Therefore, in order to
apply such schemes to arbitrary setups, the development of dynamical methods that can
adapt on-the-fly is desirable.

In the context of molecular dynamics with distinguishable DOFs, such dynamical
approaches have been applied successfully in the framework of MCTDH. The runtime
of simulations can be greatly reduced by pruning the primitive basis [712, 713] or the
coefficients of the wave function [713]. However, ultracold atoms are typically subject
to external trapping potentials, such that there rarely exist large regions of unoccupied
real space rendering the pruning of the primitive basis less lucrative. Additionally, the
neighborship criterion proposed for the wave function coefficients in [713] cannot be
easily transferred to bosonic number states, thus requiring development of specialized
approaches for indistinguishable particles.

In [FK1], a general dynamical pruning approach forMCTDHB is presented that adapts
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important
configurations

unimportant
configurations

�̂�

�̂�

̂𝐴 ̂𝐶

Figure 3.1.: Sketch of the partitioning of the Hamiltonian �̂� = ̂𝐴 + �̂� + ̂𝐶 + �̂� exploited in
the dynamical pruning of MCTDHB in [FK1]. The first, Hermitian pruning
approach deactivates the coupling among the inactive configurations ̂𝐶, while
the second, non-Hermitian scheme additionally removes the scattering from
inactive to active configurations �̂�.

during the time evolution of the system. As a first step, a pruning criterion is introduced
that is used to classify the configurations as either important or unimportant according
to a fixed threshold, which is a parameter of the algorithm. Here, two different pruning
criteria are proposed, one based on the magnitude of the coefficients and another one
based on their relative contribution to the total energy. The selection of the important
configurations can adapt to the dynamics of the system and is updated in regular time
intervals, the size of which is another parameter of the algorithm.

Next, in order to exploit the partitioning of the configuration space, the Hamiltonian is
reinterpreted as consisting of four parts that couple the two disjoint sets of configurations
(see Fig. 3.1). Based on this representation two different modifications of the MCTDHB
EOM for the coefficients (2.60) are proposed. The first approach is to neglect couplings
among the unimportant configurations ( ̂𝐶) thus reducing the computational complexity
of the coefficient EOM. It should be noted, that in this protocol configurations that have
previously been deemed t be unimportant may become active again due to scattering
from active configurations by part �̂� of the Hamiltonian, allowing the configuration
selection to adapt to the dynamics of the system. A second pruning approach addi-
tionally removes the coupling �̂� that mediates scattering from the unimportant to the
important configurations, thus further reducing the computational effort. The resulting
Hamiltonian of this scheme is strictly speaking non-Hermitian, but the numerical results
indicate that the many-body dynamics can still accurately be captured.

In order to benchmark the performance of the dynamical pruning approach two
typical dynamical scenarios motivated from ultracold atom physics are considered. It
is a common setup to subject the particles to a periodic optical lattice [38] which can
be realized experimentally by forming a standing wave from interfering two counter-
propagating laser beams. The system is prepared in the interacting ground state of a
five well lattice (see Fig. 3.2a) and then subjected to a sudden change of the interaction
strength which can be achieved experimentally via Feshbach [72, 73] or confinement
induced resonances [74–77]. Similar scenarios have been extensively investigated with
MCTDHB in the literature [416, 418, 419, 633–636]. The second scenario starts from
the interacting ground state of bosons confined in an external harmonic potential that
is suddenly disturbed by a central, Gaussian barrier (see Fig. 3.2b) forming what is
known in the literature as a dimple trap [714]. A similar scheme employing a continuous
ramping of the barrier has already been investigated with MCTDHB in Ref. [431]. In the
literature, many studies of both Harmonic [633, 637–639] and double-well [432, 639–641]
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Bosons

(a) Optical lattice (b) Double-well

Figure 3.2.: Sketch of the two dynamical scenarios considered when benchmarking the
dynamical pruning approach for MCTDHB in [FK1]. (a) The system is
prepared in the interacting ground state of a five well optical lattice. Then
the dynamics is triggered by suddenly increasing the interaction strength
between the particles. (b) The interacting ground state of a harmonic poten-
tial is suddenly disturbed by ramping up a central, Gaussian barrier (dotted
line) effectively forming a double-well potential.

trapping potentials have been conducted with MCTDHB, rendering this a common
scenario.

In both scenarios, all combinations of configuration selection criteria andmodifications
to the coefficient EOM are considered. The accuracy of the approach is assessed by
comparing a variety of quantities to full, unpruned MCTDHB simulations. For this
purpose, fundamental properties of the wave function such as the energy conservation,
normalization and the orthonormality of the SPFs as well as the reduced one- and two-
body density matrices are analyzed. As long as the pruning threshold and the update
time are chosen appropriately, the dynamical pruning approach is found to describe the
underlying dynamics accurately only introducing small errors. For a detailed discussion
of all quantities the reader is referred to the manuscript in Section 4.1 and only some
particularly interesting observations are highlighted here.

Except for the natural populations, where the energy criterion yields slightly better
results, both configuration selection criteria perform equally well. The non-Hermitian
scheme yields only to slightly larger errors than the Hermitian scheme. The only excep-
tion is the norm of the wave function where the Hermitian modification of the EOMs
is on par with unpruned MCTDHB while the other approach introduces some slight
deviation from unity. The efficiency of the dynamical pruning of MCTDHB is found to
be strongly dependent on the particular system under investigation. In the case of the
optical lattice, more than 97% of the configurations can be classified as unimportant at
all times, which results in a speed-up by a factor of up to seven compared to unpruned
MCTDHB when considering large particle numbers and the non-Hermitian modifica-
tion of the EOMs. For the same regime, the Hermitian pruning scheme still leads to
a speed-up by more than a factor of four. When simulating the harmonic trap setup,
only about half of the configurations can be pruned during most of the time evolution
which drastically reduces the speed-up that can be achieved to 1.4 for the Hermitian and
1.8 for the non-Hermitian scheme. Finally, the long-time evolution of the approach as
well as the impact of the pruning parameters are investigated. Using the example of
the total energy, it is shown that most of the error builds early in the dynamics before
growing very slowly afterwards, almost saturating. The pruning threshold is found to
influence the accuracy of the dynamical pruning approach in a controlled manner which
converges towards the full MCTDHB calculation as the threshold is lowered. By varying
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the update time for the coefficient selection it is shown that too large values, i.e., too
infrequent updates, can lead to incorrect results. This behavior highlights the importance
of the development of dynamical pruning schemes that can adapt to the evolution of the
system.

3.2. Bosonic Quantum Dynamics Following Colliding Potential
Wells

Ever since the first experimental realization of Bose-Einstein condensates [8, 9, 715],
ultracold atomic gases have been the subject of an abundance of theoretical and experi-
mental studies. Due to their excellent isolation from the environment and the possibility
to tune the relevant characteristics of the system such as interactions, particle number,
dimensionality and external potentials, they provide a versatile platform to simulate
a plethora of different quantum many-body systems [102, 224, 229]. A particularly
interesting direction of research is to investigate fast physical processes such as electron
dynamics [235–238, 716] by emulating them with much slower-moving atomic particles,
a process sometimes referred to as temporal magnification [716]. In light of these studies,
colliding clouds of ultracold atoms could be employed to mimic electrons during atom-
atom or atom-ion collisions, potentially providing deep insights into the fundamental
processes such as projectile ionization [717, 718] or charge transfer [719, 720]. Another
intriguing application of ultracold atoms is quantum information processing [229]. In
this context, controlled collisions of cold neutral atoms have been proposed as an efficient
mechanism to create highly entangled states as well as to implement two-qubit gates [38,
721], two essential building blocks of a quantum computer [722, 723].

Experimentally, collisions of ultracold atomic clouds can be realized using optical
tweezers. Originally developed for the manipulation of micrometer sized particles [724,
725] using highly focused laser beams, optical tweezers have been refined to operate
at a variety of length scales ranging from individual atoms [726, 727] to bacteria and
viruses [728]. By trapping and accelerating ultracold atomic clouds in optical tweez-
ers [53, 54], fundamental properties of quantum scattering processes like partial wave
interference have already been studied, effectively building an “optical collider” [52, 55,
56]. Furthermore, Rydberg atoms trapped in arrays of optical tweezers are an auspicious
platform quantum computing and simulation [285, 326–329].

In [FK2], we study the collisions of two Gaussian potential wells containing two
interacting bosons using the MCTDHB method described in Section 2.7. While the
computational approach is able to handle more particles easily, the main signatures
of the dynamics can be most clearly identified in this few-body scenario. Initially, the
system is prepared in the interacting ground state of both bosons contained in the resting
left well. Starting from a large initial separation (Fig. 3.3a), the wells are then accelerated
towards each other forming a transient double structure (Fig. 3.3b). After the wells
penetrated each other, they separate again, moving in opposite directions (Fig. 3.3c) until
they reach their initial separation again.

The one-body density [729] provides insight in the spatial distribution of the particles
at all times and unravels the main signatures of the dynamics of the system. During the
first stage of the time evolution, the particles follow the trajectory of the left well. As
the wells come into proximity an effective, transient double-well structure forms which
drives oscillatory transport of the particles. Afterwards, the wells separate from each
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(a) (b) (c)

Figure 3.3.: Sketch of the dynamical setup studied in [FK2]. (a) Initially, the particles
are prepared in the interacting ground state of the left well. The wells then
start to accelerate towards each other. (b) In proximity the two wells form
a transient double-well structure that changes over time. (c) The potential
wells pass through each other and separate again.

other again, taking a fraction of particles with them. The final distribution of particles
depends on the acceleration of the wells. For certain values of the acceleration, the
particles are localized in one of the wells while for others we observe a distribution over
both wells. Within each well a sloshing motion of the particles around the well center
is visible, which can be characterized as a dipole mode [78, 351]. Additionally, a less
pronounced, periodic widening and narrowing of the atomic clouds within each well
takes place, resembling an intrawell breathing mode. The amplitudes of both of these
collective excitations are larger the more evenly the particles are distributed over both
wells and vanish when the particles are localized in a single well after the separation.
For high values of the acceleration, a density halo outside the potential wells indicates a
partial deconfinement of the initially trapped particles. All of these phenomena are then
analyzed in greater detail using more involved observables.

By employing the center of mass position of the particles, the particle transfer between
the wells can be quantified. The final, average position of the bosons oscillates as a
function of 𝑣−1

f ∝ 𝑎−1/2, i.e., the inverse final speed or the inverse square root of the
acceleration. Modified center of mass observables allow to determine the frequency and
amplitude of the dipole modes and unravel a 90∘ phase shift between the two wells.

As a next step, the many-body wave function is projected onto the instantaneous
eigenbasis of the one-body Hamiltonian in order to develop an understanding of the
most relevant single particle states. In the beginning, the two energetically lowest states
are predominantly occupied. As the wells approach each other, the oscillatory particle
transport starts as soon as these states turn into over-barrier states such that the transport
can be classified as an over-barrier process in this single particle picture. During the
last stage of the time evolution for fast collisions, a significant occupation of untrapped
single particle states becomes apparent. By comparing to simulations where the second,
initially empty well is absent, two distinct mechanisms for this deconfinement are iden-
tified. Firstly, we observe a steady increase of particle deconfinement with increasing
acceleration due to the inertia of the bosons that already sets on early during the time
evolution. Secondly, a sudden increase in the occupation of untrapped single particle
states during the last stage of the dynamics at certain values of 𝑣−1

f indicates another
deconfinement mechanism, which is not present when only a single well is considered.
Using a more involved many-body analysis with respect to number states constructed
from the instantaneous eigenbasis of the one-body Hamiltonian, this phenomenon can
be analyzed in greater detail, confirming that indeed the particle untrapping is enhanced
in the presence of two wells around certain values of 𝑣−1

f which is reminiscent of an
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ionization spectrum.
Finally, the entanglement of the final state is analyzed by means of the von Neumann

entanglement entropy [730]. For specific intermediate values of 𝑣−1
f , which correspond to

an even density distribution over both wells, strong entanglement between the particles
builds up, reaching almost 75% of the maximum possible value. If both bosons are
localized in the same well, the entanglement entropy is significantly reduced becoming
almost negligible. While the entanglement entropy drops to zero as the acceleration
increases, it remains finite for slow collisions, highlighting the importance of the transient
double-well structure for the entanglement generation.

3.3. Exploring Disordered Quantum Spin Models with a
Multi-Layer Multi-Configurational Approach

Historically, quantum spinmodels have been proposed to explain themagnetic properties
of materials [362, 731–734]. Nowadays, they play a crucial role in many areas of physics
such as quantum information processing [556]. The possibility of realizing quantum spin
models in Rydberg atom arrays [285, 325, 330, 338] and ultracold atoms trapped in optical
lattices [51, 226, 735], renders them of immediate interest for the research of ultracold
atom systems. Several numerical methods have been developed to study the properties of
quantum spinmodels. For small system sizes, exact diagonalization [696] provides access
to eigenstates of the Hamiltonian. Methods based onMPS [446–449] such as DMRG [450–
453], time evolving block decimation [584–586, 736] or TDVP-based approaches [591, 594,
595] can treat much larger numbers of spins and are particularly successful in describing
one-dimensional geometries. More advanced tensor network state methods such as
PEPS [459–469] are tailored towards more than one spatial one-dimensions or in the
case of MERA [454–458] are designed to describe systems at quantum critical points.

Often, when investigating quantum many-body systems, disordered systems are of
particular interest. Inhomogeneities may be introduced due to imperfect, experimental
realizations of the system, such as due to dislocations or impurities in crystals [737–
739]. In other scenarios, the role of disorder is the central object of interest, for example
when studying the fractional quantum Hall effect [740–742], glassy systems [743–745]
or Anderson [746–748] as well as many-body localization [749–755]. The numerical
treatment of such non-translationally invariant systems is often particularly challenging
due to the high amount of degeneracy in the low energy spectrum that results in many
cases in a violation of the so-called area law of entanglement. In 𝐷 spatial dimensions,
the area or boundary law [756–763] states that the entanglement entropy [730] between
a subsystem 𝐴 with a size proportional to 𝐿 in each dimension and the remainder of the
system grows at most proportionally to the size |𝜕𝐴| of its boundary 𝜕𝐴 [443], i.e.,

𝑆(𝐴) ∝ |𝜕𝐴| ∝ 𝐿𝐷−1 . (3.1)

Consequently, in a one-dimensional geometry, the entanglement entropy of a block as a
function of its size is bounded by some constant value 𝑆(𝐴) ≤ 𝑆0. However, a variety
of critical models have been discovered, that exhibit a weak area law violation [583,
763–777] that require logarithmic corrections of Eq. (3.1) [778–780], i.e.,

𝑆(𝐴) ∝ 𝐿𝐷−1 log(𝐿) . (3.2)
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While in 𝐷 = 1 the validity of the boundary law has been linked to the presence of
an energy gap, this connection is less clear for 𝐷 > 1 [443]. Furthermore, research in
recent years has shown that quantum systems exhibiting even stronger violations of
the area law are more common than previously expected [781–787]. In the presence of
area law violations, the merits of MPS based algorithms have to be questioned and the
development of new methods that fare well when treating such challenging setups is of
great interest.

In Ref. [FK3], the ML-MCTDH method presented in Section 2.4 is applied to the study
of the ground states of disordered quantum spin models for the first time. In order to
benchmark this approach, the ground state energy, connected correlation functions [463,
788] and the von Neumann entanglement entropy [730] of different setups are stud-
ied, starting from a translationally invariant system and then moving to models that
exhibit weak or strong violations of the area law. The accuracy of the ML-MCTDH
results is assessed by comparison with exact diagonalization [696] and DMRG [450–453]
calculations.

The ubiquitous transverse field Ising model (TFIM) [789–791] forms the starting point
of the analysis since it is a well studied and fundamental spin model that also has been
realized experimentally with trapped ions [792–795], single crystals [796], and Rydberg
atoms [325, 330, 797, 798]. Both short-range, nearest neighbor and long-range interactions
are considered when treating this homogeneous system. The ground state of the TFIM
obeys the area law and the ground state energy as well as correlations are captured
accurately by all three methods under consideration. However, exact diagonalization
is limited to treating a few spins as it relies on the diagonalization of the Hamiltonian
matrix while both ML-MCTDH and DMRG are shown to scale to much larger system
sizes, here demonstrated for up to 512 spins. Furthermore, by studying the TFIM with
short-range interactions on a square lattice, the ML-MCTDH method is shown to be
capable of treating two-dimensional systems.

After demonstrating that ML-MCTDH can describe quantum spin models accurately,
the focus is shifted to disordered systems. The first of which is a XY spin glass [799–
801] which has been shown to exhibit weak violation of the area law [786, 787]. The
corresponding Hamiltonian is characterized by random long-range interactions that
render the system non-translationally invariant. Due to the stochastic nature of the
model, multiple disorder realizations are considered1. The disorder of the spin couplings
leads to many near-degeneracies in the low energy spectrum of the Hamiltonian which
are not well resolved in the DMRG algorithm. Consequently, DMRG usually locks on
to one of the first excited states and therefore cannot reproduce the correlations among
the spins correctly or achieve the same accuracy of the ground state energy as for the
TFIM. The ML-MCTDH method, on the other hand, shows excellent agreement with
exact diagonalization.

The last model analyzed in Ref. [FK3] is motivated by the strong disorder renormal-
ization group framework [781, 802–805]. The Hamiltonian is defined on a chain and
employs nearest-neighbor interactions with a strength that decays like a Gaussian with
increasing distance from the central bond, thus breaking the translational invariance of
the system. The model has been shown to exhibit a strong violation of the area law [781]
characterized by a linear growth of the entanglement with respect to the system size.
As in the XY spin glass, DMRG does not achieve the same accuracy of the ground state

1For this purpose, particularly challenging realizations are chosen that exhibit large deviations between
the exact diagonalization and DMRG results.
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energy as in the TFIM, but this time succeeds in capturing the correlations correctly
except for a small deviation in one of the data points. Again, ML-MCTDH shows excel-
lent agreement with exact diagonalization and also captures the linear growth of the
entanglement entropy, enabled by its flexibility of constructing the wave function tree.
DMRG cannot reproduce this scaling behavior due to the formation of distant singlet
states, which the algorithm is struggling to entangle.
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4
Scientific Contributions

The present chapter includes the manuscripts of the scientific contributions published
in References [FK1–FK3] which have been summarized in Chapter 3.

4.1. Dynamical Pruning of the Non-Equilibrium Quantum
Dynamics of Trapped Ultracold Bosons
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ABSTRACT
The investigation of the nonequilibrium quantum dynamics of bosonic many-body systems is very challenging due to the excessively growing
Hilbert space and poses a major problem for their theoretical description and simulation. We present a novel dynamical pruning approach
in the framework of the multiconfiguration time-dependent Hartree method for bosons (MCTDHB) to tackle this issue by dynamically
detecting the most relevant number states of the underlying physical system and modifying the many-body Hamiltonian accordingly. We
discuss two different number state selection criteria as well as two different ways to modify the Hamiltonian. Our scheme regularly re-
evaluates the number state selection in order to dynamically adapt to the time evolution of the system. To benchmark our methodology, we
study the nonequilibrium dynamics of bosonic particles confined either in an optical lattice or in a double-well potential. It is shown that our
approach reproduces the unpruned MCTDHB results accurately while yielding a significant reduction of the simulation time. The speedup is
particularly pronounced in the case of the optical lattice.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5104344., s

I. INTRODUCTION

Ever since the first realizations of Bose-Einstein condensates
(BECs),1–3 ultracold atomic gases attracted a lot of interest both
from the experimental and the theoretical side. Their tunability and
almost perfect isolation from the environment render such systems
ideal candidates to simulate a variety of quantum many-body sys-
tems.4–6 Due to experimental advancements, ensembles of ultra-
cold atoms with a controlled number of particles7,8 can be realized
in arbitrarily shaped confining potentials9 such as optical lat-
tices,10,11 harmonic,12 or ring traps.13 By varying the confinement,
the crossover from three-dimensional14,15 to two-dimensional16,17

to one-dimensional18,19 traps can be tuned. Feshbach20,21 and
confinement-induced resonances22–25 offer fine-grained control of
the interparticle interaction. Recent studies within the realm of ultra-
cold atoms provide close links to solid-state systems,26,27 electronic
structure of molecules,28 light-matter interaction,29 topological

matter,30,31 and black-hole analogs.32 The increasing progress of the
experimental control of these many-body systems demands appro-
priate theoretical and numerical methods to describe them and to
calculate their properties as well as their dynamical behavior. Exactly
solvable models are rare while usually relying on more or less crude
approximations or focusing on certain limiting cases.

Let us discuss the state of the art of analytically solvable mod-
els and numerical approaches. The time-dependent Schrödinger
equation of two bosons in a parabolic and spherically symmetric
trapping potential is exactly solvable.33 However, the applicabil-
ity of such a small system is very limited. Larger particle numbers
can be studied using the Lieb-Liniger model34,35 for spinless bosons
with contact interactions36 assuming periodic boundary condi-
tions. Yet, this approach is not capable of taking external trapping
potentials into account and cannot directly describe the dynam-
ical response of the system. The Tonks-Girardeau37,38 model on
the other hand grants access to the full many-body spectrum
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and nonequilibrium solutions by mapping bosons to noninter-
acting fermions. However, this model is only valid in the limit
of infinitely strong interactions and in one spatial dimension.
Beyond these limitations of analytical approaches, powerful com-
putational methods are needed to study ensembles of ultracold
atoms.

A very useful approach is the Gross-Pitaevskii equation
(GPE)39,40 which represents a nonlinear Schrödinger equation for
a bosonic many-body ensemble in the presence of an external
trap with contact interparticle interaction in the thermodynamic
limit. It assumes the Hartree-Fock approximation41,42 to the many-
body wave function, leading to an effective, mean-field descrip-
tion. The GPE is a partial differential equation which can be
solved efficiently using the typical finite element and finite dif-
ference methods.43–49 This mean-field treatment allows for the
study of setups containing large particle numbers and enables
the description of a multitude of nonlinear wave structures such
as dark and bright solitons.50,51 In some cases, when potential
and interaction energy dominate the kinetic energy, the calcula-
tion can be further simplified by ignoring the kinetic term of the
Schrödinger equation leading to the Thomas-Fermi52 approxima-
tion. In general, however, these mean-field descriptions do not
provide an adequate description of the system dynamics as they
cannot account for quantum correlations. A prominent example
where the GPE fails to capture the correct physical behavior is
the bosonic Josephson junction.53,54 For weakly depleted conden-
sates, Bogoliubov theory55–57 can be applied. For the investigation of
few- to many-body systems with substantial correlations and corre-
lated dynamics, however, ab initio beyond-mean-field methods are
necessary.

One of the most fundamental of such methods is the exact diag-
onalization treatment of the many-body Hamiltonian58–60 which
grants access to the spectrum and the eigenstates of the physical sys-
tem. However, this approach is limited to a small number of particles
due to the computational complexity of diagonalization algorithms.
Furthermore, the choice of an appropriate basis can prove difficult
so that a large number of basis functions may be required, thereby
further enlarging the numerical effort. This computational challenge
calls for more efficient numerical approaches.

Many computational approaches focus on the investigation
of optical lattices as these setups are of major interest in the
research of ultracold neutral atoms due to the condensed mat-
ter counterparts (crystals). Often the Bose-Hubbard model10,61 is
employed to describe bosonic atoms loaded into the lowest band
of a sufficiently deep lattice. In this model, the bosonic field oper-
ator is expanded into Wannier states yielding an effective the-
oretical model, where the kinetic term as well as the trapping
potential is reduced to a hopping between lattice sites and the
interaction term to an on-site interaction. This model has been
studied using a plethora of different methods62 including density
matrix renormalization group (DMRG)63,64 and Quantum Monte
Carlo (QMC).65,66 However, other approaches are required to
describe physical systems and effects beyond the applicability of a
Hubbard model, covering, in particular, their out-of-equilibrium
dynamics.

The multiconfiguration time-dependent Hartree (MCTDH)67,68

is such a method and has proven to be a powerful and versatile
tool to ab initio solve the time-dependent Schrödinger equation

for correlated many-body systems of distinguishable degrees of free-
dom ab initio. MCTDH has been extended to study fermionic
ensembles using the multiconfiguration time-dependent Hartree-
Fock (MCTDHF) method69,70 and bosonic systems using the MCT-
DHB71,72 rendering the treatment of ultracold atoms possible. Fur-
ther extensions73–75 employing a multilayer approach also allow
for the treatment of Bose-Bose mixtures and more recently Bose-
Fermi and Fermi-Fermi mixtures further increasing the useful-
ness and applicability of this family of methods. The power of
this class of methods stems from the usage of a variationally opti-
mized, time-dependent set of basis functions that allows for a com-
pact representation of the many-body wave function and yields
a beyond-mean-field description that takes all correlations into
account.

However, like all numerical approaches, MCTDHB faces the
problem of an exponentially growing Hilbert space when study-
ing large many-body systems. In particular, when increasing either
the number of particles or the size of the single-particle function
(SPF) basis used to describe such an atomic ensemble, the num-
ber of possible number states or configurations, respectively, grows
rapidly rendering the treatment of systems typically with particle
numbers larger than 100 (in the superfluid regime) challenging if
not computationally prohibitive. To tackle this issue within the fam-
ily of MCTDH methods, different approaches have been proposed
in the literature. For instance, the configuration selection schemes
for MCTDH76–78 or the restricted-active-space (RAS) schemes for
MCTDHF79,80 and MCTDHB81 perform a static selection of the
most relevant Hartree products/Slater determinants for the physical
system and exploit this partitioning to reduce the required numeri-
cal effort. However, these methods cannot dynamically adapt to the
evolution of the system and require a priori knowledge such as the
choice of an excitation scheme in the case of RAS. Such static trun-
cation schemes of the Hilbert space can impose artificial constraints
on the physical system if important many-body states are removed.
Therefore, the development of dynamical, self-adapting approaches
is required in order to enable a more general treatment of dynamical
many-body systems.

Referring to the investigation of distinguishable degrees of free-
dom, dynamical procedures have been applied successfully within
the framework of MCTDH. For example, by pruning the primitive
basis/grid82,83 or the coefficients of the wave function,83 the runtime
of the simulations can be greatly reduced. Unfortunately, however,
the pruning of the grid is not very lucrative in calculations with ultra-
cold atoms as these ensembles are usually confined using an external
potential so that there rarely exist unoccupied regions of real space.
Furthermore, the coefficient based pruning approach presented in
Ref. 83 cannot be applied as the proposed neighborship criterion
for the coefficients cannot be easily transferred to the number states
of indistinguishable particles. Therefore, the development of new
dynamical methods for the treatment of indistinguishable particles
is necessary.

In the present work, we develop a general method that auto-
matically detects the important number states of bosonic many-body
systems when studying the nonequilibrium dynamics using MCT-
DHB. This selection procedure dynamically adapts during the time
evolution of the system. In Sec. II, we start by briefly reviewing the
MCTDHB theory in order to introduce the key concepts of this
method and motivate our pruning algorithm. In Sec. III, we show

J. Chem. Phys. 151, 054108 (2019); doi: 10.1063/1.5104344 151, 054108-2

Published under license by AIP Publishing

4.1. Dynamical Pruning of the Non-Equilibrium Quantum Dynamics of Trapped Ultracold
Bosons

51

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

two different ways to modify the MCTDHB equations of motion
(EoMs) in order to reduce the numerical effort. To achieve this, we
introduce a pruning threshold and a selection criterion for deter-
mining the importance of each number state. In Sec. IV, we present
two different criteria for the selection of the number states rely-
ing on the overlap with the many-body wave function and the total
energy of the system. To showcase the usefulness of our approach,
we benchmark it using two different physical scenarios in Sec. V. We
focus both on the performance benefits and the accuracy when com-
pared to a regular MCTDHB simulation. Finally, we summarize our
findings in Sec. VI and discuss future perspectives of our approach.
In Appendix A, we comment on the convergence of our numerical
results.

II. KEY ASPECTS OF THE MULTICONFIGURATION
TIME-DEPENDENT HARTREE METHOD FOR BOSONS

The MCTDHB allows us to describe the correlated quantum
dynamics of the ensemble of N interacting bosons. It employs a
variationally optimal, time-dependent basis {φi(t)}m

i=1 of m single-
particle functions (SPFs) also called orbitals. Compared to other
methods that employ a stationary basis, significantly fewer basis
functions are required to achieve the same level of description
of correlations. The many-body wave function is expanded as a
superposition

∣Ψ(t)⟩ =∑
n∈V

Cn(t)∣n; t⟩ (1)

of all NV = (
N+m−1

N ) time-dependent permanents {∣n; t⟩}n∈V that
retain the total number of particles N using time-dependent coef-
ficients {Cn(t)}n∈V.

Each vector n = (n1 n2 ⋯ nm)
T resembles one way of distribut-

ing N particles in m orbitals and is called a configuration. The ith
component ni of such a vector specifies the number of particles in the
orbital φi(t) for the given configuration. V = {n ∈ Nm

0 : ∥n∥1 = N}
is the set of all such configurations that with the total number of
particles N.

The permanents are given by

∣n; t⟩ =
⎛

⎝

m

∏
i=1

(a†
i (t))

ni

√
ni!

⎞

⎠
∣0⟩ (2)

in terms of the bosonic creation operators {a†
i (t)}

m
i=1 with respect to

the instantaneous basis.
MCTDHB solves the time-dependent Schrödinger equation

(ih̵∂t − Ĥ(t))∣Ψ(t)⟩ = 0 as an initial value problem by propagating
an initial wave function |Ψ(0)⟩ in time according to a, potentially
time-dependent, Hamilton operator Ĥ(t). In this work, we limit
ourselves to Hamiltonians of the form

Ĥ(t,{xi}) =
N

∑
i=1

ĥ(t, xi) +∑
i<j

Ŵ(t, xi, xj), (3)

containing only one-body (ĥ) and two-body (Ŵ) terms. By
employing the Lagrangian,84 Dirac-Frenkel,85,86 or McLachlan87

variational principle, one can derive the corresponding MCT-
DHB EoMs71,72,88 which are integrodifferential equations describ-
ing the time evolution of the coefficients {Cn(t)}n∈V and the SPFs
{φi(t)}m

i=1.

The SPF EoM describes a rotation of the orbitals in such
a way that they represent the state of the physical system opti-
mally. For details on this equation, we refer the reader to Ref.
72 as the precise structure is irrelevant for the pruning approach
that we describe herein. The time evolution of the time-dependent
coefficients {Cn(t)}n∈V is governed by

i∂tCn(t) = ∑
m∈V
⟨n; t∣Ĥ(t)∣m; t⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hnm(t)

Cm(t), (4)

which is coupled to the EoMs of the orbitals via the configurations
|n; t⟩.

III. PRUNED EQUATIONS OF MOTION
The number of possible configurations NV grows rapidly with

the number of particles N and orbitals m. This scaling behavior ren-
ders the treatment of large systems challenging if not infeasible as
the number of matrix elements grows quadratically with NV causing
the integration of Eq. (4) to become very costly and the dominant
contribution to the simulation runtime.

From intuition and experience, we know that not all con-
figurations are of equal importance for the corresponding physi-
cal systems under consideration. In the present work, we establish
measures to automatically detect configurations of lesser impor-
tance and leverage this knowledge to reduce the numerical effort
of the integration of the coefficient EoMs. Our approach is dynam-
ical and regularly reevaluates the importance of all configura-
tions, in particular, also those that have been deemed negligible
previously.

In order to derive our pruning approach, we start by defining
a measure f : V × R → R that determines the importance of each
configuration n at time t. We divide the set V of all configurations
into the subset of unpruned (i.e., active) configurations

P(t) = {n : f (n, t) > γ} (5)

and the subset of pruned (i.e., inactive) configurations

Q(t) = {n : f (n, t) ≤ γ} (6)

by introducing a pruning threshold γ ∈ R. Additionally, we intro-
duce the operators

P̂(t) = ∑
m∈P(t)

∣m; t⟩⟨m; t∣, (7)

Q̂(t) = ∑
m∈Q(t)

∣m; t⟩⟨m; t∣ (8)

that project onto the configuration subsets P(t) and Q(t). In the
following, we drop the explicit notation of the time-dependence
of the sets and the projection operators for the sake of readabil-
ity. The many-body Hamiltonian can be rewritten in terms of P̂
and Q̂ as

Ĥ = P̂ĤP̂ + Q̂ĤP̂ + P̂ĤQ̂ + Q̂ĤQ̂

= ĤP̂ + P̂ĤQ̂ + Q̂ĤQ̂, (9)

where we exploited the property P̂ + Q̂ = 1̂.
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The idea of the pruning approach is to neglect terms in this
representation, thus defining a new, truncated Hamiltonian which
replaces the original in Eq. (4). In order to make an adequate choice
for the pruning, it is essential to consider the meaning of each term
of Eq. (9) within the context of the coefficient EoMs (4), see also
Fig. 1. The term Q̂ĤQ̂ mediates between number states belonging to
configurations from Q, i.e., configurations that we consider negligi-
ble. Therefore, the most apparent modification is to neglect this part
of the Hamiltonian yielding

Ĥ′1 = ĤP̂ + P̂ĤQ̂. (10)

We note that H′1 is Hermitian. When inserting this Hamiltonian into
Eq. (4), the resulting modified EoM reads

i∂tCn(t) = ∑
m∈P(t)

⟨n; t∣Ĥ(t)∣m; t⟩Cm(t)

+ ∑
m∈Q(t)

⟨n; t∣Ĥ(t)∣m; t⟩Cm(t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
if n∈P(t)

, (11)

where the second term is only present for coefficients associated
with configurations from P. However, we note that only the right-
hand side of the EoMs is modified, while the total number of EoMs
remains unchanged such that all coefficients {Cn(t)}n∈V are prop-
agated in time. This is a key element of our approach as it allows
coefficients corresponding to inactive configurations (from the set
Q) to evolve such that they could be activated again should they
transcend the pruning threshold.

In the present work, we also investigate a second type of pruned
Hamiltonian

H′2 = ĤP̂ (12)

that we obtain by also neglecting the term P̂ĤQ̂ which mediates scat-
tering from the negligible configurations Q to the active configura-
tions P. However, this operator is non-Hermitian but our numerical
results in Sec. V suggest that this weak non-hermiticity may still be
acceptable in the sense that the many-body dynamics can still be
described to some accuracy (see Sec. V). The corresponding EoM
reads

i∂tCn(t) = ∑
m∈P(t)

⟨n; t∣Ĥ(t)∣m; t⟩Cm(t). (13)

In the standard MCTDHB algorithm, an initial wave function
|Ψ(t0)⟩ is propagated from the initial time t0 to a final time tf using
some time step Δt at which the wave function is to be computed.
The interval Δt is usually divided further due to the usage of an
adaptive integrator.89–91 Algorithm 1 shows how we integrate the
pruning approach into this existing procedure. We introduce an
additional time scale τ that determines when the pruning criterion
is to be evaluated. The resulting selection of active configurations is

FIG. 1. Illustration of the meaning of the different terms of Ĥ with respect to
projection operators.

ALGORITHM 1. Propagation procedure for pruned MCTDHB simulations.

1: procedure PRUNEDPROPAGATION(|Ψ(t0)⟩, t0, tf, Δt, τ, γ)
2: tnext ← t0 + Δt
3: tpruning ← t0 + τ
4: P← V
5: Q← {}
6: while t < tf do
7: t′ ←min{tnext, tpruning}
8: ∣ψ(t′)⟩← propagate(t, t′, ∣ψ(t)⟩,P,Q)
9: if t′ = tpruning then

10: P← {n : f (n, t) > γ}
11: Q← {n : f (n, t) ≤ γ}
12: tpruning ← tpruning + τ
13: end if
14: if t′ = tnext then
15: write |Ψ(t)⟩, evaluate observables, etc.
16: tnext ← tnext + Δt
17: end if
18: t ← t′

19: end while
20: end procedure

kept constant for the time τ. Initially, all configurations are marked
as active as can be seen in lines 4 and 5. The initial wave func-
tion is then propagated until the target time tf is reached (see lines
6–19). Whenever the time τ has passed, the pruning criterion is
reevaluated and the selection of active configurations is updated (see
lines 9–13).

Both the pruning time τ and the threshold γ impact the dynam-
ical pruning algorithm. Choosing small values of γ reduces the ratio
of configurations that can be disabled on the right-hand side of each
EoM [see Eqs. (11) and (13)] and thus the speedup that can be
achieved. In the case γ = 0, all configurations are taken into account
and the dynamical pruning approach is equivalent to the original
MCTDHB. However, choosing γ very large may lead to incorrect
results as important number states might be neglected. As the prun-
ing time τ determines how often the pruning criterion is evaluated,
this parameter has to be chosen appropriately depending on the time
scales of the physical system. Small values of τ lead to very frequent
reevaluations of the pruning criterion which can negate any per-
formance gain due to the decreased number of configurations as
the evaluation of the criterion introduces additional computational
effort. When using large values for τ, the evolution of the physical
system might be imprecise. To ensure that the numerical results are
accurate enough, τ and γ have to be chosen carefully by learning how
to handle them via the comparison with converged results, e.g., the
original MCTDHB results.

IV. PRUNING CRITERIA
In Sec. III, we outlined our pruning approach and introduced

the function f (n, t) without further specifying it. In the following,
we present two different pruning criteria that we use for the appli-
cations in Sec. V. We base our choices on the norm of the wave
function and the total energy as these quantities are easily accessible
and interpretable.
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A. Magnitude criterion
The most obvious way to assess the importance of a con-

figuration is to project the many-body wave function onto the
corresponding number state and compute the magnitude of the
overlap,

f (n, t) = ∣⟨Ψ(t)∣n; t⟩∣2 = ∣Cn(t)∣2. (14)

This criterion, which we refer to as the magnitude criterion (MC)
in the following, is intuitive as we can compute a real number
f (n, t) ∈ [0, 1] that determines the importance of the configuration
n. A value of 0 means that the configuration does not contribute at
all to the many-body wave function, whereas a value of 1 implies
that the wave function is given solely by the corresponding number
state.

B. Energy criterion
In order to investigate the impact of the pruning criterion on

the numerical results, we study a second possible choice. For the
so-called energy criterion (EC), we determine the contribution of a
configuration to the total energy. The energy of a MCTDHB wave
function is given by

E(t) = EV(t) = ∑
n,m∈V

C∗n (t)Cm(t)Hn,m(t) (15)

and depends solely on the time-dependent coefficients {Cn(t)}. In
order to estimate the energetic contribution of a single, specific con-
figuration n, we expand EV(t) as a Taylor polynomial of first order
with respect to the corresponding coefficient,

EV(t) ≈ EV/{n}(t) +
∂EV(t)
∂C∗n (t)

C∗n (t), (16)

where EV/{n}(t) is the energy of the system when neglecting the
configuration n, i.e., setting Cn(t) to 0. Consequently, an estimate
of the absolute, energetic contribution of the configuration n is
given by

En(t) = EV(t) − EV/{n}(t) =
∂EV(t)
∂C∗n (t)

C∗n (t). (17)

We normalize this quantity by dividing the total energy and taking
the absolute value

f (n, t) = ΔEn(t) = ∣
En(t)
EV(t)

∣ = ∣
1

EV(t)
∂EV(t)
∂C∗n (t)

C∗n (t)∣ (18)

in order to obtain a real number f (n, t) ∈ [0, 1] which can be
interpreted as the relative energy contribution.

V. APPLICATION TO THE QUANTUM DYNAMICS
OF TRAPPED ULTRACOLD BOSONIC ENSEMBLES

In the following, we consider a one-dimensional system of
N identical bosons confined in an external potential V (x). Note
that within the ultracold regime, s-wave scattering is the dominant
interaction process36,92 such that we consider contact interactions
between the particles. The many-body Hamiltonian of such a system
is given by

Ĥ({xi}) =
N

∑
i=1
(−

h̵
2m

∂2

∂x2
i

+ V(xi)) +∑
i<j

gδ(xi − xj). (19)

Starting from the ground state of the noninteracting system
(i.e., g = 0), we compute the many-body ground state of the interact-
ing ensemble by imaginary time propagation leading to energy relax-
ation68,93 or via the improved relaxation algorithm.94 The resulting
initial ground state wave function is then propagated in time with
respect to a quenched Hamiltonian which involves an instantaneous
change in one of the system parameters.6,14,95 The propagation of
the wave function is performed using the usual, unpruned MCT-
DHB as well as the pruned variants introduced in Sec. III. To deter-
mine the benefits of pruning, we measure the central processing
unit (CPU) time of all simulations and also monitor the number
of configurations that are pruned at each time step. In order to
quantify the amount of deactivated configurations, we define the
quantity

β(t) =
∣Q(t)∣
∣V(t)∣

(20)

as the ratio between the number of inactive configurations [the car-
dinality of the set Q(t), see Eq. (6)] and the total number of con-
figurations (the cardinality of the set V, see Sec. II). Additionally,
we compare different physical quantities between the pruned and
unpruned MCTDHB data in order to assess the accuracy of our
pruning approach.

MCTDHB provides the full many-body wave function at each
time step of the evolution and thus grants access to a plethora of
different observables that allow us to analyze and understand the
physical system. One of the most general of such quantities is the
reduced p-body density matrix96

ρp(x1, . . . , xp, x′1, . . . , x′p, t)

=
N!

(N − p)! ∫
Ψ(x1, . . . , xN , t)

× Ψ∗(x′1, . . . , x′p, xp+1, . . . , xN , t)dxp+1 . . .dxN (21)

that can be used to calculate particle densities as well as correla-
tion functions. The reduced one-body density matrix (i.e., p = 1)
is of special interest as its diagonal ρ1(x, t) = ρ1(x, x′ = x, t) is the
one-body density which describes the spatial distribution of parti-
cles. The spectral representation of the reduced one-body density
matrix

ρ1(x, x′, t) =
m

∑
α=1

λα(t)ϕα(x, t)ϕ∗α(x
′, t) (22)

is given by the eigenvectors {ϕα(t)}, the so-called natural orbitals,
and the decreasingly ordered eigenvalues λα(t) ∈ [0, 1], the so-called
natural populations. The natural populations fulfill ∑m

α=1 λα(t) = 1
and determine the degree of interparticle correlations within the
ensemble. A system with λ1 = 1 ∧ λα>1 = 0 is called condensed,
is accurately described in a mean-field treatment using a single
orbital, and does not exhibit interparticle correlations. In order to
quantify the impact of the pruning approach on the natural pop-
ulations, we compute the absolute difference between the natu-
ral population λi(t) obtained by a regular MCTDHB calculation
and the corresponding natural population λ′i (t) from a pruned
simulation,

ελi(t) = ∣λ
′
i(t) − λi(t)∣. (23)
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Moreover, we study the reduced two-body density operator
which can be used to calculate second order correlation functions
and two-particle densities. For the sake of brevity, we only report
results on the diagonal ρ2(x, x) = ρ2(x1 = x, x2 = x, x′1 = x, x′2 = x, t)
that can be interpreted as the probability distribution to find two
particles at the same position.

Furthermore, the pruning might affect the total energy of the
system due to the modifications of the many-body Hamiltonian.
In order to quantify any such effects, we introduce the relative
deviation

εE(t) = ∣
E′(t)
E(t)

− 1∣. (24)

between the energy E′(t) of a pruned calculation and E(t) of a regular
MCTDHB calculation.

The MCTDHB algorithm conserves the norm of the wave func-
tion, the orthonormality of the SPFs and, if the Hamiltonian is
time-independent, the energy. The dynamical pruning might intro-
duce inaccuracies that lead to violations of these properties which
we investigate by defining appropriate error quantities. The norm of
the wave function should always have the value 1. By computing the
absolute difference

ξ∥Ψ∥2(t) = ∣⟨Ψ(t)∣Ψ(t)⟩2 − 1∣ (25)

from this target value, we can quantify the violation of the norm
conservation at each time t. In Secs. V A and V B, we study the
dynamics after a sudden change of the Hamiltonian at time t = 0.
However, we keep the Hamiltonian H(t ≥ 0) constant such that the
energy should be conserved throughout the simulation. In order to
measure violations of this conservation law, we compute the relative
difference

ξE(t) = ∣
E(t)
E(0)

− 1∣ (26)

of the momentary total energy E(t) with respect to the initial
energy E(0). During the propagation of a many-body wave func-
tion using MCTDHB, the SPF basis should remain orthonormal. To
quantify deviations from this property at time t, we introduce the
quantity

ξ⊥(t) = ⟨φi(t)∣φj(t)⟩ − δij. (27)

However, we do not discuss this property in detail in Secs. V A
and V B as we find that it does not seem to be affected by the
pruning approach. The value of this quantity is always compa-
rable to the unpruned MCTDHB calculation and is bounded by
ξ�(t) < 10−10.

In the following, we discuss two physical scenarios by choos-
ing different potentials and quench procedures to showcase the
performance of the pruning approach. To ensure comparability,
all numerical simulations were performed on an AMD® RyzenTM

ThreadripperTM 1950X 16-core processor using a single, dedicated
core.

A. Quench dynamics in an optical lattice
We investigate the nonequilibrium dynamics of repulsively

interacting bosons trapped in an optical lattice10 following a sudden
change of the interaction strength. This quench procedure is exper-
imentally accessible through Feshbach resonances20,21 or changes

of the transversal confinement frequency.23–25 Similar setups have
been investigated using MCTDHB in several previous works97–104

so that this setup serves as an ideal testbed for new methodological
advancements.

We parameterize the lattice potential as

V(x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

V0 sin2
(
πpx

L
) −

L
2
≤ x ≤

L
2

∞ otherwise
(28)

with an odd number of wells p, the barrier height V0, and the sys-
tem size L. Based on these lattice parameters, we use the recoil
energy105 ER = h̵2π2p2/2mL2 as the natural energy unit of the sys-
tem and choose a barrier height of V0/ER = 4 for the lattice in
the following. Starting from the ground state of the system with
g̃ = pπg/LER = 0.1, we study the dynamics following a quench to
g̃ = 0.4 and g̃ = 0.8. According to the convergence checks that we
performed (see Appendix A), it proves sufficient to restrict the SPF
basis to m = 5 orbitals.

Figure 2 shows the evolution of the one-body density after the
aforementioned quench protocol for the case of N = 20 particles
and a quench to g̃ = 0.4 which has been computed using a reg-
ular MCTDHB simulation. The quench excites intrawell breathing
dynamics which is visible as a periodic expansion and contraction
of the atomic cloud around the center of each well. Additionally,
over-barrier transport between the wells97 is induced which can be
identified by the finite particle density between the wells. In Fig. 2, we
show the propagation up to a final time tf ≈ 15 h̵/ER. In the further
analysis, we investigate the different pruning approaches for a vary-
ing number of particles and postquench interaction strengths lead-
ing to a large number of independent simulations. As the simulation
times can become large, especially when treating larger numbers of
particles, we simplify the analysis by only studying the dynamics up
to a final time tf = 2 h̵/ER as indicated by the white dotted line in
Fig. 2. In order to ensure that our pruning approach also captures
the correct long-term behavior of the physical system, we also per-
formed calculations up to a time t = 10h̵/ER for a selection of these
simulations, the results of which are not presented for the sake of
brevity.

We apply the various pruning methods described in Secs. III
and IV to this lattice setup and choose a pruning threshold of

FIG. 2. Time evolution of the one-body density ρ1(x, t) for N = 20 bosons in a
finite five-well lattice following an interaction quench from g̃ = 0.1 to g̃ = 0.4
according to a regular MCTDHB calculation. The white dotted line indicates the
final propagation time tf = 2̵h/ER that is used for the comparison with the different
pruning approaches for different numbers of particles and postquench interaction
strengths.
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γ = 10−8 and a pruning time τ = 10−2 h̵/ER. Note that these val-
ues of γ and τ have been determined by performing simulations
for different sets of parameters (γ, τ). We find that this combina-
tion yields both a significant speed-up compared to the unpruned
MCTDHB while reproducing the unpruned results accurately up to
a certain degree. Figure 3 shows the reduction of the simulation time
in comparison with the regular MCTDHB for different numbers of
particles. The initial state can be described using only a few config-
urations such that for small times almost all configurations can be
marked as disabled. Over time, this number reduces as can be seen
in the inset of Fig. 3. This fact can be explained with scattering from
the few initially important configurations to the lesser important
ones as mediated by the term Q̂ĤP̂ in Eqs. (10) and (12). However,
the number of inactive configurations remains large throughout the
simulation such that a significant speedup compared to the regular
MCTDHB calculation is achieved. The performance benefit depends
on the pruned Hamiltonian that is used as well as the number of
particles N (see Fig. 3). The evaluation of the pruning criterion intro-
duces computational overhead. When propagating wave functions
containing only a few configurations, e.g., when studying small par-
ticle numbers (N ≈ 5), only a small speedup can be achieved. How-
ever, for larger systems (N = 20), a considerably larger speedup by
a factor of more than seven can be reached. The EoMs based on the
Hamiltonian ĤP̂ yield higher performance gains than the ones based
on ĤP̂ + P̂ĤQ̂. This is to be expected as the first variant incorpo-
rates less of the original matrix elements while the pruning ratios did
not differ substantially. Furthermore, the stronger quench requires
a higher number of configurations and thus leads to a smaller
speedup.

Moreover, comparing the MCTDHB and the pruned one- and
two-body density (see Fig. 4), no difference is noticeable through-
out the evolution. Thereby, we can infer that both quantities are

FIG. 3. Speedup of the pruned compared to the unpruned simulations for the
five-well lattice. The solid lines are affiliated with the weak interaction quench to
g̃ = 0.4, while the dotted lines indicate the strong interaction quench to
g̃ = 0.8. The different colors indicate the number state selection criteria [Eq. (14)
or Eq. (18)] and the modified Hamiltonian [Eq. (10) or Eq. (12)] that are used.
The inset shows the ratio of the pruned configurations at each time step β(t) [see
Eq. (20)] for the case N = 20 using the energy criterion and the Hamiltonian ĤP̂
after a weak interaction quench to g̃ = 0.4. A pruning threshold of γ = 10−8 and a
pruning time of τ = 10−2 ̵h/ER were employed.

FIG. 4. One-body density ρ1(x, t) (a)–(c) and diagonal of the reduced two-body
density matrix ρ2(x, x, t) (d)–(f) at selected time instants (see legends) for N = 20
particles in the five-well lattice following an interaction quench from g̃ = 0.1 to
g̃ = 0.4. The blue solid lines correspond to the regular MCTDHB and the orange
dashed lines to a pruned calculation using the energy criterion with the Hamiltonian
ĤP̂ + P̂ĤQ̂. However, due to the good agreement of the unpruned and pruned
calculation, these lines lie on top of each other. A pruning threshold of γ = 10−8

and a pruning time of τ = 10−2 ̵h/ER were employed.

reproduced accurately in the pruned simulations. When applying
the EC in conjunction with the Hermitian Hamiltonian (10) for
N = 20 bosons and a postquench interaction of g̃ = 0.4, the corre-
sponding, maximal absolute deviation is 0.016 and 0.13 for the one-
and two-body density, respectively, over the evolution.

The approximation via the pruning procedure introduces devi-
ations in the energy of the system as well as the natural populations
when comparing to the usual MCTDHB. The results for the ener-
getic error εE(t) [see Eq. (24)] are illustrated in Fig. 5. As it can
be seen, we can reproduce the MCTDHB energy up to a preci-
sion of the order of 10−6–10−5 for the weaker quench to g̃ = 0.4
and of the order of 10−5–10−4 for the stronger quench to g̃ = 0.8.
The energetic error increases slightly with the number of parti-
cles and is higher for the stronger quench. Among the different
pruning approaches, only minor differences are perceivable in this
quantity. For instance, the Hermitian operator ĤP̂ + P̂ĤQ̂ yields
slightly smaller errors. On the other hand, the differences between
the energy and the magnitude criterion are negligible. In conjunc-
tion with the significant speedup, we consider these deviations from
the MCTDHB energy to be acceptable. The inset of Fig. 5 shows the
evolution of εE(t) for N = 20 particles after a quench to g̃ = 0.4
for the energy criterion in conjunction with the Hermitian Hamil-
tonian. As it can be seen, εE(t) exhibits a fast growth rate initially,
while it increases slowly for tER/h̵⪆1 and tends to saturate. The
long time evolution of εE(t) is discussed for some case examples in
Appendix B.

When reviewing the natural populations during the postquench
propagation, we observe that the system cannot be considered a con-
densed system that could be described in a mean-field manner using
only a single orbital as more than one natural orbital is macroscopi-
cally occupied. An example for the dynamical behavior of the natural
populations is shown in the inset of Fig. 6. The maximal depletion
over time, i.e., the maximal deviation of the first natural population
from unity, increases with N and is larger for the stronger quench
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FIG. 5. Maximal energetic error [see Eq. (24)] between the unpruned and pruned
simulations for the five-well lattice. The solid lines correspond to a quench to
g̃ = 0.4 and the dashed lines to g̃ = 0.8. The inset shows the exemplary evo-
lution of the error over time for g̃ = 0.4 and N = 20 when using the energy criterion
and the Hamiltonian ĤP̂ + P̂ĤQ̂. A pruning threshold of γ = 10−8 and a pruning
time of τ = 10−2 ̵h/ER were employed.

to g̃ = 0.8. For the weak quench to g̃ = 0.4, we observe a maximal
depletion of max

t
(1 − λ1(t)) = 0.07 for N = 20 particles. Similarly,

the depletion for a quench to g̃ = 0.8 exhibits a maximum value of
max

t
(1 − λ1(t)) = 0.16 for N = 20 particles.
In Fig. 6, we also compare the maximal deviation of the nat-

ural populations max
t
ελi(t) [see Eq. (23)] between the pruned and

unpruned simulations over time. We exemplarily present the results
for the dominant, first orbital. Over time, ελ1(t) shows an oscilla-
tory behavior around a central value so that we compute the stan-
dard deviation of this quantity to quantify these fluctuations (see
error bars in Fig. 6). For the natural population error, the prun-
ing criterion has a larger impact than the type of EoM being used.

FIG. 6. Maximum error of the first natural population as given by Eq. (23) for vari-
ous numbers of bosons in a five-well lattice. The solid lines illustrate a postquench
interaction strength of g̃ = 0.4, while the dashed lines represent g̃ = 0.8. The error
bars indicate the standard deviation of the error. The inset shows the evolution of
all 5 natural populations for the case N = 20 after a weak quench to g̃ = 0.4 and
using the regular MCTDHB. A pruning threshold of γ = 10−8 and a pruning time of
τ = 10−2 ̵h/ER were employed.

The energy criterion (blue and orange lines) shows slightly better
results than the magnitude criterion (green and red lines) but stays
in the same order of magnitude. As the energetic error, the error
increases with the system size but stays of the order of 10−4 for
a postquench interaction of g̃ = 0.4 and of the order of 10−3 for
g̃ = 0.8.

The postquench Hamiltonian is time-independent, and there-
fore the energy should be conserved in addition to the norm of the
wave function. Figure 7 shows the maximum violation of these con-
straints over time. The norm conservation as quantified by ξ∥Ψ∥2(t)
[see Eq. (25)] shows a drastic difference between the two kinds of
EoMs. The non-Hermitian Hamiltonian leads to a deviation that is a
few orders of magnitude larger while also still remaining sufficiently
small. The violation of the energy conservation ξE(t) [see Eq. (26)] is
slightly higher with the non-Hermitian EoMs. Overall however, this
error is small and acceptable.

B. Nonequilibrium dynamics in a double well
Our second physical example system is an ensemble of interact-

ing bosons confined in a double-well that is created from a harmonic
trap with an additional Gaussian-shaped barrier at the center, also
known as a dimple trap in the literature,106

V(x) =
1
2

mωx2 + V0 exp(−
x2

2σ2 ). (29)

Here, σ is the standard deviation of the Gaussian and V0 is
the height of the barrier. We use the harmonic oscillator length
lH =

√
mω/h̵ as the natural length scale of the system, with ω being

the angular frequency of the harmonic potential. The energy units
are given by h̵ω and the time units by 1/ω. In order to induce
the nonequilibrium dynamics in this setup, we prepare the ground
state of the system without a barrier (i.e., for V0 = 0) and then
quench the barrier height to V0/h̵ω = 4. A similar scheme, where
the central barrier was continuously ramped up, was investigated in
Ref. 71.

We study setups with N = 5, 10, 15, 20, 25, 30 particles using
m = 10, 9, 7, 6, 5, 5 orbitals, respectively, and ensure convergence

FIG. 7. Maximal violation of the conservation of (a) the norm [see Eq. (25)] and (b)
the energy [see Eq. (26)] during the propagation of the five-well lattice system for
an increasing number of particles N.
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FIG. 8. Time evolution of the one-body density ρ1(x, t) of N = 15 bosons in a
double-well trap after a quench of the central Gaussian barrier to a finite height
obtained with a regular MCTDHB calculation.

with respect to m (see Appendix A). The interaction strength is cho-
sen to be g/h̵ωlH = 0.1 and the width of the barrier to be σ = lH. In order
to choose the pruning threshold γ and the pruning time τ appro-
priately, we perform simulations for different values and compared
the results to an unpruned MCTDHB simulation. We discuss the
convergence procedure for different values of τ and γ in detail for
the case of N = 15 particles in Appendix C. A pruning threshold of
γ = 10−10 and a pruning time of τω = 5 ⋅ 10−2 lead to a good
agreement with the unpruned MCTDHB simulations.

The evolution of the single-particle density of the system is
showcased in Fig. 8. By quenching to a finite height of the central
barrier, the initial Gaussian distribution of the bosons is split into
two branches veering away from each other with opposite momenta.
With the given parameters, the two clouds possess enough energy
to overcome the hump after being reflected by the harmonic trap
and collide in the trap center x = 0 at a time tω ≈ 4. Afterward,
these density branches separate again each one moving in one of
the wells of the double-well and subsequently collide at x = 0 again.
This motion is repeated almost periodically throughout the evolu-
tion. Our main focus is the performance of the pruning approach in
this scenario, i.e., we do not analyze the overall dynamics in further
detail.

FIG. 9. Speedup of the various pruned simulations compared to regular MCT-
DHB in the double-well setup for varying particle numbers. The inset shows the
ratio of inactive configurations β(t) [see (20)] over time for N = 15 particles using
the energy criterion and the Hamiltonian ĤP̂. We used a pruning threshold of
γ = 10−10 and a pruning time of τω = 5 ⋅ 10−2.

FIG. 10. (a)–(d) show the one-body density ρ1(x, t) for N = 15 particles in the
double-well setup at various time instances (see legends). The blue solid line
corresponds to an unpruned simulation and the orange dashed line to a pruned
calculation using the energy criterion and the Hamiltonian ĤP̂ + P̂ĤQ̂. However,
due to the good agreement between the unpruned and the pruned calculation,
these lines lie on top of each other. We used a pruning threshold of γ = 10−10 and
a pruning time of τω = 5 ⋅ 10−2.

Figure 9 shows the speedup of the pruned vs the unpruned
simulations. In comparison to the lattice system, the benefits of the
pruning approach are smaller yielding a speedup between 1.4 and
2 depending on the system size. This can be explained by a smaller
pruning ratio as it can be seen in the inset. The ratio of inactive con-
figurations quickly drops from almost 1 to around 0.5 where it satu-
rates, suggesting that a higher amount of configurations is required
to describe the physical system accurately.

Even though the pruning approach does not speed up the sim-
ulation as much as in the case of an optical lattice, the evolution of

FIG. 11. (a)–(d) show the diagonal ρ2(x, x, t) of the two-body density matrix at
different times t (see legends) for N = 15 particles in a double-well following the
quench of the central Gaussian barrier to a finite height. The solid blue line corre-
sponds to a regular MCTDHB simulation and the orange dashed line to a pruned
calculation using the EC and the ĤP̂ + P̂ĤQ̂ Hamiltonian. However, due to the
good agreement between the unpruned and the pruned calculation, these lines lie
on top of each other. We used a pruning threshold of γ = 10−10 and a pruning time
of τω = 5 ⋅ 10−2.
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FIG. 12. Maximal relative energetic error [see Eq. (24)] between unpruned and
pruned simulations for the double-well setup for varying particle numbers N. The
inset shows the evolution of the error over time during a pruned simulation for
N = 15 particles using the energy criterion and the ĤP̂ + P̂ĤQ̂ Hamiltonian. We
used a pruning threshold of γ = 10−10 and a pruning time of τω = 5 ⋅ 10−2.

the system is still reproduced accurately. We show the good agree-
ment of the one-body (see Fig. 10) and the two-body (see Fig. 11)
density between a regular MCTDHB and a pruned simulation using
the EC in conjunction with the Hermitian Hamiltonian (10). The
corresponding maximal, absolute deviation over the evolution time
and the whole grid is 0.0013 for the one-body and 0.0012 for the
two-body density.

The energetic error εE [see Eq. (24)] between the pruned and the
unpruned MCTDHB calculation is depicted in Fig. 12. In contrast
to the lattice system, the difference between the two types of EoMs
(11) and (13) is only minor and the error does not increase with
the number of particles. Using the pruning approach, the unpruned
MCTDHB energy is reproduced up to a relative deviation of the
order of 10−4. The inset of Fig. 12 shows that the energetic error

FIG. 13. Absolute error of the first natural population [see Eq. (23)] between the
pruned and unpruned simulations in the double-well setup. The error bars indicate
the standard deviation of this error quantity. The inset shows the evolution of all m
= 7 orbitals for the unpruned MCTDHB calculation using N = 15 particles. We used
a pruning threshold of γ = 10−10 and a pruning time of τω = 5 ⋅ 10−2.

FIG. 14. Maximal violation of the conservation of (a) the norm [see Eq. (25)] and
(b) the energy [see Eq. (26)] during the propagation after quenching the central
Gaussian barrier in the double-well to a finite height. We use a pruning threshold
of γ = 10−10 and a pruning time of τω = 5 ⋅ 10−2.

grows in a similar fashion as in the lattice system over the simu-
lated time and that it does saturate within the given time range. In
Appendix B, we show exemplarily the long-time evolution of the
energetic error for fixed particle number and observe that it grows
slowly at longer propagation times.

Again, we also investigate the impact of the pruning on the
natural orbitals. The maximal absolute error of the first, dominant
natural population max

t
ελ1(t) [see Eq. (23)] is shown in Fig. 13.

We observe that it is at most of the order of 10−3 verifying that
the first natural population is reproduced accurately. As in the lat-
tice system, the depletion of the system increases with the number
of particles. For N = 30 particles, we achieve a maximal depletion of
max

t
(1 − λ1(t)) = 0.125 so that the given parameters lead to beyond-

mean-field dynamics. The evolution of the natural populations with
time is visualized in the inset of Fig. 13.

In Fig. 14(a), we show the violation of the norm conserva-
tion ξ∥Ψ∥2(t) [see Eq. (25)] for our double-well setup. Similarly to
the lattice system, we see a discrepancy between the two types of
EoMs with the Hermitian operator ĤP̂ + P̂ĤQ̂ yielding comparable
results to the unpruned calculations and the non-Hermitian opera-
tor ĤP̂ producing errors that are a few orders of magnitude higher.
After the quench, the Hamiltonian is time-independent such that the
total energy should be conserved. Again, we observe a deviation of
this law ξE(t) [see Eq. (26)] that is a couple of orders of magnitude
higher than in the unpruned simulation while remaining very small
overall.

VI. CONCLUSIONS AND OUTLOOK
Studying the nonequilibrium quantum dynamics of large

many-body systems poses a great challenge for numerical meth-
ods due to the excessively growing number of configurations.
We have presented an intuitive, novel approach to address this
issue in the framework of the multiconfiguration time-dependent
Hartree method for bosons (MCTDHB). Our scheme dynami-
cally classifies number states according to their importance for
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the physical system under consideration employing pruning crite-
ria that can be controlled using tunable accuracy parameters. We
have derived two such criteria based on understandable quanti-
ties that can be computed efficiently. Our approach is dynamical
and can adapt the number state selection during the evolution of
the system to ensure an accurate description. The resulting, time-
dependent selection of important configurations can be exploited
by modifying the MCTDHB EoMs. Our algorithm cannot over-
come the exponential growth of the Hilbert space but can greatly
reduce the numerical effort by purposefully neglecting terms of the
Hamiltonian.

We have benchmarked our scheme using the quench dynamics
of two typical systems from the field of ultracold atoms, namely, an
optical lattice and a double-well. The dynamical pruning approach
is able to accurately reproduce the results of the unpruned MCT-
DHB while often reducing the computation time significantly. The
speedup was particularly large for the lattice system since a large
number of coefficients are of minor importance. The computational
gain is much smaller in the double-well setup, suggesting a strong
dependence on the physical system under investigation. In this
sense, we are hesitant to universally recommend one of the prun-
ing criteria or one of the modified EoMs since all choices lead to an
accurate description of the unpruned MCTDHB results. Therefore,
it is worthwhile to study all combinations as this situation might
change when investigating new, different physical systems. In par-
ticular, when choosing one of the modified Hamiltonians, a tradeoff
exists between the accuracy and speedup. The Hamiltonian ĤP̂ [see
Eq. (12)] takes fewer of the original matrix elements into account
which yields a larger speedup while also introducing additional inac-
curacies to the simulations. In general, the non-hermiticity could be
problematic when studying different physical systems and should be
checked carefully. On the other hand, the Hamiltonian ĤP̂ + P̂ĤQ̂
leads to a better agreement with the unpruned MCTDHB but offers a
smaller speedup as more matrix elements are taken into account. In
terms of the pruning criterion, we observe comparable errors intro-
duced by the pruning approach and no difference in the achievable
speed-up. In some observables, the energy criterion leads to slightly
smaller inaccuracies which are not large enough to lead to a general
recommendation especially as this situation might be different when
studying other setups.

Based on these results, we can conclude that our scheme cap-
tures the important aspects of the physical system correctly while
reducing the numerical effort, making it an attractive candidate
for future investigations. A promising prospect in doing so is the
realization of extrapolation studies. By studying a physical system
both with unpruned and pruned MCTDHB up to a certain, fea-
sible size, one can ensure the agreement of both approaches and
that the parameters γ and τ are chosen appropriately. Afterward,
larger system sizes that are not achievable using unpruned MCT-
DHB could be investigated using the pruning approach while extrap-
olating the quantities that have been used to compare to the reg-
ular MCTDHB for the smaller sizes. Furthermore, the method we
presented in this work may be further refined by employing alterna-
tive pruning criteria or by modifying the EoMs in a different man-
ner. Another promising direction for further studies is the appli-
cation of the dynamical pruning scheme to other methods from
the family of MCTDH such as the MCTDHF69,70 for fermionic
systems. Due to the strong interest that developed in the

investigation of binary mixtures using the multiconfiguration time-
dependent Hartree method for mixtures (ML-MCTDHX)73–75 in
recent years, the implementation of a dynamical pruning scheme for
this method could be very helpful in order to reduce the numerical
effort of these time-consuming simulations. One possible way is to
apply the pruning approach presented in this article on a per-species
basis.
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APPENDIX A: CONVERGENCE OF THE MCTDHB
CALCULATIONS

The SPFs used by MCTDHB are variationally optimal; how-
ever, the number of these orbitals has to be sufficiently large to
ensure the numerical exactness of the method. In order to ensure
the convergence with respect to the number of orbitals, we per-
formed calculations with varying number of orbitals. By comparing
the results for different basis sizes, we ensure that the employed
observables such as the particle densities do not change up to a cer-
tain degree when using more orbitals than the numbers we presented
in the main text. Additionally, the natural populations are impor-
tant when discussing the convergence of MCTDHB. In a converged
calculation, the natural populations should show a rapidly decreas-
ing hierarchy and orbitals that are neglected should only be weakly
occupied.

We use m = 5 orbitals for the investigations of the lattice sys-
tem in Sec. V A. The least occupied orbital shows a maximal nat-
ural population of max

t
λ5(t) = O(10−3

) for all particle numbers
and postquench interaction strengths throughout the time evolu-
tion. Any orbitals added to the simulation are only weakly occupied.
We observe a clear drop in the natural populations as already the
next orbital shows an occupation of max

t
λ6(t) = O(10−5

) and fur-
ther natural populations are even smaller. In general, the occupation
of the last orbital increases with the number of particles and is larger
for the stronger quench to g̃ = 0.8 but only slightly. Overall, we
consider m = 5 orbitals to be sufficient due to the clear drop in nat-
ural populations and the observation that the evolution of the one-
and two-body densities does not change qualitatively. Furthermore,
the energy of the final state of the propagation is converged to a
precision of at least O(10−5

).
For the setup with the double-well presented in Sec. V B, we

used different numbers of orbitals depending on the number of
particles. We ensure that the least occupied orbital that is taken
into account is occupied with a natural population of max

t
λm(t)

= O(10−4
). Further orbitals added do not change the behavior of

the system qualitatively, and the corresponding natural populations
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decay rapidly. Additionally, the energy of the final state is converged
to at leastO(10−4

) such that we consider the used number of orbitals
to be sufficient.

APPENDIX B: LONG-TIME EVOLUTION
OF THE ENERGY ERROR

In Sec. V A, we employed a final time of tf = 2h̵/ER when
studying the lattice setup. Here, we show the long-time behav-
ior of our pruning approach, i.e., we propagate to a final time of
tf = 10h̵/ER for N = 15 and N = 20 particles in a five-well setup fol-
lowing an interaction quench from g̃ = 0.1 to g̃ = 0.4 and using
the energy criterion and both modified Hamiltonians while prop-
agating. Figure 15(a) presents the evolution of the corresponding
relative energy error εE(t) [see Eq. (24)]. The initial wave func-
tion at t = 0 is identical for the pruned and unpruned simulations
such that initially εE(0) = 0. In a short initial time range, tER/h̵ not
much greater than 0, εE(0) quickly jumps to a small finite value of
the order of 10−6 or 10−5. For larger times t⪆4h̵/ER, however, ε(t)
grows only slowly with time, almost saturating, i.e., remaining at
the same order of magnitude. In this spirit, our pruning approach

FIG. 15. Time evolution of the relative energetic error εE (t) [see Eq. (24)]. (a) shows
εE (t) for N = 15 and N = 20 particles in a five-well lattice following an interaction
quench from g̃ = 0.1 to g̃ = 0.4. A longer propagation time of tf = 10̵h/ER com-
pared to Sec. V A is shown (where tf = 2̵h/ER = 2 as indicated by the green line).
We use the energy criterion, the Hamiltonian ĤP̂ + P̂ĤQ̂, a pruning threshold of
γ = 10−8 and a pruning time of τ = 10−2̵h/ER. (b) illustrates εE (t) for N = 15
bosons in the double-well setup after quenching the central Gaussian barrier to a
finite height of V0 = 4̵hω. Compared to the final time of tfω = 20 in Sec. V B (as indi-
cated by the green line), a longer propagation time tfω = 50 was used. We employ
both the energy and the magnitude criterion as well as both modified Hamiltoni-
ans (see legend) using a pruning threshold of γ = 10−10 and a pruning time of
τω = 5 ⋅ 10−2.

is also applicable for the investigation of longer propagation
times.

In Sec. V B, we used a final time of tfω = 20 when investigating
the double-well setup. Here, we showcase the long-time behavior of
our pruning approach for N = 15 particles upon quenching the cen-
tral Gaussian barrier to a finite height V0 = 4h̵ω using both pruning
criteria and both modified Hamiltonians by propagating to a final
time of tfω = 50. In Fig. 15(b), we show the evolution of the relative
energy error εE(t) [see Eq. (24)]. At tω = 0, the pruned and unpruned
simulations coincide, namely, εE(0) = 0. At small initial times, tω⪅10
εE(t) grows significantly due to the inaccuracies introduced by the
pruning approach but still acquires small values of the order of 10−4

or 10−5. We observe that for large times tω⪆10, εE(t) grows in a slow
manner and remains at the same order of magnitude. Consequently,
the pruning approach is also suitable to study longer propagation
times of this system.

APPENDIX C: ANALYSIS OF THE PRUNING
PARAMETERS

In Secs. V A and V B, we employed fixed values of γ and τ
that have been determined by comparing pruned simulations with

FIG. 16. (a) Maximal relative energetic error [see Eq. (24)] for a varying pruning
threshold γ. The pruning time is fixed at τω = 5 ⋅ 10−2. (b) One-body density ρ1(x,
tf) after a propagation to a final time of tfω = 20 using an unpruned (blue line) and
a pruned (orange line) MCTDHB calculation. The pruning threshold was chosen
as γ = 10−10 and the pruning time as τω = 1. (c) Error in one-body density at the
final time tfω = 20 when comparing pruned calculations to an unpruned MCTDHB
simulation using varying pruning times τ. The quantity shown here is the absolute
difference ∣Δρ1(x, tf)∣ = ∣ρ′1(x, tf) − ρ1(x, tf)∣ between the density ρ1

′(x, tf) of
the pruned and the density ρ1(x, tf) of the unpruned simulation normalized to the
maximum one-body density. For all three figures, the system consists of N = 15
bosons in a double-well setup (see Sec. V B) following a quench of the central
Gaussian barrier to a finite height of V0 = 4̵hω for different values of τ and γ using
the energy criterion and the Hermitian Hamiltonian ĤP̂ + P̂ĤQ̂.
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full MCTDHB results. Here, we discuss the impact of these parame-
ters on the accuracy of our pruning approach based on the exam-
ple of N = 15 particles in the double-well setup from Sec. V B.
Figure 16(a) illustrates the maximal relative energetic error
max

t
εE(t) [see Eq. (24)] for a varying pruning threshold γ while

keeping the pruning time fixed at a value of τ = 5 ⋅ 10−2. We expect
that the pruned simulations converge toward the unpruned MCT-
DHB results when decreasing γ. Indeed, according to our numer-
ical results, the maximal energetic error decreases roughly poly-
nomially with γ, i.e., max

t
εE(t) = bγk. The parameters k = 0.863

± 0.026 and b = (2.5 ± 1.3) ⋅ 104 have been determined using a
least-squares fit.

Furthermore, we investigate the impact of the pruning time τ
in a similar manner by performing pruned simulations for different
values of τ while keeping the pruning threshold fixed at γ = 10−10. As
shown in Fig. 16(b), a large value of τ leads to incorrect results, i.e.,
a discrepancy between the pruning approach and unpruned MCT-
DHB. In this example, we show how a value of τω = 1 leads to a
different final one-body density compared to the unpruned MCT-
DHB which manifests itself in a different shape of the outer flanks
and, in particular, the central peak of the density. In Fig. 16(c), we
show the error in the final one-body density when using various val-
ues for τ and a fixed pruning threshold of γ = 10−10. We observe
that a value of τω = 1 or τω = 0.5 leads to a maximal error in the
one-body density of the order of 10−1 with respect to the maximal
density. When employing τω = 0.05 instead, this error decreases by
two orders of magnitude. Smaller values such as τω = 0.005 lead to
an error in the density of the same order of magnitude. Therefore,
we use the value of τω = 5 ⋅ 10−2 in Sec. V B since smaller values
τω do not improve the accuracy of the method while leading to a
higher computational effort due to more frequent evaluations of the
pruning criterion.
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We employ the multiconfiguration time-dependent Hartree method for bosons in order to investigate the
correlated nonequilibrium quantum dynamics of two bosons confined in two colliding and uniformly accelerated
Gaussian wells. As the wells approach each other an effective, transient double-well structure is formed. This
induces a transient and oscillatory over-barrier transport. We monitor both the amplitude of the intrawell dipole
mode in the course of the dynamics as well as the final distribution of the particles between the two wells. For
fast collisions we observe an emission process which we attribute to two distinct mechanisms. Energy transfer
processes lead to an untrapped fraction of bosons and a resonant enhancement of the deconfinement for certain
kinematic configurations can be observed. Despite the comparatively weak interaction strengths employed in
this work, we identify strong interparticle correlations by analyzing the corresponding von Neumann entropy.

DOI: 10.1103/PhysRevA.103.043326

I. INTRODUCTION

Ever since the first realizations of Bose-Einstein con-
densates [1–3], ultracold quantum gases were the focus of
experimental and theoretical research in quantum physics.
Their nearly perfect isolation from the environment as well
as their excellent tunability render them ideal platforms to
simulate a wide variety of quantum many-body systems [4–6]
in order to unravel their fundamental physical properties. Ex-
perimental advancements in recent years have enabled the
study of ensembles of ultracold atoms with a controlled num-
ber of particles [7,8] confined in almost arbitrarily shaped
external potentials [9] like optical lattices [10,11], harmonic
traps [12], and ring traps [13]. By varying the confinement
it is possible to realize effectively three-dimensional [14,15],
two-dimensional [16,17], and one-dimensional [18,19] sys-
tems. Magnetic Feshbach [20,21] and confinement-induced
resonances [22–25] provide fine-grained control of the in-
terparticle interaction. Recent studies have employed this
versatile toolbox of ultracold atoms to establish links to solid-
state systems [26,27], the electronic structure of molecules
[28], light-matter interaction [29], topological matter [30,31],
and even black-hole analogs [32].

In recent years, optical tweezers have become important
instruments to confine and move microscopic objects by ex-
erting small forces via highly focused laser beams. This tool
was originally developed to manipulate micrometer-sized par-
ticles [33,34] but was later refined to manipulate objects on
many different length scales ranging from individual atoms

*fkoehler@physnet.uni-hamburg.de
†pschmelc@physnet.uni-hamburg.de

[35,36] to bacteria and viruses [37]. These advancements
sparked strong interest in using optical tweezers for the pre-
cise manipulation of ensembles of ultracold neutral atoms
[38] including Rydberg atoms [39–41]. A very interesting
direction of research is to use multiple optical tweezers to
accelerate atomic clouds [42], which allows one to set up
optical colliders [43–45]. In these experiments, fundamental
properties of quantum scattering processes were observed
such as partial wave interference or the loss of particles in
resonant collisions. In this light, colliding ultracold atoms
could be used to mimic electrons during atom-atom collisions.
Since the dynamics of ultracold atoms takes place on much
larger timescales, the usually very fast electronic processes
could be slowed down [29,46,47], potentially providing in
depth insights into the fundamental processes of atom-atom
or atom-ion collisions such as projectile ionization [48,49] or
charge transfer [50,51].

Another interesting application of ultracold atoms is
quantum information processing [52]. In this context, time-
dependent colliding trap potentials have been proposed for the
realization of two-qubit quantum gates as well as the efficient
creation of highly entangled states [53,54], which are two
essential features required for a quantum computer.

In the present investigation two bosonic particles are con-
fined in two colliding Gaussian potential wells. We solve this
time-dependent problem using the ab initio multiconfigura-
tion time-dependent Hartree method for bosons (MCTDHB),
which provides an exact description capturing all correlations
[55,56]. This allows us to compute the time evolution of the
two-body wave function across a wide range of kinematic
parameters in contrast to the other theoretical investigations
of colliding potentials in the literature [53,54] which relied
on employing effective models and were limited to adiabatic
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movements of the traps. We show that during the time evo-
lution of this system an effective time-dependent double-well
structure forms that drives an oscillatory over-barrier bosonic
transport between the wells. This process terminates when the
wells have been separated sufficiently after penetrating each
other. During the collision process the displacement of the
bosons from the well trajectories induces an intrawell dipole
mode and determines the final distribution of the particles
between the wells. For fast collisions this setup exhibits de-
confinement of the particles, which we can attribute to two
different mechanisms. First, for very fast accelerations an
increase in kinetic energy leads to a positive total energy of
the system towards the end of the time evolution, thereby
causing an untrapping of particles. Second, we observe a
resonant enhancement of the emission for certain kinematic
parameters similar to the ionization processes that take place
in atom-atom collisions.

Our work is structured as follows. In Sec. II we introduce
the physical setup and describe the computational approach
used to solve the time-dependent problem. We proceed by pre-
senting the results for the dynamics of two interacting bosonic
particles in Sec. III and discuss suitable observables to unravel
the properties of the system. We summarize our findings in
Sec. IV and provide an outlook on possible future studies.
Finally, we comment on the convergence of our variational
multiconfiguration time-dependent Hartree method for bosons
(MCTDHB) approach in the Appendix.

II. PHYSICAL SETUP AND COMPUTATIONAL APPROACH

In the present work we investigate the nonequilibrium
quantum dynamics of a closed system of N = 2 interacting
bosons. We employ the MCTDHB [55,57,58] to solve the
time-dependent many-body Schrödinger equation and gain
access to the correlated quantum dynamics of the particles.
This approach employs a time-dependent, variationally opti-
mal basis {φi(x, t )}M

i=1 of M single-particle functions (SPFs).
The many-body wave function |�(t )〉 is then expanded as a
superposition

|�(t )〉 =
∑
�n|N

C�n(t ) |�n; t〉 (1)

of all (N + M − 1
N ) time-dependent N-particle number states

|�n; t〉 that can be built from the M SPFs using time-dependent
coefficients C�n(t ). Finally, the Lagrangian formulation of the
time-dependent variational principle [59,60] yields equations
of motion for the SPFs and the coefficients [55,57] are then
solved numerically. The MCTDHB provides access to the
time evolution of the full many-body wave function, which
allows us to compute all relevant characteristics of the under-
lying system.

We consider N = 2 bosons of mass m interacting repul-
sively with a contact interaction of strength of g [61,62]. The
Hamiltonian of the system reads

H ({xi}, t ) =
N∑

i=1

h(xi, t ) + g
N∑

i, j = 1 ı < j

δ(xi − x j ). (2)

0

−V0

(a) µ(0) µ′(0)

V
(x

,t
)

0

−V0

(b) µ(t1) µ′(t1)

V
(x

,t
)

−d(0) − d(0)/2 0 d(0)/2 d(0)

0

−V0

(c) µ(t2)µ′(t2)

x

V
(x

,t
)

FIG. 1. Sketch of the system at different points in time t0 = 0 <

t1 < t2 during the dynamics. The green line indicates the external
trapping potential consisting of two Gaussian wells, while the blue
line symbolizes the spatial distribution of the particles. (a) The time
evolution of the system starts with the interacting ground state in the
left well. (b) As the wells accelerate towards each other, a transient
time-dependent double-well structure forms. (c) After the wells pen-
etrated each other they separate again, moving in opposite directions.

The one-body Hamiltonian

h(x, t ) = − h̄2

2m

∂2

∂x2
+ V (x, t ) (3)

acts on each particle individually and includes both a kinetic
term and the external potential V (x, t ).

In our setup, the external potential

V (x, t ) = − V0 exp

[
−

(
x − μ(t )√

2σ

)2]

− V ′
0 exp

[
−

(
x − μ′(t )√

2ασ

)2]
(4)

consists of two Gaussian wells of depths V0 and V ′
0 centered

around μ(t ) and μ′(t ), which approach each other in the first
phase of the collision process (see Fig. 1). The width of the
two Gaussians is characterized by their standard deviations σ

and ασ , where α is a dimensionless asymmetry factor. We
drive the nonequilibrium dynamics by a motion of the well
centers specified by the expectation values μ(t ) and μ′(t ).
Hence, the potential (4) and consequently the Hamiltonians
(3) and (2) are time dependent.

The investigation of the physical system can be greatly
simplified by employing a suitable unit system. We rescale
all positions using the length unit lG = √

2σ and all energies
using the energy unit EG = h̄2(2mσ 2)−1 in order to obtain
a dimensionless formulation and to eliminate both σ and m
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as physical parameters from the potential and Hamiltonian.
The corresponding time unit tG = 2mσ 2h̄−1 can be inferred
from the Schrödinger equation. For the analysis of the dy-
namics it is instructive to additionally introduce the unit vG =
h̄(

√
2mσ )

−1
for speeds.

The dynamics of the particles strongly depends on the
initial state. A natural choice is to prepare the system in
the ground state of the initial many-body Hamiltonian
H ({xi}, t = 0) where the particles would be delocalized over
the two wells. However, we will use the ground state for
V ′

0 = 0 which results in all particles being located in the left
well centered around μ(0) (see Fig. 1). This allows us to track
them during the transport processes that occur during the time
propagation. This initial state can be computed efficiently
using the improved relaxation algorithm [63]. Experimentally,
such a state could be prepared with high fidelity by loading
two atoms in a single optical microtrap and then slowly
ramping on the spatially separated potential wells [7,64,65].

We assume that for t = 0 the potential wells are at rest.
The most evident choice for the trajectory of the Gaussian
well centers μ(t ) and μ′(t ) would be a uniform motion, i.e.,
by boosting the wells to fixed speeds instantaneously. How-
ever, this approach would pump a great deal of energy into
the system, thereby causing major excitations which would
render the dynamics very “irregular.” Therefore, we choose
to accelerate the wells uniformly towards each other using
parabolic trajectories

μ(t ) = μ(0) + 1
2 at2, (5)

μ′(t ) = μ′(0) − 1
2 at2 (6)

for the well centers. Initially, the wells are located symmetri-
cally around x = 0, i.e., μ(0) = −μ′(0) with a separation of
d (0). The propagation is terminated at the final time

tf =
√

2
d (0)

a
(7)

when the wells have moved through each other and reached
their initial separation again. At this point in time the wells
have reached their final speed of vf = atf = √

2ad (0).

III. DISCUSSION OF THE COLLISIONAL DYNAMICS

In the scope of the present work we limit ourselves
to N = 2 particles when investigating the setup described
in Sec. II in order to unravel the main signatures of the
dynamics of the system. This provides an ideal starting
point for future works addressing the case of larger particle
numbers. We choose wells of equal width, i.e., α = 1,
and depth V0 = V ′

0 = 20EG, which are deep enough to
support ten trapped states of the one-body Hamiltonian
(3). Initially, the wells are located at μ(0) = −3.5lG and
μ′(0) = 3.5lG, which corresponds to an initial separation
of d (0) = 7lG. For the interaction strength we choose a
value of g = 0.5EGlG, which is comparable to an interaction
strength of gHO ≈ 0.199 in harmonic-oscillator units. We find
that for this value of g, M = 6 SPFs are sufficient for the
convergence of our MCTDHB simulations (see Sec. A). We
solve the time-dependent problem for varying values of the
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(I)I (II) (III)
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ff vG ≈ 0.4984

(I)( (II) (III I)

0 1 2 3
t/tG

−5

0

5

x
/
l G
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ff vG ≈ 0.2572
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0.0 0.5 1.0
t/tG

(f) v−1
ff vGG = 0.1

FIG. 2. Time evolution of the one-body density ρ (1)(x, t ) [see
Eq. (8)] for different inverse final speeds v−1

f ∝ a−1/2. The dashed
white lines indicate the trajectories of the well centers, while the dot-
ted white lines indicate the positions of the FWHM of the Gaussian
wells.

acceleration a chosen such that the corresponding inverse final
speeds v−1

f are equally spaced in the interval [0.1v−1
G , 2.5v−1

G ].
The reason for this choice will become apparent during the
analysis since many quantities scale with the inverse speed.

A. Time evolution of the one-body density

In order to analyze the dynamics of the system and to guide
our further analysis approach, we inspect the one-body density
[66,67]

ρ (1)(x, t ) = N
∫

|�(x, x2, . . . , xN , t )|2dx2, . . . , dxN , (8)

with N = 2 in our case. This quantity provides insight into
the temporal evolution of the spatial distribution of the parti-
cles since ρ (1)(x, t ) corresponds to the probability density of
finding a particle at the position x at the time t .

Figures 2(a)–2(f) show the time evolution of ρ (1)(x, t ) for
various values of the acceleration which correspond to differ-
ent inverse final speeds v−1

f . If the acceleration is not too fast
[see Figs. 2(a)–2(e)], we can identify three distinct stages of
the dynamics indicated by (I)–(III).

The particles are initially localized in the well centered at
μ(0) = −3.5lG and follow its parabolic trajectory μ(t ) during
stage (I) of the dynamics while wells approach each other. No
effect of the presence of the second well centered around μ′(t )
is visible during this phase of the dynamics. During stage
(II) the wells are in close proximity and they even penetrate
each other. Hence, an effective double-well structure forms
(see Fig. 1) that changes its shape over time and we observe a
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collective oscillatory particle transport over the central barrier
from the left to the right well and vice versa. Towards the end
of the propagation, during stage (III), we find several effects
depending on the acceleration and hence v−1

f . In general, the
particles are delocalized over both wells with varying ratios.
For certain values of v−1

f however, the bosons are almost
completely localized in one of the wells. Additionally, we
observe a sloshing motion of the particles within each well.
We characterize this motion as a dipole mode [61,62] since the
center-of-mass (center of mass (c.m.)) position of the particles
oscillates around the center of the wells in which they are con-
fined. This collective excitation is accompanied by a breathing
mode which manifests in a periodic widening and contraction
of the atomic cloud in each well. However, the breathing is
much less pronounced compared to the dipole oscillation such
that we refer to the sloshing motion as a dipole mode in the
following. Generally, we observe that the one-body density
is well contained within one full width at half maximum
(FWHM) around the well centers as indicated by the white
lines in Fig. 2. However, for fast collisions [see Fig. 2(e)] we
notice a faint density halo in the region between the wells,
which indicates an untrapped fraction of particles, i.e., a finite
probability of detecting a particle in this region. When moving
towards even faster accelerations we also observe effects of
the inertia of the bosons [see Fig. 2(f)], which seem to move
more slowly than the left well and leave the full width at half
maximum (FWHM) region before finally catching up with the
well towards the end of the dynamics.

B. Center-of-mass position

In order to analyze the transport of particles, we introduce
the c.m. position

〈X 〉(t ) = 1

N

N∑
i=1

〈xi〉(t ), (9)

which measures the average position of the particles. In
Figs. 3(a) and 3(b) we show two examples for the time evo-
lution of this quantity. We can clearly make out the three
aforementioned phases (I)–(III) of the dynamics. During stage
(I) of the time evolution, 〈X 〉(t ) matches the trajectory of the
left well μ(t ) as the particles simply follow the motion of
the potential. In part (II) we observe an oscillation of 〈X 〉(t )
around 0 which indicates the oscillatory particle transport in
the effective double-well structure from the left to the right
well and vice versa. During stage (III) we notice that the
evolution of 〈X 〉(t ) strongly depends on the kinematic pa-
rameters. For some values of v−1

f vG, 〈X 〉(t ) closely follows
one of the trajectories μ(t ) and μ′(t ) and the dipole mode
vanishes [see Fig. 3(b)]. In other cases [see Fig. 3(a)] 〈X 〉(t )
lies in the region between μ(t ) and μ′(t ) and the dipole mode
is well pronounced. The amplitude of the dipole mode varies
depending on a and is maximal when 〈X 〉(t ) oscillates close
to zero.

As the next step, we quantify the number of transport
processes during phase (II) of the dynamics by determining
the number of zero crossings N (II)

ZC of the signal 〈X 〉(t ) for
each value of v−1

f during this stage [see Fig. 3(d)]. Here N (II)
ZC

increases monotonically with v−1
f since the effective double-
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f
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I)
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FIG. 3. Time evolution of the c.m. position (blue solid line) as
a function of time for (a) v−1

f vG ≈ 2.355 and (b) v−1
f vG ≈ 2.247.

The orange dashed line indicates the trajectory μ(t ), while the green
dotted line visualizes μ′(t ). (c) Expectation value of the c.m. position
of the particles in the final state as a function of v−1

f . The orange
dashed line corresponds to a cosine fit of the signal. (d) Number of
zero crossings N (II)

ZC of 〈X 〉(t ) in the region (II) as a function of v−1
f .

well structure persists for a longer time period and more
oscillations can take place. Since the number of zero crossings
has to be a non-negative integer, N (II)

ZC is a step function of v−1
f .

We find the step width to be approximately equal for all steps
with an average width of 0.221v−1

G .
As mentioned before, the final location of the particles

strongly depends on the acceleration a. Figure 3(c) shows
the final c.m. position of the particles 〈X 〉(tf ) as a function
of v−1

f , which resembles a cosinelike structure. Using a least-
squares fit, we can extract the period 	v−1 = 0.47v−1

G and
the amplitude 3.42lG of the signal. From the amplitude of the
oscillation, we can deduce that indeed for certain values of v−1

f
the density is almost completely located in one of the wells.
A value of 〈X 〉(tf ) = ±3.5lG would indicate that the average
position of the particles coincides with the final position of
one of the well centers. For most values of v−1

f however, the
final center-of-mass position lies somewhere between these
extreme cases and indicates that the particles are delocalized
across both wells.

A further analysis of the center-of-mass motion shows that
the final distribution of the particles as well as the amplitude
of the dipole mode depend on the displacement of the c.m.
position from the trajectories of the wells at the transition from
stage (II) to (III) of the dynamics. If the c.m. position 〈X 〉(t )
is close to one of the well centers at this transition point, the
particles get pinned in that particular well. A small deflection
of 〈X 〉(tf ) from the well center leads then to small amplitudes
of the corresponding dipole mode in this well. For most values
of v−1

f however, the separation of the wells splits the one-
body density into two parts and the particles are delocalized
across both wells. As emphasized, the displacement of the
particles within the wells induces an intrawell dipole mode,
the amplitude of which is maximal if 〈X 〉(t ) is close to 0 at
the transition from stage (II) to (III), which corresponds to the
maximal deflection of the particles from the well center. In
order to distinguish between the intrawell dynamics different
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FIG. 4. Time evolution of the truncated c.m. observables 〈X ±〉(t )
[see Eq. (10)] for v−1

f vG ≈ 2.355.

wells, we introduce the truncated c.m. observables

〈X ±〉(t ) = 1

N

N∑
i=1

〈xi
(±xi )〉(t ), (10)

which measure the average position of particles on either the
positive or the negative side with respect to x = 0. Figure 4
shows an example for the time evolution of these observables.
Here 〈X +〉(t ) is zero during phase (I) of the dynamics as the
particles are initially contained in the left well and follow its
trajectory. The periodic transport in the transient double-well
potential during phase (II) is clearly visible. During part (III)
of the dynamics, the dipole motion of the particles in the
initially left [right] well manifests itself in an oscillatory mod-
ulation of 〈X +〉(t ) [〈X −〉(t )]. By analyzing the turning points
of these modulations, we determine a phase of π

2 between the
two oscillations. Furthermore, we notice that the oscillation
period of both observables lies in the range 0.55tG–0.6tG and
is approximately constant across all values of a, which is to be
expected since the frequency of the dipole mode only depends
on the shape of the potential well.

C. Nature of particle transport

In order to classify the transport process between the left
and right wells that takes place in phase (II) of the dy-
namics, we analyze the two-body wave function |�(t )〉 with
respect to the time-dependent one-body Hamiltonian h(x, t )
[Eq. (3)]. We consider the instantaneous eigenbasis of h(x, t )
spanned by the time-dependent eigenstates {|�i(t )〉} with
the corresponding eigenenergies εi(t ), i.e., h(x, t )�i(x, t ) =
εi(t )�i(x, t ), while assuming an energetic ordering εi(t ) �
εi+1(t ) for all times. Figure 5 shows the eigenenergies of the
ten energetically lowest eigenstates as a function of the well
separation d (t ) = d (0) − at2. At the initial [d (0)] and final
[d (tf )] separations, the external potential is able to support
ten trapped eigenstates, i.e., states with negative eigenener-
gies, which are pairwise degenerate. It should be noted that
for positive energies the system exhibits a discrete spectrum
of untrapped states instead of a continuous spectrum of ex-
tended continuum states since we employ a finite grid for
the numerical treatment of the problem which imposes peri-
odic boundary conditions (see the Appendix). However, this
does not impact our analysis of the trapped fraction or the
occupation of the trapped states. If the wells reach close prox-
imity, an effective double-well structure forms (see Fig. 1),
where V (x = 0) determines the height of the barrier and the

d(0) 0 d(tf)

d(t)

−2V0

−V0

0

ε i
( d

(t
))

FIG. 5. Spectrum of the one-body Hamiltonian h(x, t ) [Eq. (3)]
as a function of the well separation d (t ). We show the ten energeti-
cally lowest eigenenergies (colored solid lines) and the values of the
central potential V (x = 0) (black dashed line).

energetic degeneracies are lifted. In the vicinity of d (t ) = 0
the central barrier vanishes and the external potential is a
single Gaussian well centered around x = 0 with a depth
V (x = 0) = −2V0. Here the eigenenergies ε7(t ), ε8(t ), and
ε9(t ) cross zero and reach positive values such that the as-
sociated eigenstates become untrapped.

We proceed with our analysis by defining the operator

Pj (t ) = 1

N

N∑
i=1

∣∣�i
j (t )

〉 〈
�i

j (t )
∣∣ , (11)

where |�i
j (t )〉 〈�i

j (t )| projects the ith particle onto the jth
one-body eigenstate |� j (t )〉. Computing the expectation value
of this projector with respect to the many-body wave function
yields the probability p j (t ) = 〈�(t )|Pj (t )|�(t )〉 of finding a
particle in the jth one-body eigenstate.

In order to unravel the nature of the particle transport so
as to answer the question of whether it is a tunneling or
over-barrier process, it is instructive to subdivide the set of
one-body eigenstates into two categories. First, we introduce
the set BA(t ) that contains all states that lie below the cen-
tral barrier, i.e., all states |�i(t )〉 with eigenenergies εi(t ) <

V (x = 0, t ). Second, BB(t ) captures all remaining trapped
states, i.e., all states |�i(t )〉 with eigenenergies V (x = 0, t ) �
εi(t ) < 0. It should be noted that both the eigenenergies and
the central potential, and consequently also the sets Bσ (t ),
change over time.

As the next step we construct the operators

Oσ (t ) =
∑

j such that
|� j (t )〉 ∈ Bσ (t )

Pj (t ), σ ∈ {A, B}, (12)

that project the many-body wave function onto the states in
the respective basis sets. The expectation values 〈Oσ (t )〉 can
be understood as the probabilities of a particle to occupy any
of the states included in the corresponding basis set Bσ (t ). Ad-
ditionally, we define the operator OC(t ) = 1 − OA(t ) − OB(t )
that projects the wave function onto the orthogonal space of
all untrapped eigenstates. Consequently, the expectation value
〈OC(t )〉 correctly captures the occupation of the untrapped
continuum which is discretized due to our finite numerical
grid.
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FIG. 6. Time evolution of the projections 〈OA(t )〉 (blue solid line
with squares), 〈OB(t )〉 (orange solid line with circles), and 〈OC(t )〉
(green solid line with triangles) for different final speeds v−1

f . In
(c) and (d) we also show the evolution of 〈OC(t )〉 if the initially right
well is absent during the propagation (V ′

0 = 0, red solid lines with
crosses) in order to highlight the influence of the second well on the
deconfinement of the particles (see Sec. III D).

Figure 6 shows examples for the time evolution of these
quantities. In the initial state, only under-barrier states are
occupied and hence 〈OA(t )〉 ≈ 1 in the beginning of the time
evolution. As the wells start to penetrate each other during part
(II) of the dynamics, the occupation of the under-barrier states
〈OA(t )〉 drops to zero while the occupation 〈OB(t )〉 of the
trapped over-barrier states rises to approximately one. Con-
sequently, we classify the particle transport that occurs during
this stage of the time evolution as an over-barrier process. A
deeper analysis shows that the start of transport coincides with
the crossing of V (x = 0, t ) of the eigenenergies ε1(t ) and ε2(t )
(see Fig. 5). The corresponding states |�1(t )〉 and |�2(t )〉 are
predominantly occupied (see Fig. 7). Consequently, the par-
ticle transport occurs when these states lie above the central
barrier. Towards the end of the propagation, the over-barrier
states become under-barrier states again such that 〈OA(t )〉 →
1 while 〈OB〉(t ) → 0 for t → tf .

For fast collisions [see Figs. 6(c) and 6(d)] untrapped states
come into play as can be seen in an increase of 〈OC(t )〉 to-
wards the end of the dynamics. We analyze this phenomenon
further in Sec. III D, where we investigate the emission of
particles.

D. Deconfinement of particles

As the next step in our analysis, we investigate the origin
of the faint density halo between the wells that we observe for
fast collisions [see Fig. 2(e)], indicating a deconfinement of
particles. The increase of 〈OC(t )〉 > 0 in Figs. 6(c) and 6(d)
shows that indeed untrapped delocalized eigenstates of the
one-body Hamiltonian h(x, t ) [see Eq. (3)] come into play.
In order to understand how the occupation of the individual
eigenstates evolves over time, we analyze the probabilities
p j (t ) = 〈Pj (t )〉 of finding a particle in a specific one-body
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FIG. 7. Time evolution of the occupations log10[pj (t )] of the 40
energetically lowest, instantaneous eigenfunctions of the one-body
Hamiltonian (3): (a)–(d) the occupation under the presence of the
well centered around μ′(t ) and (e)–(h) the case V ′

0 = 0. All states
below the red dashed line are trapped states, while the states below
the orange line are under-barrier states.

eigenstate. Figures 7(a)–7(d) show the time evolution of these
quantities for specific values of v−1

f . For slow collisions [see
Fig. 7(a)] we observe that the eigenstates |�1(t )〉 and |�2(t )〉
are predominantly occupied while the other excited trapped
states play a minor role and no occupation of the untrapped
states takes place. When increasing the acceleration and hence
the collision speed, we observe a higher occupation of the
excited trapped states and a minor population of several un-
trapped ones [see Fig. 7(b)]. For the fastest collisions under
consideration [see Figs. 7(c) and 7(d)] all 40 depicted eigen-
states play a significant role and we even observe an equal
population of all eigenstates towards the end of the simulation.

We remark that the occupation of untrapped states occurs at
different stages of the dynamics when comparing Figs. 7(b)–
7(d). In Fig. 7(b) the population of untrapped states increases
abruptly towards the end of the considered dynamics while
still remaining small overall 〈OB(t )〉 � 1 [see Fig. 6(b)]. A
similar jump in the occupation of untrapped states towards
the end of the dynamics is visible in Fig. 7(c), albeit with a
much stronger total occupation of untrapped states 〈OC(tf )〉 ≈
0.86 � 〈OA(tf )〉 + 〈OB(tf )〉. Here we also observe an addi-
tional steady increase in the population of untrapped states
that already starts in part (I) of the time evolution. Even
though this is a small effect, it still suggests the existence of
two distinct mechanisms of the particle deconfinement. For
very fast collisions [see Fig. 7(d)] the steady increase of the
untrapped population becomes dominant. This enhancement
for faster collisions suggests that it is a kinematic effect of the
particles which get spilled out of the potential wells due to the
fast acceleration.

In order to distinguish between the two effects leading to
deconfinement and to unravel their origins, it is instructive to
compare the results in Figs. 7(a)–7(d) with simulations where
the second, initially empty well is not present, i.e., for V ′

0 = 0
[see Figs. 7(e)–7(h)]. The first striking difference is the ab-
sence of a sudden jump in the occupation of untrapped states
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FIG. 8. (a) Time evolution of the total energy of the two bosons
during the collision dynamics for various inverse final speeds v−1

f .
Also shown are the (b) total, (c) kinetic, (d) potential, and (e) inter-
action energies of the final state as a function of v−1

f . The orange
dotted lines in (b) and (c) correspond to computations performed in
the absence of the second, initially right, well, i.e., V ′

0 = 0, thereby
highlighting the impact of this well on the total and kinetic energies.

towards the end of the time evolution [compare Figs. 7(b)
and 7(c) with Figs. 7(f) and 7(g)]. This contribution to the
deconfinement can only be explained due to the presence of
the second well. However, the steady increase in the occu-
pation of untrapped one-body states is still present [compare
Figs. 7(c) and 7(d) with Figs. 7(g) and 7(h)]. In Fig. 6 these
observations become even clearer when comparing the evolu-
tion of 〈OC(t )〉 with and without the presence of the initially
empty well (see Fig. 6). For very fast collisions [see Fig. 6(d)]
the curves match for the biggest part of the dynamics and
only deviate slightly towards the end of the time evolution.
Consequently, the presence of the second well plays only a
minor role concerning the emission of particles. For other
parameters however [see Fig. 6(c)], the differences are striking
and the occupation of untrapped states is greatly enhanced due
to the presence of the second well.

As mentioned before, the emission process during early
times of the dynamics is of kinematic origin. We employ the
energy of the system as well as its composition to study this
phenomenon further. Figure 8(a) shows the total energy E (t )
as a function of t for various inverse final speeds v−1

f . Since we
prepare the system in the ground state, all energy curves start
at the ground state energy E (t = 0) = E0 ≈ −33.6EG. When
focusing on a very slow motion of the wells (see the curve
for v−1

f vG = 2.5), the energy remains constant until t ≈ 0.6tf ,
where it starts to drop as the particles are now impacted by
the second potential well. As the wells separate, the energy
increases back to its initial value. The behavior of the total
energy changes gradually as we turn towards faster acceler-
ations. First, the dip of the energy becomes less deep and a
modulation of the energy becomes visible towards the end of
the simulated dynamics. For v−1

f vG ≈ 0.221, the total energy

exceeds the value zero at the end of the simulations. Conse-
quently, an emission and untrapping of the particles take place
for energetic reasons alone. As we increase the acceleration
further, the total energy exceeds the value zero earlier during
the time evolution, e.g., at t ≈ 0.5tf for v−1

f vG ≈ 0.221, and
the dip, while the wells are in close proximity, becomes less
pronounced. As the next step, we analyze the energy compo-
sition of the final state to get an overview of all simulations.
Figures 8(b)–8(d) show the total, kinetic, and potential ener-
gies of the final state as a function of the final inverse speed
v−1

f . We notice a drastic increase of the kinetic [see Fig. 8(c)]
and hence the total energy [see Fig. 8(b)] towards large final
speeds, i.e., small 1/vf . For v−1

f vG < 0.266 with V ′
0 = V0 as

well as for v−1
f vG < 0.170 with V ′

0 = 0 the total energy ex-
ceeds zero, indicating that untrapping takes place solely for
kinetic energy reasons. The potential energy [see Fig. 8(d)] ex-
hibits equidistant peaks whose height increases towards small
values of v−1

f as the particles become less deeply trapped. As
indicated in the figure, the difference between neighboring
peaks is equal to half of the period 	v−1 = 0.47vG that we
introduced in our discussion of the final c.m. position of the
particles. The same characteristics and effects can be seen
for the interaction energy [see Fig. 8(e)]. The maxima of the
interaction energy coincide with the extrema of 〈X 〉(tf ) since
the interaction energy is higher when both particles reside
in the same well. The potential energy, on the other hand,
becomes maximal where 〈X 〉(tf ) is zero. In contrast to the
potential energy, the interaction energy does not exhibit a
strong increase towards small values of v−1

f . Only a marginal
increase in the oscillation amplitude of Eint (tf ) is visible as
the particles become less deeply trapped and are less strongly
localized at the well center. Due to the local nature of the
interaction term, the value of the interaction energy is mainly
determined by the delocalization of the particles across both
wells and less by how deeply they are trapped.

So far, our discussion of the particle untrapping has relied
on the projection onto one-body eigenstates. We conclude our
analysis of this phenomenon using a two-body or in general
many-body analysis that relies on projecting the many-body
wave function onto number states built from the instantaneous
eigenbasis of the one-body Hamiltonian. Let N (t ) be the
time-dependent set of all N = 2 particle number states that
can be constructed from all trapped eigenstates of the instan-
taneous one-body Hamiltonian. We then define the magnitude
MB(t ) = ∑

|�n〉∈N (t ) |〈�n|�(t )〉|2, which captures the total over-
lap of the many-body wave function with the number state
basis N (t ). The maximal possible value of MB(t ) = 1 indi-
cates that the many-body wave function lies completely in the
Hilbert space spanned by the basis N (t ), while a value of zero
would indicate that |�(t )〉 is orthogonal to this space. Con-
sequently, the quantity MU(t ) = 1 − MB(t ) can then be used
to quantify the untrapped fraction, i.e., the projection of the
many-body function onto the orthogonal space of untrapped
eigenstates.

Figures 9(a)–9(d) show the time evolution of MU(t ) for
different values of v−1

f . For slow to moderately fast collisions
[see Figs. 9(a) and 9(b)], no deconfinement of particles is
visible in the absence of the second well, i.e., for V ′

0 = 0. As
discussed previously, only the kinematic emission of particles
takes place when only a single well is present. This process
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FIG. 9. (a)–(d) Time evolution of the untrapped fraction MU(t )
for varying v−1

f (blue solid lines). The orange dashed lines indicate
the evolution of MU(t ) in the absence of the second, initially empty
well (i.e., V ′

0 = 0), highlighting its importance for the untrapping
process for certain values of v−1

f . (e)–(h) Time evolution of the
one-body density log10[ρ (1)(x, t )] [see Eq. (8)] for V0 = V ′

0 in a log-
arithmic representation which increases the visibility of the density
halo outside the potential wells in comparison to Fig. 2. (i) Untrapped
magnitude MU(tf ) of the final state as a function of v−1

f . The dotted
vertical lines indicate the values of v−1

f that have been used for
(a)–(d) and (e)–(h). (j) Untrapped magnitude 	MU(tf ) due to the
presence of the second well (see the main text for details).

is enhanced by the collisional speed and we only observe
untrapping for the fastest collisions under consideration [see
Figs. 9(c) and 9(d)]. When comparing these results with the
simulations with V ′

0 = V0, the importance of the presence of
both wells becomes evident. For certain values of v−1

f a drastic
increase in the untrapped fraction is noticeable that stems from
the final stage of the dynamics [see Figs. 9(a) and 9(c)]. At
very high speeds however, the kinematic untrapping is the
dominant contribution to the emission of particles such that
the two curves for MU(t ) (single- and two-well dynamics)
match each other.

The logarithmic representation of the one-body density in
Figs. 9(e)–9(h) increases the visibility of the density halo
outside of the wells in contrast to the earlier discussion (see
Fig. 2). For very fast collisions [see Fig. 9(h)], we notice a
density halo on the left side of the initially occupied well due
to a fraction of the density getting spilled out of the potential
wells due to the inertia of the particles. Furthermore, we
observe that in the case of the resonant emission of particles at
certain values of v−1

f , the density halo is located in the space
between the two well trajectories [see Figs. 9(e) and 9(g)]. At
other values, where almost no deconfinement takes place, this
halo is vanishingly small [see Fig. 9(f)]. Figure 9(i) shows the
value of MU(t ) for the final state. In the absence of the second
well, i.e., for V ′

0 = 0, the curve of MU(tf ) is flat and close to a
value of zero for v−1

f vG � 0.39 since only the kinematic emis-
sion of particles can occur which requires high speeds. When
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FIG. 10. von Neumann entropy of the final state S(1)(tf ) normal-
ized by the maximal possible value S(1)

max as a function of the inverse
final speed v−1

f .

exceeding this threshold for the final speed, the untrapped
fraction rapidly grows and reaches the maximal possible value
of one. In the presence of the second well (V ′

0 = V0), MU(tf )
exhibits peaks in the parameter regime v−1

f vG � 0.39 that
are not present for V ′

0 = 0. Figure 9(j) shows the difference
	MU(tf ) between the simulations with V ′

0 = V0 and V ′
0 = 0.

This removes all contributions to the untrapping process that
exclusively stem from the acceleration and not from the in-
fluence of the second well. We are able to identify three
distinct peaks at 0.257v−1

G , 0.498v−1
G , and 0.751v−1

G where the
emission of particles is resonantly enhanced. The difference
	MU(tf ) as a function of v−1

f is reminiscent of an ionization
spectrum.

E. Interparticle correlations and entanglement

We now analyze the emergence of correlations and entan-
glement during the collision dynamics by employing the von
Neumann entropy [68], which reads

S(1)(t ) = −Tr{ρ̂ (1)(t ) ln[ρ̂ (1)(t )]} = −
M∑

i=1

λi(t ) ln[λi(t )].

(13)

Here ρ̂ (1)(t ) refers to the one-body density matrix [66] with
eigenvalues λi(t ). It should be noted that the natural popula-
tions λi(t ) possess the property 0 � λi(t ) � 1 and fulfill the
relation

∑M
i=1 λi(t ) = 1.

A value of S(1)(t ) = 0 indicates a mean-field state and
implies the absence of any correlations between the two parti-
cles. In the same light, a finite value of S(1)(t ) = 0 corresponds
to interparticle correlations and hence a deviation from the
mean-field product state. For a maximally entangled state
within our simulations using six SPFs, the von Neumann
entropy reaches the maximal value of

S(1)
max = ln(M ) = ln(6) ≈ 1.79, (14)

which is here solely determined by the dimensionality of the
one-body Hilbert space M = 6.

Figure 10 shows the entropy of the final state as a function
of the final inverse speed normalized to the maximal possible
value. We observe a structure of equidistant peaks of vary-
ing height indicating large values of S(1)(tf ). The spacing is
approximately equal to the period 	v−1 = 0.47v−1

G obtained
during the c.m. analysis, suggesting a relation to the final loca-
tion of the particles. This hypothesis can be easily confirmed
by analyzing the one-body density and the c.m. observable,
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which show that the maxima of the von Neumann entropy
correspond to situations where the particles are distributed
uniformly over both wells in the final state. Furthermore, we
notice that the entropy reaches its largest value of S(1)(tf ) ≈
0.715Smax for v−1

f vG ≈ 1.21, indicating a highly entangled
state for which the two largest natural populations are al-
most equal [λ1(tf ) ≈ 0.517 and λ2(tf ) ≈ 0.479]. The minima
between the peaks correspond to values of v−1

f where the
particles are localized in one of the wells, i.e., extrema of the
c.m. position. Here the first natural population is dominant
λ1(tf ) ≈ 1. We notice that the height of the local maxima
decreases towards faster collisions and the entropy drops to
zero, indicating a mean-field product state. The reason for
this behavior is that for v−1

f → 0 the first natural population
becomes dominant λ1 ≈ 1. When considering slow collisions
(v−1

f vG � 2), the peak structure of S(1)(tf ) vanishes but the en-
tropy does not drop to zero. This indicates that still measurable
correlations between the two particles exist.

IV. CONCLUSION AND OUTLOOK

We have investigated the collisional nonequilibrium quan-
tum dynamics of ultracold bosons confined in two colliding
potential wells. We were able to subdivide the dynamics into
three distinct stages by identifying the underlying physical
processes. Initially, the particles follow the trajectories of the
wells closely. When the well separation falls below a certain
threshold, a periodic collective particle transport takes place
in an effective time-dependent double-well structure. By ana-
lyzing the population of single-particle function (SPF) states
we were able to classify this transport as an over-barrier pro-
cess. Using the c.m. position of particles, we have been able
to quantify the number of oscillatory transitions that occur
during the dynamics. During the separation of the wells in
the third part of the time evolution, we noticed a mode motion
of the particles within each well. The amplitude of this motion
depends on the location of the particles with respect to the well
centers at the end of the collision process. We determined a
phase of π

2 between the dipole modes of both wells while the
frequency of this motion is independent of the acceleration.
Furthermore, we observed that for certain final speeds the
particles are strongly localized in one of the wells while they
are generally delocalized. This phenomenon resembles the
charge transfer that takes place during atom-atom collisions.
Another important feature of our time-dependent setup is the
untrapping of particles which we characterized in detail using
a SPF, number state, and energetic analysis. We have been able
to quantify the untrapped fraction unraveling two different
contributions to it. During fast collisions, the kinetic energy
grows continuously, which leads to a positive total energy
and consequently to a particle untrapping. However, we also
observed a resonant untrapping effect for certain kinematic
parameters leading to a rapid emission of particles as the wells
separate. We have been able to determine the dependence of
this second mechanism on the kinematic parameters, which is
reminiscent of an ionization spectrum.

Our findings serve as a promising starting point for further
studies in different directions. By increasing the interparticle
interaction strength one could enhance the amount of correla-
tion that arises during the dynamics and it would be interesting

to explore the corresponding impact on the resonant particle
untrapping. A variation of the potential wells, for example, by
decreasing the depth or introducing an asymmetry between
the two Gaussians could modify the particle transport. In
this context, a more detailed study of the correlation and
the creation of entanglement, incorporating the spatial and
momentum space resolution of correlation functions, might
be instructive [69,70]. In the light of atom-atom collisions, a
particularly intriguing prospect is to employ different initial
states. Employing an initial state that incorporates particles in
both wells could lead to an enhancement of the emission due
to opposite momenta of the bosons. Furthermore, it would be
interesting to investigate the impact of the trajectories of the
wells. Finally, the multiconfiguration time-dependent Hartree
method for fermions [71,72] allows one to study the nonequi-
librium dynamics of fermions in a similar setup. It would be
instructive to analyze the role of the particle statistics and how
the phenomena described in this work might be modified.

Another exciting route would be the investigation of mix-
tures of different components, which is of particular interest
for ultracold-atom research. Such ensembles can be composed
of different elements [73,74], isotopes [75], or hyperfine states
[76] and exhibit a plethora of exciting and unique properties
such as relative phase evolution [77], composite fermioniza-
tion [78], nonlinear [79], and collective excitations [80] as
well as miscible-immiscible phase transitions [81,82]. De-
pending on the particle statistics, this allows for the realization
of Bose-Bose [83,84], Fermi-Fermi [85,86], and Bose-Fermi
mixtures [87–90]. The multilayer multiconfiguration time-
dependent Hartree method for mixtures [56] is a powerful
numerical approach to treat the correlated nonequilibrium dy-
namics of such systems which allows one to extend the setup
presented in the present work to such mixtures. The role of the
interspecies interaction as well as a possible mass imbalance
between the constituents are particularly of interest.
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APPENDIX: TECHNICAL ASPECTS
AND CONVERGENCE

In the present work we employ the fast Fourier transform
(FFT) [91–93] to obtain a spatially discretized representation
of the operators and the SPFs. This scheme allows the efficient
numerical treatment of large grids consisting of n � 100 grid
points compared to another approaches relying on discrete
variable representations (DVRs) [93]. We use n = 675 grid
points that are equally spaced in the interval (−7lG, 7lG]. It
should be noted that the FFT scheme implies periodic bound-
ary conditions for the physical system. We repeat the same
set of simulations presented in the main text using a sine
DVR [93] which incorporates hard-wall boundary conditions.
Thereby we are able to confirm that spacing between the
potential wells and the edges of the grid is large enough such
that no influence of the boundary conditions is visible in the
observables discussed in the present work.
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The underlying time-dependent variational principle used
to derive the MCTDHB equations of motion guarantees that
the SPF basis is rotated such that the many-body wave func-
tion optimally captures the state of the physical system.
However, care has to be taken in order to ensure that the num-
ber M of SPFs is sufficiently large and thereby the numerical
convergence of the method is guaranteed [55,93]. We com-
pare the results presented in the main text with simulations
that include an additional, seventh SPF and observe that the
observables discussed in the main text do not change signifi-
cantly. The ground state energy exhibits a relative change of
the order of 10−5 and the energy of the final state of 10−4 in
the worst case. We observe that the untrapped fraction of the
final state 	MU(tf ) determined changes at most by an absolute
value of 4 × 10−4 when including the additional orbital. The

absolute change in the relative entropy S(1)

S(1)
max

of the final state is
limited by 0.03. The center-of-mass position of the particles
at the end of the time evolution changes at most by 1%.

Additionally, the spectral representation of the one-body
density matrix is important to judge the convergence of the
approach. The eigenvalues of ρ (1)(t ), the so-called natural
populations, should exhibit a rapidly decreasing hierarchy.
This indicates that any natural orbitals (eigenstates of the one-
body density matrix) that are neglected due to the truncation
of the single-particle Hilbert space play a negligible role. We
find that this is the case for all parameters considered in the
present work and that the least occupied orbital taken into
account shows a population of λ6 < 10−4 for all simulations.
Therefore, we consider M = 6 SPFs sufficient to describe the
time evolution of the physical system accurately.
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Numerical simulations of quantum spin models are crucial for a profound understanding of many-body
phenomena in a variety of research areas in physics. An outstanding problem is the availability of methods to
tackle systems that violate area laws of entanglement entropy. Such scenarios cover a wide range of compelling
physical situations including disordered quantum spin systems among others. In this paper, we employ a
numerical technique referred to as multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) to
evaluate the ground state of several disordered spin models. ML-MCTDH has previously been used to study
problems of high-dimensional quantum dynamics in molecular and ultracold physics but is here applied to study
spin systems. We exploit the inherent flexibility of the method to present results in one and two spatial dimensions
and treat challenging setups that incorporate long-range interactions as well as disorder. Our results suggest that
the hierarchical multilayering inherent to ML-MCTDH allows to tackle a wide range of quantum many-body
problems such as spin dynamics of varying dimensionality.

DOI: 10.1103/PhysRevResearch.5.023135

I. INTRODUCTION

A quantum many-body system satisfies the area law of
entanglement if the amount of entanglement between a sub-
system and the remainder of the system is proportional to
the area of the boundary [1]. Systems that obey the area law
typically have constraints such as locality in interaction and
underlying symmetries that force their eigenstates to reside
on certain submanifolds of the Hilbert space, rendering their
numerical simulation efficient. Consequently, several numer-
ical methods that rely on truncating the Hilbert space such
as density matrix renormalization group method (DMRG)
[2,3], time evolving block decimation (TEBD) [4–6], tensor
networks [7,8], and other matrix product states (MPS) based
methods have been very successful in simulating quantum
matter for a variety of physics [9–13] and chemistry problems
[14–20].

However, there are quantum states that exhibit scaling of
entanglement proportional to the total system size, in which
case the merits of MPS based methods may be questioned. As
a matter of fact, quantum systems having strong violation of
area law (entanglement grows linearly with the system size)
are more common than previously expected [21–27]. Such
scenarios are typically described by disordered Hamiltonians

*fkoehler@physnet.uni-hamburg.de
†rick.mukherjee@physnet.uni-hamburg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
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rendering them nontranslationally invariant and inducing a
high level of degeneracy in their low-energy spectrum. It is
often the case that the experimental realization of many-body
quantum systems are far from homogeneous, for example,
crystals with dislocations or impurities [28–30], experiments
investigating quantum Hall effect [31–33], glassy states of
frustrated spin models [34–36], and Anderson localization
[37–39]. For such systems, evaluating even the ground state
can be challenging with existing methods.

In this paper, we propose an alternative numerical approach
that can tackle the simulation of disordered spin systems. The
multilayer multiconfiguration time-dependent Hartree (ML-
MCTDH) method [40,41] is an extension of the MCTDH
method [42–44], which was originally developed to study
the multimode high-dimensional wave packet dynamics of
complex molecular systems [45–47]. Later extensions allow
for the treatment of bosonic [48–52] and fermionic [53–56]
ensembles as well as mixtures thereof [57–59]. In an unprece-
dented approach, we adapt the ML-MCTDH techniques to
study the ground-state properties of spin models, in particular
spin glass Hamiltonians, which possess random couplings.
Our results show that ML-MCTDH characterizes the ground
state of disordered spin systems accurately. We demonstrate
that this method can handle long-range interactions, scale to
large system sizes, as well as work in both one and higher
spatial dimensions. The overall flexibility of ML-MCTDH
is very promising and might serve as a tool for simulating
quantum many-body systems in regimes where conventional
methods may falter. Specifically it comprises the perspective
of simulating the nonequilibrium quantum dynamics of many-
body systems.

This paper is organized as follows. We provide a brief
introduction to ML-MCTDH in Sec. II A and discuss the
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different spin models for which we evaluate the ground-state
properties in Sec. II B. The two prototypical disordered spin
models chosen for this paper include cases of weak and strong
violation of area law of entanglement entropy. Additionally,
we also include the ubiquitous transverse field Ising model
with short-range and long-range interactions for comparison
purposes. Our analysis comprises ground-state characteristics
such as energy, correlations, and entanglement, which are
benchmarked against exact diagonalization [60] and DMRG,
all of which are shown in Sec. III. Section IV contains our
conclusions and outlook.

II. THEORETICAL FRAMEWORK

A. Multilayer multiconfiguration
timedependent Hartree method

To set the stage and to be self-contained, we believe it
is adequate and instructive to provide a brief introduction to
the ML-MCTDH method. One of the main challenges in the
numerical treatment of quantum many-body systems is the
exponential growth of Hilbert space dimension with system
size. In this section, we describe how the ML-MCTDH is able
to represent complex many-body wave functions with many
degrees of freedom and thus deal with large system sizes. We
start by first discussing the original MCTDH method, which
already contains the fundamental working principles and ex-
tend to ML-MCTDH by adding the notion of a hierarchy of
multiple layers.

The traditional and most straightforward approach to wave
packet dynamics uses an ansatz given by a linear super-
position |�(t )〉 = ∑

J AJ (t ) |�J〉 of time-independent |�J〉
configurations with time-dependent coefficients AJ (t ). With-
out loss of generality, we assume a physical scenario with
N degrees of freedom xκ with κ = 1, . . . , N . Depending
on the system under consideration, the degrees of freedom
could, for example, be spatial degrees of freedom of parti-
cles or bosonic/fermionic occupation numbers. A set of nκ

time-independent (primitive) basis functions |χ (κ )
jκ

(xκ )〉 with
jκ = 1, . . . , nκ is employed for each degree of freedom. The
|χ (κ )

jκ
(xκ )〉 are naturally chosen to form an orthonormal ba-

sis for each degree of freedom. The configurations |�J〉 are
product states with respect to combinations of the primitive
basis functions where the multi-index J = ( j1, j2, . . . , jN )
runs through all possible combinations such that the full wave
function ansatz is given by

|�(t )〉 =
n1∑

j1=1

· · ·
nN∑

jN =1

Aj1... jN (t )
N⊗

κ=1

∣∣χ (κ )
jκ

(xκ )
〉
. (1)

The time evolution of the many-body wave function |�(t )〉 is
governed by the Dirac-Frenkel variational principle [61,62],

〈δ�(t ) | (ı∂t − Ĥ ) | �(t )〉 = 0. (2)

By inserting the wave function ansatz (1) in Eq. (2), one
obtains the equation of motion for the expansion coefficients
AJ (t ),

ıȦJ (t ) =
∑

L

〈�J |Ĥ |�L〉 AL(t ), (3)

which can be solved numerically using standard time integra-
tion methods.

In this traditional wave packet ansatz, the number of con-
figurations and corresponding coefficients

∏N
κ=1 nκ , scales

exponentially with N , limiting the applicability of this ap-
proach to systems with only few degrees of freedom. In many
physical scenarios, it is often the case that using a small set of
time-dependent basis functions can provide an accurate repre-
sentation of the many-body wave function thereby allowing to
simulate larger systems. Thus, in MCTDH, Eq. (1) is replaced
with time-dependent configurations,

|�(t )〉 =
m(1;1)∑
j1=1

· · ·
m(1;N )∑
jN =1

A(1)
j1... jN

(t )
N⊗

κ=1

∣∣ϕ(1;κ )
jκ

(xκ , t )
〉
, (4)

where |ϕ(1;κ )
jκ

(xκ , t )〉 denotes the jκ th time-dependent basis
function for the κth degree of freedom and are referred to as
single particle functions (SPFs). The numbers m(1;κ ) specify
the number of SPFs used for the κth degree of freedom. The
superscript (1) or (1; κ ) for the SPFs, coefficients and SPF
numbers indicate that these objects are part of the same, first
layer of the wave function ansatz, a notation that will become
essential for the multilayer extension below. The SPFs in turn
are represented with respect to the time-independent basis of
the standard ansatz (1),

∣∣ϕ(1;κ )
jκ

(xκ , t )
〉 =

nκ∑
	=1

c(κ )
jκ ;	(t )

∣∣χ (κ )
	 (xκ )

〉
. (5)

The MCTDH wave function ansatz can be understood as a
three-layer approach [see Fig. 1(a)]. The top layer corresponds
to the total many-body wave function expanded with respect
to the SPFs using time-dependent coefficients. The middle
layer refers to the time-dependent SPFs expanded with re-
spect to the time-independent primitive basis functions while
the lowest layer contains the primitive basis functions them-
selves. The time-dependent variational principle (2) yields
equations of motion for both the coefficients A(1)

j1... jN
(t ) and

the SPFs |ϕ(1;κ )
jκ

(xκ , t )〉, which we omit here for brevity but
more details can be found in Ref. [44]. In order to ensure
convergence, a sufficient number of SPFs has to be employed
such that they span a Hilbert space of adequate size in order to
capture the underlying physics correctly. As a matter of fact,
it is often the case that the MCTDH wave function ansatz (4)
contains a much smaller number of configurations compared
to the wave packet ansatz (1), i.e.,

∏N
κ=1 mκ � ∏N

κ=1 nκ , lead-
ing to a significant reduction of the computational effort.
MCTDH was successfully used to study molecular problems
with 12–14 degrees of freedom [45–47] and later extended
to 15–24 degrees of freedom [63–66] and even 100 degrees
of freedom for system-bath problems [67–69] using mode
combination [70,71]. However, capturing beyond-mean-field
effects requires at least two SPFs for each degree of freedom
such that the total number of configurations is at least 2N ,
highlighting the exponential scaling with respect to the system
size.

In order to treat much larger systems, the ML-MCTDH
approach was introduced, which has been highly success-
ful in the treatment of systems with hundreds or even
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FIG. 1. Diagrammatic representation of a three-layer MCTDH (a) and a four-layer ML-MCTDH (b) ansatz for the many-body wave
function �(t ) of a system with N = 4 physical degrees of freedom.

thousands of degrees of freedom [40,72–74] including the
study of vibrational as well as electronic dynamical processes
in molecules [75,76] or linear rotor chains [77]. The central
idea of ML-MCTDH is to group the N physical degrees of
freedom x1, . . . xN into d logical coordinates as shown below,

q1 = {x1, x2, . . . , xs1}
q2 = {xs1+1, xs1+2, . . . , xs1+s2}

...

qd = {xs1+...+sd−1+1, . . . , xN }. (6)

For each logical coordinate qλ a new set of time-dependent

SPFs {|ϕ(2;λ)
	λ

(qλ, t )〉}m(2;λ)

	λ=1
is introduced. In ML-MCTDH, the

many-body wave function ansatz Eq. (4) is replaced by ex-
panding it with respect to these new, second layer SPFs

|�(t )〉 =
m(2;1)∑
	1=1

· · ·
m(2;d )∑
	d =1

A(2)
	1,...,	d

(t )
d⊗

λ=1

∣∣ϕ(2;λ)
	λ

(qλ, t )
〉
. (7)

The newly introduced functions |ϕ(2;λ)
	λ

(qλ, t )〉 are represented
with respect to a subset of the original MCTDH SPFs given
by Eq. (5) that are associated with the logical coordinate qλ,
i.e.,

∣∣ϕ(2;λ)
	λ

(qλ, t )
〉

=
m(1;α)∑
jα=1

· · ·
m(1;β )∑
jβ=1

⎡
⎣A(1;λ)

	λ; jα,..., jβ
(t ) ·

β⊗
κ=α

∣∣ϕ(1;κ )
jκ

(xκ , t )
〉
⎤
⎦. (8)

Here, α = α(λ) = 1 + ∑λ−1
i=1 si and β = β(λ) = ∑λ

i=1 si cor-
respond to the index of the first and last physical coordinate
associated with the logical coordinate qλ respectively. The
newly introduced SPFs |ϕ(2;λ)

	λ
(qλ, t )〉 can be interpreted as

a multidimensional wave function that follows an MCTDH
ansatz with respect to the original MCTDH SPFs (5). With
this interpretation, ML-MCTDH can be viewed as adding
another layer to the original MCTDH scheme ending up in
a four-layer ansatz for the many-body wave function, which is
schematically depicted in Fig. 1(b). In general, more middle
layers can be added where each layer introduces a new set

of SPFs that are constructed using an MCTDH ansatz with
respect to the layer below in a recursive manner. This allows
the tree structure to be adapted and tailored specifically for
the physical problem under consideration. It should be noted
that the SPFs across all layers are chosen to form orthonor-
mal basis sets and remain orthonormal throughout the time
evolution. In summary, ML-MCTDH offers great flexibility
regarding the degrees of freedom due to the choice of an
appropriate primitive basis according to the physical problem
under consideration. When treating the dynamics of particles
for example, FFT-based [78,79] schemes or discrete vari-
able representations [80–82] are commonly used to provide a
primitive basis for the spatial degrees of freedom. By using
fermionic [56] or bosonic [50–52] occupation numbers the
treatment of indistinguishable particles is possible as well.

In the present paper, we investigate spin-1/2 systems and
consequently employ a two-dimensional primitive basis con-
taining the spin-up and spin-down state for each degree of
freedom, i.e., nκ = 2, |χ (κ )

1 〉 = |↑〉 and |χ (κ )
2 〉 = |↓〉 for all

κ = 1, . . . , N . While in general MCTDH and ML-MCTDH
are tools to study the dynamics of many-body quantum sys-
tems, they also provide access to eigenstates of the underlying
Hamiltonian by switching from real to imaginary time propa-
gation. More details can be found in Appendix A.

B. Spin Models

Three different quantum spin models are investigated in
order to study the performance of the ML-MCTDH method.
As a starting point and for comparison purposes, it is useful
to consider the transverse field Ising model (TFIM) [83,84]
as it is one of the most fundamental and well studied models
and has been realized in a variety of physical setups includ-
ing trapped ions [85–88], Rydberg atoms [89–92], and single
crystals [93]. The Hamiltonian of the TFIM in 1D is given by

HTFIM = −
L∑

i, j=1
i< j

Ji jσ
z
i σ z

j − hx

L∑
i=1

σ x
i − hz

L∑
i=1

σ z
i (9)

where Ji j specifies the interaction strength between the ith
and jth spin while hx (hz) determines the strength of a
transverse (longitudinal) magnetic field. We consider both
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nearest-neighbor interactions (SR-TFIM), i.e., Ji j = Jδi+1, j ,
and long-range interactions that decay as a power law of the
distance between the spins, i.e., Ji j = J|i − j|−α (LR-TFIM).
The parameter J determines the energy scale of the system
and the exponent α controls the range of the interactions. We
choose J > 0 such that ferromagnetic order, i.e., the align-
ment of neighboring spins in the z direction, is energetically
favorable. For the long-range interactions, we choose α = 3,
which is accessible by trapped ions as well as Rydberg atoms.

For the remaining two models in the present paper (see be-
low) we choose disordered systems that violate the area law of
entanglement entropy. Numerical methods like DMRG, which
are based on matrix product states rely on the area law and
may fall short while treating such models. While it has been
shown that a homogeneous, gapped 1D spin systems with
local interactions like the SR-TFIM obey the area law [1,94],
understanding the impact of disorder on the entanglement
properties of ground states remains an open and challenging
question. It is known that in such nontranslationally invariant
scenarios, weak (logarithmic scaling with the system size)
[94–96] or even stronger [21–27] violations of the area law
can occur. Our first disordered model is a XY spin glass
(XYSG) [97–99] given by the Hamiltonian

HXYSG =
L∑

i, j=1
i< j

Ji j

|i − j|α (σ+
i σ−

j + σ+
j σ−

i ) (10)

with the spin flip operators σ± = σ x ± ıσ y. We choose α = 3
and Ji j from a uniform distribution in [−1, 1]. This spin glass
model exhibits weak violation of the area law [26,27]. The
second disordered spin model we analyze is motivated by
the strong disorder renormalization group (SDRG) framework
[21,100–103] whose ground state is known to exhibit strong
area-law violation. The relevant Hamiltonian is

HSDRG = 1

2

L−1∑
i=1

Ji
(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

)
, (11)

where the spin couplings are fine-tuned to be Ji = J0 f (|L/2 −
i|) with f (n) = e−2n2

[21]. In general, a 1D spin chain with
nearest-neighbor interactions like the SR-TFIM (9) can be
solved exactly by mapping it to the free fermionic chain via
the Jordan-Wigner transformation. Models that incorporate
disorder or long-range interactions like Eqs. (10) and (11) can-
not be treated this way rendering the development of powerful
numerical tools like ML-MCTDH crucial.

A priori, it is not clear which tree structure is best suited
to treat a given many-body problem with the ML-MCTDH
method. In particular, different topologies can lead to vastly
different simulation runtimes but yield comparable results as
long as proper convergence with respect to the number of
SPFs on each layer is ensured. Finding a good tree struc-
ture is an iterative process that is guided by monitoring the
occupation of the SPFs as well as the physical observables
under consideration. As a starting point, it is usually bene-
ficial to couple degrees of freedom at the lowest layers of
the tree that are strongly interacting in the underlying Hamil-
tonian. The goal is to exploit the multilayering aspect of
the method as much as possible in order to obtain a very
compact representation of the many-body wave function and

thus reduce the computational cost. In Fig. 2 we show the
various tree diagrams that are used in the present paper.
For the SR-TFIM we employ a binary tree with log2(L) + 1
layers, see panel (a). This choice is natural as it couples
the neighboring spins on the lowest layers. Since this can-
not be achieved for all couplings at the same time, some of
these interactions are mediated through the upper layers. The
same binary tree topology works for the LR-TFIM as well
since the interaction between neighboring spins is still the
strongest. However, due to the long-range character of the
interactions, more SPFs have to be used on the upper layers
in order to capture long-range effects. A binary tree struc-
ture also works well for describing the XYSG model where
the design of a more optimized tree structure is prohibitive
due to the random nature of the couplings. When treating
two-dimensional systems more complex tree structures are
required [see panel (b)]. In the present example of a 9 × 9
square lattice, we alternate between combining triplets of log-
ical coordinates along the x and y direction. We can treat the
SDRG model accurately with the tree depicted in panel (c),
which is a simple MCTDH ansatz with mode combination that
does not rely on any multilayering. This approach combines
the strongly interacting central spins into one logical coordi-
nate, which is then coupled to logical coordinates combining
the outer spins.

III. RESULTS AND DISCUSSION

We benchmark the performance of the ML-MCTDH
method against exact diagonalization (ED) and DMRG by
characterizing the ground state of different spin models using
its energy E0, correlation functions Cββ (i, j), and entangle-
ment entropy SvN. The exact diagonalization implementation
uses the QuSpin package [104] in conjunction with some
routines provided by quimb [105]. The DMRG code is based
on the ITensor library [106].

Figure 3(a) shows the ground-state energy per spin for the
SR-TFIM as a function of system size L for a fixed transverse
field of hx = J for which there is excellent agreement between
all three methods. Naturally ED is limited to a few spins,
while DMRG and ML-MCTDH can treat much longer chains,
exhibiting great scalability with respect to the system size.
However, calculating ground states for large systems can be
computationally time consuming. In order to accelerate the
convergence to the ground state for these large systems, we
impose a small longitudinal magnetic field hz = 0.01J , which
lifts the twofold degeneracy of the ground state. It should be
noted that our approach works as well in the absence of a lon-
gitudinal field. Figures 3(b) and 3(c) illustrate the convergence
of the ground-state energy E0;M obtained by ML-MCTDH and
DMRG with respect to the ground-state energy E0,ED com-
puted with ED. This is quantified by calculating the relative
error �E = |E0;M/E0;ED − 1| as a function of time steps for
ML-MCTDH in (b) and number of sweeps for DMRG in (c).
When compared to ED, both methods achieve excellent accu-
racy for the SR- and LR-TFIM, but for the disordered XYSG
and SDRG systems, it is clear that ML-MCTDH manages to
obtain a much higher precision than DMRG.

Figure 3(c) also illustrates that the DMRG ground-state en-
ergy converges rapidly and reaches its final value already after
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FIG. 2. (a) Tree structure used for the SR-TFIM (m(3;i) = 6 and m(2;i) = 12), LR-TFIM (m(2;i) = m(3;i) = 16), as well as XY-SG (m(2;i) = 16
and m(3;i) = 32) of L = 16 spins in 1D. (b) Tree structure used for the SR-TFIM extended to 2D on a square lattice of 9 × 9 spins. (c) Tree
structure used for the SDRG model of L = 16 spins in 1D.

2–4 sweeps. We employ a protocol consisting of nine sweeps
and allow the bond dimension of the matrix product states to
dynamically grow up to 1000. More details on this scheme can
be found in Appendix B. A maximal bond dimension of 14
for the SR-TFIM and 57 for the LR-TFIM of L = 16 spins is
sufficient for an accurate description of the ground state across
the whole range of transversal fields. The XYSG demands a
higher maximal bond dimension of 129 due to its disordered
character. The SDRG model requires a surprisingly low final
maximal bond dimension of 8. By forcing the DMRG algo-
rithm to use a minimal bond dimension of at least 100 and
checking all observables under consideration, we ensured that
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FIG. 3. (a) Ground-state energy per spin of the SR-TFIM in 1D
for hx = J and hz = 0.01J as a function of the system size L. (b) Rel-
ative error of the ML-MCTDH ground-state energy with respect to
the ED ground-state energy as a function of imaginary time step
for different 1D models of L = 16 spins. (c) Relative error of the
DMRG ground-state energy with respect to ED ground-state energy
as a function of the sweep index for different 1D models of L = 16
spins.

our results for the SDRG model are indeed converged and
an increase in bond dimension does not improve the results.
One of the challenges when studying quantum many-body
problems is the ability to capture nontrivial correlations. Here,
we use the connected correlation function [107,108], which is
defined as

Cββ (i, j) = 〈
σ

β
i σ

β
j

〉 − 〈
σ

β
i

〉 〈
σ

β
j

〉
, β ∈ {x, y, z}, (12)

to measure correlations in the system and characterize the
magnetic ordering between spins i and j. Figure 4 shows re-
sults for correlation functions defined in Eq. (12) for different
spin models. For the SR-TFIM in 1D and its 2D extension
as well as the LR-TFIM we observe excellent agreement
between all three methods as seen in panels (a)–(d). The
connected correlations in the x direction denoted by Cxx(i, j)
were evaluated for disordered spin models by averaging over
10 disorder realizations and over all unique spin pairings with
i < j corresponding to a given separation r = |i − j|. The
results are shown in panels (e)–(f). In the case of XYSG,
DMRG struggles to capture the correlations correctly as the
low-energy spectrum exhibits many near-degeneracies, which
are not well resolved by the DMRG algorithm such that it
usually locks on to one of the first excited states. Although this
issue in DMRG can be mitigated by rescaling the Hamiltonian
such that the energy splitting is increased this is not practical
for larger systems. ML-MCTDH, however, does not have any
such issues. When analyzing the correlations for the SDRG
model [panel (f)] with respect to one of the center spins
c = L/2, the methods agree with only a minor deviation for
the value of C(c, c + 3) in the case of DMRG. Due to the
decay of the coupling constants towards the outer spins, the
correlations will also quickly die off with increasing distance
from the center spin. Except for the minor deviation in the
case of DMRG, all methods agree very well with each other.

In order to determine the entanglement of the ground state,
we employ the von Neumann entanglement entropy (VNEE)
SvN [109] of a subsystem A with the remainder of the system,

SvN = −Tr[ρA ln (ρA)] (13)

where ρA is the reduced density matrix [61] of the subsystem
A. Figure 5 shows the VNEE defined in Eq. (13) for the spin
models LR-TFIM in panel (a), XYSG in panel (b), and SDRG
in panel (c) as a function of subsystem size Ls. The subsystem
A was here chosen to consist of the Ls left-most spins in
the chain. In the case of LR-TFIM, we chose the transverse
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FIG. 4. Connected correlation (12) functions for different mod-
els. (a) Correlation of the first spin with the ith spin in z direction for
the SR-TFIM of L = 128 spins in 1D with hx = 1.5J and hz = 0.01J .
[(b),(c)] Correlation of the central spin with the spin at position �r in
z direction for the SR-TFIM extended to 2D on a 9 × 9 square lattice
(2D) for hx = 3J and hz = 0.01J . (d) Correlation in z direction of
the first spin with the ith spin in the LR-TFIM for L = 16 in 1D with
hx = J and hz = 0. (e) Correlation of the first spin in the XYSG for
L = 16 in 1D. We average over 10 disorder realizations as well as all
unique spin pairings Cxx (i, j) with i < j that correspond to a given
separation distance r = |i − j| and show the result as a function of
r =. (f) Correlation in x direction of one of the central spins c = L/2
with its right-hand side neighbors for the SDRG model with L = 16
in 1D.

field to be hx = 0.5J such that the ground state is twofold
degenerate due to the global spin-flip symmetry. For a finite
system, the ground state is expected to be a superposition
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FIG. 5. VNEE (13) for the different models of L = 16 spins in
1D as a function of subsystem size Ls. Panel (a) shows the result for
the LR-TFIM with hx = 0.5J and hz = 0, Panel (b) for the XYSG,
averaged over 10 disorder realizations, and panel (c) for the SDRG
model.

state, which possesses non-negligible entanglement. This be-
havior is correctly captured by ED and ML-MCTDH while
DMRG yields a much lower entanglement as it converges to
one of the degenerate states. It is important to note that the
exact superposition of both degenerate ground states is arbi-
trary in both ED and ML-MCTDH, which affects the absolute
value of SvN and explains the discrepancy between these two
methods. The disordered XYSG model is known to have area-
law violation proportional to SvN ∝ ln Ls which is not visible
in Fig. 5(b) due to the small system size and low number of
realizations. Here, the discrepancy between the three methods
can be attributed to the high amount of degeneracy in the
low-energy spectrum. The different algorithms lock on to
different states and thus yield different results. In the case
of the SDRG model we observe a great agreement between
ML-MCTDH and ED. However, DMRG cannot describe the
linear growth of entanglement SvN ∝ Ls due to the formation
of distant singlet states, which then have to be entangled.

IV. CONCLUSIONS AND OUTLOOK

Solving a many-body problem with large system sizes re-
quires sophisticated numerical methods that go beyond exact
diagonalization. Quantum Monte Carlo methods [110] rely
on the wave function spanning fewer relevant many-body
configurations. Other approaches represent the many-body
wave function through an efficient compression of the state
like with matrix product states, more general tensor networks
or in some cases even neural networks [111–113]. Despite
the unquestionable success of these methods, they can fail
for various reasons like the sign problem in quantum Monte
Carlo methods [110], inefficiency of current quantum state
compression in high-dimensional systems or due to the area-
law violation.
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In this paper, we propose an alternative computational
method to explore many-body quantum spin models and
specifically the case of disordered systems, which are known
to violate the area law in entanglement. Focusing on the
ground-state properties of prototypical many-body disordered
spins models, ML-MCTDH achieves a remarkable accu-
racy in particular compared to conventional methods. While
MCTDH methods are regularly used to solve for complex
wave packet dynamics problems, our paper is the first step
in adapting these techniques to simulate a larger class of
intricate many-body spin models. One of the key advantages
of using the multilayer version of MCTDH is its ability to
treat large system sizes as well as degrees of freedom with
many primitive basis states. The latter aspect can be use-
ful for simulating higher spin degrees of freedom such as
SU(n) physics [114,115] or higher spatial dimensions. In fu-
ture works, it will be interesting to compare the performance
of ML-MCTDH with existing numerical methods applied
to higher dimensional spin lattices [9,12,116]. MCTDH al-
gorithms were originally built to study quantum dynamics.
Therefore, a natural next step would be to simulate many-
body spin dynamics [117] with these methods, which can
be achieved very straightforwardly by switching to real time
propagation. We are convinced that ML-MCTDH can be a
useful tool in this field of active research that includes intrigu-
ing topics like thermalization [118,119], quench dynamics
[120,121], and optimal control [122,123]. From a more tech-
nical point of view, there is also the scope for improving the
scheme of building the different layers within ML-MCTDH:
One can potentially optimize this process by either using
machine learning methods [111–113,124–127] or spawning
techniques [128–130] and even combine them with tensor
network methods [131]. Thus, ML-MCTDH techniques can
prove to be very a powerful alternative theoretical tool in
modeling complex many-body (spin) systems.
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APPENDIX A: COMPUTATION OF EIGENSTATES

Here, we discuss how ML-MCTDH can be applied to
determine the many-body ground states of spin models by
switching from real time to imaginary time propagation.
Solving the time-independent Schrödinger equation by di-
agonalization of the Hamiltonian matrix [60] is prohibitive
for large systems. Instead, eigenstates can be obtained by

propagating an initial trial state according to the time-
dependent Schrödinger equation in imaginary time τ =
ıt [132]. The evolution of the many-body wave func-
tion in the eigenbasis of the Hamiltonian reads |�(τ )〉 =∑

n An(0)e−τEn |�n〉. After a sufficiently long propagation
time the ground state becomes the dominant component of
the instantaneous many-body wave function as long as its
initial contribution A0(0) is not zero. This scheme is feasible
in the framework in (ML)-MCTDH as well [44] and has been
applied for example to compute initial states in photodissoci-
ation studies [43,133–135]. Since imaginary time propagation
relies on the exponential damping of any contributions from
excited states, often long propagation times are required in
order to achieve adequate convergence towards the ground
state. The improved relaxation algorithm [136–138] employs
a hybrid scheme consisting of imaginary time propagation
and diagonalization to improve the convergence speed. By
applying the time-independent variational principle to the
(ML)-MCTDH ansatz, one obtains an eigenvalue equation de-
termining the top layer coefficients A(T )

	1,...,	d
(t ) where T is the

number of layers. The equations determining the SPFs on
the lower layers could be solved iteratively, which, however,
would result in highly nonlinear equations that are difficult
to converge [138], similar to multiconfiguration consistent
field theory [139]. Instead, the improved relaxation algorithm
alternates between updating the top layer coefficients by solv-
ing the eigenvalue equation and imaginary time propagation
to adapt the SPFs. By always choosing the nth eigenvector
to obtain a new set of top layer coefficients, the algorithm
converges towards the nth eigenstate of the Hamiltonian. Con-
sequently, improved relaxation provides easy access to excited
states, which would otherwise require to first compute and
then project out lower lying states. For the diagonalization
involved we employ the implicitly restarted Lanczos method
[140] via ARPACK [141].

APPENDIX B: DMRG PROTOCOL

In the present paper, we chose a sweep protocol of nine
sweeps and allow a maximum bond dimension for the matrix
product state of up to 1000. We followed a typical procedure
of increasing the allowed maximum bond dimension with
each sweep while always ensuring enough headroom between
this value and the actual maximal bond dimension of the
matrix product state. For the first few sweeps we added a
small noise term that improves the convergence and decrease
its strength with each sweep. Another important parameter
is the cutoff that determines the actual bond dimension. We
followed best practice and started with a value of 10−6 at the
beginning of the sweep protocol and decreased it rapidly with
each sweep. The last two sweeps were performed with a cutoff
of 10−14, which ensures near exact accuracy. We observe that
even for a long chain of length L = 1024 in the SR-TFIM, the
final maximal bond dimension was only 14, which is expected
due to the short-range and homogeneous nature of the model.
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5
Conclusion & Outlook

The present cumulative dissertation demonstrates that ML-MCTDH methods are
powerful tools for the description of quantum many-body systems and useful for

the numerical treatment of various models encountered in the field of ultracold atom
physics. This chapter summarizes the main findings and provides an outlook on future
methodological refinements (Section 5.1), improvements of the software implementation
(Section 5.2) as well as promising subsequent physical applications (Section 5.3).

5.1. Methodological Perspectives

Ref. [FK1], proposes a pruning approach for MCTDHB that dynamically adapts its
selection of the most relevant number states used for the description of the physical
system. The scheme is benchmarked using two different but typical dynamical scenarios
when studying the nonequilibrium dynamics of ultracold atoms. The dynamical pruning
method is found to capture the dynamics accurately for proper choices of its parameters
which is showcased by a variety of observables. While these findings highlight that
there is still room for algorithmic refinement within the MCTDHB method, it should
also be noted that the gain in numerical efficiency varied drastically between the two
physical setups. In the case of an interaction quench of bosons trapped in an optical
lattice, the simulation time can be reduced sevenfold while in the case of a harmonic
trap quenched to a double-well potential yields a speed-up of up to a factor of two.
Consequently, it is instructive to further explore the efficiency of the pruning approach
across a wider range of dynamical scenarios in future research and gain insight into
the facets that determine its performance. In addition, the MCTDHB method offers the
freedom of choosing an arbitrary, Hermitian constraint operator that lifts the ambiguity
of the wave function ansatz (see Sections 2.3.2 and 2.7.3) and which is linked to the
transformation between equivalent representations of the same wave function. Hence,
it is natural to ask whether this flexibility can lead to a representation that is more
favorable for the dynamical pruning scheme. For this purpose the natural orbital gauge
(see Appendix B) and a diagonalization gauge (see Appendix C) have been derived
and implemented. However, both choices only impact the results marginally and do
not increase the sparsity of the coefficient vector with respect to the pruning criteria
leaving the performance of the scheme unaffected. Still, future investigations could find
a choice of the constraint operator that improves the efficiency of the dynamical pruning
approach. Other directions for future research include the application of this scheme to
imaginary time propagation (see Section 2.8), multiple indistinguishable species in the
context of ML-MCTDHX or the development of more sophisticated pruning criteria that
potentially involve machine learning techniques [806–808] to select the most relevant
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configurations.
The EOMs governing the time-evolution of the SPFs in the ML-MCTDH family of

methods (see Eqs. (2.24), (2.56) and (A.8)) all include the inverse of the one-body
density matrix. If the wave function ansatz contains unoccupied orbitals, the one-body
density matrix is singular and the EOMs are ill-defined. For decades, implementations
have relied on regularizing the one-body density [420, 522] as shown in Eq. (2.30) to
circumnavigate this issue. The error introduced by this small modification is usually
negligible and ML-MCTDH methods have been successfully applied to a wide range of
problems reaching excellent accuracy. However, mathematical analyses of the MCTDH
method [809] as well as isolated reports of scenarios where the regularization can lead to
unphysical results [547, 810–813] raised concerns regarding the exactness of the method.
Consequently, the development of novel regularization techniques has been the subject
of recent methodological research. It has been shown that it can be advantageous to
move the regularization from the one-body density matrix to the coefficient tensor [547,
812, 813]. Since the singularity arises from the presence of unoccupied SPFs, schemes
have been proposed to choose them in an optimized fashion [810] or to start only with
occupied orbitals and dynamically spawn new ones as they are needed for the description
of the system [814–816].

In a 2015 paper, Lubich [817] proposed a novel projector-splitting integration scheme
for MCTDH1. This approach does not require the evaluation of the inverse one-body
density matrix and instead alternates between computing orthogonal matrix decomposi-
tions and solving linear differential equations. The projector-splitting approach was first
tested in Ref. [819], but as the authors point out, the merits of this scheme have to be
further analyzed in the future. In particular, they hint that ML-MCTDH wave functions
are often more sensitive towards singularities in the one-body densities than simple
MCTDH wave functions. Consequently, extensions of the projector-splitting integration
scheme to ML-MCTDH have been developed very recently [548, 820, 821]. Since, all the
aforementioned strategies to tackle the regularization issue have been developed in the
context of distinguishable DOFs for MCTDH and ML-MCTDH, a natural question for fu-
ture research is whether these regularization techniques can be transferred to MCTDHB,
MCTDHF and ML-MCTDHX.

Both MCTDH and its multilayer extension rely on tensor decompositions of the full
coefficient tensor which closely relates them to the field of tensor network states (see
Section 2.5). Recent years have seen a surge in the transfer of ideas from the tensor
network community to the family of ML-MCTDH methods. Larsson demonstrated how
a DMRG-like algorithm can be applied to the tree tensor network states that underlie
the construction of the ML-MCTDH. This approach allows the efficient computation
of many excited states, thus complementing ML-MCTDH which is usually limited to
the first few excited states and far less efficient as it relies on rather slow on imaginary
time propagation (see Section 2.8). It would be instructive to further compare the two
approaches regarding their performance and accuracy as well as the compactness of the
resulting wave function as ML-MCTDH might potentially yield a smaller, optimized
basis. Furthermore, many approaches for the time evolution ofMPS have been developed
including time-evolving block decimation [584–586, 736], TDVP based schemes [591–
595] or MPS-MCTDH [596]. Some of these algorithms have already been shown to be
transferrable to the propagation of tree tensor network states [597, 598]. Hence, it will

1Ref. [818] provides an alternative formulation of the projector-splitting integration scheme that is closer
to the usual chemical physics notation of MCTDH and highlights some key features of this approach.
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be very illuminating to compare the performance of ML-MCTDH and tensor network
methods when it comes to the dynamics of quantum many-body systems. Hopefully,
the future will see a further cross-fertilization between the ML-MCTDH and tensor
network communities leading to advancements in both fields, yielding to more refined
and powerful numerical methods.

One particular challenge when applying the ML-MCTDH is the design of the wave
function tree structure and ensuring the convergence with respect to the number of SPFs
at each node. There might be opportunities to devise algorithms that help in the construc-
tion of the ansatz, e.g., by using machine learning techniques [806–808]. Furthermore, it
might be instructive to develop a deeper understanding of the mathematical properties
and limitations when it comes to the description of many-body systems using tree tensor
network states. Ref. [FK3] shows an example where ML-MCTDH describes a system
exhibiting strong area law violation accurately, a more exhaustive and rigorous study
might be a fruitful perspective for future research. Especially, geometries with more than
one spatial dimension quickly become challenging for numerical methods. So far, most
studies involving tree tensor network states have been mostly limited to ordered systems
in two spatial dimensions involving very localized interactions [FK3, 561].

5.2. Implementational Improvements

The robustness of theML-MCTDHX code has been greatly improved by replacing custom
routines with well-tested and optimized libraries. The stability and performance of the
improved relaxation algorithm (see Section 2.8.2) has been significantly enhanced by
swapping out an error-prone Lanczos code with a well-tested, implicitly restarted Lanc-
zos implementation [366] provided by the ARPACK library [703]. The FFTW package
contains state of the art FFT codes and is now used for the FFT representation outlined
in Section 2.6.3 also enhancing the robustness and efficiency of the implementation.
The current version of the framework only makes use of a single CPU core at a time
such that parallelization of the program holds potential for further performance im-
provements. In the context of a single bosonic species, i.e., MCTDHB, the performance
characteristics of the implementation can differ drastically depending on the system
under consideration. For the purpose of systems that require many orbitals and also
contain a reasonable number of particles, the most time-consuming part of the program
is the computation of the reduced density matrices. Unfortunately, a shared-memory
parallelization over the involved number state loops using OpenMP has been found to be
inefficient, mostly yielding only small speedups. When considering bosons in more than
one spatial dimension, a major bottleneck for the performance is the large number of
terms introduced by computing a sum-of-product form of the Gaussian model potential
(see Section 2.7.2) using the POTFIT algorithm. In principle, all these terms could be
applied to the wave function in parallel as they are independent of each other. Again,
shared-memory parallelization has been explored to accelerate these otherwise very
time-consuming multidimensional calculations. However, in the current implementation
this leads to a performance bottleneck due to inefficient memory access patterns that
fully saturate the available memory bandwidth, sometimes even resulting in a slowdown
of the program. Additionally, the historical growth of the codebase led to a non-ideal
structure of the code, that often makes it hard to maintain, difficult to implement new
features, explore novel methodological ideas or improve the overall efficiency of the
program. Due to the aforementioned issues, the group is currently undertaking a com-
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plete rewrite of the codebase in collaboration with the group of Prof. Dr. O. Vendrell
at Heidelberg University. By switching from Fortran to Python, the new codebase will
be much more flexible and approachable for new developers. The vast ecosystem of
numerical software available for Python allows leveraging very efficient libraries, in-
cluding machine learning frameworks such as PyTorch [822, 823] and TensorFlow [824,
825] which provide efficient implementations of tensor operations and support GPUs.
Further ideas include the investigation of different numerical integrators for ordinary
differential equations and the addition of the CMF integration schemes [420, 522, 529]
(see Section 2.3.3) as alternatives to the available variable mean-field (VMF) approach.
A common task when studying many-body systems with ML-MCTDHX is the com-
putation of eigenstates of the Hamiltonian using the relaxation procedures described
in Section 2.8 which rely on propagation in imaginary time. The current version of
the software package employs real-valued arithmetic for the propagation of the wave
function in all cases. For real-valued Hamiltonians and initial states, the propagation in
imaginary time could be implemented using only real-valued arithmetic which would
cut the number of arithmetic operations in half, thus drastically reducing the computa-
tional effort. Such a flexible implementation could be easily achieved in the new Python
package. Even more computing time might be saved by performing the first part of the
imaginary time propagation in single-precision floating arithmetic to come close to the
desired state and then switch to double-precision in order to refine the result.

5.3. Future Applications

Ref. [FK2] investigates the dynamics of a single bosonic species trapped in two colliding
potential wells unraveling the fundamental processes such as particle untrapping, the
transport mechanism and the build-up of entanglement. This study highlights that
even when considering a few-particle problem of a single atomic species, fascinating
dynamical scenarios can be realized. As a next step the ML-MCTDHX method can be
employed to simulate the collision of two different atomic species and to analyze the
build-up of interparticle correlations. In Ref. [682] the authors consider a similar setup
of an impurity confined in a moving harmonic trap with a bosonic bath subject to an
external double-well potential. They study the impact of the interspecies interactions
on the damped oscillatory motion of the impurity within the bath and the build-up of
entanglement between the species. Another promising direction, would be to consider
the collision of a single atomic species confined in amoving projectile well with a lattice of
stationary wells. This could be achieved using a more complex time-dependent potential
of the form

𝑉(𝑥, 𝑡) = − 𝑉(0)
0 exp ⎡⎢

⎣
−⎛⎜
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(5.1)

which is sketched in Fig. 5.1. Such a setup could be viewed as a simplistic model for
the collision of an incident atom with a linear molecule or serve as platform to study
schemes of loading particles confined in a moving optical tweezer into an optical lattice.

Ref. [FK3] demonstrates the applicability of the ML-MCTDH method to quantum
spin models by exploring the ground states of various different setups. The approach
is first benchmarked in the context of homogeneous systems and then applied to study
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Figure 5.1.: Collision between a moving projectile well loaded with ultracold bosons and
a lattice of multiple stationary wells.

intricate disordered models that are notoriously hard to tackle due to the high amount of
degeneracy in the low energy spectrum. For all scenarios considered, ML-MCTDH cap-
tures the relevant characteristics of the ground state such as its energy, correlations, and
entanglement entropy accurately, rendering it a powerful alternative to established meth-
ods in this domain of physics such as exact diagonalization or MPS based approaches.
One particularly striking finding of this work is that the method is able to reproduce the
strong area law violation that is present in one of the models and which is beyond the
reach of the DMRG. This observation may serve as a starting point for further research
in order to explore other challenging models that exhibit strong area law violations due
to disorder. A natural next step is to switch from imaginary to real time propagation and
to investigate the dynamics of spin models. So far the many-body localization dynamics
of a spin-1/2 chain coupled to a central qudit has been studied with the ML-MCTDH
method [826]. Interesting further applications in this context are optimal control prob-
lems [349, 350] and the simulation nonequilibrium dynamics such as quenches [827,
828] and thermalization processes [102, 348]. The spin basis presented in Section 2.6.4
can be easily extended to higher total spins, such as spin-1, spin-3/2, etc., only requiring a
suitable matrix representation of the involved spin operators. ML-MCTDH could then be
used to explore the fascinating field of SU(𝑛) models [829–833] which play an important
role in many areas of physics such as quantum chromodynamics [242, 243, 834] or atomic
physics [835–837].

Asmentioned in Section 2.7.5, the Jordan-Wigner transformation [666] allowsmapping
fermionic latticemodels onto spinmodelswhich could then be treated usingML-MCTDH.
Since the fermion sign problem poses a major obstacle for methods like quantum Monte
Carlo [382], it would be illuminating to explore the performance of ML-MCTDH in
this situation. By implementing the SQR of ML-MCTDH, the software package has
been enriched by a useful alternative to MCTDHB when simulating bosonic systems
that is particularly well suited for lattice models. So far the application of this feature
within the group was mainly focused on Bose-Hubbard models [38, 96], but currently
the applicability to more exotic systems is being investigated. An example for such a
setup is the bosonic formulation of the anyonic Hubbard model [665, 838–842] which
contains an occupation dependent, Peierls-like phase [843, 844] in the hopping term,

∑
𝑖

( ̂𝑏†
𝑖 𝑒𝑖𝜃�̂�𝑖 ̂𝑏𝑖+1 + H.c.) , (5.2)

where the angle 𝜃 determines the statistics of the particles2. The experimental realization
of this model with arbitrary statistical phases was achieved very recently by inducing

2For 𝜃 = 0 the original Bose-Hubbard model is recovered, while 𝜃 = 𝜋 results in pseudofermions. For
arbitrary angles of 𝜃 the Peierls phase breaks the spatial inversion and the time reversal symmetry [665].
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artificial gauge fields via periodic shaking of a one-dimensional optical lattice, i.e., by
Floquet engineering [845].
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A
Multi-Layer MCTDH Details

Due to the recursive nature of theML-MCTDHwave function ansatz, a general notation
of the formalism is rather involved. Section 2.4 introduced the basic concepts of

the method using an exemplary wave function tree. The present appendix provides a
detailed general description of ML-MCTDH and employs the notation established by
Manthe [421] including later refinements and modifications from Refs. [422, 547]. As a
starting point, the MCTDH ansatz (2.16) is revisited and written as

|Ψ(𝑡)⟩ =
𝑚1

1

∑
𝑗1=1

⋯
𝑚1

𝑝1

∑
𝑗𝑝1=1

𝐴1
1;𝑗1,…,𝑗𝑝1

(𝑡)
𝑝1

⨂
𝜅1=1

∣𝜑1;𝜅1
𝑗𝜅1

(𝑞1
𝜅1

, 𝑡)⟩

= ∑
𝐽

𝐴1
1;𝐽(𝑡) ∣Φ1

𝐽 (𝑡)⟩

(A.1)

which also defines the top level configurations ∣Φ1
𝐽 (𝑡)⟩ indexed by a multi-index 𝐽 similar

to Eq. (2.10). As before, themany-bodywave function is expanded using time-dependent
SPFs which in turn are represented with respect to time-independent primitive basis
functions. Takingmode combination of the physical DOFs into account (see Section 2.3.4),
the multidimensional SPFs are given by

∣𝜑1;𝜅1
𝑖 (𝑞1

𝜅1
, 𝑡)⟩ =

𝑛𝜅1
1

∑
𝑗1=1

⋯

𝑛𝜅1
𝑝2;𝜅1

∑
𝑗𝑝2;𝜅1=1

𝐴2;𝜅1
𝑖;𝑗1,…,𝑗𝑝2;𝜅1

(𝑡)
𝑝2;𝜅1

⨂
𝜅2=1

∣𝜒2;𝜅1,𝜅2
𝑗𝜅2

(𝑞2;𝜅1
𝜅2

)⟩ . (A.2)

TheML-MCTDH approach extends the construction of the wave function by representing
the SPFs themselves using MCTDH wave functions, thus introducing more and more
layers. In order to obtain a concise and consistent notation of this hierarchical ansatz, it
is convenient to introduce the symbol

𝑧 = ℓ ; 𝜅1, … , 𝜅ℓ−1 (A.3)

to refer to a specific node in the wave function tree. Here, ℓ denotes the layer of the
tree and 𝜅1, … , 𝜅ℓ−1 the path from the root node to the node under consideration. For
example, (3; 2, 4) denotes a node on the 3 layer of the tree that is the 4th child of the 2nd
child of the root node. The parent node of the node 𝑧 is then identified by

𝑧 − 1 = ℓ ; 𝜅1, … , 𝜅ℓ−2 . (A.4)
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A. Multi-Layer MCTDH Details

The SPFs associated with the 𝜅ℓ−1th child of the node indexed by 𝑧 − 1 are given by a
MCTDH ansatz the SPFs of its child nodes1, i.e.,

∣𝜑𝑧−1,𝜅ℓ−1
𝑖 (𝑞𝑧−1

𝜅ℓ−1
, 𝑡)⟩ =

𝑚𝑧
1

∑
𝑗1=1

⋯
𝑚𝑧

𝑝𝑧

∑
𝑗𝑝𝑧=1

𝐴𝑧
𝑖;𝑗1,…,𝑗𝑝𝑧

(𝑡)
𝑝𝑧

⨂
𝜅ℓ=1

∣𝜑𝑧,𝜅ℓ
𝑗𝜅ℓ

(𝑞𝑧
𝜅ℓ

, 𝑡)⟩

= ∑
𝐽

𝐴𝑧
𝑖;𝐽 ∣Φ𝑧

𝐽 (𝑞𝑧−1
𝜅ℓ−1

, 𝑡)⟩
. (A.5)

The corresponding logical coordinate 𝑞𝑧−1
𝜅ℓ−1

can be viewed as a combined mode of the
logical coordinates of the child nodes, i.e.,

𝑞𝑧−1
𝜅ℓ−1

= (𝑞𝑧
1, … , 𝑞𝑧

𝑝𝑧) . (A.6)

Therefore, the construction of a ML-MCTDH wave function can be understood as succes-
sive combination of coordinates, starting from the primitive nodes at the leaves of the
tree. Figure A.1 illustrates the wave function construction as well as the notation using a
simple example that incorporates one additional layer compared to MCTDH.
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Figure A.1.: Detailed tree diagram of a ML-MCTDH wave function. This example em-
ploys one additional layer of SPFs compared to MCTDH in order to describe
a system comprising four physical DOFs. The nodes of the tree are labeled
by their corresponding logical coordinates while the edges indicate the num-
bers of SPFs and primitive basis functions, thus providing a unique recipe
of how to construct the wave function.

The EOMs for the ML-MCTDH ansatz can be derived using the Dirac-Frenkel TDVP

1As in normal MCTDH, the different sets of SPFs are assumed to form orthonormal bases, i.e.,
⟨𝜑𝑧−1,𝜅ℓ−1

𝑖 (𝑞𝑧−1
𝜅ℓ−1

, 𝑡) ∣ 𝜑𝑧−1,𝜅ℓ−1
𝑗 (𝑞𝑧−1

𝜅ℓ−1
, 𝑡)⟩ = 𝛿𝑖𝑗. This property is conserved under time propagation.
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(2.4). Both the EOM for the top layer coefficients

𝑖𝜕𝑡𝐴1
1;𝐽 = ∑

𝐾
⟨Φ1

𝐽 ∣ �̂� ∣ Φ1
𝐾⟩ 𝐴1

1;𝐾 −
𝑝1

∑
𝜅1=1

𝑚1
𝜅ℓ

∑
𝑟=1

𝑔1,𝜅1
𝑗𝜅1𝑖 𝐴1

𝑗1…𝑟…𝑗𝑝1
(A.7)

and for the SPFs

𝑖𝜕𝑡 ∣𝜑𝑧,𝜅ℓ
𝑟 ⟩ = (1 − 𝑃𝑧,𝜅ℓ)

𝑚𝑧
𝜅ℓ

∑
𝑗,𝑛=1

(𝜌𝑧,𝜅ℓ)−1
𝑟𝑗 ⟨�̂�⟩𝑧,𝜅ℓ

𝑗𝑛 ∣𝜑𝑧,𝜅ℓ
𝑛 ⟩ +

𝑚𝑧
𝜅ℓ

∑
𝑗=1

𝑔𝑧,𝜅ℓ
𝑗𝑟 ∣𝜑𝑧,𝜅ℓ

𝑗 ⟩ (A.8)

exhibit the same structure as in MCTDH (compare Eqs. (2.23) and (2.24)) highlight-
ing the recursive construction of the wave function ansatz.2 In Eq. (A.8), 𝑃𝑧,𝜅ℓ =
∑

𝑚𝑧
𝜅ℓ

𝑗=1 ∣𝜑𝑧,𝜅ℓ
𝑗 ⟩ ⟨𝜑𝑧,𝜅ℓ

𝑗 ∣ denotes the projector onto the space spanned by the SPFs {∣𝜑𝑧,𝜅ℓ
𝑗 ⟩}.

Similar to MCTDH, constraint operators

𝑔𝑧,𝜅ℓ
𝑗𝑟 = ⟨𝜑𝑧,𝜅ℓ

𝑗 ∣ ̂𝑔𝑧,𝜅ℓ ∣ 𝜑𝑧,𝜅ℓ
𝑟 ⟩ = 𝑖 ⟨𝜑𝑧,𝜅ℓ

𝑗 ∣ 𝜕𝑡𝜑
𝑧,𝜅ℓ
𝑟 ⟩ (A.9)

are introduced for each node in order to remediate the ambiguity of the ansatz. In
principle, a different Hermitian operator can be chosen for each set of SPFs, but a common
choice is to use the standard gauge ̂𝑔𝑧,𝜅ℓ = 0 throughout the tree which leads to a simpler
form of the EOM. The reduced one-body density matrix

𝜌𝑧,𝜅ℓ
𝑖𝑗 = ⟨Ψ𝑧,𝜅ℓ

𝑖 ∣ Ψ𝑧,𝜅ℓ
𝑗 ⟩ (A.10)

and the mean fields3
⟨�̂�⟩𝑧,𝜅ℓ

𝑖𝑗 = ⟨Ψ𝑧,𝜅ℓ
𝑖 ∣ �̂� ∣ Ψ𝑧,𝜅ℓ

𝑗 ⟩ (A.11)

are determined by the single-hole functions which are obtained by projecting out a single
SPF from the full wave function

∣Ψ𝑧,𝜅ℓ
𝑗 ⟩ = ⟨𝜑𝑧,𝜅ℓ

𝑗 (𝑞𝑧
𝜅ℓ

) ∣ Ψ⟩ . (A.12)

Since the SPFs are represented with respect to the SPFs or primitive basis functions of the
layer beneath, in an actual implementation only the different coefficient tensors have to be
propagated. The corresponding EOMs for non-top-level coefficients follow from the SPFs
EOMs (A.8) by projecting onto the respective SPFs basis, i.e., 𝑖𝜕𝑡𝐴𝑧

𝑟;𝐽 = 𝑖 ⟨Φ𝑧
𝐽 ∣ 𝜕𝑡𝜑

𝑧−1,𝜅ℓ−1
𝑟 ⟩.

For the explicit form of this equation, which is here omitted for the sake of brevity, the
reader is referred to Ref. [547].

2Again, the time-indices have been dropped for a more readable notation.
3As in a MCTDH, the Hamiltonian is assumed to be in sum-of-products form, see Section 2.3.3.
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B
Natural Orbital Gauge for MCTDHB

In this appendix, the derivation of the natural orbital gauge for MCTDHB is outlined.
The goal is to find a constraint operator ̂𝑔, such that the SPFs coincide with the natural

orbitals, i.e., the eigenfunctions of the one-body density matrix. In order to be consistent
with the current implementation, a different normalization of the one-body density
matrix [729] compared to Eq. (2.57) is used in the following:

𝜌(1)
𝑗𝑘 (𝑡) = 1

𝑁
⟨Ψ(𝑡) ∣ ̂𝑏†

𝑗
̂𝑏𝑘 ∣ Ψ(𝑡)⟩ , (B.1)

Since the difference is only an additional factor of 1/𝑁 with 𝑁 denoting the particle
number, the derivation could readily be rewritten to be consistent with Eq. (2.57).

The natural orbital gauge is equivalent to the reduced one-body density matrix being
diagonal at all times, which consequently must be fulfilled at 𝑡 = 0, i.e.,

𝜌(1)
𝑗𝑘 (0) = 𝛿𝑗𝑘𝜌(1)

𝑗𝑗 (0) . (B.2)

The constraint operator can then be derived by demanding that the time derivative of
the off-diagonal elements vanishes, i.e.,

𝑖𝜕𝜌(1)
𝑗𝑘 (𝑡) = 0 ∀ 𝑗 ≠ 𝑘 . (B.3)

The time derivative of the one-body density matrix follows from Eqs. (2.49) and (B.1):

𝑖𝜕𝑡𝜌
(1)
𝑗𝑘 = 𝑖

𝑁
∑
𝒏,𝒎

(𝜕𝑡𝐶∗
𝒏) 𝐶𝒎 ⟨𝒏 ∣ ̂𝑏†

𝑗
̂𝑏𝑘 ∣ 𝒎⟩

+ 𝑖
𝑁

∑
𝒏,𝒎

𝐶∗
𝒏 (𝜕𝑡𝐶𝒎) ⟨𝒏 ∣ ̂𝑏†

𝑗
̂𝑏𝑘 ∣ 𝒎⟩

+ 𝑖
𝑁

∑
𝒏,𝒎

𝐶∗
𝒏𝐶𝒎 (𝜕𝑡 ⟨𝒏|) ̂𝑏†

𝑗
̂𝑏𝑘 |𝒎⟩

+ 𝑖
𝑁

∑
𝒏,𝒎

𝐶∗
𝒏𝐶𝒎 ⟨𝒏| ̂𝑏†

𝑗
̂𝑏𝑘 (𝜕𝑡 |𝒎⟩)

+ 𝑖
𝑁

∑
𝒏,𝒎

𝐶∗
𝒏𝐶𝒎 ⟨𝒏 ∣ (𝜕𝑡 ̂𝑏†

𝑗 ) ̂𝑏𝑘 ∣ 𝒎⟩

+ 𝑖
𝑁

∑
𝒏,𝒎

𝐶∗
𝒏𝐶𝒎 ⟨𝒏 ∣ ̂𝑏†

𝑗 (𝜕𝑡 ̂𝑏𝑘) ∣ 𝒎⟩ = 0

(B.4)

As the derivative of the coefficients is determined by the corresponding EOM (2.54), the
two remaining ingredients required are the derivatives of the number states as well as
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B. Natural Orbital Gauge for MCTDHB

the creation and annihilation operators.

The time derivative of the creation and annihilation operators can be obtained by
expressing them as superposition of time-independent operators. The derivative can
then be straightforwardly computed and subsequently written as

𝑖𝜕𝑡 ̂𝑏†
𝑗 =

𝑚
∑
𝑘=1

𝑔𝑘𝑗 ̂𝑏†
𝑘 (B.5)

with respect to the matrix elements of the constraint operator (2.55). The time derivative
of the number states given by Eq. (2.47) follows from (B.5):

𝑖𝜕𝑡 |𝒏⟩ = 𝑖
⎡⎢⎢⎢⎢
⎣

𝑚
∑
𝑗=1

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑚
∏
𝑘=1
𝑗≠𝑘

( ̂𝑏†
𝑘)𝑛𝑘

√𝑛𝑘!

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

√𝑛𝑗

√(𝑛𝑗 − 1)!
(𝜕𝑡 ̂𝑏†

𝑗 ) ( ̂𝑏†
𝑗 )

𝑛𝑗−1
⎤⎥⎥⎥⎥
⎦

|vac⟩ (B.6)

= 𝑖
𝑚

∑
𝑗=1

√𝑛𝑗 (𝜕𝑡 ̂𝑏†
𝑗 ) ∣𝒏 − 𝒆𝑗⟩ =

𝑚
∑
𝑗=1

(𝑖𝜕𝑡 ̂𝑏†
𝑗 ) ̂𝑏𝑗 |𝒏⟩ (B.7)

(B.5)
=

𝑚
∑

𝑗,𝑘=1
𝑔𝑗𝑘 ̂𝑏†

𝑗
̂𝑏𝑘 |𝒏⟩ (B.8)

Finally, the constraint operator for the natural orbital gauge of MCTDHB can be obtained
by inserting Eqs. (2.54), (B.5) and (B.8) into Eq. (B.4) and reads

𝑔𝑘𝑗 = 1
𝑁

⟨Ψ ∣ [�̂�, ̂𝑏†
𝑗

̂𝑏𝑘] ∣ Ψ⟩

𝜌(1)
𝑘𝑘 − 𝜌(1)

𝑗𝑗

(B.9)

or when exploiting the typical Hamiltonian structure of MCTDHB simulations (see
Section 2.7.2)

𝑔𝑗𝑘 = ℎ𝑗𝑘 + (𝑁 − 1)
𝑚

∑
𝑝,𝑞,𝑟=1

𝑊𝑝𝑞𝑘𝑟𝜌
(2)
𝑝𝑞𝑗𝑟 − 𝑊𝑗𝑝𝑞𝑟𝜌

(2)
𝑘𝑝𝑞𝑟

𝜌(1)
𝑗𝑗 − 𝜌(1)

𝑘𝑘

. (B.10)

It should be noted that only the off-diagonal elements of the constraint operator are
determined, and the diagonal elements can be chosen as arbitrary real numbers to
preserve its Hermiticity, e.g., 𝑔𝑗𝑗 = 0.

Both Equation (B.9) and (B.10) have to be regularized in the event of a degeneracy of
the natural populations

1
𝜌(1)

𝑗𝑗 − 𝜌(1)
𝑘𝑘

→
𝜌(1)

𝑗𝑗 − 𝜌(1)
𝑘𝑘

(𝜌(1)
𝑗𝑗 − 𝜌(1)

𝑘𝑘 )
2

+ 𝜀 exp(−1
𝜀 (𝜌(1)

𝑗𝑗 − 𝜌(1)
𝑘𝑘 )

2
)

(B.11)

where 𝜀 denotes a small positive regularization parameter.

Proper care has to be taken when deriving the natural orbital gauge for the imaginary
time propagation used for energy relaxation (see Section 2.8.1). The corresponding
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constraint operator reads

𝑔relax
𝑘𝑗 = 1

𝑁

⟨Ψ ∣ {�̂�, ̂𝑏†
𝑗

̂𝑏𝑘} ∣ Ψ⟩

𝜌(1)
𝑘𝑘 − 𝜌(1)

𝑗𝑗

= 1
𝑁

⟨Ψ ∣ [�̂�, ̂𝑏†
𝑗

̂𝑏𝑘] ∣ Ψ⟩

𝜌(1)
𝑘𝑘 − 𝜌(1)

𝑗𝑗

+ 2
𝑁

⟨Ψ ∣ ̂𝑏†
𝑗

̂𝑏𝑘�̂� ∣ Ψ⟩

𝜌(1)
𝑘𝑘 − 𝜌(1)

𝑗𝑗

(B.12)

(B.9)
= 𝑔𝑘𝑗 + 2

𝑁

⟨Ψ ∣ ̂𝑏†
𝑗

̂𝑏𝑘�̂� ∣ Ψ⟩

𝜌(1)
𝑘𝑘 − 𝜌(1)

𝑗𝑗

(B.13)

and follows from the imaginary time derivatives of the creation operator

𝜕𝜏 ̂𝑏†
𝑗 = −

𝑚
∑
𝑘=1

𝑔𝑘𝑗 ̂𝑏†
𝑘 (B.14)

and number states

𝜕𝜏 |𝒏⟩ = −
𝑚

∑
𝑎,𝑏=1

𝑔𝑎𝑏 ̂𝑏†
𝑎 ̂𝑏𝑏 |𝒏⟩ . (B.15)
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C
Diagonalization Gauge for MCTDHB

Instead of a gauge that diagonalizes the one-body density matrix as in Appendix B, one
can also find a gauge that diagonalizes an arbitrary, Hermitian one-body operator �̂�

in SPF representation,1
𝑂𝑗𝑘(𝑡) = ⟨𝜑𝑗(𝑡) ∣ �̂� ∣ 𝜑𝑘(𝑡)⟩ . (C.1)

Similar to Appendix B, the operator is assumed to be diagonal in the initial basis, i.e.,

𝑂𝑗𝑘(0) = 𝛿𝑗𝑘𝑂𝑗𝑗(0) . (C.2)

In order to derive a constraint operator that ensures that the diagonality persists during
time propagation, we demand that

𝜕𝑡𝑂𝑗𝑘(𝑡) = 0 ∀ 𝑖 ≠ 𝑗 . (C.3)

For the derivation of the diagonalization gauge it is instructive to rewrite the SPF
EOM (2.56) as

𝑖𝜕 ∣𝜑𝑗(𝑡)⟩ = 𝑖𝜕 ∣𝜑(0)
𝑗 (𝑡)⟩ + �̂�(𝑡) ̂𝑔 ∣𝜑𝑗(𝑡)⟩ (C.4)

where 𝑖𝜕 ∣𝜑(0)
𝑗 (𝑡)⟩ denotes the time derivative of the 𝑗th SPF in standard gauge, i.e., for

̂𝑔 = 0, as given by Eq. (2.61). Inserting Eq. (C.4) into Eq. (C.3) yields2

𝜕𝑡𝑂𝑗𝑘 = ⟨𝜕𝑡𝜑𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ 𝜕𝑡𝜑𝑘⟩ (C.5)

= ⟨𝜕𝑡𝜑
(0)
𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ 𝜕𝑡𝜑

(0)
𝑘 ⟩ + 𝑖 ⟨𝜑𝑗 ∣ ̂𝑔†�̂�†�̂� ∣ 𝜑𝑘⟩ − 𝑖 ⟨𝜑𝑗 ∣ �̂��̂� ̂𝑔 ∣ 𝜑𝑘⟩

�̂�†=�̂�
�̂�†=�̂�= ⟨ ̇𝜑(0)

𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ ̇𝜑(0)
𝑘 ⟩ + 𝑖 ⟨𝜑𝑗 ∣ ̂𝑔�̂��̂� ∣ 𝜑𝑘⟩ − 𝑖 ⟨𝜑𝑗 ∣ �̂��̂� ̂𝑔 ∣ 𝜑𝑘⟩

= ⟨ ̇𝜑(0)
𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ ̇𝜑(0)

𝑘 ⟩ + 𝑖
𝑚

∑
ℓ=1

⟨𝜑𝑗 ∣ ̂𝑔 ∣ 𝜑ℓ⟩⏟⏟⏟⏟⏟
𝑔𝑗ℓ

⟨𝜑ℓ ∣ �̂� ∣ 𝜑𝑘⟩⏟⏟⏟⏟⏟
𝑂ℓ𝑘=𝛿ℓ𝑘𝑂𝑘𝑘

− 𝑖
𝑚

∑
ℓ=1

⟨𝜑𝑗 ∣ �̂� ∣ 𝜑ℓ⟩⏟⏟⏟⏟⏟
𝑂𝑗ℓ=𝛿𝑗ℓ𝑂𝑗𝑗

⟨𝜑ℓ ∣ ̂𝑔 ∣ 𝜑𝑘⟩⏟⏟⏟⏟⏟
𝑔ℓ𝑘

= ⟨𝜕𝑡𝜑
(0)
𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ 𝜕𝑡𝜑

(0)
𝑘 ⟩ + 𝑖𝑔𝑗𝑘𝑂𝑘𝑘 − 𝑖𝑔𝑗𝑘𝑂𝑗𝑗 = 0 (C.6)

1It should be noted that the following deductions are compatible with traditional MCTDH as well.
2Omitting the time argument in the following for the sake of readability.
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C. Diagonalization Gauge for MCTDHB

such that the constraint operator reads

𝑔𝑗𝑘 = 𝑖
⟨ ̇𝜑(0)

𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ ̇𝜑(0)
𝑘 ⟩

𝑂𝑘𝑘 − 𝑂𝑗𝑗
. (C.7)

The diagonal elements of ̂𝑔 remain undetermined and can be set to arbitrary real values,
e.g., 𝑔𝑗𝑗 = 0 or 𝑔𝑗𝑗 = ℎ𝑗𝑗. Again, as in Appendix B, the constraint operator has to be
regularized in order to avoid singularities in case of degenerate eigenvalues of �̂�. This
can be achieved in the same manner as for the natural orbital gauge by replacing

1
𝑂𝑗𝑗 − 𝑂𝑘𝑘

→
𝑂𝑗𝑗 − 𝑂𝑘𝑘

(𝑂𝑗𝑗 − 𝑂𝑘𝑘)2 + 𝜀 exp(−1
𝜀 (𝑂𝑗𝑗 − 𝑂𝑘𝑘)2)

(C.8)

where 𝜀 is a small regularization parameter. Analogously, the off-diagonal elements of
the constraint operator for imaginary time propagation are given by

𝑔relax
𝑗𝑘 =

⟨ ̇𝜑(0)
𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ ̇𝜑(0)

𝑘 ⟩

𝑂𝑗𝑗 − 𝑂𝑘𝑘
. (C.9)

Instead of demanding that the off-diagonal of the one-body operator �̂� in SPF represen-
tation strictly vanish, one can also demand that they decay over time, e.g., exponentially.
This is helpful when starting with a state whose SPFs do not diagonalize �̂� or to recover
from the errors introduced by the regularization.3 By introducing a parameter 𝑐 that de-
termines the decay rate of the off-diagonal elements of �̂�, a modified constraint operator
can be derived4:

𝜕𝑡𝑂𝑗𝑘 = ⟨𝜕𝑡𝜑
(0)
𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ 𝜕𝜑(0)

𝑘 ⟩ + 𝑖𝑔′
𝑗𝑘𝑂𝑘𝑘 − 𝑖𝑔′

𝑗𝑘𝑂𝑗𝑗 = 𝑐𝑂𝑗𝑘 ∀ 𝑗 ≠ 𝑘

⇔ 𝑔′
𝑗𝑘 = 𝑖

⟨𝜕𝜑(0)
𝑗 ∣ �̂� ∣ 𝜑𝑘⟩ + ⟨𝜑𝑗 ∣ �̂� ∣ 𝜑(0)

𝑘 ⟩

𝑂𝑘𝑘 − 𝑂𝑗𝑗
+

𝑖𝑐𝑂𝑗𝑘

𝑂𝑘𝑘 − 𝑂𝑗𝑗
= 𝑔𝑗𝑘 +

𝑖𝑐𝑂𝑗𝑘

𝑂𝑘𝑘 − 𝑂𝑗𝑗
. (C.10)

The corresponding constraint operator for imaginary time propagation reads

𝑔′,relax
𝑗𝑘 = 𝑔relax

𝑗𝑘 +
𝑐𝑂𝑗𝑘

𝑂𝑗𝑗 − 𝑂𝑘𝑘
. (C.11)

3We applied this approach when investigating whether different gauges can improve the dynamical
pruning approach proposed in Ref. [FK1] by yielding a more sparse coefficient vector. For this purpose
it is not necessary that the SPFs exactly match the eigenfunctions of �̂�.

4It should be noted that a similar derivation can be performed for the natural orbital gauge.
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