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Abstract

X-ray ptychography is becoming increasingly popular. The semi-transparency of

matter to X-rays allows to look into their structure and thereby lay the founda-

tion to understand their functionality. X-ray Ptychography achieves a spatial res-

olution down to the single nanometer regime. A broad range of materials are well

suited for investigation, such as biological samples, catalysts or microchips. Mod-

ern synchrotron radiation sources allow to perform ptychographic scans in minutes,

which enables the investigation of fast dynamic processes. Furthermore, ptychogra-

phy is perfectly suited to be combined with tomographic routines to resolve three-

dimensional structures.

Nevertheless, ptychography is still a challenging method. The mechanical hard-

ware of a ptychographic microscope must provide a stability similar to the achieved

spatial resolution. Instabilities cause a blurring of the reconstructed object and re-

duce the reconstruction quality.

The ptychographic data evaluation is computationally expensive and mostly done

offline, which means the data acquisition and evaluation are subsequent steps. If

the sample is positioned out of the field of view, this is only noticed once the data

is reconstructed, leading to a waste of valuable measurement time at synchrotron

radiation sources. The computational effort of the ptychographic data evaluation is

enormous. The evaluation software has to be optimized to cope with the amount

of data. Fourth generation synchrotron radiation sources such as PETRA IV will

acquire ptychographic datasets at even higher data rates.

In this thesis, three projects are presented that address the current challenges

of ptychography. First, an algorithmic approach is introduced that corrects for the

vibrations that occur during the ptychographic data acquisition. The algorithm de-

creases the spatial resolution by a factor 2 for a dataset that is significantly disturbed

by vibrations. Second, a structure and implementation for online ptychography has

been developed, that performs the data evaluation while the data is still acquired.

This enables a real time feedback during the experiment. Third, an optimized soft-

ware for direct 3D ptychography has been implemented, that yields a performance

high enough to catch up with the high acquisition rate of fourth generation syn-

chrotron sources. The implementation is about a factor 3000 faster than the before

version.





Zusammenfassung

Ptychographie mit Röntgenstrahlung wird immer beliebter. Die Semi-Transparenz

der Materie für Röntgenstrahlung ermöglicht es, die Struktur der Materie zu untersu-

chen und damit die Grundlage für das Verständnis der Funktionsweise zu legen. Mit

der Röntgen-Ptychographie ist eine räumliche Auflösung bis in den einstelligen Na-

nometerbereich erreichbar. Vielfältige Materialien sind für die Untersuchung geeig-

net, wie biologische Proben, Katalysatoren oder Mikrochips. Moderne Synchrotron-

quellen erlauben es ptychographische Scans innerhalb von Minuten durchzuführen,

wodurch die Untersuchung dynamischer Prozesse ermöglicht wird. Weiterhin lässt

sich die Röntgen-Ptychographie mit tomographischen Verfahren kombinieren, um

dreidimensionale Strukturen darzustellen.

Nichtsdestotrotz ist Röntgen-Ptychographie eine anspruchsvolle Methode. Die me-

chanische Hardware eines ptychographischen Mikroskops muss eine Stabilität auf-

weisen, die der erreichten räumlichen Auflösung entspricht. Instabilitäten reduzieren

die Qualität des rekonstruierten Objekts.

Die ptychographische Datenauswertung ist sehr rechenintenstiv und wird i.d.R.

offline durchgeführt. Offline bedeutet, die Datenerfassung und -Auswertung sind

nacheinander abfolgende Schritte. Sollte die Probe nicht innerhalb des Sichtfelds

positioniert sein, wird erst bemerkt wenn die Daten rekonstruiert sind. Dies führt

dazu, dass wertvolle Messzeit an Synchrotronquellen verschwendet wird.

Weiterhin erfordert der hohe Rechenaufwand, dass die Auswertungssoftware ent-

sprechend optimiert ist, um den hohen Datenraten gerecht zu werden. Synchrotron-

quellen der vierten Generation werden noch deutlich größere Datenmengen erzeugen.

Diese Arbeit behandelt die zuvor dargestellen Herausforderungen mit drei Pro-

jekten. Zunächst wird ein algorithmischer Ansatz vorgestellt, der die bei der pty-

chografischen Datenerfassung auftretenden Vibrationen korrigiert. Der Algorithmus

reduziert die räumliche Auflösung um einen Faktor 2 für einen Datensatz, der signi-

fikant durch Vibrationen beeinträchtigt ist. Weiterhin wurde eine Implementierung

für die Online-Ptychographie entwickelt, die die Datenauswertung während der Da-

tenerfassung durchführt. Dies ermöglicht eine Rückmeldung in Echtzeit während des

Experiments. Abschließend wurde eine GPU-beschleuchnigte Implementierung für

die direkte 3D Ptychographie entwickelt. Die erreichte Rekonstruktionsgeschwindig-

keit ist hoch genug, um mit den hohen Akquisitionsraten von Synchrotronquellen

der vierten Generation mitzuhalten. Die Implementierung ist ungefähr um einen

Faktor 3000 schneller als die vorherige Version.
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1 Introduction

X-ray microscopy has become an essential tool to understand the functional be-

haviour of modern materials, such as microchips or catalysts. Consider the amount

of solar cells that is deployed almost everywhere. The efficiency of a solar cell is, inter

alia, limited by small defects in their nano structure. To understand the correlation

between defects and efficiency, methods are necessary to quantify the defects and

the electrical performance. X-rays are an ideal tool for this. They have the unique

feature that matter is semi-transparent for them, such that an X-ray beam transmits

even through extended materials.

A lot of X-ray microscopy methods have been developed that allow to analyze

the electron density [1]–[3], atomic composition [4]–[6], crystallographic information

[7]–[10], or the chemical state [11]–[13]. Multi-modal experiments allow to acquire

and evaluate multiple of these contrasts simultaneously [14]–[19]. The lowest spatial

resolution is obtained with scanning X-ray microscopy methods [20]. In many of

these approaches, the limit for the spatial resolution is defined by the focal spot size

of the utilized X-ray optics.

In contrast, X-ray ptychography overcomes this limitation [21]. A 2D detector and

a reconstruction algorithm function as a virtual lens, thereby achieve a magnification

similar to an objective lens in an optical microscope. This yields a superior spatial

resolution beyond the probe size. The popularity of ptychography is supported by

its reliability and flexibility. A ptychographic dataset has a certain degree of redun-

dancy, by illuminating overlapping regions while scanning the sample. This makes

the data evaluation very stable. Furthermore, the scanning allows to image extended

specimens, and ptychography can be combined with tomographic routines to zoom

into the 3D nano structure of a material. Therefore, many synchrotron sources make

use of ptychography [22]–[27].

Despite ptychographies high popularity and wide field of application, it comes

with many challenges that need to be addressed. Crucial for a spatial resolution in

the single nanometer regime is the mechanical stability during the experiment. In-

stablities cause a blurring in the ptychogaphic reconstruction and thereby increase

the spatial resolution. Another challenge is the large amount of data that a pty-

chographic scan acquires to reconstruct a small region of the sample. The result

of 2D ptychography is a complex-valued image that has roughly a size of a few

Megabyte (MB). In contrast, the amount of collected data can be up to several
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Gigabyte (GB). Commonly, the raw diffraction data is saved on a storage system

and consumes an enormous amount of hardware resources. The processing of the

acquired data is computationally very expensive. In order to perform the compu-

tational data evaluation on a routine basis, it is essential to have software that is

stable and optimized to cope for the high data rates. Furthermore, ptychography is

conventionally done offline, meaning the data evaluation is only done once the data

acquisition is completed. This yields a limiting experience for the user. Mistakes

made during a ptychographic scan can only be identified after the scan is done.

This thesis comprises three projects in chapter 3 - 5 which address the above

mentioned challenges of ptychography. The outline of this work is as follows.

First, chapter 2 summarizes the theoretical principles on which the methods in this

thesis are build up. Starting from a general description of X-rays, their interaction

with matter, the propagation through free space and the importance of coherence.

The first method introduced is X-ray ptychography, which is central to all projects

in this thesis. Afterwards, an introduction to tomography is given. The theory con-

cludes by elaborating how ptychography and tomography can be combined.

Chapter 3 introduces an approach for ptychography to algorithmically correct

mechanical instablities happening during the data acquisition. The correction of

the disturbances relies on a mathematical determination of the relative movement

between sample and illumination via a least squares optimization. The approach is

tested on simulated and experimental data.

Chapter 4 elaborates the development of online ptychographic data analysis. The

acquired data is reconstructed on-the-fly to give a feedback for the user already

during the scan. The live evaluation is part of a pipeline that includes an offline

reconstruction with highest quality for postprocessing.

Chapter 5 presents the development of a Graphics Processing Unit (GPU) ac-

celerated framework for Coupled Ptychographic Tomography (CPT). The coupled

approach has been proven to be beneficial over the conventional approach [28], [29].

The combined mathematical description of ptychography and tomography allows to

utilize features such as 2D ptychographic position correction during the 3D recon-

struction.

Finally, chapter 6 gives an outlook about the effect of these developments for

the future of X-ray ptychographic imaging. Especially important is the prospective

availability of fourth generation synchrotron sources [30]–[36], that have a coherent

flux by a factor 100 to 1000 larger than third generation sources. It is highlighted

how the contributions of this work can be continued.
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2 Theoretical Background

This chapter describes the theoretical prinicples that are necessary to understand the

evaluations and discussions in this thesis. For the beginning, a brief introduction to

X-ray radiation and its interaction with matter is given in section 2.1. This enables

to have a thorough look on ptychography in section 2.2 and tomography in section

2.3. Finally, it is elaborated how ptychography and tomography can be combined in

section 2.4.

2.1 Interaction of X-rays and Matter

The information in this section can be found in [37], if not otherwise noted.

2.1.1 X-rays

Radiation is quantized in small packages referred to as photons. A photon has an

electric field and a magnetic field that oscillate perpendicularly against each other,

while propagating through space. The periodicity of this oscillation is called the

wavelength λ and the photons energy E is directly proportional to λ

E =
hc

λ
= hν. (2.1)

The velocity of light is denoted by c ≈ 3 · 108 m/s, the photons frequency by

ν = 1
λ
and the Planck constant by h = 6.626 · 10−34 J

Hz
. X-rays are photons with a

wavelength roughly between 10 nm and 10 pm. Furthermore, X-rays can interact with

matter, by two different processes: Scattering and absorption. Those are explained

in the next two sections.

2.1.2 Scattering

There are two types of scattering: elastic and inelastic. Throughout this thesis, only

elastic scattering is considered and inelastic scattering is not further described. A

detailed derivation of the elastic scattering process would start by explaining the

scattering of a photon with a single electron and gradually increases to compounds

of atoms that are described as a homogenous volume.
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In a simplified picture, the elastic scattering process is given by the following.

The electric field of a photon causes the electron density of an atom to oscillate with

the same frequency as the photon. The oscillating electron density emits a spherical

wave with the same frequency ν as the incident photon. When having a wavefield

that scatters with a material, then many spherical waves are emitted. The different

pathways of all these spherical waves interfere with each other.

2.1.3 Absorption

A photon can be absorbed by an atom. The atom is excited into a state with higher

energy, where one electron leaves the atom, and the atom remains in an excited

state. The excited electronic system relaxes with a series of transitions.

Due to the relaxation, energy gets free. There are different possibilities for what

can happen with the energy. The energy can leave the atom as a photon, which is

referred to as X-ray Fluorescence (XRF). However, any effect after the absorption

of the photon is not considered in this thesis and a further description is omitted.

2.1.4 Complex Refractive Index

Now, a mathematical quantification for the interaction of radiation and matter is

introduced, which is the complex refractive index n

n(λ) = 1− δ(λ) + iβ(λ), (2.2)

in which δ describes the phase shift due to scattering and β the decrease in the

amplitude due to absorption. The imaginary unit is i2 = −1. The 1 in equation 2.2

can be understood as a wave propagating through vacuum, meaning that in vacuum

δ = β = 0. Both δ and β are material constants, but they are dependent on the

wavelength λ of the radiation. In this thesis, the radiation is always considered as

monochromatic and the wavelength dependency of n is dropped.

The thin-object approximation is used to model the interaction of radiation and

matter. The approximation considers that only single scattering occurs. Further-

more, the samples extent along the propagation path must fit well inside the Depth

of Field (DOF) of the illumination. Then, the interaction of a wavefront P0 with a
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material n is given by

P = P0e
ik

∫ d
0 n(x)−1 dx, (2.3)

P = P0e
−ik

∫ d
0 δ(x) dxe−k

∫ d
0 β(x) dx, (2.4)

with P being the wavefront after interacting with the material, e is the exponential

constant, and k = 2π
λ

the wave-vector. The constituents δ and β must be integrated

along the length d of the propagation path x through the material.

Later in this thesis, a lot of attention is given to δ and β, such that the definition

of the complex refractive index decrement ν is introduced here

ν := n− 1 = −δ + iβ. (2.5)

2.1.5 Propagation

With the understanding how X-rays interact with matter, it is not clear yet how

X-rays propagate through free space, or vaccum. This is of particular interest as

ptychography relies on a mathematical model for the propagation. A full description

would start from the Maxwell equations. Here, only a truncated picture is drawn

that yields the equations to perform the wavefield propagation. The explanation is

based on the Huygens-Fresnel-Principle. [38]

Consider the wavefront ψ0(x0, y0, 0) shown in figure 2.1. The propagated wavefield

ψ at position (x, y, z) is given by

ψ(x, y, z) =
1

iλ

∫∫
ψ0

ψ0(x0, y0, 0)
eikr

r
cos(θ) dx0 dy0. (2.6)

The distance between the point of origin and the point of incidence is denoted by

r. The angle between r and the normal vector at (x0, y0, 0) is denoted by θ. The

integration is performed by expressing r as

r =
√

(z2 + (x− x0)2 + (y − y0)2). (2.7)

Inserting equation 2.7 into equation 2.6 yields something complicated to solve. There

are a couple of approximations necessary to arrive at a feasible expression for equa-

tion 2.6, including the Fresnel approximation. The final approximated form of equa-
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0(x0, y0) (x, y)

y

x
z

x0

y0

r

Figure 2.1: Definition of the coordinate system for the propagation of a wavefield ψ0

from an incident plane (x0, y0, 0) to an arriving plane (x, y, z).

tion 2.6 is

ψ(x, y, z) =
eikze

ik
2z

(x2+y2)

iλz

∫∫ ∞

−∞
ψ0(x0, y0)e

ik
x20+y20

2z e−i2π
xx0+yy0

λz dx0 dy0, (2.8)

which is the Fresnel diffraction integral and allows for a propagation to any given

point (x, y, z). When working in long distances, the Fraunhofer approximation can

be utilized that states

z ≫ k
(x20 + y20)max

2
. (2.9)

Exemplarily equation 2.9 is tested for a dataset treated in chapter 3 and 5. The

size of the wavefield is x0 ≈ y0 ≈ 1.8 µm and the wavelength is λ = 0.138 nm. This

yields that the propagation distance z must be much greater than 0.148m, which

is well fulfilled with an actual distance of 2.13m. The Fraunhofer approximation in

6



equation 2.9 allows to simplify Fresnel diffraction integral in equation 2.8 to

ψz(x, y) ≈
eikze

ik
2z

(x2+y2)

iλz

∫∫ ∞

−∞
ψ0(x0, y0)e

−i2π(uxx+uyy) dx0 dy0, (2.10)

in which ux an uy are the spatial frequencies x
λz

and y
λz
, respectively. Equation 2.10

is a 2D Fourier transform F . Hence, the propagation into long distances, from now

on described as the far-field, is done by applying a Fourier transformation to the

incident wavefield ψ0.

2.1.6 Coherence

Ptychography relies on coherent radiation. The definition of coherence given here

originates from [37]. The term coherence describes a constant phase relation of

wavefields. Assuming two photons are in phase at a certain time and position.

They will become out of phase due to propagation when the photons are not

perfectly monochromatic or do not propagate in the same direction. The non-

monochromaticity is described by the longitudinal coherence length LL

LL = 0.5 · λ
2

∆λ
, (2.11)

which states that two photons with a wavelength difference ∆λ are out of phase

after propagating a distance of LL.

When two photons are out of phase due to the divergence of the individual propa-

gation paths, then it is referred to as transverse coherence. The transveral coherence

length describes the dimensions of the propagated wavefield perpendicular to the di-

rection of the propagation, in which the wavefield is still coherent. The transversal

coherence length LT depends on the size D of the source and distance R from the

source

LT =
λ

2

R

D
. (2.12)

2.1.7 Synchrotron Radiation

Using coherent X-rays for imaging implies that these must be produced. For X-

ray ptychography, the source of choice is a synchrotron radiation source, which can

produce an intense flux of coherent X-ray photons. Details about the principles

of synchrotron radiation can be found in [37]. The range of energy varies from
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soft X-rays with wavelengths roughly between 1 nm and 10 nm to hard X-rays with

wavelengths below 1 nm.

2.2 Ptychography

The information about ptychography in this section can be found in [39], if not

otherwise noted.

Over the past years, ptychography has evolved to a reliable and stable imaging

modality that produces reconstructions of various types of materials in 2D and 3D

[1], [29], [40]–[42]. Additionally, ptychography reconstructs the illuminating wave-

field, making ptychography a feasible tool for optics characterization [43]–[45].

A reason for the popularity of ptychography is a magnification beyond the res-

olution of conventional scanning X-ray microscopy methods. This is achieved by

analyzing the 2D diffraction patterns, which measure the intensity at the detector.

The intensity is the squared modulus of the incident wavefield and the phase in-

formation is lost. Ptychography reconstructs the amplitude and phase of the object

and the illumination. The detector and a ptychographic reconstruction algorithm

act as a virtual lens, thereby achieve a magnification that is limited by the resolv-

able scattering vectors q⃗ in the diffraction pattern and not by the focal size of the

X-ray optics.

In the following, it is described how the magnification of a ptychographic re-

construction can be calculated. The opening angle γ between the sample and the

detector is

γ = tan−1

(
ndd

2s

)
, (2.13)

in which the number of pixels along one dimension of the diffraction pattern is

described by nd and the length of one detector pixel is described by d. The distance

between the sample and the detector is described by s. The length l of one pixel in

a ptychographic reconstruction is then

l =
λ

2 sin(γ)
. (2.14)

The reconstruction pixel size l is the theoretical lower limit for the spatial resolution.

The practical limit is given by maximum resolvable intensity at the scattering vector

q⃗ in the diffraction pattern.

The next section summarizes the general mathematical relations of the standard
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ptychographic model. With these prerequisites, four ptychographic reconstruction

algorithms are introduced: the extended Ptychographic Iterative Engine (ePIE), the

refractive Ptychographic Iterative Engine (refPIE), the Difference Map (DM) and

a custom algorithm denoted as parallel extended Ptychographic Iterative Engine

(pePIE). Finally, the software used to perform all ptychographic reconstructions in

this thesis is presented.

2.2.1 The Ptychographic Model

Figure 2.2: An illustration of the experimental procedure for the collection of a pty-
chographic dataset. The sample is scanned in the (x, y) plane. A coherent
and spatially confined illumination propagates along the z axis and in-
teracts with the sample. A 2D detector is located behind the sample to
collect the diffraction patterns.

Ptychography aims to reconstruct the phase shift δ and amplitude decrease β

of the sample, that is spatially resolved in 2D in the (x, y) plane. A schematic

representation of an experimental setup is shown in figure 2.2. The sample is the

Baboon test image. During the experiment, the sample is scanned in 2D in the (x, y)

plane with a coherent and spatially confined illumination that propagates along the

z direction. A 2D detector is located behind the sample to acquire the diffraction

patterns that result of the interaction by the sample with the illumination.

A necessity for ptychography is that the illuminated regions of adjacent scan

positions overlap, such that the resulting dataset has a certain degree of redundancy.
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This is illustrated in figure 2.3. The amplitude and phase of the Baboon sample are

shown in a) and d), respectively. The gaussian-shaped amplitude and gaussian-

shaped phase of an example illumination is shown in b) and e), respectively. The

red dots in a) mark the locations where the illumination is positioned and the

illumination amplitude in b) has a red dot in the center for easier correlation.1 The

original object has a square shape with 510 px edge length, the illumination has a

square shape with 256 px edge length. The object needs to be enlarged to the left,

right, top, and bottom by half the illumination size. This is necessary to model

the object illumination interaction at the edge regions of the object. The object and

illumination in figure 2.3 a), b), d), and e) have the same pixel size. It is obvious, that

the illuminated regions of adjacent scan positions overlap. Bunk, et al., recommend

an overlap ratio of 60% for reliable reconstructions [46].

The sample is represented by the so-called object-transmission function O(x, y)

O(x, y) = e−ik
∫
δ(x,y,z) dze−k

∫
β(x,y,z) dz, (2.15)

in which k = 2π
λ
is the wave vector, and δ and β are the real and imaginary part of the

complex refrective index decrement, respectively. Both quantities must be integrated

along the full propagation path through the material. The spatial coordinates (x, y)

are now described by the vector r⃗. The illumination is represented by P (r⃗). Following

the thin-object approxmiation, the interaction of O and P can be described by a

multiplication

ψn(r⃗) = P (r⃗)O(r⃗ − r⃗n). (2.16)

Here, the index n has been introduced and denotes the shift r⃗n of the object

and the associated diffraction pattern In. The notation by n is valid throughout the

entire thesis. The product of O and P represents the wavefield after the illumination

P has interacted with the object O, and is described as the exit wavefield ψn.

In its essence, equation 2.16 represents the right side of equation 2.4, in which P

denotes the first term and O the latter term.

1Scan positions that lie on a perfect regular grid can cause an artifact in the ptychographic
reconstruction. The artifact is commonly denoted as grid pathology and appears as a regular
pattern throughout the object reconstruction. However, for the simulations done in this work,
grid pathology has not been observed, such that it is fine to place the scan positions on a regular
grid.
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Figure 2.3: An illustration of the quantities that appear in ptychography. a) The
amplitude of the exact object-transmission function. The red dots mark
the scan positions r⃗n. b) The amplitude of the illumination. The center
of the illumination is marked by the red dot to easier correlate where
the illumination is positioned in the object. c) The amplitude of an
ePIE reconstruction of the object-transmission function. d) The phase
of the exact object-transmission function. e) The gaussian-shaped phase
of the illumination. f) The phase of an ePIE reconstruction of the object-
transmission function. Some minor differences in the value range between
the exact object in a) and d) and the reconstructed object in c) and f)
can be seen. Overall, the contrast of the object is reconstructed very
well.

The exit wavefield ψn can be propagated into the detector plane by

Ψn(q⃗) = F [ψn(r⃗)], (2.17)

in which F represents the Fourier transform for a propagation into the far-field.
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All datasets evaluated in this thesis have a far-field experimental geometry. The

propagated exit wavefield is denoted by Ψn and the reciprocal space coordinate is

denoted the vector q⃗.

The diffraction patterns measure the intensities In that Ψn exerts on the detec-

tor. Mathematically, the amplitude is the square root of the intensity, so that the

modulus of Ψn can be updated by

|Ψ′
n(q⃗)| =

√
In(q⃗), (2.18)

and the phases are kept unchanged. The updated propagated exit wavefield is de-

noted by Ψ′
n.

An afterwards backpropagation into the object plane is done

ψ′
n(r⃗) = F−1[Ψ′

n(q⃗)], (2.19)

in which ψ′
n denotes the updated exit wavefield and F−1 denotes an inverse Fourier

transform.

The steps so far represent the relations between the reconstructed and measured

quantities and may appear somehow in all ptychographic algorithms that exist. How

these relations are used to determine the object O and the illumination P depends

on the algorithm. Nowadays, there exist a lot of ptychographic algorithms [47]–[60].

Four of those are presented in the next sections.

2.2.2 extended Ptychographic Iterative Engine

The extended Ptychographic Iterative Engine (ePIE) has been introduced by Maiden

and Rodenburg in 2009 [50] and is an extension of the Ptychographic Iterative

Engine (PIE) [47]. The problem with PIE is that it is not able to reconstruct the

illumination P . However, ePIE is able to recover the probe. The procedure is a

cycling through the diffraction patterns In in a random order. For each diffraction

pattern, the steps in equation 2.16 to 2.19 are pursued and after the backpropagation,

the object O and illumination P are updated by

O′(r⃗ − r⃗n) = O(r⃗ − r⃗n) + α
P ∗(r⃗)

||P (r⃗)||2max

(ψ′
n(r⃗)− ψn(r⃗)), (2.20)

P ′(r⃗) = P (r⃗) + β
O∗(r⃗ − r⃗n)

||O(r⃗ − r⃗n)||2max

(ψ′
n(r⃗)− ψn(r⃗)). (2.21)
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The updated object and illumination are denoted by O′ and P ′, respectively.

The complex conjugates of P and O are denoted by P ∗ and O∗, respectively. The

denominator in the second terms denotes an euclidian norm. The factors α and β

denote the update strengths and can be set by the user. One iteration of the ePIE

algorithm consists of a cycling through all diffraction patterns. The reconstruction

is iterated until O and P converge.

An example ePIE reconstruction of the Baboon test dataset is shown in figure 2.3

c) and f). The object is reconstructed very well. Some minor differences in the value

range can be identified, but the contrast of the reconstruction matches the original

object in a) and d).

2.2.3 refractive Ptychographic Iterative Engine

The refPIE has been introduced by Wittwer, et al. [52]. In contrast to the before in-

troduced ePIE, refPIE directly reconstructs the complex refractive index decrement

ν and not the object-transmission function O. This is beneficial, since the phase

shift δ of ν is not 2π periodic and thicker objects can be reconstructed without

the common problem of phase wraps. The precise derivation of the refPIE can be

obtained from [61] and [52]. Here, only the equations are restated that are necessary

to implement the refPIE.

For the processing of one diffraction pattern, the first step is the calculation of

the object-transmission function O

O(r⃗) = eikν(r⃗). (2.22)

Then, the steps of equations 2.16 to 2.19 are performed. The major difference of

refPIE comes now regarding the update of the refractive index decrement ν and the

illumination P . The equations are

ν ′(r⃗ − r⃗n) = ν(r⃗ − r⃗n) +
α

k

(iψn(r⃗))
∗

|ψn(r⃗)|2max

(ψ′
n(r⃗)− ψn(r⃗)), (2.23)

P ′(r⃗) = P (r⃗) + β
e−ikν∗(r⃗−r⃗n)

|eikν(r⃗−r⃗n)|2max

(ψ′
n(r⃗)− ψn(r⃗)), (2.24)

in which ν ′ denotes the updated complex refractive index decrement. The refPIE

procedure is similar to ePIE: One iteration consists of performing the before men-

tioned steps for every diffraction pattern. The diffraction patterns are processed in

a random order. The reconstruction is iterated until ν and P converge.
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2.2.4 Difference Map

Thibault, et al., introduced the Difference Map (DM) algorithm for ptychography

in 2009 [51]. During that time, ePIE did not exist yet. The DM algorithm is capable

of recovering the probe and hence, the DM in the application of ptychography is

seen as a milestone [39]. The DM algorithm differs significantly from the before

introduced ePIE and refPIE. It is a projection based algorithm that processes all

diffraction patterns simultaneously. Each diffraction pattern In is associated with

an exit wavefield ψn. All exit wavefields are summarized in the state vector Φ.

Φ = ψ1, ψ2, ...ψN (2.25)

The DM procedure considers two projections: First, the Fourier projection ΠF that

replaces the modulus in each exit wavefield ψn by the square root of the diffraction

patterns In

ΠF (ψn) = F−1(
√
Ine

i arg(F(ψn))). (2.26)

Second, the real space projection ΠO, allowing to factorize the exit wavefield ψn into

the object O and the illumination P .

ΠO(ψn) = P (r⃗)O(r⃗ − r⃗n). (2.27)

The real space projection can be carried out numerically, by varying O and P , so

that the following equation is minimized

||ψ(r⃗)− ψ0(r⃗)||2 =
∑
n

∑
r

|ψn(r⃗)− P (r⃗)O(r⃗ − r⃗n)|2. (2.28)

Alternatively, a gradient-based determination of the real space constraint can be

done

O′(r⃗ − r⃗n) =

∑
n P

∗(r⃗)(ψn(r⃗))∑
n |P (r⃗)|2

, (2.29)

P ′(r⃗) =

∑
nO

∗(r⃗ − r⃗n)(ψn(r⃗))∑
n |O(r⃗ − r⃗n)|2

. (2.30)
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With these projections, the iterative procedure follows

Φi+1 = Φi +ΠF (2ΠO(Φi)− Φi)− ΠO(Φi), (2.31)

in which i denotes the iteration index. The reconstruction is iterated until Φ con-

verges.

2.2.5 parallel extended Ptychographic Iterative Engine

The parallel extended Ptychographic Iterative Engine (pePIE) follows the ePIE,

except that the object O and the illumination P are updated by all diffraction

patterns simultaneously

O′(r⃗) = O(r⃗) +
∑
n

P ∗(r⃗ + r⃗n)(ψ
′
n(r⃗)− ψn(r⃗))∑

n |P (r⃗ + r⃗n)|2
, (2.32)

P ′(r⃗) = P (r⃗) +
∑
n

O∗(r⃗ − r⃗n)(ψ
′
n(r⃗)− ψn(r⃗))∑

n |O(r⃗ − r⃗n)|2
. (2.33)

The notable difference is the denominator. While in the ePIE updates in equa-

tions 2.20 and 2.21, the denominator is given as the maximum value of the squared

modulus, here, the denominator is just the squared modulus.

The pePIE can yield smoother reconstructions. This is due to the simultaneous

refinement against all diffraction patterns, such that the reconstructed object is less

influenced by local changes of individual diffraction pattern. Typically, the pePIE is

applied after a regular ePIE reconstruction.

The simultaneous processing of the diffraction patterns is a similarity to DM.

However, the pePIE is a different algorithm than DM and follows a very different

procedure.

2.2.6 Software

Nowadays, there exists a variety of software to do ptychography [62]–[70]. Although

such a great amount of software is available, it is still common that experimentalists

implement their own reconstruction procedures. All developments in this work are

implemented to the software ptycho. It is a custom software that exists for more

than a decade. The software is written in C++. It has been developed and extended

by several researchers in the past. The most thorough explanation of it is given by
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Robert Hoppe in his PhD thesis [71].

All calculations are performed on a GPU. The mathematical operations are im-

plemented by the utilization of the CUDA software, so that ptycho can only run on

Nvidia GPUs. The majority of the matrix operations are implemented with custom

written kernels. In some cases, Thrust is used to implement simple mathematical

operations. The Fourier transform is utilized from the CuFFT library. By the time of

writing this thesis, ptycho runs on a single GPU and has no options to use multiple

GPUs.

The three ptychographic reconstruction algorithms ePIE, refPIE, and pePIE can

be utilizied with ptycho. At this point, a misconception is discussed. In the config-

uration file of ptycho and in PhD thesis of Robert Hoppe, the pePIE is denoted as

DM [71]. The pePIE and the DM have the similarity that both process all diffraction

patterns simultaneously. However, the DM is a different algorithm that may give dif-

ferent results as pePIE. This misconception has propagated to mistakes in existing

publications, such as the authors contribution to the SPIE Conference Proceedings

in 2022 [72].

Further features of ptycho are constraining of the reconstructed object O by its

amplitude and phase, constraining the reconstructed illumination amplitude |P |,
momentum acceleration [49], background correction [71], multi-beam [73], [74], up-

scaling [75], multi-slicing [76], [77] and the utilization of a beamstop. Furthermore,

ptycho can refine the scan positions during the reconstruction, which is described

in more detail in section 2.2.6 [78].

The described features make ptycho a reliable software to reconstruct the datasets

acquired at the Ptychographic Nano-Analytical Microscope (PtyNAMi) [22] at the

nanoprobe endstation of beamline P06 [79], PETRA III, Deutsches Elektronen-

Synchrotron (DESY).

Position Refinement

Scan position refinement is an essential part of ptychography, especially when the

microscope cannot yield a stability similar to the resolution of the ptychographic

reconstruction. There are several well estabilished approaches for position refinement

[80]–[82].

The scan position refinement used in this work is a custom procedure by Schropp,

et al., and has been briefly mentioned in [78]. The approach is a brute-force attempt

to find the scan position r⃗n that matches best the corresponding measured diffraction

pattern In.
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For a given scan position r⃗n, a set of positions r⃗p around r⃗n is set up. For each r⃗p,

the least squares error ϵn,p is calculated by the following:

ϵn,p =
∑
q⃗

∣∣In(q⃗)− |F{P (r⃗)O(r⃗ − r⃗n − r⃗p)}|2
∣∣2 (2.34)

The refinement minimizes ϵn,p to determine the position shift r⃗p. The scan position

r⃗n is then updated by

r⃗n = r⃗n + r⃗p. (2.35)

The set of positions r⃗p is specified as a square grid with the spread rp. For rp = 1,

the xp and yp components of the set of r⃗p are xp = yp = {−1, 0, 1}, such that 9

different r⃗p are utilized in total. A rp = 2 gives 25 different r⃗p, and so forth.

2.3 Tomography

The information about tomography in this section can be found in [83], if not oth-

erwise noted. Additionally, some of the figures have been created with inspiration

from [7].

Tomography describes the full spatial reconstruction of an object f from a set

of projections DΩ. A projection is an integrated view of the object from a specific

perspective. In section 2.3.1, the general mathematical relations of tomography are

given. Section 2.3.2 introduces the concept of a sinogram, which is a useful de-

scription especially for parallel-beam tomography, the type of tomography treated

in this thesis. A first illustrative approach to solve the tomographic problem, re-

ferred to as the the standard Backprojection (BP), is introduced in section 2.3.3,

and it will be shown that this approach creates artifacts in the reconstructed object.

Hence, in section 2.3.4, the Filtered Backprojection (FBP) along with the Fourier

slice theorem is introduced, which explains the artifacts caused by the BP and gives

an analytical solution of the tomographic problem. In sections 2.3.5 and 2.3.6, two

popular numeric approaches for solving the tomographic problem are introduced,

the Simultaneous Iterative Reconstruction Technique (SIRT) and the Conjugate

Gradient Least Squares (CGLS).
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Figure 2.4: A schematic drawing of the data acquisition of full-field parallel-beam
absorption tomography. The sample is a 3D Shepp Logan phantom. The
illumination is shown in blue and consists of photons that are all directed
perfectly parallel. Behind the sample is a 2D detector located that cap-
tures the resulting projection. During the experiment, either the sample,
or the illumination and the detector, are rotated around the y-axis by
the angle Ω.

2.3.1 The Tomographic Model

In this work, tomography is only done in parallel-beam geometry. A schematic draw-

ing of a parallel-beam absorption tomography experiment is shown in figure 2.4. The

sample is a 3D Shepp Logan phantom. The illumination is drawn in blue and prop-

agates along the z-axis. Parallel-beam tomography means that all photons of the

illumination are directed perfectly parallel. A 2D detector is located behind the sam-

ple and collects the projections that result due to the absorption of the sample with

the illumination. During the data acquisition, either the sample, or the illumination

and the detector, are rotated around the y-axis by the angle Ω.

Tomography can be done in 2D and 3D. For parallel-beam tomography, the 3D

reconstruction is just a set of 2D reconstructions in the (x, z) plane. The explanation

given here is for 2D only and the y coordinate is moved to the subscript of the object

fy and the projection Dy,Ω.

Consider the object fy(x, z) visible in figure 2.5 a), this is one of the central (x, z)

slices of the Shepp Logan phantom in figure 2.4. The reconstruction of this object
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Figure 2.5: An illustration how a projection Dy,Ω is calculated from the object
fy(x, z). Every projection is associated with the projection angle Ω. In
this illustration, the surrounding frame is rotated. The red line in the
left image marks the projection axis t after rotating around Ω. For each
value of t, the line integral marked by the dashed green line is calculated.
The right image shows the resulting projection.

fy(x, z) is exactly the aim of tomography. However, the only information available

are the projections Dy,Ω. One projection Dy,Ω for Ω = 30◦ is shown in figure 2.5

b). The projection angle Ω is marked in blue in figure 2.5 a). From here on, it is

assumed that it is the illumination and detector that is rotated, and the object stays

fixed. The projection is a set of line integrals. The position of the line integral in

the projection is specified by the projection coordinate t, which is calculated by

t = x cosΩ + z sinΩ. (2.36)

The axis of the projection coordinate t is shown in red in figure 2.5 a). The line

integral is calculated by

Dy,Ω(t) =

∫
(Ω,t)

fy(x, z) ds, (2.37)

in which s denotes the path of the line, i.e. the dashed green line in figure 2.5 a).2

2For the absorption tomography setup depicted here, the projections measure the transmission.
The transmission is not linearly integrable over the object space, such that equation 2.37 is
violated and the transmission is not suitable for a tomographic reconstruction. However, the
absorption β can be calculated from the transmission using the Lambert-Beer law and β is
linearly integrable over the object space.
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A more convenient description is obtained by replacing the integration variable s

with (x, z). This can be done utilizing a delta-function δ̃ and the definition of t in

equation 2.36.3

Dy,Ω(t) =

+∞∫
−∞

+∞∫
−∞

fy(x, z)δ̃(t− (x cos(Ω) + z sin(Ω))) dx dz (2.38)

This expression has been introduced by Johann Radon and is called the Radon

transformation [84]. The equation describes how a projection Dy,Ω(t) is created from

the real object fy(x, z) under a certain projection angle Ω. Equation 2.38 describes

the forward process, however, the scientific interested is in the backward process.

The backward process meets exactly the problem that has been depicted so far,

namely the reconstruction of an object fy(x, z) from a set of projections Dy,Ω.

2.3.2 Sinogram

A sinogram is the measured projection Dy,Ω drawn against the projection angle Ω.

The sinogram for the Shepp Logan phantom for an angular range of 180◦ is shown

in figure 2.6. For parallel-beam tomography, the sinogram contains all information

necessary to reconstruct the object fy(x, z). This makes the sinogram a feasible

tool when assessing the quality of a tomographic dataset. In figure 2.6, the visible

structures are very smooth without any discontinuities, indicating the good quality

of the test dataset.

2.3.3 Standard Backprojection

A concept is now introduced which is referred to as the standard Backprojection

(BP). It is an illustrative attempt to solve the tomographic problem, but it is stressed

that it is not a solution. Nevertheless, it will have an impact for the developments

in chapter 5.

Each Dy,Ω is simply put back into fy(x, z) with the definition of t

fy(x, z) =

2π∫
0

+∞∫
−∞

Dy,Ω(t)δ̃(t− (x cos(Ω) + z cos(Ω))) dt dΩ. (2.39)

One realizes that this approach is ambiguous. Following the definition of Dy,Ω in

3The delta function is denoted by δ̃ and not δ. The δ symbol already denotes the phase shift of
the complex refractive decrement ν in equation 2.5.
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Figure 2.6: The sinogram of the Shepp Logan test dataset. The projection coordinate
t is given on the horizontal axis and the projection angle Ω is given on
the vertical axis. For parallel-beam geometry, the sinogram contains all
information to perform the tomographic reconstruction of fy(x, z).

equation 2.38, the integration is happening over x and z, and hence, Dy,Ω has no

information which pixels in fy(x, z) actually contribute to Dy,Ω. This means that a

pixel in Dy,Ω is reconstructed as a straight line in fy(x, z). However, since there is not

only a single Dy,Ω(t), but a series for different Ω, many lines are drawn and overlap,

so that it is possible to reconstruct an approximation of fy(x, z). The result of the

standard BP for the sinogram in figure 2.6 is shown in figure 2.7. The reconstructed

object can be identified, but comparing the original image in figure 2.5 a) and the

reconstruction in figure 2.7 clearly shows that the reconstruction is blurred. The

blurring is a natural result of the standard BP. In the next section, the FBP is

introduced, which description explains why the blurring occurs.

2.3.4 Filtered Backprojection

The Filtered Backprojection (FBP) is an analytic solution to the tomographic prob-

lem and is derived in this section. The derivation is started by introducing the

Fourier Slice Theorem, which states that the Fourier transform of a projection is
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Figure 2.7: A reconstruction of the Shepp Logan test dataset using the BP. The
reconstruction is significantly blurred.

the same as a line rotated by Ω in the 2D Fourier transform of the object. The

Fourier transform of the projection Dy,Ω is calculated by

Sy,Ω(q) =

∫ ∞

−∞
Py,Ω(t)e

−i2πqt dt, (2.40)

in which Sy,Ω denotes the Fourier transformed projection and q denotes the spatial

frequency corresponding to t. The 2D Fourier transform of the object Fy is given by

Fy(u,w) =

+∞∫
−∞

+∞∫
−∞

fy(x, z)e
−i2π(ux+wz) dx dz, (2.41)

in which (u,w) are the spatial frequencies that correspond to the spatial coordinates

(x, z). The frequencies (u,w) can be calculated from (q,Ω) by

u = q cos(Ω), (2.42)

w = q sin(Ω). (2.43)

Figure 2.8 a) shows the Fourier transformed projection Sy,Ω=30◦ drawn in the 2D

frequency space of the object. When performing this step for a sufficient amount of

projections with different Ω, then the Fourier space is sufficiently sampled and the

object fy(x, z) can be determined by calculating the inverse 2D Fourier transform
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Figure 2.8: a) A Fourier transform of one projection Sy,Ω(q) drawn in the frequency
space of the object. b) The Fourier transforms of 60 projections over an
angular range of 180◦. c) The ramp filter |q| used as the filter in Fourier
space for the FBP.

of Fy(u,w)

fy(x, z) =

+∞∫
−∞

+∞∫
−∞

Fy(u,w)e
i2π(ux+wz) du dw. (2.44)

To derive the FBP, equation 2.44 needs to be reformulated to utilize the pro-

jections Sy,ω instead of Fy. Since the projections in frequency space are defined by

(q,Ω), polar coordinates are introduced into equation 2.44. With the relations in

equation 2.42 and 2.43, the integration variables can be rephrased to

du dw = q dq dΩ. (2.45)

Inserting equation 2.42, 2.43 and 2.45 into equation 2.44 gives

fy(x, z) =

2π∫
0

+∞∫
0

Fy(q,Ω)e
i2πq(x cos(Ω)+z sin(Ω)) q dq dΩ, (2.46)

In the following, a reformulation of equation 2.46 is applied that explains why

the blurring occurs and why an angular range of 180◦ is sufficient to reconstruct a

parallel-beam tomography dataset. With basic trigonometry, equation 2.46 can be
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rephrased to

fy(x, z) =

π∫
0

+∞∫
−∞

Fy(q,Ω)|q|ei2πq(x cos(Ω)+z sin(Ω)) dq dΩ. (2.47)

The reformulation can be found in [83] in smaller steps and with more details.

x

z

Figure 2.9: The FBP reconstruction of the Shepp Logan test dataset. In contrast to
the BP reconstruction, the FBP reconstruction is not blurred.

Now, without any loss of generality, Fy(q,Ω) can be replaced by Sy,Ω(q), yielding

fy(x, z) =

π∫
0

+∞∫
−∞

Sy,Ω(q)|q|ei2πqt dq dΩ. (2.48)

This is the analytic inversion of equation 2.37 and known as the inverse Radon

transformation. It states that the object fy(x, z) can be reconstructed from an in-

finite amount of Fourier transformed projections Sy,Ω(q) over an angular range of

180◦. What is different to the standard BP in equation 2.39 is the filtering by the

factor |q|, which is known as the ramp filter and shown in figure 2.8 c). The necessity

of this operation is due to the fact that the low spatial frequencies are much higher

sampled than the high spatial frequencies, which can be seen in figure 2.8 b). While

the central low frequency regions are already densely sampled for an amount of only

60 projections, the outer high frequency regions are not dense sampled at all. The

oversampling of the low spatial frequencies causes the blurring visible in the BP

reconstruction in figure 2.7. Smooth features correspond to lower spatial frequen-
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cies and sharp features to higher spatial frequencies. The filtering by |q| equalizes
the sampling of the low and high spatial frequencies, such that the FBP yields a

properly reconstructed object fy(x, z) shown in figure 2.9.

In the next sections, two iterative tomographic reconstruction algorithms are in-

troduced: the SIRT and the CGLS.

2.3.5 Simultaneous Iterative Reconstruction Technique

The iterative approaches are also described as algebraic approaches, because they

solve the tomographic problem as a set of linear equations. In contrast to the analytic

description of the BP and FBP in section 2.3.3 and 2.3.4, respectively, the algebraic

approaches solve the tomographic problem on a finite pixel grid. The finiteness of

the object and projection space is always given for experimental datasets, due to

the fact that detectors contain a pixel array by which the projections are acquired.

First, the forward projection in equation 2.38 is reformulated for finite sizes

Dy,Ω,t =
∑
x

∑
z

fy,x,zΘΩ,t,x,z. (2.49)

To calculate the forward projection, the entire object f is iterated. The coordi-

nates (x, z) are now the positions on the pixel grid and hence, the integrals have

been replaced by sums. The delta function δ̃ has been replaced by a 4D matrix Θ,

that relates which pixel fy,x,z of the object constitutes to which value Dy,Ω,t in the

projection.

Consider the ray paths shown in figure 2.10. The yellow path is well aligned with

the coordinate system, which refers to Ω = 0◦. The most left position of the yellow

ray path refers to t = 0. This gives ΘΩ,t,x,z = 1 for all z with x = 0. All positions

with z > 0 have ΘΩ,t,x,z = 0.

The situation is more complicated for ray paths that are not well aligned with the

coordinate system, such as the green path in figure 2.10. The exact fractional area

of a specific pixel in the ray path is denoted as Aray, such as the black marked area

in figure 2.10. The total area of one pixel is denoted by Apixel. The value ΘΩ,t,x,z can

be calculated by

ΘΩ,t,x,z =
Aray

Ω,t,x,z

Apixel
. (2.50)

However, the exact calculation of Aray
Ω,t,x,z is tedious and ΘΩ,t,x,z is often approxi-

mated. The procedure of SIRT is as follows.
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Figure 2.10: An illustration of the ray paths in tomography. The yellow path is
perfectly aligned with the coordinate system and the weights ΘΩ,t,x,z

can be calculated trivially. The green ray path is misaligned with the
coordinate system and the calculation of ΘΩ,t,x,z is more elaborate. The
black area must be calculated to determine the exact ΘΩ,t,x,z.

A forward projection G⃗y,Ω of the reconstructed object fy is done using equation

2.49. The difference between the measured projection D⃗y,Ω and G⃗y,Ω is calculated,

which is then backprojected into the reconstructed object fy. The key criteria of

SIRT is that the object is only updated by the average difference obtained from all

projections.4 Putting this into one equation gives the following

f l+1
y,x,z = f ly,x,z +

∑
Ω,t

Dy,Ω,t −Gy,Ω,t∑
Ω,tΘ

2
Ω,t,x,z

ΘΩ,t,x,z, (2.51)

in which the superscript l denotes the iteration index. The numerator is normalized

by the the sum of the squared weights Θ2
Ω,t,x,z of the respective object pixel fy,x,z.

A converged reconstruction utilizing SIRT of the Shepp Logan test dataset is

shown in figure 2.11. The Shepp Logan phantom is reconstructed very well.

4Performing the update of the object fy after each projection pixel would yield the Algebraic Re-
construction Technique (ART) algorithm. Performing the update of the object after all pixels of
one projection yields the Simultaneous Algebraic Reconstruction Technique (SART) algorithm.
[83]
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Figure 2.11: The SIRT reconstruction of the Shepp Logan test dataset of 1000 iter-
ations.

2.3.6 Conjugate Gradient Least Squares

Lastly, the CGLS algorithm is introduced as another iterative approach to address

the tomographic problem. The description is reproduced from [85]. The tomographic

problem first needs to be reformulated to

Ac⃗ = b⃗, (2.52)

in which c⃗ is a 1D vector representing the flattened reconstructed image fy, b⃗

is a 1D vector holding the pixel values of all projections Dy. The 2D matrix A

relates the pixels in the flattened reconstructed image c⃗ to the pixels in projections

b⃗, similar as Θ does in section 2.3.5.

Having the tomographic problem properly formulated in equation 2.52, the CGLS

algorithm proceeds as follows:

First, an initial guess c⃗0 of the solution vector c⃗ is done. If no prior knowledge

about c⃗ is known, then c⃗0 can be zero. Two more vectors are introduced, the residual

r⃗ and the step d⃗. Both have an initial guess r⃗0 and d⃗0, which are calculated by the

following

d⃗0 = r⃗0 = b⃗−Ac⃗0. (2.53)
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Next, the gradient α⃗ of the conjugated residual r⃗ is calculated

α⃗i =
r⃗Ti r⃗i

d⃗Ti Ad⃗i
, (2.54)

which is the reason why the algorithm is called Conjugate Gradient Least Squares.

With α⃗, the object c⃗ is updated by

c⃗i+1 = c⃗i + α⃗id⃗i. (2.55)

The new residual r⃗i+1 is then calculated by

r⃗i+1 = r⃗i − α⃗iAd⃗i. (2.56)

And, the new step d⃗i+1 is calculated by

d⃗i+1 = r⃗i+1 +
r⃗Ti+1r⃗i+1

r⃗Ti r⃗i
d⃗i. (2.57)

The algorithm is iterated until the reconstruction converges.

2.3.7 Software

All tomographic operations within this work are done utilizing the ASTRA-Toolbox,

which is an open source library dedicated to perform tomographic reconstructions

[86]. Although most commonly used by either Python or Matlab bindings, its func-

tionalities are written in C++/CUDA.

The ASTRA-Toolbox provides parallel-beam and cone-beam geometry in 2D and

3D. Throughout this work, only the parallel-beam geometry is applicable. The ap-

plicable GPU-accelerated 3D reconstruction algorithms are the standard BP, the

SIRT, and the CGLS. The algorithms run on a single GPU.5

5Distributing parallel-beam tomography on multiple GPUs is trivial. The object f and the pro-
jections DΩ can be easily split up and distributed among several GPUs.
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2.4 Ptychographic Tomography

After ptychography and tomography have been introduced in sections 2.2 and 2.3,

respectively, this section is dedicated to the combination of ptychography and to-

mography. In section 2.4.1, it is elaborated how a ptychographic tomographic dataset

is acquired. The first reconstruction approach is introduced in section 2.4.2 and is

the straight-forward and intuitive approach for combining ptychography and tomog-

raphy. It does a two-step procedure, which first reconstructs a set of ptychographic

projections, that are used for an afterwards tomographic reconstruction. Section

2.4.3 introduces a more recent approach that has been introduced in 2017 and for-

mulates the ptychographic tomographic reconstruction as a single mathematical

description [28].

2.4.1 Data Acquisition

Figure 2.12: An illustration of the experimental setup for ptychographic tomogra-
phy. The sample is a 3D Shepp Logan phantom. The illumination prop-
agates along the z dimension and interacts with the sample. A 2D de-
tector is located downstream to collect the diffraction patterns. During
the experiment, the sample is scanned in the (x, y) plane for a series of
projection angles Ω. Either the sample, or the illumination and detec-
tor, are rotated around the y-axis.

The experiment proceeds by acquiring a set of ptychographic projections for an

angular range of at least 180◦. A schematic representation of an experimental setup
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is shown in figure 2.12. For each projection angle Ω, the sample is scanned in the

(x, y) plane with a coherent and spatially confined illumination. A 2D detector is

located downstream to collect the diffraction patterns. The resulting dataset is 5D

and has the shape (nΩ, ny, nx, nv, nu). The number of projection angles is denoted by

nΩ. The number of scanning steps in the vertical and horizontal direction is denoted

by ny and nx, respectively. The number of detector pixels along the vertical and

horizontal dimension is denoted by nv and nu, respectively.

2.4.2 Ptychographic X-ray Computed Tomography

Ptychographic X-ray Computed Tomography (PXCT) is the utilization of ptycho-

graphic projections for a subsequent tomographic reconstruction. The approach ex-

ists almost as long as ptychography and is well established in literature [1], [3], [24],

[40], [87]. Ptychographic projections are perfectly suited for the tomographic model.

In equation 2.37, the tomographic model requires that the modality of interest is

linearly integrable over the object space. In most ptychographic algorithms, it is the

projected object-transmission function OΩ that is calculated and OΩ is not linearly

integrable over the object space. However, from OΩ, the projected complex refractive

index decrement νΩ can be calculated by reformulating equation 2.15 to

νΩ(r) = − i

k
log(OΩ(r)), (2.58)

and νΩ is linearly integrable.

In practice, one would first reconstruct all projections with a ptychographic al-

gorithm of choice, e.g. one of the presented algorithms in section 2.2.2 to 2.2.5. All

projections must represent the projected complex refractive index decrement νΩ.

The projections νΩ are then the input for any of the tomographic algorithms

presented in section 2.3.4 to 2.3.6. The only noticable difference to the description

of tomography in section 2.3 is that the contrast is now a complex number. The

projections νΩ are analytically just

νΩ(t, y) =

∫
(Ω,t)

ν(x, y, z) ds (2.59)

νΩ(t, y) =

∫
(Ω,t)

−δ(x, y, z) + iβ(x, y, z) ds (2.60)

Since the phase shift δ and the absorption β of ν are additive, the integration can

be done separately.
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νΩ(t, y) = −
∫
(Ω,t)

δ(x, y, z) ds+ i

∫
(Ω,t)

β(x, y, z) ds (2.61)

−δΩ(t, y) + iβΩ(t, y) =

∫
(Ω,t)

−δ(x, y, z) ds+ i

∫
(Ω,t)

β(x, y, z) ds (2.62)

The projected complex refractive index νΩ has been split up into scattering −δΩ and

absorption βΩ. A tomographic algorithm can be applied separately to the set of −δΩ
and the set of βΩ.

2.4.3 Coupled Ptychographic Tomography

Coupled Ptychographic Tomography (CPT) performs the ptychographic and tomo-

graphic reconstruction simultaneously. This is in contrast to PXCT, which does a

subsequent tomographic reconstruction of the converged ptychographic projections.

The CPT procedure presented here has been first introduced and tested on sim-

ulated data by Gursöy in 2017 [88]. Kahnt, et al., have successfully applied it on

experimental data in 2019 [29].

The CPT reconstruction starts by first defining a volume that holds the 3D com-

plex refractive index decrement ν(x, y, z)

ν(x, y, z) = −δ(x, y, z) + iβ(x, y, z). (2.63)

In case of no prior knowledge about the sample, the volume ν can be initialized as

zero. Then, the existing volume is projected into 2D with the Radon transformation

defined in equation 2.38.

νΩ(t, y) =

∫
(Ω,t)

ν(x, y, z) ds. (2.64)

This yields the forward projection νΩ, with which the projected object-transmission

function OΩ can be calculated

OΩ(t, y) = e−ikδΩ(t,y)e−kβΩ(t,y). (2.65)

Furthermore, each ptychographic projection refines an individual illumination PΩ.

The forward projected object-transmission function OΩ and the illumination PΩ are
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updated by one iteration of a ptychographic reconstruction algorithm P

O′
Ω(t, y) = PO[PΩ(t, y), OΩ(t, y)], (2.66)

P ′
Ω(t, y) = PP [PΩ(t, y), OΩ(t, y)] (2.67)

in which O′
Ω denotes the updated projected object-transmission function and P ′

Ω

denotes the updated illumination. In principle, the ptychographic update can be

performed utilizing an arbitrary algorithm, e.g. one of the algorithms introduced

in 2.2.2 to 2.2.5.6 The updated projected complex refractive index decrement ν ′Ω is

calculated

ν ′Ω(t, y) = − i

k
log (O′

Ω(t, y)). (2.68)

Lastly, the 3D complex refractive index decrement is updated by ν ′Ω using a to-

mographic reconstruction algorithm TΩ

ν ′(x, y, z) = TΩ(ν
′
Ω(t, y)). (2.69)

The updated volume of the complex refractive index decrement is denoted by ν ′.

Candidates for the tomographic update TΩ are especially the iterative approaches

presented in sections 2.3.5 and 2.3.6.

One iteration of the CPT procedure consists of processing each projection once.

The projections are processed sequentially. The reconstruction is iterated until the

contrast of the reconstruction converges.

In principle, the FBP can be utilized for the tomographic update, too, but it comes

with some extra work. The tomographic update of ν ′ by an FBP is a result of an

inverse Fourier transform. Within CPT, it is essential that the existing volume ν is

considered during the tomographic update. To achieve this consideration, one would

need to do a forward projection of all other projection angles Ω and perform the

FBP of all projections. For this situation, it may be favorable to perform the ptycho-

graphic update of all projections simultaneously, to not incorporate a performance

overhead.

6When using refPIE as the ptychographic reconstruction algorithm, equation 2.65 and 2.68 do not
need to be applied, since refPIE directly operates on the complex refractive index decrement νΩ.
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3 Ensemble Refinement

This chapter introduces the Ensemble Refinement (ER), which is an approach for

ptychography to algorithmically correct for vibrations that occur during the data

acquisition.

The ptychographic data acquisition consists of scanning the sample transversally

to the direction of the illumination, as shown in figure 2.2. The step sizes used for

such a scan at PtyNAMi are typically between 50 nm and 500 nm and the typical

exposure time at PtyNAMi is between 50ms and 1000ms [22]. The ideal ptycho-

graphic model assumes that there is no relative movement between the illumination

and the sample during the exposure of a scan position r⃗n.

Figure 3.1: The result of the vibration characterization at PtyNAMi conducted by
Martin Seyrich. The movement of the object is shown for each scan
position r⃗n for a step scan with 0.2 s exposure time. The blue curves
refer to the setup used for the acquisition of the datasets evaluated in
this work. The orange curves refer to a setup that is not used in this
work. [89]

In figure 3.1, Martin Seyrich has characterized the vibrations that occur at PtyNAMi

utilizing a set of optical interferometers [89]. The blue curves show the relative move-
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ment between object and illumination for the mechanical setup utilized to collect

the datasets evaluated in this work. The orange curves refer to a setup that is not

utilized throughout this work. The vibrations at PtyNAMi during a 0.2 s exposure

may be roughly up to 50 nm horizontally and 20 nm vertically. The typical real

space pixel size of ptychographic datasets collected at PtyNAMi is between 10 nm

and 20 nm.

The vibrations can cause a blurring of the reconstructed object. Assuming that a

dataset has a real space pixel size of 10 nm, then a diffraction pattern In corresponds

up to 5 px horizontally and up to 2 px vertically. The approach in this chapter follows

the idea, that the vibrations per scan position can be modeled as a incoherent

superposition of a slightly shifted object in the measured diffraction pattern In.

In section 3.1 the extension to the ptychographic model with ePIE as reconstruc-

tion algorithm is introduced that can account and correct for the before mentioned

vibrations. This novel model is referred to as the Ensemble Refinement (ER). Section

3.2 performs preliminary tests on a simulated dataset to verify the general working

principle of the ER. Then, the ER is applied to two experimental datasets in sections

3.3 and 3.4. The approach presented here yields a significantly reduced performance,

which is elaborated in section 3.5. A conclusion is given in section 3.6.

3.1 Adaption of the Ptychographic Model

The approach described in this section originates from Christian G. Schroer.

First, an additional vector r⃗n,ν = (xn,ν , yn,ν) is introduced, which describes the

relative movement between object and illumination during exposure. The index ν

denotes the index of the vibration position. The exit wavefield ψn,ν for a specific

scan position r⃗n and a specific vibration position r⃗n,ν is

ψn,ν(r⃗) = O(r⃗ − r⃗n − r⃗n,ν)P (r⃗), (3.1)

in which O is the object and P is the illumination. It is emphasized that the result

is not altered whether the additional shift is included in O or P . Furthermore, the

model assumes that the illumination is the same for every scan position r⃗n and every

vibration position r⃗n,ν .

The propagation of ψn,ν to the detector plane is the same as for the standard

ptychographic model. This work evaluates only datasets with far-field geometry,
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such that the propagation is modeled by a Fourier transform F

Ψn,ν(q⃗) = F [ψn,ν(r⃗)]. (3.2)

The propagated exit wavefield is denoted by Ψn,ν and the vector pointing in the

reciprocal space is denoted by q⃗. During exposure, there may be several vibration

positions r⃗n,ν , which gives several exit wavefields ψn,ν and each wavefield is prop-

agated individually to the detector plane. The detected intensity In is modeled as

the incoherent sum of the intensity of each propagated wavefield Ψn,ν

In(q⃗) =
∑
ν

ρn,ν |Ψn,ν(q⃗)|2. (3.3)

The weighting factor ρn,ν can be understood as the fractional exposure time of

the relative movement r⃗n,ν between the object O and illumination P . Therefore, ρn,ν

can only be positive, since there is no physical interpretation for a negative exposure

time. The ρn,ν must be determined. Equation 3.3 is reformulated to

argmin
ρ

∣∣∣∣∣In(q⃗)−∑
ν

ρn,ν |Ψn,ν(q⃗)|2
∣∣∣∣∣
2

, (3.4)

which is a least squares problem of the form Ax⃗ = b⃗. The shifts r⃗n,ν can be guessed,

for instance as a regular grid. Then, ρn,ν is the only unknown in equation 3.4 and

can be determined with a non-negativity constrain. From here on, the optimization

of equation 3.4 is referred to as the Non-Negative Least Squares (NNLS) fit. The

mathematical algorithm that is used for all NNLS fits in this work originates from

Lawson and Hanson [90].

The modulus of each propagated wavefield |Ψn,ν | is updated by the intensities In

of the measured diffraction pattern

|Ψ′
n,ν(q⃗)| =

√
|Ψn,ν(q⃗)|2

∑
µ

ρn,µ + In(q⃗)−
∑
µ

ρn,µ|Ψn,µ(q⃗)|2, (3.5)

in which Ψ′
n,ν denotes the updated propagated wavefield. The squared modulus

|Ψn,ν(q⃗)|2 of each wavefield is scaled by the sum of the weighting factors
∑

µ ρn,µ.

This is necessary since the sum of ρn,ν does not necessarily equal 1. Then, the residual

In(q⃗)−
∑

µ ρn,µ|Ψn,µ(q⃗)|2 is added to the rescaled squared modulus |Ψn,ν(q⃗)|2
∑

µ ρn,µ.

The updated wavefields Ψ′
n,ν are propagated back into the object plane utilizing
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the inverse Fourier transform F−1

ψ′
n,ν(r⃗) = F−1[Ψ′

n,ν(q⃗)]. (3.6)

The backpropagated updated wavefield is denoted by ψ′
n,ν .

Then, the object O and illumination P are updated by

O′(r⃗ − r⃗n) = O(r⃗ − r⃗n) + α
∑
ν

ρn,ν∑
µ ρn,µ

P ∗(r⃗ + r⃗n,ν)

||P (r⃗ + r⃗n,ν)||2max

(ψ′
n,ν(r⃗)− ψn,ν(r⃗)), (3.7)

P ′(r⃗) = P (r⃗) + β
∑
ν

ρn,ν∑
µ ρn,µ

O∗(r⃗ − r⃗n − r⃗n,ν)

||O(r⃗ − r⃗n − r⃗n,ν)||2max

(ψ′
n,ν(r⃗)− ψn,ν(r⃗)), (3.8)

in which O′ and P ′ are the updated object and illumination, respectively, and O∗

and P ∗ denote the complex conjugates of O and P , respectively. The weighting

factors ρn,ν are normalized so that their sum equals unity. One iteration consists of

processing each diffraction pattern In. The diffraction patterns In are processed in

a random order. The procedure is iterated until the reconstruction converges.

During the next sections, different combinations for r⃗n,ν will be tested. In this

work, the set of r⃗n,ν will always span a square shaped grid defined by the spread

re. The xn,ν and yn,ν components of a set with re = 1 are xn,ν = yn,ν = {−1, 0, 1},
yielding 9 different r⃗n,ν in total. A set with re = 2 has 25 different r⃗n,ν , and so forth.

From here on, a set of r⃗n,ν with its corresponding weights ρn,ν is described as an

ensemble.

3.2 Simulation Study

To begin, some preliminary tests in regard to the basic functionality of the ER are

done.

A test dataset is simulated using the Baboon test image as the object. The am-

plitude and phase of the exact object-transmission function is shown in figure 3.2

a) and b), respectively. The dimensions of the object are 806 px vertically and hor-

izontally. The dimensions include already the obligatory padding by the size of the

illumination. Furthermore, 20 pixels have been added to the top, bottom, left and

right to incorporate the ensemble shifts rn,ν of the scan positions rn closest to the

object edges.
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Figure 3.2: An illustration of the dataset used for the simulation study of the ER. a)
The amplitude of the object-transmission function. The red dots mark
the scan positions r⃗n. b) The phase of the object-transmission function.
c) The amplitude of the illumination. d) The phase of the illumination.

The amplitude and phase of the illumiation is shown in figure 3.2 c) and d),

respectively. The illumination originates from the experimental data presented in

sections 3.4 and 5.2. This illumination was created by a Fresnel Zone Plate (FZP)
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with a focus size of 70 nm. The illumination used here is located 1.0mm behind the

focal plane of the FZP, yielding an illumination size of 1.8 µm. The energy of the

illumination is 9.0 keV. The geometry is simulated such that the detector is located

2.13m behind the sample and the detector has a pixel size of 75 µm×75 µm. However,

the discussion in this section will be done with pixel coordinates. The reason to

choose an experimental illumination for the simulations is that the illumination has

significant influence on the behavior of the ER. Using an experimental illumination

may best represent a practical scenario.
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Figure 3.3: a) The ensembles of the Baboon test drawn in the object space. Each
ensemble has a spread of re = 4. b) The ensemble of the upper left scan
position r⃗0 in a magnified view.

Using the test object and illumination, a dataset is simulated with 21 scan po-

sitions along the horizontal and vertical direction, such that the dataset has 441

diffraction patterns in total. For each scan position r⃗n, the vibrations are simulated

by an ensemble with a spread re = 4. The detector values are calculated using equa-

tion 3.3 and Poisson noise is added. A summary image of the ensembles is shown

in the magnified view of the object phase in figure 3.3 a). The ensemble for n = 0,

which is the most upper left scan position, is shown in figure 3.3 b). The weights

ρn,ν are chosen randomly with the constraint that the sum of the weights of each

ensemble equals unity, i.e.
∑

ν ρn,ν = 1. The retrieved phase contrast of the object

of an ePIE reconstruction is shown in figure 3.4 b) and f). The ePIE reconstruction

is significantly blurred compared to the exact object in figure 3.4 a) and e).
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Figure 3.4: An illustration of the effect of a vibration disturbed dataset on the cor-
responding ptychographic reconstruction. a) The exact phase shift of the
Baboon test image. b) An ePIE reconstruction of the 4 px vibrating Ba-
boon test dataset. The reconstructed object is significantly blurred. c)
The ER has been applied utilizing the exact ensembles and circumvent-
ing the NNLS fit. The object is reconstructed with higher quality. d) The
ER with re = has been applied, the weights ρn,ν have been determined
during the reconstrution by using the NNLS fit in equation 3.4. e) to
g) A magnified view of the corresponding upper image. The magnified
region is marked by the red square in a).

3.2.1 Verification of the Model and the Implementation

First, it is verified if the model can correct for vibrations that occur during the

experiment. For this, an ER reconstruction of the test dataset is done, but the exact

weights ρn,ν shown in figure 3.3 a) are utilized and no NNLS fit is applied during the

reconstruction. A converged ePIE reconstruction is used as an initial guess for the

object. Furthermore, the exact illumination is utilized during the reconstruction and

the illumination is not updated, such that β = 0 in equation 3.8. The reconstruction

ran for 400 iterations, after which no further change in the reconstructed object could

be observed with more iterations. The phase of the reconstructed object is shown in
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figure 3.4 c). For reference, the ePIE reconstruction is shown in b). Clearly, the ER

corrects the vibrations when the shifts rn,ν and weights ρn,ν are known. Furthermore,

this test verifies that the ER is implemented properly.

3.2.2 Uncertainties of the Non-Negative Least Squares Fit

In a practical scenario, the weights ρn,ν are not known and must be determined by the

NNLS fit. However, the exact object O and illumination P are not known either,

making it more difficult for the NNLS fit. The diffraction pattern may not only

contain the coherent scattering signal, but also scattering from other components

along the optical path. Furthermore, every measurement at the detector is disturbed

by Poisson noise. The diffraction pattern may also deviate due to partial coherence.
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 / 
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b) Reconstructed
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Figure 3.5: An illustration of the influence of Poisson noise on the NNLS fit. a)
The exact ensemble of the upper left scan position in figure 3.3. b) The
NNLS fit has been applied for a simulated diffraction pattern without
noise. The fitted ensemble equals the exact ensemble. c) The NNLS fit
has been applied for a simulated diffraction pattern with Poisson noise.
The fitted ensemble deviates significantly from the exact ensemble.

For the following, it is assumed that the exact object O and illumination P are

given and the simulated diffraction pattern is the exact result of this, such that no

Poisson noise has been added. It is attempted to determine the weights with the

NNLS fit. The resulting ensemble of the NNLS fit is shown in figure 3.5 b) and it
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does equal the exact ensemble. The exact ensemble is shown for reference in figure

3.5 a).

While this example appears trivial, it is actually not, considering how similar

the forward modeled diffraction patterns are. Remember that the forward modeled

diffraction patterns differ only by up to ±4 px of the object. The forward modeled

diffraction patterns are not shown here, as it would look like a set of equal diffraction

patterns.

Now, Poisson noise is added to the simulated diffraction pattern and the NNLS fit

is again done utilizing the exact object O and illumination P . The result is shown

in figure 3.5 c) and it deviates significantly from the exact ensemble in figure 3.5 a).

3.2.3 A First Reconstruction

A first reconstruction is attempted for the Poisson noise disturbed vibrating Baboon

dataset shown in figure 3.3. To simplify the setting, the reconstruction is started with

the exact illumination shown in figure 3.2 c) and d). Furthermore, the illumination is

not updated during the reconstruction, i.e. β = 0 in equation 3.8. A converged ePIE

reconstruction is used as an initial guess for the object. The ER reconstruction ran

for 400 iterations, after which no further change in the reconstructed object could

be observed. The phase of the reconstructed object is shown in figure 3.4 d) and

h). The blurring is corrected and even the sharp features in the lower left and lower

right region can be recognized.

The example still does not represent a practical scenario. Typically, the ensemble

shifts rn,ν are not known. If the ptychographic microscope is characterized well, a

good guess can be made for the shifts. However, stability cannot be guaranteed in

the long term.

In the following, it is investigated how the ER performs when the ensemble shifts

shifts rn,ν are guessed. Figure 3.6 c) to h) show ER reconstructions for 1 ≤ re ≤ 6.

Each reconstruction ran for 400 iterations, after which no further change in the

reconstructed object could be observed. For reference, the exact object and the

ePIE reconstruction are shown in figure 3.6 a) and b), respectively.

It appears that the vibrations are reliably corrected for every value of re > 3.

Interestingly, even for re = 3 the vibrations seem to be corrected and the recon-

struction looks fine. This is a great result, as it indicates that the ensemble shifts

rn,ν can be guessed generously and the result is not affected by it.

To summarize, the preliminary tests indicate a reliable working principle of the

ER. In the next sections, the ER is applied to two experimental datasets.
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Figure 3.6: ER reconstructions for the Poisson noise disturbed vibrating Baboon
test dataset with ensemble spread re = 4. a) The phase of the exact ob-
ject. b) The phase of the reconstructed object by 1000 ePIE iterations.
These serve as a reference to assess the ER reconstructions. From c) to
h), the ER is applied with an ensemble size of re = 1 to re = 6. Each re-
construction ran for 400 iterations. The object is properly reconstructed
when re ≥ 4.

3.3 Siemens star

3.3.1 Dataset

A ptychographic dataset of a Siemens star test object has been acquired at the

microprobe endstation of beamline P06 at PETRA III in 2023. The incoming syn-

chrotron beam had an energy of 25 keV and was focused with a stack of Compound

Refractive Lenses (CRLs) to a circular shape with 200 nm diameter. The Siemens

star was positioned 2mm behind the focal plane of the CRLs, giving an illumina-

tion size in the object plane of roughly 1 µm. The distance between the sample and

the detector was 8.185m. The detector is an Eiger X1M CdTe with a pixel size of

75 µm×75 µm. Most of the propagation path between sample and detector is evacu-

ated by a vacuum tube. The diffraction patterns are cropped to a square shape with
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Figure 3.7: An ePIE reconstruction of the Siemens star dataset to illustrate the
object and the illumination. a) The amplitude of the illumination. b),
the amplitude of the object. The red dots mark the scan positions r⃗n. c)
The amplitude of the object cropped by the object enlargement and half
the illumination size. d) The phase of the illumination. e) the phase of
the object. f) The phase of the object cropped by the object enlargement
and half the illumination size.

256 px edge length to reduce the amount of data and have a better performance

during the reconstruction. The experimental geometry yields a real space pixel size

of 21.14 nm. The sample was translated on a square grid with 21 steps along both

the horizontal and vertical dimension. The step size was 250 nm horizontally and

vertically, yielding a nominal scan window of 5 µm× 5 µm.

To further illustrate the dataset of the Siemens star, a regular ePIE reconstruction

is done and shown in figure 3.7. The illumination amplitude has been initialized as

a circular profile with a diameter of 1 µm. The phase of the illumination has been
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initialized by propagating a planar phase profile for 2mm. The amplitude of the

object has been constrained to have values between 0 and 1. The phase of the object

has been constrained to have values between −π and 0. The amplitude and phase

of the reconstructed illumination are shown in figure 3.7 a) and d), respectively.

The amplitude and phase of the reconstruct object are shown in figure 3.7 b) and

e), respectively. The object has been enlarged by 20 px to have a common object

shape with the later ER reconstructions. The scan positions r⃗n are marked by the

red dots in 3.7 b). The illumination and object reconstruction in 3.7 a), b), d), and

e), are drawn with equal pixel sizes to illustrate the high amount of overlap that

this dataset has.

The cropped amplitude and phase of the object are shown in 3.7 c) and f), re-

spectively. Half the illumination size and the 20 px object enlargement are cropped

from the left, right, top, and bottom of the object to only show the scan window.

The contrast is much better for the phase, which is typical for hard X-rays, so that

the following analysis and discussion will be carried out for the recovered phase. In

3.7 f), it can be seen that the features of the object are blurred, caused by the vi-

brations during the experiment. Especially the small features in the lower left region

are severely blurred.

Furthermore, for all reconstructions of the Siemens star dataset, a prior ePIE

reconstruction has been performed with the position refinement described in section

2.2.6. Prior to the position refinement, 100 initial ePIE iterations were performed.

The position refinement was then applied every 10 iterations. The reconstruction ran

for 1000 iterations in total, such that every scan position was refined 90 times. During

the reconstruction, the change of the positions was monitored by visual inspection,

to ensure that that refined positions are converged. The refined positions are used

for all reconstructions in this section, including already the recontruction shown in

figure 3.7.

3.3.2 Reconstruction

Now, ER reconstructions are done for the Siemens star dataset. The exact vibrational

shifts rn,ν are not known and just guessed. Reconstructions are done for 1 ≤ re ≤ 11

and shown in figure 3.8 b) to l). Each reconstruction has been started with the object

and illumination shown in figure 3.7 as initial guesses. The ER reconstructions ran

for 200 iterations, after which no further correction of the blurring could be observed.

The converged ePIE reconstruction is shown in figure 3.8 a) for reference.

Starting from re = 1, a modest improvement of the blurring can be observed. The
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Figure 3.8: ER reconstructions for the Siemens star dataset. Each reconstruction
has been cropped by the object enlargement and half the illumination
size. a) A regular ePIE reconstruction of 1000 iterations. b) to h) ER
reconstructions for re = 1 to re = 11. Each reconstruction ran for 200
iterations, after which no further change in the reconstructed object
could be observed by visual inspection.

improvement increases with ensemble spread re and around re = 4, the blurring

appears to be minimal. However, a background pattern is introduced in the upper

and right region of the object for large re. In the following, the background pattern

is explained by taking a closer look on the ensembles.

Figure 3.9 a) shows the ER reconstruction with re = 11 and the colored dots mark

five different scan positions r⃗n. The corresponding ensembles are shown in figure 3.9
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Figure 3.9: An illustration how the weights ρn,ν of different scan positions r⃗n look
like. a) The ER reconstruction of the Siemens star for re = 11 is shown.
The five colored dots mark the scan positions to which the ensembles in
b) to f) correspond. The colored title notation in b) to f) corresponds
to the colored dots in a). For b) and c), the ensembles look reasonable
and indicate a vibration that is stronger along the horizontal dimension
than the vertical dimension. For d) to f), the ensembles have a preferred
orientation that is similar to the orientation of the bright stripes of the
Siemens star. This is an artifact that does not represent the actual sample
vibrations during the experiment.

b) to f), which is indicated by the the coloring of the panel denotation. For figure 3.9

b) and c), the ensembles have a reasonable shape that indicate a stronger vibration

along the horizontal dimension than the vertical dimension.

For figure 3.9 d) to f), the ensembles have a preferred orientation similar to the

orientation of the bright stripes of the Siemens star. This is an artifact, and the

reconstructed ensembles do not represent the actual vibrations of the sample. The

ER is a mathematical determination to find the set of positions r⃗n,ν and weights

ρn,ν that matches best the measured diffraction pattern following equation 3.4. For

the scan positions in figure 3.9 d) to f), the samples morphology is approximately
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invariant against a translation in the direction of the stripe orientation. The NNLS

determines a set of positions r⃗n,ν and weights ρn,ν that yields the smallest local error,

and these r⃗n,ν and ρn,ν do not reflect the actual vibration of the sample during the

experiment. This is an intrinsic uncertainty of the ER model and may always occur

for object shapes with a translation invariancy.
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Figure 3.10: An illustration how the integrated ensembles ην are influenced by the
size of the ensemble re. a) to c) The integratd ensembles ην are shown
for re values of 5, 8, and 11.

To conclude, the ensembles of all scan positions rn are summed up

ην =
∑
n

ρn,ν , (3.9)

in which ην is referred to as integrated weights. In figure 3.10, the integrated weights

ην are shown for the ER reconstructions with re = 5, re = 8, and re = 11. It is

visible that there is a continous distribution of ensemble members in the central

region. The distribution has a wider spread along the horizontal dimension than the

vertical dimension. The integrated weights for re = 5 has a population of ensembles

members at the ensemble edges. This is an artifact indicating the ensemble is chosen

too small. For the larger ensembles in b) and c), the distribution at the edge is

significantly reduced.
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Figure 3.11: Line profiles for the Siemens star dataset to determine the improvement
in the spatial resolution. a) The ePIE reconstruction with four features
marked by the colored lines. b) to e) The line profiles of the features
are shown. The color of the dots matches the color of the lines in a).
The colored dots indicate the pixels that have been used to fit the error
function. The dotted line in some of the plots shows further pixel values
that have not been used to fit the error function. The blue vertical lines
mark the positions of the 10% and 90% of the maximum value of the
error function. The spatial resolution is defined as the distance between
the two vertical lines and given in the title. f) The ER reconstruction
for re = 5. The same features of a) are marked by the colored lines. g) to
j) The respective error function fits of the line profiles. The resolution
of all features is improved by the ER.

3.3.3 Spatial Resolution

The features of the Siemens star have sharp edges. This makes the object well suited

for a characterization of the spatial resolution by line profiles. Figure 3.11 a) and

f) show the ePIE and the ER re = 5 reconstruction. In both reconstructions, four

different features are highlighted by colored lines. These features are used for the
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line profiles, which are shown in b) to e) for the ePIE reconstruction and in g) to j)

for the ER reconstruction.

The spatial resolution is defined as the distance between the 10% and 90% of

the maximum value of the fitted error function. For the ePIE reconstruction, the

resolutions vary between 61.33 nm and 126.98 nm, which is roughly the size of 3 to 6

object pixel. For the ER reconstruction, the resolutions vary between 27.55 nm and

38.41 nm, which is roughly the size of 1 to 2 object pixel. For all features, the ER

reconstruction has a significantly improved spatial resolution of at least a factor 2.
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Figure 3.12: The spatial resolutions of the four features marked in figure 3.11 a)
and f) vs. the ensemble size re of the reconstruction. The most left
square points and the dashed lines mark the resolution of the ePIE
reconstruction.

The features marked in figure 3.11 are used for an error function fit of the ER

reconstructions with 1 ≤ re ≤ 11. The spatal resolutions vs. the ensemble size re

are shown in figure 3.12. The most left square points and the dashed lines mark the

resolution determined for the ePIE reconstruction.

It can be seen that the best possible spatial resolution is only reached when the

adjusted re reaches a certain value. For the blue feature, the best spatial resolution is

reached at re = 3, while for the purple feature, the best possible resolution is achieved

at re = 4. It is concluded that the best improvement of the blurring is reached at

re = 4. Especially the curves of the green, purple and red feature indicate that

the spatial resolution reaches a minimum around re = 3 and increases afterwards

with increasing ensemble size re. However, the increase of the spatial resolution with

higher re is comparatively small and well below the object pixel size of 21.14 nm. A
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direct comparison of the ePIE and ER re = 4 reconstruction is shown in figure.

In the next section, the ER is tested on a second experimental dataset.
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Figure 3.13: A comparison of the reconstructions obtained by ePIE and ER. a) The
ePIE reconstruction. The red square marks the position of a subregion
that is shown in c) and d). b) The ER re = 4 reconstruction. c) The
subregion of the ePIE reconstruction. d) The subregion of the ER re-
construction.
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3.4 Zeolite

3.4.1 Dataset

A dataset of a macroporous zeolite particle was acquired at PtyNAMi in 2018 [29],

[91]. The particle is shown in the Scanning Electron Microscopy (SEM) image in

figure 3.14 a). The sample was prepared by Focused Ion Beam (FIB). A platinum

pedestal has been deposited on the aluminum sample holder. The zeolite particle is

mounted onto the platinum pedestal. The illumination had an energy of 9 keV and

was focused by a FZP to a circular spot size of 70 nm. The sample was positioned

1.0mm behind the focal plane of the FZP, giving an illumination size of about

1.8 µm in the object plane. The detector is an Eiger X4M that was positioned 2.13m

behind the sample. The detector pixels have a size of 75 µm×75 µm. The diffraction

patterns are cropped to a shape of 256 px × 256 px. This experimental geometry

yields a reconstruction pixel size of 16.57 nm. The object was scanned on a grid

with 11 steps horizontally and vertically. The step size was 400 nm horizontally and

vertically, giving a nominal scan window of 4 µm× 4 µm.

To further illustrate the dataset, a converged ePIE reconstruction of 1000 itera-

tions is shown in figure 3.14. The illumination amplitude has been initialized as a

circular profile with 1.8 µm diameter and the illumination phase by propagating a

planar phase for 1.0mm. The object has been enlarged by 20 px to the left, right,

top, and bottom, to incorporate the ensemble shifts rn,ν later in this section. The

reconstructed amplitude and phase of the illumination are shown in figure 3.14 b)

and e), respectively. The reconstructed amplitude and phase of the object are shown

in figure 3.14 c) and f), respectively. The scan positions r⃗n are marked by the red

dots in figure 3.14 c). The evaluation in this chapter is carried out for the recovered

phase, which has a better contrast than the amplitude. The illumination and ob-

ject in figure 3.14 b), c), e) and f) are drawn with equal sizes to illustrate the high

amount of overlap that the dataset has. The cropped amplitude and phase of the

object is shown in figure 3.14 d) and g), respectively, to give a magnified view of the

scan window.

The scan positions r⃗n have been refined in a prior ePIE reconstruction using the

position refinement presented in section 2.2.6. The refinement started after 10 it-

erations and ran for 990 iterations, after which no further change of the positions

has been observed by visual inspection. The refined positions are used for all re-

constructions in this chapter, including already the reconstruction shown in figure

3.14.
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Figure 3.14: A summary of the zeolite dataset. a) A SEM image of the zeolite parti-
cle. b) The amplitude of the ePIE illumination reconstruction. c) The
amplitude of the ePIE object reconstruction. d) The amplitude in c)
cropped by half the illumination size and the object enlargement. e)
phase of the ePIE illumination reconstruction. f) The phase of the ePIE
object reconstruction. g) The cropped phase of the ePIE object recon-
struction.

52



3.4.2 Reconstruction

ER reconstructions are done for ensemble spreads of re = 1 to re = 11. A converged

ePIE reconstruction of 1000 iterations is used as the initial guess for the object

and the illumination. Each ER reconstruction ran for 600 iterations, after which no

further change in the reconstructed object could be observed with more iterations.
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Figure 3.15: ER reconstructions for the zeolite dataset. a) The ePIE reconstruction
used as the initial guess for the ER reconstructions. b) to h) The ER is
applied for ensemble sizes from re = 1 to re = 11. Each ER reconstruc-
tion ran for 600 iterations. The red rectangles in f) mark two features
that are significantly better resolved by the ER

The reconstructed phase of the object for re = 1 to re = 11 is shown in figure 3.15
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b) to l), the value of re is indicated in the title. For reference, the ePIE reconstruc-

tion is shown in figure 3.15 a). The reconstruction quality gradually improves with

ensemble spread re. The red rectangles in figure 3.15 f) mark two features that be-

come significantly better resolved by the ER. Roughly after re = 5, the quality of the

reconstructed object is not further influenced by the ensemble size. This indicates

that the ensembles are large enough to model the vibrations of the experiment.

Furthermore, the reconstruction quality does not obviously decrease for large en-

sembles spreads of re > 7. Since the ensemble size is a parameter that needs to be

tuned by the user, it is an important result that the ensemble size can be guessed

generously. However, for large ensemble sizes, such as re = 11, a pattern is introduced

in the free space region at the right side of the reconstruction.

To investigate the cause of the pattern, five scan positions are marked by the

colored dots in the reconstruction in figure 3.16 a). The corresponding ensembles

are shown in figure 3.16 b) to f), indicated by the colored panel denotation. The

red and green dots mark two scan positions that are located in free space. In free

space, the illumination does not illuminate the object and there is nothing that

can vibrate. For such a situation, it is fair to say that the ER may yield undefined

behavior and cause artifacts. The corresponding ensembles in figure 3.16 d) and e)

have a unreasonable shape. It is concluded that this introduces the pattern.

In contrast, the blue and cyan scan positions are located on the object. The

corresponding ensembles in b) and c) indicate a vibration that is stronger in the

horizontal dimension. This is in agreement with the vibration characterization at

PtyNAMi in figure 3.1. The shape of the ensembles is reasonable.

The magenta scan position is close to the platinum pedestal created in the FIB.

The shape of the platinum pedestal is roughly recognizable in the corresponding

ensemble in f). This is a similar effect as for the Siemens star reconstruction in

figure 3.8. In that region, the object is translation invariant along the edge of the

projected surface of the platinum pedestal.

3.5 Implementation Details and Performance

The ensemble refinement has been implemented into ptycho. Since the ER only

consists of regular ptychographic operations, ptycho had already most of the nec-

essary functionalities. The NNLS fit had to be added and originates from Lawson

and Hanson. The implementation is Fortran to C translated using the f2c software

from the original version [90]. The implementation runs on the Central Processing
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Figure 3.16: Illustration how the weights ρn,ν of different scan positions look like.
a) The ER re = 11 reconstruction. The five colored dots mark five
different scan positions. b) to f) The corresponding ensembles of the
marked scan positions in a), indicated by the colored panel denotation.
The blue and cyan scan positions are located on the zeolite particle
and the ensembles in b) and c) have a reasonable shape. The red and
green scan positions are located in the free space around the particle.
The ensembles in d) and e) have an unreasonable shape. The magenta
scan position is located close to the platinum pedestral. The ensemble
recreates the shape of the projected surface of the platinum pedestal.

Unit (CPU) and utilizes a single core.

In the following, a benchmark is done on the zeolite dataset, which consists of

121 diffraction patterns and each pattern has dimensions of 256 px × 256 px. The

performance scales with the amount of members ne in the ensemble, which is given

by

ne = (2re + 1)2. (3.10)

The utilized hardware resources are an AMD EPYC 7543 and an Nvidia A100.
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Figure 3.17: The mean iteration time of the ER drawn against the amount of mem-
bers in the ensembles ne.

Figure 3.17 shows the mean time per iteration that has been calculating by averaging

the time of 50 iterations. The blue curve is the mean iteration time, the orange curve

is the mean time that the NNLS fit consumes. There is a rough linear dependency

between the mean iteration time and the amount of ensemble members. The NNLS

fit clearly consumes most of the runtime.

However, it is emphasized that the performance of the ER is reduced drastically

apart from the NNLS fit. For every ensemble shift r⃗n,ν , at least the forward model

is fully applied, including the propagation via Fourier transform F . Considering

an ER reconstruction with re = 11, the ensembles have 529 members each. For a

dataset with 121 diffraction patterns, this means that the ER processing of a single

diffraction pattern is more computational effort than an entire ePIE iteration of the

full dataset.

3.6 Conclusion

The novel approach of the Ensemble Refinement (ER) has been introduced, that

can correct the effects of vibrations that occur during the experimental data acqu-
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sition. The ER has been first tested on a simulated dataset and then applied to two

experimental datasets: The Siemens star and the zeolite particle. The ER has shown

a consistent improvement for all datasets. The achieved quality is stable against the

ensemble size re. The spatial resolution of the Siemens star has been determined by

line profiles and shows an improvement of at least factor 2.

A precise description of the ER behavior is dependent on many factors, such as the

shape and structure of the object and illumination, the overlapping rate, noise, and

partial coherence. A sufficient amount of overlap has been determined to be crucial

for a successful ER reconstruction. The Siemens star dataset has an illumination

with a diameter of about 1 µm and a scanning step size of 250 nm, which gives

roughly an overlap of 4. The zeolite dataset has an illumination with a diameter of

1.8 µm and a scanning step size of 400 nm, which gives roughly an overlap of 4.5.

For both datasets, the ER worked reliably. The author can report that the ER is

working less reliably when the overlap is reduced such that this factor is as low as

2. Furthermore, both datasets utilized a defocused illumination that has a strong

phase profile.

The Siemens star reconstructions have demonstrated how the ER introduced ar-

tifacts in regions where the projected object is translation invariant under a certion

direction. A similar scenario is the empty region around the zeolite particle. To coun-

teract, regularization or constraints can be incorporated to the NNLS fit to prevent

the ensemble from getting an unreasonable shape.

One limitation of the current implementation is the long runtime, mostly due to

the NNLS fit. Future work should first address an optimiztion of the NNLS fit. On the

one hand, a more recent mathematical NNLS approach can be utilized, such as the

approaches by Myre, et al., [92] or Diakonikolas, et al. [93]. Both approaches claim

to have a better mathematical determination, that yields a significantly improved

performance by at least an order of magnitude compared to the NNLS fit by Lawson

and Hanson [90]. On the other hand, the current NNLS fit runs on a single CPU

core and a new implementation should utilize a GPU, which is also consistent with

the other functionalities of ptycho.

One may also want to utilize a parallel ptychographic algorithm, such as DM, so

that the processing can be distributed among multiple GPUs. Utilizing DM can also

be beneficial because the refinement of the object and illumination is done against

all diffraction patterns simultaneously. The reconstruction is less influenced by local

changes due to the update from individual diffraction pattern. The application of

the ER to other pychographic algorithms is straight forward. One can also utilize

refPIE, that allows to reconstruct thick objects without phase wraps [52].
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4 Streaming Ptychography

This chapter presents the development of online ptychography in streaming mode.

Online, or live, means the diffraction patterns are reconstructed on-the-fly while the

experimental data acquisition is still running. Streaming means the diffraction pat-

terns are transmitted from the detector to the reconstruction instance via network.

Online ptychography has been demonstrated before by Weber, et al., in file reading

mode, such that the diffraction patterns are reed from the storage system [94].
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Figure 4.1: Illustration of the sample drift during a ptychographic tomographic scan.
a) to g) Each image shows a ptychographic projection of a zeolite particle
for a projection angle Ω given in the title. Each projection was acquired
with the same scan range. The sample drifts vertically about 1 µm over
the course of 12◦.

Conventionally, ptychography is done offline, which means the data evaluation is

performed as a subsequent step once the data acquisition is completed. A ptycho-

graphic scan for a third generation synchrotron source such as PETRA III consumes

typically minutes to hours. The subsequent reconstruction may consume a similar

amount of time. The downside of the offline procedure is that the user has no feed-

back until the reconstruction is performed.

A typical mistake when performing a ptychographic scan is the adjustment of a

wrong scan region. Consider the ptychographic projections of the zeolite particle

shown in figure 4.1 a) to g). The sample is rotated consecutively by 2◦. The sample

drifts vertically more than 50 nm/◦. When doing ptychography offline, the sample

drift is only noticed once a scan is completed. This problem can be tackled by

doing ptychography online. Sample drifts or wrong set scan regions can be identified

already during the scan, allowing to abort the scan and correct the scan region. By
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doing so, valuable beamtime can be saved.

The development of streaming ptychography has been carried out at the COSMIC

Imaging soft X-ray beamline 7.0.1.2 at the Advanced Light Source (ALS), Lawrence

Berkeley National Laboratory (LBNL), Berkeley, California, United States of Amer-

ica [23].

Section 4.1 introduces how ptychography is done at the COSMIC Imaging beam-

line. Section 4.2 presents how streaming ptychography is implemented. This covers

the transfer of diffraction patterns and object functions via network, and by which

events the live reconstruction can be controlled. Section 4.3 demonstrates how the

streaming reconstruction looks for the user. Section 4.4 elaborates why live ptychog-

raphy still relies on doing an additional offline reconstruction in order to achieve the

highest reconstruction quality. Section 4.5 summarizes the full pipeline for online

and offline ptychography implemented at the COSMIC Imaging beamline. Finally,

section 4.6 concludes the developments in this chapter.

4.1 Ptychography at the COSMIC Beamline

The COSMIC Imaging beamline 7.0.1.2 operates at energies between 250 eV and

2500 eV. The distance between the sample and detector is 0.121m. The detector is

a fast Charge Coupled Device (CCD) camera and further described in section 4.1.1.

The entire setup is located in vacuum. The sample is located on a Transmission

Electron Microscopy (TEM) sample holder that is inserted horizontally into the

vacuum chamber. The sample can be roughly positioned by course translation stages.

The scanning is done using piezo translation stages that receive feedback from an

optical interferometer system. The incoming beam is shaped by a FZP to a circular

spot size of 45 nm. The sample is moved behind the focal plane to have a bigger

illumination size irradiating the sample. The out of focus distance df is given by the

illumination energy E and follows the relation

df =
E ∗ 15 µm
700 eV

. (4.1)

4.1.1 Fast CCD Detector and Preprocessing

The raw dimensions of a detector image are 1040 px and 1152 px along the vertical

and horizontal dimension, respectively. The detector pixels have a size of 30 µm ×
30 µm. The detector consists of two panels that are divided by a horizontal gap. A

raw detector image of a ptychography scan is shown in figure 4.2 a). The diffraction
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Figure 4.2: Illustration of the necessary preprocessing of the diffraction patterns. a)
A raw diffraction pattern. A horizontal gap divides the two detector pan-
els. Central in the image below the gap is the diffraction pattern visible.
The vertical lines are the unphysical pixels that need to be removed. b)
The magnified diffraction pattern. The horizontal grid is the morpholog-
ical structure of the FZP. c) A preprocessed diffraction pattern that is
suitable for ptychography.

pattern is located on the lower panel in the central region. Figure 4.2 b) shows a

magnified view of the diffraction pattern. The detector contains unphysical pixels

that are used to readout the detector. The readout pixels must be removed from the

image. After removing, the detector image has a shape of 960 px× 960 px.

Further preprocessing of the raw diffraction patterns includes a background re-

moval and an optional resampling. An additional feature is the creation of High

Dynamic Range (HDR) like combined images. For this, two diffraction patterns per

scan point are collected. One with a short exposure ts, and a second with a longer

exposure tl = 10ts. During the preprocessing, an image is assembled in which the

shorter exposure imposes the high intense features of the diffraction pattern and the

longer exposure imposes the low intense features.

A fully preprocessed diffraction pattern is shown in figure 4.2 c).

4.1.2 Illumination Initialization

The illumination P is initialized by the measured diffraction patterns In. This is

demonstrated now for a dataset acquired at the COSMIC Imaging beamline con-

sisting of 400 diffraction patterns. The energy of the illumination was 851.43 eV,

giving an out of focus distance df of 18.24 µm utilizing equation 4.1. The distance

between the sample and the detector was 0.121m. A single diffraction pattern is
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Figure 4.3: Illustration of the illumination initialization by diffraction patterns. a)
A single diffraction pattern. b) The average of all diffraction patterns.
c) The amplitude of the via inverse Fourier transform backpropagated
average of diffraction patterns. This illumination is in focus. d) The
illumination shown in c) has been defocused by Fresnel propagation.

shown in figure 4.3 a). The illumination initilization follows

P (r⃗) = Ndf

F−1

√∑Ñ
n In(q⃗)

Ñ

 . (4.2)

First, a certain amount Ñ of the diffraction patterns In is averaged. For the demon-

stration in figure 4.3, all diffraction patterns are averaged, such that Ñ = N . The

average is shown in figure 4.3 b). Then, the square root of the average is backpropa-

gated into the focal plane via inverse Fourier transform F−1, which is shown in figure

4.3 c). Afterwards, a Fresnel propagation Ndf according to the out of focus distance

df = 18.24 µm is done, which is shown in figure 4.3 d). For offline ptychography, all

diffraction patterns N would be used for the illumination initialization, such that

Ñ = N .
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4.2 Implementation

4.2.1 ZeroMQ

In order to do streaming ptychography, the acquired diffraction patterns and some

metadata about the scan need to be transmitted via network into the reconstruction

instance. The network transfer is done using the ZeroMQ library. ZeroMQ is a C

library that is well suited for the streaming of big amounts of data. ZeroMQ offers

bindings to various programming languages, such as C++ and Python, which covers

the scope of this thesis.

ZeroMQ has different functionalities for sending data. Here, the publish-subscribe

pattern is used. The idea is that there is one publisher that can have an arbitrary

amount of subscribers. The subscriber can receive the data that the publisher sends,

but the subscriber cannot communicate to the publisher.

Messages are send under a certain topic, which is a byte sequence at the beginning

of the message. The subscriber must subscribe to a certain topic to receive the related

messages. In order to use the ZeroMQ topics conveniently, there exist the ZeroMQ

multipart functionality. The two functions sendmultipart and recvmultipart al-

low to send and receive multiple parts of a message, respectively.

4.2.2 Network Transfer of Images

To transfer an image utilizing ZeroMQ, the image has to be serialized. Serialization

is the process of translating an image into a byte sequence, the counter process is

called deserialization and refers to the translation of a byte sequence back into the

image. There are different possibilities depending on the programming language. A

pythonic way is pickle, which works fluently with NumPy arrays. The downside of

utilizing pickle is that serializing or deserializing the image from a different pro-

gramming language such as C++ is more complicated. Other options exist, such

as msgpack, which are available to a variety of programming languages. However,

during the development of streaming ptychography it has been collaboratively de-

cided to do a custom image serialization and deserialization. By doing so, there is no

dependency to a specific library or programming language. The custom serialization

and deserialization is described in the following.

An image is split up into a metadata part and a data part. The metadata is

a JavaScript Object Notation (JSON) container containing the shape, datatype,

element order and byte order of the image. Additional details about the metadata

are given in table 4.1. JSON containers can be serialized flawlessly. The data part
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is just the byte sequence of all concatenated matrix elements of the image.

Table 4.1: Necessary metadata to serialize and desrialize an array.

Key Value

dtype A string indicating the datatype of the matrix elements. The string
is a concatenation of either uint, int, float, complex and the bit-
depth. E.g. ’uint8’, ’int16’, ’float32’, ’complex64’. For complex num-
bers, ’complex64’ means 32 bit float values for the real part and 32
bit float values for the imaginary part.

shapey The amount of pixels along the y direction.
shapex The amount of pixels along the x direction.
order Can be ’C’ or ’F’. ’F’ indicates the array is C-style, i.e. x is the fast

axis. ’F’ indicates Fortran-style, i.e. y is the fast axis.
byteorder Can be ’<’, ’=’, or ’>’. ’<’ indicates little-endian, i.e. the most

significant byte is first. ’=’ and ’>′ indicate big-endian, i.e. the
most significant byte is last.

The metadata and the data are transmitted together using the ZeroMQ

sendmultipart functionality. As elaborated in section 4.2.1, the topic of the message

is always the first part, the metadata is the second part, and the data is the third

part.

4.2.3 Events

The live reconstruction is controlled by four different incoming events: start, frame,

stop, and abort. Additionally, there is the outgoing rec event that publishes the

current reconstruction so that it can be received by a visualizing endpoint. An event

is just a ZeroMQ multipart message with the event name as the ZeroMQ topic. The

events are described in more detail in the following sections.

Since it can be confusing to have publisher and subscriber agree on the same

topics and JSON keys, there are two publicly available repositories that give some

helping utilities for C++ [95] and Python [96]. When publisher and subscriber both

utilize the same repository, all ZeroMQ topics and JSON keys match automatically.

start

The start event communicates to the reconstruction instance that a scan begins. It

is a ZeroMQ multipart message consisting of two parts: The first part is the serialized

topic start, the second part is a serialized JSON data container that holds metadata

about the scan. The metadata is given in table 4.2. An identifier is transmitted
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that the reconstruction instance utilizes to recognize the current measurement. The

metadata is further used to estimate size shape of the object. An initial guess for

the illumination can be transmitted. The parameter

dp fraction for illumination init defines the fraction of diffraction patterns

that needs to be received before the live begins to iterate.

When a start event is received and a reconstruction is already running, the

current reconstruction is stopped and the current state is written to disk. Then, the

new reconstruction begins.

Table 4.2: The metadata of the start event.

Key Value

identifier A string indicating the name of the cur-
rent scan.

translations A list of lists holding the nominal (x, y)
scan positions of the diffraction pat-
terns in m.

energy Energy of the illumination in J.
distance Distance between the sample and de-

tector in m.
output frame width Edge length of the diffraction patterns

in pixel.
dp fraction for illumination init Fraction of diffraction patterns neces-

sary to be received before the recon-
struction begins.

x pixel size Edge length of one detector pixel in m.
illuminationreal A C-style 2D float list holding the real

part of the illumination.
illuminationimag A C-style 2D float list holding the

imaginary part of the illumination.

frame

The frame event transmits a diffraction pattern to the reconstruction instance. It

is a ZeroMQ multipart message consisting of three parts. First, the serialized topic

frame. Second, the metadata of the image given in table 4.1 as a serialized JSON

data container. Third, the image elements as bytes. Additionally, the JSON data

container contains the dataset name, the index of the diffraction pattern and the y

and x coordinate of the scan position. The respective JSON keys of the additional

metadata are given in table 4.3.
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It is essential that the start event is received by the reconstruction instance

before the first diffraction pattern arrives. With the start event, an identifier

is transmitted. When the identifier of an arriving diffraction pattern does not

match the identifier of the start event, the diffraction pattern is ignored.

Table 4.3: The additional metadata of the frame event.

Key Value

identifier A string indicating the name of the current scan.
index The index of the diffraction pattern.
posy The y position of the diffraction pattern in m.
posx The x position of the diffraction pattern in m.

stop

This event indicates that a scan has completed. The reconstruction instance treats

a received stop event equivalent as successfully transmitting all diffraction patterns

to the reconstruction instance. Whenever one of the scenarios happens, the recon-

struction instance will continue iterating for the amount of configured iterations.

The stop event is a ZeroMQ multipart message consisting of two parts: First, the

serialized topic stop. Second, a serialized JSON data container that only contains

an identifier, as shown in table 4.4.

Table 4.4: The metadata of the stop and abort event.

Key Value

identifier A string indicating the name of the current scan.

abort

This event indicates that a scan has been aborted. When received, the reconstruction

instance will stop iterating and write the current state of the reconstruction to disk.

It is a ZeroMQ multipart message consisting of two parts: First, the serialized topic

abort. Second, a serialized JSON data container. Similar as for the stop event, the

JSON container only contains an identifier, as shown in table 4.4.

rec

This is an outgoing event of the reconstruction instance that publishes the current

reconstruction so that it can be visualized while the scan is still running. The rec
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event is a ZeroMQ multipart message consisting of three parts. First, the serial-

ized topic rec. Second, a serialized JSON data container. Third, the concatenated

bytes of the image elements. The JSON container contains the image metadata, an

identifier and the real space pixel size in x and y of the reconstruction, such as

shown in table 4.5. The real space pixel size can be used to add a scale bar to the

visualization of the reconstruction.

Table 4.5: The metadata of the rec event.

Key Value

identifier A string indicating the name of the current scan.
obj pixelsize x The real space pixel size of the reconstruction along the

x axis in m.
obj pixelsize y The real space pixel size of the reconstruction along the

y axis in m.

4.2.4 ptycho

The COSMIC Imaging beamline has its own implementation for ptychography:

ptychocam. Streaming ptychography has been first implemented to ptychocam and

later to ptycho. Since this thesis presents developments made to ptycho, a thorough

introduction to ptychocam is skipped and only general information are summarized

explaining key functionalities of ptycho.

Offline, ptychocam is started with a cxi file [97] that contains all information to

perform a ptychographic reconstruction. In streaming mode, ptychocam is started

without a cxi file and all necessary information must be transmitted via the start

event, such as the energy, the distance between sample and detector, and so forth.

Furthermore, ptychocam does not have the functionality to initialize an illumination,

such that one is transmitted via the start event.1

Since the streaming mode for ptycho was initially developed for operation at the

COSMIC Imaging beamline, ptycho supports all of these features, too. However,

ptycho does not rely on these information given by the start event. In streaming

mode, ptycho is still started with its usual configuration file, and when the start

event does not have any of the information, they are taken from the configuration

file. The only mandatory metadata are the nominal translations, ptycho still relies

on these to set up the shape of the reconstructed object.

1It would be trivial to implement an illumination initialization to ptychocam, but the idea of
ptychocam is to reconstruct a fully preprocessed cxi file.
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It is further stresssed that one has to specify a reasonable object enlargement

in the ptycho configuration file, since the nominal object shape may be too small

to incorporate the translations measured by the encoders or interferometers. The

nominal object shape is also too small when performing a fly scan at PtyNAMi.

For a fly scan, the amount of scan positions exceeds the amount of nominal scan

positions, because the collection of detector images continues when the translation

stages turnaround at the end of a line.2

4.3 Demonstration of the Streaming Reconstruction

The ptycho live reconstruction is now demonstrated to exemplarily illustrate the

impression for the user. However, the demonstration is created in a testing scenario.

The reconstructions shown here were not created during a measurement at the

beamline. Instead, a dataset acquired at the COSMIC Imaging beamline is used to

simulate the ZeroMQ streams to ptycho.

The simulation mimics a scan consisting of 400 diffraction patterns in total. The

sample is scanned on a grid with 20 steps each along the vertical and horizontal

dimension. The step size is 80 nm horizontally and vertically, giving a nominal scan

window of 1.52 µm × 1.52 µm. The distance between the sample and the detector

is 0.121m. The energy is 851.43 eV and the corresponding out of focus distance is

df = 18.24 µm. The illumination has roughly a size of 750 nm in the object plane.

The diffraction patterns are cropped to a size of 512 px × 512 px. The illumination

is initialized with 40 of the 400 diffraction patterns using equation 4.2. The parame-

ter dp fraction for illumination init is set to 0.1. With these parameters, the

start event is send to the reconstruction instance and it is waited for 1 s. Then, the

diffraction patterns are send every 20ms.

Different snapshots of the live reconstruction are shown in figure 4.4. From a)

to e), it is visualized how the live reconstruction looks after 20% to 100% of the

diffraction patterns have arrived, in steps of 20%. The fraction of arrived diffraction

patterns is given in the title of each image together with the iterations done so far.

Once all diffraction patterns arrived, the reconstruction continues for another 500

2In princple, ptycho could be started in streaming mode without any metadata at all, meaning
also without the translations. However, this would mean the size of the reconstructed object
cannot be known in advance, and the object is continuously extended with every arriving
diffraction pattern. While this is technically fine, it is a confusing impression for the user when
the object continuously grows. Hence, this feature has not been implemented and ptycho relies
on a matching object shape from the translations in the start event and the specified object
enlargement.
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Figure 4.4: An illustration of the streaming reconstruction. a) to e) The images show
the reconstruction after 20% to 100% of the diffraction patterns have
arrived, in steps of 20%. This is also indicated by the factor f in the
title. The amount of iterations is denoted by i in the title. f) The re-
construction after all diffraction patterns have arrived and an additional
500 iterations.

iterations, that has been specified in the ptycho configuration file. The final result

is visible in figure 4.4 f).

Due to the illumination size of roughly 750 nm and the step size of 80 nm, there is

a high degree of overlap. Only 20% of the diffractions pattern have been processed

by the live reconstruction in figure 4.4 a), but roughly half of the object can be

identified. At 40% arrived diffraction patterns in figure 4.4 b), the morphology of

the full object can already be estimated.
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4.4 Offline Reconstructions

During the development of streaming ptychography, it has been realized that in

most scenarios, the live recontruction does not have the chance to fully converge. In

a typical scenario at the beamline, a user will not perform a single ptychographic

scan and wait until it is converged, but rather series of ptychographic scans. At the

COSMIC Imaging beamline, these series are often spectroscopic scans with different

illumination energies, or tomographic scans for different projection angles of the

sample. Once the last diffraction pattern of one scan has been acquired, a new scan

will start immediately. A new scan will transmit a start event to the reconstruction

instance and the current reconstruction is stopped. The last diffraction pattern has

arrived just briefly before the new start event. The live reconstruction can use the

the last arriving diffraction patterns only for a couple of iterations.

To counteract, a pipeline has been developed to automatically perform an offline

reconstruction of the acquired data. The offline reconstruction is meant to fully

converge and less dependent on performance. Slower algorithms with the potential

for a higher reconstruction quality can be utilized, such as the ER introduced in

chapter 3 or the maximum-likelihood refinement by Thibault and Guizar-Sicairos

[98].

4.5 Pipeline

Summarizing what has been introduced in this chapter, the ptychography pipeline

at the COSMIC Imaging beamline must include the preprocessing of the diffraction

patterns, the reconstruction in streaming mode, and the offline reconstruction.

The resulting pipeline is shown in figure 4.5. The user interacts with the frontend

PYSTXMGUI. The GUI communicates with the backend server pystxmcontrol. The

backend communicates with the CCD detector and initializes the acquisition of a

detector image via the CCD Interface. The CCD Interface streams the acquired raw

diffraction pattern back into the backend pystxmcontrol. From here, pystxmcontrol

streams the raw diffraction pattern into PYSTXM GUI so that the user can inspect

it. Furthermore, pystxmcontrol writes the raw diffraction pattern into a hdf5 file

and streams the raw diffraction pattern into the Live Preprocessor.

The Live Preprocessor does all of the preprocessing described in section 4.1.1 and

the illumination initialization described in section 4.1.2. The preprocessed diffraction

pattern is written by the Live Preprocessor into a hdf5 file in cxi format. Once

10% of the diffraction patterns have arrived, the Live Preprocessor initializes an
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Figure 4.5: The ptychography pipeline at the COSMIC beamline. The pipeline con-
sists of an online preprocessing and reconstruction of the diffraction data.
Furthermore, there is an automated mechanism to perform offline recon-
structions at local workers at the beamline or at the National Energie
Research Scientific Computing Center (NERSC). A thorough descrip-
tion of all components is given in section 4.5.

illumination and sends the start event to the Live Reconstruction instance, which

could be either ptychocam or ptycho. Then, the Live Preprocessor begins streaming

of the preprocessed diffraction pattern into the Live Reconstruction.

The Live Reconstruction streams the current state of the reconstructed object

every 0.1 s into PYSTXM GUI, so that the user can inspect it.

When all preprocessed diffraction patterns are written into the cxi file, an offline

reconstruction is initialized. For this, there are two possibilities. First, an offline

reconstruction is performed on a local GPU node at the COSMIC Imaging beamline.

This is done by triggering a Prefect workflow. In a simplified picture, Prefect can

act as Slurm and allows to automatically trigger and monitor computing jobs.

Second, a GLOBUS data transfer is triggered that transports the finished cxi

file to the Perlmutter supercomputer at NERSC. Once the cxi file has arrvied, an

offline reconstruction is triggered as a Slurm job via an HTTP request to the NERSC

Superfacility API. The offline reconstruction is executed as a containerized version

of the reconstruction software ptychocam or ptycho.

For low data rates, the local GPU nodes at the COSMIC beamline may be suf-

ficient to reconstruct all acquired datasets in a suitable amount of time. For high
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data rates, the computing capabilities of the Perlmutter super at NERSC can be

utilized.

4.6 Conclusion

In this chapter, online ptychography in streaming mode has been developed for

operation at the COSMIC Imaging beamline. By the time of writing this thesis, the

live reconstruction was in continuous operation. The live reconstruction is part of

a pipeline that includes an additional offline reconstruction with highest quality for

postprocessing.

The favorable conditions for ptychography at the COSMIC Imaging beamline give

rise to the applicability of the live reconstruction. The ptychographic reconstruction

gives a good quality image already after a couple of iterations, as shown in figure

4.4. Furthermore, the large illumination leads to a reconstruction of the scan window

before the scan is completed. This enables a real time feedback of the running scan

for the user. The PYSTXM GUI in figure 4.5 is the only point of interaction that

the user needs to control the ptychographic microscope.

It is stressed that the pipeline in figure 4.5 is the result of a collaboration. David

Shapiro is the manager of the COSMIC Imaging beamline and responsible for pys-

txmcontrol, PYSTXM GUI and the reconstruction software ptychocam. Abraham

Levitan wrote the Live Preprocessor. Yanqi Luo und Dylan McReynolds imple-

mented the Prefect infrastructure and the GLOBUS data transfer to NERSC.

The contributions of the author Silvio Achilles are as follows. The author devel-

oped the streaming structure in section 4.2 and implemented it to ptycho, ptychocam

and the Live Preprocessor. Furthermore, the author developed the mechanism to au-

tomatically perform offline reconstructions at the local beamline machines and the

Perlmutter supercomputer at NERSC.
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5 Coupled Ptychographic

Tomography

Coupled Ptychographic Tomography (CPT) gained increasing interested in recent

years [28], [29], [72], [99], [100]. The approach has been introduced in section 2.4.3.

The procedure has been proven to work on experimental data by Kahnt, et al.

[29]. The runtime of their implementation is about one week for 50 iterations. The

objective of this work is to develop a GPU-accelerated implementation that allows

to perform CPT reconstructions in a suitable time. The developed implementation

is referred to as ptycho3d.

Section 5.1 presents how ptycho3d is implemented and what libraries are used.

Section 5.2 introduces the dataset of the zeolite catalyst particle. This dataset is used

to benchmark ptycho3d. Section 5.3 demonstrates the functionality of ptycho3d by

creating reconstructions with different ptychographic and tomographic algorithms.

Section 5.4 presents the achieved performance. Section 5.5 gives insight into another

benefit of CPT, which is to use 2D ptychographic position correction procedures

during the combined ptychographic tomographic reconstruction. Finally, in section

5.6, the achieved results are summarized and an outlook for future developments is

given.

5.1 Implementation Details

The developed GPU-accelerated CPT implementation ptycho3d is derived of the

ptychography software ptycho, which has been introduced in section 2.2.6. There-

fore, ptycho3d is written in C++ and utilizes the CUDA library for GPU-accelerated

calculations. The tomographic components are added from the ASTRA-Toolbox,

which is fortunately written in C++/CUDA, too [86].

The ptychographic algorithms ePIE, pePIE, and refPIE and the tomographic

algorithms BP, SIRT, and CGLS can be utilized by ptycho3d. During the CPT

reconstruction, ptycho3d updates the reconstructed 3D complex refractive index

decrement ν(x, y, z) after each projection. Therefore, the SIRT algorithm is effec-

tively SART [83]. Furthermore, the BP cannot be applied directly, since the ASTRA-

Toolbox does not consider an existing volume when performing the BP. Neverthe-

less, ptycho3d utilizes the BP to update the recontruction volume ν for a specific
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projection angle Ω as follows

ν ′(x, y, z) = ν(x, y, z) +

∫ ∞

−∞
(ν ′Ω(t, y)− νΩ(t, y))δ̃(t− x cos(Ω)− z sin(Ω)) dt, (5.1)

in which ν ′ denotes the updated volume, t denotes the projection coordinate and

δ̃ denotes the delta function. Equation 5.1 is a similar update as SART. Therefore,

the tomographic update utilizing equation 5.1 is referred to as Backprojection-based

SART (BP-SART). In section 5.4, it is shown that BP-SART yields a better perfor-

mance in ptycho3d than the SIRT implementation of the ASTRA-Toolbox.

The tomographic operations in ptycho3d are performed on multiple GPUs. Dis-

tributing parallel-beam geometry tomographic operations on multiple GPUs is a

triviality, since the projection and the volume can be divided into separate parts

that do not interact with each other. A further benefit is that the reconstructed

volume ν may consume a significant amount of GPU memory. By distributing ν

among multiple GPUs, larger volumes can be reconstructed.

In principle, all features of ptycho are also available in ptycho3d. However,

ptycho3d has not been tested for all possible scenarios and some features may re-

quire a more specified implementation, for instance using multi-beam or multi-slicing

during the CPT reconstruction.

5.2 Sample and Experiment

Figure 5.1: A SEM image of the zeolite particle. The particle has a diameter of
roughly 2.7 µm.

The sample is a macroporous zeolite catalyst particle that was measured at

PtyNAMi in 2018 [29]. The sample is visible in figure 5.1. The incoming beam

had an energy of 9 keV and was focused by a FZP to a circular spot size of 70 nm.

The sample was positioned 1.0mm behind the focal plane of the X-ray optics, yield-
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ing an illumination size of 1.8 µm in the object plane. The diffraction patterns were

acquired with an Eiger X4M with a pixel size of 75 µm × 75 µm The detector was

positioned 2.13m behind the sample. The diffraction patterns are cropped to 256 px

along the vertical and horizontal dimension. The experimental geometry yields a

real space pixel size of 16.57 nm of the reconstructed object.

The sample was rotated over an angular range of 182◦ with a step size of 2◦, yield-

ing a total amount of 92 projections. For each projection, the sample was translated

on a grid with a step size of 400 nm and 11 steps horizontally and vertically. This

yields a nominal scan window of 4 µm× 4 µm. The scan positions r⃗n were measured

with a set of optical interferometers.

The dataset acquisition as well as a prior data evaluation was done by Kahnt, et

al. [29]. An essential part of nano-tomographic data evaluation is the alignment of

the projections. The used projections in this thesis are aligned beforehand, which

has been done by Maik Kahnt.

5.3 Ptychographic and Tomographic Reconstruction

Algorithms

To demonstrate the functionality of ptycho3d, reconstructions are performed for all

combinations of the ptychographic algorithms ePIE, pePIE, and refPIE and the to-

mographic algorithms BP-SART, SIRT, and CGLS. Each reconstruction ran for 100

iterations after which the contrast converged. For each projection, the illumination

amplitude is initialized as a disk with a diameter of 1.8 µm and the illumination phase

is initialized by propagating a planar phase 1.0mm downstream. The illuminations

are constrained during the reconstruction, such that the dosis in the reconstructed

illumination matches the dosis of the brightest diffraction pattern. For ePIE and

refPIE, the constraint is applied before the processing of each diffraction pattern.

For pePIE, the constraint is applied at the beginning of every iteration. Each re-

construction ran for 100 iterations, after which the contrast of the reconstruction

converged.

One central horizontal slice of the reconstructed volume is shown in figure 5.2 for

each of the algorithm combinations. The reconstructed slices have similar quality.

Neither the ptychographic nor the tomographic algorithm has a significant influence

on the reconstruction quality.
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Figure 5.2: A summary of CPT results obtained by combining the ptychographic
algorithms ePIE, pePIE, and refPIE and the tomographic algorithms
BP-SART, SIRT, and CGLS. Each image shows one reconstructed slice
of the zeolite dataset. Each of the combinations yields a similar recon-
strution quality and no significant differences can be observed by visual
inspection.
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5.4 Performance

The ptychographic operations run on a single GPU and the tomographic operations

can run on as many GPUs as available on the executing node. Figure 5.3 shows a

benchmark of the zeolite dataset for all combinations of ptychographic and tomo-

graphic reconstruction algorithms. Each combination was iterated for 200 iterations,

of which the mean iteration time is calculated. The benchmarks have been performed

using Nvidia A100 GPUs. The dots in figure 5.3 show the mean iteration time versus

the amount of utilized GPUs. The color of the dots denotes the tomographic algo-

rithm. The titles in figure 5.3 denote the ptychographic algorithm. The tomographic

algorithm has a significant influence on the performance.
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Figure 5.3: A CPT performance comparison for all combinations of ptychographic
and tomographic reconstruction algorithms of ptycho3d. a) to c) The
performance for the three ptychographic algorithms ePIE, pePIE, and
refPIE. In each panel, the three tomographic reconstruction algorithms
BP-SART, SIRT, and CGLS are denoted by the colored dots. The perfor-
mance is mostly influenced by the tomographic reonstruction algorithm.
The BP-SART gives the best performance.

For a single GPU, SIRT and CGLS have a mean iteration time about three times

as high as BP-SART. However, for SIRT and CGLS, the mean iteration decreases

significantly when using multiple GPUs.

The BP-SART performance is less increased by the amount of utilized GPUs.

This may be due to the fact that the BP-SART is a mathematically much simpler

operation and the additional overhead when initializing multiple GPUs instead of

one equalizes the performance increase.

The runtime of the implementation by Kahnt, et al., is about seven days for 50

iterations utilizing ePIE and SIRT [29]. The runtime of ptycho3d for 50 iterations

including IO operations is 201.75 s for BP-SART and 538.82 s for SIRT. This yields

a respective performance increase by a factor of 2997 and 1122.
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5.5 Position Refinement

A benefit of the combined mathematical description of ptychography and tomogra-

phy is that additional ptychographic features can be utilized during the reconstruc-

tion, such as the 2D brute-force position refinement presented in section 2.2.6. The

ptychographic position refinement is applied to the current state of the projected

object-transmission function, but before the object function is updated in a certain

iteration. Therefore, the scan positions are refined to be consistent with the recon-

structed 3D complex refractive index decrement ν. This can yield a better alignment

of the ptychographic projections.

Properly aligned projections are a requirement for high quality tomographic recon-

structions. Generally, the experiment should be designed as stable as possible. How-

ever, the stability of rotation stages is not sufficient for nano-tomographic datasets

with spatial resolutions significantly below 1 µm. In figure 4.1, it has been shown

that the rotation at PtyNAMi causes the sample to drift for more than 50 nm/◦.

The alignment of the projections is an essential part of the evaluation of nano-

tomographic datasets.

The effect of the position refinement is first tested on a simulated dataset in

section 5.5.1 and on the zeolite dataset in section 5.5.2.

5.5.1 Simulation Study
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Figure 5.4: The illumination used for the simulation of the Shepp Logan dataset.

The object for the simulations is a 3D Shepp Logan phantom. The edge length

of the 3D cubic volume is 808 px, which already includes the obligatory padding for

ptychographic datasets by half the illumination size and 20 px object enlargement to
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incorporate the position refinement shifts. The illumination has a gaussian-shaped

amplitude and a gaussian-shaped phase shown in figure 5.4 a) and b), respectively.

The energy of the illumination is 9 keV, the distance between the sample and the

detector is 3m, and the detector has a pixel size of 75 µm × 75 µm. However, the

discussion throughout this section will be carried out based on the pixel coordinates.

In total, 181 ptychographic projections are simulated over an angular range of 180◦.

Each projection consists of 441 diffraction patterns distributed on a regular grid

with 21 steps in each dimension.

Two datasets are simulated: One dataset that has perfectly aligned projections.

A second dataset that has the projections randomly misaligned horizontally and

vertically by shifts in the range of −5 px tp 5 px .

Reconstruction

The datasets are reconstructed as follows. The ptychographic and tomographic re-

construction algorithm is ePIE and BP-SART, respectively. For all reconstructions,

the exact illumination is utilized and the illumination is not updated during the

reconstruction, meaning β = 0 in equation 2.21. This is due to the fact that the illu-

mination refinement can yield an improved projection alignment, too [29]. However,

this section is dedicated to investigate the effect of only the position refinement on

the projection alignment.

First, a CPT reconstruction of the perfectly aligned dataset is done. The re-

construction ran for 20 iterations, after which the contrast of the reconstruction

converged. From the reconstructed projections, a sinogram of a central y position is

created and shown in figure 5.5 a). The sinogram is perfectly continuous since there

is no misalignment. The corresponding slice of the reconstructed volume is shown in

figure 5.5 d). The reconstruction has very good quality. The four colored lines mark

features used for a line profile analysis later in this section.

Second, a CPT reconstruction without position refinement of the misaligned

dataset is done. The reconstruction ran for 20 iterations, after which the contrast of

the reconstruction converged. From the reconstructed projections, a sinogram of a

central y position is created and shown in figure 5.5 b). The sinogram has discontinu-

ities due to the misalignment. The corresponding slice of the reconstructed volume

is shown in figure 5.5 e) and has a severly reduced quality due to the misalignment.

Third, a CPT reconstruction with position refinement of the misaligned dataset

is done. As an initial guess for the object, the CPT reconstruction without posi-

tion refinement of the misaligned dataset is used. The position refinement is applied
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Figure 5.5: A demonstration of the effect of projection misalignment on the tomo-
graphic reconstruction. a) The sinogram of the reconstruction of the
perfectly aligned dataset. b) The sinogram of the reconstruction of the
dataset randomly misaligned by up to ±5 px. The sinogram has discon-
tinuities. c) The sinogram of the reconstruction that utilized position re-
finement for 50 iterations to the reconstruction state in b). The position
refinement causes a better alignment of the projections and the sino-
gram is more continuous. d) The reconstruction of the aligned dataset.
The object is properly reconstructed. e) The reconstruction of the mis-
aligned dataset. The recontruction quality is significantly reduced. f) The
reconstruction with position refinement of the misaligned dataset. The
position refinement causes an improved reconstruction quality compared
to e).

in every iteration starting from the beginning of the reconstruction. The spread

for the position refinement is rp = 5px, matching the maximum misalignment of

the projections. The reconstruction ran for 200 iterations, after which no further

improvement with more iterations could be observed. From the reconstructed pro-

jections, a sinogram of a central y position is created and shown in figure 5.5 c). The

sinogram is significantly more continuous than the sinogram in b). The correspond-

ing reconstruction is shown in figure 5.5 f). The reconstruction has an improved
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quality compared to the reconstruction without position refinement in figure 5.5 e).
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Figure 5.6: Line profiles to determine the spatial resolution of the features marked
by the colored lines in figure 5.5 d). The spatial resolution is defined as
the distance between the 10% and 90% of the maximum value of the
error function fit. The determined spatial resolution is given by the label
in each panel. The colored dots mark the pixel of the respective feature
in figure 5.5. The black line in each plot is the fit of the error function.
The fits for the aligned dataset are a), d), g), and j). The fits for the
misaligned dataset without position refinement are b), e), h), and k).
The fits for the misaligned dataset with position refinement are c), f), i),
and l). For all features, the spatial resolution of the misaligned dataset
is improved by the position refinement.

The reconstruction quality is further analyzed by line profiles. The line profiles are

drawn at the four colored positions marked in figure 5.5 d). The line profile analysis is

carried out for each of the three reconstructions. The line profiles and corresponding

error function fits are shown in figure 5.6. The spatial resolution is defined as the

distance between 10% and 90% of the maximum value of the error function fit. The

determined spatial resolutions are given as an inset in each panel in figure 5.6. The
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line profiles for the perfectly aligned dataset indicate a spatial resolution of 2 px to

3 px. The misalignent causes an increase in the spatial resolution to 4 px to 10 px.

The position refinement corrects the misalignnment partially and causes a decrease

of the spatial resolution to 3 px to 8 px.

5.5.2 Zeolite

Now, the CPT position refinement is tested on the zeolite dataset. The scan posi-

tions r⃗n of all projections are refined in a prior 2D ePIE reconstruction using the

position refinement presented in section 2.2.6. The refinement started after 10 iter-

ations and ran for 990 iterations. This is to only investigate the influence of the 2D

position refinement on the projection alignment. The utilized ptychographic and to-

mographic reconstruction algorithm is ePIE and BP-SART, respectively. Two CPT

reconstructions are done, one without and one with position refinement.
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Figure 5.7: A comparison of the effect of position refinement within the CPT recon-
struction. Both sinograms are created from the projections after 100 CPT
iterations with ePIE and BP-SART as ptychographic and tomographic
reconstruction algorithm, respectively. The shown sinograms correspond
to the z position iz = 332. In a), a sinogram without position refinement
is shown. In b), a sinogram with positions refinement is shown. In a) it
can be seen that the projections are not perfectly aligned and disconti-
nuities are visible. In b), the sinogram is smoother and continous.

The reconstruction without position refinement ran for 100 iterations, after which

the contrast of the reconstruction converged.
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The reconstruction with position refinement utilizes the state of the reconstruction

without position refinement as the initial guess for the volume ν and the illumina-

tions PΩ. The spread of the square grid for the brute force position refinement is

rp = 3px. The reconstruction with position refinement ran for 200 iterations, after

which no further improvement with more iterations could be observed.

Figure 5.7 a) shows the sinogram of a central y position of the the reconstruc-

tion without position refinement. It can be seen that the dataset is well aligned,

but has some discontinuities. Figure 5.7 b) shows the respective sinogram of the

reconstruction with position refinement. The sinogram has a smoother shape.
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Figure 5.8: A comparison of the effect of position refinement within the CPT recon-
struction. From a) to d), four reconstruction slices are shown when no
position refinement is used. From e) to h), the corresponding slices with
position refinement are shown.

The reconstructions of four consecutive horizontal slices are shown in figure 5.8.

The slices without position refinement are shown in a) to d). The slices with po-

sition refinement are shown in e) to h). The position refinement causes that the

reconstructed volume matches the measured diffraction patterns. This causes that

the projections become better aligned. However, not only the projections are better

aligned with each other, but also the scan positions in the individual projections

are refined to match the corresponding diffraction pattern. The morphology of the
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reconstruction can be overall changed by the position refinement. This is visible in

figure 5.8. The bright feature on the left side of the particle is present in the re-

constructions without position refinement, but the feature can be barely seen in the

reonstructions with position refinement.

Furthermore, there is no obvious improvement of the reconstruction quality due to

the position refinement. This is because the zeolite particle does not have any sharp

edges or very defined structures that become better resolved. However, since the

sinogram of the reconstruction with position refinement in figure 5.7 b) is smoother

than the sinogram without position refinement in figure 5.7 a), it is concluded that

the position refinement causes a better reconstruction of the actual zeolite morphol-

ogy.

5.6 Conclusion

The GPU-accelerated CPT framework ptycho3d has been developed, that combines

the ptychography software ptycho with tomographic operations from the ASTRA-

Toolbox. The achieved performance is about a factor 3000 higher than the original

implementation by Kahnt, et al. [29]. Additional ptychographic features and tomo-

graphic algorithms can be used by ptycho3d during the combined ptychographic to-

mographic reconstruction To demonstrate this, the three ptychographic algorithms,

ePIE, pePIE, and refPIE have been applied in combination with the tomographic

algorithms BP-SART, SIRT, and CGLS.

Furthermore, the 2D ptychographic position correction of ptycho has been uti-

lized within the CPT reconstruction. It has been shown on simulated and experi-

mental data that this yields a better alignment of the ptychographic projections and

improves the reconstruction quality.
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6 Summary and Conclusion

This thesis comprises three distinct projects which advance ptychography.

First, the Ensemble Refinement (ER) has been introduced, which corrects for

mechanical instabilities during a ptychographic measurement. The ER procedure

has been implemented into the custom C++/CUDA software ptycho. Preliminary

tests have been performed on simulated data, that successfully verified the general

working principles and a correct implementation. Two experimental datasets were

treated with the ER and reliable improvements have been achieved for both. The

ePIE reconstruction of the Siemens star dataset was severely blurred and the ER

resulted in a significant correction. The spatial resolution has been estimated by line

profiles at four different features in the reconstruction and the improvement due to

the ER was at least a factor 2. The ER prove to be stable in regard to the ensemble

size parameter re.

The stability of the ER is imposed by an high amount of overlap. For both datasets

in this work, the ratio between the illumination size and the scanning step size is

about a factor 4. Furthermore, the phase of the illumination may be influental for the

stability of the ER. In this work, both datasets had the object positioned behind the

focal plane of the utilized X-ray optics, such that there is a profile in the illumination

phase.

Nevertheless, the ER has introduced artifacts for both datasets in either free space

regions, or regions that have a translation invariancy within the grid spanned by the

individual ensembles. Furthermore, the computational performance is heavily re-

duced, which is mainly caused by the current implementation of the Non-Negative

Least Squares (NNLS) fit, that utilizes only a single CPU core. Future work should

focus on optimizing the NNLS fit. The performance of the NNLS fit can be increased

by utilizing a more recent mathematical approach [92], [93], that can potentially

reduce the runtime by more than an order of magnitude. Further, the NNLS fit

should be GPU-accelerated to achieve the highest possible performance. In that

sense, it may be favorable to use a parallel ptychographic algorithm, such as Differ-

ence Map (DM), so that the processing of all diffraction patterns can be parallelized

[51]. These developments can reduce the runtime of the ER significantly and allow

for a more routine operation.

The second project presented the implementation of online ptychography in stream-

ing mode, which is a novel type of on-the-fly data evaluation. By the time of writ-
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ing this thesis, most ptychographic microscopes still do the data evaluation offline,

meaning the data acquisition and evaluation are subsequent steps. Performing the

ptychographic data evaluation online allows to observe a measurement live. Mis-

takes can be identified and corrected, such that valuable beamtime can be saved.

However, in most scenarios, the online reconstruction is unlikely to converge. Hence,

a mechanism has been developed to perform offline reconstructions automatically.

Part of the offline reconstruction can be to delete the raw data once it is processed.

This is beneficial because less data is saved for long time and hardware ressources

can be saved. An additional benefit of separating the online and offline reonstruc-

tion is that the offline reconstruction is not dependent on performance. This means

that the offline reconstruction can utilize even slower algorithms to achieve the best

reconstruction quality, such as the ER or the maximum-likelihood refinement [98].

The third project was the development of ptycho3d, a GPU-accelerated software

for Coupled Ptychographic Tomography (CPT) [28]. The performance of ptycho3d

is improved by a factor 3000 to the previous implementation by Kahnt, et al. [29].

Different ptychographic and tomographic algorithms can be utilized by ptycho3d.

Furthermore, ptychographic features such as 2D position correction can be utilized

during the combined ptychographic tomographic reconstruction. It has been demon-

strated on simulated and experimental data how the position correction yields an

improved projection alignment. However, the 2D position refinement has not been

able to fully correct a simulated misaligned dataset. For further investigations, one

can use different position refinement procedures, such as the cross-correlation ap-

proach [82], or directly incorporate projection alignment procedures [101], such as

tomographic consistency [102]. In principle, the ER is a viable candidate for projec-

tion alignment, too. One may also want to incorporate strategies for an automatic

determination of the rotation center [103]. Alignment is an essential part of nano-

tomography. Including the alignment into the 3D ptychography reconstruction has

the potential to reconstruct 3D ptychographic datasets in an automated manner.

Once being achieved 3D ptychography provides a tool to zoom into the 3D nano

structure with a precision down a few tenth nm [40].

Combined ptychography and tomography can be further advanced by doing multi-

beam ptychography. An array of illuminations is used to illuminate a large field of

view of the object. This would further decrease the acquisition time by a factor

up to the amount of utilized illuminations. Another benefit is the utilization of the

redundancy of the entire ptycho-tomographic dataset. Multi-beam ptychography

often suffers from ghost images, since multiple object regions are refined against a

single diffraction pattern. The increased redundancy has the potential to stabilize
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the multi-beam reconstruction.

The results achieved in this thesis are especially important for fourth generation

synchrotron sources such as PETRA IV. Compared to third generation synchrotron

sources, the coherent flux will increase by a factor 100 to 1000 and thereby improve

the reconstruction quality, reduce the acquisition time, and significantly increase

the amount of collected data. When the reconstruction quality improves, then the

influence of the mechanical instabilities during the data acquisition will become

more severe. An optimized version of the ER can be consistently included into the

reconstruction procedure and correct for the mechanical instabilities.

To counteract the high data rates, online evaluation becomes more important to

immeadiately process the acquired data. In this work, a pipeline has been developed

that performs online and offline ptychographic reconstructions automatically. The

pipeline can be extended to delete the raw data once the offline reconstruction is

completed. By doing so, hardware resources are saved since the raw data is not kept

for long time.

Furthermore, the increased coherent flux allows to do 3D ptychography scans in

minutes. The CPT implementation presented here can catch up with such high data

rates and is fast enough to allow for online analysis. This has the potential to become

a reliable tool to zoom into the 3D nano-structure with a time resolution that can

visualize fast dynamic processes.
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