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Abstract

In this thesis, we study two Z boson production mechanisms: the Drell-Yan process and
real electroweak corrections.

The transverse momentum spectrum of the Drell-Yan lepton pair is of general interest as
it is sensitive to the hadron structure. Moreover, the small transverse momentum region ,
qT < mll, is sensitive to the 3D structure of the hadron. To describe the qT < mll region,
resummation to all orders is needed. However, the qT ≪ mll region is non-perturbative
and has to be modelled. This region is modelled via a Gaussian distribution of the intrinsic
transverse momentum of the incoming partons. Nonetheless, this is insufficient, and very-
soft gluon radiation is needed. We investigate the effect of very-soft gluon radiations in the
qT ≪ mll region within the Parton Branching framework, and how it relates to the Collins-
Soper kernel of the TMD factorisation. The very-soft gluon radiation is removed through
the soft-gluon resolution scale in the parton showers of Monte-Carlo event generators, such
as Pythia8 and Herwig7. We demonstrate that this leads to a centre-of-mass energy
dependent intrinsic transverse momentum, by tuning the intrinsic transverse momentum.

At high partonic centre-of-mass energies, electroweak corrections become large, and the
Z boson might be produced as a real electroweak correction. In QCD processes, at high
jet transverse momentum, virtual electroweak corrections become large, and at the TeV
scale, their contribution to the cross-section is of the order of 10%. We measure the con-
tribution of real electroweak corrections to QCD events as a function of the jet transverse
momentum. We analyse proton-proton collisions at a centre-of-mass energy of 13 TeV at
the LHC, recorded by the CMS experiment during 2016, corresponding to an integrated
luminosity of 36.3 fb−1. We measure the contribution of the real electroweak correction
to a 1 TeV jet transverse momentum to be 1-2 %. Moreover, we investigate different
observables sensitive to real electroweak corrections to test their modelling in different
theoretical scenarios.



Zusammenfassung

In dieser Arbeit untersuchen wir zwei Produktionsmechanismen von Z-Bosonen: den
Drell-Yan-Prozess und reelle elektroschwache Korrekturen.

Das transversale Impulsspektrum des Drell-Yan-Leptonenpaares ist von allgemeinem In-
teresse, da es Aufschluss über die Hadronenstruktur gibt. Transversalimpulsen bei qT <
mll ist die 3D-Struktur des Hadrons zugänglich. Um den Bereich qT < mll zu beschreiben,
ist eine Resummation über alle Ordnungen erforderlich. Der qT ≪ mll Bereich ist je-
doch nicht-perturbativ und muss modelliert werden. Dieser Bereich wird durch eine
Gaußsche Normalverteilung des intrinsischen Transversalimpulses der ankommenden Par-
tonen beschrieben. Nichtsdestotrotz ist dies nicht ausreichend und sehr weiche Gluo-
nenstrahlung wird benötigt. Wir untersuchen die Auswirkung sehr weicher Gluonen-
strahlung im qT ≪ mll-Bereich im Rahmen des Parton Branching Modells, und wie sie
mit dem Collins-Soper-Kernel der TMD-Faktorisierung zusammenhängt. Die sehr weiche
Gluonenstrahlung wird durch die Auflösungsskala in Partonenschauern der Monte-Carlo-
Ereignisgeneratoren wie Pythia8 und Herwig7 vernachlaessigt. Wir zeigen, dass dies
zu einem von der Schwerpunktsenergie abhängigen intrinsischen Transversalimpuls führt,
indem wir den intrinsischen Transversalimpuls in Pythia8 und Herwig7 für unter-
schiedliche Drell-Yan-Messungen tunen.

Bei hohen partonischen Schwerpunktsenergien werden die elektroschwachen Korrekturen
groß, und das Z-Boson kann als reelle elektroschwache Korrektur auftreten. Bei QCD-
Prozessen werden die virtuellen elektroschwachen Korrekturen bei hohem Jet-Transversal
-impuls groß, und, im TeV-Bereichliegt ihr Beitrag zum Wirkungsquerschnitt in der
Größenordnung von 10 %. Wir messen den Beitrag der reellen elektroschwachen Kor-
rekturen zu QCD-Ereignissen als Funktion des Jet-Transversalimpulses. Bei einer Schw-
erpunktsenergie von 13 TeV am LHC untersuchen wir Proton-Proton-Kollisionen, vom
CMS-Experiment im Jahr 2016 aufgezeichnet, was einer integrierten Luminosität von
36.3 fb−1 entspricht. Den Beitrag der reellen elektroschwachen Korrektur zu einem 1 TeV
Jet-Transversalimpuls bestimmer wir zu 1-2 %. Darüber hinaus untersuchen wir ver-
schiedene Observablen, die auf reelle elektroschwache Korrekturen sensitiv sind, um deren
Modellierung in verschiedenen theoretischen Szenarien zu testen.
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CHAPTER1
Introduction

The increase of access to higher education over the last century has benefited and shaped
modern science1. High energy physics stands as one of the bigger benefactors of this
socio economical situation, where international collaborations work on an attempt to
understand the working principles of the universe. A clear example are the collaborations
in the Large Hadron Collider at CERN: ALICE, ATLAS, CMS and LHCb, where as for
Summer 2023 the CMS collaboration consists of almost 6000 participants spread across
59 countries in 257 institutes [1].

The Standard Model of particle physics (SM) is the outcome of such collaborations across
nations and cultures, where theorists and experimentalists contribute to the completion
of the SM. The SM is the theory describing the interactions between the building blocks
of the universe ( excluding the gravitational interaction ). While the SM is one of the
most successful theories, it is not able to describe all the experimental observations, such
as the mass of the neutrinos. To explain such phenomena the SM has to be extended.
The extensions to the SM are commonly known as beyond the Standard Model (BSM)
theories. Many BSM theories have been proposed to describe the missing pieces of the
SM, however, none of these extensions has been verified by experimental measurements.
Thus, revisiting the SM with precision measurements and theoretical predictions is a key
to find new physics.

In this thesis we revisit the electroweak sector of the SM, where the force carriers of
the electroweak interactions are the Z and W± bosons. More precisely, we investigate
the production of the Z boson. Its leptonic decay is one of the cleanest signatures to
measure in a detector, making it the perfect playground to test our theories. The Z
boson was theoretised as part of the electroweak theory by S. Glashow [2], A. Salam [3]

1It is important to note that access to science is still highly restricted.
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and S. Weinberg [4], and later discovered in the Super Proton Synchrotron at CERN in
1983 [5]. In this work we investigate two production modes of the Z boson: the Drell-Yan
production and the real electroweak correction.

The Drell-Yan process occurs in hadronic collisions, where a quark and anti-quark collide
and create a Z boson. It was proposed as a mechanism to describe the production of lepton
pairs in 1970 by S. D. Drell and T.-M. Yan [6] and it has been an object of study since
then. The Drell-Yan process is of big interest as it is sensitive to the proton structure,
moreover, at low transverse momentum, qT , of the Drell-Yan lepton pair with mass mll

it is sensitive to the 3D structure of incoming hadrons. To describe the qT < mll region
resummation has to be introduced. However, the qT ≪ mll region is non-perturbative and
has to be modelled. We study the transverse momentum of the Z boson, with emphasis on
the non-perturbative regime, within the Parton Branching framework and in the parton
showers of Monte-Carlo event generators, such as Pythia8 and Herwig7.

As the centre-of-mass energy of the hadronic collisions increases, electroweak corrections
become large, and the Z boson might arise as product of a radiation, what can lead to an
overestimate of the jet transverse momentum. We measure the contribution of the real
electroweak corrections in high energetic Quantum Chromodynamic (QCD) processes in
hadronic collisions. For the measurement we make use of the proton-proton collisions
recorded by the CMS experiment at the LHC at a centre-of-mass energy of 13 TeV in
2016. Further, we measure observables sensitive to real electroweak radiation and we
compare them to different theoretical calculations.

This thesis is organised as follows. In chapter 2 we present the theoretical premisses, where
we give an overview of the SM and we present the theoretical tools to describe proton-
proton collisions with a focus on the Drell-Yan process. In chapter 3 we introduce the
main theoretical aspects of electroweak corrections and we investigate the modelisation of
real electroweak radiations in parton showers. In chapter 4 we present the experimental
set-up for the measurement of the electroweak corrections: the LHC apparatus and the
CMS experiment. In chapter 5 we measure the contribution of real electroweak radiations
in QCD processes. We finalise the thesis by drawing conclusions and presenting the results
from a global perspective in chapter 6.



CHAPTER2
Theoretical premises

In this chapter we present the theoretical premises to describe hadronic collisions. In sec-
tion 2.1 we give a short introduction of the Standard Model of particle physics, the theory
describing the interaction between the building blocks of the universe. In section 2.2 we
explain the theoretical elements involved in describing hadronic collisions, with a focus
on the Drell-Yan production.

2.1 The standard model of particle physics

The standard model of particle physics (SM) is the theory that describes the building
blocks of visible matter and their interactions. Such interactions are: the electromagnetic,
the weak and the strong interactions. Gravitational interactions are not included. We can
divide the building blocks in different types of particles regarding their spin. Fermions
are particles with a half integer spin and bosons particles with integer spin.

The SM fermions are particles with half integer spin. We can categorise the SM fermions
depending on the interactions they undergo: leptons and quarks. Leptons do not interact
through strong interactions. Moreover, within the leptons there are electromagnetically
charged leptons and neutral leptons. Charged leptons are: electrons, muons and taus.
Neutral leptons or neutrinos are the electron neutrino, muon neutrino and tau neutrino.
Neutrinos only interact through weak interactions.

Quarks are fermions that interact through strong, weak and electromagnetic interactions.
There are six types of quarks or flavours: up, down, strange, charm, bottom and top
quarks. Moreover, all the SM fermions have a corresponding antiparticle.

The SM is a quantum field theory. It respects the laws of special relativity and quantum

3
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mechanics and the symmetries of nature. Particles are embedded into quantum fields,
with quantum numbers, such as, mass and spin. The SM fermions are embedded into
spinor fields, bosons with spin 1 into vector fields and spin 0 particles into scalar fields.

The Lagrangian density characterises the kinematics of the fields. Besides, it has to respect
two major types of symmetries: global and local symmetries. Global symmetries are
physical symmetries, that involve physical consequences. For every conserved continuous
global symmetry there is a conserved current. This is Noether’s theorem [7], one of the
most important foundations of modern physics based on symmetries, such as the SM.

Local symmetries, more known as gauge invariance, are not natural symmetries. The
physics does not depend on a specific time and space. Local symmetries are artefacts that
allows us to study nature locally, hence, we can describe the dynamics of the particles
with a local Lagrangian, a Lagrangian that depends on space-time.

The SM is a theory based on symmetries, and it follows the group structure of

SU(3)c × SU(2)L × U(1)Y , (2.1)

here SU(N) stands for special unitary algebraic groups that act on N dimensions. Each
group has N2 − 1 objects that generated the group, called generators. The generators
can be represented through N ⊗ N matrices, for SU(2) the three Pauli matrices and
for SU(3) the eight Gell-Mann matrices. These are rotational and boost matrices. The
SU(3)c matrices, where the c stands for colour, act on the colour space and SU(2)L on
weak isospin space.

Now we are going to study the different interactions: electromagnetic, weak and strong
interactions. First we present the electroweak interactions, which is the unification of the
electromagnetic and weak interactions. The electroweak interactions correspond to the
SU(2)⊗U(1) group. Then, the strong interactions which correspond to the SU(3) group.

From now on, we represent the spinor fields with the ψ Greek letter, the vector fields with
a Latin capital letter Aµ and scalar fields with the Φ letter.

2.1.1 Electroweak interactions

The theory of electroweak interactions arises from the unification of quantum electrody-
namics and weak interactions at high energies. Quantum electrodynamics explains the
interactions of electromagnetically charged particles at low energies. The theory of weak
interactions was developed to explain flavour changing processes, such as β decays. In this
section we will go through quantum electrodynamics and the theory of weak interactions.
Then, shortly introduce the unification of the electroweak theory and its spontaneous
symmetry breaking.
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Quantum electrodynamics

Quantum electrodynamics (QED) is the theory that describes the interaction of electro-
magnetically charged particles, quarks and charged leptons, in other words the interaction
between matter and light.

QED is a theory that is invariant under U(1) transformations, hence, it has a conserved
current, the electromagnetic charge. We start from Diracs Lagrangian, which represents
a free spinor field:

LDirac = ψ̄(iγµ∂µ −m)ψ (2.2)

here ψ is a doublet of spinors which represents the different possible states of the spin of
the 1/2 spin particles:

ψ =

(
ψL

ψR

)
ψR = (0, 1/2), ψL = (1/2, 0),

(2.3)

γ are the Pauli matrices, m is the mass of the fermion field and ψ̄ = ψ†γ0. The Dirac
Lagrangian is invariant under U(1) transformations of the spinor fields

ψ → eiαψ, (2.4)

where α is a real number. However, it is not invariant under a U(1) local transformation:

ψ → eiα(x)ψ, (2.5)

where we promote the real number α in equation 2.4 into a function depending on space-
time. To ensure local invariance under a U(1) local transformation the interaction between
a fermion and vector field is introduced through a covariant derivative Dµ:

Dµ = ∂µ − ieAµ (2.6)

here Aµ represents the vectorial field of a spin 1 particle and e the coupling strength.
Then, we need to add a kinematic term for the Aµ field to the Lagrangian in equation 2.3.
Moreover, a mass term for the Aµ field is not allowed, since it breaks the gauge invariance
or local invariance. All these ingredients give the QED Lagrangian:

LQED =
1

4
FµνF

µν + ψ̄(D +m2)ψ (2.7)

where Fµν = (∂µAν − ∂νAµ) is the kinematic term of the vector field of the gauge boson
Aµ. This Lagrangian is invariant under simultaneous transformations under U(1) of the
Aµ and ψ fields. Now we can interpret the gauge boson Aµ as the photon, the force carrier
of electromagnetic interactions.
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Weak interactions

The theory of weak interactions was developed by E. Fermi [8] in 1933 to describe processes
such as β decays:

n → p + e− + ν̄e, (2.8)

where a neutron (n) decays to a proton (p) and a electron (e−) and electron neutrino
(ν). These interactions happen at short distances and are weaker than QED interactions,
hence the name. Fermi proposed weak interactions as a contact interaction, four fermions
interact in a point, a direct four fermion interaction. In these type of interactions there
is no force mediator involved. The Lagrangian for such interactions is given by:

L = −GF (ψ̄pγ
µψn)(ψ̄eγµψν) (2.9)

where GF is the coupling constant, known as the Fermi constant. Fermi’s theory was
successful describing processes at low energies. However, at larger energies the cross-
sections calculated with such Lagrangian led to infinities. Thus, the introduction of gauge
bosons was necessary. Moreover, to explain the weakness of the interactions these bosons
had to be massive.

Unification of the electroweak theory

The failure of Fermi’s theory to describe weak processes at large energies, led to the
idea of unifying electromagnetic and weak interactions into an electroweak theory. It was
postulated that the electromagnetic and weak interactions are the same at large energies.
The theory of the electroweak interactions was introduced by S. Glashow [2], A. Salam [3]
and S. Weinberg [4].

The theory of electroweak interactions is a SU(2)⊗U(1) gauge theory. The three gen-
erators of the SU(2) group are the τa, a = 1, 2, 3, which are represented by the Pauli
matrices. Thus, we will have three gauge fields related to the SU(2) group and a gauge
field from the U(1) group. The three gauge fields of the SU(2) group are A1

µ, A
2
µ and A3

µ.
The gauge field of the U(1) group is Bµ.

Electroweak interactions are symmetric under SU(2)⊗U(1) transformations. Since they
are invariant under two group transformations, we will have two conserved currents. The
weak isospin for the SU(2) group and the hypercharge for the U(1) group. Then, the total
conserved charge is the sum of the two conserved currents:

Q =
Y

2
+ T3 (2.10)

where Y is the hypercharge and T3 is the isospin charge. From here, we can identify Q as
the electromagnetic charge of the particle.
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From experimental observations we know that only fermions with left chiralities interact
trough weak interactions. Then, left handed fermions transform as a doublet under SU(2),
while the right-handed fermions transform as singlets. The gauge field of the U(1) group
will interact with both left and right handed chiralities. We represent the weak doublet
for the leptons as:

L = (νl, lL, )
T , (2.11)

where l stands for the charged lepton and νl the corresponding neutrino. We write the
right-handed lepton as lR. Note that for quarks the doublet is formed with the quark
generations, e.g.: L = (uL, dL), where dL is a mixed state of down type quarks trough the
Cabibbo–Kobayashi–Maskawa matrix [9,10]. The interaction of the gauge fields with the
fermions is introduced by the covariant derivative

Dµ = ∂µ − ig
τa

2
Aa

µ − ig′Y Bµ, (2.12)

with g the coupling constant between Aa
µ and the fermion field and g′ the coupling constant

between Bµ and the fermion field. In this way the Lagrangian for the fermion fields is
invariant under local SU(2)L and U(1)Y transformations. The kinematic term in the
Lagrangian for the gauge fields will be

− 1

4

(
F a
µνF

µν
a +BµνB

µν
)
,

Bµν = (∂νBµ − ∂µBν),

F a
µν = (∂νA

a
µ − ∂µA

a
ν + igτafabcA

b
µA

c
ν),

(2.13)

where fabc is the structure constant of the SU(2) group. The self-interaction of the Aa
µ

fields appears from the non-Abelian structure of the SU(2) group, where the generators
do not commute. It is important to note that the Aa

µ and Bµ fields are not directly linked
to the W±, Z and γ bosons, but from a combination of the fields

W±
µ =

1√
2
(A1

µ ∓ iA2
µ)

Zµ = −Bµ sin θW + A3
µ cos θW

Aµ = Bµ cos θW + A3
µ sin θW

(2.14)

where θW is the Weinberg angle. Then, we can write the Lagrangian for electroweak
interactions as:

LEW = iL̄γµDµL+ iψ̄Rγ
µDµψR − 1

4
Aa

µνA
µν
a − 1

4
BµνB

µν (2.15)

However, it does not allow mass terms for the gauge bosons. These terms are not invariant
under gauge transformations. From experimental observations, the W± and Z boson are
massive, but for a symmetric theory the gauge bosons are massless.
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Hence, the SU(2)⊗U(1) symmetry is broken spontaneously. The Lagrangian is symmetric
under global and local transformations, however, there is a broken internal symmetry. The
Goldstone theorem states that for each spontaneously broken symmetry there is a massless
boson [11], which are commonly known as Goldstone bosons.

F. Englert and R. Brout [12] and P. Higgs [13] explained a way how the massless vector
bosons of a spontaneously broken symmetry can acquire mass. Nowadays, this phenomena
is known as the Higgs mechanism, with a massive scalar boson.

The Higgs mechanism for SU(2)xU(1)

The Higgs mechanism explains how a gauge boson becomes massive when there is an
spontaneously broken symmetry. Later, Weinberg and Salam used the Higgs mechanism
to explain the masses of three of the gauge bosons of the electroweak interactions.

We suppose the existence of two complex scalar fields that transform SU(2) as a doublet,
Φ = (Φ+,Φ0), that extends through space-time. We can write the Lagrangian for such
field as

L = DµΦ
†DµΦ− V (Φ)

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2
(2.16)

where V (ϕ) is the Higgs potential, µ is the value of the vacuum and λ is the quartic Higgs
coupling. For µ2 > 0, Φ = 0 is the global minimum. However, for µ2 < 0, Φ = 0 becomes
a local maximum, which is unstable, and the new global minimum is Φ =

√
2µ2/λeiθ.

Now one can decompose the Φ field in, radial σ(x) and angular fields π(x) around the
new minimum, in the so called linear sigma model

Φ(x) = e
i
v
πa(x)τa

(
0

1√
2
(v + σ(x))

)
(2.17)

We introduce the parametrisation of the Φ field around the minimum in equation 2.16,
where we get that the angular field, π(x), is a Goldstone boson and the radial field, σ(x),
is massive. The mass of the σ(x) field is given by

mσ = µ
√
2 (2.18)

To remove the massless Goldstone bosons from the Lagrangian we fix the exponential
parametrisation to zero:

Φ(x) = e
i
v
πa(x)τa

(
0

1√
2
(v + σ(x))

)
→ Φ(x) =

(
0

1√
2
(v + σ(x))

)
. (2.19)
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We denote the radial field, σ(x) = H(x), which we refer as the Higgs field. The gauge
invariant Lagrangian for the Higgs field is

LHiggs =(DµΦ
†)(DµΦ)− λ

(
Φ†Φ− v2

2

)2

Dµ = ∂µ − igAa
µ

τa

2
− ig′Y Bµ and a = 1, 2, 3

(2.20)

Where Aa
µ are the gauge fields corresponding to SU(2) and Bµ to U(1). Thus, the gauge

fields of SU(2) become massive when the internal symmetry of SU(2)⊗U(1) is broken.
The broken symmetry makes the vacuum to contain a new minimum, where a massive
field arises, the Higgs field. The interaction between the Higgs field and the electroweak
bosons generates the mass.

To extract the mass terms for the physical W±
µ and the Zµ fields we introduce equa-

tions 2.14 and 2.19 in the Lagrangian above. The mass terms for the bosons are given by
the following relations

mW± =
1

2
gv and mZ =

1

2
v
√
g2 + g′2. (2.21)

2.1.2 Quantum chromodynamics: SU(3)c

In this subsection we present the theory of quantum chromodynamics (QCD), which
describes the strong interactions. QCD is a SU(3) gauge theory. The conserved current
of the SU(3) symmetry is the colour charge. Then, more precisely, QCD describes the
interaction between particles with colour charge, the interaction between quarks. These
transform as triplets under SU(3) transformations. The SU(3) group has eight generators,
the eight Gell-Mann matrices. Thus, the strong interaction has eight massless gauge
fields, Ga

µ, where a runs from one to eight. The gluons are the gauge bosons of the strong
interactions.

The Lagrangian for the strong interactions, for the quark q and anti-quark q̄ fields is given
by

−LQCD = −1

4
F a
µνF

µν
a + q̄(iγµDµ −m)q (2.22)

F a
µν = ∂νGµ − ∂µGν + gsf

abcAb
µA

b
ν (2.23)

Dµ = ∂µ − igsT
aGa

µ, (2.24)

where we introduce the covariant derivative to keep an invariant Lagrangian under local
SU(3) transformations. Besides, as a non-Abelian theory, the generators, T a of the SU(3)
group do not commute, the self interaction between the gauge fields is allowed. The
Lagrangian in equation 2.22 is not the full QCD Lagrangian. We should introduce a
gauge-fixing term, a term that ensures the vector field Aa

µ transforms as a vector under
SU(3) transformations.
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2.2 Hadronic collisions

Hadronic collisions at high energies are excellent tools to test QCD theory. At high
energies, in the proton-proton collision a partonic collision happens: the constituents of
one of the protons collide with the constituents of the other proton. As shown in section 2.3
the partons, the constituents of the proton, can carry different fractions of the momentum
of the proton. Moreover, they can have different flavours. The collision of protons offers
many different partonic reactions at different energy scales. This complicated environment
is a perfect scenario to test the SM. Besides, it opens possibilities to processes that are
not within the SM.

In figure 2.1 we depict a simplistic diagram of a proton-proton collision to depict the main
process in a proton-proton collision. Note that the colors do not represent color charge,
but the different processes. We can disentangle the proton-proton collision into different
stages. First, we have two incoming protons (blue lines and blobs), this stage is the
initial state. The constituents of the protons collide, which we refer as the hard-process
(violet blob). The quarks and gluons produced in the collision evolve from the scale of
the hard-process to the hadronic energy scale forming hadrons (orange ellipses). Some of
the newly formed hadrons will decay into more stable hadrons. While the partons evolve,
both in the inital state and after the hard-process, they emit QCD radiation (red). The
remnants of the protons (green) will also hadronise. When all the leptons and hadrons
have reached a stable state we have reached the final state of the proton-proton collision.
It is important to note that quarks and gluons in the event are connected through colour,
as the colour charge has to be conserved in QCD interactions.

In the experiments we are only able to measure the leptons and hadrons left in the final
state. The measurement of a given process is given in terms of cross-sections. The cross-
section is the probability for a given process to occur, in this case, in a proton-proton
collision.

In proton-proton collisions we can find many different energy scales. Starting from the
proton, with a mass around 1 GeV, to the hard-process, which at 13 TeV centre of
mass energies can reach up to the TeV scale, and back to non-perturbative scales in the
hadronisation processes. Factorising the proton-proton collision is a good approach to deal
with the different energy scales. In this section we introduce the idea of the factorisation
of the cross-section and the collinear factorisation theorem.

2.2.1 Factorisation of the cross-section

With the factorisation theorem we separate the different processes at different energy
scales in the proton-proton collisions into different parts. For simplicity we study the
factorisation theorem for the cross-section of the Drell-Yan (DY) processes. In the DY
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Incoming protons

Hard interaction

Proton Remnants

QCD radiation

Hadronisation

Figure 2.1: Diagram of a proton-proton collision.

processes a quark from a proton and an anti-quark from the other proton collide producing
a photon or a Z boson where the boson can decay to a lepton anti-lepton pair. By only
considering the lepton pair we do not take hadronisation into account. In the DY process
we find two different energy scales: the protons and the quark anti-quark collision. We
separate the cross-section of the DY processes into three functions, two functions for the
two incoming protons, and a function for the quark-anti quark collision.

The PDFs describe the probability to find the incoming quark (or anti-quark) with a
fraction of momentum of the proton, x, inside the proton. The quark anti-quark collision
is described by a hard-scattering function, which is computed in perturbation theory.
With the factorisation theorem we also introduce an energy scale, the factorisation scale.
We embed radiation with energies below the factorisation scale into the PDFs and the
processes with energies above the factorisation scale into the hard-scattering function.

In the following we describe the collinear factorisation theorem, where we give an overview
of the hard-scattering function and the factorisation scale. In section 2.3 we present the
PDFs and PDF TMDs.

Collinear factorisation theorem

The cross-section for the DY processes for protons with momentum P1 and P2 is factorised
in the collinear factorisation theorem into the PDFs of the two incoming hadrons and the
scattering of the incoming quarks:

σh =
∑
i,j

∫ 1

0

dxi

∫ 1

0

dxjfi/A(xi, µF)fj/B(xj, µF)σ̂ij(xi, xj, Q, µF, µR), (2.25)
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where i and j run over all the parton flavours, A and B are the incoming protons, xi
and xj are the momentum fraction carried by the parton from their respective proton,
σ̂ij is the partonic cross-section, Q is the energy scale of the partonic interaction, µF the
factorisation scale and µR the renormalisation scale. The partonic cross-section, defined
as

dσ̂i,j
dt

=
1

16πŝ2

∑
|M(ŝ, t̂, û)|2 with

ŝ = (p1 + p2)
2 = (p3 + p4)

2

t̂ = (p1 − p3)
2 = (p4 − p2)

2

û = (p1 − p4)
2 = (p3 − p2)

2,

(2.26)

is a 2 → 2 process where two incoming particles interact generating two outgoing particles,
with ŝ, t̂ and û the Mandelstam variables, where p1 and p2 are the four momenta of the
incoming particles and p3 and p4 the four momenta of the outgoing particles. M is the
hard-scattering function and defines the transition probability of the incoming particles
into the outgoing particles, e.g.: in the DY process, the probability of the two incoming
quarks to transform into a lepton anti-lepton pair. M is computed using perturbation
theory. In general, in the calculation there are ultraviolet and infrared divergences, where
ultraviolet divergences are divergences in the calculation caused by large momenta. These
divergences are absorbed by the renormalisation procedure, which introduces a new scale,
the renormalisation scale µR. Infrared divergences are divergences in the calculation
caused by small momenta and are absorbed into the PDFs. Then, µF works as cut-off
scale to avoid infrared divergences.

It is important to note that µF and µR are not physical but arbitrary energy scales. The
cross-section must not depend on any of the two scales

dσh
dµF

=
dσh
dµR

= 0 (2.27)

The calculation of the matrix element is performed through a perturbative expansion and
the expansion is truncated at some order. The truncation leads to a dependence on µF

and µR. This dependence is large when we truncate the expansion at low orders. By
introducing more orders into the calculation the dependence on the two scales is reduced.
However, the computation of higher orders is a difficult and time consuming task. The
variation of the µF and µR in the calculations can be used to estimate the contribution
of higher order terms of the expansion that are not included by the truncation. The
collinear factorisation is a powerful tool to compute the cross-section of different processes.
However, it fails to describe distributions where two different energy scales appear, more
precisely, when one of the energy scales is much smaller than the other. In section 2.4 we
study this effect in the transverse momentum of the Z boson and introduce the concept
of resummation.
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2.3 The proton structure

The structure of hadrons plays a big role in hadronic collisions, moreover, real electroweak
corrections change the structure of the hadrons at high energies. For this, we present the
basic ideas of the hadron structure only taking into account its QCD aspects. In chapter 3
we will investigate the effects of electroweak corrections to the hadron structure.

First, we need to understand the nature of hadrons. These are particles composed by
quarks and gluons. The confinement of quarks into hadrons arises from the behaviour of
the coupling strength of the strong interactions (αs):

αs(µ) =
1

β0 ln(µ2/Λ2)
(2.28)

where µ is the energy scale, Λ is the QCD energy scale of the order of hundred MeVs and
β0 is a constant. The coupling strength diverges for µ→ 0 producing the confinement of
quarks into hadrons by exchange of gluons. At large energy scales the coupling strength
becomes small and quarks and gluons can be treated as free entities, this is known as the
asymptotic freedom. Hence, at low energies quarks and gluons cannot be isolated, they
form color neutral structures called hadrons. Hadrons are divided into two categories
depending on the number of their valence quarks. If a hadron is composed by three (two)
valence quarks the hadron is a baryon (meson). Valence quarks are quarks and anti-quarks
that define the quantum numbers of the hadron, such as charge and isospin. The mass of
a hadron is a result of strong interactions, not of its interaction with the Higgs boson.

Besides, for large values of µ, the coupling strength is small enough to apply a perturbative
expansion of the QCD interactions, for small values of µ, at energy scales of hadrons (µ ∼
1 GeV) the coupling strength is too large to apply perturbation theory and perturbative
QCD calculations cannot be made. Hence, the structure of hadrons has to be extracted
from measurements.

One of the first models for the proton structure was proposed by R. Feynmann in 1969 [14],
the parton model. In this model the constituents of the proton are massless point-like
particles called partons. Later, partons were identified as quarks and gluons. This led to
improve the parton model using QCD theory. From now on we will call the constituents
of hadrons (quarks and gluons) the partons. The study of the composition of hadrons
and their structure is done through parton distribution functions (PDFs). In section 2.3.1
we introduce the collinear structure of the hadrons trough PDFs and their evolution. In
section 2.3.2 the transverse momentum dependent parton distribution functions (TMDs)
are introduced.
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H X

l
±

l
±

γ

Figure 2.2: Deep inelastic scattering between a charged lepton (l±) and a hadron (H)
through a photon (γ), where the hadron breaks into remnants (X).

2.3.1 Parton distribution functions

With collinear parton distribution functions (PDFs) the collinear structure of hadrons
is studied. They give the probability of a parton of a given flavour carrying a fraction
of the total momentum of the hadron, x, at a given energy scale µ. We can derive the
theoretical definition of the PDF from deep inelastic scattering (DIS). In DIS a high
energetic charged lepton collides with a constituent of the hadron, breaking the hadron.
The interaction is a QED interaction, the charged lepton and the parton interact via
a photon (see figure 2.2). The DIS process can be factorised into an electromagnetic
current, which involves the incoming lepton and the photon, and a hadronic current,
which corresponds to the hadron. The definition of the PDF is then derived from the
hadronic current:

fb/h(x) ∝
∫

dkT
(2π)4

P

k

(2.29)

here fb/h is the bare PDF for the parton of flavour b inside the hadron h, kT is the trans-
verse component of the momentum of the parton and the diagram is the hadron current
in DIS. As bare quantity fb/h contains ultra violet divergences and it is renormalised to
remove the divergences. The renormalisation procedure introduces a dependence on an
arbitrary energy scale, µ, in the PDF:

fb/h(x)
Renormalisation−−−−−−−−−→ fb/h(x, µ) (2.30)

As µ is an arbitrary scale fb/h(x, µ) should not depend on the choice of µ. We can derive
the renormalisation group equations (RGEs) that explain the dependence of the PDF on
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Figure 2.3: Feynmann diagrams at leading order for splittings.

the energy scale:

∂fb,h(x, µ)

∂ lnµ
=
∑
a

∫ 1

x

dz

z
Pba(z, αs(µ))fa,h(x/z, µ). (2.31)

The RGEs for the PDFs are known as the DGLAP evolution equations [15–17] and Pba,
the evolution kernels, are known as the splitting functions.

To compute the evolution kernels with a perturbative expansion over αS we have to replace
the hadron by an on-shell parton. This is possible as the evolution kernels do not depend
on the hadron or the hadron state. Then, by replacing the hadron by an on-shell parton
we can calculate the kernels with a perturbative expansion from QCD vertices, given that
µ is in the perturbative region. In figure 2.3 we present the leading order diagrams of the
QCD vertices corresponding to the different evolution kernels and in equation 2.32 the
evolution kernels at leading order.
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Figure 2.4: Evolution of a parton from a starting energy scale µ0 to a scale µ, that
undergoes a splitting at scale µ′. The parton b splits into a parton a and c at the energy
scale µ′. xa and xb represent the fraction of momentum of the proton carried by the
parton a and b consecutively.

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
Pgq(z) = CF

1 + (1− z)2

z
Pqg(z) = TR

[
z2 + (1− z)2

]
Pgg = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

11CA − 4nfTR
6

δ(1− z)

(2.32)

where, CA, CB and TR are the color factors contributing to the strong coupling and nf is
the number of flavours. The different splitting functions diverge for different values of z.
Pgg and Pqq give the probability to radiate a gluon by a gluon and a quark respectively.
These two functions diverge for z → 1. For values of z ∼ 1 the momentum transfer is
large, hence, the momentum of the emitted gluon (1 − z) is small. We refer to these
emissions as soft gluon radiations. Pgg and Pgq diverge for z → 0. Now we can interpret
the DGLAP evolution as a parton splitting process, where the evolving quark of a given
flavour reduces its momentum by QCD bremsstrahlung, emission of gluons, or where the
decay of a gluon to a quark anti-quark pair of a given flavour contributes to the PDF
evolution. In figure 2.4 we show the schematic process of a splitting, where an incoming
parton b splits into a parton a by emitting a parton c at scale µ′ when evolving from µ0

to µ. The momentum transfer from quark b to a is defined by z.
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Figure 2.5: The momentum weighted collinear parton distribution function, xf(x, µ), ex-
tracted using HERA data by the Parton Branching collaboration for the valence quarks,
sea quarks and gluons at different energy scales, µ, [18]. Plots made with TMDplot-
ter2.2.4 [19].

While we can calculate the evolution of the PDF using perturbative physics, the structure
of the hadron can not be determined from first principles, but it must be modelled. The
structure of the hadron is modelled by parametrising the content of the different parton
flavours in the hadron. A general pararmetrisation of a given parton flavour q has the
following form:

xp(x) = AxB(1− x)C + · · · , (2.33)

where x is the fraction of momenta carried by the parton, p(x) is the PDFs for the
parton p, and A,B,C are the parameters to fit. These parametrisations are fitted to
measurements sensitive to the content of the hadrons and the PDF is determined at a
given energy scale, µ0. We refer to fb/h(x, µ0) as the starting distribution. The starting
distribution can then be evolved to any other energy scale using the DGLAP evolution
equation.

In figure 2.5 we present the Parton Branching collinear PDFs extracted using HERA
data for different flavours at different energy scales: µ = 100 GeV on the left panel
and µ = 1000 GeV. For both energy scales at large x, x ∼ 1/3, the valence quarks
carry most of the momentum, two up quarks and a down quark. For lower x values the
gluon distribution increases. The gluons carry a large fraction of the momentum of the
proton. Sea quarks, the quarks generated from gluon splitting into quark anti quark pairs,
contribute also at low x. Parton radiation plays a large role in the structure of the hadron.
The contribution of radiation increases with increasing energy scales.

Using collinear PDFs the hadron structure in one dimension can be studied. We can
study the three dimensional structure of the hadron by not integrating over the transverse
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momentum in equation 2.29. These three dimensional PDFs are known as unintegrated
PDFs or transverse momentum dependent PDFs (TMD PDFs).

2.3.2 Transverse momentum dependent parton distributions

Unintegrated PDFs or transverse momentum PDFs (TMDs) study the structure of the
hadrons in three dimensions. The TMD is defined by not integrating the transverse
component of the momentum of the partons in equation 2.29. To parametrise the TMDs
we can do a simultaneous parametrisation of the transverse and collinear structure. This
approach is done in the GBW type of TMDs, which focuses on saturation effects.

In Parton Branching (PB) TMDs and TMDs based on the TMD factorisation, the collinear
and transverse structure of the hadron are factorised. First, the collinear parametrisation
of the hadron is performed at a given energy, in other words a collinear PDF is derived.
On top of the collinear starting distribution the transverse momentum components are
parametrised and fitted. In the following we focus on TMD factorisation and PB TMDs.
We investigate the non-perturbative components and the evolution of the two approaches.

TMD factorisation TMDs

In the TMD factorisation the TMDs are defined as [20]

f̃j,h(x, bT , Q
2, µ) = exp

[
−gj/A(xA, bT ; bmax)− gD(bT ; bmax) ln

Q

Q0

]
× exp

[
D(b∗, µb∗) ln

Q

µb∗

+

∫ µ

µb∗

dµ′

µ′

(
ln
Q

µ′γd + γj

)]
×
∑
j

Fj/h(x, µ)

(2.34)

where x is the collinear fraction of momentum of the hadron h carried by the parton j,
bT is the transverse position variable (the transverse momentum in position space), Q2 is
the rapidity factorisation scale, which arises from rapidity divergences and it is normally
written as ζ, and µ, the factorisation scale of ultra-violet divergences. In section 2.4 more
details on the TMD factorisation are given. The function F corresponds to the collinear
distribution of the proton structure mapped to b space. The dependence on the Q and µ
factorisation scales give rise to the evolution equations. The evolution equation in rapidity
is given by

∂f̃j,h(x, bT , ζ, µ)

∂ ln
√
ζ

= D(bT , µ) with
dD(bT , µ)

d lnµ
= −γd

D(bT , µ) = −αS

π
CF

[
ln
b2Tµ

2

4
+ γE

]
+ O(α2

S)

(2.35)
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The function D is commonly known as the Collins-Soper (CS) kernel. It is independent
of the parton flavour, the hadron and x. Moreover, it is process independent and it is
the same for fragmentation functions and TMDs. Fragmentation functions will be later
introduced in section 2.6. For larger values of bT γd and hence D become non-perturbative
and can not be calculated. To avoid the non-perturbative region bT is saturated to a
value of b∗ and µb∗ is the energy scale for b∗. For bT > b∗, the non-perturbative part of
the evolution in rapidity is modelled in the gD function. In addition to gD, the intrinsic
transverse momentum of the partons is non-perturbative and it is defined by the gj/f (x, bT )
function. Hence, to determine a TMD in the CSS formalism we need to extract the two
non-perturbative functions gD and gj/f . The RG for the TMD is given by

∂f̃j,h(x, bT , ζ, µ)

∂ lnµ2
= γj −

1

2
γd ln

ζ

µ
(2.36)

where γj is a perturbative coefficient dependent on the parton flavour. The values of γd
and γj can be found in [20].

In summary, in the TMD factorisation TMDs we have two evolution equations: the
CS kernel, which governs the rapidity evolution, and the RG, the evolution in µ. To
determine the TMD the non-perturbative functions gD, the non-perturbative function of
the CS kernel, and gj/A, the intrinsic transverse momentum, need to be fitted to data.

PB TMDs

In the simplest case in the PB method the starting TMDs can be defined as

Ã0,b/h(x, kT , µ0) = xf0,b/h(x, µ0)
1

q2s
e−k2T /q2s , (2.37)

generated by introducing a transverse momentum kT with a Gaussian distribution to the
collinear starting distribution, f0,b/h, where qs is the width of the Gaussian distribution.
Hence, to determine the TMD one can extract qs from measurements. In [21] we have
tuned the qs parameter with measurements of the transverse momentum of the Drell-
Yan pair at different centre-of-mass energies and Drell-Yan masses, were we have found
qs = 1 GeV.

The evolution of the PB TMDs is derived from the DGLAP evolution equations [22],

Ã(x, kT , µ
2) =∆a(µ

2)Ã(x, kT , µ
2
0) +

∑
b

∫ µ2

µ2
0

d2µ′2

πµ′2
∆a(µ

2)

∆(µ′2)

×
∫ zM

x

dzP
(R)
ab (αS(µ

′), z)Ã(x/z, k⃗T − q⃗T , µ
′2)

(2.38)
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where ∆a is the Sudakov form factor, which is interpreted as the probability of no emission
between two scales, Ã is the momentum weighted TMD, zM is the maximum momentum
transfer from parton b to a, P

(R)
ab is the real part of the splitting function, µ′ is the scale

of the radiation and qT is the transverse momentum of the radiated parton. The Sudakov
form factor has the following form

∆a(µ0, µ) = exp

(
−
∫ µ

µ0

dµ′2

µ′2

∫ zM

0

dzzP
(R)
ab (αS, z)

)
. (2.39)

We require that in the collinear limit the PB TMD evolution recovers the DGLAP evolu-
tion, as the PB evolution is derived from DGLAP. For that, we need to impose a zM → 1.
Another important aspect of the evolution is the ordering of the emissions in the evolution.
In the PB evolution angular ordering is used, which orders the emissions by the radiation
angle. The first emission has the smallest angle, in the consequent radiations the angle
increases. The angular ordering relates the pT of the radiation with the radiation scale µ′

as
pT = (1− z)µ′. (2.40)

The angular ordering arises from the condition to have a coherent branching [23].

By combining a zM ∼ 1 with an angular ordering the PB evolution favours soft radia-
tion. PB-NLO-HERAI+II-2018-set1 (PBSet1) and PB-NLO-HERAI+II-2018-set2 (PB-
Set2) are TMDs derived using the PB method introduced above [18]. These two TMD
sets are extracted using DIS measurements, more precisely precision measurements at
HERA. These measurements are sensitive to the content of the hadrons at small frac-
tion of momentum. The evolution of the TMDs is done at next-to-leading order. The
starting scale of the TMDs is µ0 = 1.3 GeV with a width of the Gaussian distribution
qs = 0.5 GeV (see equation 2.37). The only difference between these two TMD sets is the
treatment of the strong coupling αS. PBSet1 uses the energy scale of the splitting, µ′, to
calculate αS, while PBSet2 uses the transverse momentum of the splitting, pT , where both
are related by the angular ordering condition. The angular ordering condition pT < µ′,
which translates into αS(µ

′) < αS(pT ), increases the probability of emission in the PBSet2
evolution. It is important to point out that in PBSet2 for values of pT < 1 GeV αS is
frozen to αS(1 GeV), in order to not spoil the perturbative calculation due to the large
value of αS.

To understand the effects of increasing the radiation probability through the treatment
of αS we compare the up valence quark distribution of the two TMD sets: PBSet1 and
PBSet2. Studying the up valence quark distribution gives a simpler understanding of
radiations, as the number of up-valence quarks in the proton is constant and only gluon
radiation affects their distribution. In figure 2.6 we show the collinear distribution (left
panel) and the transverse momentum distribution (right panel). We choose an upper
limit of the evolution of µ = 100 GeV in order to allow more radiation. The collinear
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Figure 2.6: Up valence quark three dimensional contribution to the proton at µ = 100 GeV
for two different TMDs: PB-NLO-HERAI+II-2018-set2 and PB-NLO-HERAI+II-2018-
set1 [18]. The difference between the two PDFs is the treatment of αS, αS(pT ) in set2,
where pT is the transverse momentum of the emitted parton, and αS(µ

′) in set1, where
µ′ is the scale of the branching. Left panel: momentum weighted collinear distribution.
Right Panel: transverse momentum distribution for x = 0.01. Plots made with TMD-
plotter2.2.4 [19].

distribution is the same for most of the momentum fraction, x, range. However, there
is a noticeable difference at low x. There is a larger probability to find an up-valence
quark at low x in the PBSet2 PDF due to an increased probability of radiation. This
is enhanced in the transverse momentum distribution. In the PBSet1 distribution the
Gaussian distribution of the intrinsic transverse momentum dominates at low transverse
momentum, while in PBSet2 the intrinsic transverse momentum is smeared by the extra
radiations. In summary, the treatment of αS does not affect much the evolution when
looking in the collinear distributions, but it changes drastically the transverse momen-
tum distribution. This difference will become noticeable and important when looking at
proton-proton collisions.

2.4 Resummation

The QCD radiation of the two incoming particles modifies their transverse momentum.
In the DY process the lepton pair is produced such that the pair recoils against the QCD
radiation:

q⃗T = −
n∑

i=0

p⃗T,i (2.41)
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where qT is the transverse momentum of the lepton pair and pT,i is the transverse mo-
mentum of i-th emission. Most of the DY lepton pairs are produced with low transverse
momentum, where the main production channel is qq̄ → l+l− + g, where the gluon has
been radiated from one of the incoming quarks. This process is a leading order correction
to the tree level production diagram. We follow the calculation in [24]. The cross-section
of the DY process with a gluon radiation reads as

dσ

dq2T
∝ (dσ)Born × αs

1

q2T
ln
m2

ll

q2T
(2.42)

with (dσ)Born is the Born level cross-section for the DY process, αS is the strong coupling
and mll is the mass of the lepton pair. The cross section diverges for qT → 0 and for
qT ≪ mll the logarithm and αS become large. The divergence behaviour arises from the
lack of higher order corrections. We must sum all possible gluon radiations to the cross-
section to all orders in order to remove the divergency. We include n gluon radiations
in the DY process, qq̄ → l+l− + ng. The computation of such matrix element is not
possible and thus, we need to find an approximation. One of these approximations is the
collinear limit, were we suppose that the radiation angle of these radiations is small. The
cross-section for n radiations in the collinear limit is

dσ

dq2T

(n)

∝
(
dσ)Born ×

n∏
i=1

∫
dp2T,i
p2T,i

ln
m2

ll

p2T,i
δ

(
n∑

i=1

p⃗T,i − q⃗T

)
.(2.43)

To proceed we need to find another approximation such that we can write the contribution
of n radiations in a finite series. For that, we can impose a strong ordering condition of
the radiations, where pT,n ≫ pT,n−1 ≫ · · · ≫ pT,1. In this way the δ function in the
integral only applies in the last radiation. With the strong ordering condition we reach a
geometric series such that

n∏
i=1

∫
dp2T,i
p2T,i

ln
m2

ll

p2T,i
δ (p⃗T,n − q⃗T ) = exp

(
1

2
ln2 m

2
ll

p2t

)
(2.44)

which resemble the well known Sudakov form factors. Now, we can define a finite cross-
section by resumming gluon radiations to all orders to the DY process

dσRes

dqT
=

dσ

dqT
× eS, (2.45)

where σRes is the resummed and finite cross-section and S englobes any type series product
of the different approximations. There is a small caveat for qT ≪ mZ , the logarithm and
αS in equation 2.42 become too large and non-perturbative and thus this region has to be
modelled. A good first approximation is modelling the intrinsic transverse momentum of
the incoming partons with a Gaussian distribution (see section 2.5).
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In summary, we can divide the Z boson transverse momentum spectrum in three main
regions: the non-perturbative region (qT ≪ mZ), the resummation region (qT < mZ)
and the hard region (qT ≥ mZ). The last step for a correct treatment of collinear and
soft radiation is to match the resummation region with the hard region to avoid double
counting of emissions that might happen.

It is important to note that resummation is necessary when two different scales appear
in a calculation and one of them is much smaller in comparison to the other. Hence,
many different resummation procedures can be found, such as, small x resummation,
where the momentum fraction, x, is way smaller than the hard energy scale. However, in
the following we only focus in the resummation for the transverse momentum of the DY
lepton pair.

The resummation of the soft and collinear radiation is done in different ways, with trans-
verse momentum factorisation theorems, with TMDs or with parton showers. In the
following sections we will give an overview of a couple of transverse momentum factorisa-
tion theorems and a short introduction to parton showers. We will focus on the treatment
of the qT ≪ mZ region for the different cases.

Transverse momentum factorisation theorems

We can find different factorisation theorems that treat transverse momentum resumma-
tion. We will briefly present two of these factorisations: the Collins-Soper-Stermann
(CSS), the TMD and the high energy factorisation theorems.

The CSS factorisation was introduced in 1984 [25] to describe the transverse momentum
of the electroweak bosons produced in proton-proton collisions. More precisely, the region
where the transverse momentum of the electroweak boson is smaller than its mass, the
resummation region. The cross-section for the electroweak boson production in proton-
proton collisions given by the CSS factorisation theorem is

dσ

dQ2dydQ2
T

∼ 4π2α2

9Q2s
{(2π)−2

∫
d2biQT·b

∑
j

e2jW̃j(b∗;
C2

2Q
2

µ2
xA, xB)pert × exp [S(b∗;Q,C1, C2)]

× exp
[
− ln

(
Q2/Q2

0

)
gD(b)− gj/A(xA, b)− gj/B(xB, b)

]
+ Y (QT ;Q, xA, xB)},

(2.46)

where we sum over all the parton flavours i, j. The calculation is done is b space, the
Fourier transform of the transverse momentum. Large (small) values of b correspond
to small (large) values of transverse momentum. In the second line of equation 2.46
we find the perturbative functions of the factorisation theorem. The W̃ (b∗)pert function
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corresponds to the convolution of the collinear PDFs with the the hard-scattering function.
The exponential with the S function takes care of the resummation with:

S(bT , Q,Q0, µ0) = −
∫ µQ

µ0

dµ′

µ′

(
A(αS) ln

Q2

µ′ +B(αS)

)
, (2.47)

where A and B are perturbative functions. It is important to note that when b is large,
small transverse momentum, we are in a non-perturbative regime of the calculation, in
the qT ≪ mZ , which for the DY corresponds to qT < 1, 2 GeV (b > 0.5, 1 GeV−1). The
other b regions can be calculated perturbatively. To avoid the large b region and calculate
W̃ (b∗)pert perturbatively, the b∗ prescription is introduced

b∗ =
b√

1 + b2/b2max

, (2.48)

in this way bmax is used as a cut-off to avoid the non-perturbative region. For b < bmax

b∗ ∼ b and for b > bmax we have b∗ ∼ bmax. Then, b∗ is always in the perturbative
regime and we can compute W̃ (b∗)pert perturbatively. In the third line of equation 2.46
we have the non-perturbative functions of the CSS factorsation theorem. The gj is the
intrinsic transverse momentum of the incoming parton. The gD function is the non-
perturbative function describing the qT ≪ mll region. This function, together with the
intrinsic transverse momentum of the partons, has to be extracted from data. To extract
gD we need to measure the production of the electroweak boson at different energy scales.
The Y function gives important corrections for Q ∼ QT and negligible corrections at QT.

The CSS factorisation theorem for the electroweak boson production introduces the re-
summation together with the ideas of TMDs. In [26] it is discussed that the CSS factori-
sation theorem comes from a more general factorisation theorem, the TMD factorisation
theorem:

dσ

dQ2dydq2T
∼ 4π2α2

9Q2s

∑
j

HDY
jj̄ (Q, µ, αS)

∫
db2T e

iqT ·bT fj/A(xA, bT ; ζA, µ)f(xB, bT ; ζB, µ),

(2.49)
where f are the TMDs presented in section 2.3.2 and HDY is the hard-scattering function
for the partonic interaction for the DY process. In [20] a comparison of the CSS fac-
torisation theorem with the newer TMD factorisation theorem is done. From the TMD
factorisation theorem the TMD evolution presented in section 2.3.1 is derived.

Another general transverse momentum dependent factorisation theorem is the high-energy
factorisation theorem [27]. The high energy factorisation of the cross-section for a hadronic
collision is similar to the collinear factorisation in equation 2.25:

σ =
∑
i,j

∫ 1

0

dxi

∫ 1

0

dxj

∫
dkT,i

∫
dkT,j fi/A(xi, kT,i, µF)fi/B(xj, kT,j, µF)

×σ̂ij(xi, xj, kT,i, kT,j, Q, µF, µR)

(2.50)
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where we sum over all the parton flavours, f are the TMD functions for the incoming
hadrons, kT,i is the transverse momentum of the incoming parton and σ̂ is the hard-
scattering function which depends on the transverse momentum. The high-energy fac-
torisation is only valid for small values of x. In the small-x region the t-channel diagrams
dominate and the u-channel diagrams and the interference terms are negligible. However,
at large x, where the u-channel and interference terms are not negligible, the high energy
factorisation may not to hold.

The Parton Branching method

Transverse momentum factorisation theorems, such as, CSS and TMD (high energy)
factorisation theorems, are only valid for low values of transverse momentum (momentum
fractions) and might not hold at higher transverse momentums (momentum fractions).
Moreover, as analytical calculations of CSS and TMD factorisation theorems are focused
on inclusive final states. Calculating exclusive final states such as DY+0,1,2 partons
within these frameworks becomes cumbersome.

The Parton Branching (PB) method includes TMD physics together with high transverse
momentum physics in a fully exclusive way. To achieve a good description of exclusive
final states predictions are performed on an event basis (see section 2.7). We can represent
the PB method in a naive way as:

σ =
∑
ij

∫
dxidxjσ̂ij(xi, xi, µ)

∫
dkT,iAi(xi, kT,i, µ)

∫
dkT,jAj(xj, kT,j, µ) (2.51)

where we sum over all the partonic flavours i and j, kT is the transverse momentum
of the incoming partons, µ is the scale of the partonic interaction, σ̂ij is the partonic
cross-section and A is the TMD. The transverse momentum of the incoming particles is
extracted from the TMDs, which is included into the final state such that the integrated
cross-section is unchanged.

Parton Showers

Parton showers resum the cross-section on an event basis. In section 2.7 we give an
overview on the procedure of event generation. Parton showers resum the gluon emis-
sions by evolving the incoming partons iteratively. The evolution of the incoming partons
is performed as a backward evolution, since the final state of the process is already deter-
mined, and a backward evolution is more efficient.

Conventionally parton showers are based in the DGLAP evolution. The Sudakov form
factor corresponding to the DGLAP evolution equations is

∆ab(µ0, µ) = exp

(∫ µ

µ0

dµ′

µ

∫ 1−ϵ

0

dzPab(z)

)
. (2.52)
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The Sudakov form factor can be interpreted as the probability of a parton to evolve from
a scale µ0 to µ without radiating. By rewriting the DGLAP evolution equation with the
Sudakov form factor,

fa(x, µ) = fa(x, µ0)∆(µ) +
∑
b

∫ µ

µ0

dµ′

µ′
∆(µ)

∆(µ′)

∫
dz

z
Pab(z)fb(x/z, µ

′), (2.53)

we can solve the evolution equation iteratively by applying Monte-Carlo techniques. The
first step to evolve a parton from µ0 to µ iteratively is to generate z, the momentum trans-
fer in the emission, according to the splitting function, Pab. This will allow us to compute
the energy scale of the splitting, µ′, with the Sudakov form factor in equation 2.52. If
µ′ does not fall in between µ0 and µ there will be no branching in the evolution. For a
µ′ ∈ (µ0, µ) a branching is generated.

In a backward evolution we evolve from a high energy scale µ down to µ0. For that, we
need to add a constraint to the Sudakov form factor in equation 2.52:

∆a(µ)
ISR = exp

(∫
µµ
0

dµ

µ

∫ zmax

x

dzPab(z)
fb(x/z, µ)

fa(x/z, µ)

)
. (2.54)

In this way we ensure that the parton previous to splitting was present in the hadron. The
sum of the transverse momentum of the radiations together with the intrinsic transverse
momentum of the incoming partons is then added to the final state particles. The non-
perturbative intrinsic transverse momentum is generated with a Gaussian distribution in
the same fashion as in PB.

2.5 Non-perturbative transverse momentum of the

Drell-Yan lepton pair

Previously we have shown different ways to resum the soft and collinear radiation of
the incoming partons. The correct treatment of these radiations is crucial for a good
description of the transverse momentum of the DY lepton pair. However, for the qT ≪ mll

region perturbative resummation is no longer valid. In transverse momentum factorisation
theorems this region is modelled and fitted from data. In the TMD factorisation theorem
two functions are defined for that, gh/A, the intrinsic transverse momentum and gD the
non-perturbative evolution of the TMD.

In iterative DGLAP evolutions, such as, the PB TMD evolution and parton showers, the
non-perturbative treatment of the qT ≪ mll is not explicit, as there is no specific function
such the gD function of the CSS and TMD factorisation theorems. In the DY process the
lepton pair recoils against the QCD radiations of the incoming partons and its transverse
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momentum is the sum off the transverse momentum of all the incoming partons. Hence,
we find different scenarios for producing very soft lepton pairs where qT ≪ mZ with
iterative evolution equations.

1. Events where incoming partons did not undergo much radiation. The transverse
momentum of the incoming partons is given by the modelling of their intrinsic
transverse momentum. Thus, the transverse momentum of the lepton pair is a
product of the intrinsic transverse momentum of the incoming partons.

2. Events where the momentum of the incoming partons compensate each other, such
that, the transverse momentum of the produced lepton pair is very small.

3. Events where the incoming partons have radiated very soft radiation, which smears
the modelling of the intrinsic transverse momentum.

The first scenario is the largest contribution to the qT ≪ mll region. Usually, the in-
trinsic transverse momentum is modelled with a Gaussian distribution. Let us follow the
calculation in [23], where the transverse momentum distribution of the DY lepton pair
is approximated to the product of the intrinsic transverse momentum of the incoming
partons:

1

σ

dσ

dq2T
=

∫
dkT,1dkT,2δ

(2)(k⃗T,1 + k⃗T,2−q⃗T )h(kT,1)h(kT,2)

with h(kT ) =
b

π
exp
(
−bk2T

) (2.55)

where b is the width of the Gaussian distribution and kT,i is the intrinsic transverse
momentum of the incoming parton. The transverse momentum distribution of the DY
lepton pair is the product of the two Gaussian distributions:

1

σ

dσ

dq2T
=

b

2π
exp

−bq2T
2

(2.56)

In figure 2.7 we compare the Gaussian approximation in equation 2.56 to measured DY
lepton pair transverse momentum distributions by the CFS collaboration [28], in the
same spirit as in [23]. From these results we observe that the modelling of the intrinsic
transverse momentum of the incoming partons is a good approximation to describe the
low transverse momentum region. In addition, the width of the Gaussian distribution is
important for a good description of the data. For the two different centre of mass energies
different values of the width of the Gaussian are needed. For plab = 200 GeV a value of
⟨kT ⟩ = 660 MeV is needed, and a value of ⟨kT ⟩ = 760 MeV for plab = 400 GeV. As the
centre of mass increases we need larger values of intrinsic transverse momentum. This is
the effect of very soft radiation. As we increase the energy there is more room for radiation
and the very soft radiation starts to play a key role in describing the qT ≪ mll region.
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Figure 2.7: Cross-section of the Drell-Yan lepton pair measured by the CFS collaboration
[28]. Lines represent the predictions of the cross-section with a Gaussian distribution of
the intrinsic transverse momentum of the incoming partons.

By including very soft radiation in the evolution the Gaussian distribution is smeared,
allowing the intrinsic transverse momentum distribution to stay constant. Thus, the
third scenario presented above becomes important. We need very soft radiation to have
predictive power over the qT ≪ mll region at high energies and physical values of the
intrinsic transverse momentum that do not exceed the size of the proton.

Let us consider the PB-TMD evolution, an angular ordered evolution, where the energy
scale of the radiation, µ′, and the transverse momentum of the emission are related as
pT = (1− z)µ′. The softest radiations are hence produced when the momentum transfer
is large, z ∼ 1. The DGLAP splitting functions can be written as:

Pab(αS, z) = δabda(αS)δ(1− z) + δabka(αS)
1

(1− z)+
+Rab(αS, z), (2.57)

where the plus prescription for any test function, f(z), is defined as∫ 1

0

1

(1− z)+
f(z)dz =

∫ 1

0

1

1− z
(f(z)− f(1)) dz, (2.58)

which characterises the divergent behaviour for z → 1, and da, ka and Rab are perturbative
coefficients. We define the real part of the splitting function with

PR
ab(αS, z) = δabka(αS)

1

1− z
+Rab(z, αS), (2.59)
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which at leading order correspond to equations 2.32, and the virtual contribution with

P V
a (αS, z) = ka(αS)

1

1− z
− da(αS)δ(1− z). (2.60)

We make use of the momentum sum rule of the DGLAP splitting functions,∑
b

∫ 1

0

dzzPab = 0 ⇔
∑
b

∫ 1

0

zPR
ba =

∫ 1

0

dzP V
a , (2.61)

and we rewrite the PB Sudakov form factor in equation 2.39 in terms of virtual splitting
functions

∆a(µ0, µ) = exp

(
−
∫ µ

µ0

dµ′2

µ′2

{∫ zM

0

ka(αS)
dz

1− z
− da(αS)

})
. (2.62)

The Sudakov form factor contains a resolution scale, zM , which does not allow emissions
with z > zM . Thus, to allow very soft radiations we set zM ∼ 1. From now on we refer to
zM ∼ 1 as zfix. However, we know that these soft emissions enter the non-perturbative
regime of the transverse momentum of the Z boson. We introduce a minimum transverse
momentum, q0, for the radiated particles in the same spirit as bmax in the CSS factori-
sation. Radiations with qT > q0 are then considered perturbative and radiations with
qT < q0 non-perturbative. We can introduce this condition with a dynamical resolution
scale motivated with angular ordering zdyn = 1−q0/µ′. This will divide the Sudakov form
factor in equation 2.62 into a perturbative (∆P

a ) and a non-perturbative (∆NP
a ) Sudakov

form factors:

∆a(µ0, µ
2) = exp

(
−
∫ µ

µ0

dµ′2

µ′2

{∫ zdyn

0

ka(αS)
dz

1− z
− da(αS)

})
× exp

(
−
∫ µ

µ0

dµ′2

µ′2

∫ zfix

zdyn

ka(αS)
dz

1− z

)
=∆(P )

a (µ0, µ
2)∆NP

a (µ0, µ
2).

(2.63)

The effect of very soft radiation is encoded in non-perturbative Sudakov form factor:

∆NP
a (µ0, µ

2) = exp

(
−
∫ µ

µ0

dµ′2

µ′2

∫ 1−ϵ

1− q0
µ′

ka(αS)
dz

1− z

)
, (2.64)

where we have exchanged the integration limits zfix = 1−ϵ with ϵ≪ 1 and zdyn = 1−q0/µ′.
The perturbative coefficient ka cannot be computed as we are in the non-perturbative
region. Let us define hk as the non-perturbative function of ka, which does not depend
on αS. Integrating over z and µ′ we get that the non-perturbative Sudakov form factor is

∆NP
a (µ0, µ) = exp

(
−hk

2
ln

(
µ2

µ2
0

)
ln

(
q20

ϵ2µ0µ

))
, (2.65)
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which takes care of the very soft radiation. From here, we can observe that the non-
perturbative Sudakov form factor derived from the PB evolution resembles the non-
perturbative Sudakov form form factor of the CSS factorisation theorem, the gD function
(see equation 2.46). We can extract the corresponding gD function of the CSS factorisation
in the PB evolution:

∆NP
a (µ0, µ) = exp

(
gPB
D ln

(
µ2

µ2
0

))
: gPB

D =
hk
2

ln

(
q20

ϵ2µ0µ

)
, (2.66)

which was introduced in the original CSS factorisation to describe the qT ≪ mll region.
Moreover, the gPB

D function can be calculated analytically provided αS is in the pertur-
bative region.

In conclusion, we can understand the non-perturbative Sudakov form factor of the TMD
and CSS factorisation theorems from the PB evolution as the radiation of very soft gluons.
However, gPB

D can not be directly compared with gD with gPB
D as we will show later when

comparing the TMD factorisation evolution and the PB evolution.

In figure 2.8 we show the gluon PDFs obtained with the Parton Branching method using
the starting distribution of the PBSet2 BermudezMartinez:2018fsv for an evolution with
a non-perturbative Sudakov form factor (PB-NLO-HERAI+II-2018-set2), and without
the non-perturbative Sudakov form factor (PB-NLO-set2=qs0.5-Q0ord1.0). We observe
that the collinear distribution is affected in the whole momentum fraction, x, range,
where at small x there is a 40% difference between the two distributions. Thus, we can
conclude that the non-perturbative Sudakov form factor has a large effect in the collinear
distribution.

In the following we will discuss the evolution of different parton showers, Pythia8 and
Herwig7, with a focus on their treatment of the non-perturbative evolution. Later we
will compare the evolution of the PB evolution to the one of TMD factorisation.

Parton showers

The ordering of the evolution plays a large role in allowing very soft radiation. In pT
ordered evolutions the energy scale of the radiation, µ′, is set as the transverse momentum
of the radiation, pT = µ′. For an initial scale with µ0 ∼ 1− 2 GeV the softest radiation is
pmin
T = 1− 2 GeV and emissions below pmin

T are not considered. This will cause the non-
perturbative region of the Z boson transverse momentum not to be treated (remember
that for the Z boson the qT < 1, 2 GeVs is considered as non-perturbative). An angular
ordered shower will allow softer radiation, as the transverse momentum of the emission is
defined as pT = (1− z)µ′, therefore with angular ordering pmin

T ∼ 0 GeV can be reached if
we allow large momentum transfers in the radiation, z → 1. Evolutions that do not allow
large momentum transfers or that are pT ordered will not have a predictive power for the
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Figure 2.8: Collinear gluon distribution functions at two different energy scales, µ =
4 GeV (left panel) and µ = 100 GeV (right panel), for two TMDs based on the PBSet2
starting distribution [18]: PB-NLO-HERAI+II-2018-set2 includes soft radiation in the
z → 1 region, while PB-NLO-set2=qs0.5-Q0ord1.0 which does not include emissions with
pT < 1 GeV. With these two distributions we observe the effect of the removing very soft
radiation from the evolution. Plots made with TMDplotter2.2.4 [19].
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qT ≪ mZ region, as the very soft radiation will not smear the Gaussian distribution of
the intrinsic transverse momentum and thus, we will need larger values for the width of
the Gaussian distributions.

To seize the effect of not considering soft radiation we tune the intrinsic transverse momen-
tum distribution to different DY measurements with different parton showers, Herwig7
and Pythia8. With these two parton showers we cover two scenarios mentioned above, a
pT ordered shower (Pythia8) and angular ordered shower (Herwig7). Moreover, both
parton showers introduce a dynamical resolution scale, zM , which does not allow mo-
mentum transfers in radiations above zM . Pythia8 and Herwig7 model the intrinsic
transverse momentum with a Gaussian distribution, where the width of the distribution
can be tuned. For a good description of the DY transverse momentum spectrum, more
precisely the region of qT ≪ mDY , the intrinsic transverse momentum distribution has
to accommodate the untreated soft radiations. These radiations increase with increasing
centre of mass energies, hence, the intrinsic transverse momentum has to also increase.

To tune the intrinsic transverse momentum parameters Pythia8 and Herwig7 we use
the Professor2 software [29]. We generate the DY predictions at next-to-leading order
accuracy in QCD with MC@NLO with the NNPDF3.1 PDF set at next-to-next-to leading
order in QCD, with αS(mZ) = 0.118. We supplement the events with the Pythia8 or
Herwig7 Monte-Carlo event generator with a full simulation of the underlying event. For
Pythia8 we use the next-to-leading order CP3, CP4 and CP5 tunes of the underlying
event [30] and for Herwig7 the next-to-leading order CH2 tune of the underlying event
[31]. For each different tune of the underlying event we tune the intrinsic transverse
momentum parameter. In [32] we show that the variation of the intrinsic transverse
momentum parameters does not affect the observables sensitive to the underlying event.
We tune the intrinsic transverse momentum parameter to different DY measurements at
different centre-of-mass energies and different DY lepton pair masses. In appendix A we
present the DY measurements used for the tuning of the intrinsic transverse momentum,
together with their corresponding tuned value and a small explanation on the considered
uncertainties.

In figure 2.9 the tuned values of the intrinsic transverse momentum for a good description
of the qT ≪ mDY region for both parton showers are shown. Both parton showers show
a linear dependence on ln

√
s with a similar slope. Besides, the pT ordered shower in

Pythia8 needs larger intrinsic transverse momentum compared to Herwig7, the angular
ordered shower. Besides, we extract the value of the intrinsic transverse momentum for the
Pythia8 CP5 tune of the underlying event for a correct description of the DY transverse
momentum spectrum at a centre-of-mass energy of 13 TeV:

2.67± 0.02(stat.)± 0.03(range)± 0.04(int.),

where stat. stands for the statistical precision, range for DY transverse momentum region
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Figure 2.9: Tune of the intrinsic transverse momentum distribution for the Pythia8 and
Herwig7 parton showers for different centre of mass energies and different Drell-Yan
lepton pair masses.

considered for the tune and int. for the interpolation uncertainty.

In comparison, the PB method shows no sensitivity to the width of the Gaussian distribu-
tion at different centre of mass energies [33]. Moreover, it shows an incredible agreement
with the different measurements of the DY transverse momentum distribution. Recently
a tune of the width of the Gaussian distribution of the intrinsic transverse momentum
was performed in [21]. In this study, the width of the Gaussian distribution showed no
dependence on the mass of the DY lepton pair or in the centre-of-mass energy.

The PB and TMD factorisation evolution

In this section we compare the evolution of the TMDs in the TMD factorisation theorem
with PB evolution as a cross-check of the treatment of the resummation region of the
transverse momentum distribution of the DY process. In the TMD factorisation theorem,
the TMD evolution is governed by the following Sudakov form factor:

∆TMD = exp

[
(D(b∗, µ) ln

Q

µb∗

+ gD(bT , bmax) ln
Q

Q0

]
× exp

[∫ µ

µb∗

dµ′

µ′ γd ln
Q

µ′ + γj

]
.

(2.67)
The first exponent represents the rapidity evolution, the CS kernel, with gD the non-
perturbative rapidity evolution and D the perturbative rapidity evolution. The second
exponent represents the evolution in µ.

In the PB method the evolution is defined by the Sudakov form factor, which in equa-
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tion 2.63 we have divided in a perturbative and non-perturbative form factor:

∆PB = exp

[
−
∫
dµ

µ

∫ 1−q0/µ′

0

dzka(αS)
1

1− z
− da(αS)

]
× exp

[
gPB
D ln

Q

Q0

]
(2.68)

By comparing the TMD factorisation and the PB Sudakov form factors we find direct
relations for

γd → ka,

γj → da,

gTMD
D → gPB

D .

(2.69)

In [34] we show that the perturbative coefficients ka and da agree with γd and γj corre-
spondingly up to next-to leading logarithmic accuracy. At next-to-next-to leading loga-
rithmic accuracy they do not longer agree. The disagreement is solved by the redefinition
of αS with the Catani-Marchesini-Webber (CMW) method [35]. However, this explana-
tion surpasses the scope of this thesis. For the CS kernel, D, there is not such a relation,
as there is no specific rapidity evolution in the PB method, only for the non-perturbative
side of the evolution. Nonetheless, the PB evolution is angularly ordered, which might
give rise to a rapidity evolution. To prove this statement one should differentiate the PB
evolution in equation 2.38 in z, the momentum transfer, and relate z with rapidity using
the angular ordering relation, pT = (1 − z)µ. This becomes complicated as we need to
factor out the Sudakov form factors in each emission in the evolution.

In [36] the extraction of the CS kernel from ratios of transverse momentum distributions
of DY lepton pair at different DY lepton masses and centre of mass energies was proposed:

D(b, µ) =
ln Σ1

Σ2
− lnZ(Q1, Q2)− 2∆R(Q1, Q2;µ0)

4 lnQ1/Q2

− 1 (2.70)

where Q1 and Q2 are different DY lepton pair masses, Σ is the cross-section in b space
for the corresponding Q and the Z and ∆ functions are perturbative functions. With this
method we are able to extract the CS kernel for the PB evolution from the cross-section
ratios. In this work the rapidity evolution kernel of the PBSet2 TMD was extracted and
compared to the rapidity evolution kernel of the TMD factorisation TMDs and to lattice
QCD calculations of the gD function. First, let us recall the main aspects of the PBSet2
TMD evolution. The emission in the evolution are angularly ordered and qT is used as
input for calculating αS. In PBSet2 αS is frozen for emissions with pT < 1 GeV. We
can interpret the cut in pT of the emissions as q0 = 1 GeV, the minimum transverse
momentum to resolve non-perturbative and perturbative emissions. In figure 2.10 we
show the results of [36], where the evolution kernel of PBSet2 is Cascade. We divide b,
the distance parameter, in two regions, the b < 1 GeV−1 region, where the evolution kernel
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Figure 2.10: The TMD evolution kernel, D, for different TMD extractions. Cascade,
correspond to the evolution kernel of PBSet2. Other solid lines correspond to TMDs
extracted from fits: SV19 [37], MAP22 [38], Pavia19 [39] and Pavia17 [40]. Dots represent
lattice calculations of the non-perturbative evoltion kernel: SVZES [41], ETMC/PKU [42],
SVZ [43], LPC20 [42], LPC22 [44]. Figure taken from [36].

is perturbative and the b > 1 GeV−1, where the evolution kernel is non-perturbative. The
evolution kernel of PBSet2 shows a similar trend as the CSS evolutions in the perturbative
region. In the non-perturbative region the parametrisation of the CSS evolutions start to
differ. Lattice QCD calculations show a linear dependence on b, a similar trend to the
PBSet2 trend.

To disentangle the different contributions to the non-perturbative function gD in the PB
evolution we compare the CS kernel of the PBSet2 TMD to the ones of PBSet1 and toy
evolutions of the PBSet2 TMD with zm = zdyn = 1 − q0/µ

′ with different values of q0.
In other words the toy models will give us information of not including soft radiations
bellow q0. The PBSet1 TMD was extracted together with PBSet2 in [18]. In PBSet1
µ′ is used as input for αS. Hence, in the evolution of PBSet1 soft radiations will not
be as enhanced as in PBSet2. In figure 2.11 we show the evolution kernel, D, for the
different TMDs. We observe by enhancing soft radiation the non-perturbative side of the
evolution, b > 1 GeV−1, becomes larger. In PBSet1 the evolution saturates at a value of
D ∼ 0.1, thus, showing that the treatment of αS plays an important role in the rapidity
evolution. The toy model with q0 = 1 GeV saturates at D ∼ 0.2 showing no b dependence
in the large b region, and hence, not agreeing with the lattice QCD calculations shown in
figure 2.10. The evolution kernel of the toy model with q0 = 0.5 GeV behaves similar to
PBSet2, however, the evolution kernel shows a stronger linear dependence compared to
PBSet2. Besides, the calculation becomes unstable for the toy model with q0 = 0.5 GeV
as αS(qT = 0.5 GeV) is in the non-perturbative region.
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From these results we can draw the following conclusion from the PB evolution:

• The PB evolution is able to reproduce the rapidity evolution of the TMD factorisa-
tion. The treatment of the very soft radiation has an impact on the non-perturbative
side of the rapidity evolution, which in the TMD factorisation is modelled with the
gD function. Thus, we can understand that the gD function in the TMD factorisation
is composed by very soft radiations.

• The impact of the treatment of αS in the rapidity evolution increases with b. The
scenario with αS(pT ) (PBSet2) has a larger rapidity evolution compared with the
scenario with αS(µ

′) (PBSet1) due to the increased probability of emission with
αS(pT ).

• The integration range of the momentum transfer is important to get a b dependence
of the rapidity evolution in the non-perturbative region. This also shows that the
freezing of αS for very soft raditions is a good approximation to describe the non-
perturbative region of the rapidity evolution.

More importantly, phenomenological studies in [21,33], show that the measured transverse
momentum distribution of the DY lepton pair is well described by resummed predictions
with the PBSet2 evolution at different centre of mass energies and DY lepton pair masses.
While predictions with PBSet1 and toy models with q0 > 1 GeV need different values for
the width of the Gaussian distribution modelling the intrinsic transverse momentum of
the incoming particles to describe the qT ≪ mll region.

2.6 Hadronisation

In the case that in the hard-process quarks or gluons are created, the hadronisation process
becomes important. The outgoing quarks and gluons evolve from the hard-process energy
scale to the hadronic energy scale. At this energy scale the coupling strength of the strong
interaction is large enough to start the formation of hadrons. The hadronisation process
is then a non-perturbative process.

Hadronisation can be treated through fragmentation functions or a modelling of the hadro-
nisation process. Fragmentation functions (FF) give us the probability of a parton of a
given flavour to hadronise into a certain hadron. FFs are similar to PDFs, they contain
non-perturbative physics, which need to be extracted from data. FFs are supposed to be
universal objects, the fragmentation of a parton into a given hadron should be independent
of the process.

FFs can be used to calculate specific processes. In order to study all possible case scenarios
we should extract the FFs for every quark or gluon decaying into a specific hadron. For
a DY process where the Z boson decays into quark anti-quark pair and these hadronise
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Figure 2.11: Rapidity evolution, CS Kernel, for different Parton Branching TMDs: PB-
Set2 (αSqt , fixed zm), PBSet1 (αS(µ

′), fixed zm) and toy models of the PBSet2 TMD
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into specific hadrons C and D the factorisation of the cross-section could be defined as

σh =
∑
i,j,k,l

∫ 1

0

dxi

∫ 1

0

dxjfi/A(xi, µF)fj/B(xj, µF)σ̂ij→kl(xi, xj, Q, µF, µR)

×
∫ 1

0

dzk

∫ 1

0

dzlDk→C(zk)Dl→D(zl),

(2.71)

where we sum over all parton flavours in the initial state i, j and final state k, l and Dk→C

represents the FF of the outgoing parton k to hadronise into hadron C. If we are not
interested in a specific type of hadron in the final state, we exchange the FF by a jet
function. A jet is a collimated spray of hadrons arising from the QCD bremsstrahlung of
the outgoing parton as it evolves from the hard energy scale to the hadronisation scale.
Later, these shower of particles hadronises. The jet function describes the evolution of the
outgoing particle from the hard energy scale to the hadronisation scale in a jet of radius
R, J(R, µ). The evolution of the outgoing particles will depend on the factorisation of
the cross-section. With a TMD factorisation of the cross-section, the evolution of the
outgoing and incoming particle is the same.

The hadronisation is also modelled and introduced in parton shower Monte Carlo event
generators. Two main models of the hadronisation are used:
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• The Lund string model approximates the strong interactions at non-perturbative
energy scales with a linear potential, which is represented by a string. After the
hard-scattering the outgoing particles are evolved with a forward parton shower
to the an hadronisation scale, which is set around 1-2 GeVs. Once all particles
in the event are evolved to the hadronisation scale, the quark and anti-quarks are
connected through a string forming quark anti-quark pairs. When the energy of
the pair is larger than the one from the string, the string breaks. At the breaking
position a new quark anti-quark pair is generated from the vacuum and the newly
produced quark (anti-quark) will paired with the ”old” anti-quark (quark).

• The cluster model, as the name suggests this model of hadronisation is based
on clustering quarks and anti-quarks at the hadronisation scale. In the first step,
gluons at the hadronisation scale are splitted non-perturbatively into quark anti-
quark pairs. Then, the surrounding quarks and anti-quarks are combined forming
color neutral objects, hadrons.

2.7 Event generators

Previously we have presented the different theoretical aspects involved in proton-proton
collisions. This knowledge then can be applied to simulate proton-proton collisions. The
generation of proton-proton collisions can be divided in two steps: the generation and the
showering.

In the event generation, we need to define the process under study e.g. the DY process:
two incoming protons collide generating a pair of leptons. The events are generated
according to the collinear factorisation theorem (see equation 2.25). First, the transition
amplitudes are calculated, the probability of a quark anti-quark to transform to a lepton
pair for the DY case. Then, we need to compute the partonic-cross section. For that, we
need the momentum of the two incoming particles. The momentum and flavour of the
incoming partons are sampled using the PDFs. The integration of the cross-section will
give us the probability for a specific configuration. Then, the events will be generated
according to the proability distribution.

The generated events in the generation step are not physical, these need to be showered
with a parton shower (see section 2.4). The parton showers divide the showering process
into an initial and final state showers. Interference terms are neglected between initial
and final state are neglected. The initial state shower evolves the initial state partons
from the partonic scattering scale to the hadron scale with a backward evolution. For the
case where gluons or quarks are generated in the final state, these outgoing partons are
evolved from the partonic interaction scale to the hadronisation scale. The hadronisation
scale is an arbitrary parameter around 1-2 GeVs.
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In the case quarks and gluons are considered in the final state the hadronisation process
is included. In section 2.6 we have presented the two main modelling of hadronisation
used in event generators. To make events more realistic multi parton interactions can be
taken into account, as when two protons collide more than one partonic interaction can
happen. We refer to the combination of parton shower, multi parton interactions and
hadronisation as the underlying event.

Event generators are a great way to study proton-proton collisions on a event basis. These
predictions are complementary to analytical predictions, as they offer a easier way to study
exclusive observables. Moreover, these simulations are heavily used for measurements for a
better understanding of the measured data and to correct the measurements for detector
effects. In the following we mention some of the event generators and parton showers
available in the market:

• Madgraph [45] is an event generator which computes the generation step described
above. The generated events then can be fed to a wide range of parton shower
Monte-Carlo event generators. In Madgraph the events can be calculated at lead-
ing order and up to next-to-leading order in QCD interactions and electroweak
interactions [46]. However, for electroweak interactions only virtual corrections are
included (see chapter 3).

• Pythia8 [47] is a multipurpose event generator where event generation, parton
showers, hadronisation and multi parton interactions are available. The events are
generated at leading order in perturbation theory. External events at higher orders
can be fed to Pythia8. The shower is a transverse momentum ordered shower,
which relates the splitting scale µ′, with the transverse momentum of the emission
pT as µ′ = pT and the hadronisation is modelled with the Lund string model. The
modelling of multi parton interactions is described in [48].

• Herwig7 [49,50] is a multipurpose event generator which includes event generation,
parton showers, hadronisation and multi parton interactions. Events are generated
at leading order in perturbation theory. Herwig7 offers an interface to event gen-
erators, such as, Madgraph to generate events at higher orders. Besides, external
events can be used for later showering, etc. The parton shower is an angular ordered
shower and the hadronisation is modelled by the Clustering method. Information
on the modelling of multiparton interactions can be found in [49].

• CASCADE3 [51] is a multipurpose generator with a parton shower based on
TMDs, which follows exactly the PB-TMD distribution for the initial state shower.
For the final state the Pythia6 [52] shower is used. Both initial and final state show-
ers are angular ordered. Events generated by Madgraph at next-to-leading order
accuracy in QCD can be fed to CASCADE3, as well as events generated according
to processes calculated within the kT -factorisation.
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CHAPTER3
Electroweak corrections

In the previous chapter we have studied the different theoretical aspects to describe par-
ticle interactions. However, at the time of this thesis the precision of measurements by
the Large Hadron Collider experiments is unprecedented. The uncertainties of precision
measurements is smaller than the ones from theoretical calculations. For a better under-
standing of the measurements we need an improvement of theoretical calculations. Let
us consider the collinear factorisation theorem in equation 2.25. The theoretical predic-
tion is composed by three functions: two PDFs and one hard-function. To improve the
theoretical calculations we must improve these functions.

PDFs are non-perturbative objects. The starting distribution of the PDF has to be
determined from measurements, while the evolution of the PDF is done perturbatively.
The hard-function is a perturbative object. We can improve the PDF evolution and the
hard-function by including more terms to their perturbative expansion. The additional
terms to the leading order term of the expansion are known as corrections. In chapter 2 we
have discussed the different areas where QCD higher order corrections can be applied to
achieve a better description of data, e.g., in PDFs, resummation and hard-functions. Due
to the coupling strength of QCD interactions the perturbative expansion is done in terms
of the strong coupling. However, it is known that electroweak corrections become large
at high energies [53]. In this thesis we have measured the contribution of real electroweak
corrections to multijet events, thus it is important to have solid theoretical understanding
of electroweak corrections. In this chapter we introduce electroweak corrections from a
theoretical point of view.

Corrections are divided in two categories: virtual and real corrections. Virtual corrections
are loop interactions, a particle is emitted and absorbed again. Real corrections are
radiations of particles. Corrections for massless particles are infrared divergent. These

41
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are known as mass singularities. Mass singularities from virtual corrections cancel with the
corresponding singularities of the real corrections. For Abelian theories the cancellation
of the divergences is understood by the Bloch-Norsviek theorem [54]. For non-Abelain
theories, such as QCD, it is understood by the Kinisoshita-Lee-Neuenberg (KLN) theorem
[55, 56]. The KLN theorem states that when summing over all degenerate states, mass
singularities cancel. For QED and QCD theories, where the bosons are massless, we
include virtual and real corrections in the calculation to cancel the mass divergences. For
massive particles the mass acts as a cut-off for the mass singularity. This is the case for
electroweak theory, where the bosons are massive. Due to the mass of the electroweak
bosons virtual and real corrections are finite. Hence, we do not need to include virtual
and real corrections in the calculation to achieve a finite result.

This is an advantage for theoretical predictions when looking at exclusive observables.
A real electroweak correction changes the defined final state of the exclusive observable.
Thus, only virtual corrections are introduced in the calculation of exclusive observables.
In this chapter we explain the behaviour of electroweak corrections at high energies for
virtual and real corrections, the violation of the BN and KLM theorems in inclusive
observables. In section 3.3 we will investigate electroweak corrections in hadron colliders,
their impact in the hard-function, PDFs, resummation and how phase space restrictions
in measurements can lead to enhanced electroweak effects.

3.1 Virtual electroweak corrections

Virtual electroweak corrections become important at high energies. To understand their
behaviour at high energies we study the vertex correction (see figure 3.1). We define k
and M as the momentum and mass of the particle in the loop and pi and mi as the
momentum of the outgoing particles, where i = 1, 2. We follow the calculation of [53].
The vertex correction can contain infrared divergences (k ∼ 0). Integrals of the vertex
correction containing k in the numerator are infrared safe by power-counting. Then, the
only integral that can contain an infrared divergence is C0:

C0(m1,m2,MV , p1, p2) =
i

2π

∫
d4k

[(p1 + k)2 −m2
1 + iϵ][k2 −M2

V + iϵ][(k − p2)2 −m2
2 + iϵ]

.

(3.1)
For the massless case, such as QCD and QED, where m1 = m2 =M = 0

C0(0, 0, 0, p1, p2) =
i

2π

∫
d4k

[(p1 + k)2 + iϵ][k2 + iϵ][(k − p2)2 + iϵ]
, (3.2)

and we find the integral is divergent for three cases: soft divergence (k ∼ 0) and two
collinear divergences (k ∼ p2, k ∼ −p1). For purely electroweak corrections, where
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p1
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k

Figure 3.1: Vertex correction induced by a electroweak boson with momentum k and mass
M .

M ̸= 0, C0 does not contain soft divergence. However, in the large energy limit, s ≡
(p1 + p2)

2 ≫M2, the real part of C0 becomes:

Re[C0(0, 0,MV , p1, p2)] ∝
1

2s
log2

( s

M2

)
. (3.3)

The logarithmic behaviour at high energies is known as a Sudakov logarithm. Note the
difference with the Sudakov logarithm arising from QCD radiation (see equation 2.42).
The Sudakov logarithm arising from EW radiation is a double logarithm compared to
the single logarithm of QCD radiation.. The leading order vertex, V0, is modified by the
electroweak vertex correction as

V ∼ −αEW

4π
V0 log

2
( s

M2

)
. (3.4)

We see that at high energies the contribution of virtual electroweak correction becomes
large and negative.

The interest of this thesis lies on the contribution of electroweak corrections to dijet
process. The contribution of virtual electroweak corrections for dijet processes in hadronic
collisions have been studied in [57,58]. We follow the study in [58]. Two ways of producing
a dijet final state are considered: QCD production and electroweak production. For the
QCD production the dijet is produced through interactions between gluons and quarks.
The electroweak production of the dijet consists of the production of an electroweak boson
that decays into two quarks. The calculation is done at O(α2

sαEW ), QED processes are not
included. The cross-section at leading order, σ0, is calculated at O(α2

S, αSαEW , α
2
EW ). Due

to the small contribution of the electroweak production compared to the QCD correction,
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the electroweak production is treated as a corrections such that

σ0 = σQCD × (1 + δEW
tree ) (3.5)

where σQCD denotes the leading order cross-section of the QCD production of the dijet
and δEW

tree
the cross-section of the electroweak production. The next-to-leading cross-section

is then defined as:

σNLO = σ0 × (1 + δEW
1-loop) ∼ σQCD

0 (1 + δEW
tree + δEW

1-loop) (3.6)

where δEW
1-loop are the one-loop virtual electroweak corrections to the QCD diagrams. The

electroweak dijet production does not contain electroweak virtual corrections. For the
total cross-section it is found that virtual electroweak corrections are negligible. However,
for some observables the contribution of the virtual electroweak corrections becomes im-
portant. The observables that are studied are the invariant mass of the two leading jets
and the transverse momentum of the two leading jets.

In figures 3.2, 3.3 we show the contribution of virtual electroweak corrections (δ1−loop
EW ),

the electroweak production of dijets (δtreeEW ) and the sum of both contributions to the
leading order QCD calculation for the different observables obtained in [58]. For the
three observables it is shown that the contributions of virtual electroweak corrections are
negative and increasing with increasing values of the observables. For the dijet invariant
mass (M12) the effect is below −6% for invariant masses of 5 TeV. The contribution of
the virtual electroweak corrections is enhanced for the transverse momentum of the two
leading jets. For a leading jet with transverse momentum of 3 TeV the virtual electroweak
correction has an effect of −10%, while for a sub-leading jet it goes up to −15%. At large
invariant masses of the dijet the transverse momentum of the dijet system is small. This
makes virtual electroweak corrections smaller at high invariant masses compared with the
transverse momentum of the leading jets.

The contribution of the electroweak production of the dijet is positive. The total cross-
section in equation 3.6 is calculated by summing the contributions from the virtual elec-
troweak corrections and the electroweak production. Hence, there is a cancellation be-
tween both contributions 1. For the invariant mass of the dijet system the contribution of
virtual electroweak corrections is larger than the electroweak production. Hence, the total
contribution to the QCD calculation is negative −3% at M12 ∼ 6 TeV. For the transverse
momentum of the two leading jets the contribution from the electroweak production is
larger than the virtual electroweak corrections at large transverse momentum. The sum
of both contributions is positive and around 5% at high transverse momentum.

1The cancellation between the virtual electroweak corrections and the electroweak production does
not refer to the cancellation between real and virtual electroweak corrections. We will discuss this effect
in more detail in the following section.
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Figure 3.2: Relative differential cross-section to the leading order QCD cross-section for
dijet production at a centre-of-mass energy of 14 TeV in the invariant mass of the two
leading jets. The electroweak production of the dijet (δtreeEW ) is shown with green dashed
lines. The virtual electroweak corrections (δ1−loop

EW ) are shown with the dotted blue line.
The figure is taken from [58].

Figure 3.3: Relative differential cross-section to the leading order QCD cross-section for
dijet production at a centre-of-mass energy of 14 TeV. Left panel: differential in the
leading jet transverse momentum kT,1. Right panel: differential in the sub-leading jet
transverse momentum kT,2. The electroweak production of the dijet (δtreeEW ) is shown in

green dashed lines. The virtual electroweak corrections (δ1−loop
EW ) are shown in dotted blue

line. The figure is taken from [58].
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3.2 Real electroweak corrections

We have argued that it is possible to separate real and virtual electroweak corrections.
Virtual corrections are not infrared divergent, hence we do not need the corresponding
real emissions to cancel a divergence. For exclusive observables, such as dijet events, a
real radiation would change the final state.

For inclusive observables, such multijet states, we need to include real electroweak cor-
rections. The sum of real and virtual contributions leads to a partial cancellation. The
partial cancellation between real and virtual corrections are known as Bloch-Nordsieck
(BN) violation. The Bloch-Nordsieck theorem states that for Abelian theories the infrared
divergences cancel with the corresponding real correction. However, this is not true for
non-Abelian theories. For QCD the cancellation is true due to the KLN theorem. Since
hadrons are symmetric under SU(3) we can average over all the possible color charges of
the constituents cancelling the mass singularities. For electroweak corrections it is not
always possible to average over all isospin charges. Hence, the NB violations arise. In
the following we investigate the NB violations, their origin and the scale of the violation.
Then, we present the real electroweak corrections and the emissions of electroweak bosons
in hadronic collisions.

3.2.1 Bloch-Nordsieck violation

The BN violations have been studied for electron-positron collisions in [59–63] and for
hadronic collisions in [64]. To understand the origin of BN violations, let us follow the
work in [63]. Here three cases are presented to pinpoint the origin of BN violations: an
Abelian theory with massive bosons, a spontaneously broken SU(2) symmetry and the
SM. Moreover, the effect of different phase space cuts on BN violations are studied.

The process under study is the four fermion process, f1f̄2 → f3f̄4. For the Abelian theory
with massive bosons the Born cross-section for the four-fermion process (σB) is modified
by the virtual corrections as:

σ(V ) =
α

4π

{
−4
[
ln2 s

M2
− 3 ln

s

M2

]
+ · · ·

}
σB. (3.7)

In the four-fermion process the radiation of the massive boson can happen from the initial
and final state. To compute the contribution of the real emission a cut is applied to the
minimum invariant mass of the fermion pair, Q2 ≤ Q2

c ≫ M2, where Q is the invariant
mass of the lepton pair, Qc is the minimum cut on Q and M is the mass of the massive
boson. The cross-section for the four-fermion process including real radiation to the Born
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process is:

σ(R) =
α

4π

{
4
[
ln2 s

M2
− 3 ln

s

M2

]
− 4

[
ln

zc
(1− zc)4

+ · · ·
]
ln

s

M2
+ · · ·σB

with zc = Q2
c/s

(3.8)

By summing 3.8 and 3.7 we get the total cross section:

σTot ∝ ln
zc

(1− zc)4
ln

s

M
σB (3.9)

The surviving logarithm corresponds to a radiation of the boson from an initial state
fermion.

For a spontaneously broken SU(2) theory, the theory for weak interactions, we have three
massive gauge bosons: W± and W 3. The isospin charges are t± and t3. For simplicity the
corrections that affect one of the outgoing quarks are studied. More precisely on f3. The
virtual corrections on the f3 leg modify the Born cross-section in the collinear limit as:

σV = − α

4π

[
ln2 s

M2
− 3 ln

s

M2

] (
(t3)2 + (t±)2

)
σf1f̄2→f3f̄4
B (3.10)

For the real correction we have to take into account that the radiation of a W± boson
from the final state leg f3 will change the flavour of the final state of f3 to it’s isospin
conjugate. Then, to get a f3 fermion in the final state we need to separate the W 3 and

the W± interactions. The Born cross-section for the W 3 radiation is σf1f̄2→f3f̄4
B . For the

W± emission we need the isospin conjugate of f3 in the final state, f±
3 , of the Born cross-

section, σ
f1f̄2→f±

3 f̄4
B . The emission of a W± will change f±

3 into f3. The real emission
cross-section is

σR =
α

4π

[
ln2 s

M2
− 3 ln

s

M2

] (
(t3)2σf1f̄2→f3f̄4

B + (t±)2σ
f1f̄2→f±

3 f̄4
B

)
(3.11)

We get the total cross-section by summing equation 3.10 and equation 3.11 :

σTot =
α

4π

[
ln2 s

M2
− 3 ln

s

M

]
(t±)2

(
σ
f1f̄2→f±

3 f̄4
B − σf1f̄2→f3f̄4

B

)
, (3.12)

As we can see, only the W± bosons contribute to the non cancellation between real and
virtual corrections. In comparison with the Abelian theory with a massive boson in the
broken SU(2) theory, a double logarithm and a single logarithm survive. We can note that
in a final state where we average over the isospin charges, the cancellation between the
real and virtual corrections will be complete. In the soft limit we have a single logarithm
from the W± real radiation.

From this analysis we understand that only the W± contribute to BN violations. We
conclude that collinear radiation contributes with a double logarithm to the BN violations,
while the soft radiation with a single logarithm. Hence, phase space cuts will affect to
the size of the BN violations.
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Figure 3.4: Ratio between the jet transverse momentum cross-section from leading order
V+1,2 jets (V+j(j)) and the next-to leading order QCD calculation of dijet production.
Dashed lines represent cuts on missing transverse energy. V represents the electroweak
bosons Z and W±. Dashed (solid) line (no) veto on missing transverse energy, �pT [64].

3.3 Real electroweak corrections in hadronic colli-

sions

We have presented the origins of the BN violations, where the cancellation between real
and virtual electroweak corrections is partial. In inclusive measurements in proton-proton
collisions we can average over the isospin charges in the final state. However, we can not
average over the incoming particles in the initial state. The incoming protons are not
symmetric under SU(2). Therefore, only electroweak corrections in the initial state will
contribute to BN violations, and moreover, only corrections involvingW± will contribute.
In [65, 66] we can find a detailed study on BN violations for dijet processes and which
diagrams are involved in BN violations.

In [64] the contribution of real electroweak corrections is studied in hadronic collisions
at a centre-of-mass energy of 14 TeV. The real electroweak corrections are treated by
calculating V+1,2 jets, where V represents an electroweak bosons Z or W± at leading
order. To study the contribution of real electroweak corrections to inclusive jet production,
the V+1,2 jets is compared to a next-to-leading order QCD calculation. In figure 3.4 the
ratio between the QCD and V+1,2 calculation is shown depending on the jet transverse
momentum. The ratio between the two calculations increases logarithmically with the
transverse momentum of the jets. The ratio at high jet-transverse-momentum, pjT = 4 TeV
is around 6 · 10−2.

From [58, 64] we have learned that the effect of electroweak production of dijet, virtual
and real electroweak corrections are important at high energies. While virtual electroweak
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corrections are negative, the electroweak production and real emissions are positive. This
leads to a cancellation of the contributions. From figures 3.3 3.4 we could expect that by
including the real electroweak corrections on top of the electroweak dijet production and
the virtual electroweak corrections, the dijet cross-section will increase around 1− 5% for
high transverse momentum jets.

3.3.1 Electroweak parton distribution functions

So far we have studied electroweak corrections in the context of the hard-function. For a
complete treatment of electroweak corrections we need to expand electroweak corrections
to the whole factorisation formula. Collinear and soft radiations below the factorisation
scale are not treated by the hard-function, but by the PDFs. Hence, we will need elec-
troweak PDFs for the colliding hadrons to factorise the collinear and soft singularities we
observed in the BN violations studies.

Electroweak PDFs are not widely studied, the first approximations for the electroweak
boson PDFs dates back to 1980s [67,68]. In these approximations the electroweak boson
PDFs are generated dynamically, the electroweak boson is generated from a radiation of
a quark. There is no intrinsic content of the electroweak bosons in the proton. Elec-
troweak bosons have longitudinal and transverse polarisation. For each polarisation a
different PDF is needed as they involve different interactions. From [68] the PDFs for the
electroweak bosons are defined as:

f⊥
V (x,mv, pT ) =

g2V + g2A
8π2

1 + (1− x)2

x
ln

(
p2T + (1− x)m2

V

(1− x)m2
V

)
fL
V (x,mv, pT ) =

g2V + g2A
4π2

(1− x)

x

p2T
p2T + (1− x)m2

V

with:

For: W± → gA = gV = g2
√
2

For: Z0 → gV =
1

2

(
T f
3 − 2Qf sin

2ΘW

) g2
cosΘW

and gA =
1

2

T f
3 g2

cosΘW

(3.13)

where V is the vector boson, mV is the mass of the boson, pT is the maximum allowed
transverse momentum, Qf is the electromagnetic charge of the fermion f , T f

3 the weak
isospin charge and ΘW is the weak mixing angle.

In a more recent calculation the full SM PDFs were derived [69]. For a full SM evolution
of the PDFs the evolution is divided in two regions by an energy scale q0 ∼ mV = 100
GeV. For energy scales below q0 a QCD and QED evolution of the PDFs is done. For
energy scales above q0 electroweak interactions emerge. Electroweak interactions are
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chiral, hence the fermion PDFs are divided into left and right handed PDFs. Besides,
electroweak bosons PDFs are divided into longitudinal and transverse PDFs. For energy
scales above q0 the SU(2)⊗U(1) symmetry is taken as unbroken theory, which makes the
electroweak bosons massless. The real splitting functions for the electroweak evolution
are defined as

PR
ff (z) =

1 + z2

1− z

PR
V f (z) = Pff (1− z)

PR
fV (z) =

1

2
[z2 + (1− z)2]

PR
V V (z) = 2

[
z

1− z
+

1− z

z
+ z(1− z)

] (3.14)

where V represents spin 1 bosons and f the spin 1/2 fermions (taken from [69]). Note
the similarity of with the QCD splitting functions in equation 2.32.

In figure 3.5 the full SM evolution of the up quark (left panel) and the gluon (right panel)
PDFs are divided by the standard QCD evolution of the up quark and gluon respectively.
The right handed up quark PDF has a similar behaviour as the QCD evolved PDF at
low x. Right handed quarks only couple to Z bosons and photons besides gluons. At
high x there is a deviation from the QCD evolved PDF. The deviation is caused by the
valence quarks. Valence quarks are more likely to radiate an electroweak boson as they
carry large momentum fractions. The left handed distribution is smaller that the right
handed distribution. The left handed fermions can radiate W± bosons, which is a flavour
changing interaction. The flavour change leads to a smaller distribution. The gluon PDF
becomes smaller for increasing x. With the full SM evolution the probability of emitting
and EW boson increases with increasing x.

In figure 3.6 we show the electroweak boson PDFs divided by the gluon PDF. The be-
haviour and the contribution of the four bosons is similar. At low x the contribution of the
electroweak bosons is around 1% of the one from the gluon. At large x the contribution
is similar, except for the photon which is 2% higher than the contribution of the gluon,
as for the photon PDF the PDF derived in [70, 71] is used, which assumes an intrinsic
content of photons in the proton.

A newer derivation of the electroweak boson PDFs was done in [72]. The authors propose
the same method as in [70] for the derivation of the electroweak boson PDFs.

3.3.2 Electroweak resummation

We have explored the electroweak corrections in the hard-function and the PDFs. In
section 2.4 we saw that calculations involving two different energy scales where one of the
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Figure 3.5: Up quark and gluon Standard Model PDFs divided by their corresponding
QCD+QED PDF for left and right handed chiralities [69].

Figure 3.6: Electroweak boson PDF evolved with a SM model evolution divided by the
QCD evolved gluon PDF for different energy scales [69].
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scales is much smaller than the other one, resummation to all orders is needed for a correct
description of data. Resummation is well understood in the context of QCD and QED.
The collinear and soft radiation of massless particles produce single logarithms of the type
ln(Q/µ), where Q is the hard scale and µ is the scale of the radiation. The summation of
these logarithms leads to the well-known Sudakov form factors. In collinear weak emis-
sions apart from the single-logarithms, double-logarithms of the type ln2(Q2/M2) arise,
where M is the mass of the emitted electroweak boson. The resummation of electroweak
emissions has to deal with the double and single logarithms. In [73] the resummation
of the double logarithms is done at leading logarithm accuracy for the initial state for
proton proton collisions with a lepton pair in the final state. In [74] the resummation
of the double logarithms is done for any 2 → 2 process at next-to-leading logarithmic
accuracy for both initial and final state.

We can also resum the electroweak logarithms numerically via parton showers. A first
attempt to include electroweak parton showers was done in [75] for the Pythia8 parton
shower. More recently a more complete electroweak parton shower was introduced in
Vincia [76]. In [77] a comprehensive derivation of the electroweak splitting functions is
performed, both for an unbroken SU(2)xU(1) symmetry, where the electroweak bosons
are massless, and for a broken SU(2)xU(1) symmetry, where the electroweak bosons are
massive. The splitting functions for an unbroken SU(2)xU(1) are those in equation 3.14.

3.4 Phenomenology of real electroweak corrections

In the previous sections we have introduced electroweak corrections and their different
effects in proton-proton collisions for multijet processes. In this section we study real
electroweak corrections at a centre of mass energy of 13 TeV in multijet events. These
phenomenological studies will help us understand the measurement of real electroweak
radiations in chapter 5.

To increase the probability of electroweak boson radiation we look at high transverse
momentum multijet events. From equation 3.11 we know that the probability of an
electroweak radiation is

αEW × ln2 Q
2

m2
V

, (3.15)

where αEW is the coupling strength of electroweak interactions, Q is the energy scale of the
hard interaction and mV is the mass of the radiated electroweak bosons, with V = Z,W±.
Hence, to be sensitive to real electroweak radiations we define the phase space for multijet
events as

1. At least two central jets with transverse momentum larger than 100 GeV. We define
a central jet by requiring a maximum absolute rapidity of 2.5.



3.4. PHENOMENOLOGY OF REAL ELECTROWEAK CORRECTIONS 53

2. We only consider the muon decay channel of the Z boson for an easier reconstruction
of the Z boson. We require two opposite charged muons with transverse momentum
larger than 20 GeV, with an invariant mass of the muon pair in between 76 and
106 GeV.

3. We remove jets in a ∆R distance below 0.2 of any of the two muons, to avoid the
misidentification of the muon as a jet (see appendix B).

In this phase space we study the following observables:

• The transverse momentum ratio of the Z boson and the leading jet. It is likely that
one of the leading jets has radiated a Z boson. Hence, its transverse momentum is
largely modified and the average transverse momentum of the two leading jets is
not a good approximation for the scale of the hard interaction. For that, we use the
transverse momentum of the leading jet as scale of the hard process. With the ratio
we can compare the hardness of the emission of the Z boson to the hard scale.

• The difference in the ϕ angle between the two leading jets (∆ϕj1,j2). In QCD in-
teractions a pair of quark anti-quarks, a pair of gluons or a quark and a gluon are
produced, hence two jets will be the hardest objects in the event. From momentum
conservation of the whole event these two jets have to be in a back-to-back configu-
ration, the ϕ angle between the two jets is 180◦. However, a radiation modifies the
ϕ angle of the parent particle so that ∆ϕj1,j2 < 180◦.

• The ϕ angle between the dijet system composed by the two leading jets and the Z
boson (∆ϕZ,dijet). We expect the two leading jets to be in a back-to-back configura-
tion, as they are a product of the hard interaction. Then, the ϕ of the dijet system
in an ideal dijet event should be zero. Hence, with any radiation the ϕ angle of
the dijet system should be nearly zero. In a pure dijet event, the Z boson can be
radiated from either of the jets or from any of the incoming partons, and thus, its
ϕ angle should be ”random”, leading to a no correlation between the Z boson and
the dijet system.

• The minimum ∆R distance between the Z boson and a jet (∆RMin
Z,j ). The Z boson

can be radiated either in the initial or in the final state. The Z boson is radiated
by one of the jets and by measuring ∆R we can infer the angle of the radiation.

To understand the radiation of electroweak bosons we compare two different ways to
produce an electroweak boson in association with at least two jets with the Pythia8
event generator:

• QCD+EWShower: QCD events supplemented with a QCD and electroweak
shower. QCD events are 2 → 2 processes where the two outgoing partons are
quarks and gluons, which initiate two jets. We supplement these processes with the
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Pythia8 simple electroweak shower [75], where we only allow Z boson radiation
and we only consider the muon decay channel.

• DY+1Jet: DY+1 jet events are supplemented with the QCD shower. In this
process the Z boson is calculated in the matrix element together with a jet. Any
second jet in the event is product of a radiation in the parton shower. Hence, the
second jet corresponds to the radiated Z boson in the QCD+EWShower scenario.

By comparing these two scenarios we aim to understand the differences between an elec-
troweak boson radiation, QCD+EWShower scenario, and an electroweak boson generated
as a product of the partonic interaction, the DY+1Jet scenario. We have studied this
events with the Rivet analysis tool [78].

The transverse momentum ratio of the Z boson and the leading jet in figure 3.7 shows that
Z bosons coming from a radiation (QCD+EWShower) are softer than the hard energy
scale. However, we observe that we can find Z bosons with larger transverse momentum
than the one of the leading jet. For the DY+1Jet, the Z boson is the hardest object
in the event, where the transverse momentum of the Z boson is more than two times
larger than the one of the leading jet. In figure 3.8 the ∆ϕ angle between the two leading
jets is shown. While for the QCD+EWShower the two leading jets are in a back-to-back
configuration, the DY+1Jet scenario is not able to reproduce a back to back scenario. The
∆ϕZ,dijet in figure 3.9 shows that in a DY+1jet scenario the Z boson is back-to-back with
the dijet system, as the Z boson is recoiling against the radiation. In QCD+EWShower
scenario the correlation in ∆ϕZ,dijet is not as strong. We can observe from the ∆RMin

Z,j in
figure 3.10 that radiated Z bosons are more likely to be closer to a jet in comparison to a
Z boson produced in a DY process.

From these distributions in figures 3.7-3.10 we learn that there is a difference in the
kinematics of the event depending the production mode of the Z boson at leading order.
Radiated Z bosons are soft in comparison to the scale of the hard scattering and they are
likely to be found close to a jet. In addition, the two leading jets show a correlation in
the ∆ϕ observable. For Z bosons produced in the DY process, the Z boson is likely to be
the hardest particle in the event and there will be no correlation between the leading and
subleading jet in the ∆ϕ distribution.2.

As we have seen from the comparison in figures 3.7-3.10 a DY+1 jet calculation at leading
order is not able to reproduce real electroweak radiations. In [75] the authors discuss that
DY+1 jet events at next-to-leading order are able to describe real electroweak radiations.
Thus, a DY+2 jets at leading order accuracy will be needed to describe real electroweak
radiations. In the DY+2 jets processes together with the Z boson two jets are included
in the calculation of the matrix element, which leads to diagrams where the Z boson is

2It is important to note that electroweak showers are not yet implemented in the simulations used by
the experiments
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Figure 3.7: The transverse momentum ratio between the Z boson and the leading jet for
transverse momentum of the leading jet above 100 GeV (left panel) and above 500 GeV
(right panel).
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Figure 3.8: The ∆ϕ between the two leading jets for transverse momentum of the leading
jet above 100 GeV (left panel) and above 500 GeV (right panel).
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Figure 3.9: The ∆ϕ between the two leading jets for transverse momentum of the leading
jet above 100 GeV (left panel) and above 500 GeV (right panel).
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Figure 3.10: The minimum ∆R between the Z boson and a jet for transverse momentum
of the leading jet above 100 GeV (left panel) and above 500 GeV (right panel).

Z

Figure 3.11: Leading order Drell-Yan + 2 jets Feynman diagram where the Z boson is a
radiation of one of the outgoing partons.

radiated from one of the outgoing partons. In figure 3.11 we show Feynman diagrams for
the DY+2jets where the Z boson is radiated from one of the outgoing quarks. Hence a
DY+2 jets leading order calculation includes diagrams corresponding to real electroweak
radiations. Moreover, with the phase space definition we are able to disentangle the
different production channels of the Z boson.



CHAPTER4
The Large Hadron Collider and the
Compact Muon Solenoid

The proton-proton collision data used for the measurement of the real electroweak cor-
rections presented in this thesis were collected by the Compact Muon Solenoid (CMS)
experiment in 2016 at the Large Hadron Collider (LHC). In this chapter we present the
experimental set-up for our measurement. We give a general overview of the LHC and
the machinery to bring protons into collision. We describe the CMS detector, its differ-
ent components and the particle reconstruction from energy deposits and tracks in the
detector. We define jets, which are collimated sprays of hadrons product of the QCD
bremshtralung of the outgoing partons. We explain the different reconstruction algo-
rithms for the jet reconstruction. Further, we give an overview of the jet calibration,
where during my time as a Ph.D. student I have contributed in the derivation of the
corrections factors, by deriving the relative η dependent corrections for Run2 [79] and
Run3 [80] of the LHC. Last, we present the common corrections applied for the physics
analysis in the CMS experiment.

4.1 The Large Hadron Collider

The LHC is a circular hadron collider with a radius of 27 km located in Geneva, Switzer-
land. The LHC is the most powerful collider, which at the time of this thesis is running
at a centre-of-mass energy of 13.6 TeV. Besides protons, it is able to collide heavy ions.
For the following descriptions let us consider the collision of protons.

To reach such large energies the protons are accelerated in different steps, where in each
step a different accelerator is involved. In figure 4.1 we show a sketch of the accelerator

57
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Figure 4.1: The accelerator complex at CERN. Figure taken from [81]

complex at CERN. In order to accelerate protons, the first step is to have protons. For
that, hydrogen atoms with an extra electron (H−) are used, as these atoms are formed
by a proton and two electrons. Hence, we need to strip the electrons from the H− atoms.
The LINAC accelerator accelerates the H− atoms to 160 MeV. These atoms are then
injected in the Proton Synchrotron (PS). In the injection the electrons are stripped from
the hydrogen atom with an electrical field. In the PS the protons reach 26 GeV and
then they are injected into the Super Proton Synchrotron (SPS). The SPS is the last
step before the protons are injected in two different directions into the LHC. The SPS
accelerates the protons from 26 to 450 GeV. These two beams are accelerated to the
corresponding energy in the LHC ring.

The beams are formed by bunches of protons. The characteristics of the beams are
important as they affect directly the luminosity. The luminosity represents the number
of collisions in a given time:

L =

∫
L (t)dt (4.1)

where L and L (t) are the luminosity and the instantaneous luminosity, and t is time.
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Figure 4.2: The delivered luminosity by the LHC in different years and different centre of
mass energies (left). The recorded luminosity by the CMS experiment against the mean
number of interactions per bunch crossing (right) [82].

The instantaneous luminosity is defined as

L (t) =
Nbn1n2f

Aeff

, (4.2)

where Nb is the number bunches in the beams, n1 and n2 are the number of protons in
the respective bunch of the incoming beams and Aeff is the effective overlap between
the two incoming beams. We can increase or decrease the luminosity by varying the
characteristics of the beams. With the luminosity we can calculate the expected number
of events that happen in a given time for a given process:

N = σL (4.3)

where N is the number of events of the given process and σ is the cross-section of the
given process. In figure 4.2 we show the delivered luminosity by the LHC in the different
years and the mean of the number of interaction per bunch crossing. We can observe
that the different configuration of the beams throughout the years changes the number of
interactions per bunch crossing.

There are four interactions points at the LHC where the beams are able to collide. In
each interaction point we find a different experiment: ALICE, ATLAS, CMS and LHCb.
While ATLAS (A Toroidal LHC ApparatuS) and CMS are general purpose detectors,
ALICE (A Large Ion Collider Experiment) and LHCb (LHC beauty) have specific goals.
ALICE is designed for the study of matter state in the early universe. For that, they
measure the collisions of heavy ions, such as, lead, which generate quark-gluon plasma.
LHCb’s goal is to understand the matter-antimatter asymmetry through bottom quarks.
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4.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) is a multi-purpose experiment located in interaction
point five of the LHC ring. It aims to detect and measure with high precision all charged
particles. For this, the CMS detector was designed as a cylindrical detector wrapping the
interaction point. It consists of different sub detectors designed for different purposes,
in total four detectors constitute the CMS experiment: the tracker, the electromagnetic
calorimeter, the hadronic calorimeter and the muon system. Besides these four detectors,
a solenoid is placed in between the hadronic calorimeter and the muon system to bend the
trajectories of charged particles. To enclose the magnetic field produced by the solenoid,
iron yokes are placed around the solenoid. Together with all the different components and
layers, the CMS experiment amounts to a total of 21 m long and 15 m high cylinder with
a mass around 14 tons. Here we present the coordinate system of the CMS detector, the
different sub-detectors that form the CMS experiment and the reconstruction of particles.

4.2.1 The CMS coordinate system

For the measurement of particles it is necessary to define a coordinate system of the
detector. The z axis represents the direction along the beams. The x and y axes form
the transverse plane to the beam direction. The x axis points to the centre of the LHC
ring and the y axis is the vertical component. The polar coordinate system is composed
by the θ and ϕ angles and the radius, r, in the xy plane. The ϕ angle measures the angle
in the xy plane and θ in the zx plane.

In electron-positron colliders the energy of the incoming particles is known and mea-
surements can be done in the Cartesian or the polar coordinate systems. However, for
proton-proton collisions the energy of the incoming particles, the constituents of the pro-
tons, varies in each collision. Then, it is convenient to measure observables invariant
under Lorentz boosts in the z axis, e.g.: observables that are invariant under different
energies of the incoming partons. The polar angle θ is not invariant under Lorentz boosts
in z axis. Thus, for measuring the momentum in the beam axis the rapidity relative to
the beam axis,

y = ln
E + pz
E − pz

, (4.4)

where y is the rapidity, E is the energy of the particle and pz is the momentum of the
particle in the beam axis, is a better observable. While the rapidity is not invariant
under boosts in the z axis, the difference in rapidity between two particles is invariant.
The rapidity can be understood as boost from the detector frame to a frame where the
particle is only moving in the transverse plane. For massless particles or in the high
energy regime where the mass of the particle can be neglected, the rapidity converges to
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the pseudorapidity:

η = − ln tan
θ

2
. (4.5)

which directly relates to the θ angle. Now that the longitudinal components (θ, pz)
of the particles are embedded in the pseudorapidty, the transverse components can be
represented by the transverse momentum of the particle,

pT =
√
p2x + p2y (4.6)

where px and py are the momentum in the x and y axes respectively. The transverse
momentum is invariant under boosts along the z axis. The transverse mass is also invariant
under boosts along the z axis, and it is defined as

mT =
√
m2 + p2T (4.7)

where m is the invariant mass of the particle. Another important quantity is the missing
transverse energy, ��E T , as neutrinos or other weakly interacting particles cannot be mea-
sured, where ��E T =

∑
i p⃗T,i and we sum over the transverse momentum of all the measured

particles in the collision. We can infer the missing transverse energy by extracting the
total measured energy from the expected energy.

4.2.2 The CMS detector

Due to the high rate of collisions, the detector is exposed to a large amount of radiation.
Moreover, the refresh rate of the detector has to be large to record the high rate of
collisions. Hence, we need materials resistant to radiation with a high refresh rate. As
mentioned before the CMS detector is divided in four sub-detectors, where each detector
has different goals. In this subsection we present the different sub-detectors and their
basic working principle. We start from the inner most detector, which is closest to the
beam pipe, and finish with the outer most detector, the muon system.

The tracking system

The tracker is the closest detector to the interaction point. Its goal is to measure the
trajectory of charged particles. The tracker is immersed in the magnetic field of the
solenoid. This will make the trajectory of the charged particles to bend. From the
curvature of the trajectory we can infer the momentum and charge of charged particles
crossing the tracker system.

To measure the trajectory of the charged particles two detectors form the tracker system:
the pixel and the strip detectors. Both detectors are based on Silicon, which offers a fast
recovery time. During the 2016 data taking period the pixel detector consisted of three
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Figure 4.3: Cross-section of the CMS tracking system in the zy plane [84].

cylindrical layers of radius of 44, 73 and 102 mm wrapping the beam pipe. The cylinders
cover the −270 mm to 270 mm region of the beam axis around the interaction point. Two
end-cap discs are placed on each side of the cylinders. The whole pixel detector consists
of 66 million pixels of 100× 150µm2. It offers a resolution in r−ϕ of 10 µm and 20 µm in
z. The pixel detector was upgraded during the end of the year shut-down in 2016/2017
to meet the luminosity requirements of the increase of energy from Run1 to Run2 [83].

The strip detector is divided in four parts: the inner barrel (TIB), the inner disk (TID),
the outer barrel (TOB) and the outer end-caps (TEC). The inner strip structure, the TIB
and TID, consist of four layers and three disks on each side. The outer strip, the TOB
and TEC, is conformed by six layers and nine disks on each side. In total 15148 modules,
where each module consists of one or two silicon sensors, form the strip detector. The size
of the sensors vary with the distance to the interaction point. Overall, the strip detector
offers a 20-50 µm resolution in r − ϕ and 500 µm in z. The pixel and the strip detector
together cover the |η| < 2.5 region. For a schematic view of the tracker in figure 4.3 we
show a scheme of the zy plane of the tracking system.

The electromagnetic calorimeter

The goal of the electromagnetic calorimeter (ECAL) is to measure the energy of photons
and electrons. The ECAL is a fast detector and offers a high granularity. To measure the
energy, the ECAL is build with lead tungsten crystals, a highly transparent material with
scintillation properties. A photon or a electron passing through a crystal will interact with
the atoms of the crystal generating an electromagnetic shower. The shower will make the
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crystals to scintillate. The photons produced in the scintillation process pass trough a
photomultiplier located in the back of the crystal, generating an electric signal.

The ECAL is divided in two regions: the barrel region (EB) and the end-caps (EE), with
around 15000 crystals. In the EB the cross-section of the crystal reaches ∆η × ∆ϕ =
0.0174 × 0.0174 and of 230 mm in r. At the EE the cross-section of the crystals is of
2.68× 2.68 cm2 with a radial length of 220 mm.

The spatial resolution of the ECAL in the EE is not fine enough. Low momentum photon
pairs produced as a decay of pions will be detected as single photons. To increase the
spatial resolution and resolve the pair of photons the pre-shower (ES) detector is placed
between the tracker system and the EE. The ES is composed by a lead absorber and a
silicon strip.

The ECAL covers the |η| < 3.0 region. More precisely, the |η| < 1.48 region is covered
by the EB and |η| < 3.0 by the EE. The pre-shower detector covers the 1.65 < |η| < 2.6.
In figure 4.4 we show the a sketch of the ECAL with the corresponding η regions and
sub-detectors.

The relative energy resolution of the ECAL is given by

σ

E
=

2.8%√
E[GeV]

⊕ 12%

E[GeV]
⊕ 0.3%, (4.8)

where the first fraction corresponds to the stochastic term, the second to the noise in the
ECAL, which is composed by electronic noise and by event pileup. The event pileup refers
to the overlap of the signal of previous collisions. The third term refers to non-linearities
in the ECAL response [85].

The hadronic calorimeter

Photons and electrons deposit most of their energy in the ECAL. However, the hadrons,
due to a larger mass, have less ionisation power and cross the ECAL without a large
deposition of energy. To measure the energy of hadrons an hadronic calorimeter (HCAL)
is placed after the ECAL.

Due to the limited space between the ECAL and the solenoid, the barrel region of the
HCAL is divided in two regions: The inner barrel (HB), situated between the ECAL
and the solenoid, and the outer barrel (HO), situated outside the solenoid. The HB is
flanked by end-caps (HE) and in the forward direction (|η| > 2.5) forward calorimeters
(HF) are placed. The HCAL is an hermetic detector as it covers the |η| < 5.2 range,
this is important to infer the ��E T . For hadrons not to leave the HCAL, as they do in the
ECAL, plastic scintillating layers are interleaved with brass plates and enclosed by two
steel layers. The brass and steel layers act as stoppers, the hadrons will interact with
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Figure 4.4: Sketch of the geometrical view of a quarter of the electromagnetic calorimeter
[86].

them generating a shower, which is measured by the scintillating material. In figure 4.5
we show a scheme of a quadrant of the HCAL.

The different regions in the HCAL offer different cross-sections of the segmentation of the
calorimeter towers in η × ϕ. For the central region, where |η| < 1.6, a cross-section of
∆η × ∆ϕ = 0.087 × 0.087 and in the forward region, where |η| > 1.6, a cross-section of
∆η ×∆ϕ = 0.017× 0.017 is used.

The muon system

The muon system is the outermost detector of the CMS detector. Muons are minimum
ionising particles, they are able to leave the ECAL and HCAL with a minimum loss of
energy. To measure the energy of the muons gas detectors are used. The muon system is
interleaved with the iron yokes and it is composed by three different gas detectors. The
working principle of gas detectors is ionisation. A muon crossing a gas detector will ionise
the gas atoms creating an avalanche of electrons and ions. In the gas detector an anode
and a cathode are placed, where electrons will be absorbed by the anode and the ions by
a cathode generating an electric signal.

For the design of the muon system the muon flux and the magnetic field of the solenoid are
taken into account. In the central region, |η| < 1.2, the muon flux and the magnetic fields
are small. For |η| > 1.2 the muon flux is larger and the magnetic field is not homogeneous.
Hence, in the forward region a better space and time resolution is needed. Four layers of
drift tubes (DTs) cover the |η| < 1.2 region. For an increase in time and space resolution
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Figure 4.5: A quadrant of the hadronic calorimeter [87].

cathode strip chambers (CSC) are used in the 0.9 < |η| < 2.4 region. Both the CSCs
and the DTs are supported by resistive plate chambers (RPCs) in the |η| < 1.9 region.
The RPCs have a fast response, smaller than the bunch crossing frequency. This allows
the RPCs to time-resolve muons produced in the same bunch crossing and thus are used
as part of the trigger system of the CMS detector. In figure 4.6 we show quadrant of
the muon system in the zy plane, where the different gas detectors and the η coverage is
shown.

The trigger system

With the high frequency of the LHC, a bunch crossing every 25 ns, the amount of data
produced cannot be stored. With an implementation of a trigger system we are able to
decide which collisions produce an interesting event worth storing. The trigger system
has to be relatively fast to be able to read the following collision. The trigger system is
composed by two levels, level-1 (L1) and high level triggers (HLT).

The L1 trigger is a hardware system and decides if the collision is further analysed by the
HLTs. The L1 uses information of the muon system and both calorimeters to reconstruct
leptons and jets. In addition, the L1 trigger is able to compute the missing transverse
energy. To the objects reconstructed by the L1 minimum requirements are applied to
decide for a collision to be further analysed.
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Figure 4.6: Quadrant of the Muon system, drift tubes (DT), cathode strip chambers
(CSC) and resistive plate chambers (RPC) [88]



4.3. EVENT RECONSTRUCTION 67

The HLT system is a more complex triggers system. It uses information from all the
sub-detectors to reconstruct different particles. There are different HLTs for the different
interesting particles produced in the collision. Hence, a HLT of a given particle will be
fired when the HLT reconstruction of the particle fulfils some minimum requirements.
Collisions that fire any HLT trigger are then stored. Moreover, the event will be stored
in a dataset corresponding to the HLT trigger that has fired. A collision can fire different
HTLs and the same collision is saved in different datasets.

Simulation of the CMS detector

To compare the measured data with simulations in the same footing, we need to simulate
the detector response. The simulation of CMS detector is performed with the GEANT4
software [89–91]. GEANT4 simulates the geometry and the interactions of the particles
with the different materials of the detector.

The final state particles of the simulated events are fed to GEANT4. GEANT4 will
simulate the tracks and energy deposits that such final state will leave in the detector.
Then, particles are reconstructed with the same procedure as in the measurement. This
generates two levels of final state in the simulation: the particle level, which corresponds
to the final state before the detector simulation, and the detector level, which corresponds
to the particle level final state that has undergone the simulation of the CMS detector.
These two levels are important later in the measurement procedure for a first comparison
between measured data and simulation and the latter correction to particle level.

4.3 Event reconstruction

In this section we discuss how particles are reconstructed from the information collected by
the CMS detector. The Particle-Flow (PF) algorithm [92] collects the information of the
different sub-detectors and combines them into PF candidates, which are the reconstructed
particles. In a first step the PF algorithm creates the PF elements: tracks, vertices, muons,
electrons and hadrons.

To reconstruct the tracks of charged particles information of the tracker and the muon
chambers is used. As a charged particle crosses the layers of the tracker it will leave a hit
in the different layers. As the tracker is submerged in a magnetic field the trajectories of
charged particles are bent. To reconstruct the tracks in the tracking detector the hits in
each layer are fitted to tracks, for the hits in the muon chamber the same procedure is
used. From the curvature of the tracks the momentum and charge of the charged particle
is computed.

From the tracks the vertices are reconstructed. A vertex is the location where protons
have collided. They are infered by clustering adjacent reconstructed tracks to their closest
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point in the beam axis. The sum of the transverse momentum of the tracks defines the
energy of the vertex. The most energetic vertex is defined as the primary vertex. Other
vertices in the event are then considered as coming from pileup collisions.

Then, muons are reconstructed, and the PF algorithm uses the reconstructed tracks both
from the tracker and muon chamber. First standalone muons are reconstructed, which
correspond to tracks in the muon chamber. If a track from the tracker matches the
standalone muon, the standalone muon becomes a global muon. Then, tracker muons are
reconstructed, which are tracks from the tracker with a corresponding hit in the muon
chamber. For the analysis in chapter 5 we make use of global and tracker muons, as
standalone muons can arise from cosmic rays crossing the detector. The tracks used for
the muon reconstruction are removed from the work-flow of the PF algorithm.

The QED shower generated by electrons and photons creates many close-by clusters in
the ECAL. These are grouped in larger clusters, called superclusters. If a supercluster
has a matching track in the tracker it is reconstructed as an electron. When no track is
compatible with the supercluster it is reconstructed as a photon.

With the remaining tracks the hadron reconstruction is performed. A charged hadron is
reconstructed when a cluster in the HCAL has a matching track in the tracker. HCAL
clusters with no matching track are then reconstructed as neutral hadrons.

4.3.1 Jets

Quarks and gluons produced in the partonic interaction evolve producing a collimated
spray quarks and gluons that later hadronise. We refer to the initial parton producing the
collimated spray as the parent parton and to the collimated spray of hadrons as a jet. To
cluster the measured hadrons into jets different jet algorithms exist. Depending on the goal
of the measurement a jet clustering algorithm will be favoured. One of the most important
aspects is that the jet clustering algorithm is infra-red and collinear safe. Jet clustering
algorithms that are not infra-red and collinear safe, spoil the perturbative calculation of
theoretical predictions, and the comparison to data becomes difficult. For this reason
sequential clustering algorithms are favoured nowadays in experimental measurements.
These algorithms suppose that particles arising from the radiation of the same parent
parton are close to each other. Thus, the definition of the distance between particles
is important. We denote the distance between particle i and j as dij, and the distance
between the particle i and the beam axis as diB. The definition of dij and diB differs
between the different algorithms. Two particles are clustered when dij < diB to form
a particle k. Then, all particles with dik < diB are used to reconstruct the jet. Once
dik > diB the jet is defined and the reconstruction of other jets starts. Three main
sequential clustering algorithms exist, the Cambridge-Aachen [93], the kT [94] and the
anti-kT [95] algorithms:
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• The Cambridge-Aachen (CA) algorithm defines the distance parameters as

dij =
∆Rij

R
with ∆Rij =

√
∆ϕ2

ij +∆η2ij

diB = 1
(4.9)

where R is jet radius parameter defined by the user. The CA algorithm does a
spatial clustering, favouring the clustering of close-by particles. Jets reconstructed
with the CA algorithm are susceptible to particles originating from pileup events.
Thus, making it difficult to relate the energy and momentum of the jet to the parent
parton. However, it is the preferred method to study the jet substructure.

• The kT -algorithm defines the distance parameters as

dij = min
(
k2T,i, k

2
T,j

) ∆Rij

R
with ∆Rij =

√
∆ϕ2

ij +∆η2ij,

diB = k2T,i,
(4.10)

where kT,i is the transverse momentum of the particle i. This algorithm favours the
clustering of soft particles, making the reconstructed jets prone to include particles
coming from pileup events.

• The anti-kT algorithm can be seen as an improvement of cone reconstruction algo-
rithms. Cone algorithms assume that jets are confined in conical shapes. However,
cone algorithms are not infrared and collinear safe. The anti-kT algorithm defines
the distance parameters as

dij = min

(
1

k2T,i
,

1

k2T,j

)
∆Rij

R
with ∆Rij =

√
∆ϕ2

ij +∆η2ij,

diB =
1

k2T,i
,

(4.11)

In comparison to the kT -algorithm, it favours the clustering of large transverse mo-
mentum particles. In this way, reconstructed jets are not as exposed to particles
arising from pileup events. For these characteristics the anti-kT algorithm is pre-
ferred in hadronic collisions, as the reconstructed jets are closer to the energy and
transverse momentum of their corresponding parent, and it is suitable for theoretical
comparisons.

In the CMS experiment jets are reconstructed with the anti-kT algorithm, where all par-
ticles reconstructed by the PF algorithm are used for clustering. We can further remove
pileup contamination from the jets with the charged hadron substraction (CHS) method.
The CHS method removes the charged particles that do not originate from the primary
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Figure 4.7: Ilustration of JEC derivation [98]

vertex. The CHS method was the preferred method for pileup removal for the Run2 mea-
surements, while for Run3 the Puppi (Pileup Per Particle Identification) method [96] is
favoured, as with the increased pileup events in Run3, the Puppi method performs bet-
ter [97]. Another important aspect of the jet reconstruction is the jet radius parameter
R. With a large value of R soft radiation will be included in the jet reconstruction, which
allows for a better estimation of the mass and content of the jet. However, it makes the
jet prone to include particles from pileup events. Hence, a smaller value of R will reduce
the amount of pileup particles in the jet. The CMS experiment by default reconstructs
jets with R = 0.4 and R = 0.8. For our analysis in chapter 5 we make use of reconstructed
jets with R = 0.4, as we are not interested in the studies of the jet substructure, with the
CHS method for pileup cleaning. In CMS jargon these jets are known as AK4PFchs.

Jet energy calibration

The reconstructed jets at the CMS experiment are clusters of many different particles
reconstructed from different sub-detectors. Thus, they are susceptible to the response
and resolution of detector, which makes the measured jet energy differ from its true
energy. We can calibrate the measured jet energy to its real value with the jet energy
corrections.

To derive the jet energy corrections a factorisation approach is used by the CMS experi-
ment. The factorisation helps to simplify the task and derive correction factors for differ-
ent sources. The derivation is organised in consecutive steps, as illustrated in figure 4.7.
These corrections are applied as a factor, CJEC , to the momentum of the reconstructed
jet, pRaw, to recover the true momentum of the jet, pTrue,

pTrue = CJEC × pRaw (4.12)

In this section we use [A] as the bins of a given observable A, ⟨A⟩ the average of the
observable A and (A) the dependence of a function on the observable A.

First, the pileup offset corrections are derived. Here we differentiate between two different
sources of pileup events, multiple proton-proton interactions within a bunch crossing and
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consecutive bunch crossings can leave a signal in the same detector region. These pileup
events will induce an incorrect measurement of the jet energy. The two sources of pileup
modify the measured momentum of the jet. Even though with the CHS we have removed
most of the pileup contamination, there are still remnants. To derive the pileup offset
correction, vertices are not used, as they might be affected by tracking inefficiencies.
Instead the energy density, ρ, is used, which is the median of the energy density calculated
in η − ϕ grids.

To calculate the offset produced by pileup, two samples of simulated events are used. The
origin of the events in the two samples are the same, but one of the samples includes
the simulation of pileup events. Another important variables is µ, the number of pileup
interactions in a bunch crossing, which is known in simulated events.

The offset of the transverse momentum is calculated as

⟨pT,part,offset⟩ (⟨ρ⟩, [η], pT,Raw⟩) = ⟨pNo pileup
T,Raw − pWith pileup

T,Raw ⟩ [µ, η, pT,part] (4.13)

where pT,part and pT,Raw are the transverse momentum of the jet at particle level and
the reconstructed jet (after detector simulation) respectively. For this measurement only
reconstructed jets with a matching jet at particle level are considered. The matching
criteria used is ∆Rjpart,jreco < R/2 where jpart and jreco are the jets at particle level and
detector level. The transverse momentum offset cannot be applied to data as µ and pT,part
are not available in real data. The correction factor for pileup-offset is then mapped to ρ,
pT,Raw, A and η, where A is the area of the jet:

Chybrid(pT,, η, A, ρ) = 1− ⟨pT,part,offset⟩
pT,Raw

. (4.14)

The next derived corrections are the simulated response corrections which it is also based
on simulation. It is derived after applying the pileup offset correction to the jets. The
response of the detector simulation is the defined as

Rpart (⟨pT ⟩, η) =
⟨pT ⟩
pT,part

[pT,part, η] (4.15)

where, pT = Chybrid×pT,raw. Then, the momentum of the jet is corrected as Rpart×pT . At
this stage the jets in the simulated samples are considered as fully calibrated. However,
the simulation of the detector response in GEANT4 is not time dependent. In reality
the radiation damage worsens the detector response with time. To remove this difference
between simulation and measured data, residual corrections are derived for data, using
both measured data and simulation.

Different event topologies are used to derive residual corrections to cover the full phase
space in η and transverse momentum pT . At this stage both the jets from simulated events
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and measured data are corrected with the simulation based corrections. In all the different
topologies the same procedure is used to derive the response of the jets, a reference and
a probe objects is defined, where the probe object corresponds to the jet we measure the
response from. Two main methods are used to study the jet response, the pT -balance
and the missing transverse momentum fraction (MPF) methods. The response by these
methods is defined as

RpT -balance
jet =

pT,jet
pT,ref

, RMPF
jet = 1 +

p⃗T,miss · p⃗T,jet
p2T,ref

(4.16)

where pT,ref , pT,jet and pT,miss are the transverse momenta of the reference object, the
probe jet and the missing transverse momentum. The pT -balance method only uses the
information of the probe and reference objects, while the MPF method uses information
from the whole event, as pT,miss is the sum of all particles in the final state. Both definitions
of the jet balance are sensitive to radiation and besides the response we measure the extra
radiation. To only consider the jet response we measure the response in terms of α, which
measures the activity of the extra radiation. Depending on the topology, α is differently
defined. Then, to measure purely the jet response, α is extrapolated to a value of 0. Two
types of residual corrections are derived:

• Relative η dependent corrections
To derive relative η corrections the measurements of the response are done in pT
and η, and hence a process with large event sample is needed. For that, dijet event
topologies are used due to their large cross-section in hadronic collisions. To define
the reference and probe object, the two leading jets are used. At least one of the
two leading jets must have |η| < 1.3 to be considered in the event. The jet with
|η| < 1.3 will be defined as the reference object and the other leading jet as the
probe. When the two jets have |η| < 1.3 the reference and probe objects will be
randomly assigned. The extra activity in the dijet events is defined as

α =
pT,3rdjet

pT,ref + pT,probe
(4.17)

Due to the bad resolution of the reference jet, the measurement of the response is
performed by an average of the transverse momenta in the dijet system: pT,ave =
0.5(pT,ref + pT,probe). Hence the response in the dijet system is measured as

RpT -balance
jet =

1− ⟨A⟩
1 + ⟨A⟩ with A =

pT,probe − pT,ref
pT,probe − pT,ref

RMPF
jet =

1− ⟨B⟩
1 + ⟨B⟩ with B = 1 +

p⃗T,miss · p⃗T,jet
p2T,ref

(4.18)

and when α → 0, these definitions converge to the ones in equation 4.16. The
relative η dependent corrections are known, in CMS jargon, as Level 2 residuals
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(L2Res), and the correction factor is defined as

CL2Res = RSimulation
jet /RData

jet (4.19)

• Absolute corrections
Absolute corrections are pT dependent corrections, and in order to cover the whole
pT range, from 30 GeV to 1 TeV, different event topologies are used. To determine
the response of jets at low transverse momentum we need a precisely reconstructed
object, as the reconstruction of low transverse momentum jets is not precise enough.
The Z boson can be precisely reconstructed through its leptonic decay. Hence, in
the Z+1 jet event topology we can measure the jet response through the Z boson.
The Z boson is defined as the tag object to probe the response of the jet. To cover
the central transverse momentum region Z+ 1 jet and γ + 1 jet event topologies
are combined to increase the number of events. However, at large jet transverse
momentum the amount of Z/γ events is too small to measure the jet response, and
multijet events are used. The extra radiation acitivity for Z/γ + 1 jet events is
defined as

α =
pT,jet
pT,Z/γ

(4.20)

Absolute corrections are also known as Level 3 residuals (L3Res). From each event

topology the correction factor C
(i)
L3Res = Ri

simulation/R
(i)
Data is derived, as a function

of the transverse momentum of the probe jet, where i refers to a different event
topology. Then, the different CL3Res(i) are fitted, resulting in an absolute correction
CL3Res.

Once all the corrections have been derived sequentially we can define the jet energy
calibration correction factor for simulations and real data as:

CSimulation
JEC = COffset × Chybrid

CData
JEC = COffset × Chybrid × CL2Res × CL3Res

(4.21)

Jet energy resolution

After the reconstructed jets are calibrated both in data and simulations, it turns out the
transverse momentum resolution of the jets is better in simulations than in data. To
reduce this disagreement the resolution of the simulated jets is smeared. In simulations
we can define the resolution of a jet as

∆ =
pT,rec − pT,part

pT,part
(4.22)

where pT,rec and pT,part are the transverse momenta of the jet at detector and particle level.
The distribution of ∆ follows a Gaussian like distribution and it is fitted to a Gaussian



74 CHAPTER 4. THE LHC AND CMS

distribution of a width σJER. The width of the fitted Gaussian distribution is also known
as the resolution. Then, we can relate the pT,rec with pT,part as

pT,rec = pT,gen × (1 + ∆). (4.23)

The transverse momentum of the reconstructed jet in the simulation is smeared to match
the resolution of the reconstructed jets in data, by applying the following correction

pT,rec = pT,gen × (1 + ∆Data/Sim ×∆), (4.24)

where ∆Data/Sim is the data-to-simulation core resolution scale factor, which is derived
with data base methods.

However, in simulation not all reconstructed jets at detector level have a corresponding
jet at particle level, due to the detector response. Thus, depending on the availability of
a matching jet two methods are defined: the scaling method and the stochastic method.
The matching criteria of a jet at detector level and particle level is defined as

∆R <
Rcone

2
, |∆| < 3σJER, (4.25)

where Rcone is the jet radius parameter of the reconstruction algorithm. For our measure-
nent AK4PFChs jets we take Rcone = 0.4.

When there is a matching jet at particle level the scaling method is applied. The four-
momentum of the jet is smeared with a factor

cJER = 1 +∆Data/Sim ×∆, (4.26)

However, when there is no matching particle level jet the stochastic method is used. The
four-momentum is scaled with

cJER = 1 + N (0, σJER)
√
max(∆2

Data/Sim − 1, 0), (4.27)

where N (0, σJER) is a random number generated according to a normal distribution with
a width of σJER. If cJER is negative, it is set to zero, as the transverse momentum of a jet
cannot be negative. Thus after, jets are calibrated and the resolution of the reconstructed
jets at detector level in simulations are smeared, jets are fully corrected and ready to be
analysed for the measurement. In [99] information on the jet energy scale and resolution
in the CMS experiment can be found.

4.3.2 Common corrections for physics analysis

Due to detector malfunctions, the amount of simulated data, the incorrect simulation
of the detector and the resolution offered by the detector, apart from the jet energy
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and resolution, differences between the simulated samples and the measured data persist.
In this subsection we present the corrections we apply both in the measured data and
the simulated data to remove the remaining discrepancies for a precise measurement in
chapter 5.

Jet veto maps

Due to radiation damage, some of the detector components are not longer reliable for the
reconstruction. This is the case for the HCAL, where some of the towers are damaged
and the jet reconstruction in this area is not realiable. Hence, any jet reconstructed in
the damaged region has to be removed.

The jet veto maps are boolean η−ϕ grids covering the whole detector η−ϕ phase space.
Hence, if a jet falls into a cell of the grid with a False value the jet is removed from the
event. The veto maps are derived by the JetMET group.

Muon momentum calibration

The measurement of the momentum of the reconstructed muon is affected by misalign-
ments of the detector, the reconstruction software and uncertainties of the magnetic field.
These effects are included in the simulation of the detector response in GEANT4. How-
ever, the inputs for the simulation of the effects are not completely correct and differences
in the momentum between the measured muon and the simulated muon arises. To remove
the discrepancy, the momentum of the muons is calibrated both in data and simulation.
The correction factors where originally derived by the CMS group at the University of
Rochester [100], and are better known as ”Rochester corrections”. The ”Rochester correc-
tions” used for the measurement in this thesis correspond to the roccor.Run2.v5 package.

Cross-section scale factor

The number of events in the simulated samples and recorded data do not match. To
compare simulated events to data, we need to scale them using a weight. We derive the
cross-section weight for each simulated event. For a given event, i, of a sample with N
events, the weight is:

wi
XS =

L σsamplewi∑
N wi

, (4.28)

where σsample is the cross-section of the simulated process and wi is the weight of the given
event i. At leading order the weight, wi, of an event is 1, however for events calculated
at NLO the weight is no longer one. Events generated with a virtual correction will have
a destructive contribution to the total number of events.
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Multiple proton-proton interactions (pileup)

The proton beams at the LHC are not continuous, but they are organised in proton packets
or bunches. These proton packets cross at the collision points producing proton-proton
collisions. From these crossings more than one proton-proton interactions can happen.
These multiple proton-proton interactions are known as pileup interactions.

The number of pileup interactions is determined from the instantaneous luminosity of a
given bunch, Linst, the cross-section of inelastic processes, σinelastic, and the orbit fre-
quency of the LHC, fLHC :

NPU =
Linstσinelastic

fLHC

(4.29)

The luminosity at CMS is measured in luminosity sections. The computed number of
pileup interactions is the average of pileup interactions within a luminosity section. Since
the bunch crossings are independent of each other we can describe the number of pileup
interactions with a Poisson distribution.
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Figure 4.8: Pileup profile for data and simulation. The cross-section for inelastic QCD
process at 13 TeV corresponds to σinelastic = 69200 pb−1, with a 4.6% variation of σinelastic
the uncertainty on the number of pileup interactions in data is estimated. The profiles
were derived using the pileupcalc tool from the Luminosity Physics Object Group.

The pileup interactions are simulated as QCD events following a Poisson distribution.
The amount of pileup interactions are overestimated, as the beam configuration at the
LHC is changed per era, the simulation is constant for the whole year. From the difference
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between the pileup profiles in data and simulation we derive the weight for correcting for
pileup, wPU . In figure 4.8 we show the pileup profile for the 2016 data taking period for
simulation and data, for a 4.6% variation in σinelastic = 69200 pb−1. These profiles are
then used to determine the pileup weights for the measurement in chapter 5.

Level-1 prefiring issue

In the years 2016 and 2017 there was a timing shift of the ECAL with respect to the
level-1 triggers. This made physics objects mistakenly identified from the previous bunch
crossing. The Level-1 prefiring mainly affects the large η region of muons and jets.

The level-1 prefiring issue is corrected in simulations with weights provided centrally: one
weight for the HCAL(jets) and another one for muons. We combine both weights since
both jets and muons are used in the analysis,

wL1 = wjets
L1 · wµ

L1 (4.30)

The level-1 prefiring weights are centrally produced in the CMS experiment.
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CHAPTER5
Measurement of real electroweak
corrections

In chapter 3 we have presented a theoretical overview on electroweak corrections. We have
learned that these become large at high energies, at TeV scales. While virtual electroweak
corrections are widely studied for different process, real electroweak radiations have not
received much attention. In an era where new physics might hide in the realm of precision,
with small disagreements between measurements and theoretical predictions, a proper
understanding and modelling of Standard Model processes is necessary.

From the work in [58, 64] we know that for dijet events in hadronic collisions at high jet
transverse momentum the cross-section deviates 1 − 2% from the QCD calulation when
different electroweak processes are included: real and virtual electroweak corrections and
the electroweak production of the dijet.

The contribution of the electroweak production of dijets was measurend in proton-proton
collisions at

√
s = 13 GeV in [101]. The cross-section for this process at high transverse

momentum of the electroweak boson is around 10−4 pb−1/GeV (see left panel in figure 5.1),
whereas previous measurements of the inclusive jet cross-section [102] at high transverse
momentum amounts to 10−2 pb−1/GeV (see right panel in figure 5.1).

In this chapter we present the measurement of the contribution of real electroweak correc-
tions to high transverse momentum jets, especially, the contribution of the real emission
of the Z boson, with Z → µ+µ−. Besides measuring the contribution of the radiated Z
boson, this measurement can be used to study the BN violations we have presented in
chapter 3, as the Z boson radiation must cancel with the corresponding Z boson virtual
correction.

79
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Figure 5.1: Left panel: differential cross-section of the electroweak boson production as
a function of the vector boson transverse momentum (figure taken from [101]). Right
panel: double differential cross-section of multijet events as a function of the transverse
momentum and pseudorapidity of jets (figure taken from [102]).

This chapter is organised as follows, in section 5.1 we present the datasets and simulations
used for the measurement. In section 5.2 we define the phase space of the measurement
and the different measured observables. In section 5.3 we define the event selection.
Then, in section 5.7 we present the uncertainties affecting our measurement. We show
the measured cross-sections in section 5.8 and we extract the contribution of electroweak
corrections in QCD events in section 5.9.

5.1 Data and simulated samples

In this section we present the data and simulated samples used in the measurement of
the contribution of electroweak corrections:

5.1.1 Data samples

After the event reconstruction by the HLT trigger system, the event is stored by HLT
triggers, in a dataset corresponding to the HLT trigger it has fired. To measure the
contribution of real electroweak radiation we measure two types of events, QCD events
and Z+jets events. For the analysis of QCD events we are interested in events firing jet
HLT triggers, which are stored in the JetHT dataset. For the Z+jets events, we could
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make use of the JetHT dataset, however the jet triggers are highly prescaled. Due to the
cross-section of QCD processes, storing all events triggering jet triggers will not be viable,
as too much storage space will be needed. For that, jet triggers do not save all events but
only a fraction of them. This fraction is called the prescale factor of the trigger. Thus,
for Z+jets events we use the double muon dataset.

The data used in this measurement was recorded during RunII of the LHC in 2016 at
a centre-of-mass energy of 13 TeV. The recorded proton-proton collisions during 2016
corresponds to 36.3 fb−1.

5.1.2 Simulated samples

We make use of simulated events for a better understanding of the physics scenario we
are studying. From simulated samples we derive efficiency and background corrections,
as well as, systematic uncertainties that affect our measurement, and we can correct
the measured data from the detector response. Background processes are processes that
produce the same final state as the process under study. We refer to the process under
study as the signal process. For each type of event, QCD and Z+jets events, we have a
signal process.

All the simulated samples are generated using the NNPDF3.1 PDF set at next-to next-
to leading order accuracy in QCD [103]. Besides, the simulated samples used for the
measurement include the simulation of the underlying event with the Pythia8 event gen-
erator. The free parameters of the simulation of the underlying event are extracted from
measurements, this process is called the tuning of the parameters. The tune used for the
simulation of the underlying event in Pythia8 is the CP5 tune [30].

For the QCD sample events are generated at leading order. As QCD processes have the
largest cross-section in hadronic collisions no background processes are expected.

For the electroweak radiation of the Z boson we use the DY+Jets sample, where the
DY decays into a lepton pair. It is calculated at next-to-leading order with up to two
partons using Madgraph [104]. The matching of the next-to-leading order events with
the Pythia8 parton shower is done with the FXFX matching procedure [105]. We have
discussed in chapter 3 that there are no dedicated simulations of electroweak radiations
available in the CMS experiment, however, the DY+2 Jets process contains Feynman
diagrams corresponding to the radiation of the Z boson.

Other processes are able to produce the same final state as our signal: two or more jets
with two opposite charge muons. The background processes we consider are: top pair
production, W boson production in association with jets, single top production and double
boson scattering. In table 5.1 we summarize the simulated sample used for signal and
background processes.
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Simulations
Process Phase space cuts Generator Cross-section [pb] Label

80 < pT < 120 2.346 · 106
120 < pT < 170 4.077 · 105
170 < pT < 300 1.037 · 105
300 < pT < 470 6.826 · 103
470 < pT < 600 5.512 · 102

QCD 600 < pT < 800 Pythia8 1.567 · 102 QCD
800 < pT < 1000 2.625 · 102
1000 < pT < 1400 7.465
1400 < pT < 1800 0.649
1800 < pT < 2400 8.734 · 10−2

2400 < pT < 3200 5.237 · 10−3

3200 < pT <∞ 1.352 · 10−4

Z → ll + 0, 1, 2jets Mll > 50 GeV aMC@NLO FxFx 5765.4 Z+jets
tt̄→ 2l + 2ν Powheg 87.3 tt̄

s-channel aMC@NLO 3.549
Single top t-channel Powheg+Madspin 69.09 ST

tw antitop Powheg 34.97
tw top Powheg 34.91

W → lν + 0, 1, 2jets MadgraphMLM 61526.7 W+jets

Table 5.1: Simulation samples used in the analysis.
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5.2 Definition of the phase space and observables

Now we define the phase space where multijet events are sensitive to electroweak radia-
tions. This will be used as a base for the phase space for our measurement. From the
studies on electroweak corrections in chapter 3, the probability of radiating an electroweak
boson reads as

αEW ln2 Q
2

m2
V

, (5.1)

where αEW is the coupling strength of electroweak interactions, Q is the energy scale
of the partonic interaction and mV is the mass of the radiated electroweak boson, with
V = Z,W±. In a pure QCD dijet process the two outgoing jets are in a back-to-back
configuration, their opening angle between the jets is ∆ϕ = π, for the momentum con-
servation. Besides, they will be produced in the central region of the detector. Then, the
energy scale of the dijet production, Q, can be defined as

Q = pT,j1 = pT,j2 =
1

2
(pT,j1 + pT,j2) , (5.2)

where pT,j1 and pT,j2 are the transverse momentum of the two jets. Thus, to radiate
an electroweak boson pT,j1 and pT,j2 have to be larger than mV . We need to be in a
phase space where the transverse momentum of the jets is larger than the mass of the Z
boson. For that, we require a minimum transverse momentum of the jets, pT,j, larger than
100 GeV. In addition, we take jets in the central region of the detector, with |η| < 2.4, to
make sure the jets are produced in the partonic interaction and not in a radiation from
the initial state.

In this region of the phase space we are sensitive to QCD dijet process where a Z boson
has been radiated. Moreover, with a proper definition of the observables we are able to
disentangle between radiated Z bosons, from Z bosons produced in the hard process.

5.2.1 Observables

In figure 5.2 we show a sketch where a Z boson has been radiated from a jet in a dijet event.
Due to the radiation, the two jets are not in a back-to-back configuration. The radiation
of the Z boson modifies the transverse momentum of the parent jet, thus equation 5.2
is no longer valid. However, we can use the transverse momentum of the leading jet to
determine the energy scale of the hard-process.

From the work in [58,64] we know that the cross-section as a function of the jet transverse
momentum is affected by electroweak corrections (see figures 3.4). Hence, to measure
the contribution of real electroweak corrections, we measure jet transverse momentum
spectrum for QCD events and Z+jets events.
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Z
Z

Increasing pj1
T

Figure 5.2: Sketch of a dijet event where a Z boson has been radiated in the final state. At
low leading jet transverse momentum we expect a separation between the Z boson and the
radiated jet. This separation is reduced for increasing leading jet transverse momentum.

Besides, to understand the behaviour of real electroweak radiations, we measure the ob-
servables presented in section 3.4, which are sensitive to the radiation of an electroweak
boson: the azimuthal correlation between the two leading jets, the minimum ∆R between
the Z boson and a jet, the transverse momentum of the Z boson and the azimuthal cor-
relation between the dijet system and the Z boson. We measure these observables in
different regions of the leading jet transverse momentum, which we have related to the
energy scale of the hard-scattering. We investigate in the following leading jet transverse
momentum regions:

100 < pj1T < 250 GeV, 250 < pj1T < 500 GeV, pj1T > 500 GeV.

5.3 Event selection

In the previous section we have defined the phase space where dijet events are sensitive
to electroweak radiations. We are measuring the contribution of the Z boson radiation,
where we only consider the Z → µ+µ− decay channel. In this analysis we make use of
jets and muons.
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We use anti-kT PF jets with a distance parameter R = 0.4, with charge hadron subtrac-
tion. For the analysis we consider central jets, |η| < 2.4, with tight identification criteria,
and a minimum transverse momentum of 100 GeV. The tight identification criteria are
given in table 5.2. To consider the event as a dijet event we require a minimum of two
jets.

Jet identification criteria for AK4PFCHS jets
PF Jet ID Tight ID
Neutral hadron fraction <0.90
Neutral EM fraction <0.90
Number of Constituents >1
Muon fraction -
Charged hadron fraction >0
Charged multiplicity >0
Charged EM fraction -
Number of neutral particles -

Table 5.2: Jet identification criteria.

Once the dijet event has been selected, we consider muons in the tracker acceptance
region, |η| < 2.4, with a minimum transverse momentum of 20 GeV and satisfying medium
identification criteria. The medium identification criteria are defined as global or tracker
muon with additional requirements on track and muon quality. Besides, we apply a tight
PF isolation criterion to remove muons contaminated by pileup that might affect the
reconstruction of the muon. The PF isolation is defined as

IPF =
1

pT,µ

(
charged∑

pT +max(0,
neutral∑

pT +
EM∑

pT − ρEA)

)
, (5.3)

where pT,µ is the transverse momentum of the muon and we sum over the pT of PF
candidates inside a cone of radius 0.4 around the direction of the muon: charged hadrons
coming form the primary vertex (charged), neutral hadrons (neutral), photons (EM) and
charged particles from pileup (ρEA). A tight PF isolation corresponds to IPF < 0.15.

We require exactly two muons in the event with opposite charge to proceed with the Z
boson reconstruction. The invariant mass of the muon pair has to be in 76 < mµ+µ− <
106 GeV. To fulfil the requirement of the transverse momentum threshold of the muon
trigger the transverse momentum of the leading muon has to be larger than 25 GeV. In
the following section we present the different triggers used in the analysis.

At this stage we categorise the selected events as QCD or Z+jets events. We define a



86 CHAPTER 5. MEASUREMENT OF REAL ELECTROWEAK CORRECTIONS

QCD event as a dijet event where no Z boson has been reconstructed. When a Z boson
is reconstructed in the dijet event we define the event as Z+jets.

In Z+jets events we perform a ∆R cleaning between the decay products of the Z boson
(the muons) and the jets. In the jet reconstruction all PF candidates are used (muons,
electrons, hadrons). Whenever extra activity is found near a muon a jet will be re-
constructed, where most of its momentum is coming from the muon. Hence, the muon is
faking a jet. This leads to misinterpretation of the event shape. To remove these fakes jets
we apply a minimum ∆R distance between a muon and the jets of 0.2 (see appendix B).

5.4 Trigger strategy

The decision to store an event is done by the HLT trigger system. The online event re-
construction needs to be fast, as the decision has to be done in-situ. After the event is
stored, the offline reconstruction is performed with the PF algorithm, which is slower and
more precise. The difference in precision between the HLT and the PF algorithm leads
to a mismatch in the momentum reconstruction of the physics objects. The HLT triggers
are fired depending on transverse momentum thresholds. However, these thresholds cor-
respond to the HLT reconstruction, and thus, for the PF reconstruction new thresholds
are needed. This causes the HLT trigger not to be fully efficient at PF level. In this
section we present the trigger strategy for QCD and Z+jets events.

5.4.1 QCD events

For QCD events we make use of single jet triggers, which are named as HLT PFJetX,
where X is the transverse momentum threshold of the HLT reconstruction. Hence, a
single jet trigger is fired when in the HLT reconstruction there is a jet with transverse
momentum larger than X. To do the analysis using the PF reconstruction, we need
to compute the transverse momentum thresholds of the single jet triggers. The new
thresholds are determined by computing the turn-on point of the trigger. The turn-on
point is the transverse momentum in the PF level where the trigger becomes fully efficient,
with an efficiency above 99%.

Due to the large number of QCD events, not all the events that fire single-jet triggers are
recorded, these triggers are pre-scaled. The lower the transverse momentum threshold
the larger the pre-scale is. In table 5.3 we present the triggers used for the analysis of
QCD events, with the corresponding thresholds, turn-on points and the effective recorded
luminosity. Each trigger probes a different leading jet transverse momentum region. For
the HLT PFJetXi trigger probes the region corresponds to

pj1T ∈ (Yi, Yi+1), (5.4)



5.4. TRIGGER STRATEGY 87

where Yi and Yi+i are the turn-on points for the HLT PFJetXi and HLT PFJetXi+1 trig-
gers respectively. For QCD events the triggers are only applied in data. With the defi-
nition of the turn-on point, the triggers are fully efficient in their corresponding region.
Hence, we do not need to apply triggers in the simulation.

Trigger path HLT threshold [GeV] Effective luminosity [fb−1] Turn-on point [GeV]
HLT PFJet60 60 0.003 97
HLT PFJet80 80 0.003 133
HLT PFJet140 140 0.024 172
HLT PFJet200 200 0.104 242
HLT PFJet260 260 0.592 304
HLT PFJet320 320 1.765 366
HLT PFJet400 400 5.171 446
HLT PFJet450 450 35.9 548
HLT PFJet500 500 35.9 592

Table 5.3: HLT triggers used for the QCD event selection with their corresponding pT
threshold of the HLT reconstruction, effective recorded luminosity and turn-on point
where the trigger becomes fully efficient for a jet reconstructed with the PF algorithm.

As mentioned before HLT PFJetX triggers are prescaled, not all the events that trigger
single jet triggers are recorded. To correct for this we reweight the events. We define the
weight corresponding for an event triggering the HLT PFJetX trigger as

wHLT =
Ltotal

Lrecorded

, (5.5)

where Ltotal is the total recorded luminosity during the run and Lrecorded is the recorded
luminosity by the trigger. In the following we explain the determination of the turn-on
points for the HLT PFJetX triggers.

Computation of turn-on points

To calculate the turn-on point of a trigger, first the efficiency of the trigger has to be
determined. Different methods can be used to determine the trigger efficiency, for exam-
ple: the tag and probe method, the reference trigger method and the trigger emulation
method.

With the reference trigger method we compute the efficiency of the HLT PFJetXi trigger
relative to the HLT PFJetXi−1. To compute the efficiency both triggers need to be fired.
This will affect the statistical uncertainty of the efficiency distribution, since both triggers
can be prescaled. The trigger emulation method is an improved method of the reference
trigger method. In this case, the trigger whose turn-on point is computed, HLT PFJetXi,
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is not used, but emulated and HLT PFJetXi−1 is used as a reference. In this way the sta-
tistical uncertainty of the efficiency distribution is reduced in comparison to the reference
trigger method.

In this analysis we use the trigger emulation method to determine the trigger efficiency.
The emulation of the trigger consists on selecting events that should fire the trigger. The
efficiency is defined as

ϵ =
N(Tfired

emulated|Tfired
reference)

N(Tfired
reference)

, (5.6)

where T stands for trigger. To emulate the single-jet triggers the following cuts are
applied:

• A dijet final state

• Back to back topology of the two leading jets: ∆ϕ(j1j2) > 2.7

• For events with more than two jets, the pT of the leading jets has to be larger
compared to rest of the jets: 1

2
pT (ji)

pT (j1)+pT (j2)
< 0.3 : i > 2

• The two leading jets have to match in ∆R with the two leading HLT jets: ∆R(jHLT jPF ) <
0.4

• The pT of the leading HLT jet has to be larger than the pT threshold of the jet:
pT (j

HLT
1 ) > X

To determine the turn-on point from the efficiency a fit is done. The efficiency is fitted
with a modified version of the error function:

ϵ(pT (j1)) = a+ 0.5(1− a)

(
1 + erf

(
pPF
T − µ

σ

))
, (5.7)

a, µ and σ are the parameters to fit. The turn-on point is defined as the pPF
T value where

the efficiency is 99%. Table 5.3 shows a summary of the turn-on points.

5.4.2 Z+jets events

The muon triggers HLT IsoTKMu24 and HLT IsoMU24 are applied both to data and
simulation. In principle, we could follow the trigger strategy of QCD events and compute
the corresponding turn-on points for the triggers. However, in CMS the efficiency of the
single muon triggers are centrally calculated by the Muon physics object group. These
efficiencies are applied in the simulations as a weight to the event depending on the
transverse momentum and rapidity of the leading muon.
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Figure 5.3: The jet transverse momentum comparison between data and simulation after
event selection for QCD events (left panel) and Z+jets events (right panel).

5.5 Measurement at detector level

In this section we describe the measurement of the observables presented is section 5.2
and compare the measured data to the theoretical predictions in section 5.1 after the
event selection at detector level. In this way we make sure that theoretical predictions
are able to describe the data and our assumptions on background processes are correct.

It is important to note that for the systematic uncertainty we include jet energy scales
and resolution, pileup and luminosity uncertainties for QCD events. The systematic
uncertainty for Z+jets events includes jet energy scale and resolution, pileup, luminosity,
muon identification and isolation and single muon trigger uncertainties. We represent the
systematic uncertainty together with the statistical uncertainty of the simulation with
hashed lines and the statistical uncertainty of data with errorbars.

In figure 5.3 we show the measured jet transverse momentum distribution and compare it
to theoretical predictions. For QCD events (left panel) we compare the data to the QCD
simulation. We observe that QCD events are well described by the QCD simulation at
leading order accuracy. For Z+jets events (right panel) we compare the data with a stack
of the different simulations contributing to the final state of Z+jets events. We observe
that the simulation is able to describe the measured data. However, at large jet transverse
momentum O(1 TeV) the simulation tends to overshoot the measurement.

In figures 5.4-5.7 we present distributions for the different observables for Z+jets events in
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Figure 5.4: The Z boson transverse momentum comparison between data and simulation
after event selection for Z+jets events in bins of leading jet transverse momentum, pj1T :
100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV
(right panel).

different regions of the leading jet transverse momentum. Overall, in the pT,j1 > 500 GeV
region the simulations are statistically limited, which makes the uncertainty band large.
The transverse momentum of the Z boson distribution is centred around 100 GeV for
the three different pT,j1 regions (see figure 5.4). In the 100 < pT,j1 < 250 GeV region

most of the events have a p,ZT similar or larger than p,j1T . This region is dominated mainly
by Drell-Yan events, rather than radiated Z bosons. As we increase pj1T the pZT becomes
smaller than pj1T making the Z boson radiation more dominant.

The measurement of the minimum ∆R distance between the Z boson and a jet, ∆RMin
Z,j ,

agrees with the simulation (see figure 5.7). We can observe that for increasing pj1T the
minimum ∆R distance decreases. The azimuthal correlation of the two leading jets (see
figure 5.5) increases with increasing pT,j1 . From ∆RMin

Z,j and ∆ϕj1,j2 we can infer an event
configuration depicted in figure 5.2, where at large pT,j1 the emitted Z boson is collinear
to the emitter jet and dominates the large pT,j1 region.

5.6 Correction to particle level

The response of the detector creates a mismatch between the measured and the real
distribution. Even though, we correct all the biases produced by the detector response in
the measurement, we need to remove the detector response for a precision measurement
and correct the measured distribution to particle level. This procedure is called unfolding.
The unfolding can be formulated mathematically as a transformation, from detector level,
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Figure 5.5: Data and simulation comparison of the minimum ∆ϕ between the two leading
jets after event selection for Z+jets events in bins of leading jet transverse momentum, pj1T :
100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV
(right panel).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

101

102

103

104

105

106Ev
en

ts

36.3 fb−1, 2016 (13 TeV)

anti-kT (R=0.4) jets:
pjet

T > 100 GeV, |yjet| < 2.4
Leading jet:
100 < pj1

T < 250 GeV
Muons:
pT > 20 GeV, |η | < 2.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

D
at

a/
Si

m
ul

at
io

n

Syst.  stat. 0.0 0.5 1.0 1.5 2.0 2.5 3.0

100

101

102

103

104

105

106

36.3 fb−1, 2016 (13 TeV)

anti-kT (R=0.4) jets:
pjet

T > 100 GeV, |yjet| < 2.4
Leading jet:
250 < pj1

T < 500 GeV
Muons:
pT > 20 GeV, |η | < 2.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0
Syst.  stat. 0.0 0.5 1.0 1.5 2.0 2.5 3.0

100

101

102

103

104

105

36.3 fb−1, 2016 (13 TeV)

anti-kT (R=0.4) jets:
pjet

T > 100 GeV, |yjet| < 2.4
Leading jet:
pj1

T > 500 GeV
Muons:
pT > 20 GeV, |η | < 2.4

Z+jets
tt
VV

Single top
W+Jets
Data

0.0 0.5 1.0 1.5 2.0 2.5 3.0
∆ Z, dijet

0.0

0.5

1.0

1.5

2.0
Syst.  stat.

¯

Φ Φ Φ

Figure 5.6: Data and simulation comparison of the minimum ∆ϕ between the Z boson
and the dijet after event selection for Z+jets events in bins of leading jet transverse
momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel)
and pj1T > 500 GeV (right panel).
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Figure 5.7: Data and simulation comparison of the minimum ∆R between the Z boson and
a jet after event selection for Z+jets events in bins of leading jet transverse momentum, pj1T :
100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV
(right panel).

x, to particle level, y:
x̄ = Aȳ, (5.8)

where x̄ and ȳ represent the observable at the corresponding level and A is the trans-
formation matrix, which we will refer to as probability matrix. Hence, we retrieve ȳ
with:

ȳ = A−1x̄, (5.9)

making the unfolding an inversion problem. However, sometimes the probability matrix
is ill posed. We determine if a matrix is ill posed by calculating the condition number of
the matrix: the condition number estimates how much the result of a function changes by
a small variation in the input parameters. The condition number of a matrix is defined
as:

K =
σmax(A)

σmin(A)
, (5.10)

where σmax(A) and σmin(A) are the maximum and minimum eigenvalues of the matrix
A. With a large condition number, the matrix is ill posed, the result will have a large
variation with a small variation of the input parameters. With a small condition number,
the matrix is well conditioned. With the condition number we can do a rough estimation
on how the accuracy of the result can vary due to variation in the input

K = 10k (5.11)

where k is a rough estimate of the digits of accuracy we may loose. Thus, to define if
a matrix is ill posed will depend on the accuracy of the measurement. The statistical



5.6. CORRECTION TO PARTICLE LEVEL 93

committee of the CMS experiments recommends a condition number below 10 to consider
the probability matrix well posed. However, this is an arbitrary value, as measurements
looking at 1% may introduce another 1% inaccuracy in the measurement. For our mea-
surement we observe that for the jet transverse momentum distribution in QCD events
our uncertainty is around 5%, while for Z+jets observables at large leading jet transverse
momentum we are statistically limited by the simulation sample. Thus, while a condition
number of 10 might be too large for the jet transverse momentum in QCD events, for
Z+jets observables might be appropriate. Whenever, the condition number is too large
for a given observable the probability matrix is ill posed and a different unfolding method
should be applied. Our uncertainties at detector level are larger than 5%, thus a condition
number smaller than 10 is desired.

We divide the correction to particle level into three steps. First we define the probability
matrix and then we study migration effects that affect the observable. Lastly, we unfold
the measured data correcting it to particle level.

5.6.1 Probability matrix

We derive the probability matrix, A, in equation 5.8 with the response matrix:

Aij = Rij/ȳj (5.12)

where R is the response matrix and ȳ is the distribution at particle level. It is important
to remember that the simulation of events contains a simulation of the detector, which
introduces two levels of final state: a particle and a detector level. As the name suggest
the response matrix is a measurement of the simulated detector response for a given
observable. The response matrix is a two dimensional histogram and for each measured
observable we define a response matrix. One axis of the response matrix corresponds to
the detector level and another for the particle level. We define i and j as the detector
and particle level bin indexes respectively.

We can interpret the probability matrix as the probability of finding a measured event in
bin i with a corresponding event at particle level in bin j. In the following we introduce
the response matrices for the different observables and their condition number.

We fill the response matrix using the simulation sample of the signal. For the QCD events
we use the QCD sample (Pythia8 with NNPDF3.1), and for Z+jets events we use the
Z+jets sample (MC@NLO with NNPDF3.1). The background samples are used to
subtract the background contribution from data before correcting to particle level.

To fill the response matrix for the jet transverse momentum we follow the procedure of
previous jet transverse momentum procedures explained in [106]. To avoid jets coming
from pileup contaminating our response matrix and to identify the corresponding jets
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between the particle and detector level, we apply a matching criterion between the jets at
particle and detector level. We apply a ∆R matching, with a maximum distance between
the jets of ∆R = 0.2. If more than one particle level jet is matched to the detector level
jet, we match it to the one with highest transverse momentum. In [106] it was found that
there was no sensitivity for different values of the maximum ∆R = 0.15, 0.4.

We show the response matrix for QCD and Z+jets events for the jet transverse momentum
in figure 5.8. For QCD events (left panel) and Z+jets events (right panel) the response
matrices show a correlation between particle and detector level, with anti diagonal ma-
trices. The condition number for QCD and Z+jets response matrices are 2.9 and 2.4
respectively. Due to our uncertainties in the jet transverse momentum spectrum we can
consider that the response matrices are well conditioned.
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Figure 5.8: Response matrices for the jet transverse momentum for QCD events (left
panel) and Z+jets events (right panel).

The jet transverse momentum distribution is sensitive to jets coming from pileup. How-
ever, the Z boson is only reconstructed when two muons are in the event. Thus, the Z
boson reconstruction is not sensitive to muons arising from pileup, and muons do not
need to be matched at detector and particle level.

In figure 5.9 we show the response matrix of the Z boson transverse momentum. Most
of the off diagonal elements are zero due to the good spatial and energy resolution of
muon reconstruction. This does not cause a large disagreement between the energy of the
detector and particle level Z bosons. The condition numbers of the three different regions
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of the leading jet transverse momentum for the Z boson transverse momentum response
matrices are 1.7, 1.5 and 2.11 respectively.
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Figure 5.9: Response matrices for the Z boson transverse momentum in bins of leading
jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel).

For observables measured in Z+jets events the two leading jets are well defined both at
detector and particle level. The contamination from pileup is rather small. Thus, we do
not need to apply a matching criteria for the jets for the ∆ϕ and ∆R distributions. In
figures 5.10-5.12 we present the response matrices for the remaining distributions, where
we observe an anti-correlation for the response matrices, where the off diagonal elements
are zero or almost zero. In table 5.4 we summarise the condition numbers for all the
different response matrices. Note that all condition numbers are below 5, thus making
the probability matrix well posed for a matrix inversion.

5.6.2 Migrations

After defining the response matrices we can proceed with the study of the migrations. A
migration has happened when the particle level observable and the detector level observ-
able do not belong in the same bin or phase space. These migrations can be caused due
to the finite resolution of the detector. We define two types of migrations:

• Migrations inside the phase space (M1): the events at detector and particle
level pass all the cuts. However, they fall in different bins of the observable. These
type of migrations are largely affected by the finite resolution of the detector. Larger
bin widths avoids large migrations.

We study the M1 migrations with the purity and stability. The purity of a given
bin, i, is defined as the fraction of matched events, Nmatched, where both particle
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Figure 5.10: Response matrices for the minimum ∆R distance between the Z boson and
a jet, ∆RMin

Z,j , in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left

panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel).
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Figure 5.11: Response matrices for the ∆ϕ between the two leading jets, ∆ϕj1,j2 , in bins
of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T <
500 GeV (central panel) and pj1T > 500 GeV (right panel).
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Figure 5.12: Response matrices for the ∆ϕ between the Z boson and the dijet system,
∆ϕZ,dijet, in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left
panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel).

Observable Event Condition number
Jet transverse momentum QCD 2.86

Z+jets 2.45

Observable Event Leading jet pT Condition number
∆ϕj1,j2 Z+jets 100 < pT < 250 GeV 1.15

250 < pT < 500 GeV 1.12
pT > 500 GeV 1.43

∆ϕZ,dijet Z+jets 100 < pT < 250 GeV 2.77
250 < pT < 500 GeV 2.62

pT > 500 GeV 2.29
pTZ Z+jets 100 < pT < 250 GeV 1.34

250 < pT < 500 GeV 1.65
pT > 500 GeV 4.31

∆Min
R Z,j Z+jets 100 < pT < 250 GeV 1.74

250 < pT < 500 GeV 1.52
pT > 500 GeV 2.11

Table 5.4: Condition numbers of the response matrices for the measured observables.
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and detector level are inside the same bin, and the matched events which are at
detector level inside that bin:

Pi =
Nmatched(E

det.
i ∧ Epart.

i )

Nmatched(Edet.
i )

. (5.13)

The stability of a given bin, i, is the fraction of matched events where both particle
and detector level are inside the same bin, and total of matched events which are
at particle level inside that bin:

Si =
Nmatched(E

det.
i ∧ Epart.

i )

Nmatched(E
gen.
i )

. (5.14)

• Migrations outside the phase space (M2): the events at detector and gen-
erator level are not in the same phase space. We define two types of events for
M2 migrations: misidentified events and efficiency losses. Misidentified events are
detector level events with no matching particle level event, we will refer to them as
”fake” events. Efficiency losses are particle level events with no matching detector
level events, which we will refer as ”miss” events.

These migrations are studied with the acceptance and background. The accep-
tance of a given bin, i, is the fraction of matched events in a bin i and the total
events in that bin at generator level:

Ai =
Nmatched(E

det.
i ∧ Epart.

i )

Nmatched(E
part.
i ) +NMiss(Ei)

. (5.15)

The acceptance measures the migration of events outside the phase space. The
background in a given bin, i, is the migration of events into the phase space:

Bi = 1− Nmatched(E
det.
i ∧ Epart.

i )

Nmatched(Edet.
i ) +NFake(Ei)

, (5.16)

Next we study the migrations for each observable separately.

Migration study: jet transverse momentum

For the jet transverse momentum in QCD and Z+jets events the migration effects
are similar. We observe that migrations inside the phase space are considerable
in the lowest jet pT region, with a purity and stability of around 50-60% (see fig-
ures 5.13 and 5.14, left panel). For larger jet pT (pT > 300 GeV), the purity and
stability rise above 60%.

Overall, the migration of jets outside the phase space is stable throughout the whole
jet pT range, with an acceptance of 60% (see figures 5.13 and 5.14, right panel). The
migrations of jets into the phase space is small. It mainly affects the lowest jet pT
region, where the cut on the minimum pT is done.
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Figure 5.13: Purity and stability distributions (left) and acceptance and background
distributions (right) in QCD events as a function of the jet transverse momentum. The
results are obtained using the Pythia8 QCD simulation.

Migration study: Z boson transverse momentum

The migrations inside the phase space are small for the different leading jet pT
regions (see figure 5.15, upper panel). Overall, the purity and stability are above
80%. For the lowest leading jet pT region the purity drops to 60% in the largest Z
pT region.

Migrations into the phase space are large in the lowest Z pT regions for leading jet
pT ∈ (100, 500) GeV, with background of 60% (see figure 5.15, lower panel). For
the largest leading jet pT region the migration into the phase space is small, with
backgrounds smaller than 20%. We observe large migration outside the phase space
for the largest leading jet pT region in the lowest Z pT . In this region the acceptance
is 30%. For the rest of the regions the acceptance is around 60%.

Migration study: minimum ∆R between the Z boson and a jet

The purity and acceptance are above 90% in the whole ∆RMin
Z,j for leading jet pT ∈

(100, 500) GeV (see figure 5.16, upper panel). For the largest leading jet pT region
the purity and stability show a different trend. This corresponds to the overlapping
region between the jet and the muon. The purity and stability are around 80%. For
larger ∆RMin

Z,j the purity and stability are again above 90%. Thus, migrations inside
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Figure 5.14: Purity and stability distributions (left) and acceptance and background
distributions (right) in Z+jets events as a function of the jet transverse momentum. The
results are obtained using the DY+jets MC@NLO calculation supplemented with the
Pythia8 parton shower.

the phase space are small.

For increasing leading jet pT the migrations outside the phase space are increasing
in the lowest ∆RMin

Z,j region (see figure 5.16, lower panel). For leading jet pT >
500 GeV the acceptance is of 20%. This is a sensitive region, here the jet and the
muon are overlapping. For the rest of the regions the acceptance is around 40-60%.
The migrations into the phase space are decreasing with increasing leading jet pT .
Overall, the background is smaller than 30%.

Migration study: ∆ϕ between the two leading jets

Migrations inside the phase space are small for ∆ϕ between the two leading jets.
The purity and stability are above 90% (see figure 5.17, upper panel).

Migrations into the phase space are decreasing with increasing leading jet pT . For
leading jet pT ∈ (100, 500) GeV the background is in between 20-30%, while for
leading jet pT > 500 GeV is below 20% (see figure 5.17, lower panel). The acceptance
for the different leading jet pT regions is around 60%.
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Figure 5.15: Purity and stability distributions (upper row) and acceptance and back-
ground distributions (lower row) in Z+jets events as a function of the Z boson transverse
momentum, in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left
panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel). The results
are obtained using the DY+jets MC@NLO calculation supplemented with the Pythia8
parton shower.

Migration study: ∆ϕ between the Z and the dijet

The purity and stability are above 60%, thus, migrations inside the phase space are
considerably larger than for rest of observables (see figure 5.17, upper panel). This
might be an effect of the ill defined ϕ angle of the dijet system. In our phase space
the two leading jets are in a back-to-back configuration, ∆ϕj1,j2 ∼ π, hence, the ϕ
angle of the dijet system is around 0. Thus, calculating the ∆ϕ between the Z boson
and the dijet system is sensitive to migrations inside the phase space.

The migrations into the phase space decrease for increasing leading jet transverse
momentum (figure 5.17, lower panel). At low leading jet transverse momentum the
background is around 30%, while for leading jet pT > 500 GeV the background is
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Figure 5.16: Purity and stability distributions (upper row) and acceptance and back-
ground distributions (lower row) in Z+jets events as a function of the minimum ∆R
between the Z boson and a jet, in bins of leading jet transverse momentum, pj1T :
100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV
(right panel). The results are obtained using the DY+jets MC@NLO calculation sup-
plemented with the Pythia8 parton shower.

below 20%. Migrations outside the phase space are constant for all the different
leading jet transverse momentum regions, where the acceptance is around 60%.

5.6.3 Unfolding

For the correction to particle level we use the RooUnfold package [107]. The
RooUnfold package takes the migrations into account when unfolding. The migra-
tions into the phase space and misidentified events are subtracted from the measured
distribution. For the migrations outside the phase space, efficiencies are derived from
the distribution of efficiency loss distribution. Each bin of the response matrix is
scaled by these efficiencies. It is important to note that migrations inside the phase
space are already taken into account in the response matrix. For Z+jets events we
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Figure 5.17: Purity and stability distributions (upper row) and acceptance and back-
ground distributions (lower row) in Z+jets events as a function of the ∆ϕ between the
two leading jets, in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV
(left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel). The
results are obtained using the DY+jets MC@NLO calculation supplemented with the
Pythia8 parton shower.

perform a simulated background subtraction to the measured distributions, as the
backgrounds are well modelled by the simulations in Z+jets events [108].

We have seen that the condition number for our response matrices is below 5. In
table 5.4 we summarise the condition numbers for all the observables. The condition
numbers are small enough so that our precision in the measurement is not affected by
numerical errors in the inversion of the probability matrix. Thus, it is safe to apply
the matrix inversion method to correct the measured distributions to particle level.
Another advantage of the matrix inversion over other methods, such as, the iterative
Bayesian unfolding (D’Agostini method), is that we do not need any regularisation
parameters. Which for the D’Agostini method is the number of iterations.
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Figure 5.18: Purity and stability distributions (upper row) and acceptance and back-
ground distributions (lower row) in Z+jets events as a function of the ∆ϕ between the
Z and the dijet, in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV
(left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel). The
results are obtained using the DY+jets MC@NLO calculation supplemented with the
Pythia8 parton shower.

5.7 Uncertainties

In this section we present the systematic uncertainties that affect our measurement,
together with the theoretical uncertainties of the theoretical predictions.

5.7.1 Systematic uncertainties

In the event reconstruction (section 4.3) we applied several corrections to overcome
detector inefficiencies. Each correction that we apply introduces an uncertainty to
the measurement, a systematic uncertainty. In this section we present the impact
of each systematic uncertainty after the correction to particle level. In this analysis
we consider the following sources of systematic uncertainties: luminosity, pileup,
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trigger efficiencies, muon reconstruction efficiencies, jet energy scale and resolution.
Overall we observe that theses systematic uncertainties have the same impact for
all of the observables. In figure 5.19 we show the impact of the uncertainties in the
jet transverse momentum spectrum for QCD and Z+jets events. In appendix C we
display the uncertainties for the rest of observables.

Luminosity

The total event yield in simulation needs to be normalised to the recorded luminosity
of the measured data. Moreover, it is essential for the determination of the cross-
section. The uncertainty of the recorded luminosity in 2016 is 1.2% [109]. We scale
up and down the distributions of the simulations taking into account the uncertainty
of the recorded luminosity.

Pileup

The determination of the pileup profile is also attached to uncertainties. The largest
uncertainty is the total proton-proton inelastic cross-section (see equation 4.29). We
derive the pileup profile for data for the up and down variation of the inelastic cross-
section (see figure 4.8). From there the up and down variations are extracted for the
pileup reweighting. We apply the up and down variations to determine the impact
of the pileup reweighting to our measurement.

Overall, the pileup uncertainty does not have a large impact in our measurement.
At large transverse momentum, as our measurement, pileup processes have small
contributions. However, we find observables in our measurement that are sensitive
to pileup. The contribution of pileup at low ∆RMin

Zj is around 8% (see figure C.4).

Trigger efficiencies

For QCD events the triggers are used only when they are fully efficient. Thus, we
do not take the trigger efficiency as a systematic uncertainty in our measurement.
For Z+jets events, the single muon triggers are not fully efficient. The efficiency of
the single muon trigger is derived centrally in CMS by the Muon Physics Object
Group together with their statistical and systematic uncertainties.

We apply the trigger efficiency as a scale factor to the simulated samples. Thus,
to derive the systematic uncertainty in our measurement we vary the scale factor
up and down with its corresponding systematic and statistical uncertainties. Due
to the high efficiency of the single muon triggers and their small uncertainties, the
impact of the single muon trigger efficiencies in our measurement are below 2%.
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Muon related uncertainties

The application of muon isolation and identification criteria leads to inefficiencies
and hence, they introduce an uncertainty. The uncertainties of the identification
criteria are computed centrally in CMS by the Muon Physics Object Group.

In our measurement we combine the systematic and statistical uncertainty of the
muon isolation and identification in quadrature, which we refer as MuIDISO uncer-
tainty. We vary the muon related scale factors up and down to derive the impact in
our measurement. The MuIDISO uncertainty is below 2% for all our observables in
Z+jets events. Even though the muon isolation criteria are not fully efficient, their
efficiency is close to one, having a small impact on the measurement.

The muons are also affected by the muon momentum scale correction, or ”Rochester
corrections”. However, the uncertainties of this corrections are below 1%. We
expect a negligible contribution to our measurement. Thus, we do not take the
muon momentum scale as a systematic uncertainty in the measurement.

Jet energy scale and resolution

After the jet reconstruction we correct the jet energy with the jet energy scale fac-
tors. The jet energy scale factor is obtained by combining different corrections in
a sequential fashion. Each step in the jet energy scale determination introduces
different uncertainties. Thus, the jet energy scale itself has many sources of uncer-
tainties. To determine the impact of the jet energy scale factor in our measurement
we make use of its total uncertainty. We use the jet energy scale values and uncer-
tainties which are centrally produced in the CMS JetMET group. We vary the jet
energy scale up down with the total uncertainty. The jet energy scale introduces an
uncertainty of a 5% uncertainty for our observables.

Correction to particle level

When we correct the measured distributions to particle level we find different sources
of uncertainties: the model uncertainty and the uncertainty related to the limited
statistical precision of the simulation sample.

The model uncertainty refers to the uncertainty of using a specific simulation
to correct the measured distribution to particle level. In our case, to correct the
Z+jets distributions to particle level we use the MC@NLO model supplemented
with Pyhia8 parton shower. However, we can model our process with different
simulations. Thus, we introduce our choice of model as an uncertainty.

Ideally, to determine the model uncertainty, we correct the measured distribution
using two different models. The difference between the corrected data with the



5.7. UNCERTAINTIES 107

different models is taken as the total model uncertainty. Unfortunately, for Z+jets
events no other models are available with a full simulation of the detector within
the CMS experiment. To obtain the model uncertainty in Z+jets events we modify
the MC@NLO model event by event. We apply a weight to the event depending
on the leading jet pT. To determine the weight, first, we compute the difference of
the leading jet pT distribution between the measured data and the simulation at
detector level.

For QCD events, we use the Pythia8 pT-binned sample to correct to particle level.
The limited statistical precision at high jet pT by the available models is not sufficient
to determine the model uncertainty for QCD events. Thus, we follow the same
procedure as for Z+jets events to determine the model uncertainty, we reweight the
QCD sample as a function of the leading jet transverse momentum. The weights are
determined by computing the difference in the leading jet pT distribution between
QCD events and the QCD sample at detector level.

The uncertainty related to the limited number of simulated events arises
from the limited number of events available in the simulated sample used for the
particle level correction. We vary the distributions of the simulation up with the
statistical uncertainty. Then, we unfold the measured data. The uncertainty related
to the limited number of events in the simulation is one of the largest uncertainties in
our measurement. In the largest pT region, the uncertainty is around 8%. Moreover,
for the observables measured in the pj1T > 500 GeV range, the statistical precision
is the dominant uncertainty.

5.7.2 Theoretical uncertainties

Theoretical predictions are based in factorisation theorems and they are composed
by different factors or functions. Each function in the theoretical prediction intro-
duces various uncertainties.

The hard-function in the cross-section is computed in perturbation theory. In the
calculation we find ultraviolet divergences, that are absorbed and introduce a scale,
the renormalisation scale, µR. On the other hand, the factorisation formula, in-
troduces the factorisation scale, µF. The PDFs in the factorisation formula are
determined by fits to data, which introduce experimental uncertainties. The strong
coupling, which is used for the determination of the PDFs, as well as, for the cal-
culation of the hard-function, needs to be measured, introducing an experimental
uncertainty. The impact of these uncertainties are shown in section 5.8.
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Figure 5.19: Impact of systematic uncertainties in the cross-section as a function of the
jet transverse momentum. Systematic uncertainties below 2% are grouped in the cate-
gory Other. Left panel: QCD events, where Other includes JER, luminosity, pileup and
unfolding related uncertainties. Right panel: Z+jets events, where Other includes JER,
muon related uncertainties, model uncertainties and trigger uncertainties.
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Variations 1 2 3 4 5
µR

1
2
µR µR

1
2
µR µR 2µR

µF
1
2
µF

1
2
µF µF 2µF µF

Table 5.5: Variations of renormalisation, µR, and factorisation, µF, scales to estimate the
missing contribution of higher order corrections.

Scale uncertainty

The scale uncertainty is composed by two scales: the renormalisation and the fac-
torisation scales. The factorisation scale, µF, is introduced by the factorisation of
the cross-section. This scale is set to divide the soft and hard contributions to the
cross-section. Processes below µF are treated in the PDFs, while processes above
µF belong to the hard-function. In this way, infrared divergences are removed from
the calculation of the hard-function. Thus, µF is used as a cut-off for infrared diver-
gences. The renormalisation scale arises from computing the hard-function. Virtual
corrections can diverge for large momentums, these divergences are known as ultra-
violet divergences. To absorb the divergence a renormalisation scale is introduced.

The theoretical calculation should not depend on the arbitrary parameters µF and
µR. However, the hard-function is perturbatively expanded in αS and calculated up
to a given order in αS. The truncation of the expansion makes the hard-function
depend on µF and µR. The variation of the two scales can be used to estimate the
impact of the missing higher orders. Given the arbitrariness of the two scales, for
the calculations µF = µR = Q is used, where Q is the hard scale of the process.

To estimate the contribution of the missing higher order corrections in the calcula-
tion, we do seven simultaneous variations of µF and µR (see table 5.5). We make
an envelope of the variations to estimate the scale uncertainty.

αS uncertainty

The strong coupling, αS, both used in the determination of the PDF and the hard-
function, is calculated using the β function, the running of the coupling. However,
an initial value of αS is needed. The initial value needs to be extracted from mea-
surements at a given scale. Usually, αS is measured at the scale of the mass of the
Z boson, which corresponds to a value of αS(mZ) = 0.118. To estimate the impact
of αS, αS(mZ) is varied 0.001 up and down in the theoretical calculation.

PDF uncertainty

The initial condition of the PDF cannot be calculated from first principles, it is
parametrised and then fitted to data. This parametrisation introduces an uncer-
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tainty in the PDF determination. The measurements used to fit the PDF are affected
by systematic and statistical uncertainties. The uncertainties from the fitted data
are the largest contribution to the PDF uncertainty. After the determination of the
initial condition, PDFs are evolved using perturbative calculations, which depend
on αS and the scale µ.

The uncertainties introduced by the determination of αS and µF are not included
in the PDF uncertainty. In the PDF uncertainty we only consider the uncertainties
that affect the initial state condition, which are the uncertainties of the measure-
ments used to fit the PDF. The NNPDF3.1 PDF set includes the variation of the
uncertainties, which we use to reweight the simulation up and down to derive the
impact on the theoretical prediction.

5.8 Results

In this section we present the differential cross-sections corrected to particle level
corresponding to the fiducial phase space sensitive to real electroweak radiations
defined in table 5.6. We compare them to different theoretical predictions. For
the matrix element calculation we make use of MadGraph5 aMC@NLO and we
interface it with different Monte-Carlo event generators. In all the calculations the
renormalisation and factorsation scales are set to µR = µF = 1/2

∑
iHT,i, whereHT,i

is the scalar sum of the transverse momentum of all the final state particles in the
matrix element calculation. We label the MadGraph5 aMC@NLO calculations
as MG5 aMC. We compare the measurements with the following calculations:

– MG5 aMC+Py8 (jj): QCD calculation of 2 jet final state at next-to lead-
ing order accuracy, supplemented with the Pythia8 parton shower. For the
calculation the NNPDF3.1 PDF at next-to-next-to leading order accuracy in
QCD is used with αS(mZ) = 0.118, where mZ is the mass of the Z boson. We
make use of this simulation to compare the cross section as a function of the
jet transverse momentum in QCD events.

– MG5 aMC+CA3 (jj): QCD calculation of 2 jet final at next-to-leading or-
der accuracy, supplemented with the PB-NLO-HERAI+II-Set2 integrated
TMD at next-to-leading order accuracy in QCD with αS(mZ) = 0.118. The
transverse momentum of the initial state evolution is included with the cor-
responding TMD with CASCADE3, where the initial state parton shower
follows the TMD. The final state shower and hadronisation are treated with
Pythia6. No multi parton interactions are considered in this calculation.

– MG5 aMC+Py8 (Z+0+1+2j): DY+0,1,2 jet calculation at next-to-leading
order accuracy in QCD supplemented with the Pythia8 parton shower and
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multi parton interactions. The tuning of the underlying event corresponding
to the CUETP8M1 is applied. The NNPDF3.0 PDFs at next-to-next-to
leading order in QCD accuracy are used with αS(mZ) = 0.118. We make
use of this simulation to compare the cross section as a function of the jet
transverse momentum in Z+jets events, estimate the effect of multi parton
interactions and to test the modelling of real electroweak corrections with a
DY+0,1,2 jet calculation.

– MG5 aMC+CA3 (Z + 2j): DY+2 jet calculation at next-to-leading order
accuracy in QCD, supplemented with the PB-NLO-HERAI+II-Set2 inte-
grated TMD at next-to-leading order accuracy in QCD with αS(mZ) = 0.118.
The transverse momentum of the initial state evolution is included with the
corresponding TMD with CASCADE3, where the initial state shower follows
the TMD. The final state shower and hadronisation are treated with Pythia6.
No multi parton interactions are considered in this calculation. We make use
of this calculation to account for TMD effects and to test the modelling of real
electroweak corrections with a DY+2 jets calculation.

– MG5 aMC+Py8 (jj)+EWshower: QCD calculation of 2 jet final state at
next-to leading order accuracy, supplemented with thePythia8 parton shower
and thePythia8 simple electroweak shower. For the calculation theNNPDF3.1
PDF at next-to-next-to leading order accuracy in QCD is used with αS(mZ) =
0.118, where mZ is the mass of the Z boson. We make use of this simulation
to compare the effect of treating the real electroweak boson emission in the
parton shower and not in the matrix element.

The theoretical uncertainties corresponding to the calculations include the same
uncertainties in section 5.7.2 and are represented with a band around the central
value of the calculation. The systematic uncertainties of the measurement cross-
section are labelled as correlated and the uncertainties due the limited statistical
precision of the measured data as uncorrelated.

In figure 5.20 we show the cross-section as a function of the jet transverse mo-
mentum for QCD (left panel) and Z+jets (central and right panels) events. In
QCD events we are dominated by systematic uncertainties. In Z+jets events for
pjT < 1 TeV the measurement is dominated by systematic uncertainties, and for
pjT > 1 TeV it is limited due to the limited amount of the measured events. In
QCD events (left panel), the MG5 aMC+Py8 (jj) calculation agrees with the
measurement for most of the jet transverse momentum, however, at large jet trans-
verse momentum underestimates the measurement. The MG5 aMC+CA3 (jj)
calculation on the other hand, has a 20-30% normalisation issue, which was ob-
served already in other jet measurements [110]. In Z+jets events (central and
right panels), the MG5 aMC+Py8 (Z + 0 + 1 + 2j) calculation is in agree-
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ment with the measurement in the whole jet transverse momentum range. The
MG5 aMC+CA3(Z+2j) calculation agrees with the measurement within the un-
certainties, while the MG5 aMC+Py8 (jj)+EWshower shows a disagreement of
30-40% at large transverse momentum.

The double differential cross-sections in figures 5.21-5.24 are dominated by system-
atic uncertainties at low leading jet transverse momentum pj1T < 500 GeV. However,
in the highest leading jet transverse momentum bin, pj1T > 500 GeV, the measured
number of Z+jets events are the limiting factor. The distributions are overall well
described by theMG5 aMC+Py8 (Z 0+1+2j) andMG5 aMC+CA3 (Z+2j) pre-
dictions. We observe that MG5 aMC+Py8 (Z 0+1+2j) has a better agreement
with the measured data, however, the differences between the two calculations is
not large. It has been checked that multi parton interactions do not play any role
in the phase space of the measurement (checked with MG5 aMC+Py8 switching
the multi parton interactions on/off). In the phase space of the measurement, at
large jet transverse momentum, we are not sensitive to multi parton interaction and
TMD effects. The MG5 aMC+Py8 (jj)+EWshower calculation however, fails to
describe most of the measured observables. It is not able to describe the shapes of
the measured distribution, and underestimates the measured data.

The ϕ angle between the two leading jets, ∆ϕj1,j2 , (see figure 5.22) increases with
increasing jet transverse momentum. At high transverse momentum is more likely
to find a back-to-back configuration of the two leading jets, which points to the
enhancement of the probability of the Z boson radiation.

In the ϕ angle between the Z boson and the dijet, ∆ϕZ,j, (see figure 5.23) we observe
the opposite behaviour, the decorrelation between in ∆ϕZ,j increases with increasing
jet transverse momentum. With higher jet transverse momentum the probability of
the dijet system to be in a back-to-back configuration increases. Thus, the ϕ angle
of the dijet system is likely to be around zero. The Z boson is radiated from either
of the jets or from the initial state, which leads to a random ϕ angle of the Z boson
and to a decorrelation in the ∆ϕZ,j.

It is also interesting the behaviour of the minimum ∆R distance between the Z boson
and a jet, ∆RMin

Z,j , (see figure 5.24). With increasing jet transverse momentum the
minimum distance between the Z boson and a jet decreases. We should expect that
at higher energies the Z boson could be reconstructed as a part of the jet with larger
jet radius in the jet reconstruction, and thus, affecting the jet substructure, where
three subjets could be observed in a single jet: the parent quarks and the two decay
products of the Z boson.

It is worth noting that at high large jet transverse momentum Z+jets events Z
boson candidates are reconstructed in the QCD predictions (MG5 aMC+Py8 (jj)
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Fiducial phase space Z+jets events QCD events

Muons p
µ1(µ2)
T > 25(20) GeV, |η| < 2.4 -

Jets pT > 100 GeV, |y| < 2.5 pT > 100 GeV, |y| < 2.5

Table 5.6: Fiducial phase space of the measured cross-section for QCD and Z+jets events

and MG5 aMC+CA3 (jj)). At high jet transverse momentum the probability of
producing a bb̄ quark pair in QCD processes increases. The corresponding hadrons
of the b quarks, B, can then decay semileptonically,

B → µ+ νµ +X, (5.17)

producing an opposite charged muon pair, which are reconstructed as a Z boson.
This background has never been considered in Z+jets measurements in CMS. For
future measurements of Z boson production in association with high transverse
momentum jets the contribution of QCD processes should be studied. In appendix D
we show the Z+jets distributions affected by the semileptonic decays of the B B̄
pairs.

In summary, we find that a DY+0,1,2 jets at next-to-leading order accuracy in αS

are able to describe regions of the phase space were we are sensitive to real elec-
troweak radiations.This finding is supporting the approach taken in [64] to study
real electroweak radiations through the calculation of V+1,2 jets processes, where
V = Z,W±, to estimate the contribution of real electroweak radiations in QCD
events. Besides, we find that the Pythia8 electroweak shower is not able to de-
scribe the measured distributions, which could point out to the missmodelling of the
electroweak shower. A comparison with other electroweak showers, Antenna [111]
and Herwig7.3 [112], would let us study the consistency of these treatments.

5.9 Contribution of real electroweak radiations

In this section we extract the contribution of real electroweak corrections in multijet
events and we discuss the implication of real electroweak corrections at the LHC.

In figure 5.25 we extract the contribution of the radiation of the Z boson to QCD
events as a function of the jet transverse momentum. First, we measure the contri-
bution of the Z → µ+µ− contribution. We divide the cross-section as a function of
the jet transverse momentum of Z+jets events, by the cross-section as function of
the jet transverse momentum in QCD events:

δQCD
Z→µ+µ−(p

j
T ) =

dσZ+jets/dpjT
dσQCD/dpjT

, (5.18)
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Figure 5.20: Cross-section as a function of the jet transverse momentum for QCD (left
panel) and Z+jets events (central and right panel). Systematic (correlated) and statis-
tical (uncorrelated) uncertainties are shown in bands around the measured data. The
total uncertainty is given by the errorbars. We compared the measurement to different
theoretical predictions. Left panel: MG5 aMC+Py8 (jj) and MG5 aMC+CA3 (jj).
Central panel: MG5 aMC+Py8(Z+0+1+2j) and MG5 aMC+Py8 (Z+0+1+2j).
Right panel: MG5 aMC+Py8(Z+0+1+2j) and MG5 aMC+Py8(jj) supplemented
with electroweak shower (EWshower).

where we define δZ→µ+µ−(pjT ) as the contribution of the Z → µ+µ− channel to
QCD events as a function of the jet transverse momentum, pT (see figure 5.25).
We can observe that the contribution is negligible at low jet transverse momentum
but increases rapidly with the increasing jet transverse momentum. Let us consider
the pjT ∼ 1 TeV, the bin with a larger contribution, where the contribution of the
Z → µ+µ− channel is

δQCD
Z→µ+µ−(1 TeV) = (1.63± 0.13(syst.)± 0.21(stat.))× 10−4 (5.19)

where we consider systematic (syst.) and statistical precision (stat.) uncertainties.
The Z → µ+µ− branching fraction amounts to the 3.36% of the total branching of
the Z boson. In table 5.7 we show the Z boson decay modes with their corresponding
decay ratio. We extrapolate the total contribution of the Z boson to QCD events:

δQCD
Z (1 TeV) = 0.0045± 0.0006(stat.), (5.20)

where we only consider the statistical uncertainty, as we expect the leptonic decay
channel to have the smallest statistical precision. In this simple extrapolation we
do not consider the systematic uncertainties, as the different decay channels suffer
from different systematic uncertainties.

We perform a rough estimation of the total contribution of real electroweak correc-
tions by including the W boson. The coupling strength of the W boson is larger
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Figure 5.21: Cross-section as a function of the Z boson transverse momentum in Z+jets
events in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel),
250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel). Systematic
(correlated) and statistical (uncorrelated) uncertainties are shown in bands around the
measured data. The total uncertainty is given by the errorbars. We compare the result
to different theoretical predictions. Upper row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and
MG5 aMC+Py8(Z + 0 + 1 + 2j). Lower row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and
MG5 aMC+Py8(jj) supplemented with electroweak shower (EWshower).

Decay mode Branching fraction (%)
e+e− 3.3632± 0.0042
µ+µ− 3.3662± 0.0066
τ+τ− 3.3696± 0.0038
Invisible (νν) 20.000± 0.055
Hadrons (qq̄) 69.911± 0.056

Table 5.7: Z boson decay modes with their corresponding branching ratio [113]
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Figure 5.22: Cross-section as a function of the ∆ϕj1,j2 in Z+jets events in bins of leading
jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel). Systematic (correlated) and statistical
(uncorrelated) uncertainties are shown in bands around the measured data. The total
uncertainty is given by the errorbars. We compare the result to different theoretical
predictions. Upper row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and MG5 aMC+Py8(Z +
0 + 1 + 2j). Lower row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and MG5 aMC+Py8(jj)
supplemented with electroweak shower (EWshower).
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Figure 5.23: Cross-section as a function of the ∆ϕZ,dijet in Z+jets events in bins of leading
jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel). Systematic (correlated) and statistical
(uncorrelated) uncertainties are shown in bands around the measured data. The total
uncertainty is given by the errorbars. We compare the result to different theoretical
predictions. Upper row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and MG5 aMC+Py8(Z +
0 + 1 + 2j). Lower row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and MG5 aMC+Py8(jj)
supplemented with electroweak shower (EWshower).
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Figure 5.24: Cross-section as a function of the ∆RMin
Z,j in Z+jets events in bins of leading

jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel). Systematic (correlated) and statistical
(uncorrelated) uncertainties are shown in bands around the measured data. The total
uncertainty is given by the errorbars. We compare the result to different theoretical
predictions. Upper row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and MG5 aMC+Py8(Z +
0 + 1 + 2j). Lower row: MG5 aMC+Py8(Z + 0 + 1 + 2j) and MG5 aMC+Py8(jj)
supplemented with electroweak shower (EWshower).
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to the one of the Z boson, and moreover its mass is smaller. Thus, the radiation
probability is enhanced for the W boson (see equation 5.1). We can estimate the
contribution of real electroweak corrections to QCD events, δQCD

EW(R) , at jet transverse
momentum of 1 TeV to be

δQCD

EW(R)(1 TeV) = 1− 2%. (5.21)

Our estimation coincides with the theoretical calculation in [64], where real elec-
troweak radiations are modelled with V + 1, 2 jet calculations, where V = W±, Z.

In our QCD cross-section measurement as a function of the jet transverse momen-
tum, at high jet transverse momentum the jet energy calibration is the largest
uncertainty with an impact of 5% (see figure 5.19, left panel). In consequence the
contribution of real electroweak radiations can make a significant contribution the
measured cross-sections. In previous measurements [114] these contributions are
controlled by restricting the amount of missing transverse momentum in the event,
which removes the contribution of semi-leptonic decays of the W boson (W → lν)
and the Z → νν decay channel. From the calculation [64] such cuts reduce the
contribution of real electroweak radiations. To control the electroweak production
of dijet events (qq̄ → V → qq̄, with V = W±, Z) the calculations in [58] are used as
correction factors, as well as, for virtual electroweak radiations. However, real elec-
troweak radiations where the Z boson decays leptonic and hadronically and theW±
decays hadronically are not taken into account. The contribution of the hadronic
decay channel for the Z boson at high jet transverse momentum to QCD events
amounts to

δQCD
Z→qq̄(1 TeV) ∼ 0.3%. (5.22)

The branching ratio of the hadronic decay channel of the W boson is (67.41 ±
0.27)% [113], 7% larger than the one of the Z boson. Thus, on top of the corrections
applied in [114], real electroweak corrections could contribute 1% to QCD events at
jet transverse momentum of the order of 1 TeV.
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Conclusions

The production of the Z boson is a key process both for experimental measurements
and theoretical predictions. The leptonic decay offers a high precision reconstruction
and measurement of the Z boson. It is present in many aspects of high energy
physics: in the calibration of the energy of the measured jets, as a main background
in many physiscs analysis, e.g., searches for new physiscs and top qaurk production,
in studies of the proton structure, etc. Moreover, its transverse momentum is an
important element for the measurement of the W boson mass. Hence, a good
understanding of the Z boson is crucial for many aspects in high energy physics.
We have investigated two production mechanism of the Z boson: the Drell-Yan
(DY) process and real electroweak radiations.

The transverse momentum of the DY lepton pair, qT , is of interest for the hadron
structure. At low DY transverse momentum it is sensitive to the 3D structure of the
hadron. To describe the transverse momentum of the DY lepton pair resummation
to all orders is needed, where we have presented three methods: transverse mo-
mentum dependent factorisations (TMD factorisation, high energy factorisation),
parton showers and the Parton Branching method, a hybrid method between the
two previous approaches. However, the qT ≪ mDY region is non-perturbative and
it has to be modelled, where mDY is the mass of the DY lepton pair.

In the TMD factorisation the b∗ prescription is introduced to separate the non-
perturbative from the perturbative region, where b is the Fourier transformation
of the transverse momentum. This separation gives rise to two non-perturbative
functions: the intrinsic transverse momentum of incoming partons and the non-
perturbative region of the rapidity evolution. The rapidity evolution is commonly
known as the Collins Soper (CS) Kernel. These two functions are then fitted to data.
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In the PB method only the intrinsic transverse momentum of the incoming partons
is modelled. We have shown that the PB method offers a natural explanation to
the non-perturbative region of the CS kernel. In the PB method we are able to
reproduce the CS kernel with very soft emissions contained in the z → 1 region
of the momentum transfer. Moreover, together with an angular ordering condition
and αS(pT), where pT is the transverse momentum of the emission, the PB method
is able to reproduce the qT ≪ mDY region for measurement with different DY
masses and different centre-of-mass energies, with an intrinsic transverse momentum
independent from the DY mass and the centre-of-mass energy [33].

In the parton shower of Monte-Carlo event generators (Pythia8 and Herwig7) the
very soft gluon radiations corresponding to the z → 1 region are removed by intro-
ducing a dynamical resolution scale. Thus, the qT ≪ mDY region is only modelled
by the intrinsic transverse momentum. Our studies indicate that neglecting very
soft radiation leads to a centre-of-mass energy dependence of the intrinsic transverse
momentum.

We see that understanding the DY processes is important to understand the hadron
structure and the impact of mismodelling the parton shower in SM processes. Half a
century after the proposal of the DY process by S. D. Drell and T. -M. Yan, we can
still improve our theoretical knowledge on Z boson production. With higher preci-
sion measurements at low DY transverse momentum we could gain more insights to
the structure of the hadrons. Such a measurement could be possible at the Run3 of
the LHC, where double muon triggers with lower transverse momentum thresholds
have been implemented in the HLT trigger system.

Apart from the DY production of the Z boson, at high energies, the Z boson can be
produced in a radiation, as a real electroweak corrections. Electroweak corrections
become large at high energies, and can affect the different agents involved in proton-
proton collisions: the hadron structure, the matrix element and the initial and final
state radiation. Due to the broken SU(2) symmetry, an important effect in proton-
proton collisions is the NB violations, where real corrections do not cancel with the
corresponding virtual corrections. While for the Z boson the cancellation is total,
for the W± boson the cancellation is not complete, as the incoming proton is not
invariant under SU(2) transformations. Thus, an understanding of the impact of
electroweak corrections is crucial for precision measurements.

High energetic QCD processes are sensitive to electroweak corrections at high jet
transverse momentum. Virtual electroweak corrections are negative and at large jet
transverse momentum, at TeV scales, their contribution is of the order of −10% [58],
while real electroweak corrections are positive with a contribution of the order of 6%
[64]. In this thesis we have measured the contribution of real electroweak corrections
in QCD process as a function of jet transverse momentum, with the Z → µ+µ−
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decay channel for a precise reconstruction of the Z boson. We analyse proton-
proton collisions measured by the CMS detector at the LHC in 2016 corresponding
to an integrated luminosity of 36.6 fb−1.

For the measurement we have studied a phase space sensitive to electroweak boson
radiation: a multijet scenario with jet transverse momentum larger than 100 GeV.
Here, we have compared a DY+1 Jet calculation with a QCD calculation supple-
mented with an electroweak shower (QCD+EW shower) at leading order accuracy.
With the observables we have defined we are able to disentangle the DY+1 Jet
calculation from the QCD+EW shower calculation.

At present, our measurement is limited by the small amount of events available
in the simulated sample at large jet transverse momentum in Z+Jets events. The
limited number of events affects the correction to particle level with an impact of
8%. At low jet transverse momentum (< 1 TeV) the measurement is dominated
by jet energy scale uncertainties with an impact of 4 − 5%. In QCD events the
jet energy scale is the driving uncertainty with an impact of 4 − 5%. The double
differential cross-sections in Z+jets events, the jet energy scale is the dominant
uncertainty for the leading jet transverse momentum bins below 500 GeV. In the
highest leading jet transverse momentum bin, on the other hand, the limiting factor
is the number of measured events. Thus, our measurement at large leading jet
transverse momentum will be benefited by a full Run2 analysis, which corresponds
to an integrated luminosity of 138 fb−1.

We have compared the measured observables with different theoretical predictions
at next-to-leading order accuracy in QCD. We have found that the DY+2 jets
calculations agree with the measurement, and that multi-parton interactions and
TMD effects do not play a role at high jet transverse momentum. We can conclude
DY+2 jets calculations can be used for the modelling of real electroweak radiations.
However, we find that the Pythia8 electroweak shower is not able to describe the
measurement.

We extract the contribution of the Z boson radiation as a function of the jet trans-
verse momentum. We divide the cross-section as a function of jet transverse momen-
tum of Z+jets events with the one from QCD events. The measured contribution
of Z → µ+µ− to QCD events at jet transverse momentum of 1 TeV is of

δQCD
Z→µ+µ−(1 TeV) = (1.63± 0.13(syst.)± 0.21(stat.))× 10−4.

The Z → µ+µ− decay channel correspond to 3.6% of the total branching ratio. We
extrapolate the contribution to the whole Z boson branching ratio to extract the
total contribution:

δQCD
Z = 0.0045± 0.0006(stat.),
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where we only have considered the statistical precision, as systematics vary de-
pending on the final state measured. To estimate the total contribution of real
electroweak radiations we need to take into account the W boson. Its coupling
strength (mass) is larger (smaller) than the one of the Z boson, hence its contri-
bution is larger. We estimate that at jet transverse momentum of 1 TeV the total
contribution of real electroweak radiations in QCD events is around 1-2%. This
results agree with the theoretical calculation in [64]. Thus, for any precision QCD
measurement real electroweak radiations should be taken into account.
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APPENDIXA
Tune of the intrinsic transverse
momentum

In this appendix we present the major aspects of the tuning of the intrinsic trans-
verse momentum. The DY measurements used for the tuning are summarised in
table A.1. For the tuning of the intrinsic transverse momentum we consider the
0 to 10 GeV range in the Drell-Yan transverse momentum spectrum. Above that
range the DY transverse momentum is no longer sensitive to the intrinsic transverse
momentum. We consider this choice of the tuning range as an uncertainty, which
will we refer to as range uncertainty. We estimate the uncertainty by comparing
the tuned result obtained with the 0 to 10 GeV range with another tune with a 0
to 15 GeV range. The order of the polynomial used in the interpolation is also con-
sidered an uncertainty. We determine the interpolation of the intrinsic transverse
momentum with an order-5 polynomial. To determine the uncertainty the difference
with an order-3 polynomial is used. We summarise the tuned values of the intrinsic
transverse momentum for the different DY measurements in table A.2.
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Experiment Process
√
s [GeV] Q [GeV]

E866/NuSea [115,116] pp/pd, fixed target 38.8 4-12.85
R209 [117] pp 62 5-8

PHENIX [118] pp 200 4.8-8.2
D0/CDF [119,120] pp̄ 1800 Z mass
D0/CDF [121,122] pp̄ 1960 Z mass

CMS [123] pPb 2760 Z mass
ATLAS [124] pp 8000 46-150
CMS [125] pPb 8160 15-120
CMS [126] pp 13000 50-1000
LHCb [127] pp 13000 Z mass

Table A.1: Analysed Drell-Yan measurements for the tune of the intrinsic transverse
momentum in Pythia8 and Herwig7 Monte-Carlo event generators. Where the experi-
ments consist in different collision processes at different centre-of-mass energies,

√
s, and

different DY lepton pair masses, Q.
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Energy Generator setup Tune result ± stat ± range ± int

38.8 GeV Pythia 8 CP5 0.988 ± 0.026 ± 0.022 ± 0.015
Pythia 8 CP4 0.993 ± 0.026 ± 0.017 ± 0.009
Pythia 8 CP3 0.990 ± 0.027 ± 0.017 ± 0.020
Herwig 7 CH2 0.829 ± 0.016 ± 0.010 ± 0.06

62 GeV Pythia 8 CP5 1.24 ± 0.06 ± 0.0015 ± 0.06
Pythia 8 CP4 1.24 ± 0.06 ± 0.0012 ± 0.006
Pythia 8 CP3 1.15 ± 0.05 ± 0.0010 ± 0.010
Herwig 7 CH2 0.94 ± 0.04 ± 0.0012 ± 0.024

200 GeV Pythia 8 CP5 1.47 ± 0.11 ± 0.005 ± 0.06
Pythia 8 CP4 1.54 ± 0.12 ± 0.003 ± 0.004
Pythia 8 CP3 1.54 ± 0.12 ± 0.003 ± 0.022
Herwig 7 CH2 1.14 ± 0.08 ± 0.003 ± 0.018

1.8 TeV Pythia 8 CP5 1.93 ± 0.07 ± 0.02 ± 0.015
Pythia 8 CP4 1.94 ± 0.08 ± 0.04 ± 0.0005
Pythia 8 CP3 2.09 ± 0.08 ± 0.03 ± 0.007
Herwig 7 CH2 1.52 ± 0.09 ± 0.03 ± 0.0024

1.96 TeV Pythia 8 CP5 1.88 ± 0.06 ± 0.10 ± 0.009
Pythia 8 CP4 1.93 ± 0.07 ± 0.03 ± 0.009
Pythia 8 CP3 2.03 ± 0.07 ± 0.03 ± 0.008
Herwig 7 CH2 1.41 ± 0.08 ± 0.08 ± 0.0019

2.76 TeV Pythia 8 CP5 2.36 ± 0.26 ± 0.005 ± 0.005
Pythia 8 CP4 2.39 ± 0.3 ± 0.024 ± 0.013
Pythia 8 CP3 2.49 ± 0.3 ± 0.004 ± 0.007
Herwig 7 CH2 1.87 ± 0.44 ± 0.06 ± 0.003

8 TeV Pythia 8 CP5 2.50 ± 0.07 ± 0.02 ± 0.03
Pythia 8 CP4 2.55 ± 0.03 ± 0.016 ± 0.04
Pythia 8 CP3 2.60 ± 0.04 ± 0.002 ± 0.010
Herwig 7 CH2 1.95± 0.05 ± 0.04 ± 0.017

8.16 TeV Pythia 8 CP5 2.66 ± 0.12 ± 0.02 ± 0.015
Pythia 8 CP4 2.63 ± 0.12 ± 0.023 ± 0.013
Pythia 8 CP3 2.62 ± 0.12 ± 0.015 ± 0.007
Herwig 7 CH2 1.96 ± 0.16 ± 0.06 ± 0.027

13 TeV Pythia 8 CP5 2.673 ± 0.024 ± 0.028 ± 0.04
(CMS) Pythia 8 CP4 2.654 ± 0.026 ± 0.08 ± 0.004

Pythia 8 CP3 2.619 ± 0.027 ± 0.05 ± 0.009
Herwig 7 CH2 2.05 ± 0.04 ± 0.03 ± 0.035

13 TeV Pythia 8 CP5 2.66 ± 0.05 ± 0.13 ± 0.0007
(LHCb) Pythia 8 CP4 2.67 ± 0.05 ± 0.10 ± 0.003

Pythia 8 CP3 2.62 ± 0.05 ± 0.11 ± 0.00007
Herwig 7 CH2 1.99 ± 0.07 ± 0.05 ± 0.04

Table A.2: The tune results for the BeamRemnants:primordialkThard parameter in
Pythia 8 and the ShowerHandler:IntrinsicPtGaussian parameter in Herwig 7, taking into
account the uncertainty from tune ranges and the functions for interpolation.
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APPENDIXB
Phenomenological studies in ∆R
cleaning

The Z boson might be radiated from one of the outgoing partons of the hard-
scattering. This radiation might be collinear and the decay products of the Z boson
can be found in the reconstructed jet.

In the phase space of our measurement we are sensitive to electroweak radiations,
and hence, we expect to find muons inside the jets.

In the CMS experiment for the jet reconstruction all the Particle Flow candidates are
used. For this, any muon with extra hadronic activity near by will be reconstructed
as a jet, and the muon will fake a jet. To remove these fake jets, jets closer than a
give ∆R distance from any muon in the event are removed from the event selection.
In Drell-Yan measurements the minimum distance is set to ∆R = 0.4. However, for
our measurement this might be too conservative, as we expect the decay products
of the Z boson to be found inside a jet.

To find an optimal minimum∆R distance between the decay products of the Z boson
and jets we simulate QCD events supplemented with the simple electroweak shower
with the Pythia8 Monte-Carlo event generator. In a first step we estimate the impact
of fake jets by performing two different jet reconstructions with FastJet [128,129]:

– Muons in: all particles in the final state are included in the jet reconstruction.

– Muons out : all particles in the final state except muons are included in the
jet reconstruction

We define a Rivet routine to measure the minimum ∆R distance between a muon
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Figure B.1: Minimum∆R distance between a jet and a muon in QCD events supplemented
with an electroweak shower for two different jet reconstruction scenarios. Muons in: all
particles in the final state are included in the jet reconstruction. Muons out: all particles
in the final state except muons are included in the jet reconstruction.

(decay product of the Z boson) and a jet in the event, ∆R(µ, j). In figure B.1 we
show the ∆R(µ, j) for both scenarios. At low ∆R(µ, j) in the Muons in scenario
we observe an excess of events compared to the Muons out scenario. Many fake jets
are reconstructed when muons are used for the jet reconstruction. Thus, a ∆R(µ, j)
cleaning is necessary to remove the fake jets.

In figure B.2 we introduce a new scenario, which corresponds to the Muons in
scenario where jets with a ∆R(µ, j) < 0.2 are removed from are removed from the
event selection. With this extra requirement on the Muons in scenario we are able
to recover the Muons out for ∆R(µ, j) > 0.2. With this cut we are able to remove
the contribution of fake jets without removing much of our signal process.
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Figure B.2: Minimum∆R distance between a jet and a muon in QCD events supplemented
with an electroweak shower for three different jet reconstruction scenarios. Muons in: all
particles in the final state are included in the jet reconstruction. Muons out: all particles
in the final state except muons are included in the jet reconstruction. Muons in dr=0.2:
Muons in scenario where jets with a ∆R(µ, j) < 0.2 are removed from are removed from
the event selection.
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APPENDIXC
Break down of uncertainties

In this appendix we present the systematic uncertainties affecting our measurement
of the double differential cross-section in Z+jets events. In figures C.1-C.4 we can
observe that at low jet transverse momentum jet energy calibration (jec) is the
largest uncertainty, while for increasing jet transverse momentum the statistical
precision of the simulated sample is the leading uncertainty (Unf. stat.).
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Figure C.1: Impact of systematic uncertainties in the cross-section as a function of the Z
boson transverse momentum in Z+jets events in bins of leading jet transverse momentum,
pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and
pj1T > 250 GeV (right panel). Systematic uncertainties below 2% are grouped in the
category Other.
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Figure C.2: Impact of systematic uncertainties in the cross-section as a function of ∆ϕj1,j2

in Z+jets events in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV
(left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 250 GeV (right panel).
Systematic uncertainties below 2% are grouped in the category Other.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ΔϕZ, Dijet

0.00

0.02

0.04

0.06

0.08

0.10

Sy
st

em
at

ic
 u

nc
er

ta
in

ty
 %

36.3 fb−1 (13 TeV)100 < pj1
T < 250 GeV

jer
jec
Other
Total

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ΔϕZ, Dijet

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Sy
st

em
at

ic
 u

nc
er

ta
in

ty
 %

36.3 fb−1 (13 TeV)250 < pj1
T < 500 GeV

jec
Unf stat.
Other
Total

0.0 0.5 1.0 1.5 2.0 2.5 3.0
ΔϕZ, Dijet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sy
st

em
at

ic
 u

nc
er

ta
in

ty
 %

36.3 fb−1 (13 TeV)pj1
T > 500 GeV

pu
jer
jec
Unf stat.
Other
Total

Figure C.3: Impact of systematic uncertainties in the cross-section as a function of
∆ϕZ,Dijet in Z+jets events in bins of leading jet transverse momentum, pj1T : 100 < pj1T <
250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 250 GeV (right
panel). Systematic uncertainties below 2% are grouped in the category Other.
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Figure C.4: Impact of systematic uncertainties in the cross-section as a function of
∆RMinϕZ,j in Z+jets events in bins of leading jet transverse momentum, pj1T : 100 <
pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV (central panel) and pj1T > 250 GeV
(right panel). Systematic uncertainties below 2% are grouped in the category Other.
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APPENDIXD
Contribution of b quark decays to
Z+jets

In this appendix we present the background produced by QCD calculations in Z+jets
events. We compare the MG5 aMC+Py8 (jj) and MG5 aMC+CA8 (jj) calcu-
lations presented in section 5.8 to the measured Z+jets events. With increasing jet
transverse momentum the probability of b quark production increases, as a bb̄ pair
production. The corresponding B hadrons can then decay semileptonically,

B → µ+ νµ +X, (D.1)

producing muon pairs with opposite charge, which later can be reconstructed as a
Z boson. We observe in figures D.1-D.4 that at small jet transverse momentum the
contribution is negligible, however, for increasing jet transverse momentum the con-
tribution becomes seizable. Thus, for future Z+jets analysis at high jet transverse
momentum the contribution of such decays should be considered.
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Figure D.1: Cross-section as a function of the Z boson transverse momentum in Z+jets
events in bins of leading jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel),
250 < pj1T < 500 GeV (central panel) and pj1T > 500 GeV (right panel). Systematic
(correlated) and statistical (uncorrelated) uncertainties are shown in bands around the
measured data. The total uncertainty is given by the errorbars. We compare the result
to different theoretical predictions: MG5 aMC+Py8(jj) and MG5 aMC+CA8(jj).
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Figure D.2: Cross-section as a function of the ∆ϕj1,j2 in Z+jets events in bins of leading
jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel). Systematic (correlated) and statistical
(uncorrelated) uncertainties are shown in bands around the measured data. The total
uncertainty is given by the errorbars. We compare the result to different theoretical
predictions: MG5 aMC+Py8(jj) and MG5 aMC+CA8(jj).
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Figure D.3: Cross-section as a function of the ∆ϕZ,dijet in Z+jets events in bins of leading
jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel). Systematic (correlated) and statistical
(uncorrelated) uncertainties are shown in bands around the measured data. The total
uncertainty is given by the errorbars. We compare the result to different theoretical
predictions:MG5 aMC+Py8(jj) and MG5 aMC+CA8(jj).
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Figure D.4: Cross-section as a function of the ∆RMin
Z,j in Z+jets events in bins of leading

jet transverse momentum, pj1T : 100 < pj1T < 250 GeV (left panel), 250 < pj1T < 500 GeV
(central panel) and pj1T > 500 GeV (right panel). Systematic (correlated) and statistical
(uncorrelated) uncertainties are shown in bands around the measured data. The total
uncertainty is given by the errorbars. We compare the result to different theoretical
predictions: MG5 aMC+Py8(jj) and MG5 aMC+CA8(jj).
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