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Abstract
Spontaneous symmetry breaking of a system’s ground state always results in a phase
transition. Symmetry breaking can happen in both space and time domains, e.g., a
spontaneous breaking of translation symmetry in space gives rise to a crystalline
phase, while a spontaneous breaking of translation symmetry in time gives rise to a
dynamical phase called time crystal (TC). The main characteristics of TCs include
many-body interaction-sustained dynamics and robustness against temporal pertur-
bations. TCs can be classified as discrete or continuous depending on whether they
break discrete or continuous time translation symmetry. In this thesis, we experi-
mentally realized both discrete [1–3] and continuous TCs [4] for the first time in an
open system, so-called dissipative TCs. Moreover, it is the first time a continuous
TC has been observed. Our experimental system comprises a Bose-Einstein con-
densate of 87Rb atoms coupled to a single mode of a high-finesse optical cavity. The
system is transversely pumped by a standing wave light field. By driving the rele-
vant pump parameter periodically, we realized discrete time crystalline phases using
the pump frequency red-detuned to the atomic transition. The periodic modulation
of the pump intensity gives rise to a commensurate discrete TC, such that its main
feature is the switching between two symmetry-broken states with the sub-harmonic
frequency of the driving frequency [1]. On the other hand, periodic modulation of
the phase of the standing wave pump potential results in an incommensurate discrete
TC, whose response frequency is an irrational fraction of the modulation frequency
[2]. We showed that the incommensurate discrete TC dynamics can be captured by
the non-standard parametrically driven three-level open Dicke model [3]. Further
investigations concluded that the incommensurate TC has a transient behavior such
that in a particular parameter regime, the atoms are transferred into the dark state of
the atom-cavity system [5]. While discrete TC has been widely studied in the past
years, continuous TC has remained elusive. By continuously pumping the system
with the blue-detuned pump, we reported for the first time an observation of a con-
tinuous TC [4]. We observed the emergence of limit cycle dynamics characterized
by an oscillation of the intra-cavity light intensity, which is stable in a large area of
the relevant parameter space and robust against temporal perturbations. The time
phase of the oscillation of different experimental realizations takes random values
between 0 and 2π. Therefore, it hints at the spontaneous breaking of the continuous
time translation symmetry, resulting in a continuous TC.
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Zusammenfassung
Die spontane Symmetriebrechung des Grundzustands eines Systems führt immer zu
einem Phasenübergang. Eine Symmetriebrechung kann sowohl im Raum als auch
in der Zeit auftreten, z. B. führt die spontane Brechung der Translationalssymmetrie
im Raum zu einer kristallinen Phase, während eine spontane Brechung der Transla-
tionalssymmetrie in der Zeit zu einer dynamischen Phase führt, die als "Zeitkristall"
(TC) bezeichnet wird. Das Hauptmerkmal eines TCs ist seine periodische Dynamic,
welche durch Vielteilcheneffekte stabilisiert ist und dadurch besonders stabil gegen
Störungen ist. TCs können je nachdem, ob sie diskrete oder kontinuierliche zeitliche
Translationssymmetrie brechen, als diskrete oder kontinuierliche TCs klassifiziert
werden. In dieser Arbeit haben wir erstmals sowohl diskrete TCs [1–3] als auch
kontinuierliche TCs [4] in einem offenen System, sogenannte dissipative TCs, ex-
perimentell realisiert. Darüber hinaus handelt es sich um das erste Mal, dass ein
kontinuierlicher TC überhaupt beobachtet wurde. Unser experimentelles System
besteht aus einem Bose-Einstein-Kondensat von 87Rb-Atomen, welches mit dem
Lichtfeld in einem Resonator hoher Güte gekoppelt ist. Das System wird transver-
sal mit einer Stehwell aus Licht gepumpt. Mit Hilfe von Pumplicht, welches im
Bezug auf die atomare Resonanz rot verstimmt ist, konnten wir durch geeigntes
modulieren der relevanten Pump-Parameter diskete zeitkritalline Phasen realisieren.
Die periodische Modulation der Pumpintensität führt zu einem kommensurablen
diskreten TC, bei dem das Hauptmerkmal eine Oszillation zwischen zwei symme-
triegebrochenen Zuständen mit der halben Modulationsfrequenz ist [1]. Anderer-
seits führt periodische Modulation der Phase des stehenden Wellenpotentials zu
einem inkommensurablen diskreten TC, dessen Antwortfrequenz ein irrationaler
Bruchteil der Modulationsfrequenz ist [2]. Wir haben gezeigt, dass die Dynamik
des inkommensurablen diskreten TCs durch das parametrisch angetriebene offene
dreiniveau-Dicke-Modell beschrieben werden kann [3]. Weitere Experimente er-
gaben, dass der inkommensurable TC ein transientes Verhalten aufweist und die
Atome in einem bestimmten Parameterbereich in einen Dunkelzustand des Atom-
Resonator Systems überführt werden [5]. Während diskrete TCs in den letzten
Jahren weit verbreitet untersucht wurden, war die Realisierung eines kontinuier-
lichen Zeitkristalls bisher noch nicht gelungen. Durch kontinuierliches Pumpen des
Systems mit blau vertstimmtem Licht, ist es uns erstmals gelungen einen kontinuier-
lichen TC zu erzeugen [4]. Er zeichnet sich durch stabile Oszillationen der Licht-
intensität im Resonator aus, welche in einem großen Parameterbersich beobachtet
werden konnten und besonders stabil gegen Störungen sind. Die Zeitphase der Os-
zillationen in verschiedenen experimentellen Realisierungen nimmt zufällige Werte
zwischen 0 und 2π an. Das deutet auf eine sponatne Brechung der kontinuier-
lichen Zeit-Translationssymmetrie hin und diese Beobachtungen bestätigen die Re-
alisierung eines kontinuierlichen Zeitkristalls.
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Chapter 1

Introduction

A physical system possesses a certain symmetry if its properties are invariant under
certain probing aspects. For example, water in its liquid state has a homogeneous
macroscopic density distribution, and therefore, manifests a continuous translation
symmetry. Another example is spherical objects equipped with a rotational symme-
try because they appear the same after a rotation by any angle.

Spontaneous symmetry breaking of a physical system always leads to a phase
transition, giving rise to a new phase of matter with new fundamental properties. In
everyday life, this occurs when water solidifies into ice. When the temperature and
pressure of water are suitable, the water molecules crystallize spontaneously. The
first few water molecules from arbitrary positions are triggered by thermal fluctu-
ations to crystallize, and the whole ice structure starts to grow from that point. In
ice, the density of water molecules is fixed discretely in space, therefore, it exhibits a
discrete translation symmetry, as its structure repeats itself only if we probe at every
fixed distance. In physics, a spontaneous phase transition happens when the system’s
ground state possesses a different symmetry than that of the equations governing its
properties. Many times, the ground state exhibits a lower symmetry class.

While the spontaneous breaking of translation symmetry in space and the crys-
tallization process is well known, it remains elusive whether it is possible to observe
an analogous phenomenon of spontaneous symmetry breaking in the time domain.
The biologist Arthur T. Winfree pointed out in the 70s that the self-sustaining syn-
chronization oscillatory behavior observed in many biological systems [6, 7] has a
temporal phenomenon analogous to crystallization [8, 9]. This was the first time the
idea of time crystals was introduced to the scientific community. In 2012, Nobel lau-
reate in Physics Frank Wilczek posed an idea: if space and time are interchangeable,
spontaneous symmetry breaking could also happen in the time domain, analogous
to spatial crystals. If the system’s ground state breaks the time translation spon-
taneously, the system thus crystallizes into a time crystal [10, 11]. Not long after
this proposal, a series of no-go theorems ruled out the possibility of Wilzcek’s time
crystal in nature [12–14]. Nonetheless, the excitement of searching for time crystals
was not extinguished, as one could tweak from the original idea. For example, one
can circumvent the no-go theorems by realizing time crystals in a non-equilibrium
state, such as in a Floquet-driven system [15–17]. The Floquet drive imprints the
discrete-time translation symmetry into the system. Thus, when the system responds
to the drive with a different periodicity, it breaks the discrete-time translation sym-
metry, therefore forming a discrete time crystal (DTC). The essential signatures of
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DTCs are persistent oscillations at a frequency lower than that of its external Floquet
drive, and the robustness of the response oscillation against temporal perturbations
supported by many-body interactions [18].

In 2017, the first realizations of DTCs were demonstrated in a periodically driven
trapped ion chain [19] and dipolar spin impurities in diamond [20]. Many more fol-
lowed in 2018, such as DTCs in nuclear spins system [21] and ultra-cold atoms [22].
In these realizations, the system responds with an oscillation frequency at half of the
driven frequency, thus exhibiting a sub-harmonic response. However, time crystals
in closed systems are sensitive to heating, such that their lifetime is limited, un-
less phenomena such as many-body localization breaks ergodicity [23]. Theoretical
studies suggested that well-controlled dissipation and fluctuations in a driven open
system can help stabilize the time crystalline dynamics [24–28]. Following these
ideas, we employ an experimental system consisting of an ultra-cold quantum gas
coupled to an optical cavity, providing a versatile quantum simulator platform to
simulate many-body physics of strong light-matter coupling with a well-controlled
dissipative channel.

Quantum simulators were proposed by Richard Feynman in the 80s. He stated
that the physical world is quantum mechanical; therefore, we need quantum sim-
ulators to study nature efficiently [29]. When computing the quantum dynamics
of many-body systems, the computational power required by classical computers is
infeasible expensive. Feynman suggested that a quantum computer/simulator can
achieve precisely what nature does in an appropriate timescale and number of con-
stituents. The idea is to employ a well-controlled quantum system to engineer the
Hamiltonian and simulate ground states or the system’s time evolution. Promising
platforms for quantum simulations include quantum gas machines of neutral atoms
[30–34], cold trapped ions [35–38], superconducting circuits [39–41], nitrogen-
vacancy centers in diamond [42–44], and photonic qubits [45–47]. A commonality
among these systems is that they have very low operating temperatures, such that
quantum mechanical effects dominate.

One important ingredient of our quantum gas machine is the ultra-cold atomic
ensemble. Advanced developments in the field of atomic, molecular, and optical
physics (AMO) in the past decades enable us to cool [48–52], capture [53], and
manipulate atomic, ionic, and molecular states of matter. In 1995, an ultra-cold en-
semble of bosonic alkali atoms in a range of nanokelvin temperature was reached
with an evaporative cooling technique [54, 55]. At such low temperatures, the parti-
cle’s de Broglie wavelength is on the same order as its particle spacing. This leads to
a macroscopic population of the system’s ground state forming the so-called BEC,
predicted by Einstein and Bose in 1924 [56]. Since then, a quantum gas machine with
a BEC has been a leading platform for quantum simulators [32]. Advanced physics
problems that a quantum gas machine can study range from many-body problems
in condensed matter physics e.g. quantum phase transitions [57, 58] and quantum
magnetism [59], to cosmological studies such as black holes [60] and dark matter
[61]. For simulating a time crystal using an ultra-cold quantum gas machine, we
need a many-body long-range type of interaction which we realized by coupling the
BEC to a high-finesse optical cavity.

To increase the coupling between light and matter in free space, an effective
measure is to place the atomic ensemble inside a high-finesse optical cavity, where
light-matter interactions are strongly enhanced due to the long lifetime of the intra-
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cavity light field. This regime has been studied extensively in the area of cavity
quantum electrodynamics (cQED). It started with the study of coupling single mode
radiation to single atoms, and later branched out to coupling a single mode radiation
to macroscopic objects, e.g., sub-micron mechanical oscillators [62, 63], quantum
dots [64], or an ultra-cold ensemble of atoms [65]. Optical cavities have a well-
controlled dissipative channel and are ideal for studying quantum systems coupled
to an environment [66]. Detecting the light field leaking out of the cavity also pro-
vides a non-destructive real-time observation channel [67–70], as well as a platform
for studying quantum measurement back-action [71–75]. Atom-cavity systems also
pave the way for the study of non-equilibrium phases, such as the second-order phase
transition to a superradiant self-organized phase, which can be achieved by pumping
the atoms transversely to the cavity axis, as was proposed by Domokos and Ritsch
in 2002 [76]. The system can be mapped onto the Dicke model, which describes N
two-level atoms coupled to a single light mode. In the 1970s, Hepp and Lieb discov-
ered the superradiant phase transition predicted by the Dicke model [77, 78]. Later,
this superradiant self-organized phase has been realized in many experiments, com-
prising either a cold ensemble of atoms [79] or quantum gases like a BEC [80, 81]
coupled to a single mode of an optical cavity. This phase also manifests a cavity-
mediated infinite range all-to-all interaction between atoms. Furthermore, A BEC-
cavity platform serves as a very versatile platform to study non-linear dynamics such
as optical bistability [82–84], cavity cooling in a recoil resolved regime [85], geo-
metrical pumping [86], and most recently during my PhD projects, time crystalline
phases [1–5].

In this thesis:
For the first time, we demonstrated various dissipative time crystalline phases, which
are accessible uniquely with our recoil-resolved cavity; see fig. 1.1. First, in 2021,
we demonstrated discrete time translation symmetry breaking in an open system by
periodically driving the intensity of a pump field [1]. This gives rise to a DTC that
has a commensurate response with respect to the driving frequency ωdr; specifically,
in this observation, it reveals a sub-harmonic response. Later in the same year, we
explored the system in a different aspect. Inspired by a theoretical prediction by the
group of Ludwig Mathey [87], we realized another type of DTCs characterized by
an incommensurate sub-harmonic response [2], which can be qualitatively mapped
to a parametrically driven three-level Dicke model [3]. Furthermore, we observed a
peculiarly long-lived condensate fraction in a checkerboard pattern without detect-
ing an intra-cavity light field. We later interpreted the results in 2022 as condensate
formation in a dark state [5]. At that time, while DTCs were widely studied and
realized, a CTC remained elusive. By changing the pump detuning to the blue side
of the atomic resonance, we observed a region in the phase diagram where the intra-
cavity photon Np exhibits limit cycle behavior with an oscillation frequency of ωlc,
while the pump parameters remained constant [4]. Investigations showed that the
time phase of the oscillation from many experimental realizations takes random val-
ues between 0 and 2π, as expected for the spontaneous breaking of the continuous
time translation symmetry. The observation brought us closer to the original idea of
time crystals that Wilczek proposed in 2012, while circumventing the no-go theo-
rems by employing an open system. Note that this was the first time a CTC has been
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observed.
We categorized the results into two main chapters based on the detuning of the

pump light with respect to the atomic resonance. Chapter 4 and chapter 5 discuss
the cases of red and blue detunings, respectively.

Overview: See as well fig. 1.1 for an illustration of an overview of this thesis.

• Chapter 2 introduces our experimental apparatus and detection techniques.

• Chapter 3 discuses the theoretical framework. This includes Hamiltonian of
a strongly coupled atom-cavity system, standard two-level Dicke model, and
a parametrically driven three-level Dicke model.

• Chapter 4 includes publications conducted with a red pump-atom detuning.
They are grouped into two main sections based on an experimental point of
view and ordered chronologically. Publication I [1], in section 4.1.1, presented
the first observation of a dissipative DTC, which results from modulating the
intensity of the pump. Section 4.2.1 consists of publication II-IV [2, 3, 5],
which are conducted by phase modulation of the pump potential. Publications
II and III reported on an observation of incommensurate time crystals (ITC).
Publication IV showed that, for a certain parameter space exhibiting the ITC,
the system relaxes into a dark state of the atom-cavity system.

• Chapter 5 discusses the experiments using blue pump-atom detuning, publi-
cation V: an observation of continuous time crystals [4].

• Chapter 6 gives a conclusion, final remarks, and an outlook.

4



Figure 1.1: Illustration of an overview of this thesis. The center shows a schematic
of the experimental setup. The BEC of 87Rb atoms is overlapped with a single fun-
damental mode of the cavity. The BEC-cavity system is transversely pumped by
laser light operated in the dispersive regime. The pump is retro-reflected, creating
a standing wave potential Up. The potential is spatially dependent along the y-axis
and is proportional to the pump intensity ϵp, the pump wave number kp, and its phase
ϕp. We detect the intra-cavity light field that is transmitted through one of the cavity
mirrors using a heterodyne detector, see section 2.3, which measures the phase ϕc

and the intensity Np of the light field. Each experiment is indicated by an arrow, the
color of which indicates whether a red or blue pump-atom detuning was used for the
given experiment. In each experiment, the initial variable, the observable showing
the signature of the phase transition, and the exemplary protocol and results are pre-
sented.
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Chapter 2

The experimental apparatus

As this thesis is focused on the scientific outcomes described in the following chap-
ters, this chapter only gives a short overview of the experimental platform and the
new heterodyne detector that I designed and implemented into the setup. The new
detector improved the detection efficiency and gave, for the first time, access to the
phase of the intra-cavity field.

2.1 BEC preparation
The BEC preparation consists of three main operations, the magneto-optical trap
(MOT) [53, 88], magnetic transport, and the evaporative cooling in the magnetic
trap. The MOT stage takes around 29 s and consists of two simultaneously-running
MOT configurations, the adapted two dimensional MOT (2D+-MOT) 1 and the
three-dimensional MOT (3D-MOT) [88]. The vacuum chamber is separated by a
differential pumping tube into two parts, the source chamber and the science cham-
ber, where the 2D+-MOT and the 3D-MOT are implemented, respectively. More
details about the design and set up of the vacuum chambers can be found in PhD
theses of M. Wolke [90] and J. Klinner [91]. After the atom number in the 3D-MOT
has saturated, we compress the confinement of the atomic ensemble by increasing the
magnetic field gradient and gain a higher atomic density. Then, the atomic ensemble
is cooled down further by the optical molasses technique [49, 51, 92]. After that, we
optically pump the atoms into the hyperfine Zeeman state |52S1/2, F = 2,mF = 2⟩
to be able to efficiently load the ensemble into the magnetic trap in the next step.
More details about the optical pumping can be found in the PhD thesis of J. Klinner
[91]. Finally, the ensemble is loaded into a magnetic trapping potential, which is
created by rapidly ramping the current of the 3D-MOT coils to a high value. More
details about laser systems used to cool, repump, optically pump, and image the
atoms can be found in the PhD thesis of C. Georges [93] and details about cooling
protocols can be found in the PhD thesis of M. Wolke [90] and J. Klinner [91]. In
the second stage, the cold ensemble gets magnetically transported to close to the ex-
perimental cavity and trapped in a quadrupole Ioffe configuration (QUIC) trap. For
more details on this, see the PhD thesis of M. Wolke [90].

1Consists of a conventional 2D-MOT [89] creating a cooling effect in the xy plane and one addi-
tional beam in z axis, the push beam, which cools and also transports atoms to the science chamber
at the same time.
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Figure 2.1: Schematic drawing of the experimental setup adapted from fig. 1 of
publication IV [5]. The BEC of 87Rb atoms is coupled to a single mode cavity
with decay rate κ. The transverse pump light along the y− axis is retro-reflected
by a mirror forming an optical standing wave potential to the BEC. An electro-optic
modulator (EOM) can be placed between the BEC and the retro-reflected mirror to
modulate the phase of the optical standing wave potential, see results in section 4.2
and section 4.3. The light, leaking from one of the cavity mirrors is measured by the
heterodyne detector (HD).

In the third stage, the cold atomic ensemble in the QUIC trap [94] is cooled to
reach quantum degeneracy using evaporative cooling [54, 95]. The center of the
QUIC trap locates close to, but still outside of, the cavity mode to avoid heating of
the ultra cold ensemble due to the light used to stabilize the laser to the cavity’s res-
onance. Therefore, the BEC is micro-transported to be overlapped with the TEM00

mode of an optical cavity by using magnetic offset fields in xy direction. See more
about cavity stabilization schemes in PhD theses of J. Klinder [96], H. Keßler [97],
and C. Georges [93]. After the micro transport, we decrease the trapping potential
to reduce the BEC density, and thus reduce the three-body collision loss and prolong
the lifetime of the BEC. At this stage we are finished with the BEC production and
we can start the main part of the experiments by applying pump protocols to study
dynamical phases emerging in the atom-cavity system [1–5].

In the following, I will give the main parameters of the setup to provide an
overview. The BEC in the optical cavity has approximately Na ≈ 5 × 104 atoms
held in space by a magnetic trap, creating a harmonic potential with trapping fre-
quencies ω = 2π × (102.7, 119.0, 24.7) Hz2. The ultra-high finesse optical cav-
ity operates in the recoil-resolved regime [84], i.e. the field decay rate of the cav-
ity, κ ≈ 2π × 3.4 kHz, is comparable to a recoil frequency of the atoms, ωrec ≈
2π × 3.7 kHz3. More details about the cavity parameters can be found in the PhD
thesis of M. Wolke [90]. Note that κ and ωrec depend on a pump wavelength λP. We
measured κ and calculated ωrec at a pump wavelength in a range of 792 – 803 nm

2For an experiment in chapter 5. The trapping frequencies used in the experiments in chapter 4
are slightly higher. We have been gradually reducing the trapping frequencies from experiments in
chapter 4 to chapter 5 to prolong the lifetime of the BEC sample by reducing the three-body particle
loss which highly dependent with the density of the BEC.

3Measured at a pump wavelength of 792.55 nm.
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and obtained κ ∈ 3 – 4 kHz and ωrec ∈ 3.5 – 3.7 kHz. The cavity free spectral range
is ∆FSR = c

2L
≈ 3063MHz, where c is the speed of light and L = 48.93mm is the

cavity length [90]. The finesse F is derived from the free spectral range and field
decay rate as F = ∆FSR/2κ and we measured it to be in a range of 4.5− 4.8× 105.

During the experiments presented in this thesis, the atom-cavity system is trans-
versely pumped with a retro-reflected laser beam with wavelength λP, see fig. 2.1
for a schematic drawing. With the current laser system, λP can be tuned between
790 nm and 805 nm. The pump light is operated in the dispersive regime as it is far-
off resonance with respect to the atomic transition, such that only coherent Rayleigh
scattering arises. The retro-reflected pump beam creates a standing wave potential
Up for the atoms. This pump potential can be written as Up ∝ ϵp cos(2kpy + ϕp),
where ϵp is the pump intensity, kp is the pump wave number, and ϕp is the phase of
the standing wave potential. Section 4.2 shows that one can modulate the phase of
this standing wave potential using an electro-optical modulator (EOM) placed be-
tween the BEC and the retro-reflecting mirror, see fig. 2.1. The pump wavelength
used in the experiments presented in chapter 4 is 803 nm. It is red-detuned with re-
spect to the D1 transition line of 87Rb, at 794.98 nm. In chapter 5, we set the pump
wavelength to 792.55 nm, which is in the blue detuned regime. The light force of
the pump can be repulsive or attractive to the atoms, if the pump is blue- or red-
detuned, respectively. As a results, with the red detuned pump, the atoms localize
at the pump intensity maxima. On the other hand, if the bump is blue-detuned, the
atoms localize at the pump intensity minima.

In total, the BEC preparation process takes around 39 s. The pumping protocol
takes around 30ms. After the experiments with the pump protocols, we add 18 s of
holding time where we switch off all the in-vacuum coils to prevent overheating and
damage. Note that this is crucial for us, since the coils responsible for the magnetic
fields of the 3D-MOT, the transport, the QUIC trap, and the micro-transport locate
inside of the science chamber.

2.2 Self-organized superradiant phase transition
To study the dynamical phases presented in this thesis, we initialize our atom-cavity
system in the self-organized superradiant (SR) phase and then either periodically
drive [1–3, 5] or time-independently drive [4] the relevant pump parameters. This
section gives an introduction to the SR phase and the accessible observables in our
setup.

The BEC in the cavity shifts the cavity resonance ωc by an amount of δ− =
NaU0/2, where U0 is the maximal light shift per intra-cavity photon and Na is a
number of atoms in the BEC. A blue-detuned pump with respect to the atomic reso-
nance leads to positive U0, while in the case of a red-detuned pump, U0 is negative.
We define the effective detuning δeff ≡ δc − δ− where δc ≡ ωp − ωc is the detuning
between the pump frequency ωp and the resonance frequency of the empty cavity
ωc. At negative δeff , ramping up ϵp across a critical pump strength ϵc causes the sys-
tem to undergo a second order phase transition from a homogeneous normal phase
to a SR phase [81]. In the SR phase, the scattering of pump photons by atoms into
the cavity, and vice versa, is favorable, leading to an all-to-all cavity-mediated inter-
action between atoms. This is an infinitely long-range interaction, since all atoms
within the cavity mode interact with each other.
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Figure 2.2: Illustrations and experimental data showing a phase transition from the
normal phase to the superradiant self-organized phase at the critical pump strength
ϵc. (a,b) Top panel: schematic drawing of the atom-cavity system (a) below and (b)
above ϵc. The cavity is oriented along the z axis, while the transverse pump beam,
represented by red arrows, is aligned perpendicular to it. The BEC is represented by
a dark blue ellipse. Note that the drawings are not-to-scale. Bottom panel: corre-
sponding momentum spectra taken at times marked with dashed lines in (c,d). The
protocol of the pump strength ϵp in units of Erec is shown in (c). For this data, ϵc is
at 1.6 Erec. (d) The intensity of an intra-cavity photon field Np, and its phase differ-
ence from the pump field ϕc as a function of time detected by a heterodyne detector
(HD).

The bottom plot of fig. 2.2(a) shows momentum spectra of the system in the nor-
mal phase (NP), taken below the critical pump strength ϵc. Momentum spectra are
obtained by taking an absorption time-of-flight (TOF) image [98] after switching
off all trapping potential followed by a free expansion of 25ms. This TOF technique
maps the sample’s initial momentum distribution onto a real space distribution. The
emerging density pattern in the SR phase fulfills the Bragg condition for ±90◦ for-
ward or backscattering of photons between the pump and the cavity. This makes the
discrete momentum modes along the y − z plane a good basis for describing the
dynamics of the atomic section of our coupled atom-cavity system. The momentum
spectra of an atomic condensate in presence of the one-dimensional standing wave
pump potential show a momentum distribution with population in mainly the low-
est mode {py, pz} = {0, 0}ℏk and two peaks of {±2, 0}ℏk due to the localization
of the BEC on a standing wave potential with periodicity of λp/2. Above ϵc, the
system self-organizes in a 2D checkerboard density pattern with periodicity λp/

√
2,

see fig. 2.2 (b) and fig. 2.3. This SR phase is characterized by a finite intra-cavity
photon number NP, see fig. 2.2 (d) and a momentum spectra with {0, 0}ℏk and four
peaks at {±1,±1}ℏk, corresponding to a real space distribution of the checkerboard
pattern.

The NP has only one ground state – the homogeneous BEC – while the SR phase
has two degenerate ground states, namely even and odd configurations/sublattices,
see fig. 2.3. During the phase transition from NP to SR, the system spontaneously
localizes in one of the configurations, meaning that the final state is random and
triggered by quantum fluctuations. Consequently, the system spontaneously breaks
a Z2 symmetry in space by transitioning from the NP to the SR phase. In appendix A
section I, we showed that this symmetry in our experiments is well established.

The two sublattices fulfill the Bragg condition for constructive interference of
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even

odd

λp Figure 2.3: Two energetically degen-
erated sublattice configurations that
both fulfill the Bragg condition for
constructive interference between the
pump and cavity field, scattered by the
localized atoms.

photons scattering from the pump to the cavity and vice versa. Therefore, one char-
acteristic of the SR is the finite intra-cavity field intensity. While the momentum
spectra we measured only reveals the magnitude squared of the the atomic density
distribution in k-space, any information about its complex amplitude used to dis-
tinguish its real space distribution is not captured. The cavity fields corresponding
to the even and odd sublattices can be distinguished by a phase difference of π, as
their real space configurations differ, see fig. 2.3. To be able to measure this phase
difference, I implemented a heterodyne detector (HD) which gives access to both
quadratures of the detected intra-cavity light field, see details in section 2.3. Exem-
plary results of the HD can be found in fig. 2.2 (d).

Figure 2.4 (a) shows an example of a phase diagram spanned by δeff and ϵp
recorded at the pump wavelength of 803.34 nm and Na = 5.5 × 104 atoms. The
color scales in fig. 2.4 (a) and (b) represent Np and ϕc detected from the HD, respec-
tively. The experimental protocol is as follows: we record the intra-cavity light field
detected by the HD while linearly increasing the pump strength ϵp from 0 to 12 Erec

within 20 ms, keeping δeff constant. By repeating the same protocol with difference
δeff , one can construct the phase diagram shown in fig. 2.4. For this pump wave-
length, the light-shift per photon is U0 = −0.4Hz. For a fixed negative δeff , a finite
detected Np and constant phase difference proves that the system self-organizes into
one of the sublattices and remains. At positive δeff , i.e. a pump that is blue-detuned
with respect to the effective cavity resonance, an inelastic scattering which excite the
atoms into high lying momentum states is observed and indicated by superradiant
pulses [84].
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Figure 2.4: Phase diagram spanned by the pump parameters, the effective detuning
δeff and the pump strength ϵp. To construct this phase diagram, we linearly increase
the pump strength from 0-12 Erec within 20ms for a fixed δeff and repeat it for dif-
ferent δeff . (a) Top: pump protocol. Bottom: measured photon number Np as color
code using the HD detector. (b) Corresponding phase difference ϕc between the
intra-cavity field and the pump field, see section 2.3 for methods. The region having
a single stable color along the horizontal axis indicates a fixed ϕc, hence, the system
being localized in one of the sublattices.

2.3 Balanced heterodyne detector

In our system, the light field in the cavity is strongly coupled to the atomic ensemble.
Information on the dynamics of the light-matter system is obtained by analyzing
momentum spectra of the atoms and the intra-cavity light field leaking out through
one of the cavity mirrors.

Before I started with my PhD project, the intra-cavity light field leaking out of
the cavity was only detected using a single-photon-counting module (SPCM) which
gives only the information of the intensity of the field. Besides the intensity, the
SPCM has the ability to measure the arrival information of an individual intra-cavity
photon which gives access to the time correlation function [69]. The main charac-
teristic of the DTC phase proposed in ref. [24, 25] is a periodic switching between
the two sublattices, corresponding to periodic switching between two values of ϕc

which differ by π. Therefore, the SPCM is an inappropriate detector to observe the
DTC phase, since it cannot detect the phase difference ϕc(t) between the intra-cavity
light field and the pump field. For this reason, in the beginning of my PhD, I de-
signed and implemented a heterodyne detector (HD) into the experimental setup,
see fig. 2.5. This new detection significantly changed our data evaluation structure
because it required a new set of evaluation software to extract the amplitude and
phase information from the data. Therefore, I structured and wrote a new generation
of evaluation software that has been used in our experiments since 2020. All of the
work that has been explored and published during the years 2020 to 2022 [1–4] are
conducted with the HD I built. In 2022, together with our Master’s student Sahana
Rao, we set up another improved version of the HD with increased phase stability
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1
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SPCM

BS

2

v
Figure 2.5: Schematic drawing of
the balanced heterodyne detector (HD).
The local oscillator and the transverse
pump are frequency-shifted by AOM1
and AOM2, respectively. The local os-
cillator (lo) and the intra-cavity light
leaking through one of the cavity mir-
ror (s), indicated by blue and red lines
respectively, are fiber-coupled to the
balanced HD system. The two beams
are overlapped on a 50:50 beam split-
ter (BS), resulting in two paths with in-
tensities I1,2. The balanced photodetec-
tor contains a matching pair of photore-
ceivers that detect photocurrents of i1,2
and internally subtract them from each
other. Finally, the resulting photocur-
rent itot = i1 − i2 is converted into a
voltage vtot by a transimpedance ampli-
fier. The implementation of this setup
can be seen in fig. 2.6.

and detection efficiency. The second version of the HD such as the design, the elec-
tronic components, the implemented optics, and its characterizations can be found
in the Master’s thesis of S. Rao [99]. In this section, I will summarize the main prin-
ciple of the HD and describe briefly how to extract the light field information from
the detected signal.

The main working principle of a balanced heterodyne detector is to amplify a
weak signal (s) with a stronger local oscillator (lo) by overlapping them together and
analyzing the beating signal. In our case, the weak signal is the intra-cavity field,
transmitted through one of the cavity mirrors, and guided by several optics to the HD.
Its power is on the order of pW, while the lo beam power has a power of 10mW. The
lo signal is split from the same beam as the transverse pump, but is frequency shifted
by 60MHz with respect to the transverse pump light by an acousto-optic modulator
(AOM), see blue beam path in fig. 2.5. The complex electric field of the lo can be
written as

Ēlo = Eloe
i(ωlot+ϕlo), (2.1)

where Elo is the real amplitude of the lo, ωlo is the frequency of the lo beam, and
ϕlo(t) a constant arbitrary phase of the lo field, which we will set to zero and omit in
the following, because we are only interested in the relative phase between the lo and
the intra-cavity field. The same applies to the signal, the intra-cavity field leaking
through one of the cavity mirrors. Its expression can be written as

Ēs = Ese
i(ωst+ϕc(t)), (2.2)

where Es is the real amplitude of the s, ωs is the frequency of the intra-cavity light
field, and ϕc(t) is its time dependent phase. Intensity of both beams can be ex-
pressed as Ilo,s = |Ēlo,s|2. The well mode-matched lo and signal beam are over-
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Figure 2.6: Top view of the implementation of the balanced HD in 2020, see also
the schematic drawing in fig. 2.5. The blue and red arrows represent the beam path
of the local oscillator (lo) and the signal (s) beam respectively. A small part of the
lo is split by a 90:10 BS and detected by a photodetector for the purpose of the
intensity stabilization. The lo and s beams are overlapped on the 50:50 BS. Due to
the imperfection of the splitting ratio, we add an attenuation stage after the 50:50 BS
to adjust the balance of the lo intensity perfectly, see the inset. The attenuation stage
consists of a λ/2 waveplate on a micrometer rotation mount and a polarizing beam
splitter (PBS). Finally, the two overlapped beam paths are focused on the balanced
photodetector by an achromatic lens with a focal length of 25mm.

lapped by a 50:50 beam splitter (BS), resulting in two beam paths with intensities
I1,2 = |Ēs+Ēlo|2 detected by a balanced photodetector which consists of two match-
ing photoreceivers, see fig. 2.5. The detected photocurrents i1,2 generated at the
photoreceivers are proportional to the light intensity I1,2 and can be written as

i1,2 ≈ is + ilo ± 2
√
isilo cos(ωt+ ϕc(t)), (2.3)

where ω = |ωlo−ωs|, is chosen to be 60MHz to ensure that it is well below the cut-
off frequency of the balanced photodetector. The total photocurrent of the balanced
HD follows

itot = i1 − i2

= 4
√
isilo cos(ωt+ ϕc(t)),

(2.4)

and is converted into the total output voltage vtot by a transimpedance amplifier
integrated in the balanced photodetector.

The implementation of the balanced HD in fig. 2.6 contains more optical com-
ponents than the schematic in fig. 2.5 for a few technical reasons. For the best mode
matching of the lo and s, the polarization of both beams need to be matched. For that
reason, we filter the polarization of the lo beam by adding a polarizing beam split-
ter (PBS) after the fiber. Furthermore, we intensity stabilize the lo by splitting off
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Figure 2.7: Electronic demodulation scheme of the total voltage vtot from the bal-
anced HD with the reference signal at a frequency of ωref = 59.8MHz, generated
by a frequency generator. For simplicity, amplitudes of the sine and cosine terms
for all signals are omitted. One of the reference signal paths, indicated in red, gets
an additional path length corresponding to a π/2 phase shift compared to the other
reference signal paths. For the purpose of the final digital demodulation, we record
a beating signal B ∝ cos(ω′′t) where ω′′ = |ωref − |ωlo − ωp||. The demodulated
signals Q, I , and B are sent through a lowpass filter, resulting in a frequency of
ω′ = |ω − ωref | = 200 kHz and recorded in the oscilloscope.

10% of the beam and measuring its intensity, which serves as an input signal of the
proportional–integral–derivative (PID) regulator. Another challenge is to perfectly
balance the lo power on both paths to the photoreceivers of the balanced photode-
tector to avoid saturation due to the remaining DC part of itot. The balancing of
lo powers also help to obtain the best common mode noise suppression. Since the
dominant power in the two beam paths is from the lo, the balancing lo power has to
be very well set. In practice, the 50:50 BS transmits more light power than reflects,
therefore, an attenuation stage is added after the 50:50 BS. The attenuation stage,
as can be seen on the inset of fig. 2.6, consists of a λ/2 waveplate on a micrometer
rotation mount and a PBS. We can precisely adjust the waveplate orientation to get
a balanced lo intensity on both photoreceivers. Finally, each overlapped beam with
intensity I1,2 is focused using an achromatic lens with a focal length of 25mm to
ensure that the beam size is well within the active area of the photodetector.

The next step is to electronically demodulate the output voltage vtot with a fre-
quency 60MHz down to a few hundred kHz to be well below the sampling rate of
the oscilloscope, where the signals are finally recorded. The electronic demodula-
tion scheme is presented in fig. 2.7. The demodulation electronics are the same as
used for the setup described in the master thesis of S. Rao [99].

The total voltage vtot is split into two paths. Each path gets demodulated by the
reference frequency ωref = 59.8MHz generated by a stable frequency generator.
The two final demodulated signals will be called Q and I , where one signal is phase
shifted with respect to the other before demodulation by π/2. The demodulation
frequency is chosen to be ω′ = |ω−ωref | = 200 kHz, resulting from the optimization
between the limitation of the oscilloscope’s sampling rate and the signal-to-noise
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ratio, where the major source of the noise is found to be the electronic 1/f noise.
On one of the reference paths, indicated in a red line in fig. 2.7, we add an additional
path length of 1.25m, corresponding to π/2 phase shift of the electromagnetic wave
with a frequency of 59.8MHz. This introduces the phase difference between path
Q and I such that,

Q ∝ sin(ω′t+ ϕc)

and
I ∝ cos(ω′t+ ϕc).

The two demodulated signals are recorded by an oscilloscope together with a pump
strength, SPCM signal, and reference beating B ∝ cos (ω′′t), which is the frequency
difference between the lo and the transverse pump, see in fig. 2.7.

The final step is to digitally demodulate the two componentsQ and I down to DC
and obtain the two quadratures of the intra-cavity light field, see also in the PhD the-
sis of R. Landig [100]. This process is done using Matlab based software developed
by myself. The idea is as follows. First, the frequency ω′′ of B is extracted using
a cosine fit function. In the case of elastic scattering in the self-organized phase,
the intra-cavity field frequency ωs is the same as the transverse pump frequency ωp.
Therefore, the frequency of signal B is the same as I and Q since ω′′ = ω′ and we
can use this information to demodulate I and Q to DC as follows. First, the DC
offset obtained from its mean value is subtracted from I and Q as

Î = I − ⟨I⟩ and (2.5)
Q̂ = Q− ⟨Q⟩. (2.6)

Next, we demodulate to DC with the known ω′. This results in a complex quadrature
A = X + iY , where X is the amplitude quadrature and Y is the phase quadrature
as

X = cos(ω′t)Î + sin(ω′t)Q̂ (2.7)
Y = − sin(ω′t)Î + cos(ω′t)Q̂. (2.8)

The intensity of the intra-cavity light field Np is proportional to the amplitude of A
as

Np = C
√
X2 + Y 2, (2.9)

where C is the calibration factor taking into account the detection efficiency of the
silicon detectors at the pump wavelength, the free spectral range of the cavity, and
the transmission ratio of the two cavity mirrors and all the optics in the signal beam
path. The relative phase between the intra-cavity light field and the transverse pump
field is

ϕc = arctan(Y/X). (2.10)
An example of a final result is shown in fig. 2.2(b).

In summary, the balanced HD is a very sensitive detector with an output signal
that is proportional to

√
isilo. Note that the power of the intra-cavity light signal

leaking through the cavity mirror, is in the order of pW, and the local oscillator’s
power is 10mW, together resulting in an amplitude amplification factor of over 105.
In addition, the balanced HD offers both information of the amplitude Np and the
phase of the intra-cavity light field ϕc(t) which are both essential to observe and
characterize the time crystalline phases reported in this thesis.
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Chapter 3

Theoretical framework

During my PhD work, I have been part of a collaboration between my experimental
team and a team of theoretical physicists. This collaboration has been a key prereq-
uisite for achieving a solid understanding of my experimental findings. This chapter
summarizes the theoretical models used to simulate our atom-cavity system. I will
start by introducing a Hamiltonian of the system that allows to carry out numerical
calculations using the truncated Wigner approximation method. Later, I demonstrate
that when the system is close to the pump threshold for entering the self-organized
superradient phase, it can be mapped into a conventional 2-level open Dicke model.
In section 3.3, I will then introduce a three-level Dicke model [3], which predicts
the emergence of an ITC upon phase modulation of the pump wave. A focus of my
description will be to point out which parameters arise in the theoretical treatment
that can be directly accessed in the experiments by dynamical driving. More details
of the models and methods can be found in ref. [3, 87].

3.1 Atom-cavity Hamiltonian
The dynamics of any system is dictated by the Hamiltonian and evolves according to
corresponding equations of motion. Since our system comprises a BEC coupled to
a single mode optical cavity, the full Hamiltonian Ĥ consists of a Hamiltonian of a
cavity part Ĥc, an atomic part Ĥa, an interaction term between the atoms Ĥaa, and the
coupling term between the atoms and the cavity Ĥac. The atom-cavity Hamiltonian
can be written as

Ĥ = Ĥc + Ĥa + Ĥaa + Ĥac. (3.1)

Ĥc for a single mode cavity with detuning between the pump and cavity frequencies
δc is,

Ĥc = −ℏδcâ†â, (3.2)

where â (â†) is the cavity mode annihilation (creation) operator. Since the pump and
the cavity are aligned in y and z direction, see fig. 2.2, the dynamics of the system
is well-captured in a 2D model. The atomic part is governed by

Ĥa =

∫
dydzΨ̂†(y, z)

[
− ℏ2

2m
∇2 + ϵp cos

2(kpy + ϕp)

]
Ψ̂(y, z), (3.3)

where Ψ̂(y, z) is the atomic field operator and m is a mass of an atom, ϵp is the
standing wave pump potential depth, kp is the wave number, and ϕp is the phase of
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the standing wave potential. The atom-atom interaction is captured by

Ĥaa = Ua

∫
dydzΨ̂†(y, z)Ψ̂†(y, z)Ψ̂(y, z)Ψ̂(y, z), (3.4)

where Ua =
√
2πasℏ2/mℓx is the effective 2D interaction strength, as is the s-wave

scattering length, and ℓx is the harmonic oscillator length in the x direction. The
Hamiltonian for the light-matter interaction is

Ĥac =

∫
dydzΨ̂†(y, z)

[
U0cos

2(kpz)a
†a (3.5)

+
√

|U0|ϵp/ℏcos(kpy + ϕp)cos(kz)
(
a+ a†

)]
Ψ̂(y, z),

where U0 is a light shift per atom, ωrec is a recoil frequency. To take into ac-
count the decay in the cavity mode, the dynamics of the system follow the following
Heisenberg-Langevin equations,

∂

∂t
Ψ̂ =

i

ℏ
[Ĥ, Ψ̂], (3.6)

∂

∂t
â =

i

ℏ
[Ĥ, â]− κâ+ ξ, (3.7)

where κ is a field decay rate of the cavity, and ξ is the stochastic noise term satisfying
⟨ξ∗(t)ξ(t′)⟩ = κδ(t− t′). We then numerically simulate field propagation in a semi-
classical limit by transforming Ψ̂ and â into classical fields. In addition, we can also
use the truncated Wigner approximation (TWA), which includes the leading order
quantum corrections in addition to the mean-field model. TWA samples an initial
state within a Wigner distribution [101]. Next, we propagate the initial state with the
Langevin equation, then average the results over many trajectories to get observables
with the leading order corrections.

By controlling and modulating the pump strength ϵp and the phase of the standing
wave potential ϕp, we engineer the light-matter interaction. We experimentally mod-
ulate ϵp and ϕp by a waveform generator. Specifically we parametrically drive the
pump intensity in section 4.1.1 as ϵp = ϵp(t) = ϵf (1+f0 sin(ωdrt)) and modulate the
phase of the standing wave potential in section 4.2.1 as ϕp = ϕp(t) = f0 sin(ωdrt),
where ωdr is the modulation frequency and f0 is the modulation strength.

3.2 Dicke Model
The Dicke model describes N two-level systems coupled to a quantized light mode.
Above a critical light-matter coupling strength, Hepp and Lieb showed in the 1970s
that the Dicke model predicts a superradiant phase transition [77, 78]. In our case,
the two-level state are the two lowest momentum states of the atomic ensemble. The
ground state |1⟩ = |pz, py⟩ = |0, 0⟩ℏk. The excited state is a superposition of four
components |2⟩ =∑i=±1 |i, i⟩ℏk. The two energy levels are separated by an energy
spacing proportional to a frequency of ω12 = 2 ωrec. The Dicke model can be written
as

H/ℏ = ωâ†â+ ω12Ĵ
12
z +

λ12√
N

(
â† + â

) (
Ĵ12
+ + Ĵ12

−

)
, (3.8)

18



where ω is a photon frequency related to the detuning of the pump as −δc +
NU0

2
=

−δeff and λ12 is a light-matter coupling strength λ12√
N

=

√
ωrec|U0|ϵ

2
[96].

3.3 Periodically driven three-level Dicke Model
For the experiments presented in section 4.2 and section 4.3, we modulate the phase
of the standing wave pump potential by using an EOM placed between the BEC
and the retro-reflecting mirror, see fig. 2.1. The periodic time-dependent phase of
the pump potential is written as ϕp = ϕp(t) = f0 sin(ωdrt), where f0 is the driving
amplitude and ωdr is a driving frequency. It is shown in ref. [2, 3] that it is necessary
for this driving scheme to extend the standard two-level Dicke model [102–104] to
a three-level Dicke model [3], where N three-level systems are coupled to one light
mode. Here, each atom has three states |1⟩, |2⟩, and |3⟩. The three-level Dicke model
Hamiltonian is defined as,

H/ℏ = ωâ†â+ ω12Ĵ
12
z + ω13Ĵ

13
z (3.9)

+
2√
N

(
â† + â

) (
λ12Ĵ

12
x + λ13Ĵ

13
x

)
,

where ℏωnm is the energy difference between states |m⟩ and |n⟩ and λnm is the light-
matter interaction strength associated with the photon-mediated coupling between
states |n⟩ and |m⟩. Ĵ12

µ , Ĵ13
µ , and Ĵ23

ν with µ ∈ {z,±} and ν ∈ {±}, are three
classes of pseudospin operators corresponding to the transitions between |1⟩ ↔ |2⟩,
|1⟩ ↔ |3⟩, and |2⟩ ↔ |3⟩, respectively. These pseudospin operators follow the
SU(3) algebra [3]. The x- and y-components of the pseudospins are defined as Ĵ ℓ

x =
(Ĵ ℓ

+ + Ĵ ℓ
−)/2 and Ĵ ℓ

y = (Ĵ ℓ
+ − Ĵ ℓ

−)/2i, respectively with ℓ ∈ {12, 13, 23}.
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Figure 3.1: Schematic drawing showing momentum states without (ϵp = 0) and
with (ϵp > 0) the light shift due to the presence of the pump potential. This figure
is adapted from fig. 1 of appendix B. The bare momentum ground state is |0, 0⟩ℏk
and the two degenerate excited states are labeled as |±⟩. The presence of the pump
potential lifts the degeneracy of the two excited states. States acquiring a light shift
are labeled as |BEC⟩, |DW⟩, and |BDW⟩. The corresponding excitation energy to
excite |BEC⟩ to |DW⟩ and |BDW⟩ are ℏωD and ℏωB, respectively.

In the context of our atom-cavity system, the three levels comprise of three mo-
mentum states in a presence of the pump potential labeled as BEC |BEC⟩, density
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wave |DW⟩, and bond density wave |BDW⟩, see fig. 3.1. The three states are de-
rived from bare momentum modes that acquire light shifts as |0, 0⟩ℏk → |BEC⟩,
|+⟩ ≡∑ν,µ∈{−1,1} |ν, µ⟩ℏk → |DW⟩ and |−⟩ ≡∑ν,µ∈{−1,1} ν|ν, µ⟩ℏk → |BDW⟩.
The excited state |+⟩ and |−⟩ are energetically degenerate without the pump poten-
tial. In the presence of the standing wave pump potential, all states acquire light
shifts differently depending on their spatial overlap with the pump potential. Here
we consider the case of the red-detuned pump where atoms are high field seeking.
The homogeneous |BEC⟩ overlaps with the pump potential and obtains a light shift
of −ϵp/2. The spatial density of the |DW⟩ state varies as ∝ | cos(kpy) cos(kpz)|2,
localizing at the pump potential minima and therefore obtaining the highest light
shift of −3ϵp/4. On the other hand, the density distribution of |BDW⟩ state varies
as ∝ | sin(kpy) cos(kpz)|2 and coincides with the bonds between the two potential
minima hence obtaining the lowest light shift of −ϵp/4. Thus, the degeneracy of the
two excited states is lifted. Note that the two states, |BEC⟩ and |DW ⟩, are sufficient
to span the conventional two-level Dicke model and predict the SR phase.

Above the critical pump strength ϵp > ϵc, there is an admixture of the |DW ⟩ state
in the |BEC⟩ state, creating a checkerboard pattern, where its density maxima locate
at the pump potential minima, see fig. 3.2. The same pattern appears in the admix-
ture between the |BEC⟩ and the |BDW ⟩ states. However, unlike the checkerboard
pattern from a mixture between the |DW ⟩ and |BEC⟩ states, its density maxima
localize at the pump potential maxima, see fig. 3.2.

Ref. [3] shows that we can get a parametrically driven three-level Dicke model
Hamiltonian according to our three-level system as

H/ℏ = ωâ†â+ ωDĴ
D
z + ωBĴ

B
z + 2ϕp(t)(ωB − ωD)Ĵ

DB
x (3.10)

+
2λ√
N

(
â† + â

) (
ĴD
x − ϕp(t)Ĵ

B
x

)
,

where the effective cavity field frequency is ω = (3U0N)/4 − δC = U0N/4 −
δeff , the light-matter coupling strength is λ/

√
N = −

√
ωrecϵp|U0|/2, and ωD/B are

the corresponding resonance frequencies between |BEC⟩ state and |DW/BDW⟩
state. We want to emphasize eq. (3.10) that the time-dependent phase modulation
ϕp(t) enables the coupling between |DW ⟩ and |BDW ⟩ states through pseudospin
operators ĴDB

z . This is the key ingredient to realize the ITC in section 4.2. On the
other hand, for a modulation amplitude f0 = 0, we recover the standard two-level
Dicke model.
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Figure 3.2: Density distribution illustrations of three different states of the atom-
cavity system in the presence of the red-detuned pump potential. The middle column
shows the atomic distribution (blue) together with the light shift potential Up (red
lines). The right column shows a view of the density distribution in the y− z plane.
Crosses of red lines indicate the positions, where the light-shift potentials of the
pump light and the intra-cavity light are both minimal. (a) shows the case of the
homogeneous density |BEC⟩ state overlaps with the pump potential when ϵp > 0,
thus the |BEC⟩ state acquires small density modulations at the potential minima.
(b) shows the case of ϵp > ϵc, when the coupling to |BDW ⟩ state is zero. The
|BEC⟩ acquires an admixture of |DW ⟩ state, forming a checkerboard pattern in the
y − z plane, such that its density maxima localize at the potential minima, hence
obtaining the largest light shift. (c) shows the case of ϵp > ϵc, when the coupling to
|DW ⟩ state is zero. The |BEC⟩ acquires an admixture of |BDW ⟩ state, forming a
checkerboard pattern in y − z plane with density maxima localized at the maxima
of the pump potential, hence only a small light shift arises.
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Chapter 4

Red-detuned pump experiments

In this chapter, I present publications conducted with a pump light at a wavelength
λp = 803 nm, which is red-detuned with respect to the atomic resonance. For each
experiment, some pump parameter is periodically modulated and the corresponding
time-dependent Hamiltonian follows H(t) = H(t + Tdr), where Tdr is the driving
period. An observable arises that it exhibits an oscillatory response with a period
larger than Tdr. Publications I-VI show different versions of DTCs. We further
discriminate them in terms of their response frequencies, which can either be com-
mensurate or incommensurate with respect to their driving frequencies. Note that
the observations in this chapter are not restricted to the red-detuned pump light. The
commensurate DTC and incommensurate DTC presented in section 4.1 and sec-
tion 4.2 can be realized with blue-detuned pump light as well.

4.1 Commensurate discrete time crystals

4.1.1 Publication I: Observation of a dissipative time crystal

Observations of discrete time crystals in closed systems were first reported in 2017
[19, 20]. They were the first time crystals that are experimentally realized after many
theoretical proposals. While dissipation is unfavorable and usually limiting the life-
time of time crystalline dynamics, recent proposals showed systems where dissipa-
tion takes a positive role and stabilize the dynamics of the system [24–28]. It was
shown that a well controlled dissipation channel in a periodically driven open Dicke
model can stabilize time crystal dynamics [24, 25]. Motivated by these proposals,
we periodically modulate the intensity of the transverse pump, leading to a time-
dependent pump strength of the form ϵp(t) = ϵf (1 + f0 sin(ωdrt)), where ϵf is a
constant pump strength, f0 is the modulation strength, and ωdr is the driving fre-
quency. The main observable exhibiting the dynamics that is used to characterize
a time crystalline phase in publication I is the phase difference between the pump
field and the intra-cavity light field ϕc(t), which is detected using a HD. ϕc(t) shows
an oscillatory behavior at half of the driving frequency, referred to as sub-harmonic
response. Furthermore, we showed experimentally that the sub-harmonic response
of ϕc(t) corresponds to a switching between the energetically degenerate even-odd
superradiant sublattices. The time phase distribution of many realizations showed
two distinct time phases, 0 and π, and thus, hinting us at the Z2 symmetry break-
ing of discrete time translation symmetry. We also showed that the DTC is robust
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against temporal perturbations of the driving parameter f0.

Status of the publication:
This article was published in July 2021 in Physical Review Letters as an editor’s sug-
gestion [1] and was featured in a Physics viewpoint article [105]. The corresponding
supplemental material can be found in appendix A.

Note:
Due to a mismatch between notation used in different publications and this thesis,
I would like to improve the readability of the publication by listing the notation
changes in table 4.1.

parameters this thesis publication I
pump strength ϵp ϵ
driving period Tdr TD

driving frequency ωdr ωD

phase difference between the intra-cavity
ϕc φand the pump fields

Table 4.1: Notation differences between this thesis and publication I.
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We present the first experimental realization of a time crystal stabilized by dissipation. The central
signature in our implementation in a driven open atom-cavity system is a period doubled switching between
distinct checkerboard density wave patterns, induced by the interplay between controlled cavity
dissipation, cavity-mediated interactions, and external driving. We demonstrate the robustness of this
dynamical phase against system parameter changes and temporal perturbations of the driving.

DOI: 10.1103/PhysRevLett.127.043602

Phase transitions of matter can be associated with the
spontaneous breaking of a symmetry. For crystallization,
this broken symmetry is the spatial translation symmetry,
as the atoms spontaneously localize in a periodic arrange-
ment. In analogy to spatial crystals, the spontaneous
breaking of temporal translation symmetry can result in
the formation of time crystals. Following its initial
proposal [1,2], the possibility of time crystals in the
ground state of equilibrium many-body systems was ruled
out for fundamental reasons [3,4]. This development led to
a paradigm shift, directing the search for time crystals
towards genuine nonequilibrium scenarios [5–11]. In
particular, the no-go theorem [3,4] can be circumvented
by periodic driving, which imposes a discrete time trans-
lation symmetry on the system. Floquet or discrete time
crystals emerge, when discrete time translation symmetry
is spontaneously broken, which manifests as a subhar-
monic response of an observable [12–15]. Previous
experimental studies have focused on driven closed
quantum systems with long-lived time crystalline response
enabled by many-body mechanisms, which impede exces-
sive heating [5–7,16,17]. However, as proposed by theo-
retical work [18–22], dissipation and fluctuations, induced
via controlled coupling to a suitable environment can
also serve as a source for stabilization of time-crystal
dynamics.
Here, we report the experimental realization of a dis-

sipative time crystal (DTC) phase in an atom-cavity plat-
form [23]. This is inspired by a recent theoretical proposal
for a time crystal stabilized through an interplay between
interaction and dissipation in the open Dicke model, arising
when the light-matter coupling is periodically modulated
[18–20]. The defining feature of this paradigmatic DTC is a
subharmonic response, where the system periodically
switches between pairs of Z2 symmetry broken super-
radiant states.

A Bose-Einstein condensate (BEC) of 87Rb atoms is
prepared inside a high-finesse optical cavity pumped by a
retroreflected laser beam at wavelength λP ¼ 803 nm,
aligned perpendicular to the cavity axis, as depicted in
Fig. 1(a). The atom-cavity system operates in the recoil-
resolved regime, where the cavity field and the atomic
distribution evolve at a similar timescale leading to a
retarded infinite-range cavity-mediated interaction between
the atoms [24]. Above a critical value of the pump strength
ϵ, the system undergoes a self-organization transition from
a BEC phase to a density wave (DW) phase, which
emulates the superradiant phase transition in the open
Dicke model [25,26]. In a spontaneous Z2 symmetry
breaking process, an intracavity optical lattice arises, which
traps the atoms either in the black or the white squares of a
checkerboard pattern, denoted as odd and even DW.
An effective driving of the light-matter coupling can be

realized by modulating the pump strength. Off-resonant
driving of the pump strength at a frequency ωD notably
exceeding the recoil frequency ωrec ≡ ℏk2=ð2mÞ ¼ 2π×
3.55 kHz, with k≡ 2π=λP and the atomic mass m, leads to
a dynamical renormalization of the phase boundary
between the BEC and DW phases [27,28]. On the other
hand, a period doubling response characterized by periodic
switching between the odd and even DWs has been
predicted for modulating only slightly above the recoil
frequency [18,29,30]. This phase, originally addressed as
dynamical normal phase [18], shows subharmonic oscil-
lations between the two Z2 symmetry broken even and odd
DW states and is closely related to the DTC phase proposed
in the open Dicke model [19]. In the thermodynamic limit,
N → ∞, the Dicke model can be transformed into a
parametrically driven coupled oscillator system with two
polaritonic states. Driving at twice the lower polariton
frequency leads to an instability, which gives rise to a
period-doubling response in the full atom-cavity model
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(cf. Ref. [31]). In the following, we describe the exper-
imental realization of a DTC in our atom-cavity system and
analyze its properties as a time crystal.
Each experimental sequence begins with preparing the

atom-cavity system in the self-organized DW phase (see
Ref. [31]). An example of a time sequence for the pump is
shown in Fig. 1(b). For t < −5TD the system is in the BEC
phase. The intracavity photon number NP is zero and the
observed momentum spectrum in the upper panel of
Fig. 1(d) shows the BEC mode at zero momentum and
two Bragg resonances at �2ℏk along the y direction,
associated with the matter grating induced by the pump
wave. This grating is illustrated in the lower panel of
Fig. 1(d) by showing the single-particle density distribution
obtained from a mean-field model (see Ref. [31]). The self-
organization transition into the DW phase is observed in

Fig. 1(c) around t ≈ −5TD, as evidenced from a significant
increase in the intracavity photon number NP and the
locking of the relative phase ϕ between the pump and
cavity fields at a constant value ϕ ≈ 0. A momentum
spectrum, characteristic for the DW phase, is shown in
the upper panel of Fig. 1(e) for t ¼ 0. The occupation of the
momentum modes fpy; pzg ¼ f�ℏk;�ℏkg signals the
formation of an intracavity checkerboard matter grating,
as illustrated by the calculated single-particle density
distribution, shown in the lower panel. The two possible
energetically degenerate DW states can be distinguished by
their associated values of the phase ϕ ¼ 0 or ϕ ¼ π for odd
and even realizations, respectively [37]. We measure NP
and ϕ using a balanced heterodyne detection scheme [38].
The probability for the occurrence of the odd and even DW
configurations is found to be close to 50% (see Ref. [31]),
which confirms that the discrete symmetry breaking in the
chequerboard DW phase is well established in our system.
Upon preparation of the DW phase, in the time interval

delimited by the vertical dashed lines, we linearly increase
the modulation strength f0 in 500 μs from zero to its final
value [see Fig. 1(b)]. Subsequently, f0 is kept constant for
5 ms, such that the pump strength evolves according to
ϵ ¼ ϵ0½1þ f0 sinðωDtÞ�. The dynamical response seen in
Fig. 1(c) for positive t presents the key observation of this
work: the emergence of a DTC phase characterized by
pulsating behavior of the intracavity photon number NP
(red trace) and a period-doubling response of the relative
phase ϕ (blue trace). The presence of intracavity photons
highlights the many-body aspect of the DTC phase since
they induce a retarded infinite-range interaction or all-to-all
coupling between the atoms. The period-doubling dynam-
ics arises in the relative phase ϕ. As ϕ switches from zero to
π or vice versa after one modulation cycle, the atomic
ensemble self-organizes from one type of checkerboard
lattice [see Fig. 1(f)] to its symmetry-broken partner [see
Fig. 1(h)]. That is, the system requires two modulation
cycles to return to its initial configuration. After half of a
modulation period, the system crosses from the DW phase
with significant occupation of the cavity mode, to the BEC
phase, where the cavity is almost empty. This behavior,
corroborated by the momentum distribution in Fig. 1(g), is
responsible for the pulsating intracavity photon number in
Fig. 1(c) (red trace).
In Figs. 2(a)–(f), we present the various dynamical

regimes accessed by tuning the modulation strength. For
weak modulation [see Figs. 2(a) and 2(d)], the system stays
in the DW phase and the relative phase remains locked to its
value before the pump modulation. For intermediate
modulation strength, the relative phase exhibits period-
doubling dynamics [see Fig. 2(b)], resulting in a subhar-
monic peak at ω ¼ ωD=2 in the Fourier spectrum in
Fig. 2(e). Increasing the modulation strength even further
leads to chaotic dynamics dominated by heating and loss of
spatiotemporal coherence [see Figs. 2(c) and 2(f)]. In
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FIG. 1. Dissipative time crystal. (a) Schematic diagram of the
transversely pumped atom-cavity system. (b) Time sequence for
the pump with modulation strength f0 ¼ 0.3 and modulation
period TD ¼ 0.25 ms. In the time interval delimited by dashed
lines, f0 is linearly ramped from zero to its desired value. (c) The
corresponding response of the intracavity photon number NP
(red) and the relative phase ϕ between the pump and the cavity
light field (blue). (d)–(h) Top panels: momentum distributions
measured at instances of time marked by dashed arrows in (c).
Bottom panels: corresponding mean-field results for the single-
particle density distribution, which shows periodic switching
between even and odd DWs at twice the driving period.
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contrast to the coherent switching observed in the DTC
phase, the chaotic phase is characterized by intermittent
dynamics of the relative phase, whereby the system appears
to get stuck in one type of checkerboard pattern for two or
more consecutive driving cycles [see Fig. 2(c)].
Next, we test the robustness of the DTC against

variations of the system parameters and temporal pertur-
bations. To this end, we calculate the relative crystalline
fraction Ξ [6,7], defined by means of the amplitude of the
subharmonic peak in the normalized Fourier spectrum
SϕðωÞ of the relative phase ϕ rescaled by its maximum,
i.e., Ξ ¼ SϕðωD=2Þ=Smax;ϕ, where Smax;ϕ is the maximum
crystalline fraction measured in the parameter space
spanned by f0 ∈ ½0; 1� and ωD ∈ 2π × ½0; 9� kHz.
Figure 2(g) displays the relative crystalline fraction for
varying modulation parameters ωD and f0. We observe
large relative crystalline fractions Ξ > 0.2 for modulation
frequencies ωD ∈ 2π × ½2; 8� kHz signaling a robust DTC
order for a wide range of modulation parameters. Note that
the overall shape of the relative crystalline fraction in
Fig. 2(g) resembles the stability island of the DTC obtained
from numerical simulations using a simple mean-field
model (see Ref. [31], Fig. 3).
To explore the robustness of the DTC against temporal

perturbations, we introduce a disorder in time by super-
imposing Gaussian white noise onto the signal of the
pump strength. The noise strength is measured by

n≡P
2π×50 kHz
ω¼0 jEnoisyðωÞj=

P
2π×50 kHz
ω¼0 jEcleanðωÞj, where

Enoisy (Eclean) is the Fourier spectrum of the pump in the
presence (absence) of white noise. Figures 2(h)–(j) show
how the relative crystalline fraction changes with increas-
ing noise strength. The area with clear DTC response, i.e., a
large relative crystalline fraction, shrinks as the noise
strength increases. Nevertheless, we still find a sizable
region, where a DTC phase exists, for relatively large noise
strength [Fig. 2(j)]. For a fixed set of modulation para-
meters marked by the red crosses in Figs. 2(g)–(j), typical
single-shot results for varying noise strengths are depicted
in Figs. 3(a)–(d). Note that even for a strongly distorted
pump signal, as in Figs. 3(c) and 3(d), the system still
switches multiple times between the two sublattices before
the intracavity photons disappear. The relative crystalline
fraction at fixed modulation parameters decreases with
increasing noise strength, as shown in Fig. 3(e). The small
offset for large noise strength n > 25 is due to the back-
ground noise in the Fourier spectrum [see Fig. 2(f)]. Our
experimental findings suggest that the DTC in the modu-
lated atom-cavity system is robust against fluctuations not
only from the nonunitary dynamics of the dissipative cavity
but also from temporal disorder added via driving.
Finally, we address the decay of the time-translation

symmetry breaking response in the DTC phase, for
example, seen in Fig. 3(a). The experimental lifetimes of
time crystal implementations are generally finite due to a
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FIG. 2. Dynamical regimes. Dynamics of the relative phase ϕ for (a) f0 ¼ 0.05, (b) f0 ¼ 0.25, and (c) f0 ¼ 0.95 with fixed
ωD ¼ 2π × 4 kHz. (d)–(f) Corresponding Fourier spectra of the dynamics in (a)–(c). As the modulation strength is increased, the system
transforms from a DW to a DTC phase. Strong modulation leads to heating and chaotic behavior. (g)–(j) Dynamical phase diagram
showing the relative crystalline fraction Ξ as a function of the modulation frequency ωD and strength f0 for (g) clean modulation,
(h) weak noise strength n ¼ 9.6, (i) intermediate noise strength n ¼ 15.9, and (j) large noise strength n ¼ 22.3. The diagram is
constructed by dividing the parameter space into 18 × 18 plaquettes and within each averaging over multiple experimental runs (at least
four realizations). Red crosses in (g)–(j) mark the modulation parameters used in Figs. 3(a)–(d). Increasingly large noise strengths shrink
the area in the phase diagram where a stable DTC phase prevails.
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combination of technical limitations and undesired relax-
ation dynamics [5–7,16,17]. In our experiment, the main
cause for the decay of time-crystal dynamics can be
attributed to two factors: (i) short-range collisional inter-
action and (ii) atom losses. In the case of the open Dicke
model, the all-to-all coupling between the atoms makes it
amenable to a mean-field description. In this theoretical
limit, the mean-field solvability of the Dicke model
provides the Dicke DTC with the necessary long-range
spatiotemporal order and robustness such that it can persists
to infinitely long times[19,20]. However, when mean-field
breaking terms are present, the DTC may become unstable,
leading to a decay of the symmetry breaking response [20].
In the atom-cavity system, the short-range interaction
between the atoms competes with the collective coupling,
induced by the cavity photons, and breaks the mean-field
solvability of the model. To investigate the damping effects
of short-range interaction and atom loss, we employ the
truncated Wigner approximation (TWA). The transversely
pumped atom-cavity system is thereby modeled by con-
sidering only the degrees of freedom along the pump (y
direction) and the cavity (z direction) axes (see Ref. [31]).
The short-range interaction is quantified in terms of the
mean-field collisional interaction energy Ea ¼ ðUa=NaÞ×R
dydzjψ0ðy; zÞj4, where Ua denotes the effective two-

dimensional interaction strength (see Ref. [31]), Na is the
number of atoms and ψ0ðy; zÞ is the wave function of the
homogeneous BEC. We also include in our model a
phenomenological atom loss channel described by
dNa=dt ¼ −2γNa. We simulate the dynamics of the intra-
cavity photon number NP ¼ hâ†âi, where â (â†) is the
bosonic operator that annihilates (creates) a photon in the
single-mode cavity. To characterize temporal long-range

order, we calculate the two-point temporal correlation
function CðtÞ ¼ Re½ha†ðtÞaðt0Þi�=ha†ðt0Þaðt0Þi at t0 ¼ 0,
the time before the modulation is switched on.
The resulting evolution of NPðtÞ and CðtÞ is studied in

Fig. 4 for different values of Ea. First, we consider the
dynamics in the absence of atom loss. For weak interaction
strength Ea ¼ 0.08Erec, NPðtÞ and CðtÞ in the green traces
of Fig. 4 are practically indistinguishable from the findings
for Ea ¼ 0 in the blue traces. However, stronger short-
range interactions with Ea ¼ 0.30Erec lead to a metastable
DTC, where the period-doubling oscillations in CðtÞ decay
after a few cycles, as seen in the red trace in Fig. 4(b). This
translates to irregular dynamics of the corresponding
intracavity photon number NPðtÞ [red trace in Fig. 4(a)]
in the long-time regime. Introducing an atom loss channel
with γ ¼ 40 s−1, which models the observed atom decay
rate in the experiment, yields exponentially decaying
behavior as shown in the black traces in Fig. 4. This
behavior closely resembles the characteristic exponential
decay of NP in our experiment, such that the cavity is
almost empty for t=TD > 15 [see Figs. 3(a)–(d)]. Atom loss
leads to a trivial suppression of the atom-cavity coupling
and hence of intracavity photons. When the number of
intracavity photons falls below the detection level, the
relative phase ϕ becomes ill-defined leading to the fast and
irregular oscillations of ϕ seen in Figs. 3(a)–(d) for late
times. Since we are operating close to the phase boundary
between the DW and the normal phase the system is very
sensitive to atom loss, which primarily limits the DTC
lifetime in the experiment.
Our observations confirm the realization of a dissipative

time crystal in an atom-cavity system with the defining
feature of period-doubling dynamics. This quintessential
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FIG. 3. Robustness of subharmonic response. (a)–(d) Single-shot experimental runs for the noise strengths applied in Figs. 2(g)–(j)
and for values of ωD and f0 according to the red crosses in these figures. Top panels: single-shot protocols for the pump strength. Bottom
panel: corresponding time evolution of the relative phase ϕ (blue trace) and intracavity photon numberNP (red trace). (e) Dependence of
the relative crystalline fraction Ξ on the noise strength averaged over 7 experimental runs with f0 ¼ 0.2 and ωD ¼ 2π × 4 kHz. The gray
dashed lines mark the noise strengths used in (a)–(d).
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DTC is robust against changes of the system parameters
and temporal perturbations added to the drive, thereby
fulfilling the robustness property of time crystals.
Numerical results based on a simplified semiclassical
model imply that short-range interaction and atom loss
limits the lifetime of the DTC phase.

This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) SFB-
925 Project No. 170620586 and the Cluster of Excellence
Advanced Imaging of Matter (EXC 2056), Project
No. 390715994.

Note added in the proof.—During submission of this work,
a subsequent example of dissipative time crystal was
reported in an all-optical system [39].
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4.2 Incommensurate discrete time crystal

After realizing the first DTC by modulating the pump’s intensity, in this section, mo-
tivated by a theoretical investigation by J. Cosme et. al. in 2019 [87], we modulate
the phase of the pump potential instead. The proposal predicts the observation of an
ITC in the shaken atom-cavity system. The phase modulation of the standing wave
potential is realized by an EOM placed between the BEC and the reto-reflected mir-
ror, see fig. 2.1. The time-dependent phase can be written as ϕp(t) = f0 sin(ωdrt),
where f0 is a modulation strength and ωdr is a modulation frequency. We also devel-
oped a model to describe the dynamic of the shaken atom-cavity system, presented
in publication III: Parametrically driven dissipative three-level Dicke model [3].

4.2.1 Publication II & III: Realization of periodically driven open
three-level Dicke model

Publications II and III show that the three states involved in the incommensurate
time crystalline dynamics are |BEC⟩, |DW ⟩, and |BDW ⟩ states, see the theoretical
model in section 3.3, while the standard two-level Dicke model spanned by only
|BEC⟩ and |DW ⟩. The shaking of the standing wave pump potential enables the
coupling to the third state, |BDW ⟩ state, see eq. (3.10), resulting in a dynamical
phase called a dynamical bond density wave (DBDW) phase.

The main feature of the DBDW phase is an oscillation between the two symmetry-
broken states which is reflected in the oscillation of the phase difference between the
pump field and the intra-cavity light field ϕc

1, the main frequency contribution of
which follows the relation: ωDW = ωdr − ωBDW, where ωBDW is the |BDW ⟩ state
resonance frequency. Note that the ratio between the response frequency and the
driving frequency, ωdr/ωDW, can take irrational values, unlike the sub-harmonic
response of the observable in publication I. Therefore, together with evidence of ro-
bustness against temporal perturbations and the observation of persistent oscillations
in a finite area in the relevant parameter space, the DBDW phase can be classified
as an incommensurate time crystal (ITC). The observed ITC can be simulate well
by the parametrically driven three-level open Dicke model, presented in publication
III.

Status of the publication:
The results were published as joint publication II and III in December 2021 in Phys-
ical Review Letters [2] and Physical Review A [3], respectively. The corresponding
supplemental material for publication II can be found in appendix B.

Note:
Due to a mismatch between notation used in different publications and this thesis,
I would like to improve the readability of the publication by listing the notation
changes in table 4.2.

1Note that it is the same observable as in publication I but with an incommensurate response.
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parameters this thesis publication II & III
pump strength ϵp ϵ

phase of the standing wave pump potential ϕp ϕ
phase difference between the intra-cavity

ϕc φand the pump fields

Table 4.2: Notation differences between this thesis and publication II and III.
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A periodically driven open three-level Dicke model is realized by resonantly shaking the pump field
in an atom-cavity system. As an unambiguous signature, we demonstrate the emergence of a dynamical
phase, in which the atoms periodically localize between the antinodes of the pump lattice, associated with
an oscillating net momentum along the pump axis. We observe this dynamical phase through the periodic
switching of the relative phase between the pump and cavity fields at a small fraction of the driving
frequency, suggesting that it exhibits a time crystalline character.

DOI: 10.1103/PhysRevLett.127.253601

Rapid technological advances have elevated cold-atom
systems to preeminent platforms for realizing model
systems of quantum–many body dynamics [1–6]. An
intriguing subclass is hybrid light-matter systems, which
are composed of cold atoms coupled to an optical cavity,
and display a strongly enhanced light-matter interaction,
giving access to the physics of strong light-matter coupling
and long-range correlations [7,8]. A specific feature of
these platforms is the well controlled dissipation, which
allows for fast nondestructive in situ monitoring of the
system dynamics [8–15]. One of the fundamental models
for light-matter interaction is the Dicke model [16,17].
It describes a collection of N two-level systems coupled to a
single light mode and displays a phase transition between a
normal and a superradiant phase [16]. An open version of
the Dicke model with a weak dissipation channel is
approximately realized by a Bose-Einstein condensate
(BEC) placed in a linear standing wave optical cavity and
pumped by an optical standing wave oriented perpendicu-
larly with respect to the cavity axis [10,11,15,18–26]. The
normal phase is characterized by a BEC, light shifted by the
pump potential, with a homogeneous density distribution
along the cavity axis and a small number of photons in the
cavity that do not display coherence. The superradiant phase
shows a density grating enabling pronounced scattering of
photons from the pump into the cavity and vice versa.
Various extensions of the standard two-level Dicke model
have been proposed and realized using atom-cavity systems,
such as the spin-1 Dicke model [27,28] and the two-
component Dicke model [29–31], all sharing the coupling
of two-level systems to the same monochromatic light mode.
The extension of the Dicke model to the case of three-

level systems has been theoretically considered in
Refs. [32–34]. A specific example in a ring cavity has
been used to experimentally demonstrate subradiance [35].

In the present work, we experimentally realize the peri-
odically driven open three-level Dicke model by shaking
the standing wave pump potential in an atom-cavity system
as depicted in Fig. 1(a). It has been predicted in Ref. [36]
that this enables a dynamical phase, characterized by atoms
periodically localizing between the antinodes of the pump
lattice, i.e., on the intersite bonds, which has been called
dynamical bond density wave (DBDW) phase. This
DBDW phase exhibits time crystalline character and is a
characteristic signature of the periodically driven open
three-level Dicke model. Its experimental observation is
the central topic of this work.
We define the three-level Dicke model to describe the

interaction between a single quantized light mode and N
three-level atoms comprising energy eigenstates j1i, j2i,
and j3i in a V configuration. Its Hamiltonian is

H=ℏ ¼ ωâ†âþ ω12Ĵ
12
z þ ω13Ĵ

13
z

þ 2
ffiffiffiffi
N

p ðâ† þ âÞðλ12Ĵ12x þ λ13Ĵ
13
x Þ: ð1Þ

The bosonic operator â (â†) annihilates (creates) a photon
with frequency ω. The frequency detuning between the
lowest energy state j1i and the other two states j2i and j3i
are ω12 and ω13, respectively. For small detuning ω23

between the states j2i and j3i, i.e., when ω23 ≪ ω12;ω13,
the only relevant light-matter interactions are those that
couple state j1i with states j2i and j3i, the strengths of
which are given by λ12 and λ13, respectively. We introduce
the pseudospin operators Ĵlμ with l ∈ f12; 13; 23g, which
are related to the eight generators of the SU(3) group [37].
Note that the Gell-Mann matrices, the standard represen-
tation of the SU(3) group, can be obtained by an appro-
priate superposition of Ĵlμ [37]. Equation (1) is an extended
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form of the two-component Dicke model [29–31]. However,
the latter obeys the SU(2) algebra, while the pseudospin
operators in Eq. (1) fulfill the SU(3) algebra, instead.
To implement the three-level Dicke model, we consider

atoms in their electronic ground state occupying the
following three momentum states forming a V-shaped
level structure (see Fig. 1 in Supplemental Material
[38]). The ground state is the so called BEC state jBECi
given by the zero momentum state j0; 0i with respect to the
yz plane, light shifted by the pump field by an amount
−ϵ=2, where ϵ denotes the potential depth of the pump
wave [37]. The first excited state is the superpositionP

ν;μ∈f−1;1g jνℏk; μℏki of the four momentum modes
j� ℏk;�ℏki associated with the yz plane, light shifted
by the pump field by an amount −3ϵ=4 (here, k denotes the
wave number of the pump field) [37]. In view of its
spatially varying density ∝ j cosðkyÞ cosðkzÞj2, it is denoted
as the density wave state jDWi. The light shift for jDWi is
larger compared to that of jBECi, since the density
distribution of jDWi is localized in the antinodes of the

pump field [37]. The two states jBECi and jDWi span the
matter sector of the regular two-level Dicke model. If ϵ
exceeds a critical value ϵcrt, jBECi acquires an admixture of
jDWi. A Bragg grating is thus imprinted upon the density
of the jBECi state, which via efficient scattering of pump
light builds up a coherent intracavity light field. The jBECi
state, thus dressed by the cavity field, is denoted super-
radiant phase. In this work, we operate either with ϵ < ϵcrt
or with ϵ only very slightly above ϵcrt, such that the
additional dressing by the cavity field is zero or negligibly
small. The second excited state is associated with the
momentum state superposition

P
ν;μ∈f−1;1g νjνℏk; μℏki.

This state exhibits the smallest light shift −ϵ=4, because
its density distribution ∝ j sinðkyÞ cosðkzÞj2 matches with
the nodes of the pump wave [37]. This state is called bond
density wave (abbreviated jBDWi) as its density maxima
coincide with the bonds between two potential minima of
the pump wave. We denote the energy separation between
jDWi and jBECi as ℏωD, and that between jBDWi and
jBECi as ℏωB, respectively. See Supplemental Material for
a more detailed description [38].
In the atom-cavity implementation of the standard Dicke

model, jBDWi is not coupled to jBECi and hence can be
dropped. To implement a coupling between jBDWi and
jBECi, the transverse pump lattice is periodically shaken in
space [36]. In Ref. [37], we show that the Hamiltonian for
the shaken atom-cavity system can be mapped onto a
parametrically driven version of the three-level Dicke
model.

H=ℏ ¼ ωâ†âþ ĴDz ωD þ ĴBzωB þ 2ϕðtÞðωB − ωDÞĴDB
x

þ 2λ
ffiffiffiffi
N

p ðâ† þ âÞ½ĴDx − ϕðtÞĴBx �; ð2Þ

where ϕðtÞ ¼ f0 sinðωdrtÞ is the time-dependent spatial
phase of the pump lattice introduced by the shaking
protocol, and λ is the overall coupling strength parameter.
The pseudospin operators ĴDμ and ĴBμ with μ ∈ fx; y; zg
are directly associated with the jDWi and the jBDWi
states via the relations to their order parameters ΘDW≡
hcosðkyÞcosðkzÞi¼hĴDx i and ΘBDW ≡ hsinðkyÞ cosðkzÞi ¼
hĴBx i, respectively. Comparing Eqs. (1) and (2), we identify
Ĵ12μ ¼ ĴDμ , Ĵ13μ ¼ ĴBμ , Ĵ23μ ¼ ĴDB

μ , ω12 ¼ ωD, ω13 ¼ ωB,
λ12 ¼ λ, and a time-dependent light-matter coupling
λ13 ¼ −ϕðtÞλ. Moreover, in Eq. (2), the standing wave
potential of the pump introduces an additional albeit
negligible term proportional to ĴDB

x , which couples
jDWi and jBDWi [37].
For driving frequencies ωdr slightly above ωB, the DBDW

phase shows periodic oscillations of ΘBDW and ΘDW around
zero with frequencies ωBDW and ωDW, respectively. Theory
predicts the relation ωDW ¼ ωdr − ωBDW such that ωDW
is not an integer fraction of the driving frequency ωdr [36].
This is a hallmark of an incommensurate time crystal [36].

(a)

(c)

(b)

FIG. 1. (a) Schematic of the transversely pumped and shaken
atom-cavity system. A sample of cold atoms is placed in a cavity
oriented along the z axis. A standing wave potential is periodi-
cally shifted along the y axis using phase modulation techniques.
(b) Dynamical phase diagram with two distinct regions: In the red
area, the dynamics of the system is captured by a two-level Dicke
model. In the blue area, a three-level Dicke model is required.
(c) Dynamics of the product of the relevant order parameters for
strong driving in the three-level Dicke regime (blue) and for weak
driving in the two-level Dicke regime (red). The modulation
frequency is ωdr=2π ¼ 9.4 kHz and ωB=2π ¼ 8 kHz.
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Thus, the long-time average ofΘDW is zero in the three-level
Dicke region of the dynamical phase diagram, while it is
nonzero in the two-level Dicke region for an initial super-
radiant phase. This behavior is captured in Fig. 1(b), which
shows the time-averaged value of hĴDx i=N ≡ jDx obtained by
solving the equations of motion corresponding to Eq. (2) in
the semiclassical limit of a large atom number [37].
The DBDW dynamics may be experimentally studied

via the product of the order parameters ΘDW × ΘBDW,
which can be approximately measured by the normalized
occupation imbalance ΔF̃≡ ðFþ1;�1 − F−1;�1Þ=ðFþ1;�1−
F−1;�1Þmax, where F�1;�1 denotes the population of the
momentum state j � ℏk;�ℏki (see Supplemental Material
for details [38]). In the standard Dicke model realized for
off-resonant driving, ΘBDW ≈ 0 and ΔF̃ is negligible.
On the other hand, for driving frequencies ωdr slightly
above ωB, a beating signal is expected inΘDW × ΘBDW [see
Fig. 1(c)], which can be observed via ΔF̃. Furthermore,
the periodic switching of ΘDW in the three-level model
amounts to a periodic switching of the experimentally
observable relative phase of the pump and the cavity fields
φ≡ argðhâiÞ between 0 and π.
In our experiment, a BEC of 87Rb atoms is superimposed

with the fundamental mode of a high-finesse optical cavity
pumped by a retroreflected laser beam at wavelength
λP ¼ 803 nm. The resulting optical pump lattice has a
depth ϵ and is aligned perpendicular to the cavity axis,
as depicted in Fig. 1(a). The cavity has a field decay rate
κ ¼ 2π × 3.6 kHz comparable to the recoil frequency
ωrec ≡ ℏk2=2m (m ¼ atomic mass), such that the cavity
field and the atomic density distribution evolve on similar
timescales. This leads to a retarded infinite-range cavity-
mediated interaction between the atoms [13]. The system
realizes the Dicke phase transition from a homogeneous
BEC to a superradiant phase if ϵ exceeds a critical strength.
TheZ2 symmetry is spontaneously broken, when the atoms
localize at either the even or odd sites of a two dimensional
checkerboard optical lattice formed by the interference
between the pump and intracavity fields. The two sym-
metry broken states can be distinguished by the relative
phase difference φ between the pump and intracavity light
fields using a balanced heterodyne detection of the cavity
field. The appearance of the superradiant phase can be
detected in situ by the observation of a nonzero cavity mode
occupation NP [see red line in Fig. 2(b)], the locking of the
relative φ to zero or π [see green line Fig. 2(b)], or in a
destructive way through a nonzero occupation of the
fpy; pzg ¼ f�ℏk;�ℏkg modes in a momentum spectrum
[see Fig. 2(g)].
The experimental sequence proceeds as follows. We

prepare the system in the BEC phase or in the superradiant
phase close to the phase boundary towards the BEC phase,
followed by a 500 μs long waiting period to let the system
reach its steady state. Then, we shake the pump potential
by modulating the phase of the pump field using an

electro-optical modulator. The modulation strength f0 is
linearly increased to its desired value within 500 μs and
kept constant for 6.5 ms. A typical sequence of the pump
protocol is presented in Fig. 2(a). Resonant driving induces
a switching of the system between the two possible
sublattices of the superradiant phase at a frequency ωDW
and the intracavity photon number pulsates at a rate of
2ωDW. This behavior is exemplified in the green and red
curves in Fig. 2(b).
In Fig. 3(a), we plot ωDW as a function of ωdr and

average each data point over 100 experimental runs
including different modulation strength f0. The solid gray
trace shows a linear fit. We find good agreement with the
theoretical prediction ωDW ¼ ωdr − ωBDW of Ref. [36].
In Supplemental Material, we present a similar plot for
fixed ωdr and varying f0 to show that the dependence
of ωDW on f0 is very weak and negligible within the
experimental precision [38]. From the linear fit in Fig. 3(a),

N
N

F

FIG. 2. Single-shot realization of DBDW order. (a) Time
sequence for the pump lattice depth (blue) and the phase ϕ of
the pump field (red) with modulation strength f0 ¼ 0.1π and a
modulation frequency ωdr ¼ 11.5 kHz. (b) Phase difference φ
between the pump and intracavity field (green trace) and photon
number NP in the cavity (red trace). The dashed vertical lines
mark the time interval during which the modulation strength is
increased. The gray shaded area shows the time window for the
close-up presented in (c). (c) The red trace repeats the intracavity
photon numberNP from (b). The blue data points plot the product
ΘDW × ΘBDW, approximately given by ΔF̃ [see also Fig. 1(c)].
Each data point is averaged over five realizations. The solid line
shows a fit with a product of two harmonic oscillations. (d)–(h)
Single-shot momentum distributions recorded at the times
marked in (c).
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we extract the value of the parametric resonance as
ωBDW ¼ 9.93� 0.30 kHz. In Supplemental Material, we
also present an alternative protocol for measuring ωBDW
from the depletion of the cavity field for resonant modu-
lation [38]. In Fig. 3(b), we present the dynamical phase
diagram, highlighting the DBDW order obtained from
measuring the relative crystalline fraction Ξ quantified
by the color scale. The relative crystalline fraction is a
quantity commonly used in studies of time crystals. Here,
we define it as the amplitude of the Fourier spectrum,
calculated from the relative phase φ, at the expected DW
frequency ωDW, rescaled by its maximum value across
the parameter space spanned in the phase diagram [15].

The observed DW frequency follows the linear equation
ωDW ¼ ξ × ωdr − ωBDW with ξ determined according to the
linear fit in Fig. 3(a) as 0.98, i.e., very close to the expected
value of unity. This incommensurate subharmonic response
of the system with respect to the modulation frequency ωdr
is observed within a broad area of the dynamical phase
diagram in Fig. 3(b). In Supplemental Material, we present
the robustness of the subharmonic response against tem-
poral noise, which corroborates the classification of this
dynamical phase as an incommensurate time crystal.
Finally, we discuss the observed dynamics of the

momentum imbalance parameter ΔF̃ related to the calcu-
lations in Fig. 1(c). The oscillation frequencies ωDW and
ωBDW are extracted from the data in Fig. 2(c) using fðtÞ ¼
expð−τtÞA sinðωBDWtþ αÞ sinðωDWtÞ as a fit function.
Here, τ is the decay rate of NP and A is an overall amplitude
parameter. This measurement demonstrates a third option for
measuring ωBDW. However, since recording the momentum
spectra is a destructive measurement, this method is
much more time consuming than simply detecting the light
leaking out of the cavity, which makes it extremely difficult
to explore large areas in the parameter space. Nevertheless,
we repeated this measurement for a second set of modulation
parameters shown in Supplemental Material [38]. The
frequency ωBDW is independent of ωdr and we measure
ωBDW ¼ 2π × 9.8� 0.1 kHz. For a driving frequency of
ωdr ¼ 11.5 kHz, we measure a slow oscillation frequency
of ωDW ¼ 2π × 1.8� 0.1 kHz [see Fig. 2(c)], which
agrees well with the theoretical prediction of ωDW ¼
ωdr − ωBDW ¼ 2π × ð11.5 − 9.8Þ kHz ¼ 2π × 1.7 kHz.
While we have mostly focused on the case when initially

the superradiant state is prepared, we have also confirmed
that it is possible to enter the three-level regime heralded
by the emergence of the DBDW phase by initializing with
the homogeneous BEC or normal phase as exemplified
in Fig. 4.

(a)

(b)

dr

dr

D
W

DW = 0.98  x  dr - 9.93

FIG. 3. (a) ωDW is plotted against ωdr. ωDW is extracted by the
position of a Gaussian fit of the amplitude spectrum calculated
from the measured time evolution of the phase difference between
the pump and cavity fields φ. Each data point is averaged over
hundreds of realizations with different modulation strength f0
and fixed ωdr. The gray line is a linear fit yielding the result
shown in the plot legend. (b) The relative crystalline fraction Ξ is
plotted as a function of the modulation frequency ωdr and
strength f0. The diagram is constructed by dividing the parameter
space into 20 × 16 plaquettes and averaging over multiple
experimental runs within each.

dr

(a)

(b)

FIG. 4. Dynamics in the three-level Dicke regime using an
initial homogeneous BEC state. (a) Time sequence for the pump
lattice depth (blue) and the phase ϕ of the pump field (red) with
modulation strength f0 ¼ 0.1π and a modulation frequency
ωdr ¼ 11.5 kHz. (b) The phase difference φ between the pump
and intracavity field is plotted in green and the photon numberNP
in the cavity in red.
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The finite lifetime of the emergent DBDW phase in our
experiment can be mainly attributed to atom losses.
Furthermore, we note that our numerical simulations
indicate that contact interactions [36] and larger detunings
ωdr − ωB [38] decrease the lifetime of the time crystalline
response. In the experiment, however, it is difficult to
quantitatively separate the effects of atom losses, contact
interaction, and detuning from the resonance.
In conclusion, we have realized a periodically driven

open three-level Dicke model using a resonantly shaken
atom-cavity system. As the main signature of the three-
level Dicke model, we have demonstrated the emergence of
a dynamical bond density wave phase. When prepared
in the three-level Dicke regime, our system realizes an
incommensurate time crystal, whereby the atoms periodi-
cally self-organize along the bonds of the pump lattice. This
advances the understanding of cavity-BEC systems beyond
the standard two-level Dicke model, and broadens the
scope of dynamically induced many-body states in this and
related hybrid light-matter systems.
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We investigate the three-level Dicke model, which describes a fundamental class of light-matter systems.
We determine the phase diagram in the presence of dissipation, which we assume to derive from photon
loss. Utilizing both analytical and numerical methods we characterize the incommensurate time crystalline,
light-induced, and light-enhanced superradiant states in the phase diagram for the parametrically driven system.
As a primary application, we demonstrate that a shaken atom-cavity system is naturally approximated via a
parametrically driven dissipative three-level Dicke model.
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I. INTRODUCTION

The Dicke model is a paradigmatic model capturing the
physics of a fundamental class of light-matter systems [1].
The standard two-level Dicke model describes the interaction
between N two-level systems and a quantized single-mode
light field. The dissipative or open standard Dicke model was
first realized by using an atom-cavity setup allowing for an
approximate description, in which the intracavity light field
is adiabatically eliminated [2]. Later, it was also implemented
in the recoil-resolved regime, which requires independent dy-
namical descriptions of the cavity and the matter field [3].
Meanwhile, extensions of the two-level Dicke models [4–11]
and variations of the transversely pumped atom-cavity sys-
tems [12–19] have been studied.

An important class of quantum optical phenomena de-
rive from three-level systems interacting with light. These
phenomena include electromagnetically induced transparency
(EIT) [20,21] and lasing without inversion (LWI) [22,23], as
well as methods such as stimulated Raman adiabatic passage
(StiRAP) [24,25]. They are based primarily on three-level
systems in a λ or a V configuration. These three-level system
configurations occur naturally in numerous physical systems,
which is the origin of the universality of the phenomena that
derive from them. In the context of the Dicke model, its
generalization to three-level atoms interacting with a multi-
mode photonic field has been proposed in Ref. [26]. A similar
three-level model has been used to demonstrate subradiance
[27–30].

In this work, we study a system of three-level atoms cou-
pled to a photonic mode modeled by a three-level Dicke
mode, in which the three-level system forms a V configura-
tion, as depicted in Fig. 1(a). The three-level system can be
described by using pseudospin operators following the algebra
of the SU(3) group. Our representation maps onto the standard
SU(3) basis, the Gell-Mann matrices [31], spanning the Lie

algebra in the defining representation of the SU(3) group. The
Gell-Mann matrices are commonly used in particle physics
to explain color charges [32,33]. We obtain the equilibrium
phase diagram of the three-level Dicke model in the presence
of dissipation due to photon loss. Moreover, we show that
periodic driving of the light-matter interaction strength may
lead to the emergence of new nonequilibrium phases, such as
an incommensurate time crystal (ITC), light-induced superra-
diance (LISR), and light-enhanced superradiance (LESR).

Here, we present a comprehensive discussion of a para-
metrically driven three-level Dicke model. We discuss its
dynamical phase diagram including the incommensurate crys-
talline phase, predicted by us in Ref. [34] and experimentally
implemented in Ref. [35]. We show that this phase is a char-
acteristic signature of the driven three-level Dicke model. We
give a detailed account of how this model can be approxi-
mately implemented by a light-driven atom-cavity system.

This work is organized as follows: In Sec. II, we introduce
the three-level Dicke model and discuss its phase diagram. We
explore the dynamical phase diagram of the driven three-level
Dicke model in Sec. III. The mapping of a shaken atom cavity
system onto the periodically driven three-level Dicke model is
presented in Sec. IV. In Sec. V, we conclude this paper.

II. THREE-LEVEL DICKE MODEL

We are interested in the properties of the three-level Dicke
model for a system of N three-level atoms interacting with
a quantized light mode, as schematically shown in Fig. 1(a).
Each atom has three energy states |1〉, |2〉, and |3〉. We define
the three-level Dicke model by the Hamiltonian

H/h̄ = ωâ†â + ω12Ĵ12
z + ω13Ĵ13

z

+ 2√
N

(â† + â)
(
λ12Ĵ12

x + λ13Ĵ13
x

)
, (1)
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(b)

FIG. 1. (a) Three-level system coupled to a single light mode.
(b) Schematic diagram of the shaken atom-cavity system. The cavity
photon loss rate is κ . This atom-cavity configuration can emulate the
driven dissipative three-level Dicke model.

where ω is the photon frequency, ωnm is the detuning between
states |m〉 and |n〉, and λnm is the light-matter interaction
strength associated with the photon-mediated coupling be-
tween states |n〉 and |m〉. The bosonic operators â and â†

annihilate and create a photon in the quantized light mode,
respectively. There are three classes of pseudospin operators
Ĵ12
μ , Ĵ13

μ , and Ĵ23
ν with μ ∈ {z,±} and ν ∈ {±}, corresponding

to the transitions |1〉 ↔ |2〉, |1〉 ↔ |3〉, and |2〉 ↔ |3〉, respec-
tively. These operators obey the commutation relation of the
SU(3) algebra (see Appendix A). The x and y components
of the pseudospins are defined as Ĵ�

x = (Ĵ�
+ + Ĵ�

−)/2 and Ĵ�
y =

(Ĵ�
+ − Ĵ�

−)/2i, respectively, with � ∈ {12, 13, 23}.
Note that, in principle, there is a light-matter coupling

term proportional to Ĵ23
x in Eq. (1) [26]. However, this term

is neglected here since we are only interested in the case
when ω12 ≈ ω13. This leads to a negligibly small λ23 since
the light-matter coupling strength is proportional to the energy
difference between the relevant states [36,37]. Moreover, we
could also use the Gell-Mann matrices as the representation of
the SU(3) group in our system. To retain a form of the Hamil-
tonian reminiscent of the standard two-level Dicke model,
which is often written using a representation of the SU(2)
group, we instead use the pseudospin operators as described
above. Nevertheless, the Gell-Mann matrices can be obtained
from appropriate superpositions of the pseudospin operators
(see Appendix A).

The Hamiltonian in Eq. (1) is superficially similar to
the two-component Dicke model [9,10,16,17] (see also
Appendix B for a brief discussion). However, we emphasize
that, unlike in the two-component Dicke model, which de-
scribes two types of two-level systems coupled through the
light field, the pseudospin operators introduced in Eq. (1)
obey the SU(3) algebra resulting from the use of three-level
systems. This fundamentally changes the dynamics of the
parametrically driven system out of equilibrium since new

FIG. 2. Long-time average of the mean-field dynamics of the
(a) cavity mode occupation |a|2, (b) | j12

x |2, and (c) | j13
x |2 for ω =

ω12 = ω13 = κ . The black curve denotes the critical line separating
the normal and superradiant phases in the thermodynamic limit.

terms corresponding to additional spin operators are now
present in the equations of motion.

A. Holstein-Primakoff transformation

To obtain analytical predictions of the phase boundaries,
we employ a Holstein-Primakoff (HP) approximation in the
thermodynamic limit, i.e., N → ∞. This leads to the follow-
ing Hamiltonian:

H/h̄ = ωâ†â + ω12â†
12â12 + ω13â†

13â13

+ (â† + â)[λ12(â†
12 + â12) + λ13(â†

13 + â13)]. (2)

We obtain an elliptic equation for the critical light-matter cou-
pling from the stability matrix (see Appendix C for details):

(κ2 + ω2)

4ω
=

(
λ2

12

ω12
+ λ2

13

ω13

)
. (3)

In the standard open Dicke model, λ13 = 0, the critical light-
matter coupling, λcr = [(κ2 + ω2)(ω12/ω)]1/2/2, is recovered
[38]. To illustrate the resulting phases, we consider the case
ω = ω12 = ω13. Then, the critical line in Eq. (5) defines a
circle in the parameter space spanned by λ12 and λ13, as seen
in Fig. 2. For combinations of light-matter coupling strengths
{λ12, λ13} within the area enclosed by Eq. (5), the stable phase
corresponds to a normal phase (NP), while those outside the
area will lead to an instability towards the formation of a
superradiant phase (SP).

063705-2
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B. Phase diagram

Next, we employ a mean-field approximation 〈âĴ�
μ〉 ≈

〈â〉〈Ĵ�
μ〉 starting from Eq. (1) to obtain the dynamics of the

system in a semiclassical approximation (see Appendix D for
details). This approximation becomes exact in the thermody-
namic limit N → ∞ in or near the steady state. Furthermore,
we introduce the rescaled c numbers a ≡ 〈â〉/√N and j�μ ≡
〈Ĵ�

μ〉/N . The resulting mean-field equations of motion that
we simulate are shown in Appendix E. We further note that
the SU(3) group inherits two Casimir charges, a quadratic
C1 and a cubic C2. In contrast with this, the group SU(2)
has only one quadratic Casimir charge, namely, the total spin
J2 = (Jx )2 + (Jy)2 + (Jz )2. The expressions for the charges
are shown in Appendix A. We track these quantities when
solving the equations of motion to ensure convergence of
our numerical results. In our simulations, we initialize in
the normal phase j�μ = 0, except for j12

z = j13
z = −1/2. This

amounts to all the atoms initially occupying the lowest energy
state |1〉. We initialize the cavity field as a = 10−2.

An observable of interest is the occupation of the photonic
mode |a|2 because this differentiates the normal (|a|2 → 0
for N → ∞ ) and superradiant (|a|2 > 0) phases. Moreover,
we are interested in the magnitude of the x component of
the collective spin operators corresponding to the transition
|1〉 ↔ |2〉 and |1〉 ↔ |3〉, which are | j12

x | and | j13
x |, respec-

tively. In Fig. 2, we present the long-time average of |a|2, | j12
x |,

and | j13
x |, calculated by numerically solving the equations of

motion. Similar to the standard two-level Dicke model [39],
the photonic mode occupation or the x component of the pseu-
dospin operators can be regarded as order parameters because
they are zero in the NP and are nonzero in the SP. Furthermore,
we demonstrate in Fig. 2 that the onset of superradiance ac-
cording to our mean-field dynamics agrees with the analytical
critical line defined by Eq. (5). In the superradiant phase,
| j12

x | > | j13
x | for λ12 > λ13 and | j12

x | < | j13
x | for λ12 < λ13, as

inferred from Figs. 2(b) and 2(c).

III. PARAMETRICALLY DRIVEN OPEN
THREE-LEVEL DICKE MODEL

We now explore the parametrically driven three-level
Dicke model by the Hamiltonian

H/h̄ = ωâ†â + ωDĴD
z + ωBĴB

z + 2φ(t )(ωB − ωD)ĴDB
x

+ 2λ√
N

(â† + â)
(
ĴD

x − φ(t )ĴB
x

)
. (4)

This particular choice of the Hamiltonian is motivated by
its connection to the shaken atom-cavity system, which we
demonstrate and explore in more detail later. Comparing with
the undriven case in Eq. (1), it can be seen that ω12 = ωD,
ω13 = ωB, Ĵ12

μ = ĴD
μ , Ĵ13

μ = ĴB
μ , λ12 = λ. We define φ(t ) =

f0 sin(ωdrt ), which then means that λ13 = − f0 sin(ωdrt )λ.
This labeling is motivated by the association of the pseu-
dospins with the density wave states in the atom-cavity setup
discussed later in Sec. IV. For now, we simply note that the
photonic mode corresponds to a single cavity mode while
the operators ĴD

μ and ĴB
μ are associated with the density

wave (DW) and bond-density wave (BDW) states in the
shaken atom-cavity system, respectively [34]. A small term

proportional to Ĵ23
x ≡ ĴDB

x is included in Eq. (6) since this will
appear later when we show how the atom-cavity system can
be mapped onto the specific form of the parametrically driven
three-level Dicke model Eq. (6).

A. Holstein-Primakoff transformation

In Sec. II A, we have applied the HP transformation to the
undriven system described by Eq. (3). We now extend this
analysis to include the driving term. Applying the transfor-
mation and identifying d̂ ≡ â12 and b̂ ≡ â13, we obtain a HP
Hamiltonian shown in Eq. (F3) of Appendix F. In particular,
we are interested in d ≡ 〈d̂〉 and b ≡ 〈b̂〉.

We recall that, for a quantum harmonic oscillator, f̂ † =√
ωF /h̄[xF − (i/ωF )pF ] and f̂ = √

ωF /h̄[xF + (i/ωF )pF ].
Then, we can express the corresponding HP Hamiltonian in
momentum-position representation as

H = ω2

2
x̂2 + p̂2

2
+ ω2

D

2
x̂2

D + p̂2
D

2
+ ω2

B

2
x̂2

B + p̂2
B

2

+ 2λ
√

ωωDx̂x̂D − 2φ(t )λ
√

ωωBx̂x̂B

+ φ(t )(ωB − ωD)
√

ωDωB

(
x̂Dx̂B + p̂D p̂B

ωDωB

)
. (5)

This has the form of a Hamiltonian for three coupled oscilla-
tors: (i) the cavity oscillator, (ii) the DW oscillator, and (iii)
the BDW oscillator with frequencies ω, ωD, and ωB, respec-
tively. Here, the two coupling constants connecting the BDW
oscillator to the cavity and DW oscillators are periodically
switched on and off or parametrically driven. Interestingly,
due to the shaking of the pump, the momenta of the DW
and BDW oscillators are also periodically coupled, as seen
from the last term in Eq. (8). However, we find that this does
not alter the qualitative features of the dynamics, as shown in
Fig. 8 in Appendix E.

We initialize the system in the normal state corresponding
to having d = 0 and b = 0, which amounts to the absence
of bosons in the excited states |2〉 and |3〉, respectively. Note
that a small nonzero occupation of the photonic mode 〈â〉 ≡
a = 10−2 is necessary to push the system out of the normal
phase when it becomes an unstable state [9]. The dynamics is
obtained according to Eq. (F4) for varying driving strength f0

and driving frequency ωdr. A parametric resonance in a linear
system corresponding to a bilinear Hamiltonian, such as the
simplified toy model (F3), manifests itself as an oscillatory
solution with exponentially diverging amplitude. The dotted
curves in Figs. 3(a)–3(d) denote the points in the (ωdr, f0)
space, where (b + b∗) exceeds unity within the first 100 driv-
ing cycles, signaling a diverging solution (see also Fig. 5).
They indicate the regions where the normal phase is unstable
towards a different collective phase.

We identify two resonances responsible for the driving-
induced destabilization of the normal phase: (i) resonance
at the BDW oscillator frequency ωB and (ii) a sum reso-
nance involving ωB and the lower polariton frequency ωLP

of the atomic modes dressed by the cavity mode forming the
lower polariton state [40]. Note that we derive the expres-
sion for ωLP within the HP approach and we describe our
method for obtaining the lower polariton frequency by ex-
ploiting a parametric resonance in Appendix G. The resonance
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FIG. 3. Dynamical phase diagram for (a)–(d) λ = 0.98λcr and (e), (f) λ = 1.02λcr . Time-averaged (a), (e) j̃D
x and (b), (f) |̃ jB

x | taken over
100 driving cycles, τ = 100T , for varying modulation parameters. The dominant or peak frequency in the power spectrum of (c), (g) jD

x and
(d), (h) jB

x for ωdr > ωB. The dotted lines in panels (a) and (b) denote the instability boundary according to the oscillator model. In panels (c),
(d), (g), and (h), we are only showing the response frequencies ωDW and ωBDW for parameter sets, which yield |̃ jB

x | > 0.01 and j̃D
x < 0. Note

that we are rescaling the response frequencies in panels (c) and (g) to ωDW/(ωdr − ωB) and it is rescaled in panels (d) and (h) to ωBDW/ωB. The
vertical dashed lines in panels (a)–(d) correspond to the sum frequency ωsum = ωLP + ωB.

frequencies are identified as the driving frequencies with the
lowest modulation strength needed to induce an exponential
instability. For ωdr < ωB, the resonance frequency is close to

ωB. For ωdr > ωB, the sum resonance at ωsum = ωB + ωLP is
the main mechanism, as highlighted by the vertical dashed
line in Figs. 3(a)–3(d) (see also Fig. 5).

(a)

λ = 0.98λcr

(d)

λ = 1.02λcr

(b) (e)

(c) (f)

FIG. 4. Comparison between unmodulated and resonantly modulated dynamics for light-matter coupling strengths close to the NP-SR
phase of the unmodulated system, (a)–(c) λ = 0.98λcr and (d)–(f) λ = 1.02λcr . The relevant observables are the (a), (d) cavity mode occupation
|a|2, and the order parameters (b), (e) jD

x and (c), (f) jB
x . The modulation frequency is fixed at ωdr = 1.05ωB.
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FIG. 5. Time-averaged cavity mode occupation |a|2 taken over
100 driving cycles, τ = 100T , according to (a), (b) the three-level
Dicke model and (c), (d) the full atom-cavity model. For the three-
level model, the light-matter coupling strengths are (a) λ = 0.98λcr

and (b) λ = 1.02λcr . The broken lines denote the instability boundary
from the oscillator model. The vertical dashed line in panel (a) cor-
responds to the sum frequency ωsum = ωLP + ωB involving the lower
polariton frequency ωLP. ωLP has the value ωLP/2π ≈ 1.06 kHz for
this example. For the full atom-cavity model, the pump strengths
are (c) εp = 0.96εcr and (d) εp = 1.04εcr , which corresponds to λ =
0.98λcr and λ = 1.02λcr , respectively.

B. Dynamical phase diagrams

To further understand the resonant collective phases, we
obtain the dynamics of the system. Within the mean-field
approximation, we simulate the semiclassical equations of
motion shown in Appendix E. Similar to the HP theory in
the previous section, we initialize the system in the normal
phase with small nonzero occupation of the photonic mode
a = 10−2, We further choose j�μ = 0, except for jD

z = jB
z =

−1/2. In addition to the photonic mode occupation |a|2, we
are also interested in the x component of the pseudospins jD

x
and jB

x . Time is in units of the modulation period T = 2π/ωdr.
The parameters for the simulation are shown in Appendix H.

In Fig. 4, we present exemplary dynamics for reso-
nant modulation, specifically for ωdr = 1.05ωB. We choose
light-matter coupling strengths close to the phase boundary
between the normal and superradiant phases, specifically λ =
0.98λcr and λ = 1.02λcr, respectively. In the absence of driv-
ing, f0 = 0, we reproduce the prediction of a normal phase NP
and superradiant phase SP from the standard two-level Dicke

model. Periodic driving closed to but blue-detuned from ωB

leads to similar long-time behavior for λ < λcr and λ > λcr.
That is, the spin components related to the order parameters in
the atom-cavity system, jD

x and jB
x , periodically changes their

sign concomitant to pulses of light being emitted. The slow
subharmonic oscillations in jD

x , as exemplified in Fig. 4(b),
reflects the temporal periodicity of the entire light-matter sys-
tem. Note that jB

x rapidly switches sign, as shown in Figs. 4(c)
and 4(f). We quantify the dynamical regimes in the system
using the response frequencies ωDW and ωBDW, which we
define as the frequency at which jD

x and jB
x has a maximum in

the power spectrum. Considering blue-detuned driving with
respect to the BDW oscillator frequency ωdr > ωB, we find
that the DBDW phase is characterized by fast oscillations
of jB

x at ωBDW = ωB and slow oscillations of jD
x at ωDW =

ωdr − ωB. These observations are valid for both λ < λcr and
λ > λcr, as demonstrated in Figs. 3(c), 3(d), 3(g), and 3(h),
where the relations ωDW/(ωdr − ωB) = 1 and ωBDW/ωB = 1
are satisfied over a wide range modulation parameters. In
general, the system’s response frequency ωDW is subharmonic
and incommensurate with respect to the driving frequency
ωdr, underpinning the classification of the DBDW phase as
an ITC. Thus, we show that the emergence of the ITC phase is
one of the signatures of the parametrically driven three-level
Dicke model. In contrast, the system has a harmonic response,
meaning that |a|2 and jD

x have the same response frequency
ωDW = 2ωdr [34], for combinations of driving parameters out-
side the dark areas in Figs. 3(c), 3(d), 3(g), and 3(h), including
red-detuned driving ωdr < ωB.

In the ITC phase for ωdr > ωB, the oscillations of jD
x and

jB
x around zero translate to vanishing time-averaged values,

j̃�x = 1

τ

∫ τ

0
j�x dt . (6)

This property is visible in the light area in Fig. 3(e). Note,
however, that even though j̃D

x = 0, the time-averaged cavity
mode occupation |̃a|2 does not necessarily vanish, especially
when jD

x has nonzero oscillation amplitude, as shown in
Figs. 3(a) and 5(a). The normal phase has jD

x = 0 for all
times and as such, |̃ jD

x | also vanishes, albeit trivially, similar to
the ITC phase. Therefore, to distinguish between the normal
phase and the ITC phase, we calculate |̃ jB

x |, a quantity that
vanishes for the normal phase and is nonzero for the ITC
phase. In Figs. 3(b) and 3(f), it can be seen that the BDW states
are resonantly excited not only for the ITC phase in ωdr > ωB

but also for red-detuned driving ωdr < ωB. We emphasize that
the dynamical response for ωdr < ωB remains harmonic, mak-
ing this phase distinct from the ITC, normal, and superradiant
phases.

We now focus on red-detuned driving ωdr < ωB to illus-
trate the effects of resonantly exciting the BDW states in this
case. For λ < λcr, the normal phase, expected to be dominant
in the absence of driving, is suppressed, which then gives rise
to a superradiant phase enabled by the excitation of the BDW
states. We call this resonant phase for λ < λcr and ωdr < ωB

the light-induced superradiant (LISR) phase. In this phase,
the long-time average of the cavity mode occupation |a|2 and
jD
x are both nonzero, similar to the superradiant phase, as seen

from the resonance lobe in Figs. 3(a) and 5(a) for ωdr < ωB.
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However, the occupation of BDW states, demonstrated in
Fig. 3(b), distinguishes the LISR phase from the usual SR
phase in the undriven case. An analogous effect for λ > λcr

is the enhancement of the superradiant phase, the stationary
phase in the absence of driving. This light-enhanced superra-
diant (LESR) phase is identified by an increase in |a|2 and jD

x ,
accompanied by large amplitude oscillations of jB

x , as shown
in Figs. 5(b), 3(e), and 3(f). In addition to the ITC phase,
the presence of LISR and LESR phases, depending on λ, is
another signature of the driven dissipative three-level Dicke
model.

IV. EMULATION USING A SHAKEN
ATOM-CAVITY SYSTEM

We now show that the parametrically driven open three-
level Dicke model can be emulated by a shaken atom-cavity
system. To this end, we first describe the many-body Hamil-
tonian of the shaken atom-cavity. Then, we present the
approximation needed to obtain Eq. (6) from the atom-cavity
Hamiltonian.

A. Shaken atom-cavity Hamiltonian

We consider a minimal model for describing the dynamics
along the pump and cavity directions of an atom-cavity system
schematically depicted in Fig. 1(b). The corresponding many-
body Hamiltonian is given by [34]

Ĥ/h̄ = −δCâ†â +
∫

dydz�̂†(y, z)

[
− h̄

2m
∇2

− ωrecεp cos2 [ky + φ(t )] + U0â†â cos2 (kz)

− √
ωrec|U0|εp cos [ky+φ(t )] cos(kz)(a†+a)

]
�̂(y, z),

(7)

where â (â†) annihilates (creates) a photon in the single-mode
cavity and �̂(y, z) is the bosonic field operator for the atoms
with mass m. The pump-cavity detuning is δC. The frequency
shift per atom is taken to be redshifted, U0 < 0. The pump
intensity εp is measured in units of the recoil energy Erec =
h̄2k2/2m, where the wave vector is k = 2π/λp. Note that, in
Eq. (11), we neglect the effects of short-range collisional inter-
action. The pump lattice is periodically shaken by introducing
a time-dependent phase in the pump mode

φ(t ) = f0 sin (ωdrt ), (8)

where f0 is the unitless modulation strength and ωdr is the
modulation frequency. The characteristic timescale is thus set
by the driving period T = 2π/ωdr.

The dynamics of the atom-cavity system follows from the
Heisenberg-Langevin equations [40,41],

∂

∂t
�̂ = i

h̄
[Ĥ, �̂], (9)

∂

∂t
â = i

h̄
[Ĥ, â] − κ â + ξ, (10)

where κ is the cavity dissipation rate and the associated
fluctuations are captured by the noise term ξ satisfying

〈ξ ∗(t )ξ (t ′)〉 = κδ(t − t ′). In the mean-field limit of large par-
ticle number N , quantum fluctuations are neglected and the
bosonic operators can be approximated as c numbers. The dy-
namics can then be obtained by numerically solving the
resulting coupled differential equations corresponding to the
equations of motion of the system. This approach and its
extension beyond a mean-field approximation have been suc-
cessfully used to predict and observe various dynamical
phases in the transversely pumped atom-cavity system from
a driving-induced renormalization of the phase boundary to
time crystals [34,42–47].

B. Low-momentum approximation

The atom-cavity system can be mapped onto the Dicke
model using a low-momentum approximation. To this end,
we assume that the majority of the atoms only occupy the
five-lowest momentum modes, namely the zero-momentum
mode, |ky, kz〉 = |0, 0〉, and the states associated with the self-
organized checkerboard phase, | ± k,±k〉. These momentum
modes are coupled by the scattering of photons between the
pump and cavity fields. This low-momentum approximation is
valid close to the phase boundary between the homogeneous
BEC phase and the self-organized DW phase.

Resonant shaking has been shown to lead to the emergence
of an incommensurate time crystal, where atoms localize at
positions between the antinodes of the pump lattice [34,35].
That is, in addition to the spatial mode cos(ky) cos(kz) in
the DW phase, the atoms are driven into additional states,
namely the BDW states, as the atomic distribution acquires
an overlap with the spatial mode sin(ky) cos(kz). Note that
this mode is made available by the periodic shaking of the
pump lattice since it explicitly breaks the spatial symmetry
along the pump axis. Owing to how the system periodically
switches between superpositions of DW and BDW states, we
call this dynamical phase as the dynamical BDW (DBDW)
phase. Since the DBDW phase has been previously identified
as an incommensurate time crystal (ITC), we will use the term
DBDW and ITC phase interchangeably.

The atomic field operator is expanded to include the rele-
vant spatial modes

�̂(y, z) = ĉ1 + 2ĉ2 cos (ky) cos (kz) + 2ĉ3 sin (ky) cos (kz),
(11)

where the ci are bosonic annihilation and creation operator.
We use this expansion in the many-body Hamiltonian (11).
Evaluating the integrals within one unit cell and for weak driv-
ing f0 � 1, we obtain a Hamiltonian in a reduced subspace,

H/h̄ = −δCâ†â + 2ωrec(ĉ†
2ĉ2 + ĉ†

3ĉ3) + U0

2
â†â[ĉ†

1ĉ1

+ 3

2
(ĉ†

2ĉ2 + ĉ†
3ĉ3)] − ωrecεp

4
[2(ĉ†

1ĉ1 + ĉ†
2ĉ2 + ĉ†

3ĉ3)

+ (ĉ†
2ĉ2 − ĉ†

3ĉ3) − 2φ(t )(ĉ†
2ĉ3 + ĉ†

3ĉ2)] −
√

ωrec|U0|εp

2

× (â† + â)[(ĉ†
1ĉ2 + ĉ†

2ĉ1) − φ(t )(ĉ†
1ĉ3 + ĉ†

3ĉ1)].
(12)
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C. Schwinger boson representation

We transform the bosonic operators in Eq. (12) into col-
lective pseudospin operators through the Schwinger boson
representation. The additional spatial mode sin(ky) cos(kz) is
described by the operator c3, so the atomic motion is repre-
sented as a three-level system. We introduce the pseudospin
operators obeying SU(3) algebra via

N = ĉ†
1ĉ1 + ĉ†

2ĉ2 + ĉ†
3ĉ3,

ĴD
+ = ĉ†

2ĉ1, ĴD
− = ĉ†

1ĉ2, ĴD
z = 1

2 (ĉ†
2ĉ2 − ĉ†

3ĉ3 − ĉ†
1ĉ1),

ĴB
+ = ĉ†

3ĉ1, ĴB
− = ĉ†

1ĉ3, ĴB
z = 1

2 (ĉ†
3ĉ3 − ĉ†

2ĉ2 − ĉ†
1ĉ1),

ĴDB
+ = ĉ†

2ĉ3, ĴDB
− = ĉ†

3ĉ2. (13)

This representation suggests that the operators ĴD
μ are associ-

ated with the DW state while ĴB
μ are related to the BDW state.

Applying the commutation relations for the bosonic operators
[ĉm, ĉ†

n] = δmn, we recover the same commutation relations for
the pseudospin operators presented in Eq. (A1). That is, we
identify ĴD

μ ≡ Ĵ12
μ , ĴB

μ ≡ Ĵ13
μ , and ĴDB

μ ≡ Ĵ23
μ .

Substituting the Schwinger boson representation in
Eq. (14) into Eq. (12) yields the driven dissipative three-level
Dicke model (6). Within the shaken-atom cavity platform,
the effective cavity field frequency is ω = (3U0N )/4 −
δC = U0N/4 − δeff , the effective pump-cavity detuning is
δeff , and the light-matter coupling strength is λ/

√
N =

−√
ωrecεp|U0|/2. The pump intensity εp shifts the frequen-

cies of the pair of two-level transitions, ωD = 2ωrec(1 −
εp/8) and ωB = 2ωrec(1 + εp/8). We can infer from Eq. (6)
that weak periodic shaking effectively leads to a paramet-
ric driving of the light-matter coupling between the cavity
and the spin associated with the BDW state. With these
correspondences, we find that indeed the shaken atom-
cavity system can be approximated by the driven three-level
Dicke model presented in Eq. (6) and discussed in Sec. III.
Moreover, we can identify the order parameters of the
self-organized density wave states, namely the DW order pa-
rameter �DW = 〈cos(ky) cos(kz)〉 = jD

x and the BDW order
parameter �BDW = 〈sin(ky) cos(kz)〉 = jB

x .

D. Comparison with the full atom-cavity model

We compare the dynamics of the cavity mode occupation
and the DW order parameter for the full atom-cavity model
(11) and the effective three-level model according to Eq. (E2).
The parameters for the simulation are shown in Appendix H.
For results based on the full atom-cavity model Eq. (11), we
numerically determine εcr from the onset of intracavity photon
number [34]. Moreover, the BDW oscillator frequency ωB for
the full atom-cavity model is extracted from the oscillation
frequency of the BDW order parameter �BDW [34]. We show
in Fig. 5 the time-averaged occupation of the cavity mode |a|2,

|̃a|2 = 1

τ

∫ τ

0
|a|2dt, (14)

for τ = 100T , as a function of modulation strength f0 and
modulation frequency ωdr. For λ < λcr, we obtain a qualita-
tively similar dynamical phase diagrams for the three-level
Dicke model and the full atom-cavity model, as depicted in

(a)

(b)

FIG. 6. Comparison of the dynamics between the full atom-
cavity model [in purple (black)], three-level [in green (light gray)],
and coupled two-level Dicke model [in blue (dark gray)] for the
(a) cavity mode occupation and (b) DW order parameter. For the
Dicke models, the light-matter coupling strength is λ = 1.02λcr . This
corresponds to a pump strength of εp/εcr = 1.04 in the full-atom
cavity model. The driving parameters are fixed to f0 = 0.03 and
ωdr = 1.05ωB.

Figs. 5(a) and 5(c). Therefore, in this regime, the approx-
imation of Eq. (11) via Eq. (6) is applicable. That is, the
parametrically driven open three-level Dicke Hamiltonian is
realized approximately by the shaken atom-cavity system.
Moreover, the instability region from the oscillator model in
the thermodynamic limit Eq. (F3) matches the onset of the
cavity mode occupation in Fig. 5(a).

For λ > λcr, the dark areas in Figs. 5(b) and 5(d) signify
that the system has entered the DW or SR phase indicated
by a nonvanishing cavity mode occupation, as expected for
weak and off-resonant driving. However, the DW phase is
suppressed for driving frequencies blue-detuned from ωB as
indicated by the relative decrease in the cavity photon num-
ber in the light areas in Figs. 5(b) and 5(d). Crucially, the
correspondence between Eqs. (11) and (6) breaks down for
driving frequencies far-detuned from ωB as inferred from the
parameter region ωdr > ωB in Figs. 5(b) and 5(d). This can
be attributed to the occupation of higher momentum modes,
specifically | ± 2k, 0〉, in the full atom-cavity system [34],
which is not captured in the low-momentum expansion (11)
utilized in the mapping. Nevertheless, we still find good
agreement on the qualitative features for driving frequencies
near ωB.

FIG. 7. Dynamics of the density wave order parameter for ωdr =
0.8ωB and f0 = 0.05. The remaining parameters are the same as in
Fig. 6.
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We also consider the dynamics according to a coupled
two-level Dicke model for the same set of parameters (see
Appendix B for details). In Fig. 6, we present the dynamics for
λ > λcr with a driving frequency blue-detuned with respect to
ωB. The results of the coupled two-level systems clearly do
not capture the dynamics of the full atom-cavity system. On
the other hand, the three-level Dicke model and the full atom-
cavity model predict the same dynamical response, which is a
subharmonic motion exhibited as a pulsating photon number
[see Fig. 6(a)] and a periodic switching of the sign of the
DW order parameter [see Fig. 6(b)]. This further supports our
claim that the mapping between the three-level Dicke model
and the full-atom cavity system is applicable to λ > λcr for as
long as the driving frequency is close to ωB. Note, however,
that the coupled two-level systems model and the three-level
model agree with each other for off-resonant driving when
jB
x ≈ 0, as demonstrated in Appendix B.

V. CONCLUSIONS

In this work, we have investigated a three-level Dicke
model, and derived its equilibrium phase diagram, which fea-
tures a normal phase and a superradiant phase. We advanced
the model to a driven dissipative system by including a dis-
sipation mechanism via photon loss and a periodic driving
process. For this system, we developed the dynamical phase
diagram, which shows the phases for varying driving parame-
ters, utilizing analytical and numerical methods. As a central
result we characterized the regime of an incommensurate time
crystalline state in the phase diagram. Furthermore, we ob-
tained light-enhanced and light-induced superradiant states, in
which the equilibrium superradiant state is dynamically stabi-
lized. As a physical system that can be naturally approximated

via the three-level Dicke model, we identified a periodically
shaken atom-cavity system. While the nonshaken atom-cavity
system can be approximated via the standard two-level Dicke
model, the shaking induces the atoms to populate additional
states that are modeled via a third state in the three-level
Dicke model. We note that the LISR and LESR phases display
similarities with light-induced [48] and light-enhanced super-
conductivity [49], for which mechanisms have been proposed
that involve the excitation of auxiliary modes, such as phonons
[50–52] and Higgs bosons [53], by means of optical pumping.
Photoexcitation of the Higgs mode in cuprate superconductors
has also been predicted to lead to an incommensurate time
crystal [54]. In this work, the BDW state plays the role of
such an auxiliary mode, as its excitation [or equivalently, the
|1〉 → |3〉 in Fig. 1(a)] can be used to dynamically control
the system to induce or enhance superradiance, or to enter a
genuine dynamical order, namely, the incommensurate time
crystalline phase. We therefore expand the dynamical control
of phases in atom-cavity systems to include light-induced and
light-enhanced superradiance, in addition to the previously
observed light-enhanced BEC or normal phase [42,43].

Note added. Recently, an example of the driven three-level
Dicke model was presented in Ref. [55].
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APPENDIX A: THE SU(3) ALGEBRA, GELL-MANN MATRICES, AND CASIMIR CHARGES

[Ĵ12
z , Ĵ12

± ] = ±Ĵ12
± , [Ĵ12

− , Ĵ12
+ ] = 2Ĵ12

z + Ĵ13
z + N

2
,

[Ĵ13
z , Ĵ13

± ] = ±Ĵ13
± , [Ĵ13

− , Ĵ13
+ ] = 2Ĵ13

z + Ĵ12
z + N

2
,

[Ĵ12
± , Ĵ13

∓ ] = ±Ĵ23
± , [Ĵ23

+ , Ĵ23
− ] = Ĵ12

z − Ĵ13
z ,

[Ĵ12
z , Ĵ23

± ] = ±Ĵ23
± , [Ĵ13

z , Ĵ23
± ] = ∓Ĵ23

± ,

[Ĵ12
± , Ĵ23

∓ ] = ∓Ĵ13
± , [Ĵ13

± , Ĵ23
± ] = ∓Ĵ12

± . (A1)

The remaining commutators not listed above vanish. Our choice of pseudospin operators for the SU(3) algebra can be mapped
onto the Gell-Mann matrices [31] via

F1 ≡ J12
x = 1

2
λ1,

F2 ≡ J12
y = 1

2
λ2,

F3 ≡ J12
z + 1

2
J13

z + N/4 = 1

2
λ3,

F4 ≡ J23
x = 1

2
λ4,

F5 ≡ J23
y = 1

2
λ5,
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F6 ≡ J13
x = 1

2
λ6,

F7 ≡ −J13
y = 1

2
λ7,

F8 ≡ −
√

3

2

(
J13

z + N/6
) = 1

2
λ8. (A2)

Casimir charges

The group SU(3) enjoys two Casimirs, which can be written in matrix form using the Gell-Mann basis as

C1 =
8∑

i=1

FiFi, (A3)

C2 =
8∑

j,k,l=1

d jkl FjFkFl , (A4)

with

d jkl = 1
4 Tr({λ j, λk}λl ). (A5)

In our chosen basis, they take the form of

〈C1〉/N = 1

12
+ (

j12
x

)2 + (
j12
y

)2 + (
j12
z

)2 + (
j13
x

)2 + (
j13
y

)2 + (
j13
z

)2 + (
j23
x

)2 + (
j23
y

)2 + 1

2

(
j12
z + j13

z + 2 j12
z j13

z

)
, (A6)

〈C2〉/N3/2 = 1

72

{ − 18
(

j12
y

)2 + 216 j23
y

(
j12
y j13

x − j12
x j13

y

) + 216 j23
x

(
j12
x j13

x + j12
y j13

y

)
− (

1 + 6 j12
z

)[
1 + 3 j12

z + 18
(

j13
x

)2 + 18
(

j13
y

)2] − 9 j13
z + 36

(
j23
x

)2(
1 + 3 j12

z + 3 j13
z

)
+ 36

(
j23
y

)2(
1 + 3 j12

z + 3 j13
z

)
− 18

{(
j12
x

)2(
1 + 6 j13

z

) + j13
z

[
6
(

j12
y

)2 + j13
z + 2 j12

z

(
2 + 3 j12

z + 3 j13
z

)]}}
. (A7)

APPENDIX B: TWO-COMPONENT DICKE MODEL

A modified version of the two-component Dicke model [9,10], which can be realized in a spinor BEC coupled to an optical
cavity [16,17], is given by

H/h̄ = ωâ†â + ω1Ĵ1
z + ω2Ĵ2

z + 2√
N

(â† + â)
(
λ1Ĵ1

x + λ2Ĵ2
x

)
. (B1)

Note that this has the same form as the three-level Hamiltonian in Eq. (1) except that here, the pseudospin operators fulfill to the
SU(2) group algebra with the commutation relations,[

Ĵ�
z , Ĵ�

±
] = ±Ĵ�

±, [Ĵ�
−, Ĵ�

+] = 2Ĵ�
z , (B2)

where � ∈ {1, 2}. Applying the same mean-field approximation as in Sec. II B, we obtain the following equations of motion
consistent with those in Refs. [9,10,16,17],

da

dt
= −(iω + κ )a − i2

2∑
�=1

λ� j�x ,

d j�x
dt

= −ω� j�y ,

d j�y
dt

= ω� j�x − 2λ�(a + a∗) j�z ,

d j�z
dt

= 2λ�(a + a∗) j�y . (B3)

To obtain the relevant curves in Fig. 6, we propagate the above set of coupled equations with ω1 = ωD, ω2 = ωB, λ1 = λ, and
λ2 = −λ f0 sin(ωdrt ). The exact values of these parameters are the same as those described in the main text. We present in Fig. 7
a comparison of the dynamics according to the two-component Dicke model and the three-level Dicke model for off-resonant
driving.
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APPENDIX C: CRITICAL LIGHT-MATTER COUPLING

Using the Hamiltonian in Eq. (3) and the Heisenberg equation in Eq. (D1), we obtain the equations of motion as

da

dt
= −(iω − κ )a − iλ12(a†

12 + a12) − iλ13(a†
13 + a13),

da12

dt
= −iω12a12 − iλ12(a∗ + a), (C1)

da13

dt
= −iω13a13 − iλ13(a∗ + a).

We can then construct the matrix M as ∂t �v = M�v to obtain

M =

⎛
⎜⎜⎜⎜⎜⎝

κ − iω 0 −iλ12 −iλ12 −iλ13 −iλ13

0 κ + iω iλ12 iλ12 iλ13 iλ13

−iλ12 −iλ12 −iω12 0 0 0
iλ12 iλ12 0 iω12 0 0

−iλ13 −iλ13 0 0 −iω13 0
iλ13 iλ13 0 0 0 iω13

⎞
⎟⎟⎟⎟⎟⎠. (C2)

A phase transition occurs if M inherits a zero energy eigenstate [39]. This means, to find the critical light-matter coupling λ, we
need to calculate det(M ) = 0, giving us

(κ2 + ω2)

4ω
=

(
λ2

12

ω12
+ λ2

13

ω13

)
. (C3)

APPENDIX D: HEISENBERG EQUATIONS OF MOTION

The dynamics of an observable Ô in the dissipative system considered here is governed by the Heisenberg equation

d〈Ô〉
dt

=
〈

i

h̄
[Ĥ, Ô] + κ (2â†Ôâ − {â†â, Ô})

〉
. (D1)

Using the commutation relations Eq. (A1), we get the following equations for the expectation values of relevant operators in the
open three-level Dicke model (1):

d〈a〉
dt

= −(iω + κ )〈a〉 − i
2√
N

(
λ12

〈
Ĵ12

x

〉 + λ13
〈
Ĵ13

x

〉)
,

d
〈
Ĵ12

x

〉
dt

= −ω12
〈
Ĵ12

y

〉 + λ13√
N

〈
(a† + a)Ĵy

23

〉
,

d
〈
Ĵ12

y

〉
dt

= ω12
〈
Ĵ12

x

〉 − λ12√
N

[
2
〈
(a† + a)Ĵ12

z

〉 + 〈
(a† + a)Ĵ13

z

〉 + 〈
(a† + a)N/2

〉] − λ13√
N

〈
(a† + a)Ĵ23

x

〉
,

d
〈
Ĵ12

z

〉
dt

= 2λ12√
N

〈
(a + a†)Ĵ12

y

〉
,

d
〈
Ĵ13

x

〉
dt

= −ω13
〈
Ĵ13

y

〉 − λ12√
N

〈
(a† + a)Ĵ23

y

〉
,

d
〈
Ĵ13

y

〉
dt

= ω13
〈
Ĵ13

x

〉 − λ13√
N

[
2
〈
(a† + a)Ĵ13

z

〉 + 〈
(a† + a)Ĵ12

z

〉 + 〈
(a† + a)N/2

〉] − λ12√
N

〈
(a† + a)Ĵ23

x

〉
,

d
〈
Ĵ13

z

〉
dt

= 2λ13√
N

〈
(a + a†)Ĵ13

y

〉
,

d
〈
Ĵ23

x

〉
dt

= (ω13 − ω12)
〈
Ĵ23

y

〉 + λ12√
N

〈
(a† + a)Ĵ13

y

〉 + λ13√
N

〈
(a† + a)Ĵ12

y

〉
,

d
〈
Ĵ23

y

〉
dt

= (ω12 − ω13)
〈
Ĵ23

y

〉 + λ12√
N

〈
(a† + a)Ĵ13

x

〉 − λ13√
N

〈
(a† + a)Ĵ12

x

〉
. (D2)
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On the other hand, the equations of motion for the parametrically driven open three-level Dicke model are

d〈â〉
dt

= −(iω + κ )〈â〉 − i
2λ√

N

〈
ĴD

x

〉 + iφ(t )
2λ√

N

〈
ĴB

x

〉
,

d〈ĴD
x 〉

dt
= −ωD

〈
ĴD

y

〉 − φ(t )(ωB − ωD)
〈
ĴB

y

〉 − φ(t )
λ√
N

〈
(a† + a)ĴDB

y

〉
,

d
〈
ĴD

y

〉
dt

= ωD
〈
ĴD

x

〉 − λ√
N

[
2
〈
(a† + a)ĴD

z

〉 + 〈
(a† + a)ĴB

z

〉 + 〈a† + a〉N

2

]

+ φ(t )(ωB − ωD)
〈
ĴB

x

〉 + φ(t )
λ√
N

〈
(a† + a)ĴDB

x

〉
,

d〈ĴD
z 〉

dt
= 2λ√

N

〈(
a + a†

)
ĴD

y

〉 + 2(ωB − ωD)φ(t )
〈
ĴDB

y

〉
,

d〈ĴB
x 〉

dt
= −ωB

〈
ĴB

y

〉 − φ(t )(ωB − ωD)
〈
ĴD

y

〉 − λ√
N

〈
(a† + a)ĴDB

y

〉
,

d
〈
ĴB

y

〉
dt

= ωB
〈
ĴB

x

〉 + φ(t )
λ√
N

[
2
〈
(a† + a)ĴB

z

〉 + 〈
(a† + a)ĴD

z

〉 + 〈a† + a〉N

2

]

+ φ(t )(ωB − ωD)
〈
ĴD

x

〉 − λ√
N

〈
(a† + a)ĴDB

x

〉
,

d〈ĴB
z 〉

dt
= −φ(t )(ωB − ωD)

〈(
a + a†

)
ĴB

y

〉 − 4λ2

U0N
φ(t )

〈
ĴDB

y

〉
,

d〈ĴDB
x 〉

dt
= (ωB − ωD)

〈
ĴDB

y

〉 + λ√
N

〈
(a† + a)ĴB

y

〉 − φ(t )
λ√
N

〈
(a† + a)ĴD

y

〉
,

d
〈
ĴDB

y

〉
dt

= (ωD − ωB)
〈
ĴDB

x

〉 + λ√
N

〈
(a† + a)ĴB

x

〉 + φ(t )
λ√
N

〈
(a† + a)ĴD

x

〉 + 2(ωB − ωD)φ(t )
〈
ĴB

z − ĴD
z

〉
. (D3)

APPENDIX E: MEAN-FIELD EQUATIONS OF MOTION

The mean-field equations for the dissipative three-level Dicke model are given by

da

dt
= −(iω + κ )a − i2λ12 j12

x − i2λ13 j13
x ,

d j12
x

dt
= −ω12 j12

y + λ13(a + a∗) jy
23,

d j12
y

dt
= ω12 j12

x − λ12(a + a∗)
(
2 j12

z + j13
z + 1/2

) − λ13(a + a∗) j23
x ,

d j12
z

dt
= 2λ12(a + a∗) j12

y ,

d j13
x

dt
= −ω13 j13

y − λ12(a + a∗) j23
y ,

d j13
y

dt
= ω13 j13

x − λ13(a + a∗)
(
2 j13

z + j12
z + 1/2

) − λ12(a + a∗) j23
x ,

d j13
z

dt
= 2λ13(a + a∗) j13

y ,

d j23
x

dt
= (ω13 − ω12) j23

y + λ12(a + a∗) j13
y + λ13(a + a∗) j12

y ,

d j23
y

dt
= (ω12 − ω13) j23

y + λ12(a + a∗) j13
x − λ13(a + a∗) j12

x . (E1)

063705-11



JIM SKULTE et al. PHYSICAL REVIEW A 104, 063705 (2021)

FIG. 8. Time-averaged cavity mode occupation |a|2 taken over 100 driving cycles, τ = 100T . We choose ωD = ωB = ωrec while the
remaining parameters are the same as those in Figs. 5(a) and 5(b).

For the parametrically driven open three-level Dicke model, the equations of motion are given by

da

dt
= −(iω + κ )a − i2λ jD

x + iφ(t )2λ jB
x ,

d jD
x

dt
= −ωD jD

y − φ(t )(ωB − ωD) jB
y − φ(t )λ(a + a∗) jDB

y ,

d jD
y

dt
= ωD jD

x − λ(a + a∗)
(
2 jD

z + jB
z + 1/2

) + φ(t )(ωB − ωD) jB
x + φ(t )λ(a + a∗) jDB

x ,

d jD
z

dt
= 2λ(a + a∗) jD

y + 2(ωB − ωD)φ(t ) jDB
y ,

d jB
x

dt
= −ωB jB

y − (ωB − ωD)φ(t ) jD
y − λ(a + a∗) jDB

y ,

d jB
y

dt
= ωB jB

x + φ(t )λ(a + a∗)
(
2 jB

z + jD
z + 1/2

) + φ(t )(ωB − ωD) jD
x − λ(a + a∗) jDB

x ,

d jB
z

dt
= −φ(t )2λ(a + a∗) jB

y − 2(ωB − ωD)φ(t ) jDB
y ,

d jDB
x

dt
= (ωB − ωD) jDB

y + λ(a + a∗) jB
y − φ(t )λ(a + a∗) jD

y ,

d jDB
y

dt
= (ωD − ωB) jDB

x + λ(a + a∗) jB
x + φ(t )λ(a + a∗) jD

x + 2(ωB − ωD)φ(t )
(

jB
z − jD

z

)
. (E2)

In Fig. 8, we demonstrate that the existence of the dynamical phases is independent of the term in the Hamiltonian with jDB
x .

That is, the momenta coupling inferred from Eq. (8) does not play a crucial role in the formation of the ITC, LESR, and LISR
phases. This suggests that the emergence of these dynamical phases originates from the last term in Eq. (6). To confirm this, we
set ωD = ωB in Fig. 8. For comparison, we show in dotted lines the phase boundary obtained for ωD �= ωB.

APPENDIX F: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

We present a Holstein-Primakoff approximation in the
thermodynamic limit, i.e., N → ∞ [5,56]. To capture the cor-
rect SU(3) algebra, we use an extended version of the
Holstein-Primakoff representation given by [57]

Ĵ12
z = â†

12â12 − N/2, Ĵ12
+ = â†

12

√
N − (â†

12â12 + â†
13â13),

Ĵ12
− =

√
N − (â†

12â12 + â†
13â13)â12,

Ĵ13
z = â†

13â13 − N/2, Ĵ13
+ = â†

13

√
N − (â†

12â12 + â†
13â13),

Ĵ13
− =

√
N − (â†

12â12 + â†
13â13)â13,

Ĵ23
+ = â†

12â13, Ĵ23
− = â†

13â12. (F1)

In the N → ∞ limit, we can further approximate the pseu-
dospin operators as

ĴD
z = â†

12â12 − N/2, ĴD
+ = â†

12

√
N, ĴD

− =
√

Nâ12,

ĴB
z = â†

13â13 − N/2, ĴB
+ = â†

13

√
N, ĴB

− =
√

Nâ13,

ĴDB
+ = â†

12â13, ĴDB
− = â†

13â12. (F2)
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In an analog fashion for the driven three-level Dicke model
we obtain the Hamiltonian with a12 → d and a13 → b

H/h̄ = ωâ†â + ωDd̂†d̂ + ωBb̂†b̂ + λ(â† + â)

× [(d̂† + d̂ ) − φ(t )(b̂† + b̂)]

+ φ(t )(ωB − ωD)(d̂†b̂ + b̂†d̂ ). (F3)

The mean-field equations of motion for Eq. (F3) are

∂a

∂t
= −(iω − κ )a − iλ(d∗ + d ) + iφ(t )λ(b∗ + b),

∂d

∂t
= −iωDd − iλ(a∗ + a) − i(ωB − ωD)φ(t )b,

∂b

∂t
= −iωBb + iφ(t )λ(a∗ + a) − i(ωB − ωD)φ(t )d. (F4)

APPENDIX G: LOWER POLARITON

Consider the standard closed Dicke model

Ĥ/h̄ = ωâ†â + ω0Ĵz + 2λ√
N

(â† + â)(Ĵx ). (G1)

In the thermodynamic limit, this can be diagonalized using
the Holstein-Primakoff transformation, which leads to two
polariton frequencies

ωLP,κ=0 =
((

ω2
0 + ω2

)
2

− 1

2

√(
ω2

0 − ω2
)2 + 16λ2ωω0

)1/2

,

(G2)

ωUP,κ=0 =
((

ω2
0 + ω2

)
2

+ 1

2

√(
ω2

0 − ω2
)2 + 16λ2ωω0

)1/2

.

(G3)

The lower polariton frequency, Eq. (G2), is the upper
bound in the presence of dissipation. When κ �= 0, the
lower polariton frequency can be numerically determined by
exploiting the parametric resonance when the light-matter
coupling is periodically driven [5,6]:

λ(t ) = λ0[1 + f0 sin (ωdrt )]. (G4)

In the limit N → ∞, the Hamiltonian can be reduced to a
coupled oscillator, whereby the coupling strength is periodic
in time. This possesses a parametric resonance manifesting
as a resonance lobe centered at the primary resonance, ωdr =
2ωLP. Thus, we can determine ωLP by mapping the instability
region for varying modulation parameters f0 and ωdr. To this

FIG. 9. Maximum value of (b + b∗). The parameters are the
same as those in Figs. 3(a)–3(d).

end, we solve the corresponding equations of motion given by

i
∂a

∂t
= (ω − iκ )a + λ(t )(b∗ + b),

i
∂b

∂t
= ω0b + λ(t )(a∗ + a). (G5)

The unstable region indicating the parametric resonance is
signalled by a diverging (b + b∗), as depicted in Fig. 9. We ob-
tain a lower polariton frequency ωLP/2π ≈ 1.06 kHz, which
is the value used in the sum frequency condition denoted by
the vertical line in Figs. 3(a)–(d).

APPENDIX H: PARAMETERS

We consider realistic parameters based on the experimental
setup in Ref. [35]. A BEC of N = 65 × 103 87Rb atoms
is coupled to a high-finesse optical cavity with a photon
loss rate of κ = 2π × 3.6 kHz. This is very close to the
recoil frequency, ωrec = 2π × 3.55 kHz, associated with the
standing-wave potential of the pump. The cavity light shift
per atom is U0 = −2π × 0.36 Hz. The effective pump-cavity
detuning is fixed to δeff = −2π × 18.5 kHz. We are inter-
ested in the two regimes λ < λcr and λ > λcr, where λcr

is the critical light-matter coupling strength needed to enter
the DW phase in the absence of modulation, where λcr =
[(κ2 + ω2)(ωD/ω)]1/2/2. By equating the expression for λcr

and λ in terms of the atom-cavity parameters for the two-level
Dicke model, we find that the critical pump strength is given
by εcr = 8(ω2 + κ2)/[4Nω|�0| + (ω2 + κ2)].
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4.3 Publication IV: Condensate formation in a dark
state of a driven atom-cavity system

Publication IV considers experimental work using a shaken optical standing wave
pump potential to drive the atom-cavity system, similarly as publications II and III.
While focusing on the incommensurate time crystalline dynamics in publication II,
we observed here a peculiar phenomenon that for some range of modulation param-
eters, the atomic density remains localized in the checkerboard pattern while there is
no intra-cavity light field detected. This unexpected observation drew our attention
to further investigate this parameter regime. We concluded that this phenomenon
occurs as the atomic ensemble localizes at light shift potential maxima, and thus,
decouples from the pump and cavity field. The atoms form a condensate in a dark
state of the atom-cavity system. The dark state is a state which suppresses scattering
from the pump into the cavity and vice versa, i.e., the state formed by an admix-
ture of |BEC⟩ and |BDW ⟩ states cannot scatter light because its density maxima
are localized at the pump field’s nodes, see section 3.3 and fig. 3.2. Publication IV
concludes that there is a parameter regime, where the ITC described in publication
III has a transient behavior, as eventually atoms are transferred to a dark state of the
atom-cavity system.

To obtain an improved terminology that fits the observation of the dark state, the
three levels introduced in publication II are renamed. The ground state |BEC⟩ is
called the normal state |N⟩, the density wave state |DW ⟩ is called the bright state
|B⟩. The bond density wave state |BDW ⟩ is called the dark state |D⟩.

Status of the publication:
This article was published in April 2023 in Physical Review Letters [5]. The cor-
responding supplemental material can be found in appendix C. Moreover, fig. 1(a)
of publication IV is selected by the editor team to be on the cover of the journal
Physical Review Letters volume 130 issue 16.

Note:
Due to a mismatch between notation used in different publications and this thesis,
I would like to improve the readability of the publication by listing the notation
changes in table 4.3.

parameters this thesis publication IV
pump strength ϵp ϵ

phase of the standing wave pump potential ϕp ϕ
phase difference of the intra-cavity

ϕc φand the pump fields
ground state of three-level Dicke model |BEC⟩ normal state |N⟩

density wave state |DW ⟩ bright state |B⟩
bond density wave state |BDW ⟩ dark state |D⟩

Table 4.3: Notation differences between this thesis and publication IV.
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Jim Skulte ,1,2,* Phatthamon Kongkhambut ,1,* Sahana Rao ,1 Ludwig Mathey,1,2 Hans Keßler ,1

Andreas Hemmerich,1,2 and Jayson G. Cosme 3

1Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
2The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

3National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines

(Received 6 September 2022; accepted 14 March 2023; published 21 April 2023)

We demonstrate the formation of a condensate in a dark state of momentum states, in a pumped and
shaken cavity-BEC system. The system consists of an ultracold quantum gas in a high-finesse cavity, which
is pumped transversely by a phase-modulated laser. This phase-modulated pumping couples the atomic
ground state to a superposition of excited momentum states, which decouples from the cavity field. We
demonstrate how to achieve condensation in this state, supported by time-of-flight and photon emission
measurements. With this, we show that the dark state concept provides a general approach to efficiently
prepare complex many-body states in an open quantum system.

DOI: 10.1103/PhysRevLett.130.163603

While dissipation is in general perceived as a destructive
feature of a quantum system, it can also be utilized to
engineer nontrivial states, often in conjunction with driving
a system out of equilibrium. A prominent experimental
platform for this purpose is ultracold quantum gases
coupled to high-finesse optical cavities [1–4], due to the
well-controlled dissipative channel resulting from the
photon emission out of the cavity. Paradigmatic models
of light-matter interaction can be explored, such as the
celebrated Dicke model that describes the interaction
between N two-level atoms with a single quantized light
mode [5]. The driven-dissipative Dicke model, an exten-
sion of the standard Dicke model, captures the scenario,
when both external driving and dissipation are present
[6,7]. A wealth of phases, unique to driven light-matter
systems, have been proposed and realized using variations
of driven Dicke models, such as the three-level Dicke
model [8–20]. In particular, the dissipation channel of the
cavity has been utilized to demonstrate the emergence of
nonequilibrium or dynamical phases [19,21–35].
An intriguing class of quantum states in light-matter

systems, well known in quantum optics, are the so-called
dark states [36]. These are superpositions of matter states
with relative phases such that the quantum mechanical
amplitudes, coupling the different sectors to an irradiated
light field, interfere destructively. As a consequence, dark
states decouple from the light field. Dark states play a
crucial role in physical phenomena, such as stimulated
Raman adiabatic passage [37,38], electromagnetically
induced transparency [39,40], lasing without inversion
[41,42], and combinations of these topics [9,20,43,44].
In conventional quantum optics scenarios, dark states
typically arise on a single-particle level. In this Letter,
we use the dark state concept in a many-body context,

specifically condensation. Our study suggests how the
concept of dark state formation can be utilized in the
context of quantum state engineering via dissipation.
In this Letter, we demonstrate in theory and experiment a

robust condensate formation in a dark state of a driven
atom-cavity system, approximately described by a para-
metrically driven three-level open Dicke model introduced
in Refs. [17,19]. We consider a Bose-Einstein condensate
(BEC) prepared in a high-finesse cavity, which is trans-
versely pumped with a shaken one-dimensional optical
lattice, as sketched in Fig. 1(a). Previously, we explored the
weakly resonantly driven scenario leading to an incom-
mensurate time crystal (ITC) [17,19,26]. Here, technical
improvements in our setup allowed us to study theoretically
and experimentally the so far unexplored regime of strong
driving and a wider range of driving frequencies, which
reveals that the ITC has transient character in certain
parameter regimes, such that the atoms relax into a dark
state of the atom-cavity system eventually.
To understand the dark state and to identify the relevant

driving parameters, we employ the time-dependent atom-
cavity Hamiltonian in Refs. [17,45] and an approximative
parametrically driven three-level Dicke model [17,19],
which includes only three atomic modes denoted as jNi,
jBi, and jDi, in a plane-wave expansion of the atomic field
operator. These modes are illustrated in terms of their
momentum components in Fig. 1(b) and form the V-shaped
three-level system sketched in Fig. 1(c). The normal state
jNi≡ jð0; 0Þℏki corresponds to a homogeneous density in
real space, wherein all atoms occupy the lowest momentum
mode fpy; pzg ¼ f0; 0gℏk (k is the wave number of the
pump field). The pump leads to a light shift of −ϵpωrec=2,
where ϵp is the unitless pump intensity andωrec is the atomic
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recoil frequency. The bright state jBi≡P
ν;μ∈f−1;1g jνℏk;

μℏki is defined as the in-phase superposition of the f�1;
�1gℏkmomentummodes as depicted in Fig. 1(b). The real-
spacewave function of this state is∝ cosðkyÞ cosðkzÞ, which
has even parity with respect to the inversion ðy; zÞ →
ð−y;−zÞ. It exhibits a kinetic energy of 2Erec and is light
shifted by the pump wave by −3ϵpωrec=4 such that its
frequency separation relative to jNi isωB ¼ ð2 − ϵp=4Þωrec.
The dark state jDi≡P

ν;μ∈f−1;1g νjνℏk; μℏki is defined as
the out-of-phase superposition of the fþ1;�1gℏk and
f−1;�1gℏk momentum modes. In real space, its order
parameter is ∝ sinðkyÞ cosðkzÞ, which has odd parity under
the inversion ðy; zÞ → ð−y;−zÞ.
The density distributions of the dark state jDi and the

bright state jBi both prohibit collective scattering of
photons into the cavity. Nonetheless, any admixture of
the normal state jNi to the bright state jBi leads to a
checkerboard pattern of the atomic density that allows
pump photons to scatter into the cavity, which is the reason
we refer to jBi as a bright state. Above a critical pump
strength, the system forms a superradiant (SR) phase as its
stationary state, in which a superposition of jBi and jNi

produces a density grating trapped by the intracavity optical
lattice composed of the pump and cavity fields. In contrast
to jBi, the density grating of the dark state jDi, due to its
odd parity is shifted along the pump direction by a quarter
of the pump wavelength, such that the atomic positions
coincide with the nodes of the pump lattice, motivating our
terminology of bond-density waves in Refs. [17,19].
Hence, even if jNi is admixed to the dark state jDi,
scattering of pump photons remains suppressed, meaning
that for any superposition of the normal and the dark state
collective scattering of photons into the cavity cannot
occur. The dark state jDi exhibits the same kinetic energy
2Erec as jBi, while its light shift due to the pump lattice is
only −ϵpωrec=4. Thus, its frequency relative to that of jNi
is ωD ¼ ð2þ ϵp=4Þωrec.
To excite the dark state, we shake the pump lattice by

introducing a time-dependent phase in the pump field,
cosðkyþ ϕðtÞÞ, where ϕðtÞ ¼ f0 sinðωdrtÞ, f0 is the driv-
ing strength, and ωdr is the driving frequency. The
excitation mechanism is readily understood by means of
the three-level Dicke model Ĥ ¼ Ĥstat þ Ĥdyn with a static
part,

Ĥstat=ℏ ¼ ωâ†âþ ½ωB −Ωðf0Þ�ĴBz þ ½ωD þ Ωðf0Þ�ĴDz
þ 2λ

ffiffiffiffiffiffi
Na

p ðâ† þ âÞJ0ðf0ÞĴBx ; ð1Þ

and a dynamical part,

Ĥdyn=ℏ ¼ h2ðtÞΔωBDðĴDz − ĴBz Þ þ 2g2ðtÞΔωBDĴ
BD
x

þ 4λ
ffiffiffiffiffiffi
Na

p ðâ† þ âÞ½h1ðtÞĴBx − g1ðtÞĴDx �; ð2Þ

whereΩðf0Þ¼ðϵpωrec=4Þ½1−J0ð2f0Þ�,ΔωBD¼ðωB−ωDÞ,
hmðtÞ¼

P∞
n¼1 J2nðmf0Þcosð2nωdrtÞ, gmðtÞ¼

P∞
n¼1J2n−1×

ðmf0Þsin½ð2n−1Þωdrt�, and JnðrÞ is the nth Bessel function
of the first kind. The time-dependent terms introduced
by the pump lattice shaking are hmðtÞ and gmðtÞ. Details
on the derivation of this Hamiltonian are given in the
Supplemental Material [45]. The pseudospin operators ĴBμ
(μ ∈ fx; y; zg) describe the coupling to the bright state
since ĴBþ ≡ ĴBx þ iĴBy ¼ jBihNj. Accordingly, ĴDμ is related
to the dark state as ĴDþ ≡ ĴDx þ iĴDy ¼ jDihNj. We see from
the last term of Eq. (2) that jDi can be coupled to the cavity
mode via the time-dependent shaking of the pump, result-
ing in a periodic coupling between jDi and jNi. Note that
the necessary nonzero amplitude g1ðtÞ can be provided by
phase modulation, which breaks the discrete translation
symmetry along the pump axis, but not by amplitude modu-
lation. We consider the recoil-resolved regime, i.e., the loss
rate of the cavity photons κ is comparable to the recoil fre-
quency ωrec, which for our system is ωrec ¼ 2π × 3.6 kHz.
We emphasize the importance of this regime [48,49] to

FIG. 1. (a) Sketch of the experimental setup. An electro-optical
modulator (EOM) is used to modulate the phase of the pump
field, which results in shaking the pump potential. The light
leaking out the cavity is detected using a photo diode (PD).
(b) Sketch of the momentum distribution of the three relevant
superpositions of momentum modes, the normal state jNi, the
bright state jBi, and the dark state jDi, which form a three-level
Dicke model shown in (c) with the atom-cavity coupling λ and the
shaking-induced functions h1ðtÞ and g1ðtÞ. The colors in (b) re-
present the phase of the momentum states, where blue indicates a
phase shift of π relative to red.

PHYSICAL REVIEW LETTERS 130, 163603 (2023)

163603-2



protect the dark state from detrimental resonant excitations
to higher energy momentum states.
Next, we discuss the dynamics of the system by solving

the semiclassical equations of motion of the three-level
model Eq. (2) and those of the atom-cavity Hamiltonian
[45] including fluctuations due to photon emission out of
the cavity. For the three-level model, the dark state
occupation is hĴDi þ 1=2. For the full atom-cavity model,
we apply the following protocol: the pump laser strength is
linearly increased within 10 ms, such that we always
initially prepare the SR phase. After a holding time of
0.5 ms, the phase of the pump lattice is modulated for 7
driving cycles, starting at t ¼ t0. We choose 7 driving
cycles since, as is later seen in the experiment, the dark state
occupation ND is found to equilibrate after 6 driving cycles
due to heating [45]. Subsequently, we adiabatically ramp-
down the pump strength in 0.5 ms and calculate ND as the
sum of the occupations in the f�1;�1gℏk modes. The
ramp-down is necessary to remove all f�1;�1gℏk pop-
ulations, associated with jBi rather than jDi, by trans-
ferring jBi into jNi, which does not affect jDi. In Fig. 2, we
construct the phase diagrams of the three-level and the full
models, plotting ND for different driving parameters. Our
previous work on the emergence of an ITC involved the
regime around ωdr ∈ ½1; 1.2� × ωD and f0;theory < 0.4
[17,19]. We find qualitative agreement between the numeri-
cal simulations of the full atom-cavity system and the
driven three-level Dicke model as seen in Fig. 2. Significant
occupation of the dark state is observed in a large area of
the phase diagram for ωdr > ωD and also in a small area
close to the resonance ωdr ≈ ωD. We note that the area in
the driving parameter space, where the dark state becomes
dynamically occupied, is larger in the full atom-cavity
model as compared to the three-level Dicke model. This
can be attributed to the f0;�2gℏk and f�2; 0gℏk modes,

which are neglected in the three-level model [45]. Atoms in
these modes may be transferred to the dark state upon
scattering photons into the cavity, thus increasing its
efficient population. This process competes with a direct
resonant transfer of atoms into the second band of the pump
wave without scattering photons into the cavity, which
impedes efficient population of the dark state as detailed in
the Supplemental Material [45]. The respective resonance
frequency arises in Fig. 2 for ωdr=ωD ≈ 1.7, i.e., slightly
outside the shown range.
Next, we employ the truncated Wigner approximation

(TWA) to capture the leading-order quantum effects
[26,50–52]. We include not only the dissipation due to
photon emission out of the cavity but also the associated
fluctuations. We further demonstrate that the observed dark
state is indeed a finite momentum condensate by calcu-
lating the eigenvalues of the single-particle correlation
function at equal time, hΨðy; zÞ†Ψðy0; z0Þi, for our full
atom-cavity model. This appears in the Penrose-Onsager
criterion for condensates, and its largest eigenvalue corre-
sponds to the condensate fraction [53]. We denote the
eigenvalues as nNO. We show in Fig. 3(a) the nNO obtained
from TWA simulations for the same pump protocol used in
Fig. 2(b), but without the final ramp-down of the pump
wave. When the system enters the SR phase (at about
5.2 ms), the condensate fragments manifested in the

FIG. 2. (a),(b) Population of the dark state for different driving
frequencies ωdr and driving strengths f0;theory. The driving
frequency axis is rescaled by the characteristic frequency of
the dark state ωD. (a) The results from the three-level model and
(b) the full atom-cavity simulation. The phase diagrams are
constructed for 7 driving cycles.

FIG. 3. (a) Simulations of the evolution of the three highest
eigenvalues of the single-particle correlation function are shown.
Gray dashed and solid vertical lines denote, respectively, the
times when the snapshots of the single-particle densities in (b)
and (c) are taken. The real-space densities in (b) and (c) are color
coded to show the phase of Ψðy; zÞ. (d),(e) Evolution of the
occupations of jNi, jBi, and jDi, while the pump is adiabatically
ramped down. Panels (d) and (e), respectively, correspond to
initial conditions according to the dashed and solid gray vertical
lines in (a).
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reduction of the largest eigenvalue and the corresponding
increase of the second largest eigenvalue [54]. The real-
space density jΨðy; zÞj2 shown in Fig. 3(b) illustrates the
prevailing SR phase at the time indicated by the dashed
gray line, before driving starts at t ¼ t0. In Fig. 3(c), we
show jΨðy; zÞj2 at the time indicated by the solid gray line,
after driving has acted for about 0.6 ms, indicating a
substantial population of the dark state. The zeros (black
regions) coincide with the intensity maxima of the pump
lattice along the y direction, while there is no significant
standing wave potential along the cavity direction. The
different colors in Fig. 3(c) denote opposite phases of
Ψðy; zÞ. In Figs. 3(d) and 3(e), we show the occupations of
the relevant states as the pump lattice is ramped down at
the times indicated by the dashed [Fig. 3(d)] and solid
[Fig. 3(e)] gray lines. It can be seen in Fig. 3(d) that for the
SR phase [prevailing at the time denoted by the dashed
vertical line in Fig. 3(a)] practically all atoms are trans-
ferred back to the normal state jNi after the ramp-down. On
the other hand, for the driven case in Fig. 3(e), associated
with the time indicated by the solid gray line in Fig. 3(a),
the dark state jDi has the largest occupation at t ¼ tramp.
After the ramp-down, its occupation increases further,
forming a long-lived state, compared to the decay time
of the SR state. These results corroborate that the pop-
ulation of the f�1;�1gℏk modes after the pump is
adiabatically switched off is the appropriate observable
to quantify the in situ occupation of the dark state.
Finally, we experimentally demonstrate driving-induced

condensation into a dark state of the atom-cavity system
[45]. We present in Fig. 4(a) the resulting experimental
phase diagram of the occupation of ND for varying driving
parameters. We find qualitative agreement with the theo-
retical phase diagrams depicted in Fig. 2. For technical

reasons, such as atom losses, a complete population
inversion into the dark state, as seen in the numerical
simulations, is not observed in the experiment. We note that
there is a slight difference between the numerical and the
experimental results for the driving strength needed to
populate the dark state. This can possibly be attributed to
the pump in the experiment having a nonzero width in
frequency space, so that the effective pump power is
smaller than it would be for monochromatic pump beam.
Therefore, the experimental realization might require a
nominally larger pump power than in the theoretical model.
Figures 4(b)–4(d) show the occupation of the dark state

for varying numbers of driving cycles and fixed driving
frequencies. Each panel corresponds to a value of the
driving strength f0;exp indicated by the red markers in
Fig. 4(a). Between the red circular and the red rectangular
marker, there is a sharp transition from large occupation of
jDi [see also Fig. 4(c)] toward a region where jDi is
practically unoccupied [see also Fig. 4(d)]. In the limit of
strong driving around the diamond-shaped marker in
Fig. 4(a), the dark state becomes highly occupied after
only 2 driving cycles, but the occupation number slightly
decreases again for larger numbers of driving cycles as
shown in Fig. 4(b). This is explained by the excitation of
the j � 2ℏk; 0i modes, as discussed below. Each data
point is obtained via averaging over 10 TOF images. We
also present the corresponding TOF images [see Figs. 4(e)
and 4(f)] at two instances of time, i.e., at t ¼ t0 before
driving is started and after six driving cycles at t ¼ t0 þ
6Tdr as indicated in Fig. 4(c). These TOF images corre-
spond to the spatial orders calculated in Figs. 3(d) and 3(e).
We display the time evolution of the cavity field for a
single experimental realization in Fig. 4(h) showcasing the
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FIG. 4. Experimental phase diagram of the population of the dark state for different driving frequencies ωdr and driving strengths
f0;exp. The driving frequency axis is rescaled by the characteristic frequency of the dark state ωD. The phase diagram is constructed for 6
driving cycles. (b)–(d) Population of the dark state as a function of the driving cycles for the parameter sets marked by a diamond, a
circle, and a rectangle in (a). The population of the dark state is rescaled by the total particle number Na for different driving cycles
derived from time-of-flight (TOF) images in (b)–(d). Examples of TOF images are provided before shaking starts at t ¼ 0 (e) and after
around 6 driving cycles (f). All TOF images are obtained after an adiabatic ramp-down of the pump wave and ballistic expansion of
25 ms. (g) Time sequence for the pump strength (red) and the phase ϕ of the pump field (blue). (h) Phase difference φ between the pump
and intracavity field (blue) and intracavity photon number NP (red) for the driving parameters marked by a circle in (a).
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vanishing intracavity light field as a macroscopic fraction
of the atoms occupy the dark state.
For the case depicted in Fig. 4(c), we find that initially

ND increases and saturates beyond 6 driving cycles. The
system approaches a steady state because of atom losses
before all atoms can be transferred into the dark state. In
contrast to the SR phase in Fig. 4(e), the large occupation of
the four momentum components f�1;�1gℏk in Fig. 4(f)
in combination with the small intracavity photon number in
Fig. 4(h) indicates a large occupation of the dark state jDi.
Furthermore, a substantial fraction of atoms populates the
f�2; 0gℏk momentum modes as the driving frequency is
tuned close to the resonance frequency for excitation to the
second band of the pump wave. This process inhibits
efficient population of the dark state as is discussed in the
Supplemental Material [45]. For reasons explained in
Ref. [45], in the experiment, the respective resonance is
shifted to ωdr=ωD ≈ 1.45, i.e., within the domain shown in
Fig. 4(a), acting to suppress the dark state population on the
right side of the red circle.
In conclusion, in an atom-cavity system pumped by a

periodically shaken standing wave, we have found that in a
specific parameter domain, a stationary excited dark state
condensate emerges, in which scattering of pump photons
into the cavity mode is suppressed. We show that a three-
level Dicke model captures this phenomenon qualitatively.
Both theoretically and experimentally, we observe that,
upon adiabatic ramp-down of the pump wave, the atomic
condensate in the dark state is essentially unaffected, while
the bright sector of the system undergoes a dynamical
phase transition [3]. Our work points out a general
approach to form stationary excited many-body states
using the concept of dark states known from single-particle
quantum optics.
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Chapter 5

Blue-detuned pump experiments
In publication V we presented, for the first time, the observation of a time crys-
talline phase that breaks continuous time translation symmetry, hence referred to as
a continuous time crystal (CTC). This observation realizes a class of time crystals,
which is closer to the original proposal by Wilczek in 2012. The no-go theorems are
circumvented by preparing the system in a non-equilibrium state and using a well-
controlled dissipation channel to prevent the system from approaching an infinite
temperature state. For these experiments, we pumped our atom-cavity system with
a pump wavelength λp = 792.55 nm where the pump is blue-detuned with respect to
the atomic resonance. Ongoing investigations, which are advertised in section 6.2,
also hinted at an observation of a CTC using red-detuned pump light.

5.1 Publication V: Observation of a continuous time
crystal

It has been proposed that a continuously pumped atom-cavity system with a pump,
blue-detuned with respect to the atomic resonance, leads to the emergence of limit
cycles, which can be classified as continuous time crystals [106, 107]. In contrast
to the red-detuned pump case, atoms localize at the pump field nodes, where scat-
tering of photons from the pump into the cavity, and vice versa, is suppressed. This
leads to a dynamical phase, which breaks a continuous time translation symmetry
and is robust against temporal perturbations. The key feature of the CTC we ob-
served is a persistent oscillation of the intra-cavity light intensity with frequency
ωlc ≈ 2π × 10 kHz, while the atomic density distribution is cycling through recur-
ring patterns. We observed that the time phase difference of the oscillation from two
experimental realizations take random values between 0 and 2π, as expected for the
spontaneously breaking of the continuous time translation symmetry. Simulations
show that the recoil resolution of the cavity that causes the retardation between the
cavity field dynamics and the atomic field dynamics makes it possible to observe the
self-sustained CTC dynamics in our atom-cavity system [107, 108].

Status of the publication:
The results were published as a Science First Release online article on June 9th,
2022 and as a printed version in Science [4] on August 5th, 2022. It was featured in
the Science perspective article [109]. The corresponding supplemental material can
be found in appendix D.
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Note:
Due to a mismatch between notation used in different publications and this thesis,
I would like to improve the readability of the publication by listing the notation in
table 5.1.

parameters this thesis publication V
pump strength ϵp ϵ

Table 5.1: Notation differences between this thesis and publication V.
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QUANTUM DYNAMICS

Observation of a continuous time crystal
Phatthamon Kongkhambut1, Jim Skulte1,2, Ludwig Mathey1,2, Jayson G. Cosme3,
Andreas Hemmerich1,2*, Hans Keßler1*

Time crystals are classified as discrete or continuous depending on whether they spontaneously
break discrete or continuous time translation symmetry. Although discrete time crystals have been
extensively studied in periodically driven systems, the experimental realization of a continuous time
crystal is still pending. We report the observation of a limit cycle phase in a continuously pumped
dissipative atom-cavity system that is characterized by emergent oscillations in the intracavity photon
number. The phase of the oscillation was found to be random for different realizations, and hence,
this dynamical many-body state breaks continuous time translation symmetry spontaneously.
Furthermore, the observed limit cycles are robust against temporal perturbations and therefore
demonstrate the realization of a continuous time crystal.

T
ime crystals are dynamical many-body
states that break time translation sym-
metry in a spontaneous and robust man-
ner (1, 2). The original quantum time
crystal envisaged by Wilczek involves a

closed many-body system with all-to-all cou-
pling that breaks continuous time translation
symmetry by exhibiting oscillatory dynamics
in its lowest-energy equilibrium state even
though the underlying Hamiltonian is time-
independent (1). This would constitute a star-
tling state of matter in motion, fundamentally
protected from bringing this motion to a
standstill through energy removal. However,
a series of no-go theorems have shown that
nature prohibits the realization of such time
crystals in isolated systems (3–5). The search
for time crystals was thus extended to include
equilibrium scenarios in periodically driven
closed systems (6–8). This has led to realiza-
tions of discrete time crystals, which break the
discrete time translation symmetry imposed
by the external drive (9–17). In such discrete
time crystals, during a short initial phase, the
drive slightly excites the system until the sys-
tem decouples from the drive, so that further
energy or entropy flow is terminated. The sys-
tem develops a subharmonic response, an in-
trinsic oscillation at a frequency slower than
that of the drive. Initially, it was argued that
dissipation, and hence the use of open sys-
tems,must be carefully avoided; then, so-called
dissipative discrete time crystals were theoret-
ically predicted (18) and experimentally realized
(19–21). As shown in a number of theoretical
works (22–24), the use of open systems comes
with the unexpected consequence that contin-
uous instead of periodic driving suffices to
induce time crystal dynamics. These contin-
uous time crystals (CTCs) realize the spirit of

the original proposalmore closely than discrete
time crystals and circumvent the no-go theo-
rems through their open character.
Here, we report the observation of a CTC in

the form of a limit cycle phase in a continu-
ously pumped dissipative atom-cavity system
(Fig. 1A). In classical nonlinear dynamics, the
term “limit cycle”, coined by Poincaré in amath-

ematical context (25), denotes a closed phase
space trajectory, asymptotically approached by
at least one neighboring trajectory. Although
limit cycles are well-established in classical
nonlinear physics (26), there are two essential
conditions for limit cycles in open quantum
systems to form a CTC. First, the formation of
the limit cycle must be associated with spon-
taneous breaking of continuous time translation
symmetry. That is, the relative time phase of the
oscillations for repeated realizations takes ran-
dom values between 0 and 2p. Second, the limit
cycle phase is robust against temporal perturba-
tions of technical or fundamental character,
such as quantum noise and, for open systems,
fluctuations associated with dissipation. The
characteristic signature of the CTC presented
here is a persistent oscillation of the intra-
cavity intensity and atomic density (Fig. 1, B
and C), which complies with the robustness
and spontaneous symmetry-breaking criteria
(Fig. 1D).
Our experimental setup consists of a Bose-

Einstein condensate (BEC) ofNa ≈ 5 × 104 87Rb
atoms inside a high-finesse optical cavity. The
system is transversely pumpedwith a standing
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Fig. 1. CTC in an atom-cavity system. (A) Schematic drawing of the atom-cavity system pumped
transversely with an optical pump lattice, blue detuned with respect to an atomic transition. (Inset) The
photon field (blue) and the atomic density (red) of the limit cycle dynamics, based on simulations. The
blue color shading of the time axis indicates the intracavity photon number. (B) Single experimental
realization of the limit cycle phase for deff/2p = –3.8 kHz and ef = 1.25 Erec. The vertical dashed black line
indicates the start of the 10 ms holding time, during which the pump strength is held constant. The
black line indicates the time trace of the pump strength e, and the blue line indicates the time evolution of
the intracavity photon number NP(t). (C) Normalized and rescaled single-sided amplitude spectrum of NP

calculated from the data shown in (B). (D) (Top) Distribution of the time phase in the limit cycle phase
for deff/2p = –5.0 kHz and ef = 1.25 Erec. The error bars indicate the phase uncertainty within our discrete
Fourier transform resolution of 100 Hz. However, the uncertainty with regard to the radial dimension—the
amplitude uncertainty—is negligibly small. For clarity, we removed the errors bars, around 30%, which
are overlapping. (Bottom) The evolution of the intracavity photon number for two specific experimental
realizations, marked with “1” and “2” at top, which have a time phase difference of almost p.
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wave field with a wavelength lp = 792.55 nm
(Fig. 1A). This wavelength is blue detunedwith
respect to relevant atomic D1 transition of
87Rb at a wavelength of 794.98 nm. The cavity
operates in the recoil resolved regime (27)—its
field decay rate k = 2p × 3.4 kHz is smaller
than the recoil frequency wrec = 2p × 3.7 kHz.
The cavity resonance frequency wc is shifted
because of the refractive index of the BEC by
an amount of d– = NaU0/2, where U0 = 2p ×
1.3 Hz is themaximal light shift per intracavity
photon. We define the effective detuning as
deff ≡ dc – d–, where dc ≡ wp – wc is the detuning
between the pump field frequency wp and the
resonance frequency of the empty cavity wc.
To determine the regime of the CTC, we

measured the time dependence of the intra-
cavity photon number NP(t) that emerges in
the protocol given below. We show NP(t) in
Fig. 2A and two derived quantities, the crys-
talline fraction X and the limit-cycle frequency
wLC, in Fig. 2, B and C, respectively. In our
protocol, the intracavity photon number NP(t)
was recorded as we linearly ramped the pump
strength e from 0 to 3.5 Erec within 10 ms,
while keeping deff fixed. Initially, for weak
pump intensities, the BEC phase was stable,
and NP was zero. Above a critical value of e,
the BEC became unstable toward the forma-
tion of a self-organized superradiant phase

heralded by a nonzero NP. This represents a
many-body state as the cavity photons medi-
ate a retarded infinite-range interaction be-
tween the atoms. Although this superradiant
phase transition has been intensively studied
for a red-detuned pump (28–31), it has only
been realized recently for a blue-detuned pump
after its theoretical prediction (32, 33). For blue
detuning, the atoms are low-field seeking and
localize at the intensity minima of the light
field. Nevertheless, the atoms can still self-
organize into the superradiant phase, as evi-
dent from the large blue areas shown in Fig. 2A.
However, the self-organized superradiant
phase may become unstable for higher pump
strengths because it costs energy for the atoms
to localize away from the nodes of the pump
lattice. This behavior leads to the disappearance
of the self-organized phase for higher pump
strengths (32). A phase diagram in fig. S1 in
(34) shows a larger range of e, demonstrating
the disappearance of the self-organization for
strong pumping. In the recoil-resolved regime,
because of the retarded character of the cavity-
mediated interaction, we additionally observed
the emergence of a new dynamical phase or a
limit cycle phase characterized by self-sustained
oscillations of NP as the atoms cycled through
different density wave patterns (33, 35). The
resolution of the experimental imaging system

is insufficient to observe the real-space density
of the cloud; instead, simulations of the evo-
lution of the single-particle density by use of a
mean-field model are shown in fig. S3 (34). Phys-
ically, the limit cycles can be understood as a
competition between opposing energy contri-
butions: one coming from the pump lattice
potential, and another coming from the cavity-
induced all-to-all interaction between the atoms
(33). In the superradiant phase, the cavity-
induced interaction energy dominates, and the
atoms localize at the antinodes. In the limit
cycle phase for sufficiently strong pump inten-
sities, localization of low-field–seeking atoms
at the antinodes becomes energetically costly,
resulting in a decrease in the density modu-
lations and NP as the system attempts to go
back to the normal homogeneous phase. How-
ever, this is unstable toward self-organization
because the chosen pump strength already ex-
ceeds the critical value, and thus, the cycle
starts anew. The regime of recoil-resolution
of the cavity, in which the dynamics of the
atomic density and the light field evolve with
similar time scales, has turned out to be the
key ingredient to realize the limit cycle phase.
This can be understood by noting that the
delayed dynamics of the cavity field, with
respect to the atomic density, leads to cavity
cooling, which in contrast to broadband cavity
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Fig. 2. Determining the time-crystalline regime. (A) (Top) Pump strength
protocol. (Bottom) The corresponding intracavity photon number NP as a
function of deff and e. The area enclosed by the yellow dashed lines indicates
the parameter space spanned in (B) and (C). (B) Relative crystalline fraction
X and (C) limit cycle frequency wLC plotted versus deff and ef. To obtain (B)
and (C), for fixed deff, the pump strength is ramped to its final value ef and

subsequently held constant for 10 ms. The relative crystalline fraction X and the
corresponding value of wLC identify the time-crystalline state. The parameter
space is divided into 20 by 24 plaquettes and averages across 5 to 10
experimental implementations are produced. The white cross indicates the
parameter values deff/2p = –5.0 kHz and ef = 1.25 Erec. The white area in (C)
corresponds to data with X below 1/e.
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setups restricts the atoms to occupy only a
small number of momentum modes. This pre-
vents the system from heating up and enter-
ing chaotic dynamics. We observed the limit
cycle phase in the region shown in Fig. 2A
enclosed by the yellow dashed lines. To fur-
ther highlight the dynamical nature of this
phase, we show a typical single-shot realiza-
tion in Fig. 1, B and C.
Next, we quantitatively identified the area

in the parameter space, spanned by the pump
strength e and the effective detuning deff,
where limit cycles can be observed. For fixed
deff, we linearly ramped e to the desired final
value ef, using the same slope as for the
measurement shown in Fig. 2A, and held e
constant for 10 ms. The protocol is depicted
by the black curve in Fig. 1B. We show in
Fig. 1C an example of the normalized and
rescaled single-sided amplitude spectrum
NP wð Þ ¼ �NP wð Þ= �NP;max wLCð Þ obtained from
NP(t) within the holding timewindow [0,10]ms
in Fig. 1B. �NP wð Þ is the normalized single-
sided amplitude spectrum, and �NP;max wLCð Þ is
the maximum value of the measured limit
cycle amplitude. In the case of pronounced
limit cycle dynamics as in Fig. 1C, the single-
sided amplitude spectrum shows a distinct
peak, with a width associated with the limit
cycle lifetime of several milliseconds. The
narrowest peaks observed exhibit a e–2 width
Dw ≈ 2p × 1.4 kHz: The limit cycle frequency
wLC, plotted in Fig. 2C, is defined as the
frequency of the dominant peak in the single-
sided amplitude spectrumwithin the frequency
interval DLC = [3.5,15.5] × 2p Hz, chosen much
larger than dLC ∈ [wLC – Dw/2,wLC + Dw/2]. The
oscillation frequency of a CTC is not necessarily
fixed, and robustness refers to the persistence of
the CTC in the thermodynamic limit and for a
wide range of system parameters [finite-size
effects are discussed in the supplementary
materials (34)] (22). We calculated a common
measure for time crystallinity, the crystalline
fraction X′ (10, 11), as the ratio between the
area under the single-sided amplitude spec-
trumwithin dLC and the total areawithin DLC.
That is, X′ ≡

P
w∈dLCNP wð Þ=Pw∈DLC

NP wð Þ. The
relative crystalline fraction X shown in Fig.

2B is normalized to the maximum crystalline
fraction measured in the parameter space
explored in this work. Because of the finite
lifetime of the BEC, it is difficult to access
the long-time behavior of the system, which
makes it experimentally challenging to dis-
tinguish between the areas of stable limit
cycle, chaos, and possible transient phases.
Hence, we define a cut-off or threshold value
for the relative crystalline fraction, Xcut = 1/e,
to identify regions with observable limit cycle
dynamics. In Fig. 2C, the frequency response
of the limit cycle phase is only shown if its
relative crystalline fraction is higher than the
cut-off value: X > Xcut. The experimental life-
time of our time crystal is limited by atom
loss. Furthermore, the short-range contact
interaction, due to collisions between the
atoms, leads to dephasing of the system and
hence melting of the time crystal. Simulations
that include contact interactions and phenom-
enological atom loss can be found in the sup-
plementary materials.
The spontaneous symmetry breaking of a

many-body system indicates a phase transition.
We demonstrated strong evidence that the
limit cycle phase emerges through spontaneous
breaking of continuous time translation sym-
metry, and thus, it is a CTC. We repeated the
experimental pump protocol shown as the Fig.
1B black line more than 1500 times with fixed
deff/2p = –5.0 kHz and ef = 1.25 Erec. These
parameter values are indicated in Fig. 2C with
a white cross. Because of technical instabil-
ities, the number of the atoms in the BEC Na

fluctuates by 5%. This leads to a fluctuating
value of deff and hence of wLC. Pictorially, this
can be understood by observing that fluctua-
tions in Na effectively shift the CTC regime in
Fig. 2C either up or down. For the parameter
values indicated by a white cross in Fig. 2C,
the median of wLC is �wLC ¼ 2p� 9:69 kHz.
Our discrete Fourier transform resolution,
set by the 10-ms timewindow, is 100 Hz. Thus,
we only considered experimental runs, which
yielded response frequencies of wLC ¼ �wLC T
2p� 50 Hzð Þ. For each single-shot measure-
ment, we obtained the time phase defined as
the principal argument arg[NP(wLC)] of the

Fourier transformed intracavity photon num-
ber NP(wLC) evaluated at the limit cycle fre-
quencywLC. In Fig. 1D, we show the distribution
of the observed time phases, which randomly
covers the interval [0,2p]. This corroborates the
spontaneous breaking of continuous time
translation symmetry in the limit cycle phase.
In the bottom of Fig. 1D, we show two specific
experimental realizations, which have a time
phase difference of almost p. Simulations rep-
resenting the BEC as a coherent state show a
range of the response frequency distribution
of 300 Hz. Because we post-selected our data
far below this limit, the origin of the spread
over 2p in the time phase distribution is not
due to technical noises but rather to quantum
fluctuations. In the supplementary materials,
we show amore detailed theoretical analysis to
support this argument. The error bars along the
angular direction in Fig. 1D indicate the phase
uncertainty within 100 Hz of our Fourier limit.
The average phase uncertainty is around
0.25p. The uncertainty in the radial direction
corresponding to the oscillation amplitude is,
however, negligible. Moreover, we removed
30% of the error bars for clarity in Fig. 1D.
Last, we demonstrated the robustness of the

limit cycle phase against temporal perturbations,
which is a defining feature of time crystals. We
introduced white noise onto the pump signal
with a bandwidth of 50 kHz. The noise strength
is quantified by n ≡

P2p�50 kHz
w¼0 Anoisy wð Þj j=P2p�50 kHz

w¼0 Aclean wð Þj j � 1, where Anoisy and
Aclean are the single-sided amplitude spec-
trum of the pump in the presence and absence
of white noise, respectively. We chose the pa-
rameters deff/2p = –5.0 kHz and ef = 1.25 Erec

in the center of the stable limit cycle region,
indicated by the white cross in Fig. 2C, and
added white noise with varying strengths. In
Fig. 3, A and B, top, single-shot realizations of
the noisy pump signal are shown for weak
and strong noise, respectively. The correspond-
ing dynamics ofNP is shown in Fig. 3, A and B,
bottom. In Fig. 3E, we show how increasing
the noise strength can “melt” the CTC as in-
ferred by the decreasing relative crystalline
fractions calculated from single-sided amplitude
spectra, similar to those shown in Fig. 3, C

Kongkhambut et al., Science 377, 670–673 (2022) 5 August 2022 3 of 4

Fig. 3. Robustness against
temporal perturbations. (A and
B) Single experimental runs for
noise strengths indicated in (E).
(Top) Time traces of the
pump strength e. (Bottom)
Corresponding dynamics of NP.
(C and D) Single-sided amplitude
spectra of (A) and (B), respec-
tively. (E) Relative crystalline
fraction for varying noise strength
n and fixed deff/2p = –5.0 kHz
and ef = 1.25 Erec.
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and D. The system takes time to react to the
noise, so that a few oscillations can always be
observed before decay sets in. This leads to an
offset of 0.4 in the crystalline fraction, even for
very strong noise. Nevertheless, we found that
the limit cycle phase indeed exhibits robust
oscillatory behavior over a wide range of the
noise strength. This, together with the obser-
vation of spontaneous breaking of a continu-
ous time translation symmetry, suggests that
the observed limit cycle phase is a CTC.
We have experimentally demonstrated a

CTC and provided a theoretical understand-
ing. This class of dynamical many-body states
expands the concepts of long-range order and
spontaneous symmetry breaking into the time
domain and is therefore of fundamental in-
terest. This result, and the precision and con-
trol achieved with our atom-cavity platform,
paves the way toward a broad and compre-
hensive study of dynamical many-body states
of bosonic or fermionic quantummatter in the
strongly correlated regime. For example, an
increased atom-photon coupling could gener-
ate a new class of time crystals associated with
symmetry-broken periodic entanglement. Fur-
thermore, technological applications, such as
toward time metrology, can be envisioned.
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Continuous time crystals
Time crystals are a new dynamical phase of quantum matter resulting from the breaking of time-translation symmetry
and the subsequent interplay between interactions forming self-organized phases. To date, discrete time crystals have
been observed in periodically driven systems. By contrast, Kongkhambut et al. report the observation of spontaneous
breaking of a continuous time translation symmetry in an atomic Bose-Einstein condensate inside a high-finesse
optical cavity (see the Perspective by LeBlanc). Using a time-independent pump, the authors observed a limit cycle
phase that is characterized by emergent periodic oscillations of the intracavity photon number and is accompanied by
the atomic density cycling through recurring patterns: a continuous time crystal. —ISO
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Chapter 6

Conclusions and Outlook

In this thesis we presented several observations of discrete and continuous dissipa-
tive TCs in an atom-cavity system. Our experimental setup is unique in the sense that
the optical cavity operates in the recoil-resolved regime, resulting in a retardation be-
tween the cavity field and atomic field dynamics. It has been shown recently that the
recoil resolution of the cavity is crucial for observing stable TC dynamics [107, 108].
Publication I presented, for the first time, an observation of a DTC in an open sys-
tem. The main characteristic of the DTC is the period-doubled oscillation between
two Z2-symmetry broken checkerboard patterns, driven by the intensity modulation
of the pump field. Publication II presented a dynamical phase emerging from a peri-
odically shaken pump potential experiment, referred to as a dynamical bond density
wave phase. This phase is characterized by an incommensurate switching between
the two Z2-symmetry broken checkerboard patterns. Since the shaking of the stand-
ing wave pump potential enables an additional coupling to the bond density wave
state, the standard two-level Dicke model cannot sufficiently explain the dynamics
of the atom-cavity system in this shaken scenario. Publication III introduced the
parametrically driven three-level Dicke model, which captures the dynamics of the
shaken atom-cavity system and predicts the emergence of an ITC, the observation of
which is presented in publication II. For sufficiently large shaking amplitudes, a pa-
rameter regime emerges in which the ITC exhibits transient behavior, leading to the
formation of a condensate in a dark state of the atom-cavity system. The observation
of this dark state is presented in IV.

Since 2017, several DTCs have been realized experimentally, but the CTC was
yet to be observed. While the no-go theorems prevent CTCs from emerging in the
ground state of a closed system [12–14], we circumvented this by employing an
open system, and thus could observe a CTC for the first time. This observation
is presented in publication V. The observable which exhibit the signature of the
CTC dynamics is the persistent oscillation of the intra-cavity field intensity, while
its real-space atomic density distribution is cycling through recurring patterns. We
also observed the uniform time-phase distribution of the intra-cavity field intensity
oscillations, which is expected as a result of the spontaneous breaking of continuous
time translation symmetry.

One follow-up experiment is to study a transition between a CTC and a DTC.
Like other parametric oscillators, an appropriate external drive leads to an entrain-
ment effect, where the system responds by locking its frequency onto a rational frac-
tion of the driving frequency [110, 111]. After preparing the system in a CTC phase,

69



we periodically drive the pump intensity at nearly twice of the intrinsic oscillation
frequency of the CTC and observe a sub-harmonic response of the intra-cavity field
intensity dynamics. We will advertise this ongoing project in section 6.1. Moreover,
we are also currently exploring the emergence of limit cycles by using pump light,
which is red-detuned with respect to the atomic transition, see section 6.2. This
work will further clarify the the underlying mechanism that leads to the observation
of limit cycles and their intrinsic frequencies.

6.1 From a continuous to a discrete time crystal
Inspired by the proposal in 2020 [112], we prepared our system in the CTC phase
and modulated the intensity of the pump field close to twice the intrinsic frequency
of the CTC. As a consequence, we observed a period-doubled oscillation of the
intra-cavity field intensity Np(t), which is the central signature of a DTC.

The periodically driven pump strength is written as ϵp(t) = ϵf (1+f0 sin(ωdrt)),
where ωdr ≈ 2 × ωlc is the driving frequency and f0 is the modulation strength.
The data presented in fig. 6.1 (a-b) show an example of a single experimental re-
alization with an optimal modulation strength f0 = 0.45 and driving frequency
ωdr = 2π × 22.5 kHz. We start to apply the periodic drive when the system is
in the CTC phase, at t = 0. After applying the periodic drive, Np oscillates with
the sub-harmonic frequency ωlc ≈ ωdr/2

1. In fig. 6.1 (c), we repeated the proto-
col for multiple realizations and plotted the response frequency distribution with
(f0 = 0.45) and without (f0 = 0) the drive. The histogram of the driven case (pink)
shows a narrowed frequency distribution centered at 0.5 ωdr. On the other hand, the
histogram of the non-driven case (purple) exhibits fluctuations of ωlc in a broader
frequency range, due to unavoidable technical noise. Furthermore, we can show
that the drive fixes the time phase of the Np oscillation to only two time phases, dif-
fering by π for various experimental realizations, see fig. 6.1 (d). Note that this is
expected from the commensurate DTCs, characterized by a sub-harmonic frequency
response. The related discrete time phase distributions of the DTC in publication I
can be found in appendix A.

1We obtain ωlc from fitting a dominant frequency peak in the Fourier spectrum of Np which is
calculated from t = 0 to t = 10ms.
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Figure 6.1: From a continuous to a discrete time crystals. (a) shows the pump pro-
tocol. The pump intensity is periodically modulated at t = 0. The modulation
frequency used in this experimental realization is ωdr = 2π × 22.5 kHz with the
modulation strength f0 = 0.45. (b) shows a time evolution of the intra-cavity field
intensity Np. The inset in (b) shows the magnified view of ϵp and Np within the
time interval marked by the gray rectangles. (c) shows histograms of the response
frequency distribution without modulation f0 = 0 (purple) and with modulation
f0 = 0.45 (pink). (d) shows a time phase distribution of the data from the mod-
ulated case with f0 = 0.45. The error bars represent the time phase uncertainty
according to the Fourier limit. A single realization shown in (b) is highlighted with
light blue color.

6.2 Observation of limit cycles for red-detuned pump
light

We recently observed limit cycles (LCs) when pumping the atom-cavity system with
a standing wave pump which is red-detuned with respect to the atomic transition. To
identify the LCs, we first recorded a phase diagram, similar to fig. 2.4, with the
pump wavelength λp = 803.63 nm, see fig. 6.2 (a). For the area marked with the
blue box, we observed an oscillatory behavior of the intra-cavity field intensity Np

as we increase the pump strength. This hints at an observation of limit cycles. We
then investigated this behavior in more detail by preparing the system at a fixed
pump detuning of δeff = −1.6 kHz and a fixed pump strength ϵp of 2.6 Erec, see
fig. 6.2 (b). At this set of parameters, we observed a persistent oscillation of Np,
where its dominant frequency is at 5 kHz, see a Fourier spectrum of the observed
Np in fig. 6.2 (c). This suggests an observation of LCs for a red-detuned pump light.
Consequently, one must extend the explanation of the origin of LCs emerging in a
blue-detuned pump light, presented in publication V [4], to cover the red-detuned
pump light scenario as well.

Although the recent proposal by P. Gao et al. [113] numerically predicted the
emergence of LCs in a red-detuned pump regime, a generic paradigm, explaining
emergence of LCs in both pump detunings, still remains inconclusive. Our investi-

71



t (ms)

(k
H

z)

(kHz)

N
P

N
P

p (Erec)

p 
(E

re
c)

 

p 
(E

re
c)

 

t-t0 (ms)

N
P 

 ( 
  )

(a)

(c)( 
   

 )

(b)

( 
   

 )

Figure 6.2: Observation of limit cycle using red-detuned pump light. (a) top: pump
strength protocol. bottom: phase diagram spanned by the quantities pump detuning
δeff and pump strength ϵp. The color code represents the detected photon numberNp.
The blue box represents the area where LCs can be observed in the phase diagram.
(b) shows an exemplary single realization of a limit cycle, leading to an oscillatory
behavior of Np. The data is taken at fixed δeff = −1.6 kHz and ϵp is kept constant at
2.6 Erec for times t larger than t0, marked with a vertical line. (c) shows a Fourier
spectrum of Np observed in (b).

gations aim to uncover the general explanation of how LCs emerge in the atom-cavity
system, regardless of the pump detuning. We are developing a model that allows for
understanding the phenomena beyond the existing numerical simulations. Prelimi-
nary results are suggesting that the emergence of LCs in our system arises as a first
step of a route to chaos. A route to chaos is the process where a stable dynamical
system transitions into exhibiting chaotic behavior. Often, this route includes a se-
ries of bifurcation processes [114]. Bifurcations in a route to chaos are well-known
in non-linear physical systems, for example, circular Couette flow systems2 [115],
Rayleigh-Bénard convection systems3 [115, 116], acoustical turbulence systems 4

[117], Q-switched CO2 lasers [118], driven nonlinear semiconductors [119], and
many more.

2A system of viscous fluid confining in a gap between two rotating cylinders.
3A system comprising a layer of fluid between two horizontal plates, where the lower plate is

warmer.
4A system of liquid irradiated with high-intensity sound.
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Observation of a dissipative time crystal
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I. EXPERIMENTAL DETAILS

The experimental set-up, as sketched in Fig. 1a in the main text, is comprised of a magnetically trapped BEC ofNa =
65× 103 87Rb atoms, dispersively coupled to a narrow-band high-finesse optical cavity. The cavity field has a decay
rate of κ = 2π×4.55 kHz, which is the same order of magnitude as the recoil frequency ωrec = Erec/~ = 2π×3.55 kHz.
The wavelength of the pump laser is λP = 803 nm, which is red detuned with respect to the relevant atomic transition
of 87Rb at 795 nm. The maximum light shift per atom is U0 = −2π × 0.36 Hz. We fix the effective detuning to
δeff ≡ δC − (1/2)NaU0 = −2π × 18.5 kHz, where δC = ωP − ωC is the pump-cavity detuning. An experimental
sequence starts by preparing the system in the self-organized density wave (DW) phase. This is achieved by linearly
increasing the pump strength ε from zero to its final value ε0 = 3.3 Erec in 10 ms at a fixed pump-cavity detuning
δeff = −2π×18.5 kHz.

(  
    

 )

(  
    

 ),

(  
    

 )

time, t  (ms)

,

,

FIG. 1: Z2 symmetry breaking in space. (a) Pump protocol starting in the DW phase, tuning into the BEC phase and back
to the DW phase. (b),(c) Relative phases φ (blue) and intracavity photon numbers NP (red), measured by the heterodyne
detector for single experimental runs, showing the two typical outcomes (b) δφ ≈ 0 and (c) δφ ≈ π. (d) Histogram of the phase
difference δφ for 397 experimental runs.

II. Z2 SYMMETRY BREAKING IN SPACE

Due to optical path length drifts, we cannot compare the phase φ for DW realisations of different experimental runs.
The stability of our balanced heterodyne detection is however sufficient to compare the phase for two subsequent DW
realisations within the same experimental sequence applying the pump protocol in Fig. 1(a). In a perfect system, the
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FIG. 2: Spontaneous breaking of the Z2 time translation symmetry. (a) Pump protocol starting in the DW phase, tuning into
the BEC phase and back to the DW phase. After a waiting time of 0.5 ms the modulation strength f0 is linearly increased to
f0 = 0.3. (b),(c) Relative phases φ (blue) and intracavity photon numbers NP (red), measured by the heterodyne detector for
single experimental runs showing the two typical outcomes δφ = 0 (b) or δφ = π (c). As a consequence, also the time-phase
difference between the subharmonic response and the modulated pump strength is constrained to the values zero and π. This is
seen by observing the relative phase δφ at the time tmax, where the modulated pump strength acquires a maximum, indicated
by the vertical black dashed line at t ≈ 3TD. (d) Normalised Fourier component Sφ(ωD/2) of the relative phase δφ(t) rescaled
by its maximum for 423 experimental runs.

phase difference δφ between two subsequent realizations of the DW phase can take two values δφ = 0 or δφ = π and
does not depend on any system parameters. Since the underlying discrete symmetry breaks spontaneously, we expect
equiprobable realisation of the two possible outcomes shown in Figs. 1(b) and 1(c). The relative occurrence of δφ
for 397 realisations is plotted in Fig. 1(d) using a binning of 0.08 π. The two maxima, corresponding to δφ = 0 and
δφ = π, are clearly distinguishable and the ratio of all realisations where δφ ∈ [−π2 , π2 ] over δφ ∈ [π2 ,

3
2π] is 1.15. This

number is close to unity, which shows that the underlying spatial Z2 symmetry in our system is well established.

III. Z2 SYMMETRY BREAKING IN TIME

In this section we show how the Z2 symmetry breaking associated with the DW phase leads to a spontaneous
breaking of the discrete Z2 time translation symmetry associated with the modulated pump strength. Again, the
stability of the phase reference of our heterodyne detection system is not sufficient to compare the phases φ for different
experimental runs. Therefore we follow a similar procedure as in Fig. 1, entering the DW phase twice within the
same experimental run. After entering the DW phase for the second time, we start to modulate the pump strength
in the same way as in Fig. 1 of the main text. The applied pump protocol is presented in Fig. 2(a). As discussed in
Fig. 1(d), the phase difference δφ between two subsequent realizations of the DW phase can take two values δφ = 0
or δφ = π and does not depend on any system parameters. As a consequence, the time-phase difference between the
observed subharmonic time-crystal oscillation and the oscillation of the pump strength becomes constrained to the
possible values zero and π. This is seen by evaluating the relative phase δφ at the time tmax, where the modulated
pump strength acquires a maximum, indicated by the vertical black line in Fig. 2(a) at t = 3TD. Since the underlying
discrete symmetry breaks spontaneously, we expect equiprobable realisation of the two possible outcomes shown in
Figs. 2(b) and 2(c). The normalised complex value of the Fourier spectrum at the subharmonic frequency, Sφ(ωD/2)
of the relative phase δφ(t), rescaled by its maximum for 423 experimental runs, is shown in 2(d). The ratio between
the occurrences with Re[Sφ(ωD/2)] < 0 over the events with Re[Sφ(ωD/2)] > 0 is 1.05, which shows that the discrete
time translation symmetry associated with the modulation is well established.

IV. THEORETICAL MODEL

In the frame rotating at the pump frequency ωP = 2π/λP, the Hamiltonian for the system reads[1, 2]

Ĥ = ĤC + ĤA + ĤAA + ĤAC. (1)



3

In Eq. (1), the Hamiltonian for the cavity with a single mode function cos(kz) is

ĤC = −~δCâ†â, (2)

where â (â†) is the cavity mode annihilation (creation) operator. The single-particle Hamiltonian for the atoms is
given by

ĤA =

∫
dydzΨ̂†(y, z)

[
− ~2

2m
∇2 + ε cos2(ky)

]
Ψ̂(y, z), (3)

where m is the mass of an atom and Ψ̂(y, z) is the atomic field operator. The short-range collisional interaction
between the atoms is captured by the Hamiltonian

ĤAA = Ua

∫
dydzΨ̂†(y, z)Ψ̂†(y, z)Ψ̂(y, z)Ψ̂(y, z). (4)

The effective 2D interaction strength is Ua =
√

2πas~2/m`x, where as is the s-wave scattering length and `x is the
harmonic oscillator length in the x direction. The Hamiltonian for the light-matter interaction reads

ĤAC = ~U0

∫
dydzΨ̂†(y, z)

[
cos2(kz)a†a (5)

+ αP

(
a+ a†

)
cos(ky)cos(kz)

]
Ψ̂(y, z),

where αP ≡
√
ε/~|U0| is the unitless amplitude of the pump field. The dynamics of the system follows from the

Heisenberg-Langevin equations,

∂

∂t
Ψ̂ =

i

~
[Ĥ, Ψ̂] (6)

∂

∂t
â =

i

~
[Ĥ, â]− κâ+ ξ, (7)

where the stochastic noise term ξ satisfies 〈ξ∗(t)ξ(t′)〉 = κδ(t − t′). We simulate the dynamics in the semiclassical

limit by transforming Ψ̂ and â into classical fields according to the truncated Wigner approximation (TWA) method
[3–5].

,

modulation frequency,                 (       )

FIG. 3: Mean-field stability region of the DTC. Blue area denotes the region in the (f0, ωD)-plane where a stable period-doubling
response exists within the mean-field model in the absence of short-range interaction.

The TWA is a semiclassical phase space method that goes beyond mean-field theory and can be utilised to test the
robustness of time crystals against quantum and stochastic noise due to the dissipative cavity [6, 7]. We numerically
integrate the resulting equations of motion for an ensemble of 103 initial conditions, which sample the initial quantum
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noise in the fields and the stochastic noise due to the dissipative cavity. In our simulations, apart from ε0 chosen as
ε0 = 1.03 εcr, where εcr is the critical pump strength for the BEC-DW phase transition, we use the same parameters
and protocol for the pump strength as in the experiment. In the comparison of calculations of NP(t) and C(t) for
variable collisional interaction strengths Ea in Fig. 4 in the main text, we adjust the pump strengths such that the
number of intracavity photons in the DW phase is fixed to the same value.

V. MEAN-FIELD PHASE DIAGRAM

In order to obtain a rough orientation with regard to the system parameters suitable for the appearance of a
dissipative time crystal (DTC) phase, we construct a dynamical phase diagram in the clean mean-field limit, wherein
the mean-field breaking short-range interaction is neglected. In particular, we seek period-doubling solutions, which are
stable for at least 40 modulation cycles. As depicted in Fig. 3, modulation frequencies in the range ωD ∈ 2π×[2, 8] kHz
provide an island with a stable DTC phase. This is consistent with the experimental results in Fig. 2(g) in the main
text. Fig. 4(a) and 4(b) show single shot measurements of the evolution of the intracavity photon number NP (red)
and the relative phase φ between the pump and the cavity light field (blue). In Fig. 4(c) and 4(d), the corresponding
mean-field simulations including phenomenological atom loss are presented.

a

b

c

d

FIG. 4: Comparison of experimental data to mean-field simulations including phenomenological atom loss. (a) Time sequence
for the pump with modulation strength f0 = 0.3 and modulation period TD = 0.25 ms. In the time interval delimited by dashed
lines, f0 is linearly ramped from zero to its desired value. (b) The corresponding response of the intracavity photon number NP

(red) and the relative phase φ between the pump and the cavity light field (blue). (c),(d) Corresponding mean-field simulations
including atom loss.

VI. THEORETICAL RESULTS WITH TEMPORAL DISORDER

In Fig. 5, we present the results of our TWA simulations for a noisy drive. Specifically, we add a Gaussian white noise
onto the pump strength signal. An exemplary trace of the noisy drive is shown in Figs 5(a) and 5(b). Note, however,
that the noise in our numerical results shown here is band-limited to 0.025 GHz, which is set by the integration step
of our stochastic differential equation solver. In contrast, the noise in the experiment is band-limited to 50 kHz. This
explains the appearance of a more intermittent noise in the pump signal when Fig. 5 is compared to Fig. 3 in the
main text. Similar to the experiment, we quantify the noise strength by n ≡ ∑ω |Enoisy(ω)|/∑ω |Eclean(ω)|, where
Enoisy (Eclean) is the Fourier spectrum of the pump in the presence (absence) of white noise. The noise strength used
in Fig. 5 is n = 2.0. For this relatively weak temporal disorder, which breaks the discrete time translation symmetry
imposed by the drive, our TWA results suggest that the system still exhibits long-lived period-doubling without any
sign of decay after ∼ 350 driving cycles. This corroborates the robustness of the DTC against temporal perturbations
as explored experimentally in the main text.
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DTC WITH TEMPORAL NOISE

JAYSON G. COSME

1. Numerical results
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Figure 1. (Left) Pump and (right) probe profiles.

Date: April 7, 2021.

1

FIG. 5: Numerical results from TWA for noisy drive. (a)-(c) Short-time and (d)-(f) long-time dynamics. (a),(d) Single
realization of the disordered drive [dark] and the clean periodic drive [light]. TWA results for the (b),(e) intracavity photon
number and (c),(f) non-equal time correlation. The modulation strength is f0 = 0.3 and modulation period is TD = 0.25 ms.

VII. MAPPING TO THE DICKE MODEL

The period-doubling instability of the DTC can be understood using a simple albeit incomplete description according
to the mapping of the full atom-cavity Hamiltonian onto the Dicke model via the Schwinger-boson representation.
Using the Holstein-Primakoff representation in the thermodynamic limit of N → ∞, the collective spin in the Dicke
model can be transformed back into bosons, leading to a coupled oscillator system, where the coupling strength is
periodically driven. This coupled oscillator Hamiltonian can then be diagonalised to obtain a Hamiltonian for the
lower and upper polaritonic states, where their respective frequencies are parametrically driven. Thus, driving at
twice the lower polariton frequency leads to an exponential instability, which translates to a period-doubling response
in the full atom-cavity model due to the presence of dissipation and the nonlinearity of the cavity-mediated interaction
between the atoms.
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I. EXPERIMENTAL DETAILS

The experimental set-up, as sketched in Fig. 1(a) in the main text, is comprised of a magnetically trapped BEC
of Na = 65× 103 87Rb atoms, dispersively coupled to a narrow-band high-finesse optical cavity. The cavity field has
a decay rate of κ = 2π×3.6 kHz, which almost equals the recoil frequency ωrec = Erec/~ = 2π×3.55 kHz. The
wavelength of the pump laser is λP = 803 nm, which is red detuned with respect to the relevant atomic transition
of 87Rb at 795 nm. The maximum light shift per atom is U0 = −2π × 0.36 Hz. We fix the effective detuning to
δeff ≡ δC − (1/2)NaU0 = −2π × 18.5 kHz, where δC = ωP − ωC is the pump-cavity detuning. A typical experimental
sequence starts by preparing the system in the superradiant phase. This is achieved by linearly increasing the
pump strength ε from zero to its final value ε0 = 3.3 Erec in 10 ms at a fixed effective pump-cavity detuning
δeff = −2π×18.5 kHz.

II. THREE-LEVEL SYSTEM

> 0

|0,0

= 0
|BEC

|±

|DW

|BDW

}ωB
}ωD

2 }ωrec

c34

c12
c c

c14

FIG. 1. V-shaped three-level system. On the left, the case of zero pump field strength ε = 0 is shown with the zero momentum
ground state |0, 0〉 and two degenerate excited states |+〉 ≡∑

ν,µ∈{−1,1} |ν~k, µ~k〉 and |−〉 ≡∑
ν,µ∈{−1,1} ν|ν~k, µ~k〉 associated

with an energy 2~ωrec above that of |0, 0〉 (~ωrec = recoil energy). For ε > 0, these bare states acquire different light-shifts
giving rise to the modified states |BEC〉, |DW〉, and |BDW〉. They span a three-level system with the resonance frequencies
ωD and ωB for the left and right leg of the V-shaped coupling scheme, respectively.

Consider atoms in their electronic ground state. For each atom, a V-shaped three-level system arises as sketched
in Fig. 1. For a vanishing pump field ε = 0, the ground state is the bare zero momentum state |0, 0〉 and we consider
two degenerate excited momentum states given by the even and odd superpositions |+〉 ≡ ∑ν,µ∈{−1,1} |ν~k, µ~k〉
and |−〉 ≡ ∑ν,µ∈{−1,1} ν|ν~k, µ~k〉, respectively. Here, | ± ~k,±~k〉 denotes the momentum eigenstates with ±~k
momentum along the pump axis (y-axis) and ±~k momentum along the cavity axis (z-axis). As shown in Fig. 1,
in the presence of a pump field, these states acquire light-shifts of different sizes, giving rise to the three modified
states |BEC〉, |DW〉 and |BDW〉. The |BEC〉 state is associated with the zero momentum state |0, 0〉, and hence a
homogeneous density distribution. The light-shift for this state is −ε/2 with ε denoting the potential depth of the
pump standing wave [1]. |DW〉 is associated with the bare momentum state |+〉 and therefore a density distribution
proportional to | cos(ky) cos(ky)|2. This distribution is localized in the antinodes of the pump wave and thus possesses
a larger light-shift −3ε/4 [1]. Finally, |BDW〉 is associated with |−〉 and therefore a density distribution proportional
to | sin(ky) cos(ky)|2, which matches with the nodes of the pump wave and hence possesses the smallest light-shift
−ε/4 [1].

The preceding discussion strictly applies, if ε remains below a critical value εcrt, beyond which the |BEC〉 state
undergoes a phase transition to the superradiant state of the regular two-level Dicke model. In particular, above
εcrt a coherent intra-cavity field arises, which mixes |BEC〉 and |DW〉 and adds additional light-shifts to these states.
In the present work, we operate either below or slightly above εcrt, where this additional mixing and the associated
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light-shifts are assumed sufficiently small to be neglected.

III. ATOM-CAVITY MODEL

Considering only the pump and cavity directions and neglecting contact interactions between the atoms, the shaken
atom-cavity system can be modeled by the many-body Hamiltonian

Ĥ/~ = −δCâ†â+

∫
dydzΨ̂†(y, z)

[
− ~

2m
∇2 − ωrecε cos2(ky + φ(t)) + U0â

†â cos2(kz) (1)

−
√
ωrec|U0|εp cos(ky + φ(t)) cos(kz)(a† + a)

]
Ψ̂(y, z),

where δC is the pump-cavity detuning, U0 < 0 is the maximum light shift per atom, and ε is the pump intensity
in units of the recoil energy Erec. This Hamiltonian can be mapped onto the driven open three-level Dicke model
(cf. main text) by considering only the five lowest momentum modes of the atoms, |0, 0〉 and | ± ~k,±~k〉, where
k = 2π/λP is the wavenumber of the pump (see [1] for details). This assumption is valid when the occupations of higher
momentum modes are kept negligible, by initializing the system close to the phase boundary between the homogeneous
|BEC〉 state and the superradiant phase. The matter sector of the superradiant phase, then mainly consists of the
|BEC〉 state with a small admixture of the |DW〉 state, which exhibits a density modulation ∝ | sin(ky) cos(kz)|2 and

hence, the bosonic atomic field operator can be expanded as Ψ̂(y, z) ∼ ĉ1 + ĉ22 cos(ky) cos(kz) [2]. The Schwinger
boson representation can be used to map the transversely pumped atom-cavity Hamiltonian onto the standard two-
level Dicke model [2, 3]. The order parameter for the |DW〉 state is ΘDW = 〈cos(ky) cos(kz)〉 in bosonic operator

representation, while it is ΘDW = 〈ĴD
x 〉 in pseudospin representation. In our experiment, periodic shaking allows for

occupation of the |BDW〉 state, which displays a density modulation ∝ | sin(ky) cos(kz)|2. The order parameter for

|BDW〉 is either ΘBDW = 〈sin(ky) cos(kz)〉 or ΘBDW = 〈ĴB
x 〉. Taking this into account, the atomic field operator

should be extended as Ψ̂(y, z) ∼ ĉ1 + ĉ22 cos(ky) cos(kz) + ĉ32 sin(ky) cos(kz). The driven three-level Dicke model in
the main text can then be obtained using an extended Schwinger boson representation that includes this new mode
[1]. The mapping leads to an effective cavity field frequency of ω = (3U0N)/4− δC. The strength of the light-matter

interaction is λ/
√
N = −

√
ωrecεp|U0|/2. Moreover, we obtain ωD = 2ωrec(1 − εp/8) and ωB = 2ωrec(1 + εp/8) (see

Eq. (2) of the main text). These frequency shifts are depicted in Fig. 1.

IV. DEPENDENCE OF THE DENSITY WAVE FREQUENCY ON THE MODULATION STRENGTH

As shown in Fig. 2, the density wave frequency ωDW depends weakly on the modulation strength f0 but the slope
is much smaller as for the dependence on the modulation frequency ωdr and we neglect this effect in the construction
of the phase diagram in Fig. 3(b) of the main text. It can be explained as follows. Due to the modulation the atoms
are sitting on the slope of the light-induced potential and they effectively feel a slightly weaker pump lattice depth ε.
This effect increases with increasing f0. Since the position of the bond density wave resonance ωBDW shifts to lower
values for smaller ε and ωDW = ωBDW − ωdr, the density wave frequency response ωDW increases with increasing
modulation strength f0.

V. MEASURING THE POSITION OF THE PARAMETRIC RESONANCE BY THE DEPLETION OF
THE INTRACAVITY FIELD.

As mentioned in the main text, there are three possibilities to measure the position of the bond density wave
resonance ωBDW. Firstly, as shown in Fig. 3(a) of the main text, via a linear fit of the density wave frequency
response ωDW, and, secondly, from the oscillation of the asymmetry of the momentum modes with negative and
positive momentum with respect to the pump direction F+1,±1 − F−1,±1. The third method is demonstrated in this
paragraph by looking at the depletion of the cavity field in the parameter space spanned by the modulation frequency
ωdr and modulation strength f0. On resonance the intracavity photon number NP depletes fastest for a fixed f0. To
quantify this effect, we divide the parameter space into 20 × 16 plaquettes. Then, we average

∑
NP in the interval

from 2 to 3 ms after starting the modulation, and over multiple experimental runs.
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FIG. 2. Response frequency ωDW versus modulation strength. ωDW is plotted against f0 for fixed ωdr = 2π × 11.5 kHz, using
the protocol described in Fig. 3(a) of the main text.

tΣ   NP x 10-3

dr

3ms

2ms

FIG. 3. Sum of NP in the interval from 2 to 3 ms. We follow the protocol described in Fig. 3 of the main text for variable
modulation frequencies ωdr and strengths f0. The color scale parametrizes the sum over the intracavity photon number NP in
the interval [2,3] ms after reaching the final modulation strength f0.

VI. RELATION BETWEEN THE MOMENTUM IMBALANCE AND THE DENSITY WAVE/BOND
DENSITY WAVE ORDER PARAMETERS

The density wave and bond density wave order parameters are defined as

ΘDW =

∫
cos(ky) cos(kz)|ψ(y, z)|2dxdy (2)

ΘBDW =

∫
sin(ky) cos(kz)|ψ(y, z)|2dxdy , (3)
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(a) (b)

FIG. 4. Comparsion between the product of the two order parameters ΘDW ×ΘBDW and the momentum imbalance ∆F . The
modulation strength is f0 = 0.1. (cf. text)

respectively. Using the spatial translation symmetry in the system we expand the atomic field in terms of plane waves
as

ψ(y, z) =
∑

n,m

φn,me
inyeimz. (4)

With this the order parameter can be written in the momentum basis as

ΘDW =
1

4

∑

n,m

(
φ∗n+1,m+1 + φ∗n+1,m−1 + φ∗n−1,m+1 + φ∗n−1,m−1

)
φn,m (5)

ΘBDW =
1

4i

∑

n,m

(
φ∗n+1,m+1 + φ∗n+1,m−1 − φ∗n−1,m+1 − φ∗n−1,m−1

)
φn,m . (6)

In the following we will only retain the lowest five momentum modes {φ0,0, φ±,±}. We approximate the order
parameters as

ΘDW =
1

4

(
φ∗+,+ + φ∗+,− + φ∗−,+ + φ∗−,−

)
φ0,0 + h.c. (7)

ΘBDW =
1

4i

(
φ∗+,+ + φ∗+,− − φ∗−,+ − φ∗−,−

)
φ0,0 + h.c. . (8)

As the momentum modes along the z-direction will stay degenerate, we denote φ+,± = φ+ and φ−,± = φ− and
introduce the shorthand notation φ0,0 = φ0. Then, the order parameter can be written as

ΘDW =
1

2

(
φ∗+ + φ∗−

)
φ0 + h.c. (9)

ΘBDW =
1

2i

(
φ∗+ − φ∗−

)
φ0 + h.c. . (10)

The product of these two order parameters leads to

ΘDW ×ΘBDW =
1

4i

{
(φ∗0)2

(
(φ+)2 − φ−)2

)
− (φ0)2

(
(φ∗+)2 − φ∗−)2

)
+ 2|φ0|2

(
φ∗−φ+ − φ∗+φ−

)}
(11)

=
|φ0|2

2

(
|φ+|2 sin (2(θ+ − θ0))− |φ−|2 sin (2(θ− − θ0)) + 2|φ+||φ−| sin (θ+ − θ−)

)
, (12)

where we used in the last line ψi = |ψi| exp(i θi). From our numerics, we find that this observable, as measured in the
experiment, can be approximated by

ΘDW ×ΘBDW ≈
|φ0|2

2

(
|φ+|2 − |φ−|2

)
≡ ∆F . (13)

Fig. 4 (a) shows a comparison between the product ΘDW ×ΘBDW of the two order parameters and the momentum
imbalance ∆F . The blue trace shows the exact numerical result. The red trace shows an approximation, if only the
five lowest momentum modes are accounted for. To further validate our findings, we compute in Fig. 4 (b) the power
spectra of ΘDW ×ΘBDW and ∆F . Fig. 5 shows that for a small (f0 = 0.001) driving strength ΘDW ×ΘBDW and ∆F
approach zero. Hence, the driven three-level Dicke model regime can only be realized for sufficiently strong driving.
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FIG. 5. Comparison of ΘDW ×ΘBDW and ∆F for driving strengths f0 = 0.1 and f0 = 0.001, respectively.

FIG. 6. Decay of the time crystal response for different detunings We choose a modulation strength of f0 = 0.05. The resonance
frequency is located at ≈ 8.45 kHz. For larger detunings the time crystal melts more quickly.

VII. LIFETIME OF THE TIME CRYSTALLINE RESPONSE

As was pointed out in [4], the time crystalline response becomes unstable/pre-thermal as one scans further away
from the resonance. Using mean-field theory without contact interactions, Fig. 6 shows the decay of the oscillations
for different detunings of the driving frequency with respect to the resonance frequency. We note that this effect
contributes to the decay observed in the experiment.
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FIG. 7. Robustness of the incommensurate time crystal. (a)-(c) Single-shot experimental runs for the noise strengths marked in
subplot (d) with the gray dashed lines. Top panels: single-shot protocols for the pump strength. Bottom panel: corresponding
time evolution of the relative phase ϕ (green trace) and intracavity photon number NP (red trace). (d) Dependence of the
relative crystalline fraction Ξ on the noise strength averaged over 10 experimental runs with f0 = 0.1π and ωdr = 2π×11.5 kHz.
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FIG. 8. Single-shot realization of DBDW order. (a) Time sequence for the pump lattice depth (blue) and the phase φ of the
pump field (red) with modulation strength f0 =0.13π and a modulation frequency ωdr = 12.0 kHz. (b) Phase difference ϕ
between the pump and intracavity field (green trace) and photon number NP in the cavity (red trace). The dashed vertical lines
mark the time interval during which the modulation strength is increased. The gray shaded area shows the time window for
the zoom presented in (c). (c) The red trace repeats the intracavity photon number NP from (b). The blue data points plot the
product ΘDW ×ΘBDW, approximately given by the difference between the number of atoms populating the momentum modes
with positive and negative momentum with respect to the pump direction ∆F̃ = (F+1,±1 − F−1,±1)/(F+1,±1 − F−1,±1)max

(see also Fig. 1(c) and Fig. 2(c) of the main text). Each data point is averaged over 5 realizations. The solid line shows a fit
with a product of two harmonic oscillations. (d)-(h) Single-shot momentum distributions recorded at the times marked in (c).

VIII. ROBUSTNESS AGAINST TEMPORAL PERTURBATIONS.

The robustness against temporal perturbations is one of the main characteristics of time crystalline dynamics. We
have tested the stability of the observed bond density wave phase against artificial white noise on the modulation signal

with a bandwidth of 20 kHz. The applied noise strength is measured by n ≡∑2π×20 kHz
ω=0 |Enoisy(ω)|/∑2π×20 kHz

ω=0 |Eclean(ω)|,
where Enoisy (Eclean) is the Fourier spectrum of the pump in the presence (absence) of white noise. Figures 7(d) show
how the relative crystalline fraction Ξ changes with increasing noise strength for fixed modulation parameters f0 = 0.1
and ωdr = 11.5 kHz. Note that even for a strongly distorted pump signal, as in Fig. 7(b) the system still switches
multiple times between the two sublattices before the intracavity field disappears.

IX. SINGLE-SHOT REALIZATION OF DBDW ORDER FOR ωdr = 12KHZ

We measured the momentum mode asymmetry for a second parameter set and present the results in Fig. 8. In
Fig. 8(c) we used f(t) = exp(−τt)A sin(ωBDWt + α) sin(ωDWt) as a fit function. Here, τ is the decay rate of NP

and A is an overall amplitude parameter. The fast BDW oscillation frequency is independent of ωdr and we measure
ωBDW = 2π × 9.8± 0.1 kHz. We find a slow oscillation frequency of ωDW = 2π × 2.6± 0.1 kHz (see also Fig. 1(c) and
Fig. 2(c) of the main text) for a driving frequency of ωdr = 12.0 kHz, which agrees well with the theoretical prediction
of ωDW = ωdr − ωBDW = 2π × (12.0− 9.8) kHz = 2π × 2.2 kHz.
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I. BEC, CAVITY, AND PUMP BEAM PROPERTIES

The experimental setup, as sketched in Fig. 1(a) in the main text, is comprised of a magnetically trapped BEC ofNa = 4×104
87Rb atoms, dispersively coupled to a fundamental mode of a narrowband high-finesse optical cavity. The trap creates a harmonic
potential with trap frequencies (ωx, ωy, ωz) = 2π × (119.0, 102.7, 24.7) Hz. The corresponding Thomas-Fermi radii of the
ensemble are (rx, ry, rz) = (3.7, 4.3, 18.1) µm. These radii are significantly smaller than the size of the Gaussian shaped pump
beam, which has a waist of wpump ≈ 125 µm. The pump beam is oriented transversally, with respect to the cavity axis, and
retro-reflected to form a standing wave. It passes through an electro-optic modulator (EOM) twice. An AC voltage is applied to
the EOM to modulate the phase of the pump field, which leads to an effective shaking of the pump lattice potential.

The pump laser is stabilized to the cavity resonance using high bandwidth servo electronics. As a drawback, the pump light
is not strictly monochromatic and besides the narrow carrier, the spectrum contains two servo bumps with a frequency shift of
roughly ±2 MHz. We estimate the light power with in these side peaks being about 30% of the total light power. Since this light
is far detuned, with respect to the cavity resonance, it cannot contribute to scatter photons into the cavity. In contrast, light of all
frequencies contribute to the depth of the standing wave potential, and hence, contributes to the shift of the resonance frequency
of the dark state ωD = (2 + ϵp/4)ωrec. Therefore the dark state resonance frequency in the experiment is larger than the one
used in our theoretical models.

The cavity field has a decay rate of κ ≈ 2π × 3.6 kHz, which equals the recoil frequency ωrec = Erec/ℏ = 2π × 3.6 kHz
for 87Rb atoms at the pump wavelength of λP = 803.00 nm. The pump laser is red detuned with respect to the relevant atomic
transition of 87Rb at 794.98 nm. The maximum light shift per atom is U0 = 2π × 0.4 Hz.

II. CAVITY FIELD DETECTION

Our experimental system is equipped with two detection setups for the light leaking out of the cavity. On one side of the cavity,
we use a single photon counting module (SPCM), which gives access to the intensity of the intracavity field and the associated
photon statistics. On the other side of the cavity, a balanced heterodyne detection setup is installed, which uses the pump beam
as a local reference. The beating signal of the local oscillator with the light leaking out of the cavity allows for the observation
of the time evolution of the intracavity photon number NP and the phase difference between the pump and the cavity field φ.

III. EXPERIMENTAL PROTOCOL TO OBTAIN THE POPULATION OF THE DARK STATE ND

To obtain the population of the dark state ND experimentally, we ramp down the pump laser strength adiabatically within
0.5 ms, similar to the theoretical protocol described in the context of Fig.2(b) in the main text. Subsequently, a ballistic expansion
of 25 ms is applied and an absorption image of the resulting density distribution is recorded, time-of-flight (TOF). Finally, ND

is obtained by summing up the occupations around the momentum modes {±1,±1}ℏk, in accordance with the findings in
Figs.3(d) and Fig.3(e) in the main text.

∗ These authors have contributed equally to this work.
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FIG. 1. Typical experimental run. (a) Experimental protocol for the intensity (red) and the phase (dashed blue) of the pump field. (b) In situ
number of photons (red) in the cavity NP and the corresponding phase difference φ (blue) between the pump and cavity fields. (c) Population
of the dark state rescaled by the total particle number Na (coherent fraction) for different number of driving cycles derived from TOF images.

IV. DYNAMICS DURING A TYPICAL EXPERIMENTAL RUN

Our experimental sequence starts by preparing a BEC and overlap it with the TEM00 mode of our cavity. We linearly increase
the pump strength ϵ to its desired value to initialise the system into the self-organized superradiant phase. This is indicated by a
finite photon number NP (red trace in Fig. 1(b)) and by the fixed phase difference φ between the pump and cavity fields. At time
t− t0 = 0 we switch on the phase modulation of the pump lattice, which leads to a periodic shaking of the optical potential. The
system starts to oscillate between the two possible self-organized density patterns, which can be seen by the phase difference
φ switching between 0 and π. This is accompanied by an increase in the population of the dark state ND/Na until it reaches
its maximum value at time t − t0 = 5 Tdr, where Tdr is the driving period. Due to the increasing population of the dark state
the atoms step by step decouple from the cavity field and slowly stop scattering photons from the pump into the cavity and
vice versa. The photon number NP approaches zero and the light field phase φ shows random values between 0 and 2π. The
system is now in a steady state and the population of the dark state, normalized to the total number of coherent atoms ND/Na,
stays constant. Fig. 2(a) shows the dynamics of the relative population of all relevant momentum modes. Fig. 2(b) depicts the
corresponding time evolution of Na. As soon as the shaking starts (t − t0 = 0), the total particle number Na drops rapidly due
to cavity-field-induced heating. After the atoms are decoupled from the cavity field, the heating rate decreases.

V. COMPARISON OF THE RELATIVE POPULATION OF THE DARK STATE FOR PUMP LIGHT CLOSE AND FAR
DETUNED WITH RESPECT TO THE CAVITY RESONANCE

We present in Fig. 3(a),(c) the experimentally obtained phase diagrams showing the population of the dark state with respect
to the driving frequency ωdr/ωD and driving strength f0. In Figs. 3(b),(d), we show the population of the {py, pz} = {±2, 0}ℏk
momentum modes for the pump light, close and far detuned with respect to the cavity resonance. For the far detuned case,
the cavity is basically inactive and we do not observe population of the dark state, which demonstrates the importance of
cavity photons for the excitation of the dark state. Moreover, the parameter range, wherein we observe population of the
{py, pz} = {±2, 0}ℏk momentum modes, is very similar for both cases, only its amplitude increases for the far detuned case
since there are no atoms pumped into the dark state.

As explained in the second paragraph of Sec.I, the dark state frequency is larger in the experiment than in our theoretical
models. In our experimental observations, the resonance frequency for excitation of the {py, pz} = {±2, 0}ℏk momentum
modes lies at ≈ 1.45ωdr/ωD. In SFig. 3(a), we see that in fact the transfer of atoms into the dark state is suppressed if the
{±2, 0}ℏk resonance is approached. Rather, the atoms are transferred into the second band, as shown in SFig. 3(b), without
photon scattering into the cavity. The plots in (c) and (d) for large pump-cavity detuning δC show that no dark state population
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FIG. 2. (a) Time evolution of the population of the relevant momentum modes normalized to the total number of atoms (coherent fraction). (b)
Time evolution of the total number of coherent atoms Na.
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FIG. 3. Relative population of the dark state for different driving frequencies ωdr/ωD and driving strengths f0 for (a) the pump light close to
resonance (δC = − 2π × 30 kHz) and (c) far detuned from cavity resonance after six driving cycles. The driving frequency axis is rescaled
by the resonance frequency of the dark state ωD. (b) and (d) show the relative population of the {py, pz} = {±2, 0}ℏk momentum modes,
which indicates the atoms populating the third band.
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arises, while the direct excitation of the {±2, 0}ℏk momentum modes prevails. Finally, in our numerical models, the {±2, 0}ℏk
resonance arises at ≈ 1.7ωdr/ωD, which lies outside of the range of our simulations.

VI. ATOM-CAVITY SYSTEM

Our system is well described by the Hamiltonian [1–4]

Ĥ/ℏ = −δCâ†â+

∫
dydzΨ̂†(y, z)

[
− ℏ

2m
∇2 − ωrecϵp cos2(ky + ϕ(t)) + U0 â

†â cos2(kz) (1)

−
√
ωrec|U0|ϵp cos(ky + ϕ(t)) cos(kz)(a† + a)

]
Ψ̂(y, z),

where δC is the pump-cavity detuning, and U0 < 0 is the frequency shift of the cavity resonance due to a single atom (|U0| =
2π × 0.4 kHz). The phase of the pump field is periodically driven according to ϕ(t) = f0 sin(ωdrt) with the modulation index
f0 and the modulation frequency ωdr. Furthermore, â (â†) is the annihilation (creation) operator for a photon in the single-mode
cavity, while Ψ̂ (Ψ̂†) is the bosonic annihilation (creation) field operator for the atoms. Here, k denotes the wave number of
the pump light, ϵp is the the pump strength, quantified in terms of the maximal energy depth of the pump lattice in units of the
recoil energy Erec = ℏωrec with the recoil frequency ωrec = ℏk2/2m, where m is the atomic mass. The experiment operates
in the recoil-resolved regime, i.e., the loss rate of the cavity photons κ is smaller than the recoil frequency ωrec. For our system
ωrec = 2π × 3.6 kHz. We emphasize the importance of the recoil-resolved regime [5, 6] to excite the atoms into the dark state,
as the underlying mechanism relies on a coherent coupling of a limited number of momentum modes.

VII. PROCESSES FOR POPULATING THE DARK STATE

We briefly discuss the different scattering channels for populating the dark state in our theoretical models, i.e., the three-mode
Dicke model and full-atom cavity simulations, and in the experimental setup.

First, we discuss the difference between the full atom-cavity model and the three-level Dicke model. In the full atom-
cavity system, we achieve a higher dark state population as compared to the results of the three-mode Dicke model after 7
driving cycles. In the three-mode model, we only consider momentum modes up to {py, pz} = {±1,±1}ℏk and neglect
the {py, pz} = {±2, 0}ℏk modes. However, as can be seen from the last line in the Hamiltonian in Eq. 4, atoms in the
{py, pz} = {±2, 0}ℏk modes can be transferred into the dark state |D⟩ ≡ ∑

ν,µ∈{−1,1} ν|νℏk, µℏk⟩. This enhances the dark
state population in the full atom-cavity system as compared to the three-mode Dicke model.

Next, we discuss the population of the dark state in the experiment. While the experiment includes the channel for scattering
from {py, pz} = {±2, 0}ℏk into the dark state, there are additional factors that decrease the efficiency of populating the dark
state, i.e., heating and atom loss introduced by phase modulation of the pump wave. The atom loss effectively shifts the critical
pump strength required to enter the superradiant phase, as the number of scatterers of photons decreases. Since cavity-photon-
mediated interactions are necessary for the transfer of atoms into the dark state, atom loss, which decreases the occupation of
the cavity mode, attenuates the process of populating the dark state. Furthermore, in the experiment, as discussed in Sec.I, the
additional side lobes of the pump beam frequency spectrum push the dark state resonance towards higher frequencies. This
effectively reduces the regime where the dark state can be populated, which is restricted to driving frequencies smaller than
the resonance for excitation of the {py, pz} = {±2, 0}ℏk momentum modes. The latter resonance gives rise to an efficient
transfer of the atoms into the maximum of the second band of the pump wave potential. The relevant driving term in Eq. 1
is 2ϕ(t) sin(2ky), which arises by approximating cos(ky + ϕ(t))2 for the case of small driving strengths. We note that the
corresponding resonance frequency is light-shifted by the pump beam, however, this effect can be neglected for the relatively
shallow pump lattice used in this work.

VIII. THREE-LEVEL SYSTEM

As first shown in [3], the Hamiltonian in Eq. 1 can be mapped onto a parametrically driven dissipative three level model.
Here, to capture the effects for strong driving, where f0 ≪ 1 is not fulfilled, we use trigonometric identities and the following
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Jacobi-Anger expansions [7]

cos(z sin(θ)) = J0(z) + 2
∞∑

n=1

J2n(z) cos(2nθ) (2)

sin(z sin(θ)) = 2

∞∑

n=1

J2n−1(z) cos((2n− 1)θ). (3)

The Hamiltonian in Eq. 1 acquires the form

Ĥ/ℏ = −δCâ†â+ U0â
†â

∫
dydzΨ̂†(y, z) cos2(kz)Ψ̂(y, z) (4)

− ωrecϵp

∫
dydzΨ̂†(y, z)

1 + cos(2ky) [J0(2f0) + 2h2(t)] − 2 sin(2ky)g2(t)

2
Ψ̂(y, z)

−
√
ωrec|U0|ϵp(a† + a)

∫
dydzΨ̂†(y, z) cos(ky) cos(kz) (J0(f0) + 2h1(t)) Ψ̂(y, z)

+
√
ωrec|U0|ϵp(a† + a)

∫
dydzΨ̂†(y, z) sin(ky) cos(kz)2g1(t)Ψ̂(y, z),

where we defined h2(t) =
∑∞

n=1 J2n(2f0) cos(2nωdrt) and g2(t) =
∑∞

n=1 J2n−1(2f0) sin((2n − 1)ωdrt) and h1(t) =∑∞
n=1 J2n(f0) cos(2nωdrt) and g1(t) =

∑∞
n=1 J2n−1(f0) sin((2n− 1)ωdrt).

Next, the atomic field operator is approximated as

Ψ̂(y, z) = ĉ0ψ0(y, z) + ĉ1ψ1(y, z) + ĉ2ψ2(y, z) (5)

where ĉi are bosonic annihilation operator, and ψ0(y, z) = 1, ψ1(y, z) = 2 cos(ky) cos(kz) and ψ2(y, z) = 2 sin(ky) cos(kz).
We note that in applying this approximation we neglect higher momentum mode contributions, e.g. cos(2ky), which contribute
heavily for higher driving frequencies around ∼ 14.5 kHz as can be seen in Fig. 3.
Under parity change y → −y these wave functions transform as

Pyψ0(y, z) = ψ0(−y, z) = +ψ0(y, z) (6)
Pyψ1(y, z) = ψ1(−y, z) = +ψ1(y, z) (7)
Pyψ2(y, z) = ψ2(−y, z) = −ψ2(y, z) . (8)

Hence, only ψ2 gets a minus sign upon application of Py . Using a Schwinger boson representation, the bosonic operators can
be mapped onto pseudo-spin operators to obtain a driven three-level Dicke Hamiltonian

H/ℏ = ωâ†â+ (ωB − ∆f0) Ĵ
B
z + (ωD + ∆f0) Ĵ

D
z + f2(t) (ωB − ωD)

(
ĴD
z − ĴB

z

)
+ 2g2(t) (ωB − ωD) ĴBD

x (9)

+
2 (λf0 + η(t))√

N

(
â† + â

)
ĴB
x − 2ζ(t)√

N

(
â† + â

)
ĴD
x ,

where ωD = 2ωrec(1 − ϵp
8 ), ωB = 2ωrec(1 +

ϵp
8 ), ∆f0 =

ϵpωrec

4 (1 − J0(2f0)), 2λ ≡
√
Naϵpωrec|U0|, λf0 = J0(f0)λ,

η(t) = 2h1(t)λ and ζ(t) = 2g1(t)λ. Expanding this Hamiltonian up to linear order in the driving strength f0 leads to the
parametrically driven dissipative three-level Dicke model presented in [3, 4].

A. Large κ limit

Within our three-level Dicke model we can adiabatically eliminate the light field, if κ ≫ ωrec. That is, we assume da
dt ≈ 0 and

solve for a to obtain an atom-only or spin-only like three-level model

Ĥeff/ℏ = (ωB − ∆f0) Ĵ
B
z + (ωD + ∆f0) Ĵ

D
z + f2(t) (ωB − ωD)

(
ĴD
z − ĴB

z

)
+ 2g2(t) (ωB − ωD) ĴBD

x (10)

− Λ
(
(J0(f0) + 2h1(t))

2
ĴD
x Ĵ

D
x − (J0(f0) + 2h1(t)) 2g1(t)

[
ĴD
x Ĵ

B
x + ĴB

x Ĵ
D
x

]
+ 4g1(t)

2ĴB
x Ĵ

B
x

)
,

with Λ = 8λ2ω/(N(κ2+ω2)). This is the three-level generalisation of the prescription for mapping the standard two-level Dicke
model onto the Lipkin-Meshkov-Glick model by adiabatically eliminating the photon dynamics [8]. In Fig. 4, the corresponding
phase diagram for varying driving strength and driving frequency is shown for λ = 1.05λcrit. Note, that in a full description of
the atom-cavity setup in terms of Eq. 1, a large value of κ would enable the excitation of higher modes, not included here, with
the consequence of decoherence and heating.
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FIG. 4. Population of the dark state for different driving frequencies ωdr and driving strengths f0 calculated for the Hamiltonian Eq. 10. The
driving frequency axis is rescaled by the characteristic frequency of the dark state ωD. The phase diagram is constructed for 7 driving cycles.

IX. DARK STATE CONDENSATION BELOW THE CRITICAL PUMP STRENGTH

Here, we briefly show the dark state condensation starting below the critical pump strength. We ramp up the pump strength
to ϵ ≈ 0.96 ϵcrit and start the modulation after 10 ms. In Fig. 5, it can be seen that after the modulation is switched on, the light
field builds up before it vanishes again after a large fraction of atoms occupies the dark state as can be seen from the long-time
behaviour in Fig. 6. This again highlights the importance of the intra-cavity field for transfering the atoms into the dark state.
We note that the transition into the dark state is slower compared to the case starting from the superradiant phase discussed in
the main text.

0 100 200
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2500

0

20155 2510

(t-t0)/Tdr

N
P

t (ms)

FIG. 5. Number of photons inside the cavity. The periodic drive is switched on at t0. The parameters are the same as those used in Fig. 4
except for ϵ ≈ 0.96 ϵcrit.

X. MODE POPULATION DURING THE RAMP-DOWN PROCESS

Fig. 7 presents the occupation of the sum of the {±1,±1}ℏk momentum modes, the |D⟩ as well as the |N⟩, before, during and
after the ramp-down of the pump laser for varying driving strength and driving frequencies rescaled by the characteristic dark
state frequency ωD. Before the ramp-down process the population of the |D⟩ and |B⟩ cannot be distinguished by summing up
the {±1,±1}ℏk momentum modes in a TOF image. However during the ramp-down the populations of |B⟩ is transferred back
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vertical lines denote the times when the snapshots of the single-particle density in (b) and (c) are taken. (b), (c) The real space densities are
color coded to show the phase within the (y, z)-plane. (d), (e) Momentum spectra at times indicated in (a).

into the |N⟩ and the phase diagram of the population of the {±1,±1}ℏk momentum modes and the population of the dark state
|D⟩ are approximately the same. This motivates us to measure the population of |D⟩ using this scheme.
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Experimental details

The experimental setup, as sketched in Fig. 1(A) in the main text, is comprised of a mag-

netically trapped BEC of Na = 5 × 104 87Rb atoms, dispersively coupled to a narrowband

high-finesse optical cavity. The trap creates a harmonic potential with trap frequencies ω =

2π × (119.0, 102.7, 24.7) Hz. The cavity field has a decay rate of κ = 2π × 3.4 kHz, which

almost equals the recoil frequency ωrec = Erec/h̄ = 2π × 3.7 kHz for pump wavelength of

λP = 792.55 nm. The pump laser is blue detuned with respect to the relevant atomic transition

of 87Rb at 794.98 nm. The maximum light shift per atom is U0 = 2π × 1.3 Hz. A typical

experimental sequence starts by preparing the BEC and linearly increasing the pump strength ε

to its desired value εf and subsequently holding it constant for 10 ms.

Phase diagram for large pump strength range

In Fig. S1A we present a phase diagram, similar to the one shown in Fig. 2A in the main text,

but for larger pump strength range. The experimental protocol is the same as for Fig. 2A but

the ramp time is increased to 20 ms. For strong pumping the system does not favor anymore

the self-organization, since the cost of localizing the atoms at the nodes of the potential exceeds

the decrease of energy due to the cavity-mediated coupling. In Fig. S1B the phase difference

between the pump and cavity field φ is plotted against δeff and ε. In the self-organized phase,

NP is finite and φ locks to either 0 or π and stay constant. In Fig. S1C, we present the amplitude

of the Fourier spectrum calculated from the photon number data. The limit cycle region can be

identified by a peak in the frequency response around 10 kHz.

2
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Fig. S1. Phase diagrams for large pump strength range. (A) Top panel: Pump strength

protocol. Bottom panel: The corresponding intracavity photon number NP, as a function of

the effective detuning δeff and pump strength ε at a pump wavelength of λP = 792.55 nm. The

corresponding light shift per photon is U0 = 2π × 1.3 Hz. (B) Top panel: Pump strength

protocol. Bottom panel: The phase difference between the pump and intracavity field φ, as a

function of the effective detuning δeff and pump strength ε. Note, due to technical instabilities

of the phase reference, we observe a drift of the phase signal of the cavity field of about 0.02π

per ms. (C) The single-sided amplitude of the Fourier spectrum calculated using the data of A,

as a function of the effective detuning δeff .

Atom-Cavity Model

We only consider the pump and cavity directions. The full atom-cavity system can be modeled

using the many-body Hamiltonian with four terms describing the cavity, the atoms, and the

atom-cavity interactions, given by

Ĥ = Ĥc + Ĥa + Ĥaa + Ĥac , (1)

3



where the cavity contribution is Ĥc = −h̄δc â†â and the detuning between the pump and cavity

frequencies is δc < 0. The cavity mode annihilation and creation operator are denoted by â and

â†. The atomic part is described by

Ĥa =
∫
dydz Ψ̂†(y, z)

(
− h̄2

2m
∇2 + Vext(y, z)

)
Ψ̂(y, z) (2)

where the external potential due to the standing wave created by the pump beam is Vext(y, z) =

εf cos2(ky) with the potential strength parameter εf and m the mass of an atom. The short-range

collisional interaction between the atoms can be captured via

Ĥaa = Ua

∫
dydz Ψ̂†(y, z)Ψ̂†(y, z)Ψ̂(y, z)Ψ̂(y, z), (3)

where Ua =
√

2πash̄/mlx is the effective 2D interaction strength with as the s-wave scattering

length and lx the harmonic oscillator length in the x direction. The atom-cavity interaction part

is described by

Ĥac =
∫
dydz Ψ̂†(y, z)

(
h̄U0 cos2(kz)â†â+ h̄

√
h̄εfU0 cos(ky) cos(kz)

[
â† + â

])
Ψ̂(y, z).

(4)

The light shift per intracavity photon is denoted by U0 > 0. For our numerical simulations of

the dynamics, we use the semiclassical method based on the truncated Wigner approximation

(TWA) (37,38). TWA approximates the quantum dynamics by solving the equations of moti-

ons over an ensemble of initial states, which are sampled from the initial Wigner distribution.

This methods allows us to incorporate the leading order quantum corrections to the meanfield

solution. The c number equation for the light field is

i
∂α

∂t
=

1

h̄

∂H

∂α∗
− iκα + iξ = (−δc + U0B − iκ+ iξ) +

√
h̄εfU0Φ, (5)

where we have defined the bunching parameter B =
∫
dydz cos2(kz)|ψ(y, z)|2 and the density

wave order parameter that corresponds to a checkerboard ordering Φ =
∫
dydz cos(ky) cos(kz)|ψ(y, z)|2.
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We further included a decay term proportional to κ in the cavity mode dynamics and the re-

sulting stochastic noise term ξ(t), which is defined via 〈ξ∗(t)ξ(t′)〉 = κδ(t− t′). We obtain the

atom-field equations via

i
∂ψ(y, z)

∂t
=

1

h̄

∂H

∂ψ∗(y, z)
=

(
− h̄

2m
∇2 + Vdip(y, z) + 2Ua|ψ(y, z)|2

)
ψ(y, z) (6)

with

Vdip(y, z) = h̄
(
U0|α|2 cos2(kz) + εfωrec cos2(ky) +

√
h̄εfU0 [α + α∗] cos(ky) cos(kz)

)
. (7)

For the simulations we use the same set of parameters as in the experiment.

Breaking of continuous time translation symmetry

To gain further insights into the continuous time translation symmetry breaking, we consider

three different possibilities for including quantum noise in our theory. First, we sample over the

full initial Wigner distribution and also include the corresponding stochastic noise ξ correspon-

ding to the cavity-field decay rate κ. Secondly, we include only the sampling of the Wigner

distribution of the initial state and ignore the stochastic noise in time due to the fluctuation-

dissipation term in the cavity field. Third, we fix the initial state and include stochastic noise

in the cavity mode. For each case, we consider 103 trajectories but for clearer presentation we

only show the first 500 trajectories in Fig. S2(A-C). To obtain Fig. S2(A-C), we use δeff =

−2π× 10.4 kHz and linearly ramp up the pump strength to its final value εf/ωrec = 0.85 within

10 ms. We compute the fast Fourier transformation between tstart = 15 ms and tfinal = 65 ms.

We record every 0.00125 ms and thus, our frequency resolution is limited by ∆FFT = 20 Hz.

In Fig. S2A and S2B the limit cycle frequency varies±150 Hz. For the data set in Fig. S2C, the

frequency is fixed. To minimize the fluctuations in the FFT signal due to the offset at ω = 0 we

normalize each trajectory by the maximum of the FFT. For better accessibility, after obtaining

5



the data from all trajectories we average over the mean value of all points. The TWA results

in Fig. S2A nicely show that all phases between 0 and 2π are realized. The same holds true in

Fig. S2B and Fig. S2C. This suggests that the initial quantum noise and stochastic noise from

the leaky cavity are sufficient to exhibit the breaking of continuous time translation symmetry.

A CB

Fig. S2. Distribution of the time phase in the limit cycle phase. TWA simulations including

(A) both initial quantum noise and stochastic noise, (B) only initial quantum noise, and (C)

only stochastic noise. We use δeff = −2π × 10.4 kHz and εf/ωrec = 0.85.

Atom dynamics during one limit cycle

We present the dynamics of the light field and the relevant density wave order parameters for

a single exemplary trajectory in the limit cycle phase. We use δeff = −2π × 10.4 kHz and

a final pump strength of εf/ωrec = 0.85. We ramp up the pump intensity within 10 ms and

present in Fig. S3C the limit cycle dynamics after 20 ms. We find that the only non-zero order

parameters are those associated to the chequerboard density wave, Φ = 〈cos(ky) cos(kz)〉, and

to the density waves related to the cavity and pump bunching parameters, B = 〈cos(kz)2〉 and

P = 〈cos(ky)2〉, respectively. Fig. S3C shows the dynamics of the light field and the three order

parameters. The oscillations in the dynamics of the atomic field density wave order parameter

6



lags behind those in the cavity field occupation. In Fig. S3(A-B) and Fig. S3(C-D), the density

of the atomic-field is presented. The atoms slosh back and forth from a checkerboard pattern to

the minima of the light field intensity.

A B

C

D E

0

0.5

D EBA

15

10

5

P

-0.5

Fig. S3. Numerical results for the limit cycle dynamics. (A-B) and (D-E) Atomic density

distributions for different times during the limit cycle. The gray dashed lines in C indicate

the times for which the density distributions are calculated. Horizontal and vertical dashed

blue lines mark the extrema of cos(ky) and cos(kz), respectively and solid blue circles denote

the extrema of the product cos(ky) cos(kz), which determines the chequerboard density wave

order parameter Φ. C Dynamics of the three relevant order parameters and the cavity mode

occupation. The vertical dashed lines denote the times when (A-B) and (D-E) are taken. We

use δeff = −2π × 10.4 kHz and εf/ωrec = 0.85.
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Stability against short-range interactions and atom losses

We present the stability of the limit cycles against short-range interactions and phenomenologi-

cal atom losses. We measure the interaction strengths via the mean-field collisional interaction

energy (19)

Ea =
Ua

Na

∫
dydz |ψ0(y, z)|4 (8)

with the wavefunction of the homogeneous BEC ψ0. We further add a phenomenological atom

loss term to our equations of motion of the form of

dNa

dt
= −2γNa (9)

to capture the atom losses in the experiment. To quantify the temporal long-range order we

compute the two-point temporal correlation function

C(t) = Re

(
〈â†(t)a(t0)〉
〈â†(t0)a(t0)〉

)
. (10)

The time t0 is defined as the time of the first maximum of the limit cycle oscillations after the

transition into the superradiant phase.

We present the dynamics of the photon number NP and the nonequal time correlation C in

Fig. S4 for different collisional interaction strengths Ea and atom loss rates γ. We observe that

short-range interactions do not destroy the temporal long range order for weaker collisional

interaction energies Ea = 0.1 Erec to strong interactions of Ea = 0.2 Erec. However, the

combination of strong short-range interactions Ea = 0.2 Erec and atom losses of γ = 40 s−1

lead to a decay of the temporal order similar as observed in the experiment. The loss rate is

chosen such that it models the observed atom decay rate in the experiment. We conclude that

the main limitation of the limit cycle lifetime stems from atom losses in the experimental set

up.

8



=0,   =0)

C
(t

)
P

P

time, t

Fig. S4. Numerical results on short-range interactions and atom losses. (A) Numerical re-

sults on the intracavity photon number NP and (B) the corresponding nonequal time correlation

C for different contact interaction energies Ea and atom losses γ. For better readability, we

include an offset of 1, 2, 3 for the blue, green and yellow trace indicated by the dashed lines.

We fix δeff = −2π × 10.4 kHz.

Stability with respect to pump-atom detuning

The pump-atom detuning is in our system parametrized by the single photon light shift U0. For

all the measurements presented in the main text U0 = 2π × 1.3 Hz is kept constant. To de-

monstrate robustness with respect to the pump-atom detuning, and hence with respect to U0, we

present in Fig. S5 measurements of self-organization phase diagram for U0 = 2π× 1.9 Hz. The

limit cycles are indicated by a peak in the Fourier spectrum of the intracavity photon number

(Fig. S5C), which can be found for small negative effective pump-cavity detuning δeff/2π, bet-

ween −10 and −20 kHz. This measurement is only an example and we experimentally observe

stable limit cycles for different values of U0.
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Fig. S5. Phase diagrams for another pump-atom detuning. (A) Top panel: Pump strength

protocol. Bottom panel: The corresponding intracavity photon number NP, as a function of

the effective detuning δeff and pump strength ε at a pump wavelength of λP = 793.76 nm. The

corresponding light shift per photon is U0 = 2π × 1.9 Hz. (B) Top panel: Pump strength

protocol. Bottom panel: The phase difference between the pump and intracavity field φ, as a

function of the effective detuning δeff and pump strength ε. (C) The single-sided amplitude of

the Fourier spectrum calculated using the data of A, as a function of the effective detuning δeff .

Red region around 8 − 10kHz at small negative δeff indicate a region where limit cycle can be

found.
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Finite-size effects

We investigate the effects of a finite particle number on the stability of the time crystal. To

this end, we compare the mean-field results, which simulate the thermodynamic limit, and the

results of single TWA trajectories, which include stochastic noise associated to cavity loss, for

different particle numbers. Owing to the cavity-induced all-to-all coupling between the atoms,

the thermodynamic limit is expected to be captured by our mean-field theory. We vary the

particle number while keeping NU0 fixed. We obtain the peaks in the dynamics of the intraca-

vity photon number, ÑP, to highlight the change in the oscillation amplitude of the limit cycle

phase for varying particle number. In Fig. S6A, we show the time evolution of ÑP/Na for some

exemplary particle numbers using TWA and the MF result corresponding to the thermodyna-

mic limit. It can be seen that as the particle number is increased, the results approach the MF

prediction. This means that the temporal dynamics becomes more regular as we increase the

particle number Na towards the thermodynamic limit. To further illustrate this point, we cal-

culate the relative crystalline fraction Ξ′ ≡ ∑
ω∈δLC

NP(ω)/
∑
ω∈∆LC

NP(ω). We rescaled the

relative crystalline fraction for varying Na by the value in the thermodynamic limit, i.e., the Ξ′

in our mean-field prediction is set to 1 as indicated by the gray dashed line in Fig. S6B. The

blue cross marks the typical particle number in our experiment. We find that as Na is increased,

the crystalline fraction approaches the mean-field prediction. This can be understood from the

fact that the initial quantum noise and stochastic noise scales with 1/N in TWA, meaning that

as expected for Na →∞, we recover the thermodynamic limit.
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Fig. S6. Numerical results on the stability for different particle numbers (A) Numerical

results on the peak hight of the emerging limit cycles in time for different particle numbers. (B)

The crystalline fraction obtained for varying particle numbers from single run TWA trajectories

including stochastic noise from cavity losses. The gray dashed line represents the mean-field

crystalline fraction, which we set as reference to 1. The blue cross indicates the particle number

in which the experiment operates. We fix �e↵ = �2⇡ ⇥ 10.4 kHz and NU0 = 2⇡ ⇥ 60 kHz =

const. .

17

Fig. S6. Numerical results on the stability for different particle numbers (A) Results of a

single TWA trajectory for the peak height of the intracavity photon number in the limit cycle

phase for different particle numbers. (B) The relative crystalline fraction for varying particle

numbers obtained from single TWA trajectories, which include stochastic noise from the cavity

losses. The gray horizontal dashed line represents the mean-field crystalline fraction, which we

set to 1 as a benchmark for finite N . The blue cross indicates the particle number, in which the

experiment operates. We fix δeff = −2π × 10.4 kHz and NU0 = 2π × 60 kHz = const.

Stability against temporal perturbations

The stability of the limit cycle phase against temporal noise can be also explored using our

theoretical model. We focus on the mean-field regime to show that the limit cycle phases in

the thermodynamic limit exhibit the robustness expected of a continuous time crystal. We add

a Gaussian white noise onto the pump signal, which is band-limited to 0.025 GHz. This is

set by the integration step size of our stochastic differential equation solver. Note that the

noise in the experiment is band-limited to 50 kHz. Examples of the noisy pump signal are

shown in Fig. S7A. The noise strength is quantified by a parameter similar to the one in the

12



experiment, n ≡ ∑
ω |Anoisy(ω)|/∑ω |Aclean(ω)| − 1, where A is the Fourier spectrum of the

pump signal. In Fig. S7B, we show the peaks in the dynamics of the intracavity photon number,

ÑP(t), for various noise strengths. We find that increasing the temporal noise strength leads to

more irregular oscillations in the limit cycle phase. To further quantify this behaviour, we again

obtain the relative crystalline fraction as defined in the previous section. The dependence of

the relative crystalline on temporal noise strength n is shown in Fig. S7C. We observe that for

small noise strength, the crystalline fraction appears unchanged. The time crystal starts to melt

for stronger noise strengths as expected. These numerical results qualitatively agree with the

experimental results shown in Fig. 3E and they suggest the robustness of the limit cycle phase

in the thermodynamic limit against temporal perturbation. 1
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Fig. S7. Numerical results on the stability against temporal noise (A) Time dependence of

the pump strength ε for different noise strengths and (B) the corresponding mean-field results

for the dynamics of peak height of the intracavity photon number in the limit cycle phase. (C)

The relative crystalline fraction for different noise strength.
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Route to chaos

Our system exhibits a route to chaos, which we have investigated theoretically in a previous

study. The full dynamical phase diagram including the chaotic regime can be found in Ref.

(24). We find that the limit cycle phase becomes unstable towards chaotic dynamics for large

pump strengths. Due to the limited lifetime of the BEC in our experimental setup, it is difficult

to experimentally identify such a chaotic phase, which manifests in its characteristic long-time

dynamics.
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