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Chapter 1

Introduction

In this thesis we will touch on various interesting topics in structural graph theory,

divided into two parts. In Part I we delve into a fascinating field with many recent

results: two player games on infinite graphs. We present winning strategies in different

games that all fall under this category. In Part II we concern ourselves with structural

properties of finite as well as infinite directed graphs. We give an overview of the

different topics in the following.

1.1 Games on Graphs

Games have been of interest to mathematicians for centuries. The field was sparked by

the analysis of historic games such as tic-tac-toe. This is a finite game and naturally, this

was the first class of games analysed. In recent decades infinite games have increasingly

drawn the attention of researchers. An intuitive starting point is just moving the rules

of a finite game to an infinite board. Consider the aforementioned Tic-tac-toe. Its

counterpart on an infinite board became known as unrestricted 3-in-a-row and was

further generalised to unrestricted n-in-a-row (see e.g. Beck [Bec08]). This often yields

interesting insights, as some results in the finite version simply rely on the fact that

there are only finitely many possible plays. These types of games are called semi-

infinite; a comprehensive overview of the known results about such games can be found

in [Bec08].

Games also give rise to an interesting field in set theory, which is e.g. described in a

book by Moschovakis [Mos09, Chapter 6]: one may assume as an axiom that every game

is determined, i.e. that for any two player game with complete information at least one

of the players has a winning strategy. It is known that this is not consistent with the

axiom of choice, but it nevertheless provides a good framework to study descriptive set

theory, itself an essential field of research in present-day mathematical logic.

One classic game is the following two player game, which we will call the strong

(G,H)-game. The players alternately colour exactly one uncoloured edge of a suffi-

ciently large complete graph G, the board, in their respective colour. They agree upon

1



some graph H as the objective of the game. The game ends as soon as H is contained

as a subgraph in the graph induced by some player’s claimed edges. The word strong

in the name of the game indicates that both players have the same objective (to build

a copy of H), thus the two players’ roles differ only in who plays first. This is to

distinguish it from the Maker-Breaker variant of the game, in which only one of the

players (Maker) is trying to build a copy of H and the other (Breaker) is simply trying

to prevent this. In particular, Breaker does not win simply by virtue of building his

own copy of H first.

Finite strong games have been extensively studied, and in particular the strong

(G,H)-game is fairly well understood. Indeed, as long as the board is sufficiently

large, any such game is a first player win: due to Ramsey’s Theorem (see e.g. Diestel

[Die17, Theorem 9.1.1]), after all edges of G have been claimed, there will always be a

copy of H contained in one of the players’ graphs if |G| ≥ R(|H|). So one of the players

must have a winning strategy, and using a technique called strategy stealing (see Hefetz,

Krivelevich, Stojaković and Szabó [HKSS14, Theorem 1.3.1]) it cannot be the second

player. The argument can be roughly sketched as follows: suppose the second player

has a winning strategy. Then the first player can make an arbitrary move in her first

turn and from then on play according to the winning strategy as if she is the second

player.

Note that even though we now know that there is a winning strategy for the first

player if |G| ≥ R(|H|), we only have an abstract argument and can not deduce an actual

strategy according to which the first player should play. In particular, this argument

does not show the existence of an upper bound only depending on H for the number of

moves the first player needs to win.

The problem of establishing such bounds is in general very hard, we resolve the

game where H is the complete graph on four vertices in Chapter 3, which answers a

question by Beck, [Bec08, Open Problem 4.6]. The strategy and the proof for this game

is already very complex so that we utilise a computer algorithm that enables us to better

check every possible course of the game. By contrast, such bounds are well known for

the Maker-Breaker (G,H)-game (see [HKSS14, Chapter 2]). Indeed, Maker-Breaker

variants are usually easier to analyse, and are often investigated as a preliminary step

before analysing the strong game.

In contrast to the fertility of the study of finite combinatorial games, i.e. games

played on an infinite board with perfect information where the players do moves se-

quentially, infinite combinatorial games have thus far proved barren ground, in that the

strong games are too hard to analyse and the Maker-Breaker games are too easy. Let

us consider first the strong (G,H)-game, but now played on an infinite complete graph.

Since there are now infinitely many edges on the board to choose from these edges need

not be exhausted in the course of the game, and there is no guarantee that the players

will ever even claim all edges of a finite complete subgraph Kn between them. Thus

Ramsey’s Theorem is no longer applicable. Play could continue forever without either
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player ever winning!

So even though we can still use a strategy-stealing argument to rule out the existence

of a winning strategy for the second player, it is possible that he has a strategy to force

a draw. Although it might seem implausible that this could really happen, in fact

for the analogous games played on 5-regular hypergraphs rather than graphs cases are

known in which the second player can force a draw. Such an example was constructed

by Hefetz, Kusch, Narins, Pokrovskiy, Requilé and Sarid in [HKN+17].

In fact, it is folklore that the existence of a winning strategy for the first player in

the infinite strong (G,H)-game is equivalent to the existence of a finite upper bound

on the number of moves the first player needs to win in the finite strong (G,H)-games,

a straightforward proof by a compactness argument can be found in (Leader [Lea08,

Proposition 4]), and we saw above that such problems currently seem intractable.

Then again, the Maker-Breaker (G,H)-game is trivial; the winning strategies for

the finite variants also work in the infinite variant. However, Erde recently noticed that

there are interesting Maker-Breaker (G,H)-games on infinite graphs; one just has to

take H itself to be infinite [Erd19].

We believe that the investigation of such infinite Maker-Breaker games will prove

very fruitful. In Chapter 4 we begin this investigation by considering a few simple

variants of the (Kℵ0 , Kℵ0)-game. We will present a winning strategy for Maker in the

basic version of the game in Section 4.1.

A natural variation arises if we colour the vertices of the board beforehand and

demand that Maker respects this colouring in such a way that her Kℵ0 again contains

infinitely many vertices of every colour. In fact some variations introduce so much

complexity that there is a winning strategy for Breaker. We investigate these types of

games in Section 4.2 and Section 4.3.

Another variation emerges by introducing additional structural elements such as an

order of the vertex set. In Section 4.4 we consider the complete graph with the rational

numbers Q as the vertex set. We call this graphKQ and investigate the (KQ, KQ)-game.

If one moves beyond countable graphs and allows G and H to be uncountable, the

set-theoretic framework becomes much more important. We consider Maker-Breaker

games on uncountable boards in Chapter 5.

1.2 Directed and Bidirected Graphs

In Part II we study different structural properties of directed graphs, a generalisation

of graphs, and even of bidirected graphs, a generalisation of directed graphs.

1.2.1 Ubiquity

A (di)graph H is called ⊴-ubiquitous for a binary (di)graph relation ⊴ if any (di)graph

G that contains k disjoint copies of H for every k ∈ N also contains infinitely many
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disjoint copies of H with respect to ⊴. Possible relations for ⊴ are e.g. the subgraph,

topological minor or minor relation for graphs or the subdigraph relation for digraphs.

Halin started the investigation of ubiquity in graphs with his landmark result that

rays are subgraph-ubiquitous in [Hal65]. Andreae conjectured that every locally finite

connected graph is minor-ubiquitous after studying minor-ubiquity in [And02,And13].

Noteworthy progress towards this conjecture was recently achieved by Bowler, Elbracht,

Erde, Heuer, Pitz and Teegen in a series of papers [BEE+22, BEE+18, BEE+20], in

which they proved, among several other results, that all trees are topological minor-

ubiquitous. Throughout the years several results proving and disproving the ubiquity

of certain graphs have been published, including results concerning different notions of

ubiquity as in [BCP15,Kur21].

. . .

Figure 1.1: The comb, a graph that is not subgraph-ubiquitous.

An example for a graph that is not subgraph-ubiquitous is the comb [And02] (see

Figure 1.1). For graphs that are not topological minor-ubiquitous, see [And13]. Very

recently, Carmesin provided an example of a locally finite graph that is not minor-

ubiquitous in [Car23]. We remark that this does not contradict Andreae’s conjecture

as the graph is not connected.

In [BCP15] Bowler, Carmesin and Pott first suggested the topic of ubiquity in di-

graphs by asking whether any digraph containing arbitrarily many edge-disjoint directed

double rays also contains infinitely many of them.

In Chapter 6 we take on the quest of investigating ubiquity in digraphs by examin-

ing two simple classes of directed graphs. These classes are oriented rays which are

digraphs whose underlying undirected graphs are rays and oriented double rays which

are digraphs whose underlying undirected graphs are double rays. In both of these

classes a turn is a vertex that is incident with either two heads or two tails. We prove

that oriented rays are ubiquitous if and only if they have finitely many turns in Sec-

tion 6.1. In Section 6.2 we prove that any oriented double ray other than the directed

double ray (that is the double ray in which every vertex has in- and out-degree one) is

ubiquitous if and only if it has an odd number of turns.

1.2.2 Flames

The study of minimal subgraphs witnessing a connectivity property is an important

field in graph theory. A key early theorem was proved by Lovász: let D = (V,E) be a

finite digraph and let r ∈ V . The local connectivity κD(r, v) from r to v is defined to

be the maximal number of internally disjoint r–v paths in D. A spanning subdigraph
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L of D with κL(r, v) = κD(r, v) for every v ∈ V − r must have at least
∑

v∈V−r κD(r, v)

edges. Lovász proved that, maybe surprisingly, this lower bound is always sharp for

finite digraphs.

Let us call a spanning subdigraph L of a finite ‘r-rooted’ digraph D = (V,E) large

(with respect to D) if L preserves the local connectivity from the root, i.e. κD(r, v) =

κL(r, v) for every v ∈ V −r. Furthermore, a finite r-rooted digraphD = (V,E) is defined

to be a vertex-flame if κD(r, v) = |inD(v)| for every v ∈ V − r, where inD(v) is the set

of incoming edges of v. Using this terminology, Lovász’ Theorem says that every finite

rooted digraph admits a large vertex-flame. It was shown by Calvillo Vives in [Cal78],

that in every finite r-rooted digraph D every vertex-flame subgraph (with respect to

root r) can be extended to a large vertex-flame of D. This was further generalised by

Joó in [Joó21]. He proved that the edge sets of the vertex-flame subdigraphs of a finite

rooted digraph D = (V,E) are the feasible sets of a greedoid on E whose bases are

exactly the large vertex-flames in Lovász’ Theorem.

There are many results in infinite graph theory that were first proved only for

finite graphs and a deeper understanding of the underlying concept and more complex

arguments were necessary to generalise them to infinite ones. Sometimes even the

appropriate formulation of the problem for infinite graphs is already non-trivial because

the equivalent forms in the finite case might not be equivalent in general. For example it

is well-known and easy to prove that the edge set of a finite graph can be partitioned into

cycles if and only if there is no vertex with odd degree. The condition can be rephrased

as the non-existence of odd cuts. A deep theorem of Nash-Williams [NW60, p. 235

Theorem 3] says that the reformulated condition is actually sufficient to partition the

edges of a graph of any size into cycles, whereas the original condition is insufficient

which is for example witnessed by the double ray. Other classical results fail at some

cardinalities; for example every countable graph admits a normal spanning tree but an

uncountable complete graph does not.

For one of the most influential theorems in infinite graph theory the necessity of

choosing the ‘right’ formulation was also true. The result in question is the general-

isation of Menger’s Theorem for arbitrary graphs which play an important role in the

main result of Chapter 7. Erdős observed that the maximal size of a system of pairwise

disjoint paths in a graph between two prescribed vertex sets and the minimal size of a

vertex set meeting all the paths between these two sets is the same regardless of the

size of the graph. He realised that considering this min-max formulation of Menger’s

Theorem does not lead to a really strong infinite generalisation. Indeed, choosing the

path-system inclusion-wise maximal and taking all the vertices of these paths as a

separator is suitable whenever the path-system in question is infinite, although this

separator is clearly way too ‘big’ in a structural sense. Erdős conjectured a structural

infinite generalisation of Menger’s Theorem, (see Theorem 2.3, it was known as the

Erdős-Menger conjecture) which was eventually proved after several partial results by

Aharoni and Berger [AB09, Theorem 1.6].
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As in the case of the Erdős-Menger conjecture, quantities are not appropriate to

obtain the right infinite generalisation of Lovász Theorem, thus we need to look at the

structural properties of L.

In Chapter 7 we extend the definition of vertex-flames to rooted digraphs of any size

by demanding for every v ̸= r the existence of internally disjoint r–v paths covering

all incoming edges of v instead of just the equality of the in-degree of v and the local

connectivity from r to v. The condition κD(v) = κL(v) translates to the existence of a

maximal-sized internally disjoint r–v path-system P ofD that lives in L. We strengthen

this by asking P to be ‘big’ not just cardinality-wise but in the structural sense from

the Erdős-Menger conjecture. Namely, we demand the existence of a separation of v

from r in D that can be obtained by choosing exactly one edge or one internal vertex

from each path in P . A spanning subdigraph is called large if there is such a P for every

v ̸= r. We will see that in a large vertex-flame for each v the path-system witnessing

largeness and the path-system covering the incoming edges of v can be chosen to be the

same.

1.2.3 Directed Separations

Separations in (di-)graphs are a basic structure that has long been of interest for math-

ematicians. In undirected graphs for small k, there are simple and canonical combina-

torial structures displaying all k-separations of a given k-connected undirected graph

and the relationships between them. For k = 0 this is trivial; it is simply the decom-

position of the graph into its connected components. For k = 1 this is the block-cut

decomposition [Die17, Chapter 3.1] and for k = 2 it is the Tutte decomposition [Tut66].

Recent work of Carmesin and Kurkofka has developed an analogous such structure with

k = 3 [CK23].

For digraphs the situation is very different, with almost nothing being known. In

the case k = 0 we again have the decomposition of the digraph into its strongly con-

nected components, together with the partial order on those components given by the

reachability relation. However, already for k = 1 previous progress on this problem was

limited to a partial result by Lovász [Lov87]1.

In order to explain what Lovász’ result means for digraphs, we need to consider an

operation on strongly connected digraphs. Let D be a digraph, and let (A,B) be a

directed 1-separation of D with separator v. Let DA be the digraph obtained from D

by contracting all of B onto v and let DB be the digraph obtained by contracting all

of A onto v. We say that DA and DB are obtained from D by pulling it apart along

(A,B).

Now imagine taking a strongly connected digraph, pulling it apart along some dir-

ected 1-separation, then continuing to pull those parts apart for as long as possible

until you are left with a list of strongly 2-connected digraphs. In this context, Lovász’

1In fact Lovász, like us, works in the more general framework of matching covered graphs.
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result says that it does not matter in what order you carry out this process or which

1-separations you pick, you will always end up with the same list up to rearrangement

and digraph isomorphism.

To understand the limitations of this result, let’s compare it with the Tutte de-

composition. An analogous decomposition procedure would be the following. Given a

2-connected undirected graph G and a 2-separation (A,B) of G with separator {x, y},
we could define GA and GB to be the graphs obtained from G[A] and G[B] respectively

by adding the edge xy to each of them. We could once again consider a procedure of

repeatedly pulling a graph apart along such separations until we are left with a list of

3-connected graphs, and it follows from the Tutte decomposition that you will always

end up with the same list of 3-connected graphs up to list rearrangement and graph

isomorphism.

However, this adaption to 3-connected graphs yields a weaker result than the original

Tutte decomposition in a number of ways. First, the elements of the list are only given

up to isomorphism, but in the Tutte decomposition they are given as the torsos of a

canonical tree-decomposition of G. Second, the adapted decomposition procedure cuts

up the 2-connected graph too much. In the Tutte decomposition, some of the torsos

are cycles, and these are sensibly not cut up any further because there is no way to

do so canonically. But the adapted decomposition procedure will happily cut up an

n-cycle into n − 2 triangles, and in so doing lose the possibility of finding canonical

representatives in the original graph. Third, the Tutte decomposition provides a global

tree structure along which the parts are arranged, and this information is not contained

in the list of 3-connected graphs obtained by the adapted decomposition procedure.

Lovász’ result has the same 3 limitations. The elements of the list are only given

up to isomorphism, not as canonical structures within the original digraph. It cuts any

directed n-cycle up into n − 1 directed 2-cycles, although there is no hope of finding

canonical representatives for these in the original graph. Finally, it does not provide

any global structure along which the parts are arranged.

In Chapter 8, we resolve the first two limitations of Lovász’ result, but not the

third. More precisely, we find canonical structures, which we call torsoids, within the

digraph corresponding to the parts into which it would be cut by Lovász’ procedure.

However, we do not cut up directed cycles any further, since there would be no way to

find canonical structures representing the parts. As an illustration of the canonicity of

our results and the deeper structural understanding they provide, we are able to extend

Lovász’ results to infinite digraphs.

Having discussed the limitations of Lovász’ result, it is worth noting one major ad-

vantage. He was able to prove his result in the more general context of matching covered

graphs (that is, connected graphs such that every edge is contained in at least one per-

fect matching). There is a well-understood correspondence between strongly connected

digraphs and bipartite matching-covered graphs [McC00,RST99], under which directed

1-separations correspond to tight cuts. Lovász’ result deals with the process of cutting
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up (not necessarily bipartite) matching covered graphs along their tight cuts.

Since all our arguments also work just as easily in this more general context, and

since there has been a renewed interest in the structure of matching covered graphs in

recent years [NT06,NT07,HRW19,GW21], we also phrase all of our results in Chapter 8

in these more general terms.

1.2.4 Menger’s Theorem in Bidirected Graphs

A fundamental result in the field of graph theory is due to Karl Menger [Men27] which

is nowadays just known as Menger’s Theorem. It gives an important insight into the

connectivity of two sets of vertices in digraphs. In its common form, Menger’s Theorem

asserts that the minimum number of vertices separating two sets of vertices X and Y

in a digraph D is the same as the maximum number of disjoint X–Y paths in D, see

e.g. [BJG08, Theorem 7.3.1] in the book of Bang-Jensen and Gutin.

A slight structural strengthening of Menger’s Theorem was proved by Böhme,

Göring and Harant [BGH01]: for a set P of k disjoint X–Y paths, there is either a

set of k vertices separating X from Y , one vertex on each path in P , or a set of k + 1

disjoint X–Y paths where k of them use the same start vertices in X as the paths of

P .

In Chapter 9 we make this stronger form of Menger’s Theorem available in the realm

of bidirected graphs. Bidirected graphs were first introduced by Kotzig in a series of

papers [Kot59a,Kot59b,Kot60]. These objects can be understood as a generalisation

of undirected and directed graphs. They can be obtained from undirected graphs by

assigning to each endpoint of every edge one of two signs, + or −. Directed graphs

can then be envisioned as bidirected graphs in which each edge has the sign + at one

endpoint and − at the other.

Bidirected graphs have recently received increased attention by the graph theoretic

community with both structural [AK06,Wie22] and algorithmic results [AFN96,BZ06].

Especially, Wiederrecht proposed bidirected graphs as another angle of attack to in-

vestigate the structure of undirected graphs with perfect matchings. This approach is

inspired by a recent proof of Norin’s Matching Grid Conjecture for bipartite graphs with

perfect matchings, which was given by Hatzel, Rabinovich and Wiederrecht [HRW19].

Their proof applies the Directed Grid Theorem [KK15] using the structural relation of

digraphs and bipartite graphs with perfect matchings. In the same structural sense,

bidirected graphs are in a one-to-one correspondence with general undirected graphs

with perfect matchings; for a detailed introduction, we refer the reader to [Wie22].

Unfortunately, Menger’s Theorem does not hold if we simply replace ‘directed’ by

‘bidirected’. The main reason for this is an intricate complication in the structure of

bidirected graphs: unlike in directed graphs, a walk between two fixed vertices need not

contain a path between them. This property of bidirected graphs in particular prevents

a direct transfer of the usual proofs such as the one given in [BGH01].
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To overcome this complication, we introduce a sufficient condition on the set X of

‘signed’ start vertices of our paths, where a signed vertex is a pair of a vertex and a

sign + or −: we require X to be ‘clean’, that is, we forbid the existence of non-trivial

X–X paths. In particular, this condition is satisfied by any set of start vertices in a

digraph.
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Chapter 2

Tools and Terminology

Throughout this thesis we assume familiarity with the basic notions of graph theory. For

a thorough introduction to graph theory we refer to the book ‘Graph Theory’ by Diestel

[Die17] and for notions regarding directed graphs we refer to the book ‘Digraphs: The-

ory, Algorithms and Applications’ by Bang-Jensen and Gutin [BJG08]. Any definition

not introduced here can be found in these books.

2.1 Basic Concepts

In the entire thesis we assume N = {0, 1, 2, . . .}. For numbers k ≤ ℓ we write [k, ℓ] :=

{n ∈ N : k ≤ n ≤ ℓ}, and we abbreviate [k] := [1, k]. For a set X and κ a cardinal we

denote by [X]κ the set of κ-element subsets of X. For a finite sequence (a1, a2, . . . , an)

in X and a ∈ X we define (a1, a2, . . . , an)
⌢a := (a1, a2, . . . , an, a). Let Y also be a set

and X ′ ⊆ X. For a map f : X → Y we define f [X ′] := {f(x) : x ∈ X ′}. If X and Y

are disjoint we write X ⊔ Y for their union.

A classic result of graph theory is due to Karl Menger [Men27] and is nowadays just

known as Menger’s Theorem. We use it repeatedly throughout this thesis.

Theorem 2.1 ([Die17, Theorem 3.3.1]). Let G be a graph and X and Y be subsets of

the vertex set of G. Then the minimum number of vertices separating X from Y is the

same as the maximum number of disjoint X–Y -paths.

2.2 Games on Graphs

In Part I we study two closely connected versions of a two player game, called the

(G,H)-game. We will investigate the strong version and the Maker-Breaker version of

the (G,H)-game, both of which we will explain below. In either version the players

alternately claim exactly one unclaimed edge of a graph G, which we call the board.

They claim an edge by choosing an uncoloured edge of the board and colouring it in

their respective colour. The players agree upon some graph H before the start of the
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game. In the strong (G,H)-game we call the players first player and second player and

the respective aim of the players is to be the first to have a copy of H contained as a

subgraph in the graph induced by their coloured edges. We assume that the first player

chooses the colour red and refer to that player as she or her. Likewise we assume that

the second player chooses the colour blue and refer to that player as he or him. In case

the board G is infinitely large the game could continue indefinitely, in which case the

second player is declared the winner of the game. In the Maker-Breaker (G,H)-game

we call the players Maker and Breaker. Akin to the strong version we refer to Maker as

she or her and to Breaker as he or him. We will assume that Maker colours her edges in

magenta and that Breaker uses the colour blue. Maker has the same objective as in the

strong version, i.e. to have a copy of H contained in the subgraph of the board induced

by her coloured edges. Breaker has the task to stop Maker from achieving her goal. In

case the board G is infinitely large Breaker is declared the winner of the game if the

game continues indefinitely. We also call the (strong/Maker-Breaker) (Kℵ0 , H)-game

the (strong/Maker-Breaker) H-building game respectively.

For the rest of this section when we talk about a player this stands for a player in

either version of the (G,H)-game, that is it can stand for the first player, the second

player, Maker or Breaker. Let c ∈ {FP, SP,M,B} where FP stands for the first

player, SP for the second player, M for Maker and B for Breaker. When we say that

a player c-connects a vertex v to a vertex w, we mean that the respective player claims

the edge vw. We may also shorten this to simply connect if the player is clear from

the context and we mean the same when we say that a player plays from v to w. At

any point of a game we assume E(Gc) to be the edges that the respective player has

claimed up to that point and V (Gc) to be the vertices of the board that are incident

with at least one edge of E(Gc). With this we define Gc := (V (Gc), E(Gc)). Nc(v)

are the neighbours of a vertex v ∈ V (Gc) in Gc and the c-degree degc(v) of a vertex

v ∈ G is |Nc(v)| if v ∈ Gc and 0 otherwise. Accordingly, we will say that two vertices

v and w are c-connected or c-adjacent, if vw ∈ Gc. If we talk about a fresh vertex

we mean a vertex v ∈ V (G) \ V (GFP ∪ GSP) in the strong (G,H)-game and a vertex

v ∈ V (G) \ V (GM ∪GB) in the Maker-Breaker (G,H)-game.

By a turn of a player we mean that that player chooses an edge of the board that has

not been coloured by either of the players and colours that edge in her or his respective

colour. We alternatively also call a turn a move interchangeably and also say that

that player claims an edge. A sequence of one move by (the first player/Maker) and

then one by (the second player/Breaker) respectively is called a round. The turns are

indexed by ordinals by their chronological order and so are the rounds. We make use

of that and assign indices to the vertices accordingly, i.e. vk is the k-th vertex that (the

first player/Maker) adds to her subgraph. In case she claims an edge incident with two

fresh vertices, we indicate a choice how the vertices are enumerated, which will only

happen on her first turn in our constructions.

When we want to prove that a game is a win for Breaker, we shall always do this
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by means of a pairing strategy. That is, we will define a family of disjoint pairs of edges

from E(G) with the intention that whenever Maker claims one edge from a pair Breaker

claims the other one in his following turn. It then suffices to verify, for the (G,H)-game

in question, that any subgraph of the board isomorphic to H must include both edges

of at least one such pair.

2.2.1 Games on Uncountable Boards

In Chapter 5 we concern ourselves with Maker-Breaker games on uncountable boards.

For these games we alter the rules such that the game terminates only when all edges

are claimed. The objectives for Maker and Breaker stay the same. For a cardinal κ the

complete graph on κ is Kκ := (κ, [κ]2). For two cardinals the complete bipartite graph

with vertex classes of size λ and κ is denoted byKλ,κ, its vertex set is (λ×{0})∪(κ×{1})
and its edge set is {(α, 0), (β, 1) : α < λ, β < κ}. Note that the vertex sets of these

graphs are already well-ordered, and so we generally do not need to invoke the axiom

of choice. Furthermore, in Subsection 5.2.3 we consider the Maker-Breaker (Kκ, Kclub)-

game, that is the Maker-Breaker game on Kκ where it is the goal for Maker to build

a complete graph whose vertex set is a closed unbounded subset of κ which we denote

by Kclub.

2.3 Directed and Bidirected Graphs

For a digraph D and vertices v, w ∈ D, we write dD(v, w) for the distance of v and w

in the underlying undirected graph. Let D′ also be a digraph. We write D ∼= D′ if D

is isomorphic to D′ and D ≤ D′ if D is isomorphic to a subdigraph of D′.

We denote the set of incoming edges of a vertex set X by inD(X) and outD(X)

stands for the set of the outgoing edges. For the set of in-neighbours of X (i.e. the

tails of the edges in inD(X)) we write N−
D (X) and the out-neighbours N+

D (X) are defined

analogously. The subdigraph induced by a vertex set U is D[U ] and H ⊆ D expresses

that H is a subdigraph of D. We define D0 ∩D1 := (V0 ∩ V1, E0 ∩ E1) if Di = (Vi, Ei)

are digraphs.

Paths in Digraphs

An oriented path is a digraph whose underlying undirected graph is a path and we

call an oriented path a dipath or simply path if all its edges are consistently oriented,

i.e. each vertex has in- and out-degree at most 1. A dipath is trivial if it consists of a

single vertex.

For vertex sets X and Y we say that a path is an X–Y path if exactly its first vertex

is in X and exactly its last vertex is in Y . In case X or Y is a singleton, we replace the

vertex set by the vertex. For paths P and Q with v ∈ V (P ) ∩ V (Q), let PvQ be the
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digraph consisting of the initial segment of P up to v and the terminal segment of Q

from v. We call a set of paths P a path-system and say that it is disjoint if the paths in

it are pairwise vertex-disjoint. We define internally disjoint similarly except that the

first and last vertices are allowed to be shared. We denote the united vertex set and

edge set of the paths in P by V (P) and by E(P) respectively. Let us write V −(P)

and V +(P) for the respective set of the first and last vertices of the paths in P . We

define E−(P) and E+(P) similarly with edges but only for path-systems without trivial

paths. We write simply inP(v) for the set of the incoming edges of v in the digraph

(
⋃
P∈P V (P ),

⋃
P∈P E(P )). A v-fan is a system of paths sharing only their initial vertex

v. A v-infan is what we obtain by reversing the edges of a v-fan. A set X ⊆ V − v is

linked from v in D if there is a v-fan P in D with V +(P) = X. Similarly, X is linked

to v if there is a v-infan P with V −(P) = X.

Menger’s Theorem, Theorem 2.1, is also true in digraphs. A slight structural

strengthening of Menger’s Theorem was proved by Perfect [Per68].

Theorem 2.2 ([Per68]). Let X and Y be sets of vertices of a digraph D, and let

P1, . . . , Pk be vertex-disjoint X–Y paths in D where Pi starts in vi ∈ X for i ∈ [k].

Then precisely one of the following is true:

(1) There is a set S of k vertices of D such that D − S contains no X–Y path.

(2) There are k + 1 vertex-disjoint X–Y paths P ′
1, . . . , P

′
k+1 in D where P ′

i starts in

vi for i ∈ [k].

A structural generalisation to infinite digraphs was conjectured by Erdős, proved by

Aharoni and Berger in [AB09] and reads as follows:

Theorem 2.3 (Aharoni & Berger [AB09, Theorem 1.6]). For every digraph D and

X, Y ⊆ V (D), there is a system P of pairwise disjoint X–Y paths in D such that one

can choose exactly one vertex from each path in P in such a way that the resulting

vertex set S separates Y from X in D.

2.3.1 Bidirected Graphs

A bidirected graph B = (G, σ) consists of a graph G = (V,E), a corresponding set of

half-edges defined as

E(B) := {(u, e) : e ∈ E and u ∈ e}

and a signing σ : E → {+,−} assigning to each half-edge (u, e) its sign σ(u, e) :=

σ((u, e)); we say that e has sign σ(u, e) at u. Then V (B) := V is the vertex set of

B and E(B) := E is its edge set. We refer to the elements of V (B) and E(B) as the

vertices and the edges of B, respectively.

For technical simplification, we do not allow bidirected graphs to have distinct edges

e and f that have the same endvertices and the same signs at them.
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A signed vertex of B is a pair (v, α) of a vertex v of B and a sign α ∈ {+,−}. Given

a set X of signed vertices, we write V (X ) := {v ∈ V (B) : ∃ α ∈ {+,−} : (v, α) ∈ X}.
An oriented edge e of a bidirected graph B is formally defined as a triple (e, u, v)

where e is an edge of B with incident vertices u, v ∈ V (B); we call e its underlying

edge, u its startvertex and v its endvertex, and think of e as orienting e from u to v.

The edge e has precisely two orientations, one with startvertex u and endvertex v and

the other one with startvertex v and endvertex u. We denote the two orientations of e

as e and e; there is no default orientation of e, but if we are given one of them as e,

say, then the other one is written as e. Given an oriented edge e we conversely write

e for its underlying edge. Given a set A of edges of B, we write A for the set of all

orientations of edges in A.

Walks, Trails and Paths in Bidirected Graphs

Let B = (G, σ) be a bidirected graph. A sequence

W = v0e1v1e2v2 . . . vℓ−1eℓvℓ

of vertices vi ∈ V (B) and oriented edges ej ∈ E(B) is a walk W of length ℓ in B

if the oriented edge ej has startvertex vj−1 and endvertex vj for j ∈ [ℓ] and we have

σ(vi, ei) ̸= σ(vi, ei+1) for i ∈ [ℓ−1]. A subwalk of W is a walk of the form viei . . . ej−1vj

for some i ≤ j. The inverse of W isW− := vℓeℓvℓ−1eℓ−1vℓ−2 . . . v1e1v0. A walk is trivial

if it has length 0 and non-trivial otherwise.

The walk W starts in its startvertex v0 and ends in its endvertex vℓ. If W is non-

trivial, we say that it starts with sign σ(e1, v0) in its signed startvertex (v0, σ(e1, v0)).

Likewise we say that it ends with sign σ(eℓ, vℓ) in its signed endvertex (vℓ, σ(eℓ, vℓ)). All

other vertices of W are internal vertices of W . The set of all vertices in W is denoted

as V (W ) := {v0, . . . , vℓ}. The non-trivial walk W arrives in vi with sign σ(ei, vi) for

i ∈ [1, ℓ] and leaves vi with sign σ(ei+1, vi) for i ∈ [0, ℓ− 1]. Analogously, we say that a

non-trivial walk W starts in e1 and ends in eℓ .

The set of all oriented edges in a walk W is denoted by E(W ) := {e1 , . . . , eℓ}, the
set of edges underlying E(W ) is E(W ) := {e1, . . . , eℓ}, and we write E(W ) := E(W ).

If E(W ) ⊆ A for some set A of edges of B, then W is a walk in A.

A non-trivial walk W is an x–y walk in B if W starts in x and ends in y, where x

and y can be oriented edges or vertices or signed vertices of B. Given two sets X and

Y of signed vertices of B we define an X–Y walk as follows: a trivial walk W = v is an

X–Y walk if there is α ∈ {+,−} such that (v, α) ∈ X and (v,−α) ∈ Y . A non-trivial

walk W is an X–Y walk if it is an x–y walk for some x ∈ X and y ∈ Y , no internal

vertex of W is in V (X ) ∪ V (Y) and neither the start- nor the endvertex of W forms a

trivial X–Y walk. Note that no proper subwalk of an X–Y walk is again an X–Y walk.

Two walks W and W ′ in B are vertex-disjoint if V (W ) ∩ V (W ′) = ∅. Similarly,

W and W ′ are edge-disjoint if E(W ) ∩ E(W ′) = ∅. A set of walks is vertex-disjoint
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(respectively edge-disjoint) if its elements are pairwise vertex-disjoint (respectively edge-

disjoint).

A walk W in B is a trail if all edges underlying E(W ) are distinct. If not only all

edges, but also all vertices of W are distinct, then W is a path. For both trails and

paths we transfer all notions and notation defined for walks (such as e.g. subtrail or

v–w path).

For a given trail Q = v0e1v1e2v2 . . . vℓ−1eℓvℓ and 0 ≤ i ≤ j ≤ ℓ, we write eiQ :=

vi−1ei . . . vℓ, Qei := v0 . . . eivi and eiQej := vi−1ei . . . ej vj for the appropriate subtrails

of Q. Analogously, given a path P = v0e1v1e2v2 . . . vℓ−1eℓvℓ and 0 ≤ i ≤ j ≤ ℓ, we write

viP := vi . . . vℓ, Pvi := v0 . . . vi and viPvj := vi . . . vj for the appropriate subpaths of

P , and let eiPvj := vi−1Pvj as well as viPej := viPvj. In particular, these two notions

combine for paths to the respective notations eiPvj and viPej .

2.3.2 Rays and Double Rays

In this thesis rays and double rays are digraphs together with linear orders on their sets

of vertices: a ray or double ray is a digraph R together with a linear order ≤R on V (R)

isomorphic to N or Z, respectively, such that for all vertices v, w of R:

• if v and w are consecutive in the linear order, then either vw ∈ E(R) or wv ∈ E(R)

but not both, and

• if v and w are not consecutive in the linear order, then vw,wv /∈ E(R).

Hence, rays and double rays are oriented versions of the more frequently considered

undirected rays and undirected double rays, together with linear orders.

We say that a (double) ray is a subdigraph of another (double) ray or is isomorphic

to another (double) ray if this is true for the digraphs in the usual sense, regardless of

the linear orders.

Let R be a ray or a double ray and let v ∈ V (R). We write vR for the subdigraph of

R induced by all vertices w of R with w ≥R v and Rv for the subdigraph of R induced

by all vertices w of R with w ≤R v. Similarly, for e = vw ∈ E(R) with v < w we

define eR := vR and Re := Rw. An infinite subdigraph of this form is called a tail

of R. For w ∈ D we say that v ∈ R lies beyond w on R if w /∈ V (vR). Two rays

or double rays R1, R2 traverse an edge uv ∈ E(R1) ∩ E(R2) in the same direction if

either v lies beyond u on R1 and R2 or u lies beyond v on R1 and R2. Otherwise R1

and R2 traverse uv in opposite directions. We call R periodic if R has a non-trivial

≤R-preserving endomorphism. (Note that when R is a ray, any endomorphism must

preserve ≤R. However, the same is not true for double rays.) Let v ∈ V (R) and choose

a non-trivial ≤R-preserving endomorphism f of R such that the distance d of v and

f(v) in R is minimal. Then we say that R has periodicity d (and d is independent of

the choice of v).
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A vertex of a ray or double ray which is incident with two outgoing or two incoming

edges is called a turn and a maximal (possibly infinite) dipath contained in a ray or

double ray is called a phase.

The next definitions are concerned only with rays rather than double rays. We call

the unique ≤R-smallest vertex of a ray R the root of R. A ray without turns is an

in-ray if the first edge points towards the root and an out-ray otherwise. Furthermore

we call an edge of an oriented ray R in-oriented if it is directed towards the root of R

and out-oriented otherwise. Similarly we call a phase of a ray in-oriented if its edges

are in-oriented and out-oriented otherwise.

A ray that has infinitely many in-oriented and infinitely many out-oriented edges can

be represented by a sequence of natural numbers where the n-th term of the sequence

represents the length of the n-th phase. We call this the representing sequence of the

ray. The representing sequence is bounded if there is b ∈ N such that all elements of this

sequence are contained in [b]. Otherwise the representing sequence is called unbounded.

2.3.3 Connection of Digraphs and Matching Covered Graphs

Every strongly connected (possibly infinite) digraph corresponds to a bipartite graph

with a perfect matching. We can obtain this bipartite graph with partition classes V0

and V1 from a digraph D by splitting every vertex v into two vertices v0, v1, one of each

partition class, that are connected by an edge, such that all in-edges of v become in-

edges of v0 and all out-edges of v become out-edges of v1. Then we remove all directions

from the edges. Clearly, this yields a bipartite graph and the new edges form a perfect

matching in it. We refer to this graph as GD and to the canonical perfect matching in

it as MD.

Figure 2.1: A strongly connected digraph D and the corresponding bipartite graph GD

with the canonical perfect matching MD indicated with light gray edges.

Conversely, we can also obtain a digraph from any given (possibly infinite) bipartite

graph with a perfect matching, by directing all non-matching edges from V1 to V0 and

then contracting all matching-edges into single vertices. For a given graph G with

perfect matching M , we call this the M -direction of G and denote it D(G,M).
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For an undirected graph G we refer to the set of all perfect matchings in G by

M(G). An undirected graph G is called matching covered with respect to a perfect

matching M ∈ M(G) if every edge lies in a perfect matching that has finite symmetric

difference to the matching M . We write M(G,M) for the set of all perfect matchings

that have finite symmetric difference toM . We simply say G is matching covered, when

it is matching covered with respect to some matching. Note that on finite graphs this

is equivalent to saying that every edge lies in a perfect matching as M(G,M) = M(G)

for all perfect matchings M in G.

Observation 2.4. Given an undirected graph G that is matching covered with respect

to a perfect matching M , the symmetric difference between any two perfect matchings

in M(G,M) is a collection of disjoint cycles.

For a graph G and a set X ⊆ V (G) we define the cut induced by X, ∂G(X) := {e ∈
E(G) : |e ∩X| = 1}, to be the set of all edges with exactly one endpoint in X.

Let G be a graph that is matching covered with respect to a perfect matching M .

A subset X ⊆ V (G) is a tight set in G if every M ′ ∈ M(G,M) has exactly one edge in

∂(X) and we refer to ∂(X) as a tight cut.

A tight set X and its corresponding tight cut ∂(X) are called trivial if |X| = 1 or

|V (G) \X| = 1.

Tight cuts C1, C2 are nested if there are X1, X2 ⊂ V (G) with X1∩X2 = ∅ such that

Ci = ∂(Xi) for i ∈ [2]. Tight sets X1 and X2 are nested if ∂(X1) and ∂(X2) are nested

tight cuts.

A bipartite graph with no non-trivial tight sets is called a brace, while a non-bipartite

graph with no non-trivial tight sets is called a brick. Since thus every graph with no

non-trivial tight sets is either a brick or a brace, we refer to such a graph as a BoB

(Brick or Brace) for short.

For a graph G and a maximal family C of nested tight cuts in G, we define C :=

{X ⊆ V (G) : ∂(X) ∈ C}, i.e. the set of tight sets corresponding to tight cuts in C.
Note that a tight set X is contained in C if ∂(X) is nested with C since C is maximal.

Furthermore, any two elements of C are nested.

Unless stated otherwise, we consider tight cuts and tight sets with respect to an

arbitrary but fixed perfect matching of G, without explicitly mentioning that perfect

matching.

Proposition 2.5. Let G be a connected, matching covered graph. For any tight set

X ⊂ V (G) the subgraphs G[X] and G[V (G) \X] are connected.

Proof. For any two distinct edges e and f in ∂(X), the symmetric difference of any

matching containing e with any matching containing f is a disjoint union of cycles. The

cycle containing e must also contain f , and so contains paths joining e to f through

both X and V (G) \X.
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Now for any two vertices v and w of X we know there is a path P joining them in

G, and we can find a walk joining them in G[X] by replacing each segment where P

leaves G[X] with a path in G[X] as above.

2.3.4 Ubiquity

We call a digraph H ubiquitous if any digraph D that contains k disjoint copies of H

as a subdigraph for every k ∈ N also contains infinitely many disjoint copies of H as a

subdigraph.

LetD be the digraph obtained from a digraphD by inverting the orientation of every

edge. To warm up with the definition of ubiquity, we prove the following proposition:

Proposition 2.6. A digraph H is ubiquitous if and only if H is ubiquitous.

Proof. It suffices to show that H is ubiquitous if H is ubiquitous. Let D be any digraph

containing arbitrarily many disjoint copies of H. Hence D contains arbitrarily many

disjoint copies of H = H. Then D also contains infinitely many disjoint copies of H

since H is ubiquitous. Therefore D = D contains infinitely many disjoint copies of H,

which proves that H is ubiquitous.

Tribes and Ubiquity

In accordance with [BEE+22, Definition 5.1], for digraphs D and R we call a collection

F of finite sets of disjoint copies of R inD an R-tribe in D. If R is clear from the context

we may also just say tribe instead, similarly for the surrounding graph D. Furthermore,

for an R-tribe F in D we call F ∈ F a layer of F , any element of F a member of F and

say that F is thick if for each n ∈ N there is a layer F of F with |F | ≥ n. A tribe F ′

in D is an (R-)subtribe1 of an R-tribe F in D if every layer of F ′ is a subset of a layer

of F . Whenever we consider a copy R′ of a digraph R we implicitly fix an isomorphism

φ : R → R′ and for a subdigraph R̂ ⊆ R we write in short R̂′ for φ(R̂). With this, we

say that an R-tribe F is forked at R̂ if R̂′∩R′′ = ∅ for any two distinct members R′, R′′

of F .

Note that we may also use tribes to define ubiquity. A digraph H is ubiquitous if

and only if every digraph D that contains a thick H-tribe also contains infinitely many

disjoint copies of H as a subdigraph.

2.3.5 Flames

Let V be some fixed vertex set with a prescribed ‘root vertex’ r ∈ V . For an r-rooted

digraph D, v ∈ V − r and an arbitrary set I we write D ↾v I for the subdigraph we

obtain from D by deleting those incoming edges of v that are not in I + rv. For

1Note that even though this definition of subtribe differs from the one given in [BEE+22], every

subtribe in our sense is also a subtribe according to [BEE+22, Definition 5.1].
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v ∈ V − r we denote by GD(v) the set of those I ⊆ inD(v) for which there exists an

internally disjoint r–v path-system P in D with E+(P) = I. We say that D has the

vertex-flame property at v ∈ V − r if inD(v) ∈ GD(v) and we call D a vertex-flame if it

has the vertex-flame property at every v ∈ V − r. The quasi-vertex-flame property at

v means that all finite subsets of inD(v) are in GD(v) and D is a quasi-vertex-flame if

it has the quasi-vertex-flame property at every v ∈ V − r.

Erdős-Menger Separations and Path-Systems

For S ⊆ V − r− v let PD(v, S) be the set of those internally disjoint r–v path-systems

P in D that are orthogonal to S, i.e. for which S can be obtained by choosing exactly

one internal vertex from each P ∈ P (observe that a path consisting of a single edge

cannot be in PD(v, S)). For v ∈ V − r, we define SD(v) to be the set of Erdős-Menger

separations between r and v, i.e. the set of those S ⊆ V − r − v that separate r from

v in D − rv (separation means that every r–v path in D − rv meets S) and for which

PD(v, S) ̸= ∅. We call PD(v) :=
⋃
{PD(v, S) : S ∈ SD(v)} the set of the Erdős-Menger

paths-systems. Note that the infinite version of Menger’s Theorem (i.e. Theorem 2.3)

applied to X = N+
D−rv(r) and Y = N−

D−rv(v) in D − rv ensures that SD(v) ̸= ∅ and

therefore PD(v) ̸= ∅. Observe that an S ∈ SD(v) is always a minimal set separating

r from v in D − rv since for every s ∈ S each P ∈ PD(v, S) contains some r–v path

Ps that meets S only at s. One can show (see [Joó19a, Theorem 3.5]) that SD(v) is

a complete lattice with respect to the partial order in which S ≤ T if S separates T

from r (equivalently T separates S from v) in D− rv. We denote the smallest and the

largest element of SD(v) by SD,v and TD,v, respectively.

Large Spanning Subdigraphs

A system P of internally disjoint r–v paths in D is called strongly maximal w.r.t. D if

for every internally disjoint r–v path-system Q we have |Q \ P| ≤ |P \ Q|. In a finite

digraph D strongly maximal simply means ‘maximal-sized’ but in general digraphs it

is a stronger assumption than cardinality-wise maximality. The set of the strongly

maximal internally disjoint r–v path-systems in D is exactly PD(v) if rv /∈ E(D) and

the extensions of the elements of PD(v) with the single-edge path rv if rv ∈ E(D), see

for example [Joó19b, Proposition 3.4] for a proof. For a fixed D and v ∈ V (D) − r

we call a spanning subdigraph L of D v-large w.r.t. D if there is a strongly maximal

internally disjoint r–v path-system of D that lies in L, moreover, L is D-large (or just

large if D is fixed) if it is v-large w.r.t. D for every v ∈ V − r. For a finite D the

largeness of L ⊆ D is equivalent with the preservation of the local connectivities from

the root, i.e. with κL(v) = κD(v) for every v ∈ V − r but it has a stronger structural

meaning for general digraphs. Largeness of L can be rephrased as: PD(v)∩PL(v) ̸= ∅
(equivalently SD(v) ∩SL(v) ̸= ∅) for every v ∈ V − r and outD(r) ⊆ L.
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2.3.6 Directed Separations

Let D be a digraph. A tuple (A,B) with A,B ⊆ V (D) and A∪B = V (D) is a (directed)

separation if there is no edge with tail in B \ A and head in A \ B or there is no edge

with tail in A \ B and head in B \ A. The integer k := |A ∩ B| is called the order of

the separation and we also refer to (A,B) as a (directed) k-separation.

Tight Set Partitions

A partition P of the vertex set of a matching covered graph G is a tight set partition of

G if every P ∈ P is a tight set. For every tight set partition P of a matching covered

graph G we define the collapse coll(P) of P to be the graph with vertex set P and an

edge between P and Q if and only if there are p ∈ P and q ∈ Q such that pq ∈ E(G).
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Part I

Games on Graphs
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Chapter 3

The Strong K4-Building Game

In this chapter we analyse the (Kℵ0 , K4)-game and prove that there is a winning strategy

for the first player. We present it in Section 3.2. The strategy is also a winning strategy

for the first player in the (Kn, K4)-game if n is at least 17, thus in particular there is a

winning strategy for the first player in the (K17, K4)-game. Therefore there is a winning

strategy on a board that is smaller than suggested by Ramsey theory, as R(4) = 18

(see [GG55, Section 3] by Greenwood and Gleason).

The winning strategy presented in Section 3.2 draws on ideas first introduced by

Beck in [Bec02, Section 5] in 2002. More precisely, our strategy broadly follows the one

presented in [Bec02]. Unfortunately, the latter pools together some cases that must

be considered separately and, more importantly, claims that some cases must not be

investigated further for brevity but in fact there are ways to win for the second player

in these cases. We examine these issues in Section 3.1. Beck noticed these shortcomings

and therefore posed finding an explicit strategy for the (KR(4), K4)-game as a question

in [Bec08, Open Problem 4.6] in 2008, which we answer in this chapter. Our proof deals

with all cases separately, which means there are a large number of cases, thus we use a

computer algorithm to validate the first player’s strategy in all of them. This allows us

to also deduce that it takes the first player at most 21 turns to win the game.

The (Kℵ0 , K4)-game is also the subject of the bachelor thesis of the author [Gut17],

thus the strategy presented in Section 3.2 is largely akin to the one in [Gut17]. However,

there are some improvements upon the strategy and the proof technique in this chapter.

Utilising a computer algorithm to do the case checking is completely novel in comparison

to the bachelor thesis.

3.1 Problems with an Earlier Strategy

We begin by examining the proof of [Bec02, Theorem A.1]. We introduce the following

terms that we use throughout this chapter: we denote by K4
− the unique graph on 4

vertices with 5 edges. A threat is a monochromatic induced subgraph of GFP∪GSP that

is isomorphic to K4
−. Based on this we call a graph H a threat seed graph or simply a
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threat seed if it is a monochromatic induced subgraph of GFP ∪ GSP and it is a graph

with precisely four vertices and four edges. That is, it is isomorphic to either a cycle of

length four or a triangle with an attached edge.

In the proof of [Bec02, Theorem A.1] the discussion of case ‘L(3)’ has a flaw, the

assertion ‘The graph of the first five blue edges always forms a path or two separated

paths with some red edges between them.’ does not hold true. Note that in [Bec02]

the colour blue refers to the second player and red refers to the first player, as in this

thesis. We present a course of the game that falls under L(3) and in which after five

turns GSP is a tree with three leaves. This has a large enough impact that if the first

player follows the strategy given in [Bec02] then the second player can win the game, as

illustrated in Figure 3.1. Note that a similar problem arises if the first player claims the
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Figure 3.1: A course of the game in case ‘L(3)’ in the proof of [Bec02, Theorem A.1] in

which the second player can win the game. Note that the edges labelled 22, 24 and 26

are forced moves for the first player in that they are reactions to threats by the second

player. After claiming the edge P1P2, the second player can win by either claiming P2P3

or KP2 with his next move.

edges BPx instead of APx in her turns. Thus, in case GFP ∪ GSP is isomorphic to the

graph mentioned in L(3) or a similar one (see Figure 3.6), the first player must instead

divert from her usual course of play. We present a possible strategy for this special case

in Stage 6 of the K4 building strategy presented in Section 3.2.

The case ‘L(4)’ also has an issue. The second to last paragraph of the proof of [Bec02,

Theorem A.1] asserts that in case L(4) if there is no blue triangle either containing the

vertex B or the vertex C after six turns, then the first player can continue with the
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standard strategy of the proof and win. This is not true. In Figure 3.2 we present a

possible course of the game falling under case L(4) where after six turns there is no

blue triangle at all but the second player wins that game if the first player adheres to

her regular strategy. Thus in that case the first player must use a different strategy for

any of the board states depicted in Figure 3.5. We define a possible strategy in Stage

5 of the K4 building strategy.
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Figure 3.2: A course of the game in case ‘L(4)’ in the proof of [Bec02, Theroem A.1] in

which the second player can win the game. Note that the edges labelled 18, 20 and 22

are moves in which the first player reacts to threats by the second player. In his next

move the second player can win by claiming either P1P2 or MP2.

Finally, there is another inaccuracy in the case ‘L(4)’ In the subcase where there are

two blue triangles, one containing the vertex B and one containing the vertex C of case

‘L(4)’, the proof says that the first player should divert from her usual strategy and

instead claim BD1, BD2 and BD3 in her sixth, seventh and eighth turn respectively for

suitable fresh vertices D1, D2 and D3. The only course of the game that is considered

is the one where the second player reacts by claiming ADx in each of these three turns,

claiming that if he does not do this then the first player can claim ADx instead and the

board is then isomorphic to the board in one of the other cases. Unfortunately this is

not true. Suppose the second player does not claim AD3. Then the first player claims

AD3 and the second player must claim CD3 in his next turn since that is a threat by the

first player. Under a desired isomorphism each Dx would then need to be mapped to a

Py, except for D3 which would be mapped to D (which in turn must also be mapped to

a Py. Suppose the second player had claimed D1D2 instead of AD3, then that maps to

an edge PiPj and the proof never considers a situation where there is precisely one blue
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edge and no red edge on the subgraph of the board induced by {Pi : i ∈ {1, 2, 3, 4, 5}}.
Moreover, if the first player adheres to the described strategy then there is a way for

the second player to win the game. We deal with this special case in Stage 5.

3.2 The K4-Building Game

We begin by investigating the (Kℵ0 , K3)-game. The result, stated in Lemma 3.1, is

folklore, we give a possible proof in the following. We define the K3-building strategy

as follows. In her first two turns, the first player claims a path of length 2: she first

claims some edge and calls it ab. If the second player claimed an edge incident with

ab, by renaming the vertices if necessary, we can assume that it is incident with b. In

any case the first player chooses a fresh vertex, calls it c and claims the edge bc. If the

second player does not claim ac in his second turn, the first player does so in her third

turn and thereby finishes a monochromatic triangle on a, b and c. Otherwise, if the

second player’s first edge uv was disjoint from her first edge ab and she cannot finish

her triangle in three turns, then she claims bu in her third turn. If the second player’s

first edge was not disjoint from the first player’s first edge, then it is incident with b by

assumption. In this case the first player chooses a fresh vertex u and colours bu in her

third turn. In her fourth turn at least one of the edges au, cu are unclaimed and so she

can complete a K3 on at least one of a, b and u or a, c and u.

Note that the first player needs at most five vertices to execute her strategy with the

only condition that there are no claimed edges in between these vertices. Note further

that the dependence of the third move of the first player on the first move of the second

player is not necessary for Lemma 3.1 but it is for Theorem 3.3, thus we include it here

already.

Lemma 3.1. The K3 building strategy is a winning strategy for the first player in the

K3-building game. Moreover, the first player needs at most 4 turns to win the K3 game

with the K3 building strategy.

Proof. The moreover part follows from the definition of the strategy. If it takes the first

player only three turns to construct her K3, she wins the game, as the second player

has only had two turns up to that point. If it takes her four turns, then the second

player colours ac in his second turn. Let b1 denote the edge the second player claimed

in his first turn. Either b1 is disjoint from the first player’s first edge ab or it is incident

with b. Thus it is not incident with a. As the first player chose c as a fresh vertex in her

second turn, b1 is also not incident with c. So ac and b1 have no vertices in common.

Thus, the first two blue edges already use four vertices and therefore cannot be two

edges of a triangle.

Before we give the complete strategy for the first player for the K4-building game,

we need to make some adaptions to the K3 building strategy, which we call the modified
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K3 building strategy. This strategy will be used on multiple occasions by the first player

in her strategy for the K4-building game to build new triangles in particular regions of

the board.

In principle, the modified K3 building strategy consists of the same steps as the

K3 building strategy but in the details the first player is more cautious, since there

may be more coloured edges on the board at later points of the game. We define

P := {p0, p1, p2, p3, p4}.

• the first player’s first edge is an edge that is incident with two vertices of P that

have smallest possible SP -degree.

• For the first player’s second edge, which we call f ,

– If the second player’s previous edge is incident with a vertex of f then the

first player’s next edge is incident with that vertex and a vertex of P that is

fresh in G[P ] with the smallest possible SP -degree.

– If the second player’s previous edge is incident with two vertices of P and not

with a vertex of f then the first player’s next edge is incident with a vertex

of f with smallest possible SP -degree and a vertex of the second player’s

edge with smallest possible SP -degree.

– Otherwise, if not all vertices of P \ f have the same SP -degree, the first

player claims an edge that is incident with a vertex of f and a vertex of P \f
of minimum SP -degree that is not incident with the second player’s previous

edge.

– If all vertices of P \ f have the same SP -degree and there is a K4 on the

board of which 5 edges have been claimed by the first player and one has

been claimed by the second player, let K̂ be the subgraph of the board with

this property that has been the first to emerge and call the two vertices of

SP -degree 1 in K̂ ℓ and r. Then the first player claims an edge that is

incident with a vertex of f and a vertex of P \ f that is also neighbouring

as many vertices of ℓ and r as possible in the coloured subgraph.

• For the first player’s third edge,

– if the first player can finish a triangle with her third edge then she does so.

– Otherwise, let v be the unique vertex of FP -degree 2 on the subgraph induced

by P and let u and w be the vertices of FP -degree 1 in the subgraph induced

by P and let a and b be the remaining two vertices of P . Then for one

x ∈ {a, b} the edges xv, xu and xw are unclaimed. The first player claims

xv for such a vertex x.

• If there is a fourth turn, then in that turn the first player can finish a monochro-

matic triangle on P .
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Figure 3.3: The six types of promising graphs. In each of the graphs the set of dashed

edges represents the set of vulnerable edges. The straight edges represent the edges

claimed by the first player and the second player. The non-edges are unclaimed edges.

We call a complete graph whose claimed edges induce a graph isomorphic to any of

the graphs depicted in Figure 3.3 such that the dashed edges are either unclaimed or

claimed by the second player, a promising graph. We call the respective dashed edge(s)

the vulnerable edge(s) of the promising graph of that type. Additionally, we call a

complete graph H that is isomorphic to a promising graph where the vulnerable edges

are unclaimed a realised promising graph and say that H is realised in G. Sometimes

we also refer to the intersection of H with GFP ∪ GSP as realised promising graph to

simplify notation.

Lemma 3.2. Let G be a board, H be a promising graph and suppose that H is realised in

G. Suppose that it is the first player’s turn and further that there is no monochromatic

K4 and no threat by the second player on the board even if the vulnerable edges are

added as edges claimed by the second player. Then there is a sequence of moves for the

first player, each one a threat, the last of which creates two threats, thus the first player

wins the game.

Proof. In (1), by claiming ce the first player immediately creates two threats. In (2), by

claiming cd the first player creates a threat. If the second player reacts to that threat

by claiming bd then the resulting subgraph is isomorphic to (1), thus she can create two

threats by ce. In (3), the first player can create a threat by claiming cf . If the second

player reacts to the threat by claiming bf then the induced subgraph on {a, c, d, e, f} is

isomorphic to (2), thus the first player can win with the corresponding moves presented

in (2). Similarly in (4), the first player can create a threat by claiming ce and if the
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second player reacts by claiming be, in her next move the first player creates a threat by

claiming cf . If the second player reacts to the threat by claiming bf then the induced

subgraph on {a, c, d, e, f} is isomorphic to the graph in (1), that is the first player can

create two threats by claiming cd. In (5), by claiming cg the first player creates a

threat and if the second player reacts by claiming bg then the subgraph induced by

{a, c, d, e, f, g} is isomorphic to the one in (4). Likewise in (6), by claiming cg the first

player creates a threat. If the second player reacts with bg, then the subgraph induced

by {a, c, d, e, f, g} is isomorphic to the one in (3). In each case if the second player does

not claim the respective edge mentioned then the first player could claim it in her next

turn and finish a monochromatic K4.

Since there is no threat or monochromatic K4 by the second player on the board by

assumption, he cannot create a threat or a monochromatic K4 by claiming any of the

vulnerable edges by assumption, all of his moves are forced moves and in the last move

there are two threats by the first player, the first player wins the game as claimed.

Note that for any of the promising graphs, the given sequence of moves for the first

player also leads to a win for the first player if any of the edges of the second player

indicated in blue in Figure 3.3 is unclaimed instead. In particular this is true for the

edge bd in (6), which we use in the computer algorithm.

In the following, we define the K4 building strategy.

Standing assumption: At all points we assume that the first player will need to

react to any immediate threat by the second player. This overrides anything

else suggested below. She also checks at any point whether she can just finish a

monochromatic K4 in her turn. If so, she does this and wins.

Stage 1: The first player constructs a triangle using the K3 building strategy.

Stage 2: Throughout this stage the first player wants to build a monochromatic K4
−,

incorporating the K3 from Stage 1. This is the point of the game where the first

player must check whether the second player played in such a way that she cannot

adhere to her usual strategy, as mentioned in Section 3.1. This is the first thing

she checks at the start of each turn in Stage 2.

• The first player checks whether the graph induced by the claimed edges is

isomorphic to one of the graphs in Figure 3.5 or Figure 3.6. If that is the

case, she switches to Stage 5 or Stage 6 respectively.

• Otherwise, she checks whether she can claim an edge such that there is a

monochromatic K4
− in her colour on the board. If that is the case, she claims

such an edge and switches to Stage 3.

• Otherwise, let c be the vertex of the monochromatic triangle of the first

player with maximum SP -degree. the first player chooses a new vertex g

and claims cg. Then she will be able to connect g to a or b in her following

turn.
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Stage 3: Generally in this stage the first player wants to claim five edges, all incid-

ent with the same particular vertex of the K4
− constructed in Stage 2. More

specifically, the first player does this as follows:

• when the first player is in Stage 3 for the first time and she cannot immedi-

ately win, then there is a subraph of the board that is a coloured K4 of which

five edges are claimed by the first player and one is claimed by the second

player. The first player assigns roles to the four vertices of that subgraph

and sticks to them throughout Stage 3 and Stage 4, see Figure 3.4 for an

illustration.

m

n

ℓ r

Figure 3.4: The K4
− and the vertex names which the first player assigns in Stage 3.

– We call the two vertices of the K4 that are incident with the second

player’s edge ℓ and r, with arbitrary assignment.

– Of the remaining two vertices, if one of them is contained within a

monochromatic triangle of the second player, call this vertex m. If both

are not contained in a triangle of the second player, call one of the two

with the biggest SP -degree m.

– We call the remaining vertex n.

Then the first player chooses a fresh vertex p0 and claims the edge from m

to p0.

• In a later turn during Stage 3, let pi, i ∈ {0, 1, 2, 3, 4} be the most recent

fresh vertex that the first player chose.

– If the second player claimed the edge between n and pi,

∗ if i < 4, then the first player chooses a fresh vertex pi+1 and claims

the edge between m and pi+1,

∗ if i = 4, then the first player switches to Stage 4.

– If the second player claimed an edge between pi and one of ℓ, r, then

the first player claims the respective other edge.

– If the second player claimed none of the edges between pi and one of n,

ℓ, r, then the first player claims the edge between pi and n.

Stage 4: In this stage the first player constructs a triangle on P with the modified

K3 building strategy. At the end of Stage 4 that triangle together with m is a

monochromatic K4.
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Figure 3.5: The four cases in which the first player applies her strategy of Stage 5.

Stage 5: If after 5 turns GFP ∪ GSP is isomorphic to any of the four graphs depicted

in Figure 3.5, then the first player diverts from Stage 2 of her regular strategy

and instead plays as follows. Her main goal is to either have a promising graph

contained in the board as an induced subgraph or an independent set of five

vertices in GFP ∪ GSP all with a common neighbour in GFP. Let us call the

vertices of the monochromatic red triangle in the board positions a, b and c,

where c is the vertex of FP -degree three and SP -degree two, a is the other vertex

of FP -degree 3 and b is the last vertex of the triangle. Furthermore let us give

the name p0 to the vertex of FP -degree and SP -degree one.

• In her sixth turn the first player chooses a fresh vertex p1 and claims cp1.

• In her seventh turn,

– if the second player did not colour ap1 or bp1 in his sixth turn, then the

first player claims ap1 (which is a threat to the second player in this

case) and switches to Stage 3 with the K4
− induced by {a, b, c, p1} and

the pi as assigned in this stage for i ∈ {0, 1}.
– Otherwise the second player claimed either ap1 or bp1 in his sixth turn.

Then the first player chooses a fresh vertex p2 and claims cp2.

• In the first player’s eighth turn,

– if the second player did not colour ap2 or bp2 or p1p2 in her seventh turn,

then the first player claims ap2 in her eighth turn and again switches to

Stage 3 with the K4
− induced by {a, b, c, p2} and the pi as assigned in

this stage for i ∈ {0, 1, 2}.
– Otherwise the second player claimed either ap2, bp2 or p1p2 in his seventh

turn. Then the first player chooses a fresh vertex p3, claims cp3 in her

eighth turn and switches to Stage 6.

Stage 6: The first player may enter this stage in two different ways. The first is that

she enters this stage after exiting Stage 5. The second is that if after four turns

GFP ∪ GSP is isomorphic to one of the two graphs depicted in Figure 3.6, then
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Figure 3.6: The two cases in which the first player applies her strategy of Stage 6.

in Stage 2 the first player diverts from her regular strategy and instead plays as

follows. Only in the latter case in the fifth turn she gives the name p0 to the

vertex of FP -degree one and a to the vertex of FP -degree three. In either case,

from turn eight or turn six onwards respectively, the first player goes through the

list of conditions below and executes the strategy of the first item from the list

whose conditions are met.

(a) The first player checks whether she secured a way to win in a previous turn,

defined from one of the options.

(b) The first player checks, whether there is a realised promising graph present

as a subgraph of the board such that the corresponding promising graph

fulfils the conditions of Lemma 3.2. If there is one of those present, then this

lets her continue with a threat each turn until she finally wins as proved in

Lemma 3.2. Thus she saves the information on how to continue for the next

turns.

(c) The first player checks, whether there are five pi on the board and also checks

whether there are no edges in between any two of them. Then she can build

a triangle on the five vertices with the modified K3 building strategy. If this

applies, she saves the information that she wants to continue to build the

triangle on these five vertices.

(d) The first player checks, whether there are fewer than five vertices pi, i ∈
{0, 1, 2, 3, 4}. If this applies, she finds a fresh vertex, calls it pj with j :=

max {i+ 1: pi is defined} and claims cpj.

Note that one could get the impression that there can be courses of the game where the

first player uses her strategy from Stage 6 but the prerequisites are not met for any of

the considered situations. In practice this never occurs, as one is able to deduce from

the proof of the following theorem.

Theorem 3.3. The K4 building strategy is a winning strategy for the first player in the

K4 game. Moreover, the first player needs at most 21 moves to win the K4 game with

the K4 building strategy.

Proof. We prove this theorem with the help of the algorithm given in K 4 game.py and

functions.py, see Chapter 10 for the provision of the algorithm. There we implement
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the K4 building strategy in the function FP edge(), while move() recursively goes

through every possible course of the game. For the exact implementation, we refer to

the comments in the code. We do however make two modifications that are purely

made for runtime considerations.1 First, we make a list of possible non-isomorphic

board states after Stage 2.

Claim. There are no additional courses of the game by considering other, isomorphic

board states after Stage 2.

Second, in Stage 3 we only consider that the second player claims the edge incident

with n and pi for i ∈ {0, 1, 2} when the first player claimed the edge incident with m

and pi in her turn and no other possible edge. Additionally, for p3 we only allow that

the second player claims an edge incident with p3 and one of n, ℓ, r.

Claim. There are no additional courses of the game if the second player does not react

to the pi in the implemented way in Stage 3 up to isomorphism.

Proof. Suppose that it is the second player’s turn and the first player chose a fresh

vertex pi and claimed pim in her previous turn. In each of the mentioned turns, if the

second player can not create a threat somewhere on the board himself, he must claim

an edge incident with pi and one of n, ℓ, r because otherwise the first player can win

in two turns by claiming the edge pin. If he can create a threat somewhere else on the

board, he can also do so at the beginning of Stage 4 and since the first player claims

edges incident with vertices that are fresh at some point during Stage 3, edges claimed

by the first player during Stage 3 will not mitigate that threat. Thus, if anything the

second player has more opportunities to create threats at the beginning of Stage 4.

Now suppose that at some turn during Stage 3 the second player claims piℓ. Then

the first player claims pir in her following turn. This creates a threat to which the

second player must react by claiming pin. For a j ̸= i the second player cannot claim

pjℓ any more because by then claiming pjr, the first player creates two threats and thus

wins the game.

For a similar reason the second player can claim an edge incident with a pi and r at

most once.

Thus the second player can claim an edge incident with a pi and ℓ at most once

and only an edge incident with a different pj and r at most once. After that he must

always claim the edge pkn right after the first player claimed pkm. Thus any possible

board state after Stage 3 will be isomorphic to one we implemented in the algorithm,

apart from threats by the second player. This, together with the fact that this does

not infringe on the possibilities for the second player to create threats proves the claim.

This finishes the proof.

1The runtime for the program with the adaptions but without multiprocessing on a MacBookPro

with an Intel i5 1.4GHz Quad-Core processor is about 12h.
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Chapter 4

Maker-Breaker Kℵ0-Building Games

In this chapter we investigate different variants of the (Kℵ0 , Kℵ0)-game. We begin by

investigating the basic version in Section 4.1. As there is a winning strategy for Maker

in this game, we introduce additional properties that Maker’s graph should fulfil such as

colouring the vertex set in different ways in Section 4.2 and Section 4.3 or enumerating

the vertices with the rational numbers in Section 4.4. Parts of this chapter are based

upon the master thesis of the author [Gut20]. In particular Section 4.1, Section 4.2

and Section 4.3 deal with variations of the (Kℵ0 , Kℵ0)-game that are also investigated

in the thesis.

4.1 The Basic Kℵ0-Building Game

In this section we will prove that Maker can win the Kℵ0-building game. We will

achieve this by first describing a strategy according to which Maker should play and

then verifying in the proof of Theorem 4.1 that, in fact, Kℵ0 ⊆ GM holds true if Maker

adheres to the given strategy.

Our focus will be on two different kinds of activity by Maker. On the one hand, she

will regularly want to add fresh vertices to her subgraph GM . On the other hand, she

must ensure that GM is as interconnected as possible and thus contains large complete

graphs. The same interplay between making GM highly interconnected and regularly

moving on to fresh vertices will also provide the basic rhythm for our strategies for

Maker in later sections.

We will call the following strategy for Maker the structured greedy strategy. In her

first turn, she picks some edge v1v2. In case Breaker was the first player, she picks one

that only uses fresh vertices. In a later turn, suppose vn is the last vertex that was

added to Maker’s subgraph. Now for 1 ≤ i < n, if there is some vi such that

(□1) vivn has not yet been claimed in either colour,

(□2) NM(vn) ⊆ NM(vi), and

(□3) i is minimal subject to (□1) and (□2),

33



then Maker claims vivn. If there is no such vi, she picks a fresh vertex vn+1 and claims

v1vn+1.

Theorem 4.1. The structured greedy strategy is a winning strategy for Maker in the

basic version of the Kℵ0-building game.

Proof. We consider an arbitrary play of the game in which Maker follows the structured

greedy strategy. We must show that at the end of the game GM includes a Kℵ0 . We

will recursively construct a complete graph Kn ⊆ GM as well as a set of vertices

Wn ⊆ V (GM) for every n ∈ N \ {0} such that:

(■1) |Kn| = n, |Wn| = ℵ0,

(■2) Kn ⊆ Kn+1 for n > 1, and

(■3) for any w ∈ Wn the first n vertices to which w was M -connected were V (Kn).

If we successfully construct such a sequence K1 ⊂ K2 ⊂ K3 ⊂ . . . , the claim follows

immediately for ⋃
i∈N

Ki = Kℵ0 .

The purpose of the setsWn is to ensure that there will be a suitable candidate to enlarge

the complete graph at each step.

Initial step: We can set K1 = ({v1}, ∅) andW1 = V (GM)\{v1}. This immediately

satisfies (■1) and (■2). (■3) holds true because every vertex in GM other than v1 got

M -connected to v1 right after it was chosen as a fresh vertex.

Recursion step: Now suppose Kn and Wn subject to (■1) to (■3) are given for

some fixed n ∈ N. Consider the first n + 1 vertices that are completely M -adjacent

to every v ∈ V (Kn). Such vertices exist since every w in the infinite set Wn has this

property by (■3). Let us call this set of vertices F .

Now consider any vertex w ∈ Wn \F . At the point in the game n turns after w was

chosen as a fresh vertex by Maker, it was already M -connected to V (Kn), and at that

point w was B-adjacent to at most n other vertices, so at least one vertex v′ ∈ F was

still available. Let v̂ be the vertex in F with this property and the smallest possible

index. Then Maker claimed wv̂ in her (n + 1)-st move of M -connecting w. As w was

arbitrary, this is true for every one of the infinitely many vertices of Wn \ F and so, as

F is finite, at least one vertex of F gets chosen in this way for infinitely many vertices

from Wn. We denote the smallest such vertex in F by v∗ and set

Kn+1 := (V (Kn) ∪ {v∗}, E(Kn) ∪ {vv∗ : v ∈ V (Kn)}) , as well as
Wn+1 := {w ∈ Wn : v

∗ was M -connected in the (n+ 1)-st turn

after being picked as a fresh vertex} .

This takes care of (■2) and additionally, we have |Kn+1| = n + 1 and |Wn+1| = ℵ0,

thus (■1) is satisfied. (■3) follows from the recursion assumption together with the

choice of Wn+1.
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As we know now that theKℵ0-building game is a Maker win, we will go on to consider

some variants in which we make life a little harder for her. The natural way to do so

might be to allow Breaker to claim more than one edge for any edge that Maker claims.

This kind of variant has also been studied in the finite case, see [HKSS14, Chapter 3]

and is called a biased game. In our setting it doesn’t make much difference, at least

as long as Breaker is only allowed to claim the same finite number k of edges on each

turn. Maker does not even need to adapt her strategy. In the verification we need to

take F to be of size kn+ 1 rather than n+ 1, and the argument works just as before.

What if Breaker is allowed to claim a monotone increasing number of edges on his

turns? It turns out that regardless of how slow the increment actually is, as long as the

number of edges he claims tends to infinity he has a winning strategy: at the beginning

of the game, he picks an enumeration e1 = x1y1, e2 = x2y2, e3 = x3y3, . . . of the edges of

the board. For any n ∈ N there is an N ∈ N such that from the N -th turn on, Breaker is

allowed to claim n edges in each of his turns, for any edge e = {x, y} that Maker claims.

Beginning at i = 1, for every i ≤ n, whenever G[{x, y, xi, yi}] ̸⊆ GM ∪ GB, Breaker

claims one of the available edges from G[{x, y, xi, yi}] in his i-th turn. This strategy

ensures that en can be part of a complete graph in GM of at most some finite size

dependent on N . As this holds for any n ∈ N, Maker cannot construct a Kℵ0 ⊆ GM .

In the following sections we will take a closer look at other, more challenging vari-

ations. One could also consider biased versions of the games considered later in this

chapter, but the theory of such biased games is always just the same as that outlined

above and so we will not discuss it further.

4.2 The Finitely Coloured Kℵ0-Building Game

An interesting way to make Maker’s objective more demanding can be obtained by

assigning a colour to each vertex of the board and demand that Maker’s graph reflects

the colouring in a given way. For this purpose let k ∈ N \ {0}. We say that a map

c : V (G) −→ [k]

is a colouring of V (G) if |c−1(i)| = ℵ0 for every colour i ∈ [k]. Moreover, for a set

W ⊆ V (G) we define c[W ] := {c(v) : v ∈ W}. Let c be a colouring and j ∈ im(c). We

call

c−1(j) ⊆ V (G)

the colour class of j. In this section it is Maker’s objective to build a Kℵ0 ⊆ GM

as before but with the additional property that it includes infinitely many vertices

from every colour class. We will call this version of the game the finitely coloured

Kℵ0-building game. This is again a win for Maker with the following strategy.

Let k ∈ N \ {0}, suppose that the board is coloured by a colouring c : V (G) −→ [k]

and let vn be the vertex added to GM most recently. Now suppose degM(vn) ≡ ℓ mod k
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and vn ∈ c−1(h) for h, ℓ ∈ [k] not necessarily distinct. Then, if Maker connects vn to a

vertex of colour ℓ in the following fashion, we say that she plays according to the finite

colour balanced greedy strategy.

Let F ⊆ V (GM) be the set of the first k · degM(vn) + 1 many vertices such that for

all vm ∈ F :

• NM(vn) ⊆ NM(vm),

• vm ∈ c−1(ℓ),

• m < n, and

• a < m for all va ∈ NM(vn).

If there are fewer than k · degM(vn) + 1 vertices satisfying these conditions, Maker

chooses a fresh vertex vn+1 of colour m, where n + 1 ≡ m mod k, and claims v1vn+1.

Otherwise, she considers the set K ⊆ V (GM) of all vertices vi satisfying:

• j < i for all vj ∈ F ,

• NM(vn) ⊇ NM(vi), and

• vi ∈ c−1(h).

Maker assigns a tuple in N× N to every vi ∈ F via the injective map

f : F −→ N× N,

vi 7−→ (|NM(vi) ∩K|, i)

and then she orders f(F ) lexicographically, which results in an ordered set

(f(F ),≤) . (4.1)

Maker determines the smallest tuple (|NM(vδ)∩K|, δ) ∈ f(F ) such that vδvn /∈ E(GB)

and claims this edge. By the size of F it is clear that there will be a vertex vδ available,

as Breaker had only degM(vn) < k · degM(vn) + 1 many moves where he could have

claimed edges that are incident with vn.

Let us shed some light on two aspects of this strategy, namely the size of F and the

purpose of the order on F induced by f .

Our verification that this strategy works will be similar to that in Section 4.1, in

that we will again recursively build a nested sequence of complete graphs Kn for every

n and in every step make sure that there is an infinite set Wn ⊆ V (GM) such that

for every vertex v ∈ Wn the entire Kn is contained in its neighbourhood, i.e. the

induced subgraph on V (Kn) ∪ {v} is a potential candidate to continue the sequence.

Then the crucial part is to carefully pick a vertex such that there still is an infinite

set Wn+1 ⊆ Wn left. Note that the set K for some vertex v in the strategy will be
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contained in the corresponding set Wn in the proof if v is considered as a potential next

vertex in the recursion. Because of the role the sets Wn and therefore the sets K play,

we will informally refer to them as reservoir. In contrast to the proof in Section 4.1, we

need to also make sure that the sets Wn also contain infinitely many vertices of every

colour. This is precisely the motivation for the map f introduced in the strategy above:

if Maker just chose to play to the vertex from F with the smallest possible index as

she does in the basic version, Breaker could ensure that all elements of the reservoir of

colour a are joined to some vertex va, but that all elements of the reservoir of colour b

are joined to some other vertex vb. Then there would be no vertex that has infinitely

many neighbours of both colours. Thus, instead of designating one vertex that has

infinitely many neighbours of every colour, Maker instead ensures that for any colour

Breaker can bar at most degM(vn) vertices of F from having infinitely many neighbours

of that colour. This excludes at most k ·m vertices of F (recall that k is the number

of colours and m the current M -degree of vn). Maker wants to utilise this fact in order

to ensure that there is at least one suitable vertex, i.e. a vertex with infinitely many

neighbours of every colour, in the recursion step of the proof. She can achieve this

by ensuring that the connection from vertices in the reservoir are spread as evenly as

possible across F . The tool to do this is the function f and the lexicographic ordering.

Picking vδ minimally in (4.1) makes the choice of the vertex unique for Maker, this

is ensured by the second entry of the ordering. More importantly, as we have argued

above, the vertices of F must beM -connected in a balanced fashion and this is achieved

by choosing v such that |NM(v) ∩K| is smallest possible. To illustrate what we mean

by that, one may think of the vertices in K as being the set of vertices in GM that are

identical to vn in the following sense: they were added to GM later than all vertices in

F , the vertices got M -connected to GM during their first degM(vn) many turns in the

same manner as vn, and they have the same colour as vn, namely h. Via f , Maker finds

the elements in F that have the fewest neighbours in K and out of these she chooses

the one that has the smallest index.

Therefore, by ensuring that F has size k ·m + 1 playing to vertices of F as evenly

as possible via f Maker ensures that there is a suitable vertex in the recursion step of

the proof.

Theorem 4.2. The finite colour balanced greedy strategy is a winning strategy for Maker

in the finitely coloured version of the Kℵ0-building game.

Proof. We want to show that at the end of the game, if Maker plays according to the

finite colour balanced greedy strategy, there is a Kℵ0 ⊆ GM that uses infinitely many

vertices of each colour class.

Recursive construction: For every n ∈ N we will construct a complete graph

Kn ⊆ GM together with a set of vertices Wn ⊆ V (GM) with the properties

(▲1) Kn ⊂ Kn+1,
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(▲2) |Wn ∩ c−1(i)| = ℵ0 for all i ∈ [k],

(▲3) for each w ∈ Wn we have NM(w) ⊇ V (Kn) and the vertices of Kn were the first

n to become M -connected to w, and

(▲4) |Kn| = n and there is an enumeration {v′1, v′2, . . . , v′n} of V (Kn) such that v′j is

coloured in m and j ≡ m mod k for every 1 ≤ j ≤ n.

Note that by (▲2) we have in particular |Wn| = ℵ0. As in the proof of Theorem 4.1,

we can get the desired Kℵ0 from properties (▲1) and (▲4) by considering⋃
n∈N

Kn = Kℵ0 .

Here (▲1) ensures that there is the sequence K1 ⊂ K2 ⊂ K3 ⊂ . . . of complete graphs.

(▲4) ensures that there are infinitely many vertices of each colour. (▲2) and (▲3) are
needed to ensure that there always is a next vertex that can be added to Kn to form

Kn+1. It remains to show that the conditions above can be preserved in every step.

Initial step: Again, we can set K1 := ({v1}, ∅) and W1 = V (GM) \ {v1}. As this is
the initial step, (▲1) holds true. Since Maker repeatedly added vertices of all colours to

GM , (▲2) is true as well. (▲3) holds, since v1 was the first vertex to be joined to each

vi with i ≥ 2. Finally, as V (K1) = {v1} and v1 is coloured with colour 1 ∈ [k], (▲4) is
also true. This concludes the base case.

Recursion step: Let n ∈ N, 1 ≤ i ≤ k, let Kn and Wn subject to (▲1) and (▲4)
be given and let i ∈ [k] such that n + 1 ≡ i mod k. We want to construct Kn+1 and

Wn+1 with the required properties. In order to do so, let F be the set of the first kn+1

vertices of colour i that have a common magenta edge with every vertex of Kn. Such

a set exists, since all the infinitely many vertices of colour i in Wn have this property.

Let j be the largest index of a vertex in F , fix an arbitrary colour ℓ ∈ [k] and let

w ∈ (Wn \ F ) ∩ c−1(ℓ) be a vertex with an index larger than j. After Maker claimed

wv′ for every v′ ∈ V (Kn) in her first n moves of connecting w to GM , the statement

NM(w) ⊆ NM(v)

held for all v ∈ F . Since these are the first kn + 1 such vertices, Maker chose the

smallest available one of them with respect to the ordering derived from f as defined

in (4.1). Breaker could block at most n edges vw for v ∈ F , thus there are at least

(k − 1)n+ 1 possible edges for Maker to choose from. Therefore, at most k vertices of

F individually have only finitely many vertices in Wn ∩ c−1(ℓ) that chose them in the

(n+ 1)-st move of connecting to GM .

As the colour ℓ was arbitrary, the argument above holds true for each of the k

different colours. Therefore there is at least one vertex u in F that has infinitely many

neighbours in every colour class in Wn. We choose the vertex u∗ ∈ F of these with the

smallest index and let Kn+1 be the graph obtained from Kn by adding u∗ and all edges
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from it to Kn. AsWn+1 we take the set of vertices inWn such that u∗ was the (n+1)-st

vertex to which they were M -connected. This ensures (▲1). Moreover, it means that

Wn+1 contains infinitely many vertices of every colour class by the choice of u∗, therefore

ensuring (▲2). The first n+ 1 vertices to be joined to any w ∈ Wn+1 were those of the

Kn+1 by the induction hypothesis and the construction of u∗, so we have (▲3). Lastly,
the fact that we considered only vertices of colour n + 1 ≡ i mod k for F , together

with the assumption that (▲4) holds for n, ensures (▲4) for step n+ 1.

4.3 The Infinitely Coloured Kℵ0-Building Game

As we now know that the finitely coloured Kℵ0-building game is a win for Maker, we

now extend the definition of colouring to also include maps

c : V (Kℵ0) −→ N

that fulfil |c−1(i)| = Kℵ0 for every i ∈ N. Let j ∈ N andW ⊆ V (Kℵ0). We define colour

class and c[W ] analogously to the respective definitions for colourings with finitely many

colours.

In this section we consider what happens if the board is coloured with infinitely

many colours. If it is Maker’s aim to construct a Kℵ0 that uses every colour class

infinitely often, she is doomed to fail, as there is a strategy for Breaker with which he

can keep Maker from doing so. However, if it is Maker’s aim to construct a Kℵ0 that

only uses infinitely many different colour classes, then there is a strategy with which

she can secure this. We will first present Breaker’s strategy for the first variant and

after that we will give the strategy according to which Maker should play to win the

second variant.

4.3.1 Using All Colours of the Board

Let a colouring c : V (G) −→ N of the board be given. Our aim is to define a pairing

strategy such that for every edge e of the board there is some colour class i of which

Maker may use no vertices together with e. First note that there are countably infinitely

many edges in a Kℵ0 as V (Kℵ0) is countably infinite and the edges correspond to the

two element subsets of V (Kℵ0).

Before the beginning of the game, Breaker picks an enumeration e1, e2, e3, . . . of all

edges of the board. He then recursively finds an enumeration c1, c2, c3, . . . of infinitely

many colours that are present on the board such that for all i ∈ N:

(⋆1) ci ̸= cj for all j < i and

(⋆2) ci /∈ c
[⋃

j≤i ej

]
.
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Fix some m ∈ N. We set Vm := c−1(cm) and according to (⋆2) we have Vm ∩ em = ∅.
Suppose em = xy. Then for any v ∈ c−1(cm) there are exactly two edges from v to

em, namely vx and vy. Whenever Maker claims one of those edges, Breaker claims the

other one in his following turn.

Lemma 4.3. The all infinite colour class pairing strategy is a pairing strategy and

furthermore a winning strategy for Breaker in the infinitely coloured version of the

Kℵ0-building game where Maker must have all colours contained in her Kℵ0.

Proof. We first check whether the defined strategy actually is a pairing strategy, i.e. that

any edge lies in at most one of the pairs of edges. Indeed, suppose for a contradiction,

that there is an edge e = uw, that lies in two different pairs of edges.

Case 1: e lies in the pair of edges for two distinct edges ei, ej that are incident

with the same vertex of e, u say: then w ∈ c−1(ci) ∩ c−1(cj). Thus we have ci = cj, a

contradiction to (⋆1), as either i < j or j < i.

Case 2: e lies in the pair of edges for two non-adjacent edges ei, ej: without loss

of generality we may assume u ∈ ei and w ∈ ej. This can only happen, if u ∈ Vj and

w ∈ Vi, a contradiction to (⋆2), as either i < j or j < i.

Thus the pairs used for the strategy are disjoint. Therefore the given strategy

actually is a pairing strategy for Breaker.

Furthermore Maker cannot build a Kℵ0 that uses all colours present on the board,

if Breaker plays according to the defined strategy: for any edge that she wants to

incorporate into her Kℵ0 , there is a colour class that corresponds to it according to the

construction which she therefore cannot use in her Kℵ0 .

Note that this result can be strengthened in the following sense: as every edge in a

Kℵ0 of Maker has a different colour assigned to it and the Kℵ0 contains infinitely many

edges, there are infinitely many colours of which Maker cannot incorporate infinitely

many into her Kℵ0 , this means that Breaker can even stop Maker from using cofinitely

many colours, each infinitely often, in a Kℵ0 .

4.3.2 Using Infinitely Many Colours of the Board

Let us now investigate how Maker should play in order to ensure that GM contains

infinitely many vertices from infinitely many different colour classes. As before, she

needs to add fresh vertices to GM , making sure that she keeps track of the colours as

well as taking care of the vertices that are already part of GM , while also ensuring that

they are as interconnected as possible in general and paying attention to the colours of

these fresh vertices in particular.

We first introduce one additional definition. For a finite subset U ⊆ V (GM) we let

φU : [|U |] −→ {i ∈ N : vi ∈ U} ⊆ N
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be the unique order preserving bijection. For an infinite subsetW ⊆ V (GM) we consider

the unique order preserving bijection

φW : N −→ {i ∈ N : vi ∈ W} ⊆ N .

In this variant of the game, Maker cannot rotate through the colour classes in the

same fashion as with finitely many colours and thus she has to work on her objective

in a diagonal fashion. We further specify this in the strategy.

At the beginning of the game, Maker chooses a sequence s1, s2, s3, . . . of all the

colours appearing on the board such that each individual colour appears infinitely often.

Let us call this sequence S.

We call the following strategy for Maker the infinite colour balanced greedy strategy.

In her first turn, she picks two fresh vertices of colours s1 and s2, calls them v1 and

v2 respectively and claims the edge v1v2 for herself. When Maker adds vertices to her

subgraph in later stages of the game, letting |GM | = n− 1, she adds a fresh vertex vn

of colour sn to GM .

After M -connecting a fresh vertex vn of colour sn by claiming v1vn, on the next few

turns Maker determines which edge vivn to claim by considering the set U ⊆ V (GM)

of all vertices vu that satisfy

• NM(vn) ⊆ NM(vu), moreover in the first degM(vn) turns of M -connecting vu

Maker M -connected vu to the same vertices as vn, in the same order, and

• i < u for all vi ∈ NM(vn).

Then Maker considers the subset

U ′ := {v ∈ U : c(v) = c(vn)} (4.2)

and with φU as defined above she determines that the vertex she plays to next should

be of colour

j = c
(
vφU (|U ′|)

)
. (4.3)

Note that vn ∈ U , thus φU (|U ′|) is well-defined. Next, Maker lets F ⊆ V (GM) be the

set of the first (|c[NM(vn)]|+ 2) · degM(vn) + 1 vertices, such that

• k < i for all vi ∈ F and all vk ∈ NM(vn),

• i < n for all vi ∈ F ,

• vi ∈ c−1(j) for all vi ∈ F , and

• all vi ∈ F satisfy NM(vn) ⊆ NM(vi).
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If there are fewer than (|c[NM(vn)]|+2)·degM(vn)+1 vertices satisfying these conditions,

Maker instead chooses a fresh vertex vn+1 as described above. If there is such a set,

she chooses its subset of the first (|c[NM(vn)]| + 2) · degM(vn) + 1 many and calls this

F . Maker wants to M -connect a vertex from F to vn analogously to the finite colour

balanced greedy strategy: she considers the set K ⊆ V (GM) of all vertices vk that

satisfy

• for all vi ∈ F we have i < k,

• for all vℓ ∈ NM(vn) we have ℓ < k,

• NM(vk) ⊇ NM(vn), and

• c(vk) = c(vn).

Maker assigns a tuple to every vi ∈ F as follows:

g : F −→ N× N,

vi 7−→ (|NM(vi) ∩K|, i) ,

and then orders g(F ) lexicographically, which results in an ordered set

(g(F ),≤) . (4.4)

Maker determines the smallest vδ ∈ F such that vδvn /∈ E(GB) and claims this edge.

Note that as |F | = (|c[NM(vn)]| + 2) · degM(vn) + 1, there will be a vertex vδ

available, as Breaker has only had degM(vn) many moves where he could have B-

connected vertices from F with vn. As in Section 4.2, considering the ordering (g(F ),≤)

ensures that Maker plays from vertices similar to vn to the vertices in F in a ‘balanced

fashion’, which is crucial in the verification step.

Let us investigate why the size of F should be (|c[NM(vn)]|+2)·degM(vn)+1. Recall

that the size of the corresponding set in the finite colour balanced greedy strategy was

‘(number of colours on the board · degree of the active vertex)+1’. The sizes thus only

differ by ‘number of colours on the board’ vs ‘number of colours in the neighbourhood

of the active vertex+2’. It is clear that ‘number of colours on the board’ cannot be used

in the infinitely coloured game, as the size of F must be finite. It becomes clear, why

the chosen number gives a good compromise for the following reason, when we suppose

that the vertex vn will be considered as an element of the set Wm of potential future

vertices for some m ∈ N. In the proof we must make sure that for any colour d already

present on the Km there are infinitely many vertices of colour d in Wm. This is ensured

by the ‘number of colours in the neighbourhood of the active vertex’-part. On top of

that, in order to eventually have infinitely many colours present on the Kℵ0 , we need

to (a) allow for one additional colour in case we want to add a new colour to the Km+1

and (b) ensure that there will still be infinitely many other potential colours present in

Wm+1 to add in the future. This gives rise to the ‘+2’-part.
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Lastly, let us elucidate Makers’ choice of the colour j given in (4.3) before we move

on. Breaker might render some colours unusable for Maker, but which these will be will

not be clear until after the game. Thus, Maker needs a method to ensure that for each

two such colours j and k she infinitely often tries to connect from a vertex of colour k

down to one of colour j. The given function fulfils this purpose, which we will prove

later (see (4.5)).

Theorem 4.4. The infinite colour balanced greedy strategy is a winning strategy for

Maker in the infinitely coloured version of the Kℵ0-building game where Maker must

have infinitely many colours contained infinitely often in her Kℵ0.

Proof. We want to prove that, after infinitely many turns, there is aKℵ0 ⊆ GM that uses

infinitely many vertices of infinitely many different colours, if Maker plays according

to the strategy above. Before we begin with the recursion, we pick a sequence Ĉ =

c1, c2, c3, . . . of colours of c[V ] which contains every element of c[V ] infinitely often. We

just require that c1 = s1 = c(v1).

Recursive construction: For every n ∈ N \ {0} we will construct a complete

graph Kn ⊆ GM together with a set of vertices Wn ⊆ V , and a set of colours Cn ⊆ c[V ]

with the properties

(♦1) Kn ⊂ Kn+1,

(♦2) |Wn ∩ c−1(i)| = ℵ0 for every i ∈ Cn,

(♦3) for each w ∈ Wn the first n moves of connecting w to GM by Maker were claiming

the edges that join w to the Kn,

(♦4) |Kn| = n and there is an enumeration {v′1, v′2, . . . , v′n} of V (Kn) such that c(v′i) =

c(v′j) if and only if ci = cj for 1 ≤ i ≤ j ≤ n, and

(♦5) |Cn| = ℵ0 and c[V (Kn)] ⊆ Cn.

Note that in (♦4) we do not require c(vi) = ci. This is indeed impossible to achieve.

But it secures that any colour that appears really appears infinitely often and together

with (♦5) it furthermore secures that infinitely many different colours appear infinitely

often in the inclusive chain

K1 ⊂ K2 ⊂ K3 ⊂ K4 ⊂ K5 ⊂ . . . ,

thus ⋃
n∈N

Kn = Kℵ0

is the desired complete subgraph of GM .

Initial step: Set K1 := ({v1}, ∅), W1 := V (GM) \ {v1} and C1 = c[W1]. (♦1) holds
true, since this is the initial step. As |K1| = 1, (♦4) holds true as well. |C1| = ℵ0 is
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true and c[V (K1)] ⊆ C1 is satisfied because S contains every colour infinitely often,

thus C1 satisfies (♦5). Moreover, as every vertex of GM \ {v1} was first M -connected

to v1, (♦3) is true. Finally, as S contains every colour infinitely often, this ensures (♦2)
for C1. This concludes the base case.

Recursion step: Let n ≥ 1 and Kn, Wn and Cn subject to (♦1) to (♦5) be given

and suppose cm was the entry of Ĉ we worked with in the previous step (which means

in particular that c(vn) = cm). We want to construct Kn+1, Wn+1 and Cn+1 with the

required properties. As before, we will need to make sure that we add vertices of colours

that are already present in the Kn but we will sometimes also need to add vertices of

colours that are not. If there is i ≤ n such that ci = cn+1, we set cp := c(vi) and

otherwise we choose cp ∈ Cn \ c[V (Kn)] arbitrarily. We want to add a vertex of colour

cp next and let F be the set of the first (|c[V (Kn)]|+ 2) ·n+1 vertices of colour cp that

have a common magenta edge with every vertex of the Kn. This set exists since there

are infinitely many vertices of colour cp in Wn by (♦2). Moreover, we need to restrict

Wn to only contain vertices whose (n+ 1)-st turn of connecting it to GM was a vertex

of colour cp and we want to ensure that (♦2) holds for this restriction of Wn as well.

Note that since (♦1), (♦4) and (♦5) are independent of Wn, they still hold and (♦3)
will hold for the restriction as it is a subset of Wn.

Fix an order preserving map ψ : N \ {0} → I such that{
vψ(i) : i ∈ N \ {0}

}
= Wn ∩ c−1(cp) . (4.5)

Then, for every m ∈ N \ {0} and every d ∈ Cn the (ψ(m))-th vertex of colour d in Wn

got M -connected to a vertex of colour cp in the (n+1)-st move of connecting it to GM .

Thus, there are infinitely many vertices of colour d in Wn whose (n+1)-st neighbour in

GM (according to the order in which they were connected to it) was a vertex of colour

cp. As d was arbitrary, this is true for every colour in Cn. We can thus restrict Wn to

these vertices and work with this set W ′
n from here on.

Let ℓ ∈ c[V (Kn)] ∪ {cp}. Since Maker played to the vertices of F in a balanced

fashion, there are at most n vertices v ∈ F such that only finitely many vertices

w ∈ W ′
n ∩ c−1(ℓ) got M -connected to v in their (n + 1)-st move of connecting them

to GM . As ℓ was arbitrary, this is true for every colour in c[V (Kn)] ∪ {cp} and thus

there are at least n+ 1 vertices that have infinitely many such vertices in W ′
n ∩ c−1(p)

for every p ∈ c[V (Kn)] ∪ {cp}. Conversely, regarding the infinitely many colours in

Cn \ (c[V (Kn)] ∪ cp), since Breaker can block at most n vertices for any of them, there

are at most n vertices in F that are chosen by only finitely many vertices of cofinitely

many colours not yet occurring in the Kn in the (n + 1)-st move of connecting them

to GM . Combining this means that there is at least one vertex u′ ∈ F that got chosen

by infinitely many vertices of every colour in c[V (Kn)]∪{cp} as well as infinitely many

vertices of infinitely many distinct colours in Cn in their (n+ 1)-st move of connecting

them to GM . We choose the smallest such vertex and call it v′n+1. We set

• Kn+1 := G
[
V (Kn) ∪ {v′n+1}

]
,
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• Cn+1 the set of colours i ∈ Cn for which infinitely many vertices that lie in

c−1(i)∩Wn got M -connected to v′n+1 in their (n+1)-st move of connecting them

to GM , and

• Wn+1 ⊆ W ′
n as the vertices inWn that gotM -connected to v′n+1 in their (n+1)-st

move of connecting them to GM and that are coloured with a colour in Cn+1.

This ensures (♦1), (♦2) and (♦5). (♦4) holds true by the choice of cp and the definition

of v′n+1. All vertices of Wn+1 are completely M -adjacent to the Kn by the induction

hypothesis and to v′n+1 according to the construction, so all vertices of Wn+1 are com-

pletely (M -)adjacent to the Kn+1. It follows from the induction hypothesis and the

choice of v′n+1 that those were the first n+ 1 moves that Maker made for each element

of Wn+1. This verifies (♦3).
This shows that all required properties are preserved throughout the induction and

thus the claim is proved.

This concludes our investigation into vertex colourings.

4.4 The Ordered Kℵ0-Building Game

Given the close relationship of Ramsey theory and Ramsey games, it is natural to ask

how close the relationship is exactly. For this purpose consider a generalisation of the

H-building game which we call the structural H-building game: One may introduce

further structural information into the board G and then require that H satisfies an

additional property with regards to the structural information of G. For example one

may consider an order on the vertices of G and require that the subset of vertices

that form Maker’s copy of H is order-isomorphic to V (G). With this we return to the

relationship of Ramsey theory and Ramsey games. There are two sides to the question

of how closely the two fields are related.

Question 4.5. Let G be a complete graph with a structural property and H be a

graph with a structural property of its vertex set that is compatible with that of V (G).

Suppose that for any 2-colouring of the edges of G there is a monochromatic copy of H

contained in G as a subgraph. Is there a winning strategy for Maker in the structural

H-building game on G?

So far all research seems to be supportive of this assertion, the author is not aware

of any example disproving Question 4.5.

Question 4.6. Let G be a complete graph with a structural property and H be a

graph with a structural property of its vertex set that is compatible with that of V (G).

Suppose that there is a winning strategy for Maker in the structuralH-building game on

G. Does this imply that for any 2-colouring of the edges of G there is a monochromatic

copy of H contained in G as a subgraph?
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A good example for this is the K4-building game investigated in Chapter 3. We

saw there that for n ≥ 17 the K4-building game on Kn is a first player win and noted

that this implies that there is a winning strategy for the first player for every board

size of n ≥ R(4). Notably there is a small discrepancy between the sufficient board

size of 17 and the Ramsey number of 18. Note that in Chapter 3 there is no structural

property considered but one could e.g. assume that the vertices of the board Kℵ0 and

the vertices of K4 are totally ordered, which gives the same result.

Similarly in the Maker-Breaker version of the Kℵ0-building game studied in Sec-

tion 4.1 there is a winning strategy for Maker and for any 2-colouring of the countably

infinite complete graph there is a monochromatic Kℵ0 , see e.g. Dushnik and Miller

[DM41, Theorem 5.22] for a proof of Ramsey’s theorem for infinite graphs.

In this section we answer Question 4.6 in the negative. We present a game and a

winning strategy for Maker in that game where the corresponding statement in Ramsey

theory is not true.

Before stating the main result of this section let us shed some light on another

disparity of finite and infinite graphs which has to do with total orders. While any two

total orders on a given finite set are isomorphic, this is not true for infinite total orders.

For example there are two non-isomorphic total orders on the rational numbers: The

usual order and one induced by an enumeration of the rationals. We carry this over to

the setting of structured H-building games, and make use of this discrepancy: let KQ

be the complete graph with the rational numbers Q as the vertices. In the KQ-building

game we call KQ the board, of which the two players Maker and Breaker alternately

claim edges. The aim of Maker is to have contained in the subgraph induced by her

claimed edges a copy of the board. That is, a complete graph such that its vertex set

(which is a subset of Q) with the order induced by Q is order isomorphic to Q. It is

Breaker’s goal to stop Maker from achieving this. We will prove that there is a winning

strategy for Maker.

Theorem 4.7. There is a winning strategy for Maker in the KQ-building game.

The corresponding statement in Ramsey theory is false: There is a colouring of the

graph KQ with two colours such that there is no monochromatic copy of KQ contained

in either of the colour classes, which is shown in Proposition 4.10.

In Subsection 4.4.3 we show that the result of Theorem 4.7 cannot be made stronger

in the following sense: consider the dense KQ-building game, the Maker-Breaker game

played onKQ where it is Maker’s goal to finish a copy of the board as in theKQ-building

game with the additional property that the vertex set of Maker’s copy is dense in the

vertex set of the board. We prove that there is a winning strategy for Breaker in the

dense KQ-building game.

46



4.4.1 Ramsey Properties of Q and Q2

In preparation for the investigation of the KQ-building game we need three folklore

results. While these were known before, we give proofs for each of them here.

Proposition 4.8. There is a partition P of Q into pairwise disjoint open intervals and

an order ≤P of P defined by P ≤P Q if and only if either P = Q or p ≤ q for every

p ∈ P and q ∈ Q such that (P ,≤P) is order isomorphic to (Q,≤).

Note that since any open interval of Q is again isomorphic to Q (since any two

countable dense total orders without smallest and largest element are isomorphic, see

[BMMN06, Theorem 9.3]), there also exists such a collection for any open interval of

Q.

Proof. Let ⪯ be the lexicographic order on Q2 and f : (Q2,⪯) → (Q,≤) be an order

isomorphism. Then P := {f [{q}×Q] : q ∈ Q} is as desired as ≤P inherits its properties

from ≤.

Proposition 4.9. For every 2-colouring of the rational numbers there is a monochro-

matic subset that is isomorphic to the rational numbers.

Proof. Choose a collection (P ,≤P) as in Proposition 4.8 and let a 2-colouring of Q
be given. Call the colours red and blue. First suppose that there is a set P ∈ P that

contains no red element. Then P is an open blue interval, which is isomorphic to (Q,≤)

by Cantor’s Isomorphism Theorem [BMMN06, Theorem 9.3]. Now suppose that every

P ∈ P contains a red element. Choose a red element from each P . The union of these

elements together with the order p ≤ q ⇔ P ≤ Q is then isomorphic to (Q,≤).

Proposition 4.10. There is a 2-colouring of KQ such that there is no monochromatic

subgraph KQ.

Proof. Let (qi)i∈N be an enumeration of Q. We colour qiqj ∈ E(KQ) blue if either

qi ≤ qj and i ≤ j or qj ≤ qi and j ≤ i. Otherwise we colour it red. Now suppose that

there is a subset Q of Q that is isomorphic to (Q,≤) such that the complete graph

induced by Q is monochromatic. This implies that Q is also order-isomorphic to N
or its reversal, a contradiction, as N and Q are not order isomorphic, since N has a

smallest element, but Q does not.

4.4.2 The KQ-Building Game

In this subsection we present a winning strategy for Maker in the KQ-game. As in

the previous sections we will do this by first describing a strategy according to which

Maker should play and then proving that there actually is a subgraph with the desired

property if Maker adheres to the strategy in the proof of Theorem 4.11.

In the following we define the Q-game strategy. At the beginning of the game Maker

chooses
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• a partition P of the interval (0, 1) ⊆ Q into open intervals such that there is

an order ≤P of P induced by the regular order on Q such that (P ,≤P) is or-

der isomorphic to (Q, <) where “<” is the usual ordering (this is possible by

Proposition 4.8),

• an enumeration (Pi)i∈N of P , and

• a sequence (ni)i∈N of natural numbers such that every finite sequence of natural

numbers appears infinitely often as a subsequence.

Informally speaking, by containing vertices of sufficiently many different intervals in P ,

Maker can ensure that a subset of V (GM) actually is isomorphic to Q, as (P ,≤P) is

isomorphic to (Q,≤). The enumeration (Pi)i∈N together with the sequence (ni)i∈N will

be used to ensure that different intervals Pi, Pj are well-connected to ensure that there

actually is a complete graph using vertices of many different Pi.

In her first turn, Maker claims the edge {0, 1} for herself and sets v1 = 0 and

v2 = 1. In a later turn, suppose V (GM) = {v1, . . . , vk} where vi is the i-th vertex

that Maker added to GM . For every vertex v ∈ V (GM) we define a finite sequence

Sv = (vi1 , . . . , viℓ) of the vertices of NM(v) that were added to GM before v that

represents the order in which Maker claimed the edges vvij . In particular ℓ was the

degree of v in GM when Maker first chose a new fresh vertex after v. Maker uses the

sequence Svk to determine from which interval P ∈ P to choose the vertex that she

plays to next: suppose that vk ∈ P ∈ P and Svk = (vi1 , . . . , viℓ). Suppose further that

|{v ∈ V (GM) : Sv|ℓ = Svk ∧ v ∈ P}| = m, i.e. there are m previous vertices in P that

Maker connected to the same vertices as vk in the same order in the first ℓ moves of

connecting them to GM . Now consider the (m + 1)-st time that (i1, i2, . . . , iℓ) appears

in (ni)i∈N as a subsequence and let n be the number appearing next. Then Maker wants

to play to a vertex of Pn next.

For that purpose she considers the vertices vi such that

(1) vi ∈ Pn ∩ V (GM),

(2) Svi |ℓ = Svk , and

(3) there are at most ℓ · (ℓ+1) vertices vj ∈ V (GM) with j < i satisfying (1) and (2).

Let us call this set F . If F contains fewer than ℓ(ℓ + 1) + 1 vertices, Maker chooses

a fresh vertex vk+1 ∈ Pnk+1
, claims v1vk+1 and begins the aforementioned process for

vk+1. Otherwise, F has size precisely ℓ(ℓ+1)+1 and Maker continues as follows: Define

L := {v ∈ P ∩ V (GM) : Sv|ℓ = Svk}, i.e. L is the set of vertices of GM that come from

the same partition class of P as vk and in their first ℓ moves of being connected to GM

Maker connected them to GM in the same manner as vk. We define a total order on F

via

vi < vj :⇔

|NM(vi) ∩ L| < |NM(vj) ∩ L| , or

|NM(vi) ∩ L| = |NM(vj) ∩ L| and i < j
. (4.6)
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Maker claims vivk such that vi is minimal with respect to that order. Note that this

choice is unique. In fact the second clause is only there to make this true.

Maker will use this order to play to the vertices of F in a ‘balanced fashion’, that is,

Maker connects vk to an available vertex with the smallest possible number of neigh-

bours vi that behave like vk in the sense that Svi|ℓ = Svk |ℓ. This is useful because this

ensures that for an infinite set of vertices of which each vertex behaves like vk up to

M -degree ℓ, for all but at most ℓ many vertices of F there are infinitely many vertices

that get connected to that vertex.

Theorem 4.11. The Q-game strategy is a winning strategy for Maker in the complete

rational number game.

Note that Theorem 4.11 implies Theorem 4.7.

Proof. For the proof we again fix a sequence (ai)i∈N of natural numbers. This sequence

should contain every number infinitely often and each ai should be at most i. Moreover,

we reuse the partition P and its enumeration (Pi)i∈N from the Q-game strategy. We

recursively build for every m ∈ N a complete graph Km and a set Wm such that

(a) Km−1 ⊆ Km ⊆ GM with V (Km) = {u1, . . . , um}, and

(b) Wm = {w ∈ V (GM) : Sw|m = (u1, . . . , um)}.

For i ∈ [m] we denote by P i the partition class of P that contains ui. We define

Qi
m := {P ∈ P : |Wm ∩ P | = ℵ0 and P i <P P and

there is no j ∈ [m] with P i <P P
j <P P} .

(4.7)

With these definitions we also require Wm to satisfy that

(c) Qi
m contains a subset that, together with the order induced by <P , is order

isomorphic to (Q, <) for every i ∈ [m], and

(d) um ∈
⋃

Qam−1

m−1 , if m > 1.

Clearly, (a) implies that
⋃
m∈NK

m = Kℵ0 is a complete graph contained in Maker’s

subgraph GM . By (d) we add a vertex between any pair of vertices ui, uj ∈ Kℵ0 ,

thus V (
⋃
m∈NK

m) contains a subset that is order isomorphic to (Q,≤). The subgraph

induced by these is the desired KQ. Properties (b) and (c) are needed to ensure that

the recursion can be continued indefinitely.

Recursion start: Recall that v1 = 0 was added to GM as the first vertex according

to the Q-game strategy. We set K1 := ({v1}, ∅) and W1 := V (GM) \ {v1}. The

requirements of (a) and (d) are empty in the initial step and therefore satisfied. Property

(b) is true for W1, as according to the Q-game strategy every other vertex of GM is

connected to v1 first. For every P ∈ P Maker added infinitely many vertices to GM , as
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the i-th vertex she adds is a vertex of Pni
and (ni)i∈N contains every number infinitely

often. Thus Q1
1 = P and therefore Q1

1 satisfies (c).

Recursion step: Let k ≥ 2 and let Kk and Wk satisfying (a) to (d) be given.

We demonstrate how we can find a vertex uk+1 and a set Wk+1 such that Kk+1 :=

G[V (Kk) ∪ {uk+1}] and Wk+1 comply with (a) to (d).

By (c), Qak
k contains a subset that is order isomorphic to (Q, <). Let Q be such a

subset and x be the first element of (ai)i∈N such that Px is an element of Q but contains

no vertex of V (Kk). We choose x in such a way because this ensures that there is a

partition of Q\{Px} into two Q-isomorphic subsets Q− and Q+ such that all Q− ∈ Q−

and Q+ ∈ Q+ fulfil Q− <P Px <P Q+. We will choose a vertex of Px as uk+1. This

choice ensures (d).

Next we want to suitably restrict Wk to a set of vertices that were connected to a

vertex of Px, but we also need to make sure that we can preserve (c) for the subsequent

steps. For this purpose we let W ′ := {w ∈ Wk : there is v ∈ Px such that Sw|k+1 =

(u1, . . . , uk, v)} and use this to define Q̂i similarly to the definition in (4.7): for i ∈ [k]

let P i be the partition class of P that contains ui and set P k+1 := Px. We define

Q̂i := {P ∈ P : |W ′ ∩ P | = ℵ0 and P i <P P and

there is no j ∈ [k] with P i <P P
j <P P} .

Claim 1. Q̂i contains a subset that is order isomorphic to (Q, <) for every i ∈ [k + 1].

Proof. Case 1: i ∈ [k+1]\{ak, k+1}. We prove this case by showing that any element

of Qi
k is also an element of Q̂i. The claim then follows from (c).

Consider any P ∈ Qi
k. By definition we have |P ∩ Wk| = ℵ0 and by (b) every

w ∈ P ∩Wk was connected precisely to V (Kk) in its first k moves of being connected

to GM . According to the Q-game strategy, for infinitely many of them Maker played

to a vertex of Px next, thus |P ∩ W ′| = ℵ0. As this is true for any P ∈ P with

|P ∩Wk| = ℵ0, this proves the claim for i ∈ [k + 1] \ {ak, k + 1}.
Case 2: i ∈ {ak, k + 1}. With the same reasoning as in Case 1 any P ∈ Q− is also in

Q̂ak and any P ∈ Q+ is also in Q̂k+1. Since both, Q− and Q+, are isomorphic to Q,

this implies the claim for i ∈ {ak, k + 1}.

To continue, consider the set F of the first k(k + 1) + 1 many vertices u ∈ P k+1

with Su|k = (u1, . . . , uk). There is such a set as any vertex u ∈ P k+1 ∩Wk fulfils this

property and there are infinitely many such vertices by the choice of P k+1. Further, fix

i ∈ [k + 1] and consider Q ∈ Q̂i. For any vertex q ∈ Q ∩W ′, Maker considered the set

F in the (k+1)-st move of connecting q to GM . As Maker played from Q∩W ′ to F in

a balanced fashion, that is she played to the smallest vertex of F with respect to the

order defined in (4.6), there are at most k vertices in F that have only finitely many

neighbours in Q ∩W ′. By choosing some superset of k vertices if necessary, we obtain

a colouring of Q̂i indicating for every Q ∈ Q̂i a subset of F of size k such that all other
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vertices of F have infinitely many neighbours in Q ∩W ′. By taking the complements

of the sets of size k, the same colouring indicates for each Q for which subset F ′ ⊆ F

every vertex in F ′ was picked by Maker for infinitely many vertices v of Q ∩W ′ to be

played to in the (k+1)-st move of connecting v to GM . There are
(
k(k+1)+1

k

)
colours in

this colouring of Q̂i, since every k element subset of F gets assigned a colour and F has

k(k + 1) + 1 elements. In particular, this is a finite number. Thus by Proposition 4.9

and Claim 1, there is a colour class that again contains a subset that is order isomorphic

to Q. We fix a suitable colour class Ci ⊆ Q̂i for every i ∈ [k + 1]. As seen, any of the

k + 1 fixed colour classes excludes k vertices of F as the next candidate and since F

has size k(k + 1) + 1, there is at least one vertex in F that is met by the fixed colour

class Ci for every i ∈ N. We choose the smallest such vertex as uk+1. Then (b) and (c)

are fulfilled by construction and (d) is fulfilled by the choice of x as mentioned above.

Lastly, we set Kk+1 := G[V (Kk) ∪ {uk+1}], thus also (a) is ensured.

4.4.3 The Dense KQ-Building Game

Since Maker can always win in the KQ-building game, we now consider a variant of the

game in which it is harder for Maker to achieve her goal, the dense KQ-building game.

In this game Maker is doomed to fail. We prove this by providing a winning strategy

for Breaker in this variant of the game.

In the following we define the dense Q-building pairing strategy. At the beginning

of the game Breaker picks

• an infinite sequence I := (Ij)j∈N of pairwise disjoint intervals of Q,

• an enumeration Q of Q, and

• an enumeration ({pj, qj})j∈N of the 2-element subsets of Q.

For any s ∈ Ij \ {pj, qj} where s appears later in the enumeration Q than both pj and

qj he pairs the edges {pjs, qjs}. Then, whenever Maker claims either pjs or qjs in one

of her turns, Breaker claims the other in his following turn.

Lemma 4.12. The dense KQ-building pairing strategy is a pairing strategy that is a

winning strategy for Breaker in the dense rational number game.

Proof. To verify that the strategy is a pairing strategy we need to verify that the pairs

of edges {pjs, qjs} are pairwise disjoint. For fixed j and s ̸= t ∈ Ij \ {pj, qj} it is true

that {pjs, qjs} ∩ {pjt, qjt} = ∅. For i ̸= j with s ∈ Ii and t ∈ Ij, the intersection of

{pis, qis} and {pjt, qjt} can only be non-empty if both s ∈ {pj, qj} and t ∈ {pi, qi}. But
this cannot happen because pi, qi, pj and qj appear in a unique order in the enumeration

Q which ensures that Breaker considers only one of the pairs {pis, qis} and {pjt, qjt}
in this case.
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To see that the dense Q-game strategy is a winning strategy for Breaker, suppose

for a contradiction that Maker finishes a KQ whose vertices are dense in Q. Then there

is n ∈ N such that {pn, qn} ⊆ V (KQ). But according to the dense KQ-building pairing

strategy only finitely many vertices of In can be in KQ: since at some point both pn

and qn have appeared in Q, only finitely many other elements have appeared before

and for every vertex v ∈ In that appears later in Q the pair {pnv, qnv} is considered

in the dense Q-game strategy. Thus, V (KQ) cannot be dense in In, which implies that

the set of vertices is not dense in Q.

4.5 Open Problems

One obvious variation of the game proposed in Section 4.1 immediately comes to mind:

while in Section 4.2 and Section 4.3 the basic version of the game was altered by

colouring the vertices, one could instead colour the edges of the board and again demand

that GM contains an isomorphic copy of the board as a subgraph. We will call this

game the Kℵ0 edge colouring game. While in the vertex case the colour classes are

very symmetric, this is different for edge colourings: it could happen that the subgraph

induced by some colour class is locally finite, while the one for another is not.

Question 4.13. Let n ∈ N. For which colourings c : E(Kℵ0) −→ [n] is there a winning

strategy for one of the players in the Kℵ0 edge colouring game?

Certainly one may consider a colouring with infinitely many colours as well.

Question 4.14. For which colourings c : E(Kℵ0) −→ N is there a winning strategy for

one of the players in the Kℵ0 edge colouring game?

Another possible generalisation is to adapt the game to hypergraphs.

Question 4.15. Let H be a complete infinite k-regular hypergraph. In the Maker-

Breaker game onH where it is Makers aim to have an isomorphic copy ofH be contained

in GM , is there a winning strategy for Maker?

Naturally, we can consider a ≤k-regular hypergraph or even an infinite complete

hypergraph instead of a k-regular one. Furthermore, we could also apply a vertex or an

edge colouring to the board in any of these variants, just as in the Kℵ0-building game.

Since the k-regular hypergraph variant is already very advanced, we will not state these

as questions here and rather highlight one particularly intriguing question.

Question 4.16. Consider the Maker-Breaker game in which the players alternately

claim finite subsets of N and it is Makers aim to claim an infinite set F of pairwise

disjoint finite subsets of N as well as the union of every finite subset of F . Is there a

winning strategy for one of the players?
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Chapter 5

Maker-Breaker (G,H)-Games on

Uncountable Boards

Recall that we defined in Subsection 2.2.1 that for Maker-Breaker games on uncount-

able boards we assume that a game ends only after all edges of the board have been

claimed. Thus, each outcome of the game defines a 2-colouring of E(G). This suggests

an even deeper connection to Ramsey type problems as in Chapter 4, although still the

colourings in question are not arbitrary but are produced by players with particular

goals in mind. Since in the context of uncountable boards the set-theoretic framework

in which we work becomes very important we fix some notation: we write CH, GCH,

DC, AD and p for the continuum hypothesis, generalised continuum hypothesis, ax-

iom of dependent choice, axiom of determinacy and the pseudo-intersection number

respectively. See e.g. [Kun11] for an introduction to these concepts. There are col-

ourings of the edges of Kω1 with two colours without any monochromatic Kω1 in ZFC

(see [Sie33]), but if instead of the axiom of choice one assumes DC+AD, then there is

always a monochromatic Kω1 because ω1 becomes measurable (see [Kan08, Theorem

28.2]) and hence weakly compact.

The existence of a monochromatic Kω,ω1 when colouring the edges of Kω,ω1 with

two colours is even more dependent on the set-theoretic framework. While there is a

colouring without a monochromatic copy in ZFC+CH, there is no such colouring in

ZFC+ω1 < p. Since we could not find these particular statements formulated anywhere

in the literature on infinite Ramsey theory, for the sake of completeness we include

them here as Corollary 5.6 and Corollary 5.11.

These Ramsey-type results compare well to the corresponding results about the

existence of a winning strategy for either player. Our main results are as follows:

Theorem 5.1. It is independent of ZFC if Breaker has a winning strategy in the Maker-

Breaker (Kω,ω1 , Kω,ω1)-game. He has one under ZFC+GCH1, while Maker has one

under ZFC+ω1 < p.

1A closer analysis shows that only CH is needed here, but we have chosen a simpler exposition over

optimality of the results, since the independence is our main concern.
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Theorem 5.2. It is independent of ZFC if every 2-colouring of the edges of Kω,ω1

admits a monochromatic copy of Kω,ω1. It is true in ZFC+ω1 < p but fails under

ZFC+CH.

Theorem 5.3. Assuming the consistency of AD, it is independent of ZF+DC if Breaker

has a winning strategy in the Maker-Breaker (Kωn , Kωn)-game for n ∈ {1, 2}. He has

such winning strategies under ZFC+GCH, while Maker has winning strategies in these

games under ZF+DC+AD.

Theorem 5.4. Assuming the consistency of AD, it is independent of ZF+DC if Breaker

has a winning strategy in the Maker-Breaker (Kω1 , Kclub)-game.

We first present the winning strategies for Breaker in Section 5.1 and then the

winning strategies for Maker in Section 5.2.

5.1 The Winning Strategies of Breaker under GCH

Proposition 5.5 (ZFC+GCH). For every infinite cardinal κ, Breaker has a winning

strategy in the Maker-Breaker (Kκ+ , Kκ,κ+)-game.

Proof. Let us assume that Kκ+ is represented as the complete graph on the vertex

set κ+. Working under GCH, we fix an enumeration {Aα : α < κ+} of [κ+]κ and for

each α < κ+, we pick a surjective function fα : κ → {Aβ : β ≤ α}). Whenever Maker

plays an edge {β, α} with β < α and there is a γ < κ such that this is the (γ + 1)-st

downwards edge from α she claims, Breaker chooses the smallest δ ∈ fα(γ) for which

{δ, α} is available, and plays {δ, α} if such a δ exists - otherwise he plays arbitrarily.

Suppose for a contradiction that Maker manages to build a Kκ,κ+ (despite Breaker

playing as above) and let A be its smaller and B its bigger vertex class. Then there is

an α < κ+ with Aα = A. Fix a β ∈ B with β > max{α, supA} and let γ < κ with

fβ(γ) = A. At the turn when Maker claims a downwards edge from β for the (γ+1)-st

time, there are still κ many δ ∈ A for which {δ, β} is available, thus Breaker’s next play

is {δ, β} for the smallest such δ. This contradicts {δ, β} ∈ E(GM).

The corresponding negative Ramsey-result can be proved in a similar manner:

Corollary 5.6 (ZFC+GCH). For every infinite cardinal κ, there exists a 2-colouring

of the edge set of Kκ,κ+ without a monochromatic copy of Kκ,κ+.

Proof. Let {vα : α < κ+} be an enumeration of the larger vertex class and let {Aα : α <

κ+} be an enumeration of [κ+]κ. For each α < κ+, we colour the edges incident with

vα in such a way that for every β ≤ α both colours appear among the edges between

vα and Aβ. This clearly ensures that no set A can be the smaller vertex class of a

monochromatic copy of Kκ,κ+ and therefore no such a monochromatic copy exists.
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Observation 5.7. If Breaker has a winning strategy in the Maker-Breaker (G,H)-

game, then he also has one in every Maker-Breaker (G′, H ′)-game whereG′ is a subgraph

of G and H ′ is a supergraph of H.

Since Kκ,κ+ is a subgraph of Kκ+ , Observation 5.7 guarantees that Proposition 5.5

has the following consequences:

Corollary 5.8 (ZFC+GCH). For every infinite cardinal κ, Breaker has a winning

strategy in the following games:

(1) the Maker-Breaker (Kκ,κ+ , Kκ,κ+)-game,

(2) the Maker-Breaker (Kκ+ , Kκ+)-game, and

(3) the Maker-Breaker (Kκ+ , Kclub)-game.

5.2 Winning Strategies for Maker

This section is divided into three subsections. In Subsection 5.2.1 we investigate the

(Kω,ω1 , Kω,ω1)-game, in Subsection 5.2.2 we look into the (Kω1 , Kω1)-game and the

(Kω2 , Kω2)-game and lastly the (Kω1 , Kclub)-game in Subsection 5.2.3.

5.2.1 The Maker-Breaker (Kω,ω1, Kω,ω1)-Game

A set F of sets has the strong finite intersection property if the intersection of any

finitely many elements of F is infinite. Given two sets X and Y , we write X ⊆∗ Y

if X \ Y is finite. A pseudo-intersection for a set F of sets is a set P with P ⊆∗ F

for all F ∈ F . The cardinal p is the minimum cardinality of a set F of subsets of ω

that has the strong finite intersection property but does not admit an infinite pseudo-

intersection. Clearly ℵ0 < p ≤ 2ℵ0 and it is known that ω1 < p is consistent relative to

ZFC (see [Kun11, Lemma III.3.22 on p. 176]).

Proposition 5.9. Maker has a winning strategy in the Maker-Breaker (Kω,ω1 , Kω,ω1)-

game if ω1 < p.

Proof. Let U and V be the two sides of the bipartite graph Kω,ω1 , where |U | = ω and

|V | = ω1. We denote the subgraph of G induced by the edges Maker claimed before

turn α by Gα
M and we write NGα

M
(v) for the set of the neighbours of v in this graph.

During the game Maker will choose a sequence ⟨vα : α < ω1⟩ of distinct vertices from
V and a sequence ⟨Nα : α < ω1⟩ of subsets of U in such a way as to ensure that for any

α < ω1

(1) Nα ⊆ N
ω·(α+1)
GM

(vα), and

(2) the set {Nβ : β ≤ α} has the strong finite intersection property.
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Assume that turn α ·ω has just begun for some α < ω1 and that Maker has construc-

ted suitable vβ and Nβ for all β < α. She picks vα to be any fresh vertex in V . Using

(2) for all β < α, we know that the set {Nβ : β < α} has the strong finite intersection

property. Let Pα be an infinite pseudo-intersection of this family. In each of the next ω

turns, Maker claims an edge {u, vα} with u ∈ Pα. Let Nα be the set of all the endpoints

u ∈ U of these edges. This construction satisfies (1) and (2) for α.

At the end of the game {Nα : α < ω1} has the strong finite intersection property

and hence (by the assumption ω1 < p) admits an infinite pseudo-intersection P . By

the definition of P , for each α < ω1, the set P \ Nα is finite. Then there exists an

uncountable O ⊆ ω1 and a finite F ⊆ P such that P \Nα = F for every α ∈ O. Finally,

(P \ F ) ∪ {vα : α ∈ O} induces a copy of Kω,ω1 , all of whose edges have been claimed

by Maker.

Remark 5.10. The same proof shows that Maker has a winning strategy in the Maker-

Breaker (Kω,κ, Kω,κ)-game for every κ < p with cf(κ) > ℵ0.

The proof of Proposition 5.9 leads to the following positive Ramsey result:

Corollary 5.11. If ω1 < p, then any 2-colouring of the edges of Kω,ω1 admits a mono-

chromatic copy of Kω,ω1.

Proof. Call the colours red and blue, and call the countable and uncountable sides of

the original graph U and V respectively. We pick a free ultrafilter U on U . Then for

each v ∈ V either the set Nr(v) of the red neighbours of v is in U or the set Nb(v) of

the blue neighbours. We may assume that there is an uncountable V ′ ⊆ V such that

Nr(v) ∈ U for each v ∈ V ′. Since U is a free ultrafilter, the family {Nr(v) : v ∈ V ′}
has the strong finite intersection property and therefore (by ω1 < p) admits an infinite

pseudo-intersection P . This means that for every v ∈ V ′ the set P \ Nr(v) is finite.

Then there exists an uncountable V ′′ ⊆ V ′ and finite F ⊆ P such that P \Nr(v) = F

for each v ∈ V ′′ and hence (P \ F ) ∪ V ′′ induces a red copy of Kω,ω1 .

Question 5.12. Is it consistent with ZFC+ℵω < 2ℵ0 that Maker has a winning strategy

in the Maker-Breaker (Kω,ωω , Kω,ωω)-game?

Theorem 5.1 is implied by the case κ = ω of Corollary 5.8/(1) together with Pro-

position 5.9. Similarly, Theorem 5.2 follows from Corollary 5.6 and Corollary 5.11.

5.2.2 The Maker-Breaker (Kω1, Kω1)-Game

and the Maker-Breaker (Kω2, Kω2)-Game

Proposition 5.13 (ZF). If either κ is measurable or κ = ω, then Maker has a winning

strategy in the Maker-Breaker (Kκ, Kκ)-game.
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Proof. A sub-binary Hausdorff tree is a set theoretic tree T in which each vertex has

at most two children and no two vertices at any limit level have the same set of prede-

cessors.

During the game Maker builds a sequence ⟨Tα : α ≤ κ⟩ of sub-binary Hausdorff trees

with root 0 and Tα ⊆ κ of height at most 1 + α such that

(a) (i) T0 = {0},

(ii) Tα+1 is obtained from Tα by inserting a new maximal element,

(iii) Tα =
⋃
β<α Tβ if α is a limit ordinal, and

(b) for every distinct <Tα-comparable u, v ∈ Tα, the edge {u, v} is claimed by Maker

in the game.

Suppose that α = β+1 and Tβ is already defined. Maker picks the smallest ordinal

v such that no edge incident with v is claimed and claims edge {0, v}. Then, for as long
as she can, on each following turn she connects v to vertices in Tβ in such a way that:

(1) she maintains that the current neighbourhood of v in her graph is a downward

closed chain in Tβ, and

(2) whenever she claims some {u, v}, then Breaker has no edge between v and the

subtree Tβ,u of Tβ rooted at u.

Note that, at any step at which v has a largest Maker-neighbour in Tβ and this neigh-

bour has two children in Tβ, she can proceed. Moreover, she can also proceed even if

there is no such largest Maker-neighbour as long as there is some element of Tβ whose

predecessors are precisely the Maker-neighbours of v in Tβ. Thus, if Maker is unable to

continue this process with v, then either v has a largest Maker-neighbour in Tβ which

has at most one child or else there is no vertex in Tβ with precisely the Maker-neighbours

of u as its predecessors. In either case we can define Tβ+1 by adding v to Tβ with its

current set of Maker-neighbours as its predecessors, and Maker starts a new phase with

a new fresh vertex.

It is enough to show that there is a κ-branch B in Tκ, because then GM [B] is a copy

of Kκ by (b). Since |Tκ| = κ by (a), we can fix a κ-complete free ultrafilter U on Tκ.

By transfinite recursion we build a κ-branch. Let v0 := 0. Suppose that there is an

α < κ such that the <Tκ-increasing sequence ⟨vβ : β < α⟩ is already defined and for each

β < α, Tκ,vβ ∈ U . If α is a limit ordinal, then since
⋂
β<α Tvβ ∈ U by the κ-completeness

of U , there is at least one vertex of T with all vβ as predecessors. We define vα to be the

unique minimal such vertex such that Tvα =
⋂
β<α Tvβ ∈ U . If α = β+1, then Tκ,vβ ∈ U

by assumption. Since Tκ is sub-binary, vβ has a unique child v satisfying Tκ,v ∈ U and

we let vβ+1 := v. The recursion is done and {vα : α < κ} is clearly a κ-branch.

We remark that this strategy is quite flexible and deals also with a number of variants

of the Maker-Breaker game. For example, if Breaker is allowed k < ω moves for every
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move that Maker picks, simply take a sub-(k+1)-regular Hausdorff tree, in which every

node has at most k + 1 children. Furthermore, if in addition Breaker is allowed to go

first in every turn, simply weaken the Hausdorff assumption to the requirement that at

most k + 1 vertices at a limit level have the same set of predecessors.

Since ω1 and ω2 are measurable cardinals under ZF+DC+AD ([Kan08, Theorems

28.2 and 28.6]), the cases κ ∈ {ω, ω1} of Corollary 5.8/(2) and the cases κ ∈ {ω1, ω2}
of Proposition 5.13 together imply Theorem 5.3.

5.2.3 The Maker-Breaker (Kω1, Kclub)-Game

Proposition 5.14. Under ZF+DC+AD, Breaker does not have a winning strategy in

the Maker-Breaker (Kω1 , Kclub)-game.

Proof. First of all, the club filter on ω1 is a countably complete free ultrafilter under

ZF+DC+AD (this is explicit in the proof of [Kan08, Theorem 28.2]). Furthermore, it is

normal [DH21, Proposition 4.1]. Thus for any 2-colouring of [ω1]
2 there exists a colour

with a monochromatic Kclub (the standard proof of this for arbitrary normal ultrafil-

ters uses only ZF, see [Jec03, Theorem 10.22]). It follows that if Breaker successfully

prevents Maker from building a Kclub, then he necessarily builds a Kclub himself.

Suppose for a contradiction that Breaker has a winning strategy. We shall show that

Maker can ‘steal’ this winning strategy. Indeed, Maker picks an arbitrary edge in turn

0 as well as in each limit turn while in successor turns she pretends to be Breaker and

claims edges according to his winning strategy. This is a winning strategy for Maker, a

contradiction.

Theorem 5.4 follows from the case κ = ω of Corollary 5.8/(3) and Proposition 5.14.

Remark 5.15. The same strategy stealing argument shows that if κ is a weakly com-

pact cardinal, then Breaker does not have a winning strategy in the Maker-Breaker

(Kκ, Kκ)-game.

Remark 5.16. We did not really use the full power of AD, just some consequences

that are weaker in the sense of consistency strength than AD itself. The axiom-system

ZF+DC+‘ω1 is measurable’ is equiconsistent with ZFC+‘there exists a measurable car-

dinal’ (see [Jec68]). The club filter being an ultrafilter is a strictly stronger assumption,

for more details see p. 3 in [DH21].

5.3 Open Problems

Our results raise the following natural questions:

Question 5.17. Is it consistent with ZFC that neither Maker nor Breaker has a winning

strategy in the Maker-Breaker (Kω,ω1 , Kω,ω1)-game?
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Question 5.18. Does Breaker have a winning strategy in the Maker-Breaker (Kω1 , Kω1)-

game under ZFC?

Question 5.19. Does Maker have a winning strategy in the Maker-Breaker (Kω1 , Kclub)-

game under ZF+DC+AD?
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Part II

Directed and Bidirected Graphs
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Chapter 6

Ubiquity of Directed Graphs

In this chapter we start the investigation of ubiquity in directed graphs. Recall from

the definition in Subsection 2.3.2 that rays and double rays in this thesis are oriented

versions of the undirected rays and undirected double rays in literature, together with

linear orders. We begin this Chapter 6 by characterising which rays are ubiquitous

regarding the subdigraph relation in Section 6.1. Whenever we write ubiquitous without

specifying the relation, we refer to the subdigraph relation. We prove the following

theorem:

Theorem 6.1. A ray is ubiquitous if and only if it has a finite number of turns.

In Section 6.2 we extend the investigation of ubiquity in digraphs, akin to Halins

result [Hal70], to the class of double rays. It turns out that – in contrast to rays – it is

not only relevant whether the number of turns is finite or infinite, but also the parity

of this number plays a role. Our theorem about double rays reads as follows:

Theorem 6.2. A double ray with at least one turn is ubiquitous if and only if it has a

(finite) odd number of turns.

Before we start the investigation let us present some open problems concerning the

ubiquity of different digraphs. The statement of Theorem 6.2 notably omits one special

case that turns out to be quite challenging:

Problem 6.3. Is the consistently oriented double ray, i.e. every vertex has in-degree

and out-degree 1, ubiquitous?

More generally, one can investigate ubiquity of digraphs whose underlying undirec-

ted graphs are trees. However, even the question of which undirected trees are subgraph-

ubiquitous is unsolved and only known for ubiquity with respect to weaker relations

such as the topological minor relation. Therefore it might be sensible also to discuss ubi-

quity of digraphs with respect to weaker relations such as butterfly minors. Moreover,

since proving or disproving the ubiquity of consistently oriented double rays is not easy,

we propose to initially consider out-trees, i.e. trees in which all edges are oriented away

from the root.
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Problem 6.4. Which out-trees are ubiquitous concerning a fitting notion of ubiquity?

6.1 Ubiquity of Oriented Rays

In this section we develop novel methods that enhance the techniques in the field of

ubiquity theory in order to prove Theorem 6.1. For the forward implication of The-

orem 6.1 (see Subsection 6.1.1) we follow the proof for Halin’s ray ubiquity result in

undirected graphs which can be found in [Die17, Theorem 8.2.5 (i)]. To make this

possible we require sets of arbitrarily many disjoint copies of an oriented ray that have

an additional property, they must be forked. The existence of such forked sets, which

we prove in Lemma 6.7, is our key contribution in the proof of the forward implication.

For the backwards implication of Theorem 6.1 (see Subsection 6.1.2) we construct

a counterexample from infinitely many disjoint copies of an oriented ray by identifying

vertices. In the proof of Theorem 6.10 we extend the technique of identifying vertices

according to a recursive process.

6.1.1 Positive Results

In this subsection we prove

Theorem 6.5. A ray is ubiquitous if it has finitely many turns.

The proof of Theorem 6.5 will be an easy consequence of Theorem 6.6 together with

Lemma 6.7 below. The following Theorem is a variant of Halin’s ray ubiquity result

for digraphs with an additional restriction on the start vertices of the rays. The proof

given here is derived from the proof of Halin’s result in [Die17, Theorem 8.2.5 (i)].

Theorem 6.6. Let D be a digraph, R an out-oriented ray, F a thick R-tribe in D

and X ⊆ V (D) such that each member of F has its first vertex in X. Then there are

infinitely many disjoint out-rays in D whose first vertices are contained in X.

Proof. We will recursively fix for every n ∈ N+ a set Rn = {Rn
1 , . . . , R

n
n} of pairwise

disjoint out-rays in D and a set of vertices {un1 , . . . , unn} such that for every k ∈ [n]:

• Rn
k has its first vertex in X,

• unk ∈ Rn
k , and

• Rn
ku

n
k ⊊ Rn+1

k un+1
k .

Then {
⋃
n≥k R

n
ku

n
k : k ∈ N} is an infinite set of pairwise disjoint out-rays where each of

the rays has its first vertex in X.

For n = 1 we pick one ray R1
1 ∈

⋃
F , set R1 := {R1

1} and pick u11 ∈ R1
1 arbitrarily.

This satisfies the required properties.
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Now let ℓ > 1 and suppose that for all i ∈ [ℓ] there are sets Ri and {ui1, . . . , uii}
subject to the conditions above. Consider a layer F of F of size at least |

⋃
{Rℓ

iu
ℓ
i : i ∈

[ℓ]}| + ℓ2 + 1. First, we delete from F every ray that meets an oriented path Rℓ
iu
ℓ
i for

some i ∈ [ℓ]. Then there are still at least ℓ2 + 1 rays left in F . Next, we repeatedly

check whether there is a ray Rℓ
i ∈ Rℓ that meets at most ℓ elements of F . If that is the

case, we set Rℓ+1
i := Rℓ

i , choose a vertex uℓ+1
i beyond uℓi on R

ℓ
i arbitrarily, and delete

the at most ℓ many rays from F that have non-empty intersection with Rℓ+1
i . Suppose

that after m ≤ ℓ many steps, every ray in Rℓ meets either none or more than ℓ many

rays from the reduced F , which we will refer to as F ′.

Consider the (ℓ −m)-sized subset J ⊆ [ℓ] containing all j ∈ [ℓ] for which Rℓ+1
j has

not yet been defined. Then any ray Rℓ
j with j ∈ J meets more than ℓ rays from F ′. We

deleted at most |
⋃
{Rℓ

iu
ℓ
i : i ∈ [ℓ]}| rays from F in the first step and at most mℓ in the

second step, thus F ′ has size at least

|{Rℓ
iu
ℓ
i : i ∈ [ℓ]}|+ ℓ2 + 1− |{Rℓ

iu
ℓ
i : i ∈ [ℓ]}| −mℓ = (ℓ−m)ℓ+ 1.

For any ray Rℓ
j with j ∈ J we fix the vertex cj ∈ Rℓ

j which is the first intersection

of Rℓ
j with the ℓ-th ray from F ′ that it meets. Note that cj lies beyond u

ℓ
j on R

ℓ
j. Then⋃

j∈J R
ℓ
jcj meets at most |J |ℓ = (ℓ−m)ℓ rays from F ′. Therefore, there is at least one

ray left in F ′ that is disjoint from
⋃
j∈J R

ℓ
jcj and we pick this ray as Rℓ+1

ℓ+1. We choose

an arbitrary vertex uℓ+1
ℓ+1 ∈ Rℓ+1

ℓ+1, define F
∗ := F ′ \ {Rℓ+1

ℓ+1}, and write F ∗ = {Si : i ∈ I}
for a suitable index set I.

Now for any ray Si ∈ F ∗ we choose a vertex wi that lies beyond all vertices of⋃
j∈J u

ℓ
jR

ℓ
jcj on Si. Consider the finite subdigraph

H :=
⋃
j∈J

uℓjR
ℓ
jcj ∪

⋃
i∈I

Siwi

of D. Additionally, we define U := {uℓj : j ∈ J} and W := {wi : i ∈ I}. We show that

for any set Z ⊆ V (H) of fewer than ℓ−m vertices there is a U–W path inH−Z. Indeed,
Z misses at least one path of the form uℓjR

ℓ
jcj and since there are ℓ ≥ ℓ−m many paths

Siwi with u
ℓ
jR

ℓ
jcj ∩ Siwi ̸= ∅, at least one such path Siwi avoids Z. Let vj be the first

vertex on uℓjR
ℓ
jcj which lies on Siwi; then u

ℓ
jR

ℓ
jvjSiwi is a path from uℓj to wi: firstly, by

the choice of vj the graph of uℓjR
ℓ
jvjSiwi clearly is an oriented path. Secondly, the path

uℓjR
ℓ
jvj is directed from uℓj to vj since vj ∈ uℓjR

ℓ
j. Thirdly, the path vjSiwi is directed

from vj to wi since vj lies in Siwi. Thus by Menger’s Theorem [BJG08, Theorem 7.3.1],

there is a set P of ℓ−m = |J | pairwise disjoint U–W paths in H.

For all j ∈ J , we write Pj for the path in P starting at uℓj. Let h : J → I such that

wh(j) is the endvertex of Pj in W . Now we define

Rℓ+1
j := Rℓ

ju
ℓ
jPjwh(j)Sh(j)

and uℓ+1
j := wh(j), which clearly fulfils the required properties.
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Lemma 6.7. Let D and H be digraphs, Ĥ ⊆ H a finite subdigraph and let E be a thick

H-tribe in D. Then there is a thick H-tribe F in D that is forked at Ĥ.

Proof. For all n ∈ N, we recursively define a set Fn containing at least n disjoint copies

of H in D and a thick subtribe En of E such that

(i) the H-tribe Fn := {F0, . . . , Fn} is forked at Ĥ,

(ii) for each H1 ∈
⋃

En and each H2 ∈
⋃
Fn the digraph Ĥ1 is disjoint from H2 and

the digraph Ĥ2 is disjoint from H1.

In the end, {Fn : n ∈ N} will be a thick H-tribe satisfying the lemma. For the first step

we set F0 := ∅ and E0 := E . Now suppose that Fn−1 and En−1 are already defined. Set

h := |Ĥ| and choose a layer L from En−1 of size at least h+ n. We will choose Fn as an

n-element subset of L. Then Fn will be forked at Ĥ since (i) and (ii) hold for En−1 and

Fn−1. Our task is to find a suitable subset Fn of L and a thick subtribe En of E such

that
⋃

Fn and
⋃

En satisfy (ii). We begin by deleting from each layer M ̸= L of En−1

any element that has non-empty intersection with some H ′ ∈ L in its subdigraph Ĥ ′.

Note that for every digraph H ′ ∈ L there are at most |Ĥ ′| = h many digraphs from M

which meet Ĥ ′. Therefore we delete from every layer of En−1 at most h · |L| elements

and the resulting subtribe C of En−1 is still a thick tribe in D. Note that in particular,

L is not a layer of C.
Claim. For every j ∈ N there is a subset Lj ⊆ L with |Lj| = n and a subset Cj with

|Cj| ≥ j of a layer of C such that for any H1 ∈ Lj and any H2 ∈ Cj the digraph H1 is

disjoint from Ĥ2 and H2 is disjoint from Ĥ1.

Proof. Let j ∈ N and C a layer of C of size at least j
(|L|
n

)
. By the construction of C, we

only need to find sets Lj ⊆ L and Cj ⊆ C such that no H1 ∈ Lj meets any H2 ∈ Cj in

its subdigraph Ĥ2. For every H ′ ∈ C, at most |Ĥ ′| = h elements of L meet Ĥ ′. Since

|L| ≥ h+n, we can choose for every H ′ ∈ C a subset of n elements of L such that each

of these does not meet Ĥ ′. This defines a map α : C → L := {L′ ⊆ L : |L′| = n}. Since
|C| ≥ j

(|L|
n

)
= j|L|, there is a set Lj ∈ L with |α−1(Lj)| ≥ j by pigeonhole principle.

Then Lj and Cj := α−1(Lj) are as desired.

Since L has only finitely many subsets, there is an infinite strictly increasing sequence

(jk)k∈N in N such that the sets Ljk coincide for all k ∈ N. We choose this as the set

Fn. By the claim, En := {Cjk : k ∈ N} is a thick subtribe of En−1 satisfying (ii). This

concludes the proof.

Proof of Theorem 6.5. Let R be a ray with finitely many turns. This implies that all

but finitely many edges are oriented the same way. Furthermore, let D be a digraph

and E a thick R-tribe in D. We show that D contains infinitely many copies of R. By

Proposition 2.6 we may assume that all but finitely many edges of R are out-oriented.

64



Let R̂ be the (connected) subdigraph of R that consists precisely of all finite phases

of R. By Lemma 6.7, there is a thick subtribe F of E that is forked at R̂. Consider

the set X which contains for any R′ ∈
⋃

F the first vertex of the out-ray R′ − R̂′, and

the set Y :=
⋃
R′∈

⋃
F V (R̂′). By deleting R̂′ from each member R′ of F , we obtain a

thick (R − R̂)-tribe in D − Y . Hence, by Theorem 6.6 there exists an infinite family

(Ri)i∈N of disjoint out-rays in D − Y such that each Ri starts in a vertex ri ∈ X. By

definition of X, for all i ∈ N there is Si ∈ F such that ri is the first vertex of Si − Ŝi.

Note that Ŝi and Ŝj are disjoint for i ̸= j since F is forked at R̂. Finally, by combining

each initial segment Ŝi with the out-ray Ri, we obtain infinitely many disjoint copies of

R in D.

6.1.2 Negative Results

For the proof that all rays with infinitely many turns are non-ubiquitous, we distinguish

between two different cases, partitioned into two subsections. In Theorem 6.8 we show

that any ray with bounded representing sequence is non-ubiquitous and in Theorem 6.10

we show that any ray with unbounded representing sequence is non-ubiquitous.

Rays with Bounded Representing Sequence

We prove the following theorem.

Theorem 6.8. All rays with bounded representing sequence are non-ubiquitous.

Proof. Let R be an arbitrary ray with bounded representing sequence. Let c be the

largest natural number that occurs infinitely often in its representing sequence. We

construct a digraph D that contains arbitrarily many but not infinitely many disjoint

copies of R. By Proposition 2.6, we may assume that infinitely many phases of length

c in R are out-oriented.

For the construction of D, we set

I := {(n,m) ∈ N2 : n ≤ m}

and let (R(n,m))(n,m)∈I be a family of pairwise disjoint copies of R. Furthermore, set

J := {((n0,m0), (n1,m1)) ∈ I2 : m0 < m1}

and let ((n0
i ,m

0
i ), (n

1
i ,m

1
i ))i∈N be a sequence in J which contains every element of J

infinitely often. We begin by setting

D0 :=
⋃

(n,m)∈I

R(n,m),

which is the disjoint union of infinitely many copies of R. Now we define a sequence

(g0i , g
1
i )i∈N of pairwise disjoint pairs of vertices of D0 recursively with g0i ∈ R(n0

i ,m
0
i )

and g1i ∈ R(n1
i ,m

1
i ) for all i ∈ N.
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If (g0j , g
1
j ) has been defined for all j < i, we pick for ε ∈ {0, 1} the vertex gεi beyond all

vertices g00, g
1
0, . . . , g

0
i−1, g

1
i−1 on R(n

ε
i ,m

ε
i ) with the following properties (see Figure 6.1):

(i) g1i is a turn in R(n1
i ,m

1
i ) at the start of an out-oriented phase of length c, and

(ii) g0i is a turn in R(n0
i ,m

0
i ) at the end of an out-oriented phase of length c with the

property that |R(n0
i ,m

0
i )g

0
i | > |R(n1

i ,m
1
i )g

1
i |.

This is possible since R(n0
i ,m

0
i ) and R(n1

i ,m
1
i ) contain infinitely many out-oriented

phases of length c.

.

.

. . . . ..
.

.

.

.

.

gi
R(n0

i ,m
0
i )

R(n1
i ,m

1
i )

Figure 6.1: Example of an identified vertex g0i = g1i = gi in D for c = 3.

Let D be the digraph obtained from D0 by identifying for each i ∈ N the vertices

g0i ∈ R(n0
i ,m

0
i ) and g

1
i ∈ R(n1

i ,m
1
i ). We write gi for the vertex g0i = g1i in D. By the

choice of I and J , we have identified infinitely many vertices of R(n,m) and R(n′,m′)

if m ̸= m′ and none otherwise in the construction of D. Hence D contains arbitrarily

many disjoint copies of R as the rays R(0,m), R(1,m), . . . , R(m,m) are disjoint for all

m ∈ N.
To prove that D does not contain infinitely many disjoint copies of R, we will show

that for any copy R′ of R in D there is (n,m) ∈ I such that a tail of R′ coincides with

a tail of R(n,m). Assuming this, suppose for a contradiction that there is a family

R of infinitely many pairwise disjoint copies of R in D. Then there are R(n,m) and

R(n′,m′) with m ̸= m′ and two copies R0, R1 ∈ R of R in D whose tails coincide with

tails of R(n,m) and R(n′,m′), respectively. But by construction, two rays R(n,m) and

R(n′,m′) in D have disjoint tails if and only ifm = m′. This contradicts the assumption

that R0 and R1 are disjoint.

It remains to prove that for any copy R′ of R in D there is (n,m) ∈ I such that a tail

of R′ coincides with a tail of R(n,m). Begin by fixing an arbitrary copy R′ of R in D.

Since c is the largest number which occurs infinitely often in the representing sequence

of R, there is a tail R′′ of R′ whose representing sequence contains only numbers up
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to c and whose initial vertex is a turn of some ray R(n∗,m∗) for (n∗,m∗) ∈ I. In

the construction of D we only identified turns, thus each phase of any R(n′,m′) for

(n′,m′) ∈ I is either completely traversed by R′′ or all edges of this phase are avoided

by R′′.

Let i ∈ N be arbitrary. By properties (i) and (ii), any ray in D traversing both, the

phase of R(n0
i ,m

0
i )gi incident with gi and an edge of R(n1

i ,m
1
i ) incident with gi, contains

a phase of length > c (see Figure 6.1). Clearly, the same holds for a ray traversing both,

the phase of giR(n
1
i ,m

1
i ) incident with gi and an edge of R(n0

i ,m
0
i ) incident with gi.

Thus if R′′ contains gi as an inner vertex, exactly one of the following properties holds:

(1) both edges of R′′ incident with gi are contained in R(n0
i ,m

0
i ), or

(2) both edges of R′′ incident with gi are contained in R(n1
i ,m

1
i ), or

(3) one edge of R′′ incident with gi is contained in R(n1
i ,m

1
i )gi and one is contained

in giR(n
0
i ,m

0
i ).

This feature restricts in which way R′′ is embedded into D. First we observe:

Claim. For any (n,m) ∈ I and any edge e ∈ E(R(n,m))∩E(R′′), the rays R(n,m) and

R′′ traverse e in the same direction.

Proof. Suppose this does not hold. Pick (n,m) ∈ I and an edge e ∈ E(R(n,m)) ∩
E(R′′) with |R(n,m)a| minimal such that e contradicts this property. Let u, v be the

endvertices of e such that |R(n,m)u| < |R(n,m)v| applies. By minimality of e, the

other edge of R′′ incident with u is not contained in R(n,m)u. Therefore u = gi for

some i ∈ N, i.e. there is (n′,m′) ∈ I with m ̸= m′ such that u ∈ R(n,m)∩V (R(n′,m′)).

Then (3) holds for R′′ at the vertex u. As e ∈ E(uR(n,m)), the inequality m < m′

holds by definition of J and the other edge incident with u in R′′ is contained in

R(n′,m′)u. The rays R′′ and R(n′,m′) traverse this edge in opposite directions, but

|R(n′,m′)u| < |R(n,m)u| holds by property (ii) of the construction. This contradicts

the minimality of |R(n,m)e|.

Now let m ∈ N be the smallest number such that there is (n,m) ∈ I with E(R′′) ∩
E(R(n,m)) ̸= ∅ and let e be an element of this intersection. We prove that eR′′

coincides with eR(n,m). Suppose not and let (n′,m′) ̸= (n,m) ∈ I and u ∈ R(n,m) ∩
V (R(n′,m′)) such that u is incident with the first edge f of eR′′ not contained in

E(R(n,m)). Property (3) applies to u. By minimality of m we have m < m′ and thus

f ∈ E(R(n′,m′)u) by (3). Therefore eR′′ and R(n′,m′) traverse the edge f in opposite

directions, which contradicts the claim above. Thus R′ has a tail that coincides with a

tail of R(n,m). This completes the proof.

Rays with Unbounded Representing Sequence

We begin with the following lemma which we need in the proof of Theorem 6.10.
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Lemma 6.9. Let R be a ray with unbounded representing sequence. Then the tails vR

and wR are non-isomorphic for all v ̸= w ∈ R.

Proof. Let R be a ray with unbounded representing sequence. Suppose that there are

v ̸= w ∈ R such that w lies beyond v on R and there is an isomorphism φ : vR → wR.

Clearly, we have φ(v) = w and the oriented paths φn(v)Rφn+1(v) are isomorphic for

all n ∈ N. Therefore, R has a tail whose representing sequence is periodic. Thus the

representing sequence of R is bounded, a contradiction.

Theorem 6.10. All rays with unbounded representing sequence are non-ubiquitous.

The idea of the proof of Theorem 6.10 is akin to that of Theorem 6.8: we build a

counterexample recursively by identifying vertices, starting with infinitely many disjoint

copies of a ray R. We ensure that the resulting digraph still contains arbitrarily but not

infinitely many disjoint copies of R, utilising the structure of the representing sequence.

Hence, the setup is similar but the construction differs.

Proof. Let R be a ray with unbounded representing sequence. Define

I := {(n,m) ∈ N2 : n ≤ m}

and let (R(n,m))(n,m)∈I be a family of pairwise disjoint copies of R and

D0 :=
⋃

(n,m)∈I

R(n,m).

We will recursively define a sequence (g0i , g
1
i )i∈N+ of pairwise disjoint pairs of vertices of

D0. Let D be the digraph obtained from D0 by identifying g0i with g
1
i for all i ∈ N. We

will choose (g0i , g
1
i )i∈N+ in such a way that D contains arbitrarily many disjoint copies

of R but not infinitely many. Then D witnesses that R is non-ubiquitous.

Let

J := {((n0,m0), (n1,m1)) ∈ I2 : m0 < m1}

and let ((n0
i ,m

0
i ), (n

1
i ,m

1
i ))i∈N+ be a sequence which contains every element of J infin-

itely often. We will choose each pair (g0i , g
1
i ) in such a way that gεi ∈ R(nεi ,m

ε
i ) for

ε ∈ {0, 1}. Thus we will glue together two rays R(n,m) and R(n′,m′) infinitely often if

m ̸= m′ and keep them disjoint otherwise. Hence D contains arbitrarily many disjoint

copies of R as the rays R(0,m), R(1,m), . . . , R(m,m) are disjoint for all m ∈ N. We

still need to define (g0i , g
1
i )i∈N+ so that D does not contain infinitely many disjoint copies

of R.

We fix an enumeration {v0, v1, . . .} of V (D0). Denote by Di the digraph obtained

from D0 by identifying the vertices g0ℓ and g1ℓ for all ℓ ≤ i and write gℓ for the vertex

g0ℓ = g1ℓ . We will make sure that the following holds for all i ∈ N:

(i) Let k ≤ i and let S be an oriented vk–gi path in Di which is isomorphic to an

initial segment of R. Then |S| = |R(n0
i ,m

0
i )gi| or |S| = |R(n1

i ,m
1
i )gi|.

68



(ii) gi is not a turn of R(n0
i ,m

0
i ) or R(n

1
i ,m

1
i ) and thus gi lies in the interior of phases

M0 of R(n0
i ,m

0
i ) and M1 of R(n1

i ,m
1
i ). Let tε0, t

ε
1 be the two turns which are

endvertices of M ε. Then the four numbers dR(nε
i ,m

ε
i )
(tεδ, gi) for δ, ε ∈ {0, 1} are

pairwise distinct. Furthermore, M0 and M1 do not contain any gj with j ̸= i.

Let us first derive from the existence of a sequence (g0i , g
1
i )i∈N as above that D does

not contain infinitely many disjoint copies of R. We show that for every copy R′ of R in

D there is a pair (n∗,m∗) ∈ I such that a tail of R′ is contained in R(n∗,m∗): we know

that R′ traverses infinitely many vertices gj with j ∈ N because every ray R(m,n) is

glued together with other rays at infinitely many vertices in D. Suppose that R′ starts

in vk and let gi be the first vertex of R′ which lies in {gjj ≥ k}. Then the oriented path

R′gi is a subdigraph of Di as it contains no vertex gj with j > i. Hence by (i), there

is a ray R(m∗, n∗) containing gi with |R′gi| = |R(m∗, n∗)gi|. Therefore, the tails giR
′

and giR(m
∗, n∗) are isomorphic. Then by (ii), iteratively applied to gi and all vertices

of the form gi′ on R(n
∗,m∗) beyond gi, the digraphs giR

′ = giR(n
∗,m∗) coincide in D.

Hence indeed, a tail of R′ is contained in R(n∗,m∗).

As a consequence, there is no infinite family R of pairwise disjoint copies of R in D.

Otherwise we could find two rays R(n,m), R(n′,m′) with m ̸= m′ which both contain a

tail of a ray from R. However, R(n,m) and R(n′,m′) were glued together at infinitely

many different vertices in D and thus do not have disjoint tails.

All that remains is to define (g0i , g
1
i ) for all i ∈ N. Suppose that (g0j , g

1
j ) is already

defined for all j < i so that (i) and (ii) hold for i − 1. We write Rε := R(nεi ,m
ε
i ) for

ε ∈ {0, 1}. Our task is to specify suitable vertices gεi ∈ Rε. Let x be a vertex of R0 that

lies beyond all phases of R0 that contain any vertex of {g0, . . . , gi−1, v0, . . . , vi}. Let P
be the set of all oriented {v0, . . . , vi}–x paths in Di−1 which are isomorphic to initial

segments of R. The following claim implies that P is finite:

Claim. For all j ∈ N and for all vertices v, w ∈ Dj, the set of oriented v–w paths in Dj

is finite.

Proof. We use induction on j. The claim holds for j = 0 as D0 is a disjoint union of

rays. Now consider an arbitrary oriented v–w path P in Dj. If P does not use the

vertex gj, then P is also an oriented v–w path in Dj−1, and there are only finitely many

such oriented paths by induction. Otherwise gj lies on P , and P consists of an oriented

v–gj path Q concatenated with an oriented gj–w path Q′ in Dj. Since Q and Q′ are

also oriented paths in Dj−1, there are only finitely many possibilities for Q and Q′ by

induction.

We write Q for the subset of P consisting of all oriented paths Q with |Q| ≠ |R0x|.
By Lemma 6.9, for every oriented path Q ∈ Q there is a vertex y ∈ R0 beyond x such

that QxR0y is not isomorphic to an initial segment of R. Since Q is finite, we can find

a vertex z0 on R0 such that no oriented path from Q can be extended to an oriented
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{v0, . . . , vi}–z0 path in Di−1 which is isomorphic to an initial segment of R. Similarly,

define a vertex z1 ∈ R1.

Next, we show that Di will satisfy (i) for every choice of vertices gεi on Rε that lie

beyond zε on Rε for ε ∈ {0, 1}. So suppose we have already fixed vertices gεi as above

and glued them together. Now consider any k ≤ i and any oriented vk–gi path S in Di

which is isomorphic to an initial segment of R. Since S is also an oriented vk–gi path

in Di−1 and S must contain either the vertex z0 or z1, it follows from the choice of z0

and z1 that |S| = |R0gi| or |S| = |R1gi|, which proves (i).

Finally, we further specify the choice of g0i and g1i so that (ii) holds. Recall that

the representing sequence of R is unbounded. Therefore, we can find a phase M0 of

R0 which is contained in z0R0 and has length at least 3. We choose g0i as an interior

vertex of M0 so that g0i has different distances to both endvertices of M0. Next, find

a phase M1 of R1 which is contained in z1R1 such that |M1| ≥ 2|M0| + 1. Then (ii)

is fulfilled for a vertex g1i in M1 which has distance |M0| to one endvertex of M1 and

hence distance > |M0| to its other endvertex.

6.1.3 Conclusion

We show how to deduce the theorem about ubiquity of oriented rays from the above

results.

Theorem 6.1. A ray is ubiquitous if and only if it has a finite number of turns.

Proof. The ‘if’ follows directly from Theorem 6.5. For the ‘only if’ direction let R be a

ray with infinitely many turns. Then R has a representing sequence which can either

be bounded or unbounded. In the former case R is non-ubiquitous by Theorem 6.8. In

the latter case R is non-ubiquitous by Theorem 6.10.

6.2 Ubiquity of Oriented Double Rays

In this section we extend the investigation of ubiquity in digraphs to the class of oriented

double rays. First we prove that any oriented double ray with an odd number of turns

is ubiquitous in Subsection 6.2.1. Second we show that R is non-ubiquitous if it has

an even but non-zero or infinite number of turns in Subsection 6.2.2: we deal with the

case that R has an even but non-zero number of turns in Subsection 6.2.2. If R has

infinitely many turns, we distinguish whether R is non-periodic (Subsection 6.2.2) or

periodic (Subsection 6.2.2), which is defined in Subsection 2.3.4.

6.2.1 Positive Results

In this subsection we prove Theorem 6.12, for which we utilise results from Subsec-

tion 6.1.1. In particular we need a lemma that is very similar to Theorem 6.6.
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Let U be the disjoint union of two out-rays and X a set of two element sets of

vertices. We say that U is rooted in X if there is {x, y} ∈ X, such that x and y are the

roots of the two rays which are the components of U . If U = {{x, y}}, we also say that

U is rooted in {x, y}.

Lemma 6.11. Let U be the disjoint union of two out-rays, let D be a digraph and let

X be a set of pairs of vertices of D such that there is a thick U-tribe F in D where all

members of F are rooted in X. Then D contains infinitely many disjoint copies of U

that are rooted in X.

We omit the proof of Lemma 6.11 since it is very similar to the proof of Theorem 6.6.

Theorem 6.12. Any double ray with an odd number of turns is ubiquitous.

Proof. Let R be a double ray with an odd number of turns, D a digraph and E a thick

R-tribe in D. We show that D contains infinitely many disjoint copies of R. Let R̂ be

a finite connected subdigraph of R that contains all turns of R. Since R has an odd

number of turns, by deleting R̂ from R the digraph R falls apart into a disjoint union

U of either two in-rays or two out-rays. By Proposition 2.6, we may assume that the

latter is the case.

Next, we apply Lemma 6.7 to D, R, R̂ and E , which yields a thick R-tribe F in D

that is forked at R̂. Let F ′ be the U -tribe resulting from F by deleting the subgraph

corresponding to R̂ from each member of F . Let D′ be the union of all members of

F ′. Further, let X be the set of pairs {x, y} ∈ [V (D)]2 for which there is a member of

F ′ which is rooted in {x, y}. Thus any member of F ′ is rooted in X. Now we apply

Lemma 6.11 to D′, F ′ and X, which yields an infinite set U of disjoint copies of U in

D′ that are rooted in X.

For any U ∈ U rooted in {x, y}, there is a member R′ of F such that x and y are

the neighbours of R̂′ in R′. We join U with xR′y, which again is a copy of R in D.

Since F is forked at R̂, doing this for any U ∈ F ′ gives an infinite family of disjoint

copies of R in D.

6.2.2 Negative Results

In this subsection we prove the backward implication of Theorem 6.2, which is divided

into three different parts. First we show that double rays with a (finite) even, non-

zero number of turns are non-ubiquitous in Theorem 6.13. Then we show that non-

periodic double rays with infinitely many turns are non-ubiquitous in Theorem 6.17,

and lastly that periodic double rays with infinitely many turns are non-ubiquitous in

Theorem 6.18.

Double Rays with an Even, Non-Zero Number of Turns

Any double ray R with an even, non-zero number of turns contains an in-ray and an

out-ray. By glueing together in- and out-rays of the members of a thick R-tribe in a
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specific way we can show:

Theorem 6.13. Any double ray with an even, non-zero number of turns is non-

ubiquitous.

Proof. Let R be a double ray with an even, non-zero number of turns. Let s be the

first and t be the last turn of R. Since the number of turns is even, exactly one of Rs

and tR is an in-ray and exactly one an out-ray. By possibly reversing the order ≤R,

we may assume that the former is an in-ray and the latter an out-ray. Let p ∈ N be

the length of the longest finite phase of R. We will construct a digraph D containing

arbitrarily many but not infinitely many disjoint copies of R.

For the construction of D, we use the auxiliary set

I := {(n,m) ∈ N2 : n ≤ m}

ordered by the colexicographic order ≤col. For (n,m) ∈ I, we write (n,m)+ for the

successor of (n,m) and (n,m)− for the predecessor (if one exists) of (n,m) under ≤col.

Let (R(n,m))(n,m)∈I be a family of pairwise disjoint copies of R. For (n,m) ∈ I,

write s(n,m) for the first turn of R(n,m) and t(n,m) for the last turn of R(n,m).

Next, we define two families of vertices of R(n,m) for every (n,m) ∈ I: let

(v
(i,j)
(n,m))(i,j)∈I be a family of vertices of R(n,m)s(n,m) such that

• the order ≤R(n,m) and the order induced by ≤col on the superindices are reversed

on {v(i,j)(n,m)
: (i, j) ∈ I},

• the vertices of {v(i,j)(n,m)
: (i, j) ∈ I} have distance at least p + 1 to each other and

to s(n,m) in R(n,m).

Let (w
(i,j)
(n,m))(i,j)∈I be a family of vertices of t(n,m)R(n,m) such that

• the order ≤R(n,m) and the order induced by ≤col on the superindices coincide on

{w(i,j)
(n,m)

: (i, j) ∈ I},

• the vertices of {w(i,j)
(n,m)

: (i, j) ∈ I} have distance at least p + 1 to each other and

to t(n,m) in R(n,m).

LetD be the digraph constructed from the disjoint union
⊔

(n,m)∈I R(n,m) by identi-

fying the two vertices v
(k,ℓ)
(i,j) and w

(i,j)
(k,ℓ) for any (i, j), (k, ℓ) ∈ I with j ̸= ℓ (see Figure 6.2).

The digraph D contains m disjoint copies of R for every m ∈ N, as the double rays

R(1,m), . . . , R(m,m) are disjoint.

It remains to prove that D does not contain infinitely many disjoint copies of R. In

Claim 1, we investigate how an out-ray can lie in D, and in Claim 2, we investigate how

an in-ray with a fixed root can lie in D. After that, we deduce from the two claims and

from the fact that R contains both an out-ray and an in-ray, that D does not contain

infinitely many copies of R.
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Figure 6.2: The digraph D constructed in the proof of Theorem 6.13. The horizontal

lines represent parts of the in-rays R(n,m)s(n,m) and the vertical lines represent parts

of the out-rays t(n,m)R(n,m). The blue lines connecting s(n,m) and t(n,m) represent

the finite oriented paths s(n,m)R(n,m)t(n,m) that consist of the union of all finite

phases of R(n,m).

Claim 1. Any out-ray in D has a tail that coincides with xR(n,m) for some (n,m) ∈ I

and some x ∈ V (R(n,m)).

Proof. Let S be an arbitrary out-ray inD. If S is completely contained in some R(n,m),

then we are done.

Otherwise, S must contain a vertex that was identified with another in the construc-

tion. Thus there are (i, j), (k, ℓ) ∈ I such that v
(k,ℓ)
(i,j) is contained in S. Let (n,m) ∈ I

be ≤col-minimal with the property that S contains a vertex v
(n,m)
(i,j) for some (i, j) ∈ I.

We show that v
(n,m)
(i,j) S is a tail of t(n,m)R(n,m).

Suppose not. Let v := v
(n,m)
(i,j) if v

(n,m)
(i,j) /∈ V (t(n,m)R(n,m)) (i.e. if j = m), and

otherwise let v be the last vertex of v
(n,m)
(i,j) S such that v

(n,m)
(i,j) Sv is contained in the out-

ray t(n,m)R(n,m). In either case, there is (k, ℓ) ∈ I such that v = v
(n,m)
(k,ℓ) since in the
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latter case v had to be identified with another vertex in the construction. Then the

first edge of vS is contained in R(k, ℓ). Since S is an out-ray, it also contains v
(n,m)−

(k,ℓ) if

(n,m) ̸= (1, 1), or s(k, ℓ) if (n,m) = (1, 1) (see Figure 6.2). This contradicts either the

minimality of (n,m) or the fact that s(k, ℓ) is a turn, respectively.

Claim 2. For any (n′,m′), (n,m) ∈ I, any in-ray in D with root s(n′,m′) contains a

vertex of {v(n,m)
(i,j)

: (i, j) ∈ I}.

Proof. Let (n,m), (n′,m′) ∈ I and let S be an arbitrary in-ray in D with root s(n′,m′).

As no vertex of s(n′,m′)S(n′,m′)t(n′,m′) has been identified with other vertices and

t(n′,m′) is a turn, S contains the vertex v
(1,1)
(n′,m′).

We consider the set X := {v(k,ℓ)(i,j) ∈ V (S) : (i, j), (k, ℓ) ∈ I, (k, ℓ) ≤col (n,m)} and

let (k, ℓ) ∈ I be ≤col-maximal with the property that an element of X has superindex

(k, ℓ). We show (k, ℓ) = (n,m), which implies the statement of Claim 2.

Suppose for a contradiction that (k, ℓ) <col (n,m). Let (i, j) ∈ I be ≤col-minimal

with the property that v
(k,ℓ)
(i,j) is an element of X . The first edge of v

(k,ℓ)
(i,j) S lies either in

R(i, j)s(i, j) or in t(k, ℓ)R(k, ℓ). In the first case, the in-ray S must also contain v
(k,ℓ)+

(i,j)

(see Figure 6.2), contradicting the maximality of (k, ℓ). In the second case, S also

contains t(k, ℓ) if v
(k,ℓ)
(i,j) is the first vertex of t(k, ℓ)R(k, ℓ) that has been identified, or S

contains a vertex v
(k,ℓ)
(i′,j′) for (i

′, j′) <col (i, j) otherwise (see Figure 6.2). This contradicts

either the fact that t(k, ℓ) is a turn or the minimality of (i, j), respectively.

Let R̂ be an arbitrary copy of R in D. By Claim 1, there is (n,m) ∈ I and

x ∈ V (R(n,m)) such that an out-ray in R̂ coincides with xR(n,m). To prove that

D cannot contain infinitely many disjoint copies of R, it suffices to show that any

copy of R in D has an in-ray that starts in some s(n′,m′). Then by Claim 2, every

copy of R in D contains a vertex of {v(n,m)
(i,j)

: (i, j) ∈ I}, contradicting that the set

{v(n,m)
(i,j)

: (i, j) ∈ I} \ V (xR(n,m)) is finite.

Let R̃ be any copy of R in D and let R̃y be the unique phase of R̃ that forms

an in-ray. By construction of D, any phase of length at most p of R̃ is contained in

s(i, j)R(i, j)t(i, j) for some (i, j) ∈ I, which immediately yields y ∈ {s(n′,m′), t(n′,m′)}
for some (n′,m′) ∈ I. Since R̃y is an in-ray, we must have y = s(n′,m′) as desired.

This completes the proof.

Non-Periodic Double Rays with Infinitely Many Turns

In Lemma 6.14, Lemma 6.15 and Theorem 6.16 we investigate symmetry properties

of non-periodic double rays and show that any such double ray R has a tail which is

isomorphic to only very specific other tails of R. In Theorem 6.17, we use this result to

reduce the non-ubiquity of non-periodic double rays with infinitely many turns to the

non-ubiquity of rays with infinitely many turns (Theorem 6.1).
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Lemma 6.14. For every non-periodic double ray R there is v∗ ∈ V (R) such that Rv∗

is non-periodic.

Proof. Suppose for a contradiction that Rw is periodic for all w ∈ V (R). Let p ∈ N be

minimal among the periodicities of Rw for all w ∈ V (R) and let v ∈ V (R) such that

Rv has periodicity p. We show that Rw has periodicity p for any w ∈ V (R). This then

implies that R is periodic with periodicity p, a contradiction.

For w >R v, let f be any non-trivial endomorphism of Rw, which exists since Rw

is periodic. By concatenating f with itself multiple times if necessary, we obtain an

endomorphism of Rw whose image is contained in Rv. Thus it remains to prove that

Ru has periodicity p for any u <R v. Since Ru is a tail of Rv, Ru has periodicity at

most p, and by minimality of p, Ru has periodicity exactly p.

Lemma 6.15. For every non-periodic double ray R there is v∗ ∈ V (R) such that for

all v ≥R v
∗ and all w ∈ V (R):

Rv ∼= Rw ⇒ v = w .

Proof. We choose v∗ such that Rv∗ is non-periodic according to Lemma 6.14. Let

v ≥R v
∗ and w ∈ V (R) such that Rv ∼= Rw. If w <R v, we can restrict the isomorphism

Rv → Rw to a non-trivial endomorphism of Rv∗, contradicting that Rv∗ is non-periodic.

If w >R v, we can restrict the isomorphism Rw → Rv to a non-trivial endomorphism

of Rv∗, which again is a contradiction. Thus v = w holds.

Theorem 6.16. For every non-periodic double ray R there is v̂ ∈ V (R) such that for

all w ∈ V (R):

(1) Rv̂ ̸≤ v̂R,

(2) Rv̂ ∼= Rw ⇒ v̂R ∼= wR, and

(3) Rv̂ ∼= wR ⇒ v̂R ∼= Rw.

Proof. Let v∗ be as in Lemma 6.15.

Case 1: There is v ≥R v∗ such that Rv ̸∼= wR for all w ∈ V (R). In this case we

set v̂ := v, which directly implies (1) and (3). For (2), since v̂ ≥ v∗ and v∗ was picked

with the property of Lemma 6.15, Rv̂ ∼= Rw implies v̂ = w and thus v̂R = wR.

Case 2: For all v ≥R v
∗ there is α(v) ∈ V (R) such that Rv ∼= α(v)R.

Claim 1. For every v ≥R v
∗, the vertex α(v) is unique.

Proof. Suppose for a contradiction that there are α(v) <R α(v)′ ∈ V (R) such that

α(v)R ∼= Rv ∼= α(v)′R. Since α(v)′R is a proper tail of α(v)R, it follows that Rv ∼=
α(v)′R is isomorphic to a proper tail of Rv ∼= α(v)R. Thus there exists a non-trivial

endomorphism of Rv, which contradicts that v∗ has the property of Lemma 6.15.
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Claim 2. There is v̂ ≥R v
∗ such that α(v̂) <R v̂.

Proof. Let v and v′ be any vertices of R with v∗ ≤R v <R v′. Since Rv is a proper

tail of Rv′, it follows that α(v)R ∼= Rv is isomorphic to a proper tail of α(v′)R ∼= Rv′.

Thus there is a vertex w >R α(v
′) such that wR ∼= α(v)R. Then w = α(v) by Claim 1.

In conclusion, we have established that α(v) >R α(v′) whenever v <R v′. Therefore,

it is possible to pick a vertex v̂ which is sufficiently large with respect to ≤R, so that

α(v̂) <R v̂.

We show that any vertex v̂ as in Claim 2 satisfies properties (1) to (3). For (1), assume

that Rv̂ ≤ v̂R. This means that there is v′ ≥R v̂ with Rv̂ ∼= v′R. A contradiction since

by Claim 1 α(v̂) is unique, but α(v̂) <R v̂ ≤R v′ by choice of v̂. For (2), recall that

v̂ ≥R v
∗. Thus, Lemma 6.15 implies that the only vertex w ∈ V (R) with Rv̂ ∼= Rw is

v̂. This proves (2) since clearly v̂R ∼= v̂R. For (3), as α(v̂) is unique by Claim 1, it is

enough to prove v̂R ∼= Rα(v̂). Let ψ : Rv̂ → α(v̂)R be an isomorphism, which exists

by choice of α(v̂). Then ψ maps α(v̂) to v̂, since the distance of α(v̂) ∈ V (Rv̂) to the

root of Rv̂ and the distance of v̂ ∈ V (α(v̂)R) to the root of α(v̂)R are the same. Thus

ψ can be restricted to an isomorphism Rα(v̂) → v̂R.

This completes the proof.

Now we combine Theorem 6.1 and Theorem 6.16 to prove:

Theorem 6.17. Any non-periodic double ray R with infinitely many turns is non-

ubiquitous.

Proof. Let R be any such double ray. We construct a digraphD that contains arbitrarily

many but not infinitely many copies of R. Without loss of generality, for every v ∈
V (R) the ray vR contains infinitely many turns (otherwise reverse the order ≤R). Let

v̂ ∈ V (R) be as in Theorem 6.16. As v̂R contains infinitely many turns, there is a

digraph D′ containing arbitrarily many but not infinitely many disjoint copies of v̂R

by Theorem 6.1. We construct D from D′ and a family (Sx)x∈V (D′) of disjoint copies of

Rv̂ by identifying the root of Sx with x for each x ∈ V (D′).

By construction, D contains arbitrarily many disjoint copies of R. We have to show

that D does not contain infinitely many disjoint copies of R, which implies the theorem.

It suffices to prove that each copy of R inD has a tail isomorphic to v̂R that is contained

in the subdigraph D′ of D. Then D cannot contain infinitely many disjoint copies of R

since D′ does not contain infinitely many disjoint copies of v̂R.

Let R̃ be any copy of R in D. If R̃ is completely contained in D′, we are done. Thus

we can suppose that there is x ∈ V (D′) and w ∈ V (R̃) such that either Sx = R̃w or

Sx = wR̃.

In the former case, we have Rv̂ ∼= Sx = R̃w and thus v̂R ∼= wR̃ by Theorem 6.16

(2). It follows from (1) that Rv̂ ̸≤ v̂R ∼= wR̃. Hence wR̃ cannot have a tail in any Sy for
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y ∈ V (D′). Thus wR̃ is the desired tail of R̃ which is isomorphic to v̂R and contained

in D′.

Similarly, in the latter case, we have Rv̂ ∼= Sx = wR̃ and thus v̂R ∼= R̃w by (3).

It follows from (1) that Rv̂ ̸≤ v̂R ∼= R̃w. Hence R̃w cannot have a tail in any Sy for

y ∈ V (D′) and R̃w is the desired tail of R̃.

Periodic Double Rays with Infinitely Many Turns

Let R be a periodic double ray with infinitely many turns and let R̂, R̃ be disjoint copies

of R. By periodicity of R, one can show that identifying a turn of R̂ of out-degree 2 and

a turn of R̃ of in-degree 2 results in a digraph in which a copy of R has to be completely

contained in either R̂ or R̃. We use this fact to prove:

Theorem 6.18. Any periodic double ray with infinitely many turns is non-ubiquitous.

Proof. Let R be any periodic double ray with infinitely many turns and denote the

periodicity of R by p ∈ N. We will construct a digraph D containing arbitrarily many

but not infinitely many copies of R.

We set

I := {(n,m) ∈ N2 : n ≤ m}

and let (R(n,m))(n,m)∈I be a family of pairwise disjoint copies of R. Let D be the

digraph constructed from the disjoint union
⊔

(n,m)∈I R(n,m) by identifying pairwise

disjoint pairs of vertices such that for any (n,m), (n′,m′) ∈ I:

(i) no vertices of R(n,m) and R(n′,m′) have been identified with each other if m =

m′,

(ii) exactly one vertex of R(n,m) and exactly one vertex of R(n′,m′) have been iden-

tified if m ̸= m′,

(iii) if v ∈ R(n,m) and w ∈ R(n′,m′) have been identified with each other, then either

the out-degree of v in R(n,m) is 2 and the out-degree of v in R(n′,m′) is 0 or

vice versa, and

(iv) two vertices v ̸= w ∈ R(n,m) that have been identified with other vertices have

distance at least p in R(n,m).

A graph D satisfying (i) to (iv) can be constructed by enumerating all unordered pairs

{R(n,m), R(n′,m′)} of double rays with m ̸= m′ and recursively identifying suitable

turns of the two rays in each pair.

The digraph D contains arbitrarily many disjoint copies of R, as the double rays

R(1,m), . . . , R(m,m) are disjoint for any m ∈ N by (i). To prove that D does not

contain infinitely many disjoint copies of R, it suffices to show that any copy of R in D

is of the form R(n,m) for some (n,m) ∈ I: Then any infinite family of disjoint copies
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of R in D would contain two rays R(n,m), R(n′,m′) with m ̸= m′ by definition of I.

However, R(n,m) and R(n′,m′) are not disjoint in D by (ii).

Suppose for a contradiction that there is a copy R̂ of R in D that is not contained

in some R(n,m) for (n,m) ∈ I. Then there are (n,m) ̸= (n′,m′) ∈ I and v ∈ V (R̂)

such that one edge of R̂ incident with v is contained in R(n,m) and the other edge

of R̂ incident with v is contained in R(n′,m′). We assume without loss of generality

that the first edge of vR̂ is contained in vR(n,m) (and not in R(n,m)v, R(n′,m′)v or

vR(n′,m′)).

Since R(n,m) has periodicity p, the edge e of R(n,m) preceding v has the same

orientation as the p-th edge e′ of R(n,m) succeeding e. Similarly, the edge f of R̂

preceding v has the same orientation as the p-th edge f ′ of R̂ succeeding f . As no

vertices of distance at most p − 1 to v in D other than v were identified by (iv), the

first p edges of vR̂ coincide with the first p edges of vR(n,m) and in particular we have

e′ = f ′. Hence the edges e, f either both point towards v or both point away from v,

contradicting (iii) since e ∈ E(R(n′,m′)) and f ∈ E(R(n,m)).

6.2.3 Conclusion

Finally, we show how to deduce the theorem about ubiquity of oriented double rays

from the results of this section.

Theorem 6.2. A double ray with at least one turn is ubiquitous if and only if it has a

(finite) odd number of turns.

Proof. The ‘if’ direction is immediate from Theorem 6.12. For the ‘only if’ direction let

R be a double ray with at least one turn, but not an odd number of turns. If R has an

even number of turns, then we are done by Theorem 6.13. Otherwise, R has infinitely

many turns and R is either non-periodic or periodic. In the former case R is non-

ubiquitous by Theorem 6.17. In the latter case R is non-ubiquitous by Theorem 6.18.

78



Chapter 7

Flames

The starting point of our investigation is the following theorem of Lovász.

Theorem 7.1 (Lovász, consequence of [Lov73, Theorem 2] ). Let D be a digraph with

r ∈ V (D). Then there is a spanning subdigraph L of D in which for every v ∈ V (D)−r
the following three quantities are equal: the local connectivities κD(r, v) and κL(r, v),

and the in-degree of v in L.

The optimality of an L satisfying the min-max criteria from Lovász’ Theorem may

instead also be captured by the following structural characterisation: for every v ∈ V −r
there is a system Pv of internally disjoint r–v paths in L covering all incoming edges of

v in L such that one can choose from each P ∈ Pv either an edge or an internal vertex

in such a way that the resulting set meets every r–v path of D. The positive result for

countably infinite digraphs based on this structural infinite generalisation was proved

by Joó in [Joó19b, Theorem 1.2]. He later proved in [EGJ21, Theorem 1.3] together

with Erde and Gollin a strengthening of this result stating that every vertex-flame of a

countable rooted digraph can be extended into a large one.

The main result of this chapter leaves countable digraphs behind and handles the

smallest uncountable case:

Theorem 7.2. Every rooted digraph of size at most ℵ1 admits a large vertex-flame.

As in the case of the infinite version of Menger’s Theorem (i.e. Theorem 2.3), the

construction and the necessary arguments get significantly more complex when the

digraph in question is uncountable. Although several of our tools can be used to ap-

proach the problem for arbitrarily large digraphs, our proof relies strongly on the fact

that there is an enumeration of the vertex set in which the proper initial segments are

countable. We expect that Theorem 7.2 remains true without any size restriction on

the digraph but we feel that, despite solving the smallest uncountable case, a complete

understanding of the problem is still far away.

Conjecture 7.3. Every rooted digraph admits a large vertex-flame.

79



The following edge-variant of the problem is wide open even in the countable case,

but known for finite digraphs even in a fractional variant with edge-capacities and

‘flow-connectivity’ (see [Joó21, Theorem 4.1]).

Question 7.4. Let D be a countable digraph with r ∈ V (D). Is it always possible to

find a spanning subdigraph L of D such that for every v ∈ V (D)− r there is a system

Pv of edge-disjoint r–v paths in L covering all incoming edges of v in L such that one

can choose exactly one edge from each P ∈ Pv in such a way the resulting edge set is

an rv-cut in D?

We first prove a number of lemmas in Section 7.1 that we will use in Section 7.2,

which is the proof of Theorem 7.2.

7.1 Preparations

All digraphs D in this chapter are simple and have no incoming edges to their ‘root

vertex’ r whenever they have such a root.

7.1.1 Elementary Submodels

Elementary submodels are defined for first order structures in logic but for simplicity let

us talk only about the special case we use. An elementary submodel of a set A is anM ⊆
A such that for every first order formula φ(x1, . . . , xn) in the language of set theory (with

free variables x1, . . . , xn) and for every a1, . . . , an ∈ M , the statement φ(a1, . . . , an) is

true in the first order structure (A,∈|A×A) if and only if it is true in (M,∈|M×M).

Elementary submodels provide a powerful method in topology, infinite combinatorics

and in other fields to cut up uncountable structures into smaller ‘well-behaved’ pieces. In

these applications A usually consists of the sets whose transitive closure is of cardinality

less than λ (denoted by H(λ)), where λ is chosen in such a way that H(λ) contains

all sets that are relevant in the proof. By elementary submodel we always mean an

elementary submodel of H(λ) for a large enough λ. For a detailed introduction for

elementary submodel techniques and their applications in infinite combinatorics we

refer to [Sou11]. For an elementary submodel M and digraph D = (V,E) we let

D ∩M := (V ∩M,E ∩M).

7.1.2 A Reduction to Quasi-Vertex-Flames

Lemma 7.5 ([Joó19b, Lemma 2.1]). For every rooted digraph D, there is a quasi-

vertex-flame F ⊆ D such that whenever an L ⊆ F is F -vertex-large it is D-vertex-large

as well.

Corollary 7.6. One may assume without loss of generality in the proof of Theorem 7.2

that D is a quasi-vertex-flame.
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7.1.3 Linkability of Finite Sets from r

Lemma 7.7 ([Joó19b, Claim 3.14]). If a finite U ⊆ V − r is linked from r in D and L

is large, then U is linked from r in L as well.

Corollary 7.8 ([Joó19b, Lemma 2.3]). If D is a quasi-vertex-flame and L is large, then

L is also a quasi-vertex-flame.

7.1.4 Variants of Pym’s Theorem

We need some derivatives of the following theorem due to Pym [Pym69].

Theorem 7.9 (Pym’s Theorem [Pym69, The Linkage Theorem]). Let X, Y ⊆ V , fur-

thermore, let P and Q be disjoint systems of X–Y paths. Then there is a system R of

disjoint X–Y paths such that V −(R) ⊇ V −(P) and V +(R) ⊇ V +(Q), moreover, each

R ∈ R is either in P ∪Q or there are P ∈ P , Q ∈ Q and vR ∈ V (P )∩V (Q) such that

R = PvRQ.

Corollary 7.10. Suppose that P links S to v and Q is a v-infan with V (Q) ∩ S =

V −(Q). Then there is a v-infan R with V −(R) = S covering E+(Q), furthermore,

each R ∈ R is either in P ∪Q or there are P ∈ P , Q ∈ Q and vR ∈ V (P )∩V (Q) such

that R = PvRQ.

We need one version of the theorem in which r ∈ S and more than one path in P
and in R may start in r. This variant can be reduced to Corollary 7.10 by splitting r

into a vertex set Vr := {re : e ∈ outD(r)} where re inherits the single outgoing edge e of

r.

Corollary 7.11. Suppose that P is a system of S–v paths with v /∈ S such that V (P0)∩
V (P1)−v ⊆ {r} for every P0 ̸= P1 from P and suppose Q is a v-infan with V (Q)∩S =

V −(Q). Then there is a system R of S–v paths with V (R0) ∩ V (R1) − v ⊆ {r} for

every R0 ̸= R1 from R covering V −(P)∪E+(Q), furthermore, each R ∈ R is either in

P ∪Q or there are P ∈ P , Q ∈ Q and vR ∈ V (P ) ∩ V (Q) such that R = PvRQ.

We also deduce that for every I ∈ GD(v) we find a path-system witnessing this in

PD(v, S).

Corollary 7.12. Let v ∈ V − r be given and let S ∈ SD(v) and I ∈ GD(v). There is

R ∈ PD(v, S) with I − rv ⊆ E+(R).

Proof. Let P ∈ PD(v, S) and let Q be a witness for I ∈ GD(v). We define Q′ and P ′

to be the set of terminal segments of the paths in Q and P from the last intersection

with S respectively. We then apply Corollary 7.10 with P ′ and Q′ and yield an (S, v)-

path-system R′ with V −()R′ = S and I ⊆ E+(R′). Lastly, we extend the paths in R′

backwards to r via the initial segments of the paths in P up to S to obtain a path-system

R as desired.
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7.1.5 Preservation of the Vertex-Flame Property

Lemma 7.13 ([EGJ21, Lemma 4.10]). Suppose that there is I ∈ GD(w) such that

(I + f) ∈ GD(w) for every f ∈ inD(w) \ I. Assume that there is uv ∈ E(D) with u ̸= r,

v ̸= w in such a way that I /∈ GD−uv(w). Then there exists a set S ⊆ V − r with v ∈ S

which is linked from r by a path-system P, such that S separates N−
D (v)− u from r. In

particular, uv is the last edge of some Puv ∈ P.

We are interested only in the special case where I = inD(w):

Corollary 7.14. Suppose that inD(w) ∈ GD(w) and there is uv ∈ E(D) with u ̸= r,

v ̸= w for which inD(w) /∈ GD−uv(w). Then there exists a set S ⊆ V − r with v ∈ S

which is linked from r by a path-system P, such that S separates N−
D (v)− u from r. In

particular, uv is the last edge of some Puv ∈ P.

A digraph D has the G-quasi-vertex-flame property for some G ⊆ D at v ∈ V − r

if GD(v) contains every I ⊆ inD(v) for which I \ inG(v) is finite. (For a single v only

the edges inG(v) are relevant for the G-quasi-vertex-flame property at v.) We need

a statement that closely resembles [EGJ21, Lemma 2.10]. In fact, even though the

statement of Lemma 7.15 appears stronger on first glance since we drop the condition

that D should have the G-quasi-flame property at every vertex, Lemma 7.15 is obtained

with the proof in [EGJ21, Lemma 2.10].

Lemma 7.15 ([EGJ21, Lemma 2.10]). Assume that D = (V,E) is a countable r-rooted

digraph, v ∈ V − r and G ⊆ D. Then there is an I∗ ∈ GD(v) such that D ↾v I∗ has the

G-quasi-vertex-flame property for every u ∈ V − r for which D has this property.

On the one hand, we are interested only in cases where G has a certain special

form. On the other hand we want to weaken the assumption that D is countable. The

following variant will be suitable for our purpose:

Corollary 7.16. Assume that D = (V,E) is an r-rooted digraph, v ∈ V − r and W ⊆
V − v− r is a countable set such that D has the vertex-flame property at every w ∈ W .

Then there is an I∗ ∈ GD(v) such that D ↾v I∗ also has the vertex-flame property for

every w ∈ W .

Proof. Let G := (V,
⋃
w∈W inD(w)). We pick a countable elementary submodel M with

v, r,D,G,W ∈ M and apply Lemma 7.15 with D ∩M , v and G ∩M . This yields an

I∗ ∈ GD∩M(v) such that D ∩M ↾v I∗ has the flame property at every w ∈ W .

We shall show that D ↾v I∗ has the flame property at every w ∈ W . Let w ∈ W

be fixed. Let us pick a P witnessing the flame property of D ∩M ↾v I∗ at w and a

Q ∈ M showing the flame property of D at w. We claim that R := P ∪ (Q \ M)

witnesses the flame property of D ↾v I∗ at w. Indeed, for any path Q ∈ Q using a

vertex u ∈ (V − r − w) ∩M , we must have Q ∈ M because Q is definable from u and

Q. Since Q is finite, Q ⊆ D ∩M follows. This shows that R is an internally disjoint
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path-system. Furthermore, if e ∈ inD(w), then e is the last edge of a path in P or in

Q \M depending on if e ∈M . This completes the proof of the corollary.

7.1.6 Preservation of Largeness

We introduce some terminology that we are going to use only locally to prove a number

of lemmas applying previous results. For a vertex set X ⊆ V − r, the entrance of X

with respect to D is

entD(X) := {v ∈ X : there is uv ∈ E(D) with u /∈ X},

and intD(X) stands for its interior X \ entD(X). A set B ⊆ V − r is a v-bubble with

respect toD if there exists a v-infan P = {Pu : u ∈ entD(B)−v} inD[B] where Pu starts

at u. Let us denote the set of v-bubbles in D by bubbD(v). Clearly {v} ∈ bubbD(v)

since either the trivial path consisting of the single vertex v or the empty set is a witness

for it depending on if v ∈ entD({v}).

Lemma 7.17 (Bubble uniting lemma, [Joó19b, Lemma 3.5]). Let α be an ordinal

number. Suppose that ⟨Bβ : β < α⟩ is a sequence where Bβ ∈ bubbD(vβ) for some

vβ ∈ V − r. Let us denote
⋃
γ<β Bγ by B<β. If for each β < α either vβ = v0 or

vβ ∈ intD (B<β), then B<α ∈ bubbD(v0).

Note that for S ∈ SD(v), the set BD,S,v of vertices that are separated from r by S

in D − rv form a v-bubble with entD−rv(BD,S,v) = S such that N−
D−rv(v) ⊆ BD,S,v.

Corollary 7.18. There is a ⊆-largest v-bubble BD,v in D for every v ∈ V − r and it

contains N−
D−rv(v).

Lemma 7.19 ([Joó19b, Lemma 3.10]). A spanning subdigraph L of D is large if and

only if u ∈ BL,v for every uv ∈ E(D) \E(L). Furthermore, if L is large and v ∈ V − r,

then entL−rv(BL,v) = entD−rv(BL,v) ∈ SD(v).

Note that this also shows SL,v = entD−rv(BL,v).

Corollary 7.20. [Joó19b, Lemma 2.2] Assume that outD(r) ⊆ L ⊆ D such that for

every v ∈ V − r with inL(v) ⊊ inD(v) there is a P ∈ PD(v) that lies in L. Then L is

large.

We call a vertex set A ⊆ V − r an anti-bubble in D if entD(A) is linked from r in

D. Note that the family of anti-bubbles are closed under arbitrarily large intersection.

For S ∈ SD(v) the set BD,S,v is not just a v-bubble but also an anti-bubble that

contains N−
D−rv(v). Moreover, if X is a v-bubble and also an anti-bubble and contains

N−
D−rv(v), then entD−rv(X) ∈ SD(v). Let AD,v be the intersection of all anti-bubbles

in D containing {v} ∪N−
D−rv(v).
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Proposition 7.21. For every v ∈ V −r, AD,v is a v-bubble in D, furthermore, we have

TD,v = entD−rv(AD,v) ∈ SD(v).

Proof. We apply Theorem 2.3 (Aharoni-Berger) in D[AD,v] with entD−rv(AD,v) and

N−
D (v). If the resulting separation S is not entD−rv(AD,v) itself, then BD,S,v ⊊ AD,v is

an anti-bubble containing {v} ∪ N−
D−rv(v), which contradicts the minimality of AD,v.

Thus S = entD−rv(AD,v), and hence the path-system given by Theorem 2.3 witnesses

that AD,v is a v-bubble. Since AD,v is an anti-bubble as well and contains N−
D−rv(v), we

have entD−rv(AD,v) ∈ SD(v). It now follows from the definition that entD−rv(AD,v) =

TD,v

Before we proceed, we need another lemma. One of the standard proofs of Menger’s

Theorem is based on the so called Augmenting Walk Lemma. For a given disjoint system

P ofX–Y paths it either provides a bigger such system or anX–Y -separation consisting

of exactly one vertex from each of the paths in P . The infinite generalisation of this

lemma (see [Die17, Lemmas 3.3.2 and 3.3.3]) was an important tool in the proof of the

infinite version of Menger’s Theorem (i.e. Theorem 2.3). There are several variants of

the lemma depending on whether the paths are edge-disjoint or vertex-disjoint, whether

we consider graphs or digraphs etc. but the proofs of these variants are essentially the

same. We make use of the following variant:

Lemma 7.22 (Augmenting walk). Assume that D = (V,E) is a digraph, X ⊆ V and

v ∈ V \ X. Let P be a v-infan with V (P) ∩ X = V −(P). Then there is either an S

that separates v from X consisting of a unique vP ∈ V (P )− v for every P ∈ P or there

is a v-infan Q with V (Q) ∩ X = V −(Q) such that |P \ Q| + 1 = |Q \ P| < ℵ0 and

V −(Q) ⊇ V −(P).

We say that the augmentation is successful if the second case occurs and we say

that it is unsuccessful otherwise.

Lemma 7.23. Assume that I ⊆ inD(v) such that TD,v remains linked to v in D′ :=

D ↾v I. Then for every u ∈ V − r every S ∈ SD(u) remains linked to u in D′.

Proof. Let u ∈ V − r− v and S ∈ S(u) be given and let P be a path-system that links

S to u in D. We may assume that there is some e ∈ E(D) \E(D′) such that there is a

Pe ∈ P through e since otherwise P is a path-system in D′ as well and we are done.

We apply Lemma 7.22 in D′ with S, u and P−Pe. If the augmentation is successful,

the resulting path system witnesses that S is linked to u in D′ and we are done.

Therefore suppose that the augmentation is unsuccessful. Then we can choose a unique

vP ∈ V (P )− u from each P ∈ P − Pe such that the resulting S ′ separates u from S in

D′. Then BD′,S′,u is a u-bubble in D′ by definition.

Next, we want to show that B := AD,v ∪ BD′,S′,u ∈ bubbD′(u) via Lemma 7.17.

In order to do this we need to show AD,v ∈ bubbD′(v) and v ∈ intD′(BD′,S′,u). For

AD,v ∈ bubbD′(v), recall that TD,v remains linked to v in D′ by assumption. Since we
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only deleted incoming edges of v and AD,v ⊇ N−
D−rv(v) by definition, AD,v is a v-bubble

in D′. For v ∈ intD′(BD′,S′,u) note that the terminal segment vPeu of Pe must lie in

BD′,S′,u since otherwise S ′ would not separate u from S in D′. This implies v ∈ BD′,S′,u

in particular. Since v /∈ S ′ by construction but entD′(BD′,S′,u) = S ′ by definition, we

can conclude v ∈ intD′(BD′,S′,u). Thus we really may apply Lemma 7.22 to AD,v and

BD′,S′,u and obtain B ∈ bubbD′(u).

For the construction of a path system witnessing that S is linked to u in D′, we

show next that B ⊆ BD,S,u by showing this for AD,v and BD′,S′,u separately. For

AD,v ⊆ BD,S,u, note that v is the head of e, as we only deleted incoming edges at v.

Since u ̸= v, V −(P) = entD(BD,S,u) − u and the paths in P are pairwise disjoint, this

implies v ∈ intD(BD,S,u), which in turn implies {v} ∪N−
D−rv(v) ⊆ BD,S,u. Furthermore,

S ∈ SD(u) implies that entD(BD,S,u) is linked from r in D. Thus BD,S,u is an anti-

bubble in D that contains {v} ∪N−
D−rv(v) and as AD,v is the smallest such anti-bubble

by definition, we have AD,v ⊆ BD,S,u as desired. To see BD′,S′,u ⊆ BD,S,u, first note that

S ′ ⊆ BD,S,u : as BD,S,u is the set of vertices that are separated from r by S in D, no path

from P can contain a vertex outside of BD,S,u, thus as S ′ ⊆ V (
⋃
P) by construction,

S ′ in fact is a subset of BD,S,u. Now suppose for a contradiction that there is a vertex

w ∈ BD′,S′,u \ BD,S,u. As w ̸∈ BD,S,u, there is an r–w path Q in D that avoids S by

definition of BD,S,u. Since w ∈ BD′,S′,u, there is no such path in D′ − S ′, which means

that Q either meets a vertex of S ′ or an edge e ∈ E(D) \ E(D′). In the former case

the fact that S ′ ⊆ BD,S,u together with S = entD(BD,S,u) which is true by definition, it

must meet a vertex of S, a contradiction. In the latter case v is an internal vertex of Q

and as v ∈ intD(BD,S,u), it cannot be disjoint from S, again a contradiction.

Since {v} ∪N−
D−rv(v) ⊆ AD,v by definition, every edge in E(D) \ E(D′) is spanned

by AD,v. Thus we can build a u-infan in D′ that starts in S as follows: take the initial

segments of the paths in P until the first vertex in B and extend them forward from B

to u by using the fact that B ∈ bubbD′(u). The resulting path system links S to u in

D′, as desired.

Lemma 7.24. Assume that L is large and Qv ∈ PL(v, SL,v) for some v ∈ V − r. Then

L′ := L ↾v E+(Qv) is large, moreover, SL′,u = SL,u for every u ∈ V − r.

Proof. Since L is large, Lemma 7.19 and Corollary 7.18 ensure that N−
D−ru(u) ⊆ BL,u

for every u ∈ V − r. In particular, all edges in E(L) \ E(L′) are spanned by BL,v. We

are going to prove BL,u ∈ bubbL′(u) for every u ∈ V − r later and first show that this

is sufficient. Note that this implies BL′,u ⊇ BL,u for u ∈ V − r because BL′,u is the ⊆-

largest element of bubbL′(u), which implies largeness of L′ by Lemma 7.19. To prove the

moreover part, let u ∈ V − r be given. First suppose entL−ru(BL′,u) = entL′−ru(BL′,u).

Then entL(BL′,u) − u = entL′(BL′,u) − u, which implies BL′,u ∈ bubbL(u) and hence

BL,u ⊇ BL′,u, therefore BL,u = BL′,u. But then

SL,u = entL−ru(BL,u) = entL−ru(BL′,u) = entL′−ru(BL′,u) = SL′,u ,
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which we wanted to prove. Now suppose that entL−ru(BL′,u) ̸= entL′−ru(BL′,u) for a

contradiction. This means that we must have entL−ru(BL′,u) ⊋ entL′−ru(BL′,u) with

entL−ru(BL′,u) \ entL′−ru(BL′,u) = {v}. This implies v ∈ intL′−ru(BL′,u) and that there

is some wv ∈ E(L) \ E(L′) with w /∈ BL′,u. Then either v ∈ intL′(BL′,u) or u = v.

Thus by applying Lemma 7.17 with BL′,u and BL,v ∈ bubbL′(v) we conclude that

BL′,u ∪ BL,v ∈ bubbL′(u). This implies that actually BL′,u ⊇ BL,v because BL′,u is

the ⊆-largest element of bubbL′(u) by definition. But then w ∈ BL,v ⊆ BL′,u ̸∋ w, a

contradiction.

Now we prove that BL,u ∈ bubbL′(u) for every u ∈ V −r. For u = v this is witnessed

by the terminal segments of the paths in Qv from SL,v. Thus let u ∈ V − r− v and let

P be a path-system that witnesses BL,u ∈ bubbL(u). We can assume that P uses some

e := wv ∈ E(L) \ E(L′), since otherwise P ensures that BL,u ∈ bubbL′(u) and we are

done. Let Pe be the unique path in P through e. The head v of e must be in intL(BL,u)

because V −(P) = entL(BL,u)− u with u ̸= v and the paths in P are pairwise disjoint.

Then BL,u ⊇ BL,v since otherwise Lemma 7.17 would give BL,u ⊊ (BL,u ∪ BL,v) ∈
bubbL(u) which is a contradiction. We apply Lemma 7.22 in L′ with entL(BL,u)− u, u

and P − Pe. If the augmentation is successful, the resulting path-system must lie in

L′[BL,u] and witnesses BL,u ∈ bubbL′(u) thus we are done.

u v w

Pee

entL(BL,u)− uS

entL′(BL,v)

BL′,S,u

BL,u

BL,v

Figure 7.1: The situation when the augmentation in the proof of Lemma 7.24 is unsuc-

cessful.

Suppose that the augmentation is unsuccessful, we depict this situation in Figure 7.1.

Then we can choose a unique vP ∈ V (P )−u from each P ∈ P−Pe such that the resulting

S separates u from entL(BL,u) − u in L′. We know that the terminal segment vPeu of

Pe must lie in BL′,S,u since otherwise S would not separate u from entL(BL,u)−u in L′.

Thus in particular v ∈ BL′,S,u with v /∈ S, i.e. v ∈ intL′(BL′,S,u). But then Lemma 7.17

ensures B := BL′,S,u ∪ BL,v ∈ bubbL′(u). Let P ′ consist of the initial segments of the
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paths in P until the first vertex in B. All edges in E(L) \ E(L′) are spanned by B

because they are spanned by BL,v and B ⊇ BL,v by construction, therefore P ′ is a

path-system in L′ (and not just in L). But then by using the fact B ∈ bubbL′(u), each

path in P ′ can be continued forward in L′ to reach u in such a way that the resulting

paths meet only at u. This path-system witnesses BL,u ∈ bubbL′(u) which completes

the proof.

7.2 Proof of the Main Result

7.2.1 Definitions and a Sketch of the Construction

Let an r-rooted digraph D = (V,E) of size ℵ1 be fixed. First of all, we can assume

by Corollary 7.6 that D is a quasi-vertex-flame. Let ⟨Mα : α ≤ ω1⟩ be a sequence such

that

• M0 = ∅,

• Mα is an elementary submodel for each α > 0,

• Mα =
⋃
β<αMβ if α is a limit ordinal,

• Mα is countable for α < ω1, and

• D, r, ⟨Mβ : β ≤ α⟩ , α ∈Mα+1 for α < ω1.

Observation 7.25. Mβ ∪ {Mβ} ⊆Mα for β < α ≤ ω1.

LetMα :=Mα+1\Mα for α < ω1 and we define Vα := V ∩Mα, Dα := D∩Mα = D[Vα]

for α ≤ ω1 as well as

V α := V ∩Mα,

Dα := (D ∩Mα+1) \ [E(Dα) ∪ outD(Vα − r)] , and

Dα≤ := D \ [E(Dα) ∪ outD(Vα − r)]

for α < ω1. We choose enumerations Vα−r = {vα,n : n < ω} and V α−r = {vαn : n < ω}
for α < ω1 (technically we fix a choice function c ∈M1 and we choose the enumerations

accordingly). Recall that every countable ordinal number can be written uniquely in

the form ωα + n where n < ω. We obtain an enumeration V − r = {vξ : ξ < ω1} by

letting vωα+n := vαn . Observe that Vα−r = {vξ : ξ < ωα} for α ≤ ω1. We shall construct

a sequence ⟨Lξ : ξ ≤ ω1⟩ of large subdigraphs of D with

• L0 = D,

• we obtain Lξ+1 by the deletion of some of the incoming edges of vξ from Lξ, and

• Lν =
⋂
ξ<ν Lξ if ν is a limit ordinal.
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Before giving the complete list of properties of the recursive construction, we need some

furhter definitions. We also explain roughly the ideas behind what we are going to do

in order to make it easier to follow the formal proof afterwards. First of all, Lω1 will

be a large vertex-flame which completes the proof of Theorem 7.2. For v = vωβ+n, let

Sv := SLωβ ,v. After Lωβ is defined, the separations Sv will be defined for the following

countably many vertices, namely for the vertices in V β. By guaranteeing that Lξ is

large for every ξ, we will automatically ensure Sv ∈ SD,v by Lemma 7.19. We strive

to end up with path-systems Pv ∈ PLω1
(v, Sv) with E

+(Pv) = inLω1
(v)− rv in Lω1 for

every v ∈ V − r. The path-systems Pv witness that Lω1 is indeed a large vertex-flame.

For each v ∈ V − r we build the path-system Pv ‘layer by layer’ according to our

chain of elementary submodels (see Figure 7.2) in the following sense. If v = vωβ+n,

then we construct first a segment Pv,β+1 ∈ PLω1∩Dβ+1
(v, Sv ∩ Vβ+1) with E

+(Pv,β+1) =

inLω1∩Dβ+1
(v) − rv. In every new layer we extend this by a new segment: for every

γ with β + 1 ≤ γ < ω1 we construct a path-system Pγ
v ∈ PLω1∩Dγ (v, Sv ∩ V γ) with

E+(Pγ
v ) = inLω1∩Dγ (v). Since by the definition of Dγ the paths in Pγ

v are internally

disjoint from Vγ, the new segments never share any internal vertex with the previously

constructed segments. By letting

Pv,α := Pv,β+1 ∪
⋃

β+1≤γ<α

Pγ
v

for β + 1 ≤ α ≤ ω1, the path-system Pv := Pv,ω1 will be as desired.

Instead of constructing Pv,β+1 and Pγ
v ‘directly’ we are going to build some supersets

of them and throw away the surplus paths. For this we let Lωβ+n := Lωβ+n ∩Dβ≤.

r

v

Dβ+1

Dβ+1
Dβ+2

Dβ+2≤

Pv,β+1 Pβ+1
v

Pβ+2
v

Sv

Figure 7.2: A sketch of the strategy to build Pv.
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7.2.2 The Conditions of the Recursion

Let us now make the construction precise. We shall define by transfinite recursion

sequences

⟨Qξ : ξ < ω1⟩ ,
〈
Qξ : ω ≤ ξ < ω1

〉
and ⟨Lξ : ξ ≤ ω1⟩

satisfying the following properties:

(1) L0 = D,

(2) Qξ ∈ PLξ
(vξ, Svξ),

(3) Lξ+1 := Lξ ↾vξ E+(Qξ),

(4) Lν =
⋂
ξ<ν Lξ if ν is a limit ordinal,

(5) Lξ is D-large,

(6) SLωα+n,v = Sv for every ωα+ n < ω1 and v ∈ V α,

(7) for every ωα + n < ω1 and v ∈ Vα − r:

(a) Sv \ Vα ∈ SLωα+n(v),

(b) Lωα+n has the vertex-flame property at v,

(c) if v = vα,n, then Qωα+n ∈ PLωα+n(v, Sv \ Vα) with E+(Qωα+n) = inLωα+n(v),

(8) ⟨Qξ : ξ < ν⟩ ,
〈
Qξ : ω ≤ ξ < ν

〉
, ⟨Lξ : ξ < ν⟩ ∈Mα+1 for ν = ωα + n < ω1, and

(9) for v = vωβ+m: ⋃
n<m

inQωβ+n
(v) ⊆ E+(Qωβ+m) + rv if β = 0 and⋃

n≤m

inQωβ+n(v) ∪
⋃
n<m

inQωβ+n
(v) ⊆ E+(Qωβ+m) + rv if β > 0 .

Note that Lν is uniquely determined by ⟨Qξ : ξ < ν⟩ (see properties (1) to (4)), thus we

are going to always have at most one suitable choice for Lξ but we still need to check if it

respects the conditions. The preservation of property (8) will follow immediately from

the fact that the definitions of ⟨Qξ : ξ < ωα+ n⟩ and
〈
Qξ : ω ≤ ξ < ωα+ n

〉
rely only

on parameters that are in Mα+1, namely D, r, ⟨Mβ, β ≤ α⟩ , c and vertices vωα+k, vα,k

for k < n (where c is some fixed choice function).
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7.2.3 The Path-Systems Pv,β+1 and Pγ
v

Let ν ≤ ω1 and suppose that Qξ and Lξ are defined for ξ < ν and Qξ is defined for

ω ≤ ξ < ν and none of the conditions (1) to (9) is violated so far. Let v = vωβ+n for

some ωβ+n < ν be fixed. We define Pv,β+1 := Qωβ+n ∩Mβ+1. By the definition of the

enumeration {vγ,n : n < ω}, for every γ with β + 1 ≤ γ < ω1 there is a unique mγ < ω

with vγ,mγ = v. We let Pγ
v := Qωγ+mγ ∩Mγ+1 whenever β + 1 ≤ γ and ωγ +mγ < ν.

Property (9) is designed to prevent the deletion of edges of the path-systems Pv,β+1

and Pγ
v :

Lemma 7.26. Let v = vωβ+n for some ωβ + n < ν. The path-systems Pv,β+1 and Pγ
v

lie in Lξ for every ξ < ν.

Proof. Since Qωβ+n is a path-system in Lωβ+n (see property (2)), so is Pv,β+1. It follows

from properties (1) to (4) that Lξ is a ⊆-decreasing function of ξ which implies that

Pv,β+1 is a path-system in Lξ for ξ ≤ ωβ + n. By (3) we do not delete any edges of

Qωβ+n ⊇ Pv,β+1 when we obtain Lωβ+n+1 from Lωβ+n. Property (9) applied to the

vertices vωβ+m with n < m < ω together with (3) guarantees that none of the edges of

Pv,β+1 is deleted when we construct Lωβ+m for m > n. Thus Pv,β+1 is a path-system in

Lω(β+1) as well by (4). Whenever P ∈Mβ+1 is a path, we have V (P ) ⊆Mβ+1, therefore

Pv,β+1 lies completely in Dβ+1 and after step ω(β+1) we delete only edges e whose head

is in V \Vβ+1. Thus the path-system Pv,β+1 lies in Lξ for every ξ with ω(β+1) < ξ < ν

as well. The proof for Pγ
v goes similarly.

Proposition 7.27. If v = vωβ+n for some ωβ + n < ν, then Pv,β+1 ∈ PDβ+1
(v, Sv ∩

Vβ+1). Furthermore, inLξ
(v) ∩ E(Dβ+1)− rv = E+(Pv,β+1) for every ξ ∈ (ωβ + n, ν).

Proof. Note that ωβ + n ∈ Mβ+1 because β ∈ Mβ+1 by assumption. Hence by (8),

Qωβ+n ∈ Mβ+1. Each P ∈ Qωβ+n which has an internal vertex u in Vβ+1 is definable

from Qωβ+n and u and therefore must be inMβ+1. This means that for each P ∈ Qωβ+n

either V (P ) ⊆ Vβ+1 or P is internally disjoint from Vβ+1. Thus by (2) it follows that

Pv,β+1 ∈ PDβ+1
(v, Sv∩Vβ+1). Moreover, by (3), Pv,β+1 covers inLωβ+n+1

(v)∩E(Dβ+1)−rv
which is the same as inLξ

(v)∩E(Dβ+1)− rv whenever ωβ+n+1 ≤ ξ < ν by properties

(1) to (4).

Proposition 7.28. If v = vγ,mγ = vωβ+n with ωγ+mγ < ν, then Pγ
v ∈ PDγ (v, Sv∩V γ).

Furthermore, inLξ∩Dγ (v) = E+(Pγ
v ) for every ξ ∈ (ωβ + n, ν).

Proof. Note that β < γ because v ∈ Vγ by v = vγ,mγ and β + 1 is the smallest

ordinal with v ∈ Vβ+1 by v = vωβ+n (see the definition of the enumerations after

Observation 7.25). Since Qωγ+mγ ∈ Mγ+1, we obtain via property (7c) that Pγ
v ∈

PDγ (v, (Sv \ Vγ) ∩ Vγ+1) and E
+(Pγ

v ) = inLωγ+mγ∩Dγ+1
(v). The first part of the propos-

ition follows by observing that (Sv \ Vγ) ∩ Vγ+1 = Sv ∩ V γ by definition. The second

part follows from the fact that: Lωγ+mγ ∩Dγ+1 = Lωγ+mγ ∩Dγ (which is also a direct
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consequence of the corresponding definitions). Finally inLξ(v) remains the same for

every ξ ∈ (ωβ + n, ν) by properties (1) to (4).

Lemma 7.29. If v = vωβ+n for some ωβ + n < ν and β < α < ω1, then we have

Qωβ+n \Mα ∈ PLωα(v, Sv \Vα). Furthermore, inLξ
(v)∩E(Dα≤) = E+(Qωβ+n \Mα) for

every ξ ∈ (ωβ + n, ν).

Proof. First of all, Qωβ+n lies in Lωβ+n according to (2) and we have already seen

that Qωβ+n ∈ Mβ+1 ⊆ Mα. Thus each path in Qωβ+n \Mα is internally disjoint from

Vα. This gives Qωβ+n \ Mα ∈ PLωβ+n(v, Sv \ Vα) via (2). In order to obtain Lωα

from Lωβ+n, we delete only edges whose heads are in Vα − r. The only such edges in

E(Qωβ+n\Mα) are also in E
+(Qωβ+n), but we do not delete any of those by (3), therefore

Qωβ+n \Mα ∈ PLωα(v, Sv \ Vα). The second part follows directly from properties (1)

to (4).

7.2.4 Limit Step

Suppose now that ν = ωα for some α ≤ ω1 and as earlier assume that Qξ and Lξ are

defined for ξ < ν and Qξ is defined for ω ≤ ξ < ν and none of the conditions (1) to (9)

is violated so far. If α = 0, then let L0 := D which is our only possible choice by (1)

and this choice does not violate any of the conditions for trivial reasons. If α > 0, then

by (4) our only option is to let Lωα :=
⋂
ξ<ωα Lξ. We need to check that none of (1)

to (9) is violated. Note that Qωα and Qωα will be defined from Lωα in step ωα + 1,

thus we need not check any clause that refers to either of them. The preservation of

(1) to (4) is clear. We intend to apply Corollary 7.20 to demonstrate the largeness of

Lωα i.e. that (5) holds. Clearly outD(r) ⊆ Lωα because we never delete any outgoing

edge of r (this was built into the definition of ‘↾v’). Note that inLωα(v) ⊊ inD(v) may

happen only for v ∈ Vα − r. For every v ∈ Vα − r there is some β < α and n < ω

such that v = vωβ+n. We know by (5) that Lωβ is large but then SLωβ ,v (which is Sv by

definition) is in SD(v) (see Lemma 7.19). We define

Pv,α := Pv,β+1 ∪
⋃

β+1≤γ<α

Pγ
v .

Note that inLωα(v) ∩ E(Dβ+1) − rv = E+(Pv,β+1) and inLωα∩Dγ (v) = E+(Pγ
v ) follow

from Proposition 7.27 and Proposition 7.28 respectively via Lωα =
⋂
ξ<ν Lξ. Thus

these propositions have the following consequence:

Corollary 7.30. For every v ∈ Vα − r, Pv,α ∈ PDα(v, Sv ∩ Vα) with E+(Pv,α) =

inLωα(v) ∩ E(Dα)− rv.

It follows from Lemma 7.29 and Corollary 7.30 that if v = vωβ+n ∈ Vα − r, then

Pv,α ∪ (Qωβ+n \Mα) ∈ PLωα(v, Sv) .
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Thus Lωα is large by Corollary 7.20. Property (6) for n = 0 is true by the definition

of Sv. Property (7a) and (7b) for v = vωβ+n is witnessed by Qωβ+n \Mα according to

Lemma 7.29. Property (8) is maintained, because as we already argued the transfinite

recursion so far can be carried out in Mα+1 since it relies only on the parameters

D, r, ⟨Qξ : ξ < ωα⟩ , c ∈ Mα+1. Finally, we do not check (7c) and (9), since they refer

to Qωα and Qωα.

Lemma 7.31. Lωα ∩Dα is a Dα-large vertex-flame. In particular, if α = ω1, then Lω1

is a large vertex-flame.

Proof. We know by Corollary 7.30 that Pv,α ∈ PDα(v, Sv ∩ Vα) with E+(Pv,α) =

inLωα(v) ∩ E(Dα) − rv. Note that Sv ∩ Vα separates v from r in Dα − rv because

so does Sv in D − rv. Thus Sv ∩ Vα ∈ SDα(v) is witnessed by Pv,α. Since the path-

systems Pv,α for v ∈ Vα−r lie in Lωα (see Lemma 7.26 and (4)) they show that Lωα∩Dα

is a Dα-large vertex-flame.

We will make use of the following consequence.

Corollary 7.32. For every finite U ⊆ Vα − r which is linked from r in D, it is also

linked from r in Lωα ∩Dα.

Proof. This follows directly from Lemma 7.31 via Lemma 7.7.

7.2.5 Successor Step

Suppose that there is some ωα + n < ω1 such that the following are already defined

without violating the conditions:

• Lξ for ξ ≤ ωα + n,

• Qξ for ξ < ωα+ n, and

• Qξ for ω ≤ ξ < ωα+ n.

Note that in the first of these three properties we have ‘less than or equal’ while

there is a strict inequality for the other two. The reason for that being that Lωα+n is

always defined from the choices for Qξ for ξ < ωα + n, see (3) and (4), while Qωα+n

and Qωα+n are defined in step ωα+ n+ 1. In particular, if n = 0, then Lωα is defined,

see Subsection 7.2.4, while Qωα and Qωα will be defined from it in this subsection.

Let v = vωα+n. Note that Lωα+n is a quasi-vertex-flame by Corollary 7.8 because D

is a quasi-vertex-flame by assumption and Lωα+n is large by (5).

Suppose first that α = 0. Let I :=
⋃
k<n inQk

(v). Since |I| ≤ n, we have I ∈ GLn(v)

by the quasi-vertex-flame property. We have Sn ∈ SD(v) by (6). By applying Corol-

lary 7.12 we pick a Qn ∈ PLn(v, Sv) that covers I − rv. Recall that Qξ will only be

defined for ξ ≥ ω, so we do not define Qn. We define Ln+1 := Ln ↾v E+(Qn). Preserva-

tion of properties (2), (3) and (9) follows directly from the construction. Conditions (1)
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and (4) do not demand anything new for this step. Properties (5) and (6) are preserved

by Lemma 7.24. Since V0 = ∅, (7) says nothing so far. The definition of Qn and Ln+1

used only Ln, vn and the choice function c as parameters all of which are in M1, thus

(8) is preserved.

Assume now that α > 0. In this case (7) also has demands. We choose Qωα+n in

accordance with (7c) which is possible by combining (7a) and (7b) via Corollary 7.12.

To fulfil (7a) and (7b) for ωα+n+1 we are going to pick an I according to the following

claim.

Claim 7.33. There exists an I ∈ GLωα+n(v) such that

(I) Su \ Vα ∈ SLωα+n↾vI(u) for every u ∈ Vα − r,

(II) Lωα+n ↾v I has the vertex-flame property for every u ∈ Vα − r, and

(III) I ⊇
⋃
k≤n inQωα+k(v) ∪

⋃
k<n inQωα+k

(v) =: F .

Suppose that we already know Claim 7.33. By Corollary 7.12 we can pick a path-

system Qωα+n ∈ PLωα+n(v, Sv) that covers I − rv. We define Lωα+n+1 := Lωα+n ↾v
E+(Qωα+n). Conditions (1) to (6) are preserved for the same reason as in the case

α = 0. Note that properties (I) and (II) of the desired set I are increasing in the

sense that if they hold for some I, then they remain true for every I ′ ⊇ I. Indeed,

the path-systems witnessing these properties for I also witness them with respect to I ′.

Conditions (I) and (II) guarantee (7a) and (7b) respectively for ωα+n+1. Preservation

of (9) is ensured by (III). The definition of Qωα+n,Qωα+n and Lωα+n+1 rely only on the

parameters Lωα+n, vωα+n, c and Mα all of which are in Mα+1, thus we keep (8) as well.

Proof of Claim 7.33. Since F is finite (|F | ≤ 2n+1 follows directly from its definition)

and Lωα+n is a quasi-vertex-flame, we have F ∈ GLωα+n(v). We claim that it is possible

to choose a witness QF = {Qe : e ∈ F} for F ∈ GLωα+n(v) where e is the last edge of Qe

in such a way that whenever a path in QF leaves Vα it never returns, in other words no

path in QF has an edge in inD(Vα). Indeed, suppose that Q′
F is an arbitrary witness

for F ∈ GLωα+n(v) and let UF be the set of the last common vertices of the paths in

Q′
F with Vα. Then UF − r is a finite subset of Vα − r which is linked from r in D.

But then, since Mα is an elementary submodel, UF − r is linked from r in Dα as well.

It follows from Lemma 7.7 via the Dα-largeness of Lωα ∩ Dα (see Lemma 7.31) and

Lωα ∩Dα = Lωα+n ∩Dα that UF − r remains linked from r in Lωα+n ∩Dα. This means

that we can replace the initial segments of the paths in Q′
F up to UF in Lωα+n ∩Dα in

such a way that these new initial segments have vertices only in Vα. This modification

of Q′
F provides the desired QF .

We build an auxiliary digraph A by adding a ‘dummy’ vertex wu for every u ∈
Vα− r to Lωα+n whose in-neighbours are Su \Vα and which has no out-neighbours. Let

W := (Vα − r) ∪ {wu : u ∈ Vα − r}. Then A has the vertex-flame property at every

w ∈ W by properties (7a) and (7b), moreover, W is countable. We are going to choose
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I in such a way that A ↾v I also has the vertex flame property for every w ∈ W . For

the original digraph Lωα+n this means that Lωα+n ↾v I has the vertex-flame property

for every u ∈ Vα − r (demanded by (II)), furthermore, the preservation of the vertex-

flame property for the dummy vertex wu ensures that Su \ Vα remains linked from r in

Lωα+n ↾v I which can be thought of as ‘half’ of condition (I).

By applying Corollary 7.16 with A, v = vωα+n and W , we obtain I∗ ∈ GA(v) =

GLωα+n(v) such that A ↾v I∗ has the vertex-flame property for every w ∈ W . Let Q be

a system of internally disjoint r–v paths in Lωα+n such that

(i) F ⊆ E+(Q) ⊆ F ∪ I∗,

(ii) I∗ \ E+(Q) is finite,

(iii) Whenever some Q ∈ Q is not a path in Lωα+n, then Q ∈ QF , and

(iv) I∗ \ E+(Q) is minimal among path-systems satisfying (i) to (iii).

We first show that Q is well-defined: if we take a path-system QI∗ witnessing

I∗ ∈ GA(v), then, since QF is finite, there is a co-finite subset Q′
I∗ of QI∗ for which the

path-system Q′
I∗ ∪QF is internally disjoint and hence satisfies (i) to (iii).

We claim that E+(Q) still has the property that I∗ had, namely that A ↾v E+(Q)

has the vertex-flame property for every w ∈ W . Suppose for a contradiction that

A ↾v E+(Q) does not have the vertex-flame property at some w ∈ W . Note that

we necessarily must have w ̸= v, because Q witnesses E+(Q) ∈ G↾vE
+(Q)(v). Let

Pw be a witness for inA(w) ∈ GA↾vI∗(w). Then there is precisely one path P ∈ Pw
that uses precisely one edge uv ∈ I∗ \ E+(Q). Thus Pw witnesses inA↾vE+(Q)+uv(w) ∈
GA↾vE+(Q)+uv(w). Note also that u ̸= r, moreover, rv /∈ E(D) since otherwise rv ∈ E(A)

and hence the initial segment Pv of P can be replaced by the single edge rv and this

shows that inA(w) ∈ GA↾vE+(Q)(w), which contradicts the choice of w. Thus we may

apply Corollary 7.14 with A ↾v E+(Q)+uv, w and uv and we obtain a vertex set S ∋ v

which is linked from r in A ↾v E+(Q) + uv by a path-system PS, such that S separates

N−
A↾vE+(Q)+uv(v) − u from r. In particular, uv is the last edge of some Puv ∈ PS. We

can assume S ∩ Vα = ∅ by taking S := S \ Vα instead, because the vertices in Vα − r

do not have outgoing edges in A and hence it is still a separator. We modify Q in the

following way. Whenever Q ∈ Q does not meet S − v, then we let Q′ := Q. Note that

since S separates N−
A↾vE+(Q)+uv(v) − u from r and no path of Q uses one of the edges

in inA(v) \ E+(Q) by definition, such a path is not a path in Lωα+n, thus by (iii) it is

a path of QF . Any other path Q ∈ Q \ QF meets S − v. In this case we take the last

common vertex vQ of Q with S − v and replace the initial segment QvQ by the unique

path in PS that terminates at vQ to obtain Q′. Since the paths in PS are paths in

A ↾v E+(Q), the paths are disjoint from Q ∈ QF by the construction of A. Likewise,

no path of PS can share a vertex with one of the segments vQQ other than vQ, since

their union then would contain an r–v-path in A ↾v E+(Q) + uv avoiding S − v. Thus
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the constructed paths are internally disjoint and Q′ := {Q′ : Q ∈ Q} ∪ {Puv} satisfies

(i) to (iii) and witnesses via uv that Q does not satisfy (iv), a contradiction.

Choosing I to be E+(Q) is ‘almost’ suitable. Indeed, (II) and (III) would be satisfied

as well as ‘half’ of (I). We shall define I as a superset of E+(Q) guaranteeing the ‘other

half’ of (I), namely that Su \ Vα remains linked to u in Lωα+n ↾v I for every u ∈ Vα− r.

Note that for T := TLωα+n,v (see the definition in Subsection 2.3.5) we have T ∩ Vα = ∅
because in Lωα+n the vertices in Vα − r have no outgoing edges and T is a minimal

separation. We are going to choose I in such a way that T remains linked to v in

Lωα+n ↾v I. By Lemma 7.23 this ensures that Su \Vα remains linked to u in Lωα+n ↾v I
for every u ∈ Vα−r. Let P ∈ PLωα+n(v, T ) and let P ′ consists of the terminal segments

of the paths in P from T . For Q ∈ Q, let Q′ be the terminal segment of Q from the

last common vertex with T ∪ Vα. Corollary 7.11 applied in digraph Lωα+n with vertex

set T ∪ Vα and vertex v together with path-systems P ′ and Q′ provides a system R′

(see Figure 7.3) of T ∪ Vα–v paths such that V (R0) ∩ V (R1) ⊆ {r, v} for every distinct

R0, R1 ∈ R′,

I := E+(R′) ⊇ E+(Q′) = E+(Q)

and for every t ∈ T there is a unique Rt ∈ R′ with first vertex t. We claim that paths Rt

lie completely in the subdigraph Lωα+n of Lωα+n. This is true by definition for Rt ∈ P ′.

If this is not the case, then Rt consists of the initial segment of some P ∈ P ′ up to some

vR and the terminal segment of some Q ∈ Q′ from vR. If Q itself lies in Lωα+n then

we are done again. If this is not the case, then Q is a terminal segment of a path in

QF (see (iii)). Clearly vR /∈ Vα because no path in P ′ meets Vα. But then the terminal

segment of Q from vR lies entirely in Lωα+n because the paths in QF never return to

Vα once they left it. Therefore Rt lies in Lωα+n in all possible cases. Thus the paths

{Rt : t ∈ T} link T to v in Lωα+n.

T

VαR′

v

r

Figure 7.3: The path-system R.

We extend the paths in R′ backwards to obtain a path-system R witnessing I ∈
GLωα+n(v). For t ∈ T , we take the initial segment of the unique Pt ∈ P through t until

t. These extended paths meet Vα only at r because in Lωα+n the vertices in Vα− r have

no outgoing edges. There are only finitely many paths R in R′ whose first vertex is

in Vα, each of which is a terminal segment of a path QR ∈ Q. By property (iii) these

QR are in QF . As a backward extension of such an R we choose simply QR itself. The

new initial segments in this case have vertices only in Vα and therefore meet the initial
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segments added to paths Rt only at r. Thus the resulting R really is internally disjoint

which completes the proof of Claim 7.33.
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Chapter 8

Directed Separations

In this chapter we introduce torsoids, a canonical structure in matching covered graphs,

corresponding to the bricks and braces of the graph. This allows a more fine-grained

understanding of the structure of finite and infinite directed graphs with respect to their

1-separations. We begin by proving a number of foundational results about matching

covered graphs that will be used throughout the chapter, sometimes even implicitly.

First we establish a number of elementary results, structured into Section 8.1 and

Section 8.2. Then we introduce torsoids in Section 8.3. We investigate how they interact

with tight sets in Section 8.4 and with particular tight cut contractions in Section 8.5.

8.1 Basic Facts about Matching covered Graphs

Proposition 8.1. The tight sets in a matching covered bipartite graph G with respect

to a perfect matching M correspond one-to-one to the 1-separations in D(G,M).

Proof. Let X be a tight set in G. Then M has exactly one edge e with one endpoint

in X and the other in V (G) \X. Let X ′ ⊆ D := D(G,M) be the set corresponding to

the edges of M lying in X \ e and let ve be the vertex obtained by contracting the edge

e. We show that (X ′ ∪ {ve}, V (D) \X ′) is a 1-separation.

Without loss of generality assume the unique vertex in e∩X is in V1. Then there is

no edge between a vertex inX∩V0 and V (G)\X, for the following reason. Suppose there

was such an edge, then, as G is matching covered, there is a matching M ′ ∈ M(G,M)

containing it. We construct a path in X alternating between the two matchings M

and M ′ starting with this edge. Then every edge from M ′ ends in a vertex of V0 and

thus every edge of M we add starts in a vertex of V0. Therefore we never add e,

and never close a cycle. But this implies that the symmetric difference between M

and M ′ is infinite, a contradiction. Thus all edges between X and V (G) \ X have

their endpoint in X within the partition class V1. Therefore there are no edges from

(V (D) \X ′) \ (X ′ ∪ {ve}) to (X ′ ∪ {ve}) \ (V (D) \X ′).

Let (A,B) be a 1-separation in D with separation vertex v such that there are no

97



edges from B \ A to A \ B. Let v0 ∈ V0 and v1 ∈ V1 be the two vertices such that the

edge (v0, v1) ∈M gets contracted to v.

Consider the set X obtained by taking all vertices in G that are contracted to a

vertex in A\B together with the vertex v0. We claim that X is tight. Suppose towards

a contradiction that it is not. First, we consider the case that there is a matching

M ′ ∈ M(G,M) having no edge with one endpoint in X and one in V (G) \ X. Then

consider the component C of the symmetric difference between M and M ′. As v0 has

no neighbour in X it is matched to by M and M ′ has no edge leaving X, C cannot be

a cycle, this contradicts, by Observation 2.4, that M ′ ∈ M(G,M).

Second, we consider the case that there is a matching M ′ ∈ M(G,M) with more

than one edge having exactly one endpoint inX. For every edge ofM ′\{(v0, v1)} having
exactly one endpoint in X consider the component of the symmetric difference between

M and M ′ containing it. As at most one of the edges can be contained in a cycle with

(v0, v1), there is at least one that is contained in an infinite path, contradicting that

M ′ ∈ M(G,M).

Lemma 8.2. Let P be a tight set partition of a matching covered graph G, then coll(P)

is matching covered.

Proof. LetM be the perfect matching of G with respect to which G is matching covered.

For every perfect matching M ′ ∈ M(G,M) we define

M ′(P) := {{Pi, Pj} : there exist xi ∈ Pi and xj ∈ Pj with {xi, xj} ∈M ′}.

We first show that this yields a perfect matching in the collapse.

Claim 1. For every M ′ ∈ M(G,M) the obtained set of edges M ′(P) is a perfect

matching of coll(P).

Proof. As P ∈ P is tight |M ′ ∩ ∂G(P )| = 1. Thus, every P ∈ V (coll(P)) lies in exactly

one edge of M ′(P).

Next we show that the collapse is matching covered.

Claim 2. The collapse coll(P) is matching covered with respect to M(P).

Proof. Let {Pi, Pj} ∈ E(coll(P)). By definition of collapses, there are vertices xi ∈ Pi

and xj ∈ Pj with {xi, xj} ∈ E(G). So there is a matching M ′ ∈ M(G,M) with

{xi, xj} ∈ M ′. Because the symmetric difference between M and M ′ is finite, so

is the symmetric difference between M ′(P) and M(P). Thus we obtain M ′(P) ∈
M(coll(P),M(P)).

Together Claim 1 and Claim 2 imply the statement.

Lemma 8.3. Let P be a tight set partition of a matching covered graph G and let X

be a subset of P. Then X is tight in coll(P) if and only if
⋃
X is tight in G.
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Proof. LetM be the perfect matching of G with respect to which G is matching covered.

By Lemma 8.2, this implies that coll(P) is matching covered with respect to the match-

ing M(P).

Suppose first of all that X is tight in coll(P). Then for any M ′ ∈ M(G,M) the

matching M ′(P) has exactly one edge in ∂coll(P)(X). Thus, there is exactly one set

P ∈ X and exactly one Q ∈ V (coll(P))\X with PQ ∈ E(coll(P))∩M ′(P). Thus there

are vertices x ∈ P and y ∈ Q with xy ∈ E(G) ∩M ′. As P and Q are tight sets, there

is exactly one such edge, thus |M ′ ∩ ∂G(
⋃
X)| = 1.

Conversely, suppose that
⋃
X is tight inG, and consider anyM ′ ∈ M(coll(P),M(P)).

Let the finitely many edges in M ′ \M(P) be P1Q1, P2Q2, . . .PnQn. For i ≤ n let ei

be any edge of G with one endpoint in Pi and the other in Qi, let Mi be any element

of M(G,M) containing ei and let Ni be the set of edges in Mi with both endpoints in

Pi ∪Qi. Let N :=
⋃n
i=1Ni. Finally, let M

′′ be obtained from M by removing all edges

with an endpoint in any Pi or Qi and adding the edges in N .

By construction M ′′ is a perfect matching of G whose symmetric difference with

M is a subset of
⋃n
i=1(M△Mi) and so is finite. So M ′′ ∈ M(G,M), and so there is

a unique edge in M ′′ ∩ ∂(
⋃
X). Since by construction also M ′′(P) = M ′, this implies

that there is a unique edge in M ′ ∩ ∂(X). Since M ′ was arbitrary, this implies that X

is tight in coll(P), as required.

8.1.1 Even and Odd Sets in Infinite Graphs

Let G be a matching covered graph with respect to a perfect matching M . A set

X ⊆ V (G) has a parity if |∂G(X) ∩M | is finite. For a set X with a parity such that

|∂G(X) ∩M | is even, we say that X is even and if |∂G(X) ∩M | is odd, we call X odd.

Lemma 8.4. Let G be a matching covered graph with respect to a perfect matching M .

If X ⊆ V (G) is odd, then every perfect matching M ′ ∈ M(G,M) contains a finite, odd

number of edges with exactly one endpoint in X. Similarly, if X ⊆ V (G) is even, then

every perfect matching M ′ ∈ M(G,M) contains a finite, even number of edges with

exactly one endpoint in X.

Proof. Let M ′ ∈ M(G,M) and X ⊆ V (G). As the symmetric difference between M

and M ′ is finite, M ′ has finitely many edges with exactly one endpoint in X if and only

if M does.

Consider the case that both have finitely many edges with exactly one endpoint

in X. We split the set of edges ∂(X) ∩ (M ∪ M ′) in two disjoint parts: the ones

lying in M -M ′-alternating cycles and the ones lying in M ∩M ′. As every cycle has an

even number of edges in ∂(X), it either contains an even number of edges from both

matchings or an odd number of edges from both matchings. Thus, M and M ′ have the

same parity of edges lying inM -M ′-alternating cycles. Clearly, the parity of edges from
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both matchings lying in M ∩M ′ is also the same. Thus, the intersections ∂(X) ∩M
and ∂(X) ∩M ′ have the same parity.

In the following lemma we make some simple observations about even and odd sets

and show that these definitions behave intuitively. We use these properties throughout

the chapter, often without explicit reference to this lemma.

Lemma 8.5. Let G be a matching covered graph with respect to a perfect matching M

and X and Y two subsets of V (G).

(P1) If X and Y are disjoint and both odd, then X ∪ Y is even.

(P2) If X and Y are disjoint and X is even while Y is odd, then X ∪ Y is odd.

(P3) If X and Y are disjoint and both even, then X ∪ Y is even.

(P4) If X and Y both have a parity, then X ∩ Y has a parity.

(P5) If X and Y both have a parity, then X \ Y has a parity.

Proof. We prove the points separately.

(P1) Assume that X and Y are disjoint and both odd. We can partition the edges

in ∂(X ∪ Y ) ∩M into three parts: edges with one endpoint in X and the other in Y ,

remaining edges with one endpoint in X and remaining edges with one endpoint in Y .

If there is an even number of edges in M with one endpoint in X and the other in

Y , then the remaining two sets are both odd and thus ∂(X ∪ Y ) ∩M is even. If there

is an odd number of edges in M with one endpoint in X and the other in Y , then the

remaining two sets are both even and thus ∂(X ∪ Y ) ∩M is even.

(P2), (P3) Can be proved with arguments akin to (P1).

(P4) Consider any e ∈M with exactly one endpoint in X ∩ Y . If e ⊂ X, then e has

exactly one endpoint in Y , if e ⊂ Y , then e has exactly one endpoint in X and if e ̸⊂ X

and e ̸⊂ Y , then its other endpoint is in V (G) \ (X ∪ Y ). Thus, in every case e lies in

at least one of M ∩ ∂(X) or M ∩ ∂(Y ) and therefore, there are only finitely many such

edges.

(P5) Consider any e ∈ M with exactly one endpoint in X \ Y . If e ⊂ X, then e has

exactly one endpoint in Y , thus e lies in M ∩ ∂(Y ). If e ̸⊂ X, then e lies in M ∩ ∂(X).

Therefore there are only finitely many such edges.
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8.2 Crossing Tight Sets and Tight Set Partitions

For the notion of torsoids, which we formally introduce in Section 8.3, we have to

understand how tight sets interact with each other. We begin with the investigation of

crossing tight sets in Subsection 8.2.1 and based on this, we define and study passable

sets in Subsection 8.2.3. Thereafter, we explore how tight set partitions interact with

tight sets in Subsection 8.2.4 and introduce a relation of tight set partitions that we

call correspondence in Subsection 8.2.5.

8.2.1 Basic Facts about Crossing Tight Sets

For this subsection we fix a matching covered graph G. The first few results in this

subsection were already known for finite matching covered graphs [ELP82,LP09,Lov87],

and their proofs for infinite matching covered graphs do not contain any new ideas.

However, we still give these proofs here.

Lemma 8.6. Let X and X ′ be tight sets with X ∩ X ′ odd. Then both X ∩ X ′ and

X ∪X ′ are tight sets and there is no edge with endpoints in both X \X ′ and X ′ \X.

If X \X ′ ̸= ∅ then there is an edge with endpoints in X ∩X ′ and X \X ′.

Proof. First we show that X ∩X ′ is tight. For any matching M ,

|M ∩ ∂(X ∩X ′)| ≤ |M ∩ ∂(X)|+ |M ∩ ∂(X ′)| = 2 ,

but since X ∩ X ′ is odd, |M ∩ ∂(X ∩ X ′)| must also be odd and so must be equal to

one. An identical argument shows that X ∪X ′ is tight.

Next, suppose for a contradiction that there is an edge e with endpoints in X \X ′

and X ′ \ X. Let M be any matching containing e, and let f be the unique edge in

M ∩ ∂(X ∩X ′). As f ∈ ∂(X) and ∂(X) contains both e and f , contradicting tightness

of X. Thus there can be no such an edge e.

Finally, suppose that X \X ′ is non-empty. By connectivity of G there must be some

edge e ∈ ∂(X \ X ′). Let M be a matching containing e. Then |M ∩ ∂(X \ X ′)| is a

positive even number, so it is at least 2. Every edge in M ∩ ∂(X \X ′) must be in one

of M ∩ ∂(X) and M ∩ ∂(X ′), and each of those sets contains only one edge, so one of

the edges of M ∩ ∂(X \X ′) must be in M ∩ ∂(X ′). Then that edge has one endpoint

in X \X ′ and the other in X ′. We have just seen that the endpoint in X ′ cannot be in

X ′ \X, and so it must be in X ∩X ′.

Lemma 8.7. Let X, X ′ and X ′′ be tight sets such that X ∩X ′ and X ∩X ′′ are even

and disjoint. Then there is no edge between these two sets.

Proof. Applying Lemma 8.6 to X and the complement of X ′, we see that X \ X ′ is

tight. But then applying the same lemma to X \X ′ and the complement of X ′′ we get

the desired result.
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Lemma 8.8. Let X, X ′ and X ′′ be tight sets such that X ∩X ′ = X ∩X ′′ = X ′ ∩X ′′

is even. Then X ∩X ′ = X ∩X ′′ = X ′ ∩X ′′ is empty.

Proof. Suppose not for a contradiction. By Lemma 8.6 applied to X and the comple-

ment of X ′ there is an edge e with one end in X \X ′ and the other in X∩X ′ = X ′∩X ′′.

But this contradicts Lemma 8.6 applied to X ′ and the complement of X ′′.

Lemma 8.9. Let (Xi)i∈I be a family of tight sets such that the union of any two of

them is also tight. Then X :=
⋃
i∈I Xi is either also tight or is the whole vertex set.

Proof. Suppose for a contradiction that there is a matching M containing two edges e

and f in the boundary of X. Choose i, j ∈ I such that the endpoints of e and f in X

are in Xi and Xj respectively. Then both e and f are also in the boundary of Xi ∪Xj,

contradicting the tightness of this set.

Thus, any matching M contains at most one edge in ∂(X). If X is not the whole

vertex set then there is a matching containing some edge, and so exactly one edge, in

the boundary of X. Thus X is odd, and any matching contains exactly one edge in the

boundary of X as required.

Applying this to the complements of a family of tight sets also gives the following

statement.

Corollary 8.10. Let (Xi)i∈I be a family of tight sets such that the intersection of any

two of them is odd. Then X :=
⋂
i∈I Xi is either also tight or else is empty.

Lemma 8.11. Let X be a tight set and (Xi)i∈I a family of tight sets whose intersections

with X are even and disjoint. Then X \
⋃
i∈I Xi is tight.

Proof. By repeated applications of Lemma 8.6, (X \Xi)i∈I is a family of tight sets and

any intersection of two of its elements is tight. So by applying Corollary 8.10 to this

family we see that X \
⋃
i∈I Xi is either tight or empty.

Suppose for a contradiction that it is empty. Let M be a perfect matching, let e be

the edge of M in the boundary of X and let i ∈ I be chosen such that the endpoint

of e in X is in Xi. Since X ∩Xi is even there must be some other edge f ∈ M in the

boundary of Xi, and the endpoint of f outside Xi must lie in some Xj with j ̸= i. But

this contradicts Lemma 8.7.

8.2.2 Characterising Cycles

Lemma 8.12. Let G be a matching covered graph with at least six vertices and with

a cyclic order on its vertex set such that any set of three consecutive vertices is tight.

Then G is a cycle.

Proof. Suppose for a contradiction that there is an edge e joining vertices v and w

which are not adjacent in the cyclic order. Let M be a matching containing e. Let x
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and y be the neighbours of v in the cyclic order and let x′ and y′ be the neighbours of

x and y in the cyclic order other than v. Since G has at least 6 vertices, x′ ̸= y′ and so

without loss of generality w ̸= x′. Since e is in the boundary of {x, v, y}, no other edge

of M can be, so the edge in M incident to x can only be xy. But then both e and xy

are in the boundary of the tight set {x′, x, v}, giving the desired contradiction.

For a cycle C we call a non-empty proper subset I of V (C) an interval if C[I] is

connected.

Remark 8.13. Let C be a matching covered cycle. A set X ⊆ V (C) is tight in C if

and only if it is an interval in C with odd cardinality.

Lemma 8.14. Let G be a matching covered graph and let X = {p1, p2, p3} be a tight

set such that collapsing X in G1 gives rise to a graph H whose vertices can be ordered

cyclically such that any set of three consecutive vertices is tight. Let the neighbours of

X in H be q and q′. Suppose further that both {q, p1, p2} and {p2, p3, q′} are tight. Then

G is a cycle.

Proof. Let r and r′ be the neighbours of q and q′ other than X after collapsing X.

Note that since collapsing X in G gives rise to a cycle, G has at least six vertices and

r, r′ ̸∈ {p1, p2, p3, q, q′}. By Lemma 8.12 together with Remark 8.13 it suffices to show

that {r, q, p1} and {p3, q′, r′} are tight, and by symmetry it suffices to show that the

first of these is. But this follows by applying Lemma 8.6 to {r, q, p1, p2, p3} and the

complement of {p2, p3, q′}.

8.2.3 Passable Sets

We now need a notion capturing when we can make small modifications to tight set

partitions by moving some elements from one partition class to another. As in Subsec-

tion 8.2.1 we fix a matching covered graph G for this subsection.

Definition 8.15. A set S is passable for P if P \ S and P ∪ S are tight. It is passable

between P and Q if S ⊆ P ∪Q and S is passable for both.

Remark 8.16. Note that any passable set is even, since both P \S and P ∪S are tight

and therefore odd.

Lemma 8.17. Let S and S ′ be sets which are passable between disjoint tight sets P and

Q whose union is not the whole vertex set. Then P ∩ S ∩ S ′ is even.

Proof. Suppose not for a contradiction. We may replace S with S∩P if necessary, since

it is passable between P and Q as well. Thus we may assume without loss of generality

that S is a subset of P . Similarly we may assume that S ′ is also a subset of P . By

1this means that we take the collapse of the tight set partition consisting of X and the singletons

of all vertices not in X.
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assumption P ∩ S ∩ S ′ = S ∩ S ′ is odd, which implies that S \ S ′ and S ′ \ S are also

odd, since S and S ′ are passable.

The set P \ S is tight since S is passable for P . Let A be V (G) \ (P ∪ Q). Now

applying Lemma 8.6 again to P \S and Q∪S ′ we see that their union (P ∪Q)\ (S \S ′)

is tight, hence so is its complement A∪ (S \S ′). Similarly A∪ (S ′ \S) is tight. Finally,
A∪Q is tight since it is the complement of P . Applying Lemma 8.8 to these three tight

sets yields the desired contradiction, since by assumption A is non-empty.

Lemma 8.18. Let S and S ′ be sets which are passable between disjoint tight sets P and

Q whose union is not the whole vertex set. Then S ∪ S ′ is also passable between P and

Q.

Proof. By symmetry it suffices to show that S ∪ S ′ is passable for P . We know that

P ∩ S and P ∩ S ′ are even since P \ S and P \ S ′ are odd, and P ∩ S ∩ S ′ is even

by Lemma 8.17. P ∩ (S ∪ S ′) is even and therefore P \ (S ∪ S ′) is odd. So applying

Lemma 8.6 to P \ S and P \ S ′ shows that P \ (S ∪ S ′) is tight.

A symmetric argument shows that Q ∩ (S ∪ S ′) is also even and so P ∪ (S ∩ S ′) is

odd. Thus, applying Lemma 8.6 to P ∪ S and P ∪ S ′ shows that P ∪ S ∪ S ′ is tight.

Thus, S ∪ S ′ is passable for P , as required.

Lemma 8.19. Let P and Q be disjoint tight sets whose union is not the whole vertex

set. Let S be any set of sets which are passable between P and Q. Then S :=
⋃
S

is itself passable between P and Q. In particular, if S is the set of all sets which are

passable between P and Q then S is the largest such set.

Proof. By symmetry it suffices to show that S is passable for P . (P ∪ T )T∈S is a

family of tight sets and by Lemma 8.18 the union of any two of them is also tight, so

by Lemma 8.9 the union of the whole family is tight. A similar argument shows that

Q ∪ S is also tight, and so P \ S = P \ (Q ∪ S) is tight by Lemma 8.6 applied to the

complement of P and to Q ∪ S.

Lemma 8.20. Let P be a tight set, let S be a passable set for P and let (Si)i∈I be a

family of passable sets for P such that S and all of the Si are disjoint and such that

P ∪ S ∪
⋃
i∈I Si is not the whole vertex set. Suppose further that all sets of the form

(P ∪ S) \ Si or (P ∪ Si) \ S are tight. Then S is passable for both P ∪
⋃
i∈I Si and

P \
⋃
i∈I Si.

Proof. The set (P ∪
⋃
i∈I Si) ∪ S is tight by Lemma 8.9 applied to the sets Xi :=

(P ∪ Si) ∪ S, which are all tight by Lemma 8.6. Similarly, the set (P ∪
⋃
i∈I Si) \ S

is tight by Lemma 8.9 applied to the sets Xi := (P ∪ Si) \ S. This shows that S is

passable for P ∪
⋃
i∈I Si.

The set (P \
⋃
i∈I Si) ∪ S is tight by Lemma 8.11 applied to P ∪ S and to the Xi

given by the complements of the tight sets (P ∪ S) \ Si. Similarly (P \
⋃
i∈I Si) \ S is

tight by Lemma 8.11 applied to P \ S with the same choice of Xi. This shows that S

is passable for P \
⋃
i∈I Si.
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8.2.4 The Interaction between Tight Sets and Tight Set Par-

titions

Definition 8.21. Let G be a matching covered graph. Let P be a tight set partition

of G and let X be a tight set in G. We denote by oddP(X) the set of all elements of P
whose intersection with X is odd.

For the rest of this subsection, fix a matching covered graph G.

Lemma 8.22. Let P be a tight set partition of G and let X be a tight set. Then⋃
oddP(X) is a tight set. Furthermore, oddP(X) /∈ {∅,P}.

Proof. Let Y be the complement of X. Then by Lemma 8.11 the set Y \
⋃
oddP(X) is

tight, and therefore so is its complement X ∪
⋃
oddP(X). Applying Lemma 8.11 again,

we get that

(X ∪
⋃

oddP(X)) \
⋃

(P \ oddP(X))

is tight, but this set is just
⋃

oddP(X), giving the desired result.

Since tight sets are neither empty nor the whole vertex set, and
⋃
oddP(X) is one,

oddP(X) is neither empty nor P .

Lemma 8.23. Let P be a tight set partition of G such that coll(P) is a BoB, and let

X be a tight set. Then oddP(X) is either a singleton or the complement of oddP(X) in

P is a singleton.

Proof. By Lemma 8.22 the set
⋃

oddP(X) is tight, meaning that oddP(X) is a tight set

in coll(P) by Lemma 8.3. Since coll(P) is a BoB, the result follows.

Lemma 8.24. Let P be a tight set partition of G such that coll(P) is a cycle, and let

X be a tight set in G. Let n := |P| and m := |oddP(X)|.
Then there is a cyclic enumeration P1, . . . , Pn of the vertices in coll(P) such that

Pi ∈ oddP(X) if and only if i ∈ [m]. Furthermore,⋃
1<i<m

Pi ⊂ X ⊂ V (G) \
⋃

m+1<i<n

Pi

holds. If 3 ≤ m ≤ n − 3 holds, then P1 \ X,Pn ∩ X are passable between P1 and Pn,

and Pm \X,Pm+1 ∩X are passable between Pm and Pm+1.

Proof. The set
⋃

oddP(X) is tight by Lemma 8.22 and thus oddP(X) is tight in coll(P)

by Lemma 8.3. By Remark 8.13, oddP(X) is an interval in coll(P). Thus we can choose

the desired enumeration of the vertices in coll(P).

Let 1 < i < m be arbitrary. We prove that Pi ⊂ X. Suppose for a contradiction that

Pi\X ̸= ∅. As Pi ∈ oddP(X), Pi∩X is odd, which implies that (V (G)\X)∩(V (G)\Pi)
is odd. Applying Lemma 8.6 to V (G) \X and V (G) \ Pi shows that there is an edge e

with endpoints in (V (G) \X) \ (V (G) \ Pi) = Pi \X and (V (G) \X) ∩ (V (G) \ Pi) =
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V (G) \ (X ∪ Pi). As coll(P) is cyclic, there is j ∈ {i − 1, i + 1} such that e has an

endpoint in Pj. The set X ′ := X ∪ Pj is a tight set by Lemma 8.6, as Pj ∈ oddP(X).

The edge e is an edge with endpoints in Pi\X ′ and X ′\Pi. This contradicts Lemma 8.6,

as Pi ∩ X ′ = Pi ∩ X is odd. Therefore, Pi ⊂ X. Applying the same argument to the

complement of X shows that Pi∩X = ∅ for all m+1 < i < n. Thus the desired subset

relation is true.

From now on we suppose that 3 ≤ m ≤ n − 3 holds. We show that Pn ∩ X is

passable between P1 and Pn. By considering the complement of X and/or reversing the

enumeration one can show that the other sets are passable as well. Pn ∪ (X ∩Pn) = Pn

and P1 \ (X ∩Pn) = P1 are tight by definition. Pn∩X is even since Pn /∈ oddP(X), thus

Pn\X = (V (G)\X)∩Pn is odd and thus tight by Lemma 8.6. To see that P1∪(X∩Pn)
is tight we first note that by Remark 8.13, the set P1 ∪Pn ∪Pn−1 is tight. Consider the

set X ′ := X ∪ P1, which is tight by Lemma 8.6 since P1 ∈ oddP(X). By assumption,

m < n− 1 and thus X ′ ∩ (P1 ∪ Pn ∪ Pn−1) = P1 ∪ (X ∩ Pn) is odd and therefore tight.

This concludes the proof that X ∩ Pn is passable between P1 and Pn.

8.2.5 Correspondences between Tight Set Partitions

Throughout this subsection we work with a fixed matching covered graph G.

Definition 8.25. Let P and Q be tight set partitions of G. A correspondence between

P and Q is a bijection ρ : P → Q such that for any P ∈ P and Q ∈ Q we have that

P ∩ Q is odd if and only if Q = ρ(P ). If there is such a ρ then we say that P is in

correspondence with Q.

This relation is fundamental for our later constructions - roughly, two tight set par-

titions arising from different tight set decompositions encode ‘the same’ BoB precisely

when they are in correspondence.

To begin to make this more precise, we first note some basic properties of corres-

pondences of tight set partitions.

Lemma 8.26. Let ρ : P → Q be a correspondence of tight set partitions of G and let

P and P ′ be distinct elements of P. Then P ∩ ρ(P ′) is passable from P to P ′. If it is

non-empty then P and P ′ are neighbours in coll(P).

Proof. To show passability, we have to show that the following four sets are tight:

P \ (P ∩ ρ(P ′)), P ∪ (P ∩ ρ(P ′)), P ′ \ (P ∩ ρ(P ′)) and P ′ ∪ (P ∩ ρ(P ′))

The second and third of these are just P and P ′. The first is P \ ρ(P ′), which is tight,

since ρ(P ′) ∩ P is even by definition of ρ, thus P ∩ (V (G) \ ρ(P ′)) is odd and then

P ∩ (V (G)\ρ(P ′)) = P \ρ(P ′) is tight by Lemma 8.6. To show that the fourth is tight,

we first note that it is equal to

(P ′ ∪ ρ(P ′)) \
⋃

P ′′∈P\{P,P ′}

P ′′ ,
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which is tight by Lemma 8.11 since P ′ ∪ ρ(P ′) is tight by Lemma 8.6, since P ′ ∩ ρ(P ′)

is odd by the definition of ρ.

Now suppose that P ∩ ρ(P ′) is non-empty. Applying Lemma 8.6 to P ′∪ (P ∩ ρ(P ′))

and the complement of P we see that there is an edge from P ∩ ρ(P ′) to P ′, which

witnesses that P and P ′ are neighbours in coll(P).

Lemma 8.27. Let ρ : P → Q be a correspondence of tight set partitions of G. Then ρ

is also a graph isomorphism from coll(P) to coll(Q).

Proof. First we show that ρ−1 is a graph homomorphism. Let e be an edge joining ρ(P )

to ρ(P ′) in coll(Q). Let v be the endpoint of e in ρ(P ) and w the endpoint in ρ(P ′).

Suppose for a contradiction that v is in an element P ′′ of P other than P and P ′.

Applying Lemma 8.7 to P ′′, ρ(P ) and ρ(P ′), we see that w cannot also be in P ′′. But

then we get the desired contradiction by applying Lemma 8.6 to P ′′ and the complement

of ρ(P ).

Thus v must lie in P ∪P ′, and a symmetric argument shows that w is also in P ∪P ′.

If w ∈ P then P ∩ ρ(P ′) is non-empty and so by Lemma 8.26 P and P ′ are neighbours

in coll(P). The same result follows if v is in P ′, since then P ′ ∩ ρ(P ) is non-empty. If

neither of these are applicable then v is in P and w is in P ′, so e itself witnesses that P

and P ′ are neighbours in coll(P). So in any case they are neighbours, completing the

proof that ρ−1 is a graph homomorphism.

Since ρ−1 is also a correspondence from Q to P , the same argument applied to ρ−1

shows that ρ is also a graph homomorphism, and thus a graph isomorphism.

8.3 Torsoids

The relation of being in correspondence is not an equivalence relation, as illustrated in

Figure 8.1. However, our next aim is to show that its restriction to some important

classes of tight set partitions is an equivalence relation, and to introduce some canonical

objects, called torsoids, displaying the equivalence classes.

v0

v1v2

v3

v4 v5

v0

v1v2

v3

v4 v5

v0

v1v2

v3

v4 v5

Figure 8.1: The tight set partitions on the left and the right are both in correspondence

with the one in the middle. But they are not in correspondence with each other. Thus,

being in correspondence is not transitive.
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The example in Figure 8.1 shows that being in correspondence is not even an equi-

valence relation when restricted to tight set partitions whose collapses are BoBs, since

the collapses of the tight set partitions in the figure are all cycles of length 4. However,

the cycle of length 4 is the only BoB which is problematic in this sense; we will show

that being in correspondence is an equivalence relation on all other tight set partitions

that collapse to BoBs.

Given two partitions P ,P ′ of some set, we say P refines P ′ if every partition class

of P is subset of a partition class of P ′. The problem with the tight set partitions in

Figure 8.1 is that they can be refined to larger cycles. More precisely, we say that a

tight set partition P is cyclic if coll(P) is a cycle, and maximal cyclic if it is cyclic but

cannot be refined to a finer cyclic tight set partition. In the first part of this section we

show that being in correspondence is an equivalence relation on maximal cyclic tight set

partitions. We call a tight set partition that either is maximal cyclic or whose collapse

is a BoB other than C4 torsoid-inducing. The torsoid-inducing tight set partitions,

as their name suggests, play a central role in the theory that is built throughout this

chapter.

For the rest of the chapter let G be a fixed matching covered graph. As a preliminary

step, we show that this class of tight set partitions is closed under correspondence. First

we establish a special case.

Lemma 8.28. Let P be a maximal cyclic tight set partition of G and let P and Q be

consecutive vertices on the cycle coll(P). Let S ⊆ P be a passable set between P and

Q. Then P ′ := (P \ {P,Q}) ∪ {P \ S,Q ∪ S} is also maximal cyclic.

Proof. Suppose not for a contradiction. It is certainly cyclic by Lemma 8.27, so it cannot

be maximal. Choose a proper cyclic refinement Q′ with as few vertices as possible. We

will construct a tight set partition Q refining P which is in correspondence with Q′

and therefore also cyclic by Lemma 8.27. This contradicts the fact that P is maximal

cyclic, giving the desired contradiction.

Since all elements of Q and Q′ are odd sets, the minimality of Q′ implies |Q′| =
|Q| + 2. Thus, Q′ must be of the form (P ′ \ {X}) ∪ {X1, X2, X3} for some X ∈ P ′. If

X is not equal to either of P \ S or Q ∪ S then we can simply set

Q := (Q′ \ {P \ S,Q ∪ S}) ∪ {P,Q} .

Thus X is one of P \ S or Q ∪ S. Suppose first that it is P \ S. Let R be the

neighbour of Q other than P in coll(P), and suppose without loss of generality that

X3 is a neighbour of Q ∪ S in Q′. Then X3 ∪ S is tight by Lemma 8.6 applied to

X3 ∪ (Q ∪ S) ∪R and P , so we can set

Q := (Q′ \ {X3, Q ∪ S}) ∪ {X3 ∪ S,Q} .

Now assume instead that X is Q∪S. Once again, let R be the neighbour of Q other

than P in coll(P). Suppose without loss of generality that X1 is a neighbour of P \ S
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and X3 is a neighbour of R in Q′. Let e be an edge with one endpoint v in X3 and the

other endpoint in R. By Lemma 8.6 applied to V (G) \ P and Q ∪ S, v cannot lie in

X3 ∩S and so must lie in X3 ∩Q. If X3 \Q is odd then applying Lemma 8.6 to X3 and

the complement of Q contradicts the existence of e. So X3 \Q must be even, meaning

that X3 ∩Q is odd.

Since (X1∩Q)∪ (X2∩Q)∪ (X3∩Q) = Q is odd, it follows that (X1∩Q)∪ (X2∩Q)
is even and so X1 ∩ Q and X2 ∩ Q have the same parity. There are now two cases,

depending on whether both are odd or both are even.

If both are odd we can note that all sets Xi ∩Q are tight by Lemma 8.6 and so we

can set

Q := (Q′ \ {P \ S,X1, X2, X3}) ∪ {P,X1 ∩Q,X2 ∩Q,X3 ∩Q} .

If both are even then X1∩S is tight by Lemma 8.6 applied to X1 and P , and S \X1

is tight by Lemma 8.6 applied to P and X2 ∪X3 ∪R. So we can set

Q := (Q′ \ {X1, X2, X3}) ∪ {X1 ∩ S, S \X1, Q} .

Lemma 8.29. Let P and Q be tight set partitions of G such that there is a correspond-

ence ρ : P → Q. If P is maximal cyclic then so is Q.

Proof. Since P is cyclic, we can enumerate its elements as P1, P2, . . .Pn for some n. For

any i, let Qi := ρ(Pi). We will argue by induction on |{(i, j) ∈ [n]2 : i ̸= j but Pi∩Qj ̸=
∅}|. The base case is that this set is empty. In that case for any i ≤ n we must have

Pi ∩ Qj = ∅ for all j ̸= i and so Pi ⊆ Qi. Similarly Qi ∩ Pj = ∅ for all j ̸= i and so

Qi ⊆ Pi. Thus in this case Pi = Qi for all i ≤ n and so Q = P , giving the desired

result.

For the induction step, let (i, j) ∈ [n]2 be such that i ̸= j but Pi ∩ Qj ̸= ∅. By

Lemma 8.26 the set S := Pi∩Qj is passable from Pi to Pj, and Pi and Pj are consecutive

on coll(P). We set P ′
i := Pi \ S, P ′

j := Pj ∪ S and P ′
k := Pk for all other k. Let

P ′ := {P ′
i : i ≤ n}. By Lemma 8.28, P ′ is also maximal cyclic. For any (i′, j′) ∈ [n]2

other than (i, j) we have P ′
i′ ∩Qj′ = Pi′ ∩Qj′ , whereas P

′
i ∩Qj = ∅. So we are done by

applying the induction hypothesis to P ′, Q and ρ′.

Now we return to the construction of the objects displaying the correspondence

equivalence classes. The construction relies on the following key lemma.

Lemma 8.30. Let P be a torsoid-inducing tight set partition of G. Let P , Q and Q′

be distinct elements of P. Let S be passable between P and Q and let S ′ be passable

between P and Q′. Then S ∩ S ′ = ∅.

Proof. First we suppose for a contradiction that S∩S ′ is odd. We begin by establishing

some notation. Let P1 := P \ S ′, P2 := S ∩ S ′ and P3 := (P ∩ S ′) \ S. Thus P1, P2 and

P3 partition P . All three of these are tight sets. P1 is tight by passability of S ′. P2 is
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tight by Lemma 8.6 applied to Q ∪ S and Q′ ∪ S ′. Finally, P \ S is tight because S is

passable for P , and P3 is tight by Lemma 8.6 applied to P \ S and the complement of

P1.

We know that P = P1 ∪P2 ∪P3 is tight. We can show that also Q∪P1 ∪P2 is tight

by applying Lemma 8.6 to Q∪ S and P1. Finally, we know that P2 ∪ P3 ∪Q′ = Q′ ∪ S ′

is tight.

There are now three cases:

Case 1: coll(P) is a BoB with more than four vertices. Applying Lemma 8.6 to

Q ∪ S and Q′ ∪ S ′ shows that the set Q ∪ S ∪Q′ ∪ S ′ is tight. But oddP(Q ∪ S ∪
Q′ ∪ S ′) = {P,Q,Q′} is neither a singleton nor the complement of a singleton in

P , contradicting Lemma 8.23.

Case 2: coll(P) is a BoB with four vertices but is not a cycle. In this case,

applying Lemma 8.14 to coll((P \ {P}) ∪ {P1, P2, P3}) shows that this graph is

a cycle of length 6, and hence coll(P) is a cycle of length 4, contradicting our

assumptions.

Case 3: P is maximal cyclic. Applying Lemma 8.14 to coll((P \{P})∪{P1, P2, P3})
shows that this graph is a cycle, contradicting maximality of P .

Since we reached a contradiction in all three cases, our assumption that S ∩ S ′ is odd

must have been false. So S ∩ S ′ is even.

By Lemma 8.6 applied to Q ∪ S and the complement of Q′ ∪ S ′, we know that

Q ∪ (S \ S ′) is tight. Similarly Q′ ∪ (S ′ \ S) is tight. Applying Lemma 8.11 to P ,

Q∪ (S \S ′) and Q′∪ (S ′ \S) yields that P ′ := (P \ (S∪S ′))∪ (S∩S ′) is tight. Applying

Lemma 8.8 to Q ∪ S, Q′ ∪ S ′ and P ′, we see that their intersection S ∩ S ′ is empty as

required.

This allows us to define canonical objects which determine the correspondence equi-

valence classes for such tight set partitions.

Definition 8.31. A torsoid (H, ε) in a matching covered graph G is a pair (H, ε) with:

(T1) H is a matching covered graph on at least 4 vertices that is a BoB or a cycle,

(T2) the elements of V (H) are tight sets of G,

(T3) ε : E(H) → 2V (G),

(T4) V (H) ∪ im(ε) is a near partition of V (G), where im(ε) is the image of ε,

(T5) for vw ∈ E(H), there is an edge from v∪ε(vw) to w and ε(vw) is largest among

all subsets of v ∪ ε(vw) ∪ w that are passable for both v and w,

(T6) for vw /∈ E(H), there is no edge from v to w in G, and
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(T7) if H is a cycle and v is a vertex of H with neighbours u and w then there is no

partition of ε(uv)∪ v ∪ ε(vw) into tight sets P1, P2, P3 such that both u∪P1 ∪P2

and P2 ∪ P3 ∪ w are tight.

We call T cyclic if H is a cycle and non-cyclic otherwise.

A correspondence between T and a tight set partition P is a bijection σ : V (H) → P
such that for every v ∈ V (H) we have

v ⊆ σ(v) ⊆ v ∪
⋃

w∈NH(v)

ε(vw) .

We call σ strong if for every vertex v of H the set σ(v) is a union of v and some of the

sets ε(vw) with w a neighbour of v in H.

We say P is in (strong) correspondence with T if there is such a (strong) corres-

pondence σ.

There is another slightly different perspective on the set of tight set partitions in

strong correspondence with T . For any graph H, we say a function κ : E(H) → V (H)

is a choice function for H if κ(e) is an endvertex of e for all edges e of H. For any pair

T = (H, ε) of a graph and a function defined on its edge set and any choice function κ

for H, we take P(T , κ) to be the set of all sets of the form v ∪
⋃
κ(e)=v ε(e).

Lemma 8.32. For any torsoid T = (H, ε) in G and any choice function κ for H, the set

P(T , κ) is a tight set partition which is in strong correspondence with T . Furthermore,

all tight set partitions in strong correspondence with T arise in this way.

Proof. All elements of P(T , κ) are tight by (T5) and Lemma 8.9, and they partition

V (G) by (T4). The function σ sending each element of P(T , κ) to the unique vertex of

H which it includes is a strong correspondence.

For the last part, given a strong correspondence σ between T and a tight set partition

P , let κ be the function sending each edge e ofH to the unique vertex v with ε(e) ⊆ σ(v).

Then P = P(T , κ).

Proposition 8.33. Let T = (H, ε) be a torsoid in G and uv ∈ E(H). Any edge in G

with an endvertex in ε(uv) has both endvertices in u ∪ v ∪ ε(uv).

Proof. This follows by applying Lemma 8.6 to u∪ε(uv) and the complement of ε(uv)∪
v.

Lemma 8.34. If σ is a strong correspondence between a torsoid T = (H, ε) in G and

a tight set partition P of G then σ is a graph isomorphism from H to coll(P).

Proof. This is immediate from (T5), (T6) and Proposition 8.33.

We can now show that any tight set partition of the kinds discussed above induces

a torsoid.
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Definition 8.35. Let P be a torsoid-inducing tight set partition of G. For any edge

PQ of coll(P) we define δP(PQ) to be the largest passable set between P and Q (this

exists by Lemma 8.19). For P ∈ P , we define τP(P ) to be P \
⋃
Q∈Ncoll(P)(P ) δ(PQ).

Let HP be the unique graph on the image of τP making τP a graph isomorphism

from coll(P) to HP . Let σP be the inverse of τP . Let εP : E(H) → 2V (G); vw 7→
δP(σP(v)σP(w)). Then we call TP := (HP , εP) the induced torsoid of P .

Theorem 8.36. In the context of Definition 8.35, TP is a torsoid and σP is a corres-

pondence.

Proof. Conditions (T1), (T3) and (T6) are clear from the construction. (T2) follows

from Lemma 8.30 and Lemma 8.11. (T4) follows from Lemma 8.30.

For (T5), first we note that passability of εP(vw) follows from Lemma 8.6 together

with Lemma 8.20. Similarly any set S ⊆ v ∪ εP(vw) ∪ w which is passable for both

v and w is also passable between σP(v) and σP(w) by Lemma 8.20, hence εP(vw) is

maximal among such sets. To see that there is an edge from v ∪ εP(vw) to w, let e be

any edge from σP(v) to σP(w) in G. For any u ∈ NHP (v) \ {w}, the endpoint of e in

σP(v) cannot be in εP(uv) by Lemma 8.6 applied to u∪ εP(uv) and the complement of

εP(uv) ∪ v. So it must be in v ∪ εP(vw). Similarly the other endpoint of e must be in

εP(vw) ∪ w. If either of these endpoints is in εP(vw) then we get the desired edge by

Lemma 8.6 applied to v ∪ εP(vw) and the complement of εP(vw) ∪ w. Otherwise we

can take e itself as the desired edge.

For (T7), suppose HP is a cycle and let κ be a choice function for HP such that

κ−1(u) and κ−1(w) are empty. Then P(T , κ) is a tight set partition by (T5) and

Lemma 8.6 applied to the sets of the form κ(e) ∪ ε(e), and is in correspondence with

P by construction. By (T5) and (T6), coll(P(T , κ)) is a cycle, and hence so is P by

Lemma 8.27. So P is cyclic, and by assumption it must be maximal cyclic. Thus

P(T , κ) is also maximal cyclic by Lemma 8.29. But sets P1, P2 and P3 as in (T7) would

contradict maximality due to Lemma 8.14. So they cannot exist.

Finally, it follows directly from the construction that σP is a correspondence from

TP to P .

Theorem 8.37. Let P and Q be torsoid-inducing tight set partitions of G. Then P and

Q are in correspondence if and only if TP = TQ. In particular, being in correspondence

is an equivalence relation for such tight set partitions.

Proof. Suppose first that there is a correspondence ρ : P → Q. Then, by Lemma 8.26,

any set of the form P ∩ ρ(Q) with P ̸= Q is passable between P and Q. Using

Lemma 8.20 twice, we may therefore show first that δP(PQ) is passable for P ∩ ρ(P ) =
P \

⋃
R∈Ncoll(P)(P )\{Q}(P ∩ρ(R)) and then that it is passable for ρ(P ). A similar argument

shows that it is passable for ρ(Q), so we have δP(PQ) ⊆ δQ(ρ(P )ρ(Q)). A similar argu-

ment applied to ρ−1 implies the reverse inclusion, so we have δP(PQ) = δQ(ρ(P )ρ(Q)).
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Now let x be any element of τP(P ) for any P ∈ P . Let Q be the element of P with

x ∈ ρ(Q). ThenQ cannot be different from P , since then it would have to be a neighbour

of P in coll(P) by Lemma 8.26, so we would have x ∈ P ∩ρ(Q) ⊆ δP(PQ), contradicting

the definition of τP(P ). Thus x ∈ ρ(P ). By construction, for any neighbour ρ(Q) of

ρ(P ) in coll(Q) we have x ̸∈ δP(PQ) = δQ(ρ(P )ρ(Q)). Thus x ∈ τQ(ρ(P )). This

argument shows that τP(P ) ⊆ τQ(ρ(P )). A similar argument applied to ρ−1 implies the

reverse inclusion, so we have τP(P ) = τQ(ρ(P )) for any P .

This immediately implies that HP and HQ are equal. Finally, for any edge vw of

HP with v = τP(P ) and w = τP(Q), we have

εP(vw) = δP(PQ) = δQ(ρ(P )ρ(Q)) = εQ(vw) .

This completes the proof that TP = TQ.

For the reverse direction, suppose that TP = TQ, and let this torsoid be given by

(H, ε). Let ρ := σQ ·τP . Let PQ be any edge of coll(P). Set v := τP(P ) and w := τP(Q).

Then by Lemma 8.11 applied to P and the sets δP(P,Q
′) for all other neighboursQ′ of P ,

the set v∪(P ∩ε(vw)) is tight. Similarly the set w∪(Q∩ε(vw)) is tight. Thus P ∩ε(vw)
is passable between v and ε(vw) ∪ w. A similar argument shows that ρ(P ) ∩ ε(vw) is
also passable between these sets. So by Lemma 8.17 their intersection P ∩ρ(P )∩ε(vw)
is even. Since P ∩ε(vw) is even, it follows that (P ∩ε(vw))\ρ(P ) = P ∩ρ(Q)∩ε(vw) is
also even. Since by construction any element of P ∩ρ(Q) must lie in ε(vw), this implies

that P ∩ ρ(Q) is even.
Taking stock of the argument so far, if Q ̸= P is a neighbour of P then P ∩ ρ(Q)

is even. But if Q is not a neighbour of P then by construction P ∩ ρ(Q) is empty and

so also even. Thus the set QP of all elements of Q whose intersection with P is odd

is either empty or equal to {ρ(P )}. By Lemma 8.22 its union is tight, so it cannot be

empty. Thus it is {ρ(P )}. That is, ρ(P ) is the unique element of Q whose intersection

with P is odd. Since this is true for all P ∈ P , ρ is a correspondence from P to Q.

8.4 Relation of Tight Sets to Torsoids

In this section we investigate how torsoids interact with tight cuts and tight sets. We

introduce three classes of tight cuts with respect to a given torsoid and prove that these

three classes partition the set of tight cuts. This partition induces a partition of the

tight sets.

For a torsoid T = (H, ε) in G and a tight set X ⊆ V (G) we define oddH(X) to be

the set of vertices of H that have odd intersection with X. For a tight cut C = ∂(X)

we define θT (C) := min{|oddH(X)|, |oddH(V (G) \X)|}.
The constant θT (C) determines to which of the three classes a tight cut C belongs:

C resides at an edge (θT (C) = 0), resides at a vertex (θT (C) = 1) or resides at an

interval (θT (C) > 1). Note that as oddH(V (G) \ X) = V (H) \ oddH(X) holds, the

constant θT (C) is bounded by |V (H)|
2

.
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Lemma 8.38. Let T = (H, ε) be a torsoid in G, a ∈ V (H) and X a tight set in G. If

X ∩ a is even then X \ a is tight and if X ∩ a is odd then X ∪ a is tight.

Proof. First suppose that X ∩ a is even. Then V (G) \X and a have odd intersection

thus (V (G) \X)∪ a is tight by Lemma 8.6 and so is V (G) \ ((V (G) \X)∪ a) = X \ a.
Now suppose that X ∩ a is odd. Then X ∪ a is tight by Lemma 8.6.

Lemma 8.39. Let T = (H, ε) be a torsoid in G, ab ∈ E(H) and X a tight set in G. If

X ∩ (a∪ ε(ab)) is odd, X ∪ a∪ ε(ab) is tight. If X ∩ (a∪ ε(ab)) is even, X \ (a∪ ε(ab))
is tight.

Proof. If X ∩ (a ∪ ε(ab)) is odd, the tight sets X and a ∪ ε(ab) intersect oddly. Thus

X ∪ a ∪ ε(ab) is tight by Lemma 8.6. If X ∩ (a ∪ ε(ab)) is even, apply the prior result

to the complement of X.

Definition 8.40. Let T = (H, ε) be a torsoid in G and let e be an edge of H. Then

we say that a tight cut C resides at an edge e in T if there is a tight set X ⊆ ε(e) such

that C = ∂(X) and we call X a T -edge-resident at e.

See Figure 8.3 for an example of a BoB with an edge-resident.

Lemma 8.41. Let T = (H, ε) be a torsoid in G. Let X ⊆ V (G) be a tight set and

uv ∈ E(H) such that X ∩ ε(uv) is odd. Then ∂(X) resides at the edge uv in T .

Proof. Let κ1 be any choice function such that κ1(uv) = u, and κ1(e) /∈ {u, v} for any

uv ̸= e ∈ E(H). Let κ2 be the choice function which agrees with κ1 except at uv, where

κ2(uv) = v. Consider P i := P(T , κi) for i ∈ [2]. We set u1 := u ∪ ε(uv), v1 := v and

u2 := u, v2 := v ∪ ε(uv). Note that ui, vi ∈ P i for i ∈ [2]. Furthermore, P1 \ {u1, v1} =

P2 \ {u2, v2}.
Let us first show that X intersects either both u, v evenly or both oddly. Without

loss of generality we suppose for a contradiction that X intersects u oddly and v evenly.

There are now three cases.

Case 1: H is a BoB with more than four vertices. In this case |oddP1(X)|
and |oddP2(X)| are elements of {1, |V (H)|− 1} by Lemma 8.23. By construction,

|oddP1(X)|+2 = |oddP2(X)| holds and this gives a contradiction since |V (H)| ≥ 6.

Case 2: H is a BoB with four vertices but is not a cycle. Note that K4 is the

only BoB on four vertices other than a cycle. At first, we assume that there exists

s ∈ V (H) \ {u, v} such that Ys := s ∪ ε(us) ∪ u ∪ (X ∩ ε(uv)) is tight and show

that this gives a contradiction. Afterwards, we show that such a vertex s exists.

Under these assumptions let t be the vertex of H distinct from u, v, s and consider

the sets Z1 := v ∪ ε(vs) and Z2 := t∪
⋃
w∈E(H)\{t} ε(wt), Z3 := s∪ ε(us), Z4 := u,

Z5 := X ∩ ε(uv), Z6 := ε(uv) \ X in this cyclic order. The sets Z1, Z2, Z3, Z4

are tight by definition. The set Z5 is tight by applying Lemma 8.6 to X \ v and
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u v

s t

Z6Z4 Z5

Z3

Z1

↭ Z1

Z2Z3

Z4

Z5 Z6

Z3 ∪ Z4 ∪ Z5
= Ys

Z4 ∪ Z5 ∪ Z6
= u ∪ ε(uv)

Z5 ∪ Z6 ∪ Z1 =

v ∪ ε(uv) ∪ ε(vs)

Z6 ∪ Z1 ∪ Z2 =

V (G) \ (Z3 ∪ Z4 ∪ Z5)

= V (G) \ Ys

Z1 ∪ Z2 ∪ Z3 =

V (G) \ (Z4 ∪ Z5 ∪ Z6)

= V (G) \ (u ∪ ε(uv))

Z2 ∪ Z3 ∪ Z4 =

V (G) \ (Z5 ∪ Z6 ∪ Z1) =

V (G) \ (v ∪ ε(uv) ∪ ε(vs))

Figure 8.2: In the context of Lemma 8.41 if H is a K4 and Ys is a tight set as depicted,

we deduce that the edge ut of H cannot exist for a contradiction.

v ∪ ε(uv). The set Z6 is tight by applying Lemma 8.6 to V (G) \ (X ∪ u) and

u ∪ ε(uv).

Furthermore, Z3∪Z4∪Z5 = Ys is tight by assumption. Also Z4∪Z5∪Z6 = u∪ε(uv)
and Z5 ∪ Z6 ∪ Z1 = v ∪ ε(uv) ∪ ε(vs) are tight. As Z6 ∪ Z1 ∪ Z2, Z1 ∪ Z2 ∪ Z3

and Z2 ∪ Z3 ∪ Z4 are complements of the first three sets respectively, they are

also tight. Thus these sets satisfy the conditions of Lemma 8.12 and therefore

coll({Zi : i ∈ [6]}) is a cycle. This contradicts that ut is an edge of H.

It remains to prove that there exists s ∈ V (H) \ {u, v} such that Ys is indeed

tight. The set X ′ := X ∪
⋃

oddH(X) \
⋃
(V (H) \ oddH(X)) is tight by repeated

application of Lemma 8.38 to X. By construction, X ′ has the property that any

vertex v ∈ V (H) is either contained in X ′ or disjoint from X ′. Next we apply

Lemma 8.39 repeatedly to X ′ and any edge ab ∈ E(H) with a ∈ {s, t} to obtain

a tight set X ′′ such that X ′ ∩ (u ∪ v ∪ ε(uv)) = X ′′ ∩ (u ∪ v ∪ ε(uv)) and for any

edge e ∈ E(H) \ {uv} we have X ′′ ∩ ε(e) ∈ {∅, ε(e)}. Furthermore, any vertex

v ∈ V (H) is also either contained in X ′′ or disjoint from X ′′ by construction.

Note thatX ′′ is odd, X ′′ intersects precisely one edge of T oddly andX ′′ intersects

u oddly and v evenly. Thus there exists exactly one vertex s ∈ V (H) \ {u, v}
such that s ⊂ X ′′. Therefore the tight set X ′′ has the following properties:

X ′′∩ε(uv) = X ∩ε(uv), oddH(X ′′) = {u, s} and for any e ∈ E(H)\{uv} we have

X ′′ ∩ ε(e) ∈ {∅, ε(e)}.

We apply Lemma 8.39 to X ′′, the vertex s and the edge us to obtain a tight set

X ′′′ with X ′′′ = X ′′ ∪ ε(us). Similarly we apply Lemma 8.39 repeatedly to X ′′′,

the vertex v with the edges vs, vt and the vertex t with the edge st to obtain a

tight set that coincides with Ys, by construction. This completes this case.

Case 3: H is a cycle of length four. We find a contradiction to (T7). Let w be the

neighbour of v in H distinct from u. Set P1 := ε(uv) ∩X, P2 := ε(uv) \X and
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P3 := v ∪ ε(vw). By construction, P1, P2, P3 partition ε(uv) ∪ v ∪ ε(vw). The set

P3 is a tight set as ε(vw) is passable. We consider the tight set X ′ := (X ∪ u) \ v.
Now P1 = X ′ ∩ (v ∪ ε(uv)) and P2 = (V (G) \ X ′) ∩ (u ∪ ε(uv)) are tight sets.

Furthermore by construction, u ∪ P1 ∪ P2 is a tight set. It remains to prove that

P2 ∪ P3 ∪ w is a tight set.

We suppose without loss of generality that ε(vw) ∪ w is a partition class of P1

(otherwise modify P1 slightly). By choice, V (G) \ X ′ intersects u1 oddly, but

does not contain u1. Furthermore, V (G) \ X ′ intersects v1 oddly. Applying

Lemma 8.24 to V (G) \ X ′ and P1, we see that oddP1(V (G) \ X ′) is an interval

with u1 = u ∪ ε(uv) as an endpoint and containing v. Since this interval has

odd length, it must also contain the element ε(vw) ∪ w of P1 containing w. By

construction, oddP1(V (G)\X ′)∩(u∪ε(uv)∪v∪ε(vw)∪w) is odd, and by Lemma 8.6

tight. Note that oddP1(V (G) \X ′) ∩ (u ∪ ε(uv) ∪ v ∪ ε(vw) ∪ w) = P2 ∪ P3 ∪ w.

Thus we can suppose that X intersects either both u, v oddly or both evenly. This

implies that X intersects exactly one of ui, vi oddly for i ∈ [2]. We prove that X

intersects either all elements of P i \ {ui, vi} evenly or all these elements oddly for

i ∈ [2]. If H is a BoB this follows directly from Lemma 8.23. If H is a cycle, we apply

Lemma 8.24. Then oddP1(X) and oddP2(X) are intervals in coll(P1) and coll(P2). As

X intersects u1 oddly if and only if X intersects v2 oddly and similarly for v1 and u2,

X has to intersect the elements of P i \ {ui, vi} either all oddly or all evenly.

From now on we suppose without loss of generality that X intersects all elements of

P i\{ui, vi} evenly (otherwise consider the complement of X). Furthermore, we suppose

without loss of generality that X intersects u1 and v2 oddly (otherwise exchange κ1 and

κ2). Then oddP(X)1 = {u1} and oddP(X)2 = {v2} holds. We define the following two

tight set partitions:

P̃1 := {P \X : P ∈ P1 \ {u1}} ∪ {u1 ∪X}, and
P̃2 := {P \X : P ∈ P2 \ {v2}} ∪ {v2 ∪X}.

By Lemma 8.6 these are indeed tight set partitions. By construction, P̃1 and P1

correspond. Likewise P̃2 and P2 correspond. By Lemma 8.27 and Lemma 8.29, coll(P̃1)

and coll(P̃1) are torsoid-inducing. Thus we can apply Theorem 8.37, which shows

that, TP̃1
= T = TP̃2

holds. This implies that u1 ∪ X ⊆ u ∪
⋃
w∈NH(u) ε(uw) and

v2 ∪X ⊆ v ∪
⋃
w∈NH(v) ε(vw). Then

X ⊂ (u ∪
⋃

w∈NH(u)

ε(uw)) ∩ (v ∪
⋃

w∈NH(v)

ε(vw)) = ε(uv)

holds. This proves that X is an edge-resident. Thus ∂(X) resides at an edge of T .

Lemma 8.42. Let T be a torsoid in G and C ⊆ E(G) any tight cut. The tight cut C

resides at an edge in T if and only if θT (C) = 0 holds.
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Proof. By definition, any tight cut C of G that resides at an edge of H in T satisfies

θT (C) = 0. For the only if direction let C be a tight cut in G with θT (C) = 0. Let

X ⊆ V (G) such that C = ∂(X). By Lemma 8.38 we can assume that X ∩ v = ∅ for

any v ∈ V (H). We show that X has odd intersection with ε(e) for some e ∈ E(H).

If H is a cycle, this holds true by parity of X. If H is a BoB, let P be any tight set

partition in strong correspondence with T . By Lemma 8.23, there is P ∈ P such that

X ∩ P is odd. Suppose for a contradiction that X has even intersection with ε(e) for

all e ∈ E(H) with ε(e) ⊂ P . By Lemma 8.11, X \P = X \
⋃
e∈E(H) : ε(e)⊂P ε(e)∩X is a

tight set. This contradicts the fact that X \P is even by choice of P . Thus there exists

e ∈ E(H) such that X ∩ ε(e) is odd. This implies via Lemma 8.41 that ∂(X) = C

resides at the edge e in T .

Corollary 8.43. Let T = (H, ε) be a torsoid in G and X a tight set with 0 ̸=
|oddH(X)| ≠ |V (H)|. Then X intersects ε(e) evenly for any e ∈ E(H).

Definition 8.44. Let T = (H, ε) be a torsoid in G and let v be a vertex of H.

Then we say that a tight cut C resides at a vertex v in T if there is a tight set

X ⊆ v∪
⋃
v∈e∈E(H) ε(e) withX∩ε(e) even for all v ∈ e ∈ E(H) and such that C = ∂(X),

and we call X a T -vertex-resident at v. We call X a proper T -vertex-resident if v ⊆ X.

Then C resides properly at v.

See Figure 8.3 for an example of a BoB with a vertex-resident.

Figure 8.3: A graph with a possible 6-vertex torsoid T that is a BoB and some T -

residents. The vertex sets enclosed by smooth outlines shaded in darker grey represent

vertices of T and the two sets enclosed by rectangular outlines filled in lighter grey

represent edges of T . The vertex sets enclosed by dashed lines represent T -vertex-

residents and the vertex set enclosed by a dotted line represents a T -edge-resident.

Lemma 8.45. Let T be a torsoid in G. A tight cut C ⊆ E(G) resides at a vertex of

T if and only if θT (C) = 1.

Proof. By definition, any T -vertex-resident C satisfies θT (C) = 1. For the only if

direction let C be a tight cut in G with θT (C) = 1, let X ⊆ V (G) be the tight set
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with ∂(X) = C and |V (H)X | = 1, and let v ∈ V (H) be the unique vertex such that

X ∩ v is odd. By Corollary 8.43, X ∩ ε(e) is even for any e ∈ E(H). It remains

to prove that X avoids w ̸= v and ε(f) for f ∈ E(H) with v /∈ f . Consider an

arbitrary tight set partition P in strong correspondence with T and let Q ∈ P with

v ⊆ Q. As oddH(X) = {v} and X intersects ε(f) evenly for f ∈ E(H), one verifies

that Q is the unique element of P that intersects X oddly. Construct a partition

P ′ := {P \X : v ̸⊆ P ∈ P} ∪ {Q ∪X}. The partition P ′ is indeed a tight set partition

by Lemma 8.6. Furthermore, P and P ′ correspond. By Lemma 8.27 and Lemma 8.29,

coll(P ′) is also torsoid-inducing. Thus we can apply Theorem 8.37, which shows that,

TP ′ = T holds. Thus Q∪X ⊆ v ∪
⋃
v∈e ε(e). This shows that X is a T -vertex-resident,

thus C resides at the vertex v in T .

Lemma 8.46. Let T = (H, ε) be a non-cyclic torsoid in G. Any tight cut C ⊆ E(G)

satisfies θT (C) ≤ 1.

Proof. Suppose for a contradiction that C is a tight cut in G with 1 < θT (C). Let

X ⊆ V (G) be a vertex set with ∂(X) = C and P be any tight cut partition in strong

correspondence with T . By Corollary 8.43, the intersection X ∩ ε(e) is even for any

e ∈ E(H). One verifies that X intersects an element P ∈ P oddly if, and only if there

is v ∈ oddH(X) with v ⊆ P . Thus |oddP(X)| = θT (C). This contradicts Lemma 8.23,

as H is a BoB.

The results from this section so far yield the following corollary:

Corollary 8.47. Let T be a non-cyclic torsoid in G. Any tight cut of G either resides

at a vertex or an edge in T . Furthermore, for any set X that is tight in G either X or

its complement is a T -vertex-resident or a T -edge-resident.

Definition 8.48. Let T = (H, ε) be a cyclic torsoid in G and let I ⊆ V (H) be an

interval in H with 3 ≤ |I| ≤ |V (H)| − 3. Then we say that a tight cut C resides at the

interval I in T if there is a tight set X ⊆ V (G) with⋃
I ∪

⋃
vw∈E(H):
v,w∈I

ε(vw) ⊆ X ⊆
⋃

I ∪
⋃

vw∈E(H):
v∈I

ε(vw)

such that C = ∂(X) and we call X a T -interval-resident at I.

See Figure 8.4 for an example of a torsoid with an interval-resident. Note that by

Lemma 8.24, any T -interval-resident at an interval I intersects any set ε(uv) evenly for

u ∈ I and v /∈ I.

Lemma 8.49. Let T = (H, ε) be a cyclic torsoid in G and C ⊆ E(G) any tight set.

The set C resides at an interval in T if and only if 3 ≤ θT (C) holds.
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Figure 8.4: A graph with a possible torsoid T that is a C6 and a T -interval-resident.

The vertex sets enclosed by smooth outlines shaded in darker grey represent vertices

of the torsoid T and the two sets enclosed by rectangular outlines filled in lighter grey

represent edges of T . The vertex set enclosed by the dash dotted line represents a

T -interval-resident.

Proof. By definition, any tight cut C that resides at an interval in T satisfies 3 ≤ θT (C).

For the only if direction let C be a tight cut with 3 ≤ θT (C), let X ⊆ V (G) be the

tight set with ∂(X) = C, oddH(X) = θT (C) and let P be any tight set partition in

strong correspondence with T . Set n := |P| = |V (H)| and m := |oddP(X)|. We

apply Lemma 8.24 to obtain a cyclic enumeration P1, . . . , Pn of P such that oddP(X) =

{P1, . . . , Pm}. Let vi ∈ V (H) with vi ⊆ Pi for i ∈ [n]. We assumed θT (C) ̸= 0,

this implies that |oddH(X)| /∈ {0, |V (H)|}, thus X has even intersection with ε(f) for

any f ∈ E(H) by Corollary 8.43. Thus for i ∈ [n] we have vi ∈ V (H)X if and only

if Pi ∈ oddP(X). This implies m = θT (C) and we can deduce by Lemma 8.24 that

X \
⋃

oddP(X) can be partitioned into S ′, S ′′ such that S ′ is passable between Pn, P1

and S ′′ is passable between Pm, Pm+1. By Lemma 8.20, S ′ is passable between vn and

v1. Thus it is contained in ε(vnv1). Similarly S ′′ is contained in ε(vm, vm+1). By the

same argument
⋃

oddP(X)\X can be partitioned into passable sets between vn, v1 and

vm, vm+1. This completes the proof.

Note that for any tight cut C the number θT (C) is either 0 or odd.

Corollary 8.50. Let T be a cyclic torsoid in G. Any tight cut of G either resides at a

vertex, an edge or an interval in T . Furthermore, for any tight set X of G either X or

its complement is a T -vertex-resident, a T -edge-resident, or a T -interval-resident.
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8.4.1 Correspondences between Torsoids and Tight Set Parti-

tions

Using the results of the last subsection, we can show that not only strong correspond-

ences, but arbitrary correspondences between torsoids and tight set partitions have

some good properties.

Lemma 8.51. Let P be a tight set partition of G such that either coll(P) is a BoB or

P is a maximal cycle. Let σ be a correspondence from a torsoid T = (H, ε) in G to P
and let vw be an edge of H. Then ε(vw) is the largest set passable between σ(v) and

σ(w).

Proof. Let P = σ(v) and Q = σ(w). We begin by showing that ε(vw) is passable

between P and Q. By symmetry it is enough to show that it is passable for P . By

Corollary 8.47 and Corollary 8.50, P must be a vertex cut with respect to (H, ε). Thus

P \ ε(vw) is tight by Lemma 8.6 applied to P and the complement of w ∪ ε(vw), and
P ∪ ε(vw) is tight by Lemma 8.6 applied to P and v ∪ ε(vw).

Now let S be the largest set passable between P and Q. From the arguments in the

last paragraph we already know that for any neighbour x of v other than w in H the

set ε(vx) is passable for P . So by Lemma 8.30 and Lemma 8.20 the set S is passable

for P \
⋃
x∈NH(v)\{w} ε(vx). Since ε(vw) ⊆ S this implies that S is also passable for

P \
⋃
x∈NH(v) ε(vx). This latter set is just equal to v because v ⊆ P ⊆ v∪

⋃
x∈NH(v) ε(vx).

A similar argument shows that S is passable for w, and by Lemma 8.30 it is a subset

of v ∪ ε(vw) ∪ w, so we have S ⊆ ε(vw). Since, as we saw in the previous paragraph,

ε(vw) is passable between P and Q, we also have ε(vw) ⊆ S. Thus S = ε(vw), as

required.

Theorem 8.52. Let P be a torsoid-inducing tight set partition of G. Then the only

torsoid T in correspondence with P is TP and the only such correspondence is σP .

Proof. Let σ be any correspondence from any torsoid T = (H, ε) to P . By Lemma 8.51,

for any edge vw of H we have ε(vw) = δP(σ(v)σ(w)). For any vertex v of H, since

v ⊆ σ(v) ⊆ v ∪
⋃
w∈NH(v) ε(vw) we have

v = σ(v) \
⋃

w∈NH(v)

ε(vw) = σ(v) \
⋃

Q∈Ncoll(P)(σ(v))

δP(σ(v)Q) = τP(σ(v)) .

Thus τP = σ−1 and so σP = σ. It follows that HP = H and εP = ε, giving the

desired result.

Corollary 8.53. If σ is a correspondence from a torsoid T = (H, ε) in G to a tight set

partition P of G then it is a graph isomorphism between H and coll(P).
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8.5 Relation of Torsos to Torsoids

In this section we consider specific tight cut contractions of a graph with respect to

a fixed maximal family of nested tight cuts and investigate how they relate to our

concept of torsoids. The results of this section emphasise that torsoids are a global tool

capturing all of these tight cut contractions independently of the precise choice of a

tight cut family.

Definition 8.54. Let C be a maximal family of nested tight cuts in G. A maximal star

of C is a tight set partition P of size at least 4 such that coll(P) is a BoB and ∂(P ) ∈ C
for every P ∈ P . Then we call coll(P) a torso of C at the maximal star P , or a torso

for short. Furthermore, we simply call a torso at some maximal star of some maximal

family of nested tight cuts in G a torso in G. If a torso is a C4, we call it a C4-torso.

Otherwise, the torso is a BoB other than C4 and we call it a non-C4-torso.

We want to emphasise the significant difference between torsoids and torsos. Torsos

are completely dependent on a fixed family of tight cuts C, they capture how this specific

family behaves and can only be used to describe the properties of C. This is different

for torsoids, a torsoid is a global object that captures multiple ways to choose maximal

families of nested tight cuts by keeping passable sets on its edges rather than assigning

them rigidly and by bundling any maximal cyclic structure in one torsoid instead of

considering it as different torsos.

The relation of torsos and torsoids that we investigate in this section is defined as

follows:

Definition 8.55. Let S be a torso in G and T a torsoid in G. We say S cleaves T if

every vertex of S contains a vertex of T .

In Subsection 8.5.1 we prove that each torso cleaves exactly one torsoid. However,

in the other direction there might be several torsos that cleave a given torsoid, as cyclic

torsoids always induce maximal cyclic tight set partitions in contrast to cyclic torsos

whose induced tight set partition can be non-maximal cyclic. So, in Subsection 8.5.2

we prove the main result of this section that describes how many torsos cleave a given

torsoid.

Observation 8.56. Note that all vertices of a torso S cleaving a torsoid T are either

proper T -vertex-residents or T -interval-residents. Thus every vertex of T is contained

in a vertex of S. Therefore there exists a partition in correspondence to T that refines

the partition V (S).

8.5.1 Every Torso Cleaves a Unique Torsoid

Lemma 8.57. Let S be a torso in G that cleaves a torsoid T in G. Then T is cyclic

if and only if S is a C4.
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Proof. If T is a cyclic torsoid, then every vertex of S is either a proper T -vertex-

resident or a T -interval-resident. Then S is a cycle. As S is a BoB, it is a C4.

If T is a non-cyclic torsoid, then every vertex of S ′ is a proper T ′-vertex-resident.

This implies that the partition V (S ′) corresponds to T . Therefore S ′ is not a cycle and

thus a non-C4-torso.

Lemma 8.58. Let S be a torso in G. There exists exactly one torsoid T in G such

that S cleaves T .

Proof. If S is non-C4, it is a BoB other than C4 and thus by Definition 8.35 and The-

orem 8.36, TV (S) is a torsoid. By construction, S cleaves TV (S). Furthermore, any

torsoid T cleaved by S is non-cyclic by Lemma 8.57. Thus any vertex of S is a proper

T -vertex-resident and thus T = TV (S), since T and V (S) correspond. Thus we can

assume that S is a C4-torso.

We use refinement to show that there exists a torsoid that S cleaves: given any C4-

torso and its underlying tight set partition P1 := P , we begin by, if possible, refining a

partition class P ∈ P1 in such a way that we split it up into three smaller sets to obtain

a new partition P2 such that coll(P2) is again a cycle. Note that if P can be split up

into finitely many smaller sets it can always be split up into exactly three, since in a

cyclic partition any odd union of consecutive partition classes is a tight cut. We repeat

this as long as possible.

Claim 1. The process stops after finitely many refinement steps.

Proof. Suppose for a contradiction that infinitely many refining steps are possible. Then

there are partitions (Pi)i∈N and tight sets P1 ⊃ P2 ⊃ P3 ⊃ . . . where Pi ∈ Pi, since any
Pi is finite. Without loss of generality we may assume that Pi is a refinement of Pi−1

in such a way that only Pi−1 is refined (otherwise obtain such a partition by unifying

some consecutive tight sets of Pi). Furthermore we may assume that for each of the

Pi we fixed a circular ordering of the partition sets in such a way that the order on Pi
induces the one on Pi−1.

Let Q be a partition set of P1 other than P1 or one of its neighbours in coll(P1). By

assumption, for each i ∈ N we have Q ∈ Pi and furthermore the circular ordering on Pi
induces a linear ordering on Pi \ {Q}. For σ ∈ {−,+} we define P σ

i to be the union of

all sets in Pi \ {Q} that are {smaller, larger} than Pi in this linear order. By definition

P σ
i is a subset of P σ

i+1 and we define P σ
∞ :=

⋃
i∈N P

σ
i for σ ∈ {+,−}. Note that this

definition implies that P+
∞ and P−

∞ are disjoint. Next, it is clear that |Pi| ≥ 4, thus we

may pick a path R from P−
1 to P+

1 in G that is disjoint from Q. For one σ ∈ {+,−}
we have P σ

i ⊊ P σ
i+1 for infinitely many distinct i ∈ N, without loss of generality let

σ = −. Then there is an edge vw of R with v ∈ P−
∞ and w ̸∈ P−

∞. Furthermore,

there are natural numbers k < ℓ such that k is the smallest number with v ∈ P−
k and

P−
k ⊊ P−

ℓ . Therefore vw witnesses that there is a chord in coll(Pℓ), a contradiction to
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the assumption that coll(Pℓ) is a cycle. Thus the refinement stops at some n ∈ N, as
desired.

By Claim 1 there is n ∈ N and a sequence (Pi)i∈[n] as described above such that Pn
is maximal cyclic. Thus Pn induces a torsoid TPn by Theorem 8.36, which is cleaved by

S.
Let T be any torsoid that is cleaved by S. By Lemma 8.57, the torsoid T is cyclic.

We show:

Claim 2. For each i ∈ [n] every P ∈ Pi contains a vertex of T .

Claim 2 implies that every P ∈ Pi is either a T -interval-resident or a proper T -

vertex-resident and there exists a partition in correspondence with T that refines Pi.
Let Q be the partition in correspondence with T that refines Pn. Since Pn is maximal

cyclic and Q is cyclic, Q coincides with Pn and thus T = TPn holds. Therefore TPn is

the unique torsoid cleaved by S.

Proof of Claim 2. We prove by induction on i ∈ [n]. By construction, P = P1 has the

desired property. Suppose that any partition class of Pi−1 contains a vertex of T . We

prove that also Pi has this property.
Let P ∈ Pi−1 and P1, P2, P3 ∈ Pi in cyclic order such that P = P1 ⊔ P2 ⊔ P3 is

a disjoint union with Pi = {P1, P2, P3} ∪ (Pi−1 \ {P}). By Observation 8.56, there

exists a tight set partition R in correspondence to T that refines Pi−1. We define

P ′
i := {P} ∪ {R ∈ R : R ⊂ V (G) \P}. As R is a refinement of P ′

i and coll(R) is cyclic,

also coll(P ′
i) is cyclic. We consider P ′′

i := {P1, P2, P3} ∪ {R ∈ R : R ⊂ V (G) \ P}. By

construction, P ′′
i is a refinement of P ′

i and Pi.
We prove that P ′′

i is also cyclic. Let P̂ , P̃ be the neighbours of P in Pi−1. Let

R̂ ⊆ P̂ and R̃ ⊆ P̃ be the neighbours of P in P ′
i. Without loss of generality, ∂(P ) =

E(P1, P̂ ) ⊔ E(P3, P̃ ), since Pi is cyclic. Then ∂(P ) = E(P, R̂) ⊔ E(P, R̃), since P ′
i is

cyclic. This implies

∂(P ) = (E(P, R̂) ∩ E(P1, P̂ )) ⊔ (E(P, R̃) ∩ E(P3, P̃ )) = E(P1, R̂) ⊔ E(P3, P̂ ) ,

which proves that P ′′
i is cyclic.

If P is a proper T -vertex-resident, then P ′
i corresponds to T . Therefore P ′

i is

maximal cyclic, which contradicts that P ′′
i is cyclic and refines P ′

i. Thus P is a T -

interval-resident. In particular, P contains at least 3 vertices of T . Suppose towards

a contradiction that one of P1, P2, P3 does not contain a vertex of T , i.e. it is either

a non-proper T -vertex-resident or a T -edge-resident. If it is a non-proper T -vertex-

resident, then this non-proper T -vertex-resident contains a proper, odd subset of a

vertex of T . Since T -edge-residents and T -interval-residents either are supersets of this

vertex or avoid this vertex, all three tight sets P1, P2, P3 are T -vertex-residents at that

same vertex. Thus P1, P2, P3 do not contain any other vertex of T , a contradiction as

P = P1 ∪ P2 ∪ P3.
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Thus, one of P1, P2, P3 is a T -edge-resident. By parity, two of P1, P2, P3 are T -edge-

residents at the same edge. The other tight set is a T -interval-resident, since P contains

at least 3 vertices of T . The boundary of this interval-resident contains an edge of ∂(P ),

as the two other tight sets are edge-resident at the same edge. Thus, either P1 or P3 is

the interval-resident and we suppose without loss of generality the former.

We prove that R is not maximal cyclic, a contradiction. Note that P2, P3 ⊂ P

are T -edge-residents at an edge uw ∈ E(H) with u ⊂ P and w ∩ P = ∅. Therefore,

both are contained in the element R ∈ R that contains u. We show that R∗ =

{R ∩ P1, P2, P3} ∪ R \ {R} is a tight set partition such that coll(R∗) is cyclic. By

construction, E(P1, P2) = E(P1 ∩ R,P2) holds. Then since P ′′
i and R are cyclic, also

R∗ is cyclic, which provides the desired contradiction.

This completes the proof.

8.5.2 Torsos Cleaving a Fixed Torsoid

As we have established that every torso cleaves exactly one torsoid we can introduce

the following: let C be a maximal family of nested tight cuts in G, S be the set of all

torsos of C and T the set of all torsoids in G. We define the map κC : S −→ T sending

S ∈ S to the unique torsoid T such that S cleaves T .

Now we want to know what we can say about the torsos that cleave a given torsoid.

This question leads to the main result of this section, which reads as follows:

Theorem 8.59. Let C be a maximal family of nested tight cuts in G. Then the κC-pre-

image of a non-cyclic torsoid consists of one non-C4 torso and the κC-pre-image of a

cyclic torsoid with n vertices consists of n
2
− 1 C4-torsos.

First we consider the special case of Theorem 8.59 for BoBs and cycles. Note that

every BoB and every cycle contains a unique torsoid. Furthermore, any torso in a BoB

or in a cycle cleaves this unique torsoid.

Proposition 8.60. Let H be a matching covered graph with a maximal family C of

nested tight cuts in H. If H is a BoB, there is exactly one torso of C. If H is a cycle

of even length n, there are exactly n
2
− 1 torsos of C.

Proof. If H is a BoB, the set C contains only trivial tight sets and thus H itself is the

unique torso of C. If H is a cycle, we prove the statement by strong induction on n.

For n = 4 the statement is true, as C4 is a BoB. Let H be a cycle of length n ≥ 6

and suppose the statement is true for all cycles of length at most n− 2. Let ∂(X) ∈ C
be any non-trivial tight cut. Set C1 := {C ′ ∈ C : ∃Y ⊆ V (G) \X s.t. C ′ = ∂(Y )} and

C2 := {C ′ ∈ C : ∃Y ⊆ X s.t. C ′ = ∂(Y )}. Note that C = C1 ∪ C2 and {∂(X)} = C1 ∩ C2.
Let H1 be the cycle obtained by contracting X and consider the set Ĉ1 of nested

tight cuts induced by C1. It is maximal by construction. Let H2 be the cycle obtained
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by contracting V (H) \ X and consider the the set Ĉ2 of nested tight cuts induced by

C2, which is also maximal. There is a canonical bijection between the set of torsos of

C and the set of torsos of Ĉ1 and Ĉ2. Applying the induction hypothesis to C1, H1 and

C2, H2 gives the desired statement for n.

In preparation of the proof for the general case of Theorem 8.59 we prove a couple of

propositions that enable us to define a bijection between the κC-pre-image of a torsoid

T = (H, ε) and the set of torsos of a specific maximal family of nested tight cuts in H.

Note that Proposition 8.60 determines the size of the latter set, as H is either a BoB

or a cycle.

Firstly, we show that the vertices of a torso cleaving T are (T , C)-maximal which

we define below. Secondly, we introduce the specific family of nested tight cuts in H

and show that it is indeed maximal.

Now we return to the graph G itself and consider the residents on vertices and

intervals of a torsoid T = (H, ε) in G. Recall that oddH(X) is the set of vertices in

H that intersect X oddly. We call a proper T -vertex-resident or a T -interval-resident

X ∈ C (T , C)-maximal, if Y ⊆ X for every tight set Y ∈ C with oddH(Y ) = oddH(X).

Note that
⋃

oddH(X) ⊆ X holds for every proper T -vertex-resident or T -interval-

resident X.

The next two statements prove that for every vertex and every interval that has a

resident such maximal residents exist.

Proposition 8.61. Let C be a maximal family of nested tight cuts in G and T = (H, ε)

a torsoid in G. Then for every v ∈ V (H) there is a (T , C)-maximal proper T -vertex-

resident at v.

Proof. Consider the set A := {Y ∈ C : oddH(Y ) = {v}}. We show that X :=
⋃
A is

the desired set. By construction, the set A contains only T -vertex-residents. Thus X

avoids all vertices of T apart from v. Furthermore, the set X contains the set v as

every single vertex in v forms a T -vertex-resident, whose cut is clearly nested with C.
Therefore oddH(X) = {v} holds. Thus X is a proper T -vertex-resident. We have to

prove that X is tight and an element of C .
As v ⊆ X, X =

⋃
Y ∈A(Y ∪ v) holds. For all Y ′, Y ′′ ∈ A the sets Y ′ ∪ v, Y ′′ ∪ v

are tight. Since Y ′, Y ′′ are nested, either the sets Y ′, Y ′′ are disjoint or one contains

the other. In the former case, (Y ′ ∪ v) ∩ (Y ′′ ∪ v) = v is odd. In the latter case,

(Y ′ ∪ v) ∩ (Y ′′ ∪ v) ∈ {Y ′ ∪ v, Y ′′ ∪ v}, which is also odd. In either case Lemma 8.6

implies that the union of the two is a tight set. Then, by Lemma 8.9, X is tight.

It remains to show that ∂(X) is nested with every tight cut in C. Let C be an

arbitrary tight cut in C. Note that C is nested with every tight cut induced by an

element of A. If C resides at v, there is Y ∈ A such that C = ∂(Y ) and thus ∂(X)

and C are nested by construction. If C resides at another vertex, its resident avoids

all elements of A and therefore ∂(X) and C are nested. If C resides at an edge, let Z
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be the edge-resident of C. Either Z is contained in an element of A, or Z is disjoint

to all elements of A. In the former case Z ⊆ X holds, in the latter case Z ∩ X = ∅
holds. In both cases ∂(X) and C are nested. If C resides at an interval, let Z be the

interval-resident of C containing v. For any Y ∈ A, the tight cuts ∂(Y ) and C = ∂(Z)

are nested and Y, Z have non-empty intersection. Therefore Y is contained in Z. Thus

X is contained in Z and ∂(X) and C are nested.

Proposition 8.62. Let C be a maximal family of nested tight cuts in G and T = (H, ε)

be a cyclic torsoid in G. Furthermore, let I be an interval in H such that there exists

Y ∈ C with oddH(Y ) = I. Then there is a (T , C)-maximal T -interval-resident X with

oddH(X) = I.

Proof. Consider the set A := {Y ∈ C : oddH(Y ) = I}. We prove that X :=
⋃
A is the

desired set. As A contains only interval-residents, the set X contains the vertices in I

and avoids all other vertices of T , which implies oddH(X) = I. For any two elements

Y ′, Y ′′ ∈ A one is contained in the other, since
⋃
I ⊆ Y ′, Y ′′. Therefore Y ′, Y ′′ intersect

oddly and X is tight by Lemma 8.9. To complete the proof we have to show that the

set X is contained in C .
Let ∂(Z) ∈ C be an arbitrary tight cut. It suffices to prove that ∂(Z) and ∂(X)

are nested. If Z is contained in an element of A, it is contained in X and thus ∂(X)

and ∂(Z) are nested. We suppose that Z is not contained in any element of A. If Z is

disjoint to all elements of A, the sets Z and X are disjoint and thus ∂(X) and ∂(Z) are

nested. Therefore we suppose that there is Y ∈ A such that Y and Z have non-empty

intersection. As ∂(Z) and ∂(Y ) are nested, Y ⊂ Z holds by assumption. This implies⋃
I ⊂ Z. Therefore any Y ′ ∈ A intersects Z and as ∂(Y ′), ∂(Z) are nested, Y ′ is

contained in Z by assumption. Thus X ⊆ Z, which shows that ∂(X) and ∂(Z) are

nested.

Next we show that the vertices of a torso cleaving T are indeed such maximal

residents.

Proposition 8.63. Let C be a maximal family of nested tight cuts in G and T any

torsoid in G. Then every vertex of a torso of C cleaving T is (T , C)-maximal.

Proof. Suppose towards a contradiction that there is a torso S cleaving T with a vertex

X such that X is not (T , C)-maximal. By Proposition 8.61 and Proposition 8.62, there

is a (T , C)-maximal tight set Y in C with oddH(X) = oddH(Y ). Then X ⊂ Y holds

and thus there exists a vertex X ′ of S that contains an element of Y \X. Since ∂(Y )

and ∂(X ′) are nested, X ′ is contained in Y .

By construction,
⋃

oddH(X) =
⋃
oddH(Y ) is contained in X, and Y avoids any

vertex of V (H) \ oddH(Y ). Therefore X ′ does not contain any vertex of H, which

contradicts the definition of cleaving.
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In the following we turn our attention to H and define the specific family of nested

tight cuts in H for the proof of Theorem 8.59:

Definition 8.64. Let C be a maximal family of nested tight cuts in G and T = (H, ε)

a torsoid in G. We define the set

CT := {∂(oddH(X)) : ∂(X) ∈ C and

∂(X) resides at an interval or properly at a vertex of T } .

Proposition 8.65. Let C be a maximal family of nested tight cuts in G and T = (H, ε)

a torsoid in G. Then CT is a maximal family of nested tight cuts in H.

Note that ∂(X) = ∂(V (G)\X) and in particular ∂(oddH(X)) = ∂(oddH(V (G)\X))

for every X ⊂ V (G).

Proof. The elements of CT are nested, since
⋃
oddH(X) ⊆ X and

⋃
oddH(V (G)\X) ⊆

V (G)\X for any proper T -vertex-resident or T -interval-resident X. The cuts in CT are

indeed tight: for any cut C ∈ CT there is either a T -vertex-resident or an T -interval-

resident X such that C = ∂(oddH(X)). Then oddH(X) is a single vertex if H is a BoB.

If H is a cycle, oddH(X) is either a single vertex or an odd interval in H. This implies

that ∂(oddH(X)) is a tight set.

It remains to prove that CT is maximal. By Proposition 8.61, for every vertex

v ∈ V (H) there is a proper vertex-resident in C containing v and therefore all trivial

tight cuts of H are contained in CT . If H is a BoB, we are done. Thus we can suppose

that H is a cycle.

We suppose for a contradiction that there exists a tight cut in H nested with CT

but not contained in CT . We already observed that CT contains all trivial tight cuts.

Thus this tight cut is non-trivial and therefore of the form ∂(I) for an interval I with

3 ≤ |I| ≤ |V (H)| − 3. Let i1 be the first and i2 be last element of I (regarding the

cyclic order of V (H)). We construct a T -interval-resident Y with ∂(Y ) ∈ C that fulfils

oddH(Y ) = I. This contradicts that ∂(I) /∈ CT .

For k ∈ {1, 2} consider all (T , C)-maximal proper T -vertex-residents and T -interval-

residents containing ik and let Yk be the subset-maximal one. By Proposition 8.61 and

Proposition 8.62, such Yk exists. It contains all tight sets containing ik. As ∂(I) is

nested with ∂(oddH(Yk)) ∈ CT , oddH(Yk) ⊆ I holds for k ∈ {1, 2}. Furthermore, since

∂(I) is not contained in CT , oddH(Yk) ⊂ I holds for k ∈ {1, 2}. Then i1 ∩ Y2 = ∅ and

i2 ∩ Y1 = ∅, since Y1, Y2 are T -interval-residents or T -vertex-residents. As ∂(Y1), ∂(Y2)

are nested and i1 ⊆ Y1, i2 ⊆ Y2 but i1 ∩ Y2 = ∅, i2 ∩ Y1 = ∅, the sets Y1, Y2 are disjoint.

We consider the set A :=
⋃
vw∈E(H) : v,w∈I v∪w∪ε(vw), which is tight by construction.

Since Yk is a T -interval-resident or a proper T -vertex-resident that holds oddH(Yk) ⊂ I,

Yk intersects A oddly. We set Y := A ∪ Y1 ∪ Y2, which is tight by Lemma 8.6. By

construction, oddH(Y ) = I holds. We show that ∂(Y ) is nested with C. Then it is

contained in C, which gives the desired contradiction.
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Suppose that there exists ∂(Z) ∈ C which crosses ∂(Y ). Then Z crosses Y . Let

k ∈ {1, 2}. As Z crosses Y , Z is not a subset of Yk. Since Yk is the subset-maximal

proper T -vertex-resident or T -interval-resident containing ik, Z is not a superset of Yk.

Thus Z avoids Yk, as Z, Yk are nested. Therefore it contains elements of both

V (G) \ Y ⊆
⋃

(V (H) \ I) ∪
⋃

vw∈E(H) :
v/∈I

ε(vw) , and

Y \
⋃

{Y1, Y2} ⊆
⋃

(I \ {i1, i2}) ∪
⋃

vw∈E(H) :
v∈I\{i1,i2}

ε(vw) .

The tight set Z clearly can neither be a vertex-resident nor an edge-resident. Since X

avoids i1 ∪ i2 ⊆ Y1 ∪ Y2 it neither can be an interval-resident.

To obtain the main theorem of this section about the number of torsos cleaving a

torsoid, it now remains to prove that there is a bijection between the κC-pre-image of

a torsoid T , i.e. the set of torsos of C that cleave T , and the set of torsos of CT .

Theorem 8.59. Let C be a maximal family of nested tight cuts in G. Then the κC-pre-

image of a non-cyclic torsoid consists of one non-C4 torso and the κC-pre-image of a

cyclic torsoid with n vertices consists of n
2
− 1 C4-torsos.

Before we get to the proof of the theorem, we show one further result: that every

torso of C cleaving T maps canonically to a torso of CT .

Proposition 8.66. Let C be a maximal family of nested tight cuts in G. Then every

torso S of C cleaving a torsoid T = (H, ε) in G is isomorphic to coll((oddH(X))X∈V (S)).

Proof. By Observation 8.56 any vertex of S is either a proper T -vertex-resident or a

T -interval-resident. Thus (oddH(X))X∈V (S) is indeed a partition of V (H). It remains

to show that for every X, Y ∈ V (S) there is an edge in ∂G(X) ∩ ∂G(Y ) if and only if

there is xy ∈ E(H) with x ∈ X and y ∈ Y .

Let X, Y ∈ V (S) be chosen arbitrarily. If there is an edge e in ∂G(X)∩∂G(Y ), then

there is uv ∈ E(H) such that both endvertices of e are contained in u ∪ ε(uv) ∪ v by

(T6) and Proposition 8.33. Since any vertex of S is either a proper vertex-resident or

an interval-resident, X and Y each contain exactly one of u, v, which proves the forward

implication.

For the backwards implication, note that there is a tight set partition P correspond-

ing to T that refines V (S), as any vertex of S is either a proper vertex-resident or an

interval-resident. If there is xy ∈ E(H) with x ∈ X and y ∈ Y , let Px, Py ∈ P such

that x ∈ Px and y ∈ Py. By Theorem 8.36, there is an edge between Px and Py in

coll(P). This implies that there is an edge between Px and Py in G and therefore an

edge in ∂G(X) ∩ ∂G(Y ).
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Proof of Theorem 8.59. Let CT be as in Proposition 8.65. By Proposition 8.60, the

number of torsos of CT is 1 if H is a BoB and n
2
− 1 if H is a cycle of length n. It

remains to prove that there is a bijection between the set of torsos of C cleaving T and

the set of torsos of CT .

Given a torso S of C cleaving T the graph coll((oddH(X))X∈V (S)) is a torso of CT

by Proposition 8.66. Thus the map β sending a torso S of C cleaving T to the torso of

CT at (oddH(X))X∈V (S) is well-defined.

We show that the map β is a bijection. Let S ′ be an arbitrary torso of CT . For

J ∈ V (S ′) let XJ be the unique (T , C)-maximal tight set with oddH(XJ) = J . By

Proposition 8.63, the maximal star (XJ)J∈V (S′) is the only one whose torso is mapped

to S ′ by β. Therefore β is injective.

For surjectivity we have to show that (XJ)J∈V (S′) is indeed a maximal star of C.
It remains to prove that (XJ)J∈V (S′) is a partition of V (G). For J,K ∈ V (S ′) the

sets XJ , XK are not contained in each other and ∂(XJ), ∂(XK) are nested, therefore

XJ , XK are disjoint. Furthermore,
⋃
V (H) ⊆

⋃
J∈V (S′)XJ holds. We have to prove

that
⋃
e∈E(H) ε(e) ⊆

⋃
J∈V (S′)XJ holds.

Let vw ∈ E(H) be arbitrary. If v, w are contained in XJ for some J ∈ V (S ′), then

also ε(vw) is contained in XJ , as XJ is a T -interval-resident. Therefore we can assume

that there areK ̸= L ∈ V (S ′) with v ∈ K,w ∈ L. Suppose towards a contradiction that

Y := ε(vw)\(XK∪XL) is non-empty. Then XK∪Y = XK∪((v∪ε(vw))∩(V (G)\XL))

is a tight set. We show that XK ∪ Y is contained in C , which contradicts the fact that

XK is (T , C)-maximal.

For every vertex-resident or interval-resident Z ∈ C either V (G)Z or V (G)V (G)\Z is

contained in some J ∈ V (S ′), since S ′ is a torso of CT . AsXJ is (T , C)-maximal, Z or its

complement is contained in XJ . Therefore no vertex-resident and no interval-resident

of C crosses XK ∪ Y . As no T -edge-resident Z of C at vw crosses XK or XL, Z is

contained in either XK , XL or Y and thus nested with XK ∪ Y . Every T -edge-resident

at a distinct edge is nested with XK ∪ Y , as it is nested with XK and Y ⊂ ε(vw).

Thus XK ∪ Y is nested with C and therefore contained in C . This gives the desired

contradiction.

Indeed, (XJ)J∈V (S′) is a partition of V (G). There are no non-trivial tight cuts in

(XJ)J∈V (S′) since there are no non-trivial tight cuts in coll(V (S ′)) Therefore (XJ)J∈V (S′)

is a maximal star of C, which completes the proof that the map β is a bijection.
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Chapter 9

Menger’s Theorem in Bidirected

Graphs

The main result of this chapter reads as follows:

Theorem 9.1. Let X and Y be sets of signed vertices of a bidirected graph B, and

suppose that X is clean. Let P1, . . . , Pk be vertex-disjoint X–Y paths in B where Pi

starts in vi ∈ V (X ) for i ∈ [k]. Then precisely one of the following is true:

(1) There is a set S of k vertices of B such that B − S contains no X–Y path.

(2) There are k + 1 vertex-disjoint X–Y paths P ′
1, . . . , P

′
k+1 in B where P ′

i starts in

vi for i ∈ [k].

The general strategy of our proof of Theorem 9.1 follows the idea of [BGH01],

but needs several extensions in order to circumnavigate the complication in bidirected

graphs. In particular, we introduce ‘appendages’ as our main tool to overcome the

walk-path problem for clean sets of vertices in Section 9.3. This allows us to first prove

an edge-version of Menger’s Theorem, Theorem 9.17, in Section 9.4 from which we then

deduce the vertex-version, Theorem 9.1, in Section 9.5. Our proof of Theorem 9.1 can

also be turned into a polynomial-time algorithm which finds a maximal set of disjoint

paths, we prove this in Section 9.6. We begin by highlighting some connectivity prop-

erties of bidirected graphs in Section 9.1 and proving that Menger’s original theorem

cannot be translated to bidirected graphs verbatim in Section 9.2.

In this chapter in every figure involving bidirected graphs, we depict the signs of

halfedges in a particular manner, by drawing the signs onto the edge, which results in

a bar perpendicular to the edge at incident vertices with sign + and none at incident

vertices with sign −, see e.g. Figure 9.2. Note that in this chapter undirected and

directed graphs are allowed to have parallel edges, but they do not have loops.
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9.1 Connectivity in Bidirected Graphs

A key difference between bidirected and both undirected and directed graphs which

complicates understanding their connectivity properties considerably lies in the relation

of walks, trails and paths: unlike for (un)directed graphs, the existence of a v–w walk

between two vertices v and w in a bidirected graph B does not imply that there exists

a v–w trail in B, and similarly a v–w trail does not guarantee the existence of a v–w

path (see [Wie22, Figure 9.1] for examples).

We use an analogous notion for the concatenation of trails at edges: for example if

the union Q1e ∪ eQ2f ∪ fQ3 of three trails is again a trail, we denote it as Q1eQ2fQ3.

We write similarly P1xP2yP3 for paths where x, y may be both vertices or oriented

edges.

The complicated connectivity structure of bidirected graphs also manifests in various

different notions of strong connectivity (see [Wie22, Section 9.2] for an overview). We

discuss two of them, namely ‘strongly connected’ and ‘circularly connected’, in this

section. Let us first define ‘strongly connected’:

Definition 9.2. We say a bidirected graph B is strongly connected if for any two

vertices v and w of B there are signs α and β such that B contains both a (v, α)–(w, β)

path and a (v,−α)–(w,−β) path.

It turns out that a condition that appears weaker at first glance is equivalent to the

one in this definition:

Lemma 9.3. Let B be a bidirected graph such that for any two vertices v and w of B

there are a (v,+)–w path and a (v,−)–w path in B. Then B is strongly connected.

Proof. Let v and w be vertices of B. We must find paths joining them as in the definition

of strong connectivity, Definition 9.2. By assumption there are signs β1 and β2 such

that B contains a (v,+)–(w, β1) path and a (v,−)–(w, β2) path. Similarly, applying

the assumption to w and v then reversing the paths shows that there are signs α1 and

α2 such that B contains a (v, α1)–(w,+) path and a (v, α2)–(w,−) path.

If β2 = −β1 then we are done, so we may suppose β1 = β2. Similarly if α2 = −α1

then we are done, so we may suppose α1 = α2. Setting α := −α1 and β := β1 we are

done.

We now turn to ‘circularly connected’. For this, a cycle in a bidirected graph

B = (G, σ) is a trail C = v0e1v1e2v2 . . . vℓ−1eℓvℓ in B whose vertices are all distinct

except v0 = vℓ where we also have σ(v0, e1) ̸= σ(vℓ, eℓ).

Definition 9.4. Let B = (G, σ) be a bidirected graph and consider the undirected

graph H := (V (G), F ) where F is the set of edges of G that lie on some cycle of B.

We refer to the connected components of H as the circular components of B. If H is

connected we call B circularly connected.
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We now aim to show that ‘strongly connected’ and ‘circularly connected’ in fact

describe the same type of connectivity. This result was already known (see for example

[Wie22, Section 9.2]), but we include a proof here for the convenience of the reader.

Theorem 9.5. A bidirected graph B = (G, σ) is strongly connected if and only if it is

circularly connected.

For the proof of Theorem 9.5, we make use of a lemma that describes which types

of connectivity are forced by the interaction of paths between two vertices that differ

in the signs at their endpoints:

Lemma 9.6. Let v and w be vertices of a bidirected graph B. Let α and β be signs

such that B contains both a (v, α)–(w, β) path P and a (v,−α)–(w,−β) path Q. Then
at least one of the following statements holds:

• v and w lie in the same circular component of B.

• There is a (v, α)–(w,−β) path in B.

Proof. The proof proceeds by induction on the sum of the lengths of the paths P and

Q. If this sum is 0, then v = w and therefore the first statement holds. Otherwise, let

x be the first vertex of P other than v which also lies on Q. Suppose that xP is an

(x, γ)–(w, β) path and that xQ is an (x, δ)–(w,−β) path.

Case 1: γ = δ: In this case, PxQ is a (v, α)–(w,−β) path in B.

Case 2: γ = −δ: In this case we can apply the induction hypothesis to x, w, γ, β and

the paths xP and xQ in the bidirected graph B′ given by the union of xP and

xQ. There are two possibilities.

Case 2.1: x and w lie in the same circular component of B: As the path

Px is a (v, α)–(x,−γ) path, Qx is a (v,−α)–(x, γ) path, and these paths

are disjoint except at their endvertices, their union is a cycle. This cycle

witnesses that v is in the same circular component as x, hence also as w.

Case 2.2: There is an (x, γ)–(w,−β) path R in B′: In this case, the concate-

nation PxR is a (v, α)–(w,−β) path in B.

Proof of Theorem 9.5. Suppose first that B is circularly connected. By Lemma 9.3 it

is enough to show that for any vertices v and w of B there are both a (v,+)–w path

and a (v,−)–w path. Let v ∈ V (B) and α ∈ {+,−} be arbitrary. We set X ⊆ V (B)

to be the set of all vertices x for which there is a (v, α)–x path. Note that the set X is

non-empty since it contains v. We show that X is the whole vertex set of B. Suppose

not, then by circular connectivity there is some edge e of B contained in some cycle C

of B which joins some x ∈ X and some y ̸∈ X.
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There is a (v, α)–x path P by definition of X. Let z be the first vertex of P on C

and let β ∈ {+,−} such that the (possibly trivial) path Pz ends in (z, β). Then there

is a (z,−β)–y path Q contained in C. Thus, PzQ is a (v, α)–y path, contradicting

y ̸∈ X. Since this is true for any v ∈ V (B) and any α ∈ {+,−}, this completes this

direction of the proof.

Now suppose instead that B is strongly connected, and suppose for a contradiction

that it is not circularly connected. Then it must contain an edge e which joins two

vertices x and y in different circular components. Let σ(x, e) = −α and σ(y, e) = β.

Suppose there is no (x, α)–(y,−β) path. Since B is strongly connected, there must be

an (x, α)–(y, β) path and an (x,−α)–(y,−β) path. Applying Lemma 9.6, we yield an

(x, α)–(y,−β) path in B. That path together with e is a cycle in B, contradicting our

assumption that x and y lie in different circular components.

9.2 Counterexample for General Menger Theorem

In this section we show that Menger’s Theorem, Theorem 2.1, does not hold true in

bidirected graphs if we transfer the statement verbatim. Even if we allow the separating

set S to have any fixed size k for some k ∈ N, the statement is false:

Theorem 9.7. For each number k ∈ N, there exists a bidirected graph B and disjoint

sets X and Y of signed vertices of B, each of size at least k, such that there are no two

disjoint X–Y paths and for each subset S ⊆ V (B) of size k there exists an X–Y path

in B − S.

x0,1

x1,0

x0,2

x2,0

x0,3

x3,0

x0,4

x4,0

x0,5

x5,0

X

Y

Figure 9.1: A bidirected graph containing neither two vertex-disjoint X–Y paths nor a

vertex set W of size ≤ 2 such that in B −W there are no X–Y paths.

For the proof of Theorem 9.7 we will rely on the following well-known topological

lemma, which follows directly from the fact that a complete graph on five vertices is
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not planar:

Lemma 9.8. Let x1, x2, y1 and y2 be points appearing in the clockwise order on the

boundary of the closed disc. Then any arc from x1 to y1 meets any arc from x2 to

y2.

Proof of Theorem 9.7. The vertices of B will be given by vertices xi,j indexed by pairs

(i, j) of natural numbers with 1 ≤ i+ j ≤ 2k+1. We add edges of three kinds. For any

natural numbers i and j with 1 ≤ i and i+j ≤ 2k we add an edge that is incident to xi,j

with sign − and incident to xi,j+1 with sign +. Similarly for any natural numbers i and j

with 1 ≤ j and i+j ≤ 2k we add an edge that is incident to xi,j with sign − and incident

to xi+1,j with sign +. Finally, for any i ≤ 2k we add an edge incident to xi,2k+1−i and

xi+1,2k−i, with sign − at both vertices. We call the edges of these three kinds vertical,

horizontal and diagonal edges respectively – see Figure 9.1 for an illustration where

k = 2. We set X := {x0,j : 1 ≤ j ≤ 2k + 1} and Y := {xi,0 : 1 ≤ i ≤ 2k + 1}.
We show that for any set S ⊆ V (B) of size k there is an X–Y path in B − S.

First we construct a sequence of X–Y paths P1, P2, . . . , P2k+1 by taking the path Pi to

be the concatenation of the path from x0,i to x2k+1−i,i consisting of horizontal edges,

followed by the diagonal edge from x2k+1−i,i to x2k+2−i,i−1 and then the path consisting

of vertical edges to x2k+2−i,0. Note that no vertex appears in more than two of these

paths, so the number of these paths meeting S is at most 2k. Since there are 2k + 1 of

these paths, one of them avoids S.

Now suppose for a contradiction that there are two disjoint X–Y paths P and Q.

Let the initial vertices of P and Q be xP and xQ and let their final vertices be yP and

yQ. Since deleting all the diagonal edges from B leaves a digraph in which no directed

edge points into X or Y , both P and Q must contain diagonal edges. Let zP and zQ

be endvertices of those diagonal edges on P and Q respectively which are distinct from

xP , xQ, yP and yQ. We may embed B in the disc in such a way that on the boundary

we have, in clockwise order, first the elements of X , then those of Y , then all other xi,j

with i + j = 2k + 1. Without loss of generality we may assume that in the clockwise

order after Y on the boundary of the disc we first reach zQ then zP . Then disjointness

of the arcs induced by the paths zPPyP and xQQzQ contradicts Lemma 9.8, completing

the proof.

We will show in Section 9.5 that the vertex-version of Menger’s Theorem in the

context of bidirected graphs follows from the edge-version, meaning that the counter-

example above also implies the existence of a counterexample to the edge-version of

Menger’s Theorem in our context. It is also not difficult to construct counterexamples

to the vertex-version directly with a slight modification of the construction above, as

illustrated in Figure 9.2.
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Theorem 9.9. For each number k ∈ N, there exists a bidirected graph B and distinct

vertices x and y, such that there are no two edge-disjoint x–y paths and for each subset

S ⊆ E(B) of size k there exists an x–y path in B − S.

x

y

Figure 9.2: A bidirected graph containing neither two edge-disjoint x–y paths nor an

edge set W of size ≤ 2 such that in B −W there is no x–y path.

9.3 Appendages of Paths

In this section, we introduce the main tool for the proof of the edge-version of Menger’s

Theorem, Theorem 9.17. Given an arbitrary path P of a bidirected graph B starting

in a vertex x, we define a set A(P, x) of edges that includes much of the structure of B

in the vicinity of P :

Definition 9.10. An edge set A ⊆ E(B) is (P, x)-admissible if for any e ∈ A there

is an e–x trail in A ∪ E(P ). The appendage A(P, x) of P and x is the union of all

(P, x)-admissible sets.

Remark 9.11. Any union of (P, x)-admissible sets is again (P, x)-admissible. Thus,

A(P, x) is the maximal (P, x)-admissible set.

In the vertex-version of Menger’s Theorem, Theorem 9.1, we restrict to bidirected

graphs B and sets X of signed vertices such that B contains no non-trivial path that

starts and ends in X . However, for an edge-version of Menger’s Theorem, forbidding

such paths is not sufficient: joining the counterexample of Theorem 9.9 with a bidirected

graph akin to the one depicted in Figure 9.3 by identifying the graphs at the respective

vertices called x gives rise to a bidirected graph with no x′–x′ trails whose internal
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vertices are all distinct1. But there are neither two disjoint x′–y paths nor is there a

small set S of edges such that B − S contains no x′–y path.

x′ x

Figure 9.3: A bidirected graph with no x′–x′ trails whose internal vertices are all distinct

and the property that for any edge set W of size at most 3 there exists an x′-x path in

B −W .

For the edge-version of Menger’s Theorem, we thus forbid not only non-trivial x–x

trails whose vertices are all distinct, but even non-trivial x–x trails in general:

Definition 9.12. A vertex x of a bidirected graph B is edge-clean if there exists no

non-trivial x–x trail in B.

From now on we assume x to be edge-clean. Our aim is to show three essential

properties of the appendage A(P, x) that makes it a key tool in our proof of The-

orem 9.17, the edge-version of Menger’s Theorem in bidirected graphs. First, A(P, x)

is edge-disjoint from all paths starting in x that are edge-disjoint from P . Second, for

any v ∈ V (A(P, v)) ∪ V (P ) and any α ∈ {+,−} if there is an x–(v, α) path in B then

there also is one in A(P, x) ∪ E(P ) that coincides with P in the first edge. Third, any

x–y walk contains an x–y path if it can be partitioned into a path in A(P, x) ∪ E(P )
and a path in E(B) \ (A(P, x) ∪ E(P )).

In the proof of Theorem 9.17, we replace the set A(P, x) ∪ E(P ) by some auxiliary

edges for a fixed path P . In this construction we do not want to remove paths starting

in x that are edge-disjoint to P . Therefore it is essential that all paths starting in x

which are disjoint to E(P ) are also disjoint to A(P, x):

Lemma 9.13. Let x be edge-clean and let Q be a path in B starting in x that is edge-

disjoint from P . Then E(Q) ∩ A(P, x) = ∅.

Proof. Suppose not for a contradiction, and let e be the first edge of Q in A(P, x). Since

A(P, x) is (P, x)-admissible, there is an e–x-trail R in A(P, x) ∪ E(P ). But then QeR
is a non-trivial x–x trail, contradicting the edge-cleanness of x.

Corollary 9.14. Let x be edge-clean. Then A(P, x) ∪ E(P ) contains exactly one edge

incident to x.

Proof. Suppose not and let e ∈ A(P, x)\E(P ) be incident to x. Then the path consisting

of the single edge e contradicts Lemma 9.13.

1We use this term rather than “x′–x′ path”, as the definition of a path requires all vertices to be

distinct.
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Now we turn our attention to the second essential property of appendages, which

provides the existence of specific paths in A(P, x) ∪ E(P ). We use this property in

the proof of the edge-version of Menger’s Theorem to ensure that certain paths are

contained in A(P, x) ∪ E(P ) by redirecting them if necessary.

Lemma 9.15. Let x be edge-clean and let (v, α) be a signed vertex with v ∈ V (A(P, x))∪
V (P ). Suppose that there is an x–(v, α) path in B. Then there is such a path in

A(P, x) ∪ E(P ).

Proof. Let Q be an x–(v, α) path in B chosen to minimise its set of edges outside

A(P, x) ∪ E(P ). We show that Q is contained in A(P, x) ∪ E(P ). Suppose not for a

contradiction, and let e be the first edge of Q outside A(P, x) ∪ E(P ).

Case 1: some vertex of Q after e lies on P . In this case, let w be the first such

vertex along P . Note that w ̸= x since Q is a path. Let p be the edge preceding

w on P and let q be the edge preceding w on Q.

Case 1.1: σ(p, w) = σ(q, w). The path PwQ is an x–(v, α) path using fewer

edges outside A(P, x) ∪ E(P ) than Q, since Pw is disjoint from wQ per

choice of w and e /∈ E(PwQ). This contradicts the minimality of Q.

Case 1.2: σ(p, w) = −σ(q, w). We will show that the set A(P, x) ∪ E(Qw) is

(P, x)-admissible. That is, for any oriented edge f with f ∈ A(P, x)∪E(Qw)
there is an f –x trail in A(P, x)∪E(Qw)∪E(P ). If f ∈ A(P, x) this is clear,

so suppose not. Thus, f is an edge of eQw. If f ∈ E(Q) then fQwP− is

a suitable trail, by choice of w. If f ∈ E(Q) then f Q− is a suitable trail.

Thus, A(P, x)∪E(Qw) is (P, x)-admissible, and so it is a subset of A(P, x).

This contradicts the assumption that e is not contained in A(P, x).

Case 2: no vertex of Q after e lies on P . In this case, let w be the first vertex along

Q after e in V (A(P, x))∪V (P ). There is such a vertex since v is a candidate. Let

q be the edge preceding w on Q. Our first aim is to show that there is a ∈ A(P, x)

with startvertex w and such that σ(a, w) = −σ(q, w). Indeed, as w ∈ V (A(P, v))

there is b ∈ A(P, x) so that its endvertex is w. If σ(b, w) = −σ(q, w) then we can

just set a := b. Otherwise, we can take a as the second edge of any b–x trail in

A(P, x) ∪ E(P ). Let R be any a–x trail in A(P, x) ∪ E(P ).

We will now show that A(P, x) ∪ E(Qw) is (P, x)-admissible, that is, for any

oriented edge f with f ∈ A(P, x) ∪ E(Qw), there is an f –x trail in A(P, x) ∪
E(Qw) ∪ E(P ). If f ∈ A(P, x) this is clear, so suppose not. Thus, f is an

edge of eQw. If f ∈ E(Q), then we find a suitable trail by following Q from

f to w and switching onto aR. If f ∈ E(Q), then f Q− is a suitable trail.

Thus, A(P, x)∪E(Qw) is (P, x)-admissible, and so it is a subset of A(P, x). This

contradicts our assumption that e is not contained in A(P, x).
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In the proof of Theorem 9.17, we will find some of the desired x–y paths in certain

x–y walks. As mentioned in the introduction, an x–y walk in a bidirected graph does

not necessarily contain an x–y path. We here provide a sufficient condition for the

existence of an x–y path in an x–y walk:

Lemma 9.16. Let y and (z, α) be (signed) vertices of B. Let Q be an x–(z, α) path and

let R be a (z,−α)–y path. If all edges of Q except possibly the last edge are contained in

E(P )∪A(P, x) and R avoids E(P )∪A(P, x), then there is an x–y path S in E(Q)∪E(R).
Furthermore, if R avoids x, then the first edge of S and the first edge of Q coincide.

Proof. Let q be the first vertex of Q in V (R). If q = x, then qR is the desired path. If

q = z, then Q and R intersect only in q = z and thus QzR is the desired path. Thus,

suppose that q is an internal vertex of Q. Let e be the edge of Q preceding q and f be

the edge of R succeeding q. If σ(q, e) = −σ(q, f), then QqR forms the desired path.

Suppose for a contradiction that instead we have σ(q, e) = σ(q, f). Then qR−zQ−x

and qQzRqQ−x are trails. We show that E(Rq) ⊆ A(P, x), which contradicts the

assumption that R avoids A(P, x). More precisely, we prove that A(P, x) ∪ E(qQ) ∪
E(Rq) is (P, x)-admissible: let e ∈ E(qQ) ∪ E(Rq). Then e ∈ E(qR−zQ−x) or e ∈
E(qQzRqQ−x). Note that both trails are contained in A(P, x) ∪ E(qQ) ∪ E(Rq), as

E(Qq) ⊆ A(P, x) holds since q ̸= z. This completes the proof.

9.4 Menger’s Theorem for Edge-Disjoint Paths

In this section we prove an edge-version of Menger’s Theorem in bidirected graphs, from

which we will then deduce our main result, the vertex-version given by Theorem 9.1, in

the subsequent Section 9.5:

Theorem 9.17. Let x and y be distinct vertices of a bidirected graph B, and suppose

that x is edge-clean. Let P1, . . . , Pk be edge-disjoint x–y paths in B where ei is the first

edge of Pi for i ∈ [k]. Then precisely one of the following is true:

(1) there is a set S of k edges of B such that B − S contains no x–y path, or

(2) there are k + 1 edge-disjoint x–y paths P ′
1, . . . , P

′
k+1 such that the first edge of P ′

i

is ei for i ∈ [k].

The proof of Theorem 9.17 is inspired by the Böhme, Göring and Harant’s proof

[BGH01] of Menger’s Theorem for digraphs. Its technical finesse makes it possible to

handle the complex structure of bidirected graphs.

Proof. The proof is by strong induction on the sum of the lengths of the paths Pi.

We may assume without loss of generality that σ(e, x) = − for any edge e incident
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with x, since changing these signs doesn’t affect what counts as an x–y path nor the

edge-cleanness of x.

If the set {e1, e2, . . . , ek} is as in (1) then we are done, so suppose not. Thus, there

is an x–y path Pk+1 containing no ei. If this path is edge-disjoint from the Pi with

i ≤ k then we are done, so suppose not. Let e be the first edge of Pk+1 which lies on

some other Pi. Without loss of generality we may assume that e ∈ E(Pk). If e were in

E(Pk) then Pk+1eP
−
k would be an x–x trail, contradicting the edge-cleanness of x. So

we must instead have e ∈ E(Pk). Let v be the startvertex of e and w its endvertex.

We define R1 as Pkv and R2 as Pk+1v. Note that R1 and R2 have length at least one.

All we will use about R2 in the following argument is that it is edge-disjoint from

all Pi and that it can be extended as a path by adding the edge e. Note that if we had

begun with the paths P1, . . . , Pk−1 and R2vPk then R1 would have the same properties

with respect to this choice of paths. We will exploit this symmetry repeatedly in the

following argument.

Let Ai := A(Ri, x)∪E(Ri). Note that by Lemma 9.13 A1 is disjoint from E(R2vPk)

and A2 is disjoint from E(R1vPk). Similarly both A1 and A2 are disjoint from E(Pi)

for i < k. To apply the induction hypothesis we construct a suitable graph B̂ using the

sets A1 and A2.

We obtain B̂ from B by modifying it in the following ways (see Figure 9.4):

• removing the edge e,

• adding a new edge ê with endvertices x,w and σ(ê, x) = − and σ(ê, w) = σ(e, w),

• removing all edges in A1 ∪ A2,

• adding a new vertex a,

• adding a new edge ea from x to a with σ(ea, x) = − and σ(ea, a) = +,

• adding, for each i ∈ {1, 2} and each signed vertex (z, α) for which there is a

non-trivial x–(z, α) path P with E(P ) ⊆ Ai (not just a trail) a new edge f with

endvertices a, z and σ(a, f) = − and with σ(z, f) = α. We refer to f as e(P ) and

to z as zP .

We set ê and ea to be the orientation of ê and ea that point away from x. Fur-

thermore, we set e(P ) to be the orientation of e(P ) that points away from a and e the

orientation of e that points away from v. For i < k let P̂i := Pi, and let P̂k := êwPk.

Note that P̂k is shorter than Pk.

We now want to apply the induction hypothesis to B̂ and the paths P̂i for i ≤ k.

Since the sum of the lengths of the paths has decreased, we just need to check that x is

still edge-clean in B̂. So suppose for a contradiction that there is an x–x trail Q̂ in B̂.

Since all edges incident to x are incident with the same sign, no internal edge of Q̂

is incident with x. Similarly, since ea is the only edge incident to a with sign +, if E(Q̂)
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w

vz

ê

ea e(P )

P

A(R1, x)

R1 e

R2

A(R2, x)

Figure 9.4: Construction of the auxiliary graph B̂ in the proof of Theorem 9.17.

contains any e(P ), then that e(P ) must be adjacent to ea, which in turn must be the

first or last edge of Q̂.

Our aim now is to construct an x–x trail Q in B, thus contradicting the edge-

cleanness of x in B. Let q1 be the first edge and q2 the last edge of Q̂. Replacing Q̂

with its reversal and relabelling these edges if necessary, we have the following cases:

Case 1: both q1 and q2 are edges of B. We can set Q := Q̂.

Case 2: q1 = ê and q2 is an edge of B. We can set Q := PkwQ̂.

Case 3: q1 = ea and q2 is an edge of B. The second edge of Q̂ must be of the form

e(P ) for some non-trivial path P in some Ai. So we can set Q := PzP Q̂.

Case 4: q1 = ea and q2 = ê. The second edge of Q̂ must be of the form e(P ) for some

non-trivial path P . Without loss of generality E(P ) is contained in A1. So we

can set Q := PzP Q̂wevR
−
2 .

In any case we reach the desired contradiction, so we can conclude that x is still

edge-clean in B̂. Thus, we can apply the induction hypothesis. This gives us two cases:

Case 1: there is a set Ŝ of k edges of B̂ such that B̂ − Ŝ does not contain an

x–y path. Since the paths P̂i are edge-disjoint, Ŝ must consist of one edge from

each of these paths and so cannot contain ea or any e(P ). Let S := Ŝ if ê ̸∈ Ŝ

and let S := (S \ {ê})∪{e} otherwise. Clearly S has size k. We show that B−S

contains no x–y path.

Suppose for a contradiction that there is such a path Q. To obtain our contradic-

tion we construct an x–y path Q̂ in B̂ − Ŝ.

Case 1.1: E(Q) is disjoint from A1 ∪ A2 ∪ {e}. We can set Q̂ := Q.

Case 1.2: e ∈ E(Q) and E(wQ) is disjoint from A1 ∪ A2. We have e ̸∈ S,

which implies ê ̸∈ Ŝ. Thus, we can set Q̂ := xêwQ.
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Case 1.3: otherwise. Since v ∈ V (A1) the fact that we are not in Case 1.1

implies that Q meets V (A1 ∪ A2) \ {x}. Let z be the last vertex of Q in

this set. Without loss of generality we have z ∈ V (A1) \ {x}. The fact that

we are not in Case 1.2 implies that even if e appears on Q some vertex in

V (A1∪A2) \ {x} (possibly v) must come after it. So the set E(zQ) does not

contain e. Let α be the sign with which Q arrives at z. Applying Lemma 9.15

to the x–(z, α) path Qz we see that there must be an x–(z, α) path P in A1.

Then we can set Q̂ := xeaae(P )zQ.

In each case, we find the desired contradiction, completing the proof of this case.

Case 2: there are edge-disjoint x–y paths P̂ ′
1, P̂

′
2, . . . , P̂

′
k+1 such that the first

edge of P̂ ′
i is ei for i < k and the first edge of P̂ ′

k is ê. In this case, we will

construct edge-disjoint x–y paths P ′
1, P

′
2, . . . , P

′
k+1 in B such that the first edge of

P ′
i is ei for i ≤ k.

For i < k the path P̂ ′
i avoids the edges ê and ea since ei is the first edge of P̂ ′

i ,

and therefore it avoids also any edge e(P ). Thus, P̂ ′
i is a path of B, and we set

Pi := P̂ ′
i for any i < k. It remains to define P ′

k and P ′
k+1.

Case 2.1: the first edge of P̂ ′
k+1 is not ea . Then P̂

′
k+1 is also a path of B as it

avoids ê since ê ∈ Pk. We set P ′
k+1 := P̂ ′

k+1 and let P ′
k be the path obtained

by applying Lemma 9.16 to R1vew and wP̂ ′
k with respect to A1.

Case 2.2: the first edge of P̂ ′
k+1 is ea and its second edge is e(P ) for some

path P in A2. We let P ′
k+1 be the path obtained by applying Lemma 9.16

to PzP , zP P̂
′
k+1 with respect to A2 and define P ′

k as in the prior case.

Case 2.3: the first edge of P̂ ′
k+1 is ea and its second edge is e(P ) for some

path P in A1. Let P
′
k be the path that we obtain by applying Lemma 9.16

to PzP , zP P̂
′
k+1 with respect to A1 and let P ′

k+1 be the path obtained by

applying Lemma 9.16 to R2vew and wP̂ ′
k with respect to A2.

Note that in any of these cases the paths P ′
1, . . . , P

′
k+1 are edge-disjoint. To verify

that ek is indeed the first edge of P ′
k, it suffices to show that in the construction

of P ′
k we applied Lemma 9.16 to a path whose first edge is ek and a path that

avoids x. The first path is PzP , if P is in A1, and otherwise it is R1vew. Thus,

the first edge of the first path is contained in A1, and by Corollary 9.14 it is ek .

The second path avoids the vertex x by choice. Thus, the paths P ′
1, . . . , P

′
k+1 are

as desired.

Theorem 9.17 implies Menger’s Theorem for edge-disjoint paths in both undirected

and directed graphs. To show this, we may regard any graph as a digraph by replacing
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each edge e with the two directed edges e and e (see [BJG08] for an in-depth explana-

tion). Similarly, we may regard any digraph as a bidirected graph by viewing a directed

edge e from x to y as an edge e with endvertices x and y and signs − at x and + at y.

We then obtain the desired version of Menger’s Theorem for vertices x and y in a

digraph D by considering the digraph D′ obtained from D by deleting all edges that

point towards x. Note that x is edge-clean in D′ since no trail ends in x. If there

is no x–y path in D′ − S for some S ⊆ V (D′), then there is no x–y path in D − S.

Furthermore, any x–y path in D′ is also an x–y path in D.

9.5 Menger’s Theorem for Vertex-Disjoint Paths

In this section we deduce the vertex-disjoint version of Menger’s Theorem for bidirected

graphs, Theorem 9.1, from the above shown edge-version, Theorem 9.17. Theorem 9.1

will be formulated in terms of vertex-disjoint X–Y paths between two sets X and Y
of signed vertices of a bidirected graph B. Analogously to the edge-version where the

startvertex x of the paths had to be edge-clean, we have to require the set X of signed

vertices to be clean, which is defined as follows.

Definition 9.18. A set X of signed vertices of a bidirected graph B is clean if B

contains no non-trivial path starting and ending in X .

We remark that a clean set X of signed vertices may contain both (x,+) and (x,−)

for a vertex x.

Let us now recall the vertex-disjoint version of Menger’s Theorem for bidirected

graphs from the introduction:

Theorem 9.1. Let X and Y be sets of signed vertices of a bidirected graph B, and

suppose that X is clean. Let P1, . . . , Pk be vertex-disjoint X–Y paths in B where Pi

starts in vi ∈ V (X ) for i ∈ [k]. Then precisely one of the following is true:

(1) There is a set S of k vertices of B such that B − S contains no X–Y path.

(2) There are k + 1 vertex-disjoint X–Y paths P ′
1, . . . , P

′
k+1 in B where P ′

i starts in

vi for i ∈ [k].

Note that in Theorem 9.1 we only require X to be clean, but not Y – just as we only

require x (and not y) to be edge-clean in Theorem 9.17; indeed, we do not need any

assumptions on Y . We further note that Theorem 9.1 cannot be strengthened by fixing

the signed startvertices of the paths Pi rather than just their startvertices, see Figure 9.5

for a counterexample. Also note that the simplification that we do not allow bidirected

graphs to have distinct edges e and f that have the same endvertices and the same

signs at them does not affect Theorem 9.1, which still holds without this assumption.

Indeed, one can easily deduce the statement for bidirected graphs with parallel edges
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by applying Theorem 9.1 to the bidirected graph obtained by subdividing each edge

and giving the two edges incident to a newly arising subdivision vertex distinct signs

at it.

x1

x2

y1

y2

(x1,+)
(x1,−)

(x2,+)

(y1,+)

(y2,−)

X Y

P1

Figure 9.5: This bidirected graph contains two disjoint X–Y paths, namely

x2(x2y2, x2, y2)y2 and x1(x1y1, x1, y1)y1. However, while P1 := x1(x1y2, x1, y2)y2 is an

X–Y path that starts in (x1,+) ∈ X , the graph contains no two disjoint X–Y paths

such that one of them starts in (x1,+).

Towards a proof of Theorem 9.1, let us first show that we may assume the X–Y paths

in B to be the only paths starting in X and ending in Y , respectively. More precisely,

by removing some edges from B and changing some signs at vertices of V (X ) ∪ V (Y),

all non-trivial paths starting in X and ending in Y are indeed X–Y paths, i.e. they are

internally disjoint from V (X ) ∪ V (Y) and contain no trivial X–Y paths:

Proposition 9.19. Let B be a bidirected graph and X ,Y sets of signed vertices in B.

Then there exists a bidirected graph B′ with V (B′) = V (B), E(B′) ⊆ E(B) and a set

of signed vertices X ′ ⊆ X in B′ such that

(1) any X ′–Y path in B′ is an X–Y path in B and vice versa,

(2) any path in B′ starting in X ′ and ending in Y is an X ′–Y path, and

(3) there is no trivial X ′–X ′ path in B′.

Moreover, if X is clean in B, then X ′ is clean in B′.

Note that, by (1), Theorem 9.1, or more generally any version of Menger’s Theorem

concerning vertex-disjoint X–Y paths, holds for B, X and Y if and only if it holds for

B′, X ′ and Y .

Proof. We construct B′ and X ′ from B and X by performing the following modifications

for every v ∈ V (X ) ∪ V (Y) simultaneously:

(a) If there is α ∈ {+,−} with (v, α) /∈ X ∪ Y , we delete all edges incident to v that

have sign α at v.

(b) If (v,+) and (v,−) are either both contained in X \Y or both contained in Y \X ,

we change the signs of all edges incident to v at v to +. Furthermore, if (v,−) ∈ X ,

then we remove (v,−) from X .
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(c) If there is α ∈ {+,−} such that (v, α) ∈ X and (v,−α) ∈ Y , we isolate v, i.e. we

delete all edges incident with v. If (v,−α) ∈ X , then we also delete (v,−α) from
X .

With this construction, we in particular obtain the following properties of B′:

(i) V (X ) ∪ V (Y) = V (X ′) ∪ V (Y), and all edges incident to v ∈ V (X ′) ∪ V (Y) have

the same sign at v in B′.

(ii) If an edge of B′ is incident to a vertex w /∈ V (X ′) ∪ V (Y), then it has the same

sign at w in B′ and in B.

(iii) If a vertex v forms a trivial X–Y path in B, then it is an isolated vertex in B′

and forms a trivial X ′–Y path in B′.

We begin by proving (1). For trivial paths, the statement is true by (iii) and since

X ′ ⊆ X . So let P be a non-trivial X–Y path in B. Then neither its start- nor its

endvertex forms a trivial X ′–Y path in B′ since they each do not form a trivial X–Y
path in B. In particular, we did not apply modification (c) to the start- or endvertex

of P . As all internal vertices of P are disjoint to V (X ) ∪ V (Y), we did not apply any

modification to these vertices. This implies that all edges of P are edges in B′. By (ii)

P is thus also a path in B′. Clearly, it is internally disjoint to V (X ′) ∪ V (Y). Finally,

since we applied either modification (a) or (b) to its start- and endvertex, the path P

in B′ starts in X ′ and ends in Y .

Let P ′ be a non-trivial X ′–Y path in B′. Then the path P ′ is, by (i) internally

disjoint to V (X ) ∪ V (Y) = V (X ′) ∪ V (Y) and thus also a path in B by (ii). As (1)

holds for trivial paths, neither its start- nor its endvertex forms a trivial X–Y path in

B. In particular, we did not apply modification (c) to its start- or endvertex. Thus, we

applied either modification (a) or (b) to its start- and endvertex. This implies that P ′

in B starts in X and ends in Y , which completes the proof of (1).

For (2), consider a non-trivial path P ′ in B′ that starts in X ′ and ends in Y . To

show that P ′ is an X ′–Y path, we need to verify two properties: first, no internal vertex

of P ′ is contained in V (X ′)∪ V (Y), which is true by (i). Second, P ′ contains no trivial

X ′–Y path. Indeed, if a vertex v ∈ P ′ is a trivial X ′–Y path in B′, then it is also a

trivial X–Y path in B by (1) and hence isolated by (iii), which contradicts that P ′ is

non-trivial.

For (3), note that the modifications (a) to (c) ensure that (v, α) ∈ X ′ implies

(v,−α) /∈ X ′.

For the ‘moreover’-part, assume that X is clean in B and suppose for a contradiction

that x is not edge-clean in B′. Then there exists a non-trivial path P in B′ that

starts and ends in X ′. By (i), no internal vertex of P is contained in V (X ) ∪ V (Y).

Furthermore, by (ii), P still forms a path in B. Thus, P is a non-trivial path in B

starting and ending in X , which contradicts the cleanness of X in B.
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From now on, let B be a bidirected graph and let X and Y be sets of signed vertices

of B. By Proposition 9.19 we may assume that B satisfies (2) and (3). To prove The-

orem 9.1 for B, X and Y , we now carefully construct an auxiliary graph B̂ with two

specified vertices x and y, such that Theorem 9.17, our edge-disjoint version of Menger’s

Theorem in bidirected graphs, applied to B̂, x and y allows us to deduce Theorem 9.1

for B, X and Y .

The construction of B̂, however, turns out to be even more general: it provides a

framework to deduce a vertex-version of Menger’s Theorem in bidirected graphs from

an edge-version. In particular, our construction of B̂ is independent of the cleanness

assumption on X as in Theorem 9.1, and the cleanness of X in B will only be used to

make Theorem 9.17 applicable to x ∈ B̂ in that it implies x to be edge-clean.

In order to make the above approach work, we construct B̂, x and y such that the

vertices x and y of B̂ represent the sets X and Y of signed vertices of B, respectively.

They do so in such a way that any set of vertex-disjoint X–Y paths in B correspond to

edge-disjoint x–y paths in B̂ and vice versa.

To show that a vertex-version of Menger’s Theorem for B, X and Y can be deduced

from an edge-version of Menger’s Theorem for B̂, x and y, we then verify two properties

of our construction. We first show that an edge-separator for x and y in B̂ corresponds

to a vertex-separator for X and Y in B of at most the same size. Secondly, we consider

vertex-disjoint X–Y paths P1, . . . , Pk in B. By our construction, they correspond to

edge-disjoint x–y paths P̂1, . . . , P̂k in B̂. We then show that k + 1 edge-disjoint x–y

paths in B̂ such that all but one start in the same edges as P̂1, . . . , P̂k correspond to

k + 1 vertex-disjoint X–Y paths such that all but one start in the same vertices as

P1, . . . , Pk.

Finally, we show that our construction indeed allows us to apply Theorem 9.17 to

B̂, x and y under the assumptions of Theorem 9.1 on B, X and Y . More precisely, we

prove that the cleanness of X in B implies that x is edge-clean in B̂.

Let us now construct B̂ = (Ĝ, σ̂) from B = (G, σ) (see Figure 9.6 for an illustration

of this construction). For every vertex v ∈ B, the vertex set of B̂ contains two vertices

v+ and v− which are connected in B̂ by an edge with sign + at v− and sign − at v+.

An edge e ∈ E(B) which is incident to u and v in B then transfers to an edge ê ∈ E(B̂)

that is incident to uσ(u,e) and vσ(v,e). The half-edges of ê have the same signs as the

respective half-edges of e, that is σ̂(uσ(u,e), ê) := σ(u, e) and σ̂(vσ(v,e), ê) := σ(v, e).

We finally add two new vertices x and y to V (B̂), which shall represent the sets

X and Y , respectively, as follows. The vertex x is adjacent to those vα ∈ V (B̂) with

(v,−α) ∈ X , and the respective edge in B̂ has sign α at vα and sign− at x. Analogously,

the vertex y is adjacent to every vβ ∈ V (B̂) with (v,−β) ∈ Y , and the respective edge

has sign β at vβ and sign − at y.

Observe that with this construction of B̂ = (Ĝ, σ̂), the graph Ĝ has no parallel

edges. For notational simplicity, we will thus identify an (oriented) edge in B̂ with the
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(ordered) pair of its endvertices in what follows.

v

y1 (y1,−)

y2 (y2,+)

Y
x1(x1,−)

x2(x2,−)

X B

→ v+ v−

y+1 y−1

y+2 y−2

x+1 x−1

x+2 x−2

yx

B̂

Figure 9.6: The construction of B̂ from the bidirected graph B with specified sets X
and Y of signed vertices as in Section 9.5.

Now we turn our attention to the relation between paths in B and paths in B̂.

Let P = v1e1v2 . . . vn−1en−1vn be any X–Y path in B, and write αℓ := σ(vℓ, eℓ) and

βℓ := σ(vℓ+1, eℓ) for all ℓ < n. Since P is an X–Y path in B, we have βℓ = −αℓ+1

for all ℓ < n as well as (v1, α1) ∈ X and (vn, βn−1) ∈ Y . Thus, the construction of B̂

guarantees that

P̂ :=x(x, v−α1
1 )v−α1

1 (v−α1
1 , vα1

1 )vα1
1 (vα1

1 , vβ12 )vβ12 . . .

. . . v
αn−1

n−1 (v
αn−1

n−1 , v
βn−1
n )vβn−1

n (vβn−1
n , v−βn−1

n )v−βn−1
n (v−βn−1

n , y)y

is an x–y path in B̂. Moreover, if X–Y paths P1, . . . , Pk are vertex-disjoint, then the

corresponding x–y paths P̂1, . . . , P̂k in B̂ are internally vertex-disjoint and in particular

edge-disjoint.

With this transfer of X–Y paths in B to x–y paths in B̂ at hand, we show that an

edge-separator of x and y in B̂ yields a vertex-separator of X and Y in B of at most

the same size:

Lemma 9.20. If there is a set Ŝ ⊆ E(B̂) of size at most k such that there is no x–y

path in B̂ − Ŝ, then there is a set S ⊆ V (B) of size at most k such that there is no

X–Y path in B − S.

Proof. Let Ŝ be a set of at most k edges in B̂ such that there is no x–y path in B̂ − Ŝ.

We define a set S of k vertices of B as follows:

• if ê ∈ Ŝ has the form vαv−α, then we add v to S,

• if ê ∈ Ŝ has the form vαwβ, then we arbitrarily add one of v and w to S, and

• if ê ∈ Ŝ has the form vαx or vαy, then we add v to S.

Then there is no X–Y path P in B−S, as the corresponding path P̂ in B̂ would clearly

avoid Ŝ.
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We now turn to the transfer of x–y trails in B̂ to X–Y paths in B. For this, let us

first observe that such trails admit a very particular structure due to the construction

of B̂:

Proposition 9.21. Let T be either an x–y trail or a non-trivial x–x trail in B̂. Then

(1) every internal vertex of T has the form vα for some v ∈ V (B) and α ∈ {+,−},

(2) every internal vertex of T is met by T exactly once, and

(3) precisely every second edge of T is of the form (vα, v−α).

Proof. All edges incident to x or y have sign − at x or y, so every internal vertex of

a trail in B̂ has the form vα for some v ∈ V (B) and α ∈ {+,−}, which shows (1).

For every vertex of this form vα (i.e. every vertex of B̂ other than x and y), there

exists precisely one edge in B̂ which has sign −α at vα, namely the edge vαv−α. This

implies that T uses the edge (vα, v−α) either immediately before or after meeting vα.

In particular, (3) holds. Since vα is neither the start- nor the endvertex of T , it is met

by T exactly once, which proves (2).

Now let T̂ := v1ê1v2ê2 . . . ên−2vn−1ên−1vn be either an x–y trail or a non-trivial x–x

trail in B̂. By Proposition 9.21 (1) and (2), the trail T̂ meets all vertices of B̂ but x at

most once. Thus, its subtrail T̂ ′ := ê2T̂ ên−2 is a path.

Now replace every subtrail of T̂ ′ that has the form vα(vα, v−α)v−α by the vertex

v ∈ B; note in particular that both v2ê2v3 and vn−2ên−2vn−1 have this form. Moreover,

replace any edge of T̂ ′ that has the form (vα, wβ) for distinct v, w ∈ V (B) by the

oriented edge in B that has sign α at v and sign β at w (such an edge exists by the

construction of B̂). Proposition 9.21 (3) then guarantees that the constructed P is

indeed a path in B.

We show that P starts in X ; the case of P ending in X or in Y is symmetrical. The

only neighbours of x in B̂ are the vertices vα with (v,−α) ∈ X . Proposition 9.21 (3)

then implies that if v2 = vα, then ê2 = (vα, v−α) and so ê3 has sign −α = −σ̂(v3, ê2)
at v3 = v−α. Thus, our construction of P guarantees that P starts in (v,−α) ∈ X , as

desired.

So if T̂ is an x–y trail, then P starts in X and ends in Y and it is indeed an X–Y path

in B, since we assumed B to satisfy (2) in Proposition 9.19. And if T̂ is a non-trivial

x–x trail, then P starts and ends in X and it is non-trivial, since B also satisfies (3) by

assumption.

This transfer of x–y trails from B̂ to X–Y paths in B now interacts with the transfer

from B to B̂ precisely in the desired way:

Lemma 9.22. Let P1, . . . , Pk be X–Y paths in B, and let P̂1, . . . , P̂k be the correspond-

ing x–y paths in B̂. If there are k+1 edge-disjoint x–y paths P̂ ′
1, . . . , P̂

′
k+1 in B̂ = (Ĝ, σ̂)

where P̂ ′
i starts in the same edge as P̂i for i ∈ [k], then there are k + 1 vertex-disjoint

X–Y paths P ′
1, . . . , P

′
k+1 in B where P ′

i starts in the same vertex as Pi for i ∈ [k].
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Proof. Let P ′
1, . . . , P

′
k+1 be the X–Y paths in B obtained from P̂ ′

1, . . . , P̂
′
k+1. Let i ∈ [k]

be arbitrary, and let vα be the endvertex of the first edge of P̂ ′
i . By construction, the

path P ′
i starts in the vertex v. Now our assumption on P̂ ′

i implies that the path P̂ ′
i

starts in the same edge as P̂i. By the construction of P̂i from Pi, the endvertex vα of

the first edge of P̂i has the property that v is the startvertex of Pi. Thus, Pi and P ′
i

start in the same vertex, as desired.

It remains to prove that the paths P ′
1, . . . , P

′
k+1 are vertex-disjoint: this follows from

Proposition 9.21 (3) together with our construction yields that if two distinct P ′
i and

P ′
j would contain the same vertex v, then both P̂ ′

i and P̂ ′
j would have to contain the

edge vαv−α, which contradicts that they are edge-disjoint.

With Lemma 9.20 and Lemma 9.22, we have now shown that the construction of B̂

indeed provides a general framework to deduce a vertex-version of Menger’s Theorem

in bidirected graphs form an edge-version. We can thus finally deduce Theorem 9.1

from Theorem 9.17 by checking that x is edge-clean in B̂ if X is clean in B:

Proof of Theorem 9.1. By Proposition 9.19, we may assume that B, X and Y satisfy (2)

and (3), and this does not affect the cleanness of X in B. Let B̂, x and y be constructed

from B, X and Y as above, and suppose for a contradiction that x is not edge-clean,

i.e. that there exists a non-trivial x–x trail T̂ in B̂. As shown above, the trail T̂ then

gives rise to a non-trivial path in B that starts and ends in X , which contradicts the

cleanness of X in B. Thus, we can apply Theorem 9.17 to B̂, x, y and the k edge-disjoint

x–y paths P̂1, . . . , P̂k in B̂ corresponding to the k vertex-disjoint X–Y paths P1, . . . , Pk

in B. Depending on the outcome of Theorem 9.17, Lemma 9.20 or Lemma 9.22 then

complete the proof.

We remark that one can deduce a version of Theorem 9.1 in which an X–Y path

does not have to be internally disjoint from V (X )∪V (Y) and may contain trivial X–Y
paths: apply Theorem 9.1 to the bidirected graph that is obtained by adding a new

vertex for every v ∈ V (X ) which is joined to v by an edge with sign −α at v and sign

α at the newly added vertex for any (v, α) ∈ X , and by adding vertices and edges for

v ∈ V (Y) in the same way. Then take X ′ and Y ′ as the respective sets of newly added

vertices.

Theorem 9.1 implies Menger’s Theorem for vertex-disjoint paths in both undirected

graphs and directed graphs. As explained at the end of Section 9.4, we may regard any

undirected or directed graph as a bidirected graph. We then obtain the desired version

of Menger’s Theorem for vertex sets X and Y in a digraph D by considering the sets

X := {(x,−) | x ∈ X} and Y = {(y,+) | y ∈ Y } of signed vertices. Note that X is

indeed clean since every path in the digraph D which ends in X does so in (x,+) for

some x ∈ X and hence not in X .
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9.6 Polynomial Time Algorithm

In this section we show that the proof of the edge-version of Menger’s Theorem for

bidirected graphs, Theorem 9.17, can be turned into a polynomial time algorithm.

More precisely, we show the following statement:

Theorem 9.23. There exists a polynomial time algorithm that, given distinct vertices

x and y of a bidirected graph B and k edge-disjoint x–y paths P1, . . . , Pk in B where

Pi starts in ei for i ∈ [k], finds either k + 1 edge-disjoint x–y paths P ′
1, . . . , P

′
k+1 in B

where P ′
i starts in ei for i ∈ [k] or a set S of k edges of B such that B − S does not

contain any x–y path.

As a consequence, there exists a polynomial time algorithm for Theorem 9.1 since

the transfer process introduced in Section 9.5 can be computed in polynomial time.

For the proof of Theorem 9.23 note that the proof of Theorem 9.17 uses a recursive

procedure by induction on the sum of the lengths of the paths Pi; it is thus enough to

show that each recursion step runs in polynomial time as the number of recursion steps

is bounded by |E(B)|.
To show that each recursion step runs in polynomial time, we will in particular need

polynomial time algorithms to find paths and trails between two fixed signed vertices

as well as the appendage of a given path. One key ingredient to this is Edmonds’

celebrated Blossom Algorithm:

Theorem 9.24 ([Edm65]). There exists a polynomial time algorithm which, given a

graph G, either finds a perfect matching in G or determines that G has no perfect

matching.

We first show that a path between two signed vertices can be found in polynomial

time.

Lemma 9.25. There exists a polynomial time algorithm that, given a bidirected graph

B and signed vertices (x, α) and (y, β) of B with x ̸= y, either finds an (x, α)–(y, β)

path in B or determines that no such path exists.

Proof. We first describe an algorithm which runs in polynomial time and then prove

its correctness.

The algorithm starts by checking if there exists an edge in B with sign α at x

and sign β at y, which then forms our desired path. If no such edge exists, then the

algorithm considers the graph B′ := B − {x, y} and computes the set X ′ of all signed

vertices (v, γ) of B′ for which there exists an (x, α)–(v, γ) edge and the set Y ′ which is

defined analogously with respect to y. As in Section 9.5, the algorithm then constructs

the auxiliary graph B̂′ = (Ĝ′, σ̂′) from B′, X ′ and Y ′; let x′ and y′ be the two vertices of

B̂′ representing X ′ and Y ′, respectively. Note that the construction of B̂′ can be done

in polynomial time.
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The algorithm then uses the polynomial time algorithm of Theorem 9.24 to construct

a perfect matching of Ĝ′ if possible. If there is a perfect matching, then the algorithm

computes an (x, α)–(y, β) path in B from it in polynomial time (see below). Otherwise,

the algorithm returns that there is no (x, α)–(y, β) path in B. This concludes our

description of the polynomial time algorithm.

For the proof of its correctness, let êv denote the unique edge of Ĝ
′ between v+ and

v− for every vertex v ∈ V (B′). Then M := {êv | v ∈ V (B′)} is a matching in Ĝ′, and

every vertex of Ĝ′ except from x′ and y′ is incident to an edge in M .

If there is a perfect matching M ′ in Ĝ′, then let H ′ be the subgraph of Ĝ′ with edge

setM ∪M ′. By the definition ofM , the component of H ′ containing x′ is an x′–y′ path

P̂ . The construction of B̂′ together with the definition of M implies that such a path

P̂ in Ĝ′ induces an x′–y′ path P̂ ′ in B̂′. As in the proof of Theorem 9.1, this path P̂ ′

then induces an X ′–Y ′ path P ′ in B′. The definition of X ′ and Y ′ then allows us to

extend the path P ′ to an (x, α)–(y, β) path in B.

Conversely, we show that if there exists an (x, α)–(y, β) path in B, then there is a

perfect matching in Ĝ. Let P = xe1v1 . . . vℓ−1eℓy be an (x, α)–(y, β) path in B. Then

P ′ = v1 . . . vℓ−1 is an X ′–Y ′ path in B′ by the definition of X ′ and Y ′. As in the proof

of Theorem 9.1, the path P ′ induces an x′–y′ path P̂ ′ in B̂′. The respective path Q̂′ in

Ĝ′ alternates between edges in M and not in M . Note that all the vertices of Ĝ′ but

the startvertex and endvertex of Q̂′ are incident to edges in M . This means that no

vertex of Q̂′ is incident to an edge inM \E(Q̂′). It follows that the symmetric difference

(M \ E(Q̂′)) ∪ (E(Q̂′) \M) is a perfect matching in Ĝ′, as desired.

We next extend Lemma 9.25 from paths to trails. Our main tool for this is the

line graph of a bidirected graph which we introduce below. For this we need one more

definition: an orientation of a bidirected graph B is a map ν : E(B) → E(B) such that

ν(e) ∈ {e, e} for any e ∈ E(B).

Definition 9.26. Given a bidirected graph B = (G, σ) and an orientation ν of B, we

define the line graph of B with respect to ν, denoted as L := Lν = (H, τ), as follows. The

graph H has vertex set E(G) and contains an edge {e1, e2} ∈ E(H) with label v for any

two distinct edges e1, e2 ∈ E(G) and a vertex v ∈ e1∩e2 satisfying σ(v, e1) = −σ(v, e2).
The signing τ of the half-edges E(H) assigns to an edge {e1, e2} ∈ E(H) with label v

the sign

τ(ei, {e1, e2}) :=

+ if v is endvertex of ν(ei),

− if v is startvertex of ν(ei),

for i = 1, 2.

Fix an arbitrary orientation of a bidirected graph B, and let L be the corresponding

line graph of B. Just as for line graphs of (un)directed graphs, the above defini-

tion of L implies that walks in B induce walks in L and vice versa. Indeed, a walk

v0e1v1 . . . vn−1envn in B induces the walk e1a1e2 . . . en−1an−1en in L where ai is the
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directed edge from ei to ei+1 with label vi for any i ∈ [n − 1]. Vice versa, consider a

walkW = e1a1e2 . . . en−1an−1en in L which has label vi at the edge ai for any i ∈ [n−1],

and let v0 ∈ e1 \ {v1} and vn ∈ en \ {vn−1}. Writing ei = (ei, vi−1, vi) for 1 ≤ i ≤ n, the

walk W in L then induces the walk v0e1v1 . . . envn in B.

The above correspondences between walks in B and walks in L in particular imply

that trails in B induce paths in L and paths in L induce trails in B. We can thus

compute trails in B in polynomial time by applying Lemma 9.25 to a suitable line

graph of B.

Corollary 9.27. There exists a polynomial time algorithm that, given a bidirected graph

B and signed vertices (x, α) and (y, β) of B with x ̸= y, either finds an (x, α)–(y, β)

trail in B or determines that no such trail exists.

Proof. Choose an orientation ν of B such that the startvertex of ν(e) is x for all e ∈
E(B) incident to x and such that the endvertex of ν(f) is y for all f ∈ E(B) incident

to y. Let L be the line graph of B with respect to ν. Then the result follows by

applying Lemma 9.25 to every pair (e,+) and (f,−) of signed vertices of L such that in

B the edge e has sign α at x and the edge f has sign β at y; the choice of ν here implies

that any such (e,+)–(f,−) path in L indeed translates to an x–y trail in B starting in

x with sign α and ending in y with sign β.

As our polynomial time algorithm for Theorem 9.23 follows the proof of The-

orem 9.17, we will also need to compute the appendage of a path in polynomial time.

For this, we first prove a lemma which reduces this problem to finding ‘ear trails’ in

polynomial time which are defined as follows.

Let P be a path in a bidirected graph B, and let v be the startvertex of P . Let A

be a (P, v)-admissible set. The set Bon(P, v, A) is then defined to contain (v,+) and

(v,−) as well as all signed vertices (w, α) of B for which there exists an oriented edge

e ∈ A ∪E(P ) that points at w with sign −α. Note that for each (w, α) ∈ Bon(P, v, A),

there is a v–(w,−α) trail in A∪E(P ). A non-trivial trail T in B is a (P, v, A)-quasi-ear

trail if both the signed start- and endvertex of T are contained in Bon(P, v, A) and the

first and last edge of T are not in A ∪E(P ). If this latter condition holds additionally

for all edges of T , that is E(T ) ∩ (A ∪ E(P )) = ∅, then T is an (P, v, A)-ear trail.

We observe that for every (P, v, A)-ear trail T in B, the set A ∪ E(T ) is (P, v)-

admissible. Indeed, the signed endvertex (w, α) of T is in Bon(P, v, A) and thus there

exists a v–(w,−α) trail Tw in A ∪ E(P ). So for every e ∈ E(T ) the concatenation of

eT and T−
w is a e–v trail in A ∪ E(P ) ∪ E(T ). Similarly, there exists an e–v trail in

A ∪ E(P ) ∪ E(T ) for every e ∈ E(T−).

Lemma 9.28. Let P be a path in a bidirected graph B, and let v be the startvertex of

P . For every non-maximal (P, v)-admissible set A ⊊ A(P, v), there is either an edge

e ∈ E(P )\A such that A∪{e} is (P, v)-admissible or there exists an (P, v, A)-ear trail.
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Proof. Assume that there is no edge e ∈ E(P )\A such that A∪{e} is (P, v)-admissible.

This implies the following observation which we will use repeatedly throughout this

proof: let Q be a v–e trail in A(P, v) ∪ E(P ) for some orientation e of e. Then

e /∈ E(P−) \ A as otherwise A ∪ {e} is (P, v)-admissible witnessed by Qe and Pe,

a contradiction to the assumption.

The proof now proceeds in two steps. We first find a (P, v, A)-quasi-ear trail in B.

Secondly, we show that every (P, v, A)-quasi-ear trail contains a (P, v, A)-ear trail as a

subtrail.

Since A is a non-maximal (P, v)-admissible set, there exists e ∈ A(P, v) \ A. The

above observation then implies that no orientation e of e can be in E(P−), since e ∈
A(P, v) implies the existence of a v–e trail in A(P, v) ∪E(P ); so we have e ∈ A(P, v) \
(A ∪ E(P )).

Fix an arbitrary orientation e of e. Since e ∈ A(P, v), there is a v–e trail T in

A(P, v) ∪ E(P ), and we let f be the first edge on T not contained in A ∪ E(P ); note

that such an edge f exists since e is a suitable choice. The above observation then

implies f /∈ E(P−), and we hence have f ∈ A(P, v) \ (A ∪ E(P )). Thus, there exists

a v–f trail T ′ in A(P, v) ∪ E(P ) and, as above, we let f ′ be the first edge on T ′

not contained in A ∪ E(P ). Again, we have f ′ ∈ A(P, v) \ (A ∪ E(P )) by the above

observation. By this construction, f ′T ′f is a (P, v, A)-quasi-ear trail in B.

Now let T be a (P, v, A)-quasi-ear trail in B. By definition, T is a (P, v, A)-ear trail

if and only if E(T ) ∩ (A ∪ E(P )) = ∅. So suppose that T is not itself a (P, v, A)-ear

trail, and let fTf ′ be a maximal subtrail of T in A ∪ E(P ). Since the first and the

last edge of T are not in A ∪ E(P ), there exist an edge g preceding f on T and an

edge g ′ succeeding f ′ on T . We now claim that at least one of Tg and g ′T is again a

(P, v, A)-quasi-ear trail. This then concludes the proof: since both Tg and Tg ′ contain

strictly fewer edges in A∪E(P ), we can recursively apply the above step until we obtain

a (P, v, A)–ear trail.

Both g and g ′ are not in A ∪ E(P ) by construction. So by the definition of

Bon(P, v, A), the claim holds if f ∈ A ∪ E(P−) or f ′ ∈ A ∪ E(P ). Thus, we can

assume that f ∈ E(P ) \ A and f ′ ∈ E(P−) \ A since f, f ′ ∈ A ∪ E(P ). Let h be the

first edge of E(fTf ′) along P . If we have h ∈ E(T ), then PhTf ′ is a trail. This con-

tradicts our above observation since f ′ ∈ E(P−) \ A. Otherwise, h ∈ E(T−) and then

PhT−f is a trail. This contradicts our above observation since f ∈ E(P−) \ A.

Corollary 9.29. There exists a polynomial time algorithm that, given a path P with

startvertex v in a bidirected graph B, computes its appendage A(P, v).

Proof. The algorithm starts with the (P, v)-admissible set A = ∅ and extends A re-

cursively to (P, v)-admissible sets until A = A(P, v). Let A be any (P, v)-admissible

set.

The algorithm first checks whether there exists an edge e ∈ E(P ) \ A such that

A ∪ {e} is again (P, v)-admissible. Such an edge e exists if and only if there exists
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a v–e trail in A ∪ E(P ) where e ∈ E(P−). This can be checked in polynomial time

by Corollary 9.27. If such an edge e exists, then the algorithm restarts the recursion

with A ∪ {e}.
If there is no such edge, then the algorithm looks for a (P, v, A)-ear trail T in B.

This can again be done in polynomial time by Corollary 9.27 since there exists such a

(P, v, A)-ear trail if and only if there is a non-trivial trail in B− (A∪E(P )) that starts
and ends in Bon(P, v, A). If such T exists, then the algorithm restarts the recursion

with A ∪ E(T ) which is again (P, v)-admissible by the definition of (P, v, A)-ear trail.

If there is also no (P, v, A)-ear trail, then Lemma 9.28 implies A = A(P, v), and the

algorithm terminates. Since the number of recursion steps is bounded by |E(B)|, this
algorithm runs in polynomial time.

With all these polynomial time algorithms at hand, we are now ready to prove The-

orem 9.23.

Proof of Theorem 9.23. Our algorithm follows the construction in the proof of The-

orem 9.17 which thus yields the correctness of the algorithm. Each construction step of

the recursive procedure in the proof of Theorem 9.17 can be done in polynomial time

by Lemma 9.25, Corollary 9.27 and Corollary 9.29. The number of recursion steps is at

most the sum of the lengths of the paths Pi and hence bounded by |E(B)|. Altogether,
this yields a polynomial running time.

153



Appendix

154



Chapter 10

Supplementary Material

The proof of Theorem 3.3 in Chapter 3 is done with the help of a computer algorithm.

The files containing the algorithm, named K 4 game.py and functions.py, are provided

with the print of this thesis. The files can also be found online, e.g. at [BG23b].

155



Chapter 11

Summaries

Summary of Results (English)

Games on Graphs

In Part I we investigate (G,H)-games for different graphs G and H: two players al-

ternately claim edges of a graph G with the aim to have a copy of H contained in the

claimed edges. In the strong version of the game it is the aim of both players, in the

Maker-Breaker version it is just the aim of Maker, while Breaker tries to prevent this.

The main result of Chapter 3 is that there is a winning strategy for the first player in

the strong (Kℵ0 , K4)-game.

In Chapter 4 we consider the Maker-Breaker (Kℵ0 , Kℵ0)-game with a number of

different additional structural requirements. We prove that in the basic version of the

game there is a winning strategy for Maker.

A possible structural property is to colour the vertices of the board and require that

Maker’s target graph H reflects the colouring of the board. We show that if there are

only finitely many colours then Maker can obtain a complete subgraph in which all

colours appear infinitely often, but that Breaker can prevent this if there are infinitely

many colours. Even when there are infinitely many colours, we show that Maker can

obtain a complete subgraph in which infinitely many of the colours each appear infinitely

often.

Another possible structural property is to enumerate the board with the rational

numbers and require that the vertex set of Maker’s complete infinite graph with the

induced ordering on the vertex set is order-isomorphic to Q. We prove that there is

a winning strategy for Maker in this game in Section 4.4. We also prove that there is

a winning strategy for Breaker in the game where Maker must additionally make the

vertex set of her complete graph dense in Q.

In Chapter 5 we investigate Maker-Breaker games with boards of size ℵ1 in which

Maker’s goal is to build a copy of the host graph. In contrast to the smaller boards,

set-theoretic considerations come into play and a firm dependence of the outcome of
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the game on the axiomatic framework is established. We prove that there is a winning

strategy for Maker in the (Kω,ω1 , Kω,ω1)-game under ZFC+MA+¬CH and a winning

strategy for Breaker under ZFC+CH. We prove a similar result for the (Kω1 , Kω1)-game

where Maker has a winning strategy under ZF+DC+AD, while Breaker has one under

ZFC+CH again.

Directed and Bidirected Graphs

In Part II we study directed and bidirected graphs. We touch on different subjects in

the field and prove a number of results.

In Chapter 6 we investigate ubiquity in directed graphs by considering two simple

classes of directed graphs: digraphs whose underlying undirected graph is a ray or a

double ray. We prove that a digraph whose underlying undirected graph is a ray is

ubiquitous if and only if it has only finitely many vertices of in-degree 2 as well as only

finitely many vertices of out-degree 2. For a digraph whose underlying undirected graph

is a double ray that is not a directed double ray we prove that it is ubiquitous if and

only if the sum of the number of vertices of in-degree 2 and vertices of out-degree 2 is

odd.

In Chapter 7 we generalise a result by László Lovász. He proved that for any finite

digraph D with a root r there is a spanning subdigraph L such that for every vertex

v ∈ V (D)\{r} some maximal set of paths from r to v in L covers all incoming edges of

v in D while one may choose from each path of such a maximal set of paths precisely

one edge or internal vertex in such a way that the resulting set separates r from v in the

original graph D. Attila Joó proved the corresponding statement for countably infinite

digraphs. We prove the corresponding result for digraphs of size ℵ1.

In Chapter 8 we investigate 1-separations in (possibly infinite) directed graphs. For

this purpose we introduce a relation for tight set partitions, correspondence, and a

novel structure called torsoids. We show that being in correspondence is an equivalence

relation on a certain class of tight set partitions and obtain a good insight into how

tight sets relate to torsoids. We further prove that if there is a torsoid corresponding to

a tight set partition, it is unique. In summary, we show that torsoids are a global tool

in the sense that they capture all tight cut contractions of a given digraph independent

of the precise choice of a tight cut family.

Lastly in Chapter 9 we investigate connectivity in bidirected graphs, a generalisation

of directed graphs. An important theorem in graph theory due to Karl Menger asserts

that in a graph the maximum number of disjoint paths connecting two vertex sets X

and Y in a graph is the same as the minimum number of vertices separating X and Y .

Unfortunately this statement can not be moved verbatim to bidirected graphs, which we

demonstrate. We also prove that there is a corresponding statement in bidirected graphs

for which we introduce an additional property, cleanness. We also prove that there is

a Menger type statement for edge disjoint paths in bidirected graphs and that both
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statements imply Menger’s Theorem in directed and undirected graphs. Our statement

also gives a polynomial time algorithm to calculate a set of paths and a separating set

of vertices.
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Zusammenfassung der Ergebnisse (Deutsch)

Spiele auf Graphen

In Teil I untersuchen wir (G,H)-Spiele für verschiedene Graphen G und H: zwei Spieler

reklamieren abwechselnd Kanten eines Graphen G für sich, mit dem Ziel eine Kopie

von H in den von ihnen eingenommenen Kanten zu enthalten. In der starken Variante

des Spiels ist dies das Ziel beider Spieler, in der Erbauer-Zerstörer Variante ist dies

lediglich das Ziel des Erbauers, während es das Ziel des Zerstörers ist, den Erbauer

vom Erreichen seines Ziels abzuhalten. Das Hauptergebnis von Kapitel 3 ist, dass es

eine Gewinnstrategie für den ersten Spieler in der starken Variante des (Kℵ0 , K4)-Spiels

gibt.

In Kapitel 4 betrachten wir das Erbauer-Zerstörer (Kℵ0 , Kℵ0)-Spiel mit verschiede-

nen zusätzlichen strukturellen Anforderungen. Wir beweisen, dass es in der Grundver-

sion des Spiels eine Gewinnstrategie für den Erbauer gibt.

Eine mögliche strukturelle Eigenschaft ist, die Ecken des Spielfelds zu färben und zu

verlangen, dass der Zielgraph H des Erbauers die Färbung des Spielfelds widerspiegelt.

Wir zeigen, dass, wenn es nur endlich viele Farben gibt, der Erbauer einen vollständigen

Teilgraphen erhalten kann, in dem alle Farben unendlich oft auftreten, aber dass der

Zerstörer dies verhindern kann, wenn es unendlich viele Farben gibt. Für die Variante

in der es unendlich viele Farben gibt, zeigen wir, dass der Erbauer einen vollständigen

Teilgraphen erhalten kann, in dem unendlich viele verschiedene Farben jeweils unendlich

oft auftreten.

Eine weitere mögliche strukturelle Eigenschaft ist, das Spielfeld mit den rationalen

Zahlen aufzuzählen und zu verlangen, dass die Eckenmenge des vollständigen unendli-

chen Graphen des Erbauers mit der induzierten Ordnung auf der Eckenmenge isomorph

zu Q ist. Wir beweisen in Abschnitt 4.4, dass es eine Gewinnstrategie für den Erbauer in

diesem Spiel gibt. Wir beweisen ebenfalls, dass es eine Gewinnstrategie für den Zerstörer

in der Variante des Spiels gibt, in der die Eckenmenge des vollständigen Graphen des

Erbauers dicht in Q sein muss.

In Kapitel 5 untersuchen wir Erbauer-Zerstörer Spiele auf Spielfeldern der Kardina-

lität ℵ1, in denen es das Ziel des Erbauers ist, eine Kopie des Spielfelds zu erstellen. Im

Gegensatz zu den kleineren Spielfeldern sind hier mengentheoretische Aspekte relevant.

Wir stellen fest, dass es eine starke Abhängigkeit des Spielausgangs vom axiomati-

schen Rahmen gibt. Wir beweisen, dass es eine Gewinnstrategie für den Erbauer im

(Kω,ω1 , Kω,ω1)-Spiel unter ZFC+MA+¬CH und eine Gewinnstrategie für den Zerstörer

unter ZFC+CH gibt. Wir beweisen ein ähnliches Ergebnis für das (Kω1 , Kω1)-Spiel, wo

der Erbauer eine Gewinnstrategie unter ZF+DC+AD hat, während der Zerstörer eine

unter ZFC+CH hat.
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Gerichtete und Bigerichtete Graphen

In Teil II untersuchen wir gerichtete und bigerichtete Graphen. Wir schneiden diverse

Themen auf diesem Gebiet an und beweisen Ergebnisse in diesen verschiedenen Berei-

chen.

In Kapitel 6 untersuchen wir Allgegenwart in gerichteten Graphen, indem wir zwei

einfache Klassen von gerichteten Graphen betrachten: gerichtete Graphen, deren zu-

grundeliegender ungerichteter Graph ein Strahl oder ein Doppelstrahl ist. Wir beweisen,

dass ein gerichteter Graph, dessen zugrunde liegender ungerichteter Graph ein Strahl

ist, allgegenwärtig ist, genau dann, wenn er endlich viele Ecken mit Eingangsgrad 2

und endlich viele Ecken mit Ausgangsgrad 2 hat. Für einen gerichteten Graphen dessen

zugrunde liegender ungerichteter Graph ein Doppelstrahl aber kein gerichteter Doppel-

strahl ist, beweisen wir, dass er allgegenwärtig ist, genau dann, wenn die Summe der

Anzahl der Ecken mit Eingangsgrad 2 und Ecken mit Ausgangsgrad 2 ungerade ist.

In Kapitel 7 verallgemeinern wir ein Ergebnis von László Lovász. Er bewies, dass

es für jeden endlichen gerichteten Graphen D mit designierter Wurzel r einen aufspan-

nenden gerichteten Teilgraphen L gibt, so dass es für jede Ecke v ∈ V (D) \ {r} eine

maximale Menge von Wegen von r zu v in L gibt, die alle eingehenden Kanten von v in

D überdeckt und, dass man aus jedem Weg einer solchen maximalen Menge von Wegen

genau eine Kante oder interne Ecke auswählen kann, sodass die resultierende Menge

im ursprünglichen Graph D die Wurzel r von der Ecke v trennt. Attila Joó bewies die

entsprechende Aussage für abzählbar unendliche gerichtete Graphen. Wir beweisen das

entsprechende Ergebnis für gerichtete Graphen der Kardinalität ℵ1.

In Kapitel 8 untersuchen wir 1-Separationen in (möglicherweise unendlichen) ge-

richteten Graphen. Zu diesem Zweck führen wir eine Relation zwischen Partitionen

von knappen Mengen ein, welche wir Korrespondenz nennen, und wir definieren ei-

ne neue Struktur namens Torsoid. Wir zeigen, dass
”
in Korrespondenz stehen“ eine

Äquivalenzrelation auf einer bestimmten Klasse von Partitionen von knappen Mengen

ist und erhalten einen guten Einblick in die Interaktion von knappen Mengen mit Tor-

soiden. Wir beweisen außerdem, dass wenn ein Torsoid existiert, der in Korrespondenz

zu einer Partition von knappen Mengen steht, dieser eindeutig ist. Zusammenfassend

zeigen wir, dass Torsoide in dem Sinne ein globales Werkzeug sind und, dass sie alle Kon-

traktionen knapper Schnitte eines gegebenen gerichteten Graphen erfassen, unabhängig

von der genauen Wahl einer Familie von knappen Schnitten.

Zuletzt untersuchen wir in Kapitel 9 Zusammenhang in bigerichteten Graphen, einer

Verallgemeinerung von gerichteten Graphen. Ein wichtiges Theorem der Graphentheo-

rie von Karl Menger besagt, dass in einem Graphen die maximale Anzahl disjunkter

Wege, die zwei Eckenmengen X und Y in einem Graphen verbinden, gleich der minima-

len Anzahl von Ecken ist, die X und Y trennen. Wir beweisen, dass diese Aussage nicht

direkt auf bigerichtete Graphen übertragen werden kann. Wir beweisen aber eine dazu

passende Aussage in bigerichteten Graphen, für die wir eine zusätzliche Eigenschaft
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einführen: Sauberkeit. Wir zeigen dann eine mengerartige Aussage für kantendisjunk-

te Wege in bigerichteten Graphen für Eckenmengen, die sauber sind. Wir beweisen

ebenfalls, dass sowohl die eckendisjunkte als auch die kantendisjunkte Aussage die je-

weiligen nach Menger benannten Theoreme in gerichteten und ungerichteten Graphen

implizieren. Zuletzt zeigen wir, dass unsere Aussage einen Polynomialzeitalgorithmus

zur Berechnung einer Wegemenge und einer trennenden Eckenmenge liefert.
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Chapter 12

Publications Related to this Work

Games on Graphs

(1) Chapter 3 is based on [BG23b], which is based on [Gut17].

(2) In Chapter 4, Section 4.4 is based on [BG23a]. The other sections are based on

[BEG23], which are based on [Gut20].

(3) Chapter 5 is based on [BGJP22].

Directed and Bidirected Graphs

(4) In Chapter 6, Section 6.1 is based on [GKR22] and Section 6.2 is based on

[GKR23].

(5) Chapter 7 is based on [GJ23].

(6) Chapter 8 is based on [BGH+23].

(7) Chapter 9 is based on [BGG+23].
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Chapter 13

Declaration of my Contribution

Games on Graphs

Chapter 3 is based on [BG23b] and is the result of research that I conducted under

the supervision of Nathan Bowler. I drafted the chapter and the associated algorithm

found in the files K 4 game.py and functions.py. The topic of this chapter is the same

as the topic of my bachelor thesis [Gut17], thus the proof ideas are the same but the

proof presented in Chapter 3 is completely new, especially the computer algorithm was

drafted within my time as a doctoral student.

Chapter 4 is based on [BEG23] and [BG23a]. As with Chapter 3, Section 4.4 is

the outcome of research that I conducted under the supervision of Nathan Bowler

and I drafted the section. [BEG23] was researched by Marit Emde and I under the

supervision of Nathan Bowler. The research for Section 4.1 was done by Marit Emde

under supervision, while the research for Section 4.2 and Section 4.3 was done by me

under supervision. I drafted Section 4.1, Section 4.2 and Section 4.3. A number of ideas

in this chapter have their root in my master thesis, in particular [BEG23] has overlap

with my master thesis [Gut20].

Chapter 5 is based on [BGJP22] and the outcome of research conducted together

with Nathan Bowler, Attila Joó and Max Pitz following a talk about Chapter 4 that

I gave in the weekly research seminar of the discrete maths group of the University of

Hamburg. A first draft of the paper was written by Attila Joó.

Directed and Bidirected graphs

Chapter 6 is the result of research conducted in close collaboration with Thilo Krill

and Florian Reich and based on [GKR22] and [GKR23]. We undertook the research

together and wrote the papers together.

Chapter 7 is based on [GJ23] and arose in collaboration with Attila Joó. As Attila

Joó published a paper on the corresponding result in countable graphs [Joó19b] and
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first introduced me to elementary submodels, he provided the key ideas. We wrote the

paper together.

Chapter 8 is the result of a project by Nathan Bowler, Meike Hatzel, Ken-ichi

Kawarabayashi, Irene Muzi, Florian Reich and me within the context of a research stay

in Tokyo, Japan. As a result the research was conducted in close collaboration with

all authors. Subsection 8.1.1 was drafted by Meike Hatzel, Section 8.3 was drafted

by Nathan Bowler, Section 8.5 was drafted by Florian Reich, while Section 8.2 and

Section 8.4 were drafted by Florian Reich and me in close collaboration.

Chapter 9 is the result of a research seminar that I organised, leading to a publication

[BGG+23] by Nathan Bowler, Ebrahim Ghorbani, Raphael W. Jacobs, Florian Reich

and me. We conducted the research together in regular meetings and drafted Section 9.1

together. Section 9.2 and Section 9.4 were drafted by Nathan Bowler, Section 9.3 and

Section 9.6 were drafted by Florian Reich while I drafted Section 9.5.
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[EGJ21] J. Erde, J. P. Gollin, and A. Joó, Enlarging Vertex-Flames in Countable Digraphs, Journal

of Combinatorial Theory, Series B 151 (2021), 263–281.

[ELP82] J. Edmonds, L. Lovász, and W. R. Pulleyblank, Brick Decompositions and the Matching

Rank of Graphs, Combinatorica 2 (1982), no. 3, 247–274.

[Erd19] J. Erde, personal communication, 2019.

[GG55] R. E. Greenwood and A. M. Gleason, Combinatorial Relations and Chromatic Graphs,

Canadian Journal of Mathematics 7 (1955), 1–7.
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