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Abstract

A large part of human speech communication takes place in noisy environments and is sup-
ported by technical devices. For example, a hearing-impaired person might use a hearing aid
to take part in a conversation in a busy restaurant. These devices, but also telecommunication
in noisy environments or voiced-controlled assistants, make use of speech enhancement and
separation algorithms that improve the quality and intelligibility of speech by separating
speakers and suppressing background noise as well as other unwanted effects such as reverber-
ation. If the devices are equipped with more than one microphone, which is very common
nowadays, then multi-channel speech enhancement approaches can leverage spatial information
in addition to single-channel tempo-spectral information to perform the task.

Traditionally, linear spatial filters, so-called beamformers, have been employed to suppress
the signal components from other than the target direction and thereby enhance the desired
speech signal. Since the noise reduction is insufficient in acoustically challenging scenarios,
a beamformer for spatial filtering is often combined with a single-channel tempo-spectral
post-filter. In single-channel speech enhancement and separation, approaches based on deep
neural networks (DNNs) have been dominating the research landscape for some time. On the
other hand, in multi-channel speech enhancement and separation, a change is currently taking
place. Initially, DNNs were only integrated into multi-channel systems for tempo-spectral
modeling, e.g., for estimating the beamformer parameters, but the spatial processing continued
to be performed with a linear beamformer. Today, however, the number of publications that
propose to replace the traditional pipeline with end-to-end trained DNNs is steadily increasing.
With such an approach, DNNs can be used to realize a filter that integrates both spatial
and temporal-spectral processing into a single non-linear operation. Such joint spatial and
tempo-spectral non-linear filters are the subject of this thesis and referred to as non-linear
spatial filters.

The first part of the thesis aims to clarify the benefits that an analytic non-linear spatial filter
can offer compared to the traditional beamformer plus post-filter pipeline from a statistical
perspective. A better understanding of the properties of non-linear spatial filters helps to
decide if and in which situation a (DNN-based) non-linear spatial filter should replace the
traditional approaches. Based on analytical estimators, we show that a non-linear spatial filter
outperforms a beamformer plus post-filter approach if the noise distribution is non-Gaussian.
Furthermore, by means of experiments, we demonstrate that the non-linear spatial filter
enables a more powerful spatial processing that is not bound to the theoretical limits of a
linear approach.

The second part focuses on the design and analysis of DNN-based joint spatial and tempo-
spectral non-linear filters. We analyze the dependencies between the three available sources
of information (spatial, spectral, and temporal) and find that the correlations between the
frequency bands are particularly important for achieving a high spatial selectivity. Regarding
the network architecture, this implies that spatial and spectral information should be processed
together at an early stage. The DNN-based non-linear spatial filter designed according to this
principle significantly outperforms an oracle beamformer plus DNN-based post-filter in difficult
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scenarios with a high number of interfering speakers and a low number of microphones.

In the third part of the thesis, we add a steering mechanism to the DNN-based non-linear
spatial filter so that it can be steered in a chosen target direction. We apply the steerable
filter to speech separation tasks and find that the explicit focus on the spatial selectivity of
the filter during training is not only beneficial for the overall separation performance but also
leads to an improved generalization ability compared to a similar network trained based on
permutation invariant training (PIT).

As a result, this thesis not only contributes to a better theoretical understanding of non-linear
spatial filters and their performance potential, but it also investigates various aspects of a
practical implementation using DNNs. The research ultimately culminates in the development
of a real-time demonstration of a DNN-based non-linear spatial filter.
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Zusammenfassung

Ein großer Teil der menschlichen Sprachkommunikation findet in lauten Umgebungen statt
und wird durch technische Hilfsmittel ermöglicht. So kann beispielsweise eine hörgeschädigte
Person ein Hörgerät benutzen, um an einem Gespräch in einem belebten Restaurant teilhaben
zu können. Diese Geräte, aber auch Telekommunikation in lauten Umgebungen oder sprachge-
steuerte Assistenten, nutzen Algorithmen zur Sprachverbesserung und Sprechertrennung. Diese
verbessern die Sprachqualität und -verständlichkeit, indem sie die Sprecher separieren und
Hintergrundgeräusche sowie andere unerwünschte Effekte wie Nachhall unterdrücken. Wenn
die Geräte mit mehr als einem Mikrofon ausgestattet sind, was heutzutage sehr häufig der
Fall ist, dann können Ansätze zur mehrkanaligen Sprachverbesserung und Sprechertrennung
zusätzlich zu den einkanaligen tempo-spektralen Informationen auch räumliche Informationen
nutzen.

Traditionell wurden lineare räumliche Filter, so genannte Beamformer, eingesetzt, um die
Signalanteile aus anderen Richtungen als der Zielrichtung zu unterdrücken und so das Sprach-
signal zu verbessern. Da die Rauschunterdrückung in akustisch herausfordernden Szenarien
meist unzureichend ist, wird ein Beamformer zur räumlichen Filterung oft mit einem ein-
kanaligen tempo-spektralen Post-Filter kombiniert. Im Bereich der einkanaligen Sprachver-
besserung und Sprechertrennung dominieren seit einiger Zeit Ansätze auf Basis von tiefen
neuronalen Netzen (engl. deep neural networks (DNNs)) die Forschungslandschaft. Im Bereich
der mehrkanaligen Sprachverbesserung und Sprechertrennung hingegen findet derzeit ein
Umbruch statt. Ursprünglich wurden DNNs nur als tempo-spektrale Modelle in mehrkanalige
Systeme integriert, z.B. für die Schätzung der Beamformer-Parameter, aber die räumliche
Verarbeitung wurde weiterhin mit einem linearen Beamformer durchgeführt. Heute nimmt
jedoch die Zahl der Veröffentlichungen stetig zu, welche die traditionellen Ansätze vollständig
durch ein DNN ersetzen. In diesem Fall kann mit dem DNN ein Filter realisiert werden, welches
sowohl die räumliche als auch die zeitlich-spektrale Verarbeitung in eine einzige nicht-lineare
Operation zusammenfasst. Solche kombiniert räumlich und tempo-spektralen nicht-linearen
Filter sind der Forschungsgegenstand dieser Arbeit und werden im Folgenden verkürzend als
nicht-lineare räumliche Filter bezeichnet.

Der erste Teil der Arbeit untersucht die Vorteile eines analytischen nicht-linearen räumlichen
Filters im Vergleich zu einer traditionellen Verkettung aus Beamformer und Post-Filter
aus einer statistischen Perspektive. Ein besseres Verständnis der Eigenschaften nicht-linearer
räumlicher Filter hilft bei der Entscheidung, ob und in welchen Situationen ein (DNN-basiertes)
nicht-lineares räumliches Filter die traditionellen Ansätze ersetzen sollte. Basierend auf
analytischen Schätzern zeigen wir, dass ein nicht-lineares räumliches Filter einen Beamformer
in Kombination mit einem Post-Filter übertrifft, wenn das Rauschen nicht gaußverteilt ist.
Darüber hinaus zeigen wir anhand von Experimenten, dass das nicht-lineare räumliche Filter
eine leistungsfähigere räumliche Verarbeitung ermöglicht, die nicht an die theoretischen
Grenzen eines linearen Ansatzes gebunden ist.

Der zweite Teil konzentriert sich auf den Entwurf und die Analyse von DNN-basierten
kombiniert räumlich und tempo-spektralen nicht-linearen Filtern. Wir analysieren die Abhän-
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gigkeiten zwischen den drei verfügbaren Informationsquellen (räumlich, spektral und zeitlich)
und stellen fest, dass die Abhängigkeiten zwischen den Frequenzbändern sehr wichtig sind, um
eine hohe räumliche Selektivität zu erreichen. Im Hinblick auf die Netzwerkarchitektur bedeu-
tet dies, dass räumliche und spektrale Informationen zu einem frühen Zeitpunkt gemeinsam
verarbeitet werden sollten. Unser DNN-basiertes nicht-lineares räumliches Filter, das nach
diesem Prinzip entworfen wurde, übertrifft in schwierigen Szenarien mit einer hohen Anzahl
von störenden Sprechern und einer geringen Anzahl von Mikrofonen deutlich die Leistung
eines Orakel-Beamformers kombiniert mit einem DNN-basierten Post-Filter.

Im dritten Teil der Arbeit fügen wir dem DNN-basierten nicht-linearen räumlichen Filter
einen Steuerungsmechanismus hinzu, so dass es in eine bestimmte Zielrichtung ausgerichtet
werden kann. Wir verwenden das steuerbare Filter für die Sprechertrennung und stellen fest,
dass der explizite Fokus auf die räumliche Selektivität des Filters während des Trainings
nicht nur vorteilhaft für die Gesamtleistung ist, sondern auch zu einer verbesserten Gene-
ralisierungsfähigkeit im Vergleich zu einem ähnlichen Netzwerk führt, das mit Hilfe einer
permutations-invarianten Verlustfunktion trainiert wurde.

Im Ergebnis leistet diese Arbeit damit nicht nur einen Beitrag zu einem besseren theoretischen
Verständnis nicht-linearer räumlicher Filter und ihres Leistungspotenzials, sondern untersucht
auch verschiedene Aspekte einer praktischen Umsetzung mit DNNs. Die Forschung gipfelt
schließlich in der Entwicklung einer Echtzeit-Demonstration eines DNN-basierten nicht-linearen
räumlichen Filters.
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Introduction 1
1.1 Motivation
Humans are often confronted with the task of understanding speech in noisy environments.
The classic example is a conversation at a cocktail party, which serves as the namesake for
the task of extracting a target speech signal from a recording that is corrupted by interfering
speakers, interfering background noise, and/or reverberation: it is known as the cocktail party
problem [1]. However, for many people, it is already a challenge to master communication in
less extreme everyday situations. Many people have a problem following a conversation in
a busy restaurant or at a dinner table when more than one person is speaking at the same
time. Since the ability to understand speech in noisy environments decreases dramatically
with age, technical solutions for this problem, for example, in the form of hearing aids, play
an increasingly important role in our aging society. The technical solutions are based on
algorithms for speech enhancement, speaker extraction, and separation, which have a wide
range of applications besides hearing devices, including telecommunication or speech-controlled
human-machine interaction based on automatic speech recognition (ASR) systems.

Speech processing algorithms are often classified according to the number of microphone
channels that are used to record the noisy signal. While single-channel algorithms use the
tempo-spectral properties of the signal to perform a speech processing task, multi-channel
algorithms, i.e., those that process noisy recordings obtained from more than one microphone,
can additionally leverage spatial information. Spatial information is present since the signal
travels along different paths from a source to each microphone of the microphone array. In
particular, the length of the direct path between the source and the individual microphones
differs depending on the direction of arrival (DOA) of the signal. This is reflected by the
time differences of arrival (TDOAs) of the signal in the different microphone channels. The
well-known delay-and-sum beamformer [2] is a simple method that utilizes these spatial
properties. The idea is to compensate for the TDOAs so that the target signal is time-aligned
in all channels. Averaging the time-aligned signals then optimally reduces uncorrelated noise
in the individual microphone channels. Another prominent example of a traditional spatial
filter is the minimum variance distortionless response (MVDR) beamformer [2], which can
be derived by optimizing for minimum noise variance subject to a distortionless constraint.
These two spatial filters have a property that they share with all traditional linear spatial
filters designed according to the filter-and-sum approach: When a local time-frequency bin is
considered, and the filter coefficients are a function of the signals’ statistics, the processing
model is linear with respect to the noisy observation. In many realistic application scenarios,
the noise reduction of the traditional linear spatial filters is insufficient, for example, those
with a low number of microphones, many interfering sources, and reverberation. Therefore, a
tempo-spectral post-filter is commonly applied to the single-channel output of the traditional
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1.2. MULTI-CHANNEL SPEECH ENHANCEMENT, SPEAKER EXTRACTION AND SEPARATION

linear spatial filters to improve the noise reduction performance.

Traditionally, both the linear spatial filters as well as a plethora of post-filters have been
derived to fulfil a chosen statistical optimality criterion. Some publications also investigate
the optimality of the two-stage approach combining a beamformer and a post-filter [3]–[5].
For example, a well-known result by Simmer et al. [5] is that the multi-channel Wiener filter
can be decomposed in a MVDR beamformer and a single-channel Wiener post-filter. Perhaps
under the impression of this result, the linear beamformer plus (non-linear) single-channel
post-filter approach is commonly not perceived as a limitation. However, this ignores the
fact that the result by Simmer et al. and the other results cited above are linked to the
specific assumption that the noise follows a multivariate Gaussian distribution. On the other
hand, a derivation of Hendriks et al. [6], who compute the minimum mean square error
(MMSE) optimal filter under a Gaussian mixture noise assumption received only very little
attention, and the theoretical result was evaluated only much later as part of this work. The
resulting filter does not fit the two-stage processing scheme since it jointly performs the spatial
and spectral processing in a single non-linear operation. For brevity, we will use the term
non-linear spatial filter instead of joint spatial and (tempo-)spectral non-linear filter in the
connecting text of this cumulative thesis.

Today, such a non-linear spatial filter does not necessarily have to be derived analytically but
can also be learned from data with the help of deep learning techniques. Compared to a filter
derived in a statistical framework, using a DNN has the advantage that fewer simplifying
assumptions are needed to keep the estimation problem tractable and that the performance is
often very good. On the other hand, neural networks require a training stage that is costly
in terms of energy consumption and time and involves a large portion of unpredictability.
It is difficult to foresee if a training will be successful and deliver a spatial filter with good
performance that also generalizes to situations unseen during training.

In the deep learning age, the question of the limits of the two-stage approach combining a
linear beamformer and a post-filter is of great practical relevance, and it is one of the core
questions addressed in this thesis. We investigate the advantages a non-linear spatial filter can
offer compared to the much simpler traditional linear spatial filter with a separate post-filter
in relevant practical scenarios. A good understanding of the properties and performance
potential makes it possible to evaluate if a (DNN-based) non-linear spatial filter should replace
the traditional linear spatial filters, in which situations this is advisable, and how such a
filter should be designed. In this thesis, we start from a statistical perspective on non-linear
spatial filtering and finally arrive at a well-performing implementation based on DNNs. The
remainder of the introduction explains the addressed speech processing tasks, describes prior
work as well as the development of the research landscape parallel to the work on this thesis,
and outlines the research questions that are investigated in detail in the publications included
in this cumulative thesis.

1.2 Multi-channel Speech Enhancement, Speaker Ex-
traction and Separation
In this work, we address three speech signal processing tasks that require one or multiple
corrupted target speech signals to be recovered from a noisy multi-channel recording. The
goal is to improve the speech quality and intelligibility of the target speech signals, which
are degraded by interfering noise and reverberation. The task of recovering a single target
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1.2. MULTI-CHANNEL SPEECH ENHANCEMENT, SPEAKER EXTRACTION AND SEPARATION

speech signal from background noise is commonly referred to as speech enhancement. The
underlying core of all speech enhancement algorithms is the ability to distinguish between the
signal components that belong to the target speech signal and those that should be suppressed
because they belong to the background noise. It is clear that the task’s difficulty increases
when the noise is more similar to the target speech signal itself. Accordingly, the so-called
cocktail party scenario with many interfering speech signals can be considered particularly
difficult. In the literature, the task of recovering a single target speaker from a mixture
of speech signals is often referred to as speaker extraction, while extracting multiple target
speakers is called speech separation.

In the single-channel case, only tempo-spectral information is available to distinguish between
the target signal and the unwanted interfering signals. Traditional noise reduction techniques,
e.g., a Wiener filter [2, Sec. 11.4] or other estimators derived in a statistical framework [7]–[10]
along with their associated parameter estimation schemes, e.g., [7], [11]–[13], rely on the
assumption that the noise is more stationary than the target speech signal. This limiting
assumption is overcome by DNN-based approaches, whose impressive modeling capabilities
have been the driving force behind the progress in single-channel speech enhancement in
recent years. The neural network revolution resulted in many well-performing single-channel
speech enhancement systems, e.g., [14], [15]. Furthermore, in 2016 and 2017, the influential
deep clustering [16] and PIT [17] papers have been a major break-through in single-channel
speech separation, a problem that seemed hardly solvable before the DNN era. In the years
that followed, a variety of systems has been developed that offer impressive single-channel
separation performance, e.g., [18]–[22].

In contrast to single-channel approaches, multi-channel algorithms can leverage spatial infor-
mation in addition to tempo-spectral information. The additional spatial information makes
multi-channel approaches potentially much more powerful than single-channel approaches.
This is particularly relevant when the scenarios under consideration are challenging due to
very low signal-to-noise ratios (SNRs), high reverberation times, diverse and non-stationary
noise types, many interfering speakers, and/or tight resource constraints that limit the size of
the employed DNNs. Section 1.3 describes the traditional approach to multi-channel speech
enhancement with a linear spatial filter, a so-called beamformer, in more detail. However, the
fundamental idea is simple: enhance the target speech signal arriving from a specific direction
by suppressing signal components from all other directions. This idea provides the basis
for decades of research in multi-channel speech enhancement. Numerous publications have
addressed the questions of how to design the linear spatial filter for maximum performance,
how to estimate the required parameters, which post-filtering schemes are appropriate, and
how to increase the robustness under practical constraints [23]–[26].

Not only multi-channel speech enhancement but also multi-channel blind source separation
(BSS) has a long-standing research history. More than twenty years of research have led to
a variety of approaches. The term blind indicates that no prior knowledge regarding the
“recording environment, mixing system, or source locations” [27] is assumed. Many approaches
have been proposed to estimate a set of linear de-mixing filters based on modeling assumptions
that impose structural constraints on the spatial properties and the spectral structure. For
example, techniques based on independent component analysis (ICA) [28]–[30] attempt to
optimize a separation criterion that enforces the independence of the individual source signals.
ICA was later extended to the independent vector analysis (IVA) method [31], [32] to avoid the
frequency-wise permutation problem that arises when separation is performed independently
for each frequency bin. The multi-channel non-negative matrix factorization (NMF) technique
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1.2. MULTI-CHANNEL SPEECH ENHANCEMENT, SPEAKER EXTRACTION AND SEPARATION

combines single-channel NMF for low-rank modeling of the sources’ power spectra with a
model for the spatial covariance matrices. It can also be derived in the more general framework
of local Gaussian models [33], [34] and has been combined with IVA, which resulted in the
independent low-rank matrix analysis (ILRMA) technique [27], [35]. Another dominant line
of research is concerned with clustering-based techniques, which group time-frequency bins
with similar spatial and/or tempo-spectral characteristics [34]. For example, [36]–[39] cluster
the time-frequency bins according to two spatial features, namely the inter-channel phase
differences (IPDs) and inter-channel level differences (ILDs). Clustering-based approaches
often involve a statistical model of the observed spatial mixtures with a latent random variable
that describes the assignment of each time-frequency bin to a sound source. The parameters
of such a statistical model can then be estimated with the expectation-maximization (EM)
algorithm [40], [41], and the resulting assignments of time-frequency bins to sources may
be used for masking the mixture signal directly or for mask-based beamforming, which is
explained in Section 1.4.1.

The success of DNN-based approaches for single-channel enhancement and separation inspired
many researchers to explore the applicability of deep learning techniques for multi-channel
tasks. The first approaches, which emerged from around 2015, integrate DNNs for tempo-
spectral modeling into existing multi-channel processing chains. For example, Heymann et
al. [42] and Erdogan et al. [43] proposed to assign time-frequency bins to a speech or a
noise mask based on their tempo-spectral characteristics and use these masks for estimating
the parameters of a traditional linear spatial filter. Others have explored similar ideas and
integrated DNNs as a tempo-spectral model with spatial clustering approaches for multi-
channel speech enhancement and separation [44]–[46]. These approaches have been designed to
separate the tempo-spectral processing (with a DNN) and spatial processing (with a statistical
model). Many newer approaches, just as the DNN-based non-linear spatial filters developed in
this thesis, do not separate the spatial and tempo-spectral processing, but they process spatial
and tempo-spectral information jointly and end-to-end with a DNN. Since these DNN-based
non-linear spatial filters are the research focus of this work, Section 1.4 gives a detailed
overview of the related work on DNNs for spatial filtering. Many of the approaches presented
there were developed parallel to this work.

For this thesis, we adopt a perspective that views the tasks of multi-channel speaker extraction
and separation as a spatial filtering problem in the same way as the task of multi-channel
speech enhancement. This is also the perspective underlying separation approaches that work
with a collection of fixed beamformers. The beamformers are steered in a large number of
directions, which is followed by a “beam selection” step, where the best filter is selected based
on the separation quality of the output [47]–[49]. Our underlying assumption is that a good
spatial filter should be able to suppress most of the interfering signals regardless of whether
they are background noise or other human speakers as long as they have spatial properties that
distinguish them from the target signal. Since the only difference between speech enhancement
and speaker extraction under this perspective is the type of noise, we do not always differentiate
between speech enhancement and speaker extraction in the publications included in this thesis
but sometimes use the general term speech enhancement for both. In this perspective, the only
difference in handling a speech separation task as opposed to performing speech enhancement
or speaker extraction is that multiple spatial filters are required, which are then steered in the
direction of the different target speakers. In most cases considered in this thesis, we assume
that information about the location of the target speakers is available, either through access
to oracle data for parameter estimation, the use of a dataset with a known fixed placement
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1.2. MULTI-CHANNEL SPEECH ENHANCEMENT, SPEAKER EXTRACTION AND SEPARATION

of the target speaker, or oracle DOA information. There is a large body of literature on
sound source localization, e.g., see [50] for a review of recent developments. However, the task
of sound source localization is mostly out of the scope of this thesis, which focuses on the
analysis and design of non-linear spatial filters.

1.2.1 Signal Model and Notation
Next, we give a formal description of the tasks and introduce the notation. The general
signal model described here is common to all the publications included in this thesis, but the
naming of the variables may differ. We consider a scenario where a C-channel microphone
array records a noisy mixture signal composed of overlapping speech signals uttered by P
speakers and environmental noise. We denote the time-domain dry speech signal of the p’s
speaker by sp(t) with time index t. The speech signal xℓp(t) recorded at the ℓ’s microphone
can be written as the convolution of the dry speech signal and the acoustic impulse response
(AIR) aℓp(t) modeling the propagation path between the p’s speaker and the microphone [23],
[34], i.e.,

xℓp(t) = sp(t) ∗ aℓp(t). (1.1)

In an anechoic scenario, the AIR aℓp(t) describes a time-shift τ ℓp , which corresponds to the
propagation time of the signal from the speaker to the microphone along the direct path.
In a reverberant environment, the AIR aℓp(t) does not only model the direct path but also
the multi-path components caused by reflections from the walls and other obstacles [51].
This way, the AIR reflects the properties of the room in which the signal is transmitted
between the source and the recording microphone and, accordingly, the AIR is often referred
to as room impulse response (RIR), when enclosed spaces are considered. A typical RIR
exhibits distinct peaks related to the direct path and early reflections in the beginning. The
reverberation tail models signal components that have been reflected multiple times before
reaching the microphone. Since many paths with multiple reflections of similar length exist,
their summation in the second part of the RIR has a random structure. The energy level
decays exponentially. For a basic description of the acoustic scenario, the reverberation time
(RT60) and the direct-to-reverberation ratio (DDR) are usually reported to characterize the
properties of the reverberation in a room [51]. The RT60 measures the time it takes for
the sound pressure level to decay by 60 decibels (dB), and the DDR is defined as the ratio
between the power of the direct path signal (first peak of the RIR) and the power of the
signal components reaching the microphone via indirect paths (described by the rest of the
RIR).

We transform the noisy signal into the time-frequency domain using a short-time Fourier
transform (STFT). Then, by the additive signal model, the STFT-domain noisy signal recorded
at microphone ℓ decomposes into a sum of (reverberant) speech signals Xℓ

p(k, i) and additional
background noise V ℓ(k, i), i.e.,

Y ℓ(k, i) =
P∑
p=1

Xℓ
p(k, i) + V ℓ(k, i) (1.2)

with frequency bin index k and time-frame index i. For a more compact notation, we stack
the signals for all microphone channels and denote the multi-channel signal vector with a bold
letter, e.g.,

Y(k, i) = [Y 1(k, i), Y 2(k, i), ..., Y C(k, i)]T ∈ CC . (1.3)
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Employing the narrow-band approximation [51], we can rewrite the convolution in (1.1) as a
multiplication of the STFT-transformed dry speech signal and the acoustic transfer function
(ATF), i.e.,

Xp(k, i) = Sp(k, i) · ap(k, i). (1.4)

This approximation decouples the individual time-frequency bins but is only equivalent to (1.1)
if the AIR is much shorter than a single STFT window [34, Sec. 2.3.2]. Throughout this work,
we assume that the acoustic setup, i.e., the positioning of the speakers and the microphone
array or the reflection properties of the walls, does not change within a single utterance.
Therefore, the ATF can be modeled as time-invariant and denoted without a dependency on
the time-frame index i. In a practical application, the ATFs are usually unknown and need
to be estimated, which also requires resolving the problem of gain ambiguity. From (1.4),
it appears that the magnitude of Xℓ

p(k, i) is influenced by the loudness of the source signal
as well as the attenuation due to the length of the propagation path modeled by aℓp(k, i).
Estimating relative transfer functions (RTFs) instead of ATFs bypasses these difficulties. The
RTFs ãp(k, i) are obtained by dividing the ATF vector by the ATF of a chosen reference
channel, i.e.,

ãp(k) =
[
1,
a2
p(k)
a1
p(k) , ...,

aCp (k)
a1
p(k)

]T
(1.5)

with using the first channel as a reference. The RTF describes the relationship between
the target signal received at the reference microphone with the signal received at the other
microphones, i.e.,

Xp(k, i) = Sp(k, i) · ap(k) = Sp(k, i) · a1
p(k) · ap(k)

a1
p(k) = X1

p (k, i) · ãp(k). (1.6)

In an anechoic or free-field scenario and assuming that the distance between the speaker
and the microphone array is sufficiently large so that the ILDs can be neglected, the RTF
simplifies to the so-called (relative) steering vector [51]

dp(k) =


1

e−2πj∆τ2
p fk

...
e−2πj∆τC

p fk

 (1.7)

which only depends on the relative TDOAs ∆τ ℓp = τ ℓp − τ1
p with respect to the reference

microphone, for which we again picked the first. The variable fk denotes the continuous
frequency associated with the kth frequency bin in Hertz. For an STFT frame length of N
samples and with sampling frequency fs, it is given by fk = kfs

N .

The noise V(k, i) recorded at the microphones can be sensor noise, which is independent
between microphone channels, or environmental noise, which is likely to be correlated between
microphone channels, especially in low frequencies. When adopting a statistical perspective,
we model the spectral coefficients as zero-mean random variables and make the common
simplifying assumption that they are independent with respect to the frequency bin and
the time-frame index. The spatial correlation of the noise signals recorded at the different
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1.3. TRADITIONAL LINEAR SPATIAL FILTERING

Linear spatial
filter

Single-channel
post-filter

Figure 1.1: Illustration of the traditional two-step processing with a linear spatial filter
(beamformer) and single-channel post-filter for tempo-spectral post-processing.

microphone channels is then described by the noise correlation matrix ΦV (k, i):

ΦV (k, i) = E[V(k, i)V(k, i)H ] ∈ CC×C . (1.8)

Here, we denote with E the statistical expectation operator and with (·)H the Hermitian
transpose. For a zero-mean signal, the covariance matrix and correlation matrix are identical,
so that these terms are often used interchangeably in the context of audio processing.

When the number of speakers P is set to one, then (1.2) describes a speech enhancement
task with a single target speech signal potentially corrupted by reverberation and background
noise. For speaker extraction and speech separation, we set P > 1. During the training
of the DNN-based non-linear spatial filters, the goal is to recover the dry speech signal(s)
Sp(k, i) or, equivalently, sp(t), however, delayed by the time it takes the signal to travel from
the source to the reference microphone along the direct path. This formulation includes
the task of dereverberation if the AIRs model an enclosed room. We choose to include the
dereverberation task in the training objective for our neural networks, as this formulation is
aligned with the spatial filtering perspective. The objective of the spatial filter is to suppress
all signal components arriving from directions other than the target direction, which includes
the reflections of the target signal that arrive from directions other than the direct path.

1.3 Traditional Linear Spatial Filtering
Most traditional speech enhancement schemes are designed as a two-step procedure: a linear
spatial filter (beamformer) combined with a post-filter. Figure 1.1 illustrates this setup. The
multi-channel signal is fed into the spatial filter, which aims to emphasize a signal from a
certain direction by suppressing signal components that arrive from other directions. The
dimension of the resulting signal is reduced to one. As the noise reduction obtained with
a spatial filter is often not sufficient, the output is further processed by a potentially non-
linear single-channel post-filter. In this setup, the spatial and tempo-spectral information are
processed separately.

Most beamformers are based on the filter-and-sum processing scheme, where the individual
microphone signals are filtered and then summed. In the frequency-domain, this can be
written as

Ŝ(k, i) = w(k, i)HY(k, i). (1.9)

The speaker index p is omitted in the following sections on spatial filtering to simplify the
notation. The vector w(k, i) ∈ CC contains the filter weights, and Ŝ(k, i) denotes the estimate
of the target speech signal. Like the AIRs, the filter weights may or may not depend on
the time-index i. Furthermore, the filter can be data-dependent or data-independent. An
example of the latter is the delay-and-sum beamformer [2]. In this case, the filter weights
are designed to compensate for the TDOAs at the microphone channels such that the target
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1.3. TRADITIONAL LINEAR SPATIAL FILTERING

signal is time-aligned in all channels after applying the respective filter. The summation then
leads to a constructive superposition of the target signal and optimally reduces uncorrelated
noise, e.g., sensor noise. However, the noise suppression of interfering point sources or diffuse
noise, where the microphone signals are highly correlated especially in low frequencies, might
be insufficient.

Unlike the delay-and-sum beamformer, the well-known MVDR beamformer requires an
estimate of the noise correlation matrix. Its filter weights can be derived by solving the
optimization problem [2], [24]

wMVDR(k, i) = arg min
w∈CC

wH(k, i)ΦN (k, i)w(k, i)

s.t. wH(k, i)d(k) = 1,
(1.10)

where the vector N(k, i) combines all interfering signal components, i.e., environmental noise
and potentially also interfering speakers. The objective function requires that the power of the
noise signal at the output of the beamformer be minimized, while the so-called distortionless
constraint enforces that the target signal remains unchanged. The target signal is identified
by its spatial properties described by the steering vector d(k). The optimization problem
in (1.10) can be solved using the technique of Lagrange multipliers [2], which leads to filter
weights

wMVDR(k, i) = Φ−1
N (k, i)d(k)

dH(k)Φ−1
N (k, i)d(k)

. (1.11)

The optimization problem in (1.10) can also be posed by replacing the steering vector d(k) with
the RTF vector ã(k) [52], which means that the occurrences of d(k) in (1.11) are also replaced
by ã(k). Besides the steering vector or RTF vector, the solution depends on the second-order
statistics of the noise given by ΦN (k, i). The noise correlation matrix can be estimated
from the noisy observation with strategies explained in Section 1.3.1. In this case, since the
statistical properties of the noise are taken into account during filter design, the MVDR
using a can be considered to be data-dependent [23]. Alternatively, if a diffuse noise field is
assumed, an analytic expression can be used to obtain the corresponding noise correlation
matrix, leading to a so-called superdirective beamformer [53], [54]. It is important to note
that, also in the data-dependent case, the filter weights only depend on the statistics, i.e., the
spatial correlation matrix, of the noise, but not the noisy input signal Y(k, i) itself. This is
the common situation in traditional beamforming, which means filter-and-sum beamforming
as in (1.9) is a linear operation with respect to the noisy input signal when considering a local
time-frequency bin.

There are many more beamformers besides the delay-and-sum and MVDR beamformer that
result from variations in the design criteria. For example:

• While the MVDR minimizes the noise power, the minimum power distortionless response
(MPDR) minimizes the overall power of beamformer output subject to a distortionless
constraint [51].

• The linearly constraint minimum variance (LCMV) beamformer generalizes the MVDR
and introduces a set of linear constraints [24], [55]. For example, these can be set up, so
that a distortionless constraint is accompanied by constraints that steer a null in the
direction of an interfering source. The maximum number of constraints is bounded by
the number of microphones so that the maximum number of undesired sources that can
be canceled in an anechoic scenario is C − 1.
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• The maximum SNR or generalized eigenvalue (GEV) beamformer strives to maximize the
SNR at the output of the beamformer [56], [57]. Since this beamformer may introduce
speech distortions, Warsitz et al. propose to combine it with a post-filter to compensate
for the speech distortions [56].

• The multi-channel Wiener filter (MWF) can be derived by selecting the filter weights
of a filter-and-sum beamformer to optimize the MMSE criterion comparing the target
speech signal and the estimate in (1.9) [2, Sec. 12.7], i.e.,

wMWF(k, i) = arg min
w∈CC

E
[∣∣∣S(k, i) − w(k, i)HY(k, i)

∣∣∣2] . (1.12)

The solution involves the inverse of the correlation matrix of the noisy signal ΦY and
the cross-correlation vector of the noisy and clean signal ΦY S as follows:

wMWF(k, i) = Φ−1
Y ΦY S . (1.13)

With using the narrow-band approximation for the speech signal and assuming inde-
pendent speech and noise signals, the multi-channel Wiener filter can be decomposed
in a linear spatial filter followed by a single-channel post-filter as shown in Figure 1.1
[5]. The spatial filter then matches the MVDR beamformer, and the single-channel
post-filter equals the well-known single-channel Wiener filter [2].

The optimization problem associated with the MWF in (1.12) is based on the filter-and-sum
processing model. Solving the optimization problem in (1.12) does not require any assumptions
about the probability distributions of the speech and noise signal, which makes the solution
very general. However, by optimizing (1.12) with respect to the filter weights w(k, i)H , the
filter is constrained to comply with the filter-and-sum processing model and, therefore, to be a
linear filter. Interestingly, the MWF can also be derived in the context of Bayesian estimation,
assuming a multivariate Gaussian distribution for the noise signal and univariate Gaussian
distribution for the target clean speech signal. The Bayesian MMSE estimate TMMSE(Y(k, i))
can be defined as

TMMSE(Y(k, i)) = arg min
Ŝ∈C

E
[∣∣∣S(k, i) − Ŝ(k, i)

∣∣∣2] , (1.14)

where the target speech estimate Ŝ(k, i) could be any function of the input Y(k, i). In
particular, no assumption on the linearity of this function is made. Nevertheless, the solution
of the minimization task in (1.14) is a filter-and-sum beamformer with filter weights wMWF
given in (1.13) if a complex Gaussian distribution is assumed for speech and noise spectral
coefficients [24, Sec. 6.2.2.2]. In their work, Balan and Rosca [3] generalize these findings
to all settings that involve a noise signal that follows a multivariate Gaussian distribution.
Using the theory of sufficient statistics, their work leads to the following conclusion: If the
noise signal follows a multivariate Gaussian distribution, then the MMSE-optimal spatial
filter is an MVDR beamformer followed by a possibly non-linear single-channel post-filter.
The probability distribution of the speech signal can be chosen arbitrarily and only affects
the type of post-filter. Also the maximum a posteriori (MAP) and maximum likelihood (ML)
estimators can be shown to involve an MVDR beamformer for spatial processing. A more
detailed review of these relationships is outlined in our publication [P3], which is part of this
thesis and includes a new simplified proof for the result of Balan and Rosca. Along similar
lines, Schwartz et al. [4] also decompose an MMSE filter derived under a Gaussian assumption
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Joint spatial and tempo-spectral
non-linear filter

Figure 1.2: Illustration of a non-linear filter, which jointly performs spatial and tempo-spectral
processing.

in a multi-speaker case in an LCMV beamformer and a post-filter.

The results reported here may give the impression that a linear beamformer already provides
statistically optimal results and, thus, not much can be expected from a non-linear filter.
However, it is important to note that these results have a strong underlying assumption,
namely that the noise follows a multivariate Gaussian distribution. The Gaussian distribution
assumption used to be a common choice also for speech spectral coefficients in statistical
single-channel speech enhancement, e.g., [7], but was then dropped in favor of more heavy-
tailed distributions [8]–[10], which were found to better resemble the characteristics of speech
signals. Clearly, if the multi-channel noise signal involves interfering speakers, which have
a non-Gaussian spectral characteristic, different spatial properties, and are sparse in the
time-frequency domain [38], a multivariate Gaussian is arguably not the best model. Also
in other cases, e.g. real-world noise recordings in different locations, the Gaussian noise
assumption may be inaccurate.

Hendriks et al. [6] derived the MMSE filter for a multivariate Gaussian mixture distribution
and found it to be a non-linear filter that cannot be separated in a spatial processing and post-
filtering stage. A schematic view is given in Figure 1.2. While solving the MMSE estimation
problem for a non-Gaussian noise distribution is difficult in most cases, the result by Hendriks
et al. is general in the sense that “almost any continuous density can be approximated to
arbitrary accuracy” [58, Sec. 2.3.9] with a Gaussian mixture distribution. Therefore, dropping
the Gaussian noise assumption will in most cases lead to a joint spatial and tempo-spectral
non-linear filter. However, this theoretically quite interesting result derived in [6] has never
been evaluated by Hendriks et al. or anyone else prior to our publication [P3]. This thesis
investigates the properties, the performance impact, and the implementation (using deep
learning techniques) of this type of filter in contrast to the linear beamformers, such as the
MVDR beamformer, described earlier in this section. While some recent publications refer to
a multi-channel DNN as a “non-linear beamformer”, e.g., [59], in this thesis and all included
publications, we use the term beamformer exclusively to refer to filters that are linear with
respect to the noisy input signal.

1.3.1 Parameter Estimation
Many beamformers take a relatively simple closed analytic form. However, their use requires
the estimation of parameters that are necessary for the computation of the filter weights. For
example, the MVDR beamformer requires an estimate of the steering vector or of the RTF
vector and an estimate of the noise correlation matrix. The quality of the parameter estimates
has a large impact on the performance of the beamformer. In this thesis, when comparing to
traditional methods, we estimate the beamformer parameters from oracle data, which means
that access to the target speech signal X(k, i) and the pure noise signal N(k, i) recorded at the
microphones is available. Even though this is not the case in real-world application scenarios,
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we think that we can learn the most about the potential performance gain of a non-linear
spatial filter by comparing it to an oracle linear spatial filter, which reflects the upper bound
on the performance that can be obtained with a linear spatial filter. Nevertheless, this section
provides an overview of techniques that can be applied in blind settings.

Noise Correlation Matrix Estimation

The definition of the correlation matrix as given in (1.8) uses the statistical expectation
operator, i.e., the noise correlation matrix required by the MVDR beamformer is defined
as

ΦN (k, i) = E[N(k, i)N(k, i)H ] (1.15)

for each time-frequency bin (k, i). In practice, this equation comes with challenges:

1. The pure noise signal N(k, i) is not accessible in real-world application scenarios. Instead,
the microphone array records the mixture signal Y(k, i).

2. The statistical expectation operator must be replaced with an average over a time
span with approximately stationary statistical properties. This can be difficult if the
statistical properties are changing quickly.

3. Many subsequent processing steps, for example, the computation of MVDR beamformer
weights, require that the noise correlation matrix is invertible. Problems can arise when
the number of data points that is averaged is too low. Furthermore, in some scenarios,
e.g., with a directional noise source, even the ideal matrix is not invertible according to
the previously presented signal model. In these cases, a regularization like the diagonal
loading technique [24, Sec. 6.6.4] can be applied to ensure that the matrix is invertible.

The easiest way to solve the problem is to assume that the target speech source is inactive for
a certain period of time, e.g., at the beginning of each utterance. Then an average along the
time axis can be computed to estimate the correlation matrix as

Φ̂N (k, i) = 1
|L|

∑
j∈L

Y(k, j)Y(k, j)H = 1
|L|

∑
j∈L

N(k, j)N(k, j)H (1.16)

with L being the set of time-frame indices in which the target speech signal is not active
and, therefore, for which Y(k, i) = N(k, i) holds. Numerous voice activity detection (VAD)
techniques have been proposed, which estimate if a speaker recorded in background noise is
active or not, e.g., [60]–[63]. The formulation in (1.16) relies on a binary decision whether
to include a time-frame in the estimate or not. Using a speech presence probability (SPP)
estimate, the binary decision can be replaced by a soft decision. The SPP is defined as

ρ(k, i) = P (H1|Y(k, i)) (1.17)

with H1 denoting the hypothesis that the target speech source is active. Clearly, the probability
of a non-active target speech source H0 is given by

η(k, i) = P (H0|Y(k, i)) = 1 − P (H1|Y(k, i)) = 1 − ρ(k, i). (1.18)

An estimate of this quantity, η̂(k, i), can then be used to control the estimation of the noise
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correlation matrix as follows:

Φ̂N (k, i) =
∑
j η̂(k, j)Y(k, j)Y(k, j)H∑

j η̂(k, j) . (1.19)

In many real-world applications, the characteristics of the noise signal can be expected to
change over time. In this case, the set of time-frames included in the average can be restricted
to a neighborhood of the respective ith time-frame [64] or a recursive averaging strategy can
be used, which weights the contribution of close-by time-frames higher than distant ones,
i.e.,

Φ̂N (k, i) = α′(k, i)Φ̂N (k, i− 1) + (1 − α′(k, i))Y(k, i)Y(k, i)H (1.20)

with a time-varying weighting factor

α′(k, i) = αη̂(k, i) + (1 − η̂(k, i)) (1.21)

that depends on the estimate of η̂(k, i) for the respective time-frequency bin and a forgetting
factor α ∈ [0, 1] [51, Eq. 90].

Traditional single-channel SPP estimation schemes, e.g., [13], exploit the tempo-spectral char-
acteristics of the speech signal assuming that the noise signal is more stationary than the speech
signal. If interfering speech sources are part of the noise signal that is to be suppressed, this
assumption is not valid anymore. However, also in multi-speaker scenarios, it is often assumed
that each time-frequency bin is dominated by a single speech or noise source [38]. Clustering-
based techniques can then be used to assign each time-frequency bin to a speech source or the
noise signal based on the spatial properties [38], [65]–[67]. The resulting time-frequency masks
can be used in place of η̂(k, i) in (1.19) or (1.20). In this work, a beamforming scheme that relies
on SPP estimates or masks for parameter estimation is referred to as mask-based beamforming.
Masks can also be estimated with a neural network, which is explained in Section 1.4.1.

Steering Vector Computation

The computation of the relative steering vector in (1.7) requires knowledge of the TDOAs ∆τ ℓ.
These are easy to compute if the array geometry, array position, and the exact position of the
target speaker are known. An illustration is shown in Figure 1.3. Based on the coordinates of
the microphones and the source, the absolute lengths of the direct paths can be obtained. The
TDOAs are then obtained by subtracting the length of the path to the reference microphone
m1 (shown in dark blue) and dividing by the speed of sound cs. In many practical scenarios,
however, the calculation is based on a far-field assumption, which means that it is assumed
that the distance between the target speaker and the microphone array is much larger than
the distance between the individual microphones in the array. In this case, the sound signal
propagation may be modeled by a plane wave, and the attenuation related to differences in
the propagation path length may be considered negligible [2], [34].

An illustration of a far-field scenario with a three-channel microphone array can be seen
in Figure 1.4. The dashed gray lines represent the propagation paths between the target
speaker on the right and the microphone array in the center of the figure. The plane wave is
assumed to travel along the gray dashed parallel lines as indicated by the red arrows with a
wavefront perpendicular to the propagation direction of the signal, which is shown as a red
dashed line in the zoomed-in part of Figure 1.4. In the illustration, the signal first reaches
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Figure 1.3: Illustration of the relative steering vector computation in a near-field scenario.
The relative TDOA ∆τ ℓ for the microphone ℓ is computed by dividing the difference in the
propagation path length ∆λℓ by the speed of sound cs, i.e., ∆τ ℓ = ∆λℓ
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Figure 1.4: Illustration of the relative steering vector computation in a far-field scenario.
The sound wave propagation is modeled as a plane wave represented by the dashed red line.
The relative TDOA ∆τ ℓ for the microphone ℓ is computed by dividing the difference in the
propagation path length ∆λℓ by the speed of sound cs, i.e., ∆τ ℓ = ∆λℓ
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.
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Figure 1.5: Dependency between the target speaker’s DOA angle and the TDOAs in millisec-
onds. The TDOA has been computed for the microphone array shown in Figure 1.4 with
three microphones and a circular arrangement. The radius of the microphone array is 5 cm,
and the first microphone m1 is used as a reference.
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microphone m1, then m2 and finally m3. The distance that the signal must travel to reach
m2 and m3 after reaching m1 has been denoted with ∆λ2 and ∆λ3, respectively. From this,
the TDOAs are easily computed by dividing by the speed of sound cs, i.e., ∆τ ℓ = ∆λℓ

cs
. Under

this model, changing the DOA of the target signal φt strongly affects the differences in the
propagation paths’ lengths and, therefore, also the TDOAs, while the distance between the
target source and the microphone array is not considered in the computation. The exact
relationship between the TDOAs and the target speaker’s DOA is depicted in Figure 1.5 for a
three-channel circular array with 5 cm radius. Mathematically, the relationships are described
by a scaled cosine function that is shifted by 30◦ and −30◦ for the TDOA at microphone m2
and m3, respectively.

In some applications, the DOA is approximately known. For example, the position of a person
in a car seat only varies in a small range. Similarly, hearing aid users will likely turn their
heads towards the target speaker during a conversation. In other scenarios, the DOA must be
estimated without prior knowledge either from the noisy audio signal alone or with support
from other input modalities, e.g., audio-visual sound source localization.

Relative Transfer Function Estimation

In comparison with the steering vector, which is solely based on the direct path between
the source and microphone array, the ATF vector in (1.4) is a more flexible model for the
propagation of sound since it can include reflections of the signal at walls and obstacles,
which occur when the signals are recorded in an enclosed space and not in the free-field. By
substituting (1.4) for the recorded speech signal, the speech correlation matrix then computes
as

ΦX(k, i) = E
[
X(k, i)X(k, i)H

]
= E

[
(S(k, i) · a(k))(S(k, i) · a(k))H

]
= σ2

S(k, i)a(k)a(k)H
(1.22)

with σ2
S(k, i) = E[|S(k, i)|2] denoting the power spectral density (PSD) of the speech signal

S(k, i). As the speech correlation matrix is given by the outer product of the ATF vector
scaled by the speech PSD and, therefore, has rank one, the model in (1.4) is directly linked
to the so-called rank-1 assumption. From an estimate of the speech correlation matrix, an
estimate of ATF can be obtained by selecting the principal component of the matrix, i.e., the
eigenvector corresponding to the largest eigenvalue

â(k) = P{Φ̂X(k, i)}. (1.23)

However, the scaling of the estimate obtained in (1.23) is ambiguous. This can be resolved by
dividing all entries of the ATF estimate by the entry of a selected reference microphone to
obtain an estimate of the RTF, i.e.,

ˆ̃a(k) =
[
1, â

2(k)
â1(k) , ...,

âC(k)
â1(k)

]T
. (1.24)

Here, the first microphone has been selected as a reference, and â1(k) denotes the first entry
of the vector â(k).
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Equation (1.23) requires an estimate of the speech correlation matrix. For this, [68], [69]
propose to estimate a speech mask which is applied analogously to the noise mask in (1.19).
However, for stationary noise, a high SPP value, i.e., ρ(k, i) ≈ 1, does not mean that only the
speech component is observed. As a result, it may be difficult to identify time-frequency bins
for which Y(k, i) = X(k, i). However, assuming independence of the speech and noise signal,
an estimate of the speech correlation matrix can also be obtained via covariance subtraction
as [23]

Φ̂X(k, i) = Φ̂Y (k, i) − Φ̂N (k, i). (1.25)

Care must be taken to ensure that the resulting estimate is a positive semi-definite matrix,
which is not necessarily the case if two correlation matrix estimates are subtracted.

An alternative approach to estimating the RTF respectively is to pick the eigenvector v(k)
corresponding to the largest eigenvalue λ(k) of the generalized eigenvalue problem

Φ̂Y (k, i)v(k) = λ(k)Φ̂N (k, i)v(k). (1.26)

and again use the reference microphone’s entry for normalization [52]. In [69], the authors
propose to replace the estimate of the noisy correlation matrix Φ̂Y (k, i) by a mask-based
estimate of the speech correlation matrix Φ̂X .

1.4 Deep Learning Techniques for Spatial Filtering
In the field of single-channel speech enhancement and separation, virtually all high-performing
solutions developed today are based on deep learning. In contrast, integrating deep learning
methods in multi-channel approaches is a very active field of research to which this work
contributes. The research landscape has evolved considerably since the beginning of this
research project. While the earlier approaches applied DNNs for estimating the parameters of
a linear beamformer and investigated the enrichment of single-channel networks with spatial
features, most recent approaches explore end-to-end systems that can be viewed as an instance
of a joint spatial and tempo-spectral non-linear filter. This section provides an overview of the
current developments in applying DNNs for spatial filtering in multi-channel speech processing
tasks.

1.4.1 Integration of DNNs and Traditional Linear Spatial Filters
This section describes approaches that integrate traditional linear spatial filtering with DNNs
for multi-channel speech enhancement or separation. This branch of research emerged around
2015 in the wake of the much-noticed publications by Heymann et al. [42], [68] and Erdogan et
al. [43], who proposed to estimate the speech and noise masks for a mask-based beamformer
using a neural network. Figure 1.6 shows a schematic illustration of their proposed scheme.
The second and third block in the diagram illustrate the general mask-based beamforming
technique discussed in the previous Section 1.3.1. However, traditional signal processing
techniques for SPP estimation are now replaced with a neural network as indicated by the
first block. In [42], [43], [68], the core component of the neural network is a long short-term
memory (LSTM) layer, which is fed with data from only a single channel, using either the
raw STFT magnitudes as input or additionally applying a Mel-filterbank and logarithm. For
the choice of training target and loss, multiple variants are proposed:

• The network outputs a mask with elements in the range [0, 1] for speech and noise [42],
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Figure 1.6: Illustration of mask-based beamforming using a DNN for mask estimation.

[68]. It is trained with a binary cross-entropy loss between the mask output and an
ideal binary mask (IBM) computed from clean speech and pure noise data.

• The network outputs a speech mask in the range [0, 1] and is trained according to a
mean square error (MSE) loss between the output mask and an ideal ratio mask (IRM)
[43]. The noise mask is obtained by subtracting the speech mask from one elementwise.

• The network outputs a speech mask in the range [0, 1], which is applied to one of the
noisy channels to obtain a single-channel clean speech estimate. The network is then
trained using the MSE loss between the magnitudes of the clean speech signal and the
speech estimate [43].

For all approaches, the DNN is applied to each channel separately during inference so that C
masks are obtained, which are combined by computing the mean or median. Since the DNN
processes only one channel at a time, only tempo-spectral signal characteristics are used for
mask estimation, but not spatial characteristics.

From the third configuration listed above, it becomes clear that the mask obtained with the
DNN can also directly be applied to the signal. Spectral masking is a very common technique
in single-channel enhancement [2], [34]. While pioneering works [70], [71] used DNNs to
estimate a real-valued mask in the range [0, 1] similar to the gain of the single-channel Wiener
filter [72], recent spectral masking approaches predominantly target a complex ideal ratio
mask (CIRM) [73] which is not limited to magnitude enhancement but also alters the phase.
Single-channel masking, however, often introduces speech distortions, which are unpleasant
for the listener and can heavily degrade ASR performance [74]. Linear spatial filtering, on
the other hand, avoids these distortions, which is why it can be advantageous to apply the
mask-based beamforming approach as a front-end for ASR. The noise suppression, however, is
often not sufficient so that the mask-based beamformer may be combined with a (DNN-based)
post-filter for speech enhancement.

The third configuration above furthermore highlights the general fact that the estimated
quantity, which is the mask, does not necessarily need to be the quantity that the loss function
is defined on, which is the estimated clean speech signal’s magnitude in the example above.
Rather, it is sufficient that the enhanced signal is the output of a function that involves the
mask and through which the gradients can be back-propagated. Clearly, this is the case for
the multiplicative application of the mask to the reference channel of the noisy signal. For an
ASR system, neither a loss on the estimated mask itself nor a loss on the enhanced signal
ensures that the output of the beamformer is a particularly good starting point for ASR.
Therefore, it has been proposed to train the mask estimation with an ASR loss [75], [76],
which requires back-propagation through the beamformer [77].

It has already been pointed out that no spatial information is used during mask estimation
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Figure 1.7: Illustration of a spatial feature based approach.

in the initial approaches. Many following works address this limitation [45], [78]–[81]. For
example, Masyuama et al. [78] propose to use the multi-channel Itakura-Saito divergence as a
loss function, which compares the similarity of the mask-based estimate of the correlation
matrices to an oracle estimate of the respective correlation matrix. Nakatani et al. [45]
and Zhou et al. [79] suggest combining the mask estimation with spatial clustering with the
primary goal of achieving better performance in cases where there is a mismatch between
training and testing data. Liu et al. [80] and Yoshioka et al. [81] propose to enrich the input
of the mask estimation DNN by appending features that are based on the IPDs.

In order to use the mask-based beamforming approach not only for speech enhancement
but also for speech separation, it has been proposed to use a DNN-based speech separation
system to create a mask for every speaker or to compute correlation matrices directly from
the separation outputs, e.g., [81]–[84]. Furthermore, [85], [86] have addressed scenarios that
require a time-varying correlation matrix estimate.

Certainly, the mask-based beamforming approach is the most commonly used method that
integrates DNNs with traditional beamforming. However, also other methods exist. One of
the early proposals by Xiao et al. [87] was to estimate the complex-valued beamformer weights
directly with a DNN, which they provide with generalized cross-correlation (GCC) information
as input. Furthermore, there is the idea of using a set of fixed data-independent beamformers
steered to a pre-defined selection of look directions for spatial pre-processing, e.g., [47]–[49].
For example, the delay-and-sum beamformer or the MVDR with a noise correlation matrix
representing a diffuse noise field [54] can be employed to obtain features that are then further
processed with a neural network. The work by Sainath et al. [88], [89] joins both of these
ideas: A filter-and-sum structure is implemented using convolutional layers such that a set of
linear filters can be learned in a data-driven way. During inference, these linear filters are
fixed and provide features that are further processed and finally fed into an acoustic model
for ASR.

1.4.2 Spatial Features
Inspired by the success of single-channel DNN-based speech enhancement, another research
approach for integrating multi-channel information has been developed from around 2015 in
parallel with the DNN-supported mask-based beamforming approach. In this line of research,
spatial features are used as additional input to a DNN besides the single-channel noisy input,
e.g., [90]–[93]. A schematic view of this approach is shown in Figure 1.7. An early work
investigating the benefit of spatial features introduced in this way is by Araki et al. [90].
The authors of this work propose to compute the following features in the feature extraction
step depicted in the left block of Figure 1.7: the ILDs, the IPDs and masks obtained by IPD
clustering. These spatial features are provided to the network by stacking the single-channel
signal feature and the spatial features to obtain the new input feature for the DNN.
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For an observed multi-channel mixture Y(k, i) the ILD and IPD between microphones ℓ and
m can be defined as time-varying quantities [34, Sec. 12.1]:

ILDℓm(k, i) = 10 log10

(
|Y ℓ(k, i)|2
|Y m(k, i)|2

)
(1.27)

and
IPDℓm(k, i) = ∠

Y ℓ(k, i)
Y m(k, i) . (1.28)

This is different from the time-invariant IPD and ILD between each channel ℓ and the reference
channel encoded by the RTF [51], i.e.,

ILDℓ(k) = 10 log10

(∣∣∣ãℓ(k)
∣∣∣2) (1.29)

and
IPDℓ(k) = ∠ãℓ(k), (1.30)

which only depend on the placement of the microphone array and the source in the room.
In contrast, the time-varying ILDs and IPDs in (1.27) and (1.28) computed from the noisy
observation might be heavily influenced by the interfering signal. However, for time-frequency
bins that are dominated by the target source signal, the time-varying ILD and IPD will
approximately equal the respective time-invariant ILD and IPD, so that the resulting pattern
can be used for mask estimation via clustering and is expected to also be informative to a
DNN.

In [92], Wang et al. propose to extend the single-channel deep clustering [16] approach with
additional spatial features. Besides IPDs the authors suggest using GCC features computed
as

GCC(k, i, ℓ,m, τ) = cos
(
∠
Y ℓ(k, i)
Y m(k, i) − 2πfkτ

)
(1.31)

with τ denoting a candidate value for the TDOA between the microphone pair (ℓ,m). The
GCC function is then evaluated for a range of plausible TDOA values, which results in a
feature vector for each time-frequency bin, which can be stacked with the single-channel noisy
input feature. Another example of a spatial feature is the so-called angle or location-guided
feature [47], [93]. For this feature, it is assumed that the DOA of the target speaker and the
array geometry are known, so that the steering vector d(k) can be computed. The angular
feature AF(k, i) then measures the similarity between the relative steering vector and a vector
containing the IPDs computed using the first as a reference microphone, i.e.,

AF(k, i) = ℜ
{

C∑
ℓ=1

dℓ(k) exp(IPDℓ1(k, i))
|dℓ(k) exp(IPDℓ1(k, i))|

}
(1.32)

with ℜ denoting the real part of a complex number.

As expected, the additional spatial features are consistently found to lead to a notable
performance improvement over the corresponding DNN, which takes only a single-channel
noisy signal as input. However, since the features are hand-crafted, it is unclear if all the
information that could potentially be exploited by a DNN trained on the raw inputs is still
present in the computed features.
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DNN-based non-linear filter
processing jointly the spatial

and tempo-spectral information

Figure 1.8: Illustration of a DNN implementing a non-linear filter that jointly processes spatial
and tempo-spectral information.

1.4.3 DNN-based Joint Spatial and Tempo-spectral Non-linear
Filtering
The schematic representation in Figure 1.2 shows a non-linear filter that combines spatial
and tempo-spectral processing. As described in Section 1.3, an analytic filter with these
properties can be obtained by a statistical derivation under a non-Gaussian noise distribution.
On the other hand, this schematic illustration also fits a multitude of deep learning systems
for multi-channel speech enhancement and separation, which have recently been proposed.
Consequently, the schematic representation of these approaches in Figure 1.8 looks just like
the one in Figure 1.2. It can be seen that all channels of the noisy recording on the left are
directly used as input for the neural network, and the explicit spatial feature extraction stage
is omitted. In most cases, the network expects either time-domain signal inputs, e.g., [94]–[97],
or a frequency-domain representation obtained with the STFT, e.g., [59], [98]–[104].

As the DNN depicted in Figure 1.8 is provided with the raw multi-channel inputs, it can, in
principle, exploit spatial as well as tempo-spectral information to perform the enhancement or
separation task. However, its ability to exploit a source of information depends on the specific
choice of network architecture. Some of the first approaches matching the scheme shown in
Figure 1.8 are from Chakrabarty et al. [98] and Li and Horaud [100] and have been published
in 2018 and 2019, respectively. In both cases, the network expects a frequency-domain
STFT input. Since the STFT coefficients are complex-valued, the question arises how to
best represent them such that a DNN can exploit the patterns in the data. Chakrabarty et
al. choose to stack the magnitude and phase information for each time-frequency bin. A
chain of convolutional layers is then applied to each time-frequency bin independently to
compute a feature representing cross-channel information. The cross-channel features for all
frequencies of a single time step are then stacked and fed into a linear layer to estimate the
mask weights for the respective time step. The design focus of the architecture is on the
cross-channel spatial as well as spectral information, while temporal information cannot be
exploited. In a successive publication [99], the authors propose to resolve this restriction by
feeding the stacked feature vectors for each time step into an LSTM layer. In [100], Li and
Horaud choose to represent the complex numbers by stacking the real and imaginary parts of
all channels. Therefore, the multi-channel data is then stored in a three-dimensional tensor of
shape T × F × 2C, where T and F denote the overall number of time-frames and frequency
bins. The proposed architecture consists of two LSTM layers and is fed with slices of shape
T × 2C to produce the mask weights. All frequency bins are processed independently with
the same network, which means that the same network weights are used to estimate the mask
weights for all frequency bins. Clearly, the focus of this architecture is on spatial and temporal
information, while correlations between frequency bins are not considered.

Many model architectures have been proposed in recent years. Some of them are a direct
extension of successful architectures for single-channel speech enhancement. For example,
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Pandey et al. [97] extend the dual-path network for speech separation [19]. Also other
proposed architectures reflect the latest trends in network architecture design at the time of
publication. For example, Tolooshams et al. [59] suggest an attention mechanism focusing
on spatial information, Wang et al. [101] design a network based on an encoder-decoder
U-net structure composed of dense blocks [105], Halimeh and Kellermann [103] propose a
complex-valued neural network and some of the latest publications use a transformer-based
architecture [106], [107]. How to design the network architecture for best performance is an
open research question. While the design of the network architecture will continuously evolve
to incorporate newly proposed layers, research on the best way to integrate the different sources
of information might provide a more general and longer-lasting answer. Along this line of
research, Briegleb et al. [108] investigate how a neural network represents spatial information
internally, and the publication [P5] included in this thesis studies the interdependency between
different sources of information.

Besides the choice of input representation and core network architecture, the output strategy,
training target, and loss function are important design decisions. The vast majority of recent
publications has converged to using the clean signal as training target in combination with a
signal-based loss function, for example, the scale-invariant source to distortion ratio (SI-SDR)
[109], an ℓ1 loss in time and frequency domain [59], or a loss defined on the real and imaginary
parts of the signal combined with a magnitude loss [101]. Considering the output strategy of
the network, two prevailing solutions can be identified. The first option is that the network
estimates a single mask, which is applied to a reference channel of the noisy signal to obtain
the clean speech estimate. While older works proposed to use a real-valued mask [98]–[100],
recent publications are using a complex-valued mask which enables phase enhancement, e.g.,
[59]. A similar approach is the so-called complex spectral mapping strategy, which directly
estimates the real and imaginary parts of the enhanced speech signal [101]. The second
output option is inspired by the filter-and-sum processing model of a traditional beamformer.
Here, the network outputs filter coefficients for each channel, either in the time or frequency
domain. These are then applied to the noisy signal, and a single-channel enhanced signal is
obtained by summing all filtered signals. It is important to note the difference between a
traditional linear beamformer and a network with a filter-and-sum output strategy: while
the filter coefficients of the traditional beamformer are derived from statistical properties of
the signal, e.g., correlation matrices, the filter coefficients estimated by the neural network
directly depend on the noisy input signal. As a result, the filter-and-sum operation using
these DNN-based filter coefficients cannot be considered linear with respect to the noisy input
signal.

Also in Section 1.4.1 on the integration of DNNs and traditional beamformers, we described
approaches that estimate the beamformer coefficients using a neuronal network, e.g., the work
by Xiao et al. [87] and Sainath et al. [88], [89]. However, these are different from recent DNNs
that employ a filter-and-sum output strategy regarding the linearity versus non-linearity of
the processing model. In [87], Xiao et al. propose to estimate the filter coefficients from GCC
features. Accordingly, the network sees as input not the noisy signal itself but a second-order
statistic, and, even more importantly, the estimated filter coefficients are averaged for a whole
utterance so that the filter coefficients will depend on the global statistical properties of the
noisy signal but not vary based on the noisy observation made for a specific time-frequency
bin. Similarly, the filter coefficients in [88], [89] are learned in a data-driven way, but they
are fixed during inference and do not change based on the input signal. In contrast, filter
coefficients in recent neural network architectures with a filter-and-sum output strategy, for
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example, the EaBNet [102], or FasNet [94], [95], directly depend on the noisy input signal.
Therefore, we classify these as joint spatial and tempo-spectral non-linear filters even though
a part of the processing model has a similarity with a traditional linear beamformer. Since
these networks can exploit spatial and tempo-spectral information, a fair comparison with a
traditional beamformer should always include a post-filtering stage for the beamformer.

Another proposed approach that should be mentioned in this context is the ADL-MVDR
proposed by Zhang et al. [110], which seems difficult to categorize at first glance. The authors
propose a neural network that consists of two parts. In the first part, a deep filter [111]
given spectral information and spatial features is expected to provide estimates of the clean
speech and noise signal. These are then used to compute correlation matrix features, which
are further processed in a second network. At the output of the network, a vector and a
matrix are estimated for each time-frequency bin. These are then inserted into the classic
MVDR beamformer equation as RTF vector and inverse noise correlation matrix. According
to our definition, this network is also a non-linear spatial filter. The decisive factor for this
categorization is that the entire pipeline is trained end-to-end, so that it is by no means
guaranteed that the outputs of the first part are clean speech and noise estimates. Accordingly,
the correlation matrix features computed from these estimates might not have much in common
with the second-order statistics that the traditional MVDR depends on. Furthermore, the
formula that is used to estimate the correlation matrices for each time-frequency bin does
not perform temporal averaging over neighboring frames. The dependence of the obtained
correlation matrix on the specific observation is, therefore, much greater than in estimation
schemes that attempt to realize the expected value, for example, with the averaging strategies
described in Section 1.3.1.

1.5 Outline of the Thesis
This thesis deals with the topic of non-linear spatial filtering for multi-channel speech en-
hancement and separation. Three main areas of research can be identified to which this thesis
contributes.

1. Statistical Perspective on Non-linear Spatial Filtering

The observation that a non-Gaussian noise distribution leads to a non-linear MMSE
filter that jointly processes spatial and spectral information serves as a starting point for
the research presented in this thesis. In [6], only the computation result for the MMSE
estimator is reported, and its interesting properties (non-linear and non-separable)
are noted. In this work, we explore the implications of this result for multi-channel
speech enhancement tasks. We aim to answer the question of whether we can expect
a relevant performance gain from replacing the traditional linear beamformer plus
post-filter with a non-linear spatial filter. Since a non-linear spatial filter has a higher
computational demand than a traditional linear beamformer (and if implemented with
a neural network, it even needs to go through a costly training stage), we aim to
understand if the potential performance gain is worth the effort. Furthermore, we
investigate in which application scenarios a non-linear spatial filter could be particularly
beneficial and where the performance gain comes from.

All analyses in this part are based on analytic statistical estimators. To obtain insights
into the described research questions, we use the MMSE estimator derived under a
Gaussian mixture noise assumption and compare it to an MMSE estimator that we
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derive under the same assumptions but with the additional constraint that it is composed
of a MVDR beamformer and a post-filter. This way, our findings in this first part of the
thesis do not depend on architectural choices or hyperparameter tuning for a neural
network.

2. Design and Analysis of Deep Non-linear Spatial Filters

Deep neural networks offer a data-driven way to implement a non-linear spatial filter.
They can, therefore, be used to circumvent problems that are likely encountered when
working with analytical estimators. One of these is that very accurate parameter
estimates are required for the MMSE estimator in Gaussian mixture noise, which
are difficult to obtain in practice. Another problem is that the estimation problems
easily get intractable, for example, if no simplifying assumption like independence of
time-frequency bins is made or other noise distributions are assumed.

The second research focus of this thesis is on the internal functioning of DNN-based
non-linear spatial filters. Here, we aim to understand the role of the two properties,
which are the non-linearity and the interdependency between spatial and tempo-spectral
processing. Is it rather the non-linearity of the processing model or the ability to exploit
interdependencies between spatial and tempo-spectral processing that leads to good
performance? In Section 1.4.3, we discussed two baseline approaches by Chakrabarty et
al. [98], [99] and Li and Horaud [100] to illustrate how the chosen network architecture
determines which sources of information (spatial, spectral, temporal) can be exploited
by a neural network. We define a set of neural networks with the same underlying
architecture and the same number of parameters but access to different sources of
information. Based on this, we perform experiments that isolate the impact of different
sources of information. Understanding the internal mechanisms of a DNN-based non-
linear spatial filter is of great importance since this may provide general guidelines for
designing well-performing network architectures for effective spatial filtering.

3. Steerable Deep Non-linear Spatial Filters for Speech Extraction and Separa-
tion

The third part of the thesis puts a focus on practical applications, in particular multi-
channel speaker extraction and separation. As described in Section 1.2, we adopt
a perspective that views these tasks as a spatial filtering problem. Consequently,
a possibility to control the steering direction of the deep non-linear spatial filter is
required so that a separate DNN-based non-linear spatial filter can be steered in the
direction of each target source. For many linear spatial filters, e.g., the delay-and-sum
or MVDR beamformer, the look direction is controlled by the steering vector or RTF
estimate. However, these may be difficult to obtain and can be inaccurate. For the
deep non-linear spatial filters, we are proposing to condition the filter directly on a
discretized DOA angle. We then investigate the spatial selectivity of the steered filter
and analyze the performance of this spatial filtering focused approach. As a baseline, we
are comparing to a DNN that produces an output for every speaker and is trained with
a PIT scheme. However, spatial filtering is not directly enforced by the loss function
and must implicitly be learned from the training examples. Thus, one of the core
research questions addressed in the third part of this thesis is whether speech separation
performance and also robustness and generalization ability can be improved by focusing
on learning good non-linear spatial filters.
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The following Chapter 2 links each of the seven publications related to this thesis to one
of the main research areas outlined above and explains the contribution of each co-author.
The main part of this cumulative thesis contains three publications, one for every research
area, exploring the different aspects of non-linear spatial filters. The thesis concludes with a
discussion of the main contributions and an outlook on future research directions in Chapter
6.

23





Overview of the Related
Publications 2

We group the publications related to this thesis with respect to the three main research areas
described in Section 1.5. The journal article associated with each thematic area extends the
corresponding conference publication(s), which means that these publications have overlapping
content. Therefore, we choose to include only the journal publications in the main part of this
cumulative thesis. The papers included in the main part of the cumulative thesis are marked
with a gray box in the following list of publications. All other publications can be found in
Appendix A.

1. Statistical Perspective on Non-linear Spatial Filters
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2021.

2. Design and Analysis of Deep Non-linear Spatial Filters
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Temporal Processing for DNN-based Non-linear Multi-channel Speech Enhancement”,
in Proceedings of Interspeech, Seoul, South Korea, 2022, pp. 2908–2912.

[P5] K. Tesch and T. Gerkmann, “Insights into deep non-linear filters for improved multi-
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vol. 31, pp. 563–575, 2023.

3. Steerable Deep Non-linear Spatial Filters for Speech Extraction and Separa-
tion

[P6] K. Tesch and T. Gerkmann, “Spatially selective deep non-linear filters for speaker
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approach for postprocessing. However, the serial concatenation of a linear spatial filter and a
postfilter is not generally optimal in the minimum mean square error (MMSE) sense for noise
distributions other than a Gaussian distribution. Rather, the MMSE optimal filter is a joint
spatial and spectral nonlinear function. While estimating the parameters of such a filter with
traditional methods is challenging, modern neural networks may provide an efficient way to
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is worthwhile, in this work we examine the potential performance benefit of replacing the
common two-step procedure with a joint spatial and spectral nonlinear filter.

We analyze three different forms of non-Gaussianity: First, we evaluate on super-Gaussian
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Abstract—The majority of multichannel speech enhancement
algorithms are two-step procedures that first apply a linear
spatial filter, a so-called beamformer, and combine it with a
single-channel approach for postprocessing. However, the serial
concatenation of a linear spatial filter and a postfilter is not
generally optimal in the minimum mean square error (MMSE)
sense for noise distributions other than a Gaussian distribution.
Rather, the MMSE optimal filter is a joint spatial and spectral
nonlinear function. While estimating the parameters of such a
filter with traditional methods is challenging, modern neural
networks may provide an efficient way to learn the nonlinear
function directly from data. To see if further research in this
direction is worthwhile, in this work we examine the potential
performance benefit of replacing the common two-step procedure
with a joint spatial and spectral nonlinear filter.

We analyze three different forms of non-Gaussianity: First, we
evaluate on super-Gaussian noise with a high kurtosis. Second, we
evaluate on inhomogeneous noise fields created by five interfering
sources using two microphones, and third, we evaluate on real-
world recordings from the CHiME3 database. In all scenarios,
considerable improvements may be obtained. Most prominently,
our analyses show that a nonlinear spatial filter uses the available
spatial information more effectively than a linear spatial filter
as it is capable of suppressing more than D − 1 directional
interfering sources with a D-dimensional microphone array
without spatial adaptation.

Index Terms—Multichannel, speech enhancement, nonlinear
spatial filtering, neural networks

I. INTRODUCTION

IN our everyday life, we are surrounded by background noise
for example traffic noise or competing speakers. Hence,

speech signals that are recorded in real environments are
often corrupted by noise. Speech enhancement algorithms are
employed to recover the target signal from a noisy recording.
This is done by suppressing the background noise or reducing
other unwanted effects such as reverberation. This way, speech
enhancement algorithms aim to improve speech quality and
intelligibility. Their fields of application are manifold and range
from assisted listening devices to telecommunication all the
way to automatic speech recognition (ASR) front-ends [1], [2].

If the noisy speech signal is captured by a microphone
array instead of just a single microphone, then not only tempo-
spectral properties can be used to extract the target signal but
also spatial information. Spatial filtering aims at suppressing
signal components from other than the target direction. The
filter-and-sum beamforming approach [3, Sec. 12.4.2] achieves
this by filtering the individual microphone signals and adding
them. In the frequency domain, this means to compute the

The authors are with the Signal Processing Group, Department
of Informatics, Universität Hamburg, 22527 Hamburg, Germany (e-mail:
kristina.tesch@uni-hamburg.de; timo.gerkmann@uni-hamburg.de).

(a)
Linear
spatial
filter

Postfilter

(b)
Joint spatial
and spectral

nonlinear filter

Fig. 1: (a) Illustration of the commonly employed two-
step processing using a linear spatial filter (beamformer)
followed by a single-channel postfilter. (b) Illustration of the
nonlinear spatial filter investigated in this paper, which joins the
spatial and spectral processing into a non-separable nonlinear
operation.

scalar product between a complex weight vector and the vector
of spectral representations of the multichannel noisy signal.
Hence, the beamforming operation is linear with respect to the
noisy input.

The beamforming weights are chosen to optimize some
performance measure. For example, minimizing the noise
variance subject to a distortionless constraint leads to the well-
known minimum variance distortionless response (MVDR)
beamformer [4, Sec. 3.6]. The noise suppression capability of
such a spatial filter alone is often not sufficient and a single-
channel filter is applied to the output of the spatial filter to
improve the speech enhancement performance. The second
processing stage in this two-step processing scheme is often
referred to as the postfiltering step.

Single-channel speech enhancement has a long research
history that has led to a variety of solutions like the classic
single-channel Wiener filter [3, Sec 11.4] or other estimators
derived in a statistical framework [5]–[7]. Many recent advances
in single-channel speech enhancement are driven by the
modeling capabilities of deep neural networks (DNNs) [8]–
[11].

It seems convenient to independently develop a spatial filter
and a postfilter and combine them into a two-step procedure
afterward as shown in Figure 1a. If the noise follows a Gaussian
distribution, this approach can even be regarded as optimal in
the MMSE sense as Balan and Rosca [12] have shown that
the MMSE solution can always be separated into the linear
MVDR beamformer and a postfilter. However, this separability
into a linear spatial filter and a postfilter only holds under the
restrictive assumption that the noise is Gaussian distributed. The
work of Hendriks et al. [13] points out that the MMSE optimal
solution for non-Gaussian noise joins the spatial and spectral
processing into a single nonlinear operation. Throughout this
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work, we call such an approach a nonlinear spatial filter for
brevity even though spectral processing steps are also included.
An illustration is given in Figure 1b.

The result of Hendriks et al. reveals that the common two-
step multichannel processing scheme cannot be considered
optimal for more general noise distributions than a Gaussian
distribution. This leads to the question if we should invest
in the development of nonlinear spatial filters for example
using DNNs. Today, single-channel approaches often use the
possibilities of DNNs to learn complex nonlinear estimators
directly from data. In contrast, the field of multichannel speech
enhancement is dominated by approaches that use DNNs only
for parameter estimation of a beamformer [14], [15] or restrict
the network architecture in a way that a linear spatial processing
model is preserved [16]. Only a few approaches with and
without DNNs [17]–[19] have been proposed that extend the
spatial processing model to be nonlinear. Still, the questions
of how much we can possibly gain by doing this, in which
situations, and also where the benefit of using a nonlinear
spatial filter comes from have not been addressed adequately.
These are the questions that we aim to investigate in this paper.

This work is based on a previous conference publication [20].
In [21] we have studied related aspects of these questions. Here,
we extend our previous work by more detailed derivations and
new analyses that provide some insight into the functioning of
the nonlinear spatial filter. In Section III, we provide a detailed
overview of the theoretical results from a statistical perspective.
We include the previously outlined results and also provide a
new simplified proof for the finding of Balan and Rosca in
[12]. We then evaluate the performance benefit of a nonlinear
spatial filter for heavy-tailed noise in Section IV-A, for an
inhomogeneous noise field created by five interfering human
speakers in Section IV-B, and real-world noise recordings
in Section IV-C. In Section V, we investigate the improved
exploitation of spatial information by the nonlinear spatial
filter and discuss practical issues of the used analytic nonlinear
spatial filter. Even though nonlinear spatial filters would most
likely be implemented using DNNs in the future, in our analyses
we rely on statistical MMSE estimators to provide more general
insights than by using DNN-based nonlinear spatial filters
which would be highly dependent on the network architecture
and training data.

II. ASSUMPTIONS AND NOTATION

We assume that the signals recorded by a D-dimensional
microphone array decompose into a target speech and a noise
component. For each microphone-channel ` ∈ {1, ..., D}, we
segment the time-domain signal into overlapping windows and
transform the signal to the frequency domain using the discrete
Fourier transform (DFT) to obtain the DFT coefficients Y`(k, i)
with frequency-bin index k and time-frame index i. Throughout
this work, we use segments of length 32 ms with 16 ms shift
and apply the square-root Hann function for spectral analysis
and synthesis. By the additive signal model, the noisy DFT
coefficient can be written as the sum of the clean speech and
the noise DFT coefficients S`(k, i) ∈ C and N`(k, i) ∈ C, i.e.,

Y`(k, i) = S`(k, i) +N`(k, i). (1)

As we model the DFT coefficients to be random variables
and assume independence with respect to the frequency-bin
and time-frame index, we drop the indices (k, i) to simplify
the notation. We indicate random variables with uppercase
letters and use lowercase letters for their respective realization.
Furthermore, we assume all DFT coefficients to be zero-mean
and speech and noise to be uncorrelated.

We stack the noisy and noise DFT coefficients into vectors
Y = [Y1, Y2, ..., Y`]

T ∈ CD and N = [N1, N2, ..., N`]
T ∈

CDand obtain the vector of speech DFT coefficients S ∈ CD
by multiplying the clean speech signal coefficient S ∈ C
with the so-called steering vector d ∈ CD, which accounts
for the propagation path between the target speaker and the
microphones. We can then rewrite the signal model as

Y = dS + N. (2)

The noise correlation matrix is denoted by Φn = E[NNH ] ∈
CD×D with the statistical expectation operator E and (·)H
denoting the Hermitian transpose. The spectral power of the
target speech signal is given by σ2

s = E[|S|2] ∈ R+. When
appropriate, we use the polar representation for complex-valued
quantities, e.g., s = |s|ejϕs ∈ C, and then let ϕ denote the
phase of the complex number.

III. LINEARITY OF THE OPTIMAL SPATIAL FILTER

In this section, we aim to provide a more complete picture of
the nature of the optimal spatial filter by aggregating existing
results and presenting more straightforward derivations for
some of these. We identify the noise distribution as the key to
linearity versus non-linearity of the spatial filter and also to
the separability of spatial and spectral processing. Accordingly,
in our considerations we distinguish the two cases of Gaussian
distributed noise and non-Gaussian distributed noise or, more
precisely, noise that follows a Gaussian mixture distribution.

A. Gaussian Noise

We start with revisiting the results from Balan and Rosca
[12] and then provide a simplified proof that may be easier to
follow. We assume that the vector of noise DFT coefficients N
follows a multivariate complex Gaussian distribution with zero
mean and covariance matrix Φn, i.e., N ∼ CN (0,Φn). As we
employ an additive signal model, the conditional distribution
of the noisy DFT coefficient vector Y given information on
the reference clean speech DFT is a multivariate complex
Gaussian distribution centered around the vector of clean speech
DFT coefficients ds with the same covariance matrix Φn. The
corresponding conditional probability density function (PDF)
is given by [22, Thm. 15.1]

pY(y|s) =
1

πD|Φn|
exp

{
−(y − ds)HΦ−1n (y − ds)

}
. (3)

Our goal is to show that the linear MVDR beamformer defined
as

TMVDR(y) =
dHΦ−1n y

dHΦ−1n d
(4)
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is the optimal spatial filter with respect to the maximum a
posteriori (MAP), MMSE and maximum likelihood (ML) opti-
mization criterion if the noise follows a Gaussian distribution.

Balan and Rosca [12] rely on the concept of sufficient
statistics to prove the property in question for the MMSE
optimization criterion. In our context, the MVDR beamformer
TMVDR is a sufficient statistic in the Bayesian sense if

pS(s|y) = pS(s|TMVDR(y)) (5)

holds for every observation y and every prior distribution of
S [23, Thm. 2.4]. We infer from (5) that all information about
S contained in the noisy observation is retained in the output
of the MVDR beamformer despite the fact that the MVDR
beamformer reduces the dimension of the multidimensional
input to one dimension. Note that the variable of interest S in
the above definition is a random variable. In contrast, TMVDR
is a sufficient statistic in the classical sense for the true clean
speech DFT coefficient s, which is not assumed to be a random
variable, if the conditional distribution of the noisy observation
Y given TMVDR(Y) does not depend on s [24, Def. IV.C.1].

As a first step, Balan and Rosca deduce that the MVDR
beamformer is a sufficient statistic in the classical sense from
the Fisher-Neyman factorization theorem [24, Prop. IV.C.1]
[25, Cor. 2.6.1], which is applicable since the conditional PDF
of the observation Y given S in (3) can be rewritten as

pY(y|s) =
1

πD|Φn|
exp{−yHΦ−1n y}

︸ ︷︷ ︸
h(y)

× exp
{

dHΦ−1n d
(
2 Re {s∗TMVDR(y)} − |s|2

)}

︸ ︷︷ ︸
g(s,TMVDR(y))

= h(y)g(s, TMVDR(y))

= h(y)g(s, z). (6)

under the Gaussian noise assumption. In the last line of equation
(6), we replaced the random variable TMVDR(Y) with Z, i.e.,

Z = TMVDR(Y), (7)

and will now continue to use this substitute when it improves
the readability. In a second step, Balan and Rosca conclude that
the MVDR beamformer is a sufficient statistic in the Bayesian
sense because any statistic that is sufficient in the classical
sense is also sufficient in the Bayesian sense [23, Thm. 2.14.2].

We now provide a proof of the TMVDR being a sufficient
statistic of S in the Bayesian sense, which does not require a
reference to advanced stochastic theorems. For this, we compute
a factorization of the likelihood PDF of Z pZ(z|s) with Z
defined in (7) as the output of the MVDR beamformer for the
noisy input Y. From the properties of the multivariate complex
Gaussian distribution undergoing a linear transformation [22,
Appx. 15B], we infer that Z given S is distributed according
to a one-dimensional complex Gaussian distribution with mean
s and variance (dHΦ−1n d)−1, i.e.,

pZ(z|s) = CN
(
s, (dHΦ−1n d)−1

)
. (8)

The corresponding PDF at the output of the beamformer can
be factorized as

pZ(z|s) =
dHΦ−1n d

π
exp{−yHΦ−1n y |z|}

︸ ︷︷ ︸
f(y)

× exp
{

dHΦ−1n d
(
2 Re {s∗z} − |s|2

)}

︸ ︷︷ ︸
g(s,z)

= f(y)g(s, z). (9)

Using (6) we rewrite the posterior distribution as

pS(s|y) =
p(y|s)p(s)∫

C p(y|s)p(s)ds

=
h(y)g(s, z)p(s)∫

C h(y)g(s, z)p(s)ds
.

(10)

Since the term h(y) in the denominator does not depend on the
integration variable s, this term cancels with the corresponding
term in the numerator. Next, we extend the fraction with the
term f(y) from (9) to obtain

pS(s|y) =
f(y)g(s, z)p(s)∫

C f(y)g(s, z)p(s)ds

= pS(s|z)
= pS(s|TMVDR(y)),

(11)

which is the identity we wanted to prove (cf. (5)). Consequently,
as the posterior given the noisy observation y equals the pos-
terior given the output of the MVDR beamformer TMVDR(y),
we find that

TMAP(y) = arg max
s∈C

pS(s|TMVDR(y)) (12)

holds. The MVDR beamformer reduces its multidimensional
input to a single-channel output and, therefore, the right-hand
side of (12) can be seen as a single-channel postfilter working
on the output of the MVDR beamformer. Since the MMSE
estimator complies with the mean of the posterior, a similar
decomposition in a linear spatial filter and a spectral postfilter
is given by

TMMSE(y) = E[S|y]

= E[S|TMVDR(y)].
(13)

Because the relationship (5) holds for all prior distributions
of S, a decomposition of the MAP and MMSE estimators into
a linear spatial filter followed by a postfilter exist independently
from any further assumptions regarding the prior distribution
of the clean speech DFT coefficient.

Finally, we consider the ML estimator. Starting from (6) and
exploiting the monotony of the logarithm and Euler’s formula,
we find the representation

TML(y) = arg max
s∈C

pY(y|s)

= arg max
s∈C

2 Re{s∗ TMVDR(y)︸ ︷︷ ︸
=z

} − |s|2 (14)

= arg max
s∈C

2 · |s| · |z| · cos(ϕz − ϕs)− |s|2.
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Clearly, this function is maximized when the phase of s
matches the phase of TMVDR(y), as then the cosine function
is maximized. Equating the derivative with respect to |s|
to zero and solving for |s| reveals that the magnitude of
the MVDR beamformer maximizes the likelihood. Thus,
TML(y) = TMVDR(y), i.e. the MVDR beamformer is the
maximum likelihood estimator of the clean speech DFT
coefficient as also stated in [26, Sec. 6.2.1.2].

B. Non-Gaussian Noise

As we have seen, if the noise DFT coefficients follow a
Gaussian distribution, then a linear spatial filter can be consid-
ered optimal. However, Hendriks et al. [13] have shown that
this does not need to be the case for non-Gaussian distributed
noise. In their work, they model the noise distribution with
a multivariate complex Gaussian mixture distribution. The
M Gaussian mixture components with respective covariance
matrix Φm, m ∈ {1, ...,M}, are assumed to be zero-mean
such that the conditional PDF given the clean speech is given
by

pY(y|s) =

M∑

m=1

cmCN (ds,Φm). (15)

with mixture weights cm that sum to one. Hendriks et al.
assume that the amplitude AS and phase ϕS of the clean
speech DFT coefficient are independent. They model the phase
to be uniformly distributed over the interval [0, 2π) and assume
the amplitude to be generalized-Gamma distributed ( [7, Eq.
1], with γ = 2 and β = ν/σ2

s ). The corresponding PDF

pAS (a) = 2

(
ν

σ2
s

)ν

Γ(ν)
a2ν−1 exp

{
− ν

σ2
s

a2
}

with ν > 0, a ≥ 0

(16)

depends on the speech shape parameter ν, and Γ(·) is the
Gamma function. Under these assumptions, Hendriks et al.
derive the MMSE estimator

TMMSE(y) = ν

M∑

m=1

cmQm
|Φm| e

[−yHΦ−1
m y] σ2

sT
(m)
MVDR(y)M(ν+1,2,Pm)

ν(dHΦ−1
m d)−1+σ2

s

M∑

m=1

cmQm
|Φm| e

[−yHΦ−1
m y]M(ν, 1, Pm)

(17)

with

T
(m)
MVDR(y) =

dHΦ−1m y

dHΦ−1m d
, Qm = (ν + dHΦ−1m dσ2

s)−ν ,

and Pm =
σ2
sd

HΦ−1m d
∣∣∣T (m)

MVDR(y)
∣∣∣
2

ν(dHΦ−1m d)−1 + σ2
s

withM(·, ·, ·) being the confluent hypergeometric function [27,
Sec. 9.21]. From (17) it is apparent that the MMSE estimator
cannot be decomposed in a linear spatial filter and a spectral
postfilter. This is because the linear term T

(m)
MVDR as well as

the quadratic term yHΦ−1m y depend on the summation index

m. The spatial nonlinearity is particularly evident from the
aforementioned quadratic term.

Throughout this work, we compare the results of the optimal
spatially nonlinear MMSE estimator with a classical setup
comprised of a linear spatial filter and (nonlinear) spectral
postfilter. Figure 1 provides an illustration of the compared
estimators: part (b) represents the nonlinear spatial filter TMMSE
given in (17) and part (a) corresponds to a combination of the
MVDR beamformer with an MMSE-optimal postfilter. We now
derive the postfilter under the same distributional assumptions
as TMMSE.

Since the MVDR beamformer is linear, we can infer the dis-
tribution of the beamformer output and observe that it follows
a one-dimensional complex Gaussian mixture distribution with
PDF

p(TMVDR(y)|s) =

M∑

m=1

cmNC

(
s,

dHΦ−1n ΦmΦ−1n d

(dHΦ−1n d)2︸ ︷︷ ︸
σ2
m

)

)
(18)

for an input Y that is distributed according to a multivariate
complex Gaussian mixture distribution. The Gaussian mixture
components have the mean s and variance σ2

m, m ∈ {1, ...,M}.
Based on this observation, we compute the MMSE-optimal
spectral postfilter using [27, Eq. 3.339, Eq. 6.643.2, Eq. 9.220.2]
and [28, Eq. 10.32.3] and obtain the estimator

TMVDR-MMSE(y) =

ν

M∑

m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]
σ2
sTMVDR(y)M(ν+1,2,Pm)

νσ2
m+σ2

s

M∑

m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]

M(ν, 1, Pm)

(19)

with

Φn =
M∑

m=1

cmΦm, σ2
m =

dHΦ−1n ΦmΦ−1n d

(dHΦ−1n d)2
,

Qm = (
1

σ2
m

+
ν

σ2
s

)−ν and Pm =
σ2
sσ
−2
m |TMVDR(y)|2
νσ2

m + σ2
s

.

that sequentially combines linear spatial processing with
MMSE-optimal spectral postprocessing as depicted in Figure
1a.

IV. EVALUATION OF THE BENEFIT OF A NONLINEAR
SPATIAL FILTER IN NON-GAUSSIAN NOISE

Section III points out that using a nonlinear spatial filter
is MMSE-optimal and, thus, may be beneficial if the noise
does not follow a Gaussian distribution. It is well known that
the DFT coefficients of speech are often better modeled by a
more heavy-tailed distribution than a Gaussian if originating
from short-time Fourier transform (STFT) segments with short
duration [6], [29]. Consequently, one may argue that this as
well applies to noise DFT coefficients if the background noise
stems from human speakers. In any case, Martin [29] observed
that heavy-tailed distributions also provide a good fit for DFT
coefficients of some types of noise in the one-dimensional
case.
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In this section, we investigate the potential of the optimal
nonlinear spatial filter versus the classical separated setup with
a linear spatial filter and a spectral postfilter for noise with a
non-Gaussian distribution. Section IV-A presents our findings
for noise that departs from Gaussianity by means of heavier
tails but with a rather simple spatial structure. We published
parts of this analysis and of the analysis in Section IV-C in
[20]. However, here we also include the multichannel Wiener
filter for comparison, compute more detailed performance
metrics, and have made changes to the speech power parameter
estimation scheme. In Section IV-B we provide results for noise
that is modeling a spatially more diverse noise field created
by five interfering human speakers and in Section IV-C we
evaluate the nonlinear spatial filtering approach based on real-
world noise recordings from the CHiME3 database. Please find
audio examples for all experiments on our website1.

A. Heavy-tailed noise distribution

In our first experiment, we investigate the performance of the
nonlinear spatial filter TMMSE by mixing the target speech signal
at the microphones with multichannel noise that is sampled
from a heavy-tailed Gaussian mixture distribution.

1) Noise distribution model: We construct a Gaussian
mixture distribution with an adjustable heavy-tailedness by
combining Gaussian components with scaled versions of the
same covariance matrix. Therefore, we set the mth mixture
component’s covariance matrix Φm to be

Φm =
bm−1

r
Φn with r =

M∑

m=1

cmb
m−1 (20)

and scaling factor b ∈ R+. The constant r ensures correct
normalization such that the overall covariance matrix of our
scaled Gaussian mixture distribution remains Φn.

We rely on the kurtosis to quantify the heavy-tailedness of the
scaled Gaussian mixture distributions. It is a statistical measure
that accounts for the likelihood of the occurrence of outliers
[30] and it has been extended for real-valued multivariate
distributions by Mardia [31]. We extend it to complex-valued
random vectors X ∈ Cn with mean µ and covariance Cx by
defining its kurtosis to be

κC(X) = E
[
(2(X− µ)HC−1x (X− µ))2

]
. (21)

A complex-valued n-dimensional Gaussian distribution can
equivalently be formulated as a real-valued 2n-dimensional
Gaussian distribution [22, Thm. 15.1]. The additional factor of
two in (21) ensures that the same kurtosis value results for both
formulations of the same distribution. Using [32, Sec. 8.2.4],
we compute the kurtosis of a vector N distributed according
to a scaled Gaussian mixture distribution to obtain

κC(N) = 2D(2 + 2D)
M∑

m=1

cm
b2(m−1)

r2

︸ ︷︷ ︸
q

(22)

and observe that κC(N) is given by the kurtosis of a D-
dimensional complex Gaussian distribution multiplied by a

1https://uhh.de/inf-sp-nonlinear-spatial-filter-tasl2021
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Fig. 2: POLQA, SI-SDR, SI-SIR and SI-SAR results for scaled
Gaussian mixture noise distributions with increased heavy-
tailedness in diffuse noise.

factor q that depends on the scaling factor b and the number
of mixture components M .

2) Experimental setup: In our test scenario, we use five
microphones arranged in a linear array with 5 cm spacing
and broadside orientation towards the target signal source
and model the propagation path between the target speaker
and the microphones based on time delays only. We perform
the evaluation using 48 clean speech signals taken from the
WSJ0 dataset [33] that are balanced between female and male
speakers. The noise DFT coefficients are samples from a scaled
Gaussian mixture distribution with scale factor b = 2 and a
variable number of mixture components with equal weight
cm = 1

M , m ∈ {1, ...,M}. The noise covariance matrix Φn

models a diffuse noise field with a small portion (factor of
0.05) of additional spatially and spectrally white noise as in
[34, Eq. 27]. The noise and speech are combined such that a
signal-to-noise ratio (SNR) of 0 dB is obtained.

3) Performance evaluation: Figure 2 provides a performance
comparison of the jointly spatial and spectral nonlinear TMMSE
and the spatially linear TMVDR-MMSE with a nonlinear postfilter.
The speech shape parameter is set to ν = 0.25 for both
estimators. Furthermore, we display results obtained with the
well-known linear spatial filter TMVDR without a postfilter and
the multichannel Wiener filter TMWF, which is the MMSE-
optimal solution if noise and speech follow a Gaussian
distribution, i.e., TMVDR-MMSE with ν = 1 and M = 1. The
performance results are displayed with respect to the kurtosis
factor q on the x-axis indicating an increased heavy-tailedness
of the noise distribution from left to right.

The plot in the upper left corner shows the performance with
respect to the improvement of the POLQA measure [35], which
is the successor of perceptual evaluation of speech quality
(PESQ) [36] and returns the expected mean opinion score
(MOS), which takes values from one (bad) to five (excellent).
In any plot of Figure 2, we are particularly interested in the
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performance difference of the TMMSE (red) and TMVDR-MMSE
(blue) as this gap characterizes the potential performance
gain of a nonlinear spatial filter. For POLQA, we observe
an increase of the performance difference up to 1.1 POLQA
score improvement as the noise distribution shifts towards a
more heavy-tailed distribution.

The estimators including a postfilter, TMMSE, TMVDR-MMSE,
and TMWF, require an estimate of the speech power spectral
density (PSD) σ2

s . In contrast to our previous paper [20],
here we do not rely on oracle knowledge of the clean speech
signal to estimate this parameter but obtain an estimate from
the noisy signal based on the cepstral smoothing technique
[37]. This results in an increased performance gap between
TMMSE and TMVDR-MMSE. From this finding, we conclude that
a nonlinear spatial filtering approach is even more beneficial if
the performance of the postfilter decreases due to estimation
errors of the spectral power of the target speech signal.

The next three plots (upper right and second row) display
the performance results for the SI-SDR, SI-SIR, and SI-SAR
measures as defined in [38]. We compute the SI-SDR, SI-SIR,
and SI-SAR for segments of length 10 ms without overlap
and include only segments with target speech activity similar
to the computation of the segmental SNR in [39]. The
performance results based on the SI-SDR measure show a
similar structure to the ones obtained with POLQA. For high
kurtosis values, we observe a performance gap of 4.5 dB for
TMMSE and TMVDR-MMSE. Furthermore, the difference between
TMVDR-MMSE and TMWF for high kurtosis values, which results
exclusively from the different postfilter, is more obvious. The
observed performance gaps, in particular the performance
advantage of the nonlinear spatial filter, coincide with our
own listening experience1.

For the computation of the SI-SIR and SI-SAR measure
displayed in the second row, the residual noise is split into
interference noise and artifacts. It is striking to see that the red
graph of TMMSE runs above the blue graph of TMVDR-MMSE in
both plots meaning that the nonlinear spatial filter achieves
better noise reduction and fewer speech distortions at the
same time. The better performance with respect to the SI-SAR
measure is quite notable as we can see that the linear MVDR
beamformer introduces very few speech distortions but its
combination with different postfilters (TMVDR-MMSE and TMWF)
still performs worse than the joint spatial and spectral non-
linear processing by TMMSE.

B. Inhomogeneous noise field (interfering speech)

Instead of sampling a Gaussian mixture distribution as in
the previous section or in [21], we now use a setup with five
interfering point sources arranged as illustrated in Figure 3 and,
this way, move closer towards realistic noise scenarios. The
estimators TMMSE and TMVDR-MMSE have been derived under
a Gaussian mixture noise assumption. To be consistent with
this modeling assumption, we require the five interfering point
sources to not be Gaussian distributed or not be simultaneously
active per time-frequency bin, because otherwise the overall
noise resulting from the different interfering sources would
also be Gaussian distributed. Choosing human speakers as

0◦
microphone

target speech source

noise source

Fig. 3: Illustration of the experiment setup with a two-
dimensional linear microphone array, a target speech source in
broadside direction and five interfering point sources (human
speakers (Section IV-B) or Gaussian bursts (Section V)).

Interfering speech Gaussian bursts

∆ POLQA 0.84 ± 0.04 2.64 ± 0.08

∆ SI-SDR 4.63 ± 0.15 9.92 ± 0.30
∆ SI-SAR 3.91 ± 0.16 8.39 ± 0.26
∆ SI-SIR 6.44 ± 0.22 14.95 ± 0.46

ESTOI (noisy) 0.49 ± 0.01 0.57 ± 0.02
ESTOI (TMMSE) 0.85 ± 0.01 0.94 ± 0.00
ESTOI (TMVDR-MMSE) 0.72 ± 0.01 0.67 ± 0.02

TABLE I: Performance results (mean and the 95% confidence
interval) of the TMMSE and TMVDR-MMSE estimators for an
inhomogeneous noise field with interfering speech and Gaussian
sources as described in Section IV-B and Section V respectively.

interfering sources, this assumption is commonly assumed to
hold and referred to as w-disjoint orthogonality [40].

1) Experimental setup: As can be seen in Figure 3, the target
speech source is placed in the broadside direction of the two-
dimensional linear microphone array with 6 cm microphone
spacing. We sample the target speech signal and the interfering
signals from distinct subsets of the WSJ0 dataset. The two-
dimensional noise signal is then obtained by multiplying the
interfering speech signals with the steering vectors di, i ∈
{0, ..., 4}, and adding the individual interfering sources’ signals.
The steering vector di of the ith interfering source positioned
at θi = π

6 + 2π
5 i radians models the relative time difference of

arrival at the microphones. The target speech signal and noise
signal are rescaled to correspond to an SNR of 0 dB.

We now compare the performance of the TMMSE and
TMVDR-MMSE estimators for the inhomogeneous noise field. For
this, we require estimates of the Gaussian mixture components’
covariance matrices Φm and the mixture weights cm. We
choose the number of components equal to the number of
interfering sources, i.e., M = 5, and estimate the Gaussian
mixture parameters using the expectation maximization (EM)
algorithm [41] applied to overlapping signal segments of length
250 ms and with an overlap of 50% from the pure noise signal.
As before, we estimate the spectral power of speech using the
cepstral smoothing technique and use a speech shape parameter
ν = 0.25.

2) Performance evaluation: The first column of Table I
displays the performance results for the described simulation.
For the performance measures in the first four rows, preceded
with a ∆ symbol, we report the performance difference between
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TMVDR-MMSE and TMMSE averaged over 48 samples. We
observe that the nonlinear spatial filter delivers a considerable
performance gain that amounts to 4.63 dB SI-SDR and a
POLQA score of 0.84. The bottom part of Table I presents
ESTOI [42] scores for the noisy signal and the enhancement
results obtained with TMMSE and TMVDR-MMSE. The ESTOI
scores provide a measure of speech intelligibility. As for the
other performance measures, we find that the nonlinear spatial
filter outperforms the combination of a linear spatial filter and
a postfilter as the TMMSE estimator yields an ESTOI score of
0.85 as opposed to the result of 0.72 achieved by TMVDR-MMSE.

C. Real-world CHiME3 noise

Furthermore, we investigate the performance of the nonlinear
spatial filter for real-world noise from the CHiME3 database
[43] that has been recorded in four different environments: a
cafeteria, a moving bus, next to a street, and in a pedestrian
area.

1) Experimental setup: The CHiME3 data has been recorded
using six microphones that are attached to a tablet computer.
For this experiment, we use the simulated training subset of
the official dataset, which has been created by mixing the
recording of real-world background noise with a spatialized
version of WSJ0 utterances. A detailed description of the data
generation process can be found in [43]. We evaluate on 48
randomly selected samples that are balanced between male and
female speakers.

As before, we require an estimate of the time-varying
Gaussian mixture distribution parameters and estimate them
using oracle knowledge of the noise signal. For this, we apply
the EM algorithm to overlapping signal segments of length
750 ms. For both, TMMSE and TMVDR-MMSE, we use ν = 0.25
and estimate the speech power σ2

s using the cepstral smoothing
technique. In addition, we need to estimate the steering vector
for the target speaker. For this, we employ oracle knowledge of
the clean speech signal and extract the steering vector estimates
as principal eigenvectors of the time-varying covariance matrix
estimates obtained by recursive smoothing.

2) Performance evaluation: Again, we assess the perfor-
mance gap between the nonlinear spatial filter TMMSE and
the separated setup with a linear spatial filter and a postfilter
TMVDR-MMSE. Figure 4 displays the SI-SDR results for these
estimators and also the MVDR beamformer TMVDR with
respect to the number of mixture components that have been
fitted to a cafeteria background noise using the EM algorithm.
While the performance of the TMMSE estimator (red) improves
with increased modeling capabilities of the mixture distribution,
neither the TMVDR nor the TMVDR-MMSE estimator benefits from
using more mixture components. As a result, we observe a
performance gap of 3.17 dB SI-SDR between the best result
obtained with the nonlinear spatial filter and the best result
obtained with the separated setup. This value coincides with
the first entry of Table II. For the POLQA measure displayed in
the second row, we find a difference of 0.59 POLQA score. The
table shows bigger performance differences for the cafeteria
(CAF) and pedestrian area (PED) noise than the bus (BUS)
and street (STR) noise. We suppose that this reflects that the
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Fig. 4: SI-SDR results for cafeteria noise with respect to the
number of mixture components used to fit the noise distribution.

CAF BUS PED STR

∆ SI-SDR 3.17±0.19 2.48±0.26 3.31±0.24 2.07±0.28

∆ POLQA 0.59±0.06 0.38±0.07 0.56±0.05 0.28±0.04

ESTOI (noisy) 0.60±0.03 0.71±0.02 0.56±0.03 0.69±0.03
ESTOI (TMMSE) 0.94±0.01 0.97±0.01 0.93±0.01 0.96±0.01
ESTOI
(TMVDR-MMSE) 0.89±0.02 0.95±0.01 0.88±0.02 0.94±0.01

TABLE II: Performance results (mean and the 95% confidence
interval) of the nonlinear spatial TMMSE and linear spatial
filter combined with a postfilter TMVDR-MMSE for noise from
the CHiME3 databse, which has been fitted with a Gaussian
mixture distribution with four mixture components as described
in Section IV-C.

cafeteria and pedestrian area noise is less stationary as we hear
the most significant differences for impulse like background
noise. The ESTOI scores displayed at the bottom of Table II
indicate that the nonlinear spatial filter is not only beneficial
to the speech quality but also the speech intelligibility. Overall,
we conclude that the Gaussian noise assumption does not seem
to be valid for the examined real-world noise as the nonlinear
spatial filter provides a notable benefit also for these recordings.

V. INTERPRETATION: A NONLINEAR SPATIAL FILTER
ENABLES SUPERIOR SPATIAL SELECTIVITY

We assume that the performance benefit of the nonlinear
spatial filter reported in Section IV-B and IV-C is due to
the more efficient use of spatial information by the TMMSE
estimator. Here we support this conjecture by an experiment
that provides an insight into the functioning of the nonlinear
spatial filter.

1) Experimental setup: We use the same geometric setup
as described previously in Section IV-B (Figure 3) but replace
the interfering speech sources with sources that emit spectrally
white Gaussian signals. To match the long-term non-Gaussianity
assumption, only one interfering source emits a signal at
a specific time instance. We implement this by using short
(336 ms) non-overlapping Gaussian bursts for the interfering
sources. The so created noise signal can be viewed as stationary
regarding its spectral characteristics except at the segment
boundaries. By applying the EM algorithm to the full-length
noise signal we also model the spatial characteristics as long-
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Fig. 5: Spectrograms of an example in an inhomogeneous noise field with five interfering sources emitting Gaussian noise
bursts. The second row visualizes the processing results obtained with TMVDR, TMVDR-MMSE and TMMSE and the top row shows
the clean and noisy spectrograms as well as close-ups of the fine-structure of a voiced speech segment.

term stationary. All other experiment settings remain unchanged
as described before in Section IV-B.

2) Performance evaluation: The performance results are
displayed in the second column of Table I. For this artificial type
of noise, we observe an even greater performance difference of
9.9 dB SI-SDR and 2.6 POLQA score. In fact, the TMMSE
estimator seems to be able to recover the original signal
almost perfectly except from minor residual high-frequency
noise while TMVDR-MMSE suffers from clearly audible speech
degradation and residual noise. Audio examples can be found
online1.

Figure 5 depicts the spectrograms of the clean and noisy
signals in the top row and the spectrograms of the enhancement
results obtained by the TMVDR, TMVDR-MMSE, and TMMSE
estimators in the bottom row. The uniform green coloration of
the vertical stripes in the noisy spectrogram reflects the spectral
stationarity. The vertical dark blue lines separate segments with
different spatial properties. While the spatial diversity cannot
be seen from the spectrogram, it becomes visible from the
result of the MVDR beamformer (first in bottom row). Here,
the MVDR beamformer suppresses different frequencies for
signal segments with different spatial properties as can be seen
from the displaced horizontal dark blue lines. The described
differences between the TMVDR-MMSE (middle) and TMMSE
(right) estimators’ results are also found in the spectrograms.
A close look reveals that the nonlinear spatial filter preserves
much more of the target signal’s fine structure. Furthermore, a

comparison with the spectrogram of the clean speech signal
highlights that it suppresses background noise much better
than the TMVDR-MMSE estimator. Residual noise is visible in
the spectrogram only in some segments at a frequency of about
6 kHz.

3) Discussion: To explain these observations, we examine
the covariance matrices Φm, m ∈ {1, ..., 5}, of the Gaussian
mixture noise distribution estimated with the EM algorithm.
In Figure 6 we visualize their spatial structure based on the
directivity pattern [3, Sec. 12.5.2] that they produce when used
as noise correlation matrix in the MVDR beamformer, which
is denoted with T (m)

MVDR in (17). Furthermore, we visualize the
directivity pattern of the MVDR beamformer. The correlation
matrix Φn required to compute TMVDR is related to the mixture
component covariance matrices via

Φn =
M∑

m=1

cmΦm. (23)

The directivity pattern produced by TMVDR is displayed at the
top left followed by visualizations of the five mixture com-
ponent covariance matrices. For each of these, a pronounced
spatial characteristic can be observed by means of the horizontal
dark lines. On the right side of the directivity patterns, we
indicate the incidence angles θi of the noise sources. We notice
that each component’s covariance matrix models one of the
noise sources as apparent from the zero placed in the respective
direction by the MVDR beamformer. The second horizontal line
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Fig. 6: Directivity patterns of TMVDR (top left) and T
(m)
MVDR

(MVDR beamformer with noise correlation matrix Φm), m ∈
{1, ..., 5}. The arrows on the right side indicate the incidence
angle θi, i ∈ {0, ..., 4} of the ith interfering point source.

originates from the symmetry requirements of the directivity
pattern, which are determined by the array geometry.

In comparison, the directivity pattern of the TMVDR (top
left) does not show zeros placed into the directions of the
interfering point sources. Instead, the weighted combination in
(23) seems to eliminate some of the spatial information, which
corresponds to the well-known fact that a two-microphone
MVDR beamformer can suppress only one directional inter-
fering source but not five of them. As a result, only some
frequencies are suppressed for each interfering source as we
observed in Figure 5 before.

Figure 6 reveals how much more spatial information can
be utilized by TMMSE in comparison with TMVDR-MMSE, whose
spatial processing relies on an estimate of Φn as visualized
in the top left plot. The initial spatial filtering step using
the MVDR beamformer is not capable of suppressing the
directional sources and the remaining noise has to be filtered
by the postfilter, which then leads to some improvements. On
the other hand, the nonlinear spatial TMMSE estimator can

utilize the spatial information provided by the estimates of
covariance matrices Φm.

One could argue that a time-varying MVDR beamformer
T

(m)
MVDR with correctly chosen m would suffice to solve the

problem on the short signal segments with noise from a
single point source and a complicated nonlinear approach
is not required. However, we must point out that the step
of choosing the ‘right‘ covariance matrix is not required for
the nonlinear spatial filter. Instead, we provide the Gaussian
mixture parameters reflecting the spatial properties of the full
utterance and, nevertheless, the TMMSE estimator is capable
of suppressing five directional noise sources with only two
microphones without the need for spatial adaptation. Note that
this is an exciting finding as traditional linear spatial filters
can only suppress D − 1 interfering point sources with D
microphones without spatial adaptation [26, Sec. 6.3].

Despite the impressive performance results achieved in
this experiment, the analytic nonlinear spatial filter has some
weaknesses: it requires a very accurate estimation of the spatial
and spectral characteristics of the noise signal and is also
computationally quite demanding. In addition to the presented
experiments, we carried out simulations using measured
impulse responses between the microphones and speakers and
observed a much lower benefit from using a nonlinear spatial
filter for the experiment with five interfering Gaussian sources
even with access to oracle noise data. This is because the
spatial and spectral diversity of the noise signal increase and
many more mixture components would be required to model
the noise accurately which then results in a data problem.
Similarly, estimating the parameters of the Gaussian mixture
from a noisy signal is difficult. We approached this using masks
to identify time-frequency bins that are dominated by noise
but did not obtain reliable estimates this way.

Therefore, we conclude that the analytical estimators allow
us to study the potential of nonlinear spatial filters in principle,
but because of high sensitivity to parameter estimation errors
and high computational costs, practical nonlinear spatial filters
may be better implemented using modern machine learning
tools like DNNs.

VI. CONCLUSIONS

In a detailed theory overview, we have revisited the fact that
the multichannel MMSE-optimal estimator of the clean speech
signal is in general a jointly spatial-spectral nonlinear filter.
Therefore, the state-of-the-art concatenation of a linear spatial
filter and a postfilter is MMSE-optimal only in the special case
that the noise follows a Gaussian distribution. The experimental
section of this paper studied the performance advantage that
can be gained by replacing the generally suboptimal sequential
setup with a nonlinear spatial filter in three different non-
Gaussian noise scenarios.

First, we have shown that considerable performance im-
provements result if the noise distribution deviates from a
Gaussian distribution by an increased heavy-tailedness as the
nonlinear spatial filter enables a higher noise reduction and
lower speech distortions at the same time. Second, we report a
performance benefit of 4.6 dB SI-SDR and of 0.8 POLQA score
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for an inhomogeneous noise field created by five interfering
speech sources and, furthermore, we have observed a benefit
of about 3.2 dB SI-SDR and 0.6 POLQA score for the real-
world cafeteria noise recordings from the CHiME3 database.
In addition, we have performed experiments that revealed
that the nonlinear spatial filter has some notably increased
spatial processing capabilities allowing for an almost perfect
elimination of five Gaussian interfering point sources with only
two microphones.

The presented findings on the performance potential of
a nonlinear spatial filter motivate further research on the
implementation of nonlinear spatial filters, e.g., using DNNs
to learn the nonlinear spatial filter directly from data and
overcome the parameter estimation issues and other limitations
of the analytic nonlinear spatial filter that we have used for
this analysis.
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Abstract
The key advantage of using multiple microphones for speech enhancement is that spatial
filtering can be used to complement the tempo-spectral processing. In a traditional setting,
linear spatial filtering (beamforming) and single-channel post-filtering are commonly performed
separately. In contrast, there is a trend towards employing deep neural networks (DNNs) to
learn a joint spatial and tempo-spectral non-linear filter, which means that the restriction
of a linear processing model and that of a separate processing of spatial and tempo-spectral
information can potentially be overcome. However, the internal mechanisms that lead to good
performance of such data-driven filters for multi-channel speech enhancement are not well
understood.

Therefore, in this work, we analyse the properties of a non-linear spatial filter realized by
a DNN as well as its interdependency with temporal and spectral processing by carefully
controlling the information sources (spatial, spectral, and temporal) available to the network.
We confirm the superiority of a non-linear spatial processing model, which outperforms an
oracle linear spatial filter in a challenging speaker extraction scenario for a low number of
microphones by 0.24 POLQA score. Our analyses reveal that in particular spectral information
should be processed jointly with spatial information as this increases the spatial selectivity
of the filter. Our systematic evaluation then leads to a simple network architecture, that
outperforms state-of-the-art network architectures on a speaker extraction task by 0.22 POLQA
score and by 0.32 POLQA score on the CHiME3 data.
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A Note on the Term Non-linear Spatial Filter
Please note that in this publication, the term non-linear spatial filter takes a different meaning
than in the other chapters of this cumulative thesis. The publication differentiates between
the following DNN-based filters:

• A joint spatial and spectral non-linear filter (F-JNF)

• A joint spatial and temporal non-linear filter (T-JNF)

• A joint spatial and tempo-spectral non-linear filter (FT-JNF)

• A filter focused on spatial information, which is referred to as a non-linear spatial filter
(NSF), with variants F-NSF, T-NSF, and FT-NSF, where the prefix indicates which
type of global information is available.
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Insights into Deep Non-linear Filters
for Improved Multi-channel Speech Enhancement

Kristina Tesch , Student Member, IEEE, and Timo Gerkmann , Senior Member, IEEE

Abstract—The key advantage of using multiple microphones
for speech enhancement is that spatial filtering can be used
to complement the tempo-spectral processing. In a traditional
setting, linear spatial filtering (beamforming) and single-channel
post-filtering are commonly performed separately. In contrast,
there is a trend towards employing deep neural networks (DNNs)
to learn a joint spatial and tempo-spectral non-linear filter, which
means that the restriction of a linear processing model and that
of a separate processing of spatial and tempo-spectral information
can potentially be overcome. However, the internal mechanisms
that lead to good performance of such data-driven filters for
multi-channel speech enhancement are not well understood.

Therefore, in this work, we analyse the properties of a
non-linear spatial filter realized by a DNN as well as its
interdependency with temporal and spectral processing by
carefully controlling the information sources (spatial, spectral, and
temporal) available to the network. We confirm the superiority
of a non-linear spatial processing model, which outperforms an
oracle linear spatial filter in a challenging speaker extraction
scenario for a low number of microphones by 0.24 POLQA score.
Our analyses reveal that in particular spectral information should
be processed jointly with spatial information as this increases
the spatial selectivity of the filter. Our systematic evaluation then
leads to a simple network architecture, that outperforms state-of-
the-art network architectures on a speaker extraction task by 0.22
POLQA score and by 0.32 POLQA score on the CHiME3 data.

Index Terms—Multi-channel, speech enhancement, joint
non-linear spatial and tempo-spectral filtering

I. INTRODUCTION

In our everyday life, speech understanding often takes place
in noisy environments. This can be, for example, a conversation
in a crowded restaurant, a phone call in a busy train station or
the use of a voice control system in a driving car. To enable
devices such as hearing aids or voice-controlled assistants to
function in these challenging acoustic environments, speech
enhancement algorithms are employed to improve the speech
quality and intelligibility of the target speech signal.

Traditionally, many algorithms utilized a short-time Fourier
transform (STFT) signal representation and derived an analyti-
cal clean speech estimator from a statistical model, e.g., [1]–[4].
While this has led to many interpretable and computationally
lightweight algorithms, the derivations often require restricting
and simplifying assumptions, e.g., independent time-frequency
bins, to keep the problem tractable. This is in contrast to DNN-
based algorithms, which do not need an explicit model, but
learn to recognize complex dependencies directly from training
data. In the domain of single-channel speech enhancement,

The authors are with the Signal Processing Group, Department of
Informatics, Universität Hamburg, 22527 Hamburg, Germany (e-mail:
kristina.tesch@uni-hamburg.de; timo.gerkmann@uni-hamburg.de).

(a) Linear spatial
filter (LSF) Post-filter (PF)

(b) Joint spatial and tempo-spectral
non-linear filter (JNF)

(c) Non-linear
spatial filter (NSF) Post-filter (PF)

Fig. 1: (a) The traditional two-step processing using a linear
spatial filter (beamformer) followed by a single-channel
postfilter. (b) A joint spatial and tempo-spectral non-linear
processing scheme that we implement using DNNs in this
work. (c) Two-step processing scheme, however, not only the
postfilter performs non-linear filtering but also the spatial filter.

these DNN-based algorithms, have been dominating the state
of the art for a couple of years now, e.g., [5]–[8].

While single-channel speech enhancement approaches
exploit tempo-spectral signal characteristics to perform the
enhancement, multi-channel approaches can additionally
leverage spatial information by using multiple microphones.
Commonly, this is done by employing a linear spatial filter, a
so-called beamformer. Figure 1a illustrates a traditional multi-
channel processing pipeline, which first applies the linear spatial
filter and then adds a single-channel post-filter in a second
step. The post-filter can be either linear or non-linear. In our
prior work [9], [10], we have demonstrated that separation into
a linear spatial filter and a post-filter is generally not optimal
in the minimum mean square error (MMSE) sense unless we
restrict the noise distribution to be Gaussian. However, if a
non-Gaussian distribution is assumed, the resulting analytical
solution is overall non-linear and joins the spatial and spectral
processing as illustrated in Figure 1b. Our experimental
evaluation in [10] has shown great potential for a joint non-
linear spatial-spectral filter, but has also led to the conclusion
that the estimation of required higher-order parameters limits
the practical applicability of the analytic estimator. However,
DNNs provide a data-driven way to implement practical joint
spatial and tempo-spectral non-linear filters (JNF).

A very influential paper on multi-channel speech
enhancement using DNNs has been the paper by Heymann
et al. [11], who propose to use a DNN for estimating the
parameters of a linear spatial filter. Also others have proposed
approaches along this line of research, e.g., [12]–[14]. However,
using a DNN for parameter estimation does not allow for a
more general non-linear processing model nor does it permit the
exploitation of interdependencies between spatial and tempo-
spectral information during processing. In contrast, a variety of
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data-driven multi-channel filters have been proposed recently
[15]–[20]. These implicitly drop the linearity assumption and
integrate spatial and tempo-spectral processing steps such
that this class of joint non-linear approaches is fundamentally
different and potentially more powerful than DNN-driven linear
spatial filters, aka neural beamformers. Good performance as
been reported for these deep non-linear filters, but the internal
mechanisms that lead to good performance are not well
understood. This, however, is essential for a deliberate design
of a neural network architecture that fully unlocks the potential
of neural networks for multi-channel speech enhancement.

In this work, we investigate the internal functioning of
DNN-based (joint) non-linear filters for multi-channel speech
enhancement. To learn about the role of a non-linear spatial
filter and the interdependency between spatial and tempo-
spectral information, we consider a second separated approach,
which combines a non-linear spatial filter with an independent
post-filter. An illustration of this setup is given in Figure 1c.
A systematic comparison of the three approaches outlined
in Figure 1 then allows us to assess what makes for good
spatial filtering performance: Is non-linear as opposed to linear
spatial filtering the main factor for good performance? Or is it
rather the interdependency between spatial and tempo-spectral
processing? And do temporal and spectral information have
the same impact on spatial filtering performance?

This paper is based on our recent conference paper [21], but
the experimental evaluation here goes far beyond the results
presented previously. Specifically, we propose new experimental
designs to investigate the spatial filtering performance of a
DNN-based joint filter. This then allows for a discussion of
the spatial selectivity of the different approaches. We include
a comparison with state-of-the-art approaches, showing that
the joint non-linear filter obtained by our systematic evaluation
outperforms them and, furthermore, we extend our evaluations
from the speaker extraction task to the CHiME3 dataset. The
latter then enables us to assess the role of the dataset characteris-
tics with respect to the previously mentioned research questions.

In a recent study, also Tan et al. [22] compare the perfor-
mance of a joint spatial and tempo-spectral non-linear filter
with a DNN-driven linear spatial filter plus additional post-filter
(i.e. Figure 1a versus Figure 1b). While they report comparable
performance for these two approaches, in this paper, in line with
our theoretical findings in [10], we demonstrate the conceptual
superiority of a joint non-linear spatial and tempo-spectral filter
by outperforming an oracle linear spatial filter plus post-filter.
Furthermore, our work adds additional value beyond a general
performance comparison of the two approaches by presenting
experiments that allow for insights into the internal mechanisms
underlying a well-performing joint non-linear filter.

The remainder of this paper is structured as follows. Section
II introduces the signal model and provides a detailed overview
of traditional and DNN-based spatial filtering. In Section III,
we introduce a set of DNN-based filter variants, which will be
analyzed thoroughly to provide insights into the separability
of spatial processing and post-filtering (Section IV-B) and the
interdependency between spatial and tempo-spectral processing
(Section IV-C). In Section IV, we provide a comparison with
recent state-of-the-art methods and, in Section VI, we report

results for the CHiME3 dataset.

II. BACKGROUND AND RELATED WORK

A. Signal model

We consider the task of extracting a single target speaker
from a recording obtained in a noisy and reverberant
environment. The noise signals may be environmental noise
or concurrent speakers. The noisy mixture signals are captured
by a microphone array with C microphone channels. In the
time-domain, the speech signal uttered by the target speaker
and recorded by the ℓth microphone can be written as the
convolution of the non-reverberant speech signal s(t) and the
room impulse response (RIR) hℓ(t) describing the propagation
path between the speaker and the ℓth microphone [23]:

xℓ(t)=s(t)∗hℓ(t). (1)

Note that, besides the room characteristics, hℓ(t) also allows
to model the characteristics of the loudspeaker and the
microphones.

We transform the time-domain signal xℓ(t) into the frequency
domain using a short-time Fourier transform (STFT) to obtain
complex spectral coefficients Xℓ(k,i)∈C with frequency-bin
index k and time-frame index i. Based on an additive signal
model, the mixing process in the frequency domain is given by

Yℓ(k,i)=Xℓ(k,i)+Vℓ(k,i). (2)

with Vℓ(k, i) denoting the noise signal recorded at the
ℓth microphone. We use bold face symbols to refer to
the vector stacking the STFT coefficients for all channels,
e.g., Y(k, i) = [Y1(k, i), ..., YC(k, i)]

T ∈ CC and drop the
time-frequency indices (k,i) to denote the tensor with shape
(C × F × T ) comprising the time-frequency points for all
C microphones and with F and T being the number of
frequency-bins and time-indices respectively.

B. Traditional spatial filtering

Most traditional multi-channel speech enhancement schemes
involve a spatial filter that is usually implemented following a
filter-and-sum beamforming approach [24, Sec. 12.4.2]. Such a
filter-and-sum beamformer aims to suppress signal components
not originating from the target direction by filtering the
individual microphone signals and adding them. Using vector
notation, the processing model of a filter-and-sum beamformer
in the frequency domain can be formulated as

Ŝ(k,i)=h(k,i)HY(k,i) (3)

with Ŝ(k, i) ∈ C being an estimate of the target signal, a
filter h(k,i)∈CC that may or may not be depending on the
time index i (time-variant vs. time-invariant filter) and (·)H
denoting the Hermitian transpose.

The simplest form is a delay-and-sum beamformer [24, Sec.
12.4.1] that applies a filter to compensate for different time
delays at the microphones caused by the differing lengths of
propagation paths for the signal to reach each microphone.
This approach implicitly assumes the noise signals recorded at
the different microphones to be uncorrelated [24, Sec.12.6.1],
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which is a reasonable assumption for sensor noise, but not
for environmental noise or interfering point sources.

Another commonly used spatial filter is the minimum
variance distortionless response (MVDR) beamformer [24,
Sec. 12.6.1] that takes into account the correlation between
microphone channels. The filter weights hMVDR(k, i) are
obtained by solving the optimization problem

hMVDR(k,i)=arg min
h∈CC

hH(k,i)ΦV (k,i)h(k,i)

s.t. h(k,i)Hd(k,i)=1, (4)

with the so-called steering vector d(k,i) modelling the direct
path of the target signal S(k, i) to the microphones and
noise correlation matrix ΦV (k,i)=E[V(k,i)V(k,i)H ] with E
denoting the statistical expectation operator. Thus, the MVDR
beamformer tries to minimize the noise variance at the output
of the beamformer while leaving the target signal unchanged.
The latter condition is referred to as the distortionless
constraint of the MVDR. The solution of the optimization
problem posed in (4) is given by [24, Sec. 12.6.1]

hMVDR(k,i)=
Φ−1

V (k,i)d(k,i)

dH(k,i)Φ−1
V (k,i)d(k,i)

. (5)

Adhering to the filter-and-sum processing model, and using
filter weights that do not depend on the value of the noisy
signal Y(k,i) itself as in (5), traditional spatial filtering clearly
is a linear operation with respect to the noisy input.

It has been shown that the MVDR beamformer is the optimal
spatial filter under a Gaussian noise assumption [10], [25]. That
is, any filter jointly performing spatial filtering and postfiltering
can (in theory) be decomposed into an MVDR beamformer
for spatial processing followed by a single-channel postfilter.
A prominent example is the multi-channel Wiener filter, which
can be decomposed in an MVDR plus single-channel Wiener
filter [26]. The work by Hendriks et al. [27] and our prior work
[10] reveal that this is not the case for more general noise distri-
butions. The analytic filter derived in [10], [27] joins the spatial
and spectral filtering into a non-separable non-linear operation
which is in contrast to the simple and linear processing model of
a beamformer. Our own previous work [10] demonstrates that
such a joint spatial-spectral nonlinear processing may overcome
the limitations of a linear beamformer, which is restricted
to suppressing M − 1 directional interfering point sources
(maximum number of sources in a reverberation-free setting).
However, oracle knowledge of the target and noise signals
are required for accurate parameter estimation to obtain good
results with the analytic joint spatial-spectral nonlinear filter.

C. DNN-based spatial filtering

While state-of-the-art single-channel speech enhancement
nowadays completely relies on DNN-based approaches, DNN-
based multi-channel approaches have become a vivid research
topic recently. An important step towards using the capabilities
of neural networks for multi-channel speech enhancement was
taken by Heymann et al. [11], who design a DNN-based param-
eter estimation scheme for computing estimates of the steering
vector and noise correlation matrix to be used in a traditional

MVDR beamformer. This method has gained a reputation for
its ease of use as well as good and robust results. Similarly,
Togami [12] proposes to extract speaker masks for facilitating
covariance matrix and speech power estimation to be used in a
multi-channel speech separation scheme. Liu et al. [13] extend
the masking-based beamforming approach of [11] by processing
multi-channel instead of a collection of single-channel inputs
and providing cross-channel features. Xiao et al. [14] train a
network to directly estimate the time-invariant filter weights
h(k) of a filter-and-sum beamformer from cross correlation fea-
tures. The main drawback of a method that uses the impressive
modeling capabilities of neural networks only for parameter es-
timation to be used in classical linear processing scheme is that
the limitations of the linear model itself cannot be overcome.

In another line of research, spatial features are used as
additional input to a neural network to increase speech
separation or enhancement performance, e.g., [28]–[31]. The
most common spatial features are inter-channel time or phase
differences (ITD/IPD), inter-channel level differences (ILD),
cross-correlation based features, as well as features computed
with fixed beamformers. Most of these works, show notable
performance improvements over single-channel approaches
proving that spatial information is very valuable for speech
separation and enhancement tasks. As for all approaches using
hand-crafted features, a major concern is the question whether
the chosen feature design is optimal for the task at hand. For
example, in [32] and [33] the authors propose to estimate beam-
forming weights from speech and noise second-order statistics
(covariance matrix estimates) using a DNN, while our analysis
in [10] suggests that higher-order statistics are a valuable source
of information, which can not be exploited this way.

An increasing number of recent works skips the spatial
feature design part and trains a DNN-based filter to perform
speech enhancement or separation based on raw multi-channel
signals, either providing the time-domain signals [34]–[38]
or frequency-domain signals [15]–[20] as input to the network.
In many of these works, the authors claim that the network
architecture has been designed with the goal in mind to im-
plicitly learn a spatially selective filter from data. Nonetheless,
the architectures proposed in these papers differ notably from
each other. While some authors propose to learn a mask that
is applied to a reference channel of the noisy signal, e.g.,
[15], [17], others propose a network that outputs the real and
imaginary part of the target clean speech signal [18] or to learn
a set of coefficients h and apply them to the signal adhering
to the filter-and-sum processing model (cf. (3)) [19], [35].

For the last mentioned approach, it is clear that the authors
have derived their architecture design from traditional linear
filter-and-sum beamforming, but also others claim their
architecture to be inspired be the traditional spatial filters, e.g.,
[17]. The authors of EaBNet [19] even propose to append
the DNN-based spatial filter with a (DNN-based) post-filter
following the traditional two-step procedure. However, it is
important to be aware that their “spatial filter” as well as all
other DNN-based approaches referenced in the last paragraph
are in principle not only capable of performing non-linear
spatial filtering but will likely perform spatial filtering jointly
with tempo-spectral postfiltering. As a consequence, a direct
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comparison with a traditional linear beamformer, for example
the MVDR beamformer, without a post-filter can therefore
not be considered a fair comparison.

Overall, we conclude that many interesting architectures
for implementing a DNN-based filter for multi-channel speech
enhancement have been proposed, but also a lot of open
questions remain. Most approaches haven been evaluated
with respect to their overall speech enhancement performance.
However, this is not very informative with regard to the internal
mechanisms of the network. For example, it is unclear whether
a network architecture inspired from traditional beamforming
performs particularly well in spatial filtering as hypothesized by
many authors, since performance improvements could also be
achieved by better exploitation of tempo-spectral information.
Thus, a more systematic evaluation is required to provide
insights in the internal mechanisms of these DNN-based filters.

III. PROPOSED APPROACH

In this work, we aim to investigate the contribution of
different sources of information, that is spatial, spectral and
temporal information, to a DNN-based filter for a speech
enhancement or speech extraction problem. We are particularly
interested in understanding the nature of a non-linear spatial
filter and its interdependencies with temporal and spectral
information. To provide insights into the “black box” of a
DNN-powered filter, we use a simple network structure that
allows us to easily control the integration of different sources
of information and a dataset that makes it easy to assess
the quality and properties of the spatial filter. This section
describes the network design used in our experiments.

A. Base network architecture (F-JNF, T-JNF)

For our experiments, we adapt the architecture proposed by
Li and Horaud [15], [39], that performs speech enhancement
using a mask estimated from narrow-band multi-channel inputs.
The distinctive feature of their approach is that the network
processes all frequency bands separately. The network weights,
however, are shared between frequencies. In the following,
we propose a number of alternative network architectures to
enable a detailed analysis. Figure 2 depicts the base network
architecture. As can be seen in the bottom part, the network
consists of only three layers, two (bi-directional) long short-
term memory (LSTM) layers followed by a feed-forward (FF)
layer. An LSTM layer [40] is commonly used for sequence
modeling. In our setup, the feature dimension (vertical) mostly
corresponds to channel information (real and imaginary parts
stacked) while the sequence dimension (horizontal) is chosen
according to the second source of information which could be
time (narrow-band) or spectral (wide-band) information. As
spatial information is processed jointly with a second source
of information, we denote this network as joint non-linear
filter (JNF) prefixed with T or F in the narrow-band and
wide-band case respectively. Thus, the narrow-band version
(T-JNF) as proposed in [15] has access to fine-grain spatial
and temporal information but only global spectral statistics,
while our proposed variant F-JNF can leverage fine-grained
spectral information in addition to spatial information.

B. Combining temporal and spectral information (FT-JNF)

The basic architecture described in Section III-A combines
spatial information with spectral or temporal information.
Next, we propose a variant that can exploit all three sources of
information combining spatial with tempo-spectral processing.
In order to ensure comparability of the results, we do not
change the basic architecture or the number of parameters.
Instead, we manipulate the data arrangement at the position
marked with a circled two. The filter denoted by FT-JNF then
feeds wide-band data into the first LSTM layer. The obtained
features are then switched to a narrow-band arrangement
before input to the second LSTM layer. This way, the FT-JNF
can potentially exploit all three sources of information.

C. Non-linear spatial filtering (T-NSF, F-NSF, FT-NSF)

To study the properties of a non-linear spatial filter (NSF)
separately from the tempo-spectral processing, we define three
additional variants of the the network architecture: T-NSF,
F-NSF, and FT-NSF. The underlying idea is to prevent the
network from employing fine-grained temporal and spectral
information by randomly permuting the data along the sequence
dimension before feeding it into the LSTM at position ➀. The
inverse permutation operation is then applied before the FF
layer at position ➂. Accordingly, only global statistics with
respect to the frequency or time dimension are available but
correlations between neighboring frequencies or time steps
cannot be exploited. Preliminary experiments have shown that
the spatial processing using a wide-band data arrangement (F-
NSF) performs poorly if the frequency-bin index is unknown
to the network. This is likely because the spatial characteristics
of the data depend strongly on the frequency-bin index. To
ensure that this information is still available after shuffling
along the sequence dimension, we append the frequency-bin
index to the feature dimension. We do this also for a narrow-
band data arrangement (T-JNF) but in this case the effect on the
performance is minor. Analogous to the procedure described
in Section III-B, we define a non-linear spatial filter that incor-
porates both global spectral and global temporal information.
This is achieved by again switching from wide-band to narrow-
band data arrangement at position ➁ and requires both LSTM
layers to be wrapped in permutation and inverse permutation
operations with respect to the respective sequence dimension.

D. DNN-based post-filtering (PF)

Finally, we introduce a single-channel post-filter that jointly
processes temporal and spectral information. For consistency,
we stick to the simple base architecture shown in Figure 2. Here,
the real and imaginary parts of the single-channel input data
are stacked along the frequency dimension to form the feature
dimension. The time axis is then used as sequence dimension.

E. Lossfunction and training details

We train the networks based on a complex ideal ratio mask
(cIRM) [41] in favor of a magnitude ideal ratio mask (IRM)
as in [15] to facilitate phase enhancement. For this reason,
the FF layer is followed by a tanh activation function, which
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Fig. 2: Illustration of the base system architecture. The input data is arranged according to a wide-band or narrow-band input
and fed into a network with two LSTM layers, an FF layer and tanh activation to obtain an estimate of a cIRM.

outputs a compressed mask estimate. We use compression
parameters K=C=1 as defined in [41]. The enhanced signal
is then obtained by multiplication of the uncompressed target
speech cIRM MS(k,i)∈C with the noisy recording Y0(k,i)
using the first channel as reference, i.e.,

Ŝ(k,i)=MS(k,i)·Y0(k,i). (6)

The real and imaginary parts of the noise cIRM MV can be
obtained from the real and imaginary part of the target speech
cIRM using [17]:

Re(MV)=1−Re(MS), (7)
Im(MV)=−Im(MS). (8)

The noise cIRM estimate can be used to obtain an estimate
of the pure noise component contained in the signal, i.e,

V̂ (k,i)=MV(k,i)·Y0(k,i). (9)

We use the loss function proposed by Tolooshams et al. [17],
which is composed of time and frequency domain ℓ1 loss terms:

L(s,ŝ)=
∑

u∈{s,v}
α∥u−û∥1+

∥∥∥|U |−|Û |
∥∥∥
1
. (10)

Here, the frequency-domain terms Ŝ and V̂ are estimated as
given in (6) and (9) and time-domain quantities are obtained
by an inverse STFT. We set α=10 to equalize the contribution
of either domain in the loss term.

As can be seen from the loss function, our training scheme
uses the noisy observations y(t), which serves as network
input, as well as the ground truth noise signals v(t) recorded
at the microphones and the non-reverberant signal s(t), which
has been aligned with the noisy observation to include the
propagation delay. If the ground truth for the noise signal is
unknown, we only use the clean speech related parts of the loss
function. During training, we randomly extract three seconds
of audio from an utterance and compute the STFT using a 32
ms long window with 50% overlap. The

√
Hann window is

applied for analysis and synthesis. We train the networks with
batch size six until convergence with maximum 250 epochs and
select the best model with respect to the validation loss. The

TABLE I: For each sample, the room characteristics are
obtained by sampling uniformly from the value ranges given
in this table.

Width Length Height T60

2.5−5 m 3−9 m 2.2−3.5 m 0.2−0.5 s

number of LSTM units is set to 256 and 128 for all networks,
except PF, for which 256 units are used in both layers. The
Adam optimizer [42] with learning rate 0.001 is used.

IV. ANALYSIS OF THE INTERPLAY
OF SPATIAL WITH TEMPO-SPECTRAL INFORMATION

In this section, we evaluate the previously described
networks in a speaker extraction scenario with a single speaker
that is to be extracted and five additional interfering speech
sources. Such a scenario seems particularly suitable to study
the spatial filtering capabilities of a processing method since
a spatially selective filter, as opposed to a filter that mainly
exploits tempo-spectral information, is expected to be the
key to good performance on this task. This is because the
target signal has very similar tempo-spectral properties as
the interfering signal (five speakers) but the signals differ
decisively in their spatial properties.

A. Dataset

We generate a simulated dataset using pyroomacoustics
[43], which provides an implementation of the source-image
model [44]. The setup is illustrated in Figure 3. For each sample,
the room dimensions and the reverberation time are uniformly
sampled from the value ranges given in Table I. We use a circu-
lar microphone array with a diameter of 10 cm and between two
and five channels. The microphone array is placed at a random
position in the xy-plane but at least 1 m away from the walls,
and it is located at a height of 1.5 m. As depicted in Figure 3, a
rotation φ is applied to the microphone array sampled from the
interval [0,2π). In our setup, the target speaker has to be iden-
tified by its spatial location. Accordingly, we place the target
speaker in a fixed position relative to the microphone orientation
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target source

ϕ

Fig. 3: Illustration of the simulation setup. The target source is
located in a fixed orientation with respect to microphone array.
The five interfering sources are placed in the gray area (one per
segment). Room properties are sampled from the given ranges.

on the blue dotted line in Figure 3. Its distance to the micro-
phone array ranges between 0.3 m and 1 m. The five interfering
sources are placed in the gray area with a minimum distance of
1 m to the microphone array location. As indicated by the white
area, a room spanned by the 20◦ angle to either side of the
target source is also kept free of interferers. To ensure an even
distribution of sources in the room, we place one interfering
source per segment as indicated by the dashed gray lines. The
height of the interfering speech sources is sampled from a nor-
mal distribution with mean 1.6 m and standard deviation 0.08.

We generate 6000, 1000, and 600 samples with a sampling
frequency of 16 kHz for training, validation and testing respec-
tively using clean speech signals from the WSJ0 dataset [45].
Signals between the different sets do not overlap. The signal-to-
noise ratio (SNR) is not explicitly controlled but obtained from
the the simulation setup with varying distances of the sources
to the microphone array. The average SNR is −4 dB and 95%
of the data samples distribute between −9 dB and 2 dB SNR.

B. Separability of spatial processing and post-filtering

Figure 1a illustrates the traditional two-step approach with a
spatial filter that is applied first and a single-channel post-filter
for tempo-spectral processing that is applied in a second
processing step. Such a modular design is desirable as it
offers flexibility and interpretability, however, the analytical
MMSE solution in a non-Gaussian noise scenario is non-linear
and non-separable [10]. The MMSE-optimal solution thus
corresponds to the joint spatial and (tempo-)spectral filter
depicted in Figure 1b. However, it is unclear if the third option
of using a non-linear spatial filter as depicted in Figure 1c is a
meaningful concept or if non-linear spatial processing is only
useful if tempo-spectral information and spatial information
are processed jointly as in Figure 1b. For this reason, in
this section, we investigate if a DNN-based non-linear filter
can be separated into spatial processing and single-channel
tempo-spectral post-filtering by comparing the performance
of all three configurations shown in Figure 1.

The left plot in Figure 4 shows the mean perceptual objective
listening quality analysis (POLQA) score [46] and the 95%
confidence interval for a varying number of microphones.
The POLQA algorithm is the successor to the perceptual
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Fig. 4: We report the mean POLQA and ESTOI scores along
with the 95% confidence interval for a set of multi-channel
filters. This figure shows that joint spatial and tempo-spectral
filtering (FT-JNF) outperforms a nonlinear spatial filter plus
a postfilter (FT-NSF+PF).

evaluation of speech quality (PESQ) measure [47]. It measures
speech quality based on mean opinion score (MOS) scale
ranging from one (bad) to five (excellent). The dashed lines
correspond to spatial-only filters. That is the traditional MVDR
beamformer (green) and the FT-NSF described in Section
III-C (blue). The parameters of the MVDR beamformer are
estimated from oracle data. We compute the time-varying
noise covariance estimate by recursive averaging of the pure
noise data and estimate the acoustic transfer function (ATF)
by multiplying the principal eigenvector of the generalized
eigenvalue problem for speech and noise covariance matrices
with the speech covariance matrix as described in [48].

Even though the MVDR parameters were accurately esti-
mated from oracle data, which means that the MVDR should
be considered as an upper bound on the spatial filtering perfor-
mance achievable with a linear processing model, the non-linear
spatial filter excluding a tempo-spectral post-filtering yields
higher POLQA scores, in particular for a small number of mi-
crophones. A spectrogram visualization for three microphones
is shown in Figure 5. The results obtained with a linear spatial
filter (LSF) and a non-linear spatial filter (FT-NSF) are depicted
in the middle row. Differences in the behavior are clearly visible:
While the MVDR is distortionless by design at the cost of little
noise suppression in this difficult noise scenario, the non-linear
spatial filter aggressively reduces noise, but introduces quite
some speech distortions. Please find audio examples on our
website1. Next, we combine each spatial filter with an indepen-
dent single-channel post-filter. For this, the DNN described in
Section III-D is trained using the output of the MVDR and FT-
NSF evaluated on the training set as network input. The results
for these two-step approaches are shown in Figure 4 using the
same marker as the corresponding spatial filter but with a solid
line. We find that the post-filter added to the non-linear spatial
filter (FT-NSF+PF) does not result in a notable performance

1https://uhh.de/inf-sp-deep-non-linear-filter
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Fig. 5: Spectrogram visualization of an example utterance.
The target signal and the noisy observation are displayed in
the top row. The middle row shows two spatial filters, a linear
MVDR on the left and a DNN-based non-linear on the right.
The bottom depicts the MVDR with an independent post-filter
and the joint spatial and tempo-spectral filter.

improvement. In effect, the purple line runs almost exactly on
top of the blue dashed line. This can be explained by the fact
that speech information, which was lost already during spatial
processing, cannot be recovered by multiplication with the post-
filter mask. In contrast, the MVDR beamformer does not distort
the clean speech signal, and adding a single-channel post-filter,
represented by the red solid line, is very effective. Here, we
observe a performance boost between 0.18 POLQA score (two
microphones) and 0.5 POLQA score (three microphones) in
comparison with the linear spatial filter only.

Finally, we compare with the joint non-linear spatial and
tempo-spectral filter FT-JNF. As visible in Figure 1b, the
separation of spatial and tempo-spectral processing has been
removed, which allows the network described in Section III-B
to exploit the interdependencies between spatial and tempo-
spectral information. This joint approach, depicted by the solid
orange line, clearly outperforms the separated linear spatial
filter plus post-filter approach for a low number of microphones.
For two microphones the difference even amounts to 0.44
POLQA score. With an increased number of microphones,
the gap between the orange line (FT-JNF) and the red line
(LSF+PF) decreases or inverts even for ESTOI [49] depicted in
the right plot. This is not very surprising as the number of ane-
choic point sources that can be canceled by the oracle MVDR

TABLE II: Impact of different sources of information (spectral
(F) and temporal (T)) used besides spatial information. We
report mean improvements and the 95% confidence interval.

∆ POLQA ESTOI

F-NSF 0.78 ± 0.03 0.62 ± 0.012
T-NSF 0.46 ± 0.03 0.54 ± 0.013
FT-NSF 0.87 ± 0.03 0.64 ± 0.011

F-JNF 1.15 ± 0.04 0.70 ± 0.011
T-JNF [15] 0.74 ± 0.03 0.63 ± 0.012
FT-JNF (proposed) 1.43 ± 0.04 0.76 ± 0.009

increases by one for every added microphone. Accordingly, the
performance of the spatial filter improves considerably with
every microphone added, and when combined it with a strong
post-filter, it becomes increasingly difficult to outperform the
oracle MVDR plus post-filter with a data-driven filter.

Overall, two conclusions emerge from these results: First,
the joint non-linear spatial and tempo-spectral filter (orange)
drastically outperforms the non-linear spatial filter with an
independent post-filter (purple) in terms of speech quality
and intelligibility. This means that the dependencies between
spatial and tempo-spectral information are successfully
exploited by the neural network. And second, the DNN-based
joint non-linear filter (FT-JNF) significantly outperforms the
oracle MVDR with an added single-channel post-filter for a
small number of microphones.

C. Interdependency of spatial processing with spectral and
temporal information

The experiment in the previous section demonstrated that
spatial processing should not be separated from tempo-spectral
processing, as these two seem to mutually enrich each other. In
this section, we will further investigate the interdependencies be-
tween spatial processing and temporal and spectral processing.

In the top three rows of Table II, we report the results
obtained with a non-linear spatial filter that has access to global
spectral, temporal or tempo-spectral information using three
microphones. The corresponding neural network architectures
have been explained in Section III-C. As expected, we observe
that the highest performance is obtained with a non-linear
spatial filter that incorporates both, global temporal and spectral
information, denoted by FT-NSF. However, the comparison
of F-NSF and T-NSF reveals that spatial processing here
benefits much more from global spectral than global temporal
information. The difference even amounts to 0.32 POLQA score
and is also reflected in the ESTOI measurements. A similar
pattern is also observed for the joint non-linear filter that can not
only exploit global statistics but also fine-grained information
including correlations between neighboring frequency bins
and/or time steps. The performance differences between F-JNF
and T-JNF amount to 0.41 POLQA score and 0.07 ESTOI score.

The impact of different sources of information on the spatial
selectivity of the filter is visualized in Figure 6 in more
detail. For this, we present the trained networks with a clean
speech signal originating from varying directions with 1 m
distance from the microphone array. For this experiment, we
use a simulated anechoic room as we want to measure the
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Fig. 6: Visualization of the spatial selectivity of the learned
filters. The plots show the the mean POLQA score and 95%
confidence interval for a clean and anechoic signal arriving
from a given incidence angle. A low POLQA score here
corresponds high suppression of the signal, while a very high
POLQA score (around 0◦) means that the signal has passed
through the filter unaltered. Signals for which no POLQA
score can be computed are marked with a dashed line.

filter’s response to a signal from a specific direction. The plots
in Figure 6 show the POLQA score for the filtered signals
averaged over 15 examples. A high POLQA score, which is
attained by all filters near 0◦, corresponds to a signal that has
passed through the filter unaltered, while a low POLQA score
indicates high suppression of the signal. The POLQA algorithm
does not provide a result if the signal is not speech-like anymore
and has very low energy. For these processed signals, which
retain less then 0.1% of their original energy, we indicate high
suppression with a dashed line at the minimum POLQA score.

Comparing the two bottom plots of Figure 6, it is clearly
visible that exploiting frequency information as opposed to time
information increases the spatial selectivity, which can serve as
an explanation of the performance differences observed before.
While all plots show a “distortionless” response for signals
with an incidence angle between −4◦ and 4◦, signals arriving
from a larger angles are much less suppressed (resulting
in a higher POLQA score) for the network using temporal
information. In particular, even signals that arrive from the
interference region are not fully suppressed. Furthermore,
considering the upper two plots, it is interesting to observe
that adding fine-grained spectral information in FT-JNF and
F-JNF narrows down the spatial selectivity even beyond the
−20◦ and 20◦ angle that can be expected from the dataset
configuration. Yet, a narrower selectivity pattern might be
helpful to resolve the spatial characteristics in a noisy scenario.

V. COMPARISON TO STATE-OF-THE-ART METHODS

In Table II, the overall best performance is obtained with
the joint non-linear filter FT-JNF that exploits tempo-spectral

in addition to spatial information. Comparing to T-JNF which
has originally been proposed by Li and Horaud [15], we find
that our systematic evaluation of the interplay between spatial
and temporal as well as spectral information leads to a drastic
performance improvement of 0.69 POLQA score in a speaker
extraction scenario.

A. Baselines

In this section, we compare the proposed FT-JNF with four
additional baseline network architectures besides T-JNF. This
ensures that the study we conducted with a rather simple
network provides meaningful results also in comparison with
recent and more elaborate state-of-the-art network architectures
and it furthermore allows us to assess the question whether
a network design inspired by a traditional filter-and-sum
beamformer, e.g., [19], [20], [35], is likely to exhibit enhanced
spatial filtering capabilities.

As our primary focus in this work is to better understand the
consequences of architectural choices for implementing multi-
channel DNN-based filters, we train all baseline architectures
following the same procedure outlined in Section III-E and
using the loss function defined in (10). For most baselines, we
use the code provided by the authors with the default parameter
settings and focus our parameter search mostly on the learning
rate. The selected values are given in Table III. It is likely
that an extensive hyper-parameter tuning might lead to better
results, but we nevertheless consider the results representative
of their respective network architecture on the used dataset.
Deviations from the training procedure or the settings described
in the respective paper will be noted in the following. These
are the baselines that we compare the proposed FT-JNF to:

• T-JNF: We consider the architecture T-JNF as an instance
of the network proposed by Li and Horaud [15]. However,
in order to facilitate phase processing, we have changed
the network output from IRM to cIRM and also replaced
the final output layer with a tanh layer accordingly.

• CRNN: We reimplement a variant of the convolutional
recurrent neural network (CRNN) for mask estimation
proposed by Chakrabarty and Habets [16]. The authors pro-
pose a convolutional neural network (CNN) for spatial fea-
ture extraction. For this small convolution kernels are used
on the channel dimension such that a series of convolu-
tional layers reduces the channel dimension to one. These
spatial features are then processed with a bi-directional
LSTM and fed into a FF layer to produce a mask. We use
real and imaginary parts as input and estimate a cIRM.

• FaSNet+TAC: FasNet [50] is a time-domain approach
mimicking a traditional filter-and-sum beamformer. The
authors proposed an extension, denoted FaSNet+TAC [35],
which enables variable microphone array configurations.
As the authors report improved performance also for fixed
array geometries, we choose to evaluate FaSNet+TAC on
the speaker extraction dataset. We use the implementation
provided by the authors.

• EaBNet: Li et al. [19] propose the Embedding and
Beamforming Network (EaBNet). It uses a U-Net
structure to estimate an embedding that incorporates
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Fig. 7: Performance comparison of the proposed architecture
FT-JNF and five baselines. The two upper plots show the mean
ESTOI and POLQA performance on the speaker extraction
dataset and the 95% confidence interval. The bottom plot
shows the CQS results obtained by a MUSHRA listening
experiment on twelve randomly selected examples.

spatial and tempo-spectral information and then employs a
“beamformer” network to obtain weights that are applied
in a filter-and-sum beamforming manner. We use the
implementation provided by the authors using the LSTM
branch. We do not apply a single-channel DNN (post-filter
network) to the output of EaBNet and use uncompressed
network inputs and targets. This baseline uses shorter
STFT windows of length 20 ms and 50% overlap.

• COSPA: The Complex-valued Spatial Autoencoder
(COSPA) has been proposed by Halimeh and Kellermann
[20]. Similar to EaBNet it adopts a filter-and-sum approach
with frequency-domain complex-valued coefficients es-
timated by the network. The network architecture is
composed of an encoder, a compandor and a decoder
part. All of these are complex-valued networks. We use
the implementation provided by the authors, which uses 64
ms long STFT windows and an overlap of 50%. We train
using the clean speech terms in the loss function only.

B. Performance analysis

We train and evaluate all networks on the speaker extraction
dataset. The results with respect to the POLQA improvements
and ESTOI scores are displayed in the two upper plots of Figure
7. Here, we observe that the proposed FT-JNF consistently out-
performs all other baselines by at least 0.22 POLQA score and
0.04 ESTOI score. In addition to using objective performance
measures, we also conducted a MUSHRA [51] listening exper-
iment with eleven participants using the webMUSHRA frame-
work [52]. The participants have rated the overall quality of the

TABLE III: Baseline configurations.

LR STFT #Param. Implementation /
[ms] [M] Github repository

FT-JNF 0.001 32 1.2 own (sp-uhh/deep-non-linear-filter)
T-JNF 0.001 32 1.2 own
CRNN 0.0001 32 17.4 own
FaSTAC 0.0001 – 4.1 ylou42/TAC
EaBNet 0.001 20 2.8 Andong-Li-speech/EaBNet
COSPA 0.0001 64 2.1 ModarHalimeh/COSPA

−100 0 100
0

2

4

6

8
FT-JNF (proposed)

Fr
eq

ue
nc

y
[k

H
z]

−100 0 100

EaBNet [19]

−40

−20

0

dB

Fig. 8: Visualization of the spatial selectivity of the learned
filters. The patterns are created by presenting white noise
signals to the networks and averaging the resulting STFT
signal along the time dimension for each incidence angle and
converting to decibel.

algorithms based on twelve randomly sampled examples. The
results are reported on a continuous quality scale (CQS) and pre-
sented in the bottom plot. The test results align very well with
the objective measures and we find that FT-JNF performs best
with a score of 67.9 outperforming EaBNet in second place with
a score of 53.1. This is despite the fact that our proposed FT-
JNF has the least number of learnable parameters. The number
of parameters for each network architecture are given in Table
III. It is apparent that the number of parameters is not the deci-
sive factor for good performance here. Since all networks were
trained in the same way (data, loss, optimizer etc.), we attribute
the performance differences to the architectural choices of how
to integrate different sources of information in the processing.

While the architectures described in Section III as well
as the CRNN adopt a mask-based approach, the baselines
FasNet+TAC, EaBNet and COSPA resort to the filter-and-sum
technique from traditional beamforming, where the filter
weights are learned by the respective network. As the speaker
extraction dataset is very challenging with low SNR and many
interfering speech sources that have a similar tempo-spectral
structure as the target signal, we can interpret the results in
Figure 7 to reflect to a large extend the spatial selectivity
of the DNN-based filters. Contrary to the common belief
that a network design guided by the traditional beamforming
paradigm is beneficial to spatial filtering capabilities, the best
performance is obtained by FT-JNF that employs a mask-based
approach, while the beamformer-inspired EaBNet only
performs second best with an audible performance difference.

In order to investigate further the spatial selectivity of the
different approaches, we perform an experiment similar to the
one presented in Figure 6. Here, we present the trained networks
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FT-JNF and EaBNet with spectrally white noise signals orig-
inating from variable directions in an anechoic room. Clearly,
these signals are out-of-distribution data for a network trained
on speech mixtures. However, the spatial properties are still
consistent with the ones the network has seen during training.
Figure 8 displays the filters’ response to these spatial cues.
The incidence angle of the white noise signals is plotted on the
x-axis. For each direction the STFT of eight filtered signals
are averaged along the time axis. These white-noise response
patterns seem to resemble the traditional directivity patterns [24,
Sec. 12.5.2]. However, it must be noted that these white-noise
response patterns do not allow for the same interpretation as a
traditional beampattern. The reason for this is the non-linearity
of the DNN-based filters. While a traditional beamformer, due
to its linear nature, can in principle process all directional
components of a signal separately and compose the final result
after processing, this is not possible for a non-linear approach.

Bearing this in mind, the plots in Figure 8 nevertheless
provide interesting insights into the spatial processing
performed by the two networks. The FT-JNF shows a very
clear spatial selectivity oriented towards the known position of
the target source at zero degree. The width of the beam here
coincides quite well with the two additional ticks at −20◦ and
20◦, which mark the noise-free spatial section. On the other
hand, the beam produced by EaBNet is much wider and
suppression in the non-target direction does not work as well
in particularly for high frequencies. What is is also noticeable
is that the pattern suggest that signals near zero degree are
slightly low-pass filtered, while the signal originating from an
exact zero degree angle is high-pass filtered to some extend.

This loss in overall signal quality is also visible in Figure 9
for EaBNet. Here, we repeat the previously described exper-
iment, where we present clean speech signals from different
directions as input to the network (Figure 6). Comparing the
orange line representing EaBNet with the blue line for FT-JNF,
we find that EaBNet reduces the quality of the clean speech sig-
nal even if it is presented from the target direction. Considering
this and also the width of the beam in both figures, we conclude
that the performance differences that we have found in Figure
7 are well explained by the spatial properties of the filters.

VI. IMPLICATIONS OF TRAINING
DNN-BASED MULTI-CHANNEL FILTERS ON CHIME3

Finally, we evaluate on the CHiME3 data [53], which
has been recorded in four real-world noisy environments:
a cafeteria, a bus, a pedestrian area and next to a busy
street. This dataset is frequently used to train and evaluate
DNN-based multi-channel algorithms. The recordings have
been conducted with a six-channel microphone array attached
to a tablet that is held by the recorded speaker.

A. Dataset

The T-JNF network proposed by Li and Horaud [15] has
originally been trained on the CHiME3 data. The authors
propose in [15] to create a simulated dataset, which combines
the pure noise recordings provided in the CHiME3 dataset with
clean booth recordings instead of artificially spatialized target
signals. We use their data generation script to obtain 2400, 476,
and 3251 utterances for training, validation and test respectively.
The signals in the test set are mixed with a SNR in {−4,0,4,8}
dB and we use the last four channels for our experiments.

B. Performance analysis

First, we assess the interaction between spatial and spectral
as well as temporal information also on the CHiME3 dataset.
Therefore, in Table IV, we report the POLQA improvement
scores for FT-JNF, F-JNF and T-JNF. As before and as
expected, we find that the best performance is obtained by
FT-JNF in the top row that can exploit all available sources of
information, that is spatial, spectral and temporal information.
However, a comparison with the bottom part of Table II
showing results for the speaker extraction dataset reveals
that the performance benefit of including spectral versus
temporal information is reversed here. While a spatial-spectral
filter performs better on the speaker extraction dataset, a
spatial-temporal filter prevails on the CHiME3 dataset even
though with a smaller performance gap. This behavior can
be explained by considering the differences in the signal
characteristics of the two datasets. While the speaker extraction
dataset requires high spatial selectivity for good performance,
which means that multi-channel processing is required, a
single-channel filter performing tempo-spectral enhancement is
expected to obtain solid results on the CHiME3 dataset. This is
because the noise signals in the CHiME3 dataset have a tempo-
spectral structure that is quite different from that of the target
speech signal and are, in most cases, much more stationary.

Consistent with the results of Section IV-C, in Figure 10 we
show that a spatio-temporal filter (T-JNF) has a substantially
lower spatial selectivity than a spatio-spectral filter: The plots
have been obtained by providing the network trained on the
CHiME3 data with a clean speech input from a variable
direction. For this, we simulate the CHiME3 microphone array
in a room with a clean speech source in a variable position with
40 cm distance to the microphone array. Signal suppression
(blue) or signal pass-through (yellow) are measured by
POLQA scores. The centered yellow blob for F-JNF (right
plot) corresponds to the position of target speech sources in
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TABLE IV: POLQA improvement scores (mean and 95%
confidence interval) for the proposed network architectures
and baselines evaluated on the CHiME3 data.

BUS CAF PED STR

F-JNF 1.16±0.05 1.17±0.05 1.08±0.04 1.35±0.03
T-JNF 1.30±0.03 1.23±0.03 1.11±0.03 1.45±0.03
FT-JNF 1.53±0.04 1.56±0.04 1.45±0.04 1.76±0.03

CRNN 0.89±0.04 0.90±0.04 0.83±0.04 1.02±0.03
FaSNet+TAC 0.61±0.03 0.53±0.03 0.51±0.02 0.61±0.02
EaBNet 1.19±0.04 1.18±0.04 1.08±0.04 1.31±0.03
COSPA 0.60±0.03 0.61±0.03 0.56±0.03 0.65±0.03

the dataset. A speech source positioned at the origin represents
a speaker that holds the recording tablet frontally at face level.
Most speakers in the dataset however tilt the tablet to look
at it a bit from above corresponding to a negative latitude
value. The yellow blob at the left and right bottom edge shows
that the filter cannot differentiate between signals impinging
on the microphones attached to the tablet from front-side or
back-side, which is expected for a planar microphone array.
As the T-JNF has only little spatial selectivity but nevertheless
obtains better performance than F-JNF, we conclude that
temporal information, which is not reflected in this plot,
plays an important role. However, based on the first spatial
selectivity plot for FT-JNF, we find that this information can be
incorporated without sacrificing a lot of the spatial selectivity,
which gives a great performance boost of 0.23 POLQA score.

In addition, we draw two more general conclusions from the
above analysis: First, the plots show clearly that the CHiME3
dataset resembles a scenario with a fixed (only slightly
variable) target speaker position relative to the microphone
array orientation. This is easily forgotten as the target speaker
positions in the CHiME3 dataset are unknown. And second,
we have seen that performance improvements observed for a
joint multi-channel filter evaluated on the CHiME3 dataset can
not directly be attributed to an improved spatial filtering, but
that a much more detailed analysis is necessary to understand
the internal functioning of such a filter.

Finally, we compare our proposed algorithm with the four
additional baselines described in Section V-A. The results
are presented in the bottom part of Table IV. The results

are consistent with the performances reported on the speaker
extraction dataset. Only T-JNF [15] improves in comparison
with the other baselines and now slightly outperforms EaBNet
[19]. Overall, we find that our proposed architecture FT-JNF,
which has been designed to use all three sources of information,
outperforms all other baselines regardless of the noise type.

VII. CONCLUSION

In this work, we have presented a detailed analysis of the
internal mechanisms of a DNN-based filter for multi-channel
speech enhancement. While traditional approaches combine
a linear spatial filter with a separate tempo-spectral post-filter,
DNN-based filters can potentially overcome the linear
processing model and exploit interdependencies between
spatial and tempo-spectral information. Here, we have shown
that a non-linear spatial filter indeed outperforms an oracle
MVDR on a challenging speaker extraction task with a low
number of microphones. Furthermore, our analyses reveal that
the interdependencies between spatial and spectral information
can successfully be exploited by a DNN-based filter showing
that additional spectral information increases the spatial
selectivity of the filter. Our systematic review of this interplay
of spatial and and tempo-spectral information leads to a simple
network architecture with only two LSTM layers and a single
feed-forward layer, that outperforms state-of-the-art network
architectures for multi-channel speech enhancement by at least
0.22 POLQA score on the speaker extraction task and 0.32
POLQA score on the CHiME3 noise data.
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Abstract—In a multi-channel separation task with multiple
speakers, we aim to recover all individual speech signals from the
mixture. In contrast to single-channel approaches, which rely on
the different spectro-temporal characteristics of the speech signals,
multi-channel approaches should additionally utilize the different
spatial locations of the sources for a more powerful separation
especially when the number of sources increases. To enhance the
spatial processing in a multi-channel source separation scenario,
in this work, we propose a deep neural network (DNN) based
spatially selective filter (SSF) that can be spatially steered to
extract the speaker of interest by initializing a recurrent neural
network layer with the target direction. We compare the proposed
SSF with a common end-to-end direct separation (DS) approach
trained using utterance-wise permutation invariant training (PIT),
which only implicitly learns to perform spatial filtering. We show
that the SSF has a clear advantage over a DS approach with the
same underlying network architecture when there are more than
two speakers in the mixture, which can be attributed to a better
use of the spatial information. Furthermore, we find that the SSF
generalizes much better to additional noise sources that were not
seen during training and to scenarios with speakers positioned
at a similar angle.

Index Terms—Multi-channel, speech separation, DNN-based,
spatially selective filter (SSF)

I. INTRODUCTION

Speech separation algorithms target the so-called cocktail
party problem, where several (two or more) human speakers are
speaking at the same time. The goal is to recover the original
speech signals from a mixture recording that may also contain
additional background noise and reverberation. This task is
particularly challenging because all target speech signals have
similar tempo-spectral characteristics. But nevertheless, normal-
hearing people are very good at focusing their attention on a
single target speaker, so that they can even enjoy a conversation
at a cocktail party. This ability is mainly due to the fact that
humans have two ears, which enables them to perceive and
process spatial information. Similarly, also speech processing
algorithms can leverage spatial information by using multiple
microphones to record the mixture signals.

The most traditional form of spatial processing is to employ
a linear spatial filter, a so-called beamformer, which is designed
to enhance the signal arriving from a target direction by
suppressing signal components that arrive from a direction
other than the target direction. Two prominent examples are
the Delay-and-Sum beamformer and the minimum variance
distortionless response (MVDR) beamformer [1]. Both of
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Universität Hamburg, 22527 Hamburg, Germany (e-mail: kristina.tesch@uni-
hamburg.de; timo.gerkmann@uni-hamburg.de).
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these employ a linear processing model: first, the individual
microphone signals are filtered, and then added. The underlying
idea for the Delay-and-Sum beamformer is to compensate for
the relative time differences of arrival (TdoAs) of the signal
at the microphone channels in the filtering step. Therefore,
accurate TdoA or related direction of arrival (DoA) estimates
are required. The MVDR beamformer additionally takes the
second-order statistics of the interfering signal into account so
that it can form a superdirective beamformer or steer nulls in the
direction of interfering point sources. However, the number of
point-sources that can be eliminated is bounded by the number
of microphone channels minus one [2, Sec. 6.3]. Consequently,
the MVDR beamformer deteriorates in a reverberant setting as
reflections of the interfering sources arrive from all directions.
As the performance of these linear spatial filters is limited, a
single-channel post-filter is commonly applied to the output of
the linear spatial filter.

Linear spatial filters have been, and still are, a popular choice
for source separation problems because of their ability to focus
on a single target source based on its spatial characteristics
[3]–[15]. The challenging part here is accurate parameter
estimation: a data-dependent implementation of the MVDR
requires the localization of speakers or a direct estimation of
the relative transfer function (RTF) as well as an estimation of
the interfering signal’s covariance matrix. While older works
employed statistical modeling, e.g., [5], [7], recent ones rely on
neural networks for this purpose. In the so-called masked-based
beamforming approach, a neural network is used to estimate
time-frequency masks for each speaker and use these to obtain
the target speech and interfering noise signal’s covariance
matrix, e.g., [10], [11], [13], [16]. Other researchers suggest
to sample the space with a fixed beamformer and use a neural
network for beam selection and post-filtering [12], [14], [15].

However, with the rise of the neural network era, there is
also an increasing number of multi-channel speech separation
approaches that do not perform explicit spatial filtering. Instead,
the neural networks are presented with multi-channel inputs
and/or directional features and are trained to estimate the speech
sources directly from the mixture, e.g., [17]–[20]. Throughout
this work, we will refer to these end-to-end regression-based
systems as direct separation (DS) approaches. Typically, these
systems output as many speech signals as there are speech
sources in the mixture, which gives rise to a permutation
problem. For this reason, most DS approaches are trained
with an utterance-wise permutation invariant training (PIT)
loss. Unlike in the case of using a beamformer for spatial
filtering, the spatial processing takes place only implicitly in
the DS networks. It is clear, however, that maximum separation
performance can only be reached if such a network learns to
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perform powerful spatial processing directly from training
examples.

While the traditional spatial filters are constraint by a linear
processing model, the nature of neural networks enables non-
linear spatial processing and, furthermore, an integration of
the spatial and tempo-spectral processing steps, which are
separated in a traditional beamformer plus tempo-spectral
post-filter setup. In a previous analysis based on statistical
minimum mean square error (MMSE) estimators [21], we
have shown that this indeed leads to more powerful spatial
processing in non-Gaussian interferences, which is arguably
always the case in speech separation. As a consequence, the
upper bound for the number of sources that can be canceled
by a linear spatial filter does not hold anymore if the filter
is non-linear and jointly performs spatial and tempo-spectral
processing. In further experiments with DNN-based joint non-
linear spatial and tempo-spectral filters, we have confirmed that
neural networks can implement spatial filters that drastically
outperform an oracle MVDR plus additional DNN-driven post-
filter [22]. Accordingly, DNN-based DS approaches can offer
a potentially better spatial filtering than a traditional linear
spatial filter. On the other hand, these networks have to learn
the spatial processing implicitly from data. How well this is
accomplished can only be determined indirectly. Since the DS
approaches are less modular than the spatial filtering approach
that separates parameter estimation, e.g., DoA estimation, and
spatial filtering, they are also less flexible with respect to,
for example, a variable number of sources. In this paper, we
investigate the separation performance of DNN-based non-
linear joint spatial and tempo-spectral filters, which have been
trained according to two different strategies: (1) using PIT,
which means that the spatial filtering must be learned implicitly
from the provided examples and (2) with an explicit focus on
the spatial filtering by steering a filter towards a target speaker
with a given DoA. A filter obtained by using the second strategy
is referred to as a spatially selective filter (SSF) in this work.

Many researchers have proposed to enhance multi-channel
speech separation with so-called directional features [17], [23]
or use location-information to guide speaker extraction tasks
[18], [24], [25]. For example, Gu et al. and [24] and Chen
et al. [25] proposed an angle feature indicating which time-
frequency bins are dominated by a signal from a particular DoA.
Other common features are related to the inter-channel phase
differences (IPDs) of the microphone pairs, cross-correlation
features or features computed with fixed beamformers, e.g.,
a Delay-and-Sum beamformer steered to a set of candidate
locations [12], [25]. In contrast, in our proposed approach, we
do not rely on hand-crafted features, but use a neural network
to learn the spatial processing from raw multi-channel data.

In our recent ICASSP 2023 paper [26], we have introduced
a conditioning mechanism to flexibly steer a DNN-based non-
linear spatial filter in a desired target direction. Given the noisy
mixture and the target look-direction of the filter, the SSF then
extracts the speech signal corresponding to the speaker located
in that direction, similar to traditional linear spatial filters. This
ability to flexibly steer the filter in a desired direction is a
major improvement over a filter with a fixed look-direction
[22], [27], or with fixed spatial target regions [28], [29]. The

conditioning mechanism we proposed in [26] does not need a
steering vector like a classic linear beamformer or the related
work by Jenrungrot et al. [30] but is conditioned on the one-hot
encoded angle. This avoids an implicit far-field assumption and
leads to better performance, as we showed in [26]. Similarly,
Kindt et al. [31] have shown that a learned encoding based on a
one-hot encoded angle used as a feature to improve separation
of closely spaced speakers is more valuable than a hand-crafted
feature based on expected phase differences.

In this paper, we extend our previous work and investigate
the use of SSFs for speech separation. We aim to understand
if the explicit spatial filtering in SSFs is advantageous over
the implicit spatial filtering learned by the widely adopted DS
approach in terms of overall performance, but also in terms
of generalization ability to conditions unseen during training.
Furthermore, we investigate the robustness of the SSF to errors
in the DoA input as well as pertubations in the microphone
array geometry.

The rest of the paper is structured as follows: In the next
section, we give a formal problem description and introduce
the notation. In Section III-A, we describe two neural network
architectures for joint spatial and tempo-spectral non-linear
filtering, which we use to compare a DS and SSF approach
using the same underlying network architecture. In addition,
we explain the steering mechanism of the SSFs in Section
III-B. Section IV describes the dataset generation, and in
Section V, we compare the speech separation performance of
the two approaches. Detailed investigations on the robustness
and generalization ability are presented in Section VI and
Section VII.

II. PROBLEM DEFINITION

In this work, we consider a multi-channel reverberant speech
separation scenario. The goal is to recover the speech signals
uttered by P concurrently speaking persons in a reverberant
room. The mixture signal is recorded by an omni-directional
microphone array with C channels. We denote the dry speech
signal of the p’s speaker by sp(t) with time-index t. The
recording of sp(t) at the ℓ’s microphone includes not only a
time-shift due to the propagation delay but also reflections on
the walls and is denoted by xℓ

p(t). Given the room impulse
response (RIR) hℓ

p(t) describing the propagation path of the
signal uttered by the p speaker to the ℓ’s microphone, the dry
and recorded signal are related via a convolution operation,
i.e.,

xℓ
p(t) = sp(t) ∗ hℓ

p(t). (1)

Using the short-time Fourier transform (STFT), we transform
the time-domain signals xℓ

p(t) into their complex-valued
frequency-domain representations Xℓ

p(k, i) with frequency-bin
index k and time-frame index i. The letters F and T denote the
total number of frequency bins and time frames respectively.
Following the additive signal model, the observed mixture
signal is then given by

Y ℓ(k, i) =
P∑

p=1

Xℓ
p(k, i) + V ℓ(k, i), (2)
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where V ℓ(k, i) denotes the sensor and environmental noise
possibly recorded at the ℓ’s microphone in addition to the
speech signals. Given the mixture signal, the task now is to
recover the original speech signals Sp(k, i) or, equivalently
sp(t), except the propagation delay caused by the length of the
direct path between source and microphone array. Accordingly,
we use the direct-path dry speech signals as training target and
to compute metrics that require a reference signal.

III. SPATIALLY SELECTIVE NON-LINEAR FILTER (SSF)

In this work, we investigate the use of a spatially selective
deep non-linear filter (SSF) for multi-channel speech separation.
Our proposed method is in line with the common approach to
separate the localization task from the actual speaker extraction,
which is then performed in a second step using a spatial filter
steered to the speaker locations. In this section, we describe
two network architectures for joint spatial and tempo-spectral
non-linear filtering (JNF [22], [27] and McNet [20]) and explain
the proposed mechanism for flexibly steering the filter in the
desired target direction.

A. Network architectures for joint spatial and tempo-spectral
non-linear filtering

In our prior work [22], [27], we have proposed the FT-JNF
architecture, which we refer to as JNF in this work. The network
architecture is depicted on the left side of Figure 1a. The
JNF network expects a three-dimensional frequency-domain
input. The yellow box on the top left of Figure 1a visualizes
the input of the filter including the batch dimension denoted
by B. The last dimension expects the real and imaginary
part of all C channels stacked into a vector of length 2C.
The multi-channel input provides three sources of information,
which should be exploited by the network: spatial, spectral and
temporal information. For this, we have previously proposed
the depicted architecture with two LSTM layers at its core.
The F-LSTM has been designed to extract features related to
spatial and spectral information as well as their relationship,
while excluding temporal correlations. This is achieved by a
rearrangement of the data, which moves the time dimension
into the batch dimension such that all time-frames are processed
independently with network weights shared across all time-
frames. The reshaping operations on the data are represented
by the light green boxes in Figure 1a. The correlations along
the time axis are then processed by the T-LSTM layer, which
performs independent processing of all frequency-bins. The
design has been inspired by the work of Li and Horaud
[32], who propose a network that stacks two T-LSTM layers.
However, the replacement of the first T-LSTM by the F-LSTM
significantly enhances the spatial selectivity of the resulting
filter such that the JNF outperformed other state-of-the-art
methods on a speaker extraction task in [22].

The JNF outputs a compressed complex-valued mask in the
range [−1, 1], which is expanded into an uncompressed mask
following the description in [33] with the steepness parameter
set to one to obtain the single-channel time-frequency mask
Mp(k, i) for the pth speaker located in the direction the filter
was steered toward. The corresponding estimate Ŝp is given
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(a) JNF [22], [27] architecture (left) with steering mechanism (right)
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(b) McNet [34] architecture (left) with steering mechanism (right)

Fig. 1: Schematic view of a spatially selective filter (SSF) based
on the JNF (top) and McNet (bottom) network architecture.
The proposed conditioning on the target DoA is depicted on
the right side.

by multiplication of the mask with the reference channel of
the noisy observation, i.e.,

Ŝp(k, i) = Y 0(k, i) · Mp(k, i). (3)

The successful combination of different sources of infor-
mation in the JNF architecture [22], has inspired Yang et
al. [34] to improve it further by appending two more LSTM
layers that are focused on the single-channel (SC) spectral
correlations in time and frequency dimension. A schematic
view of the resulting network architecture, named McNet, is
shown in Figure 1b. Besides two additional LSTM layers, the
authors have introduced skip connections and add additional
feed-forward layers after every LSTM layer. The first skip
connection concatenates the noisy multi-channel signal to the
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input of the T-LSTM and the second and third skip connection
concatenates the noisy magnitude of the reference channel to
the input of the two single-channel LSTM layers. Please refer
to [34] for a more detailed illustration, which also includes the
reshaping steps for McNet. For all experiments, we use the
default configuration of McNet. Since the steering mechanism,
proposed in the next section, targets the first F-LSTM layer,
which is the same in both networks, we can steer both DNN-
based filters in the same way and perform experiments with a
spatially selective filter based on the JNF architecture (JNF-
SSF) and based on the McNet architecture (McNet-SSF).

B. Proposed steering of the non-linear spatial filter (condition-
ing on target direction)

In addition to the multichannel signal input, the proposed
SSF requires the steering direction as a second input, as
shown on the right side of Figure 1a and Figure 1b. The
direction information is presented to the network as a one-
hot encoded vector, whose dimension depends on the chosen
angular resolution. Figure 1 illustrates a 2◦ angle resolution,
which leads to 180 possible input vectors. The one-hot vector
is then fed into a linear layer, which provides an encoding
of the direction information that matches with the number of
units in the F-LSTM layer, which we set to 256 in the JNF
architecture. The encoded DoA information is then used to
initialize the forward and backward initial states of the bi-
directional F-LSTM layer. A similar conditioning mechanism
has also been used by Vinyals et al. [35] to initialize a network
for image caption generation with information about the image.

In contrast to our previous paper [26], we only initialize
the first F-LSTM layer with the direction information and
omit this step for the second T-LSTM layer. Preliminary
experiments have shown that conditioning the first LSTM
layer leads to much better performance than conditioning the
second LSTM. Furthermore, we observed that conditioning
both layers does not provide a benefit but slightly increases
the computational demands. These findings are in line with
our previous observations in [22] that the spatial selectivity is
mainly controlled by the F-LSTM layer.

In [26], we compared the proposed conditioning mechanism
based on a one-hot angle encoding to the method suggested by
Jenrungrot et al. [30]: using knowledge of the microphone array
geometry and based on a far-field assumption, the individual
input channels are shifted such that signals arriving from the
target DoA are time-aligned. These time-aligned signals are
then used as input signal of the network. We found that the
target speaker is reliably extracted with this competing method,
but the proposed conditioning on the encoded DoA angle
consistently performs better and does not rely on a far-field
assumption.

IV. DATASET GENERATION

Using pyroomacoustics [36], we generate a simulated
dataset for training and evaluation based on the image-source
method [37]. An illustration of the geometric setup is given
in Figure 2. All rooms have a rectangular shape with their
dimensions and reverberation characteristics, described by the

ϕt

ϕm

Fig. 2: Illustration of the dataset generation. The target source
is marked with a red cross and its DoA angle φt is computed
relative to the microphone orientation in the room given by
φm. Interfering sources are placed in the gray area.

TABLE I: The room characteristics are sampled uniformly
from the displayed ranges.

Width Length Height T60

2.5− 5 m 3− 9 m 2.2− 3.5 m 0.2− 0.5 s

T60 reverberation time, uniformly sampled from the ranges
given in Table I. We use a circular microphone array with three
omni-directional microphones. The diameter of the microphone
array is 10 cm. With respect to the x and y axis, we position
the microphone array randomly in the room, however with a
minimum distance of 1.2 m to the walls. The height of the array
is fixed at 1.5 m. As illustrated in Figure 2, the microphone
array rotation is denoted by φm ∈ [0, 2π).

During training, the spatially selective filter learns to extract
a single target speaker from the mixture given its angle φt.
The target speaker is represented by a red cross in Figure 2. Its
corresponding DoA angle φt is measured with respect to the
microphone orientation as indicated by the blue dashed line.
Interfering speakers are placed in the gray area at a minimum
distance of 0.8 m and a maximum distance of 1.2 m just like the
target speaker itself. We leave a 10◦ space with no interfering
speakers around the target speaker as indicated by the white
space in Figure 2. The area of the gray annulus is divided into
equally spaced segments as indicated by the gray dotted lines
and one interfering speaker is randomly placed per segment,
also with a minimum angular distance of 10◦ to speakers in a
neighboring segment. In Figure 2, the interfering speakers are
marked by a black cross. The height of the speakers is sampled
from a normal distribution with mean 1.6 m and standard
deviation 0.08 m.

For training the spatially selective filter, we use a setup
with five interfering speakers as shown in the Figure 2. We
discretize the target speaker location φt using a 2◦ resolution,
which results in 180 target speaker directions and provide
300 examples per direction. This results in a total of 54, 000
training examples.

For training or testing on a speech separation task, we do
not change any simulation parameter, but may vary the number
of “interfering speakers”, which are then also considered
as additional target speakers. For validation and testing, we
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generate 2, 700 and 1, 800 examples respectively. The dry clean
speech utterances are taken from the WSJ0 dataset [38], with
no overlap between training, validation and test datasets. The
sampling rate is 16 kHz. The average direct-to-reverberation
ratio (DRR) for each individual speaker’s signal is −0.8 dB
and 95 % of the samples lie in the interval [−5.9, 4.8] dB.
For a separation scenario, we can characterize the distribution
of the signal-to-noise ratio (SNR) with respect to all included
speaker extraction tasks considering one speaker as target signal
and the mixture of interfering speakers as noise. In our setup,
the SNR is mainly influenced by the number of interfering
speakers and the distance of the speakers to the microphone
array. For two speakers, the SNR of the extraction tasks range
between [−9.4, 9.4] dB for 95% of the data. For three and
five speakers, the separation problem gets more difficult as
the SNR ranges shift to [−11.8, 4.9] dB and [−14.5, 0.5] dB
respectively.

V. EVALUATION OF THE SEPARATION PERFORMANCE

A well-performing multi-channel speech separation system
can be expected to benefit from knowledge of the speakers’
locations. This assumption has led researchers to propose
a variety of direction-based features, which are used as
additional inputs to enhance DNN-based speech separation
[17], [18], [23]. While a localization might happen implicitly
in a regression-based direct separation (DS) approach, the
spatially selective filter (SSF) separates the localization from
the speaker extraction task and puts a strong focus on the
spatial properties as the networks learns to focus on a single
speaker using its direction as cue. In this section, we aim to
investigate the impact of the chosen method, DS or SSF, on
the separation performance.

To ensure a fair comparison, we use the same underlying
network structure, JNF and McNet as described in Section III-A.
For the DS approach, we omit the conditioning mechanism
shown on the right side of Figure 1a and Figure 1b and only
provide the multi-channel mixture STFT as input. The output
dimension of the last layer is changed so that not only one mask
is predicted but as many masks as there are speakers in the
mixture. We assume that the number of speakers is known. The
network then produces an estimate for every speaker, and we
use the same ℓ1 loss in time and frequency domain as for the
SSF, but we apply it in a PIT [39] scheme. The loss function
and other DNN training settings are described in Appendix A.

In Table II, we report the separation performance for mixtures
of two, three and five speaker mixtures measured using the
perceptual objective listening quality analysis (POLQA) score
[40] improvement, scale-invariant source-to-distortion ratio
(SI-SDR) [41] improvement and DNSMOS [42] score. The
POLQA and DNSMOS score predict values on a mean opinion
score (MOS) score ranging from one (bad) to five (excellent). In
contrast to POLQA and SI-SDR, DNSMOS does not require a
reference signal, but is a neural network trained on user ratings
according to the P.835 standard. We report the overall quality
rating.

Row number 1 displays the results for the DS networks based
on the JNF architecture and trained with PIT. Separate networks

have been trained for the different numbers of speakers. In
contrast, all results in row 2 have been obtained with the same
network implementing the SSF approach based on the JNF
architecture and evaluated given oracle DoA information for the
individual speakers. As the speakers are likely not positioned
on the 2◦ grid that has been used during training, we map the
oracle target speaker direction onto the closest point in the
grid before computing the one-hot encoding to condition the
network as described in Section III-B. A comparison of the first
two rows of Table II reveals that the JNF-SSF outperforms the
JNF-DS approach in all metrics and for all numbers of speakers
in the mixture. Furthermore, we observe that the performance
difference is larger for a higher number of speakers in the
mixture. For example, the POLQA performance difference
between JNF-DS and JNF-SSF increases from 0.21 for two
speakers to 0.43 for three and five speakers.

Both networks JNF-DS and JNF-SSF used for the com-
parison in this table have approximately the same number of
parameters. However, since the SSF is evaluated multiple times
with each speaker as the target, the DS approach has a smaller
number of learnable parameters per speaker. To investigate
the influence of this effect, we also train JNF-DS with an
increased number of parameters. For this we scale both LSTM
layers by the same factor. The F-LSTM then has 364, 448
and 576 units for two, three and five speakers. The results are
shown in Table III. Comparing with row 1 in Table II, we find
that increasing the network size improves the performance of
JNF-DS. However, as can be seen from the second block of
Table III, the JNF-SSF still outperforms JNF-DS. We therefore
conclude that the superiority of the SSF approach can not be
solely explained by an increased amount of parameters per
speaker.

As expected, the extension of the JNF architecture to McNet
leads to a significant performance improvement in all metrics
and for both the DS and SSF configuration. Comparing row
4 and 6, we find that the performance of McNet-SSF for
two speaker mixtures is only slightly better than McNet-DS
considering the POLQA score improvement and DNSMOS. It
is even worse by 0.3 dB with respect to the SI-SDR measure.
However, for more speakers the previously observed trend
that the SSF output performs the DS network persists. For
example, the performance difference amounts to 0.36 and 0.56
POLQA improvement score for three and five speakers, which
is in line with a strong preference for the SSF result in a
listening experiment as shown in Figure 3. In this listening
experiment, which evaluates the listener’s preference for the
SSF or DS result. Ten test subjects have been asked to rate a
statement regarding their preference for one of two separation
results obtained with the SSF or DS method. We use eight
examples for each of the four comparisons. Of course, the
test has been conducted blindly without a labeling of the
methods and a random order of the compared items. The
statement to be rated has the form: “Example 1 is preferable
over Example 2.” We then aggregated the results to comply
with the statement displayed in Figure 3. While the metric
scores in Table II for two speaker mixtures are quite similar for
McNet-DS and McNet-SFF, we observe a clear preference of
the test subjects towards the SSF result. In total, more than 55%
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TABLE II: Speech separation performance for reverberant mixtures of two, three and five speakers. We compare an approach
based on a spatially selective filter (SSF) with a direct separation (DS) approach using the same network architecture: JNF [22],
[27] or McNet [34].

DoA 2 speakers 3 speakers 5 speakers

No. ∆POLQA ∆SI-SDR DNSMOS ∆POLQA ∆SI-SDR DNSMOS ∆POLQA ∆SI-SDR DNSMOS

1 JNF-DS – 1.20 11.7 2.80 0.87 11.5 2.46 0.53 10.7 2.11

2 JNF-SSF oracle 1.41 12.7 2.94 1.30 14.2 2.79 0.96 15.1 2.52
3 JNF-SSF search 1.40 12.6 2.94 1.29 13.9 2.78 0.93 14.4 2.51

4 McNet-DS – 1.82 15.0 3.03 1.40 15.4 2.79 0.87 14.2 2.39
5 McNet-iDS oracle 1.82 15.7 3.07 1.61 15.9 2.85 0.96 15.0 2.43

6 McNet-SSF oracle 1.85 14.7 3.13 1.76 16.3 3.04 1.43 17.3 2.84
7 McNet-SSF search 1.91 15.0 3.15 1.80 16.3 3.06 1.43 16.6 2.85
8 McNet-SSF DNN 1.85 14.7 3.13 1.76 16.2 3.04 1.42 16.9 2.84

9 MVDR + PF oracle 0.42 3.8 2.47 0.23 2.8 2.20 0.14 3.1 1.90
10 McNet-SSF (HCF) oracle 1.49 11.6 2.90 1.38 12.6 2.78 1.03 12.4 2.53

TABLE III: Speech separation performance of JNF-DS with
the number of network parameters scaled according to the
number of speakers to extract and the performance of JNF-SSF
with multiple evaluations of the same network.

# Speakers Param. [M] ∆POLQA ∆SI-SDR DNSMOS

JN
F-

D
S 2 2.4 0.83 10.5 2.82

3 3.6 1.07 13.2 2.62
5 6.0 0.70 12.7 2.28

JN
F-

SS
F 2 1.2×2 1.41 12.7 2.94

3 1.2×3 1.30 14.2 2.79
5 1.2×5 0.96 15.1 2.52

of the SSF test examples have been rated to be preferable over
the corresponding DS result, which is favored only for 10%
of the examples. Please find audio examples on our website1.

The SSF results discussed so far, have been obtained using
oracle knowledge about the speaker DoA angles. For classic
beamforming, e.g. with an MVDR beamformer, it is well-
known that errors in the speaker DoA estimates used to
construct a steering vector are likely to cause significant per-
formance degradation [43]. To get an idea of the performance
that can be expected in a blind setting, we also report results
for two different DoA estimation strategies in Table II. The
sensitivity to errors in the DoA estimates is then investigated in
more detail in Section VI-A. The first strategy is search-based
and evaluates the SSF for a set of potential target directions.
The results for the individual speakers are then selected based
on the energy of the filtered signal. The search-based strategy
is illustrated in Figure 4. The top row shows the energy of
the filtered signals evaluated on a grid with 4◦ resolution. We
compute the energy on 10 ms long non-overlapping segments
and plot the average energy for all segments, in which speech
is active. A −45 dB threshold with respect to the maximum
energy in the mixture signal is used for detection of speech
activity as in [44]. We observe clear peaks at the true speaker
locations, which are marked with a dashed gray line. The green
crosses visualize the DoA angle estimates, which have been
obtained with a peak-finding heuristic applied to the energy
curve of which the details are outlined in Appendix B.

1https://uhh.de/inf-sp-ssf
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“The spatially selective filter (SSF) result is
preferable over the direct separation (DS) result.”

Fig. 3: Results for a listening experiment assessing the
participants’ preference for separation results obtained with a
spatial filter (SF) or a direct separation (DS) result. Speaker
locations are assumed to be known for the spatial filter. The
test is conducted blindly without test subjects knowing which
example corresponds to which algorithm. The results have then
been aggregated to match with the displayed statement.

Comparing the vertical dashed lines and the position of the
green crosses in Figure 4, we observe that the search-based
DoA estimates are quite accurate for the selected examples.
The evaluation of the localization accuracy shown in Table IV
asserts that these examples can be considered representative
of the dataset, since also the mean angular error is low. As
the search-based DoA estimates depend on the DNN-based
filter output, we display separate results for the JNF-SSF
and the McNet-SSF in the first and second row. Somewhat
unexpectedly, the mean angular error of the search-based DoA
estimates is smaller for JNF-SFF than McNet-SSF. However,
in both cases the estimates are accurate enough to replace
the oracle DoA information without a loss in separation
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Fig. 4: Examples for blind speaker separation and localization by peak-searching for a mixture of two, three and five speakers
using non-linear filters steered in all candidate directions. The vertical dashed gray lines indicate the true positions of the
speakers and the green cross marks the speaker location estimated based on the energy peaks in the filter output.

TABLE IV: The speaker localization accuracy for mixtures of
two, three and five speakers in a reverberant room. We report
the mean angular error in degree and the 95% confidence
interval.

DoA estimation 2 speakers 3 speakers 5 speakers

search (JNF-SSF) 1.57 ± 0.12 2.06 ± 0.19 3.54 ± 0.25
search (McNet-SSF) 2.07 ± 0.07 2.53 ± 0.15 3.99 ± 0.23
DNN 1.06 ± 0.03 1.24 ± 0.09 2.13 ± 0.19

performance as can be seen in rows 3 or 7 of Table II. For
the McNet architecture the results obtained with the search-
based strategy are even slightly better than those obtained with
oracle DoA information. While this observation might raise
questions at the first sight, it can be explained by the second
row of Figure 4, which shows POLQA scores. We compute
the POLQA measure for each candidate location’s McNet-
SSF output with respect to one speaker’s reference signal to
obtain one of the colored curves. The plots clearly show that
the spatial filter has a high spatial selectivity for its steering
direction, which is also why the search-based DoA estimation
works well. Consider now the first peak in the left-most plot.
The DoA estimate denoted by a green cross is slightly off to
the left. However, the POLQA score at this estimated position
is higher than the POLQA score at the true position. As a
result, slight deviations in the search-based DoA estimation
are not harmful to the overall performance, but can even be
helpful as they are correlated with the filter’s behavior. As we
will show in Section VI-A, an uncorrelated DoA error of 2◦

causes a performance degradation.
Even though it provides interesting insights in the spatial

selectivity of the proposed SSF, the search-based approach is
too computationally demanding for most realistic applications.
Therefore, we also evaluate the SSF with DoA estimates
provided by a DNN-based classifier, which is trained to detect
for every 2◦ bin if there is a speaker or not. More details are
provided in Appendix C. Table IV shows that the DNN-based
classifier is not only much more efficient, but also outperforms
the search-based strategy in terms of localization accuracy
by up to 1.86◦ mean angular error for five speakers. The
separation results for McNet-SSF are given in row number 8.

Also for these DNN-based DoA estimates, we do not see major
deviations from the oracle performance, which demonstrates
that the SSF approach is well applicable also to blind separation
tasks.

The two bottom rows provide results for two baseline
systems. The first one is a traditional MVDR beamformer
with a DNN-based post-filter (PF). The parameters of the
MVDR are estimated from oracle data. The time-varying noise
covariance matrices are estimated by recursive averaging of the
pure noise data and the time-invariant RTF estimate is obtained
by multiplying the principal eigenvector of the generalized
eigenvalue problem for speech and noise covariance matrices
with the speech covariance matrix as described in [45]. The post-
filter is a single-channel DNN with two LSTM layers trained
on MVDR outputs as described in [22]. The comparison with
JNF-SSF and McNet-SSF highlights that drastic improvements
can be achieved by replacing the linear spatial filter with a
non-linear one. While the former does not achieve a substantial
performance improvement over the mixture recording in a
setting with three microphones and five speakers, the DNN-
based SSFs provide respectable performance also in this
difficult scenario.

The second baseline uses hand-crafted features (HCF). For
a fair comparison, we use the same McNet architecture as
before but exchange the input signal. Previously, we provided
the network with raw frequency domain data, i.e., the real and
imaginary parts stacked. Following the approach proposed in
[24], we replace this input by a compilation of features: the real
and imaginary part of the reference channel as spectral feature,
the IPDs between all pairs of microphones and the location-
guided angle feature [24], [25], which provides information
about which speaker to extract. Comparing the results in row 10
with those in row 6, we find that our proposed approach without
using hand-crafted features and with explicit conditioning on
the one-hot encoded angle is beneficial. It outperforms the
baseline with hand-crafted features by about 0.4 POLQA
improvement score for two, three and five speakers. The
performance benefit is particularly audible for three and five
speaker mixtures.

A question that might come to mind is whether the measured
performance difference can be attributed to the difference in
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the approach (explicit spatial filtering in SSFs versus implicit
spatial filtering in DS) or whether the explicit provisioning
of DoA information introduces a bias since speaker DoA
information is generally known to be helpful for a multi-
channel speaker separation problem. To investigate this, we
train the DS networks again, but now also provide additional
DoA information for all speakers in the mixture. For this, we
use the conditioning mechanism shown in Figure 1 using a
multi-hot encoding.

We report the DoA-informed direct separation (iDS) results
using the McNet architecture in the fifth row of Table II. For
two speakers, the performance obtained with the DoA-informed
network is quite similar to the performance of McNet-DS in
row 4 of Table II. For three and five speakers, the additional
DoA information leads to a performance improvement over
the McNet-DS. However, the performance is still worse than
that of McNet-SSF for three speakers and five speakers by
0.11 and 0.47 POLQA score respectively. Thus, providing the
DoA information does not close the performance gap between
McNet-DS and McNet-SSF, especially not for a large number
of speakers.

VI. ROBUSTNESS EXPERIMENTS

For an approach to be applicable in practice, it is not only the
maximum performance that is of interest, but also the robustness
of the system, which is its capability to tolerate perturbations,
for example in the geometric setup of the microphone array.
In the following subsections, we evaluate the robustness of the
SSF approach with respect to errors in the DoA estimates and
variances in the microphone array setup. All experiments in
this and the next section have been conducted using the McNet
architecture. Data generation parameters that are not explicitly
mentioned in the experiment description are kept constant at
the value or range of values specified previously in Section
IV.

A. DoA Estimation Errors

Figure 5 displays the results of an experiment that investi-
gates the sensitivity of the SSF to errors in the DoA estimates,
which are used to steer the filter. For this, we add an error
term to the oracle DoA angle of all speakers in the mixture.
The magnitude of the error is displayed on the x-axis. The
y-axis represents the POLQA improvement score obtained with
the McNet-SSF approach. We report average results and the
95% confidence interval for 100 randomly selected mixture
signals. The left plot shows the results for McNet-SSF, which
has been trained using the exact DoA angle of the target
speaker. As expected, the performance decreases as the DoA
error, which is added only during evaluation, increases. On
the positive side, though, the performance drop is not very
drastic for a small error of 2◦. In this case the performance
loss is about 5%, 7% and 3% for two, three and five speaker
mixtures respectively. Furthermore, we note that the more
difficult problem with five speakers in the mixture is less
affected by an DoA estimation error. This observation can be
explained by looking at the peak plots in Figure 4. Here we
can see in the bottom row that the peaks for five speakers have
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Fig. 5: Separation results for the McNet-SSF conditioned on a
target angle that is subject to a localization error of varying
magnitude. During evaluation, the respective error is added to
all speakers’ DoA angles. The results shown in the left plot
are obtained with with a McNet-SSF that has been conditioned
on the exact DoA location during training, while the results
displayed on the left side are obtained with a McNet-SSF that
has been trained with inaccurate DoAs that include an error
of up to 4◦.

become wider and, therefore, an erroneous DoA estimate to
steer the filter has less consequences.

The right side of Figure 5 displays results for a McNet-SSF
trained with inaccurate DoA information. During training we
add a DoA error of up to 4◦ to the true DoA. As a consequence,
we observe that the performance stays approximately the same
for a DoA error of up to 4◦ degrees. The performance drop
for larger errors is also significantly reduced for two and three
speakers. However, this increased robustness comes at the cost
of a reduced performance if the DoA estimates are accurate,
which is expected to some extend as there will always be a
trade-off between sensitivity to DoA estimation errors and the
spatial selectivity of the filter. In line with this, we observe
that the peaks reflecting the spatial selectivity as in Figure 4
have widened for the filter trained with inaccurate DoAs.

B. Perturbations in the Microphone Placement

In a multi-channel scenario, the spatial information is very
closely related to the geometric configuration of the microphone
array, since the main source of information is the relative
TdoAs of a signal at the microphones. So far, we have used
a fixed and exact placement of the microphones in the array
for generation of the simulated training and testing data. Now
we add some noise to the positioning of the microphones
to evaluate the sensitivity of the SSF and DS networks to
these kinds of perturbations. We sample the noise that we
add to the x-, y- and z-coordinate of the microphones in the
circular array from a zero-mean normal distribution with a
standard deviation between 0.1 cm and 1 cm. The standard
deviation, i.e. the amount of perturbation in the microphone
array geometry, is shown on the x-axis of Figure 6 against the
POLQA improvement score.

The plots from left to right in Figure 6 show the results
for two, three and five speaker mixtures. Clearly, the SSF
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Fig. 6: Separation results for test examples with pertubated
microphone positioning. The noise added to the microphone
placement is sampled from a zero-mean normal distribution
with a standard deviation shown on the x-axis.

approach is highly sensitive to perturbations in the microphone
array geometry. While small perturbations with a standard
deviation of 1 mm are tolerated without a significant loss in
performance, large perturbations render the method useless. In
contrast, the DS performance only slightly decreases for five
speakers and is approximately constant in the other cases. From
a perspective of robustness this can be considered a favorable
behavior. However, the DS performance for the three and
five speaker mixtures is far from the maximum performance
reached by the SSF method even with some perturbations
in the microphone array geometry. Therefore, we would not
consider the DS approach robust to variations in the spatial
characteristics related to the microphone array geometry but
view the results of this experiment as a strong indication that
the DS approach performs worse than the SSF approach for
a higher number of speakers because it does not fully exploit
the spatial information in the multi-channel data in the first
place.

VII. GENERALIZATION EXPERIMENTS

As neural networks learn to extract patterns from data, for
example the general spectro-temporal structure of speech or
the spatial characteristics of a signal arriving from a particular
direction, it is insightful to evaluate the performance of a
DNN-based approach also for inputs whose characteristics
vary from those present in the training set. Here we perform an
experiment that varies the distance between speech source and
microphone array, an experiment investigating the performance
for speech sources with similar DoA and one that adds an
additional noise source.

A. Far-field vs Near-field Scenario

The relative TdoAs of the direct-path signal are not only
related to the microphone configuration in the array, but also
influenced by the distance of the source to the microphone array.
If the distance between the source and the microphone array is
large compared to the distances between the microphones, we
commonly make a far-field assumption and model the propa-
gation of sound as a plane wave as opposed to spherical wave
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Fig. 7: POLQA improvement scores for a single speaker placed
at a varying distance to the microphone array. Results for
MCNet-SSF trained with speakers at a distance of 0.8− 1.2 m
are shown by the blue plot with square markers and the results
of a MCNet-SSF trained with a target speaker positioned at
a distance of 0.3 − 1.0 m (as in [26]) are represented by
red triangles. The range covered by the training data has been
marked by the respective color. The diameter of the microphone
array is 0.1 m in both cases.

in the near-field [1]. We have trained the SSF with mixtures of
sources that were placed at a distance of 0.8− 1.2 m to the
microphone array, which itself has a diameter of 10 cm. Here
we investigate the performance of the SSF for input signals that
deviate from the data seen during training with respect to their
distance. For this experiment, we present the SSF network with
a single reverberant speech signal originating from a varying
distance and report the POLQA improvement score in Figure 7.
The blue plot with square markers represents a network trained
with data generated according to the configuration given in
Section IV. The range that is covered by the training data
is shown be the blue shaded rectangle. We can see that the
network reaches the maximum performance for examples that
fall in this range. The performance gradually decreases as the
source moves further away, which will also decrease the DRR.
If the source moves closer toward to microphone array on the
left side of the blue area, the DRR increases. Nevertheless,
the performance drops even to negative improvement scores
as the source moves very close to the microphone array. For
our previous work on speaker extraction [22], [27], we have
trained the SSF with a target source that is placed closer to the
microphone array with a distance of 0.3− 1.0 m. The results
for this filter are shown in red. Here we can see that including
near-field examples in the training data drastically improves
the performance for close-by sources. However, as the network
spends more parameters modeling spatial characteristics in the
near-field, the performance for far-distant sources is decreased.

B. Sources with Similar DoA

All speech sources in the examples generated according to
the dataset description in Section IV have a minimum 10◦ angle
difference between them and every other source. While such
such a constraint may be realistic for example in a meeting
scenario with the microphone array positioned on the table,
in other scenarios the speakers may stand closer together. We
therefore investigate the generalization ability of the DS and
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Fig. 8: Separation results for test examples that include three
speakers, of which one is placed at a 60◦ angle, one at a 0◦

angle and one speaker with at a variable angle between −20◦

and 20◦. The left plot shows the average POLQA improvement
for the two close sources and the right plot shows the average
improvement for all three sources.

SSF approach for close sources. For this, we generate test
examples with mixtures of three speakers which are positioned
at a 60◦ angle, a 0◦ angle and a variable angle between −20◦

and 20◦. We evaluate on 60 examples for every angle difference.
The average POLQA improvement for the two close sources
is shown in the left plot of Figure 8. Clearly, neither the SSF
nor the DS approach can provide good separation results for
sources arriving from the same direction as can be seen by the
performance dip at 0◦ angle difference. However, listening to
the results it becomes clear that they handle the task in different
ways. For sources positioned in the same direction, the SSF
returns a mixture of only the two close sources excluding
the third speaker for both speakers, while the DS approach
returns different results for every speaker, which are of very
low quality.

The plot on the right side of Figure 8 includes the separation
result for the third speaker positioned at a 60◦ angle when
computing the average POLQA improvement score. Here we
can see that for the SSF, shown in blue, the average POLQA
improvement score increases by about 0.5. In contrast, the
average performance of the DS (red curve) remains about the
same as in the left plot. This means that while the SSF is
struggling to separate the two close sources, it has no problem
to accurately extract the third source. On the other hand, the
DS approach is not able to provide a reasonable result for the
third speaker if two speakers are close. From these findings, we
conclude that the decoupling of the separation results for the
individual speakers in the SSF leads to a better generalization
in a scenario that contains sources with similar DoA. The green
curve shows the performance for iDS, for which we provide
the DoA information as an additional input. Here we can see
that such a desirable decoupling is not achievable by simply
providing DoA information to a network that is trained with
PIT.

TABLE V: Separation results for two speaker mixtures with
an additional music noise source at a random position. The
number of sources refers to the number of sources predicted
by each system. We then select the outputs corresponding to
the two speech sources for evaluation.

DoA #Sources ∆POLQA ∆SI-SDR DNSMOS

McNet-SSF oracle 2 1.66 15.2 2.98

McNet-DS 2 0.65 6.5 2.28
McNet-iDS oracle 2 0.84 10.0 2.35
McNet-DS 3 1.29 14.0 2.70
McNet-iDS oracle 3 1.51 14.8 2.80

C. Noise (Unseen During Training)

It is a major advantage of the SSF in comparison with the
DS approach that the neural network does not need to be
re-trained for evaluations on mixtures of different numbers
of speakers as it focuses on extraction of speech signal from
a particular direction. In our last experiment, we now add a
music noise source to a mixture of two speakers and compare
the ability of the SSF and DS approach to generalize to this
new scenario. For the music noise source, we sample a random
position between 0.8 m and 1.2 m away from the microphone
array (same distance as speakers) and add the music signal to
the mixture signal with an SNR of 5 dB. The music signals are
taken from the jamendo subset of the MUSAN dataset [46].

The performance results are shown in Table V. The first row
shows the performance of the SSF given oracle knowledge
of the two speakers’ directions. Compared to the results in
the fifth row of Table II, the POLQA score improvement and
DNSMOS score are reduced by about 10% and 5% respectively.
However, the system still reliably separates the two speakers
without the music signal leaking into one of the estimates. In
contrast, McNet-DS trained on two speaker mixtures cannot
handle the additional noise source, which is reflected by the
low performance scores in the second row of Table V. Results
obtained with the DoA-informed McNet-iDs are given in the
third row. Interestingly, the performance notably improves if
oracle knowledge about the speaker DoAs is provided, which
was not the case for the noise-free scenario. However, the
performance is still 0.82 POLQA and 5.2 dB SI-SDR lower
than that of McNet-SSF.

Since the music noise source could be seen as a third source,
we also test the DS networks trained on three sources. For
computing the performance results, we then only consider the
outputs that correspond to the two speech sources. We can see
in the two bottom rows of Table V that this indeed improves
the performance by a large margin. The best performance is
obtained with McNet-iDS trained on three speech sources.
However, there remains a performance gap of 0.15 POLQA
score, 0.4 dB SI-SDR and 0.18 DNSMOS to the McNet-SSF,
which, unlike McNet-iDS in the last row, does not require
information about the noise source’s DoA. Since detecting the
number of noise point sources as well as their DoA will be
difficult in most real-world scenarios, the SSF, which only needs
DoA estimates for the speech sources, is not only performing
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better but is also much more practical compared to all tested
DS approaches.

VIII. CONCLUSION

Based on our conference paper [26], we proposed a steerable
DNN-based spatially selective filter (SSF). Beyond [26], here
we have investigated the separation performance of a DNN-
based spatially selective filter (SSF) steered in the direction of
each speaker in the mixture in comparison with a classic end-
to-end direct separation (DS) approach trained with PIT. We
find that the SSF, which has been trained for high spatial
selectivity in the given DoA, outperforms a DS approach
by a large margin if there are more than two speakers in
the mixture. Experiments on the robustness of either system
provides evidence that this is because the SSF better exploits
spatial information. Furthermore, we have shown that the SSF
generalizes much better to unseen noise conditions than the
DS approach.

APPENDIX

A. Network Training Details

All neural networks (JNF-DS, JNF-SSF, McNet-DS, McNet-
iDS and McNet-SSF) have been trained on an ℓ1 loss in time
and frequency domain [47]:

L(sp, ŝp) = α∥sp − ŝp∥1 +
∥∥∥|Sp| − |Ŝp|

∥∥∥
1
. (4)

The frequency-domain term Ŝp is estimated as given in (3)
by multiplication of the noisy signal’s reference channel with
the network-estimated mask and ŝ is its inverse STFT. The
parameter α is set to α = 10 to approximately equalize the
contribution of either domain. We use the Adam optimizer [48]
with an initial learning rate of 0.001 and reduce the learning
rate by a factor γ = 0.75 every 50 epochs. We train for a
maximum of 500 epochs and select the best weights based
on the validation loss. We use 32 ms windows for computing
the STFT with a 50% overlap and use the square-root Hann
window for both analysis and synthesis.

B. Peak-finding Heuristic

As a first step, we normalize the highest peak in the energy
curve to one and then run scipy.signal.find_peaks
with a prominence of 0.009, a height of 0.05 and a width of
one. If fewer peaks than the expected number of speakers are
detected, we re-execute the function with relaxed parameters
settings (no width requirement, decreased prominence of 0.001
and height of 0.025) and merge peaks that likely to represent
the same speaker as they are close together and have a similar
height. If more peaks than expected speakers are found, we
pick the highest ones.

C. DNN-based DoA Classifier

We train a DNN-based classifier for DoA estimation, which
is composed of an F-LSTM layer as described in Section III-A
and two feed-forward layers with 256 and 180 hidden units.

We use an exponential linear unit activation for the first feed-
forward layer and a sigmoid activation for the second. The
network is trained to detect for every 2◦ bin if there is a speaker
or not based on the full utterance. We train for 100 epochs
with an average binary cross-entropy loss on the dataset of
two speaker mixtures. Even though trained on two speaker
mixtures, the classifier performs sufficiently well in detecting
other numbers of speakers. We use the same peak-finding
heuristic as for the search-based strategy, which is necessary
as the classifier provides an output between zero and one for
every angle bin.
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Discussion and Conclusions 6
6.1 Main Contributions of this Thesis
In this section, we summarize the main contributions presented in detail in the three included
publications. We structure this along the three main areas of research as described in Section
1.5. In particular, we aim to highlight the cross-connections between a highly theoretical
perspective on the topic of non-linear spatial filtering in the first part and the practical
development of DNN-based non-linear spatial filters in parts two and three. Our research
culminates in the development of a real-time demo, which we presented at the IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA) 2023. A video of
this demo can be found on our website1. Finally, we conclude this thesis by pointing out
directions for future research.

6.1.1 Statistical Perspective on Non-linear Spatial Filtering
A central motivation of our investigations, starting from a statistical perspective, was to
answer the question of whether investing in the development of neural networks to replace
classical beamformers could be worthwhile. Here, it should be borne in mind that the current
rapid development of many well-performing DNN-based non-linear spatial filters described in
Section 1.4.3 was only about to begin, and the answer to this question was by no means clear at
the start of the research project that led to this thesis. After all, a traditional beamformer has
many obvious advantages over a data-driven neural network: lower computational complexity,
no training data, and no training period required, which comes with good generalization
ability to unseen types of data and good interpretability. As of today, our own research [P4],
[P5] and a plethora of works from others (see Section 1.4.3) in recent years has demonstrated
the enormous performance potential of neural networks to implement non-linear spatial
filters. The comparison of a DNN-based non-linear spatial filter in [P5, Fig. 4] clearly shows
that the DNN-based filter outperforms the oracle beamformer plus DNN-based post-filter
by a large margin for a low number of channels in the microphone array. Accordingly, the
question of whether research in neural networks for spatial filtering is worthwhile can clearly
be answered positively. However, our investigations in the first part of this thesis (with
related publications [P1]–[P3]) are, to our knowledge, the only publications to date that offer
a statistical perspective on what makes the DNN-based non-linear spatial filters as successful
as they are.

The key insight of the first part of this thesis is the finding that a non-linear spatial filter
enables a more powerful processing model than a linear spatial filter. The corresponding
experiment is described in [P3, Sec. V]: A single target speech source and five directional

1https://uhh.de/inf-sp-jnf-demo
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interfering sources are arranged on a circle around a two-channel microphone array. In one
of the investigated settings, the interfering sources alternately play short white Gaussian
burst signals. Since the statistical estimators were derived under a multi-variate Gaussian
mixture noise assumption, an estimate of the covariance matrices of the mixture components
is required, which we obtain from oracle noise data using the EM algorithm. A weighted sum
of the mixture components’ covariance matrices results in an estimate of the overall covariance
matrix of the noise signal. A graphical representation of the covariance matrices (overall and
for the individual mixture components) based on the MVDR beampattern created by them is
shown in [P3, Fig. 6]. It is clearly visible that the mixture components’ covariance matrices
reflect the spatial properties of the individual interfering sources. To understand the value
of this experiment, it is important to realize that the estimation of the spatial properties,
i.e., the covariance matrices, is not adapted over time. Only one set of matrices is estimated
for a whole utterance. The covariance matrix that goes into the calculation of the MVDR
beamformer, therefore, represents the spatial properties of all interfering sources equally. As a
result, the MVDR beamformer, as a linear spatial filter, cannot cancel out all five interfering
sources with only two available microphone signals. In contrast, the non-linear spatial filter
can draw on the more detailed spatial information in the various covariance matrices of the
individual mixture components. Just as for the MVDR, no temporal adaptation takes place,
and yet the non-linear spatial filter can almost perfectly suppress the interfering sources.
From this, we conclude that the known limit of C − 1 cancelable anechoic noise sources for C
microphones does not apply to the non-linear spatial filter.

The analytic non-linear spatial filter also has a clear performance advantage when speech
signals are emitted by the interfering sources instead of Gaussian bursts. In contrast to the
experiment explained above, the individual time-frequency bins are dominated by one of the
interfering sources with a pattern that is difficult to predict. From this more realistic scenario,
it becomes clear why a temporal adaptation of the MVDR in the previous experiment, which
is expected to result in a cancelation of the interfering sources, is not as usable in a practical
scenario as a non-linear spatial filter, which does not require adaptation. For many practical
scenarios like the speaker extraction task, a fast enough adaptation is nearly impossible to
achieve. Listening to the audio examples for this speaker extraction task, it is noticeable
that the analytic non-linear spatial filter clearly delivers better performance than the MVDR
plus post-filter. However, there is much more residual noise than in the experiment with the
Gaussian bursts and also more than in the results obtained with a DNN-based non-linear
spatial filter in [P5]. Likely, this is due to the fact that for the derivation of the analytical
estimators, it is assumed that the time-frequency bins are independent of each other, which is
a heavily simplifying assumption for speech signals.

A second interesting property of non-linear spatial filters can be deduced from the compiled
theory overview that outlines the concept of sufficient statistics. Under a Gaussian noise
assumption, it can be shown, and in [P3], we even present a new simplified proof, that the
MVDR beamformer output is a sufficient statistic for the clean speech signal in the Bayesian
sense. This means that the beamformer output TMVDR(Y(k, i)) contains all information
about the searched quantity S(k, i) that was available in the original noisy observation Y(k, i)
despite the dimension reduction. An alternative formulation to the one given in [P3] is based
on the information-theoretic concept of mutual information. A sufficient statistic requires the
mutual information between the statistic and the clean speech signal, which is to be estimated,
to be equal to the mutual information between the original noisy and the clean speech signal,
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i.e.,
I (TMVDR(Y(k, i)), S(k, i)) = I(Y(k, i), S(k, i)), (6.1)

where I denotes the information theoretic concept of mutual information [112], [113]. When
the noise follows a Gaussian distribution, this means that the two-stage approach shown in
Figure 1.1 does not stand in the way of statistical optimality if the MVDR is used for spatial
filtering since no information about the speech signal is lost in the first processing stage.
However, the non-linear spatial filter derived under a Gaussian mixture noise assumption
cannot be separated in a MVDR plus post-filter scheme. Consequently, this means that
information required to estimate the speech signal S(k, i) is lost if a MVDR beamformer is
applied as the first processing step. The effect of this information loss on the performance is
what we report in the experimental sections. It might feel counter-intuitive that information
about the speech signal is lost despite the MVDR obeying a distortionless constraint. The
explanation here is that it is not information about speech that is lost but information about
the noise, which is used by the non-linear spatial filter to distinguish between speech and noise.
A consequence of this insight is that it might not be advisable to restrict oneself to spatial
features primarily focused on the properties of the speech signal as one could easily miss out
on the relevant information contained in the noise part of the multi-channel signal.

6.1.2 Design and Analysis of Deep Non-linear Spatial Filters
In the second part of this thesis, we turn to the development and analysis of data-driven
non-linear spatial filters implemented using a neural network. The main contribution of
our research are the insights into the internal mechanisms of the DNN-based non-linear
spatial filter. As explained in Section 1.4.3, three sources of information, spatial, spectral,
and temporal, can, in principle, be exploited by the network to perform spatial filtering.
When using the analytic MMSE filter derived under a Gaussian mixture noise assumption as
inspiration, it becomes clear that the spatial processing model should be non-linear, which
is naturally the case for a neural network, and that tempo-spectral information should be
processed jointly with the spatial information. Our experiments shed light on the importance
of either of these design objectives for high overall performance. By twisting the input data of
the network, we are isolating the effect of a non-linear spatial processing model and can also
investigate the interdependencies between spatial and spectral versus spatial and temporal
information. The experiment shows that the speech quality of the enhanced signal greatly
improves when interdependencies are considered. In line with our observations based on the
analytic estimators in the first part, we find that such a DNN-based joint non-linear spatial
filter outperforms an MVDR plus DNN-based post-filter approach by a large margin when
the number of microphones is small.

We perform the experiments in [P5] for two scenarios. One is a reverberant speaker extraction
task, where a single target speech signal is to be extracted from the noisy mixture. The target
speaker is identified by its position relative to the microphone array. The training and test data
are simulated based on the image-source method [114]. The second task is speech enhancement
in environmental noise. The background noise is taken from the real-world recordings in the
CHiME3 [115] dataset. Our goal is to investigate the influence of interdependencies between
spatial and spectral as well as spatial and temporal information on the overall performance.
We consider a speaker extraction task as particularly suitable for assessing the quality of a
spatial filter. The reason for this is that all interfering signals have similar tempo-spectral
properties as the target signal, and, therefore, we assume that a good extraction of the target
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speech signal is linked to a good use of spatial information. From our results, it is very
clear that correlations along the frequency axis in an STFT time frame have a very large
influence on the spatial selectivity of the filter. This also makes sense intuitively since the
phase shifts of a directional signal depend on the frequency. A consequence of this insight is
that when designing a network architecture for spatial filtering, much attention should be
paid to the joint processing of spatial and spectral information. Temporal correlations can
also be exploited by the neural network and improve the performance. However, they are
not as important for the spatial selectivity of the resulting filter, as can be seen in Figure 6
of [P5]. A comparison with state-of-the-art methods in [P5] shows that our proposed filter,
which processes spatial and spectral information jointly in the first layer and is given access to
temporal information only in the second layer, outperforms all baselines. This is a remarkable
result given that the network structure is very simple, with only three layers, and that the
network also has the lowest number of learnable parameters.

The evaluation based on the CHiME3 data shows that, for the enhancement task, temporal
information plays a significantly greater role than spectral information. Looking at Table IV in
[P5], which displays the overall performance, one could conclude that the spatial filtering here
improves when temporal information instead of spectral information is incorporated. However,
Figure 10 shows that this conclusion would be premature. An examination of the spatial
selectivity of the filters shows the same patterns as we observed for the speaker extraction
task: spectral information increases the spatial selectivity of the filter. However, this is only
partially reflected in the performance results, which is probably due to the fact that spatial
filtering plays a less important role in solving the enhancement task. In fact, for the CHiME3
data, the characteristics of noise and speech are quite different (especially with respect to
their temporal structure) so that the gain of an improved (more selective) spatial filter by
taking spectral information into account does not compensate for the loss of information that
one has when temporal information is not taken into account. Accordingly, and as expected,
the best results are obtained when both spectral and temporal information are considered in
addition to spatial information. A noteworthy insight here is that a higher spatial selectivity
of a filter, i.e., a better spatial filtering performance, is not necessarily linked to a better
overall enhancement performance. Therefore, when the spatial selectivity of a filter is to be
assessed, a performance comparison on a dataset like CHiME3 could be misleading.

6.1.3 Steerable Deep Non-linear Spatial Filters for Speech Extrac-
tion and Separation
All filters discussed in the second part with related publications [P4], [P5] have a fixed look
direction. For the speaker extraction task, this is quite obvious from the experiment setup
since the target speaker to be extracted is always positioned at a zero-degree angle relative to
the microphone array orientation. In a practical application, this would require a constrained
setup in which the target speaker is always in the same position. In some applications, this
might be a reasonable assumption, e.g., a person in the driver seat of a car can only move
in a limited range. However, most applications require a more flexible solution. For our
experiments using the well-known CHiME3 dataset in [P5], it is less obvious that the learned
filter has a fixed look direction since the speaker and microphone array position are unknown
for the examples in the dataset. From the description of the dataset, it appears that the
speakers read sentences from a tablet to which also the microphone array is attached. They
are encouraged to take different positions during the recording session [115]. Our investigation
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of the spatial selectivity of the learned filter in [P5] clearly shows that the filter trained
on the CHiME3 data might be limited to a small range of geometric setups (position of
the microphone array relative to the target speaker position) depending on how well the
chosen architecture supports the learning of a spatially selective filter. This makes sense
as the participants of the recording session can only change their speaking position relative
to the tablet so much that they are still able to read the words on the screen. Therefore,
the geometric variation in the dataset is rather limited, and a good performance cannot be
expected in test conditions that include spatial locations of the target speaker not matching
the training set. In comparison, a classic beamformer is much more flexible, as the look
direction can be controlled with the help of the steering vector or RTF vector.

In the third part of this thesis, we aim to achieve such flexibility for the DNN-based non-linear
spatial filter and, therefore, develop a conditioning mechanism to control the look direction of
the filter. For this, only an estimate of the target DOA is needed, which is fed into the neural
network as a one-hot encoded vector. An accurate estimate of the DOA would also be needed
to construct the steering vector for an MVDR under a far-field assumption, and the accurate
estimation of the RTF can be considered even more difficult. In [P6], the information about
the desired look direction is then fed into the LSTM layers as an initial state. Follow-up
experiments revealed that it is not necessary to condition both layers. Instead, it is sufficient
to only condition the first spatial-spectral LSTM layer, which is consistent with our finding in
[P5] that joint processing of spatial and spectral information leads to a high spatial selectivity
of the filter. Since the first layer has no dependency on the time index, the look direction
can almost instantaneously be adjusted for every time-frame. Thus, in the real-time demo
that we presented at WASPAA 2023, we can adjust the look direction with a control wheel
without a noticeable time lag every 8 ms.

In our publication [P6], we show that this flexible filter achieves virtually the same performance
as a fixed filter explicitly trained on the corresponding look direction. This is a rather
astonishing result since the flexible filter has to learn not only one spatial filter but many at
the same time. We use a resolution of two degrees in the azimuth direction and train the
filter with sources of variable height. This means that the steerable filter then has to learn
filters for 180 potential look directions. We provide much less training data per direction, 300
(flexible) versus 6000 (fixed) examples because the training would take too long otherwise.
But still, the performance of the learned flexible filter matches with that of the fixed filter
trained explicitly for the respective directions, which means that we can increase the flexibility
of the filter at virtually no performance cost.

In the journal publication [P7] included in the main part of this thesis, we investigate how the
performance is affected by treating the separation problem as a spatial filtering problem. For
this purpose, we use the flexibly steerable spatially selective filter (SSF) from [P6] and steer
one instance of the filter towards each speaker in the mixture to obtain the separated speech
signals. This requires that the position of all speakers of interest is known or can be estimated
from the noisy mixture. The predominantly chosen alternative is to train an end-to-end direct
separation (DS) network that generates a separate output for each speaker. Since the output
ordering of the speakers is subject to a permutation problem, such a separation network
is often trained with a loss applied in a PIT scheme. Alternatively, Tan et al. [116] have
proposed to enforce an ordering of the outputs according to the DOA and Wechsler et al.
[107] found that networks may even resort to a spatially consistent output order if trained
with PIT. In any case, and in contrast to using an SSF, the number of speakers must be
known in advance. Changing the number of outputs requires a re-training of the network.
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The advantage, on the other hand, is that the network does not require any target DOAs and
estimates all separated signals at the same time.

For a DS approach, the spatial filtering is expected to be implicitly learned during the training
stage of the DNN. In contrast, the SSF approach is more similar to a traditional beamformer
as it is steered towards a specific direction and learns to extract signals from this target
direction. On the other hand, a difference compared to a traditional linear beamformer is
that it performs this task by joint spatial and tempo-spectral non-linear filtering. During
training, by performing speaker extraction conditioned on a DOA, the focus is put on the
ability to identify signal components from the target direction. Our publication [P7] addresses
the research question which influence the employed training strategy has on the separation
performance but also the robustness of the learned filter. The investigated strategies are (1)
direct separation (DS) based on PIT or similar techniques, which means that the spatial
filtering must be learned implicitly by the network from the provided examples, and (2)
spatially selective filtering (SSF) with an explicit focus on the spatial properties of the target
signal.

From the results in Table II of [P7], it can be seen that the SSF outperforms a DS approach
by a large margin for challenging scenarios with more than two speakers. The superiority
becomes especially clear when a small network is used. Here, the participants of a blind
listening experiment overwhelmingly agree that the SSF separation result is preferable to the
DS network output.

We use the same core network architecture for both the SSF and the DS network. The only
difference is in the output layer (one speaker vs the number of speakers in the mixture) and
the conditioning mechanism, which is not needed for DS. However, the SSF is evaluated as
many times as there are speakers in the mixture. This means that the number of learnable
parameters per speaker is smaller for the DS network. Table III in [P7], therefore, presents
the results of the DS network, which has been scaled up to keep the number of parameters
per speaker constant. Still, we observe the same trend: the SSF outperforms the DS approach
also in this case. We perform a second experiment in which we provide additional DOA
information for all speakers in the mixture to the DS network. For this, we employ the same
conditioning mechanism as for the SSF but with a multi-hot encoding. Interestingly, this
additional knowledge of the speakers’ DOAs still does not boost the performance so much
that it matches that of the SSF. These experiments make it very clear that not only the
architecture of the neural networks plays an important role, but that attention must also be
paid to the choice of the training strategy. Here, our results imply that it is quite beneficial
to focus on the network’s ability to extract a speech signal with specific spatial properties
during training.

In [P7], we not only investigate the overall performance but also perform experiments regarding
the robustness and generalization ability of the SSF versus DS approach. Interestingly, we
find that the performance of DS is much less affected by perturbations in the microphone
placement (randomly added noise to the microphone positions) than the SSF. While this is
generally desirable, this behavior, in combination with lower overall performance, can be seen
as a clear indication that the spatial properties like the IPDs, which change drastically with
changed microphone positions, are not fully exploited by the DS network. Hence, we conclude
that the performance benefit of the SSF in comparison with the DS approach results from the
fact that spatial information is better taken into account by the SSF, which is also the focus
of the training strategy.
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However, focusing on the spatial properties of the target signal has another advantageous
effect: the learned filter much better generalizes to scenarios that have not been seen during
training. In a two-speaker separation experiment with an additional interfering music source,
the SSF delivers a very good performance despite being trained on speech mixtures only. In
contrast, the performance of a DS network with two outputs is drastically decreased, and
good results can only be obtained when the music source is treated as an additional source of
interest and the DOA of all sources, including the noise source, is provided to the network. A
second experiment clarifies the value of decoupled separation outputs. In a setting with two
sources located at a similar angle and a third source further away, we find that neither the
network trained according to the DS nor the SSF approach can separate the close sources. On
the other hand, the SSF can extract the third source without a problem, while the quality of
the output of DS network for the third speaker is heavily reduced by its inability to separate
the two close speakers.

6.2 Directions for Future Research
In this thesis, we have investigated non-linear spatial filters for multi-channel speech en-
hancement, speaker extraction, and separation. The focus is on filters that join the spatial
and tempo-spectral filtering into a single non-linear operation. We found that these filters
are more powerful than traditional linear spatial filters from a statistical perspective and
also confirmed this observation by implementing DNN-based non-linear spatial filters that
outperform an oracle MVDR beamformer followed by a post-filter. However, the MVDR
beamformer still has a highly valued advantage over a non-linear filter: at least in theory, i.e.,
with accurately estimated parameters, it does not introduce any speech distortions. This is
ensured by the distortionless constraint in (1.10), which is the equation that corresponds to
the constrained optimization problem that leads to the MVDR. Note that the formulation of
the distortionless constraint involving the steering vector in (1.10) requires the linearity of the
filter to be meaningful.

In contrast, consider the following optimization problem, where the time-frequency indices
have been dropped to improve the readability:

min
T

I(Y , T ) subject to I(T, S) = Ic, (6.2)

where I(·, ·) is the mutual information as before in (6.1). We are searching for a scalar speech
estimate T , which should be a function of the noisy multi-channel observation Y. Since the
dimension is reduced to one, it is reasonable to assume that some kind of spatial filtering
is performed. If Ic = I(Y, S), then T is a sufficient statistic for the clean speech signal S
[113]. In this case, the processed signal T carries the same information about the target
signal S as the noisy observation Y . This means that irreversible distortions introduced by
the processing will be minimal. It could be an interesting direction for future research to
relate the above optimization problem, which can be recognized as an instance of the so-called
information bottleneck [117], with the MVDR. It would be interesting to see if one can derive
the MVDR as a special case, assuming Gaussian noise, in this general framework allowing
for non-linear solutions. With choosing Ic < I(Y , S) one could trade noise reduction by
minimization of I(Y , T ) against allowed speech distortions reflected by the constraint that
bounds the information loss I(T, S) = Ic.
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A framework that includes the well-known linear MVDR beamformer as well as a non-linear
spatial filter might be helpful to learn about the characteristics of such a filter. Unfortunately,
it is likely that the optimization problem in (6.2) is intractable for distributions other than
the Gaussian distribution, for which a solution has been presented in [118]. Therefore, in
most works on the information bottleneck, the problem in (6.2) is not directly optimized but
instead a Lagrangian relaxation,

L(T ) := I(Y , T ) − βI(T, S), (6.3)

is minimized [117]. The mutual information is generally difficult to estimate, but some
works integrate it as a training loss into a DNN for learning representations, e.g., [119], [120].
Research questions that could be investigated here would be how a distortionless constraint
and non-linear spatial filtering relate to each other. For example, can there be a (nearly)
distortionless filter that also has the powerful capabilities of a non-linear spatial filter observed
in the first part of this thesis for the analytic filter? Or does a distortionless constraint
inherently lead to a filter that resembles the properties of a linear filter?

Furthermore, there are a number of more practically oriented questions worth investigating.
In [P7], we observed (not to our surprise) a strong dependency on the exact microphone
arrangement in the array. While very small deviations still lead to good results, a large
deviation leads to a drastic drop in performance. In preliminary experiments, we found that it
is not sufficient to disturb the microphone positions in the training set. Instead, this led to a
significantly worse performance overall. Nevertheless, working on this problem could provide
further insights into the functioning of a non-linear spatial filter. While the concrete task to
be solved and the relevant parameters, such as the phase differences, change drastically, the
spatial filtering task itself retains its general structure. From a meta-learning perspective, i.e.,
using a learning-to-learn paradigm, there should still be commonalities between the tasks that
can be exploited and affect the core of spatial filtering. These commonalities could be the key
to an even deeper understanding of non-linear spatial filtering.

We demonstrate the practical applicability of the DNN-based non-linear spatial filters developed
in parts two and three with a real-time multi-channel speech enhancement and speaker
extraction system. The look direction of the filter is interactively controlled by the user. Since
the filter has a very high spatial selectivity, setting the look direction correctly in a live scenario
is not always easy, even if DOA estimates are provided as visual guidance. Furthermore,
already slight movements of the target speaker will shift him or her out of the pass-through
direction of the filter. Therefore, we added a heuristic tracking algorithm that picks the most
dominant source detected by the source location algorithm in the region selected by the user.
Currently, the source localization is performed by a second neural network that is run in
parallel with the actual deep non-linear spatial filter. Since the computational complexity
of the algorithm plays a major role in many practical applications (on which hardware can
the program be executed in real-time and how much power is consumed in the process), all
synergies between the related tasks of localization, tracking, and filtering should be exploited
as far as possible.

Furthermore, the comparison in [P5] shows that we achieve very good state-of-the-art per-
formance with a comparatively small network in terms of the number of learnable parameters.
However, the bi-LSTM along the frequency axis makes up a large sequential component, so that
a hardware architecture oriented towards parallelism cannot be optimally utilized. Therefore,
research into even more efficient network architectures is required to make the non-linear
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spatial filters developed in this thesis applicable to a wider range of applications.
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Related Peer-Reviewed
Conference Publications A

This appendix contains four additional conference publications. These have not been included
in the main body of the thesis since the journal publications cover the topic of each part in
more depth. The journal publications extend the previous conference publications, which is
explicitly allowed by the author guidelines of the IEEE/ACM Transactions of Audio, Speech,
and Language Processing, so that there is a substantial overlap between the respective papers.
Nevertheless, some experiments presented in the conference publications have been omitted in
the corresponding journal publication so that they are included here for completeness.
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A.1 On Nonlinear Spatial Filtering in Multichannel Speech
Enhancement [P1]
Abstract
Using multiple microphones for speech enhancement allows for exploiting spatial information
for improved performance. In most cases, the spatial filter is selected to be a linear function
of the input as, for example, the minimum variance distortionless (MVDR) beamformer. For
non-Gaussian distributed noise, however, the minimum mean square error (MMSE) optimal
spatial filter may be nonlinear.

Potentially, such nonlinear functional relationships could be learned by deep neural networks.
However, the performance would depend on many parameters and the architecture of the
neural network. Therefore, in this paper, we more generally analyze the potential benefit of
nonlinear spatial filters as a function of the multivariate kurtosis of the noise distribution.

The results imply that using a nonlinear spatial filter is only worth the effort if the noise
data follows a distribution with a multivariate kurtosis that is considerably higher than for a
Gaussian. In this case, we report a performance difference of up to 2.6 dB segmental signal-
to-noise ratio (SNR) improvement for artificial stationary noise. We observe an advantage of
1.2 dB for the nonlinear spatial filter over the linear one even for real-world noise data from
the CHiME-3 dataset given oracle data for parameter estimation.

Reference

Kristina Tesch, Robert Rehr and Timo Gerkmann, “On Nonlinear Spatial Filtering in
Multichannel Speech Enhancement”, in Proceedings of Interspeech, Graz, Austria, 2019,
pp. 91-95. DOI: 10.21437/Interspeech.2019-2751
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Abstract
Using multiple microphones for speech enhancement allows
for exploiting spatial information for improved performance. In
most cases, the spatial filter is selected to be a linear function of
the input as, for example, the minimum variance distortionless
response (MVDR) beamformer. For non-Gaussian distributed
noise, however, the minimum mean square error (MMSE)
optimal spatial filter may be nonlinear.

Potentially, such nonlinear functional relationships could
be learned by deep neural networks. However, the performance
would depend on many parameters and the architecture of the
neural network. Therefore, in this paper, we more generally
analyze the potential benefit of nonlinear spatial filters as a
function of the multivariate kurtosis of the noise distribution.

The results imply that using a nonlinear spatial filter is only
worth the effort if the noise data follows a distribution with a multi-
variate kurtosis that is considerably higher than for a Gaussian. In
this case, we report a performance difference of up to 2.6 dB seg-
mental signal-to-noise ratio (SNR) improvement for artificial sta-
tionary noise. We observe an advantage of 1.2 dB for the nonlinear
spatial filter over the linear one even for real-world noise data from
the CHiME-3 dataset given oracle data for parameter estimation.
Index Terms: Multichannel, speech enhancement, nonlinear
filtering, acoustic beamforming, neural networks

1. Introduction
Many speech signals recorded in everyday environments, for
example in a restaurant or next to a busy street, are corrupted by
additional background noise. Therefore, speech enhancement
algorithms that improve the perceived quality or intelligibility
of a recorded speech signal by reducing noise or other disturbing
effects such as reverberation are of great importance in a wide
range of communication applications.

Noise reduction methods such as the Wiener filter [1, Sec.
11.3.1] and nonlinear optimal estimators of the clean speech
Fourier coefficient [1, Sec. 11.4] or its magnitude [2] effectively
reduce noise in single-channel microphone recordings. However,
multichannel approaches often outperform single-channel meth-
ods as they incorporate not only tempo-spectral properties of the
signals but can also include spatial information in the processing.

In most cases, the spatial filtering is based on a linear process-
ing model, called beamforming, that weights the DFT coefficient
of the different microphone channels with complex-valued
coefficients before summation to suppress signal components
from others than the target direction [3, Sec. 3.1]. The MVDR
beamformer is a prominent example of a linear spatial filter that
exploits the time delay of signal arrival determined by the spatial
arrangement and further takes the correlation of the noise signals
between the microphones into account.

It seems natural to include well-developed single-channel
methods into multichannel speech enhancement by applying a
single-channel algorithm, called a postfilter, to the output of a

spatial filter. For Gaussian distributed noise, it has been shown
that the sequential coupling of the spatially linear MVDR filter
and a postfilter yields optimal results with respect to the MMSE,
maximum a posteriori (MAP) and maximum likelihood (ML)
criterion [4, 5]. In contrast, Hendriks et al. show that the optimal
spatial filter is nonlinear and cannot be separated from spectral
processing if the noise is not Gaussian distributed [6]. However,
it remains open how large the potential benefit of using nonlinear
spatial filters really is. This question gained importance in the
context of the rise of neural networks in recent years: while
it is demanding to derive optimal nonlinear spatial filters in a
statistical framework, neural networks can learn to approximate
nonlinear functions directly from data [7].

Neural networks have successfully been incorporated into
single-channel speech enhancement [8, 9, 10, 11] often in the
context of automatic speech recognition (ASR) [12] and they
have also been very successful in estimating the parameters
of linear spatial beamformers [13]. Sainath et al. propose a
multichannel neural network approach to ASR that includes a
spatial filtering layer [14, 15, 16]. Interestingly, the structure
of their proposed time-convolutional layer imposes a linearity
constraint on the spatial filter even though fixing a linear spatial
filter might not lead to an optimal solution.

The goal of our research is to answer the question if investing
in the development of neural networks that learn optimal
nonlinear spatial filters is worth the effort. As a first step towards
answering this question, in this paper, we analyze the potential
benefit of nonlinear spatial filtering as compared to a standard
linear spatial filter like the MVDR under ideal conditions.

In order to gain a better understanding of the role and
potential of nonlinear spatial filters, we proceed as follows:
Section 3 reviews the most relevant theoretical results on the
optimality of linear versus nonlinear spatial filters. In section
4, we analyze the potential performance gain of an optimal
nonlinear spatial filter in contrast to a linear spatial filter for noise
with a known super-Gaussian distribution. Section 5 assesses the
improvement potential of nonlinear spatial filters for real noise
recordings from the CHiME-3 dataset [17].

2. Notation and Assumptions
We assume that a microphone array composed ofDmicrophones
records the target speech signal along with interfering noise.
The time domain signals are windowed and transformed into the
frequency domain using the discrete Fourier transform (DFT),
which leads to the noisy DFT coefficients Y`(k, i) with
microphone-channel index `∈{1,...,D}, frequency-bin index k
and time-frame index i. We assume an additive noise signal model
so that the noisy DFT coefficient Y`(k,i) can be represented as
a sum of the clean speech DFT coefficient S`(k,i) and noise DFT
coefficientN`(k,i) received at the `th microphone, i.e.,

Y`(k,i)=S`(k,i)+N`(k,i). (1)
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The DFT coefficients of the speech and noise signals are modeled
as random variables. We denote random variables by uppercase
letters, while lowercase letters are used for their respective realiza-
tions. The speech and noise coefficients are assumed to be uncor-
related and all DFT coefficients to be zero-mean and independent
with respect to time and frequency. As a consequence, we can drop
the indices (k,i) from the notation. Let Y=[Y1,...,YD]∈CD be
the vector containing the noisy DFT coefficients for allD chan-
nels and let S∈CD and N∈CD denote the vectors of speech and
noise DFT coefficients, respectively. We work in a single source
scenario, which means that there is only one target speaker, and
model the signal propagation from the speaker to the microphones
as a plane wave. Thus, the vector of clean speech DFT coefficients
S can be obtained by multiplying the reference clean speech DFT
coefficientS with a frequency-dependent vector d∈CD , i.e., S=
dS. We denote the noise correlation matrix by Φn=E[NNH ],
while σ2

s =E[|S|2] denotes the spectral power of S.

3. Linearity of the Optimal Spatial Filter
In this section, we review optimal multichannel estimators of
the clean speech DFT coefficient to address the question under
which conditions an optimal solution decomposes into a linear
spatial filter and a spectral postfilter. First, we consider the
case of multivariate complex Gaussian distributed noise DFT
coefficients with zero mean and covariance matrix Φn. Since we
assume that the noise is additive, the distribution of Y given the
reference speech DFT coefficient s is Gaussian distributed with
mean ds and covariance matrix Φn, i.e., Y∼NC(ds,Φn). The
corresponding conditional probability density function (PDF)
is given by [18, Thm. 15.1]

p(y|s)=
1

πD|Φn|
exp
{
−(y−ds)HΦ−1

n (y−ds)
}
. (2)

Balan and Rosca [4] use the concept of sufficient statistics
to show that the MMSE estimator of the clean speech DFT
coefficient S

TMMSE(y)=arg min
ŝ∈C

E
[
|S−ŝ|2 |y

]
(3)

separates into the well-known MVDR beamformer and a spectral
postfilter under a Gaussian noise assumption. The MVDR beam-
former TMVDR is a sufficient statistic in the classical sense for the
true clean speech DFT coefficient s if the conditional distribution
of the noisy observation Y given TMVDR(y) does not depend on
s [19, Def. IV.C.1], i.e. TMVDR(Y) contains all the information
in Y that is useful for estimating s. Furthermore, TMVDR is said
to be a sufficient statistic of S in the Bayesian sense if

p(s|y)=p(s|TMVDR(y)) (4)

holds for all observations y regardless of the prior distribution
of S [20, Def. 2.4]. If the MVDR beamformer is a sufficient
statistic, then no information about S is lost during spatial
filtering even though the dimension of the output is reduced
to one dimension. As a result, spatial processing and spectral
processing can be performed separately in sequence. Since a
statistic that is sufficient in the classical sense is also sufficient
in the Bayesian sense [20, Thm. 2.14.2], we can infer that (4)
holds by showing that the MVDR beamformer is a sufficient
statistic in the classical sense. Resorting to the Fisher-Neyman
factorization theorem [19, Prop. IV.C.1][21, Cor. 2.6.1], we
deduce this property of the MVDR beamformer from the finding

that the conditional PDF p(y|s) can be factorized as

p(y|s)=
1

πD|Φn|
exp{−yHΦ−1

n y}
︸ ︷︷ ︸

h(y)

×exp
{

dHΦ−1
n d

(
2Re{s∗TMVDR(y)}−|s|2

)}

︸ ︷︷ ︸
g(s,TMVDR(y))

=h(y)g(s,TMVDR(y)) (5)
with

TMVDR(y)=
dHΦ−1

n y

dHΦ−1
n d

. (6)

Using the fact that the MMSE estimator complies with the mean
of the posterior [19, IV.B.1], we infer from (4) that

TMMSE(y)=E[S|y] (7)
=E[S|TMVDR(y)] (8)

holds. The quantity E [S|TMVDR(y)] can be seen as a single-
channel filter working on the output of the MVDR beamformer.
Because the relationship (4) holds for any prior distribution
of S, a decomposition of the MMSE estimator into an MVDR
beamformer and single-channel postfilter results independent
of any further assumptions about the prior distribution of the
reference speech DFT coefficient. The decomposition of the
MMSE estimator is also described by Hendriks et al. [6] but
derived without the concept of sufficient statistics.

From (4) we conclude that the MAP estimator also separates
into a linear spatial filter and a single-channel postfilter.
Furthermore, the MVDR beamformer can be identified as the ML
estimator of the clean speech DFT coefficient S [5, Sec. 6.2.1.2].

However, the work of Hendriks et al. [6] reveals that
the Gaussian noise assumption is fundamental to both the
decomposability of the optimal estimator into a spatial and a
spectral processing step and the linearity of the spatial filter. They
derive an MMSE estimator for noise that follows a multivariate
Gaussian mixture distribution. The M Gaussian mixture
components are modeled as zero-mean with covariance matrices
Φm,m= 1,...,M , and combined by positive weighting factors
cm that fulfill the constraint

∑M
m=1 cm = 1. The resulting

conditional PDF of Y is given by [22, Sec. 9.2]

p(y|s)=
M∑

m=1

cm
πD|Φm|

exp
{
−(y−ds)HΦ−1

m (y−ds)
}
. (9)

Hendriks et al. assume the clean speech amplitude A to be
distributed according to the PDF

p(a)=

2

(
ν

σ2
s

)ν

Γ(ν)
a2ν−1exp

{
− ν

σ2
s

a2
}

with ν>0, a≤0 (10)

and the phase Ψ ∈ [0, 2π) to be uniformly distributed and
independent of the speech amplitude. Then the MMSE estimator
is given by

T̃MMSE(y)=ν

M∑

m=1

cmQm
|Φm| e

[−yHΦ−1
m y] σ

2
sT

(m)
MVDR(y)M(ν+1,2,Pm)

ν(dHΦ−1
m d)−1+σ2

s

M∑

m=1

cmQm
|Φm| e

[−yHΦ−1
m y]M(ν,1,Pm)

(11)
with
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T
(m)
MVDR(y)=

dHΦ−1
m y

dHΦ−1
m d

, Qm=(ν+dHΦ−1
m dσ2

s)−ν ,

and Pm=
σ2
sd

HΦ−1
m d

∣∣∣T (m)
MVDR(y)

∣∣∣
2

ν(dHΦ−1
m d)−1+σ2

s

with M(·, ·, ·) being the confluent hypergeometric function
[23, Sec. 9.21]. Interestingly, the result shows that the MMSE
estimator for the considered non-Gaussian model cannot be sep-
arated into an MVDR beamformer and a single-channel postfilter.
Furthermore, the optimal spatial filter is not even linear [6].

4. Potential of Nonlinear Spatial Filters
In this section, we investigate the improvement potential of using
the optimal spatially nonlinear MMSE estimator for Gaussian
mixture distributed noise as opposed to a setup that combines a
linear spatial filter and a spectral postfilter. To our knowledge, the
MMSE estimator for non-Gaussian noise derived by Hendriks
et al. has not been evaluated before.

We use a segment length of 32 ms and a square-root Hann
window with 50% overlap for spectral analysis and synthesis.
The clean speech signals have been taken from the WSJ0 dataset
[24] and are balanced between male and female speakers (30
utterances each).

The noise DFT coefficients are generated by sampling a
zero-mean Gaussian mixture distribution. The covariance matrix
Φn of the distribution is chosen to represent one of three scenarios
[25]: spatially white noise, diffuse noise, and a directional noise
source positioned at a 45 degree angle to the target source. In
the latter cases, we add a small portion of spatially white noise
(αwn =0.05) to ensure that the noise correlation matrix is invert-
ible. We obtain noise distributions that depart from normality
by means of heavier tails by combining mixture components with
scaled versions of the same covariance matrix. Thus, we set the
mth mixture component’s covariance matrix Φm to be

Φm=
bm−1

r
Φn with r=

M∑

m=1

cmb
m−1 (12)

and scaling factor b ∈ R+. The constant r takes care of
normalization so that the covariance matrix Φn of the mixture
distribution remains unchanged.

The kurtosis is a statistical measure that accounts for the
shape of a distribution, specifically its heavy-tailedness [26, 27].
We extend Mardia’s multivariate kurtosis definition [28] to
complex-valued random vectors X ∈ CD with mean µ and
covariance matrix Cx to obtain

κC(X)=E
[
(2(X−µ)HC−1

x (X−µ))2
]
. (13)

Using [29, Sec. 8.2.4], we find the multivariate complex kurtosis
of the random vector N following a scaled Gaussian mixture
distribution to be

κC(N)=2D(2+2D)

M∑

m=1

cm
b2(m−1)

r2

︸ ︷︷ ︸
q

. (14)

The factor 2D(2 + 2D) corresponds to the kurtosis of the
D-dimensional complex Gaussian distribution. Thus, the
kurtosis of the scaled Gaussian mixture distribution equals the
kurtosis of a Gaussian distribution multiplied by a factor that
we name q. We see that the multivariate kurtosis depends on

the dimensionality of the distribution and that the scaling factor
b and the number components allow us to adjust the degree of
heavy-tailedness of the noise distribution.

We use the MVDR beamformer as a linear spatial filter
for the comparison setup because it is optimal with respect to
the maximum likelihood criterion if the noise follows a scaled
Gaussian mixture distribution as given in (12). This property
can be deduced from the fact that the MVDR beamformer is the
ML estimator for each Gaussian mixture component and that
the MVDR beamformer is invariant against scaling of the noise
correlation matrix. We then combine the MVDR beamformer
with an MMSE optimal single-channel postfilter.

Since the input vector given the reference speech DFT
coefficient s follows a multivariate complex Gaussian mixture
distribution, i.e., Y∼∑M

m=1cmNC(ds,Φm), the output of the
MVDR beamformer is distributed according to a one-dimensional
complex Gaussian mixture distribution. More precisely, it is

p(TMVDR(y)|s)=
∑

m=1

cmNC

(
s,

dHΦ−1
n ΦmΦ−1

n d

(dHΦ−1
n d)2︸ ︷︷ ︸

σ2
m

)

)
. (15)

We adhere to the assumptions regarding speech phase and
amplitude that Hendriks et al. introduced in [6] to compute the
spatially nonlinear MMSE estimator and derive the postfilter
using [23, Eq. 3.339, Eq. 6.643.2, Eq. 9.220.2] and [30, Eq.
10.32.3] in an analog way. We find the estimator TMVDR-MMSE that
combines the MVDR beamformer with the MMSE postfilter to be

TMVDR-MMSE(y)=

ν

M∑

m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]

σ2
sTMVDR(y)M(ν+1,2,Pm)

νσ2
m+σ2

s

M∑

m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]

M(ν,1,Pm)

(16)

with

Φn=
M∑

m=1

cmΦm, σ2
m=

dHΦ−1
n ΦmΦ−1

n d

(dHΦ−1
n d)2

,

Qm=(
1

σ2
m

+
ν

σ2
s

)−ν and Pm=
σ2
sσ
−2
m |TMVDR(y)|2
νσ2

m+σ2
s

.

Both the spatially nonlinear MMSE estimator and the MMSE
postfilter require an estimate of the spectral power of the speech
signal σ2

s . We estimate the parameter for a given time frame by
time-averaging over five successive segments of the clean speech
data. The speech parameter ν in (10) is set to 0.25 for the nonlinear
MMSE estimator and to 0.5 for the postfilter of the TMVDR-MMSE

estimator because this gives the best results for scaled Gaussian
mixture noise distributions with higher kurtosis values.

We model the microphone array as a linear array with five
microphones at a distance of 5 cm and generate the vector of
speech DFT coefficients S for a source that is located in endfire
position. The noise and speech DFT coefficients are combined
to give an SNR of 0 dB.

The left column of Figure 1 shows the segmental SNR
improvement of the MVDR beamformer TMVDR, the spatially
nonlinear MMSE estimator T̃MMSE derived by Hendriks et al. [6],
and the MVDR beamformer combined with an MMSE postfilter
TMVDR-MMSE with respect to the kurtosis factor q defined in
(14). We compute the segmental SNR using a segment length
of 10 ms as described in [31]. To measure the improvement of
the segmental SNR, we compare the mean segmental SNR of

103



0 2 4 6 8 10

5

10

15

20

spatially white

se
g.

SN
R

im
p.

[d
B

]

0 2 4 6 8 10

1

2

3
spatially white

PO
L

Q
A

sc
or

e
im

p.

0 2 4 6 8 10

5

10

15

20

diffuse

se
g.

SN
R

im
p.

[d
B

]

0 2 4 6 8 10

1

2

3
diffuse

PO
L

Q
A

sc
or

e
im

p.

0 2 4 6 8 10

5

10

15

20

directional

Kurtosis factor q

se
g.

SN
R

im
p.

[d
B

]

0 2 4 6 8 10

1

2

3
directional

Kurtosis factor q

PO
L

Q
A

sc
or

e
im

p.

T̃MMSE TMVDR-MMSE TMVDR

Figure 1: Segmental SNR and POLQA improvement for noise
distributions with increasing kurtosis in three noise scenarios
(spatially white, diffuse and directional).

the noisy microphone recordings to the segmental SNR of the
enhanced speech signal. The gap between the top curves (circle
and triangle) quantifies the advantage of the nonlinear spatial
filter over the linear spatial filter. The difference amounts to
values in the order of 2.6 dB for noise that obeys a significantly
more heavy-tailed distribution than a Gaussian.

The right column of Figure 1 depicts the perceptual objective
listening quality analysis (POLQA) score [32] improvement
achieved by the three processing methods. POLQA is the
successor of the perceptual evaluation of speech quality (PESQ)
measure [33] and returns the expected mean opinion score (MOS)
[34] that ranges from one (bad) to five (excellent). As for the
segmental SNR improvement, there is a measurable performance
difference (∼ 0.5 POLQA score improvement) between the
spatially linear and nonlinear estimator. We conclude that the
use of a nonlinear spatial filter could be worthwhile if real noise
follows a distribution that is considerably more heavy-tailed than
a Gaussian distribution.

5. Evaluation on Real-World Noise Data
Using the same estimators as in the previous section, we aim
to assess if performance improvements obtained by a nonlinear
spatial filter also hold for real-world noise recordings, as provided
by the CHiME-3 dataset [17]. We use the five recordings that
correspond to the front-facing microphones placed in a frame
around a tablet computer that has been used to record noise in
four different locations: a bus, a cafeteria, a pedestrian area, and
a busy street. We place the target source in the same plane as the
tablet, perpendicular to the upper edge, and combine the speech
noise signals to obtain an SNR of 0 dB.
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Figure 2: Segmental SNR and POLQA improvement for CHiME-3
noise recordings from four locations (bus, cafeteria, pedestrian
area, street) with respect to the number of mixture components
used to fit the noise distribution.

The estimators T̃MMSE and TMVDR-MMSE require the parame-
ters of a zero-mean Gaussian mixture distribution to be estimated
from data. We obtain time-variant estimates of the component
covariance matrices with the expectation maximization (EM)
algorithm [22] applied to signal segments of length 750 ms that
overlap by 50% and set the speech parameter ν= 0.25 for both
estimators as this gave the best results for the CHiME-3 data.

The left side of Figure 2 depicts the segmental SNR
improvement results with respect to the number of components
M in the mixture distributions that have been fitted to the data.
We find that the use of a postfilter significantly increases the
segmental SNR improvement (the difference of 5 dB between the
results of TMVDR and TMVDR-MMSE), but the postfilter following
the linear spatial filter in TMVDR-MMSE delivers a very similar
performance regardless of the number of components of the
distribution model. In contrast, we observe that the T̃MMSE

estimator with a nonlinear spatial filter achieves better results
when we model the distribution through a Gaussian mixture with
more components. The performance difference between T̃MMSE

and TMVDR-MMSE that we attribute to the usage of a nonlinear
spatial filter amounts to 1.2 dB averaged over all locations. We
make similar observations for the individual locations.

The right plot of Figure 2 shows the improvement with
respect to the POLQA measure. The results obtained with
the perceptively motivated POLQA measure exhibit the same
structure as the results obtained with the segmental SNR and,
thus, we find that using a nonlinear spatial filter instead of a linear
spatial filter increases the speech quality predicted by POLQA
for real-world noise data.

6. Conclusions
In this paper, we showed that using the MMSE optimal nonlinear
spatial filter instead of a classical concatenation of a linear spatial
filter and a postfilter may yield a performance gain of up to 2.6 dB
segmental SNR improvement if the noise follows a distribution
with considerably higher multivariate kurtosis than a Gaussian
distribution. Also for the real-world noise recordings from the
CHiME-3 dataset still moderate improvements of 1.2 dB are
achieved when the parameters are estimated on oracle speech
and noise data. Future work will analyze the achievable benefit
when the filter parameters are estimated blindly from noisy data.
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A.2 Nonliner Spatial Filtering for Multichannel Speech
Enhancement in Inhomogeneous Noise Fields [P2]
Abstract
A common processing pipeline for multichannel speech enhancement is to combine a linear
spatial filter with a single-channel postfilter. In fact, it can be shown that such a combination
is optimal in the minimum mean square error (MMSE) sense if the noise follows a multivariate
Gaussian distribution. However, for non-Gaussian noise, this serial concatenation is generally
suboptimal and may thus also lead to suboptimal results. For instance, in our previous work,
we showed that a joint spatial-spectral nonlinear estimator achieves a performance gain of
2.6 dB segmental signal-to-noise ratio (SNR) improvement for heavy-tailed large-kurtosis
multivariate noise compared to the traditional combination of a linear spatial beamformer
and a postfilter.

In this paper, we show that a joint spatial-spectral nonlinear filter is not only advantageous
for noise distributions that are significantly more heavy-tailed than a Gaussian but also for
distributions that model inhomogeneous noise fields while having rather low kurtosis. In
experiments with artificially created noise we measure a gain of 1 dB for inhomogenous noise
with low kurtosis and up to 2 dB for inhomogeneous noise fields with moderate kurtosis.

Reference

Kristina Tesch and Timo Gerkmann, “Nonlinear Spatial Filtering for Multichannel
Speech Enhancement in Inhomogeneous Noise Fields”, in IEEE Int. Conf. Acous-
tics, Speech, Signal Proc. (ICASSP), Barcelona, Spain, 2020, pp. 196-200. DOI
10.1109/ICASSP40776.2020.9053210

Copyright notice
The following article is the accepted version of the article published with IEEE.
©2020 IEEE. Reprinted, with permission, from the reference displayed above.

107

https://doi.org/10.1109/ICASSP40776.2020.9053210




NONLINEAR SPATIAL FILTERING FOR MULTICHANNEL SPEECH ENHANCEMENT IN
INHOMOGENEOUS NOISE FIELDS

Kristina Tesch and Timo Gerkmann

Signal Processing (SP), Universität Hamburg, Germany
kristina.tesch@uni-hamburg.de, timo.gerkmann@uni-hamburg.de

ABSTRACT

A common processing pipeline for multichannel speech enhancement
is to combine a linear spatial filter with a single-channel postfilter.
In fact, it can be shown that such a combination is optimal in the
minimum mean square error (MMSE) sense if the noise follows
a multivariate Gaussian distribution. However, for non-Gaussian
noise, this serial concatenation is generally suboptimal and may
thus also lead to suboptimal results. For instance, in our previous
work, we showed that a joint spatial-spectral nonlinear estimator
achieves a performance gain of 2.6 dB segmental signal-to-noise
ratio (SNR) improvement for heavy-tailed large-kurtosis multivariate
noise compared to the traditional combination of a linear spatial
beamformer and a postfilter.

In this paper, we show that a joint spatial-spectral nonlinear filter
is not only advantageous for noise distributions that are significantly
more heavy-tailed than a Gaussian but also for distributions that
model inhomogeneous noise fields while having rather low kurtosis.
In experiments with artificially created noise we measure a gain of
1 dB for inhomogenous noise with low kurtosis and up to 2 dB for
inhomogeneous noise fields with moderate kurtosis.

Index Terms— Multichannel, speech enhancement, nonlinear
filtering, acoustic beamforming

1. INTRODUCTION

Speech enhancement algorithms are used to recover a target speech
signal from microphone recordings that are corrupted by background
noise. These techniques are fundamental to many communication
applications such as telephony, hearing aids, and the emerging field
of human-machine interaction with an automatic speech recognition
(ASR) system.

If several recordings of the target signal from multiple micro-
phones are available, multichannel speech enhancement methods
can be used. The advantage of these methods over single-channel
approaches, e.g., [1, 2, 3], is that not only tempo-spectral but also
spatial information can be included in the processing [4]. In many
cases, the spatial filtering is carried out using a so-called beamformer
that emphasizes a signal from a certain direction and suppresses the
signal components originating from other directions. Beamforming is
a linear operation: the discrete Fourier transform (DFT) coefficients
of all channels are multiplied by complex weights and summed [5].

Commonly, a single-channel method is applied to the output of
such a linear spatial filter to further exploit spectral characteristics for
suppressing the remaining noise. It is often referred to as a postfilter.
However, this common processing pipeline, despite its prevalence,
is in general suboptimal if the noise does not follow a multivariate
complex Gaussian distribution.

Balan and Rosca [6] have shown that the clean speech MMSE es-
timator for multivariate complex Gaussian noise can be separated into
an minimum variance distortionless response (MVDR) beamformer
and a single-channel postfilter. In contrast, the work of Hendriks
et al. [7] revealed that the MMSE solution for noise that follows a
multivariate complex Gaussian mixture distribution inseparably joins
the spatial and spectral processing and is even nonlinear in the spatial
filter. From these results, it becomes clear that the noise distribution
plays an important role in determining whether joint spatial-spectral
nonlinear processing could lead to an improved performance. In the
sequel, we may refer to an estimator that joins the spatial and spectral
processing into a single nonlinear operation a nonlinear spatial filter.

It is important to note that characterizing the noise scenarios in
which a nonlinear filtering is advantageous gains particular relevance
in the context of the neural network revolution. Evermore often,
neural networks are trained to solve single-channel and multichannel
speech enhancement tasks, e.g., [8, 9, 10, 11]. While neural networks
could potentially be used to elegantly approximate nonlinear joint
spatial-spectral filters, most neural network approaches for multichan-
nel speech enhancement restrict the spatial filter to be linear [10, 12]
or use neural networks just for estimating the beamformer parameters
[13]. In contrast, using neural networks for modeling a nonlinear
spatial filter is far less common, e.g., [11]. This is also because the po-
tential benefit of using nonlinear spatial filters is not fully understood.
Tackling this problem experimentally by trying out different network
architectures does not seem to be a satisfying approach to fundamen-
tally understand the potential gain of nonlinear spatial filtering. For
instance, network architectures that are more complex than necessary
are generally undesirable as they require more data and training time.
Therefore, it is important to understand for which noise scenarios
learning a nonlinear spatial filter is worthwhile and for which not.
For this, we compare the performance obtained by statistical MMSE-
optimal estimators to be able to gain more general insights without
depending e.g. on specific neural network architectures.

Already in our recent previous work [14], we evaluated the ben-
efit of the optimal MMSE solution of Hendriks et al. with joint
spatial-spectral nonlinear filtering by comparing it to the best match-
ing estimator composed of an MVDR beamformer and an MMSE
single-channel postfilter. However, in this analysis we obtained Gaus-
sian mixtures by combining Gaussian components with the same
spatial structure but different scaling. We observed for noise distri-
butions with a high kurtosis, which measures the heavy-tailedness
of a distribution [15, 16], a gain of 2.6 dB segmental SNR and 0.5
POLQA score improvement. Furthermore, in [14] we observed a gain
of 1.2 dB segmental SNR improvement for noisy mixtures with real-
world noise recordings taken from the CHiME-3 data set [17] when
fitting a zero-mean multivariate complex Gaussian mixture with four
components to the data. Since the nonlinear spatial filter delivers bet-
ter results than separated processing with a linear spatial filter and a
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postfilter, one may conclude that the fitted distribution is not Gaussian
and may speculate that the distribution has a notably larger kurtosis
than a Gaussian distribution. However, examining the kurtosis of the
distributions fitted to the CHiME-3 data revealed that the kurtosis is
surprisingly low (Section 3). Thus, it seems that the advantage of
a joint nonlinear spatial-spectral filter does not only depend on the
kurtosis of the noise distribution but also on other properties. The
goal of this paper is to analyze how much the spatial structure of
the noise model impacts performance when using a joint nonlinear
spatial-spectral filter instead of the traditional serial concatenation of
a linear beamformer and a postfilter.

Section 2 introduces the modeling assumptions and statistical
estimators that our analysis is based on. In Section 3, we show that
solely the kurtosis of the noise distribution is not sufficient to charac-
terize when the use of a nonlinear spatial filter could be worthwhile
and in Section 4 we evaluate to what extent spatial properties of the
noise distribution influence the gain achieved with a nonlinear spatial
filter.

2. THEORETICAL BACKGROUND

2.1. Signal model

We assume that the target speech signal is disturbed by additive
noise and recorded by a microphone array with D microphones.
The recorded time-domain signal for every microphone-channel ` ∈
{1, ..., D} is transformed to the frequency-domain using a windowed
DFT yielding DFT coefficients Y`(k, i) ∈ C with frequency-bin
index k and time-frame index i. As we assume the noise to be
additive, we obtain the noisy DFT coefficient Y`(k, i) ∈ C as the
sum of the clean speech and the noise DFT coefficients S`(k, i) ∈ C
and S`(k, i), i.e.,

Y`(k, i) = S`(k, i) +N`(k, i). (1)

We model the DFT coefficents as random variables and assume
that they are independent with respect to the frequency-bin index and
time-frame index. As a result, we can consider every time-frequency
bin separately and omit the frequency-bin and time-frame indices
from the notation. Uppercase letters will denote random variables
and lowercase letters will be used for their realizations. Further, we
assume speech and noise to be uncorrelated and zero-mean.

The noise DFT coefficients of all channels are combined into
a vector N = [N1, ..., ND]T ∈ CD with correlation matrix Φn =
E[NNH ]. The vector of clean speech DFT coefficients is given
by S = dS ∈ CD with the so-called steering vector d ∈ CD
modeling the propagation path from the single target speaker to the
microphones. Then, the vector Y = S + N ∈ CD contains the noisy
DFT coefficients for every channel. The spectral power of the clean
speech signal S is denoted by σ2

s = E[|S|2].

2.2. Estimators

In our previous work [14], we gathered theoretical results to point out
that the MMSE solution can be separated into an MVDR beamformer
defined as

TMVDR(y) =
dHΦ−1

n y

dHΦ−1
n d

(2)

and a single-channel postfilter if the noise follows a multivariate
complex Gaussian distribution. However, this also implies that for
the separability into a linear spatial filter concatenated with a spectral
postfilter the distribution of the noise plays a decisive role. This

becomes clear from the result of Hendriks et al. [7] who show that the
MMSE-optimal estimator of the clean speech DFT coefficient S for
noise that is distributed according to a multivariate complex Gaussian
mixture distribution is in general a nonlinear and non-separable joint
spatial-spectral filter.

This Gaussian mixture distribution combinesM zero-mean Gaus-
sian components with covariance matrices Φm ∈ CD×D, m =
1, ...,M, and the correspondig noise probability density function
(PDF) is given by

p(n) =
M∑

m=1

cm
1

πD|Φn|
exp

{
−nHΦ−1

n n
}

(3)

with component weights cm that sum to one. The estimator TMMSE

for multivariate complex Gaussian mixture distributed noise has been
derived by Hendriks et al. [7] under the additional assumption that
the clean speech signal amplitude follows a generalized-Gamma
distribution with a shape parameter ν ∈ R+ and that the phase
Ψ ∈ [0, 2π) is uniformly distributed and independent of the speech
amplitude. Then, the MMSE solution is given by

TMMSE(y) = ν

M∑

m=1

cmQm
|Φm| e

[−yHΦ−1
m y] σ

2
s T

(m)
MVDR(y)M(ν+1,2,Pm)

ν(dHΦ−1
m d)−1+σ2

s

M∑

m=1

cmQm
|Φm| e

[−yHΦ−1
m y]M(ν, 1, Pm)

(4)

with

T
(m)
MVDR(y) =

dHΦ−1
m y

dHΦ−1
m d

, Qm = (ν + dHΦ−1
m dσ2

s )−ν ,

and Pm =
σ2

s dHΦ−1
m d

∣∣∣T (m)
MVDR(y)

∣∣∣
2

ν(dHΦ−1
m d)−1 + σ2

s

andM(·, ·, ·) being the confluent hypergeometric function [18, Sec.
9.21].

This MMSE estimator cannot be separated into a spatial filter
and a spectral postfilter since the observation y is the input of the
linear function T (m)

MVDR, which in turn depends on the summation index,
and also occurs in the quadratic term exp

{
−yHΦ−1

m y
}

. The latter
highlights the spatial nonlinearity of the solution.

In [14], we have experimentally quantified the benefit of the
nonlinear joint spatial-spectral MMSE-optimal solution TMMSE over a
separated solution TMVDR-MMSE that combines an MVDR beamformer
with an MMSE-optimal postfilter. We derived the MMSE postfilter
under the same assumptions used to compute TMMSE to allow for a
meaningful comparison. This results in the composite estimator

TMVDR-MMSE(y) =

ν

M∑

m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]

σ2
s TMVDR(y)M(ν+1,2,Pm)

νσ2
m+σ2

s

M∑

m=1

cmQm
σ2
m

e

[
− |TMVDR(y)|2

σ2m

]

M(ν, 1, Pm)

(5)

with

Φn =
M∑

m=1

cmΦm, σ2
m =

dHΦ−1
n ΦmΦ−1

n d

(dHΦ−1
n d)2

,

Qm = (
1

σ2
m

+
ν

σ2
s

)−ν and Pm =
σ2

s σ
−2
m |TMVDR(y)|2
νσ2

m + σ2
s

.
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The separability into the MVDR beamformer and a single-channel
postfilter can be seen from the fact that the observation is contained
in this equation only as input to the MVDR beamformer.

Our previous experiments with known noise distributions indi-
cate a dependence of the performance gain achieved by the spatially
nonlinear TMMSE on the kurtosis and, thus, on the heavy-tailedness
of the noise distribution. For the real-world noise recordings from
the CHiME-3 dataset [17] we observed a moderate improvement by
using a non-linear spatial filter but did not yet investigate the kurtosis
value of the fitted distribtions.

3. MULTIVARIATE KURTOSIS OF CHIME-3 NOISE DATA

The CHiME-3 dataset provides multichannel recordings obtained
in different environments: on a moving bus, in a cafeteria, next to
a busy street and in a pedestrian area [17]. For our analysis, we
use recordings from five front-facing microphones that have been
embedded in a frame around a tablet computer. To approximate the
unknown and potentially time-variant distribution of the recorded
noise data with a zero-mean multivariate complex Gaussian mixture
distribution, we apply the expectation maximization (EM) algorithm
to windows of length 750 ms that overlap by 50%.

We use the definition of the multivariate kurtosis by Mardia
[19], which we extend for the complex-valued case based on the
equivalence of a D-dimensional complex Gaussian distribution with
a 2D-dimensional real Gaussian distribution [20, Thm. 15.1]. Then,
the kurtosis of a complex-valued random vector X ∈ CD with mean
µ and covariance matrix Cx is given by

κC(X) = E
[
(2(X− µ)HC−1

x (X− µ))2
]
. (6)

The kurtosis of a D-dimensional complex Gaussian distributed ran-
dom vector X ∈ C depends solely on the dimension D through

κC(X) = 2D(2D + 2). (7)

We now normalize all kurtosis values by the kurtosis of the Gaussian
distribution with the corresponding dimensionality and name the
result the kurtosis factor q. Thus, a kurtosis factor of one indicates a
Gaussian distribution, while a larger kurtosis indicates a heavy-tailed
distribution.

Figure 1 shows the histograms for the estimated kurtosis factors
of the distributions that have been fitted to the CHiME-3 data using
the EM algorithm. For this, a different number of mixture components
M is used. The kurtosis as given in (6) is estimated by averaging
over 1000 samples drawn from the distribution that we obtained with
the EM algorithm. Using a single mixture component means to fit a
Gaussian distribution and, as a result, we observe a peak at a kurtosis
factor of 1 for the blue histogram. Estimating higher order statistics is
generally difficult and this is reflected in the width of the peak, which
shows that the estimate obeys some variance even when estimated
from 1000 samples. If we add more components, i.e., M ∈ {2, 3, 4},
the peak of the histogram shifts to the right and we tend to observe
larger kurtosis factors. The graphic was clipped at a kurtosis factor
of 2 to improve the readability but all results are summarized in
Table 1 which shows the mean and median values that confirm the
observation.

In [14] we have observed that the gain obtained from TMMSE in
comparison TMVDR-MMSE reaches a value of 1.2 dB segmental SNR
improvement as the number of components used to fit the noise
distribution is increased to four. Here, we find that the kurtosis
factor increases with the number of components and, thus, the noise
distributions tend to shift towards more heavy-tailed distributions.
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Fig. 1. Histogram of the estimated kurtosis factor for mixture distri-
butions with M components fitted to the CHiME-3 noise data.

M Mean Median

1 1.00 1.00
2 1.26 1.13
3 1.36 1.20
4 1.42 1.26

Table 1. Mean and median kurtosis factor per number of components
M averaged for all CHiME-3 locations (BUS, CAF, STR, PED).

However, the increase of the mean kurtosis factor up to value of
1.42 for four components is surprisingly small in comparison with
the kurtosis factors that we experimented with in [14]. As a result,
we conclude that the kurtosis is not the only property of the noise
distribution that determines the advantage that we can expect from
using the joint spatially and spectrally nonlinear estimator TMMSE

compared to a linear spatial filter followed by a postfilter such as
TMVDR-MMSE.

4. NONLINEAR FILTERING FOR INHOMOGENEOUS
NOISE SCENARIOS

Next, we investigate the influence of spatial properties of the noise
distribution on the performance of the nonlinear joint spatial-spectral
TMMSE compared to the concatenation of linear spatial filtering and
postfiltering in TMVDR-MMSE. For this, we set up a Gaussian mixture
distribution whose Gaussian components are constructed to reassem-
ble the spatial properties of noise point sources placed in different
directions and we obtain the noise signal from sampling this multi-
variate complex Gaussian mixture distribution. Note that this implies
that noise sources associated with this overall mixture distribution are
non-Gaussian or not active for the same time-frequency bins, which
is a common assumption in source separation [21].

The creation of the noise distribution is illustrated in Figure 2a.
The center of the image shows a microphone array with two mi-
crophones m1 and m2 positioned at a distance of 5 cm. The first
directional noise source n1 stays in a fixed position 30 degrees from
the target source as depicted in Figure 2a. The second noise source
n2 is placed in 20 different directions, which are indicated by the
colored boxes on the circle.

For the noise sources n1 and n2, we can compute the steering
vectors dn1 and dn2 , which model the relative time delays of signal
arrival at the microphones, based on the noise source incidence angle
and the microphone array geometry. From this we construct the
correlation matrices modeling the directional noise sources and some
additional spatially white noise as [22]

Φni = (1− αwn)dnid
H
ni + αwnI with i = {1, 2}. (8)
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Fig. 2. (a) Illustration of the creation of a multivariate Gaussian mixture distribution modelling an inhomogeneous noise field. (b) Performance
gain of TMMSE over TMVDR-MMSE for Gaussian mixture noise modeling two directional sound sources whose placement is illustrated in Figure
2a. (c) Frequency-averaged kurtosis factor of the Gaussian mixture noise modeling two directional sound sources.

The parameter αwn describes the amount of spatially white noise,
which we set to αwn = 0.05, and I denotes the identity matrix. In
our first test case we use two equally weighted zero-mean Gaussian
components with correlation matrices as given in (8) to construct
the overall Gaussian mixture noise distribution. In a second setting,
we use three Gaussian components to model one noise source ni
and obtain their correlation matrices Φnij , j = {1, 2, 3}, by scaling
the matrix Φni under the constraint

∑J
j=1 Φnij = Φni with J = 3.

Based on a varying scale factor b ∈ R+ we compute the component
correlation matrices as

Φnij =
bj−1

r
Φni with r =

J∑

j=1

1

J
bj−1. (9)

The overall Gaussian mixture distribution is then scaled such that the
noisy observation has an SNR of 0 dB.

For spectral analysis and synthesis we use square-root Hann
windows of length 32 ms and a 50% overlap. The speech power σ2

s
is estimated from the clean speech signal by time-averaging over five
successive time-frequency bins. We set the speech shape parameter
to ν = 0.25 for both estimators and evaluate each configuration on
48 speech signals that have been taken from the WJS0 dataset [23]
and balanced between male and female speakers.

Figure 2b shows the performance gain of the spatially and spec-
trally nonlinear estimator TMMSE over the classic setup TMVDR-MMSE

based on the segmental SNR improvement. We evaluate the seg-
mental SNR of the signals using segments of length 10 ms in which
speech is present as proposed, e.g., in [24]. The mean segmental SNR
of the two noisy signals is compared to the segmental SNR of the
enhanced signal to obtain a measure of the improvement. The perfor-
mance results are displayed with respect to phase distance of the two
noise sources’ incidence angles, whereby one of the noise sources
moves around the microphone array counterclockwise. The marker
colors have been chosen such that they indicate the moving noise
source’s direction in accordance with the representation in Figure 2a.

The lowest line in Figure 2b with square markers represents the
results for a Gaussian mixture distributed noise with two Gaussian
components. If the two noise sources are placed in the same direction
(zero phase distance, dark blue marker), the Gaussian mixture dis-
tribution reduces to a Gaussian distribution and, in accordance with
the theory, we cannot observe a benefit from using the joint spatial-
spectral nonlinear TMMSE estimator. However, we observe a clear

influence of the spatial properties of the noise field and performance
gains up to 1 dB.

Our previous conjecture that the kurtosis is not the only property
of the noise distribution that affects the performance gain achieved
with nonlinear spatial filter is confirmed by Figure 2c. It depicts
the normalized kurtosis estimate from 1500 samples which has been
averaged over the frequencies on the y-axis and, again, uses the
phase distance between the noise sources on the x-axis. We observe
rather flat courses and for instance a small kurtosis factor of about 1.2
for the lowest line representing two mixture components (M = 2).
In particular, the performance difference of 0.5 dB segmental SNR
improvement between the first maximum, located at a phase distance
of roughly π

4
, and second maximum at a phase distance between 5π

4

and 3π
2

of the lowest curve in Figure 2b do not go along with an
increased kurtosis.

The same observation can also be made if three scaled compo-
nents are used to model each noise source (M = 6). A larger scaling
factor leads to a higher kurtosis as can be seen in Figure 2c and as
we would expect. For example, we observe a kurtosis factor of 3.2
for the scaling factor b = 12, but still the performance difference of
0.7 dB segmental SNR improvement for the two spatial scenarios
leading to the first and second maximum cannot be predicted from
the kurtosis alone.

5. CONCLUSIONS

For multivariate non-Gaussian noise, the traditional concatenation
of linear beamforming and spectral postfiltering is not generally op-
timal. Instead, the MMSE-optimal estimator generally results in a
non-separable nonlinear joint spatial-spectral filter. In this paper, we
provide further insights into which properties of the multichannel
noise impact the potential performance gain when replacing the tradi-
tional concatenation of linear beamforming and spectral postfiltering
by a joint nonlinear spatial-spectral filter. We show that besides its
heavy-tailedness also the spatial structure of the noise distribution
plays an important role. In our exemplary setup, we obtain perfor-
mance gains of up to 2 dB segmental SNR improvement for spatially
inhomogeneous noise fields with moderate kurtosis.
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A.3 On the Role of Spatial, Spectral, and Temporal Pro-
cessing for DNN-based Non-linear Multi-channel Speech
Enhancement [P4]
Abstract
Employing deep neural networks (DNN) to directly learn filters for multi-channel speech
enhancement has potentially two key advantages over a traditional approach combining
a linear spatial filter with an independent tempo-spectral post-filter: 1) non-linear spatial
filtering allows to overcome potential restrictions originating from a linear processing model and
2) joint processing of spatial and tempo-spectral information allows to exploit interdependencies
between different sources of information.

A variety of DNN-based non-linear filters have been proposed recently, for which good
enhancement performance is reported. However, little is known about the internal mechanisms
which turns network architecture design into a game of chance. Therefore, in this paper, we
perform experiments to better understand the internal processing of spatial, spectral and
temporal information by DNN-based non-linear filters.

On the one hand, our experiments in a difficult speech extraction scenario confirm the
importance of non-linear spatial filtering, which outperforms an oracle linear spatial filter by
0.24 POLQA score. On the other hand, we demonstrate that joint processing results in a
large performance gap of 0.4 POLQA score between network architectures exploiting spectral
versus temporal information besides spatial information.
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Abstract
Employing deep neural networks (DNNs) to directly learn filters
for multi-channel speech enhancement has potentially two key
advantages over a traditional approach combining a linear spatial
filter with an independent tempo-spectral post-filter: 1) non–
linear spatial filtering allows to overcome potential restrictions
originating from a linear processing model and 2) joint processing
of spatial and tempo-spectral information allows to exploit
interdependencies between different sources of information.

A variety of DNN-based non-linear filters have been proposed
recently, for which good enhancement performance is reported.
However, little is known about the internal mechanisms which
turns network architecture design into a game of chance.
Therefore, in this paper, we perform experiments to better
understand the internal processing of spatial, spectral and
temporal information by DNN-based non-linear filters.

On the one hand, our experiments in a difficult speech
extraction scenario confirm the importance of non-linear spatial
filtering, which outperforms an oracle linear spatial filter by 0.24
POLQA score. On the other hand, we demonstrate that joint
processing results in a large performance gap of 0.4 POLQA
score between network architectures exploiting spectral versus
temporal information besides spatial information.
Index Terms: Multi-channel, speech enhancement, joint
non-linear spatial and tempo-spectral filtering

1. Introduction
Speech enhancement algorithms are employed to improve

the speech quality and speech intelligibility of speech signals
recorded in noisy and often reverberant environments. Their use
is indispensable for many applications that are required to work
reliably in unfavorable acoustic scenarios, e.g., automatic speech
recognition or hearing aids. Accordingly, research on this topic
has been ongoing for decades.

Many algorithms operate in the short-term Fourier trans-
form (STFT) domain and traditionally rely on a statistical
model to derive an analytical clean speech estimator, e.g., [1–4].
However, simplifying assumptions must often be made to keep
the problem tractable. For example, neighboring time-frequency-
bins are often assumed to be independent. In contrast, recent
state-of-the-art single-channel speech enhancement algorithms
are built from DNNs [5–7], which do not require an explicit model
but learn complex dependencies directly from data. It is common
knowledge that correlations in the time and the frequency dimen-
sion should be exploited by DNNs for good performance [8, 9].

If the noisy signals are recorded with multiple microphones,
then spatial information is available in addition to tempo-spectral
information. Traditional approaches usually follow the two-step
approach illustrated in Figure 1a, which first applies a linear
spatial filter, a so-called beamformer [10, Sec. 12.4.2], and then

We thank Rohde&Schwarz SwissQual AG for support with POLQA.

(a) Linear spatial
filter (LSF) Post-filter (PF)

(b) Joint spatial and tempo-spectral
non-linear filter (JNF)

(c) Non-linear
spatial filter (NSF) Post-filter (PF)

Figure 1: (a) The traditional two-step processing using a
linear spatial filter (beamformer) followed by a single-channel
post-filter. (b) A joint spatial and tempo-spectral non-linear
processing scheme that we implement using DNNs in this work.
(c) Two-step processing scheme, however, not only the post-filter
performs non-linear filtering but also the spatial filter.

employs a single-channel post-filter to exploit tempo-spectral
information [11, 12]. While such a separated setup is often not
considered a limitation, in our prior work [13,14], we have demon-
strated that just assuming non-Gaussian distributed noise leads to
a minimum mean square error (MMSE) estimator that combines
spatial and spectral processing into a single non-linear operation,
which has superior performance over a linear spatial filter
combined with a post-filter. While experiments with the analytic
estimator show great potential for joint non-linear spatial-spectral
processing, practical applicability is questionable because ac-
curate parameter estimation of higher-order statistics required the
use of oracle knowledge. However, DNNs provide a data-driven
way to implement practical joint spatial and tempo-spectral
non-linear filters (JNF). See Figure 1b for an illustration.

While DNN-based approaches have been dominating the
single-channel speech enhancement research for a couple
of years now, many publications on multi-channel speech
enhancement have proposed to combine DNNs with traditional
methods, e.g., [15, 16]. However, the potentially greatest
advantage of using DNNs, allowing for non-linear instead
of linear spatial processing and taking the interdependencies
between spatial and tempo-spectral processing into account,
cannot be exploited this way. This is different for the variety
of data-driven multi-channel filters that have been proposed
recently [17–20]. These approaches report good performance
for speech enhancement tasks, but their internal mechanisms are
not well understood. However, this is essential for a deliberate
design of a network architecture that fully unlocks the potential
of neural networks for multi-channel speech enhancement.

In this work, we investigate this internal functioning of DNN-
based non-linear filters for multi-channel speech enhancement.
We aim to answer the following research questions: Is non-linear
as opposed to linear spatial filtering the main factor for good
performance? Or is it rather the interdependency between spatial
and tempo-spectral processing? In the first case, we could
independently perform the non-linear spatial and tempo-spectral
processing as shown in Figure 1c, which would be advantageous
for practical applications as this allows for independent optimiza-
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Figure 2: Illustration of the base system architecture. The input data is arranged according to a wide-band or narrow-band input and
fed into a network with two LSTM layers, an FF layer and tanh activation to obtain an estimate of a cIRM.

tion of either part. Or, on the contrary, is the consideration of in-
terdependencies between spatial and tempo-spectral information
particularly important? And do temporal and spectral information
have the same impact on spatial filtering performance?

We experimentally address these research questions using a set
of DNN-based filter variants derived from a simple base network
architecture (outlined in Section 2.1), which are then applied to
a challenging speech extraction scenario (described in Section
2.2) that provides a good sense of the spatial filtering capabilities
of the employed networks. We provide results for experiments
on the separability of spatial and tempo-spectral processing in
Section 3 and on the contribution of different information sources
in Section 4.

2. DNN-based non-linear filtering for
multi-channel speech enhancement

We consider a target clean time-domain signal s(t), which is
recorded by a microphone array with C microphone channels
in a noisy reverberant room. The recording of s(t) by the ℓ’s
microphone x(ℓ)(t) will then not only undergo a time-shift due to
the propagation delay from the target source position to the micro-
phones but also include reverberation [12]. Transforming to the
STFT domain leads to the complex-valued coefficient X(ℓ)(k,i)
with frequency-bin index k and time-frame index i. We use a
bold symbol to denote a vector stacking all microphone signals,
e.g., X(k,i)=[X(0)(k,i),...,X(C−1)(k,i)]∈CM , and drop the
indices (k, i) to denote the (multi-channel) spectrogram, e.g.,
X∈CC×F×T with F and T denoting the number of frequency-
bins and time-frames respectively. We assume that speech X and
noise signal V sum at the microphones to obtain the noisy signal

Y(k,i)=X(k,i)+V(k,i). (1)
In our experiments, we use multiple interfering speech sources
as noise signal. Similar to the target speech signal, also the
interfering signals recorded at the microphones will incorporate
spatial information related to the positioning of sources and
the characteristics of the room. Given the noisy recording
Y∈CC×F×T , we aim to recover the clean target speech signal
S∈CF×T except for a time-shift caused by the propagation delay
to the reference microphone, for which we pick the first channel.

2.1. Network architectures
The focus of this work is to investigate DNN-based non-linear spa-
tial filters for multi-channel speech enhancement in order to better
understand the contribution of individual sources of information
(spatial, spectral, and temporal) as well as their interdependencies.

For this, we develop a number of DNN-based multi-channel
filters derived from an long short-term memory (LSTM) network
architecture, which has been proposed by Li and Horaud [17].

2.1.1. Base LSTM architecture (F-JNF, T-JNF)
The base architecture is depicted in Figure 2. The multi-channel
input (top left) is fed into a neural network (bottom) to obtain
a compressed estimate (C = K = 1 as defined in [21]) of the
target speech complex ideal ratio mask (cIRM) MS(k,i) ∈ C
(top right). The target speech signal estimate Ŝ(k, i) ∈ C for
every time-frequency-bin (k,i) is then obtained by multiplication
of the uncompressed estimated speech mask with the reference
channel’s noisy recording Y (0)(k,i), i.e.,

Ŝ(k,i)=MS(k,i) Y
(0)(k,i). (2)

The network architecture is deliberately kept simple with only
two bi-LSTM layers followed by a feed forward layer and a
tanh activation. As standard LSTM layers can only process
two-dimensional data (a sequence of features), slices of the
three-dimensional input are processed independently with the
real and imaginary parts being stacked in the channel (feature)
dimension. In their work, Li and Horaud [17] propose to
independently process the time-sequence of STFT coefficients
Y(k,·)∈CC×T for all frequency-bins k=0,...,F−1. In Figure
2, this is illustrated as narrow-band input data arrangement and
throughout this work we will refer to this as the temporal infor-
mation based joint non-linear filter (T-JNF). This filter can utilize
the fine-grained spatial information in the channel dimension and
temporal information along the time axis, however, it does not
have access to fine-grained spectral information. In this work,
we propose a superior wideband processing scheme (F-JNF)
that processes every time-step independently but combines
fine-grained spatial and spectral information for mask estimation.

2.1.2. Combining temporal and spectral information (FT-JNF)
While the base architecture combines spatial information with
either spectral or temporal information, we now combine all
three sources of information within the same general network
architecture (leaving the number of parameters unchanged). For
this, we propose to simply switch the the data arrangement from
wide-band to narrow-band between the two LSTM layers at
the position marked with ➁. This way, information in all three
dimensions can be exploited and the filter is denoted as FT-JNF.

2.1.3. Non-linear spatial filtering (T-NSF, F-NSF, FT-NSF)
To investigate the non-linear spatial filtering capabilities of the
DNN-based filter, we adapt the base network architecture to
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target source

ϕ

Room characteristics

Width 2.5−5 m
Length 3−9 m
Height 2.2−3.5 m
T60 0.2−0.5 s

Figure 3: Illustration of the simulation setup. The target source
is located in a fixed orientation with respect to microphone array.
The five interfering sources are placed in the gray area (one per
segment). Room properties are sampled from the given ranges.

exclude the second source of fine-grained temporal or spectral
information. This is done by randomly shuffling every input along
the sequence dimension before feeding the input to the first LSTM
at the position marked with ➀. This way, only global statistics
along the sequence dimension are accessible but correlations
between neighboring sequence elements cannot be exploited.
However, in a wide-band setup (F-NSF), we noticed that the
networks have problems of exploiting spatial information if the
frequency bin index is unknown to the network. The frequency-
bin index is likely a very important source of information for
spatial processing as spatial characteristics strongly depend on
the frequency. For this reason, we append the frequency-bin
index to the channel dimension such that this information is still
available after shuffling along the sequence dimension. For better
comparability, we also add the frequency-bin index to the narrow-
band setup (T-NSF), however, this has only a small impact on
the performance. The permutation of the sequence is then undone
after the two LSTM layers (➂). As in Section 2.1.2, we define
FT-NSF, which switches from narrow-band to wide-band data
arrangement at position ➁, however, requiring both LSTM layers
to be wrapped in permutation and inverse permutation steps.

2.1.4. DNN-based post-filtering (PF)
Last, we train a single-channel post-filtering scheme based on the
LSTM network architecture denoted by PF. In the single-channel
setup, the input has only two dimensions (time and frequency).
Here we stack the real and imaginary parts in the frequency
dimension, which will serve as feature dimension, while the time
dimension corresponds to the sequence dimension.

2.2. Data simulation
For our analyses, we generate a simulated dataset with six spatially
displaced speech sources of which one target source is to be
extracted. As the target and interfering signal (five speakers) have
similar tempo-spectral characteristics, the target speaker has to be
identified by its spatial location. Accordingly, we place the target
source in a fixed angle with respect to the microphone orientation.

An illustration of the setup simulated with pyroomacous-
tics [22] is depicted in Figure 3. For each sample, the room
dimensions and reverberation time are uniformly sampled from
the ranges listed on the right. The uniform circular microphone
array has three channels and a diameter of 10 cm. Its position
in the xy-plane is sampled to have a minimum distance of 1 m to
the walls and placed at height 1.5 m. Furthermore, we randomly
rotate the microphone array. The rotation φ∈ [0,2π) is indicated
by the dashed blue line in Figure 3. The target source is placed on
the blue line with a minimum distance of 0.3m and up to 1m away
from the microphone array. Five interfering sources are placed in
the gray area leaving a 1 m distance to the microphone array and
20° to the position of the target source with one interfering speech

source per segment as indicated by the dotted gray lines. The
height of the interfering speech sources is sampled from a normal
distribution with mean 1.6 m and standard deviation 0.08.

We generate 6000, 1000, and 600 samples with a sampling fre-
quency of 16 kHz for training, validation and testing respectively
using clean speech signals from the WSJ0 dataset [23]. Signals
between the different sets do not overlap. The signal-to-noise
ratio (SNR) is not explicitly controlled but obtained from the
the simulation setup with varying distances of the sources to the
microphone array. The average SNR is −4 dB and 95% of the
data samples distribute between −9 dB and 2 dB.

2.3. Training details
For training the multi-channel networks (all except PF), we have
access to the noisy observations y(t), the noise signals v(t)
and the dry signal s(t), which has been aligned with the noisy
observation to include the propagation path delay. We randomly
extract three seconds of audio from the utterances in each training
iteration and compute the STFT using a window length of 32
ms and 50% overlap with a

√
Hann window for analysis and

synthesis. Using the relationship between the real part Re(·) and
the imaginary part Im(·) of the speech and noise mask

Re(MV)=1−Re(MS), Im(MV)=−Im(MS), (3)
we obtain an estimate of the noise mask MV. From this, an
estimate of the noise signal V̂ is computed by applying the noise
mask in an analog way as the speech mask (see (2)). We use
the loss function proposed by Tolooshams et al. [19], which is
composed of time and frequency domain ℓ1 loss terms:

L(u,û)=
∑

u∈{s,v}
α∥u−û∥1+

∥∥∥|U |−|Û |
∥∥∥
1
. (4)

We set α= 10 to equalize the contribution of either domain in
the loss term. If the ground truth for the noise signal is unknown,
we only use the clean speech related parts of the loss function.

We train the networks with batch size six until convergence
(max. 250 epochs) and select the best model based on the valida-
tion loss. The number of LSTM units is set to 256 and 128 for all
networks, except PF, for which 256 units are used in both layers.

3. Separability of spatial processing and
post-filtering

Using the DNN-based filters outlined in the previous section, we
investigate if multi-channel non-linear filtering can be separated
into spatial processing and single-channel post-filtering. For this,
we compare the performance of the three approaches illustrated
in Figure 1. The mean POLQA improvement scores [24] along
with the 95% confidence interval are presented in Figure 4. The
POLQA algorithm provides a measure of speech quality on a
mean opinion score (MOS) scale ranging from 1 (low quality) to
5 (high quality). The blue bars in Figure 4 correspond to spatial-
only filters. We compute the traditional linear minimum variance
distortionless response (MVDR) [10] based on oracle parameter
estimates. A time-varying noise covariance estimate is obtained
via recursive averaging of the oracle data and the acoustic transfer
function (ATF) is estimated by multiplying the principal eigen-
vector of the generalized eigenvalue problem for speech and noise
covariance matrices with the speech covariance matrix [25]. As
the parameters are very accurately estimated from oracle data, the
displayed results achieved by the MVDR should be considered as
an upper bound for the performance that is achievable with the lin-
ear processing model. Nevertheless, the oracle MVDR is outper-
formed by the DNN-based non-linear spatial filter (FT-NSF) eval-
uated on unseen test data by 0.24 POLQA score. The differences
between the two estimates are clearly visible in the middle row of
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Figure 5: Spectrogram visualization of an example utterance.

Figure 5. While the MVDR obeys a distortionless constraint at the
cost of only little noise suppression, the non-linear spatial filter
provides high noise suppression at the cost of speech distortions.

Next, we combine each spatial filter with a DNN-based
post-filter that is trained independently. For this, we obtain
enhancement results from the MVDR and the NSF and use this
as noisy input to the single-channel network described in Section
2.1.4. The results are depicted by the red bars in Figure 4. We
observe that independent post-filtering is far more effective
when combined with a distortionless linear spatial filter than a
non-linear spatial filter. Applying a tempo-spectral post-filter to
the output of the MVDR nearly doubles the performance, which is
clearly visible when comparing the two bottom left spectrograms
in Figure 5. In contrast, applying an independent post-filter to
the output of the DNN-based non-linear spatial filter only slightly
improves the performance by about 11%. This is because speech
information that was lost during spatial processing cannot be
recovered by multiplication with the post-filter mask.

The overall best performance is obtained by the DNN-based
joint non-linear filter that does not separate the spatial and tempo-
spectral processing. This filter is represented by the green bar in
Figure 4 and it outperforms the oracle MVDR with DNN-based
post-filter by 0.25 POLQA score. When comparing the spectro-
gram of the JNF (bottom right) with the MVDR plus post-filter
(bottom left), we see that the high frequency clean speech com-

Table 1: Impact of different sources of information included
in the processing. We report mean improvements and the 95%
confidence interval.

∆ POLQA ∆ SI-SDR [dB]

PF −0.01± 0.01 −3.34± 0.15

F-NSF 0.78± 0.03 7.45± 0.11
T-NSF 0.46± 0.03 5.64± 0.13
FT-NSF 0.87± 0.03 7.70± 0.12

F-JNF 1.15± 0.04 8.99± 0.12
T-JNF [17] 0.74± 0.03 7.45± 0.13
FT-JNF (proposed) 1.43± 0.04 9.94± 0.13

ponents are preserved better. Please find audio examples on our
website1. As the joint non-linear filter clearly improves over the
non-linear spatial filter plus independent post-filer, we conclude
that the spectral and temporal information is used to enhance the
non-linear spatial processing itself. Consequently, spatial pro-
cessing should not be separated from tempo-spectral processing.

4. Contribution of information sources
Next, we further investigate the contribution of different sources
of information. As the dataset is very challenging with low
SNR and many interfering speech sources having similar
tempo-spectral structure as the target signal, spatial processing
is critical for good performance. The same post-filter trained
directly on the noisy input as opposed to the output of a spatial
filter performs poorly as reported in the first row of Table 1.
In contrast, all filters involving spatial processing provide a
substantial improvement score.

In Table 1, we compare the performance of a non-linear spatial
filter with access to global spectral, temporal or tempo-spectral
information. As expected, incorporating both, the temporal and
spectral information, results in higher improvement scores than
complementing spatial information only with one other source
of information. However, the more surprising observation is
that spectral information seems to be much more valuable than
temporal information as suggested by the 0.32 POLQA score
and 1.8 dB SI-SDR [26] difference in performance improvement.

This finding does not only hold for the global information
accessible to the non-linear spatial filter, but also for fine-grained
information provided to the joint non-linear filter. The per-
formance differences here amount to 0.41 POLQA score and
1.54 dB SI-SDR. This means that our proposed slight changes to
the architecture T-JNF suggested by Li and Horaud [17], which
has originally been proposed for the CHiME3 dataset, lead to
drastic performance improvements of up to 0.69 POLQA score
for FT-JNF on our speech extraction dataset, which requires
much stronger spatial filtering capabilities for good performance.

5. Conclusions
In this paper, we have shown that non-linear spatial processing
with DNNs is a key to high multi-channel speech enhancement
performance. However, the potential of non-linear spatial
filtering can only be fully unlocked if spatial processing is tightly
integrated with tempo-spectral filtering which contradicts the
traditional two-step approach of beamforming followed by
post-filtering. We have furthermore shown that, in a difficult
speech extraction scenario, which requires strong spatial filtering
performance, spectral information is more valuable than temporal
information with a difference that amounts to 0.4 POLQA score.

1https://uhh.de/inf-sp-dnn-mc-filter
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For this we propose a simple and effective conditioning mechanism, which sets the initial state
of the filter’s recurrent layers based on the target direction. We show that this scheme is more
effective than the baseline approach and increases the flexibility of the filter at no performance
cost. The resulting spatially selective non-linear filters can also be used for speech separation
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ABSTRACT
In a scenario with multiple persons talking simultaneously, the spatial
characteristics of the signals are the most distinct feature for extracting
the target signal. In this work, we develop a deep joint spatial-spectral
non-linear filter that can be steered to an arbitrary target direction. For
this we propose a simple and effective conditioning mechanism, which
sets the initial state of the filter’s recurrent layers based on the target di-
rection. We show that this scheme is more effective than the baseline ap-
proach and increases the flexibility of the filter at no performance cost.
The resulting spatially selective non-linear filters can also be used for
speech separation of an arbitrary number of speakers and enable very
accurate multi-speaker localization as we demonstrate in this paper.

Index Terms— Multi-channel, speaker extraction, spatially selec-
tive non-linear filters, spatial steering

1. INTRODUCTION

In our everyday life, we are often confronted with the task of listening
to a target speaker in a challenging acoustic environment containing
noise, interfering human speakers, and reverberation. It is widely
known that humans are able to utilize spatial information perceived
with both ears to draw attention towards a particular direction of inter-
est. Similarly, spatial information can be used in addition to tempo-
spectral information for target speaker extraction in many applications
since devices like hearing aids, video-conferencing systems or voice-
controlled assistants are nowadays commonly equipped with multiple
microphones.

Research into spatial filtering has a long-standing history, which
has led to the traditional beamformers, e.g., the delay-and-sum [1] or
minimum variance distortionless response (MVDR) beamformer [1,2].
While deep neural networks (DNNs) are considered the state-of-the-art
in single-channel speech enhancement and separation, their integration
into multi-channel techniques is a very active field of research. Here,
one of the most influential ideas of the last years was to use neural
networks for beamformer parameter estimation [3, 4]. Despite ease
of use and demonstrated robustness of this method, the main drawback
of using DNNs only for parameter estimation is that the limitations of
the linear beamforming model cannot be overcome, nor can we benefit
from joint processing of spatial and tempo-spectral information.

In contrast, an increasing number of recent works, trains a DNN-
based filter to perform multi-channel speech enhancement, speaker
extraction or separation directly with promising results [5–10]. The
theoretic foundation for the potential performance improvements
of DNN-based multichannel filters over traditional or DNN-driven
beamforming and postfiltering is layed out in our prior work [11]. By
means of statistical derivations and proof-of-concept experiments we

This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — project number 508337379. We thank
Rohde&Schwarz SwissQual AG for their support with POLQA.

have shown that (1) a linear beamformer will deliver optimal perfor-
mance only in rare cases, namely under a multi-variate Gaussian noise
assumption, and (2) that non-linear joint spatial-spectral filters may
drastically outperform the beamforming plus postfiltering schemes in
other cases. DNNs are a natural choice to implement such non-linear
joint spatial-spectral filters for practical applications.

Consequently, we [12, 13], and also others [10], have shown that
such a DNN-based joint spatial and tempo-spectral non-linear filter
drastically outperforms an oracle MVDR beamformer followed by a
single-channel post-filter. For this, we evaluated on a speaker extrac-
tion task with five interfering speakers. Part of the speaker extraction
task is to identify the target speaker. In the literature, different cues
have been investigates for this, e.g., enrollment utterances [14, 15] and
video information [16, 17].

In this work, however, we focus on the spatial location of the target
speaker as cue. Many previous works have explored using spatial
features to aid speech separation or speaker extraction [18–22]. For ex-
ample, Gu et al. [18, 19] and Chen et al. [20] have introduced so-called
directional features into their speech separation and extraction systems,
which indicate time-frequency bins that are dominated by signal com-
ponents arriving from a particular direction and are used as additional
inputs besides tempo-spectral features. Marković et al. [10] follow
a different approach and define spatial regions, e.g., left and right,
and train a non-linear filter that suppresses signals from the undesired
region but not from the desired region. Tan et al. [7] train a non-linear
spatial filter that implicitly steers towards the speech source in enhance-
ment tasks and learns to resolve the speaker-permutation problem by
implicitly sorting the speaker outputs according to their location.

In contrast, in this work, we aim for a non-linear joint filter
that can be flexibly steered in a direction of choice. This is a ma-
jor improvement in comparison with our previous well-performing
filter [12, 13], which is restricted to a fixed look-direction and thus
requires re-training for other directions. For this, we propose a simple
conditioning mechanism based on an angular grid with 2◦ resolution.
In comparison with the implicit conditioning mechanism proposed
in [23], which manipulates the input signal, our proposed conditioning
scheme is more explicit and does not make a far-field assumption.

The rest of this paper is structured as follows: We formally define
the speech extraction problem in Section 2 and explain the non-linear
filter and its conditioning on a target direction in Section 3. Section
4 describes the experimental setup including datasets and in Section 5,
we present results on the effectiveness of the conditioning mechanism
and the spatial selectivity of the resulting filter.

2. PROBLEM DEFINITION

This work targets the so-called cocktail-party problem: extracting the
speech signal uttered by a target speaker from interfering speech. We
assume that the corrupted signal is captured by a microphone array
with C channels and denote with xℓ(t) the recording of the target
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speech signal s(t) obtained by the ℓ’s microphone. The time-domain
signal xℓ(t) is not only a time-shifted version of s(t) caused by the
propagation delay between the speaker and the microphone but also
includes reverberation resulting from reflections of the signal from the
surrounding walls.

We apply the short-term Fourier transform (STFT) to obtain a
frequency-domain representation Xℓ(k,i)∈C with frequency-bin in-
dex k and time-frame index i. The spectral coefficients for all channels
are stacked into a vector X(k,i) = [X0(k,i),...,XC−1(k,i)] ∈ CC .
We employ the same signal model to model interfering speech signals
and denote the STFT representation of the sum of all interfering
signals asV(k,i). By the additive signal model, the noisy target signal,
Y(k,i), corrupted by interfering speakers, is then given by the sum
of the target signal and interfering signal, i.e.,

Y(k,i)=X(k,i)+V(k,i). (1)

Given the noisy recording Y(k,i) we aim to recover the clean
target speech signal S(k, i) except for a time-shift caused by the
propagation delay to the chosen reference microphone, for which we
pick the first channel.

3. SPATIALLY SELECTIVE NON-LINEAR FILTER

In our previous work [12, 13], we have shown that a DNN-based non-
linear filter that jointly performs spatial and tempo-spectral filtering,
can implicitly be steered into a specific direction, when trained on
a fixed geometric setting. Here, we extend the joint non-linear filter
from [12,13], displayed on the left side of Figure 1, with a conditioning
mechanism, shown on the right side of Figure 1, that allows the filter
to be flexibly steered in a desired direction.

3.1. Joint spatial and tempo-spectral non-linear filter

As indicated by the top left yellow box, the filter takes the frequency-
domain raw multi-channel observations as input. Including the batch
dimension denoted by B, the input is four-dimensional with T being
the number of time-steps, and F the number of the frequency-bins.
The real and imaginary parts for allC microphone channels are stacked
resulting in the last dimension being 2C. The filter is composed of
only three layers represented by dark green boxes and outputs an
estimate of a compressed complex ideal ratio mask (cIRM). We use
compression parameters K = C = 1 as defined in [24] that comply
with the range of the tanh activation function used in the last layer.
The estimate of the target speech signal Ŝ(k,i) is then obtained by
multiplying the uncompressed mask M(k,i)∈C with the reference
channel’s noisy recording Y0(k,i), i.e.,

Ŝ(k,i)=M(k,i)·Y0(k,i). (2)

The network design is inspired by the work of Li and Horaud [25],
who proposed a narrow-band multi-channel speech enhancement
scheme. Their core idea is to use a simple network structure (two
bi-directional long short-term memory (LSTM) layers and one linear
layer) and process all frequency-bins independently while sharing the
network parameters between all frequencies. This processing scheme
puts a focus on spatial and temporal information and neglects the in-
formation present in the frequency dimension. However, our previous
work [12, 13] has shown that spectral information, including the corre-
lations between neighboring frequency-bins, should be included in the
processing to obtain a filter with high spatial selectivity. Therefore, we
rearrange the data such that the first LSTM layer (F-LSTM) focuses on
spatial and spectral information and the second LSTM layer (T-LSTM)

Input [B,T,F,2C]

[B ·T,F,2C]

F-LSTM (256)

[B ·F,T,512]

T-LSTM (128)

[B,F,T,256]

Linear + Tanh

Mask [B,T,F,2]

DoA Input [B,180]

Linear

[B,256]

Linear

[B,128]

reshape

reshape

reshape

reshape

initial
state

initial
state

Fig. 1. Illustration of the network architecture. The left part shows
the mask estimation network that performs joint spatial and tempo-
spectral filtering and the right part shows the conditioning mechanism
that enables the filter to be steered towards a chosen direction.

focuses on spatial and temporal information. The data arrangement
is shown in the light green boxes in Figure 1. Before feeding the
data into the first LSTM layer, the time-dimension is pulled into
the batch dimension, which means that all time-steps are processed
independently by the first layer, while the second layer processes all
frequency bins independently. This simple change enables capturing
spectral correlations and gives rise to state-of-the-art multi-channel
speaker extraction and enhancement performance as shown in [13].

3.2. Directional conditioning

The right part of Figure 1 shows the proposed conditioning mechanism,
which enables flexible steering of the filter, which was not possible
before. The input is a one hot encoding of the target steering direction.
The yellow box shows the dimension for a two degree angle resolution,
which results in 180 possible steering directions. Two linear layers are
used to map the one-hot encoded input to a dimension that matches in
the number of LSTM units, which we set to 256 for the first and 128 for
the second layer. The encoded inputs are then used as initial state for
the forward and reverse direction of the bi-directional LSTM layers.

This conditioning mechanism, also used by Vinyals et al. [26] for
image caption generation, introduces only little overhead as no explicit
fusion of input and condition is required. Furthermore, in contrast
to [23], which is the only other conditioning scheme for steering a
DNN-based filter that we are aware of, it does not make a far-field
assumption and can thus easily be trained also for larger microphone
distances and/or close speakers.

4. EXPERIMENTAL SETUP

4.1. Datasets

We generate a simulated dataset using pyroomacoustics [27],
which implements the source-image model [28]. For each sample,
we randomly select width, length, height and reverberation time from
the value ranges given in Figure 2. The left side of Figure 2 shows an
illustration of the geometric setup of our speaker extraction task. We
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Fig. 2. Illustration of the simulation setup. The target source is located
on the dashed blue line at a random angleφt relative to the microphone
orientation in the room described by φm. Five interfering sources
are placed in the gray area (one per segment). Room properties are
uniformly sampled from the given ranges.

use a circular microphone array, which has three omni-directional mi-
crophones and a 10 cm diameter. The microphone array is placed at a
random location for each example, but with at least one meter distance
to the walls and at a fixed height of 1.5 m above the floor. For each
sample, the microphone array is randomly rotated by φm∈ [0◦,360◦]
as indicated by the dashed gray lines.

4.1.1. Fixed target speaker location

The unconditioned joint non-linear filter in [12, 13] learns to steer
towards a specific direction based on a fixed target location in the
dataset. That is, the target speaker is located in the same direction
relative to the microphone orientation (position and rotation) in all
samples. In Figure 2, for example, the target speaker is located at aφt=
30◦ angle as indicated by the dashed blue lines. The distance between
the microphone array and the target speaker ranges from 30 cm to 1 m.
The height of the speakers are sampled from a normal distribution with
mean 1.6 m and standard deviation 0.08 m. Five interfering sources
are placed in the gray area, each of them at least 1 m away from the
microphone array and one per segment as illustrated by the dotted gray
lines. As indicated by the white area, we leave a side-room of 15◦ on
either side of the target speaker free of interfering sources.

For training the joint non-linear filter, we generate 6000 training
examples at 16 kHz sampling frequency with the target speaker located
at the chosen direction φt. The clean speech utterances are selected
from the WSJ0 dataset respecting its train, test and validation split. The
SNR (target speech vs mixture of interfering speakers) of the generated
samples distributes in the range from −14 dB to 0 dB. For validation
and testing, we generate 1000 and 600 utterances respectively.

4.1.2. Variable target speaker location

To train a joint non-linear filter that can flexibly steer towards a selected
direction, we create a dataset with a variable target speaker location.
For this, we discretize the target speaker location φt ∈ [0◦,360◦]
using a 2◦ resolution, which results in 180 target speaker locations
in the training dataset. We generate a dataset with 300 utterances per
direction, which results in a total of 54000 training examples. The
validation set has 15 examples per direction.

4.1.3. Multiple target speakers (speech separation)

In addition to the speaker extraction task, we also evaluate on a speech
separation task with multiple target speakers to investigate the spatial
selectivity of the filter. The speakers are placed at a distance of 0.8 to
1.2 m away from the microphone array. For speaker angle sampling,

0◦ 15◦ 30◦ 60◦ 90◦ 120◦

JNF (fixed) 1.38 1.36 1.34 1.37 1.38 1.39
EaBNet [8] (fixed) 1.16 1.15 1.19 1.20 1.18 1.19

JNF (proposed) 1.38 1.36 1.35 1.36 1.37 1.39
JNF (CoS [23]) 1.26 1.27 1.25 1.20 1.26 1.25

Table 1. ∆POLQA scores for a fixed training scheme (re-training filter
for each angle (φt) with 6000 examples per direction) in the upper
part and the filter conditioned on the given direction in the bottom part.
Thus, all results in the bottom rows are obtained with the same non-
linear filter, which has been trained with 300 examples per direction.

we split the circle in as many segments as there are speakers and
uniformly place each speaker in one of the segments. Consequently,
the speaker angles are likely to not lie on the 2◦ grid used in training. A
minimum angluar distance of 10◦ is enforced for sources in neighbor-
ing segments. We use 1800 utterances with two, three and five mixed
speakers for evaluation.

4.2. Training details

The joint non-linear filters are trained based on an ℓ1 loss [5], i.e.,

L(s,ŝ)=α∥s−ŝ∥1+
∥∥∥|S|−|Ŝ|

∥∥∥
1
, (3)

with α set to 10 to approximately equalize the contribution of time and
frequency-domain loss terms. We train using the Adam [29] optimizer
with an initial learning rate of 0.001 and reducing the learning rate by
a factor of γ=0.75 every 50 epochs. We train with a maximum of 300
epochs using a batch size of eight and select the best network based on
the validation loss. For computing the STFT, we use 32 ms windows
with 50% overlap and a

√
Hann window for synthesis and analysis.

5. RESULTS: SPEAKER EXTRACTION

5.1. Fixed geometry vs conditional training

Our first experiment compares the speech extraction performance of a
filter trained for a fixed speaker location and a filter that has been trained
for variable target speaker locations using the proposed directional
conditioning method (Section 3.2). The first row of Table 1 shows the
perceptual objective listening quality analysis (POLQA) [30] mean
opinion score (MOS) improvement for six joint non-linear filters,
each trained on its own dataset with the target speaker placed at the
same respective angle in all 6000 training samples. The improvement
performance is very similar for each tested angle, which means that
the filters can learn to steer in every direction equally well. As can
be seen by the comparison with the Embedding-and-Beamforming
Network (EaBNet) in the second row, the learned filters deliver very
good state-of-the-art performance. A detailed comparison of more
architectures for the 0◦ fixed case can be found in [13].

In contrast, all results displayed in the third row of Table 1 have
been obtained with the same non-linear filter trained on the dataset with
variable speaker locations, and conditioned on the respective target
angle using the approach proposed in Section 3.2 to obtain the result.
As before, we do not observe any major deviations for the different
angles and, more importantly, we also do not see a performance degra-
dation in comparison with the non-linear filters in the first row that
have been explicitly trained to focus on a fixed spatial location. This is
quite remarkable considering that it is a network with only three layers,
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Fig. 3. Examples for blind speaker separation and localization for a mixture of two, three and five speakers using non-linear filters steered in all
candidate directions. The vertical dashed gray lines indicate the true positions of the speakers and the green cross marks the estimates speaker
location based on the energy peaks in the results.

which is now capable of learning not only one spatial filter but 180
with much fewer (300 instead of 6000) training examples per direction.
We also compare with the conditioning mechanism proposed in the
cone-of-silence (CoS) paper [23]. For a fair comparison, we use the
same network for the non-linear filter and only replace the conditioning
mechanism [23] as follows: using knowledge of the array geometry,
the channels of the input signal are shifted such that the signals arriv-
ing from a given target direction should align according to a far-field
assumption. To allow for fractional time-shifts, we perform the align-
ment in the frequency domain. The idea is that the network learns to
extract the speaker signal, which is phase-aligned in the input. Given
the results in Table 1, we find that this seems to be a valid cue for ex-
tracting the right target, but that it performs approximately 0.1 POLQA
score worse than our proposed direct conditioning. We assume that
this is mainly related to the limiting far-field assumption in [23].

5.2. Spatial selectivity of the steered filter

Next, we examine the spatial sectivity of the steered filter. Figure 3
shows examples for mixtures of two, three or five speakers. We evaluate
the filter on the noisy mixture, generated as described in Section 4.1.3,
conditioned on a set of candidate locations using a 4◦ resolution. For
each candidate location, we obtain an estimate of the signal arriving
from that particular direction. The plots in the top row show the average
segmental energy for this resulting signal ŝ. We compute the average
energy for non-overlapping segments of 10ms length, in which speech
is active, defined analogous to the segmental SNR in [31].

The vertical dashed gray lines indicate the true locations of the
speakers in the mixture. In particular for mixtures of two and three
speakers, we observe distinct peaks of the energy at the target speaker
locations. The small width of the peaks shows high spatial selectivity
of the learned filter and proves that it can be steered very accurately
towards a specific location. For a mixture of five speakers, we can still
see peaks that correspond to the speaker locations, but with a greater
width. Likely this is due to the much increased difficulty by a larger
overlap of the signals in the time-frequency plane and more reflections
arriving from all directions. Still, the POLQA results in the bottom row
of Figure 3 show that even five speakers can be separated quite well by
the spatially selective filters, which is remarkable given the difficulty
of the problem. Audio examples can be found on our website 1.

The green crosses in the top row mark the estimated speaker lo-
cations that have been found using scipy.signal.find peaks.
We normalize the highest peak to 1 and initially use a prominence of

1https://uhh.de/inf-sp-spatially-selective

# speakers
mean angular error [◦]

proposed CoS [23] SRP-PHAT [32]

2 2.17±0.13 3.72±0.46 17.74±1.04
3 2.47±0.16 3.72±0.36 20.47±0.79
5 3.50±0.21 5.85±0.35 25.62±0.59

Table 2. The speaker localization accuracy for mixtures of two, three
and five speakers in a reverberant room. We report the mean angular
error and the 95% confidence interval.

0.009 and a height of 0.05, which are decreased until enough peaks
have been identified. We then merge close-by peaks less then 12◦ apart
and with similar height, which are likely to correspond to the same
speaker. If more peaks than speakers are detected, we select the highest
peaks. Comparing the distance of the green crosses to the dashed gray
line with respect to the x-dimension, shows that the location of the
target speakers can be estimated from the steered filter’s results quite
accurately. In Table 2, we compare the estimated speaker locations
using a 4◦ resolution with the true speaker locations on 1800 mixtures.
For two speakers, the average error is only 2.2◦ including an average
quantization error of 1◦ (as the speaker locations are not limited to
the 4◦ test grid). The error increases for more speakers mainly due
to a higher number of errors in the peak-finding heuristic and is still
fairly accurate considering the difficulty of the task using only three
microphones in a reverberant room. This difficulty is also visible
from the fact that the classic SRP-PHAT algorithm [32] is not able to
solve the problem in most cases even for only two speakers. As for the
extraction task in Table 1, we observe that our proposed conditioning
scheme outperforms the baseline CoS approach in all configurations.

6. CONCLUSION

In this paper, we have presented a simple but very effective condi-
tioning mechanism to train a non-linear filter that can be steered in
any direction of choice. The conditioning is performed by modifying
the initial state of the LSTM layers in the non-linear filter and, thus,
introduces only minimal overhead, while achieving the same state-
of-the-art performance as a filter with fixed look-direction and also
outperforming the baseline cone-of-silence approach. We show that
the resulting spatially selective filters can be used for speech separation
with an arbitrary number of speakers and can also be employed for
accurate multi-speaker localization.
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Derivations of the Statistical
Estimators B

The time-frequency bin indices have been dropped for improved readability. Random vari-
ables are denoted with a capital letter, and lower-case letters are used for their respective
realizations.

B.1 MMSE Estimator Under Gaussian Mixture Noise
Assumption
Result B.1 (MMSE Estimator Under Gaussian Mixture Noise Assumption) Let M
denote the confluent hypergeometric function. Assume the noise discrete Fourier transform
(DFT) coefficients to follow a multivariate complex Gaussian mixture distribution with M zero-
mean components. The mixing coefficients are denoted by ci, i = 1, ...,M and the components’
covariance matrices are denoted by Φm, i = 1, ...,M . Further, assume the amplitude of the
clean speech coefficient S = A · ejΨ to be generalized-Gamma distributed with γ = 2 and
β = ν/σ2

s , where σ2
s denotes the PSD of the speech signal. For phase Ψ ∈ [0, 2π) a uniform

distribution is assumed and also that A and Ψ are independent. The vector d denotes the
steering vector and C denotes the number of microphones. Then the MMSE estimator is given
by

T̃MMSE(y) = ν

M∑
m=1

cmQm
|Φm|

exp{−yHΦ−1
m y}σ

2
sT

(m)
MVDR(y)M(ν + 1, 2, Pm)
ν(dHΦ−1

m d)−1 + σ2
s

M∑
m=1

cmQm
|Φm|

exp{−yHΦ−1
m y}M(ν, 1, Pm)

(B.1)

with

T
(m)
MVDR(y) = dHΦ−1

m y

dHΦ−1
m d

, (B.2)

Qm = (ν + dHΦ−1
m dσ2

s)−ν , (B.3)

and

Pm =
σ2
sd

HΦ−1
m d

∣∣∣T (m)
MVDR(y)

∣∣∣2
ν(dHΦ−1

m d)−1 + σ2
s

. (B.4)

Proof. We compute the MMSE estimator using the fact that it equals the mean of the posterior
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distribution p(S|y). For better clarity, the integrals that are to be solved next are given names
as can be seen in the following equation:

E[S|y] =
∫
C
s · p(s|y)ds

=
∫ ∞

0

∫ 2π

0
a · ejψp(a, ψ|y)dψda

=
∫∞

0
∫ 2π

0 a · ejψp(y|a, ψ)p(a, ψ)dψda
p(y)

=
∫∞

0
∫ 2π

0 a · ejψp(y|a, ψ)p(a, ψ)dψda∫∞
0
∫ 2π

0 p(y|a, ψ)p(a, ψ)dψda

=
∫∞

0
∫ 2π

0 a · ejψp(y|a, ψ)p(a)dψda∫∞
0
∫ 2π

0 p(y|a, ψ)p(a)dψda

=
∫∞

0

(∫ 2π
0 ejψp(y|a, ψ)dψ

)
a · p(a)da∫∞

0

(∫ 2π
0 p(y|a, ψ)dψ

)
p(a)da

=
∫∞

0 I
(1)
n · a · p(a)da∫∞

0 I
(1)
d · p(a)da

.

(B.5)

1. Solving integrals I(1)
n and I

(1)
d over the phase variable Ψ

First, the integral I(1)
d in the denominator of B.5 is computed, which requires the likelihood

function. The likelihood is another Gaussian mixture distribution with mean ds for all mixture
components and covariance matrices from the noise distribution. We set

zm = |zm| · ejφzm = dHΦ−1
m y,

which simplifies the following expression of the likelihood function:

p(y|s) = p(y|a, ψ)

=
M∑
m=1

cm
πC |Φm|

exp
{

−
(
y − d(a · ejψ)

)H
Φ−1
m

(
y − d(a · ejψ)

)}

=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y + 2 Re

{
a · e−jψdHΦ−1

m y
}

− a2dHΦ−1
m d

}

=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y + 2a|zm| · cos(φzm − ψ) − a2dHΦ−1

m d
}
.

(B.6)

To simplify the integrals, we rely on the fact that it is integrated over a full period of the
periodic integrand (∗1) and that the cosine function is an even function (∗2). The last step
requires the following identity [121, Eq. 3.339]∫ π

0
exp{z cos(x)}dx = πI0(z) (B.7)
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with In being the modified Bessel function of the first kind and order n. We compute

I
(1)
d =

∫ 2π

0
p(y|a, ψ)dψ

=
∫ 2π

0

(
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y + 2a|zm| · cos(φz − ψ) − a2dHΦ−1

m d
})

dψ

=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}∫ 2π

0
exp {2a|zm| · cos(φz − ψ)} dψ

∗1=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}∫ 2π

0
exp {2a|zm| · cos(ψ)} dψ

∗2=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}

2
∫ π

0
exp {2a|zm| · cos(ψ)} dψ

(B.7)=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}

2πI0(2a|zm|).

(B.8)

Next, the integral I(1)
n in the numerator of B.5 is computed. Using Euler’s formula

ejβ = cos(β) + j sin(β), (B.9)

we can divide the integral into two parts (∗1). Substitution of ψ−φzm = θ (∗2) and exploitation
of fact that the integrands are 2π-periodic and even just like the cosine function (∗3) allow for
some simplifications. We can solve one of the integrals directly by computing the antiderivative
(∗4). The other requires to use the equality

πIn(z) =
∫ π

0
ez cos(θ) cos(nθ) (B.10)

that can be found in [122, Eq. 10.32.3]. Overall we compute the result as follows

I(1)
n =

∫ 2π

0
ejψp(y|a, ψ)dψ

=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}

︸ ︷︷ ︸
=τm

∫ 2π

0
ejψ exp {2a|zm| · cos(φzm − ψ)} dψ

=
M∑
m=1

τme
jφzm

∫ 2π

0
ej(ψ−φzm ) exp {2a|zm| · cos(φzm − ψ)} dψ

∗1=
M∑
m=1

τme
jφzm

(∫ 2π

0
cos(ψ − φzm) exp {2a|zm| · cos(φzm − ψ)} dψ

+ j

∫ 2π

0
sin(ψ − φzm) exp {2a|zm| · cos(φzm − ψ)} dψ

)
∗2=

M∑
m=1

τme
jφzm

(∫ 2π−φzm

−φzm

cos(θ) exp {2a|zm| · cos(−θ)} dθ

+ j

∫ 2π−φzm

−φzm

sin(θ) exp {2a|zm| · cos(−θ)} dθ
)
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=
M∑
m=1

τme
jφzm

(∫ 2π−φzm

−φzm

cos(θ) exp {2a|zm| · cos(θ)} dθ

+ j

∫ 2π−φzm

−φzm

sin(θ) exp {2a|zm| · cos(θ)} dθ
)

∗3=
M∑
m=1

τme
jφzm

(∫ 2π

0
cos(θ) exp {2a|zm| · cos(θ)} dθ

+ j

∫ 2π

0
sin(θ) exp {2a|zm| · cos(θ)} dθ

)
∗4=

M∑
m=1

τme
jφzm

(
2
∫ π

0
cos(θ) exp {2a|zm| · cos(θ)} dθ

+ j

[
−e2a|zm|·cos(θ)

2a|zm|

]2π

0


=

M∑
m=1

τme
jφzm 2

∫ π

0
cos(θ) exp {2a|zm| · cos(θ)} dθ

(B.10)=
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}
ejφzm 2πI1(2a|zm|). (B.11)

Substitution of the results for I(1)
n and I

(1)
d into B.5 yields

E[S|y] =
∫∞

0 In · a · p(a)da∫∞
0 Id · p(a)da

=

∫∞
0

(
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}
ejφzm 2πI1(2a|zm|)

)
· a · p(a)da

∫∞
0

(
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y − a2dHΦ−1

m d
}

2πI0(2a|zm|)
)

· p(a)da

=

M∑
m=1

cm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}(∫ ∞

0
exp

{
−a2dHΦ−1

m d
}

I1(2a|zm|) · a · p(a)da
)

M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y

}(∫ ∞

0
exp

{
−a2dHΦ−1

m d
}

I0(2a|zm|) · p(a)da
)

=

M∑
m=1

cm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}
I(2)
n

M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y

}
I

(2)
d

. (B.12)
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2. Solving integrals I(2)
n and I

(2)
d over the amplitude variable A

In order to compute the integrals I(2)
n and I(2)

d in B.12, the probability density function (PDF)
of the speech amplitude is plugged in and the following identity [121, Eq. 6.643.2]

∫ ∞

0
xm− 1

2 · e−kx · I2n(2ℓ
√
x) =

Γ(m+ n+ 1
2)

Γ(2n+ 1) · ℓ−1 · e
ℓ2

2k · k−m · W−m,n

(
ℓ2

k

)
(B.13)

is used with Wλ,µ being a Whittaker function. This requires a substitution of a2 = x (∗1).
With setting

qm = ν

σ2
s

+ dHΦ−1
m d

the integrals are computed as

I(2)
n =

∫ ∞

0
exp

{
−a2dHΦ−1

m d
}

I1(2a|zm|) · a · p(a)da

=
∫ ∞

0
exp

{
−a2dHΦ−1

m d
}

I1(2a|zm|) · a ·
2
(
ν

σ2
s

)ν
Γ(ν) a2ν−1 exp

{
− ν

σ2
s

a2
}
da

=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I1(2a|zm|) · a2ν exp

−a2
(
ν

σ2
s

+ dHΦ−1
m d

)
︸ ︷︷ ︸

=qm

 da

∗1=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I1(2

√
x|zm|) · xν exp {−x · qm} 1

2
√
x
dx

=

(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I1(2

√
x|zm|) · xν− 1

2 exp {−x · qm} dx

(B.13)=

(
ν

σ2
s

)ν
Γ(ν)

Γ(ν + 1)
Γ(2) · |zm|−1 · exp

{
|zm|2

2qm

}
· q−ν
m · W−ν, 1

2

(
|zm|2

qm

)

(B.14)
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and

I
(2)
d =

∫ ∞

0
exp

{
−a2dHΦ−1

m d
}

I0(2a|zm|) · p(a)da

=
∫ ∞

0
exp

{
−a2dHΦ−1

m d
}

I0(2a|zm|) ·
2
(
ν

σ2
s

)ν
Γ(ν) a2ν−1 exp

{
− ν

σ2
s

a2
}
da

=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I0(2a|zm|) · a2(ν− 1

2 ) exp
{

−a2qm
}
da

∗1=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I0(2

√
x|zm|) · xν− 1

2 exp {−x · qm} 1
2
√
x
dx

=

(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I0(2

√
x|zm|) · xν−1 exp {−x · qm} dx

(B.13)=

(
ν

σ2
s

)ν
Γ(ν)

Γ(ν)
Γ(1) · |zm|−1 · exp

{
|zm|2

2qm

}
· q−ν+ 1

2
m · W−ν+ 1

2 ,0

(
|zm|2

qm

)
.

(B.15)

3. Rearranging the formulas to match
After insertion of the results for the integrals I(2)

n and I
(2)
d in B.12, some more computations

have to be performed to reach the final result. The identities that are applied, are

Wλ,µ(z) = zµ+ 1
2 e

−
z

2 M(µ− λ+ 1
2 , 2µ+ 1, z) (B.16)

from [121, Eq. 9.220.2],

|zm|2

qm
= |dΦ−1

m y|2
ν

σ2
s

+ (dΦ−1
m d)

= σ2
s(dΦ−1

m d)−1|dΦ−1
m y|2

ν(dΦ−1
m d)−1 + σ2

s

=
σ2
sdΦ−1

m d
∣∣∣T (m)

MVDR(y)
∣∣∣2

ν(dΦ−1
m d)−1 + σ2

s

= Pm (B.17)

and

zm
qm

= dΦ−1
m y

ν

σ2
s

+ dΦ−1
m d

= dΦ−1
m d · T (m)

MVDR(y)
ν

σ2
s

+ dΦ−1
m d

= σ2
sT

(m)
MVDR(y)

ν(dΦ−1
m d)−1 + σ2

s

. (B.18)
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Finally, the result can be obtained as follows

E[S|y] =

M∑
m=1

cm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}
I(2)
n

M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y

}
I

(2)
d

= ν

M∑
m=1

cm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}

· |zm|−1 · exp
{

|zm|2

2qm

}
· q−ν
m · W−ν, 1

2

(
|zm|2

qm

)
M∑
m=1

cm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· |zm|−1 · exp

{
|zm|2

2qm

}
· q−ν+ 1

2
m · W−ν+ 1

2 ,0

(
|zm|2

qm

)

(B.3)= ν

M∑
m=1

cm ·Qm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}

· |zm|−1 · exp
{

|zm|2

2qm

}
· W−ν, 1

2

(
|zm|2

qm

)
M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· |zm|−1 · exp

{
|zm|2

2qm

}
· √

qm · W−ν+ 1
2 ,0

(
|zm|2

qm

)

(B.16)= ν

M∑
m=1

cm ·Qm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}

· |zm|
qm

· M
(
ν + 1, 2, |zm|2

qm

)
M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· M

(
ν, 1, |zm|2

qm

)

(B.17)= ν

M∑
m=1

cm ·Qm · ejφzm

πC |Φm|
exp

{
−yHΦ−1

m y
}

· |zm|
qm

· M (ν + 1, 2, Pm)

M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· M (ν, 1, Pm)

= ν

M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· zm
qm

· M (ν + 1, 2, Pm)

M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· M (ν, 1, Pm)

(B.18)= ν

M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· σ2

sT
(m)
MVDR(y)

ν(dHΦ−1
m d)−1 + σ2

s

· M (ν + 1, 2, Pm)

M∑
m=1

cm ·Qm
πC |Φm|

exp
{

−yHΦ−1
m y

}
· M (ν, 1, Pm)

.

(B.19)
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B.2 MMSE Estimator Under Gaussian Noise Assump-
tion
Result B.2 (MMSE Post-filter at the Ouput of the MVDR Beamformer Under
Gaussian Mixture Noise Assumption) Assume the noise DFT coefficients to follow a
multivariate complex Gaussian mixture distribution with M components and mixing coefficients
ci, i = 1, ...,M . Further assume the amplitude of the clean speech coefficient S = A · ejΨ
to be generalized-Gamma distributed with γ = 2 and β = ν/σ2

s , the phase Ψ ∈ [0, 2π) to be
uniformly distributed and amplitude and phase to be independent. Let M denote the confluent
hypergeometric function. Then the MMSE estimator that is constrained to use the MVDR
beamformer as spatial filter is given by

TMVDR-MMSE(y) = ν

M∑
m=1

cmQm
σ2
m

exp
{

−|TMVDR(y)|2
σ2
m

}
σ2
sTMVDR(y)M(ν + 1, 2, Pm)

νσ2
m + σ2

s

M∑
m=1

cmQm
σ2
m

exp
{

−|TMVDR(y)|2
σ2
m

}
M(ν, 1, Pm)

(B.20)

with

Φn =
M∑
m=1

cmΦm, (B.21)

σ2
m = dHΦ−1

n ΦmΦ−1
n d

(dHΦ−1
n d)2 , (B.22)

Qm =
( 1
σ2
m

+ ν

σ2
s

)−ν
(B.23)

and

Pm = σ2
sσ

−2
m |TMVDR(y)|2
νσ2

m + σ2
s

. (B.24)

Proof. Under the multivariate Gaussian mixture noise assumption, the distribution of the
output of the MVDR beamformer output given the clean speech signal S is a single-channel
Gaussian mixture distribution with all components centered around the clean speech signal
and variances [123, Appx. 15B].

σ2
m = dHΦ−1

n ΦmΦ−1
n d

(dHΦ−1
n d)2 . (B.25)

Thus, the likelihood function is

p(TMVDR(y)|s) =
M∑
m=1

cm
πσ2

m

exp
{

− 1
σ2
m

|TMVDR(y) − s|2
}
. (B.26)
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The second part of the proof is to derive the MMSE estimator for the clean speech signal that
operates on the MVDR beamformer output

TMVDR-MMSE(y) = E[S|TMVDR(y)]. (B.27)

To improve the readability we introduce the complex-valued random variable X as the output
of the MVDR beamformer

TMVDR(y) = x = |x| · eφx .

We rewrite the PDF of X given the amplitude A and phase Ψ of the clean speech signal as

p(x|a, ψ) =
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 + 2a|x| cos(φx − ψ) − a2

)}
. (B.28)

Furthermore, the following calculations are carried out in the same way as it has been done in
the proof of B.1 for multivariate complex random variables. The integrals that need to be
solved are shown in B.29.

E[S|x] =
∫∞

0
∫ 2π

0 a · ejψp(x|a, ψ)p(a)dψda∫∞
0
∫ 2π

0 p(x|a, ψ)p(a)dψda

=
∫∞

0

(∫ 2π
0 ejψp(x|a, ψ)dψ

)
a · p(a)da∫∞

0

(∫ 2π
0 p(x|a, ψ)dψ

)
p(a)da

=
∫∞

0 I
(1)
n · a · p(a)da∫∞

0 I
(1)
d · p(a)da

.

(B.29)

For better clarity, the integrals that are to be solved next are given names as can be seen
above.

1. Solving integrals I(1)
n and I

(1)
d over the phase variable Ψ

First, the integral I(1)
d in the denominator of B.29 is computed. For this purpose, the definition

of p(x|s) given in B.28 is used. To simplify the integral, we rely on the fact that it is integrated
over a full period of the periodic integrand (∗1) and that the cosine function is an even function
(∗2). The last step requires the following identity [121, Eq. 3.339]∫ π

0
exp{z cos(x)}dx = πI0(z) (B.30)

with In being the modified Bessel function of the first kind and order n. We find

I
(1)
d =

∫ 2π

0
p(x|a, ψ)dψ

=
∫ 2π

0

(
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 + 2a|x| cos(φx − ψ) − a2

)})
dψ

=
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}∫ 2π

0
exp

{2a|x|
σ2
m

cos(φx − ψ)
}
dψ
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∗1=
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}∫ 2π

0
exp

{2a|x|
σ2
m

cos(φx)
}
dψ

∗2=
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}
2
∫ π

0
exp

{2a|x|
σ2
m

cos(φx)
}
dψ

(B.30)=
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}
2πI0

(2a|x|
σ2
m

)
. (B.31)

Next, the integral I(1)
n in the numerator of B.29 is computed. Using Euler’s formula

ejβ = cos(β) + j sin(β), we can divide the integral into two parts (∗1). Substitution of
ψ−φzm = θ (∗2) and exploitation of fact that the integrands are 2π-periodic and even just like
the cosine function (∗3, ∗4) allow for some simplifications. We can solve one of the integrals
directly by computing the antiderivative (∗4). The other requires to use the equality

πIn(z) =
∫ π

0
ez cos(θ) cos(nθ) (B.32)

that can be found in [122, Eq. 10.32.3]. Overall we compute the result as follows

I(1)
n =

∫ 2π

0
ejψp(x|a, ψ)dψ

=
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}
︸ ︷︷ ︸

=τm

∫ 2π

0
ejψ exp

{2a|x|
σ2
m

cos(φx − ψ)
}
dψ

=
M∑
m=1

τme
jφx

∫ 2π

0
ej(ψ−φx) exp

{2a|x|
σ2
m

cos(φx − ψ)
}
dψ

∗1=
M∑
m=1

τme
jφx

(∫ 2π

0
cos(ψ − φx) exp

{2a|x|
σ2
m

cos(φx − ψ)
}
dψ

+ j

∫ 2π

0
sin(ψ − φx) exp

{2a|x|
σ2
m

cos(φx − ψ)
}
dψ

)
∗2=

M∑
m=1

τme
jφx

(∫ 2π−φx

−φx

cos(θ) exp
{2a|x|
σ2
m

cos(−θ)
}
dθ

+ j

∫ 2π−φx

−φx

sin(θ) exp
{2a|x|
σ2
m

cos(−θ)
}
dθ

)

=
M∑
m=1

τme
jφx

(∫ 2π−φx

−φx

cos(θ) exp
{2a|x|
σ2
m

cos(θ)
}
dθ

+ j

∫ 2π−φx

−φx

sin(θ) exp
{2a|x|
σ2
m

cos(θ)
}
dθ

)
∗3=

M∑
m=1

τme
jφx

(∫ 2π

0
cos(θ) exp

{2a|x|
σ2
m

cos(θ)
}
dθ

+ j

∫ 2π

0
sin(θ) exp

{2a|x|
σ2
m

cos(θ)
}
dθ

)
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∗4=
M∑
m=1

τme
jφx

(
2
∫ π

0
cos(θ) exp

{2a|x|
σ2
m

cos(θ)
}
dθ

+ j

−
exp

{2a|x|
σ2
m

}
cos(θ)

2a|x|
σ2
m


2π

0


=

M∑
m=1

τme
jφx2

∫ π

0
cos(θ) exp

{2a|x|
σ2
m

cos(θ)
}
dθ

(B.32)=
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}
ejφx2πI1

(2a|x|
σ2
m

)
. (B.33)

Substitution of the results for I(1)
n and I

(1)
d into B.29 yields

E[S|x] =
∫∞

0 In · a · p(a)da∫∞
0 Id · p(a)da

=

∫∞
0

(
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}
ejφx2πI1

(2a|x|
σ2
m

))
· a · p(a)da

∫∞
0

(
M∑
m=1

cm
πσ2

m

exp
{ 1
σ2
m

(
−|x|2 − a2

)}
2πI0

(2a|x|
σ2
m

))
· p(a)da

=

M∑
m=1

cm · ejφx

πσ2
m

exp
{

−|x|2

σ2
m

}(∫ ∞

0
exp

{
− a2

σ2
m

}
I1

(2a|x|
σ2
m

)
· a · p(a)da

)
M∑
m=1

cm
πσ2

m

exp
{

−|x|2

σ2
m

}(∫ ∞

0
exp

{
− a2

σ2
m

}
I0

(2a|x|
σ2
m

)
· p(a)da

)

=

M∑
m=1

cm · ejφx

πσ2
m

exp
{

−|x|2

σ2
m

}
I(2)
n

M∑
m=1

cm
πσ2

m

exp
{

−|x|2

σ2
m

}
I

(2)
d

. (B.34)

2. Solving integrals I(2)
n and I

(2)
d over the amplitude variable A

In order to compute the integrals I(2)
n and I

(2)
d in B.34, the PDF of the speech amplitude is

plugged in and the following identity [121, Eq. 6.643.2]

∫ ∞

0
xm− 1

2 · e−kx · I2n(2ℓ
√
x) =

Γ(m+ n+ 1
2)

Γ(2n+ 1) · ℓ−1 · e
ℓ2

2k · k−m · W−m,n

(
ℓ2

k

)
(B.35)

is used with Wλ,µ being a Whittaker function. This requires a substitution of a2 = u (∗1).
With setting

qm = 1
σ2
m

+ ν

σ2
s
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the integrals are computed as

I(2)
n =

∫ ∞

0
exp

{
− a2

σ2
m

}
I1

(2a|x|
σ2
m

)
· a · p(a)da

=
∫ ∞

0
exp

{
− a2

σ2
m

}
I1

(2a|x|
σ2
m

)
· a ·

2
(
ν

σ2
s

)ν
Γ(ν) a2ν−1 exp

{
− ν

σ2
s

a2
}
da

=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I1

(2a|x|
σ2
m

)
· a2ν exp

−a2
( 1
σ2
m

+ ν

σ2
s

)
︸ ︷︷ ︸

=qm

 da

∗1=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I1

(
2
√
u|x|
σ2
m

)
· uν exp {−u · qm} 1

2
√
u
du

=

(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I1

(
2
√
u|x|
σ2
m

)
· uν− 1

2 exp {−u · qm} du

(B.35)=

(
ν

σ2
s

)ν
Γ(ν)

Γ(ν + 1)
Γ(2) ·

( |x|
σ2
m

)−1
· exp


( |x|
σ2
m

)2

2qm

 · q−ν
m · W−ν, 1

2


( |x|
σ2
m

)2

qm



(B.36)

and

I
(2)
d =

∫ ∞

0
exp

{
− a2

σ2
m

}
I0

(2a|x|
σ2
m

)
· p(a)da

=
∫ ∞

0
exp

{
− a2

σ2
m

}
I0

(2a|x|
σ2
m

)
·

2
(
ν

σ2
s

)ν
Γ(ν) a2ν−1 exp

{
− ν

σ2
s

a2
}
da

=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I0

(2a|x|
σ2
m

)
· a2(ν− 1

2 ) exp
{

−a2qm
}
da

∗1=
2
(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I0(2

√
u|zm|) · uν− 1

2 exp {−u · qm} 1
2
√
u
du

=

(
ν

σ2
s

)ν
Γ(ν)

∫ ∞

0
I0(2

√
u|zm|) · uν−1 exp {−u · qm} du

(B.35)=

(
ν

σ2
s

)ν
Γ(ν)

Γ(ν)
Γ(1) ·

( |x|
σ2
m

)−1
· exp


( |x|
σ2
m

)2

2qm

 · q−ν+ 1
2

m · W−ν+ 1
2 ,0


( |x|
σ2
m

)2

qm

 .

(B.37)
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3. Rearranging the formulas
After insertion of the results for the integrals I(2)

n and I
(2)
d in B.34, some more computations

have to be performed to reach the final result. The identities that are applied, are

Wλ,µ(z) = zµ+ 1
2 e

−
z

2 M(µ− λ+ 1
2 , 2µ+ 1, z) (B.38)

from [121, Eq. 9.220.2],( |x|
σ2
m

)2

qm
=

( |x|
σ2
m

)2

1
σ2
m

+ ν

σ2
s

= |x|2

σ2
m + σ4

mν

σ2
s

= σ2
sσ

−2
m |x|2

νσ2
m + σ2

s

=
σ2
sσ

−2
m

∣∣∣T (m)
MVDR(y)

∣∣∣2
νσ2

m + σ2
s

= Pm (B.39)

and

x

qmσ2
m

= x( 1
σ2
m

+ ν

σ2
s

)
σ2
m

= σ2
sx

σ2
s + νσ2

m

= σ2
sTMVDR(y)
σ2
s + νσ2

m

. (B.40)

Finally, the result can be obtained as follows

E[S|x] =

M∑
m=1

cm · ejφx

πσ2
m

exp
{

−|x|2

σ2
m

}
I(2)
n

M∑
m=1

cm
πσ2

m

exp
{

−|x|2

σ2
m

}
I

(2)
d

= ν

M∑
m=1

cm · ejφx

πσ2
m

exp
{

−|x|2

σ2
m

}
·
( |x|
σ2
m

)−1
· exp


( |x|
σ2
m

)2

2qm

 · q−ν
m · W−ν, 1

2


( |x|
σ2
m

)2

qm


M∑
m=1

cm
πσ2

m

exp
{

−|x|2

σ2
m

}
·
( |x|
σ2
m

)−1
· exp


( |x|
σ2
m

)2

2qm

 · q−ν+ 1
2

m · W−ν+ 1
2 ,0


( |x|
σ2
m

)2

qm



(B.23)= ν

M∑
m=1

cm ·Qm · ejφx

πσ2
m

exp
{

−|x|2

σ2
m

}
·
( |x|
σ2
m

)−1
· exp


( |x|
σ2
m

)2

2qm

 · W−ν, 1
2


( |x|
σ2
m

)2

qm


M∑
m=1

cm ·Qm
πσ2

m

exp
{

−|x|2

σ2
m

}
·
( |x|
σ2
m

)−1
· exp


( |x|
σ2
m

)2

2qm

 · √
qm · W−ν+ 1

2 ,0


( |x|
σ2
m

)2

qm


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(B.38)= ν

M∑
m=1

cm ·Qm · ejφx

πσ2
m

exp
{

−|x|2

σ2
m

}
· |x|
qmσ2

m

· M

ν + 1, 2,

( |x|
σ2
m

)2

qm


M∑
m=1

cm ·Qm
πσ2

m

exp
{

−|x|2

σ2
m

}
· M

ν, 1,
( |x|
σ2
m

)2

qm



(B.39)= ν

M∑
m=1

cm ·Qm
πσ2

m

exp
{

−|x|2

σ2
m

}
· x

qmσ2
m

· M (ν + 1, 2, Pm)

M∑
m=1

cm ·Qm
πσ2

m

exp
{

−|x|2

σ2
m

}
· M (ν, 1, Pm)

(B.40)= ν

M∑
m=1

cm ·Qm
πσ2

m

exp
{

−|x|2

σ2
m

}
· σ2

sx

σ2
s + νσ2

m

· M (ν + 1, 2, Pm)

M∑
m=1

cm ·Qm
πσ2

m

exp
{

−|x|2

σ2
m

}
· M (ν, 1, Pm)

.

(B.41)
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