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Abstract
Bioinformatics is grappling with an explosion of data, creating both opportunities and challenges for

scientific discovery and healthcare. This thesis stands at the crossroads of systems medicine and privacy-
aware artificial intelligence (AI), offering contributions that aim to harness the potential of this data-rich
landscape. Central to the thesis are the web tools CoVex, sPLINK, FeatureCloud, and AIMe, each
designed to address unique challenges, publicly and freely available to the research community.

Within the ambit of systems medicine, CoVex emerges as a tool in the realm of infectious diseases
and drug repurposing. Deploying network exploration and ranking algorithms like centrality measures,
CoVex identifies intricate disease pathways and potential drug targets. Its purpose mainly lies in drug re-
purposing achieved by its capability to explore integrated virus-protein, protein-protein and protein-drug
interaction networks to identify alternative applications for existing drugs, thereby accelerating the medical
response to urgent challenges like the COVID-19 pandemic.

Privacy-aware AI is the secondmajor pillar of the thesis, with a focus on federated learning (FL) as an en-
abling technology. The tools sPLINK and FeatureCloud are introduced to demonstrate this approach.
sPLINK, specialized for genome-wide association studies (GWAS), preserves data privacy without compro-
mising analytical robustness. FeatureCloud expands upon this by serving as a versatile, FL platform,
thereby facilitating large-scale analyses across multiple institutions while adhering to stringent data privacy
norms. It employs and integrates state-of-the-art privacy-enhancing techniques (PETs), such as differential
privacy (DP) and secure multiparty computation (SMPC), to protect sensitive patient data. Evaluation of
FeatureCloud shows that the results are sufficiently close or even identical to centrally performed analy-
ses, thereby demonstrating the efficacy and applicability of FL in a cross-silo context.

The thesis also brings forth the AIMe registry, aiming to create a foundation for transparency, repro-
ducibility, and reliability in biomedical AI. By setting standards and ensuring correct and complete report-
ing, AIMe acts as a central hub for vetting and disseminating AI tools, increasing validation and repro-
ducibility of results reported in biomedical research.

As we traverse an era defined by rapid data proliferation and stringent data protection laws, this thesis
demonstrates that specialized tools and versatile platforms are valuable additions to the research landscape.
CoVex, sPLINK, AIMe and FeatureCloud each have unique specializations, yet they all contribute
to more efficient research in systems medicine: making integrated data quickly accessible to researchers,
allowing large-scale analyses across distributed datasets, and ensuring valid and reproducible reporting of
results.
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Kurzfassung
Die Bioinformatik sieht sich einer Explosion vonDaten gegenübergestellt, die neueMöglichkeiten aber

auchHerausforderungen fürwissenschaftlicheErkenntnisseunddieGesundheitsversorgungmit sichbringt.
Diese Dissertation positioniert sich im Schnittbereich zwischen Systemmedizin und datenschutzbewuss-
ter künstlicher Intelligenz (KI) und erbringt Beiträge, die das Potential dieser datenreichen Umgebung er-
schließen sollen. Im Mittelpunkt stehen die Web-Tools CoVex, sPLINK, FeatureCloud und AIMe,
die entwickelt wurden, um damit verbundene Herausforderungen zu bewältigen und die der Forschungs-
gemeinschaft öffentlich und frei zur Verfügung stehen.

Im Rahmen der Systemmedizin tritt CoVex als Werkzeug im Bereich der Infektionskrankheiten und
derMedikamentenumwidmung inErscheinung.DurchdenEinsatz vonNetzwerk-Erkundungs- undRank-
ing-Algorithmen, wie Zentralitätsmaßen, identifiziert CoVex komplexe Krankheitspfade und potenzielle
neue Zielproteine für Medikamente. Der Hauptzweck liegt in der Medikamentenumwidmung, die mit-
tels integrierter Virus-Protein-, Protein-Protein- und Protein-Medikament-Interaktionsnetzwerke alterna-
tive Anwendungen für bestehendeMedikamente erkundet. Damit soll die Reaktion auf dringendeHeraus-
forderungen wie die COVID-19-Pandemie beschleunigt werden.

Datenschutzbewusste KI ist der zweite Hauptteil der Dissertation, wobei das föderierte Lernen (FL) als
wesentliche Technologie im Fokus steht. Die Tools sPLINK und FeatureCloud werden vorgestellt, um
diesen Ansatz zu demonstrieren. sPLINK, spezialisiert auf genomweite Assoziationsstudien (engl. GWAS),
gewährleistet die Datensicherheit ohne Kompromisse bei der analytischen Robustheit einzugehen. Fea-
tureCloud erweitert dieses Konzept, indem es als vielseitige Plattform für FL dient und so großangelegte
Analysen übermehrere Institutionen hinweg ermöglicht, während es strengenDatenschutznormen gerecht
wird. Es verwendet und integriert moderne Techniken zur Verbesserung der Privatsphäre, wie Differential-
Privacy (DP) und Secure-Multiparty-Computation (SMPC), um sensible Patientendaten zu schützen. Die
Evaluation von FeatureCloud zeigt, dass die Ergebnisse ausreichend nah oder sogar identischmit zentral
durchgeführten Analysen sind, wodurch die Wirksamkeit und Anwendbarkeit von FL im übergreifenden
Kontext bestätigt wird.

Die Dissertation stellt auch das AIMe-Register vor, welches eine Grundlage für Transparenz, Reprodu-
zierbarkeit und Zuverlässigkeit für biomedizinische KI schaffen soll. Durch das Definieren von Standards
unddie Sicherstellung korrekter und vollständiger Berichte fungiertAIMe als zentraleDatenbank zurÜber-
prüfung und Veröffentlichung von KI-Tools, wodurch die Validierung und Reproduzierbarkeit von Ergeb-
nissen in der biomedizinischen Forschung erhöht wird.

In einer Ära, die durch schnelle und fortschreitende Datenerzeugung und strenge Datenschutzgesetze
geprägt ist, zeigt diese Dissertation, dass spezialisierte Tools und vielseitige Plattformen sinnvolle Ergänzun-
gen in der Forschungslandschaft darstellen. CoVex, sPLINK, AIMe und FeatureCloud haben jeweils
ihren eigenen Schwerpunkt, tragen jedoch alle dazu bei, die Forschung in der Systemmedizin effizienter zu
gestalten: Sie machen integrierte Daten schnell für Forscherinnen und Forscher zugänglich, ermöglichen
großangelegte Analysen über verteilte Datensätze hinweg und gewährleisten eine valide und reproduzierba-
re Dokumentation dieser Ergebnisse und ihrer Entstehung.
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1
Introduction

As in many areas of computer science, bioinformatics is a strongly data-driven discipline at the intersection
of biomedicine and data science. The accumulated data keeps growing in terms of quantity, quality and
coverage of captured biomedical processes, opening up new opportunities and challenges alike [123].

Until today,medicinemostly divides diseases by the organs affected (e.g., heart diseases), symptoms (e.g.,
hypertension) or even the personwhodiscovered the disease (e.g., Alzheimer’s). This usually reflects a lack of
deeper understanding of the disease since it only conveys a superficial view [120] (see Figure 1.1). Large-scale
data analysis, especially throughmachine learning, bridges this gap by sifting through vast amounts of data,
identifying patterns, and drawing correlations that may not be evident to traditional methods. It thereby
supports the systems medicine approach by enabling the identification of intricate disease mechanisms and
complex interactions in the human body.

In this thesis,methods from the area ofmachine learning are investigated and applied, andmade available
to other researchers via collaborative tools, putting a special focus on federated learning, a technique that
allows for training machine learning models on large amounts of distributed data while maintaining data
privacy. These methods do not start at the symptoms in a ’top down’ approach, but at biomedical data
of various forms, capturing a piece of the complex processes happening in the human organism with little
assumptions about the disease mechanism, following the data-driven philosophy of systems medicine.

1.1 Topics

This thesis revolves around three interconnected themes - systems medicine, artificial intelligence, and data
privacy. Each of these areas offers unique perspectives and challenges that merge at the intersection of mod-
ern scientific research and technological advancements in bioinformatics. The main goal of the thesis is to
make useful tools available to researchers that enable them to use technologies and methods in these areas.

The following sections briefly define the most important topics and put them into context.

1.1.1 Systems medicine

Systems medicine provides novel perspectives on disease mechanisms by looking at the whole human or-
ganism. It examines complex interactions and mechanisms in the human body within its environment,
providing a deeper understanding of the root causes of a disease [119, 15].

7



Figure 1.1: Diseases currently are often named after organs (e.g., brain, heart, liver), symptoms (e.g., headache, backache, whooping cough) or
doctors who first investigated them (e.g., Bekhterev’s, Parkinson’s, Alzheimer’s). Systemsmedicine looks at the underlying disease mechanisms
involving omics data (e.g., genes, proteins, metabolites interactions) instead of symptoms or affected body parts to provide holistic explanations
and treatments.

In the last decades, acquisition of data has become cheaper and their variety has grown hugely [150].
The available data is often difficult to interpret and of enormous size, which poses a challenge to understand
it andmake use of it. At the same time, it can be assumedwith a high degree of plausibility that the acquired
data potentially provides valuable insights into disease mechanisms and other processes in a living organism
[207]. The task ofmaking sense of this data, putting together these pieces with the help ofmachine learning
and other methods, and obtaining a better understanding of these processes is a challenging endeavor, but
can provide insights that go beyond the superficial and symptomatic level.

Systems medicine contributes to many areas in bioinformatics and medicine, including drug repurpos-
ing and novel treatments, but also by revealing knowledge that supports other areas of medicine. The het-
erogeneous nature of the data can be a valuable source, but also makes it difficult to work with in some cases
[207].

1.1.2 Drug repurposing

Drugs are usually developed as a treatment for a particular disease and then admitted for that disease by the re-
spective authorities, e.g., the Food andDrugAdministration (FDA) in theUS [191] or EuropeanMedicines
Agency (EMA) in the EU [73]. Finding new drugs is a lengthy process and having a newly discovered drug
admitted can take even longer [48, 102].

From an administrative point of view, these drugs are then approved treatments for a particular disease.
But from a biomedical point of view, these drugs are merely substances having a certain impact on the pro-
cesses in the human organism. It is therefore very much possible that a drug originally approved for disease
A can be effective for disease B as well (or even more so), even if the disease appears very different on the
symptomatic level (see Section 1.4.1).

Finding and applying such drugs, originally developed for another disease or purpose, is hence referred
to as drug repurposing. Both systems medicine, and machine learning can be of great help to identify po-
tential drug candidates as a first step in the process of drug repurposing [151, 192]. See Section 2.2 more
information about the connection of drug repurposing to systems medicine.
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1.1.3 Artificial intelligence

As introduced before, biomedicine today generates all sorts of data with of different size, shape, quality and
biomedical significance [137]. Inmany cases, we do not understand (yet) whether and, if so, how it relates to
phenotypical phenomena we are interested in, like diseases [165]. The sheer quantity of data renders efforts
to manually examine the data futile in many cases [112].

Artificial intelligence and machine learning are techniques which help analyze these large quantities of
data and which have seen impressive advances in the last decade [107]. It also has proven highly effective in
the biomedical field due to its versatility and adaptability, allowing it to be applied tomany types of data that
can be accumulated in biomedicine [65]. This includes omics data,medical images, electronic health records
and many more. Generally, the performance of a machine learning method, i.e. quality of its predictions,
improves when the amount of training data grows, provided it is not redundant and of high quality.

There is often confusion between the terms artificial intelligence (AI) andmachine learning (ML) and
they are used interchangeably in many cases. For now, we define AI as a superset of ML. A more detailed
definition can be found in Section 3.1.

1.1.4 Data privacy

Privacy is a big concern when it comes to storing and processingmedical data, particularly patient data [96].
While the information contained in it can be of high interest to researchers, it can also be abused by health
insurance companies or employers and lead to discrimination of patientswith allegedly higher risks of illness.

While it is often hard to tell what information is contained in biomedical data, this very uncertainty
must cause us to treat it as carefully as possible. From the perspective of research, there is a big interest in
maintaining public trust in how data is treated, i.e., how it is processed and stored, to keep getting access to
it [76].

Privacy awareness relates to the enduring effort tomaintainpatients’ privacywhereverpossible. A stronger
version would be privacy preservation, which establishes the promise to not reveal anything that could pos-
sibly identify a patient’s identity. This promise is hard to maintain in a provable sense and even more so in
a practical sense. There are such techniques, however, which are introduced in Chapter 3. However, they
usually lead to worse results through added noise or complicate the technical implementation. Balancing
prediction quality and privacy is therefore a non-trivial task and needs to be considered at each step when
dealing with sensitive patient data.

1.2 Motivation

The global research community garners significant benefits from tools and software contributed by fellow
researchers, which provide novel perspectives and insights into varied scientific fields [155]. Particularly,
web tools stand out due to their easily accessible nature and versatility of usage in diverse contexts. These
tools serve as a bridge connecting and amalgamating the advancementsmade across different areas, especially
within the biomedical domain, thus fostering interdisciplinary collaborations. By offering researchers the
capability to swiftly access information, these tools enable a seamless flow of knowledge and data beyond
geographical and disciplinary boundaries.

In many instances, such collaboration is perceived as a dynamic extension of traditional scientific publi-
cations. This is largely due to the fact that these web tools offer the advantage of an interactive graphical user
interface and visualization capabilities that enrich the overall research experience. In tandem, these tools are
often built upon complex algorithms operating on the backend or server side, thereby bringing a level of
sophistication to the process. Additionally, programming libraries and software development kits (SDKs)
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fall into this bracket, as they can be utilized by other researchers to enrich their work and establish a robust
foundation for future exploration [16].

The field of systemsmedicine emphasizes the need to integrate asmany potential data sources as possible
[41]. Consequently, collaborative online tools and freely available software systems align perfectly with this
approach, facilitating the reflection of this principle in active research. These resources pave the way for
enhanced integration and knowledge sharing across different domains, thus fostering a culture of collective
growth within the scientific community.

The outbreak of the Coronavirus pandemic in 2020 has highlighted, more than ever, the importance
of rapid response measures in tackling highly transmissible diseases [148, 91]. Until effective therapeutics
or vaccines are discovered, measures like lockdowns remain the only immediate solution to reduce the re-
production rate of the virus. However, these measures significantly affect social life and the economy [182].
Therefore, the concept of drug repurposing emerges as a promising solution, with its potential to shorten
approval times and speed up the journey from laboratory to clinic [157].

In circumstances where time is of paramount importance, such as during a pandemic, the availability of
useful, timely data is vital to understand adisease better andpotentially discover a cure. However, some types
of data are highly sensitive and are not freely shareable within the research community. This is particularly
true forpatient data, which is stringently protectedby legislation inmost regions globally [197]. TheGeneral
Data ProtectionRegulation (GDPR) imposed by the EuropeanUnion is a prime example of such legislation
that sets strict data protection requirements, potentially hampering data sharing without comprehensive
legal preparation.

In an attempt to reconcile the conflictingobjectives of data protection and accelerating researchprogress,
the concept of federated learning has been introduced [108]. This novel approach ensures data protection
by leaving the data at the point of collection, such as a hospital, while sharing only generalized informa-
tion about a disease mechanism with other researchers. This innovative strategy strikes a balance between
safeguarding patient privacy and fostering scientific discovery, without sacrificing either [164].

However, federated learning presents significant challenges compared to conventional machine learning
methods. Instead of executing a machine learning algorithm on a single computer with a single dataset,
federated learning requires a network of interconnected computers. Given these additional complexities,
a general framework that aims to streamline the development, dissemination, and execution of federated
algorithms could be a game-changer [101].

Driven by these considerations, there is an ever-growing demand for public and user-friendly tools, such
as those discussed in this thesis. These tools tap into the immense potential ofmachine learning and systems
medicine to improve our approach towards scientific research and discovery.

1.3 Contents of the thesis

Two related areas are investigated in this thesis: systems medicine, with a focus on data integration, and pri-
vacy in medicine related to machine learning and artificial intelligence, using federated learning. It aims to
outline the interconnection of the topics systems medicine, artificial intelligence and privacy awareness and
demonstrates solutions in the form of freely available online tools that can be used by the research commu-
nity to help harvest their potential.

To reconcile privacy-awareness and research interests, a federated learning platform called Feature-
Cloud has been developed and is introduced in the second part.
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1.3.1 Structure

In the first chapter, the main topics are briefly introduced and the motivation for collaborative tools in their
domains is outlined. At the end of the chapter, related work can be found which provides the scientific
context of the thesis.

The topics are described further in the two main chapters about systems medicine and privacy-aware
AI, providing more details about the respective fields.

Chapter 2 is dedicated to systems medicine, with a special focus on drug repurposing. It provides an
overview of network-based approaches to first find indirect drug targets to subsequently identify potential
drugs, involving the required data and the employed network algorithms. At the end of the chapter, the
main result, CoVex is shown, an interactive interactome explorer for drug repurposing with a focus on
Covid-19.

Chapter 3 first defines the terms used for machine learning in the remainder of the chapter. Then, sev-
eral examples ofMLmodels are introduced and their respective strengths andweaknesses are discussed. The
main focus of the chapter lies on federated learning and privacy preserving techniques, which are presented
and related to each other. The chapter concludes with the results related to these topics, mainly the uni-
versal FeatureCloud platform, sPLINK for genome-wise association studies and the AIMe registry for
thorough reporting onMLmethods.

Chapter 4discusses the results, againdivided into a section about systemsmedicine andprivacy-preserving
AI. It highlights the contributions and alsomentions the shortcomings of the developed tools andplatforms.

Chapter 5 provides potential extensions and grounds for further research in the area of network-based
drug repurposing and federated learning techniques.

1.3.2 Software and tools

Various tools and software systemswere implemented in the context of this thesis, which implement systems
medicine approaches and federated machine learning and make them available to the research community
in themanner described. The following paragraphs briefly introduce 4 of them and highlight their purpose.

CoVex, the coronavirus explorer is an interactive resource and exploration tool, able of showing the early
available data about virus-host interactions 1. It integrates various data sources and allows for a systems
medicinal approach to drug repurposing by suggesting drug targets further down the disease pathway. Ul-
timately, it outputs a list of drugs, ranked by graph algorithms according to their position in the protein-
protein-drug interaction network. The pandemic caused by SARS-CoV-2 (also known as ’Coronavirus’) is
the primary use case for this kind of systems medicine-based drug repurposing, highlighting the necessity of
collaborative approaches and quickly available tools in such a situation, but other viruses could be explored
like this as well.

sPLINK is a federated tool for genome-wide association studies (GWAS) 2. It combines the advantages of
meta studies, whose results become worse with imbalances data, and centralized GWAS, where data sharing
is necessary and data privacy cannot be maintained. It served as a proof-of-concept for federated machine
learning and implement one useful algorithm for a federated setting.

AIMe, a registry for artificial intelligence in biomedical research is tackling the problem of incomplete,
misleading or incorrect reporting on machine learning methods in scientific publications 3.

1Website: https://exbio.wzw.tum.de/covex/
2Website: https://exbio.wzw.tum.de/splink/
3Website: https://aime-registry.org/
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FeatureCloud is a platformwhich provides the necessary infrastructure for federatedmachine learning
4. It hosts federated applications (’apps’) on a public registry from where they can be used by researchers to
conduct a collaborative machine learning project. It also offers help during development of such apps to
third-party developers, who can contribute their own AI algorithms to a public registry (’AI Store’).

Figure 1.2 shows how the standalone tools CoVex and sPLINK, and the FeatureCloud platform
relate to each other.

Figure 1.2: CoVex and sPLINK are standalone tools with their own website and interface. FeatureCloud is a platform which is extensible by
third‐party developers through apps, into which the sPLINK implementation has been integrated.

1.4 Relatedwork

This section provides an overview of the relatedwork in the context of systemsmedicine, with a special focus
on drug repurposing, and privacy-aware artificial intelligence.

1.4.1 Systems medicine

The concept of drug repurposing has gained significant attention in recent years due to its potential to ac-
celerate the drug development process by reducing associated costs and timelines [157]. This approach in-
volves identifying novel therapeutic indications for existing drugs, thereby cutting down the time-intensive
and costly process of de novo drug development. Multiple computational and experimental approaches
have been deployed to achieve this, including drug-target interaction prediction, network-based method-
ologies, and a range of data mining techniques, all leveraging massive biomedical and pharmacological data
repositories [50].

Notable examples of successful drug repurposing include sildenafil and bupropion. Sildenafil was orig-
inally developed to treat angina but later found a robust market as a treatment for erectile dysfunction [67,
63]. Bupropion, initially marketed as an antidepressant, has since been repurposed as a smoking cessation
aid [93], demonstrating efficacy in multiple clinical trials [98]. The success of these and other cases has

4Website: https://featurecloud.ai/
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spurred further investigation into drug repurposing, highlighting its viability as a strategic approach in drug
discovery and development.

Systems medicine, which involves the integration of computational modeling with clinical and biolog-
ical data to provide comprehensive insights into disease pathways and drug actions, has been increasingly
applied to drug repurposing [88]. In the context of drug repurposing, a variety of network-based methods
have been employed [12], such as drug-target networks, protein-protein interaction networks, and gene-
disease networks, to unveil potential new indications for existing drugs [36]. For instance, a pioneering
network-based approach called PRINCE (Prioritization and Complex Elucidation), was developed to pre-
dict novel drug-disease associations. This approach integrates drug-target interaction data with a human
protein-protein interactome, providing insights into drug-disease connections [195].

Beyond network-based approaches, machine learning techniques have increasingly been incorporated in
drug repurposing efforts within systems medicine, showcasing the potential of artificial intelligence (AI) in
this field. For instance, deep learning algorithms have beenused to predict drug-disease associations based on
gene expression data [5], a technique that offers superior predictive performance compared to conventional
methods [216]. Ensemble learning, another advanced AI technique, has also been utilized to predict drug
repurposing candidates for multiple diseases using diverse data sources, including drug-target interactions
and disease similarity networks [210].

In summary, the application of systems medicine to drug repurposing, through leveraging advanced
computational techniques, shows significant potential in revolutionizing drug development, promising a
shorter and more cost-effective pipeline. These advancements not only have implications for the discovery
of novel therapeutic applications for existing drugs, but also herald a new era of precision medicine, where
treatments are tailored to individual patient profiles based on complex genetic, environmental and lifestyle
data.

1.4.2 Privacy-aware AI

Federated learning (FL) [108] has emerged as a robust technique that significantly addresses privacy and
security concerns, enabling collaborative machine learning without sharing raw data. It operates on the
principle of decentralized training and model aggregation, thereby allowing multiple parties to jointly train
a global model while retaining their local data. This creates an environment that fosters collaboration while
ensuring stringent data privacy [127].

In an endeavor to make federated learning accessible to a wider user group, numerous frameworks have
been developed [208]. These range from technical solutions such as programming libraries, which neces-
sitate a certain level of programming skills, to more user-friendly solutions that cater to users with varying
degrees of technical proficiency. The gamut of these frameworks can broadly be categorized into two types:
backend-focused frameworks and all-in-one frameworks.

Backend-focused frameworks primarily cater to developers by providing a suite of tools and methods
to implement federated and privacy-aware algorithms [170]. They offer an advanced platform for the de-
velopment and integration of these sophisticated algorithms into different applications. However, these
platforms often require users to have substantial programming experience or even a strong background in
software development [22]. This requirement poses a significant barrier to clinical experts and researchers
who might lack such programming skills but could immensely benefit from applying federated learning to
their research work.

On the other hand, all-in-one frameworks are specifically designed to make privacy-aware analyses ac-
cessible to users without in-depth programming skills. These platforms provide a graphical user interface
(GUI), simplifying the process of implementing federated learning and thus widening its user base [153,
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181]. The emphasis is on user-friendliness, which democratizes federated learning, extending its reach be-
yond the technical realm.

A major focus area within these frameworks is the inclusion of privacy-enhancing techniques (PETs)
[179]. PETs encompass a range of strategies and tools developed to protect sensitive information within the
data used for federated learning. These includemethods like differential privacy, homomorphic encryption,
and secure multi-party computation, all designed to add another layer of privacy protection during the data
analysis process.

However,while these all-in-one frameworkshavemanaged to increase accessibility and incorporatePETs,
they come with their own set of limitations. For instance, many of these frameworks suffer from a lack of
extensibility or have a narrow focus on specific algorithms such as deep learning, or are limited to specific
applications such as neuroimaging or genomics [164]. These constraints restrict their applicability and ver-
satility, preventing their use in a wider array of use cases and research fields.

In conclusion,while federated learning,with its privacy-enhancingmeasures, has shown immensepromise
as a technique for collaborative machine learning, there is a pertinent need for the development of more ver-
satile, extensible, and user-friendly frameworks [178]. These new frameworks should cater to a wide range
of users and applications, facilitating privacy-aware analysis for everyone from developers to clinicians and
researchers, across various domains and use cases [117].
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2
Systems medicine

Systemsmedicine is an emerging interdisciplinary field that aims to understand the complex interactions be-
tween biological systems and improve healthcare by leveraging computational and experimental approaches.
This comprehensive approach integrates different levels of information, such as genes, proteins, metabolites,
and clinical data, to achieve a holistic understanding of human health and diseases [88, 105].

A central premise of systems medicine is that biological systems exhibit emergent properties that can
only be understood by studying the interactions among their components. These interactions, referred to
as the ’interactome’, are essential to understanding how complex biological functions emerge from sim-
pler molecular components [10]. Systems medicine employs mathematical modeling, bioinformatics, and
high-throughput experimental approaches to unravel the complexity of the interactome and identify key
molecular players and pathways involved in disease processes [100].

One of the main applications of systems medicine lies in the area of precision medicine. By incorporat-
ing multi-omics data (e.g., genomics, transcriptomics, proteomics, and metabolomics) and patient-specific
clinical information, systems medicine can help identify individual-specific disease signatures and predict
optimal treatment strategies [37]. This approach, also known as personalized medicine, aims to tailor treat-
ments to individual patients based on their unique genetic andmolecular profiles, thus improving therapeu-
tic outcomes and reducing adverse side effects [43].

Systemsmedicine is also instrumental in drug discovery and repurposing efforts. By generating compre-
hensive maps of disease-associated molecular pathways and investigating the effects of drug candidates on
these pathways, researchers can identify novel therapeutic targets and assess the efficacy and safety of existing
drugs in treating various conditions [209]. This approach not only expedites the drug development process
but also reduces the associated costs by uncovering new uses for approved drugs [7].

Another application of systemsmedicine lies in the identification and validation of biomarkers for early
disease detection and prognosis. By integrating multi-omics data and clinical information (e.g., in the form
of electronic health records), researchers can identify specificmolecular signatures that correlate with disease
states or treatment responses. These biomarkers can then be used for early diagnosis, monitoring disease
progression, and evaluating therapeutic outcomes [95].

Despite its potential, systems medicine faces several challenges [8], including the integration and inter-
pretation of vast amounts of heterogeneous data [2], developing accurate and predictive models, and trans-
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lating findings into clinically actionable insights [92]. Ongoing efforts to address these challenges include
the development of advanced computationalmethods, the establishment of interdisciplinary collaborations,
and the promotion of data sharing and standardization initiatives [9].

2.1 Infectious diseases

Infectious diseases, caused by pathogens such as bacteria, viruses, parasites, or fungi, that are transmitted
fromone organism to another, continue to pose significant threats to global health [135]. The complexity of
host-pathogen interactions and the rapid emergence of drug-resistant strains presentmajor challenges in the
prevention, diagnosis, and treatment of infectious diseases [19]. Systems medicine, with its integrative and
holistic approach, offers a promising avenue to tackle these challenges by unraveling the intricate interplay
between pathogens and their hosts [24].

Given the complexity and heterogeneity of infectious diseases, a fundamental understanding of their
unique aspects is crucial for their effective management. One of the key aspects of infectious diseases is the
dynamic and complex interplay between the host and the pathogen. Systems medicine can be employed to
study these interactions onmultiple levels, such as genetic, transcriptomic, proteomic, andmetabolomic. By
integrating data from these different levels, researchers can develop a comprehensive understanding of the
molecularmechanisms involved in infection processes, immune responses, and host susceptibility to various
pathogens [21].

Viral infections In contrast to bacterial, fungal, and parasitic infections, viral infections are peculiar
in their very nature of pathogenesis. While all infectious diseases involve the introduction of a foreign or-
ganism or agent into the host system, the distinctive element of viral infections lies in their specific mode of
replication and their intimate interaction with the host’s cellular machinery [173]. Viruses, essentially nu-
cleic acid encased in a protein shell, lack the cellular structure required for self-sustaining reproduction [4,
106]. They, therefore, rely on host cells to replicate, using the host cell’s molecular machinery to synthesize
their components and assemble new virus particles. This distinction has far-reaching implications for both
the progression of disease and its treatment strategies [45].

The rapid mutation rates of many viruses, particularly RNA viruses, lead to the emergence of drug-
resistant strains, rendering certain antiviral treatments ineffective over time [173]. Vaccination remains one
of the most effective strategies against viral diseases, priming the immune system to recognize and combat
the virus upon subsequent exposures [154].

However, vaccine development is a lengthy and complex process, requiring careful evaluation of safety,
efficacy, and long-term protection. Another challenge is that viruses can undergo antigenic drift or shift,
altering their surface proteins andpotentially escaping immunedetection– aphenomenonobservednotably
in influenza viruses [31].

Therefore, the strategies to combat viruses involve a combination of antiviral drugs, vaccines, and ther-
apeutic antibodies, with ongoing research focusing on innovative methods like gene editing and interfering
RNA technologies to hinder viral replication [38].

Network-based approaches, a cornerstone of systems medicine, can be used to model host-pathogen
interactions, allowing researchers to identify essential molecular players, signaling pathways, and potential
therapeutic targets. This is particularly relevant for viral infections. The immunological response triggered
by a viral infection involves complex signaling networks and feedback loops that spread through multiple
organ systems. For instance, virus-host protein interaction networks can provide insights into the mecha-
nisms by which viruses hijack host cellular machinery, while immune response networks can help elucidate
the complex interplay between the immune system and invading pathogens [77].
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2.2 Drug repurposing

Drug repurposing, also known as drug repositioning, is the process of identifying new therapeutic uses for
existing drugs. This approach can significantly reduce the time and cost associated with traditional drug
discovery and development, as approved drugs have already undergone extensive safety and pharmacokinetic
evaluations [7]. One of the compelling arguments for drug repurposing, especially in the context of viral
infections, lies in the rapid mutation rates observed in many viruses [206]. Traditional drug development
is a lengthy process, and by the time a new drug is developed, tested, and approved, the target virus might
have already mutated, potentially rendering the drug less effective [42]. Drug repurposing can address this
challenge by swiftly transitioning an already approved drug to combat a newly emerged or mutated viral
strain, offering amore adaptive response to thedynamic landscapeof infectious diseases [157]. In the context
of infectious diseases, drug repurposing holds great potential for rapidly addressing emerging threats and
combating drug-resistant pathogens [132].

Systems medicine, with its data-driven and integrative approach, can play a crucial role in facilitating
drug repurposing efforts for infectious diseases [163]. Systemsmedicine can help identify drug repurposing
candidates by integrating various data types, such as pathogen-protein interactions, drug-target interactions,
and protein-protein interaction networks (see Figure 2.1). By analyzing these data through computational
approaches, researchers can uncover potential connections between approved drugs and infectious disease
pathways, as well as predict off-target effects that might be therapeutically beneficial [209].

Such pathways can be interpreted as a series of chemical reactions occurring within a cell that lead to
certain cellular functions or outcomes. They can be impacted by various factors, including genes, proteins,
pathogens and external substances like drugs [4]. Infectious disease pathways refer to the sequences ofmolec-
ular events that get triggered during an infection, whichmight involve the pathogen’s life cycle, host immune
responses, and changes in cellular physiology. Drug repurposing is inherently linked to these pathways be-
cause a drug developed for one purpose might inadvertently influence a pathway in a manner that proves
beneficial against an infectious disease [7]. Understanding these pathways, therefore, allows scientists to
predict how existing drugs might be repurposed to modulate these processes, potentially halting the pro-
gression of the disease or mitigating its effects [103, 162].

Figure 2.1: The simplified interactome network consists of viral proteins (green), human proteins (blue) and drugs (pink). One can distinguish
between drug targets that are directly targeted by a virus (A), indirect targets (B) and pathogen protein targets (C).

2.2.1 Datasets

Datasets are foundational pillars in the domain of systems medicine and drug repurposing. Their exten-
sive information provides a nuanced view of viral-host interactions, especially when considering the ever-
evolving nature of viral strains and their intricate modes of interaction with host cellular systems. Such
datasets not only collate data but also streamline the intricate analysis required to discern patterns, identify
potential drug targets, and predict therapeutic efficacy [12].
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Protein-protein interaction (PPI) networks are pivotal in drug repurposing strategies. These net-
works, through their comprehensivemapping ofmolecular interactions, offermore than just biological data.
They provide a roadmap to the complex landscape of intracellular processes, facilitating the identification
of proteins and pathways pivotal for cell functionality. The STRING database, for instance, is a compre-
hensive repository of PPIs, which has been utilized for research on diseases ranging from malaria to certain
types of cancers [187]. Additionally, BioGRID, another vast PPI resource, has facilitated understanding
of genetic and protein interactions in various organisms, revealing potential chokepoints for therapeutic
interventions [35].

Pathogen-host interaction datasets provide information on the interactions between pathogens
and the host organisms they infect. These datasets capture the molecular strategies employed by pathogens
to invade, thrive, and reproduce, often at the host’s expense. The Host-Pathogen Interaction Database
(HPIDB), for example, has become an invaluable tool for researchers studying infectious diseases, offer-
ing insights into the molecular tussles between hosts and their invaders [139]. Such resources have proven
crucial in the study of viruses like HIV, highlighting how they exploit host cells for reproduction, and sug-
gesting intervention points for drug development [70].

Protein-drug networks are multifaceted repositories that shed light on the intricate relationships be-
tweendrugs and their target proteins. The significance of suchnetworks extends to drug repurposing efforts,
where understanding these relationships can lead to unforeseen therapeutic applications. The DrugBank
database stands as a testament to the potential of such datasets. It not only provides details on drug-protein
interactions but has also enabled researchers to identify novel uses for old drugs, such as the repurposing
of thalidomide from a sedative to a potent immunomodulatory agent for conditions like multiple myeloma
[202]. Moreover, the exploration of these networks has unveiled secondary or off-target effects of drugs.
Sometimes, these unintended interactions can be harnessed for therapeutic benefit in contexts other than
their original intent, broadening the horizon of drug repurposing [209, 89].

In summary, the vastness and depth of these datasets play an essential role in modern drug discovery,
especially in the realm of drug repurposing. Through meticulous analysis and integration, they offer a per-
spective through which researchers can envision novel therapeutic strategies, making them invaluable in the
fight against infectious diseases in systems medicine.

2.3 Network exploration and ranking

Network ranking is a powerful computational approach that utilizes the topological properties of biological
networks to identify promising drug repurposing candidates [114]. By leveraging the inherent complexity
of systems medicine, this method facilitates the discovery of novel therapeutic targets and the prediction
of drug-disease relationships. In this section, the principles of network ranking, its applications in drug
repurposing, and how it complements traditional drug discovery strategies within the context of systems
medicine are discussed.

Network ranking is based on the idea that the importance of a node (e.g., a protein or drug) within a
biological network is determined by its topological properties, ergo its position in the network (e.g., using
centralitymeasures [11]). By quantifying these properties, network ranking algorithms assign a score to each
node, reflecting its significance in the context of the network. Highly ranked nodes are considered critical
for maintaining the network’s stability and function and are, therefore, more likely to be associated with
diseases or drug action [75].

Network ranking can be applied to various types of networks, including protein-protein interaction
(PPI)networks, drug-target networks, anddisease-genenetworks. The following sectionsprovide anoverview
of prominent network-based ranking algorithms.
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2.3.1 Centrality measures

In graph theory, centralitymeasures provide aquantifiableway to identify themost ’important’ nodeswithin
a network (see Figure 2.2). Several centrality measures exist, including degree centrality, closeness centrality,
and betweenness centrality, each illuminating different aspects of the nodes’ importance [142].

Degree centrality, defined as the number of connections a node has to other nodes, can be used to
identify highly connected proteins (hubs) or drugs in the network (see Figures 2.2a, 2.2d). High-degree
centrality may indicate essential proteins in a biological system or drugs with multiple targets [12].

The degree of a node is the number of edges that it has. For an unweighted undirected graph, it is a
straightforward count of the edges. In a directed graph, one can differentiate between in-degree and out-
degree. The degree centrality for a node v, CD(v), in a graph withN nodes is given by:

CD(v) =
deg(v)
N− 1

(2.1)

where deg(v) is the degree of v, andN− 1 is the maximum possible degree.

Closeness centrality measures the inverse of the average shortest path length from a node to all other
nodes in the network, capturing the ’reach’ of a node (see Figures 2.2b, 2.2e). Proteins or drugs with high
closeness centrality may have a wider influence on the network due to their ’proximity’ to other nodes [99].

The closeness centrality for a node v, CC(v), in a connected graph is given by:

CC(v) =
N− 1∑
u ̸=v d(v, u)

(2.2)

where d(v, u) is the shortest-path distance from v to u, and the sum is over all nodes u not equal to v.

Betweenness centrality emphasizes nodes that serve as bridges between different parts of the net-
work (see Figures 2.2c, 2.2f). Proteins or drugs with high betweenness centrality may affect communication
or interaction pathways within the network and thus could play a critical role in biological systems [58].

The betweenness centrality for a node v, CB(v), is given by:

CB(v) =
∑
s̸=v ̸=t

σst(v)
σst

(2.3)

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of those
paths that pass through v.

2.3.2 Steiner tree

A Steiner Tree is a graph that connects a given subset of vertices (called terminal vertices) with theminimum
total edgeweight possible [49]. Originating from the realmof combinatorial optimization, the use of Steiner
Trees presents a promising avenue in the realm of systems medicine, particularly for drug ranking in drug
repurposing based on PPI and protein-drug networks.

A Steiner Tree approach identifies the minimal set of additional nodes (e.g., proteins), called Steiner
vertices, and associated interactions that connect the terminal nodes [94].
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(a) Degree centrality,N = 16 (b) Closeness centrality,N = 16 (c) Betweenness centrality,N = 16

(d) Degree centrality,N = 128 (e) Closeness centrality,N = 128 (f) Betweenness centrality,N = 128

Figure 2.2: Degree centrality, closeness centrality and betweenness centrality assign different scores to each node. The scores are linearly
normalized and encoded as color ascendingly as blue (lowest), green, yellow, orange, red (highest). Degree centrality assigns high scores
independently of the position in the network, whereas closeness and betweenness centrality take the positionwithin the network into account.
Source code available at https://github.com/jm9e/centrality-networks.
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The rationale for using a Steiner Tree in drug repurposing lies in the network’s inherent ability to cap-
ture indirect interactions and pathways between proteins and drugs [40]. Drugs targeting proteins in the
resulting Steiner Tree may have a higher likelihood of influencing the disease process, even if they do not
directly target the disease proteins. Therefore, these drugs may be repurposed for treating the disease.

To rank drugs for repurposing, one can score the drugs based on their associationwith the proteins in the
Steiner Tree. Drugs associated withmultiple proteins or highly connected proteins in the tree would receive
higher scores. This way, the drugs that could potentially exert a broader influence on the disease-associated
network would be ranked higher.

Moreover, the approach could be refinedby considering edgeweights representing interaction strengths,
or by incorporating additional network measures, such as centrality, to prioritize highly influential proteins
and their associated drugs.

The Steiner Tree problem is an NP-hard problem and thus not efficiently solvable [104]. However,
heuristic approaches exist [72], such as the Multi-Steiner Tree approach1, a customized version of the Kou
et al. [3, 110] approach, to obtain an efficient approximation (see Section 1).

Multi-Steiner Tree initially utilizes the Kou et al. procedure to calculate the premier Steiner Tree,
denoted as T. Concurrently, a depth-first search is executed to find all bridges within the graph. A bridge is
understood as an edge, the removal of which would result in the disconnection of the graph. Let L signify
the collection of edges present in T, C be the cost related to T, and τ be a user-specified tolerance detailing
the extent to which the costs of the forthcoming trees may surpass C. Additionally, let k signify the count
of the already discovered trees (initialized to 1) and U represent the set of returned nodes (initialized to the
nodes contained in T). The steps in 1 are iterated until k = K or L is empty. Subsequently, the subgraph
elicited byU is returned.

2.3.3 TrustRank

TrustRank1, an algorithmoriginally designed to combatweb spam [78], can be effectively leveraged for drug
repurposing using PPI and protein-drug networks. TrustRank operates on the principle of ’guilt by asso-
ciation’ - it differentiates reputable (or ’trustworthy’) web pages from spam by iteratively distributing trust
scores from a manually selected set of reputable seed pages to their linked pages [28] (see Section 2).

In the context of drug repurposing, TrustRank can be applied to a networkwhere nodes represent drugs
or proteins and edges represent known drug-protein interactions, following a network topology approach
as before [50]. The trust scores in this network can be interpreted as confidence in the potential of a drug to
be repurposed for a particular disease.

Proteins known tobe associatedwith a disease canbe chosen as seeds, and these seeds are initially assigned
high trust scores. The algorithm then propagates these scores throughout the network along interaction
edges, distributing a protein’s score among its associated drugs [39] and, ifwe consider drug-drug interaction
data, potentially further among other drugs.

In this iterative process, drugs associated (directly or indirectly)withmanydisease proteins orwithhighly
trusted disease proteins tend to receive high trust scores, hence they are ranked highly for repurposing. As
a result, TrustRank also allows for the consideration of indirect drug-disease associations that may be over-
looked by approaches considering only direct interactions [71].

1Implementations for TrustRank andMulti-Steiner Trees can be found at https://github.com/jm9e/network-algorithms
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Algorithm 1Multi-Steiner Tree
Require: G,K, τ
1: T← computeSteinerTreeKou(G)
2: bridges← findBridges(G)
3: L← edges(T)
4: C← cost(T)
5: k← 1
6: U← nodes(T)
7: while k ̸= KAND L is not empty do
8: e← L.pop()
9: if e in bridges then
10: continue
11: end if
12: G.removeEdge(e)
13: T′ ← computeSteinerTreeKou(G)
14: if cost(T′) ≤ C× 100+ τ then
15: U.add(nodes(T′))
16: k← k+ 1
17: end if
18: L← L.intersection(edges(T′))
19: G.addEdge(e)
20: end while
21: return G.subgraph(U)

Algorithm 2 TrustRank
Require: graph, seedSet, d,maxIterations
1: N← number of nodes in graph
2: trustScores← array of sizeN
3: for i in 0 toN− 1 do
4: if i in seedSet then
5: trustScores[i]← 1/size of seedSet
6: else
7: trustScores[i]← 0
8: end if
9: end for
10: for iteration in 0 tomaxIterations− 1 do
11: newTrustScores← array of sizeN
12: for i in 0 toN− 1 do
13: newTrustScores[i]← (1− d)× trustScores[i]
14: for j in 0 toN− 1 do
15: if graph[i][j] > 0 then
16: newTrustScores[i]← newTrustScores[i] + d× trustScores[j]/outdegree(j)
17: end if
18: end for
19: end for
20: trustScores← newTrustScores
21: end for
22: return trustScores
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2.4 COVID-19 pandemic

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has wreaked
havoc across the globe, leading to the unprecedented COVID-19 pandemic. First identified in Wuhan,
China, in December 2019, this virulent pathogen has swiftly spread, posing immense challenges to health-
care systems, economies, and societies at large [213]. As an enveloped, positive-sense, single-stranded RNA
virus, it falls under the Coronaviridae family. The virus exhibits a propensity for the human respiratory
system, presenting symptoms that vary widely in severity, frommild manifestations to life-threatening con-
ditions, especially in vulnerable demographics [90].

Given the urgency precipitated by the rapid global spread of the virus and the mounting death toll,
the scientific community was pressed to explore all potential avenues to identify viable therapeutic interven-
tions. In this race against time, drug repurposing emerged as an especially promising strategy. This approach,
which involves identifying new therapeutic uses for already approved or investigational drugs, offers a sig-
nificant advantage in terms of time. Traditionally, developing a new drug from scratch demands years, if
not decades, of rigorous research and testing. However, repurposed drugs have already cleared several safety
and efficacy benchmarks, which accelerates their deployment in response to emergent health crises [157].

The systems medicine paradigm offers a robust framework to facilitate drug repurposing, especially
against complex diseases like COVID-19. Central to this approach are PPI networks, pathogen-host inter-
actions, and protein-drug networks, as introduced before. These integrative network-based methodologies
offer insights into the intricate molecular interplay underlying diseases, paving the way for the identification
of potential therapeutic targets [12].

Focusing on SARS-CoV-2, researchers have meticulously mapped virus-host protein-protein interac-
tions (PPIs) specific to the infection. By scrutinizing this PPI network, pivotal host proteins and cellular
pathways co-opted by the virus have been spotlighted [70]. Harnessing this knowledge, scientists can pin-
point existing drugs with the potential tomodulate these host factors or pathways. The objective is to either
target the proteins directly or to impede the broader cellular mechanisms that the virus exploits [213].

Furthermore, the data-driven nature of systems medicine aids in the identification of potential drug
candidates that might have been overlooked using conventional methods. For instance, by analyzing the
network interactions, researchers can unveil drugs that, although not directly connected to the primary dis-
ease proteins, can influence the broader disease process by targeting the peripheral proteins in the network
[129].

In the context of the COVID-19 pandemic, where swift action was paramount, the efficiency and pre-
cision offered by systemsmedicine and drug repurposing stood out as invaluable assets in the quest for ther-
apeutic solutions.

2.5 Results

To help combat the Corona pandemic, the methods described in the previous sections have been integrated
into the developedweb toolCoVex (CoronaVirus Explorer) [171] andmade available to researchersworld-
wide, as one of the first tools of this kind made available in this situation.

CoVex is a data-driven web-based platform designed to explore the virus-host interaction landscape
of SARS-CoV-2, the causative agent of the COVID-19 pandemic. It was released at an early stage of the
SARS-CoV-2 pandemic to provide quick and easy access to the data available at the time, integrated into
a publicly available online tool2. CoVex integrates multiple layers of information, including virus-host
protein-protein interactions, human protein-protein interactions, and gene expression data, to provide a
comprehensive network of SARS-CoV-2 interactions within the human host.

2Website: https://exbio.wzw.tum.de/covex/
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One of the main features of CoVex is its ability to display and analyze virus-host interaction networks.
Users can investigate SARS-CoV-2-host protein interactions, identify potential functional modules within
the network, and predict the impact of these interactions on cellular processes. CoVex can also provide
insights into themolecularmechanisms of viral pathogenesis, facilitating the identification of potential ther-
apeutic targets and the development of effective antiviral strategies.

Furthermore, CoVex allows users to explore gene expression data from various tissues and cell types,
helping researchers understand how the virus affects different cellular environments. By integrating this
information with protein-protein interaction data, CoVex enables the identification of host factors that
may contribute to the susceptibility and severity of COVID-19 infections.

Figure 2.3: The CoVex interface provides users with a virus‐protein interaction network at the beginning, only showing viral proteins and
directly affected human proteins. On the left, a summary of the selected dataset is shown and users can search for specific viral or human
proteins. To the right, users can select parts of the network and start their analysis.

2.5.1 Integrated datasets

For CoVex, a network of virus-host interactions was obtained by integrating data from various sources.
This includes SARS-CoV-2AP-MSdata, reportedbyGordonet al. [70]which contains 332high-confidence
virus-host interactions for 27 SARS-CoV-2 proteins. Additionally, interactions from SARS-CoV-1were in-
cluded from the databases VirHostNet [74] and Pfefferle et al. [152]which contain 24 and 113 interactions,
respectively.

PPIs were sourced from the integrated interactions database [109] and subsequently filtered based on
their experimental validation. Through this process, an interactome was generated, comprising 17,666 pro-
teins that are connected via 329,215 interactions.

Toachieve awide rangeof drug-target associations,multiple databaseswere compiled, includingChEMBL
[130], DrugBank [202], DrugCentral [193], Target Therapeutic Database [198], Guide To Pharmacology
[6], PharmGKB [13], and BindingDB [64]. From this pool, only drugs that demonstrated a binding affinity
value (EC50, IC50, Kd, and Ki)< 10μMwere considered for further analysis [188, 211]. Additionally, the
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(a) Viral proteins (b) Combined approach

(c) Drug‐based approach (d) Hypothesis‐driven approach

Figure 2.4: Different application scenarios in CoVex can be achieved by selecting different seed proteins (i.e., viral proteins and host proteins,
highlighted with orange). Depending on the selected seed nodes, algorithms such as the Multi‐Steiner Tree identify pathways (indicated in
gray).

included drugs needed to be mappable to DrugBank IDs and target host proteins to be deemed relevant to
the network.

In addition to that, drugs that were currently undergoing clinical trials for the treatment of COVID-19
were identified. The relevant drugs, mappable toDrugBank IDs, were sourced from platforms such as Clin-
icalTrials.gov, the EU Clinical Trials Register [34], and the International Clinical Trials Registry Platform.
The network was further enriched with a total of 6861 drugs through that process, out of which 67 were in
clinical trials. These drugs were linked to 52,860 drug-target associations that were also integrated into the
network.

Per-tissue median gene expression levels from the GTEx data portal [118] adds another layer of infor-
mation to the network, allowing for tissue-specific filtering and visualization of gene expression values in the
CoVex tool.

2.5.2 Application scenarios

There are different ways in which CoVex can be used to identify promising drug candidates (see Figure
2.4). These approaches differ in terms of the selection of the seeds and the underlying assumptions about
the disease.

WhileCoVexhasbeen implementedmainly for the SARS-CoV-2virus, integrating the relevantdatasets,
it can also be used for other diseases by providing a custom selection of seeds using the ’custom proteins’ fea-
ture.

The following subsections provide an overview of the main application scenarios of CoVex.
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Viral proteins

In this application scenario, the user begins by selecting a set of proteins related to a virus of interest (see
Figure 2.4a). Leveraging the PPI network, they identify the biological mechanism or pathway exploited by
the virus for infection.

For instance, one could consider certain proteins that form the outer structure of a virus and hence
facilitate its entry into host cells, which is seen as a virus-host interaction in the network. By selecting the
these viral proteins or their direct interactors, an algorithm such as a Multi-Steiner Tree is used to unravel
the biological pathway involved.

Analysis of the resultingnetwork can lead to the identificationofnewpotential drug targets. Further, the
user employs networkmeasures like closeness centrality to pinpoint drugs that could influence this pathway.
Theymay discover relevant drugs that target a key proteinwithin the pathway, including both approved and
experimental therapeutics.

To deepen the understanding of the interplay between the key protein and other proteins known to
participate in viral entry, the user can leverage additional features available in the computational tool at hand.
This may lead to the identification of additional proteins that connect the key protein with other relevant
proteins involved in the viral infection process.

These proteins are likely functionally related through a specific system or pathway, which could be tar-
geted by the aforementioned drugs. In conclusion, through this process, the tool enables to identify proteins
that play a significant role in viral host cell entry and can be targeted by a range of therapeutics. Importantly,
this process can also lead to the identification of additional protein targets that are functionally related to
critical proteins involved in the infection process, even if those critical proteins were not part of the initial
protein set used for the analysis.

Combination of Viral Proteins and SelectedHost Proteins

In this application scenario, the user begins with both viral proteins and a list of proteins of interest, again
to identify a pathway or biological mechanisms that could potentially be targeted by drugs (see Figure 2.4b).
Specifically, this could involve investigating viral proteins known to suppress host immunity and the corre-
sponding host immune response pathways.

As an example, the user selects certain viral proteins that are believed to be involved in suppressing innate
immune response and promoting apoptosis. Concurrently, they assemble a list of proteins of interest based
on differentially expressed genes (DEGs) from a relevant study. TheseDEGs could be related to the immune
response mounted by host cells when infected by a virus, with emphasis on genes associated with the host
pathway relating to infection by another viral pathogen.

Once they have selected the viral proteins and DEGs, these are again used as seeds for an algorithm like
theMulti-Steiner Tree to extract a potential immune-related mechanism. The resulting subnetwork should
ideally reveal that the viral proteins are closely related to the DEGs in the PPI network.

Upon analyzing this network using measures like closeness centrality, the user can obtain a high rank
for certain drugs that have immunomodulatory effects and see which are currently under clinical trials. Ad-
ministration of these drugs could potentially mitigate immune-mediated lung injury and reduce functional
deterioration caused by an overactive host inflammatory response, which is particularly crucial in later stages
of a disease.

Other drugs that target this subnetwork may also be identified for further examination in downstream
analyses. The tool also provides the flexibility for users to supply a custom list of proteins as seeds to seek
out drugs that could target a proposed mechanism of interest.

26



Drug-based approach

In this scenario, starting with a set of drugs of interest, a top-down approach can be used to extract potential
host mechanisms and additional drugs that target the proteins involved in these mechanisms (see Figure
2.4c). For example, one could identify a list of drugs currently under clinical trials for a specific disease and
categorize them based on their anatomical therapeutic chemical (ATC) classification.

The focus could be on drugs from a specific class, such as immunostimulants, and their target proteins
as starting seeds. In parallel, the interactors of immune-related viral proteins could be selected as end-point
seeds. By applying the Multi-Steiner Tree algorithm, one can identify pathways of interacting proteins that
link the selected drugs (and their target proteins) with the chosen viral proteins.

Among these connector proteins, genes associated with a specific system, such as cytokine signaling in
the immune system, could be found. Notably, one might discover a specific gene that is highly expressed
in certain body tissues and can be inhibited by an investigational drug, which is a potential therapeutic for
inflammatory and autoimmune processes.

Hypothesis-driven approach

In this scenario, the user starts from a hypothesis-driven mixed selection of viral and host proteins, as well
as drugs. The aim is to utilize PPIs to uncover a full mechanism or pathway and to propose additional drug
candidates.

As an example, one could consider a recent hypothesis suggesting that a virus interferes with the for-
mation of hemoglobin in erythrocytes, leading to symptoms of hypoxia. This hypothesis would also serve
to explain why certain drugs are effective, as they may prevent viral proteins from competing for crucial
components in hemoglobin.

Based on this hypothesis, one could investigate the pathways connecting these viral proteins with the
effective drugs (see Figure 2.4d). To do this, one selects known host proteins that bind to these components
as seeds. These could be proteins that interact with the viral proteins and those that bind to other relevant
components.

Employing a complex algorithm for drug target discovery, followed by a network measure like closeness
centrality for drug discovery, one can identify other potential therapeutic drugs, in addition to those already
under clinical trials. Importantly, one might find drugs that are approved for related conditions, fitting the
investigated hypothesis.

Also, some drugs are widely used therapeutically for related imbalances, thus providing more poten-
tial therapeutic options. However, it is essential to note that the scientific evidence supporting the initial
hypothesis might be limited, and such a hypothesis is used merely to illustrate the potential of a tool like
CoVex for network medicine investigation and hypothesis testing capabilities.

2.5.3 Summary

In light of the challengesCOVID-19has posed tohealth systems, economies, and societiesworldwide, efforts
to find effective treatment options have remained at the forefront of scientific endeavors. The extended
duration required to develop vaccines hasmagnified the importance of swiftly identifying therapeutic agents
to manage and control the symptoms of COVID-19. Particularly, drug repurposing stands out as a viable
strategy, given its potential to expedite clinical trial processes.

CoVex has emerged as an advancement in this effort, mainly due to its quick availability. It is a user-
friendly, interactive web platform that synergizes data fromboth SARS-CoV-1 and SARS-CoV-2 virus-host
interactions with the broader human interactome and multiple drug-target databases, fitting into the Sys-
tems Medicine paradigm. The platform’s design facilitates an efficient exploration of the virus-host-drug
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interactome, enabling users to pinpoint potential drug targets and candidates for repurposing swiftly. Such
streamlined access to integrated data bridges the gap between computational datamining and practical drug
discovery, addressing the often times unstructured process in identifying drug repurposing candidates.

While CoVex stands as a potent tool in research, it’s imperative to approach its outputs with a dis-
cerning perspective. It offers suggestions for potential drug candidates but does not ascertain their antiviral
efficacy. The intricate dynamics of viral-host interactions mean that drugs targeting specific proteins might
not guarantee an antiviral outcome. These candidates require rigorous validation through subsequent in-
vestigations, genetic or chemical assays, and clinical trials (see Section 4.1). Furthermore, the database upon
which CoVex draws, while extensive, has its limitations. CoVex focuses on identifying novel drug targets
within the human interactome, eschewing drugs that directly target viral proteins.

Recognizing the intrinsic challenges of navigating the complex algorithms and parameters, CoVex has
incorporated features like task queuing for parallel executions. Plans for the platform’s evolution include
the development of guidelines aiding users in method selection suited to their research queries, continuous
updates on virus-host interactions, and integration of ongoing clinical trial data.
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3
Privacy-aware AI

In systems medicine, as well as in adjacent disciplines such as bioinformatics and computational biology,
the analysis of large, complex, and often high-dimensional datasets is fundamental to extractingmeaningful
knowledge [87]. Such datasets may include genomic sequences, proteomic profiles, medical images, and
electronic health records, among others. Traditional algorithmic and statistical methods have been used to
uncover patterns or make predictions, but they often necessitate a profound understanding of the biologi-
cal, clinical, or physiological mechanisms at play [82]. Artificial intelligence methodologies offer a distinct
advantage in this regard [189, 97]. Unlike traditional methods, they are capable of autonomously learning
from the data, effectively ”teaching themselves” to identify subtle relationships or patterns within the data
without requiring an in-depth understanding of the underlying processes [160, 46]. This capability not only
accelerates the speed of data analysis but also enables the discovery of novel insights thatmight be overlooked
by conventional approaches.

3.1 Definitions

Like for any statistical or algorithmic approach, certain terms are used in the context of machine learning,
which are briefly introduced in this section [20, 82].

Since there is often a confusionbetween the terms artificial intelligence (AI) andmachine learning (ML),
in the remainder of this thesis, the terms are defined as follows [85, 169]:

Artificial intelligence is a broader term and encompasses ML as well as other techniques such as algo-
rithms and systems embeddingML. This term is arguably muchmore vague and purposefully creates a link
to human intelligence which these techniques try to mimic [169]. Consequently, this term can often be
found in texts addressing an audience not necessarily familiar with the inner workings of the field.

Machine learning relates to methods and algorithms that are capable of finding rules or patterns that
allow for predicting a certain label [68]. They usually employ a pre-chosenmodel which is optimized by an
optimizer. A model consists of adjustable parameters which are modified (optimized) during the training
process and a fixed structure [167]. The choice of the model significantly influences the performance of its
resulting trained version and is far from trivial [20]. Section 3.2 sheds more light on different model types
and their characteristics.
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While the term artificial intelligence is arguablymore popular, this termwill be avoided in the remainder
of this chapter, to serve a precise language [85].

A piece of data to whichML should be applied is called a dataset, which usually follows a certain struc-
ture. It contains samples, each consisting of features and potentially a label. A dataset D of n samples and
m features can therefore be perceived as a set of vectors as in Equation 3.1, where yi are the labels and xi,j are
the feature values.

D = {(y1, x1,1, ..., x1,m), ..., (yn, xn,1, ..., xn,m)} (3.1)

When referring to all features (xi,1, ..., xi,m) of a sample i, the notation Xi is used.

Samples could represent patients for instance, where features could be gene expression values and the
label be either 1 or 0, specifying whether the respective patient has a particular disease (e.g., cancer) or not.

A prediction modelM with its parameters p can be perceived as a function which is presented with an
instance X and returns an y value: Mp(X) = y. In order to obtain the parameters p for a model M, the
optimizerO is applied to a dataset, which can be formalized asOM(D) = p.

To compare the performance of different models, various metrics exist. Accuracy, representing the per-
centage of correctly classified samples, andmean squared error (MSE) are commonly used, the latter defined
as 1

n
∑n

i=1(M(xi)− yi)2.

3.2 Models andOptimizers

There are many different types of ML methods, ranging from conventional, statistical methods, to more
modern, computationally intensive approaches such as deep learning. There are also meta-level techniques
that aim to find the best model or model configuration for a specific task [84]. These models vary in perfor-
mance, size, and complexity [20, 68]. The first task when applying ML to a dataset is therefore to choose
the appropriate model [156].

Statistical models like linear regression (see Section 3.2.1) and logistic regression are among the sim-
plest but still effectiveML techniques [82]. Thesemodels arewell-suited for problemswhere the relationship
between the features and the labels is approximately linear. Their main advantage is interpretability, which
makes them favored in fields like healthcare and social sciences.

Tree-based models such as decision trees (see Section 3.2.2) and their ensembles like Random Forests
andGradient BoostingMachines are non-linearmodels used for both classification and regression tasks [27].
They partition the feature space into smaller regions to make predictions, which gives them great flexibility
in modeling complex relationships.

Support vector machines (SVM) are popular for tasks that require a boundary to separate different
classes [44]. They can be used for both linear and non-linear classifications by employing different kernels.
SVMs are especially effective when the number of features is large relative to the number of samples.

Neural networks (see Section 3.2.3) are deep learningmethods employing networks withmany layers
to learn from the data [68]. These models are particularly good at learning from unstructured data like
images, text, and sound but require substantial computational resources.
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AutoMLandmeta-learning techniques aim to automate the process of selecting the best model and
its hyperparameters [84]. Thesemethods can be particularly useful for those who are not experts inmachine
learning but still need to solve complex problems.

Optimizers serve as the engine that powers the training phase of machine learning models. Their pri-
mary function is to search the parameter space to find the optimal set of parameters that minimizes the loss
function [68]. This effectively tunes the model to make more accurate predictions on unseen data [20].
While some models like linear regression offer analytical solutions for optimization [82], others — particu-
larly more complex models like neural networks— pose significant computational challenges in finding the
optimal solution [115]. As models grow in power and flexibility, capturing increasingly complex relation-
ships in the data, the optimization problem correspondingly increases in difficulty [186]. The choice of an
optimizer, particularly for neural networks, is not a peripheral decision but a pivotal one that substantially
influences both the model’s performance and the computational resources required for training [167].

3.2.1 Linear regression

One of the simplestMLmethods, often used in statistics and predictive modeling, is linear regression [134].
This method serves to illustrate the foundational concepts introduced in Section 3.1. Linear regression
can be formalized as shown in Equation 3.2, where β represents the model parameters, and ε is a normally-
distributed error term with mean zero.

Mβ(X) = Xβ+ ε (3.2)

The task of an optimizer in the context of linear regression is to find the set of parameters β that mini-
mizes the error term or, equivalently, a loss function. Inmany cases, this loss functionL is theMSE, expressed
as

L(β) =
1
n
∥Xβ− y∥2,

and the optimal parameters can be analytically computed via

β = (XTX)−1XTy

in a single iteration [20].

Linear regression models are considered basic continuous models that are relatively straightforward to
optimize, particularly when the number of features is low. However, they make several assumptions, in-
cluding the independent and linear relationship between each feature variable and the label [82]. This as-
sumption implies that each feature contributes independently to the output, and thus, the model may not
capture more complex, interdependent relationships between features and labels.

3.2.2 Decision trees

Decision trees serve as another elementary example of machine learning algorithms and contrast with linear
regression methods in various ways [158]. While linear regression algorithms are continuous and linear by
nature, decision trees are inherently discrete and capable of capturingnonlinear relationships. Thedifference
between continuous and discrete methods and the implications for federated learning are shown in Section
3.3.1.

The core concept of a decision tree is to generate a tree-likemodel of decisions formulated as rules. Given
a sample, the algorithm traverses the tree from the root, applying rules at eachnode, until reaching a leaf node
that contains the predicted label [26]. Each decision rule at a node evaluates to either true or false, guiding
the algorithm down one of two possible branches.
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The optimization process of decision trees differs substantially from that of linear regression. While
linear regression models can be optimized analytically to find the global minimum of a loss function [134],
decision trees require heuristic techniques aimed at minimizing a measure known as impurity [138]. Two
commonmeasures include the Gini indexG and entropy E, defined as in Equations 3.3 and 3.4 respectively,
where pi is the probability or relative frequency of a sample having the label ci.

G = 1−
∑
i∈C

p2i (3.3) E =
∑
i∈C

pi log pi (3.4)

Heuristics are necessary because the search space for the ”best” decision tree is often vast and computa-
tionally intractable. The tree is constructed by iteratively partitioning the dataset using rules that minimize
the resulting impurity. This involves testing various feature thresholds and selecting the one that most ef-
fectively reduces impurity. The algorithm proceeds recursively, applying the same logic to the subsequent
partitions of the data.

Finding an optimal decision tree is computationally challenging—an NP-hard problem [113]. This
makes it particularly difficult for large sets of features. In contrast, linear regressionmethods canoftenhandle
larger feature sets more efficiently due to their analytical solvability.

Decision trees are also prone to overfitting, especially when the tree is deep and captures noise in the
training data [133]. Overfitting leads to poor generalization to new, unseen data. Countermeasures include
tree pruning techniques and setting a minimum number of samples required for leaf nodes.

3.2.3 Neural networks

Neural networks have gained significant prominence for their capacity to model intricate and non-linear re-
lationships in data [68]. They are designed to approximate the structural and functional aspects of biological
neural systems, comprising an interconnected web of neurons and edges (or synapses).

Though they are a powerful tool, capturing the limelight of machine learning in recent years [176], they
are not a panacea for all data-driven problems [55]. The complexity and capabilities of neural networks
havemade them the subject of extensive theoretical and empirical investigation. This section offers a concise
overview of the core concepts behind neural networks.

Architecture in neural networks generally involves multiple layers of neurons, which are intercon-
nected by edges assigned specific weights. The input values propagate through these layers, with each layer
transforming the values by multiplying them with the associated weights.

Unlike simpler models like linear regression or decision trees, where the primary task of the optimizer
is to adjust a relatively small number of parameters or rules, the optimizer’s objective in neural networks is
more computationally demanding. It needs to find optimal weights across potentially thousands ormillions
of connections in the network architecture.

Optimization of a neural network is commonly achieved through a technique called back-propagation
[168]. Back-propagation calculates the gradient of the loss function concerning each weight by traversing
the network from the output layer back to the input layer. The weights are then updated in the opposite
direction of the gradient, a process often referred to as gradient descent [167]. This is a markedly different
optimization landscape than simpler models like linear regression, which can find the optimal parameters
analytically, or decision trees, which rely on heuristic methods.

The iterative application of back-propagation allows the neural network to ’learn’ how to perform its
task more effectively over time. This methodology offers both the benefit and the challenge of being able
to capture complex relationships in data but requires significant computational resources to optimize effec-
tively [18].
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3.2.4 Ensembles and other techniques

Ensemble techniques provide a robust approach to improve the predictive power of individual machine
learningmodels by combining their predictions to create amore accurate overall prediction. The integration
ofmultiplemodels can significantly enhance performance, offering improved stability and a decrease in both
bias and variance [47]. This section will briefly introduce the most common ensemble techniques.

Voting techniques operate by soliciting predictions from each model in the ensemble. The final predic-
tion is determined by taking the majority vote for classification tasks, or by averaging the predicted values in
regression tasks [214]. Voting offers a straightforward way to improve model performance, but it assumes
that each model in the ensemble has an equal say, which might not be optimal if the models have different
levels of reliability.

Bagging (bootstrap aggregating) trains multiple models independently, each on a different random sub-
set of the training data, obtained by resampling with replacement [25]. The ensemble prediction is then an
average of the predictions from individual models. This technique is particularly effective for models that
have high variance, such as decision trees. Random forests, which combine bagging with decision trees, are
a classic application of this approach [27].

Boosting consists of training multiple models sequentially, each focusing on correcting the errors of
its predecessor [59]. The final prediction is a weighted sum of the predictions from all models, where the
weights reflect each model’s performance. Boosting is highly effective for reducing bias and can improve
accuracy, but it is more susceptible to overfitting if the individual models are complex and not sufficiently
regularized [175].

Stacking uses a meta-model to combine the predictions of multiple base models. Each base model is
trained independently, and their predictions serve as input features for the meta-model, which makes the
final prediction [14]. Stacking extends the idea of voting by allowing the meta-model to learn how to opti-
mally combine predictions from different base models based on their individual performance [204].

The choice of ensemble technique to apply is highly problem-specific and should consider the charac-
teristics of the individual models, such as their complexity, tendency to overfit or underfit, and their com-
putational requirements [166].

3.2.5 Comparison

Choosing the rightmachine learningmodel for a particular application is far from trivial. While automation
and AutoML tools are designed to alleviate this complexity, they are not a panacea. They often perform
a broad search across multiple algorithms and hyperparameters, which can be both time-consuming and
computationally expensive due to the sheer number of combinations [84, 57].

Method Complexity Overfitting Risk Interpretability High Dimensionality Handling
Linear Regression Low Low High Moderate
Decision Tree Medium High High Poor
Random Forest High Moderate Moderate Moderate
Neural Network Very High High Low Excellent

Table 3.1: The table shows a multifaceted comparison of popular machine learning methods displaying complexity, overfitting, interpretability
and handling of high dimensional data.

Table 3.1 elucidates how various algorithms perform across different dimensions, providing a more
holistic view that can guide the selection process.
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Computational Complexity is an essential factor to consider, especially in real-time applications or
when computational resources are scarce. A model with ’Low’ computational complexity like Linear Re-
gression is easy to train and quick to deploy. This can be crucial in applications such as real-time analytics
where latency matters. On the other hand, models with ’High’ or ’Very High’ complexity, such as Random
Forests, often provide higher accuracy at the cost of longer training times and higher resource consumption.
Random Forests, which consist of an ensemble of decision trees, are particularly computationally demand-
ing but often yield higher performance [27, 18].

Overfitting Risk describes the vulnerability of a model to fit the noise in the training data instead of
the underlying trend. Models with ’High’ overfitting risk, like Decision Trees, require meticulous tuning
and regularization to generalize well to new data. This makes them less ideal for scenarios where the model
has to adapt quickly to new data. ’Low’ risk models like Linear Regression are generally more robust to
overfitting, especially when the amount of data is large compared to the number of features [82]. Random
Forests, which ensemble multiple Decision Trees, inherently mitigate some risk of overfitting by averaging
predictions but still require parameter tuning to balance bias-variance tradeoff [27, 82].

Interpretability has emerged as a significant concern, especially in sensitive domains like healthcare
and criminal justice, wheremodel decisions can have profound impacts on human lives. Models with ’High’
interpretability, like LinearRegression andDecisionTrees, allow for easier scrutiny and aremore transparent
in how they arrive at a prediction. This can be vital for ethical considerations and for gaining stakeholder
trust. On the other hand, ’Low’ interpretability models like Neural Networks act more like ”black boxes,”
making it hard to understand their decision-making process. This poses challenges in scenarios requiring
accountability [32].

High Dimensionality Handling is a critical factor in modern datasets that often contain hundreds
or even thousands of features. Models that are rated ’Excellent’ for high dimensionality, such as Neural
Networks, are well-suited for complex tasks like image or speech recognition, where the feature space is in-
herently high-dimensional. ’Poor’ performers like Decision Trees can struggle with high dimensionality due
to the ”curse of dimensionality,” which can lead to overfitting and increased computational costs. The abil-
ity to handle high-dimensional data efficiently is often crucial for applications in bioinformatics, natural
language processing, and computer vision [17].

The complexity of model selection is further amplified in specialized applications such as biomedical
data analysis. Here, not only must one consider the computational and statistical aspects of the models, but
also understand the intricate biological processes that generate the data [160].

In conclusion, while eachmodel type has its own set ofmerits anddemerits, no single algorithm is a ”one-
size-fits-all” solution. The task at hand—whether it’s real-time analytics, ethical considerations in healthcare,
or themanagement of high-dimensional data—necessitates a unique blend of characteristics. Thus, it is not
just about maximizing performance metrics, but also about aligning the model’s strengths and weaknesses
with the project’s specific requirements and constraints [144].

3.3 Federated learning

Federated learning (FL) presents an innovative approach to training machine learning models that aligns
with emerging data privacy regulations and computational decentralization [127]. Unlike traditional ma-
chine learning where data is pooled into a centralized location for model training, FL allows the model to
learn from decentralized data residing onmultiple devices or servers. The ultimate goal is to develop a global
model that performs as if it were trained on a centrally-located, aggregate dataset, without the need for data
to ever leave its original location.
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The Federated Paradigm

The foundational principle of FL is to keep data localized, thus preserving privacy and potentially even en-
hancing security. In this setup, each local device or node performs model training on its own subset of the
data and then communicates the model updates (e.g., gradients, parameters) to a central server. The central
server aggregates these updates to construct a global model. Importantly, no raw data ever leaves the local
device, ensuring a level of data privacy and security that traditional centralized models cannot offer.

Methodological Adaptations

While FL has been extensively researched in the context of neural networks [127, 122, 143], extending this
paradigm to other machine learning methods remains an open area of research. This thesis aims to expand
FL to incorporate the methodologies discussed in Section 3.2.

Each method comes with its own set of challenges and opportunities when adapted to a federated con-
text. For instance,methods like LinearRegression, which have lower computational complexity,might seem
straightforward to federate but can encounter issues related to data distribution and privacy leakage. On the
other hand, complex methods like Random Forests present challenges in aggregating trees from various de-
vices but offer advantages in mitigating overfitting and improving model performance.

Federated linear regression

In case of linear regression (see Section 3.2.1), a federated version can be created by splitting the optimizer
into sub-parts (XT

i Xi and XT
i yi) that can be calculated independently, as shown in Figure 3.5 for two partic-

ipants a and b.

β = (XTX)−1XTy = (XT
aXa + XT

bXb)
−1(XT

a ya + XT
b yb) (3.5)

The aggregator then simply sums up the partsXT
i Xi andXT

i yi to obtain XTX andXTy and thereby β, the
global model. In this case, the global model entirely matches the classical method and nothing is lost in the
course of federating the method (assuming no precision loss occurs due to floating point rounding errors).

Federated average

Federated average is a common technique that can be applied to a range of continuous models (see Section
3.3.1).

For neural networks (see Section 3.2.3), federated average can be applied as follows: Each participant
trains one or several epochs and sends the resulting (local)model to a central aggregator. Once the aggregator
has received all local models and merges them into a global model by averaging their weights. This requires
all participants to use the same neural network architecture that they have agreed upon before. In most
cases, the central aggregator sends an initial, randomly initialized model to all participants to avoid an initial
divergence.

This method performs well for independent and identically distributed data (IID), where there is no
class imbalance across different participants. However, performance can degrade substantially in non-IID
conditions. Several approaches, such as data stratification and advanced aggregation algorithms, are being
explored to address this issue [212]. One of the central challenges in FL is to adapt these averaging techniques
to handle the data distribution skews inherently present in decentralized setups [117, 101].
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3.3.1 Continuous and discrete models

The methods previously introduced can be categorized into two distinct types of models: continuous and
discrete [196, 82]. This classification is linked to the predictive behavior exhibited by thesemodels. In a con-
tinuous model, a minor alteration in the input leads to a proportionally small fluctuation in the prediction.
Conversely, in a discrete model, even an insignificant change in the input can yield a drastically different
outcome.

This distinction can be formally articulated, as demonstrated in Equations 3.6 and 3.7. Here,Mc and
Md denote a continuous and a discrete model, respectively, andD signifies the input space for these models.

∀x ∈ D. lim
h→0+

Mc(x− h)−Mc(x) = 0 (3.6) ∃x ∈ D, e > 0 ∈ R. lim
h→0+

Md(x− h) = e (3.7)

Equation 3.6 stipulates that in continuous models, the discrepancy in predictions asymptotically ap-
proaches zero as the input difference nears zero. In layman’s terms, a minuscule modification to the input
results in an equivalently small change in the output.

Equation 3.7, conversely, indicates that in discrete models, the prediction can leap by a quantity e even
when the input changes only slightly. Simply put, in a discrete model, a minor input adjustment may lead
to a significant, abrupt output transformation.

Continuous and discrete models evidently capture different kinds of relationships between the target
label and input data, and a parallel distinction can be applied to variables.

Example For instance, when considering disease variables like ’mild,’ ’elevated,’ and ’severe,’ numerical
values such as ’1,’ ’2,’ and ’3’ could be assigned to reflect the severity hierarchy. These are termed ranked
variables and possess a natural ordinal structure. However, in cases where no such ordering exists, for in-
stance with values like ’subtype A’ and ’subtype B,’ a numerical representation might induce misleading or
incorrect implications. Numeric values can insinuate relationships between categories that extend beyond
mere ordering. For instance, labeling a severe condition as ’3’ does not mean it is three times as severe as a
mild condition labeled ’1.’

Discretemodels are generallymore compatible with categorical variables, especially when these variables
cannot be sensibly rendered in continuous models due to the absence of a natural ordinality. As such, dis-
crete models are often preferred for such scenarios.

Another alternative is the ’one-hot’ encoding method [111], which expands a single categorical variable
into multiple variables, each representing a unique category, with precisely one set to ’1’ and all others set to
’0.’

In the context of FL, discretemodels often pose challenges that are not easily surmountable [101]. Mod-
els like decision trees and random forests are intrinsically more complex to train in a federated manner com-
pared to continuousmodels, such as linear regression and neural networks. The latter can be averaged across
all participating clients to construct a global model, which is not feasible for the former due to their non-
linear and non-continuous nature.

To elucidate, consider the median as a discrete analogue to the average. While federated averages can
be computed by weighting local averages by sample size, federated medians do not have a straightforward
computation method, as shown by Equations 3.8 and 3.9, where C represents the set of clients and nc is the
sample size for each client c.

AvgF =
∑
c∈C

(Avgc · nc)
/
|C| (3.8) MedF ̸=

∑
c∈C

(Medc · nc)
/
|C| (3.9)
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To address these challenges, specialized methods like Federated Boosting [116] have been proposed.
However, such techniques entailmore complexmechanisms and higher communication overhead than Fed-
erated Averaging methods for continuous models.

Ensemble techniques stand as an exception, offering a natural federation method that involves combin-
ing local classifiers into a global ensemble. For instance, clients A and Bmight each train 100 decision trees,
and the global ensemble would comprise 200 trees, equally sourced from each client. While differing from
a true global ensemble, these federated ensembles still deliver comparable performance [83].

3.4 Privacy-enhancing techniques

While FL already offers a foundational layer of privacy by eliminating the need for raw data transfer be-
tween server and client devices, this alone is not a full-fledged solution for data privacy. The trained mod-
els and their associated parameters, which are exchanged during the training process, can potentially reveal
sensitive information about the underlying data. To further enhance privacy measures and offer a com-
prehensive approach to safeguarding data, various supplemental techniques are often employed, so-called
privacy-enhancing techniques (PETs). This section explores some of the most commonly used techniques,
providing an in-depth look at their advantages, limitations, and ideal use-cases.

3.4.1 Differential privacy

Differential privacy (DP) is a statistical technique aimed at providing means to access the usefulness of data
while maintaining the privacy of individual data points [53]. It has found wide application in census data,
medical research, and more. The core principle is to add a layer of randomized noise to the output of an
algorithm or query, thereby preventing the identification of any single entry in the dataset.

The formal mathematical definition of DP can be seen in Equation 3.10. Here, A(·) symbolizes an
algorithm that operates on a dataset. D1 andD2 are datasets differing by exactly one element but are other-
wise identical to the original datasetD. The term imA signifies the range or image ofA, encompassing all
possible algorithmic outcomes.

∀S ⊆ imA(D). Pr[A(D1) ∈ S] ≤ eε · Pr[A(D2) ∈ S] (3.10)

In simpler terms, the result obtained from A(D1) should be statistically indistinguishable from that
obtained fromA(D2), safeguardingwhether aparticular datapointwas included inDornot. Theparameter
ε is particularly important; it quantifies the privacy loss in the data. Lower values of ε offer stronger privacy
but at the cost of reduced data utility [52].

3.4.2 Homomorphic encryption

Homomorphic encryption (HE) is a cryptographic approach that allows computations to be performed on
encrypted data [194]. This characteristic is invaluable for privacy-centric applications, especially for tasks
that require outsourcing computational workload to third-party cloud services. Unlike conventional en-
cryption methods that require decryption before any computational task, HE allows for operations to be
performed directly on encrypted data, thus preserving privacy throughout the computation process.

Equation 3.11 captures this attribute succinctly:

A(d) = dec(A(enc(d))) (3.11)

It’s worth noting thatHE is computationally intensive andmay not be suitable for real-time or resource-
constrained applications [62].
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3.4.3 Secure multi-party computation

Secure multi-party computation (SMPC) enables multiple parties to collaboratively compute a function
over their respective inputs, all the while maintaining the privacy of each individual input [66]. This is
particularly useful in scenarios such as collaborative research between institutions, where data sharing may
be legally or ethically constrained.

In SMPC, cryptographic protocols facilitate the computations so that each party only gets the final out-
put and learns nothing about other parties’ specific inputs. One well-known technique within SMPC is
additive secret sharing, a form of secret sharing where a secret is divided intomultiple shares. Each party gets
a share, and the secret can only be reconstructed when all the shares are combined [177].

Figure 3.1: Secret sharing across multiple parties involves multiple steps if the participants communicate via a central server. The server must
not see the individual data pieces since that would eliminate the masking of the individual data pieces. Participants first mask their data (A)
and produce encrypted two random values (using two participants’ public keys) and twomasked values. They then send the encrypted random
values and the masked model to the server (B). The server then sends the encrypted random values to the participants who can decrypt them
(C). Finally, the participants send the decrypted and aggregated random values to the server who then can obtain the unmasked global model
(D). Source: [126]

3.4.4 Combinations

FL can be synergistically combined with various PETs introduced earlier to provide multi-layered privacy
guarantees. The following subsections elaborate on the viable combinations and their specific advantages
and limitations.

Combining FLwith DP

DP can be integrated into FL by introducing noise into the local model updates, effectively obscuring the
individual contributions from each participant’s dataset. This is an extension of the same privacy-preserving
principle used in non-federated settings, where a single participant’s data should not be identifiable through
the model’s parameters [51].

However, challenges arise when applyingDP in an iterative learning setting. Although a single round of
FLmight preserve privacy to an acceptable extent, privacy leakage can accumulate across multiple rounds of
model updates. This cumulative effect undermines the intended privacy protections over time. Despite this
limitation, it is important to note that such behavior does not violate the formal definition of DP presented
in Equation 3.10. In an iterative setting, the image imA should be considered as the set of all partial results
across iterations. DP could still be applied effectively by dynamically adjusting the privacy parameter, ε, to
mitigate the increased privacy risk in multi-round scenarios [1].
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Combining FLwith SMPC

SMPCoffers an ideal complement to FL. Given that FL inherently involves multiple parties working collab-
oratively, these parties can naturally assume the roles necessary for SMPC protocols, such as additive secret
sharing [66]. In this setup, SMPC would ensure that each participating node only learns the final model
parameters and not the individual updates or data from other participants.

Hybrid Approaches: FL with DP and SMPC

A more advanced privacy-preserving approach would be to combine both DP and SMPC within an FL
framework. In this hybrid model, SMPC can be used to securely aggregate the local model updates, while
DP adds an extra layer of noise to the aggregated updates. This would make it extremely challenging for an
adversary to reverse-engineer the original data from the shared model parameters [128].

By adopting suchhybrid approaches, it is possible to leverage the strengths ofmultiple privacy-preserving
techniques to address the weaknesses or limitations inherent in each individual method. This results in a
more robust and secure FL environment.

3.5 Robustness and reproducibility

Robustness and reproducibility are pivotal concerns, not only in the realm of FL but also in ML at large.
Addressing these issues substantiates the integrity of the methodological pipeline and fosters trust among
researchers and end-users.

Robustness in ML denotes the resilience of a model when faced with input data that deviates from
the initial training set. A robust model should not only manage anomalies such as noise and outliers but
also accommodate scenarios where the training data is not fully representative. This is especially crucial in
healthcare applications, where inaccuracies can have far-reaching implications [69, 30].

Reproducibility, on the other hand, ensures that subsequent researchers can replicate the original
study’s results using the same data and procedures. This not onlymaintains transparency and accountability
but also facilitates peer verification and further research. Variability in hardware and software configurations
can further complicate reproducibility [54].

Both robustness and reproducibility should be rigorously assessed when publishing newmethods. This
entails supplying all necessary resources for reproduction and evaluating themodel’s robustness across varied
datasets.

In the context of biomedical data generated over the last two decades, an alarming trend has emerged:
many AI models lack reproducibility due to poor adherence to best practices in ML. This noncompliance
has culminated in opaque and dubious decision-making processes, eroding trust in AI systems [201].

3.5.1 Technical considerations

Traditional ML methods typically run on a single machine and manage a singular dataset. However, feder-
atedmethodsoperate acrossmultiplemachines, encompass variousdatasets, and engagemultiple researchers,
thereby complicating their implementation, deployment, and execution.

Implementation of the core architecture of FL methods incorporates communication steps, enabling
local models to share parameters with a central aggregator. These steps are integral to developing the global
model, either in one go or iteratively. The sharing process involves the serialization and deserialization of
parameters across the network, usually the internet. Proper serialization techniques are essential to ensure
that data integrity is maintained during transmission [127].
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Deployment, while more commonly used in web development, in an FL context involves ensuring uni-
formity in the software versions run by all participants. Any updates or changes must be synchronously
propagated across all nodes to maintain consistency. This is critical as inconsistent software versions can
lead to model divergence [128].

Execution, finally, is more complex, due to the distributed nature of FL, requiring advanced orches-
tration and synchronization techniques. The aim is to keep all components running in harmony, thereby
fulfilling the overarching objectives of the federated model. This involves aligning multiple clocks, coordi-
nating network schedules, and handling node failures efficiently [205].

3.6 Federated learning platform

As outlined in Section 3.5.1, FL requires more technical considerations than classical machine learning due
to its complexity. Many of these added complexities could be covered by an integrated platform, significantly
reducing the overhead caused by them. Such a platform ideallymakes it almost as easy to deal with federated
algorithms as classical single-computer applications or scripts.

To achieve that, a thorough list of requirements is necessary, to ensure that the developed system is practi-
cally usable and abides by legal and practical restrictions. The requirements set out here can be distinguished
into privacy and security-related requirements, technical requirements, and usability-related requirements.
All three are crucial for a system that aims to be used in practice.

3.6.1 Requirements

The platform aims to be used for both academic research and in clinical practice. All requirements in this
section are therefore alignedwith this scenario. Its base technology should be FL, allowingmultiple hospitals
other research institutions to perform collaborative studies. They were collected within the consortium of
the FeatureCloud EU Horizon 2020 project, whose partners have expertise in bioinformatics, law and
ethics, data privacy, software development, and explainable AI.

To ensure that the developed systemmeets all required properties, a list of requirements is provided here
to test the implemented system against.

Technical requirements

Technical requirements relate to properties of the system that are necessary from a technical point of view.
They play a vital role in the design of an FL platform tailored for hospitals, ensuring essential system prop-
erties from a technical perspective, such as scalability and stability.

Req. 1. The systemmust run on the major operating systems Linux,Windows andMacOS.

The platform must be versatile and compatible, capable of running seamlessly on major operating sys-
tems including Linux, Windows, and MacOS (Requirement 1). This compatibility empowers hospitals
to integrate the platform into their existing infrastructure effortlessly, facilitating widespread adoption and
utilization.

Req. 2. The systemmust support parallel execution of multiple studies.

To support efficient collaboration and accelerate research advancements, the system must provide sup-
port for parallel execution of multiple studies (Requirement 2). This capability allows hospitals to concur-
rently work onmultiple research projects, maximizing productivity and enabling the rapid dissemination of
scientific knowledge within the healthcare community.

Req. 3. The systemmust not enforce the usage of a specific programming language.
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Promoting flexibility and adaptability, the system should not impose the usage of a specific program-
ming language (Requirement 3). Hospitals can leverage their preferred programming languages and tools,
fostering productivity and reducing barriers to adoption. This flexibility enables hospitals to capitalize on
their existing expertise and infrastructure, enhancing efficiency and enabling seamless integration.

Req. 4. The systemmust not require opening ports for execution.

In order to prioritize security and simplify deploymentwithin hospital networks, the systemmust not re-
quire the opening of ports for execution (Requirement 4). By avoiding the need for open ports, the platform
enhances security measures and facilitates integration within the hospital’s existing network infrastructure.

Req. 5. The systemmust be extensible and allow for 3rd-party applications.

The platform must be designed with extensibility in mind, allowing for the integration of third-party
applications (Requirement 5). This extensibility promotes collaboration with external partners, facilitat-
ing the integration of cutting-edge technologies and expanding the platform’s capabilities to meet evolving
healthcare needs.

By addressing these technical requirements, the FL platform empowers hospitals to engage in collab-
orative research while ensuring compatibility, scalability, security, and flexibility. The platform serves as a
robust foundation for facilitating advancements in healthcare by harnessing the collective intelligence of the
medical community in a secure and efficient manner.

Privacy and security-related requirements

Since FeatureCloud is an EUHorizon 2020 project, its privacy-related requirements are mostly derived
from current legislation in the EU (i.e., the GDPR). Biomedical data, such as omics data, can identify a
person. Therefore, it must be considered to be personal data in the sense of theGDPR and cannot be shared
with other parties without explicit consent.

To ensure compliance with privacy and security regulations, several key requirements have been identi-
fied for the development of a FL platform tailored for hospitals.

Req. 6. Primary data must not leave the original storage location.

Requirement 6 mandates that primary data must remain within the original storage location. By ad-
hering to this requirement, the platform ensures that sensitive data does not leave the hospital’s designated
storage infrastructure, thereby reducing the risk of unauthorized access and maintaining compliance with
privacy regulations.

Req. 7. All data leaving the data location must retain the anonymity of its participants.

Requirement 7 emphasizes the importance of preserving participant anonymitywhendata is shared out-
side the storage location. By implementing robust anonymization techniques, the platform safeguards the
identities of individuals within the shared data, promoting secure and privacy-preserving data collaboration
among hospitals.

Req. 8. The systemmust ensure that 3rd-party applications follow all security and privacy requirements.

The platform must enforce strict security and privacy requirements for third-party applications inte-
grated into the system (Requirement 8). This requirement guarantees that any external applications meet
the necessary standards for data protection and privacy, mitigating potential risks associated with unautho-
rized access or misuse of sensitive information.

By addressing theseprivacy-related requirements, theFLplatformforhospitals enables secure andprivacy-
preserving collaboration, ensuring compliancewith theGDPR and fostering a trusted environment for data
sharing and research advancements in the medical field.
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Usability-related requirements

Usability-related requirements aim to make the system usable by its future users at the respective locations.
They are of paramount importance in the development of a FL platform tailored for hospitals, as they aim
to ensure the system’s usability for its future users at their respective locations.

Req. 9. The systemmust not require programming skills to be used but provide a graphical user interface.

To enhance accessibility and ease of use, the platform must provide a graphical user interface (GUI)
that does not require programming skills (Requirement 9). By offering a user-friendly GUI, hospitals can
effectively utilize the platform’s capabilities without the need for specialized programming knowledge. This
empowers healthcare professionals to focus on their research and analysis tasks, enabling efficient utilization
of the platform’s resources and functionalities.

Req. 10. Running and maintenance of the systemmust be possible without regular help of technicians.

In addition to user-friendliness, the system should be designed to allow running andmaintenance with-
out regular assistance from technicians (Requirement 10). Hospitals should have the capability to manage
and maintain the platform independently, minimizing reliance on technical support. This self-sufficiency
ensures that hospitals can efficiently operate the platform, perform necessary updates, and address routine
maintenance tasks without disruption.

By addressing these usability-related requirements, the FL platform for hospitals aims to optimize user
experience, facilitating the seamless adoption and utilization of the platform across various medical institu-
tions. An intuitive GUI and the ability to independently manage the system’s operation and maintenance
empower healthcare professionals to leverage the platform’s capabilities effectively, promoting collaborative
research.

3.7 Results

This section contains results related to privacy-preserving AI, which make use of the methods described in
this chapter.

3.7.1 sPLINK andHyFed

The development of sPLINK [141] marks a significant advancement in the realm of privacy-aware ge-
nomic analytics. Through the utilization of the HyFed framework [140], sPLINK offers a robust, privacy-
preserving platform for GWAS. It serves as an example how federated approaches can be used for a specific
problem: large-scale distributed GWAS.

Architecture and privacy preservation

sPLINK’s architecture is based on the HyFed framework which incorporates four main components: We-
bApp, client, compensator, and server (see Figure 3.2). This architecture contributes to privacy preservation
(client, server, and compensator) and usability (client andWebApp). The server plays a central role, coordi-
nating the training process and ensuring component synchronization. It is also responsible for calculating
the global model by aggregating noisy local models from clients and then subtracting the aggregated com-
pensator noise to reveal the genuine globalmodel. These steps are crucial formaintaining the confidentiality
of the original data parameters across cohorts.

The compensator, a lightweight component running on a different machine than the server, maintains
the utility of the global model by aggregating noise values from each client and sending this aggregated noise
to the server. This feature is integral to sPLINK’s capacity for preserving the privacy of the cohorts’ data
while maintaining the utility of the global model.
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Figure 3.2: A study in sPLINK involves multiple steps. First, the coordinator initiates a study using the web interface (1). Then, other parties
are invited by sending tokens to them (2). Using these tokens, they join the study (3). After that, local study parameters are sent to the clients
(4). During the computation, clients send noisy parameters to the server and the noise to the compensator (5). The compensator aggregates
the noise and sends it to the server (6). Combining the aggregated noisy parameters and the noise aggregate, the server obtains the results
and sends them to the clients and displays them on the web interface (7).

Analytical robustness and accuracy

The comparative analysis confirms that sPLINKmaintains high levels of analytical accuracy, exhibiting sta-
tistically insignificant divergence from the results generated by traditional PLINK. Its robustness against
data heterogeneity across cohorts presents a significant improvement over existing meta-analysis tools.

Computational performance and resource utilization

By adoptingHyFed’s client component, sPLINKbenefits frommulti-threading and data chunking capabil-
ities. This allows for efficient utilization of computational resources and scalability to handle large datasets,
particularly when working with millions of SNPs.

Usability and security considerations

sPLINK’s user experience benefits fromHyFed’s WebApp component, which provides functionalities like
account sign-up, project initialization, and real-time tracking of project progress. From a security stand-
point, the HyFed architecture ensures authentication protocols for all participants and components in-
volved, enhancing the overall security of the federated GWAS process.

Network efficiency and scalability

The network assessments indicate that bandwidth consumption remains within acceptable bounds, and
secure channels (HTTPS) are employed for all communications between client-server, client-compensator,
and compensator-server, thus ensuring both efficiency and security.

Summary

sPLINK demonstrates significant potential to set new standards in the realm of secure and collaborative
genomic research. Its robust handling of issues like cross-study heterogeneity positions it as a formidable al-
ternative to currentmeta-analysis techniques. In conclusion, sPLINK emerged as a useful tool that achieves
both privacy preservation and analytical accuracy, and balances it with computational efficiency in GWAS.
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3.7.2 FeatureCloud

sPLINK shows that AI in biomedical contexts is possible while still preserving privacy for patients. How-
ever, it is very limited in its application domain since it is restricted toGWAS. FL hasmuch potential beyond
that and the challenged that have to be solved are similar for other applications: inviting other parties to a
federated workflow, orchestration and execution of the workflow, and obtaining the results.

FeatureCloud [126] was therefore developed to streamline development of federated methods and
take away these efforts (see Figure 3.3). It provides a general solution for the steps involved and enables
developers to concentrate on the method they develop rather than setting up the infrastructure around it.

Figure 3.3: Overview of the FeatureCloud Platform: Within a federated study, healthcare facilities retain all raw or primary data on‐site.
FeatureCloud orchestrates the secure deployment, execution, and intercommunication of vetted AI algorithms available from its dedicated AI
Store, catering to both developers and end‐users. Source: [126]

Universal platform

FeatureCloud is a universal, algorithm-agnostic platform, i.e. it allows for execution of algorithms of
different kinds. This is achievedby offering a genericAPIwhich canbe usedby third-party implementations,
handling communication between different participants. These implementations need to be packaged as
Docker [131] images to allow their execution independently from the operating system and isolate them for
security reasons. Docker remains the only dependency of FeatureCloud. Given that it is available for a
wide range of operating systems, this enables FeatureCloud to run on most computer systems.

When a federated workflow is executed, all participating locations need to run the so-called Feature-
Cloud controller inside a Docker container. This program instructs the Docker engine to download, start
and stop the containers running the respective apps required for a workflow.

A workflow can consist of multiple apps which are executed sequentially in a federated fashion. Data is
passed between them by putting the output data into a mounted volume, which is then detached from the
app container and attached to the next container in the workflow. This way, all data still remains local and
only the individual apps in a workflow communicate with each other. The first app receives its input (i.e.,
the local data) from the user at each site, and the final results can be found in the output volume of the last
app.

To use FeatureCloud, users are provided with a GUI, implemented as a web application, thereby
running in a standard web browser. For a federated study, one of the participating hospitals needs to assume
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the role of the ’coordinator’, who is in charge of setting up the workflow and inviting other participants
to the study. This is done by generating a token and sending it to the invited participants. The invited
participants can then join the study using the token. They also have to have the FeatureCloud controller
running on their computers. Once all participants have joined, the coordinator starts the study and the
FeatureCloud system takes over the execution of the study, until all apps have run through. The results
of the federated workflow are automatically shared with all participants, who can download them, again
using the web GUI.

AI Store

A key part of the platform is the AI Store (see Figure 3.4), which contains all apps developed by external
contributors that can be used within the federated workflows. Technically, these apps are Docker images
which contain the app implementations. Using Docker allows the developers to choose their favorite pro-
gramming technologies, since their implementation remains entirely isolated within the Docker containers.
All they need to do is implement the generic FeatureCloud API, which is used to connect the app con-
tainers with the controller during a running workflow. The apps can be enriched with meta information,
such as a title, description, the type of the app, the employed PETs, a link to the source code and whether
the app has been certified.

Certification is another crucial aspect, which is done by the FeatureCloud maintainers and ensures
the app actually abides by the requirements, particularly that it does not leak any primary data. Due to the
genericity of the apps, it is not feasible to automatically determinewhether it complieswith all requirements.
Therefore, manual vetting of apps is necessary before they can be safely used.

Figure 3.4: ML apps in the FeatureCloud AI Store range from statistical methods (e.g., integrated in an apper version of sPLINK) to neural
networks, but also involve preprocessing (e.g., normalization) and evaluation apps.

Privacy-preserving technologies

FL already increases privacy but is not sufficient in some cases, as outlined in Section 3.4. For this reason
FeatureCloud supports PETs that can either be used by developers directly, or implemented inside an
app.

A basic implementation of SMPC is integrated into the FeatureCloud system and can be enabled via
the API. This requires the shared data to be numeric (i.e. fixed-point numbers or integers).

DPmust be integrated into the individual applications themselves, as DP cannot be generally ’switched
on’ without extending the algorithm itself, as outlined in Section 3.4.1.
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Figure 3.5: The box plots depict 10‐fold cross‐validation scores for assorted classification and regression algorithms, with the exception of
the deep learning model, which used a test set for evaluation. Centralized outcomes are marked in orange, federated outcomes in blue, and
individual local outcomes at each participant are in gray shades. Each model’s performance was assessed using both the full test set (dark gray)
and individual local portions of the test set (light gray). Federated logistic and linear regression models exhibit performance metrics nearly
identical to their centralized counterparts, while federated Random Forest and deep learning models demonstrate comparable effectiveness.
Source: [126]

Evaluation

In an effort to assess the practical utility of FeatureCloud in the realm of privacy-aware artificial intel-
ligence, several workflows were implemented on the platform. These workflows employed different data
sets and were designed to perform both classification and regression tasks. Notably, each workflow adhered
to a structured pipeline that included 10-fold cross-validation, standardization, model training, and a final
evaluation phase, with the exception of deep learning (DL) tasks that utilized a 20% test set to speed up the
training process.

Datasets For classification tasks, theworkflowsprocessed the IndianLiverPatientDataset (ILPD, [161])
and the Cancer Genome Atlas Breast Invasive Carcinoma dataset [184]. Regression workflows utilized the
Diabetes dataset [56] and the Boston House Prices dataset [79]. A large dataset from the Survey of Health,
Aging, and Retirement in Europe [23] was chosen for DL regression. Following data pre-processing, the
latter dataset had 42,894 samples available for model training and evaluation.

Performance analysis The study found that the FeatureCloud-based federated models exhibited
performance metrics nearly identical to those generated by centralized scikit-learn [147] models. This was
observed for both logistic and linear regression models (see Figure 3.5). The Random Forest (RF) models
also showed similar, if not slightly better, performance in the federated learning environment due to the
inherent randomness in bootstrapping.

Further comparisons weremade between federatedmodels and those trained by individual participants.
It was found that models trained by individual participants often underperformed compared to federated
models, particularly in local evaluations. This underscores the efficacy of FeatureCloud in generating
models that are better generalized.

Scalability and network traffic In assessing FeatureCloud’s scalability, varying numbers of par-
ticipants were considered, ranging from 2 to 8, a range typical for cross-silo studies. Experiments were per-
formed under both regular and throttled internet conditions to gauge the impact of network constraints.
Results indicate that the platform can efficiently handle an increasing number of participants with minimal
impact on runtime (see Figure 3.6). This suggests that FeatureCloud is not only scalable but also robust
enough to be used in diverse settings, including tightly-regulated medical research environments.
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Figure 3.6: The left‐hand plots display runtime metrics under both unlimited and bandwidth‐restricted (throttled) network conditions, while
the right‐hand plots provide insights into network traffic for both the coordinator and individual participants. Median values, derived from 10
independent runs, are represented by the lines. Shaded regions around the lines indicate the 25th and 75th percentile range, capturing the
variance across the runs. Source: [126]
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Compliance with requirements

The technical requirements laid out in Section 3.6.1 have been fulfilled by choosing Docker as a virtual-
ization technique, thereby not requiring a particular OS or programming language (Requirements 1, 3).
Parallel execution is possible using multiple Docker containers running in parallel, orchestrated by the Fea-
tureCloud controller (Requirement 2). Fulfillment of Requirement 4, not requiring to open any ports,
is ensured by making the controller connect to an outside relay server. The integrated AI Store allows 3rd
party developers to publish additional methods (Requirements 5).

Privacy and security-related requirementswere alsomaintained. By employing FL, no patient data leaves
the hospitals (Requirements 6, 7). A complete isolation of the running app containers, preventing them
fromaccessing the internet, further contributes to that. All apps published in theAI Store undergo amanual
certification process, which ensures Requirement 8.

Usability-relatedRequirements and10were fulfilled aswell. Running apps is possiblewithout requiring
technical or programming skills via a graphical user interface (9). The same applies to the general mainte-
nance of the system: after setting it up at a hospital, it can be used without continuous maintenance, since
updates of apps or the controller are achieved by automatically pulling new Docker images containing re-
quired updates (10).

Summary

In summary, FeatureCloud offers a universal platform for FL workflows, simplifying the development
and executionprocess. It supports various algorithms throughDocker images, and theFeatureCloudcon-
trollermanages the orchestration of app containers. TheAI Store hosts apps developedby external contribu-
tors and ensures their compliancewith privacy requirements. By incorporating privacy-preserving technolo-
gies, FeatureCloud enhances data privacy and security. The platform enables developers to concentrate
on algorithm development, promoting the advancement of FL while preserving patient privacy in biomed-
ical and other domains. All requirements set out in Section 3.6.1 were fulfilled. See Section 4.2 for possible
shortcomings and Section 5.2 for potential future extensions.

3.7.3 AIMe registry

The results shown so far indicate that ML is applicable and useful in biomedical settings. A persisting issue
that comeswith increasing use of this technology is validity and reproducibility of published results, though.
To address the lack of adherence to best practices inML and the reporting of AImethods and results, several
guidelines have been proposed in biomedical and clinical research [121].

However, these guidelines do not provide practical means to identify biomedical AIs that do not adhere
to recommended best practices. To fill this gap, the AIMe registry [125] for AI in biomedical research was
developed as a community-driven platform that allows authors to generate accessible and citable reports of
their AI systems1. The AIMe registry follows a generic minimal information standard that can be applied
to any biomedical AI system. It aims to increase transparency and reproducibility in biomedical AI research
and facilitate the adoption of AI systems in clinical settings and is updated regularly based on feedback from
the scientific community.

To use the registry, authors fill in a multi-page form that is divided into the sectionsMetadata, Purpose,
Data, Method, and Reproducibility. The form is interactive, i.e. it contains conditional questions or re-
sponse options based on the user input. For example, when an author specifies that thay have used ’other’
testmetrics for theirmethod, they are requested to elaboratewhich ones. The reason behind this is to obtain
as precise answers as possible.

1https://aime-registry.org
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Figure 3.7: The AIMe registry user flow starts encompasses users finding reports, adding new entries, raising issues, and potentially joining
the steering committee. New entries are added to the database, where they can be found by other users. Users can raise issues if they have
concerns about a report. The steering committee creates new versions of the specification every 1‐2 years. Source: [125]

A key feature of AIMe are the validation and reproducibility scores. They provide an estimate on how
thorough and complete the validation and reproducibility measures are which the author provided. To
achieve that, each answer option to a question can have a validation or reproducibility value, which can
be activated by selecting the respective answer. For example, if an author asserts that all means (including
dependencies) to easily re-run their AI have been provided, they increase their reproducibility score (see
Question R.1.1).

”Do you provide all means (including dependencies) to easily re-run your AI?”
– Question R.1.1 of the AIMe.2021 specification

The main part of the registry is the searchable database. It supports search by keyword, tags or searches
within the different parts of the reports. From the list of results, users can directly generate a BibTeX citation
code.

AIMe thereby addresses the reporting deficit in biomedical AI research by providing a practical means
for authors to report on their AI systems and generate accessible and citable reports and also incentivizes
authors to adhere to best practices and complete documentation through the report scores.

Transparency and governance

If any claims in a report are deemed incorrect, users can raise an issue directly on the registry platform. Au-
thors have a two-weekwindow to respond to correction requests. Failure to do sowill result in the issue being
published and attached to the report, further augmenting the platform’s commitment to transparency.

Governance of AIMe is managed by a steering committee, open to all researchers. The committee is
responsible for ongoing updates to the registry’s specification. The executive board, a subset of the steering
committee, oversees the issue resolution process to ensure fairness and transparency.

3.7.4 Summary

The field of privacy-preserving AI has given rise to a variety of specialized tools designed for unique appli-
cations. One such tool is sPLINK, which focuses on Genome-Wide Association Studies (GWAS). On the
other hand, the AIMe registry serves as a comprehensive resource for providing detailed information about
a broad array of machine learning methodologies.

49



(a) The AIMe question tree displays the whole specification as a tree. Icons the the
right show the type of the question entry (e.g., optional, dropdown) and whether they
affect a score.

(b) The AIMe specification is automatically
rendered as a web form for users.

Figure 3.8: The AIMe specification contains a series of questions diveded into multiple sections (e.g., method, reproducibility, validation).

For those seeking a more universal solution within the realm of biomedicine, FeatureCloud emerges
as a holistic platform that incorporates multiple facets of AI techniques while maintaining stringent privacy
standards.

Amore in-depthdiscussionon the significance and implicationsof these contributions toprivacy-preserving
AI is covered in Section 4.2. Future prospects and possible enhancements to these existing systems will be
explored in Section 5.2.
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4
Discussion

This section discusses the results presented in this thesis in the area of systems medicine and privacy-aware
AI, following the previous structure.

4.1 Systems medicine

Systemsmedicine has been introduced as a paradigm shift in contemporary biomedical research, where it has
emerged as a promising and integrative discipline. It leverages the power of computational tools and math-
ematical models to decipher the complexity of biological systems, enabling a more nuanced understanding
of the intricate interplay between genes, proteins, and cellular networks [86, 203, 119].

4.1.1 Contributions of CoVex

CoVex, the coronavirus explorer, was presented as an innovative and comprehensive systems medicine ap-
proach for the analysis and interpretation of SARS-CoV-2 data. The principal aim of CoVex is to facilitate
the exploration andunderstanding of the complexmolecular interactions underlying the virus-host relation-
ship and to accelerate the development of targeted therapeutic strategies against COVID-19, in particular
repurposed drugs.

This research has showcased the potential of CoVex as a versatile tool to investigate the multifaceted
aspects of coronavirus infection. By integrating proteomics and interactomics, CoVex provides a holistic
and systems-level perspective of the viral disease modules. This approach potentially allows for the identifi-
cation of novel drug targets, prediction of drug repurposing candidates, and elucidation of host-pathogen
interaction dynamics.

4.1.2 Challenges and limitations

Although the utility of systems medicine has been underscored by the rapid dissemination of large-scale,
high-dimensional data sets [61, 145, 174], there are inherent challenges.

CoVex serves as an example of how systems medicine can be employed to analyze and integrate this
wealth of information, potentially leading to actionable insights and discoveries that may not be possible
through traditional reductionist approaches, since they lie in the interplay between interacting elements.
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While some studies like Gordon et al. [70] have used similar approaches, their focus has been more narrow,
not considering the wider network context.

However, the quality of the curated network inCoVex is directly tied to the quality of the data available
in the referenced sources. The tool does not distinguish between drug-target interactions based on differing
sources or experimental rigor. This way the network can be used by the integrated algorithms introduced in
Section 2.3 but lacks potentially important information.

It should also be stressed again that CoVex does not list drugs directly targeting viral proteins, focusing
instead on unveiling indirect drug targets within the human interactome.

Furthermore, even thoughCoVex serves as a useful tool in SARS-CoV-1 and -2 research, findings from
such platforms demand careful interpretation. They merely propose potential drug candidates, whose an-
tiviral properties are not assured and require further exploration. Proposed drugs target virus-associated
proteins, but their actual effect necessitates confirmation via additional investigations. In some cases, a drug
that inhibits a cofactor could even bolster the virus. Therefore, after establishing a target, potential drug
candidatesmust undergo thorough review and testing by clinical experts, adhering to established procedures
and clinical trials.

Although CoVex offers valuable insights into the interactome, it has not led to the discovery of a suc-
cessful drug against COVID-19 and must therefore be regarded as just a one piece in the search for novel
SARS-CoV-2 targets. This underscores the challenges inherent in translating insights from complex net-
work analyses into viable, effective therapeutics.

4.1.3 Future implications and extensions

Despite its limitations, CoVex has the potential for broader applications beyond COVID-19. It could be
adapted to investigate other infectious diseases, providing valuable insights into theirmolecularmechanisms
(see Section 5.1.1). This adaptability makes CoVex a promising approach in the emerging landscape of
systems medicine tools. Yet, findings from platforms like CoVex need careful interpretation; proposed
drug candidates must undergo thorough review and clinical trials.

4.2 Privacy-aware AI

The rapid advancements in the field of privacy-aware AI have given rise to a variety of tools, each with its
unique strengths and distinct purposes. Two such tools presented in this thesis, sPLINK and Feature-
Cloud, exemplify the two ends of the spectrum: standalone tools designed for specific purposes and in-
frastructural platforms supporting a variety of applications.

4.2.1 Implementation and dissemination

sPLINK serves as an exemplary model of a standalone tool specifically designed for GWAS. This user-
friendly, hybrid federated tool enhances the privacy of cohort data without compromising the accuracy of
the test results. It is consistent with existing tools like PLINK in terms of data formats and results, thereby
providing a seamless experience for the users. The tool exhibits robustness against the heterogeneity of phe-
notype distributions and confounding factors across datasets. With practical runtime and acceptable net-
work usage, sPLINK demonstrates its value as a tool that performs collaborative GWAS in a privacy-aware
manner. Its specificity and fine-tuned design cater directly to the needs of GWAS [180], making it a robust
and efficient standalone tool for this purpose.

On the other end of the spectrum, FeatureCloud presents itself as a comprehensive and extensible
platform, serving as an infrastructure for the development and application of privacy-preserving FL work-
flows. The power of FeatureCloud lies in its high generalization capability, allowing for the application
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of a myriad of machine learning workflows across a wide variety of data types. FeatureCloud also offers
pre-built solutions for common use-cases and application templates for developers, further showcasing its
versatility. However, the platform’s openness and flexibility present challenges, including the need for stan-
dard data formats and preprocessable initial data. As a platform, FeatureCloud is designed to support a
broad range of applications, thereby providing a foundation for developing diverse privacy-aware AI tools.

The contrast between sPLINK and FeatureCloud represents the diversity in design and application
in privacy-aware AI tools. Standalone tools like sPLINK, with their specific focus and design, can provide
targeted and efficient solutions for particular use-cases. In contrast, infrastructure platforms like Feature-
Cloud provide the necessary foundation and support to develop a wide range of applications, offering
flexibility and versatility.

The coexistence and cooperation of standalone tools and infrastructural platforms can significantly
boost the progress in the privacy-aware AI field. While standalone tools offer expertise and efficient solu-
tions for specific tasks, platforms like FeatureCloud can facilitate their implementation and extend their
reach. By acknowledging the strengths of both types of tools, the AI community can work towards more
holistic, robust, and privacy-aware solutions.

As the computational demands of biomedical research continue to increase, the scalability of tools like
sPLINKand FeatureCloudbecomes a critical concern [117, 22]. Although the current versions perform
admirably inbenchmark tests, their ability tohandle ever-expandingdata sets is a question thatmerits further
investigation.

4.2.2 Reproducibility and transparancy

WithAImethods comes the necessity for clear, transparent descriptions of the AImethods employed [149].
A lack of transparency and standardization in the reporting of AI methodologies can hinder the repro-
ducibility, comparison, and evaluation of biomedical AI’s results, thereby obstructing the progress of AI
in research and practice.

In the context of biomedical AI, reproducibility and transparency of AI methods are paramount. With
AI becoming more prevalent in biology and medicine, basic information about data, methods, and AI im-
plementation is often found lacking in relevant publications. This gap constitutes a significant hurdle for
developing new AI methods and for applying AI in research and practice [172, 200, 185].

To bridge this gap, the community-driven AIMe registry has been developed for the rapid proliferation
of AI in biology and medicine, providing a community-driven registry. It ensures the quality, reliability,
and reproducibility of biomedical AI systems by allowing authors to register their AI tools and enabling
researchers and practitioners to find existing AI systems relevant for their work. This not only increases
the accessibility of information about these systems but also aids researchers and practitioners in finding AI
systems relevant to their application scenarios. Through this, the quality, reliability, and reproducibility of
biomedical AIs can be significantly improved.

4.2.3 Regulation and public perception

As privacy-aware AI tools like FeatureCloud gain traction, they will invariably come into contact with
existing and evolving data protection laws, such as GDPR in the European Union [33]. Navigating this
complex regulatory landscape will be a vital aspect of future development in the field.

Another significant challenge facing the adoption of privacy-aware AI tools is public perception. Public
understanding and acceptance are key to the broader implementation of these technologies. Hence, future
efforts may need to focus on not just technical development but also public engagement and education
[199].
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4.3 Summary

The discussion of both systems medicine and privacy-aware AI demonstrates the nuanced complexities and
promise inherent in these emerging disciplines. While standalone tools like CoVex and sPLINK show-
case the focused, specialized utility of domain-specific approaches, platforms such as FeatureCloud offer
versatility, serving as scaffolds for a multitude of applications.

One of the compelling insights from this research is that the coexistence of these diverse tools can form
a synergistic landscape, allowing each to contribute its own strengths to the overarching aim of advancing
science and medicine. For instance, standalone tools can become modules within broader infrastructural
platforms, potentially offering pre-validated solutions that are integrated into more complex systems.

However, the gaps in reproducibility, data quality, and regulatory compliance present hurdles that can
potentially slow down progress in both fields. The creation of a registry like AIMe is a step in the right
direction, but further work is needed to improve standardization, testing, and awareness in the research
community.

As we move toward a future where approaches like those implemented in these tools and platforms in-
creasingly influencebiomedical research andpractice, their ethical and societal implicationsmust be carefully
considered. This presents not only a technical challenge but also necessitates a multi-disciplinary approach
involving policy makers, clinicians, and the public.

While this thesis contributes to the understanding and development of tools and methodologies in sys-
tems medicine and privacy-aware AI, it also raises several questions that merit further investigation, like
how we can better ensure the reliability of network data in systems medicine tools such as CoVex or how
privacy-aware AI tools can scale to meet the increasing data demands without sacrificing performance or
privacy, particularly when combined with a federated database.
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5
Conclusion and outlook

This section provides an outlook on possible extensions to the tools introduced in this thesis and potential
further research.

5.1 Systems medicine

In reviewing the landscape of computational biology and drug discovery, it becomes apparent that platforms
fostering collaborative research and providing quick access to data like CoVex can play an important role
in the exploration and understanding of complex biological systems. CoVex, a data-driven web-based plat-
form, made a contribution to our knowledge of the SARS-CoV-2 virus-host interaction landscape during
theCOVID-19 pandemic. It integratedmultiple layers of information, including virus-host protein-protein
interactions, human protein-protein interactions, and gene expression data, offering an in-depth view of the
interactions within the human host.

The fact that no drug against SARS-CoV-2 could be found during the Covid-19 pandemic does not
devalue the potential of such technology. The network medicine approach, which forms the foundation of
CoVex, can find vast applicability in other disease contexts [129], such as oncology. Cancer is a complex
disease that involves various genetic and epigenetic alterations [146], leading todisruptions innormal cellular
processes and pathways. Understanding these intricate interactions requires a systems-level view, which is
where networkmedicine comes in. The data-driven approach adoptedbyCoVexcouldprovidemeaningful
insights, potentially leading to innovative therapeutic strategies.

5.1.1 Extensions

An example of how the approaches underlying CoVex can be extended to other disease contexts is the
Cancer Driver Drug Interaction Explorer (CADDIE) [81]. CADDIE is a web application designed to sys-
tematically discover drug repurposing candidates in oncology, whose implementation is based on CoVex.
It integrates a vast array of information, from human gene-gene and drug-gene interactions to cancer driver
genes and their respective mutation frequencies. The tool not only identifies potential drug targets but
also aids in the selection of therapeutic options based on network medicine algorithms, akin to the network
medicine approach in CoVex. This illustrates the adaptability and utility of CoVex’s foundational prin-
ciples in tackling complex diseases like cancer, thus underlining the broad applicability of such technology
in systems medicine.
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Another innovative extension is Drugst.One1 [80]. It aims to serve as a customizable plug-and-play
solution for biomedical web-application developers, further generalizing the network medicine approach.
Drugst.One integrates various databases to provide a feature-rich network explorer that can help identify
drug targets and assess drug repurposing potential. Like CoVex, it also offers a multi-omics and network-
based approach for understanding complex biological systems, but goes a step further by making it easily
integrable into various web applications.

These tools—CADDIE andDrugst.One—provide glimpses into the future of systemsmedicine, sig-
naling the onset of amore universal or generalized framework that could seamlessly integrate various layers of
interaction data. As these platforms evolve, we can anticipate a streamlined process for investigating interac-
tomes across a broad spectrumofdiseases, thereby accelerating thepath fromdiscovery todrugdevelopment,
and ultimately, benefiting patients across the globe.

5.1.2 Conclusion

The success of CoVex, asmeasured not by immediate therapeutic discovery but by its conceptual contribu-
tions, reception by the research community and its future potential, show the enduring value of a network
medicine approach in the evolving field of computational biology and drug discovery. We are only just be-
ginning to tap into the potential of these approaches, and the future, it seems, holds promising avenues for
exploration and discovery in this field.

5.2 Privacy-aware AI

Reflecting on the recent developments in privacy-aware AI, encouraging advancements represented by sys-
tems such as FeatureCloud and sPLINK can be seen. These tools and platforms have demonstrated that
infrastructural challenges, particularly in the domain of secure and privacy-preserving data analysis, can be
effectively addressed through thoughtful design and robust technologies.

FeatureCloud, with its generalized architecture, offers a practical solution to these challenges. It
serves as a proof-of-concept that privacy-aware AI systems are not just theoretically possible, but can be
implemented successfully. The system’s application in various fields, including bioinformatics and health
informatics, and the current number of available apps underscore its versatility and effectiveness.

sPLINK, both as a standalone tool and subsequently as FeatureCloud app demonstrates the practi-
cal applicability of suchplatforms in the context ofGWAS.By integrating SMPCmethodologies, sPLINKhas
proven the feasibility of conducting complex genetic analyseswithout compromising theprivacyof individual-
level data. This marks an advancement in the genomics field, where the balance between data utility and
privacy has always been a challenging issue.

5.2.1 Extensions

Looking forward, there are potential extensions to this general framework. The integration of more ad-
vanced PETs into the FeatureCloud API, such as HE, could further enhance the privacy-preserving ca-
pabilities of the system, allowing for even more complex computations to be performed securely [136].

Apart from that, the AIMe registry providing extensive means to report on how results can be repro-
duced, how validity of the results is ensured, as well as privacy-related mechanisms put in place. AIMe and
FeatureCloud therefore could be integrated by requiring each app to provide anAIMe report, providing
all these details.

A second direction is the development of a federated database system. This could automate the selection
of participants with suitable data, streamlining the setup process for various analyses. Not only would this

1https://pypi.org/project/drugstone/

56

https://pypi.org/project/drugstone/


make it easier to initiate a workflow, it could also eliminate the need for time-consuming manual steps such
as curating and formatting data, thereby improving the efficiency of research and analysis workflows [159].

This currently poses a problem for the seamless integration of federated learning platforms into existing
systems. Various data formats exist and cannot bemapped easily onto other formats required by a particular
system. This could be solved by establishing standardized data formats. Such efforts are ongoing but have
not been broadly adopted yet for analyses [129].

In conclusion, FeatureCloud and sPLINK exemplify the promise of privacy-aware AI, particularly
FL. With future developments and enhancements, platforms such as FeatureCloud have the potential
to impact various fields, from genomics to health informatics and beyond, all while prioritizing privacy and
data security.

5.2.2 Conclusion

The intersection of standalone tools such as sPLINK, the universal FeatureCloud platform and the
AIMe registry presents a broad picture of the landscape of privacy-aware AI. Registries like AIMe ensure
that the development and application of these tools are transparent, reproducible, and reliable.

The coexistence of standalone tools, infrastructural platforms, and transparency-focused registries like
AIMe can propel significant advancements in the fields of systems medicine and privacy-aware AI. They
not only offer robust and efficient solutions for diverse applications but also ensure the transparency and
reproducibility necessary for the sustainable growth of AI in biology and systems medicine.

5.3 Future of medicine

As we look toward the horizon of biomedical research, the future of medicine is increasingly exciting, teem-
ing with opportunities awaiting to be unearthed. This thesis has explored network algorithms in systems
medicine for drug repurposing, a universal platform for machine learning, and the ethical imperative of
privacy-aware AI. While each of these fields alone holds promise, their convergence may very well yield big
advancements.

5.3.1 A new paradigm

The advent of large-scale data analysis and machine learning has laid the groundwork for a paradigm shift
in medicine, transcending organ-specific or symptom-based understanding of diseases. With platforms like
the ones introduced in this thesis, we are not merely peering into a kaleidoscope of biological processes, but
we are trying to actively untangle the webs of complexity that underlie diseases as intricate as cancer or as
emergent as COVID-19 used to be. As these platforms and their underlying approaches become more nu-
anced, integrating genomic, proteomic, and metabolomic data, a holistic view of human health will evolve.
This paves the way for more targeted treatments, effective prevention strategies, and even cures for diseases
that have long perplexed humanity.

ML is not just a tool in this newparadigm; it is the compass bywhichwenavigate this complex landscape.
As this thesis has shown, federated learning platforms like FeatureCloudcan provide themeans to bridge
the gap between data availability and privacy, allowing researchers worldwide to collaborate on a scale never
before imagined. The marriage of MLwith federated systems provides a model for how future research can
be conducted—efficiently, securely, and inclusively.

While technological advancements herald a new era, the ethical considerations of privacy and data se-
curity become more critical than ever. The GDPR and similar legislation worldwide act as the ethical back-
bone, ensuring that innovation doesn’t compromise individual privacy. Tools like FeatureCloudand
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sPLINK help pave the way for a future where data privacy and scientific advancement are not mutually
exclusive but harmoniously coexistent.

5.3.2 In closing

The medical community stands on the brink of a big step forward—one that melds data, computation,
and ethics into a unified, powerful force for human health. This thesis has explored some elements of this
impending transformation. Yet, we have barely scratched the surface, given the advances we have seen in the
past. Systems medicine, ML, and privacy-aware AI will continue to enrich our understanding of health and
disease. And as we move forward, the question is not if these technologies will redefine medicine, but how
quickly can we harness their full potential.
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Summary

This thesis explored the burgeoning fields of artificial intelligence (AI) within systems medicine, laying a
foundational understanding for its two main pillars: systems medicine and privacy-aware AI. While the
intersection of these domains may seem initially distant, the present investigation demonstrated that their
conjunction has considerable potential for modern medical research.

Regarding systemsmedicine, the thesis first detailed the utility of integrated Protein-Protein Interaction
(PPI) networks. TheCoVex tool stands out as a robust example, originally conceptualized for investigating
the intricacies of SARS-CoV-2 pathways. Beyond its original intent, CoVex serves a conceptual basis (e.g.,
demonstrated by CADDIE), allowing researchers across the globe to delve into various disease pathways,
making it a valuable exploratory resource. Drug repurposing was also underscored, gaining attention espe-
cially in rapid response scenarios like pandemics, due to its quick availability. Through the explanation of
pertinent algorithms like centralitymeasures, TrustRank, andMulti-Steiner Trees, the thesis elucidated how
such tools can be leveraged for potential therapeutic interventions. The specific application on integrated
PPI networks merged with viral proteins and extant drugs demonstrates an intriguing blueprint for drug
repurposing strategies, which can further contribute to pharmacological research in the future.

However, despite the promising strides in systems medicine, the remaining challenges were discussed.
The robustness of any computational tool hinges largely on the quality of the data it processes. For CoVex,
while it offers a novel approach in understanding the virus-host dynamics and advancing drug repurpos-
ing, its outcomes necessitate judicious interpretation. Researchers are required to ensure that findings from
such tools undergo rigorous clinical validations, given the high stakes associated withmedical interventions.
Furthermore, while the tool has the potential to be extended to other diseases, the interpretative caution
remains paramount.

Subsequently, the realm of privacy-aware AI was explored, underscoring its pivotal role in the contem-
porary data landscape. With the proliferation of massive datasets in genomics and other omics data, and the
imperative to maintain data privacy due to current legislation such as the General Data Protection Regula-
tion (GDPR) in the European Union, tools like sPLINK present an innovative stride. By fostering multi-
institutional Genome-Wide Association Studies via federated learning (FL), it exemplifies the potential to
conduct intricate analyses without compromising on data security. Such pioneering endeavors in FL were
further expanded by the FeatureCloud platform. By democratizing the FL concept across diverse al-
gorithms, and enriching it with additional privacy-enhancing techniques (PETs), it circumvents many de-
velopmental challenges, thus accelerating research endeavors. Moreover, with the increasing influx of ma-
chine learning (ML) methodologies, ensuring their veracity and reproducibility becomes paramount. The
AIMe registry fills this void, advocating for rigorous standards and reporting in the ML domain, thereby
fortifying the research ecosystem’s integrity.

Delving into ML within privacy-aware AI, the thesis transitioned from the foundational concepts to
more complex methodologies. Beginning with the rudiments of models and optimizers, the thesis then
delved into prevalent ML paradigms, ranging from linear regression and decision trees and random forests
to themore complexmethods provided by neural networks. Complementing these, the thesis also explained
the emergent PETs in more detail, namely differential privacy and secure multi-party computation. Each
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technique bolstered understanding of robust data security in collaborative environments, notably in sensi-
tive areas like medical research.

Alongside the technical advancements, the ethical and regulatory dimensions that shape the field were
emphasized as well. With tools like sPLINK, offering dedicated solutions, and platforms like Feature-
Cloud, providing broader adaptability, the biomedical research community finds itself equipped with a
diverse toolkit. Yet, the path ahead is multifaceted. The challenge isn’t solely technical; it also encompasses
ensuring explainability, navigating intricate data protection laws, and fostering positive public perceptions.
The involvement of community-driven initiatives, exemplified by the AIMe registry, underscores the need
for collective responsibility in guiding the next phases of biomedical AI.

In conclusion, this dissertation shows the potential of privacy-aware AI in systems medicine while en-
suring robust privacymeasures. As themedical landscape evolves, insights and tools like the ones emanating
from this research can play an important role, contributing to modern medical research.
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Zusammenfassung

Diese Dissertation untersucht die aufstrebenden Bereiche der künstlichen Intelligenz (KI) innerhalb der
Systemmedizin und vertieft das Verständnis für ihre zwei Hauptpfeiler Systemmedizin und datenschutzbe-
wusste KI. Auch wenn die Bereiche zunächst entfernt erscheinen, zeigt die Arbeit, dass sie in Kombination
großes Potenzial für die moderne medizinische Forschung darstellen.

Bezüglich der Systemmedizin beschreibt die Arbeit zuerst die Vorteile von integrierten Protein-Protein-
Interaktionsnetzwerken (PPI).DasCoVex-Tool sticht alsBeispiel hervor, das ursprünglich zurUntersuchung
von SARS-CoV-2-Krankheitspfaden konzipiert ist. Jenseits seiner ursprünglichen Zielsetzung dient Co-
Vex als konzeptionelle Grundlage (z.B. demonstriert durch CADDIE), die es Forschern weltweit ermöglicht,
verschiedene Krankheitswege zu erkunden, undmacht es somit zu einer wertvollen Ressource für die medi-
zinische Forschung. Insbesondere der Einsatz zurArzneimittel-Umwidmungenwird hervorgehoben, vor al-
lem inSzenarienwiePandemien,wo seine schnelleVerfügbarkeit einewichtigeRolle spielen kann.Durchdie
Vorstellung relevanter Algorithmen wie Zentralitätsmaßen oder dem TrustRank- und Multi-Steiner-Tree-
Algorithmus, zeigt die Arbeit, wie derartige Tools potenziell für therapeutische Interventionen eingesetzt
werden können. Deren gezielte Anwendung auf integrierte PPI-Netzwerke, integriert mit viralen Proteinen
und bereits bekannten Medikamenten, lässt sie als vielversprechende Strategie zur Medikamentenumwid-
mung erscheinen.

Trotz dieser vielversprechenden Fortschritte in der Systemmedizin, werden auch die damit verbundenen
Herausforderungen diskutiert. Die Robustheit eines jeden datenverabeitenden Tools hängt stark von der
Qualität der zuGrunde liegendenDaten ab. Bei CoVex, das zwar einen neuartigen Ansatz darstellt, um die
Dynamik zwischen Virus und Wirt zu verstehen, und dadurch etwaige Medikamentenumwidmungen zu
ermöglichen,müssen die Ergebnissemit Vorsicht interpretiert werden. Forscherinnen und Forschermüssen
dabei sicherstellen, dass die Ergebnisse einer strengen klinischen Validierung unterzogen werden, angesichts
der hohenRisiken, diemitmedizinischenEingriffenverbunden sind.ObwohldasTools dasPotenzial besitzt,
auf weitere Krankheiten ausgedehnt zu werden, bleibt die medizinische Deutung der Ergebnisse also von
größter Wichtigkeit.

Darauffolgend wird der Bereich der datenschutzbewussten KI untersucht, wobei ihre zentrale Rolle in
der gegenwärtigen Datenlandschaft betont wird. Mit der Verbreitung von Datensätzen enormer Größe in
der Genomik und anderen Omicsdaten und der Notwendigkeit, den Datenschutz aufgrund der aktuel-
len Gesetzgebung, wie der Datenschutz-Grundverordnung (DSGVO) der Europäischen Union, zu wah-
ren, stellt das sPLINK-Tool einen wertvollen Beitrag dar. Indem es institutionenübergreifende genomwei-
te Assoziationsstudien mittels föderiertem Lernen ermöglicht, wird demonstriert, dass komplexe Analysen
durchgeführt werden können, ohne die Datensicherheit zu beeinträchtigen. Solche durch föderiertes Ler-
nen ermöglichte Ansätze werden dann durch die FeatureCloud-Plattform weiter ausgebaut. Indem sie
das Konzept des föderierten Lernens generalisiert und es mit zusätzlichen Techniken zur Erhöhung der Pri-
vatsphäre anreichert, erleichtert sie einige Problemebei der Entwicklung solcherAlgorithmenundbeschleu-
nigt damit die Forschung in diesem Bereich. Zudem wird mit dem steigenden Aufkommen vonMethoden
des maschinellen Lernens (ML) die Sicherstellung ihrer Korrektheit und Reproduzierbarkeit immer wich-
tiger. Das AIMe-Register nimmt sich dieses Problems an und regt strenge Standards und vollständiges Re-
porting imML-Bereich an, wodurch die Integrität des Forschungsökosystems gestärkt wird.
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Im Zuge der Vorstellung von datenschutzbewusster KI beginnt die Arbeit mit den Grundkonzepten
und führt weiter zu komplexeren Methoden. Nachdem die Grundlagen von Modellen und Optimierern
erläutert wurden, widmet sich die Arbeit dann gängigen ML-Methoden, angefangen bei linearer Regres-
sion und Entscheidungsbäumen bishin zu komplexeren Methoden, wie neuronalen Netzen. Die Arbeit
erklärt auch die aufgekommenen Techniken zur Verbesserung der Privatsphäre, insbesondere Differential-
Privacy und Secure-Multi-Party-Computation. Neben föderiertem Lernen zeigen diese Techniken, wie Da-
tensicherheit in kollaborativen Umgebungen, insbesondere in sensiblen Bereichen wie der medizinischen
Forschung, gewährleistet werden können.

Neben den technischen Fortschrittenwerden auch die ethischen und regulatorischenDimensionen dis-
kutiert, die in diesemFeld anzutreffen sind.MitToolswie sPLINK,die gezielteLösungen für einbestimmtes
Problem (hier GWAS) bieten, und Plattformen wie FeatureCloud, die universell einsetzbar sind, ist die
biomedizinische Forschungsgemeinschaft mit einer großen Bandbreite ausgestattet. Die Herausforderun-
gen sind jedoch nicht nur technischer Natur; auch die medizinische Erklärbarkeit der generierten Modelle,
die Einhaltung derDatenschutzgesetze und eine positive öffentlicheWahrnehmung sindwichtige Elemente.
Gemeinschaftliche Initiativen, in dieser Arbeit verkörpert durch das AIMe-Register, können hierzu einen
wichtigen Beitrag leisten.

Zusammenfassend zeigt dieseDissertationdasPotenzial vonKI inder Systemmedizin auf, bei gleichzeiti-
ger Gewährleistung des Datenschutzes.Während sich die medizinische Forschungslandschaft diesbezüglich
weiterentwickelt, können die in dieser Arbeit vorgestellen Ansätze eine wichtige Rolle spielen.
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Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2

virus. Various studies exist about the molecular mechanisms of viral infection. However, such

information is spread across many publications and it is very time-consuming to integrate,

and exploit. We develop CoVex, an interactive online platform for SARS-CoV-2 host inter-

actome exploration and drug (target) identification. CoVex integrates virus-human protein

interactions, human protein-protein interactions, and drug-target interactions. It allows visual

exploration of the virus-host interactome and implements systems medicine algorithms for

network-based prediction of drug candidates. Thus, CoVex is a resource to understand

molecular mechanisms of pathogenicity and to prioritize candidate therapeutics. We inves-

tigate recent hypotheses on a systems biology level to explore mechanistic virus life cycle

drivers, and to extract drug repurposing candidates. CoVex renders COVID-19 drug research

systems-medicine-ready by giving the scientific community direct access to network medi-

cine algorithms. It is available at https://exbio.wzw.tum.de/covex/.
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Coronavirus Disease-2019 (COVID-19) is an infectious
disease caused by SARS-CoV-2 (severe acute respiratory
syndrome coronavirus 2). It was first identified in Wuhan,

China and has spread causing an ongoing pandemic1 with
globally 2.4 million confirmed cases and 167 thousand deaths as
of April 20, 2020.

Our insights into SARS-CoV-2 infection mechanisms are
limited and clinical therapy has largely focused on treating critical
symptoms. Therefore, the current pandemic requires fast and
freely accessible knowledge to accelerate the development of
vaccines, treatments, and diagnostic tests. Research data have
been collected in several online platforms, such as the COVID-19
Open Research Dataset and the Dimensions COVID-19
collection2,3. In addition, existing databases that collect virus
information have responded by integrating new SARS-CoV-2
research4,5.

As vaccine and drug development may take years, drug
repurposing is a potent approach that offers new therapeutic
options through the identification of alternative uses of already
approved drugs6. These drugs have previously undergone clinical
and safety trials and, hence, accelerate drug development time-
lines from a decade to a few years or months. Due to the COVID-
19 pandemic, numerous research groups around the world have
been joining their efforts to identify drugs that can be repurposed
to effectively treat COVID-19. Numerous drugs are already part
of clinical trials, including Remdesivir (a less effective ebola drug),
Chloroquine, Hydroxychloroquine (antimalarial drugs), Tocili-
zumab (rheumatoid arthritis drug), Favipiravir (influenza drug),
and Kaletra (a combination of Lopinavir and Ritonavir for
treating human immunodeficiency virus HIV-1)7.

Computational systems and network medicine approaches
offer a methodological toolbox required to understand molecular
virus–host–drug mechanisms and to predict novel drug targets to
attack them8,9. Few studies on these mechanisms in SARS-CoV-2
exist. Gordon et al.10 applied affinity purification-mass spectro-
metry (AP-MS) to reconstruct the SARS-CoV-2-human
protein–protein interaction (PPI) network and subsequently
employed a chemoinformatics approach to identify potential
drugs for repurposing. The data generated from that study is a
major advancement in understanding SARS-CoV-2 infection.
However, to identify drug candidates, the study mainly con-
sidered the direct interactors of the human proteins as putative
targets and thus did not take into account the network context of
the human interactome. However, viral interactions with human
proteins have cascading effects in the human interactome, where
key proteins necessary for the viral replication cycle are only
indirectly affected. Therefore, downstream host proteins may be
additional promising targets for therapeutic intervention, but
require thorough data integration and mining to be identified (see
Supplementary Methods for details). Figure 1 illustrates the
concept of systems medicine-based drug repurposing specifically
for SARS-CoV-2.

Gysi et al.11 integrated the experimentally validated SARS-
CoV-2 virus–host interactions with the human interactome and
investigated comorbidity and differences of virus–host interac-
tions across 56 tissues. Furthermore, network medicine analysis
was applied to compile a list of drug repurposing candidates that
target also indirectly affected proteins in the human interactome.
However, the combined number of virus–host, host–host, and
drug–target interactions goes into the millions such that purely
algorithmic approaches to discovering new drug targets and drug
repurposing candidates produces a large number of results, many
of which lack mechanistic specificity and, hence, are not useful.
Thus, to make their results accessible, Gysi et al.11 worked closely
together with clinical experts to narrow down the number of
predicted repurposable drugs.

In order to allow for the interactive integration of expert
knowledge about virus replication, immune-related biological
processes, or drug mechanisms, we developed the interactive
systems and network medicine platform CoVex (CoronaVirus
Explorer). It integrates experimental virus–human interaction
data for SARS-CoV-2 and SARS-CoV-1 with the human inter-
actome as well as drug information to predict novel drug (target)
candidates, and it offers biomedical and clinical researchers’
interactive and user-friendly access to network medicine algo-
rithms for advanced data mining and hypothesis testing. CoVex
follows a human-in-the-loop paradigm and provides an intuitive
visualization of virus–host interactions, drug targets, and drugs to
enable researchers to examine molecular mechanisms that can be
targeted using repurposed drugs. CoVex offers two main actions
for which several network medicine algorithms are available:
Given a list of user-selected human host proteins, viral proteins,
or drugs (referred to as seeds), users can (1) search the human
interactome for viable drug targets and (2) identify repurposable
drug candidates. In a typical workflow, these two actions are
combined, that is, starting from a selection of virus or virus-
interacting proteins, users mine the interactome for suitable drug
targets for which, in turn, suitable drugs are identified. Addi-
tionally, users can leverage expert knowledge by uploading a list
of proteins or drugs of interest as seeds to guide the analysis. Such
seeds could, for instance, be a list of differentially expressed genes
(DEGs), a list of proteins related to a molecular mechanism of
interest, or a set of drugs known to be effective.

The remainder of this paper is structured as follows: In the
“Methods” section, we first describe the datasets and integration
strategy used in CoVex. Next, we introduce the rationales of the
systems and network medicine algorithms implemented in
CoVex, and briefly describe the overall architecture of the plat-
form. In the “Results” section, we show several application
examples to illustrate the flexibility and typical use cases of
CoVex. Finally, we will discuss opportunities and limitations in
using CoVex for COVID-19 research.

CoVex opens up the systems medicine toolbox for the entire
infectious disease research community by providing an easy-to-
use web tool enriched with data mining algorithms for drug
repurposing. This allows specialists from different fields to bring
in expert knowledge to identify the most promising drug targets
and drug repurposing candidates for developing effective thera-
pies. We would like to stress that the CoVex platform can
and will be adopted and extended to allow exploring other
viral–host–drug interactomes, for example, with MERS (Middle
East respiratory syndrome), Zika, dengue, and influenza viruses,
thereby increasing preparedness for similar future events.

Results
The CoVex platform. The main result is the CoVex platform
itself, which renders drug repurposing research systems-
medicine-ready. In the following, we first describe how the
platform’s user interface (Fig. 2) provides the full feature spec-
trum of CoVex to clinicians and scientists. Afterwards, we
demonstrate the use of CoVex in four different application sce-
narios starting with four hypotheses and ending with different
drug repurposing candidates, as well as a short discussion on how
to prioritize them (Fig. 3).

Figure 2 shows the CoVex web interface. To find potential
drugs, the “Quick Start” analysis will produce a multi-Steiner tree,
which considers all viral proteins as seeds and adds a small
number of host proteins to connect them. Subsequently, drugs
directly targeting these proteins are selected via closeness
centrality. After the computation has finished, a click on the
corresponding task opens the analysis results, consisting of a table
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view of drugs and proteins, a visualization of the protein–protein
and drug–protein interactions, and a list of parameters used for
the analysis. In the “Simple Analysis” panel, users can select seed
proteins manually and search for drugs targeting them. In the
“Advanced Analysis” panel, users can choose from a list of
network medicine algorithms (see “Methods” and Supplementary
Methods for details) to discover drug targets or drug repurposing
candidates. Users can either select proteins from the view, upload
a custom list of proteins or drugbank ids, or select proteins
expressed in a given tissue. An enrichment analysis of the
identified drug target proteins may be performed with g:
Profiler12.

Application scenarios. The utility of CoVex and its integrated
systems medicine approaches is outlined in the following four
scenarios. More details on each can be found in the Supplemen-
tary Notes.

Scenario a: Starting from a selection of viral proteins, we use
the PPI network to identify the biological mechanism or pathway
utilized by the virus. As an example, we consider the viral

proteins E, M, and Spike, which constitute the external structure
of the virus and thus mediate entry into the host cells during the
infection process13,14. We select the interactors of these viral
proteins reported for SARS-CoV-2 and use the multi-Steiner tree
algorithm to uncover the biological pathway involved. The
resulting network (Fig. 4) yields 26 new potential drug targets,
including the bradykinin receptor B1 (BDKRB1). Subsequently,
we use closeness centrality to find drugs affecting this pathway.
Notably, we identify six relevant drugs that target BDKRB1:
Ramipril, Captopril, Perindopril, and Enalaprilat (approved),
which belong to the angiotensin-converting enzyme (ACE)
inhibitor class15; Icatibant, an antagonist of the bradykinin
receptor B216; and bradykinin, a non-approved drug that is
degraded by the ACE17. Furthermore, to understand the
relationship between BDKRB1 and two proteins known to
participate in the entry of the virus (angiotensin-converting
enzyme 2 (ACE2) and transmembrane protease serine 2)18, we
use the “custom proteins” option available in CoVex. We found
that kininogen 1 and angiotensin proteins connect BDKRB1 with
ACE2. These four proteins are functionally related through the

1. Binding &
entry

3. Replication &
translation

2. RNA release

5. Release

4. Assembly

Host proteins

Viral proteins

Virus–host protein
interactions

Host protein
interactions

Drug–protein
interactions

Host-targeting drugs

Virus-targeting drugs

Fig. 1 The SARS-CoV-2 life cycle and the CoVex systems medicine approach of drug repurposing. Most antiviral drugs (gray drugs) target the virus
proteins or their direct host interactor proteins to inhibit different stages of the viral life cycle. Our rationale, however, is that viral interactions with human
host proteins have a cascading effect to hijack and control key proteins necessary for the virus’ life cycle. We aim to identify repurposable drug candidates
(green drugs) targeting these key host modulators to interfere with virus replication and disease progression following infection. Besides an increased
antiviral drug repertoire, targeting host proteins would make it more difficult for the virus (population) to develop resistance mutations.
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renin–angiotensin system, which is targeted by ACE inhibitors
(www.wikipathways.org/instance/WP554). In summary, CoVex
identifies the protein BDKRB1, which appears to play a role in
SARS-CoV-2 host cell entry and can be targeted by several ACE
inhibitors widely used in clinical trials to treat COVID-19. It
should be noted that the ACE2 protein is not present in the set of
seeds used to start the analysis. Nevertheless, CoVex is capable of
identifying the pathway and new protein targets functionally
related to ACE2 (Fig. 4).

Scenario b: Starting from both viral proteins and a list of
proteins of interest, we can use CoVex to identify a connecting
pathway or biological mechanisms that can be targeted by drugs.
In this scenario, we are specifically interested in viral proteins that
suppress host immunity and the corresponding host immune
response pathways. First, we select the viral proteins ORF7a and
ORF3a, which are potentially involved in innate immune
response and apoptosis as discussed by Gordon et al.10. Next,
we compile a list of proteins of interest based on the DEGs from
the study by Blanco-Melo et al.19 lung epithelial cells were
infected with the SARS-CoV-2 virus, leading to altered expression
of immunity-related genes to combat the viral infection. We
consider DEGs known to be associated with the host pathway
involving infection with the herpes simplex virus, another viral
pathogen. These genes include IFIH1, OAS1, STAT1, DDX58,
OAS2, OAS3, IRF7, EIF2AK2, IFIT1, and IRF9. The selected viral
proteins and DEGs (converted to Uniprot ids) were used as seeds
for the multi-Steiner tree algorithm to extract a potential
immune-related mechanism. As expected, the resulting

subnetwork reveals that the viral proteins are close to the DEGs
in the host PPI network. Closeness centrality analysis assigned a
high rank to Tofacitinib and Ruxolitinib, which are currently
being assessed in clinical trials. Tofacitinib and Ruxolitinib exert
immunomodulatory effects as Janus kinase inhibitors20,21. Thus,
administration with these drugs may mitigate immune-mediated
lung injury and reduce functional deterioration caused by an
overamplified host inflammatory response. This could be
especially important in later stages of the disease to prevent an
overreaction of the body’s immune system and, hence, may
further prevent the need for mechanical ventilation in patients
suffering from severe COVID-19. Other drugs that target this
subnetwork include Masitinib, Erlotinib, and Sorafenib, which
could be further examined in downstream analyses. In a similar
manner, users may provide a custom list of proteins as seeds to
hunt for drugs that can target a putative mechanism of interest.

Scenario c: Starting with a set of drugs of interest, we can follow
a top-down approach to extract potential host mechanisms and
additional drugs targeting the proteins participating in these
mechanisms. As an example, we identify 69 drugs currently in
clinical trials for COVID-19 and group them based on their
Anatomical Therapeutic Chemical classification (Supplementary
Table 5)22. We focus on drugs from the immunostimulants class
(L03) and their target proteins as starting seeds. We further select
the interactors of the immune-related viral proteins ORF9B,
ORF6, ORF3B, and ORF3A10 as end-point seeds. By applying the
multi-Steiner tree algorithm, we discover pathways of interacting
proteins that connect the selected drugs (and their target

Selected
dataset

Information
about the data

Search for
proteins/genes

Select viral
proteins

Information about a
selected protein

Simple analysis: Directly search
for potential drugs using must
and closeness centrality

Advanced analysis: Utilize all
implemented algorithms and
parameters

Information about running
task and access to results

List of selected proteins.
The selection will be used
for finding drugs and drug
targets

Fig. 2 The CoVex online platform. The network view (middle) shows drug candidates (green nodes) that were found using closeness centrality on a set of
proteins (blue nodes), which resulted from a multi-Steiner tree computation with all viral proteins as seeds (not shown here). Therefore, drugs targeting
these seeds might be able to interrupt the viral life cycle progression. Here we colored nodes based on lung-tissue-specific median gene expression
according to GTEx.
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proteins) with the selected viral proteins. Among these connector
proteins, we find five genes associated with cytokine signaling in
the immune system according to Reactome Pathways (CSF2,
NRG1, NUP188, PTPN18, SOCS1)23. Notably, CSF2 is enriched in
lung, pancreas, and immune cells (www.proteinatlas.org/
ENSG00000164400-CSF2)24 and can be inhibited by KB002
(DB05194), which is an investigational drug and an engineered
human monoclonal antibody treatment for inflammatory and
autoimmune processes25. In summary, with CoVex, we found a
new drug target that may play a key role in the host immune
response during viral infection. We also identified a new drug
candidate for COVID-19, as it targets the proteins involved in the
pathogenic mechanisms triggered by ORF3A, ORF3B, ORF6, and
ORF9B viral proteins.

Scenario d: Starting from a hypothesis-driven mixed selection of
viral and host proteins, as well as drugs, we seek to utilize PPIs to
identify a full mechanism or pathway and to suggest additional drug
candidates. As an application case, we follow-up on a recently
published hypothesis by Liu and Abrahams concerning the putative
interference of SARS-CoV-2 with the formation of hemoglobin in
erythrocytes26,27. Essentially, the virus is believed to interfere with
heme formation causing symptoms of hypoxia. Liu and Abrahams
hypothesize that this would also explain why Chloroquine and
Favipiravir are effective drugs, as they may prevent the viral
proteins from competing with iron for the porphyrin in hemoglobin
(NSP1-16, ORF3a, ORF10, and ORF8 targeted by Chloroquine as
well as ORF7a targeted by Favipiravir)26,27. Based on this
hypothesis (discussed in more detail in the Supplementary Notes),

Virus–host protein
interactions

Host protein
interactions

Drug–protein
interactions

a

b

c

d

Fig. 3 CoVex application scenarios. Depending on the starting hypothesis, dedicated systems medicine algorithms will propagate from selected seeds to
connect drugs with viral proteins using host proteins as proxies. Essentially, four different strategies apply: a Starting with viral proteins, one can identify
drugs targeting host proteins that connect the viral seeds. b Starting with a set of proteins of interest as proxies, we identify pathways connecting them to
(selected or all) viral proteins. Subsequently, we identify drugs targeting this mechanism. c Starting with a set of drugs of interest, one may find pathways
to (selected or all) viral proteins extracting a potentially druggable host mechanism. d Hypothesis-driven, hybrid approach with seeds in different levels to
be connected for druggable mechanism extraction. Boxes with light blue background indicate the typical starting points in the respective application
scenario.

Fig. 4 CoVex result network for application scenario a. Drug–protein–protein interaction network obtained using the viral proteins E, M, and Spike with
multi-Steiner tree followed by closeness centrality. Blue nodes are protein targets. Green nodes are approved drugs and orange nodes are non-approved
drugs. Lines represent the interactions between proteins and drugs. Note that some ACE inhibitor drugs have been identified, such as Ramipril, Captopril,
Perindopril, and Enalaprilat targeting the BDKRB1 protein, which are currently being evaluated in clinical trials.
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we investigate the pathways connecting these viral proteins with
the two effective drugs Chloroquine and Favipiravir. To this end, we
select two known heme binding host proteins as seeds: cytochrome
b5 reductase, which interacts with the viral protein NSP7, and
the viral ORF3a, which binds to heme oxygenase 1. Using
KeyPathwayMiner for drug target discovery followed by closeness
centrality for drug discovery, we identify methylene blue in addition
to Chloroquine and Deferoxamine, which are both in COVID-19
clinical trials28,29. Notably, methylene blue is approved by the Food
and Drug Administration for the treatment of methemoglobinemia,
which fits the investigated hypothesis (reduced oxygen-carrying
capacity). Also, Deferoxamine is widely used therapeutically as a
chelator of ferric ions in disorders of iron overload30. However, note
that the available scientific evidence for a methemoglobinemia or
ferric ion imbalance caused by SARS-CoV-2 is very limited
(see Supplementary Notes) and that we use this hypothesis solely
to illustrate the potential of CoVex’ network medicine investigation
and hypothesis testing capabilities.

Discussion
COVID-19 is a threat to our health and our social life, as well as
to our healthcare and economic systems around the globe. Since
the development of safe and effective vaccines is a time-
consuming process, the only alternative to mitigate the damage
by the SARS-CoV-2 pandemic is to quickly identify agents for the
treatment and control of COVID-19 symptoms. Much attention
in biomedical and clinical research is, thus, given to the task of
identifying therapeutically exploitable drugs. A particular interest
lies in drug repurposing, since already approved drugs can go
through shortened clinical trials within months rather than years.
While a number of promising drug repurposing candidates are
currently being tested, the discovery of such candidates is still
unstandardized and mostly unstructured. Systems and network
medicine offer alternative approaches, where the process of drug
target discovery is driven by computational data mining methods
utilizing molecular interaction networks. As recently demon-
strated by Gysi et al.11 for SARS-CoV-2, this data-driven process
can produce a list of promising drug candidates targeting host
proteins in close proximity and mechanistically related to virus-
interacting proteins11. Here, we seek to make this network
medicine approach widely available to the community.

With CoVex, we present an interactive and user-friendly web
platform that integrates published data of SARS-CoV-1 as well as
recent data about virus–host interactions in SARS-CoV-210 with
the human interactome and several drug–target interaction
databases. CoVex allows users to mine the integrated
virus–host–drug interactome for putative drug targets and drug
repurposing candidates with only a few mouse clicks. Through
features such as interactive seed protein selection, filtering, and
upload of own lists of proteins or drugs of interest, CoVex covers
diverse application scenarios ranging from data-driven,
hypothesis-free drug target discovery to expert-guided analyses
with a clear underlying hypothesis about virus biology. To
address the diversity of research questions adequately, CoVex
implements several state-of-the-art graph analysis methods.
These were specifically tailored to be employed in a network
medicine context and include a weighted version of TrustRank as
well as a multi-Steiner tree method (Supplementary Material).

While CoVex is a powerful tool for SARS-CoV-1 and -2
research, results uncovered with our platform have to be con-
sidered with caution. We stress that CoVex can only suggest
putative drug candidates for further investigation and that those
candidates are not guaranteed to have an antiviral effect. While
the suggested drugs target proteins involved in a putatively
important mechanism for the virus, the actual effect of the drug

has to be verified through follow-up investigations. The inhibition
of a cofactor that prevents the virus from manipulating host
proteins, for example, could even have a proviral effect. After
validating the target for the suggested drug through appropriate
genetic or chemical approaches, the drug candidate, hence, still
needs to be properly vetted by clinical experts and tested fol-
lowing established procedures and clinical trials. Current data
about virus–host interactions in SARS-CoV-2 is still preliminary
and incomplete. For instance, important proteins such as the
ACE2 receptor, a known entrypoint for the virus18, is missing in
the SARS-CoV-2 dataset by Gordon et al.10. Moreover, we
included only drugs that are reported in databases about clinical
trials or in the literature if they have a valid entry in DrugBank,
possibly excluding some of the drugs currently being investigated.
Further, we do not differentiate between different sources of
drug–target interactions. The strength of experimental evidence
may vary depending on the experimental assay that was used or
the type of annotation from the source database, for example,
clinical and variant annotations from PharmGKB, which can be
interpreted as indirect drug–protein associations. It should also be
noted that we do not list drugs that target viral proteins directly,
as the goal of CoVex is to unravel novel drug targets further
downstream in the human interactome.

We acknowledge that the choice of algorithm and its associated
parameters is nontrivial, forcing users to engage in time-
consuming explorative analysis. To make this easier, we allow
users to queue multiple tasks, which are executed in parallel. As
our experience with this platform grows, we also plan to develop
guidelines that allow users to choose an appropriate method for a
particular research question. We further plan to integrate new
data about virus–host interactions and ongoing clinical trials in
corona viruses as it becomes available.

In summary, we have presented CoVex, a web-based platform
for the interactive exploration and network-based analysis of
virus–host interactions, aimed towards drug repurposing for the
treatment of COVID-19. CoVex can be easily updated to
accommodate the fast-paced data generation in the battle against
the global pandemic. CoVex is expected to speed up the discovery
of potential therapeutics for COVID-19. For the future, we also
plan to extend the CoVex network medicine platform to other
viruses in which new drug targets and drug repurposing candi-
dates are urgently sought, including MERS, Zika, influenza, and
dengue. We will also add features for the integration of additional
molecular data, such as gene expression. Until then users can
work with the “add custom protein” functionality of CoVex,
allowing them to utilize and filter by any set of genes, including
those derived by gene expression pattern analyses.

Methods
Data integration. We integrated virus–host interaction data from several sources.
We obtained SARS-CoV-2 AP-MS data reported by Gordon et al.10, containing
332 high-confidence virus–host interactions for 27 SARS-CoV-2 proteins10, as well
as SARS-CoV-1 interactions from VirHostNet4 (24 interactions), and Pfefferle
et al.31 (113 interactions existing in our interactome). Human PPIs were obtained
from the integrated interactions database32 filtered based on experimental valida-
tion. The resulting interactome consists of 17,666 proteins connected via 329,215
interactions. Drug–target associations were obtained from ChEMBL (2020-03)33,
DrugBank (v. 5.1.5)25, DrugCentral (2018-08-26)34, Target Therapeutic Database
(2019-07-14)35, Guide To Pharmacology (2020-01; only approved drugs)36,
PharmGKB (downloaded 2020-04)37, and BindingDB (2019-08-12)38. Where
applicable, we considered drugs that have binding affinity values (EC50, IC50, Kd,
and Ki) <10 μM39,40. Only drugs that were mappable to DrugBank IDs and tar-
geting host proteins were included in the network. Drugs currently undergoing
clinical trials and mappable to DrugBank IDs (as of April 4, 2020) for the treatment
of COVID-19 were collected from ClinicalTrials.gov (www.ClinicalTrials.gov)41,
the EU Clinical Trials Register (www.clinicaltrialsregister.eu), and the International
Clinical Trials Registry Platform (www.who.int/ictrp/). In total, we have 6861 drugs
(67 in clinical trials) and 52,860 drug–target associations integrated in our network.
We further downloaded per-tissue median gene expression levels from the GTEx
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data portal (Release V8, dbGaP Accession phs000424.v8.p2, downloaded 2020-05-
30) to allow for tissue-specific filtering and visualization of gene expression values.
Note that we rely on integrating published data and, thus, on their corresponding
quality.

Systems medicine algorithms for drug repurposing prediction. The general
idea of CoVex is to provide researchers and clinicians with a tool to visually explore
druggable molecular mechanisms that drive the interactions between virus and
host. To this end, the integrated virus–human–drug interactions form molecular
networks that are modeled as graphs with nodes as proteins or drugs, and edges
referring to interactions between them. The goal of CoVex is to explore this net-
work while allowing for the exploitation of expert knowledge. Starting with a
selected set of (usually) hypothesis-driven seeds (virus proteins, human proteins, or
drugs), the goal is to first identify subnetworks connecting these seeds and, sub-
sequently, to identify drug repurposing candidates associated with these mechan-
isms. A vast number of methods have been reported in the literature for identifying
subnetworks42. In CoVex, we have integrated several algorithms (including a
dedicated multi-Steiner tree algorithm) with different underlying paradigms to
provide specific exploration options to various particular medical, therapeutic, and
research questions and hypotheses. CoVex, thus, allows users to choose among the
following approaches in the “advanced analysis” procedures.

Degree centrality is the simplest conceivable centrality measure and ranks
proteins or drugs interacting with the seeds by their node degree, that is, the
number of interactions. Thus, this algorithm yields subnetworks in which seed-
connected proteins and/or drugs are preferentially selected if they interact with
many other proteins in the network. The only user-selected parameter is the result
size, that is, how many of the top-ranked proteins or drugs are included. Notably,
centrality measures in CoVex can be used for detecting drug targets and for
identifying promising drugs.

Closeness centrality is a node centrality measure that ranks the nodes in a
network based on the lengths of their shortest paths to all other nodes in the
network. The rationale behind this algorithm is to preferentially select proteins
and/or drugs that are a short distance from all other proteins in the network and
are thus of central importance. In CoVex, we use a modified version suggested by
Kacprowski et al.43, where only the shortest paths to a set of selected seed nodes are
considered. The only algorithm-specific, user-selected parameter is the result size.

Betweenness centrality is another node centrality measure that ranks the nodes
in a network based on how many shortest paths pass through them. In CoVex, we
use a modified version suggested by Kacprowski et al.43, which only considers
shortest paths between pairs of seed nodes. Hence, nodes receive a high score if
they are on many shortest paths between the seeds. Since drugs are not contained
in any shortest paths in our integrated interactome (see Fig. 1), betweenness
centrality can be used only to find drug targets. The only algorithm-specific, user-
selected parameter is the result size.

Guney et al.44 introduced the network proximity between a drug and a set of
seed nodes as the average minimum distance from the drug’s targets to all of the
seeds. The algorithm computes empirical z-scores by comparing the obtained
proximity score to a background distribution obtained by randomly sampling sets
of seed nodes and drug targets. In CoVex, network proximity can be employed to
find drugs, given a set of host proteins of interest. The user can specify the result
size, as well as the number of randomly sampled instances used for computing the
background distribution.

TrustRank is conceptually similar to closeness centrality but additionally
considers the importance of the seed nodes themselves. In other words, TrustRank
ranks nodes in a network based on how well they are connected to a (trusted) set of
seed nodes45. It is a variant of Google’s PageRank algorithm, where “trust” is
iteratively propagated from seed nodes to neighboring nodes using the network
structure. The node centralities are initialized by assigning uniform probabilities to
all seeds and zero probabilities to all non-seed nodes. In CoVex, the TrustRank
algorithm can be run starting from a user-defined set of (trusted) seed proteins to
obtain a ranked list of proteins in the PPI network that could be prioritized as
putative drug targets. Similarly, TrustRank can be executed on the joint
protein–drug interactome to identify drug repurposing candidates. User-selected
parameters include the result size and the damping factor (range 0–1), which
controls how fast “trust” is propagated through the network. A small damping
factor results in a conservative behavior of the algorithm (nodes close to the seeds
receive much higher scores than distant ones), while a large damping factor makes
its behavior more explorative.

The Steiner tree problem is a classical combinatorial optimization problem. It
aims at finding a subgraph of minimum cost connecting a given set of seed nodes.
For CoVex, we have developed a weighted multi-Steiner tree method that
computes approximate weighted multiple Steiner trees and connects them to one
subnetwork. The user can select the set of proteins of interest and extract
subnetwork(s) that connect the selected seed proteins as candidate mechanism(s)
involved in COVID-19 progression. In this mechanistic subnetwork(s), we can
then extract essential proteins and, thus, the most promising drug targets and
repurposable drugs for COVID-19. User-selected parameters include the number
of Steiner trees to be merged as well as the tolerance towards accepting more
expensive subnetworks (for speeding up the approximation algorithm; for details
see Supplementary Methods).

KeyPathwayMiner is a network enrichment tool that identifies condition-
specific subnetworks (key pathways)46. In CoVex, we utilize the KeyPathwayMiner
web service to extract a maximally connected subnetwork starting from a user-
defined set of proteins of interest (seeds). The only user-selected parameter is K,
which represents the number of permitted exception nodes, that is, proteins that
were not part of the seed proteins but serve to connect them. Since these proteins
act as bridges, these may represent key proteins participating in the dysregulated
subnetwork even though they are not directly targeted by the virus and are
therefore promising candidates for intervention. In its current implementation,
exception nodes will only be added if they indeed possess a bridging characteristic
and will not be shown otherwise.

Irrespective of the network analysis method used, the extracted solutions
have a higher intrinsic probability to contain high-degree nodes (hubs), that is,
proteins that have a large number of interactions. While these proteins are key
players in the human interactome, they are not necessarily suitable drug targets
as perturbing them might lead to severe unintended side effects. Since it is more
likely that hub proteins are involved in several mechanisms and are not specific
to the mechanism of the disease under study, users can also perform the analysis
with the hub penalty, which can potentially favor more specific mechanisms
related to COVID-19. To mitigate this bias, users can either select an upper
bound to filter out high-degree nodes or, alternatively, penalize high-degree
nodes by incorporating the degree of neighboring nodes as edge weights in the
optimization. For the latter, values between 0 and 1 can be selected, where higher
values correspond to a higher penalty. Both options are available in advanced
analyses for all methods except for degree centrality, because its rationale is to
identify hubs, and KeyPathwayMiner, which conceptually does not allow for
weighted subnetwork extraction.

All network algorithms except multi-Steiner tree and KeyPathwayMiner yield
scores for the nodes contained in the returned subnetwork. In the case of degree
centrality, closeness centrality, betweenness centrality, and TrustRank, these scores
correspond to, respectively, the number of direct interactions with the seeds, the
inverse of the mean distance to the seeds, the fraction of shortest paths between the
seeds passing through the node, and the “trust” on the node at termination. In all
four cases, high scores indicate that the nodes are central with respect to the seeds,
but the scores do not carry any intrinsic statistical semantics. In CoVex, we hence
display normalized scores for degree centrality, closeness centrality, betweenness
centrality, and TrustRank, which we compute by dividing by the obtained
maximum. In contrast to that, network proximity yields empirical z-scores, which
are smaller the more promising the drugs are for the selected set of seed proteins.
Since these z-scores directly translate into empirical p values, we do not
normalize them.

Implementation. CoVex consists of five components: (i) Data are stored in a
PostgreSQL database (v. 12.2). (ii) The backend is implemented using the
Django web framework (v. 3.0.5) with Python (v. 3.6) and the Django REST
framework (v. 3.11.0) to build the web API. (iii) The network algorithms (except
KeyPathwayMiner) are implemented with graph-tool (v. 2.3.1)47. (iv) Back-
ground task processing is implemented using Redis Queue (RQ, v. 1.3.0) and the
in-memory database Redis (v. 3.4.1). Django enqueues the jobs and RQ pro-
cesses them in the background while Redis functions as a broker between Django
and RQ. (v) The frontend is implemented in Angular (v. 9.0.2) and utilizes the
JavaScript libraries vis-data (v. 6.5.1) and vis-network (v. 7.4.2) for network
visualization.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available
publicly and their integration is described accordingly within the paper and its
supplementary information files. Human protein–protein interactions were obtained
from the Integrated Interactions Database (http://iid.ophid.utoronto.ca/). Virus–host
interactions were downloaded from VirHostNet (http://virhostnet.prabi.fr/). Drug–target
associations were integrated from the following databases: ChEMBL (https://www.ebi.ac.
uk/chembl/), DrugBank (https://www.drugbank.ca/), DrugCentral (http://drugcentral.
org/), Target Therapeutic Database (http://bidd.nus.edu.sg/group/cjttd/), Guide To
Pharmacology (https://www.guidetopharmacology.org/), PharmGKB (https://www.
pharmgkb.org/), and BindingDB (https://www.bindingdb.org/bind/index.jsp). Drugs
undergoing clinical trials for COVID-19 were collected from ClinicalTrials.gov (https://
clinicaltrials.gov/), the EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/),
and the International Clinical Trials Registry Platform (https://www.who.int/ictrp/en/).
Tissue-specific gene expression levels were obtained from the GTEx data portal (https://
www.gtexportal.org/home/, dbGaP Accession phs000424.v8.p2).

Code availability
CoVex is a public online platform software running on a web server. The CoVex code is
available from the corresponding author upon reasonable request. The online tool is
available at https://exbio.wzw.tum.de/covex/.
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Abstract

Meta-analysis has been established as an effective approach to combining summary
statistics of several genome-wide association studies (GWAS). However, the accuracy of
meta-analysis can be attenuated in the presence of cross-study heterogeneity. We
present sPLINK, a hybrid federated and user-friendly tool, which performs privacy-aware
GWAS on distributed datasets while preserving the accuracy of the results. sPLINK is
robust against heterogeneous distributions of data across cohorts while meta-analysis
considerably loses accuracy in such scenarios. sPLINK achieves practical runtime and
acceptable network usage for chi-square and linear/logistic regression tests. sPLINK is
available at https://exbio.wzw.tum.de/splink.

Keywords: sPLINK, PLINK, Federated learning, Genome-wide association studies,
GWAS, Meta-analysis, Privacy

Background
Genome-wide association studies (GWAS) test millions of single nucleotide polymor-
phisms (SNPs) to identify possible associations between a specific SNP and disease [1].
They have led to considerable achievements over the past decade including better com-
prehension of the genetic structure of complex diseases and the discovery of SNPs playing
a role in many traits or disorders [2, 3]. GWAS sample size is an important factor in
detecting associations, and larger sample sizes lead to identifying more associations and
more accurate genetic predictors [2, 4].
PLINK [5] is a widely used open source software tool for GWAS. Themajor limitation of

PLINK is that it can only perform association tests on local data. If multiple cohorts want
to conduct collaborative GWAS to take advantage of larger sample sizes, they can pool
their data for a joint analysis (Fig. 1a); however, this is close to impossible due to privacy

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
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Fig. 1 Comparison of sPLINK (c), aggregated analysis (a), and meta-analysis (b) approaches: Aggregated
analysis requires cohorts to pool their private data for a joint analysis. The meta-analysis approaches
aggregate the summary statistics from the cohorts to estimate the combined p-values. In sPLINK, the cohorts
calculate the model parameters (M) from the local data and global model, generate noise (N), and make the
parameters noisy (M′) in an iterative manner. The aggregated noise and noisy parameters are in turn
aggregated to update the global model or build the final model. sPLINK combines the advantages of the
aggregated analysis and meta-analysis, i.e. robustness against heterogeneous data and enhancing the
privacy of cohorts’ data. Yellow/blue color indicates case/control samples

restrictions and data protection issues, especially concerning genetic and medical data.
Hence, the field has established methods for meta-analysis of individual studies, where
only the results and summary statistics of the individual analyses have to be exchanged
[6] (Fig. 1b).
There are several software packages such as METAL [7], GWAMA [8], and PLINK [5]

that implement different meta-analysis models including fixed or random effect models
[9]. Although meta-analysis approaches are privacy-aware, i.e. the raw data is not shared
with third parities, they suffer from twomain constraints: first, they rely on detailed plan-
ning and agreement of cohorts on various study parameters such as meta-analysis model
(e.g. fixed effect or random effect), meta-analysis tool (e.g., METAL or GWAMA), het-
erogeneity metric (e.g. Cochran’sQ or the I2 statistic), the covariates to be considered, etc
[4]. Second and more importantly, the statistical power of meta-analysis can be adversely
affected in the presence of cross-study heterogeneity, leading to inaccurate estimation of
the joint results and yielding misleading conclusions [10, 11].
To address the aforementioned shortcomings, privacy-aware collaborative GWAS can

be developed using homomorphic encryption (HE) [12], secure multi-party computation
(SMPC) [13], and federated learning [14, 15]. In HE, the cohorts encrypt their private data
and share it with a single server, which performs operations on the encrypted data from
the cohorts to compute the association test results. In SMPC, there are several comput-
ing parties and the cohorts extract a separate secret share (anonymized chunk) [16] from
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the private data and send it to a computing party. The computing parties calculate inter-
mediate results from the secret shares and exchange the intermediate results with each
other. Each computing party computes the final results given all intermediate results. In
federated learning, the cohorts extract model parameters (e.g. Hessian matrices) from the
private data and share the parameters with a central server. The server aggregates the
parameters from all cohorts to calculate the association test results.
Kamm et al. [17] and Cho et al. [18] proposed GWAS frameworks based on SMPC. The

former developed simple association tests including Cochran–Armitage and chi-square
(χ2) and the latter implemented only the Cochran–Armitage test for trend. Shi et al.
[19] presented an SMPC-based logistic regression framework for GWAS. Constable et al.
[20] implemented an SMPC-based framework for minor allele frequency and chi-square
computation. These frameworks inherit the limitations of SMPC itself: They follow the
paradigm of “move data to computation,” where they put the processing burden on a few
computing parties. Consequently, they are computationally expensive [21] and are not
scalable for large-scale GWAS. Moreover, they suffer from the colluding-parties problem
[17] in which, if the parties send the secret shares of the cohorts to each other, the whole
private data of the cohorts is exposed.
Lu et al. [22], Morshed et al. [23], and Kim et al. [24] developed chi-square, linear

regression, and logistic regression tests using HE for GWAS, respectively. Sadat et al. [25]
introduced the SAFETY framework based on HE and Intel Software Guard Extensions
technology, which implements the linkage disequilibrium, Fisher’s exact test, Cochran-
Armitage test for trend, and Hardy-Weinberg equilibrium statistical tests. Similar to
SMPC-based methods, they are not computationally efficient because a single server
carries out operations over encrypted data, causing considerable overhead [26]. Addition-
ally, HE-based methods introduce accuracy loss in the association test results [23, 24].
This is because HE only supports addition and multiplication, and as a result, non-linear
operations in regression tests should be approximated using those two operations.
To address the computational limitation of HE/SMPC-based methods, the association

tests can be implemented in a federated fashion. Federated learning-based methods fol-
low the paradigm of “move computation to data,” distributing the heavy computations
among the cohorts while performing lightweight aggregation (simple operations such as
addition andmultiplication of the parameters) at the central server.Wang et al. [27] intro-
duced EXPLORER for distributed logistic regression algorithm. EXPLORER is a model
but not a tool for GWAS. Moreover, it does not provide a “guarantee for optimal global
solution,” implying that its results can be different from the aggregated analysis in gen-
eral. GLORE [28, 29] implemented a federated logistic regression test but the parameter
values computed by each cohort are revealed to the server.
Several hybrid federated frameworks including HyFed [30] have been introduced to

improve the privacy of federated learning by hiding the local parameters of a cohort
from third parties. HyFed is a suitable framework for developing federated GWAS algo-
rithms because it provides enhanced privacy while preserving the accuracy of the results.
It also supports federated mode, where different components can run in separate physical
machines and securely communicate with each other over the Internet.
In this paper, we present a hybrid federated tool called sPLINK (safe PLINK) based on

the HyFed framework for privacy-aware GWAS. sPLINK consists of four main compo-
nents (Fig. 2): Web application (WebApp) to configure the parameters (e.g. association
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Fig. 2 Architecture of sPLINK : (1) The coordinator creates a new project through the WebApp component
and (2) invites a set of cohorts to join the project; (3) the cohorts join the project and select the dataset using
the client component. The project is started automatically, when all cohorts joined. The computation of the
test results is performed in a an iterative manner, where the clients (4) obtain the global parameters from the
server, (5) compute the local parameters, mask them with noise, and share the noise and noisy local
parameters with the compensator and server, respectively; (6) the compensator aggregates the noise values
and sends the aggregated noise to the server; the server calculates the global parameters by aggregating the
noisy local parameters and the negative of the aggregated noise; (7) after the computation is done, the
cohorts and coordinator can access the results. All communications are performed in a secure channel over
HTTPS protocol. The cohorts can use Linux distributions, Microsoft Windows, or MacOS to run the client
component

test) of the new study; client to compute the local parameters, mask them with noise, and
share the noise with compensator and noisy local parameters with server; compensator
to aggregate the noise values of the clients and send the aggregated noise to the server;
server to compute the global parameters by adding up the noisy local parameters and the
negative of the aggregated noise. Notice that the utility of the global model is preserved
because the aggregated noise from the compensator cancels out the accumulated noise
from the noisy local parameters during the aggregation.
Unlike PLINK, sPLINK is applicable to distributed data in a privacy-aware fashion.

In sPLINK, neither the private data of cohorts leaves the site nor the original values of
the local parameters are revealed to the other parties (Fig. 1c). Contrary to the existing
HE/SMPC-based methods, sPLINK is computationally efficient because heavy compu-
tations are distributed across the cohorts while simple aggregation is performed on the
server and compensator. Compared to the current federated tools like GLORE, sPLINK
not only provides enhanced privacy but also supports multiple association tests including
logistic and linear regression [31], and chi-square [32] for GWAS.
The advantage of sPLINK over the meta-analysis approaches is twofold: usability and

robustness against heterogeneity. sPLINK is easier to use for collaborative GWAS com-
pared tometa-analysis. In sPLINK, a coordinator initiates a collaborative study and invites
the cohorts. The only decision the cohorts make is whether or not to join the study.
After accepting the invitation, the cohorts just select the dataset they want to employ
in the study. More importantly, sPLINK is robust to data heterogeneity (phenotype and
confounding factors). It gives the same results as aggregated analysis even if the pheno-
type distribution is imbalanced or if confounding factors are distributed heterogeneously
across cohorts. In contrast, meta-analysis tools typically lose statistical power in such
imbalanced or heterogeneous scenarios (details in the “Results” section).
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Results
We first verify sPLINK by comparing its results with those from aggregated analysis con-
ducted with PLINK for all three association tests on a real GWAS dataset from the SHIP
study [33]. We refer to this dataset as the SHIP dataset, which comprises the records of
3699 individuals with serum lipase activity as phenotype. The quantitative version repre-
sents the square root transformed serum lipase activity, while the dichotomous (binary)
version indicates if the serum lipase activity of an individual is above or below the 75th
percentile. The SHIP dataset contains around 5 million SNPs as well as sex, age, smok-
ing status (current-, ex-, or non-smoker), and daily alcohol consumption (in g/day) as
confounding factors (Table 1).
We employ the binary phenotype for logistic regression and the chi-square test, and

the quantitative phenotype for linear regression. We incorporate all four confounding
factors in the regressionmodels and no confounding factor in the chi-square test.We hor-
izontally (sample-wise) split the dataset into four parts, simulating four different cohorts
(Additional file 1: Table S1). PLINK computes the statistics for each association test using
the whole dataset while sPLINK does it in a federated manner using the splits of the indi-
vidual cohorts. To be consistent with PLINK, sPLINK calculates the same statistics as
PLINK for the association tests.
We compute the difference between the p-values as well as the Pearson correlation

coefficient (ρ) of p-values from sPLINK and PLINK. We use -log10(p-value) because the
p-values are typically small and -log10(p-value) can be a better indicator of small p-value
differences. According to Fig. 3a–c, the p-value difference is zero for most of the SNPs.
We also observe that the maximum difference is 0.162 for a SNP in the linear regression.
sPLINK and PLINK report 4.441 × 10−16 and 3.058 × 10−16 as p-values for the SNP,
respectively. This negligible difference can be attributed to inconsistencies in floating
point precision.
The correlation coefficient of p-values from sPLINK and PLINK for all three tests

is 0.99, which is consistent with the results of p-value difference from Fig. 3a–c. We
investigate the overlap of significantly associated SNPs between sPLINK and PLINK. We

Table 1 Description of datasets

Dataset # Samples # SNPs Adjustments Phenotype

SHIPa 3699 ∼5M Sex, age, smoking status,
daily alcohol consumption

SLAb, dichotomous (75th
percentile, 934 cases, 2765
controls)

SLA, quantitative,
Mean±SDc 1.23±0.3

COPDGened 5343 ∼600K Sex, age, smoking status,
pack years of smoking

COPDe, dichotomous,
(2811 cases, 2532 controls)

FEV1f, quantitative,
Mean±SD 2.993±0.635

FinnGen 135,615 ∼ 1M Sex and age Hypertension, dichoto-
mous, (34,257 cases,
101,358 controls)

aStudy of Health in Pomerania
bSerum lipase activity
cStandard deviation
dGenetic Epidemiology of chronic obstructive pulmonary disease
eChronic obstructive pulmonary disease
fForced expiratory volume in one second
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Fig. 3 �log10(p-value) between sPLINK and PLINK as well as the set of SNPs identified by sPLINK and PLINK as
significant for logistic regression (a, d), linear regression (b, e), and chi-square test (c, f), respectively. For most
of the SNPs, the difference is zero, indicating that sPLINK gives the same p-values as PLINK. The negligible
difference between p-values for the other SNPs can be attributed to differences in floating point precision.
The spikes in some genomic positions are due to the strong association of the corresponding SNPs, which
result in higher absolute error. sPLINK and PLINK also recognize the same set of SNPs as significant. Genomic
positions (ticks in a–c) indicate chromosome numbers. The details of the experiments are available in
Additional file 1: Table S1

consider a SNP as significant if its p-value is less than 5 × 10−8 (genome-wide signif-
icance). PLINK and sPLINK recognize the same set of SNPs as significant (Fig. 3d–f).
Notably, the identified SNPs, e.g. rs8176693 and rs632111, lying in genes ABO (intronic)
and FUT2 (3-UTR), respectively, have also been implicated in a previous analysis of this
dataset [34]. We also leverage the Bonferroni significance threshold (which is ≈ 1× 10−8

for our tests) to compare the overlapping significant SNPs from sPLINK and PLINK. The
results remain similar and the associated plot is available at Additional file 1: Fig. S1.
These results indicate that p-values computed by sPLINK in a federated manner are the
same as those calculated by PLINK on the aggregated data (ignoring negligible floating
point precision error). In other words, the federated computation in sPLINK preserves
the accuracy of the results of the association tests.
Next, we compare sPLINK with some existing meta-analysis tools, namely PLINK,

METAL, and GWAMA. We leverage the COPDGene (non-hispanic white ethnic group)
[35] and FinnGen (data release 3) [36] datasets. The COPDGene dataset has an equal dis-
tribution of case and control samples unlike the SHIP dataset. It contains 5343 samples
(ignoring 1327 samples with missing phenotype value) and around 600K SNPs. We uti-
lize chronic obstructive pulmonary disease (COPD) as the binary phenotype and include
sex, age, smoking status, and pack years of smoking as confounding factors [37]. FinnGen
is much larger dataset (in terms of sample size) compared to the SHIP and COPDGene
datasets. It consists of 135,615 samples (ignoring 23 samples with missing phenotype
value) and about 1 million SNPs. We use Hypertension as the (binary) phenotype and
adjust for sex and age as confounding factors (Table 1).
To simulate cross-study heterogeneity [38] on the COPDGene dataset, we consider six

different scenarios: Scenario I (Balanced), Scenario II (Slightly Imbalanced), Scenario III
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(Moderately Imbalanced), Scenario IV (Highly Imbalanced), Scenario V (Severely Imbal-
anced), and Scenario VI (Heterogeneous Confounding Factor) (Figs. 4a and 5). In each
scenario, we partition the dataset into three splits with the same sample size (more details
in Additional file 1: Table S2). The distribution of all four confounding factors is homoge-
neous (similar) across the splits for the first five scenarios. The splits have the same (and
balanced) case-control ratio in Scenario I and Scenario VI but their case-control ratio is
different for the imbalanced scenarios (Fig. 4a). In Scenario VI, the values of two con-
founding factors (i.e. smoking status and age) are homogeneously distributed among the
splits; however, the distribution of sex and pack years of smoking is slightly and highly
heterogeneous across the splits, respectively (Fig. 5). We obtain the summary statistics
(e.g. minor allele, odds ratio, and standard error) for each split to conduct meta-analyses.
The results are then compared to the federated analysis employing sPLINK. Figure 6a
shows the Pearson correlation coefficient of -log10(p-value) between each tool and the
aggregated analysis for all six scenarios. Figure 6c depicts the number of SNPs correctly
identified as significant by the tools (true positives).
According to Fig. 6a, the correlation of p-values between sPLINK and the aggre-

gated analysis is ∼ 1.0 for all six scenarios, implying that sPLINK gives the same
p-values as the aggregated analysis regardless of how phenotypes or confounding fac-
tors have been distributed across the cohorts. In contrast, the correlation coefficient
for the meta-analysis tools shrinks with increasing imbalance/heterogeneity, indicating
loss of accuracy. Figure 6c illustrates that sPLINK correctly identifies all four significant
SNPs in all scenarios. In the balanced scenario, almost all meta-analysis tools perform
well and recognize all significant SNPs. An exception is METAL, which misses one of
them. However, they miss more and more significant SNPs as the phenotype imbal-
ance across the splits increases. In the Highly Imbalanced and Severely Imbalanced
scenarios, the meta-analysis tools cannot recognize any significant SNP. This is also
the case if the distribution of some confounding factors becomes heterogeneous across
the cohorts (Scenario VI). We checked the number of SNPs wrongly identified as sig-
nificant by the tools (false positives) too. sPLINK has no false positive in any of the
scenarios and the meta-analysis tools introduce zero or one false positive depending on
the scenario.

Fig. 4 Scenario I-V : The case-control ratio is the same for all splits in the balanced scenario (I) while the splits
have different case-control ratios in the imbalanced scenarios (II–V). All three splits have the same sample size
in the COPDGene dataset as well as the balanced scenario in the FinnGen dataset. For the imbalanced
scenarios in the FinnGen dataset, the splits have different sample sizes
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Fig. 5 Scenario VI (Heterogeneous Confounding Factor) for the COPDGene case study: The phenotype
distribution is the same and balanced; the values of smoking status and age are homogeneously distributed;
the distribution of sex and pack years of smoking are slightly and highly heterogeneous across the splits,
respectively

To show that our findings on the COPDGene dataset also hold true for a much larger
dataset, we repeat the simulations on the FinnGen dataset (more details in Additional
file 1: Table S3). Similar to the COPDGene case study, we divide the dataset into three
splits and define Scenario I to Scenario V, where the splits have the same case-control
ratio (1.0) and sample size (22,838) as in Scenario I but different case-control ratios in
the remaining scenarios (Fig. 4b); Unlike the COPDGene case study in which the sample
size of the splits are equal for all scenarios including the imbalanced ones, the splits have
different number of samples in the imbalanced scenarios of the FinnGen case study. For
instance, split1, split2 and split3 have 22,838, 12,561, and 99,345 samples in Scenario V,
respectively (a split with lower case-control ratio has larger sample size). It implies that
the aggregated datasets have different number of samples in the scenarios, and as a result,
there are different set of significant SNPs in each scenario of the FinnGen case study (total
of 110, 116, 199, 304, and 446 significant SNPs in Scenario I to Scenario V, respectively).
Figures 6b and 6d illustrate the Pearson correlation coefficient and percentage of

correctly identified significant SNPs for each scenario on the FinnGen case study, respec-
tively. According to Fig. 6b, the correlation coefficient diminishes for the meta-analysis
tools as the scenario becomesmore andmore imbalanced. This is also the case for the per-
centage of the SNPs correctly identified as significant by each meta-analysis tool (Fig. 6d).
These results are consistent with those from the COPDGene case study. Moreover, we
observed that themeta-analysis tools report high number of false positives (14–88) in Sce-
nario IV. Thus, the limitations of meta-analysis tools towards class imbalance observed
in the COPDGene dataset can be reproduced on a large dataset. However, sPLINK always
provides the same results as PLINK with the aggregated analysis (the “Methods” section,
Figs. 3 and 6a, c).
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Fig. 6 The Pearson correlation coefficient (ρ) of -log10(p-value) between each tool and aggregated analysis
(a, b) and the number (c) and the percentage (d) of SNPs correctly identified as significant (true positives) by
each tool. F and R stand for fixed-effect and random-effect, respectively. The details of the experiments are
available in Additional file 1: Table S2, and Table S3

We also leverage the Spearman correlation to check whether or not the meta-analysis
tools maintain the ordering of significance compared to the aggregated analysis. Our
results show that this is not the case, and the Spearman correlation values for the meta-
analysis tools reduce as the phenotype imbalance across the splits increases, similar to the
results from Fig. 6, where the Pearson correlation is used. The corresponding plot can be
found in Additional file 1: Figure S2.
Table 2 shows a concise comparison between sPLINK and the state-of-the-art

approaches. Unlike PLINK, sPLINK is privacy-aware, where the private data never
leaves the cohorts. sPLINK is also robust against the imbalance/heterogeneity of phe-
notype/confounding factor distributions across the cohorts. sPLINK always delivers the
same p-values as aggregated analysis and correctly identifies all significant SNPs inde-
pendent of the phenotype or confounding factor distribution in the cohorts. In contrast,
meta-analysis tools lose their statistical power in imbalanced phenotype scenarios, miss-
ing some or all significant SNPs. This is also the case if the phenotype distribution
is balanced but the values of confounding factor(s) have heterogeneously been dis-
tributed across the datasets. Compared to the existing SMPC/HE-based approaches,
sPLINK is computationally efficient and supports multiple association tests including chi-
square and linear/logistic regression. sPLINK provides enhanced privacy by hiding the
model parameters of each cohort from the third parties while federated learning-based
frameworks such as GLORE reveal them to the server.
Finally, wemeasure the runtime and network bandwidth usage of sPLINK for each asso-

ciation test using the COPDGene dataset partitioned into three splits of the same sample
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Table 2 Comparison between sPLINK and the state-of-the-art approaches

Tool/Study Privacy-
aware

Robust to het-
erogeneity

Computationally
efficient

Linear
regres-
sion

Logistic regres-
sion

PLINK ✗ ✓ ✓ ✓ ✓

Meta-analysis ✓ ✗ ✓ ✓ ✓

Kamm et al. [17] ✓ ✓ ✗ * ✗

Cho et al. [18] ✓ ✓ ✗ * ✗

Morshed et al. [23] ✓ ✗ ✗ ✓ ✗

Kim et al. [24] ✓ ✗ ✗ ✗ ✓

GLORE [28] ✓ ✓ ✓ ✗ ✓

sPLINK ✓ ✓ ✓ ✓ ✓

*The study supports the Cochran–Armitage test, which is computationally comparable to linear regression

size. We use COPD in chi-square as well as logistic regression and FEV1 in linear regres-
sion as phenotype. We include age, sex, smoking status, and pack years of smoking as
confounding factors only for the regression tests. The server and WebApp packages are
installed on a physical machine located at Freising (Germany) while the compensator is
running on a machine atOdense (Denmark). Three commodity laptops located atMunich
or Freising are running the client package and host the splits. They communicate with the
server and compensator through the Internet. The system specification of the machines
and laptops as well as the details of the experiments can be found in Additional file 1:
Table S4 and S5.
Figure 7a plots the sPLINK’s runtime for each association test. sPLINK computes the

results for chi-square, linear regression, and logistic regression in 8 min, 20 min, and
75 min, respectively. Sending parameters from the clients to the server and compen-
sator contributes the most in sPLINK’s runtime. Compared to Kamm et al. [17], sPLINK
is almost 13 times faster for chi-square test (8 min vs. 110 min1 ) with less powerful
hardware, larger sample size (5343 vs. 1080), and more number of SNPs (∼ 580K vs.
∼ 263K).
Figure 7b depicts the network usage of sPLINK. The clients, server, and compensator

exchange total of 0.967 GB, 2.49 GB, and 11.06 GB traffic in chi-square, linear regres-
sion, and logistic regression, respectively. Logistic regression has higher volume of traffic

Fig. 7 Runtime and network bandwidth consumption of sPLINK. Logistic regression is the most
time-consuming association test and exchanges the highest traffic over the network due to the iterative
nature of the algorithm. The experimental setup can be found in Additional file 1: Table S5

1The best result from Kamm et al. [17] has been considered.
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exchange because the computation of beta coefficients are performed in an iterative fash-
ion. A fair comparison between sPLINK and SMPC-based frameworks from the network
communication aspect is tricky. However, in general, (hybrid) federated learning-based
approaches consume more network bandwidth than SMPC-based ones.
We also conduct a set of experiments to investigate how the runtime and network band-

width consumption of sPLINK change with varying number of samples, SNPs, and clients.
The results demonstrate that the traffic exchanged over the network is independent of
the sample size and linearly increases with the number of SNPs and clients (as expected).
Moreover, runtime is not affected much by the sample size thanks to the multi-threading
capability of sPLINK ’s client package, and linearly/non-linearly increases with the num-
ber of SNPs/clients. The corresponding plots are available in Additional file 1: Fig. S3, S4,
and S5.

Discussion
We first provide a general discussion on the privacy of the existing tools for collabora-
tive GWAS including sPLINK. To be more accurate, we draw a distinction between the
privacy-aware and privacy-preserving definitions [39]. In a privacy-aware approach, it is
not required to share the private data with a third party. A privacy-aware approach is
privacy-preserving if the approach offers a privacy guarantee that captures the privacy
risk associated with individual samples in the dataset. Given that, meta-analysis, SMPC,
HE, federated learning, and hybrid federated learning based on SMPC are privacy-aware
because they do not share the raw data with a third party. In meta-analysis/federated
learning, the summary statistics/model parameters of each cohort are shared with a third
party. In SMPC-based hybrid federated learning, the aggregated (global) parameters are
revealed to the server and cohorts. These approaches, including HE and SMPC, reveal
the final model too. However, these methods are not privacy-preserving because none
of them provides a privacy guarantee indicating to what extent the revealed information
leaks the private data of a particular sample in the dataset. To our knowledge, differential
privacy (DP) [40] and DP-based hybrid federated learning can offer such a guarantee at
the cost of the utility of the model and are considered as privacy-preserving approaches.
While privacy-aware approaches do not offer a privacy guarantee, they might provide

stronger/weaker privacy compared to each other based on the amount and nature of
the information they share with third parties. For instance, HE-based methods provide
stronger privacy because they only reveal the final model (results) while other privacy-
aware approaches disclose not only the final results but also other information such as
summary statistics or local parameters. Similarly, sPLINK provides enhanced privacy in
comparison with existing federated learning based tools such as GLORE. This is because
GLORE discloses the local parameters of each cohort to the server, which is not revealed
in sPLINK.
sPLINK is a privacy-aware tool, assuming honest-but-curious server, compensator, and

clients, which (I) follow the protocol as it is; for instance, the server always sends the global
beta values resulted from the aggregation but not the beta values tampered with such
as all zeros to the clients, and (II) do not collude with each other, e.g. the compensator
never shares the individual noise values of the clients with the server and similarly, the
server does not send the noisy local parameters to the compensator, but (III) they try to
reconstruct the raw data using the model parameters. Additionally, (IV) there are at least
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three different cohorts participating in the study, and their client components as well as
the server and compensator components are running in separate physical machines.
Given these assumptions, we discuss the privacy of the masking mechanism of sPLINK

(inherited from HyFed) for the supported association tests. To this end, we use the infor-
mation theoretic criterion called mutual information between two random variables X
and Y [30, 41]:

I(X,Y ) = H(X) − H(X|Y )

whereH(X) andH(X|Y ) indicate the entropy of X and the conditional entropy of X given
Y, respectively. The mutual information measures (in bits) the decrease in uncertainty
about X having the knowledge of Y. In sPLINK, the noisy local parameter M′

L is a secret
share from the local parameter ML (the secret), and random variables X and Y indicate
the distributions ofML andM′

L, respectively.
The local parameter ML of a client is either a non-negative integer (e.g. sample count,

allele count, or contingency table) or floating-point number (e.g. Hessian or covariance
matrix) in the association tests. For non-negative integers, sPLINK capitalizes on addi-
tive secret sharing based on modular arithmetic over the finite field Zp={0, 1, p − 1},
in which p is a prime number [13]. For floating-point numbers, sPLINK employs real
value secret sharing based on Gaussian (Normal) distribution [42, 43] (more details in
“Methods” section).
For non-negative integers, noise NL is generated from a uniform distribution over Zp,

andM′
L is the modular addition ofML andNL:M′

L = (ML +NL) mod p. For this scheme,
it has been shown that the knowledge of Y (noisy local parameter) provides no informa-
tion about X (local parameter), which means the mutual information between them is
zero: I(X,Y ) = 0 [13, 16]. Notice that this is the case for any value of prime number p.
For floating-point numbers, noise NL is generated using Gaussian distribution with

variance of σ 2
N . Assuming that the variance of X is σ 2

ML
, the mutual information between

X and Y is maximum if Y follows the Gaussian distribution (variance σ 2
ML

+ σ 2
N ) [43].

Thus, the upper bound on the mutual information between X and Y is:

I(X,Y ) = 1
2
log2(1 + σ 2

ML

σ 2
N

)

That is, the amount of reduction in uncertainty about the local parameters having the
knowledge of the noisy local parameters depends on the relative variance of the cor-
responding distributions. Therefore, using larger values for variance in the Gaussian
random generator will provide lower information leakage. The value of mean for the
Gaussian random generator does not remarkably impact the privacy and can be set to
zero [43], which is the case for sPLINK. The default value of σ 2

N is 1012 for sPLINK, which
is large enough for typical GWAS, but it can be set to higher values if needed to ensure

that
σ 2
ML
σ 2
N

remains small.
Notice that although sPLINK significantly enhances the privacy of data compared to

existing federated learning tools by hiding the local parameters of clients from a third
party, it does not eliminate the possibility of data reconstruction using the aggregated
parameters or final results. For example, the XTX parameter (covariance matrix) in the
linear regression algorithm can be exploited to determine the sex of the patients if the
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total number of samples across all cohorts is comparable to the number of the confound-
ing factors. However, for a reliable GWAS study, the total sample size is considerably
larger than the number of confounding factors, and therefore, the reconstruction of the
cohorts’ private data from the aggregated parameters can be difficult (but still possible) in
practice. A similar argument is also applicable to meta-analysis approaches, which reveal
the summary statistics of each cohort to a third party.
The value of prime number p impacts the correctness of the masking mechanism. To

ensure the correctness, overflowmust not occur in
∑i=K

i=1 NLi and
∑i=K

i=1 M′
Li calculations,

and
∑i=K

i=1 MLi < p. sPLINK uses the default value of p = 254 − 33, which is the largest
prime number than can fit in 54-bit integer. A higher value of p can be employed to han-
dle larger integer values but at the expense of a lower number of clients [30]. Likewise,
too large values of variance σ 2

N (e.g. 1030) can impact the precision of the results. With
default values of p and σ 2

N , however, our experiments indicate that there are no statistically
significant differences between the results from sPLINK with and without the masking
mechanism for all three association tests (the experimental setup of Fig. 7 is used in the
experiments).
sPLINK currently supports chi-square and linear/logistic regression tests, but it can

be extended to compute other useful statistics in GWAS such as minor allele frequency
(MAF), Hardy-Weinberg equilibrium (HWE), and linkage disequilibrium (LD) between
SNPs in a privacy-aware manner. The federated computation of the aforementioned
statistics in sPLINK is expected to be straightforward because they are based on the allele
frequencies, and sPLINK already calculates the minor and major allele counts in theNon-
missing count step of its computational workflow (the “Methods” section). Moreover,
population stratification using the principal component analysis (PCA) will be addressed
in the future version of sPLINK due to the complexity of the problem. sPLINK ’s imple-
mentation of the association tests is horizontally-federated, where the datasets have
different samples but the same features (i.e. SNP and confounding factors). However, cor-
recting for population structure using sPLINK requires a vertically-federated [44] PCA
algorithm because the eigenvectors should be computed from the sample by sample
covariance matrix, and therefore, the samples and features swap roles in the federated
PCA (SNPs are considered as samples and patients as features) [45]. Vertical federated
learning algorithms are still understudied, and they are consideredmore complicated than
the horizontal algorithms.
Additionally, the federated PCA algorithm should be an iterative, randomized algorithm

[46] so that it can handle large GWAS datasets with a practical amount of main memory.
The iterative nature of the algorithmwill present network and runtime challenges because
it might need dozens or hundreds of iterations and exchange huge traffic over the net-
work to converge to the final eigenvectors. From the privacy perspective, a recent study
[45] demonstrates that even if we assume the federated PCA and linear regression algo-
rithms individually provide perfect privacy, federated population stratification in GWAS,
where the eigenvectors are used as the confounding factors in the association test, does
not necessarily offer perfect privacy. Consequently, the server can reconstruct the SNP or
binary confounding factor values in polynomial time. To tackle this issue, they suggested
that the final eigenvectors should be computed at the clients and themodel parameter val-
ues should be hidden from the server. The federated population stratification in sPLINK
should be implemented taking into account those suggestions.
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We showed that sPLINK is robust against an important source of data heterogeneity,
namely the heterogeneous distribution of the phenotype or confounding factor values
across the distributed datasets of the cohorts. Population heterogeneity across the cohorts
is another source of data heterogeneity in GWAS, which is commonly tackled by pop-
ulation stratification using the PCA algorithm. sPLINK currently does not address this
kind of data heterogeneity but the future versions of the tool will support population
stratification to this end.

Conclusions
We introduce sPLINK, a user-friendly, hybrid federated tool for GWAS. sPLINK enhances
the privacy of the cohorts’ data without sacrificing the accuracy of the test results. It
supports multiple association tests including chi-square, linear regression, and logistic
regression. sPLINK is consistent with PLINK in terms of the input data formats and
results. We compare sPLINK to aggregated analysis with PLINK as well as meta-analysis
with METAL, GWAMA, and PLINK. While sPLINK is robust against the heterogeneity
of phenotype or confounding factor distributions across separate datasets, the statisti-
cal power of the meta-analysis tools is declined in imbalanced/heterogeneous scenarios.
We argue that sPLINK is easier to use for collaborative GWAS compared to meta-
analysis approaches thanks to its straightforward functional workflow. We also show that
sPLINK achieves practical runtime, in order of minutes or hours, and acceptable network
usage. sPLINK is an open-source tool and its source code is publicly available under the
Apache License Version 2.0. sPLINK is a novel and robust alternative to meta-analysis,
which performs collaborative GWAS in a privacy-aware manner. It has the potential to
immensely impact the statistical genetics community by addressing current challenges in
GWAS including cross-study heterogeneity and, thus, to replace meta-analysis as the gold
standard for collaborative GWAS.

Methods
Federated learning [14, 15] is a type of distributed learning, where multiple cohorts col-
laboratively learn a joint (global) model under the orchestration of a central server [47].
The cohorts never share their private data with the server or the other cohorts. Instead,
they extract local parameters from their data and send them to the server. The server
aggregates the local parameters from all cohorts to compute the global model parameters
(or global results), which in turn, are shared with all cohorts. While federated learning is
privacy-aware, where the private data of the cohorts is not shared with the server, studies
[48, 49] have shown that for some models such as deep neural networks, the raw data can
be reconstructed from the parameters shared by the cohorts.
To improve the privacy of federated learning, privacy-enhancing technologies (PETs)

such as DP, HE, or SMPC can be combined with federated learning to avoid revealing the
original values of the local parameters to third parties including the server [50]. DP-based
hybrid federated learning approaches can provide a privacy guarantee but their final
results might be considerably impacted by the random noise employed for the perturba-
tion of the model. HE-based aggregation methods can incur remarkable computational
overhead because they require the cohorts to encrypt/decrypt the local/global model
parameters and the server to perform the aggregation over the encrypted parameters.
SMPC-based hybrid federated learning methods [30, 51] increase the network bandwidth
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usage but does not adversely affect the final results. HyFed is an open-source hybrid
federated framework, which combines federated learning with additive secret sharing-
based SMPC to enhance the privacy of the federated algorithms while preserving the
utility (performance) of the global model. HyFed provides a generic API (application
programming interface) to develop federated machine learning algorithms. It supports
the federated mode of operation, where different components of the framework can
be installed in separate physical machines and securely communicate with each other
through the Internet.
sPLINK implements a hybrid federated approach using the HyFed API to enhance the

privacy of data. sPLINK works with distributed GWAS data, where samples are individu-
als and features are SNPs and categorical or quantitative phenotypic variables. While the
samples are different across the cohorts, the feature space is the same because sPLINK
only considers SNPs and phenotypic variables that are common among all datasets (hori-
zontal or sample-based federated learning)[44]. The client package of sPLINK is installed
on the local machine of each cohort with access to the private data. The compensator is
running in a separate machine. sPLINK’s server and WebApp packages are installed on a
central server.
In sPLINK, the original values of the parameters computed from the private data in one

cohort is not revealed to the server, compensator, or other cohorts, improving the privacy
of the cohorts’ data. sPLINK provides the chunking capability to handle large datasets
containingmillions of SNPs. The chunk size (configured by the coordinator) specifies how
many SNPs should be processed in parallel. Larger chunk sizes allow for more parallelism,
and therefore less running time in general but require more computational resources
(e.g. CPU and main memory) from the local machines of the cohorts, the server, and
compensator. sPLINK ’s client package is multi-threaded, where the number of cores is
configurable by the participants. This makes the computation of the model parameters
in the cohorts very fast, especially for large datasets. While we provide a readily usable
web service running at exbio server (https://exbio.wzw.tum.de/splink) and online com-
pensator at compbio server (https://compensator.compbio.sdu.dk), the server, WebApp,
and compensator packages can, of course, be deployed on customized physical machines.
The functional workflow of sPLINK is comprised of the following steps:

1. Project creation: The coordinator creates the project (new study) through the
Web interface. To this end, she/he first specifies the project name, association test
name, chunk size, and the list of confounding features (only for regression tests),
and then, generates a unique project token for each cohort.

2. Cohort invitation: The coordinator sends the project ID (automatically
generated) and token to each participant (a human entity interacting with the
client package in a cohort) through a secure channel such as email for inviting the
cohorts to the project.

3. Cohort joining: The participants use their corresponding username, password,
project ID, and token to join the project. After joining, they can view the general
information of the project such as the coordinator, server/compensator
name/URL, and etc. If they agree to proceed, they choose the dataset they want to
employ in the study. To be consistent with PLINK, sPLINK supports .bed (value of
SNPs), .fam (sample IDs as well as sex and phenotype values), .bim (chromosome



Nasirigerdeh et al. Genome Biology           (2022) 23:32 Page 16 of 24

number, name, and base-pair distance of each SNP), .cov (value of confounding
factors), and .pheno (phenotype values that should be used instead of those in .fam
file) file formats as specified in the PLINK manual [52]. For linear regression,
phenotype values must be quantitative while for logistic regression and chi-square,
phenotype values have to be binary (control/case are encoded as 1/2).

4. Federated computation: In sPLINK, the association test results are computed by
the client package (running on the local machines of cohorts), server package
(running in the central server), and compensator (running in its own machine) in a
federated manner. The computation is iterative and consists of six general steps:

(a) Get global parameters: All clients obtain the required global parameters
MG from the server.

(b) Compute local parameters: Each client i computes the local parameters
MLi using the local data and global parameters.

(c) Mask local parameters: Each client i generates random noise NLi with
the same shape asMLi , and masksMLi with NLi to obtain the noisy local
parametersM′

Li .
(d) Share noisy local parameters and noise: Each client i sharesM′

Li and
NLi with the server and compensator, respectively.

(e) Aggregate noise: The compensator computes the aggregated noise N
given the noise values from the clients and sends the aggregated noise N
to the server.

(f) Compute global parameters: The server calculates (unmasks) the global
parameters given the noisy local parameters and the negative of the
aggregated noise.

5. Result download: The final results are automatically downloaded for the cohorts
but the coordinator needs to download them manually through the web interface.
Similar to PLINK, sPLINK reports minor allele name (A1) and p-value (P) for all
three association tests, chi-square (CHISQ), odds ratio (OR), minor allele
frequency in cases (F_A), and minor allele frequency in controls (F_U) for
chi-square test, and the number of non-missing samples (NMISS), beta (BETA),
and t-statistic (STAT) for linear and logistic regression tests.

sPLINK inherits its maskingmechanism fromHyFed, whichmasks the local parameters
with non-negative integer and floating-point values in different ways. For a local parame-
ter with a non-negative integer value, sPLINK considers a finite field Zp={0, 1, p − 1} (p
is a prime number) [13], where each client i generates a uniform random integer from Zp
as noiseNLi and masks its local parameterMLi withNLi by performing themodular addi-
tion over Zp: M′

Li = (MLi + NLi ) mod p. Notice that MLi ,NLi ,M′
Li ∈ Zp. For MLi with a

floating-point value, each client i generates noise NLi using Gaussian random generator
with zero-mean and variance σ 2

N , and masks MLi with NLi using the ordinary addition:
M′

Li =MLi + NLi .
The compensator computes the aggregated noise N by taking sum over the noise val-

ues of the clients using the modular or ordinary addition depending on the data type of
the noise: if NLi is non-negative integer, then N = (

∑i=K
i=1 NLi ) mod p; if NLi is floating-

point type, then N =
∑i=K

i=1 NLi . To calculate the global parameters with non-negative
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integer values, the server first computes the aggregated noisy parameter by taking sum
over the noisy local parameters using the modular addition, and then subtracts the aggre-
gated noise from the aggregated noisy parameter using the modular subtraction: MG =
(((

∑i=K
i=1 M′

Li ) mod p) - N) mod p. For model parameters with floating-point values,
the server adds up the noisy local parameters and the negative of the aggregated noise
using the ordinary addition:MG =

∑i=K
i=1 M′

Li − N .
The computational workflow of sPLINK involves seven steps common among all asso-

ciation tests as well as a couple of steps specific to each association test (Fig. 8). In the first
three steps (i.e. Init, SNP name, and Allele name) as well as the sixth step (Minor allele),
the clients only communicate with the server, where the name of the SNPs and alleles
(which are not considered private) are directly shared with the server. In the remaining
steps, the compensator is involved and clients mask the local parameters with noise to
hide their original values from the server. The formulas associated with the steps indi-
cate how the clients compute local parameters and how the server calculates the global
parameters using the noisy local parameters of the clients and the aggregated noise from
the compensator. In the following, we provide an overview of each step:

1. Init: Each client i opens the files of the dataset selected by the participant to be
employed in the study and creates its phenotype vector (Yi) and feature matrix (Xi),
which includes the value of SNPs and confounding factors. It is worth noting that
there is a separate feature matrix for each SNP but the phenotype vector is the
same for all SNPs. Assume a dataset containing three SNPs named SNP1, SNP2,
and SNP3 and age and sex as confounding features. There will be three different
feature matrices, one feature matrix per SNP. For instance, the feature matrix of
SNP1 has three columns including SNP1, age, and sex values. Phenotype vector
and feature matrix are the private data of the cohorts. They cannot be shared with
the server, compensator, or the other cohorts. The aggregation process in the
server just makes sure that all clients successfully initialized their data.

2. SNP name: Each client shares the SNP names with the server. In the aggregation
process, the server computes the intersection of all SNP names. Only common
SNPs are considered in the computation of the association test results.

3. Allele name: Each client sends the allele names (e.g. G,A) of each SNP to the
server. In the aggregation process, the server ensures that all cohorts employ the
same allele names for the SNPs. Notice that the clients sort the allele names to
avoid revealing which one is minor or major allele.

4. Sample count: Each client i calculates its local sample count Ti (number of
samples in its dataset including missing samples, which is the size of vector Yi).
The server computes the corresponding global sample count: T = (((

∑i=K
i=1 T ′

i )

mod p) - NT ) mod p, where T ′
i is the noisy local sample count of client i : T ′

i =
(Ti + Ni) mod p and NT is the aggregated noise from the compensator: NT =
(
∑i=K

i=1 Ni) mod p.
5. Non-missing count: In this step, SNPs are split into chunks which can be

processed in parallel. The chunking capability is provided to handle very large
datasets containing millions of SNPs. The clients compute the non-missing sample
count by filtering out the missing samples (value of -9 is considered as missing).
Likewise, they calculate the local allele count by counting the number of alleles in
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Fig. 8 Computational workflow of sPLINK : The first six steps and the last step are common among all
association tests. Contingency table is specific to the chi-square test while Beta and Standard error are
regression test related steps

each SNP. In the aggregation process, the server computes the global non-missing
sample count (n) and allele count using the corresponding noisy parameters and
the aggregated noise similar to the sample count step. Finally, the server
determines the global minor allele based on the values of the global allele counts.

6. Minor allele: The clients compare their local minor allele with the global minor
allele. If they are the same, they do nothing. Otherwise, they update the mapping of
SNP values read from .bed file. Each SNP value can be 0, 1, 2, or 3 (missing value).
These values are encoded based on the minor allele name. If the minor allele is
changed, the value of the SNP needs to be swapped if it is 0 or 2. Thus, if a client’s
minor allele is different from global minor allele, it inverses the mapping of SNP
values (0 → 2 and 2 → 0). The aggregation in the server makes sure that all clients
successfully completed this step.

7. Association test specific steps: In the following, we elaborate on the steps
specific to each association test. Regarding regression tests, sPLINK implements
the federated versions of ordinary least squares linear regression and
Newton-Raphson method based logistic regression.
Chi-square: The only test-specific step for the chi-square test is Contingency
table, where each client i computes its local contingency table containing minor
allele frequency for cases (ti), minor allele frequency for controls (ri), major allele
frequency for cases (qi), and major allele frequency for controls (si). The server
aggregates the noisy contingency tables from the clients (t′i , r′i, q′

i, and s′i are the
elements of the table) and the corresponding aggregated noise from the
compensator (Nt , Nr , Nq, and Ns) to compute the global (observed) contingency
table (Table 3). It also calculates the expected contingency table based on the
observed contingency table (Table 4).
Given the observed contingency table (O) and the expected contingency table (E),
the server computes odds ratio (OR), χ2, and p-value (P) as follows:

OR = t × s
q × r

(1)



Nasirigerdeh et al. Genome Biology           (2022) 23:32 Page 19 of 24

Table 3 Global (observed) contingency table

Minor allele Major allele Total

Case t = (((
∑i=K

i=1 t
′
i ) mod p) - Nt ) mod p q = (((

∑i=K
i=1 q

′
i) mod p) - Nq) mod p t + q

Control r = (((
∑i=K

i=1 r
′
i ) mod p) - Nr ) mod p s = (((

∑i=K
i=1 s

′
i) mod p) - Ns) mod p r + s

Total t + r q + s 2n

χ2 =
∑ (E − O)2

E
(2)

P = 1 − Ft(χ2, 1) (3)

where Ft is the cumulative distribution function (CDF) of χ2 distribution (degree
of freedom is 1).
Linear regression: Beta and Standard error are two steps specific to linear
regression test. In the Beta step, each client i computes XT

i Xi and XT
i Yi, where XT

i
is the transpose of Xi. In the aggregation process, the server performs the following
calculations (K is the number of clients):

XTX =
i=K∑

i=1
(XT

i Xi)
′ − NXTX (4)

XTY =
i=K∑

i=1
(XT

i Yi)
′ − NXTY (5)

β = (XTX)−1(XTY ) (6)

where (XT
i Xi)′ and (XT

i Yi)′ are the noisy local parameters from the clients, NXTX
and NXTY are the corresponding aggregated noise from the compensator, and ()−1

indicates the inverse matrix.
In the Standard error step, each client i calculates the local sum square error (SSE)
Ei by having the global β vector.

Ŷi = Xiβ (7)

Ei =
∑

(Yi − Ŷi)2 (8)

and then the server calculates the global standard error vector (SE) as follows:

E =
i=K∑

i=1
E′
i − NE (9)

VAR = (
E

n − m − 1
)(XTX)−1 (10)

SE = √
diag(VAR) (11)

Table 4 Expected contingency table

Minor allele Major allele

Case (t+q)×(t+r)
2n

(t+q)×(q+s)
2n

Control (r+s)×(t+r)
2n

(r+s)×(q+s)
2n
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where E′
i and NE are the noisy SSE values and the corresponding aggregated noise,

respectively; n is the global non-missing sample count, m is the number of features
(1 + number of confounding factors), and diag is the main diagonal of the matrix.
Given the standard error vector, the server computes the T statistic (T) and
p-value (P) as follows:

T = β

SE
(12)

DF = n − m − 1 (13)

P = 2 × (1 − Ft(|T |, DF)) (14)

in which DF is degree of freedom and Ft is the CDF of T distribution.
Logistic regression: Similar to linear regression, logistic regression has two
specific steps: Beta and Standard error. However, the Beta step is iterative in
logistic regression (maximum number of iterations is specified by the coordinator
and its default value is 20). In each iteration, each client i computes local gradient
(∇i), Hessian matrix (Hi) and log-likelihood (Li) as follows:

Ŷi = 1
1 + e−Xiβ

(15)

∇i = XT
i (Yi − Ŷi) (16)

Hi = (XT
i ◦ (Ŷi ◦ (1 − Ŷi))T )Xi (17)

Li =
∑

(Yi ◦ log Ŷi + (1 − Yi) ◦ log(1 − Ŷi)) (18)
where β is the global beta vector from the previous iteration and ◦ indicates
element-wise multiplication.
The server aggregates the noisy local gradients (∇′

i ), Hessian matrices (H ′
i ) and

log-likelihood values (L′
i) from K clients and the associated aggregated noise values

N∇ , NH , NL as follows:

∇ =
i=K∑

i=1
∇′
i − N∇ (19)

H =
i=K∑

i=1
H ′
i − NH (20)

L =
i=K∑

i=1
L′
i − NL (21)

Then, it updates the β values accordingly:

βnew = βold + H−1∇ (22)

where βold is the β value from the previous iteration. The server also compares the
newly computed log-likelihood value (L) with the one from previous iteration
(Lold). If their difference is less than a pre-specified threshold, β values converged,
and therefore, it stops updating beta.
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In the Standard error step, the server shares the global β values with the clients.
Each client i computes its local Hessian matrix (Hi) using the global β . The server
gets the noisy local Hessian matrices from K clients and the aggregated noise from
the compensator and applies the following formula to obtain the global standard
error vector (SE):

SE =
√
√
√
√diag

(
( i=K∑

i=1
H ′
i − NH

)−1
)

(23)

Having standard error values, the server calculates T statistics and p-value (P) as
follows:

T = β

SE
(24)

P = 1 − Ft(|T |2, 1) (25)

where Ft is CDF of χ2 distribution (degree of freedom is 1).
8. Result: The computation of association test results have been completed for all

chunks and the results are shared with all cohorts.

The client and server components of sPLINK has been written using the Python API of
the HyFed framework [53]. TheWebApp component has been implemented using Angu-
lar and HTML/CSS. sPLINK employs the algorithm-agnostic compensator of the HyFed
framework. The pandas package [54] is used in the client component to open the dataset
files while NumPy [55] is leveraged to pre-process the data and to compute the local
parameters. In the server component, the NumPy and SciPy [56] packages are used for
aggregation and computing p-values.
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Abstract

Background: Machine learning and artificial intelligence have shown promising results in many areas and are driven by the
increasing amount of available data. However, these data are often distributed across different institutions and cannot be easily
shared owing to strict privacy regulations. Federated learning (FL) allows the training of distributed machine learning models
without sharing sensitive data. In addition, the implementation is time-consuming and requires advanced programming skills and
complex technical infrastructures.

Objective: Various tools and frameworks have been developed to simplify the development of FL algorithms and provide the
necessary technical infrastructure. Although there are many high-quality frameworks, most focus only on a single application
case or method. To our knowledge, there are no generic frameworks, meaning that the existing solutions are restricted to a
particular type of algorithm or application field. Furthermore, most of these frameworks provide an application programming

J Med Internet Res 2023 | vol. 25 | e42621 | p. 1https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



interface that needs programming knowledge. There is no collection of ready-to-use FL algorithms that are extendable and allow
users (eg, researchers) without programming knowledge to apply FL. A central FL platform for both FL algorithm developers
and users does not exist. This study aimed to address this gap and make FL available to everyone by developing FeatureCloud,
an all-in-one platform for FL in biomedicine and beyond.

Methods: The FeatureCloud platform consists of 3 main components: a global frontend, a global backend, and a local controller.
Our platform uses a Docker to separate the local acting components of the platform from the sensitive data systems. We evaluated
our platform using 4 different algorithms on 5 data sets for both accuracy and runtime.

Results: FeatureCloud removes the complexity of distributed systems for developers and end users by providing a comprehensive
platform for executing multi-institutional FL analyses and implementing FL algorithms. Through its integrated artificial intelligence
store, federated algorithms can easily be published and reused by the community. To secure sensitive raw data, FeatureCloud
supports privacy-enhancing technologies to secure the shared local models and assures high standards in data privacy to comply
with the strict General Data Protection Regulation. Our evaluation shows that applications developed in FeatureCloud can produce
highly similar results compared with centralized approaches and scale well for an increasing number of participating sites.

Conclusions: FeatureCloud provides a ready-to-use platform that integrates the development and execution of FL algorithms
while reducing the complexity to a minimum and removing the hurdles of federated infrastructure. Thus, we believe that it has
the potential to greatly increase the accessibility of privacy-preserving and distributed data analyses in biomedicine and beyond.

(J Med Internet Res 2023;25:e42621) doi: 10.2196/42621

KEYWORDS

privacy-preserving machine learning; federated learning; interactive platform; artificial intelligence; AI store; privacy-enhancing
technologies; additive secret sharing

Introduction

The Problem of Scattered Data
Machine learning (ML) and artificial intelligence (AI) have
increased in popularity over the last decade, leading to
discoveries in various fields, including biomedicine [1-3]. The
utility of ML and AI models depends on the size and quality of
the available training data. However, data sources are often
scattered across multiple facilities, and privacy regulations
restrict data sharing, rendering large-scale, centralized ML
infeasible. Particularly in biomedicine, the collection of
molecular and clinical data is becoming ubiquitous with the
successful applications of ML in diagnostics [4] or drug
discovery [5]. Privacy concerns hinder even faster advances
because of the small sample size of the individual data sets
available, such as in the case of rare diseases.

Federated Learning and Privacy-Enhancing
Technologies
One way to overcome these challenges is federated learning
(FL). FL allows distributed data analysis by only exchanging
model parameters and local models instead of sensitive raw
data [6]. Hence, analyses can benefit from considerably larger
data sets and be exploited with a lower risk of revealing primary
data. FL can be divided into several subcategories that address
different problems in decentralized computation and differ in
their requirements [7]. First, FL can be categorized according
to how the data are distributed among the clients. Horizontal
FL addresses the training of a model on distributed data that
has the same features but different samples. Vertical FL, in
contrast, trains a model for the same samples but distributed
features. Second, FL is distinguished by the number of clients
that participate. Training a model on decentralized data from
several organizations or data silos, such as hospitals or
companies, is called cross-silo FL. If model training involves

thousands or millions of clients, such as mobile phones or
internet of things devices, we speak of cross-device FL. A
typical FL setup consists of several clients and a central
aggregator. Each client updates a local model based on its local
data and sends it to a central aggregator. Here, the local models
are aggregated into a common global model by an aggregation
function, such as federated average [6]. This global model is
then broadcasted to each client again. The entire process is
repeated for the iterative algorithms.

Although other techniques, such as homomorphic encryption
(HE), also allow for the analysis of distributed data by enabling
calculations on encrypted data directly, they are computationally
expensive compared with FL. In addition, they often require
drastic changes to their original ML algorithm. In contrast, FL
alone cannot always fulfill strict privacy requirements [8,9].
Therefore, to improve data privacy, FL can be combined with
privacy-enhancing technologies (PETs) [10], such as secure
aggregation [11] or differential privacy (DP) [12,13]. A recent
study demonstrated that federated algorithms could achieve
comparable or identical results compared with centralized ML
[14-18].

Prior Work
Several frameworks have recently been developed to make FL
available for a broader user group. Backend frameworks provide
developers with methods to simplify the implementation of
federated and privacy-aware algorithms [19-22]. They are
limited to users with a strong background in software
development or programming experience. Such skills are usually
not expected from clinical experts and researchers, which
considerably restricts their usability. All-in-one frameworks
bring privacy-aware analyses to users without in-depth
programming skills by providing a graphical user interface
(GUI) [23-26]. However, most existing all-in-one frameworks
are either not extendible or highly specific, focusing on a certain
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type of algorithm (eg, deep learning [DL] only) or application
(eg, neuroimaging and genomics).

Existing Shortcomings
Although the available frameworks demonstrate that FL is
applicable and accelerates research in health care or
biomedicine, the focus on 1 specific application or algorithm
is also a huge restriction, especially in the collaboration of
different fields. To the best of our knowledge, a generic,
low-code, and open-source platform that can be driven and
extended openly by the community to cover different algorithms
and fields has been unavailable. However, such a platform is
needed to enable FL across different applications and to make
it applicable for users without technical knowledge of FL
infrastructure or coding skills.

Goal of This Work
To close this gap, we present FeatureCloud, a comprehensive
platform covering all the required steps from project
coordination and workflow execution for the development of
algorithms for cross-silo FL [27]. It incorporates and facilitates
the development and deployment of federated algorithms and
alleviates the technical difficulties of end users by providing a
complete and ready-to-use infrastructure. Contrary to existing

programming frameworks, FeatureCloud provides a running
all-in-one platform that eliminates the need for developers and
users to arrange a server deployment to conduct a federated
study.

Methods

Overview
FeatureCloud was developed as a unified platform to increase
the accessibility of FL for two large user groups as follows: (1)
end users running FL algorithms to train ML models on
distributed data sets and (2) developers implementing federated
algorithms for statistics or ML that are not easily accessible in
federated environments yet. As illustrated in Figure 1, the
interface between developers and end users is our integrated AI
store. Application developers can easily implement their own
applications and publish them in the AI store, making them
easily accessible to end users. Out of a broad collection of
applications in the AI store, end users can assemble tailored
workflows, invite collaborators, and perform FL on
geographically distributed data. Therefore, FeatureCloud
provides a complete infrastructure, including secure
state-of-the-art communication, no raw data sharing, and several
mechanisms to keep the actual data private.

Figure 1. Outline of the FeatureCloud system. Medical institutions collaborate in a federated study with all primary or raw data remaining at their
original location. FeatureCloud handles the distribution, execution, and communication of certified artificial intelligence (AI) applications from the
FeatureCloud AI store and addresses developers and end users.

Implementation
In this section, we present our implementation of the
FeatureCloud platform: its system architecture, the FeatureCloud
application programming interface (API) for developers, and
the FL scheme and PETs used. Furthermore, we present the FL
algorithms used for the evaluation of our platform.

System Architecture
FeatureCloud was developed as a system consisting of several
interacting parts distributed between the participants and a
central server. The central components include the backend
(Python and Django), frontend (Angular), and Docker registry.
The local components include the controller (Golang), the
Docker engine, and the application instances (Docker images).
Figure 2 shows the system components and the communication
channels between them. Further details regarding their
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implementation and technology used can be found in Multimedia
Appendix 1.

The frontend is a web application running on a web browser. It
uses the FeatureCloud backend API (link 1 in Figure 2) to offer
all the features of the AI store and for collaborative project
management. It is also connected to the controller to allow for
monitoring and handing over data for workflow runs (link 2 in
Figure 2).

The controller is responsible for orchestrating the local part of
the workflow execution. It receives information via the
FeatureCloud backend API (link 3 in Figure 2), indicating which
applications to execute next, and reports about the progress.
Contrary to the relay server traffic, this traffic only contains
metainformation about the execution and no data used in the
algorithms themselves. It uses the Docker API (link 4 in Figure
2) to instruct the Docker engine to manage containers that serve
as isolated application instances and pulls the images of the
required applications for a workflow from the Docker registry
(link 5 in Figure 2). When pushing new application versions,
the Docker registry ensures that the user is entitled to do so by
verifying their credentials through the backend (link 6 in Figure
2). In addition, the controller is an integral part of the security
and privacy system of FeatureCloud. It handles local data
processing and is the only part of FeatureCloud that has access
to the local computer system. The controller runs in a Docker
container to prevent random access to data on the system.
Therefore, it only has access to selected data sets that were
actively chosen by a system administrator or a user through a
FeatureCloud application.

The participants of a federated workflow must also agree on a
common relay server. The relay server, implemented in Go, is
responsible for transmitting all traffic of the federated algorithms
via a secure socket connection (link 7 in Figure 2). This central
communication hub is aware of all the participants and their
roles in the federated execution. It follows the required
communication pattern, sending aggregated models to all the
participants and local model parameters to the coordinating
party only. Although FeatureCloud provides a relay server
instance used by default, it is possible to use a private instance
to completely shield the traffic from anyone outside the
collaboration by adjusting the configuration file for the
controller.

As FeatureCloud applications are a dynamic system component,
partly contributed by external developers, it is necessary to
isolate their implementation. This is achieved by using Docker,
which ensures that they cannot access system resources other
than required, especially the filesystem and network, and allows
for limiting resource use, such as central processing unit or
memory. They receive their input data inside a Docker volume
and communicate with the controller through a defined API
(link 8 in Figure 2). This API is the main interface between
externally developed applications and the FeatureCloud system.
It is http based and requires the application to act as a web
server, which means that it needs to wait for the controller to
query for data and cannot actively send data by itself; thus,
active network access can be forbidden.

Figure 2. System architecture of FeatureCloud with 2 participants. The controller, frontend, Docker engine, and application instances run locally at
each participant’s site. The FeatureCloud backend and Docker registry are running on FeatureCloud servers. The relay server can be run on a separate
server, or participants can use a provided instance from FeatureCloud. The components are connected via transmission control protocol/IP connections
(straight lines). All links are http based, except for link 7, which uses a raw socket connection. Links 1 to 3 use JSON for serialization, and links 4 to 6
use the Docker application programming interface.

J Med Internet Res 2023 | vol. 25 | e42621 | p. 4https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



The FeatureCloud API for Developers
To avoid restricting end users to the current selection of
applications, FeatureCloud invites external developers to
implement their own federated applications and publish them
in our AI store. A FeatureCloud application is a program isolated
inside a Docker container that communicates with other
instances using the FeatureCloud API [28]. Several templates
and example applications are provided to further facilitate the
implementation by directly explaining the API with code.

In addition to the AI store and the API, FeatureCloud provides
tools to accelerate the development of federated applications.
When developing a new federated method, application
developers can directly start with the federation of the AI logic
by using an existing template. To verify that the API has been
implemented correctly, a simulation tool aids the developer in
testing their application before publishing. Each test run
specifies the number of participants, test data, and
communication channels and subsequently starts the
corresponding instances, simulating a real-world execution on
multiple machines. During the test run, it shows logs and results
for each participant and the network traffic to monitor the
execution and identify bugs and potential communication
bottlenecks.

After the development phase, applications can be published in
the FeatureCloud AI store. Developers need to fill out a form
prompting all relevant information about the application, which
is displayed to the end users and used for the search and filter
functions. Subsequently, they can push their Docker image into
the Docker registry of the FeatureCloud platform. For end users
collaborating with the developer, who explicitly enables
uncertified applications, it is already usable and can be tested
in a real-world scenario. For other end users, we enforce a
certification process to increase the hurdle for malicious
applications and maintain high privacy standards in the AI store.
To this end, the developer must provide the necessary
documentation and details regarding the implemented privacy
mechanism. Furthermore, the application’s source code must
be accessible so that the application can be exhaustively tested
and vetted by the FeatureCloud team and community for
possible privacy leaks. When the certification process has been
successfully completed by a member of the FeatureCloud
consortium according to a defined checklist (Multimedia
Appendix 1), the application will be displayed in the AI store
and can be used by all end users. If the certification process is
unsuccessful, the developer is notified and requested to address
the issues raised. Upon each update of an application, a new
certification procedure is triggered.

As FeatureCloud does not impose restrictions on the types of
algorithms it supports, the running environment of the federated
applications is kept very general. It allows the implementation
of any type of ML algorithm and an optional custom GUI for
user interaction in the form of a web-based frontend. This GUI
can be used to receive input parameters, indicate the current
progress, or display the results. No direct internet access is
granted to the applications to avoid security risks.

FL Scheme and PETs
FL generally involves two possibly alternating operations as
follows: (1) local optimization and (2) global aggregation. In
FeatureCloud, all running instances of a federated application
have 1 of 2 roles (participant and coordinator) performing the
respective federated operation. FeatureCloud expects precisely
1 coordinator and an arbitrary number of participants, leading
to a star-based architecture. We chose this architecture over
others because it mirrors the general design of a FL scheme
with a central aggregator and clients with local data sets.

After the local learning operation has been completed by a
participant, it sends the local parameters to the coordinator. The
coordinator collects these parameters and aggregates them into
a collective (global) model, which is shared with the participants
again. Depending on the type of ML algorithm, these 2
operations can alternate multiple times, for example, until
convergence or a predefined number of iterations has been
reached (Figure S1 in Multimedia Appendix 1). For some
algorithms (eg, random forest [RF] and linear regression), only
1 iteration is necessary. However, this strict separation between
optimization and aggregation is not actively enforced by
FeatureCloud. In many cases, aggregation can start after the
first parameters have been received, thereby increasing
efficiency through parallelization of the computation. During
the implementation of a federated application, the distinction
between the coordinator and the participant is of conceptual
relevance. However, in practice, the coordinator can also obtain
local data that can be used for training. Therefore, FeatureCloud
allows the coordinator to simultaneously adopt the role of a
participant.

Although FL improves privacy, it can still leak information to
the coordinator, who can see all individual models before
aggregating them. Local updates of the model based on a
previously distributed global model may reveal information
regarding the primary data [29]. Secure aggregation techniques
can address this problem. In FeatureCloud, we integrated
additive secret sharing as a mitigation method to obtain the
global sum without revealing the local submodels. Application
developers can use this method with minimal or no added
complexity to their algorithms. More details can be found in
Multimedia Appendix 1.

Federated Algorithms

Comparing Federated Algorithms
As there are unique challenges for federating individual
algorithms, each ML model needs to be developed independently
and, therefore, needs to be based on a different underlying
federation mechanism. This means that each algorithm has
challenges regarding effectiveness, privacy, or scalability that
need to be solved by the application developers. For the
evaluation of our platform in this work, we used 4 FeatureCloud
FL applications: the linear and logistic regression applications,
a RF, and a DL application.

Federated Linear and Logistic Regression
For the implementation of the linear and logistic regression
applications, the methods introduced by Nasirigerdeh et al [17]

J Med Internet Res 2023 | vol. 25 | e42621 | p. 5https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



have been adapted from genome-wide association studies
(GWAS) to a general ML use case. For linear regression, the

local XTX and XTY matrices are computed by each participant
individually, where X is the feature matrix and Y is the label
vector. Then, they are sent to the coordinator, aggregating the
local matrices to the global matrices by adding them. Using
these global matrices, the coordinator can calculate the beta
vector through the federated method in such a way that it is
identical to the beta vector calculated through the nonfederated
method.

Logistic regression was implemented as an iterative approach.
On the basis of the current beta vector, the local gradient and
Hessian matrices of each participant are calculated and shared
with the coordinator in each iteration. The coordinator
aggregates the matrices again by adding them, updates the beta
vector, and broadcasts it back to the participants. This process
is repeated until convergence or the maximum number of
iterations (prespecified for each execution) is achieved.

Internally, the scikit-learn model API has been used to
implement the applications [30,31]. In the performance
evaluation, we used the default scikit-learn hyperparameters for
the linear regression models. For logistic regression, the penalty
was set to none; the maximum number of iterations was set to
10,000; and the “lbgs” solver was used to fit the models.

Federated RF
We used the popular RF classifier and RF regressor as the
second algorithm for our evaluation. As an ensemble algorithm,
RF can be easily federated in a naive manner [32]. Our
implementation trains multiple classification or regression
decision trees on the local primary data of each participant. The
fitted trees are then transmitted to the coordinator and merged
into a global RF. To account for the different number of samples
for each participant, each of them contributes a portion of the
merged RF proportional to the number of samples. To achieve
a similar behavior as the centralized implementation, the size
of the merged RF is kept constant, meaning that an increasing
number of participants decreases the number of required trees
per participant. The federated computation occurs in three steps,
each involving data exchange as follows: (1) participants
indicate the number of samples and receive the total number of
samples; (2) participants train the required number of trees, and
the aggregator merges them into a global RF; and (3)
participants receive the aggregated model to evaluate its
performance on their data and share the results to obtain a global
summary.

As the aim is not to achieve the highest possible accuracy but
to compare the federated version with the nonfederated version,
the hyperparameters were set to the default values of sklearn,
namely, 100 decision trees, Gini impurity minimization as the
splitting rule, and feature sampling equal to the square root of
the features. Prepruning parameters such as maximum depth,
minimum samples per node, and other constraints were not
applied.

Federated DL
Our federated DL application is based on the federated average
algorithm [6]. In the training phase, the weights and biases

update is performed iteratively, where each iteration implies
the parameter aggregation performed in three steps as follows:
(1) the local weights and biases are computed by every
participant individually and shared with the coordinator, (2) the
coordinator averages the parameters and broadcasts them back
to participants, and (3) the participants receive the new values
of weights and biases and update the weights and biases of their
model accordingly. After the final number of iterations is
reached, the model performance of each participant is
independently assessed using their data. The local weights and
biases update is performed with the back-propagation algorithm,
applied to data batches of a specified size. The neural network
model architecture and training were implemented using the
PyTorch library [33]. The application enables the
implementation of any architecture and provides a centralized
version of a PyTorch code. The application also enables
federated transfer learning to be applied to a pretrained model,
whose specified layers are trained in the same federated fashion.

Results

The results comprise the unified platform and an evaluation
demonstrating the technical capabilities of FeatureCloud to run
different workflows. The platform consists of the open AI store,
development and debugging tools, and an execution environment
for federated workflows.

Unified Platform
The unified platform (Figure 1) provides developers with an
API to quickly develop privacy-enhancing FL applications. This
supports a hybrid communication scheme for FL and secure
aggregation (additive secret sharing). The integrated AI store
is the interface between developers and end users, displaying
and describing all available applications. Developers can publish
(deploy) their applications in the AI store that are then available
for use in federated workflows for the end users, for example,
biomedical researchers. They can quickly create projects,
assemble federated workflows with the applications from the
AI store, invite other sites to the study, and view and download
the results of each run. The interface of end users with the
complicated federated architecture is reduced to only a web
frontend and the FeatureCloud controller, running in the
background and responsible for the local processing of sensitive
data. Moreover, all applications and the entire architecture of
FeatureCloud are open source, making it the first unified and
open-source FL platform that considers all steps including
development, deployment, and execution.

AI Store
The integrated AI store provides an intuitive and user-friendly
interface for biomedical researchers and developers. It offers a
variety of applications and displays basic information about
them, including short descriptions, keywords, end-user ratings,
and certification status. Users can easily find applications of
interest via a textual search and filter them by type
(preprocessing, analysis, and evaluation) and their
privacy-enhancing techniques (FL, DP, and HE). End users can
review the applications and provide feedback. The application
pages display a method summary, description, user reviews,
developer name, and contact details to report bugs. Each
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application provides either a GUI or a configuration file to set
the application parameters and adapt them to different contexts.
This reduces technical details and makes applications user
friendly for end users, independent of their background. When
users add applications to their library, they can assemble them
into a workflow and manage the execution with other
collaborators on the FeatureCloud website without having to
download any additional software.

The AI store has a broad selection of popular ML models, as
listed in Table 1. The applications are categorized into

preprocessing, analysis, and evaluation. Some analysis
applications, such as linear regression and RF, are generic and
suitable for different data types and application scenarios. These
applications can be easily integrated into a federated workflow
with preprocessing and evaluation applications, such as a
federated standardization of the input data and a final evaluation
of the trained classifier with several performance metrics. Other
applications, such as the sPLINK [17] application for federated
GWAS, integrate all the necessary steps of an
application-specific workflow and do not require combination
with other applications.

Table 1. Applications in the FeatureCloud artificial intelligence (AI) storea.

DescriptionTypeApplication

Classification model based on boosting treesMachine learningAda boost

Random forest classifying patients into their CACSMachine learningCACSb forest

Survival regression based on the lifelines librarySurvival analysisCox PHc model

Local splits for a k-fold cross-validationPreprocessingCross-validation

Deep neural networks implemented in PyTorchMachine learningDeep learning

Evaluation with various classification metrics (eg, accuracy)EvaluationEvaluation (Classification)

Evaluation with various regression metrics (eg, mean squared error)EvaluationEvaluation (Regression)

Evaluation of survival or time-to-event predictionsEvaluationEvaluation (survival)

Differential expression analysis based on limma-voomDifferential expressionFlimma

Random forest classification, regression, and survival based on graphsMachine learningGraph-guided random forest

Survival function estimation and log-rank testSurvival analysisKaplan-Meier estimator

Regression modelMachine learningLinear regression

Classification modelMachine learningLogistic regression

Hazard function estimation and log-rank testSurvival analysisNelson-Aalen estimator

Standardizing input dataPreprocessingNormalization

One-hot encoding for categorical variablesPreprocessingOne-hot encoder

Classification and regression model based on decision treesMachine learningRandom forest

Survival prediction based on scikit-survivalSurvival analysisRandom survival forest

SVD for dimensionality reductionMachine learningSVDd

GWAS based on PLINKGWASfsPLINKe

Survival prediction based on scikit-survivalSurvival analysisSurvival SVMg

aThe growing list of applications available in the AI store covers preprocessing, analysis, and evaluation. All-in-one applications cover the entire
workflow for a more specific domain and can be executed without other applications.
bCACS: coronary artery calcification score.
cPH: proportional hazard.
dSVD: singular value decomposition.
esPLINK: secure PLINK.
fGWAS: genome-wide association studies.
gSVM: support vector machine.

Multi-institutional Federated Workflows
FeatureCloud offers easy project management for the execution
of FL workflows. In these workflows, users can select from a
large variety of applications in the AI store and connect them

to the entire workflow. Before collectively running a federated
workflow, all collaborating sites (participants) must download
and start the client-side FeatureCloud controller on their
machines. It only requires Docker, which is freely available for
all the major operating systems. Users also need to create an
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account on the FeatureCloud website, which serves as a web
frontend and is used to coordinate the FeatureCloud system
(refer to the Methods section and Multimedia Appendix 1 for
details on the architecture). Each collaborative execution of
applications is organized into so-called projects on the web
frontend. They contain a description of the planned analysis,
connect the collaborating partners by allowing invited
participants to join, and show the current status of the workflow
(Figure S2 in Multimedia Appendix 1).

Workflows are composed of 1 or multiple applications from
the AI store that are to be executed consecutively. Each
application produces intermediate results that serve as input for
the consecutive application. Intermediate results are maintained
on the respective machines and are not shared with other
participants. The last application produces the final results,
which are then shared with all the project participants. During
the execution of a workflow, its progress can be monitored on
the FeatureCloud website, showing the current stage,
computational progress, and intermediate results from each
application. Applications can provide their own user interface,
allowing for user interaction if necessary and for showing
specific reports. Users can monitor application logs and react
in case something unexpected occurs (eg, stop and rerun the
workflow with other data or a different configuration). When
the last application in the workflow successfully completes its
computation, the final results are automatically shared with all
project participants. Intermediate results and application logs
remain available on the local machines to allow for later
verification. For example, the results may include a report
showing the effectiveness of the trained model and the model
itself. The latter can also be used outside of FeatureCloud. For
example, if a project fails because a participant drops out, it can
be restarted quickly after the problem has been solved. During
the entire process, no programming knowledge or command-line
interaction is required, making the system especially suited for
medical personnel without technical education.

Evaluation

Methods and Data Sets
To evaluate the practical applicability of FeatureCloud, multiple
workflows operating on different data sets were created. Except
for DL, each workflow consists of a cross-validation (CV)
application (10-fold CV), a standardization application, a model
training application, and a final evaluation application (Figure
3). For DL, we evaluated a 20% test set, as this is more common
for big data to reduce the training time. Individual applications
are data-type agnostic and are suitable for various applications.
Classification analyses were performed on the Indian Liver
Patient Dataset [34] with 579 samples and 10 features and the
Cancer Genome Atlas Breast Invasive Carcinoma [35] data set
with 569 samples and 20 features. For regression analyses, they
were evaluated on the Diabetes [36] data set with 442 samples
and 10 features and the Boston [37] house prices data set with
506 samples and 13 features, both provided by scikit-learn [30].
Finally, for DL regression, we used a large data set from the
Survey of Health, Aging, and Retirement in Europe [38], with
12 questionnaire variables and the target 12-item critical
assessment of protein structure prediction quality of life score.
After dropping samples with “Refusal” and “Don’t know” type
values in those 12 variables and nonavailable 12-item critical
assessment of protein structure prediction quality of life score,
we were left with 42,894 (91.79%) out of 46,733 samples.
Further details regarding the network architecture are provided
in Multimedia Appendix 1.

For each workflow, we split the central data set into 5
participants with uneven data distribution. Participants 1, 2 and
3, and 4 and 5 each had 10% (4289/42,894), 15% (6434/42,894),
and 30% (12,868/42,894) of the samples, respectively. We used
the F1-score to evaluate the classification models and the root
mean squared error for the regression models, as both are
common metrics used to evaluate ML models. Furthermore, we
also investigated the scalability concerning runtime and network
traffic for 2 to 8 participants as well as a larger number of
participants and iterations.
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Figure 3. Workflow structure used for evaluation. The first application (purple—Cross-Validation) creates splits for cross-validation (CV). All following
applications perform their tasks on each split individually, in a federated fashion, only transmitting model parameters. The gray dots represent intermediate
training and test data. The second application (green—“Normalization”) performs normalization, and the third application (blue—“Random Forest”)
trains the models, generating a global model based on the output of the normalization application. The resulting global model is evaluated in the evaluation
application (orange—“Evaluation [Classification]”). The evaluation results are finally aggregated to obtain an evaluation report based on the initial CV
splits.

Performance
Previous studies have shown that FL can achieve similar
performance to centralized learning in many scenarios
[14,15,39]. To verify the approach used in FeatureCloud, we
compared the performance of 4 federated FeatureCloud
applications integrated into an ML workflow with their
corresponding centralized scikit-learn [30] models. The results
are shown in Figure 4. For logistic regression and linear
regression, the FeatureCloud workflow achieved a performance
identical to that of scikit-learn, which is consistent with the
previous results of federated linear and logistic regression
applications [17,40]. A similar performance was achieved for
the RF regression and classification models. Owing to the simple
aggregation method that combines the local trees into 1 global
tree, identical results were not obtained or expected. Owing to
the bootstrapping mechanism and its attached randomness, the
federated RF sometimes performs slightly better than the
centralized approach. As a final example, our federated DL
model trained in 300 epochs produced a very close root mean
squared error compared with the centralized model.

Furthermore, we compared the federated models with the
individual models trained and evaluated by each participant
(10-fold CV, except DL). Here, we distinguish between the
central evaluation of the models on the overall test splits (central
test data), identical to the test splits for the centralized and
federated models, and the local evaluation of the models on the
local test splits only (local test data). As shown in Figure 4, the
local evaluation performance varies widely but is worse on
average than the federated models. For classification, the local

evaluation performed worse than the federated models.
However, for the regression models, the locally evaluated
models of the individual participants sometimes outperformed
the centralized model. Nevertheless, compared with the central
test data, it is obvious that these models did not generalize well
and only performed well for the individual participants with a
very small test set. This can be deceptive, as in this case, even
the 10-fold CV cannot be trusted. Furthermore, our DL model
evaluated on a 20% test set performs much more reliably than
individual client models, which can have drastically worse
results than the federated or centralized models. This highlights
the effectiveness of FL, as these models use more training and
test data, resulting in more generalized models. Our RF
application is based on a previously published implementation
[32] and confirms that our platform yields comparable results,
including scenarios in which the data are neither independent
nor identically distributed (nonindependent and identically
distributed). It performed much more reliably than only using
individual client data.

As an additional example of clinical data analysis, we evaluated
the Kaplan-Meier estimator application that implements an
already published approach for federated survival curves and a
log-rank test for multi-institutional time-to-event analyses [18].
The application, implemented and run in FeatureCloud,
produced identical results to the centralized analysis (Table S1
in Multimedia Appendix 1) on the lung cancer data set of the
North Central Cancer Treatment Group [41]. Similarly, we
evaluated the Flimma application for differential gene expression
analysis [16] as an example of biomedical data on a subset of
152 breast cancer expressions from the Cancer Genome Atlas
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repository [42] with 20,536 features. Our Flimma application
produced highly similar results to those of the centralized
analysis (Figure S3 in Multimedia Appendix 1). These 2

examples further show that FeatureCloud has the capability of
implementing and running different approaches and bringing
them into a production system.

Figure 4. Performance evaluation of federated artificial intelligence methods. The box plots show the results of a 10-fold cross-valuation for the different
classification and regression models and data sets in multiple settings. Only the deep learning model was evaluated on a test set. The centralized results
are shown in orange, the corresponding federated results in blue, and the individual results obtained locally at each participant in gray. Each model was
evaluated on the entire test set (dark gray) such as the centralized and federated models and on the individual (local) parts of the test set (light gray).
The federated logistic and linear regressions perform in identical fashion to their centralized versions, and the federated random forest and deep learning
models perform in similar fashion to their centralized versions. BRCA: Breast Invasive Carcinoma; ILDP: Indian Liver Patient Dataset; SHARE: Survey
of Health, Aging and Retirement in Europe.

Runtime and Network Traffic
Multiple executions with varying numbers of clients were
performed to assess the scalability of the FeatureCloud platform
and the federated methods. RF and linear regression classifiers
were chosen as the iterative and noniterative methods,
respectively, and both were applied to the Indian Liver Patient
Dataset. Both were tested with 2, 4, 6, and 8 clients and the
same number of samples to ensure comparability across the
executions. To investigate the impact of network bandwidth on
runtime, all executions were performed on a normal and throttled
internet connection with a maximum transmission of 100 kB
per second.

Figure 5 shows that runtime mildly increases for logistic
regression but decreases for RF. This is because the logistic
regression models are of equal size for all clients, whereas the
size of the RF models depends on the number of trees. In our
implementation of federated RF, the global model is of a fixed
size (100 trees), which means that each client contributes a
portion that decreases with a higher number of participants. The
throttling bandwidth significantly increases the runtime for RF
but leaves the runtime for logistic regression almost unaffected.

This is because the transmitted data for RF are more extensive
and come in 1 chunk, whereas logistic regression requires
approximately 10 iterations, each exchanging a few parameters.
The centralized versions take 2 to 3 seconds to complete for
both logistic regression and RF, implying that their federated
versions take 10 to 20 times longer to complete.

In this setting, an increasing number of participating parties has
a weak impact on the duration of the aggregation part for these
methods, compared with the total runtime. The local
computations occur in parallel such that an increasing number
of participants does not have a huge impact. However, because
the aggregation step cannot be completed before all participants
send their models, the runtime of each aggregation step depends
on the slowest participant, which poses a potential problem for
large federations. FeatureCloud primarily focuses on being used
in a tightly regulated medical research environment. Therefore,
there is currently no automatic “matchmaking” in place, but all
participants must join each project actively. In this context,
running an analysis with data sets of >8 participants is still an
uncommon scenario. To demonstrate its scalability and
robustness for more sophisticated scenarios, we evaluated the
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FeatureCloud platform using the logistic regression application
for 1, 5, 10, 15, 20, 25, and 30 clients on simulated data, with
each client containing 1000 samples and 1, 5, and 10 iterations.
Our analysis shows that the FeatureCloud platform is also

computationally suitable for larger numbers of clients and higher
numbers of iterations, confirming the results of our runtime
analysis for a small number of clients (Figure S4 in Multimedia
Appendix 1).

Figure 5. Runtime and network traffic. The left plots show runtime for unlimited and throttled connections, the right plots show network traffic for the
coordinator and participants evaluated on the ILPD. The lines represent the median values measured over 10 executions. The areas show the 25% and
75% quartiles to illustrate variance across the executions. ILPD: Indian Liver Patient Dataset; s:second; B: byte; M: million.

Discussion

In this section, we summarize our main findings and provide a
discussion about its comparison with prior work, its limitations,
the potential for future work, and conclusions of our work.

Summary of Results
In this study, we presented the FeatureCloud platform, a
comprehensive platform for the application and development
of privacy-preserving FL workflows in biomedicine and beyond.
Through its high generalization, it allows the application of
various ML workflows to a variety of data types. In addition,
it offers prebuilt solutions for common-use cases in the form
of applications in the AI store or application templates for
developers. The concept of freely composing applications in a
workflow is challenging because of the need for a standard data
format, which is not always available and can reduce flexibility.
The same applies to the initial data, which need to be provided
in a form that is processable and understandable by the desired
application. As FL adaptation is still in its early stages, it is
necessary to understand which functionality and types of data
will be used, which ML techniques prove to be most prevalent
in federated settings, and which challenges arise when using
the platform. Therefore, several assumptions can be made in
advance.

Comparison With Prior Work
One main goal of FeatureCloud was to keep the platform as
flexible and extensible as possible, to align new functionality
closely to the demand of its users. The possibility of integrating
additional PETs, such as DP or additive secret sharing, on the
application layer of the API demonstrates the versatility of this
approach. Although the current implementation of additive
secret sharing has a quadratic increase in network traffic, it
shows that flexible communication can be achieved through
asymmetrical encryption and can serve as a blueprint for similar
scenarios and future developments.

The prediction performance of our FL workflows is consistent
with the current research, with some performing equally well
compared with the central implementations (linear and logistic
regression and normalization) or highly similar (RF).
Computational and communication overheads are acceptable
for an ordinary FL. In our opinion, it plays a smaller role than
the additional overhead related to human-to-human coordination
of federated projects. We demonstrated that the currently
available applications and the platform scale well for up to 8
participants.

The main novelty, in contrast to prior work, is the high flexibility
of the AI store, ranging from prebuilt task-centered applications,
such as GWAS, to generic method-centered applications, such
as RF. Therefore, we address a broad spectrum of end users and
developers. Less experienced users without deeper

J Med Internet Res 2023 | vol. 25 | e42621 | p. 11https://www.jmir.org/2023/1/e42621
(page number not for citation purposes)

Matschinske et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX



methodological or statistical knowledge benefit from the ease
of use of a task-centered application. Advanced users can tailor
the workflow to their needs. In contrast, application developers
can use our API to develop FL applications that can be easily
deployed into the AI store and reach a broad user base. They
are incentivized to build their applications to be compatible
with existing ones (eg, a new AI method that processes data
preprocessed by an existing normalization application) to
maximize their utility. Thus, the FeatureCloud AI store aims to
become an ecosystem for FL, driving collaborative research.

Limitations
In addition to the huge potential of FeatureCloud, some issues
still need to be addressed. Our secure aggregation approach,
directly implemented into the developer API, only applies to
≥3 participants. Its application on workflows with only 2
participants would allow the coordinator to reveal the local
parameters of the other participant and therefore has no benefit.
In addition, as it is currently implemented, our additive
secret-sharing approach only supports addition and
multiplication and is, therefore, not applicable to more complex
types of calculations. Although the open AI store accelerated
the development and deployment of FL applications and
workflows, it is the responsibility of the application developers
to provide proof that their implementations provide accurate
results. FeatureCloud certifies applications that provide a
reasonable amount of privacy and security measures but cannot
check the prediction quality of every application. However,
through its open-source design, the community can exchange
experiences, provide feedback, and enhance applications and
algorithms to keep them up to date with the current state of the
art.

Future Work
The generic and extendable design of FeatureCloud makes it
highly interesting for future studies. FeatureCloud envisions
being driven by an emerging community whose features are

closely aligned to their needs. As FeatureCloud is entirely open
source, it can be quickly maintained and extended and it can
accelerate the development, deployment, and execution of
privacy-preserving FL workflows in biomedicine and other
areas. FeatureCloud applications can be developed by anyone
using the developer API and easy-to-start templates. One part
could focus on integrating more PETs into the API for the
application developers to ease their use and increase adoption
in federated algorithms. Although FeatureCloud already
integrates an additive secret-sharing scheme, there are many
more PETs, such as DP or HE schemes, that can be
implemented. Other potential enhancements could focus on
nonlinear workflows, the integration of the AIMe registry [43]
into the certification process of FeatureCloud applications, and
reducing Docker dependency by also supporting other secure
containerization systems such as Singularity [44]. To address
the problem of data harmonization and preprocessing of different
formats at different sites, it may be useful to add a federated
database with a common ontology to the FeatureCloud controller
[45]. Through this, the problem of different data formats
between sites is solved, as the input data for workflows can be
directly created from the database. Integrating local data into
this database can be performed using predefined
Extract-Transform-Load scripts for the most common data
formats and standards.

Conclusions
In conclusion, FeatureCloud provides an all-in-one platform
for privacy-preserving FL. In contrast to other FL frameworks,
FeatureCloud considers every aspect of FL from development
and deployment to the execution and project planning of
federated analyses. Furthermore, it is highly generic to support
all types of algorithms and is not restricted to only DL or a
certain application. Thus, we believe that it has a huge potential
to accelerate the development of FL workflows and the
application of federated analyses in biomedicine.
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The AIMe registry for artificial intelligence in 
biomedical research
We present the AIMe registry, a community-driven reporting platform for AI in biomedicine. It aims to enhance the 
accessibility, reproducibility and usability of biomedical AI models, and allows future revisions by the community.

Julian Matschinske, Nicolas Alcaraz, Arriel Benis, Martin Golebiewski, Dominik G. Grimm, 
Lukas Heumos, Tim Kacprowski, Olga Lazareva, Markus List, Zakaria Louadi, Josch K. Pauling, 
Nico Pfeifer, Richard Röttger, Veit Schwämmle, Gregor Sturm, Alberto Traverso, Kristel Van Steen, 
Martiela Vaz de Freitas, Gerda Cristal Villalba Silva, Leonard Wee, Nina K. Wenke, Massimiliano Zanin, 
Olga Zolotareva, Jan Baumbach and David B. Blumenthal

Overcoming the reporting deficit in 
biomedical AI
The past two decades have seen massive 
advances and rapidly declining costs in 
high-throughput technologies that produce 
enormous amounts of biomedical data. 
This development has been accompanied 
by breakthroughs in the field of artificial 
intelligence (AI). With the help of AI, 
high-dimensional data can now be modeled 
in a mathematically robust and accurate way, 
which has led to numerous applications in 
biomedical research. For example, AI has 
been successfully used to determine particles 
in cryogenic electron microscopy projection 
images1, to infer proteins from mass 
spectrometry data2, to conduct exploratory 
analysis of single-cell data3 and to predict 
incipient circulatory failure in the intensive 
care unit4.

In spite of the obvious potential of AI in 
biomedical research, we observe trends that 
are detrimental to the development of new, 
improved AI methods and also constitute 
major hurdles in applying biomedical 
AIs in basic or translational biomedical 
research. Best practices of machine learning 
are not always adhered to, and often only 
selected aspects of the AI models and their 
evaluation are reported5. Because of this, 
the decisions of biomedical AIs are often 
opaque, difficult to explain and not fully 
reproducible6–12. In clinical research in 
particular, it is crucial to instill trust in AI 
models and to report on them in an explicit 
and transparent fashion that adheres to 
commonly used standards5,12,13. Or, as put 
by Davenport et al.10: “For widespread 
adoption to take place, AI systems must be 
approved by regulators [and] standardised to 
a sufficient degree [...].”

To address this problem, several 
checklists and guidelines for reporting  
AI methodology and results in biomedical 

and clinical research have been proposed 
recently14–21. This, however, is only a first 
step toward resolving the reporting deficit 
because mere guidelines and checklists do 
not make biomedical AI reports accessible 
to the scientific community. Moreover, 
guidelines and checklists provide no 
practical means to identify biomedical AIs 
that do not adhere to the recommended best 
practices. We believe that what is needed 
is a community-driven registry that allows 
authors of new biomedical AIs to easily 
generate accessible, browsable and citable 
reports that can be scrutinized and reviewed 
by the scientific community.

In view of this, we present the AIMe 
registry for artificial intelligence in 
biomedical research: https://aime-registry.
org. It consists of a user-friendly web service 
that guides authors of new AIs through 
the AIMe standard, a generic minimal 
information standard that allows reporting 
of any biomedical AI system. Once the AIMe 
standard has been reported, a database entry 
and an HTML report along with a unique 
AIMe identifier are created. The latter serves 
to keep the entry openly accessible and can 
be disseminated by the authors, for example 
by inclusion in a manuscript.

We have designed the AIMe registry 
as a community-driven platform for AI 
in biomedicine. It allows users to raise 
issues related to existing entries if they 
have doubts concerning their adequacy or 
informativeness. Moreover, we will update 
the reported AIMe standard each year based 
on feedback from the scientific community. 
Interested researchers are invited to join 
the AIMe steering committee, which 
consolidates the feedback into an updated 
version of the AIMe standard.

The remainder of this paper is organized 
as follows: first, we present the first version 
of the AIMe standard. We then present the 

AIMe registry and detail how it incorporates 
feedback from the scientific community. In 
the section on governance, we formulate the 
mission of the AIMe initiative and provide 
details on the structure of the organization 
as well as the yearly revision process. Finally, 
we present conclusions in the last section of 
the paper.

The AIMe2021 standard
Here, we present the first version of the 
AIMe standard, the AIMe2021 standard. 
To design the AIMe2021 standard, we 
proceeded as follows: as a first step, the 
initial AIMe steering committee composed 
of the co-authors affiliated with the Chair 
of Experimental Bioinformatics of the 
Technical University of Munich, with 
the University of Hamburg and with 
the Department of Mathematics and 
Computer Science of the University of 
Southern Denmark compiled a draft of 
the AIMe2021 standard. We then shared a 
call for contributions via social media and 
mailing lists, in which we asked interested 
researchers to provide feedback and to 
join the AIMe steering committee. All 
other co-authors of this paper responded 
to this call. Finally, we consolidated the 
feedback into the AIMe2021 standard via 
a collaborative document editing effort 
coordinated by the first and last authors  
of this paper.

The AIMe2021 standard is divided into 
five sections: Metadata, Purpose, Data, 
Method and Reproducibility. The formal 
YAML specification of the AIMe2021 
standard is available at https://aime-registry.
org/specification/. Examples of AIMe 
reports are available at https://aime-registry.
org/database/.

Metadata. The AIMe standard asks authors 
of biomedical AIs to report basic metadata 
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for their methods (Supplementary Fig. 1). 
In a first series of questions, the authors 
are asked to provide metadata about the 
paper and the corresponding author(s) 
(MD.1–MD.6). They should also disclose 
funding sources (MD.7) and specify whether 
the entry should appear among the results 
when searching the AIMe database (MD.8). 
Temporarily excluding a report from the 
search might be useful if the reported AI  
has not been published yet. However, all  
created reports are always publicly accessible 
via their unique AIMe identifiers and 
automatically become searchable once 
a paper ID or URL is added in (MD.4). 
Moreover, authors can upload other 
checklists or reports they might have filled 
in (MD.9) (e.g., the MI-CLAIM checklist18).

Purpose. In this section, authors are 
requested to elaborated on the purpose of 
their biomedical AI (Supplementary Fig. 2). 
They should state what their AI is designed 
to learn or predict (P.1) and whether it 
predicts a surrogate marker rather than 
a directly measurable response variable 
(P.2). Furthermore, AIMe requests that the 
authors specify a category to which their AI 
problem belongs (P.3). Typical categories 
are classification (assign discrete labels to 
all items), regression (predict a real-valued 
number for all items), clustering (partition 
a set of items into subsets of homogeneous 
groups), ranking (learn an ordering for 
a set of items), dimensionality reduction 
(compress all items’ initial high-dimensional 
representations) and data generation.

Data. In biomedical research, it is common 
practice to include multiple datasets in the 
same pipeline to gain insights into complex 
biological processes. The AIMe standard 
therefore ask authors of new AIs to add 
separately each dataset employed and then 
characterize it in terms of data availability, 
possible biases and applied transformations 
(Supplementary Fig. 3).

For each dataset x, the authors should 
report the type of data (D.x.1)—e.g., 
expression, methylation or phenotype data. 
For instance, if an AI uses gene expression 
data to predict the body mass index (BMI), 
then the authors should add one dataset 
for the BMI data and a separate dataset for 
the expression data. Because there are often 
no gold-standard data for biomedical AI 
problems, new AIs are often evaluated on 
simulated data. In view of this, AIMe asks 
the authors to specify whether their data 
is real or simulated (D.x.2). Moreover, the 
authors should report whether the dataset 
is publicly available (D.x.3) and specify 
whether it was used for training the AI 
method (D.x.4).

Biomedical data are often subject to 
various biases22–24. Even if these biases 
can be addressed appropriately, readers 
should be aware of them to avoid possible 
misinterpretations. Therefore, AIMe asks the 
authors if, and if so how, they have checked 
whether their data is subject to biases 
(D.x.5). AIMe also requests that authors 
report the dimensionality of their data, i.e., 
specify the number of samples and features 
(D.x.6). This is especially important because 
high-dimensional data often exhibits 
multicollinearity and sparsity25, which in 
turn tends to negatively affect the efficiency 
of AI systems26 and often leads to overfitting. 
As most AI methods are not scale invariant, 
the data usually need to be normalized 
during pre-processing. Consequently, AIMe 
asks the authors if, and if so how, they have 
pre-processed their data (D.x.7).

Method. The next series of questions 
addresses the specific AI methods 
(Supplementary Fig. 4). The first question 
AIMe asks in this regard is which AI 
or mathematical methods (e.g., logistic 
regression, random-forest classification, 
deep neural networks, ant colony 
optimization, genetic programming) 
were used (M.1). Next, the authors must 
specify how they selected the method’s 
hyper-parameters (e.g., number of trees 
in random-forest models) (M.2). This 
is important because hyper-parameters 
typically have an enormous impact on 
method performance but are often not 
reported in the publications27,28.

The AIMe standard also contains 
questions related to the validation and 
verification of the AI method used. The 
initial questions ask which test metrics 
(e.g., Gini coefficient, running time, mean 
squared error) were used to evaluate the 
method (M.3). Later, the authors are asked 
to report how they prevented overfitting—
i.e., how they ensured that their AI model 
does not merely memorize the training data 
but can generalize to unseen, independent 
data (M.4). Overfitting can be prevented by 
using various techniques such as ensemble 
learning, cross-validation and regularization.

Moreover, AIMe asks the authors 
to clarify whether they have checked if 
there are trigger situations that induce 
their method to fail in its task (M.5). A 
possible trigger situation is the presence 
of confounding factors: i.e., variables that 
influence both the model input and output 
variables and, as a result, potentially distort 
the results29. The authors are also required 
to report whether they have checked if 
randomized steps in their AI affect the 
stability of the results (M.6). Moreover, they 
should specify whether they have compared 

their AI method to simple baseline 
models (M.7), as well as to state-of-the-art 
competitors (M.8).

Reproducibility. The last four questions 
help increase the reproducibility of the 
experiments that validate the proposed AI 
(Supplementary Fig. 5). First, the authors 
are asked whether they provide all means 
to easily re-run their AI, e.g., by providing 
conda or pip packages, Dockerfiles, 
language-specific build system files or 
detailed README files (R.1). They are 
also required to provide information about 
the source code availability of the main AI 
method, the data simulator (if applicable) 
and the pre-processing pipeline (R.2). Next, 
AIMe asks the authors whether they provide 
a pre-trained model, e.g., by uploading it to 
repositories such as Kipoi30 (R.3). Finally, 
the authors should elaborate on the software 
and hardware environments required to run 
their AI method (R.4).

The AIMe registry
The AIMe registry provides three main 
services: add a new report, query the 
database and contribute to AIMe (Fig. 1).

Creating a new report. During the creation 
of a new report, AIMe guides authors of 
new AIs through the current version of the 
AIMe standard (as discussed earlier in the 
description of the standard). To ensure that 
the standard is generically applicable, the 
system allows authors to skip some of the 
questions if the information required to 
answer them is not available. To encourage 
authors to skip as few questions as possible, 
a validation and a reproducibility score are 
computed for each report. The scores range 
from 0 to 10: the higher the scores, the 
fewer questions concerning validation and 
reproducibility of the reported AI have been 
skipped. Authors of AIMe reports can edit 
previously created reports at any time, but 
all previous versions will remain visible in 
the HTML report.

Querying the AIMe database. Users can 
find existing reports in the AIMe database 
via their unique AIMe IDs, or search the 
database for reports of interest via full-text 
or keyword search. If users identify answers 
in the reports they deem inappropriate, 
uninformative or misleading, they can 
raise issues after providing their personal 
information (name and email address). The 
reports’ corresponding authors can reply to 
the issues, and they are allowed two weeks 
to notify AIMe’s executive board about 
offensive or otherwise inappropriate issues. 
If the authors raise no complaints or the 
executive board classifies the complaints as 
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unwarranted, the issues and the personal 
information of the users who raised them, 
as well as the authors’ replies, are appended 
to the reports. Note that, because AIMe is 
committed to open peer review, issues that 
are due to misunderstandings but do not 
contain any insulting or off-topic elements 
will not be classified as inappropriate. 
Hence, by raising issues, members of the 
scientific community can review existing 
AIMe reports. This is important because it 
helps reveal reports in which questions are 
answered inadequately.

Contributing to AIMe. The Contribute 
functionality of the AIMe registry allows 
interested members of the scientific 
community to actively shape future 
versions of the AIMe standard by providing 
suggestions for improvement and requesting 
membership in the steering committee 
(as discussed below in the section on 
governance). All versions of the AIMe 
standard are formally specified in a 
YAML-based language. This ensures that 
the structure of old reports will remain well 
defined even after the current standard is 
updated at the beginning of each year.  
The YAML specifications are available at 
https://aime-registry.org/specification/.

AIMe governance
Mission. The mission of the AIMe 
initiative is to promote open, transparent 
and reproducible biomedical AI research. 
For this, we provide a community-driven 
registry, where biomedical AI researchers 
can report their AI models in a standardized 
fashion, search the AIMe database for AI 
systems related to their work and comment 
on existing reports as well as the AIMe 

standard itself (see “The AIMe Registry” 
above). The AIMe initiative is committed to 
the following principles of open science31,32.

•	 Open peer review: Registry users who 
raise an issue on an existing entry are 
required to provide personal informa-
tion, and all issues are appended to the 
reports and hence visible in the data-
base (unless they are deemed by the 
AIMe executive board to be offensive or 
off-topic).

•	 Open methodology: The openly acces-
sible YAML specification of the AIMe 
standard clearly states how the reproduc-
ibility and validation scores are com-
puted based on the answers provided  
in the reports.

•	 Openness to diversity of knowledge: 
Biomedical AI researchers with diverse 
professional and cultural backgrounds 
are invited to join the steering commit-
tee and help shaping future versions of 
the AIMe standard.

•	 Open source code: The source code of 
the AIMe registry is freely available under 
the terms of a widely used open source 
license (see “Code availability” below).

Organization structure. There are three 
different roles in which scientists from 
the field of biomedical AI can participate 
in and contribute to the AIMe initiative: 
as a registry user, as a steering committee 
member and as an executive board member. 
These roles can be described as follows.

Registry user. Registry users can 
contribute to the AIMe initiative as 
described in the registry section above: i.e., 
by providing new entries, raising issues 
related to existing entries and commenting 
on the AIMe standard. Moreover, if they 
wish to play a more active role in the AIMe 
community, they can request membership in 
the steering committee.

Steering committee. The steering 
committee is responsible for maintaining 
and updating the specification of the AIMe 
standard. Its members are professional 
researchers working at the interface of AI, 
biomedicine, bioinformatics, computational 
biology and digital health. The founding 
steering committee consists of all co-authors 
of this paper. Supplementary Fig. 6 provides 
an overview of its members’ professional 
backgrounds and expertises in biomedical 
AI. The founding steering committee 
covers all academic career levels from 
PhD student to full professor and reflects 
the internationality of the biomedical AI 
community in that its members work at 
research institutions in eight different 
countries in Europe, Asia, and the Americas.

Executive board. The executive board 
is responsible for coordinating the yearly 
reviews of the AIMe standard, for hosting 
and technical maintenance of the AIMe 
platform, for reviewing complaints on 
raised issues (i.e., deciding if issues 
qualify as offensive or off-topic) and for 
managing requests for membership in the 
steering committee. Such requests will be 
answered positively if the requester (a) 
provides plausible indication that they are 
a professional researcher with expertise in 
biomedical AI and (b) commits to actively 
participating in the yearly revision process. 
The founding executive board consists of the 
first and the senior authors of this paper.

Yearly revision process. Because biomedical 
AI is a rapidly evolving field, it is crucial  
that the AIMe standard continuously adapt 
to new developments in order to ensure that  
it will continue to reflect the needs of the 
research community. Therefore, AIMe 
foresees a yearly revision process, which is 
divided into two phases: a feedback phase 
from January 1 to September 30 of each year 
and a consolidation phase from October 1 to 
December 31.

During the feedback phase, users of the 
AIMe registry can provide feedback on 
the current version of the AIMe standard. 
Moreover, the steering committee members 
will actively reach out to influential 
representatives of the biomedical AI 
community and also submit their own 
proposals for improvements based on novel 
trends and developments in biomedical 
AI. During the consolidation phase, the 
steering committee will consolidate the 
collected feedback into a new version of 
the AIMe standard, coordinated by the 
executive board. On January 1, the new 
version of the AIMe standard will replace 
the old one.

Conclusions
AI is on the rise in biology and medicine 
and demonstrates utility in numerous 
application scenarios. However, basic 
information about data, methods and 
implementation of AI is often incomplete 
in the respective publications. This makes it 
difficult to judge, comprehensively compare 
and reproduce the results of biomedical 
AIs, a situation that, in turn, constitutes 
a major hurdle for developing new AI 
methods and for applying AI in research 
and practice. To address this problem and 
thereby improve the quality, reliability 
and reproducibility of biomedical AIs, we 
have developed the community-driven 
AIMe registry presented in this paper. This 
allows authors to easily register their AIs 
and assists researchers and practitioners in 

Services

Database

New report

Contribute Steering
committee

Current AIMe 
standard

Database

Find entries, 
raise issues

Add new entry

Implements

Provide feedback

Join

Updates
based on
feedback

Fig. 1 | Overview of the AIMe registry. Users can 
create a new report, query the database to find 
existing entries and raise issues, and contribute to 
AIMe by joining the AIMe steering committee or 
providing feedback that will be incorporated into 
the next version of the standard.
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finding existing AI systems that are relevant 
for their application scenarios.

Code availability
The AIMe web service is available at 
https://aime-registry.org. The source 
code is available at https://github.com/
aime-registry/aime-frontend/ and https://
github.com/aime-registry/aime-backend/.  
It is licensed under the GNU General Public 
License, Version 3 (https://www.gnu.org/
licenses/gpl-3.0.en.html). ❐
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