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Summary
This dissertation is concerned with the development of a discontinuous Galerkin

semi-discretisation of moving mesh methods for the advection-diffusion equation.
A priori and a posteriori error estimations are derived that can both drive the
choice of the mesh velocity and an h-refinement strategy.

Zusammenfassung
Diese Dissertation beschäftigt sich mit der Entwicklung einer diskontinuier-

lichen Galerkin-Semi-Diskretisierung von Moving-Mesh-Methoden für die Advektions-
Diffusions-Gleichung. Es werden a priori und a posteriori Fehlerabschätzun-
gen abgeleitet, die sowohl die Wahl der Gittergeschwindigkeit als auch eine h-
Verfeinerungsstrategie steuern können.
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Abstract
In convection-dominated flows, large-scale trends necessarily coexist with

small-scale effects. While reducing the convection-dominance by moving the
mesh, also called Arbitrary Lagrangian-Eulerian (ALE), already proved efficient,
Adaptive Mesh Refinement (AMR) is able to catch the small scale effects. But
ALE introduces an exponential error term that cannot be neglected compared to
the small-scale effects, so that it is unsatisfying to use AMR in an ALE situation
in the same way as it is used on static meshes.

This thesis is concerned with the development of a priori and a posteriori er-
ror estimations for the discretisation of the unsteady advection-diffusion equation
on velocity-based moving meshes.

The development of the discontinuous Galerkin method is done using the
developments of interior penalty Galerkin methods with non-constant diffusion
tensors. In particular, the computation of the numerical fluxes will be empha-
sized.

The technique used towards the h-refinement criteria follows three main
tracks: the error term caused by the mesh movement, the error sources, and
the error propagation. Whereas the mesh movement’s error term and the error
sources are easily measurable, having a precise understanding of the error prop-
agation remains difficult. The cheap and efficient way to have a faithful picture
of the error propagation in a dynamic situation is by measuring the residual of
the approximation solution.

These residuals, weighted according to the mesh’s deformation, provide with
local information on the error that can help building an h-refinement strategy.
They in particular have the property to be robust in terms of the mesh’s Peclet
number and to be scaled by the remaining advection velocity.

Taking good care of this scaling, supplemented by an a priori error estimate
leads us towards a balance between the remaining advection speed and the gra-
dient of the mesh velocity.

Additionally, we compare the ALE formulation to the existing semi-Lagrangian
discontinuous Galerkin methods and conclude that we can make them more ac-
curate by paying attention to the numerical flux.

We present a series of numerical examples based on a Python implementa-
tion of our method. These numerical results indicate that the ALE-DG method
inherits the ability to resolve boundary layers and that the error criteria detects
them. They also confirm the existence of a balance between the advection speed
and the gradient of the moving mesh velocity that are predicted in the a priori
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estimate.
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3.8 Comparison of the criterion ηtJ and the L2-error after one and 51

time steps in case (a) . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Comparison of the criterion ηtJ and the L2-error after one and 51

time steps in case (b) . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.10 Comparison of the criterion ηt and the energy-error after one and

51 time steps in case (c) . . . . . . . . . . . . . . . . . . . . . . . 44
3.11 Comparison of the criterion ηt and the energy-error after one and

51 time steps in case (d) . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Evolution of the L2-error after one time step when the velocity is
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4.3 Modified advection velocity (V − Ṽp) · (1, 0)T for values p = 2i . . 87
4.4 L2-error after t ≈ 4.6e − 4 . . . . . . . . . . . . . . . . . . . . . . 88
4.5 Value of 2 ln

|||u−uMM
h |||

|||u−uSL
h ||| for the four cases after one time step as

the time step ∆t = 1
nt

decreases . . . . . . . . . . . . . . . . . . . 89
4.6 Curves on which the particles are advected by the velocity Ṽv . . 91
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Chapter 1

Motivation

Advection-dominated flow problems play an important role in many applications
such as gas and fluid dynamics, pollutant transport in porous media, meteorology,
etc. Finding accurate and efficient methods for approximating their solutions is
therefore of great importance.
One method that has become famous in recent decades for solving elliptic prob-
lems is the finite element method. However, this method faced stability problems
when applied to advection-dominated flows. In fact, the finite element method
becomes unstable when faced with regions of large gradients (either at the out-
flow boundary or internally where the advection velocity is steep). Two main
strategies are used to solve this problem for transient advection-diffusion:

• The semi-Lagrangian (SL) method, which splits the advection, solved as
an ODE, and the diffusion, solved as a PDE. This removes the advection
term in the elliptic equation and consequently the instabilities.

• Stabilisation methods of the finite elements such as the streamline upwind
Petrov-Galerkin (SUPG), the continuous interior penalty (CIP) or the local
discontinuous Galerkin (LDG) methods, which add a stabilisation term to
the finite element formulation, or Discontinuous Galerkin (DG) methods,
which use discontinuous and piecewise polynomial basis functions.

The first method gives very good results. However, by solving the ODE when
the advection velocity is spatially steep, it can lead to what is later called entan-
glement ([28]).
Among the methods used for stabilisation, the DG methods have been much
studied because of the simplicity with which one can achieve hp-refinement. In
addition, DG methods are still perturbed by advection-dominance.

1
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To illustrate these two limitations of the DG method and the SL method,
consider the following advection-diffusion problem:

∂tu+ a(x)∂xu− ε∂xxu = f(t, x) on [0, T ]× [0, 1]

With a being steep in the centre: a(x) = α+2 tanh (0.5−x
ε ), where α is a constant

that we will change to control the advection-dominance. The solution u has an
internal layer in the centre: u(t, x) = tanh (0.5−x

ε ), and we will look at the problem
when ε = 1× 10−2, discretised with time step ∆t = 1× 10−3 on a regular mesh
with size h = 0.04. This is calculated using linear polynomials.

Figure 1.1: Plot of the mean value of the computed solution after four time steps of the approximated
solution with a linear polynomial NIPG method with α = 5 (left) and α = 10 (right)

In Figure 1.1 the oscillations downwind of the steepness are larger when α = 10

than when α = 5. This shows that for such layers the local stability depends on
the value of the Peclet number. One sees that near the boundaries the quality
of the solution is improved when α = 5. Finally the value in the centre is closer
to 0 for α = 5 than for α = 10. We conclude that the DG method can also be
improved by a strategy that would reduce the advection-dominance, such as SL
methods.
For the same test case solved with the SL method, the characteristics in the
centre lead to some entanglement when calculated forward. The discretisation
would have to pay close attention to this effect. We can conclude that the steeper
the advection velocity, the more likely the SL method is to lead to entanglement.
In conclusion, DG methods are good tools to deal with steepness and disconti-
nuities in the solution, but they can be enhanced by a procedure that reduces
the advection-dominance. A procedure that reduces advection-dominance, and
which is also a theoretical basis for the study of SL methods, is the so-called
Arbitrary Lagrangian-Eulerian (ALE). This consists of applying a dynamically
deforming transformation to the space, so that the mesh would be considered
static at the computational level, but deforming at the natural level.



3

In addition to such stabilisation methods, another way to approximate the
small scale effects in the solution is through h-refinement. This consists of slicing
or merging the cells of the mesh where the error of the approximation is larger
or smaller in order to efficiently achieve higher accuracy. The basis for such a
refinement method is a posteriori error estimation ([22], [20], [49], [15], [21], [19],
[11], [24]), but these error estimators, as well as the DG method, have to be
adapted to the ALE situation.

This thesis is concerned with the development of a DG method computed in
an ALE dynamically deforming space. The study will outline the effect of the
ALE deformation on the error a priori and consequently set out a procedure
to avoid entanglement. Finally, a posteriori error estimators will be derived for
refinement.
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Chapter 2

The advection-diffusion equation
on a moving mesh

In the computation of fluids, several paradigms can be used to reduce the compu-
tational cost. In particular, for advection-dominated flows, the use of SL methods
can help to treat advection and diffusion separately. This ensures stability and
give very accurate results. This approach can be used with all types of spatial
integration such as finite volume, finite element or DG.

In addition, an interesting way of dealing with all kinds of small-scale prob-
lems, such as boundary layers, is to use adaptive mesh refinement (AMR).

In this chapter we will review the different tools that we need to use in order
to achieve an efficient h-refinement procedure for SL methods and velocity-based
moving mesh methods in general, discretising advection-dominated flows.

1 Model problem

We consider a unsteady advection-diffusion equation:

∂u
∂t + V · ∇u− ε∆u = f [0, T ]× Ω

u = uD [0, T ]× ΓD

ε∂u
∂n = uN [0, T ]× ΓN

u(x, 0) = u0(x) Ω

(2.1)

in a bounded space-time cylinder with a convex cross-section Ω ⊂ R2, having a
Lipschitz boundary Γ consisting of two disjoint connected parts ΓD and ΓN . The
final time T is arbitrary, but kept fixed in what follows. We assume that the data

5
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satisfy the following conditions:
(A1) f ∈ C(0, T ;L2(Ω)), uD ∈ C(0, T ;L2(ΓD)) , uN ∈ C(0, T ;L2(ΓN )),

V ∈ C(0, T ;W 1,∞(Ω)2).

(A2) 0 < ε ≪ 1.

(A3) ∀t ∈ [0, T ], −
∫
Ω∇ · V (t, x)dx := α(t) > 0.

(A4) The Dirichlet boundary ΓD has a positive 1-dimensional measure
and includes the inflow boundary {x ∈ Γ |V (t, x) · n(x) < 0} for all t.

Assumption (A2) means that we are interested in the advection-dominated regime.
Assumption (A1) can be replaced by weaker conditions concerning the temporal
smoothness.
In this formulation, V is a prescribed velocity (for instance if (2.1) is the equation
for the concentration of a chemical species, then V is the velocity of the solute).
In this case the advection-dominance means that V ≫ ε. Another feature of this
advection velocity is that it lies in the space C(0, T ;W 1,∞(Ω)d) which means that
the velocity can be steep in its spatial variations.

2 Semi-Lagrangian methods for advection-dominated
problems

In the analysis of schemes for approximating the advection-diffusion equation,
the diffusion constant ε often appears in the denominator. In particular, in
[1], Theorem 4.11 gives an a priori error bound for the solution of a general
advection-diffusion problem approximated by the DG method that involves a
term exp(Ct/ε). The work of [25] for a finite element approximation estalishes

||u− uh|| ≤ C inf
vh∈Uh

||u− vh|| with C ∝ exp(t||V ||∞/ε)

For advection-dominated problems these terms can become too strong to consider
the error estimate reliable. One way to get around this problem has been to use
SL methods, in particular Lagrange-Galerkin methods ([26], [27], [28], [78], [79],
[80], [81]), which make the exponential dependence vanish in 1/ε (see [28]). But
these methods present their own problems:

• The error estimates depend exponentially on the higher derivatives of the
advection velocity, which can be prescribed with large gradient (see [28]).

• SL methods are often analysed as moving mesh methods with remeshing at
each step (see [28], [53]) and the discontinuity of the higher derivatives of
the advection field (remember that V ∈;W 1,∞(Ω)2) can cause entanglement
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even with a very short time step. Here, we can mention different methods
designed to avoid this: [53] tries to track the entanglement, and the so-
called MMSISL ([75]) method avoids it with a location-based moving mesh
method (also called r-refinement).

It is this ability to remove advection-dominance that explains why SL approaches
are used for all kinds of flow problems (see the reviews [72] and [73]).

Another problem that arises for advection-dominated flows is the resolution
of the solution as the Peclet number of the mesh becomes large. In cases where
the diffusion coefficient is small, the solutions are not regular in the sense that
higher Sobolev norms of the solution are unbounded as ε → 0, and the approach
requires some hp-refinement. The hp-refinement needs to be done according to
some error estimates.

Here we prefer to work with DG methods to achieve h-refinement, and some
DG approaches for SL methods already exist (see [74], [76], [53]).
In these works done on SLDG methods, there are two competing paradigms, the
one based on the characteristic Galerkin weak formulation and the one based
on the flux difference form. The flux difference form advects the approximate
solution uh on a static mesh and the characteristic Galerkin weak formulation
uses a deformed mesh and deformed polynomial basis functions (see [77]). In [53]
the authors adopt an approach close to the flux difference form, whereas in [76],
[74], Chapter 5 from [71], the authors adopt a characteristic Galerkin approach.
Here, like in [82] and following the approach taken in [28], we prefer to work with
the characteristic Galerkin weak formulation since it makes the calculation of the
Laplacian of the advection-diffusion problem more consistent and it allows us to
have an interior penalty approach to the diffusion term. This approach involves
a velocity-based moving mesh framework.

3 Velocity-based moving mesh methods

Following what is done for the study of finite elements with the Lagrange-Galerkin
method (see [26], [27], [28]), we want to implement a velocity-based moving mesh
method with DG spatial discretisation in order to orient the analysis of this
method.

Moving mesh methods (see [44] and [50]) are known to be a dynamic adapta-
tion of the mesh. Unlike p- or h-refinement, which are based on the addition of
degrees of freedom (either spatial or polynomial), moving mesh methods consist
in relocating the mesh points to a nearby location at each time step with the
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aim of minimising the error. There are two main paradigms: location-based and
velocity-based moving mesh methods. While location-based methods consist of
setting up a functional equation or PDE that drives the movement of the mesh
points ([62], [63]), velocity-based methods move the mesh points at a given ve-
locity. An important challenge behind this method is to control the tendency
towards entanglement ([44]), and this is what SL methods need to avoid. Since
the time-stepping is not forced by any CFL condition, the mesh can be deformed
so that the mesh tangles. For a review of such methods, we refer the reader to
[51].

A large number of studies of this paradigm exist, many of them in connection
with the study of ALE methods. Introduced in [61] and further studied in [68]
and [69] with the geometric conservation law, the use of ALE can be very useful
for time-dependent domains or problems with flexible boundaries ([34]) and there
is a lot of literature focusing on the order of the ALE framework ([53], [52]) and
its relation to time discretisation (see [27], [31], [32], [33] and [76] for a stochastic
approach). The spatial discretisation can be applied either to conservation laws
with finite elements ([58]), LDG ([60]) or finite volume and DG methods ([52],
[56], [57], [38], [65]) or to the advection-dominated advection-diffusion equation
using finite elements ([26], [59], [27], [28]) with local projection stabilization ([35]),
LDG ([39]), SUPG ([67], [37], [36]) or even space-time DG ([64], [34]).

In most of these situations, the choice that is made is to consider that the
points of the mesh move either with a velocity defined at the vertices (see for
example [66]) or cell-centred ([70], [55] and references therein). These situations
call for specific attention to the entanglement of the mesh and to the compu-
tation of the fluxes. What we decide to do is to consider a total Lagrangian
approach where the computational mesh is static and with a dynamically de-
forming mapping on it (see [54], [28]). This means that the characteristics of the
problem as well as the Jacobi matrix of the transformation must be calculated
accurately. This helps to remove entanglement and to control the volumes of
the deformed cells. Additionally the fluxes of the upwind contribution and the
interior penalty term are computable, but this also makes the CFL condition
more difficult to achieve, since it is complicated to estimate a priori the modified
advection velocity (called W in section 4 - 1).

Finally, as for the Lagrange Galerkin approach, the use of a total Lagrangian
approach helps us to build a theoretical framework for the error approximation.
Combining this with the advances in Interior Penalty Galerkin methods [43], we
could build an Interior Penalty Galerkin method on moving meshes.
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4 h-refinement for mesh-based methods

With the moving mesh method we expect to solve the large trends of the flow.
To resolve the small-scale effects, one can imagine a tailoring strategy at the cell
level. AMR offers this approach ([20]), which consists in splitting or merging the
cells of the mesh depending on a local error indicator. In the present situation,
the mesh motion introduces an error multiplier of the order of e∥∇Ṽ ∥∞T , which
become significant after some time T . Since the AMR deals with small-scale
effects, the strategy has to be adapted to the moving mesh situation.

AMR involves developing a refinement strategy that goes along with a refine-
ment criterion based on error indicators. The η indicator is ideally:

• local: η2 =
∑

η2K

• reliable: |u− uh| ≲ η

• efficient: η ≲ |u− uh|

There are three strategies: Feature-based refinement, which relies on the
values of the features and benefits from apriori error estimates ([9], [13]), goal-
oriented estimators, which are based on solving an optimisation problem ([14]),
and residual-error-based estimators, which deal with the residual of the prob-
lem ([11], [16], [19], [20], [21], [22]). [12] provides a comparison of these three
paradigms in the situation of p-refinement. Since the aim of this study is to
develop an efficient and low-cost h-refinement strategy, a residual error-based
estimator (analogous to [24] on static meshes) is developed here. This strategy
has been shown to be able to identify the small scale effects of the flow such as
boundary layers or internal layers due to a steep advection velocity. The devel-
opment of this strategy involves the design and use of tools to approximate the
error in the situation of moving meshes so as to end up with a a posteriori error
estimator.

5 Discontinuous Galerkin methods for advection-diffusion
problems

The Discontinuous Galerkin (DG) method is a class of finite element methods
in which the basis functions are discontinuous piecewise polynomials. Reed and
Hill introduced the first DG method to solve the neutron equation ([5]), while
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Cockburn et al. extended the method to Runge-Kutta DG (RKDG) for nonlinear
conservation laws ([3]).

Although the first DG methods were used to discretise hyperbolic equations, there
are a number of DG methods for second order elliptic equations. A first unified
analysis of these methods for elliptic problems is given in [6]. One solution for
the discretisation of elliptic problems is the interior penalty method. There are
several versions of the interior penalty method, but we can highlight two main
methods: the symmetric and the non-symmetric interior penalty method ([7],
SIPG and NIPG respectively).

These interior penalty methods have then been studied for more complex diffu-
sion tensors in advection-dominated problems ([47], [48] for the weighted interior
penalty method) and even used on complex geometries ([43]).

Although DG methods use additional degrees of freedom, they are suitable
for high order accuracy and hp-refinement. These refinement methods are based
on indicators, a posteriori indicators being particularly efficient ([20], [24]).

A posteriori error estimation for stationary linear equations is now relatively
well understood, as shown by work on pure diffusion problems for DG methods
([22]). For stationary advection-diffusion equations, work on robust a posteriori
estimators for DG methods can be cited ([20] for constant diffusion, [49] for the
weighted penalty method).

In the case of non-stationary advection-diffusion, we refer to the work of ([15],
[21], [19]) for various space discretisations, and [11] and [24] for the interior
penalty method. Here, following the work of [24] and [20] adapted to the case of
a complex diffusion tensor ([43]), we derive a reliable a posteriori error estimator
for the moving mesh DG method. Since our moving mesh method is velocity
based, we want to keep track of the effect of the modified advection velocity,
which means that we need to discuss the robustness of the estimator.

6 Flow maps

We consider the ALE method as a classical DG method defined on a deform-
ing space (what is called total Lagrangian in section 2 - 3). In this case, the
complexity of the geometry occurring from the fact that the mesh moves will be
featured in the equation itself. In order to do so, we define a smooth velocity
Ṽ = Ṽ (t, x) s.t.
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(A)



Ṽ ∈ C(0, T ;C1(Ω)2)

Ṽ · n = 0 on Γ× [0, T ]

Ṽ = 0 on ΓD ∩ ΓN

−1
2∇ · (V (t, x)− Ṽ (t, x)) := β(t) > 0

||∇ · (V (t, x)− Ṽ (t, x))|| ≤ c∗β

for a constant c∗ independent of time. The existence of such a function Ṽ is
ensured by assumption (A3). We also decide that Ṽ vanishes on the boundary
between ΓN and ΓD.
The second assumption on the parametrized velocity Ṽ is done so that the whole
computational domain does not change.
We introduce the flow map to distinguish a Lagrangian (or reference) variable X

and an Eulerian (or spatial) variable x. X lives in a space Ωr that is later defined
(and x lives in Ω). We carry out all the computations in Ωr and express them
back in Ω.
Given Ṽ the associated flow map, x = χ(t,X), satisfies:

ẋ(t,X) = Ṽ (t, x(t,X)), x(0, X) = X

As Ṽ is smooth we have χ(t, .) : Ωr → Ω is a C1-diffeomorphism and the Jacobian
F = F (t,X) := [ ∂xi

∂Xj
]i,j satisfies:

Ḟ (t,X) = (∇Ṽ (t, x))F (t,X), F (0, X) = I, x = χ(t,X).

The determinant J := det(F ) satisfies J̇ = J(∇ · Ṽ ).
For a fixed domain Ωr := Ω with Lipschitz boundary Γr := Γ let Ω(t) := χ(t,Ωr).
The unit normal outward nr := nr(X) to Γr and the unit normal outward n :=

n(t, x) to Γ are related by the formula:

n(t, x) = ( F−Tnr

|F−Tnr|)(t,X), X ∈ ∂Ωr, x = χ(t,X).

Because of the value of Ṽ on Γr, Ωr = Ω(t) = Ω, χ(t,ΓD) = ΓD and χ(t,ΓN ) =

ΓN .
For any function v(t, x) we introduce theˆnotation s.t. v̂(t,X) := v(t, x(t,X))

and reciprocally v can be defined thanks to v̂.
This notation also works for functions independent of time, v̂(t,X) := v(x) and
v(t, x) := v̂(X).

v̂t = vt + Ṽ · ∇v, ∇v = F−T∇X v̂, ∆v =
1

J
∇X · (JF−1F−T∇X v̂) (2.2)
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Writing

f̂(t,X) := f(t, x(t,X)), ûD(t,X) := uD(t, x),

ûN (t,X) := uN (t, x), û0(X) := u0(x(0, X)).

The problem becomes:

∂û
∂t + (V − Ṽ ) · F−T∇X û− ε

J∇X · {JF−1F−T∇X û} = f̂ [0, T ]× Ωr

û = ûD [0, T ]× ΓD

εF−T∇X û · F−Tnr

|F−Tnr| = ûN [0, T ]× ΓN

û(0, X) = û0(X) Ωr

(2.3)

In the following we will discretise (2.3) with a DG method in space.

Remark 6.1. When semi-discretised with finite elements (continuous or discon-
tinuous), two weak formulations of (2.3) can be discretised. Write Ah the finite
element operator and Uh the finite element space so that there is:

The conservative form

Find ûh ∈ C1(0, T ;Uh) s.t. ∀v̂h ∈ Uh∫
Ωr

∂(Jûh)

∂t
v̂h −

∫
Ωr

(Jûh)(∇ · Ṽ )v̂h +Ah(ûh, v̂h) = 0

The non-conservative form

Find ûh ∈ C1(0, T ;Uh) s.t. ∀v̂h ∈ Uh

∫
Ωr

J ∂ûh
∂t v̂h +Ah(ûh, v̂h) = 0

One formulation can be related to the other by the relation J̇ = J(∇ · Ṽ ).

In this study we prefer to use the non-conservative form for two main reasons: it
allows the assumption (A3) (with the conservative form, (A3) would be replaced
by a stronger assumption, ∇ · V < 0 pointwise), and since we are working with
DG spaces, the mass matrix is block diagonal and easy to compute and invert.
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7 Comparison between moving mesh and semi-Lagrangian
methods: a justification

In this section we attempt to describe the existing SLDG methods with a charac-
teristic Galerkin approach in terms of flow maps. We simply modify the spatial
operator of [82]: we look at the modelling choices they make, replace their LDG
operator with an interior penalty formulation and compare this approach with
the moving mesh approach based on a flow map discretisation in sections 3 - 3.2
and 4 - 5.2.
There are two main differences between the existing [82] and the moving mesh
method developed here: the existing SLDG methods based on the Galerkin char-
acteristic approach uses the conservative form of the ALE equation and the au-
thors use polynomial interpolation to approximate the values of the function
advected along the characteristics (the approximation of the solution uh and the
test functions), whereas in our method, we use the non-conservative form and
prefer to interpolate the Jacobi matrix of the transformation using relations (2.2).
In the rest of this section we present how to interpret SL methods in terms of
ALE formulation.

Tracing characteristics: This part of a SL method is similar to the flow map
from section 2 - 6. We consider a time step [tn, tn+1] and look at the following
flow map. Given Ṽ the associated flow map, x = χ(t,X), satisfies:

∀t ∈ R, ẋ(t,X) = Ṽ (t, x(t,X))

Since Ṽ is smooth, we have χ(t, .) : Ωr → Ω is a C1-diffomorphism. The mesh
can be considered to be either static at the beginning as x(tn, X) = X and the
ODE is solved forward, or static at the end as x(tn+1, X) = X and the ODE
is solved backwards. In the test cases done in sections 3 - 3.2 and 4 - 5.2, we
decide to take the static mesh at the foot of the characteristics. There are sev-
eral methods to integrate the characteristics and it is at this stage that tangling
must be avoided. Here we show that tangling can be avoided by controlling the
smoothness of Ṽ and by adopting a total Lagrangian approach.

Integrating the spatial operator: The second step in a classical SL method
is to integrate the spatial operator. In [82], similar to the ALE-LDG formulation
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in [39], the authors choose to model the spatial operator as an LDG problem on
a static mesh: the authors do integrate the inner-cell contribution in deformed
cells but consider the fluxes as the flux on a static mesh. Everything happens as
if they were working with F = Id.
With this motivation in mind, in the test cases of sections 3 - 3.2 and 4 -
5.2, we compare these two modelling choices and answer the questions: what is
the effect of choosing the conservative form of the ALE formulation and what
difference does it make to model the fluxes of the Laplacian operator according
to the deformation or not ?

8 Conclusion

This thesis bridges the gap between low-cost, reliable h-refinement criteria and
discontinuous Galerkin method on moving meshes for the resolution of unsteady
advection-dominated flows. For this purpose it deals with the development of
a velocity-based moving mesh method semi-discretised with the interior penalty
Galerkin method. The study includes an a priori estimation of the error in order
to orient the moving mesh velocity and an a posteriori error estimator that can
suit h-refinement.
This thesis is structured as follows. In chapter 3, 1D provides a first approach,
laying particular emphasis on the formulation and demonstration of the a posteri-
ori error estimation. Chapter 4 focuses on the 2D case, explaining the differences
with 1D and giving an a priori error estimation to guide the choice of the ALE
velocity. Conclusions will be laid out in Chapter 5.



Chapter 3

The interior penalty
discretisation for the 1D
unsteady advection-diffusion
equation on a moving mesh

As established in [16] and [1] , when measuring the error of an advection-diffusion
problem’s DG approximation, a term proportional to ∥V ∥2∞/ε appears. In the
situation of advection-dominated flows (where ∥V ∥ ≫ ε) this term, that occurs
in the interaction between transport and diffusion effect on the edges of the mesh,
becomes significant. Reducing this effect implies to understand what composes
the velocity V : in turbulent cases, it is composed of a large scale trend and small
scale turbulences. Removing a large scale velocity Ṽ from the term of interaction
to ∥V − Ṽ ∥2∞/ε (see [28]) can be done by the computation of characteristics that
is involved in ALE methods. This way, we can focus our study on the interactions
between small scale turbulences and diffusion.

To resolve these small scale effects, one can imagine a tailoring strategy on the
cells’ level. h-refinement proposes this approach ([20]), which consists in splitting
or merging the mesh’s cells depending on a local error indicator. In the situation
here, the computation of characteristics introduces an error multiplier of order
e∥∇Ṽ ∥∞T that become significant after some time. Therefore, the AMR strategy
has to be adapted to the ALE situation.

The remainder-based refinement criteria from [20], used for the unsteady case
in [24], has the ability to capture internal layers that occur when the advection
velocity has discontinuities. This is exactly the case we are interested in: by

15
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resolving the large scale smooth parts of the advection velocity with the velocity-
based moving mesh, only the small scale discontinuous (or steep) parts of the
advection velocity V − Ṽ remain to be captured by the mesh refinement strategy.

An additional feature of the error criteria that we develop is non-robustness in
the sense that the criteria depend on the the local value of ||V − Ṽ ||2. This is
important both because we are interested in cases where the remaining advection
velocity has spatial variations, and also because we want to develop criteria to
parameterise the mesh velocity.

The aim of this 1D study is to fill a gap between SL methods and error esti-
mation based AMR. Following the strategy developed in [28] and taking into ac-
count the reasoning of section 2 - 7, we interpret a SL method as a velocity-based
moving mesh method with occasional mesh reconstructions. In this framework,
instead of continuously estimating an interpolation of the solution and inducing
the gradient, the approximate solution will be a discontinuous polynomial on
a regular mesh and only the features of the equation will be estimated by the
characteristics. The regularity of the approximate solution allows us to use the
well-established results that exist for polynomials on triangular and polygonal
meshes (for instance the results of [2], [18], [22], [23], [43]).

In section 2 - 3 we exhibit how in the velocity-based moving mesh method, en-
tanglement can occur when the mesh velocity is discontinuous (see [44]). This is
solved here since we consider the mesh velocity to solve only large trends in the
advection velocity (with the condition Ṽ ∈ C1(Ω)), and by explicitly consider-
ing the moving mesh in the error estimates, we can develop criteria depending
on the steepness of the mesh velocity and on the time step between two mesh
reconstructions that not only avoid tangling but also ensure some control over
the total error.

As seen in the introductory sections 2 - 4 and 2 - 5, DG methods provide
a suitable framework for mesh adaptation, so in the following sections we will
develop a DG method for the space semi-discretisation of (3.1) (section 3 - 1).
In section 2 - 4, the use of remainder-based criteria over other kinds of criteria
is justified. The development of a velocity-based moving mesh DG method,
by linking mesh motion and space discretisation in the equation, allows us to
compare the formulation of the DG method with the physical solution and then
measure where the error is created and propagated.

This chapter is a continuation of the work done in [40]. There the method is
slightly different but we can see that the performances of the error criteria are
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close to the one here in example 3 (section 3 - 3.3).
The main difference between 1 and 2D is the fact that in one spatial dimension
J = F , so it is interesting to construct a specific framework for 1D that gives the
expression (3.1).

Following (2.3) in 1D, let y0, y1 ∈ R, Ωr = Ω = [y0, y1] and nr(X) be the
outward normal vector of Ωr in X defined by nr(X) = 1X=y1 − 1X=y0 .
Then the system is given by

∂tû+ (V − Ṽ )∂X û
J − ε

J ∂X{∂X û
J } = f̂ [0, T ]× Ωr

û = ûD [0, T ]× ΓD

εnr(X)∂X û
J = ûN [0, T ]× ΓN

û(0, X) = û0(X) Ωr

(3.1)

Finally V − Ṽ ∈ C(0, T ;W 1,∞(Ω)) motivates the definition of

δω(t) = ∥(V − Ṽ )(t, ·)∥2L∞(ω) for ω ⊂ Ωr.

The DG method proposed uses upwind discretisation of the transport term and
a classical interior penalty method for the diffusive term. Based on a study of
the error propagation for this semidiscretisation, a complete a posteriori error
estimator is derived that can help to parametrize the mesh movement and to
define a refinement strategy.
In the following, we will study various properties of the bilinear operator (section
3 - 1), before developing an a posteriori error estimator for the unsteady 1D
advection-diffusion (section 3 - 2), and finally testing this method and the error
criteria with three test cases (section 3 - 3).

A first result that we can mention is that since the a priori error estimator
only depends on the initial information for the problem, the estimator developed
in Chapter 4 (see Theorem 3.1) also applies to the 1D case.

1 The semi-discrete formulation

The first step we need to achieve to approximate (3.1) is to give the functional
spaces involved for both the solution and the approximation. The space-time so-
lution will then involve the evaluation of a bilinear form defined on the functional
space. The same goes for the approximation: the space-time approximation, be-
ing only semi-discretised, is defined by an ODE where the right-hand side is the
result of a discretised bilinear form. Here, the spatial discretisation will involve
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Sobolev spaces for the solution and discontinuous piecewise polynomials on a
fixed mesh for the approximation.

1 - 1 Notation and weak form

We define the functional spaces for the solution of the weak formulation of (3.1).
For any bounded open subset ω of Ω with boundary γ, we denote by Hk(ω),
k ∈ N, the usual Sobolev and Lebesgue spaces equipped with the standard norm
∥ · ∥k;ω = ∥ · ∥Hk(ω) as well as the standard seminorm | · |H1(ω) = ∥∂x · ∥0,ω.
Similarly, (·, ·)ω denote the scalar product of L2(ω). If ω = Ω, we will omit the
index Ω.
Let ωr ⊂ Ωr with boundary γr (recall that Ωr = Ω), for a fixed t, denoting
ω(t) := χ(t, ωr) and γ(t) its boundary (γ(t) = χ(t, γr)). ω is a bounded, open
space and the ˆ operator introduced in section 2 - 6 defines a bijection from
Hk(ω(t)) into Hk(ωr). Defining

∥v̂∥2Hωr (t)
:=
∫
ωr

v̂2J(t, ·), |v̂|2Uωr (t)
:=
∫
ωr

(∇X v̂)2

J(t,·)

there is

∥v(t, ·)∥0;ω = ∥v̂∥Hωr (t)
, and |v(t, ·)|H1(ω) = |v̂|Uωr (t)

.

Remark 1.1. This property shows that the approximation constructed are given
with respect to the reference variable X. By denoting e the approximation error,
the bounds on ∥ê∥H(t) and |ê|U(t) represent L2- and H1-bounds on e.

For a Banach space X we define the spaces Lp(0, T ;X) as the standard Bochner
spaces, i.e. for a measurable function v : [0, T ] → X:

||v||pLp(0,T ;X)
:= (

∫ T
0 ||v(t)||pXdt) < +∞ for 1 ≤ p < +∞

||v||L∞(0,T ;X) := ess sup
0≤t≤T

||v(t)||X < +∞ for p = +∞

Additionally set

H1
D(Ωr) := {v̂ ∈ H1(Ωr) : v̂ = 0 on ΓD}
H1

0 (Ωr) := {v̂ ∈ H1(Ωr) : v̂ = 0 on Γ}

We can now formulate the definition of the weak form of (3.1).

Find û ∈ C(0, T ;H1
D(Ωr)) ∩ C1(0, T ;H−1(Ωr))

s.t. ∀t ∈ [0, T ], ∀v̂ ∈ H1
D(Ωr)

∫
Ωr

J
∂û

∂t
v̂ = l(v̂)−A(û, v̂) (3.2)
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A(û, v̂) :=
∫
Ωr

J [ε∂X û
J

∂X v̂
J + (V − Ṽ )∂X û

J v̂]

l(v̂) :=
∫
Ωr

Jf̂ v̂ +
∑
ΓN

ûN v̂

Remark 1.2. Each bilinear form here are time-dependent but for clarity it will
not always be explicitly stated.

Notice that by integration by part

A(û, v̂) =
∫
Ωr

J [ε∂X û
J

∂X v̂
J − (V − Ṽ )∂X v̂

J û− ∂x(V − Ṽ )ûv̂] +
∑
ΓN

nrV ûv̂

1 - 2 Bilinear forms and function spaces for the semi-discretisation

The discretisation of (3.2) will be done in a space of discontinuous polynomials,
therefore we consider (n+1) points y0 = X0 < · · · < Xn = y1 that meshes Ω into
Th = {K1, . . . ,Kn} with Ki = [Xi−1, Xi] locally quasi-uniform and introduce the
notation

Xout
i =

{
X−

i if (V − Ṽ )(t, x(t,Xi)) > 0

X+
i if (V − Ṽ )(t, x(t,Xi)) < 0

and hi = max(|Ki|, |Ki+1|).

û(Xout
n ) =

{
û(y1) if V (t, y1) > 0

0 if V (t, y1) < 0
and û(Xout

0 ) =

{
0 if V (t, y0) > 0

û(y0) if V (t, y0) < 0
.

We will also write: HK = |K| and Hi = max(|Xi−Xi−1|, |Xi−Xi+1|), and for the
lagrangian elements: hK = hKi = |xi−1−xi| and hi = max(|xi−xi−1|, |xi−xi+1|).
In addition let:

ζK =

∫
K

1
J

HK
, ζi = max(ζKi , ζKi+1) (3.3)

Remark 1.3. We have the following relations between hK , HK and ζK :

hK =

∫
K
J and

HK

hK
≤ ζK (3.4)

The broken Sobolev spaces associated with the mesh Th:

Hk(Th) = {φ ∈ L2(Ωr) : ∀K ∈ Th, φ|K ∈ Hk(K)}

And

Vh := {φ ∈ H1(Th) : ∀K ∈ Th φ|K ∈ Sp(K)}
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with Sp the space of polynomials of degree ≤ p.

Finally we denote Uh := Vh +H1
D(Ωr) and V c

h := Vh ∩H1
D(Ωr).

In an inner mesh point Xi, the average and jump of a function v̂ ∈ H0(Th) across
the point are defined as

{{v̂}} = 1
2(v̂(X

+
i ) + v̂(X−

i )), Jv̂K = v̂(X+
i )− v̂(X−

i ) and Jv̂K = v̂(X) on Γ.

We consider the DG method that is based on an upwind discretisation for the
convective term and on a (non-)symmetric interior penalty discretisation for the
Laplacian

Find ûh ∈ C1(0, T ;Vh) s.t. ∀t ∈ [0, T ], ∀v̂h ∈ Vh∫
Ωr

J
∂ûh
∂t

v̂h = lh(v̂h)−Ah(ûh, v̂h)

where ûh(0, ·) ∈ Vh is a projection of û0(·) onto Vh. (3.5)

Ah(û, v̂) :=
∑

i=1,...,n

∫
Ki

J [ε
∂X û

J

∂X v̂

J
− (V − Ṽ )

∂X v̂

J
û− ∂x(V − Ṽ )ûv̂]

+
∑

i=1,...,n−1

ε({{ΠL2(
∂X û

J
1
2

)}}Jv̂K

J
1
2

+ θ{{ΠL2(
∂X v̂

J
1
2

)}}JûK

J
1
2

)|Xi +
γε

Hi

JûKJv̂K
J

|Xi

+
∑
ΓD

(−1)δniε(ΠL2(
∂X û

J
1
2

)
v̂

J
1
2

+ θΠL2(
∂X v̂

J
1
2

)
û

J
1
2

)|Xi +
γε

Hi

ûv̂

J
|Xi

−
∑

i=1,...,n−1

(V − Ṽ )Jv̂Kû(Xout
i ) + V v̂|Xn û(X

out
n )− V v̂|X0 û(X

out
0 )

lh(v̂) := l(v̂)+
∑
ΓD

θ(−1)δniεΠL2(∂X v̂

J
1
2
) ûD

J
1
2
|Xi −

γε
Hi

ûD v̂
J |Xi −V −v̂|Xn ûD+V +v̂|X0 ûD.

V + and V − are respectively the positive and negative parts of V (V − ≤ 0 ≤ V +)
and γ > 0 the interior penalty parameter that is described in the literature to
be depending on the degree of the polynomials. θ ∈ {−1, 1}, the method is
called symmetric interior penalty (SIPG) when θ = 1 and nonsymmetric interior
penalty when θ = −1. ΠL2 denotes the orthogonal L2-projection onto the finite
element space Vh.

For the study that will follow, we decompose the DG operator Ah into several
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operators. For û, v̂ ∈ H1(Th)

Dh(û, v̂) :=
∑

i=1,...,n

∫
Ki

J [ε
∂X û

J

∂X v̂

J
− ∂x(V − Ṽ )ûv̂]

Oh(û, v̂) :=−
∑

i=1,...,n

∫
Ki

(V − Ṽ )û∂X v̂

− (V − Ṽ )Jv̂K|Xi û(X
out
i ) + V v̂|Xn û(X

out
n )− V v̂|X0 û(X

out
0 ) (3.6)

Jh(û, v̂) :=
∑

i=1,...,n−1

γε

Hi

JûKJv̂K
J

|Xi +
∑
ΓD

γε

Hi

ûv̂

J
|Xi

Ãh(û, v̂) :=Dh(û, v̂) +Oh(û, v̂) + Jh(û, v̂)

K̃h(û, v̂) :=
∑

i=1,...,n−1

ε({{ΠL2(
∂X û

J
1
2

)}}Jv̂K

J
1
2

+ θ{{ΠL2(
∂X v̂

J
1
2

)}}JûK

J
1
2

)|Xi

+
∑
ΓD

(−1)δniε(ΠL2(
∂X û

J
1
2

)
v̂

J
1
2

+ θΠL2(
∂X v̂

J
1
2

)
û

J
1
2

)|Xi

Ah(û, v̂) :=Ãh(û, v̂) + K̃h(û, v̂)

Note that

∀t ∈ [0, T ], ∀û, v̂ ∈ H1
D(Ωr) Ãh(û, v̂) = A(û, v̂)

We state the ODEs defining the solution and its approximation, we will call
û (resp. ûh) the solution to (3.2) (resp. (3.5)) and define ûs : [0;T ] → H1

D(Ωr)

and ûsh : [0;T ] → Vh the pointwise solution of the space-discrete problem:

{
∀v̂ ∈ H1

D(Ωr) A(t; ûs(t), v̂) = l(v̂)−
∫
Ωr

J ∂ûh
∂t v̂

∀v̂h ∈ Vh Ah(t; û
s
h(t), v̂h) = lh(v̂h)−

∫
Ωr

J ∂ûh
∂t v̂h

(3.7)

In the following, we will find error estimates for the spatial operator by studying
the stationary problem defining ûs and ûsh and then use these error bounds to
build refinement criteria for the nonstationary problem.

In the semi-discrete formulation, we can see that we focused on building
the fluxes according to the moving mesh framework. In section 3 - 3.2 we will
compare this DG operator on a moving mesh with the DG operator for a classical
SL method and measure how it changes the quality of the approximation.
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2 A posteriori error estimate

In this section, after showing some fundamental properties for the bilinear forms,
which will imply the well-posedness and stability of the problem. We develop
reliable a posteriori error estimators for the steady-state formulation governing
ûs(t)− ûsh(t) in Theorem 2.9 before integrating them to have a posteriori error
estimators for û− ûh in Theorem 2.17.

2 - 1 Error bound for the stationary problem

The procedure for the proof and results are inspired by [20] with a difference,
the diffusion coefficient will be taken to be ε

J , continuous and positive. Following
[20] we first approach the advection-diffusion error estimate in the steady-state
case. After giving some fundamental properties of the bilinear operator, we give
an a posteriori estimate depending both on the approximate solutions and on
the features at some fixed time t. To do so, we first have to define norms on the
functional spaces. These error estimate will finally be integrated in section 3 -
2.2 that will give the final estimates.

For Y ⊂ Ωr we define ωS := {K ∈ Th : S ∩K ̸= ∅}. ωK will be the subsets of Ωr

on which we maximize or average the features (V − Ṽ , J) to be used in the error
estimate.

We introduce for v̂ ∈ H1(Th) and q ∈ H0(Ωr) the quantities

|||v̂|||2t :=
∑
K∈Th

[ε|v̂|2UK(t) + β(t)∥v̂∥2HK(t)] +
∑

i=1,...,n−1

γε

Hi

Jv̂K2

J
|Xi +

∑
ΓD

γε

Hi

v̂2

J
|Xi

|q|t;∗ := sup
v̂∈H1

0 (Ωr)−{0}

∫
Ωr

q∂X v̂

|||v̂|||t

|v̂|2t;A := |(V − Ṽ )v̂|2t,∗ +
∑

i=1,...,n−1

(β +
δXi

ε
)hiJv̂K|2Xi

+
∑
ΓD

(β +
δXi

ε
)hiv̂|2Xi

Remark 2.1. As well as for the bilinear forms, the t will be omitted in the
notation.

The first norm is the energy norm associated with the DG discretisation of the
advection–diffusion problem (2.1). In [20] the seminorm | · |∗ is linked to the
Helmholtz decomposition, in particular, this quantity is equal to 0 when q is
divergence-free. The third norm measures the error of the transport behaviour.
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By (3.41) in [10] there exist inverse and trace inequalities for the eulerian frame-
work.

Lemma 2.2. Let v̂ ∈ Vh, K ∈ Th
- Inverse inequality: |v̂|UK(0) ≲

1
HK

∥v̂∥HK(0).
- Trace inequality: for a mesh cell Ki = [Xi−1;Xi],

v̂(Xi−1)
2 + v̂(Xi)

2 ≲ 1
HK

∥v̂∥2HK(0).

The proof of the following two lemma and two properties is the topic of section
4 - 1.3, they will be given here without any proof.

Property 2.3. (Coercivity) For large enough γ (depending on the value of the
scalar in the inverse trace inequality) then Ah is ||| · |||-coercive. For all vh ∈ Uh

|||v̂h|||2 ≲ Ah(vh, vh) (3.8)

Remark 2.4. As we will see in section 4 - 1.3, the condition (A4), i.e. β(t) ≥ 0,
ensures the stability of the Galerkin semi-discretisation.

Lemma 2.5. (Inconsistency) Let û ∈ H1(Ωr) an analytical solution to (3.1) and
ûh solve (3.5). Then

∀v̂h ∈ Vh, Ah(û− ûh, v̂h) = ε
∑
ED

{{∇û

J
1
2

−ΠL2(
∇û

J
1
2

)}} · Jv̂hK

J
1
2

(3.9)

Properties 2.6. (Continuity) For v̂ ∈ H1
D(Ωr), ŵ1, ŵ2 ∈ Uh

|Dh(ŵ1, ŵ2)| ≲ |||ŵ1||| · |||ŵ2||| (3.10)

|Jh(ŵ1, ŵ2)| ≲ |||ŵ1||| · |||ŵ2||| (3.11)

|Oh(ŵ1, v̂)| ≤ |(V − Ṽ )ŵ1|∗ · |||v̂||| (3.12)

Property 2.7. (Inf-sup) We have the following inf-sup inequality:
inf

v̂∈H1
D(Ωr)\{0}

sup
ŵ∈H1

D(Ωr)\{0}

Ãh(v̂,ŵ)

(|||v̂|||+|(V−Ṽ )v̂|∗)·|||ŵ||| ≥ C > 0

The fact that the mesh motion adds an exponential term makes the DG method
inconsistent but the inconsistency can be controlled. Lemma 2.5 along with the
approximations constructed in Lemma 3.2 (4.40) ensures the a priori control of
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this inconsistency. We notice that the control of this inconsistency also depends
on the smoothness of J . This also implies that the steeper J is, the less consis-
tent the method becomes. We will study the situation of Ṽ ∈ W 1,∞(Ω) \ C1(Ω)

in Remark 3.3 for the 2D case and see that for a very deformed mesh, this
increases. This is coherent with the fact that, depending on the flux that we use,
the more deformed the mesh, the less stable or consistent is the formulation.

Let ρS(t) := min(hSε
− 1

2 , β− 1
2 ), S = i or Ki and



ηJi := 1
2 [(β(t) +

δωi−1

ε )hi−1 +
γε

JHi−1
(1 + Jζi−1 + ζi−1)]JûshK|2Xi−1

+1
2 [(β(t) +

δωi
ε )hi +

γε
JHi

(1 + Jζi + ζ2i )]Jû
s
hK|2Xi

ηEi
:= 1

2
ρi−1√

ε
J ε
J ∂X ûshK|2Xi−1

+ 1
2

ρi√
ε
J ε
J ∂X ûshK|2Xi

ηRi
:= ρ2Ki

||f̂ − ∂tûh +
ε
J ∂X{∂X ûs

h
J } − (V − Ṽ )

∂X ûs
h

J ||2HKi
(t)

(3.13)

and for the boundary points i = 0 or i = n


ηJi := 1{Xi∈ΓD}[(β(t) +

δωi
ε )hi +

γε
JHi

(1 + Jζi + ζ2i )](û
s
h − ûD)|2Xi

+1
2 [(β(t) +

δωi±1

ε )hi±1 +
γε

JHi±1
(1 + Jζi±1 + ζ2i±1)]Jû

s
hK|2Xi±1

ηEi
:= 1{Xi∈ΓN}

ρi√
ε
( εJ ∂X ûsh − ûN )|2Xi

+ 1
2
ρi±1√

ε
J ε
J ∂X ûshK|2Xi±1

(3.14)

Finally ηi = ηJi + ηEi + ηRi

Remark 2.8. What we see in the error criterion ηJK and that we will meet
again for the 2D case, for the a priori estimation and in the test cases, is this
dependence in δ

ε . This term, as we will see later in the test cases, is crucial for
estimating the error.

We will now prove the reliability of the local estimators
∑
i
ηi.

Theorem 2.9. Let ûs : [0;T ] → H1
D(Ωr) and ûsh : [0;T ] → Vh be the pointwise

solutions defined in (3.7), ηi be defined in (3.13) and (3.14) then

|||ûs − ûsh|||+ |ûs − ûsh|A ≲ (
∑
i
ηi)

1
2
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2 - 2 Proof of Theorem 2.9

The outline of the proof for the stationary case is as follow: separate our solu-
tion into a continuous and a discontinuous part (Lemma 2.10), give a bound to
the discontinuous part (Lemma 2.11), derive a bound for the bilinear forms as
an estimate multiplied by the energy-norm of the continuous function (Lemma
2.13, Lemma 2.14) and conclude with Property 2.7.

We will now study an approximation of elements of Vh by elements of V c
h . A

similar theorem for the eulerian problem is stated in Theorem 2.2 in [22]. In
the 1D case, this theorem depends on static and moving sizes of the cells of the
mesh. Since this method involves computing the characteristics and J , these
quantities (hi and Hi), as well as ζi are computable a posteriori.

Lemma 2.10. There exists an approximation operator Ah : Vh → V c
h satisfying:

∀v̂h ∈ Vh


∑

K∈Th
||v̂h −Ahv̂h||2HK(t) ≲

∑
{1,...,n−1}∪ΓD

hiJv̂hK2∑
K∈Th

|v̂h −Ahv̂h|2UK(t) ≲
∑

{1,...,n−1}∪ΓD

ζi
Hi

Jv̂hK2

with ζ defined in (3.3).

Proof. We build the approximation with lagrangian nodes and use the property
of polynomials to conclude.
For each K ∈ Th, NK := {x(j)K : j = 1, . . . ,m} the set of distinct nodes of K

with nodes on both ends. Let {ϕ(j)
K : j = 1, . . . ,m} be a local basis of functions

satisfying ϕ
(i)
K (x

(j)
K ) = δij .

Let N :=
⋃

K∈Th
NK be the set of nodes and

ND := {ν ∈ N : ν ∈ ΓD}
NN := {ν ∈ N : ν ∈ ΓN}
Ni := {ν ∈ N −ND : |ων | = 1}
Nv := N − (Ni ∪ND)

Additionally define ων := {K ∈ Th : ν ∈ K} for each ν ∈ N .
To each ν ∈ N we associate a basis function ϕ(ν):

suppϕ(ν) ⊂
⋃

K∈ων

K, ϕ(ν)|K = ϕ
(j)
K , x

(j)
K = ν.

Write v̂h ∈ Vh as v̂h =
∑

K∈Th

m∑
j=1

α
(j)
K ϕ

(j)
K we define
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Ahv̂h :=
∑
ν∈N

β(ν)ϕ(ν), where β(ν) :=

 0 if ν ∈ ND

1
2

∑
x
(j)
K =ν

α
(j)
K if ν ∈

o
N −ND

We define now β
(j)
K := β(ν) if x(j)K = ν.

We have ||ϕ(j)
K ||∞ ≲ 1,

∫
K J = hK and ||∂Xϕ

(j)
K ||∞ ≲ H−1

K .
Thus

∑
K∈Th

|v̂h −Ahv̂h|2UK(t) ≲
∑
K∈Th

||∂Xϕ
(j)
K ||2∞

∫
K

1

J

m∑
j=1

|α(j)
K − β

(j)
K |2

≲
∑
K∈Th

ζK
HK

m∑
j=1

|α(j)
K − β

(j)
K |2

≲
∑
ν∈N

ζν
Hν

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2

≲
∑
ν∈Nv

ζν
Hν

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2 +

∑
ν∈ND

ζν
Hν

∑
x
(j)
K =ν

|α(j)
K |2

∑
K∈Th

||v̂h −Ahv̂h||2HK(t) ≲
∑
K∈Th

||ϕ(j)
K ||2∞

∫
K
J

m∑
j=1

|α(j)
K − β

(j)
K |2

≲
∑
K∈Th

hK

m∑
j=1

|α(j)
K − β

(j)
K |2

≲
∑
ν∈N

hν
∑

x
(j)
K =ν

|α(j)
K − β(ν)|2

≲
∑
ν∈Nv

hν
∑

x
(j)
K =ν

|α(j)
K − β(ν)|2 +

∑
ν∈ND

hν
∑

x
(j)
K =ν

|α(j)
K |2

Where we defined Hν := max
ων

(HK) in the third line and used α
(j)
K = β(ν) for

ν ∈ Ni in the fourth and last lines. For ν ∈ Nv we write ων = {K+,K−}.
Finally

∑
K∈Th

|v̂h −Ahv̂h|2UK(t) ≲
∑
ν∈Nv

ζν
Hν

|α(j+)
K+ − α

(j−)
K− |2 +

∑
ν∈ND

ζν
Hν

|α(j)
K |2

∑
K∈Th

||v̂h −Ahv̂h||2HK(t) ≲
∑
ν∈Nv

hν |α(j+)
K+ − α

(j−)
K− |2 +

∑
ν∈ND

hν |α(j)
K |2

Since |α(j+)
K+ − α

(j−)
K− | = |Jv̂hK|.

Then
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
∑

K∈Th
||v̂h −Ahv̂h||2HK(t) ≲

∑
{1,...,n−1}∪ΓD

hiJv̂hK2∑
K∈Th

|v̂h −Ahv̂h|2UK(t) ≲
∑

{1,...,n−1}∪ΓD

ζi
Hi

Jv̂hK2

Let’s now project ûsh via Ah:

ûsh = ûch + ûrh with ûch = Ahû
s
h (3.15)

Here, ûch is a continuous projection of ûsh and ûrh catches the jumps. With this
we will find a bound for

κ := |||ûs − ûsh|||+ |ûs − ûsh|A (3.16)

By definition and triangular inequality,

κ ≤ |||ûs − ûch|||+ |ûs − ûch|A + |||ûrh|||+ |ûrh|A.

We then bound κ with these error estimators. We first bound the jump term by
applying Lemma 2.10 to ûrh.

Lemma 2.11. |||ûrh|||+ |ûrh|A ≲ (
∑
i
[ 1γ + 1]ηJi)

1
2 with ûrh defined in (3.15).

Proof. Knowing that JûrhK = JûshK on ΓD ∪ {1, . . . , n− 1}:

|||ûrh|||2 + |ûrh|2A =
∑
K∈Th

[ε|ûrh|2UK(t) + β||ûrh||2HK(t)] + |(V − Ṽ )ûrh|2∗

+
∑

ΓD∪{1,...,n−1}

[(β +
δXi

ε
)hi +

γε

JHi
]JûshK|2Xi

By Lemma 2.10
∑

K∈Th
ε|ûrh|2UK(t) ≲ γ−1

∑
ΓD∪{1,...,n−1}

γε
Hi

ζiJûrhK|2Xi
≲ γ−1

∑
i
ηJi∑

K∈Th
β||ûrh||2HK(t) ≲

∑
ΓD∪{1,...,n−1}

βhiJûrhK|2Xi
≲
∑
i
ηJi
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|(V − Ṽ )ûrh|2∗ ≤ sup
v̂∈H1

0 (Ωr) : |||v̂|||=1

(||(V − Ṽ )ûrh||2H(t) · |v̂|
2
U(t))

≤ 1

ε
||(V − Ṽ )ûrh||2H(t)

≤ 1

ε

∑
K∈Th

δK(t)||ûrh||2HK(t)

≲
∑

ΓD∪{1,...,n−1}

hiδωi

ε
JûrhK|2Xi

≲
∑
i

ηJi

Finally, we want to use the inf-sup condition to bound the continuous part of κ,
namely |||ûs−ûch|||+ |ûs−ûch|A. To do so we present a lemma of approximation of
function of H1

D(Ωr) by continuous, piecewise polynomials. This is done for static
meshes in [19] with Clement-type interpolant. The specificity here will be that
we will compare these Clement-type interpolants both in the eulerian and in the
lagrangian variables. These interpolants are based on the following continuous
piecewise linear polynomials that we first define for the eulerian variable.

For i ∈ {1, . . . , n− 1}

Λi =


X−Xi−1

Xi−Xi−1
if X ∈ [Xi−1;Xi]

X−Xi+1

Xi−Xi+1
if X ∈ [Xi;Xi+1]

0 else

Λ0 = 1{X0 ̸∈ΓD}

{
X−X1
X0−X1

if X ∈ [X0;X1]

0 else

Λn = 1{Xn ̸∈ΓD}

{
X−Xn−1

Xn−Xn−1
if X ∈ [Xn−1;Xn]

0 else
.

And then we denote:

Ih(t) : L1(Ωr) → {φ̂ ∈ C(Ωr) : φ̂|K ∈ S1(K), φ̂ = 0 on ΓD}

v̂ 7→
∑
i

{
1∫

ωi
J

∫
ωi
Jv̂

}
Λi.

Lemma 2.12. Let v̂ ∈ H1
D(Ωr), we have ε||∂XIhv̂||2HK(0) ≲

hK
HK

|||v̂|||2 and
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∑

K∈Th
[ρK ]−2||v̂ − Ih(t)v̂||2HK(t) ≲ |||v̂|||2∑

i

√
ε

ρi
(v̂ − Ih(t)v̂)|2Xi

≲ |||v̂|||2

∀v̂ ∈ H1
D(Ωr).

Proof. The following proof will have two steps: first we build a Clement-type
interpolant on the moving mesh and bound its difference with a function of
H1

D(Ωr), then we bound the difference between the static mesh’s interpolant and
the moving mesh’s interpolant.
We first build the same operator in the lagrangian variable:

For i ∈ {1, . . . , n− 1} let

λi =


x−xi−1

xi−xi−1
if x ∈ [xi−1;xi]

x−xi+1

xi−xi+1
if x ∈ [xi;xi+1]

0 else

λ0 = 1{x0 ̸∈ΓD}

{
x−x1
x0−x1

if x ∈ [x0;x1]

0 else

λn = 1{xn ̸∈ΓD}

{
x−xn−1

xn−xn−1
if x ∈ [xn−1;xn]

0 else
.

and denote

Jh(t) : L
1(Ω) → {φ̂ ∈ C(Ω): φ|K ∈ S1(K), φ = 0 on ΓD}

v 7→
∑
i

{
1∫

ωi
dx

∫
ωi
vdx

}
λi.

Lemma 5.3 [19] for Jh(t) gives the following estimates:
ε| ˆJh(t)v|UK(t) ≲ |||v̂|||ωK∑
K∈Th

[ρK ]−2||v̂ − ˆJh(t)v||2HK(t) ≲ |||v̂|||2ωK∑
i

√
ε

ρi
(v − Jh(t)v)|2Xi

≲ |||v̂|||2ωK

Since
∫
ωi

vdx∫
ωi

dx
=

∫
ωi

Jv̂∫
ωi

J
:

- the first inequality comes because

| ˆJh(t)v|UK(t) = |Jh(t)v|H1(K) =
HK
hK

||∂XIhv̂||HK(0)

- the last inequality comes by point evaluation
For the second inequality we notice that{

||v̂ − Ih(t)v̂||HK(t) ≤ ||v̂ − ˆJh(t)v||HK(t) + ||Ih(t)v̂ − ˆJh(t)v||HK(t)

|λ− Λ| < 1
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Then{
ε
h2 ||Ih(t)v̂ − ˆJh(t)v||2 ≤ ||| ˆJh(t)v|||2

β||Ih(t)v̂ − ˆJh(t)v||2 ≤ |||v̂|||2

We will now state a lemma that gives a bound to K̃h.

Lemma 2.13. For all v̂ ∈ Vh and for all ŝ ∈ H1
D(Ωr) satisfying ŵ = Ih(t)ŝ

Bh(v̂, ŵ) := K̃h(v̂, ŵ) +
∑
ΓD

(−1)δniεΠL2(∂X ŵ

J
1
2
) ûD

J
1
2
|Xi

The bilinear form Bh fulfills the following inequality

|Bh(v̂, ŵ)| ≲ γ−
1
2 (

∑
{1,...,n−1}

εγζ2i
JHi

Jv̂K|2Hi
+
∑
ΓD

εγζ2i
JHi

(v̂ − ûD)
2)

1
2 |||ŝ|||

Proof. Bh(v̂, ŵ) = −
∑

i=1,...,n−1
ε{{ΠL2(∂X ŵ

J
1
2
)}} Jv̂K

J
1
2
−
∑
ΓD

(−1)δniεΠL2(∂X ŵ

J
1
2
) v̂−ûD

J
1
2

|Xi

and by Cauchy-Schwarz

|Bh(v̂, ŵ)| ≤ γ−
1
2 (

∑
{1,...,n−1}

ζ2i
εγ

JHi
Jv̂K2 +

∑
ΓN

ζ2i
εγ

JHi
(v̂ − ûD)

2)
1
2

(
∑

{1,...,n−1}∪ΓD

εHi

ζ2i
{{ΠL2(

∂Xŵ

J
1
2

)}}2)
1
2

Since ŵ is piecewise linear, we have ∂Xŵ = µK with εµ2
KHK ≲ ζK |||ŝ|||2ωK

(see
Lemma 2.12).
Using the inverse inequality and (3.4)

∑
{1,...,n−1}∪ΓD

εHi

ζ2i
{{ΠL2(

∂Xŵ

J
1
2

)}}2|Xi ≲
∑

{1,...,n−1}∪ΓD

εHi

ζ2i
{{µKΠL2(

1

J
1
2

)}}2|Xi

≲
∑
K∈Th

ε

ζ2K
µ2
K

∫
K
[ΠL2(

1

J
1
2

)]2

≲
∑
K∈Th

ε

ζ2K
µ2
K

∫
K

1

J

≲
∑
K∈Th

ε

ζK
µ2
KHK

≲
∑
K∈Th

|||ŝ|||2ωK
≲ |||ŝ|||2

proves the Lemma.
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Using the inf-sup condition and the previous lemmata, we can now bound the
continuous projection of κ, namely |||ûs − ûch|||+ |ûs − ûch|A.

Lemma 2.14. |||ûs − ûch|||+ |ûs − ûch|A ≲ (
∑
i
ηi)

1
2 with ûch defined in (3.15).

with ηi := (1 + 1
γ )ηJi + ηEi + ηRi .

Proof. We will first bound:

T (v̂) := l(v̂ − Ihv̂)−
∫
Ωr

J ∂ûh
∂t (v̂ − Ihv̂)− Ãh(û

s
h, v̂ − Ihv̂) for v̂ ∈ H1

D(Ωr).

Since T = T1 + T2 + T3 with:



T1(v̂) :=
∑

K∈Th

∫
K J(f̂ − ∂tûh +

ε
J ∂X{∂X ûs

h
J } − (V − Ṽ )

∂X ûs
h

J )(v̂ − Ihv̂)

T2(v̂) :=
∑
ΓN

(ûN − ε
J ∂X ûsh)(v̂ − Ihv̂) +

∑
i=1,...,n−1

ε
J J∂X ûshK(v̂ − Ihv̂)|Xi

T3(v̂) := −
∑

i=1,...,n−1
(V − Ṽ )JûshK(v̂ − Ihv̂)|Xi

Because of

|T1| ≤ (
∑
i

ηRi)
1
2 (
∑
K∈Th

[ρK ||v̂ − Ihv̂||2HK(t))
1
2

≲ (
∑
i

ηRi)
1
2 |||v̂|||

|T2| ≲ (
∑
i

ηEi)
1
2 |||v̂|||

|T3| ≲ (
∑
i

ηJi)
1
2 |||v̂|||

Thus ∀v̂ ∈ H1
D(Ωr)

Ãh(û
s − ûch, v̂) = l(v̂)−

∫
Ωr

J
∂ûh
∂t

v̂ − Ãh(û
c
h, v̂)

= l(v̂)−
∫
Ωr

J
∂ûh
∂t

v̂ − Ãh(û
s
h, v̂) + Ãh(û

r
h, v̂)
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And

l(Ihv̂)−
∫
Ωr

J
∂ûh
∂t

Ihv̂ = [lh(Ihv̂)−
∫
Ωr

J
∂ûh
∂t

Ihv̂] +
∑
ΓD

(−1)δniε
∂XIhv̂

J
ûD|Xi

= Ãh(û
s
h, Ihv̂) + K̃h(û

r
h, Ihv̂) +

∑
ΓD

(−1)δniε
∂XIhv̂

J
ûD|Xi

= Ãh(û
s
h, Ihv̂) +Bh(û

r
h, Ihv̂)

Then Ãh(û
s − ûch, v̂) = T (v̂) + Ãh(û

r
h, v̂) +Bh(û

s
h, Ihv̂)

Finally

|Ãh(û
s − ûch, v̂)| ≲ (

∑
i
ηi)

1
2 |||v̂|||

And by noticing that: |ûs − ûch|A = |(V − Ṽ )(ûs − ûch)|∗:

|||ûs − ûch|||+ |ûs − ûch|A ≲ sup
v̂∈H1

D(Ωr)−{0}

Ãh(û
s − ûch, v̂)

|||v̂|||
(3.17)

Lemma 2.15. κ2 ≲
∑
i
ηi with κ defined in (3.16).

Proof. The result follows directly from Lemma 2.11 for the discontinuous part
and for the continuous part we use (3.17) and Property 2.7.

2 - 3 Error bound for the semidiscrete nonstationary problem

Finally we will integrate these error estimators and prove that the total error
strongly depends on the values of these criteria and on other criteria.

To go from the stationary to the nonstationary problem, we will use a similar
argument as in [24], we define the space-time functions ûs(t, ·) := ûs(t) and
ûsh(t, ·) := ûsh(t). Now for every t ∈ [0, T ] we have ûh(t, ·) the unique solution of
the same problem as ûsh(t) i.e. ûh = ûsh.

We define ê := û− ûh = ρ̂+ θ̂ with ρ̂ := û− ûs and θ̂ := ûs − ûsh = ûs − ûh and
let
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

ηtJi := 1
2 [(β(t) +

δωi−1

ε )hi−1 +
γε

JHi−1
(1 + Jζi−1 + ζ2i−1)][[ûh]]|2Xi−1

+1
2 [(β(t) +

δωi
ε )hi +

γε
JHi

(1 + Jζi + ζ2i )][[ûh]]|2Xi

ηtEi
:= 1

2
ρi−1√

ε
[[ εJ ∂X ûh]]|2Xi−1

+ 1
2

ρi√
ε
[[ εJ ∂X ûh]]|2Xi

ηtRi
:= ρ2Ki

||f̂ − ∂tûh +
ε
J {

∂X ûh
J } − (V − Ṽ )∂X ûh

J ||2HKi
(t)

ηti := [(1 + 1
γ )η

t
Ji
+ ηtEi

] + ηtRi

(3.18)

Similarly for the boundary points i = 0 or i = n


ηtJi := 1{Xi∈ΓD}[(β(t) +

δωi
ε )hi +

γε
JHi

(1 + Jζi + ζ2i )](ûh − ûD)|2Xi

+1
2 [(β(t) +

δωi±1

ε )hi±1 +
γε

JHi±1
(1 + Jζi±1 + ζ2i±1)][[ûh]]|2Xi±1

ηtEi
:= 1{Xi∈ΓN}

ρi√
ε
( εJ ∂X ûh − ûN )|2Xi

+ 1
2
ρi±1√

ε
[[ εJ ∂X ûh]]|2Xi±1

(3.19)

such that by Theorem 2.9

∀t ∈ [0, T ], κ2 = (|||θ̂|||+ |θ̂|A)2 ≲
∑

K∈Th
(1 + 1

γ )η
t
i .

Notice that the operator Ah we built in Lemma 2.10 preserves the smoothness
in time and allows us to define ûrh and ûch as space-time functions
ûrh ∈ C1(0, T ;Vh) and ûch ∈ C1(0, T ;V c

h )

|||ûrh|||2 + |ûrh|2A ≲
∑
K∈Th

[
1

γ
+ 1]ηtJi

∥ûrh∥2H(t) ≲
∑

ΓD∪{0,...,n−1}

hi[[ûh]]|2Xi

∥
∂ûrh
∂t

∥2H(t) ≲
∑

ΓD∪{0,...,n−1}

hi[[
∂ûh
∂t

]]|2Xi

for all t ∈ [0, T ].

We already proved the first inequality, the last two follow since:
∀v̂h ∈ C1(0, T ;Vh),

∂
∂t(Ahv̂h) = Ah

∂v̂h
∂t

and applying the Lemma 2.10 to the function ∂ûh
∂t .

Lemma 2.16. ∀v̂ ∈ H1
D(Ωr),

∫
Ωr

J ∂ê
∂t v̂ +A(t; ρ̂, v̂) = 0
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Proof. The lemma is a direct consequence of the definition of û and ûs.

To state the final global error estimate we need some criteria. Let

ηt1 :=
∑
i
ηti

ηt2 :=
∑

ΓD∪{0,...,n−1}
hi[[

∂ûh
∂t ]]|

2
Xi

ηt3 :=
∑

ΓD∪{0,...,n−1}
hi[[ûh]]|2Xi

(3.20)

For v̂ ∈ L∞(0, T ;H1(Th)) and v(t, x) := v̂(t,X) we define:

||v||2# := ||v||2L∞(0,T ;L2(Ω)) +

∫ T

0
|||v̂|||2tdt (3.21)

This allows us to prove the final estimate.

Theorem 2.17. Let û ∈ C(0, T ;H1
D(Ωr)) ∩ C1(0, T ;H−1(Ωr)) be a solution of

(3.2), ûh ∈ C1(0, T ;Vh) a solution of (3.5), ηt1, ηt2 and ηt3 be defined in (3.20),
|| · ||2# be the norm defined in (3.21) and e := (û− ûh)(t, χ(t,X)) then

||e||2# ≲ S(t){||e(0)||2L2(Ω) +
∫ T
0 ηt1 + T

∫ T
0 ηt2 + max

t∈[0,T ]
(ηt3)}

with S(t) = exp(∥∂xṼ ∥∞t).

Proof. Let θ̂c := ûs−ûch ∈ C1(0, T ;H1
D(Ωr)) and êc := û−ûch ∈ C1(0, T ;H1

D(Ωr)).

Taking Lemma 2.16 with êc we have

∫
Ωr

J ∂êc
∂t êc +A(t; êc, êc) =

∫
Ωr

J
∂ûr

h
∂t êc +A(t; θ̂c, êc)

Additionally the inequalities∫
Ωr

J
∂êc
∂t

êc =
1

2

d

dt
∥ec∥2L2(Ω) −

∫
Ωr

∂xṼ

2
Jê2c ≥

1

2

d

dt
∥ec∥2L2(Ω) −

∥∂xṼ ∥∞
2

∥ec∥2L2(Ω)

A(t; êc, êc) ≥ |||êc|||2t∫
Ωr

J
∂ûrh
∂t

êc ≤
T

2
∥
∂ûrh
∂t

∥2H(t) +
1

2T
∥ec∥2L2(Ω)

A(t; θ̂c, êc) ≤ C · (|||θ̂c|||t + |θ̂c|A)|||êc|||t ≤
C2

2
· (|||θ̂c|||t + |θ̂c|A)2 +

|||êc|||2t
2

hold, therefore
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d

dt
∥ec∥2L2(Ω) + (|||êc|||2t − C2 · (|||θ̂c|||t + |θ̂c|A)2 − T · ∥

∂ûrh
∂t

∥2H(t))

≤ (∥∂xṼ ∥∞ +
1

T
)||ec||2L2(Ω)

and by Gronwall’s Lemma

∥ec∥2# ≲ S(t){∥ec(0)∥2L2(Ω) +
∫ T
0 (|||θ̂c|||t + |θ̂c|A)2 + T

∫ T
0 ∥∂ûr

h
∂t ∥H(t)}

Then by definition of ηt3

∥e∥2# ≲ S(t){∥e(0)∥2L2(Ω) +

∫ T

0
ηt1 + T

∫ T

0
ηt2 + max

t∈[0,T ]
(ηt3)} (3.22)

Note that ηt3, appearing in (3.22), is the only estimator independent of the stop-
ping time. The presence of this term, which is also present on static meshes,
explains the fact that the jumps are a good estimator of the error and can be
used for h or p-refinement (see [41], [42]). Since we are also interested in the
effect of the moving mesh method on the error estimate, we can also notice the
presence of the term S(t), which we will see in section 3 - 3.1 will play an im-
portant role in the evolution of the error after a few time steps. The presence of
this term can be linked to the volume of each cell, S(t) being an upper and lower
bound of the volume of each cell (h(0)/S(t) < h(t) < h(0)S(t)). The control
of this quantity ensures no entanglement. Finally, we can note the presence of
the spatial criterion ηt1, which is integrated in time. The ability of this term to
represent the error is studied in section 3 - 3.3.

By carefully considering the generation and propagation of the error, we have
been able to construct error criteria that go beyond classical error theory. Indeed,
while gradient-based error criteria focus on the spatial variations of the computed
solution (which we capture with ηR and ηE), we are also able to capture how the
error propagates at the edges of the grid with ηJ . This theoretical study for a
relaxed advection velocity was made possible by the moving mesh framework we
mobilised. In particular, we were able to see that the characteristics of the mesh
motion also have an effect on the estimates.
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3 Test cases

In this set of test cases we will first show that for short times, the moving mesh
method is more accurate than Eulerian methods, which poorly resolve the large-
scale trends in the flow velocity. The second test case will show that this moving
mesh method is more accurate than the case where J = 1, that is the classical
SL methods (see section 2 - 7), because it better resolves the effect of the spatial
variations of the characteristics on the fluxes. Finally the last test case exhibits
the performance of the error criteria and tests if ηt1 catches the error. In addition,
the last two test cases are test cases where the DG operator would not be coercive
on a static mesh.

In the examples, the time discretisation for the PDE (3.1) is a Runge-Kutta
method of order 3. This is chosen because of the optimality of the RKDG
method (see [4]) when the DG method is of polynomial order 2 (chosen here).
Since the RK3 in the RKDG method requires a midpoint evaluation of the DG
operator, the flow map is discretised with a time step of ∆t

2 using a Runge-Kutta
method of order 4, and J is computed once the characteristics are obtained, using
J = exp(

∫ T
0 ∇ · Ṽ ). As the focus is on the moving mesh, we used the standard

RK4 method, which leaves room for improvement regarding the computation of
the characteristics.

In the examples, we will always work in the spatial domain [0, 1].

3 - 1 Example 1: A comparison with static meshes

In this test case we want to focus on two features of the moving mesh method: its
ability to resolve large trends in advection, and its effect on the error. As men-
tioned in section 2 - 3, the velocity-based moving mesh method has a tendency
for the mesh to tangle, but even smaller deformations can be subject to large im-
precisions that can strongly affect the error. We will focus on the following: first
the L2-error of the moving mesh method is much smaller than that of the static
mesh method for short times. Than how the error evolves with mesh movement,
we than outline the existence of a stopping time where the static mesh method
becomes more accurate and finally we discuss a balance between the remaining
advection velocity and the steepness of the mesh velocity.

To do this, we will compare the moving mesh method with the same DG method
on a static mesh. To check the ability of the moving mesh method to reduce
advection-dominance by an order of magnitude, we will compare a toy experiment
with the following two properties:
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- V (0) = 10 · V (1) for the advection-dominance.
- ∂xV < 0

Since ∂xV < 0 we can solve this problem with the static mesh method and since
V (0) = 10 · V (1) we can find a mesh motion such that

∫
[0,1] V − Ṽ is arbitrarily

close to V (1) (i.e. less than
∫
[0,1] V ). We want to emphasize that since ∂xV ≤ 0

is needed for static meshes, this condition implies ||V ||∞ = |V (0)| or |V (1)| and
since Ṽ (0) = Ṽ (1) = 0, there is ||V − Ṽ ||∞ ≥ ||V ||∞. Thus, the study of the
dependance of the error on ||V − Ṽ ||∞ is not possible here and and we cannot do
a clear comparison with the statement from Theorem 3.1. Unlike here, the 2D
case is prone to this study in section 4 - 2.
To test whether variations in the mesh velocity have an effect on the error, we
will also compare different approximations with mesh velocities Ṽp:

b = 0.1, ε = 1
40 , V (t, x) = (1 + b)π − πx

Ṽp(t, x) = π(1− x)(1− exp(−px))

Figure 3.1: Modified advection velocity (V − Ṽp) for values p = 2i

The computation of the flow map makes the method computationally expensive,
but has a complexity proportional to the number of cells, comparable to that of
the RKDG method. Finally, the gain in accuracy that we have for short times
justifies the use of a moving mesh method in certain cases. In particular we will
see in section 3 - 3.2 that the use of a moving mesh method can be considered
when using a SL method.

In this test case the solution is given by u(t, x) = exp (−t− ln (1+b−x
b )/π) with

time-step ∆t = 2 ·10−4 for the RKDG method and Xi = i ·0.02 for i = 0, . . . , 50.
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Figure 3.2: L2-error for short times (t = 0.008 is 40 time steps)

We can see in Figure 3.2 that for short times the moving mesh method is more
accurate than the static mesh method. After some time steps, the curves between
moving and static mesh methods eventually cross. One sees that the initial
difference in accuracy increases with p: ln (||u− uSMh ||2L2/||u− uMM

h ||2L2) ≈ 1.5

for p = 8 and ln (||u− uSMh ||2L2/||u− uMM
h ||2L2) ≈ 2 for p = 16. Simultaneously,

the number of time steps required before the static mesh method becomes more
accurate decreases with p: nt ≈ 37 for p = 8 and nt ≈ 28 for p = 16. The first
effect can be explained because the average value of V − Ṽp decreases when p

increases and the second behaviour because the maximal value of ∂xṼp increases
with p.
In Figure 3.3 we plot the value of ln (||u− uSMh ||2L2/||u− uMM

h ||2L2) after one time
step and then, the first time step where ||u− uSMh ||L2 < ||u− uMM

h ||L2 for cases
where p = ⌊1.5i⌋ for i = 1, . . . , 22.

Figure 3.3: Plots of the L2-error after one time step and number of time steps before which the static
mesh methods becomes more accurate than the moving mesh method, p = ⌊1.5i⌋

We can see that there is a minimal value (i = 15, p = 437) for the L2-error after
the first time step. It confirms a balance between the value of |V − Ṽp| and |∂xṼp|
even after only one time step, for instance, when p > 21, the L2-error after one
time step is larger for the moving mesh method than for the static mesh method.
Therefore, the steepness of the flow map has to be controlled.
We can also see that, even if the L2-error is decreasing for i = 1 . . . , 15, the first
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time step where ||u − uSMh ||L2 < ||u − uMM
h ||L2 is also decreasing. This means

that the mesh’s deformation plays a role in the development of the L2-error after
several time steps. In Figure 3.2 we can see that after a few time steps the error
is increasing exponentially with a slope increasing with p. In Figure 3.4, we
compute the slope of this exponential regime by computing:

s(p) =
ln (||(u−uMM

h )(nt(p)·∆t,·)||2
L2−ln (||(u−uMM

h )(3·∆t,·)||2
L2 )

(nt(p)−3)∆t ≈ 0.62 · p+ 48 with
r2 ≈ 0.998

Figure 3.4: Slope of the exponential regime governing the L2-error for increasing values of ||∂xṼp||∞ = p

We can notice that ||∂xṼp||∞ = p, which is in accordance to the presence of S(t)
in Theorem 2.17 and latter Theorem 3.1 which involve a term proportional
to exp (||∂xṼp||∞ · t) in the error analysis.
This example first confirms that the moving mesh method was more accurate
than the static mesh method in terms of the L2-norm for short times. It also
shows the existence of a balance between the local values of |V − Ṽ | and |∂xṼ |.
Finally we noticed that there is a regime where we approximately had

d
dt ln (||(u− uMM

h )(t, ·)||2L2) ∝ t||∂xṼ ||∞.

Figure 3.2 encourages us to use this moving mesh method for short times while
Figure 3.3 orients us to the existence of an optimal mesh velocity and associated
stopping time (the steeper the mesh velocity, the shorter the stopping time).

3 - 2 Example 2: A comparison with a classical semi-Lagrangian
method

In the case of the comparison of our method with a classical SL method, since we
are not interested here in the reconstruction, we only need to make the comparison
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on one time step. As classical SL methods consider the same problem as (3.1)
with J = 1 (see section 2 - 7), there will be no difference in the flow map (the
characteristics will be the same) and the difference will be in the DG operator.
The computation of J is of course expensive, but it is still of the same order
of complexity as the Runge-Kutta method for the flow map. Computing and
inverting the mass matrix (

∫
K Jûhv̂h) has a cost proportional to the number of

cells, because it is block diagonal (where the number of blocks is the number of
cells and the size of the block is the number of degrees of freedom in each cell).
The difference between the moving mesh and the SL method can be seen when
J becomes large. For short times, this occurs when the variations of the mesh
velocity are large. this motivates the following construction:

β = 15, c = 0.4, y(x) = x−0.5
(c+x)(1+c−x)

H(t, x) = −3
2 · tanh(βy(x))

y′(x) (1 + ln(t+ 1)), HM (t) = max(H(t, x)),

Ṽ (t, x) = 2HM (t) +H(t, x)− (x− 1
2)− cos(πx)7[2HM (t) +H(t, 0) + 1

2 ]

Figure 3.5: Mesh velocity Ṽ (0, ·) and its gradient ∂xṼ (0, ·) on x ∈ [0, 1]

In order to study an advection-dominated regime after moving the mesh, let
V (t, x) = Ṽ (t, x) + 2 + cos (πx).
First we show the evolution of the energy-error of the approximate solution after
one time step for different values of the time step. In this test case, the solution
is u(t, x) = exp (2t− x) with ε = 0.1 and spatial grid points Xi = i · 0.04 for
i = 0, . . . , 25. The time step is chosen of size ∆t = 1

nt
for nt ∈ J300, 500K and com-

pare the two relative errors when the time step becomes short (nt ∈ J300, 1400K).
In Figure 3.6 the relative energy-error of the approximate solution after one time
step is more accurate for the moving mesh method than for the classical SL
methods for nt ∈ J300, 500K. This difference decreases for shorter time steps,
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Figure 3.6: Evolution of the relative energy-error after one time step for different time step sizes for
the SL and the moving mesh method, nt ∈ [300, 500] (right), evolution of the difference of energy-error
between the SL and the moving mesh method after one time step for different time step sizes, nt > 350
(left)

probably because the shorter the time step, the closer J will be to 1. Although
the gain in accuracy is very small, the computational cost is negligible, so it
can be an interesting tool for designing SL methods. As we plot it on Figure
3.6, for very short time steps (nt > 600), the gain of this method becomes so
negligible that it is outweighed by the inconsistency and the loss of accuracy that
we have when computing the mass matrix: whereas the SL mass matrix involves
computing integrals of polynomials which can be done accurately with the right
quadrature, in our case, J is not polynomial and computing the mass matrix
adds some imprecision. We can also see that this difference decreases when the
time step becomes shorter also because J will be closer to 1.

To explain this very small gain, notice that in 1D, for advection-dominated cases,
since as we can see in the definition of Oh (3.6), the advective flux is the same
for classical SL and for moving mesh methods, there is only a small difference
between the approximations. In Figure 3.6, the gain of the moving mesh method
predominantly a consequence of the modification in the mass matrix. We will
see in Chapter 4 that for the 2D case, the difference becomes more significant.

To then design a SL method, it is important to understand the idea of this
method: the moving mesh strategy directed us towards an advection and a dif-
fusion modified by the features of the flow map. It is only after this that we
have defined the fluxes and the advection and diffusion operators. Using this
strategy can help us to design all kinds of SL methods (with, for example, a dif-
ferent time integration for the advection and diffusion operators, such as IMEX
schemes). The argument presented (and which we will explore further in section
4 - 5.2) is that to make the fluxes of a DG method more accurate, one must
take into account the deformation of the outward normal vector implied by the
SL formulation.
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3 - 3 Example 3: Testing the error criteria with strong defor-
mations

As a final set of examples, we will focus on the fact that we gain with this method
an analysis of the a posteriori error estimation. Apart from the fact that it makes
a SL method more accurate, it has also helped us to build tools for analysing the
spatial error. In this setup we still define the function H and the velocity Ṽ in
the same way as in section 3 - 3.2 with the difference that β = 20 and c = 0.1.
Whereas in the second example we wanted a large zone where the mesh velocity
is steep, here we want a very localised zone where the mesh velocity is steep,
which can be seen in Figure 3.7.

Figure 3.7: Velocity Ṽ (0, ·), ∂xṼ (0, ·) and velocity (V − Ṽ )(0, ·) on x ∈ [0, 1]

Here there are a couple of different test cases. On one hand, we want to see how
the error criteria approximate the different errors when the remaining advection
velocity V − Ṽ is still dominant and on the other hand when it is closer to ε.
To compare these two cases, we do not use the velocities V and Ṽ as previously
defined, but the advection velocity will be Veff = pV and the grid velocity will
be Ṽeff = pṼ with p = 0.5 or 10, in addition the Peclet number of the mesh is
constant, namely h = 1

50 = 2ε, Pe = h
ε = 2 and the time step is taken constant

∆t = 10−4. We look at several solutions u to outline different properties of the
error criteria.

(a) Solution u(t, x) = sin(2πx) + cos(20πx)
10 , p = 10: In this situation the er-

ror criteria are dominated by the term ηJ and in particular by the term δJûhK2/ε.
Indeed, while the L2-norm of the solution is the same at x ≈ 0.2 and x ≈ 0.8, the
local L2-error around x ≈ 0.2 is twice as large as the L2-error around x ≈ 0.8.
This behaviour is predicted by the error criterion and in particular by the multi-
plier δ. We can see in Figure 3.8 that the error criteria approximate the L2-error
adequately. This behaviour is maintained over time. In this situation, since the
L2-error is 0 where the mesh is most deformed, we cannot check whether the
error criteria are still efficient when the mesh is very deformed.
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Figure 3.8: Comparison of the criterion ηtJ and the L2-error after one and 51 time steps in case (a)

(b) Solution u(t, x) = x(1 − x), p = 10: Again the error criteria are dom-
inated by the term ηJ and in particular by the term δJûhK2/ε. In Figure 3.9,
since the error is large in the central cells, we can see that the total L2-error in
the central cell decreases as the size of the cell decreases. The ηJ criterion also
follows this movement, but when the deformation of the mesh is strong, we can
see that this decrease in the central cell is slower for the criterion than for the
L2-error. This confirms that the error criterion is reliable, but loses efficiency
under strong deformation.

Figure 3.9: Comparison of the criterion ηtJ and the L2-error after one and 51 time steps in case (b)

(c) Solution u(t, x) = sin(2πx) + cos(20πx)
10 , p = 0.5: In contrast to the

first situation, here the phenomenon is dominated by diffusion and the error
criteria are no longer dominated by ηJ . In Figure 3.10, the energy-error is as
adequately approximated by the error criterion η after one time step as after 51
time steps. Similar to situation (a), since the energy-error is 0 where the mesh
is most deformed, we cannot check if the error criteria are still efficient when the
mesh is very deformed.

(d) Solution u(t, x) = sin(2πx), p = 0.5: Again the phenomenon is domi-
nated by diffusion and the error criteria are dominated by η. In Figure 3.10 the
energy error is as appropriately approximated by the error criterion η after one
time step as after 51 time steps. Here the local energy-error of the solution is
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Figure 3.10: Comparison of the criterion ηt and the energy-error after one and 51 time steps in case (c)

maximal at the centre and we can see that the error decreases as the central cell
becomes small (after 51 time steps). This is slightly predicted by the η crite-
rion, but we clearly lose efficiency due to mesh deformation. The criterion is still
reliable.

Figure 3.11: Comparison of the criterion ηt and the energy-error after one and 51 time steps in case (d)

From these four test cases one sees the behaviour of the error and the criteria:

• When the remaining advection velocity is still dominant, the η criterion is
dominated by its ηJ contribution and the criterion is close to the L2-error.

• In situation (a) the non-robustness of the criteria is important to still catch
the L2-norm when the problem is strongly advection-dominated.

• When the remaining advection velocity becomes small, the η criterion is
able to adequately approximate the energy-error.

• When the grid becomes very deformed, the criteria are able to show a
small effect of deformation, in particular when a cell becomes small and so
its local L2-error becomes small, the criterion also shrinks but slower. In
the end in both situations (b) and (d) the criteria remain reliable but are
less efficient.
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In this chapter we formulated a velocity-based moving mesh DG method for
the unsteady advection-diffusion equation. From this formulation we derived a
posteriori error criteria that are reliable. Finally, the test cases show that:

• By suitably parameterising the mesh velocity, we find an optimal velocity
that reduces the L2-norm as much as possible for short times. This opti-
mal mesh velocity results from a balance between the remaining advection
velocity V − Ṽ and the variations of the advection velocity ∂xṼ .

• This moving mesh method, in particular the definition of fluxes, can be
used to make SL methods more accurate. Instead of having the advected
gradient to approximate the DG operator in a SL method, we can make
the calculation of J more accurate and see a SL method as a moving mesh
method (see section 2 - 7).

• This error criterion is capable of reliably represent the L2-error or the
energy-error (depending on the situation of remaining advection-dominance).
When the deformation becomes large, it becomes less efficient.

• The non-robustness is important because it is involved in the representation
of the error in cases of strong advection-dominance. The presence of the
term δ/ε in the criterion ηJ is something that we find again in the a priori
error estimation from Theorem 3.1.

In the second chapter we complete the study by formulating a moving mesh
DG method for the unsteady advection-diffusion equation in 2D. We extend the
conclusions of this section. In particular section 4 - 3 is devoted to the existence
of a balance between V − Ṽ and ∇ · Ṽ .
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Chapter 4

The interior penalty
discretisation for the 2D
unsteady advection-diffusion
equation on a moving mesh

After Chapter 3, we apply the previous method and criteria in 2D. Although the
a posteriori available data are not exactly the same, the tools developed in the
previous chapter can be generalised to the 2D case.

The aim is to solve both the large trends of a advection-dominated flow, the
discontinuities of the flow (internal layers) and the interactions with diffusion
(for instance boundary layers). To resolve large trends, we use a moving mesh
strategy, the problem being that a strictly advection velocity-based moving mesh
strategy causes entanglement in the mesh (section 2 - 3). We therefore move
towards a SL, which can be reinterpreted as a certain form of mesh movement
with occasional reconstruction (section 2 - 7). Unfortunately, a SL method does
not solve the fluxes very well for cases of strong mesh deformation. It is therefore
necessary to give a framework for error analysis, and this is what we propose
to do by prescribing a mesh velocity that will capture the large but not too
steep trends, which will leave the discontinuities to be resolved by the spatial
discretisation method.

For these discontinuities, we refer to [20] and use a remainder-based refinement
strategy to resolve both the discontinuities from the remaining advection velocity
V − Ṽ and the boundary layers occurring in advection-dominated flows. This
study has to be adapted to the case of moving mesh because it introduces an

47
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error term e∥∇Ṽ ∥∞T , which is large when either T or ∥∇Ṽ ∥∞ are large.

An additional feature of the error criteria that we develop is non-robustness in the
sense that the criteria depend on the local value of ||V − Ṽ ||2. This is important
both because we are interested in cases where the remaining advection velocity
has spatial variations, and also because we develop criteria to parameterise the
mesh velocity.

In the DG framework, instead of continuously estimating an interpolation of the
solution and inducing the gradient (like for SL methods), the approximate solu-
tion will be a discontinuous polynomial on a regular mesh and only the features
of the equation will be estimated by the characteristics. The regularity of the
approximate solution allows us to use the well-established results that exist for
polynomials on triangular and polygonal meshes (for instance the results of [2],
[18], [22], [23], [43]).

The aim of this 2D study is to fill a gap between SL methods and error
estimation based AMR. Following the strategy developed in [28] and taking into
account the reasoning of section 2 - 7, we interpret a SL method as a velocity-
based moving mesh method with occasional mesh reconstructions. Finally the
fact that the mesh velocity is considered as parameterised in the a priori and
a posteriori studies, helps to outline some principles in the choice of the mesh
velocity.

In section 4 - 1, the first step of the analysis is to exhibit a DG discretisation for
the steady-state problem (4.1). Inspired by the litterature ([43], [45], [46], [47]),
we state some approximation theorems and develop a posteriori error estimates.
Existing analysis are either done with a discontinuous but piecewise polynomial
or with a continuous diffusion tensor a. In this case, since the diffusion tensor
under consideration is to be equal to JF−1F−T , it will be treated as continuous
in the analysis (which is the case with Ṽ smooth enough). The method that
we will use is not consistent but according to [43], this can be controlled to still
prove convergence if Ṽ is smooth enough (see Remark 3.3).

In section 4 - 2 the DG method on a moving mesh is presented, section 4 - 3
uses some of the previous lemmas and also other material to study an a priori
error estimate that outlines the importance of the two quantities ||V−Ṽ ||2

ε and
||∇·Ṽ ||

2 .

Finally in section 4 - 4 we integrate the error criteria from section 4 - 3 to show
their signifiance for the unsteady case.

Section 4 - 5 consists of four test cases comparing the accuracy of static meshes
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and moving meshes, then comparing moving meshes with SL methods, in situ-
ations where Ṽ has either large vorticity or divergence, evaluating its response
to a boundary layer problem and finally investigating the accuracy of the error
criteria in cases where the deformation of the mesh is strong. We will there be
able to comment on a flux comparison between SL and moving mesh methods
and outline the importance of adapting the error criteria to the specific moving
mesh situation. Finally we see the importance of non-robustness in the error
criteria.

1 The interior penalty discretisation formulation for
the steady-state advection-diffusion equation

Our choice here is to develop the tools of the spatial semi-discretisation by study-
ing the steady-state problem (4.1). We take here an arbitrary advection velocity
W ∈ W 1,∞(Ω) that is to be equal to JF−1(V − Ṽ ) with the notations introduced
in section 2 - 6. For the tensor vector in the formulation (2.3) we can see that
a = εJF−1F−T and therefore a is symmetric, definite and positive, continuous
and not piecewise polynomial, with determinant equal to ε2. With this stated,
we can use [43], chapter 5, to help our study. Finally, because the study has to
be applied for the lagrangian variable, the approximations are given with norms
weighted by a positively bounded and continuous function J on Ω, that is to be
equal to J(t,X) with the notations from section 2 - 6.

With this framework, we can define a DG approximation of the problem (4.1),
give some properties of the DG operator and finally derive an a posteriori error
estimation.

We consider a steady-state advection-diffusion equation:

W · ∇u−∇ · {a(x)∇u} = f Ω

u = 0 ΓD

a∇u · n = uN ΓN

(4.1)

in a bounded convex Ω ⊂ R2, having a Lipschitz boundary Γ consisting of two dis-
joint connected parts ΓD and ΓN . We assume that the data satisfy the following
conditions:
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(B1) f ∈ L2(Ω), uN ∈ L2(ΓN ),W ∈ W 1,∞(Ω)2.

(B2) a ∈ [C0(Ω)]2,2 is a symmetric definite positive matrix and det a = ε2

constant with ε ≪ |W |∞.

(B3) −∇ ·W > b > 0 on Ω and ||∇ ·W || ≤ c∗b

(B4) The Dirichlet boundary ΓD has positive (d− 1)-dimensional measure
and includes the inflow boundary {x ∈ Γ |W · n(x) < 0}.

Assumption (B2) means that we are interested in the advection-dominated regime,
it also implies that a has a square root that we will write

√
a.

Remark 1.1. Denoting the group of orthogonal matrices of M2,2 by O(2)
√
a is

built as follows

∃λ1, λ2 > 0, ∃O ∈ O(2) a = OT diag(λ1, λ2)O

√
a := OT diag(

√
λ1,

√
λ2)O

Let G ∈ [C0(Ω)]2,2 such that a = εGGT with det(G) = 1.

1 - 1 Notation and weak form

For any bounded open subset ω of Ω with Lipschitz boundary γ, we denote by
Hk(ω), k ∈ N, L2(ω) = H0(ω), and L2(γ) the usual Sobolev and Lebesgue spaces
equipped with the standard norms || · ||k;ω = || · ||Hk(ω) and || · ||0;γ = || · ||L2(γ) as
well as the standard seminorm | · |H1(ω) = ||∇ · ||0,ω. Similarly, (·, ·)ω and (·, ·)γ
denote the scalar products of L2(ω) and L2(γ), respectively. If ω = Ω, the index
Ω is omitted.
Let J : Ω → R∗

+ be bounded in L2(Ω). Let the weighted seminorm and norm:

|v|2Uω
:=
∫
ω(∇v)TGGT∇v and ||v||2Hω

:=
∫
ω Jv2

0 < β < −∇·W
J

Additionally let

H1
D(Ω) := {v ∈ H1(Ω): v = 0 on ΓD} and H1

0 (Ω) := {v ∈ H1(Ω): v = 0 on Γ}

For u, v ∈ H1(Ω) we define the following

A(u, v) :=
∫
Ω a∇u · ∇v + vW · ∇u

l(v) :=
∫
Ω fv +

∫
ΓN

uNv

We can now formulate the definition of the weak form of (4.1).

Find u ∈ H1
D(Ω) s.t. ∀v ∈ H1

D(Ω) A(u, v) = l(v) (4.2)
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1 - 2 Bilinear forms and function spaces for the semi-discretisation

To discretise (4.2), we consider regular and shape-regular meshes Th = {K} that
partition the computational domain Ω into open triangles. For simplicity we
assume that Ω is a polyhedron that is covered exactly by Th. We assume the
following:

(i) The elements of Th satisfy the minimal angle condition. Specifically, there
is a constant θ0 > 0 such that hK

rK
< θ0 where hK and rK denote, respectively,

the diameters of the circumscribed and inscribed balls to K.
(ii) Th is locally quasi-uniform; that is, if two elements K1 and K2 are adjacent

in the sense that µd−1(∂K1 ∩ ∂K2) > 0 then diam(K1) ≈ diam(K2).
Here µd−1 denotes the (d−1)-dimensional Lebesgue measure. Let hE be the size
of an edge E.
Given the discontinuous nature of the piecewise polynomial functions, let

E int = {e = ∂K1 ∩ ∂K2 : µd−1(∂K1 ∩ ∂K2) > 0}

Eext = {e = ∂K ∩ Γ : µd−1(∂K ∩ Γ) > 0}

Eext
N = {e = ∂K ∩ ΓN : µd−1(∂K ∩ ΓN ) > 0}

Eext
D = {e = ∂K ∩ ΓD : µd−1(∂K ∩ ΓD) > 0}

E = Eext(Th) ∪ E int(Th)

EN = Eext
N (Th) ∪ E int(Th)

ED = Eext
D (Th) ∪ E int(Th)

set of edges.
We write nK the outward unit normal vector on the boundary ∂K of an element
K and for a set of points Y : ωY = ∪

K∩Y ̸=∅
K. ωK are the subsets of Ωr on which

we maximize or average the features (W , a, G) to be used in the error estimate.
Let the inflow and outflow boundaries of ∂Ω

Γt
in := {x ∈ Γ: W · n < 0}, and Γt

out := {x ∈ Γ: W · n ≥ 0}

Similarly, the inflow and outflow boundaries of an element K are defined by

∂Kt
in := {x ∈ ∂K : W · nK < 0}, ∂Kt

out := {x ∈ ∂K : W · nK ≥ 0}.

The broken Sobolev spaces associated with the mesh Th

Hk(Th) = {φ ∈ L2(Ωr) : ∀K ∈ Th φ|K ∈ Hk(K)}
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And

Vh := {φ ∈ H1(Th) : ∀K ∈ Th φ|K ∈ Sp(K)}

with Sp the space of polynomials of degree ≤ p.

Finally Uh := Vh +H1
D(Ωr) and V c

h := Vh ∩H1
D(Ωr).

The jumps and averages of functions in H1/2(Th) are defined as follows. Let
the edge E ∈ E int be shared by two neighboring elements K and Ke. For
v ∈ H1/2(Th), v|E its trace on E taken from inside K, and ve|E the one taken
inside Ke. The average and jump of v across the edge E are then defined as

{{v}} = 1
2(v|E + ve|E), JvK = v|EnK + ve|EnKe

For a vector field q ∈ H1/2(Th)d there is

{{q}} = 1
2(q|E + qe|E), JqK = q|E · nK + qe|E · nKe

For E ∈ Eext

{{q}} = q|E , JvK = v|Enr

We consider the DG method that is based on an upwind discretisation for the
convective term and on a (non-)symmetric interior penalty discretisation for the
Laplacian

Find uh ∈ Vh s.t. ∀vh ∈ Vh Ah(uh, vh) = lh(vh) (4.3)

With Ah given by

Ah(u, v) :=
∑
K∈Th

∫
K
a∇u ·∇v+vW ·∇u−

∫
∂Kt

in

W ·JuKv+
∑
E∈ED

ε

∫
E

γ

hE
JuK ·JvK

− ε
∑
E∈ED

∫
E
{{ΠL2(GT∇u)}} ·GT JvK + θ{{ΠL2(GT∇v)}} ·GT JuK (4.4)

ΠL2 denotes the elementwise orthogonal L2-projection onto the finite element
space (Vh)

2 and γ = α|GTn|2 the interior penalty parameter with α > 0 a scalar
depending on the polynomial degree. θ ∈ {−1, 1}, the method is called symmetric
interior penalty when θ = 1 and nonsymmetric interior penalty when θ = −1.
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Notice that by integration by part

Ah(u, v) :=
∑
K∈Th

∫
K
a∇u · ∇v − uW · ∇v − uv∇ ·W +

∫
∂Kt

out

W · JvKu

− ε
∑
E∈ED

∫
E
{{ΠL2(GT∇u)}} ·GT JvK + θ{{ΠL2(GT∇v)}} ·GT JuK − γ

hE
JuK · JvK

(4.5)

And lh(v) :=
∑

K∈Th

∫
K fv +

∑
E∈Eext

N

∫
E uNv

Finally, for u, v ∈ H1(Th)

Dh(u, v) :=
∑
K∈Th

∫
K
a∇u · ∇v − uv∇ ·W

Oh(u, v) :=−
∑
K∈Th

∫
K
uW · ∇v +

∑
K∈Th

∫
∂Kt

out

W · JvKu (4.6)

Jh(u, v) :=
∑
E∈ED

∫
E

γ

hE
JuK · JvK

Ãh(u, v) :=Dh(u, v) +Oh(u, v) + εJh(u, v)

K̃h(u, v) :=ε
∑
E∈ED

∫
E
{{ΠL2(GT∇u)}} ·GT JvK + θ{{ΠL2(GT∇v)}} ·GT JuK

(4.7)

1 - 3 Some properties of the bilinear operator

We will give here some properties on the operator Ah that will be useful to
demonstrate the stability and convergence of the method. Since these properties
hold both in one and two dimensions, we gave the same lemmas and properties
for the 1D case in Chapter 3 without proving them, we do it here.

In what follows the symbol ≲ indicates an inequality involving a positive
constant depending of the mesh regularity, the polynomial degree and c∗ defined
in assumption (B3).
By (3.41) in [10] there exist inverse and trace inequalities for the eulerian frame-
work.

||vh||∂K ≲ h
− 1

2
K ||vh||K (4.8)

||∇vh||K ≲ h−1
K ||vh||K (4.9)
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we call CT > 0 the constant appearing in (4.8) and CI > 0 the constant appearing
in (4.9).

To analyse the spatial error, we introduce the following quantities: W ∈ W 1,∞(Ω)

motivates the definition of δω = ||(J
1
2G)−1W ||2L∞(ω), J

ω
1 =

∫
ω J

|ω| , aω1 =
∫
ω ||a||
|ω| and

aω∞ = ||a||L∞(ω) = sup
ω

||a||, with ||a|| the larger eigenvalue of a. Also γω∞ = aω∞
ε ,

γω1 =
aω1
ε and:

∀v ∈ H1(Th), |||v|||2 :=
∑
K∈Th

[ε|v|2UK
+ β||v||2HK

] + εJh(v, v) (4.10)

∀q ∈ H0(Ω)d, |q|∗ := sup
v∈H1

0 (Ω)−{0}

∫
Ω J

1
2q ·GT∇v

|||v|||
(4.11)

∀v ∈ H1(Th), |v|2A := |(J
1
2G)−1Wv|2∗ +

∑
E∈ED

(β +
δωE

ε
)hEJ

ωE
1

∫
E
JvK2 (4.12)

Remark 1.2. We often use that in two dimensions since det(G) = 1, then
max
|n|=1

(|GTn|2) = (min
|n|=1

(|GTn|2))−1 thus

γω∞ = max
ω

(max
|n|=1

(|GTn|2)) = (min
ω

(min
|n|=1

(|GTn|2)))−1.

The first norm is the energy-norm associated with the DG discretisation of the
advection–diffusion problem (4.1). In [20] the seminorm | · |∗ is linked to the
Helmholtz decomposition, in particular, q is called divergence-free when this
quantity is 0, in this case, the seminorm | · |∗ is a weighted version of the one in
[20]. The third norm measures the error of the transport behaviour.

Lemma 1.3. (Coercivity) For α large enough (depending on the value of the
scalar CT in the inverse trace inequality) then Ah is ||| · |||-coercive. For all
vh ∈ Uh

|||vh|||2 ≲ Ah(vh, vh) (4.13)

Proof. Let vh ∈ Vh, by noticing that Ah = 1
2( (4.4) + (4.5) ):
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Ah(vh, vh) =
∑
K∈Th

∫
K
a∇vh · ∇vh −

1

2
v2h∇ ·W

+
1

2
(

∫
∂Kt

out

W · JvhKvh −
∫
∂Kt

in

W · JvhKvh)

−ε
∑
E∈ED

(1 + θ)

∫
E
{{ΠL2(GT∇vh)}} ·GT JvhK +

∫
E

γ

hE
JvhK2

=
∑
K∈Th

∫
K
a∇vh · ∇vh −

1

2
v2h∇ ·W +

1

2

∑
E∈E

∫
E
|W · n|JvhK2

−ε
∑
E∈ED

(1 + θ)

∫
E
{{ΠL2(GT∇vh)}} ·GT JvhK +

∫
E

γ

hE
JvhK2

We can see that if θ = −1, we have Ah(vh, vh) ≥ 1
2 |||vh|||

2 with no condition on
α.

ε
∑
E∈ED

∫
E
{{ΠL2(GT∇vh)}} ·GT JvhK ≤ ε

∑
E∈ED

c

2
|
∫
E

γ

hE
JvhK2|

+ε
∑

E∈E int

hE
cα

1

4
(|
∫
E
{ΠL2(GT∇vh)|K}2|+ |

∫
E
{ΠL2(GT∇vh)|Ke}2|)

+ε
∑

E∈Eext
D

hE
cα

1

2
|
∫
E
{ΠL2(GT∇vh)|K}2|

≤ c

2
εJh(vh, vh) +

∑
K∈Th

CT

2cα
ε||ΠL2(GT∇vh)||2K

≤ c

2
εJh(vh, vh) +

∑
K∈Th

CT

2cα
ε||GT∇vh||2K

≤ c

2
εJh(vh, vh) +

∑
K∈Th

CT

2cα
|vh|2UK

for c > 0 an arbitrarily small constant.

Thus, if θ = 1, for c = 1
2 and α = 2CT :

Ah(vh, vh) ≥
∑
K∈Th

[ε(1− CT

cα
)|vh|2UK

+
1

2
||vh||2HK

+ (1− c)εJh(vh, vh)] ≥
1

2
|||vh|||2
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Remark 1.4. (a)To ensure coercivity, α > CT , which explains why α depends on
the polynomial degree: CT is related to the inverse trace inequality (4.8) which is
described in [23] as depending on the polynomial degree and the shape regularity of
the mesh. For the stability of the time discretisation scheme, it is also important
to keep α as small as possible, so that the condition number of the operator is
minimised.

(b) The projection used in the expression of K̃h ensures that the operator is
coercive and so the problem is stable.

The following lemma shows that the projection that is used in K̃h makes us
lose consistency but this brings in two important properties discussed in Remark
1.6.

Lemma 1.5. (Inconsistency) Let u ∈ H1(Ωr) be an analytical solution of (4.1)
and uh solve (4.3). Then

∀vh ∈ Vh, Ah(u− uh, vh) = ε
∑
E∈ED

∫
E
{{GT∇u−ΠL2(GT∇u)}} ·GT JvhK (4.14)

Proof. Let vh ∈ Vh, first notice that:

Ah(u, vh) =
∑
K∈Th

∫
K
a∇u · ∇vh + vhW · ∇u

− ε
∑
E∈ED

∫
E
{{ΠL2(GT∇u)}} ·GT JvhK

=
∑
K∈Th

∫
K
(W · ∇u−∇ · {a∇u})vh +

∫
∂K

a∇u · nvh

− ε
∑
E∈ED

∫
E
{{ΠL2(GT∇u)}} ·GT JvhK

=
∑
K∈Th

∫
K
fvh +

∫
ΓN

uNvh +
∑
E∈ED

∫
E
a∇u · JvhK

− ε
∑
E∈ED

∫
E
{{ΠL2(GT∇u)}} ·GT JvhK

=Ah(uh, vh) + ε
∑
E∈ED

∫
E
{{GT∇u−ΠL2(GT∇u)}} ·GT JvhK

Which gives (4.14).
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Remark 1.6. (a) On the one hand this DG formulation is inconsistent with
(4.1). On the other hand, we observe that weaker regularity assumptions on
the analytical solution to (4.1) are required here: we shall merely assume that
u ∈ H1(Ω), since no additional regularity of u is required to ensure the existence of
traces of ΠL2(GT∇u) in the definition of the method. In addition the formulation
is coercive (thus stable) independently of the smoothness of G.

(b) In the case where a is piecewise constant, this becomes equivalent for
polynomial trial and test functions to the consistent formulation (for instance the
one from [20]).

(c) This formulation is inconsistent but we bound the inconsistency in Lemma
3.2 (4.40) when the solution and G are regular enough. We study a discontinuous
G in Remark 3.3 for the 2D case and see that for a very deformed mesh, the
inconsistency increases. This is coherent with the fact that, for strong deforma-
tions, when the flux is precisely approximated, the formulation is not coercive and
when the formulation is stable, the method is inconsistent.

The following two lemmas (continuity and inf-sup condition) show well-posedness
and stability, they will be useful for the development of a posteriori error esti-
mates.

Lemma 1.7. (Continuity) For v ∈ H1
D(Ω), w1, w2 ∈ Uh

|Dh(w1, w2)| ≤ |||w1||| · |||w2||| (4.15)

|Jh(w1, w2)| ≤ |||w1||| · |||w2||| (4.16)

|Oh(w1, v)| ≤ |(J
1
2G)−1Ww1|∗ · |||v||| (4.17)

Proof. (4.15) and (4.16) comes from Cauchy-Schwarz and the fact that β > 0.

|Oh(w1, v)| ≤ |
∑
K∈Th

∫
K
w1W · ∇v|

≤ |||v|||
|
∫
Ω J

1
2w1(J

1
2G)−1W ·GT∇v|
|||v|||

≤ |(J
1
2G)−1Ww1|∗ · |||v|||
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Lemma 1.8. (Inf-Sup)

inf
v∈H1

D(Ω)−{0}
sup

w∈H1
D(Ω)−{0}

Ãh(v,w)

(|||v|||+|(J
1
2G)−1Ww1|∗)·|||w|||

≥ C > 0

Proof. Let v ∈ H1
D(Ω)− {0} and θ ∈]0; 1[. Then by definition of the *-norm

∃wθ ∈ H1
0 (Ω) s.t. |||wθ||| = 1 and

Oh(v, wθ) = −
∫
Ω J(J

1
2G)−1Wv ·GT∇wθ ≥ θ|(J

1
2G)−1Wv|∗

Ãh(v, wθ) ≥ −C1|||v||| · |||wθ|||+ θ|(J
1
2G)−1Wv|∗ = θ|(J

1
2G)−1Wv|∗ − C1|||v|||

for a constant C1 > 0. Let us then define

vθ = v + |||v|||
1+C1

wθ

s.t. |||vθ||| ≤ |||v|||(1 + 1
1+C1

) and vθ ∈ H1
D(Ω).

Thus

Ãh(v, vθ) = A(v, vθ) = A(v, v) + |||v|||A(v, wθ)

1 + C1

≥ |||v||| · [|||v|||+ θ|(J
1
2G)−1Wv|∗ − C1|||v|||

1 + C1
]

Finally

sup
w∈H1

D(Ω)−{0}

Ãh(v,w)
|||w||| ≥ Ãh(v,vθ)

|||vθ||| ≥ θ|(J
1
2G)−1Wv|∗+|||v|||

2C1

Remark 1.9. C1 = O(c∗) with c∗ defined in assumption (B3).

1 - 4 A residual-based error estimator

In this section we want to build reliable error criteria for the steady-state weak
formulation (4.2). We first present the error criteria:

Let Jω
min = min

ω
(J) and ρS = min(hS(

γ
ωS∞
ε )

1
2 , (βJωS

min)
− 1

2 ), S = E or K.
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Let



η2JK := 1
2

∑
E∈E int∩K

[(β +
δωE
ε )hEJ

ωE
1 + aωE

1
α
hE

]γωE∞
∫
EJGTuhK2

+
∑

E∈Eext
D ∩K

[(β +
δωE
ε )hEJ

ωE
1 + aωE

1
α
hE

]γωE∞
∫
EJGTuhK2

η2EK
:= 1

2

∑
E∈E int∩K

√
γ
ωE∞
ε ρE

∫
EJa∇uhK2

+
∑

E∈Eext
N ∩K

√
γ
ωE∞
ε ρE

∫
E(uN − a∇uh · n)2

η2RK
:= ρ2K ||f +∇ · {a∇uh} −W · ∇uh||2L2(K)

.

η2K := η2JK + η2EK
+ η2RK

(4.18)

We show that these local error criteria give a reliable estimation
∑
K

ηK .

Theorem 1.10. Let u ∈ H1
D(Ωr) and ûh ∈ Vh be solutions of (4.2), respectively

(4.3) and ηK be defined in (4.18) then

|||û− ûh|||+ |û− ûh|A ≲ (
∑
K

ηK)
1
2

1 - 5 Proof of Theorem 1.10

The topic of this section is to prove the reliability of the error estimate. Based on
the continuity and inf-sup conditions given in the previous part, we will derive
a posteriori weighted-error estimators for the piecewise polynomial solution of
(4.3). The first lemmas of this section give an upper bound for each contribution
of the operator Ãh, the last argument uses the inf-sup condition and an upper
bound for the operator K̃h.

The outline of the proof for the stationary case is as follow: separate our solu-
tion into a continuous and a discontinuous part (Lemma 1.12), give a bound to
the discontinuous part (Lemma 1.14), derive a bound for the bilinear forms as
an estimate multiplied by the energy-norm of the continuous function (Lemma
1.11, Lemma 1.16) and conclude with Lemma 1.8.

First we give the upper bound on the operator K̃h for test functions in V c
h .
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Lemma 1.11.

∀v ∈ Vh ∀w ∈ V c
h

|K̃h(v, w)| ≲ α− 1
2 (
∑
E∈ED

aωE
1 γωE

∞

∫
E

εγ

hE
JvK2)

1
2 · (

∑
K∈Th

ε

aωK
1 γωK∞

||GT∇w||2L2(K))
1
2 .

Proof. K̃h(v̂, ŵ) = −
∑

E∈ED
ε
∫
E{{ΠL2(GT∇w)}} ·GT JvK

And by Cauchy-Schwarz

|K̃h(v, w)| ≤ (
∑
E∈ED

aωE
1 γωE

∞

∫
E

εγ

hE
JvK2)

1
2

(
∑
E∈ED

∫
E

εhE
2αaωE

1 γωE∞
((ΠL2(GT∇w)|K)2 + (ΠL2(GT∇w)|Ke)2))

1
2

≲ α− 1
2 (
∑
E∈ED

aωE
1 γωE

∞

∫
E

εγ

hE
JvK2)

1
2 (
∑
K∈Th

ε

aωK
1 γωK∞

||ΠL2(GT∇w)||2L2(K))
1
2

≲ α− 1
2 (
∑
E∈ED

aωE
1 γωE

∞

∫
E

εγ

hE
JvK2)

1
2 (
∑
K∈Th

ε

aωK
1 γωK∞

||GT∇w||2L2(K))
1
2

We will now study an approximation of elements of Vh by elements of V c
h in case

of conforming meshes. A similar theorem for the eulerian problem is stated in
Theorem 2.2 in [22].

Lemma 1.12. Let Th be a conforming mesh. Then there exists an approximation
operator Ah : Vh → V c

h satisfying:

∀vh ∈ Vh


∑

K∈Th
||vh −Ahvh||2HK

≲
∑

E∈ED
hEJ

ωE
1

∫
EJvhK2∑

K∈Th
|vh −Ahvh|2UK

≲
∑

E∈ED
h−1
E γωE

1

∫
EJvhK2

Proof. We build the approximation with lagrangian nodes and use the property
of polynomials to conclude.

For each K ∈ Th, NK := {x(j)K : j = 1, . . . ,m} the set of distinct nodes of K

with nodes on both ends. Let {ϕ(j)
K : j = 1, . . . ,m} be a local basis of functions

satisfying ϕ
(i)
K (x

(j)
K ) = δij .

Let N :=
⋃

K∈Th
NK be the set of nodes and
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ND := {ν ∈ N : ν ∈ E ∈ Eext
D }

NN := {ν ∈ N : ν ∈ E ∈ Eext
N }

Ni := {ν ∈ N −ND : |ων | = 1}

Nv := N − (Ni ∪ND)

Additionally define ων := {K ∈ Th : ν ∈ K} for each ν ∈ N .

We have that for each ν ∈ N , |ων | is bounded by a constant depending only on
θ0.

Finally, let
o
N be the collection of distinct Lagrange nodes ν needed to build an

element of V c
h . In this case (conforming mesh) we have

o
N = N . To each ν ∈

o
N

we associate a basis function ϕ(ν):

suppϕ(ν) ⊂
⋃

K∈ων

K, ϕ(ν)|K = ϕ
(j)
K , x

(j)
K = ν.

Write vh ∈ Vh as vh =
∑

K∈Th

m∑
j=1

α
(j)
K ϕ

(j)
K and define

Ahvh :=
∑
ν∈

o
N

β(ν)ϕ(ν), where β(ν) :=

 0 if ν ∈ ND

1
|ων |

∑
x
(j)
K =ν

α
(j)
K if ν ∈

o
N −ND

We define now β
(j)
K := β(ν) if x(j)K = ν.

We have ||ϕ(j)
K ||2L∞(K) ≲ 1 and ||∇ϕ

(j)
K ||2L∞(K) ≲ h−2

K .
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Thus:∑
K∈Th

|vh −Ahvh|2UK
≤
∑
K∈Th

γK1 h2K |∇(vh −Ahvh)|2L∞(K)

≲
∑
K∈Th

γK1

m∑
j=1

|α(j)
K − β

(j)
K |2

≲
∑
ν∈N

γων
1

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2

≲
∑
ν∈Nv

γων
1

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2 +

∑
ν∈ND

γων
1

∑
x
(j)
K =ν

|α(j)
K |2

∑
K∈Th

||vh −Ahvh||2HK
≤
∑
K∈Th

JK
1 h2K |vh −Ahvh|2L∞(K)

≲
∑
K∈Th

JK
1 h2K

m∑
j=1

|α(j)
K − β

(j)
K |2

≲
∑
ν∈N

Jων
1 h2ν

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2 (hν = max

ων

(hK))

≲
∑
ν∈Nv

Jων
1 h2ν

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2 +

∑
ν∈ND

Jων
1 h2ν

∑
x
(j)
K =ν

|α(j)
K |2

where we used α
(j)
K = β(ν) for ν ∈ Ni in the fourth and last lines.

Now let κi(·) defined for the nodes ν, the edges E as well as any subset or
collection of subsets of Ωr depending also on some integer i and such that it is
increasing in terms of element and inclusion (i.e. if a ∈ b then κi(a) ≤ κi(b) and
if a ⊂ b, then κi(a) ≤ κi(b)).

Ai :=
∑

ν∈Nv

κi(ν)
∑

x
(j)
K =ν

|α(j)
K − β(ν)|2.

Let ων = {K1, . . . ,K|ων |} with µd−1(Kl ∩ Kl+1) > 0 then there is a constant
depending only on |ων | and so θ0 such that

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2 ≤ c

|ων |−1∑
l=1

|α(jl)
Kl

− α
(jl+1)
Kl+1

|2.

Then Ai ≲
∑

ν∈Nv

κi(ν)
|ων |−1∑
l=1

|α(jl)
Kl

− α
(jl+1)
Kl+1

|2

Let Bi :=
∑

ν∈ND

κi(ν)
∑

x
(j)
K =ν

|α(j)
K |2.

If we work in ν ∈ ND, in the case |ων | > 1, with the same kind of argument we
have
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∑
x
(j)
K =ν

|α(j)
K |2 ≲

|ων |−1∑
l=1

|α(jl)
Kl

− α
(jl+1)
Kl+1

|2 + |α(j|ων |)

K|ων |
|2

where we can ensure K|ων | such that µd−1(K|ων | ∩ ΓD) ̸= 0.

Writing ωD
ν := {K ∈ ων : µd−1(K ∩ ΓD) ̸= 0}, it means that for each ν ∈ ND,

for each K ∈ ωD
ν , the value α

(j)
K for x

(j)
K = ν is the jump over an edge of ΓD.

Thus Bi ≲
∑

ν∈ND

κi(ν)(

|ων |−1∑
l=1

|α(jl)
Kl

− α
(jl+1)
Kl+1

|2︸ ︷︷ ︸
=0 if |ων |=1

+
∑

{(j,K) : K∈ωD
ν ,x

(j)
K =ν}

|α(j)
K |2)

Finally

∑
K∈Th

|vh −Ahvh|2UK
≲
∑

E∈E int

∑
ν∈E

γων
1 |α(j+)

K+ − α
(j−)
K− |2

+
∑

ν∈ND

∑
{(j,K) : K∈ωD

ν ,x
(j)
K =ν}

γων
1 |α(j)

K |2

And

∑
K∈Th

||vh −Ahvh||2HK
≲
∑

E∈E int

∑
ν∈E

h2νJ
ων
1 |α(j+)

K+ − α
(j−)
K− |2

+
∑

ν∈ND

h2νJ
ων
1

∑
{(j,K) : K∈ωD

ν ,x
(j)
K =ν}

|α(j)
K |2

As for any E ∈ E int: ∑
ν∈E

κi(ν)|α(j+ν )
K+ − α

(j−ν )
K− |2 ≲ κi(E)|JvhK|2L∞(E)

≲
κi(E)

hE

∫
E
JvhK2∑

ν∈ND

κi(ν)
∑

{(j,K) : K∈ωD
ν ,x

(j)
K =ν}

|α(j)
K |2 =

∑
E∈Eext

D

∑
ν∈E

κi(ν)|α(jν)
KE

|2

≲
∑

E∈Eext
D

κi(E)

∫
E
JvhK2

Then



64 CHAPTER 4. THE IPG IN TWO SPATIAL DIMENSIONS


∑

K∈Th
|vh −Ahvh|2UK

≲
∑

E∈ED
h−1
E γωE

1

∫
EJvhK2∑

K∈Th
||vh −Ahvh||2HK

≲
∑

E∈ED
hEJ

ωE
1

∫
EJvhK2

Remark 1.13. Note that this operator, that we will use again for the study of the
unsteady problem, Ah is a linear operator only depending on the mesh and not on
the features, it is therefore independent of time when the features are dependent
of the mesh deformation.

Let’s now project uh via Ah:

uh = uch + urh with uch = Ahuh (4.19)

Here, uch is a continuous projection of uh and urh catches the jumps. With this
we will find a bound for

κ := |||u− uh|||+ |u− uh|A (4.20)

By definition and triangular inequality

κ ≤ |||ûs − ûch|||+ |ûs − ûch|A + |||ûrh|||+ |ûrh|A.

We then bound κ with these error estimators. We first bound the jump term by
applying Lemma 1.12 to urh.

Lemma 1.14. |||urh|||+ |urh|A ≲ (
∑

K∈Th
[ 1α + 1]η2JK )

1
2 .

Proof. Knowing that JurhK = JuhK on ED:

|||urh|||2 + |urh|2A ≤
∑
K∈Th

[ε|urh|2UK
+ β||urh||2HK

] + |(J
1
2G)−1Wurh|2∗

+
∑
E∈ED

[(β +
δ2ωE

ε
)hEJ

ωE
1 γωE

∞ +
εα

hE
]

∫
E
JGTuhK2

By Lemma 1.12
∑

K∈Th
ε|urh|2UK

≲ α−1
∑

E∈ED
aωE
1

α
hE

∫
EJurhK

2

∑
K∈Th

β||urh||2HK
≲

∑
E∈ED

βhEJ
ωE
1

∫
EJurhK

2
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|(J
1
2G)−1Wurh|2∗ ≤ sup

v∈H1
0 (Ωr) : |||v̂|||=1

(||(J
1
2G)−1Wurh||2H · |v|2U ) ≤

1

ε
||(J

1
2G)−1Wurh||2H

≤ 1

ε

∑
K∈Th

δK ||urh||2HK
≲
∑
E∈ED

hEδωE

ε

∫
E
JurhK

2

≲
∑
K∈Th

η2JK

Finally, we want to use the inf-sup condition to bound the continuous part of κ,
namely |||ûs − ûch|||+ |ûs − ûch|A. To do so we present a lemma of approximation
of function of H1

D(Ωr) by continuous, piecewise polynomials. This is done for
static meshes in [19] with Clement-type interpolant.

We denote Nh the vertices of the mesh and NN the ones not lying on the Dirichlet
boundary and define a nodal basis function λy for y ∈ NN

λy|K ∈ P1(K) ∀K ∈ Th, λy(z) = 0 ∀z ∈ Nh − {y}.

And

Ih : L1(Ω) → {φ ∈ C(Ω): φ|K ∈ S1(K), φ = 0 on ΓD}

v 7→
∑

y∈NN

∫
ωy

v

|ωy|
λy.

with |ωy| the Lebesgue measure of the set ωy in Ω.

Lemma 1.15. For all v ∈ H1
D(Ωr), there is ε|Ihv|2UK

≲ aωK
1 γωK∞ |v|2UK

and


∑

K∈Th
ρ−2
K ||v − Ihv||2L2(K) ≲ |||v|||2∑

E∈E

√
ε

γ
ωE∞

ρ−1
E

∫
E(v − Ihv)2 ≲ |||v|||2

Proof. Since Ihv is piecewise affine, we can write ∇Ihv = nK
v . [19], Lemma 5.1

says that |K| · ||nK
v ||2 ≲ ||∇v||2L2(ωK). We have the following inequality

ε|Ihv|2UK
=
∫
K anK

v · nK
v ≤ aK1 |K| · ||nK

v ||2 ≲ aK1 ||∇v||2L2(ωK) ≲ aωK
1 γωK∞ |v|2UK
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Lemma 3.1 in [17] gives βJωK
min

∫
K(v − Ihv)2 ≲ βJωK

min ||v||2L2(ωK) ≲ β||v||2HωK
ε

h2
Kγ

ωK∞

∫
K(v − Ihv)2 ≲ ε

γ
ωK∞

||∇v||2L2(ωK) ≲ ε|v|2UωK

Which gives the second inequality. The last inequality comes from the technique
in Lemma 3.2 in [17].

Using the inf-sup condition and the previous lemmas, we can now bound the
continuous part of κ, namely |||u− uch|||+ |u− uch|A.

Lemma 1.16. |||u − uch||| + |u − uch|A ≲ (
∑

K∈Th
(1 + 1

α)η
2
K)

1
2 with uch defined in

(4.19).

Proof. We will first bound
T (v) := l(v − Ihv)− Ãh(uh, v − Ihv) for v ∈ H1

D(Ωr).
T = T1 + T2 + T3 with

T1(v) :=
∑

K∈Th

∫
K(f +∇ · {a∇uh} −W · ∇uh)(v − Ihv)

T2(v) := −ε
∑

K∈Th

∫
∂K(GT∇uh ·GTnK)(v − Ihv)

T3(v) := −
∑

K∈Th

∫
∂Kt

in−Γr
W · JuhK(v − Ihv)

Since

|T1| ≤ (
∑
K∈Th

η2RK
)
1
2 (
∑
K∈Th

ρ−2
K ||v − Ihv||2L2(K))

1
2

≲ (
∑
K∈Th

η2RK
)
1
2 |||v|||

|T2| = |ε
∑
K∈Th

∫
∂K

(GT∇uh ·GTnK)(v − Ihv)|

≲ (
∑
K∈Th

η2EK
)
1
2 |||v|||

|T3| = |
∑
K∈Th

∫
∂Kt

in−Γr

W · JuhK(v − Ihv)|

≲ (
∑
K∈Th

η2JK )
1
2 |||v|||

Therefore for all v ∈ H1
D(Ωr)
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Ãh(u− uch, v) = l(v)− Ãh(u
c
h, v)

= l(v)− Ãh(uh, v) + Ãh(u
r
h, v)

And l(Ihv) = Ah(uh, Ihv) = Ãh(uh, Ihv) + K̃h(uh, Ihv)
Then Ãh(u− uch, v) = T (v) + Ãh(u

r
h, v) + K̃h(uh, Ihv)

|Ãh(u− uch, v)| ≲ {(
∑
K∈Th

η2RK
)
1
2 + (

∑
K∈Th

η2EK
)
1
2 + (

∑
K∈Th

η2JK )
1
2

+ (
∑
K∈Th

[
1

α
+ 1]η2JK )

1
2 + (

∑
K∈Th

1

α
η2JK )

1
2 }|||v|||

And by noticing that |u− uch|A = |(J
1
2G)−1W (u− uch)|∗:

|||u− uch|||+ |u− uch|A ≲ sup
v∈H1

D(Ωr)−{0}

Ãh(u−uc
h,v)

|||v|||

Lemma 1.17. κ2 ≲
∑

K∈Th
(1 + 1

α)η
2
K with κ defined in (4.20).

Proof. This result comes directly from Lemma 1.14 and Lemma 1.16.

2 The semi-discrete interior penalty discretisation for-
mulation for the unsteady advection-diffusion equa-
tion

We now use the discretisation from section 4 - 2 in order to semi-discretise 2.3.
This semi-discretisation is the basis for the a priori study from section 4 - 3 and
finally the result from Theorem 1.10 is used to develop an a posteriori error
criterion in section 4 - 4.

We notice that formulation (2.3) can be written as (4.1): a(t,X) = εJF−1F−T

and W (t,X) = JF−1(V − Ṽ ) and we can thus use the analysis done for the
steady-state problem with J = J(t,X) and G = J

1
2F−1, notice that det(G) = 1

in 2D.
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2 - 1 Notation and weak form

Let ωr ⊂ Ωr (we recall that Ωr = Ω), we define the following:

||v̂||2Hωr (t)
:=
∫
ωr

v̂2J(t, ·), |v̂|2Uωr (t)
:=
∫
ωr
(∇X v̂)TF (t, ·)−1F (t, ·)−T (∇X v̂)J(t, ·)

If ωr = Ωr, the index Ωr is omitted.
Denoting v(t, χ(t,X)) := v̂(X), ω(t) := χ(t, ωr),

||v||0;ω = ||v̂||Hωr (t)
and |v|H1(ω) = |v̂|Uωr (t)

.

Remark 2.1. This property shows that the approximation constructed are given
with respect to the reference variable X. By denoting e the approximation error,
the bounds on ∥ê∥H(t) and |ê|U(t) represent L2- and H1-bounds on e.

We define the spaces Lp(0, T ;X) (withs X a Banach space) that consist of
mesurable functions v : [0, T ] → X for which:

||v||pLp(0,T ;X)
:= (

∫ T
0 ||v(t)||pXdt) < +∞ for 1 ≤ p < +∞

||v||L∞(0,T ;X) := ess sup
0≤t≤T

||v(t)||X < +∞ for p = +∞

Set

H1
D(Ωr) := {v̂ ∈ H1(Ωr) : v̂ = 0 on ΓD} and
H1

0 (Ωr) := {v̂ ∈ H1(Ωr) : v̂ = 0 on Γ}

For û, v̂ ∈ H1(Ωr) we define the following:

A(û, v̂) :=

∫
Ωr

J [ε(F−T∇X û) · (F−T∇X v̂) + (V − Ṽ ) · (F−T∇X û)v̂]

l(v̂) :=

∫
Ωr

Jf̂ v̂ +

∫
ΓN

ûN v̂|F−Tnr|

This gives us the weak form. The weak formulation of (2) is:
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Find û ∈ L2(0, T ;H1
D(Ωr)) ∩ C1(0, T ;H−1(Ωr))

s.t. ∀t ∈ [0, T ], ∀v̂ ∈ H1
D(Ωr)

∫
Ωr

J
∂û

∂t
v̂ = l(v̂)−A(û, v̂) (4.21)

By integration by part

A(û, v̂) :=

∫
Ωr

J [ε(F−T∇X û)·(F−T∇X v̂)−û(V−Ṽ )·(F−T∇X v̂)−∇·(V−Ṽ )ûv̂]

+

∫
ΓN

J(V − Ṽ ) · (F−Tnr)ûv̂

2 - 2 Bilinear forms and function spaces for the semi-discretisation

To discretise (4.21), we consider regular and shape-regular meshes Th = {K}
that partition the computational domain Ωr into open triangles and has the
same properties as for the steady-state problem. We consider this mesh to be
static and steady. We define the same way as in section 4 - 1.2 the sets of edges
E int, Eext, Eext

N , Eext
D , E , EN and ED, the outward normal vectors nK , the inflow

and outflow boundaries Γt
in and Γt

out of the domain and ∂Kt
in and ∂Kt

out of each
triangle, the broken Sobolev spaces Hk(Th), the polynomial spaces Vh and V c

h ,
the functional space Uh, the average and jump {{v̂}} and Jv̂K of a scalar and {{q}}
and JqK of a vector. Additionally we define Ah(·, ·) as

Ah(û, v̂) :=
∑
K∈Th

∫
K
J [ε(F−T∇X û) · (F−T∇X v̂) + (V − Ṽ ) · (F−T∇X û)v̂]

−
∑
E∈ED

∫
E
J

1
2 ε({{ΠL2(J

1
2F−T∇X û)}}·F−T Jv̂K+θ{{ΠL2(J

1
2F−T∇X v̂)}}·F−T JûK)

+
αε

hE

∫
E
JF−T JûK · F−T Jv̂K −

∑
K∈Th

∫
∂Kt

in

J(V − Ṽ ) · (F−T JûK)v̂

With α > 0 the interior penalty parameter. And let θ ∈ {−1, 1}.

We consider the DG method that is based on an upwind discretisation for the
convective term and a (non-)symmetric interior penalty discretisation for the
Laplacian, i.e.
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Find ûh ∈ C1(0, T ;Vh) s.t. ∀t ∈ [0, T ], ∀v̂h ∈ Vh∫
Ωr

J
∂ûh
∂t

v̂h = l(v̂h)−Ah(ûh, v̂h)

where ûh(0, ·) ∈ Vh is a projection of û0(·) onto Vh. (4.22)

The operator Ah : Vh → V c
h defined in Lemma 1.12, β, δω and the time depen-

dent norms and seminorms ||| · |||, | · |∗ and | · |A similarly to (4.10), (4.11) and
(4.12) respectively.
Let ûs : [0, T ] → H1

D(Ωr) and ûsh : [0, T ] → Vh for each t such that

{
∀v̂ ∈ H1

D(Ωr) l(v̂)−
∫
Ωr

J ∂ûh
∂t v̂ −A(t; ûs(t), v̂) = 0

∀v̂h ∈ Vh l(v̂h)−
∫
Ωr

J ∂ûh
∂t v̂h −Ah(t; û

s
h(t), v̂h) = 0

(4.23)

Notice that ûs(t) (resp. ûsh(t)) is the solution of (4.21) (resp. (4.22)) with right-
hand side J(f̂ − ∂ûh

∂t ).

Remark 2.2. From Remark 1.13 we conclude that the operator Ah is preserv-
ing the smoothness in time, thereby defining ûrh and ûch as space-time functions:
ûrh ∈ C1(0, T ;Vh) and ûch ∈ C1(0, T ;V c

h ).

Denoting γ = αJ |F−Tn|2 on any edge E, we also define:

Jh(t; û, v̂) =
∑

E∈ED

∫
E

γ
hE

JûK · Jv̂K.

3 An a priori error estimate for the semi-discrete for-
mulation

Before considering a full a posteriori error criterion for the unsteady problem,
we present here an a priori approach. In Remark 3.3 (b) we describe the
convergence of the method depending on the regularity of the flow map and the
solution, linking this study to [43]. Unlike [43], where Theorem 46 gives a
convergence rate when J

1
2F−T∇X û ∈ H l(Ωr), we quantify here the dependence

of an a priori error estimate on the derivatives of the mesh velocity and thus the
estimate depending on the derivatives of J and F is insufficient. Therefore, we
first develop the a priori approach from Theorem 3.1 to highlight a balance
between ||V − Ṽ ||2/ε and ||∇ · Ṽ ||, and then give the approximation Properties
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3.2 to explicitly expose the dependence in the different derivatives of the mesh
velocity. This section is concluded with Remark 3.3 for a situation where the
deformation map is not smooth.

As stated in Chapter 3, even if this study is only done for the 2D case, since the
theorems that we use as well as the data that we can access are the same in the
two cases, this a priori study also holds for 1D.

This a priori error estimation can help us to choose a mesh velocity. In the test
cases from sections 3 - 3.1 and 4 - 5.1 we prolong this theoretical statement by
highlighting a balance between ||V − Ṽ ||2/ε and ||∇ · Ṽ ||,

In this section we suppose higher regularity the strong solution of (2.3),
namely û ∈ H2(Ωr). For the analysis we need to define the following projec-
tions:

ΠL2 : (H0(Th))2 → V 2
h the L2-projection.

Ph(t) : H
0(Th) → Vh the weighted projections s.t.

∀v̂ ∈ H0(Th),
∫
K J(t, ·)(v̂ − Phv̂)v̂h = 0 ∀v̂h ∈ Vh.

In the following lemma we call

ê = (û− Phû) + (Phû− ûh) = êp + êh (4.24)

Êp = J
1
2F−T∇X û−ΠL2(J

1
2F−T∇X û) (4.25)

N̂ : [0, T ]×H1(Th) → R, the seminorm s.t. N̂(t, v̂)2 = |v̂|2U(t) + 2Jh(t; v̂, v̂)

(4.26)

B̂ : H1/2(Th) → R, the seminorm s.t. B̂(v̂)2 =

∑
ED

hE
∫
E{{v̂}}

2

CT
(4.27)

Notice that Êp ∈ H1(Th) and define N(t, ·) and B(t, ·) as the corresponding time
dependant seminorm s.t. N(t, v) = N̂(t, v̂) and B(t, v) = B̂(v̂) and ep and Ep

are the corresponding functions in the eulerian variable.

Recalling that J̇ = J(∇ · Ṽ ), Ḟ = (∇Ṽ )F (implying ˙F−1 = −F−1(∇Ṽ )) yields
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∀v̂ ∈ H1(Th)

d

dt
||v̂||2HK(t) =

∫
K
v̂2J(∇ · Ṽ )

d

dt

∫
E
Jv̂2 =

∫
E
v̂2J(∇ · Ṽ )

d

dt
||v̂||2UK(t) =

∫
K
J(F−T∇X v̂)T (∇ · Ṽ −∇Ṽ − (∇Ṽ )T )F−T∇X v̂

d

dt

∫
E
γJv̂K2 =

∫
E
αJ(F−Tn)T (∇ · Ṽ −∇Ṽ − (∇Ṽ )T )F−TnJv̂K2

for C0(t) :=
1
2 ||∇ · Ṽ ||L1(0,t;L∞(Ω)) and C1(t) := C0(t) + ||∇Ṽ+(∇Ṽ )T

2 ||L1(0,t;L∞(Ω)).
Using Gronwall’s inequality we have:

||v̂||H(0)e
−C0(t) ≤ ||v̂||H(t) ≤ ||v̂||H(0)e

C0(t) (4.28)∫
E
v̂2e−2C0(t) ≤

∫
E
Jv̂2 ≤

∫
E
v̂2e2C0(t) (4.29)

||v̂||U(0)e
−C1(t) ≤ ||v̂||U(t) ≤ ||v̂||U(0)e

C1(t) (4.30)

Jh(0; v̂, v̂)e
−2C1(t) ≤ Jh(t; v̂, v̂) ≤ Jh(0; v̂, v̂)e

2C1(t) (4.31)

We can now state the a priori error estimate.

Theorem 3.1. Let T > 0 and ûh be the solution of (4.22), êp and Êp be re-
spectively defined in (4.24) and (4.25) and N(t, ·) and B(t, ·) be the seminorms
respectively defined in (4.26) and (4.27).

For SIPG

||e||2L∞(0,T ;L2(Ω)) +
ε

4
||e||2L2(0,T ;N(t,·)) ≤ CS(||e(0)||2L2(Ω) + 2||ep||2L∞(0,T ;L2(Ω))

+ 30ε||ep||2L2(0,T ;N(t,·)) +
97

8
ε||Ep||2L2(0,T ;B(t,·))) (4.32)

with CS = exp[8+12e4C
Ω
0 (T )

ε ||V − Ṽ ||2L2(0,T ;L∞(Ω)) +
1
2 ||∇ · Ṽ ||L1(0,T ;L∞(Ω))] holds.
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For NIPG

||e||2L∞(0,T ;L2(Ω)) +
ε

2
||e||2L2(0,T ;N(·)) ≤ CN (||e(0)||2L2(Ω) + 2||ep||2L∞(0,T ;L2(Ω))

+ 4ε||ep||2L2(0,T ;N(t,·)) +
17

8
ε||Ep||2L2(0,T ;B(t,·))) (4.33)

with CN = exp[1+2e4C
Ω
0 (T )

ε ||V − Ṽ ||2L2(0,T ;L∞(Ω)) +
1
2 ||∇ · Ṽ ||L1(0,T ;L∞(Ω))] holds.

Proof. In the beginning of the proof we work with the generic form of interior
penalty methods, namely θ ∈ {−1, 1}.
We have the following inequalities

∫
Ωr

J
∂ê

∂t
ê =

1

2

d

dt
||e||2L2(Ω) −

∫
Ωr

∇ · Ṽ
2

Jê2c

≥ 1

2

d

dt
||e||2L2(Ω) −

||∇ · Ṽ ||∞
2

||e||2L2(Ω)∫
Ωr

J
∂êp
∂t

êp =
1

2

d

dt
||ep||2L2(Ω) −

∫
Ωr

∇ · Ṽ
2

Jê2c

≤ 1

2

d

dt
||ep||2L2(Ω) +

||∇ · Ṽ ||∞
2

||ep||2L2(Ω)

and the identity∫
Ωr

J
∂ê

∂t
ê+Ah(ê, ê) =

∫
Ωr

J
∂ê

∂t
êp +

∫
Ωr

J
∂ê

∂t
êh +Ah(ê, êp) +Ah(ê, êh)

=

∫
Ωr

J
∂êp
∂t

êp +

∫
Ωr

J
∂êh
∂t

êp︸ ︷︷ ︸
0

+Ah(ê, êp)

+

∫
Ωr

J
∂ê

∂t
êh +Ah(ê, êh)︸ ︷︷ ︸

ε
∑
ED

∫
E{{Êp}}·J

1
2 F−T JêhK

Notice that JêK = JûhK.

We will also use the following bounds

∀v̂ ∈ H1(Th)
∑
E∈ED

hE

∫
E
{{ΠL2(J

1
2F−T∇X v̂)}}2 ≤ CT ||v̂||2U(t) (4.34)
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∀v̂ ∈ Vh

∑
E∈ED

hE

∫
E
Jv̂2 ≤ CT e

4CΩ
0 ||v̂||2H(t) (4.35)

∀v̂, ŵ ∈ H1(Th) ∀c > 0 Jh(v̂, ŵ) ≤
c

2
Jh(t; v̂, v̂) +

1

2c
Jh(t; ŵ, ŵ) (4.36)

with CT defined by (4.8). (4.34) is already proven in the proof of Lemma 1.3,
(4.36) is a consequence of the trace inequality (4.8) and (4.28) and (4.36) by
Cauchy-Schwarz and Young’s inequality. Estimating

I =
1

2
(
d

dt
||e||2L2(Ω) −

d

dt
||ep||2L2(Ω)) + ε|ê|2U(t) + εJh(t; ê, ê)

≤
∑
K∈Th

−
∫
K
Jê(V −Ṽ )·F−T∇X ê−JF−T∇X ê·F−T∇X êp+Jêp(V −Ṽ )·F−T∇X ê

+

∫
∂Kt

in

J(V − Ṽ ) · F−T JêKêh + εJh(t; ê, êp)

+ K̃h(ê, êh) +
∑
ED

∫
E
{{Êp}} · J

1
2F−T JêhK +

||∇ · Ṽ ||∞
2

(||e||2L2(Ω) + ||ep||2L2(Ω))

Using êh = ê− êp

I ≤ α1

2
ε|ê|2U(t)+

||V − Ṽ ||2∞
ε

1

2α1
||e||2L2(Ω)+

α2

2
ε|ê|2U(t)+

1

2α2
ε|êp|2U(t)+

α3

2
ε|ê|2U(t)

+
||V − Ṽ ||2∞

ε

1

2α3
||ep||2L2(Ω) +

α4

2
εJh(t; ê, ê) +

1

2α4

||V − Ṽ ||2∞
εα

∑
E∈ED

hE

∫
E
Je2h

+
α5

2
εJh(t; ê, ê) +

1

2α5
εJh(t; êp, êp) +

α6

2
(1 + θ)

εCT

α
|ê|2U(t) +

(1 + θ)

2α6
εJh(t; ê, ê)

+
α7

2
(1 + θ)

εCT

α
|ê|2U(t) +

(1 + θ)

2α7
εJh(t; êp, êp) +

α8

2
εJh(t; ê, ê) +

1

2α8

εCT

α
|êp|2U(t)

+
ε

2α9

CT

α
B̂(Êp)

2 +
α9

2
εJh(t; ê, ê) +

ε

2α10

CT

α
B̂(Êp)

2 +
α10

2
αεJh(t; êp, êp)

+
||∇ · Ṽ ||∞

2
(||e||2L2(Ω) + ||ep||2L2(Ω))

And bounded via α > 2CT
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I ≤ [
α1

2
+

α2

2
+

α3

2
+

α6

4
(1 + θ) +

α7

4
(1 + θ)]ε|ê|2U(t) + [

1

2α2
+

1

4α8
]ε|êp|2U(t)

+ [
α4

2
+

α5

2
+

(1 + θ)

2α6
+

α8

2
+

α9

2
]εJh(t; ê, ê)

+ [
1

2α5
+

(1 + θ)

2α7
+

α10

2
]εJh(t; êp, êp) +

e4C
Ω
0

4α4

||V − Ṽ ||2∞
ε

||êh||2H(t)

+
ε

4
[α−1

9 + α−1
10 ]B̂(Êp)

2 +
||V − Ṽ ||2∞

ε

1

2α3
||ep||2L2(Ω) +

||V − Ṽ ||2∞
ε

1

2α1
||e||2L2(Ω)

+
||∇ · Ṽ ||∞

2
(||e||2L2(Ω) + ||ep||2L2(Ω)) (4.37)

This is true for both SIPG and NIPG. In the following we distinguish between
the two methods.
For SIPG: Using and setting α6 = 3

2 , α1 = α2 = α3 = α7 = 1
16 , α4 = α5 =

α8 = α9 =
1
24 , α10 = 4 implies

1

2
(
d

dt
||e||2L2(Ω) −

d

dt
||ep||2L2(Ω)) +

ε

8
(N(t, e)2 − 120N(t, ep)

2)− 97

16
εB̂(Êp)

≤ ([8 + 12e4C
Ω
0 ]

||V − Ṽ ||2∞
ε

+
||∇ · Ṽ ||∞

2
)(||e||2L2(Ω) + ||ep||2L2(Ω))

For NIPG: α6 and α7 do not matter because 1 + θ = 0.
Using and setting α1 = α2 = α3 =

1
2 , α4 = α5 = α8 = α9 =

1
4 , α10 = 4 implies

1

2
(
d

dt
||e||2L2(Ω) −

d

dt
||ep||2L2(Ω)) +

ε

4
(N(t, e)2 − 8N(t, ep)

2)− 17

16
εB̂(Êp)

≤ ([1 + 2e4C
Ω
0 ]

||V − Ṽ ||2∞
ε

+
||∇ · Ṽ ||∞

2
)(||e||2L2(Ω) + ||ep||2L2(Ω))

and we conclude with Grönwall’s inequality in the form
d
dt(a− α) + (b− β) ≤ C(t)(a+ α) for nonnegative quantities implies

a(T ) +
∫ T
0 µ(s, T )b(s)ds ≤ µ(0, T )a(0) + 2µ(0, T ) max

0≤s≤T
α(s) +

∫ T
0 µ(s, T )β(s)ds

with µ(s, t) = exp(
∫ t
s C(y)dy).

In both cases here, since e4C
Ω
0 stays close to 1 for short times, one sees the

multiplier (CS for SIPG and CN for NIPG) driven exponentially by ||V − Ṽ |2/ε
and ||∇ · Ṽ ||. This directs our study towards a balance between these terms. The
following approximation properties yield the necessary tools to interpret the a
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priori error estimate by providing upper bounds on the terms on the right hand
side of (4.33) and (4.32).

Properties 3.2. (Approximation in H2(Ωr)) Let T > 0, p ≥ 1 and ûh be
the solution of (4.22), êp and Êp defined by (4.24) and (4.25) respectively and
N(t, ·) and B(t, ·) be the seminorms defined by (4.26) and (4.27) respectively. Let
h = max

E∈E
hE and suppose that J

1
2F−T ∈ H2(Th)2×2 then:

N(t, ep) ≲ e2C0(t)+C1(t)h|û|H2(Ωr) (4.38)

||ep||L2(Ωr) ≲ eC0(t)h2|û|H2(Ωr) (4.39)

B(t, Ep) ≲ eC1(t)h|û|H2(Ωr) + ||û||L2(Ωr)|J
1
2F−T |H2(Ωr) (4.40)

Proof. Proof of (4.38): See [1] Lemma 2.24 states that

|û− Ph(0)û|U(0) ≲ h|û|H2(Ωr)

and Lemma 2.25 provides

Jh(0; û− Ph(0)û, û− Ph(0)û) ≲ h2|û|2H2(Ωr)

thus along with (4.30) and (4.31)

N̂(t; û− Ph(0)û) ≲ eC1(t)N̂(0; û− Ph(0)û) ≲ eC1(t)h|û|H2(Ωr)

Also by (4.9)

|Ph(0)û− Ph(t)û|U(0) ≤
CI

h
||Ph(t)û− Ph(0)û||H(0)

≤ CI

h
(||Ph(t)û− û||H(0) + ||Ph(0)û− û||H(0))

≤ CIe
C0(t)

h
(||Ph(t)û− û||H(t) + ||Ph(0)û− û||H(t))

≤ 2
CIe

C0(t)

h
||Ph(0)û− û||H(t)

≤ 2
CIe

2C0(t)

h
||Ph(0)û− û||H(0)

and by (4.8)

Jh(0;Ph(0)û− Ph(t)û, Ph(0)û− Ph(t)û) ≤ 2
CT

h2
||Ph(t)û− Ph(0)û||2H(0)
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Therefore

N(t, ep) ≤ N̂(t, û− Ph(0)û) + N̂(t, Ph(t)û− Ph(0)û)

≲ eC1(t)h|û|H2(Ωr) + eC1(t)N̂(0, Ph(t)û− Ph(0)û)

≲ eC1(t)h|û|H2(Ωr) +
e2C0(t)+C1(t)

h
||Ph(t)û− Ph(0)û||H(0)

≲ e2C0(t)+C1(t)h|û|H2(Ωr)

Proof of (4.39):

||êp||H(t) ≤ ||û− Ph(0)û||H(t)

≤ eC0(t)||û− Ph(0)û||H(0)

≲ eC0(t)h2|û|H2(Ωr)

Proof of (4.40): Let Π2
L2 : (H

0(Th))2×2 → V 2×2
h and Π1 : H

0(Th) → {v̂ ∈
H0(Th) | v̂ ∈ S1(K)} the L2-projection on the DG space with polynomial degree
one. Then

Êp = J
1
2F−T∇X(û−Π1û)︸ ︷︷ ︸

A1

+ (J
1
2F−T −Π2

L2(J
1
2F−T ))∇XΠ1û︸ ︷︷ ︸

A2

+Π2
L2(J

1
2F−T )∇XΠ1û−ΠL2(J

1
2F−T∇X û)︸ ︷︷ ︸

A3

By Lemma 2.25 in [1]: B̂(A1) ≤ eC1(t)B̂(∇X(û−Π1û)) ≲ eC1(t)h|û|H2(Ωr).

Additionally ∇XΠ1û is constant over every triangle, for ρK > 0 and ||πK || = 1,
write ∇XΠ1û = ρKπK , implying

||∇XΠ1û||2L2(K) ≈ ρ2Kh2K ≲
||Π1û||2L2(K)

h2K
≲

||û||2L2(K)

h2K

By Lemma 2.25 [1]:
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B̂(A2)
2 =

∑
ED

hE
∫
E{{(J

1
2F−T −Π2

L2(J
1
2F−T ))∇XΠ1û}}2

CT

≲
∑
K

||û||2L2(K)

h3K

∫
∂K

((J
1
2F−T −Π2

L2(J
1
2F−T ))πK)2

≲
∑
K

||û||2L2(K)|J
1
2F−T |2H2(K)

We have on each triangle K∫
K
(Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))2

≤
∫
K
(Π2

L2(J
1
2F−T )ρKπK) · (Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))

−ΠL2(J
1
2F−T∇X û) · (Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))

≤
∫
K
(J

1
2F−TρKπK) · (Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))

− (J
1
2F−T∇X û) · (Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))

≤
∫
K
(J

1
2F−TρKπK − J

1
2F−T∇X û)(Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))

≤ 1

2

∫
K
(J

1
2F−T∇X(Π1û− û))2 +

1

2

∫
K
(Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))2

Thus∫
K
(Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))2 ≤

∫
K
(J

1
2F−T∇X(Π1û− û))2

and

B̂(A3)
2 =

∑
ED

hE
∫
E{{Π

2
L2(J

1
2F−T )∇XΠ1û−ΠL2(J

1
2F−T∇X û)}}2

CT

≲
∑
K

∫
K
(Π2

L2(J
1
2F−T )ρKπK −ΠL2(J

1
2F−T∇X û))2

≲
∑
K

∫
K
(J

1
2F−T∇X(Π1û− û))2 ≲ e2C1(t)|Π1û− û|2U(0)

≲ e2C1(t)h2|û|2H2(Ωr)
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Remark 3.3. In (4.40), we bound the inconsistency when the deformation of
the mesh is sufficiently smooth. In the following example, we outline that when
this regularity is broken, and the flux is not well represented by the projection
anymore, the inconsistency can become arbitrarily big compared to |û|H2 . This
shows that this formulation is specific to the case where J

1
2F−T is continuous.

(a) The situation exhibits the case where Ṽ ∈ W 1,∞(Ω) \C1(Ω) and conclude
that the term B(Ep) cannot be bounded from above by the previous techniques.
In order to show this, let two triangles T1 and T2 on the interior of the domain
Ωr, E the edge between the two triangles, n1 (respectively n2) the outward normal
vectors to T1 (respectively T2). Suppose that the solution û is such that ∇X û = n1,
let A, the summit of T2, such that A /∈ T1, PA the orthogonal projection of A on
E. The line between A and PA divides T2 into two triangles T

(1)
2 and T

(2)
2 and:

Ṽ ∈ W 1,∞(Ω) \ C1(Ω) such that

Ṽ =


(0, 0)T on T1

−(n1 · (x− PA))n1 on T
(1)
2

−(n1 · (x− PA))n1 − (n⊥
1 · (x− PA))n⊥

1 on T
(2)
2

(0, 0)T on ∂Ωr

with n⊥
1 being the normal vector orthogonal to n rotated in the counterclockwise

direction. By this definition Ṽ is continuous, ∀t > 0 χ(t, T2 − T1) ⊂ T2 − T1 and
thus ∀X ∈ T2, ∀t > 0,

Ṽ (t, x(t,X)) =

{
−(n1 · (x− PA))n1 on T

(1)
2

−(n1 · (x− PA))n1 − (n⊥
1 · (x− PA))n⊥

1 on T
(2)
2

.

The value of Ṽ is not specified outside T1∪T2 but we can build Ṽ piecewise linear
such that Ṽ = (0, 0)T on each neighbouring summit of A. Since Ṽ is piecewise
linear in space and Ṽ = (0, 0)T on E, then J and F are piecewise constant on T1,
T
(1)
2 and T

(2)
2 , with J

1
2F−T /∈ H1(T2)

2×2 but J
1
2F−T ∈ (H2(T

(1)
2 )∩H2(T

(2)
2 ))2×2,

given by

J
1
2F−T =


Id on T1

M1 = exp[

(
x21 − 1

2 x1x2

x1x2 x22 − 1
2

)
t] on T

(1)
2

Id on T
(2)
2

with n1 = (x1, x2)
T . Defining O as the matrix with columns (n1,n⊥

1 ), it symmet-
ric, orthogonal and fulfills:(

x21 − 1
2 x1x2

x1x2 x22 − 1
2

)
= O

(
1
2 0

0 −1
2

)
OT , then M1 = O

(
e

t
2 0

0 e−
t
2

)
OT
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Writing P = ΠL2(1
X∈T (1)

2

)|T2 there is

Mp = ΠL2(J
1
2F−T )|T2 = Id + (M1 − Id)P

B̂(Êp)
2 ≥

hE
∫
E{{J

1
2F−T∇X û−ΠL2(J

1
2F−T∇X û)}}2

CT

≥
hE [
∫
E∩T (2)

2

((Id −Mp)n1)
2 +

∫
E∩T (1)

2

((M1 −Mp)n1)
2]

4CT

≥
hE((Id −M1)n1)

2[
∫
E∩T (2)

2

P 2 +
∫
E∩T (1)

2

(1− P )2]

4CT
(4.41)

≥ hE(1− e
t
2 )2C ≥ hECt2

4

C =

∫
E∩T (2)

2

P 2 +
∫
E∩T (1)

2

(1− P )2

4CT
> 0

This term cannot be bounded from above by |J
1
2F−T |

H2(T
(1)
2 )

, |J
1
2F−T |

H2(T
(2)
2 )

or
|û|H2 since they are all 0.

(b) The example shows that since the DG method involves the computation of
fluxes at the edges of the mesh, the matrix F must be regular enough to control the
inconsistency. In this case, we can see that the irregularity of the mesh movement
makes a polynomial projection incapable of approximating the flux. To overcome
the problem, one can imagine a method that tries to take the real flux (see [47] for
a method with a discontinuous and piecewise constant diffusion tensor). Since J

and F are in general not piecewise constant, using such a method would make the
operator non-coercive and the method unstable.

(c) In this case J
1
2F−T∇X û /∈ H2(Ωr) and the convergence theorem from [43]

does not hold either.

(d) Since Ṽ (A) = −(A − PA) ̸= 0, Ṽ is continuous and Ṽ not piecewise
constant, then J

1
2F−T is not piecewise constant on the neighbouring cells of A

and Remark 1.6 (b) does not hold: this formulation is not equivalent to any
consistent formulation for polynomial trial and test functions.

In this section, we develop an a priori error estimate that directs us towards
the existence of a balance between the remaining advection velocity V − Ṽ and
the spatial variations of Ṽ . This balance, that appears in the 1D simulations (see
in particular section 3 - 3.1) will also be investigated in the test cases of this
chapter in sections 4 - 5.1.
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This a priori result, augmented by the convergence study of Chapter 5 in
[43] and the a posteriori study of section 4 - 4 and the following test cases, can
give us a fair understanding of this moving mesh method.

4 An a posteriori error estimate for the semi-discrete
formulation

Finally here we will integrate the error criteria that we developped previously.
To go from the stationary to the nonstationary problem, we write ûs(t, ·) := ûs(t)

and ûsh(t, ·) := ûsh(t). Now for any t ∈ [0, T ] we have ûh(t, ·) the unique solution
of the same problem as ûsh(t) then ûh = ûsh.

With a = εJF−1F−T , we define Jω
1 =

∫
ω J

|ω| , aω1 =
∫
ω ||a||
|ω| and aω∞ = ||a||L∞(ω),

where ||a|| is the larger eigenvalue of a. Also γω∞ = aω∞
ε , γω1 =

aω1
ε , let Jω

min = min
ω

(J)

and ρS = min(hS(
γ
ωS∞
ε )

1
2 , (βJωS

min)
− 1

2 ), S = E or K. These variables correspond
to the one of the static case.

We can see here that the features are here quite different to the ones in the
1D case where a = J−1. The other difference in 1D is the data we can access,
whereas here, the volume of a cell |K| is difficult to approximate geometrically,
and so we prefer to use the indirect computation of

∫
ω J , in 1D,

∫
ω J = hK , that

leads to the Lemma 2.12.

let



ηtJK
2 := 1

2

∑
E∈E int∩K

[(β +
δωE
ε )hEJ

ωE
1 + aωE

1
α
hE

]γωE∞
∫
E J(F−T JûhK)2

+
∑

E∈Eext
D ∩K

[(β +
δωE
ε )hEJ

ωE
1 + aωE

1
α
hE

]γωE∞
∫
E J(F−T JûhK)2

ηtEK

2 := 1
2

∑
E∈E int∩K

√
γ
ωE∞
ε ρE

∫
E(εJF

−1F−T J∇X ûhK)2

+
∑

E∈Eext
N ∩K

√
γ
ωE∞
ε ρE

∫
E(ûN − εJF−1F−T∇X ûh · n)2

ηtRK

2 := ρ2K ||Jf̂ − J ∂ûh
∂t +∇X · {a∇X ûh} − J(V − Ṽ ) · F−T∇X ûh||2L2(K)

.

ηtK
2 := (ηtJK

2 + ηtRK

2 + ηtEK

2) (4.42)

We define ê := û− ûh = ρ̂+ θ̂ with ρ̂ := û− ûs and θ̂ := ûs − ûsh = ûs − ûh.

Then by Theorem 1.10: ∀t ∈ [0, T ], (|||θ̂|||+ |θ̂|A)2 ≲
∑

K∈Th
(1 + 1

γ )η
t
K

2.



82 CHAPTER 4. THE IPG IN TWO SPATIAL DIMENSIONS

Lemma 4.1. For all t ∈ [0, T ]

|||ûrh|||2 + |ûrh|2A ≲
∑
K∈Th

[
1

γ
+ 1]ηtJK

2

||ûrh||2H(t) ≲
∑
E∈ED

hEJ
ωE
1

∫
E
JûhK2

||
∂ûrh
∂t

||2H(t) ≲
∑
E∈ED

hEJ
ωE
1

∫
E
J
∂ûh
∂t

K2

Proof. We already proved for the first two inequalities ; the third one is concluded
from Remark 2.2 that implies: ∀v̂h ∈ C1(0, T ;Vh),

∂
∂t(Ahv̂h) = Ah

∂v̂h
∂t , and

applying the Lemma 1.12 to the function ∂ûh
∂t .

Lemma 4.2. ∀v̂ ∈ H1
D(Ωr),

∫
Ωr

J ∂ê
∂t v̂ +A(t; ρ̂, v̂) = 0

Proof. The Lemma is a direct consequence of the definition of û and ûs.

To state the final global error estimate we need some criteria. Let

ηt1
2 :=

∑
K∈Th

(1 + 1
γ )η

t
K

2

ηt2
2 :=

∑
E∈ED

hEJ
ωE
1

∫
EJ∂ûh

∂t K2

ηt3
2 :=

∑
E∈ED

hEJ
ωE
1

∫
EJûhK2

. (4.43)

For v̂ ∈ L∞(0, T ;H1(Th)) and v(t, x) := v̂(t,X) we define:

||v||2# := ||v||2L∞(0,T ;L2(Ω)) +

∫ T

0
|||v̂|||2tdt (4.44)

This allows us to prove the final estimate.

Theorem 4.3. Let û ∈ C(0, T ;H1
D(Ωr)) ∩ C1(0, T ;H−1(Ωr)) be a solution of

(4.21), ûh ∈ C1(0, T ;Vh) a solution of (4.22), ηt1, ηt2 and ηt3 be defined in (4.43),
|| · ||2# be the norm defined in (4.44), e := (û− ûh)(t, χ(t,X)) then

||e||2# ≲ S0(t){||e(0)||2L2(Ω) +
∫ T
0 ηt1

2 + T
∫ T
0 ηt2

2 + max
t∈[0,T ]

(ηt3
2)}

holds with S0(t) = exp(2C0(t))

Proof. Let θ̂c := ûs−ûch ∈ C1(0, T ;H1
D(Ωr)) and êc := û−ûch ∈ C1(0, T ;H1

D(Ωr)).
Taking Lemma 4.2 with êc we have∫

Ωr
J ∂êc

∂t êc +A(t; êc, êc) =
∫
Ωr

J
∂ûr

h
∂t êc +A(t; θ̂c, êc).
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Additionally the following inequalities

∫
Ωr

J
∂êc
∂t

êc =
1

2

d

dt
||ec||2L2(Ω) −

∫
Ωr

∇ · Ṽ
2

Jê2c ≥
1

2

d

dt
||ec||2L2(Ω) −

||∇ · Ṽ ||∞
2

||ec||2L2(Ω)

A(t; êc, êc) ≥ |||êc|||2t∫
Ωr

J
∂ûrh
∂t

êc ≤
T

2
||
∂ûrh
∂t

||2H(t) +
1

2T
||ec||2L2(Ω)

A(t; θ̂c, êc) ≤ C · (|||θ̂c|||t + |θ̂c|A)|||êc|||t ≤
C2

2
· (|||θ̂c|||t + |θ̂c|A)2 +

|||êc|||2t
2

hold. Therefore

d
dt ||ec||

2
L2(Ω) + (|||êc|||2t − C2 · (|||θ̂c|||t + |θ̂c|A)2 − T · ||∂û

r
h

∂t ||
2
H(t)) ≤

(||∇ · Ṽ ||∞ + 1
T )||ec||

2
L2(Ω)

And by Gronwall’s lemma
||ec||2# ≲ S0(t){||ec(0)||2L2(Ω) +

∫ T
0 (|||θ̂c|||t + |θ̂c|A)2 + T

∫ T
0 ||∂û

r
h

∂t ||H(t)}

Then by definition of ηt3

||e||2# ≲ S0(t){||e(0)||2L2(Ω) +

∫ T

0
ηt1

2 + T

∫ T

0
ηt2

2 + max
t∈[0,T ]

(ηt3
2)} (4.45)

Note that ηt3, appearing in (4.45), is the only estimator independent of the stop-
ping time. The presence of this term, which is also present on static meshes,
explains the fact that the jumps are a good estimator of the error and can be
used for h or p-refinement (see [41], [42]). Since we are also interested in the
effect of the moving mesh method on the error estimate, we can also notice the
presence of the term S(t), which we will see in section 4 - 5.1 will play an im-
portant role in the evolution of the error after a few time steps. The presence of
this term can be linked to the volume of each cell, S(t) being an upper and lower
bound of the volume of each cell (h(0)/S(t) < h(t) < h(0)S(t)). The control
of this quantity ensures no entanglement. Finally, we can note the presence of
the spatial criterion ηt1, which is integrated in time. The ability of this term to
represent the error is studied in section 4 - 5.4.

By carefully considering the generation and propagation of the error, we have
been able to construct error criteria that go beyond classical error theory. Indeed,
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while gradient-based error criteria focus on the spatial variations of the computed
solution (which we capture with ηR and ηE), we are also able to capture how the
error propagates at the edges of the grid with ηJ . This theoretical study for a
relaxed advection velocity was made possible by the moving mesh framework we
mobilised. In particular, we were able to see that the characteristics of the mesh
motion have an effect on the estimates.

These integrated criteria, along with the a priori study from section 4 - 3 are
two key elements to understand the effect of moving meshes on the development
of the error: one can see that large deformations of the mesh (S(t) ≫ 1) can be
sources of error. Similarly, a steep deformation (|J

1
2F−T |H2(Ωr) ≫ 1) makes the

approximation of the fluxes less accurate and therefore leads to a larger error.

5 Test cases

Unlike the 1D case, we are able to study separately the effect of strong vorticity
and strong divergence of the mesh velocity, which gives more diversity to the
test cases. Therefore, the first example studies the effect of the moving mesh
method on the L2-error, trying to discuss the conclusions of Theorem 3.1.
With three test cases, we first outline the exponential dependence of the error on
the contraction of the grid, then the exponential dependence of the error on the
square of the remaining advection velocity, and finally the presence of a balance
between these two effects. The second example is a comparison between the
classical SL method and the moving mesh method for a case where the mesh is
strongly deformed. The third example looks at the ability of this moving mesh
method to cope with boundary layers and the capability of the criteria to detect
them. Finally, the last test case shows the performance of the error criterion
when the mesh is highly deformed.

In the examples, the time discretisation for the PDE (2.3) is a Runge-Kutta
method of order 3. This is chosen because of the optimality of the RKDG method
(see [4]) when the DG method is of polynomial order 2 (chosen here). Since the
RK3 in the RKDG method requires a midpoint evaluation of the DG operator,
the flow map is discretised with a time step of ∆t

2 using a Runge-Kutta method
of order 4, and F is computed once the characteristics are obtained by solving
the ODE Ḟ = ∇Ṽ F . As the focus is on the moving mesh, we used the standard
RK4 method, which leaves room for improvement regarding the computation of
the characteristics.
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When writing h(x) = (x(1− x))2, let the velocities

Ṽd(t, x, y) = (h(y)h′(x), h(x)h′(y))T and Ṽv(t, x, y) = (h(y)h′(x),−h(x)h′(y))T

(4.46)
In the examples, we always work in the spatial domain [0, 1]2. We work with
polynomials of order 2 and choose the penalty parameter α = 40 accordingly, it
remains constant for every test cases and there is no distinction between interior
and exterior edges.

5 - 1 Example 1: A comparison with static meshes

In first test case, we check the dependence of the L2-error on the divergence of
the mesh velocity, a second test case outlines the dependence of the L2-error on
the remaining advection speed, and a third test case concludes on the existence
of a balance between the remaining advection speed and the mesh deformation.
The test cases are ran with ε = 1

70 .
Recall that in the 1D test cases, we underlined the gain of moving mesh meth-
ods over static mesh ones and outlined the effect of the mesh deformation. We
additionally exhibited the existence of a balance between the mesh deformation
and the remaining advection velocity.

A test with divergence

We want to see what happens when the divergence of the mesh velocity increases.
What we expect to see is that the L2-error is largely dependent on this increasing
divergence.
So we look at the problem V (t, x, y) = αṼd(t, x, y) = Ṽ (t, x, y) as defined in
(4.46), which gives the opportunity to check whether, as predicted in Theorem
3.1, ||u−uh||L2 ∝ α. To do this, we take the solution u(t, x, y) = e−t(h(x)−h(y)

h(x)+h(y))
2

with Dirichlet boundary conditions.
In Figure 4.1 the error after one time step (t = 2−13) is exponentially propor-

tional to α for both NIPG and SIPG. This confirms the term ||∇ · Ṽ || from the
constants CS and CN in the Theorem 3.1. In addition, they both have the same
slope, which also confirms the fact that CN and CS have the same dependence
on ||∇ · Ṽ ||.

A test with no divergence

We want to see what happens when the divergence of the mesh velocity is 0

everywhere. What we expect to see is that the L2-error depends mostly on the
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Figure 4.1: Evolution of the L2-error after one time step when the velocity is αṼd, for NIPG (left) and
SIPG (right)

maximal value of the remaining advection speed.

Therefore we look at the problem V (t, x, y) = 10Ṽv(t, x, y) as defined in (4.46),
and the mesh velocity is Ṽ (t, x, y) = αṼv(t, x, y) with α = 0, . . . , 10. The solution
is u(t, x) = e−th(x)h(y) with Dirichlet boundary conditions. Notice that α = 0

is the static mesh case.

Figure 4.2: Evolution of the L2-error after one time step when the velocity is αṼv , for NIPG (left) and
SIPG (right)

In Figure 4.2, the error after a time step decreases with the remaining advec-
tion velocity, for both NIPG and SIPG. According to Theorem 3.1, the plotted
curve should be proportional to (α− 10)2. This is not what we have here, which
means that the conclusion from Theorem 3.1 can be optimised. One sees that
the curves are almost the same, hence the values of CN and CS should be the
same for short times.
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A test case with balance

Following on from the test case in section 3 - 3.2, here we outline the balance
that exists in 2D between the modified advection and the divergence of the mesh
velocity. A first comment to make is that the larger the ||∇·Ṽ ||∞, the shorter the
method will break the CFL condition and thus be unstable. But in addition to
this effect, and similar to what we showed in section 3 - 3.2, there is an optimal
balance between reducing the advection velocity by moving the mesh and having
a smooth mesh velocity.

We work here with b = 0.1, V (t, x, y) = ((1 + b)π − πx, (1 + b)π − πy)T .

Ṽp(t, x, y) = (π(1− x)(1− exp(−px)), π(1− y)(1− exp(−py)))T

Figure 4.3: Modified advection velocity (V − Ṽp) · (1, 0)T for values p = 2i

The test case we use is very similar to that of section 3 - 3.2, we test values of
p = 1.5k with the solution u(t, x, y) = exp (−t− ln (1+b−x

b )/π). It is discretised
with 200 triangles.

One sees that even without an unstable solution there is a balance between the
average value of |V − Ṽp| and the steepness of the mesh motion |∇ · Ṽp|. For
t ≈ 4.6e − 4 this value is about p = 300. In contrast to the 1D case, the plots of
the evolution of the error over time did not show any clear regimes that we could
describe. For a further study of the equilibrium and the statement of a stopping
time, we refer to section 3 - 3.2.

This comparison with static meshes completes the theoretical study from
Theorem 3.1: the L2-error is confirmed to be exponentially dependant of the
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Figure 4.4: L2-error after t ≈ 4.6e − 4

contraction of the mesh ||∇· Ṽ ||. Yet the squared term was not found, it is shown
to be increasingly dependent of the remaining advection speed ||V − Ṽ ||. Finally,
the third test case could outline the need for a balance between ||∇ · Ṽ || and
||V − Ṽ ||.

5 - 2 Example 2: A comparison with classical semi-Lagrangian
methods

In this section we discuss the difference between the classical SL framework and
the moving mesh method. Therefore, starting from the reasoning of section 2 -
7, we compare the moving mesh formulation with a DG formulation with F = Id
and J = 1. Our main focus is to outline the role of the accurate computation of
numerical fluxes.
Recall that we showed in Chapter 3 that when there is a remaining advection
velocity, the moving mesh method is more accurate than the SL method and that
for very short time steps, the inconsistency dominates the gain for the fluxes. The
2D case is also the occasion to study a larger variety of mesh velocities.

We study this comparison with four test cases: we the cases where there is
no remaining advection velocity and the cases where V − Ṽ = 0, and comment
on the cases where the velocity Ṽ is divergence-free and when it isn’t. We take
ε = 1

100 and the diffusion operator is SIPG. For this we have the following cases
for solutions and velocities:

• V − Ṽ = 0 and ∇ · Ṽ = 0: Ṽ = 50Ṽv = V , u(t, x) = e−th(x)h(y)

• V − Ṽ ̸= 0 and ∇ · Ṽ = 0: Ṽ = 50Ṽv = V − (1, 1)T , u(t, x) = e−th(x)h(y)

• V − Ṽ = 0 and ∇ · Ṽ ̸= 0: Ṽ = 50Ṽd = V , u(t, x) = e−t(h(x)−h(y)
h(x)+h(y))

2
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• V − Ṽ ̸= 0 and ∇· Ṽ ̸= 0: Ṽ = 50Ṽd = V −(1, 1)T , u(t, x) = e−t(h(x)−h(y)
h(x)+h(y))

2

The choice of cases where the mesh velocity is divergence-free comes from the
fact that it removes the effect of the choice between the conservative and non-
conservative formulation of the ALE.

Figure 4.5: Value of 2 ln
|||u−uMM

h |||
|||u−uSL

h
||| for the four cases after one time step as the time step ∆t = 1

nt

decreases

In Figure 4.5 are plotted the value of 2 ln
|||u−uMM

h |||
|||u−uSL

h ||| after a time step of

decreasing size: ∆t = 1
nt

. In the first case, (namely, V − Ṽ = 0 and ∇ · Ṽ = 0)
for large time steps (∆t ∈ [ 190 ,

1
55 ]) the SL method is more accurate than the

moving mesh method, then there is a band (∆t ∈ [ 1
220 ,

1
90 ]) where the moving

mesh method is more accurate, and finally the difference tends to zero by positive
values. Since we use α = 40, we have that the condition number of the diffusion
operator is 0.4, so for large time steps the method is not accurate. The fact that
the moving mesh method produces the diffusion tensor with eigenvalues greater
than ε2 makes the condition number larger and the method less accurate for the
largest time steps.
The fact that the difference tends to zero by positive values can be explained as
follows: since the moving mesh method uses projections of the diffusion tensor



90 CHAPTER 4. THE IPG IN TWO SPATIAL DIMENSIONS

to compute the fluxes and is therefore inconsistent, when the time step is very
short, we do not gain as much with the diffusion tensor in computing the fluxes,
but we still lose consistency.

For the case where ∇ · Ṽ = 0 and V − Ṽ ̸= 0, the same effect holds for
longer time steps with the difference that this problem of condition number also
applies to the remaining advection velocity. But, the fact that the gain of the
method is also important for the advection operator, where we can compute
more precise fluxes (F−Tn instead of n), implies that the gain for ∆t ∈ [ 1

220 ,
1
90 ]

is even larger than for the previous case. In addition, since the advection oper-
ator dominates (|V − Ṽ | ≫ ε), the consistent advection operator dominates the
inconsistent diffusion operator and the difference tends to zero by negative values
when ∆t → 0, ∆t < 1

220 . in section 3 - 3.2, we expected the flux modification to
play a more important role for the 2D simulation, than that of the 1D simulation,
this is indeed our conclusion here.

When ∇· Ṽ ̸= 0 we can see that the fact that our method is non-conservative
makes the approximation better for all times and compensates for the loss of
consistency effect (the method tends towards zero by negative values). And
when ∇ · Ṽ ̸= 0 and V − Ṽ ̸= 0, the two effects add up.

From this we can conclude that the use of modified fluxes for advection and
diffusion is a substantial gain to the method. The inconsistency occurring in the
diffusion operator is not a major loss and plays a negligible role that is dominant
only for very short time steps, even when the advection completely vanishes. The
use of the non-conservative formulation is a clear gain here.

5 - 3 Example 3: A test for boundary layers

In this test case we investigate the ability of this method to handle boundary
layers. [20] shows that the residual-based error estimator is suitable for a bound-
ary layer test case for the static mesh version, we investigate if this remains as
the mesh moves. To do this, we consider the same kind of test case with a mod-
ification, the advection velocity will be V (t, x, y) = (1, 1)T + 216Ṽv(t, x, y) on
Ω = [0, 1]2, u0, f and uD are induced from the solution

u(t, x, y) = (1− e−t)[ e
(x−1)/ε)−1
e−1/ε−1

+ x− 1][ e
(y−1)/ε)−1
e−1/ε−1

+ y − 1]

It has a boundary layer of order O(ε) and we will look at the approximation
and the error criterion for short times in the case where the mesh moves at
velocity 216Ṽ1(t, x, y) and in the case where the mesh is static. The problem is
discretised on a regular triangular mesh with 162 cells, the time step is ∆t = 1

1024
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and ε = 1
70 (the mesh Peclet number is approximately 0.13). The results of the

energy-norm and the error criteria are plotted after one and twelve time steps.
The velocity Ṽ1 transports the flow on concentric curves with centre (0.5, 0.5),
which are plotted in Figure 4.6 with maximum angular velocity for the curve in
black passing through point (0.5, 0.5 + 1

2
√
3
).

Figure 4.6: Curves on which the particles are advected by the velocity Ṽv

Figure 4.7: Plot of the error and the criterion after one and after twelve time steps when the mesh
moves

A first thing we can notice in Figure 4.7 is that the moving mesh method is able
to remain very accurate over the whole domain except for the boundary layer
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where there is an error of the order of 10−3|||u||| constant over time. Similarly,
the error criterion has a value of the order of 10−2|||u|||, constant over time. We
conclude that |||u − uh||| ≈ 10−1ηtK . After one time step, this error is very well
predicted by the error criterion, after twelve time steps, the boundary layer is
still caught by the error criterion, but the deformation changes the cell that is
predicted to have the largest error. This can be related to the fact that the
criterion is reliable but not efficient: the criterion predicts an additional error on
the highly deformed cells of the right boundary. Finally, one sees that the error
is not distributed in the sense that even if the mesh moves, the neighbouring cells
do not end up with larger errors.

Figure 4.8: Plot of the error and the criterion after one and after twelve time steps when the mesh is
static

This is very different for the static mesh method from Figure 4.8, where the bulk
of the error is located where the advection velocity is greater: the black curve
from Figure 4.6 crosses the large values of u at point x ≈ (0.78, 0.78), in the
yellow cell. Even though the boundary layer is still present and predicted after
one time step, the fact that most of the error is due to advection in the centre of
the grid would make a refinement procedure mainly active in this region. After
six time steps, the boundary layer is no longer present in the error and in the
criteria.

We can conclude that both the DG method and the error criteria are able to
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capture the boundary layer even when the grid is highly deformed.

5 - 4 Example 4: Performance with strong deformations

In this subsection we will proceed as in section 3 - 3.3 and see how the error
develops with time. Recall that in section 3 - 3.3, we exhibited the reliability of
the criteria but underlined the loss in efficiency.

To do so, we let the model run until longer time with a very steep mesh
velocity in the center of the mesh. We define the test case as follows:

• Ω = [0, 1]2, ΓD = ∂Ω, ΓN = ∅

• H(s) = −3
2 · tanh(βy(s))

y′(s) , HM = max(H(s)), β = 3

• y(s) = s−0.5
(c+s)(1+c−s) , c = 0.4

• Vaux = (2HM , 2HM )T − 0.2(x− 1
2 , y −

1
2)

T

• V (x, y) = Vaux + (H(x)(1− H′(y)
H′(0) ), H(y)(1− H′(x)

H′(0) ))
T

• g = V ·

(
1

1

)
+ ∂tu , ε = 0.01

• u(x) = (e−0.02 − e−t)(1 + x+ y)

Ṽ (t, x) =

(
(H(x)−H(0) cos (πx))(1− H′(y)

H′(0) + π H(0)
H′(0) sin (πy))

(H(y)−H(0) cos (πy))(1− H′(x)
H′(0) + π H(0)

H′(0) sin (πx))

)

This construction is first done so the speed Ṽ has an area with strong con-
tractions in the center. Additionally the term Vaux has two effects: the remaining
advection is never equal to 0 and the energy-norm associated to the problem has a
component proportionnal to the L2-norm. We first plot the remaining advection
speed and the mesh velocity’s divergence.
Notice in Figure 4.9 that the mesh will shrink in the middle and that the remain-
ing advection speed |V − Ṽ | has two maxima (in (0.5, 0) and (0, 0.5)) and two
minima (in (0.5, 1) and (1, 0.5)). To check what happens for longer time and see
strong deformations, we initialized the case differently: we computed the mesh
movement for 200 time steps and project the solution on this mesh. From there
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Figure 4.9: Values of the remaining advection speed (right) and the mesh velocity’s divergence (left)

the simulation runs normally. In Figure 4.10 are plotted the values of the squares
of the criteria and energy-error after 201 time steps, 206 time steps and 221 time
steps. The simulations run on a regular mesh of 338 triangles (= 2 × 132) and
the time step is ∆t = 1

10000 .
One sees in Figure 4.10 that the error criteria is able to detect the zones where
the error is the largest. When focusing on the plots after 201 time steps, the
criteria and the error have the following structure: an area up-right with the
largest errors (due to the fact that max |u(t, ·)| = u(t, 1, 1)) than some areas
around (1, 0.5) and (0.5, 1) where the error is intermediate and finally the central
zone around (0.5, 0.5) where there is little error and some higher values for the
criteria. The error from the central area occurs from the mesh’s deformation.
When the computation runs for longer times, the error in the central area becomes
predominant which is well represented by the criteria.
What is not that well represented by the criteria is that, in the energy-error
after 206 and 221, there is still some large values around (0.5, 1), (1, 0.5) and in
particular (1, 1). These slowly disappear from the picture of the criteria. We can
relate that to the fact that the criteria are not reliable: much similarly to the 1D
case in section 3 - 3.1, the error criteria over-evaluate the error in the center,
which in contrast makes the error in the other areas under-evaluated.
When comparing the scales of the criteria and the total error we approximately
have the following values

time max ηK/|||u− uh|||K
201 9
206 5
221 4

The order of max ηK/|||u− uh|||K does not change and tells us that the error
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Figure 4.10: Values of the squares of the criteria (right) and energy-error (left) after 201 time steps
(first row), 206 time steps (second row) and 221 time steps (third row)

and the criteria evolve similarly.

In this section, through the development of several test cases we were able to
test the method and the criteria.
In particular, we initially focused on the effect of the mesh movement on the
error. In Example 1 we could outline that the L2-error is increasingly dependent
of the divergence of the mesh velocity and remaining advection speed. We could
finally outline the presence of a balance between these two values in a third test
case
Example 2 dealt with a comparison with a SL method. Major focus was put on
the effect of the numerical flux on the H1-error of a moving mesh and SL method.
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By comparing what happens when there is some remaining advection velocity or
not and when the moving mesh velocity is divergence-free or not, we showed that
the DG methods implemented here required a specific focus on the value of the
numerical fluxes. Specifically, the numerical fluxes need to be adapted to the
deformation of the mesh and to the non-conservative situation.
Example 3 proved that the implemented DG methods were able, similarly to
those on static meshes, to resolve boundary layers and additionally that the error
criteria were able to detect these boundary layers. By comparing the boundary
layer test case on a moving mesh with the same solved on a static mesh, we
proved that the moving mesh method can help the approximation in this kind of
situation: since the error is scaled by the local advection speed, in the situation
of static meshes, most of the error did not arise from the boundary layer but from
the advection term, this effect disappears when the mesh moves and the solution
is resolved so that the error only occurs from the boundary layer.
Finally Example 4 confirmed the reliability of the error criteria: when computed
on a very deformed mesh, the error criteria can detect the error occurring from
the deformation of the mesh and they are still able to detect the error occurring
from the scheme (in the sense that they do not appear because of the mesh’s
deformation but because of the DG approximation). This can still be improved
since the error in the deformed areas is over-evaluated and in contrast makes the
error coming from the scheme under-evaluated.



Chapter 5

Conclusions and future works

1 Conclusion

In this thesis we established interior penalty discontinuous Galerkin methods for
the semi-discretisation of an Arbitrary Lagrangian-Eulerian formulation in un-
steady advection-diffusion problems. By discretising the problem via a dynam-
ically deforming map, we used the existing analytic techniques for advection-
diffusion problems with continuous diffusion tensors. This lead us to derive a
priori error estimates that indicates the choice of the deforming velocity and
made the establishment of a posteriori error criteria possible. The reliability
of both the a priori and a posteriori error estimations were then discussed in
numerical tests.

By focusing on the available data, we derived specific a posteriori criteria for
the moving mesh method in one and two spatial dimensions. The robustness of
these error criteria in terms of the mesh’s Peclet number allowed us to scale the
error criteria with the square of the local remaining advection speed (called δ).
This behaviour is confirmed by the test cases where the error in terms of the
energy-norm appears to strongly depend on this local speed.

Similarly in Chapter 4, we studied the ability of the DG methods on static
meshes to resolve boundary layers and the capability of the error criteria to detect
them. We marked that the DG methods formulated in the ALE framework, and
the derived error criterion, suitably inherit from these properties. We specifically
underlined that the DG method needed the mesh movement in order to resolve
the boundary layer when the advection velocity has spatial variations.

Additionally, the developed a priori and a posteriori estimates outline a bal-
ance between the remaining advection speed and the norm of the gradient of the
mesh movement. This balance is outlined when the given advection has large

97
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spatial variations, leading to the need of a moving mesh velocity with large spa-
tial variations as well. This is discussed in the test cases where we see that the
effect of unbalanced mesh velocity occurs before the effect of entanglement.

SL methods were interpreted in terms of the ALE framework. In the com-
parison of the SL with the moving mesh method, we underlined the necessity
of the accurate fluxes’ computation when using a SLDG method for advection-
dominated advection-diffusion equations. In the test cases, both in one and two
spatial dimensions, we saw that most of the gain or loss of the moving mesh
method is done in the expression of the numerical fluxes. The moving mesh
method gains accuracy by approximating the fluxes more precisely but pays this
gain by loosing consistency. The novelty here is that not only we consider the
polynomial discretisation to be deforming but also the cells and especially the
fluxes both in one and two spatial dimensions. Furthermore, the development of
reliable a posteriori error criteria sets the scene for remainder-based h-refinement
in SLDG methods.

2 Future works

A natural development of this ALE method is the development of a SL method
for the resolution of advection-dominated flows. By more carefully approximating
the characteristics and determinant of the deformation map, we can expect to
measure the fluxes more accurately. The first step in this direction is to formulate
the fully discretised problem and to find a suitable method to better link the
computation of the characteristics with the computation of the determinant of
the deformation map. Once this is achieved, by adding the reliable error criteria
to the study, we can implement a semi-Lagrangian method that uses the principles
of remainder-based adaptive mesh refinement.

Another topic we want to investigate, originating from the comparison with
SL method, is to try to reduce the inconsistency occurring from the computation
of the fluxes. We saw in the test cases that for small deformations of the map,
the inconsistency dominates. Therefore, we want to investigate a moving mesh
method that remains fully consistent where the deformations are small and that
is inconsistent only where the deformations of the map are large.

Finally a topic that has not been adressed here is the study of the development
of efficient error criteria. Here the deformation of the map made it impossible
to achieve efficiency without more information on the deformation. Since the
criteria on static meshes are robust in terms of the mesh’s Peclet number, we can
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expect to find reliable and efficient error criteria when the deformation remains
small.
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